xref: /titanic_50/usr/src/uts/common/rpc/clnt_clts.c (revision e64d0ff97a1fb57a6e93e6d31ea549511c90b318)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T
28  * All Rights Reserved
29  */
30 
31 /*
32  * Portions of this source code were derived from Berkeley 4.3 BSD
33  * under license from the Regents of the University of California.
34  */
35 
36 
37 /*
38  * Implements a kernel based, client side RPC.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/systm.h>
44 #include <sys/sysmacros.h>
45 #include <sys/stream.h>
46 #include <sys/strsubr.h>
47 #include <sys/ddi.h>
48 #include <sys/tiuser.h>
49 #include <sys/tihdr.h>
50 #include <sys/t_kuser.h>
51 #include <sys/errno.h>
52 #include <sys/kmem.h>
53 #include <sys/debug.h>
54 #include <sys/kstat.h>
55 #include <sys/t_lock.h>
56 #include <sys/cmn_err.h>
57 #include <sys/conf.h>
58 #include <sys/disp.h>
59 #include <sys/taskq.h>
60 #include <sys/list.h>
61 #include <sys/atomic.h>
62 #include <sys/zone.h>
63 #include <netinet/in.h>
64 #include <rpc/types.h>
65 #include <rpc/xdr.h>
66 #include <rpc/auth.h>
67 #include <rpc/clnt.h>
68 #include <rpc/rpc_msg.h>
69 
70 #include <sys/sdt.h>
71 
72 static enum clnt_stat clnt_clts_kcallit(CLIENT *, rpcproc_t, xdrproc_t,
73 		    caddr_t, xdrproc_t, caddr_t, struct timeval);
74 static void	clnt_clts_kabort(CLIENT *);
75 static void	clnt_clts_kerror(CLIENT *, struct rpc_err *);
76 static bool_t	clnt_clts_kfreeres(CLIENT *, xdrproc_t, caddr_t);
77 static bool_t	clnt_clts_kcontrol(CLIENT *, int, char *);
78 static void	clnt_clts_kdestroy(CLIENT *);
79 static int	clnt_clts_ksettimers(CLIENT *, struct rpc_timers *,
80 		    struct rpc_timers *, int, void (*)(), caddr_t, uint32_t);
81 
82 /*
83  * Operations vector for CLTS based RPC
84  */
85 static struct clnt_ops clts_ops = {
86 	clnt_clts_kcallit,	/* do rpc call */
87 	clnt_clts_kabort,	/* abort call */
88 	clnt_clts_kerror,	/* return error status */
89 	clnt_clts_kfreeres,	/* free results */
90 	clnt_clts_kdestroy,	/* destroy rpc handle */
91 	clnt_clts_kcontrol,	/* the ioctl() of rpc */
92 	clnt_clts_ksettimers	/* set retry timers */
93 };
94 
95 /*
96  * Endpoint for CLTS (INET, INET6, loopback, etc.)
97  */
98 typedef struct endpnt_type {
99 	struct endpnt_type *e_next;	/* pointer to next endpoint type */
100 	list_t		e_pool;		/* list of available endpoints */
101 	list_t		e_ilist;	/* list of idle endpoints */
102 	struct endpnt	*e_pcurr;	/* pointer to current endpoint */
103 	char		e_protofmly[KNC_STRSIZE];	/* protocol family */
104 	dev_t		e_rdev;		/* device */
105 	kmutex_t	e_plock;	/* pool lock */
106 	kmutex_t	e_ilock;	/* idle list lock */
107 	timeout_id_t	e_itimer;	/* timer to dispatch the taskq */
108 	uint_t		e_cnt;		/* number of endpoints in the pool */
109 	zoneid_t	e_zoneid;	/* zoneid of endpoint type */
110 	kcondvar_t	e_async_cv;	/* cv for asynchronous reap threads */
111 	uint_t		e_async_count;	/* count of asynchronous reap threads */
112 } endpnt_type_t;
113 
114 typedef struct endpnt {
115 	list_node_t	e_node;		/* link to the pool */
116 	list_node_t	e_idle;		/* link to the idle list */
117 	endpnt_type_t	*e_type;	/* back pointer to endpoint type */
118 	TIUSER		*e_tiptr;	/* pointer to transport endpoint */
119 	queue_t		*e_wq;		/* write queue */
120 	uint_t		e_flags;	/* endpoint flags */
121 	uint_t		e_ref;		/* ref count on endpoint */
122 	kcondvar_t	e_cv;		/* condition variable */
123 	kmutex_t	e_lock;		/* protects cv and flags */
124 	time_t		e_itime;	/* time when rele'd */
125 } endpnt_t;
126 
127 #define	ENDPNT_ESTABLISHED	0x1	/* endpoint is established */
128 #define	ENDPNT_WAITING		0x2	/* thread waiting for endpoint */
129 #define	ENDPNT_BOUND		0x4	/* endpoint is bound */
130 #define	ENDPNT_STALE		0x8	/* endpoint is dead */
131 #define	ENDPNT_ONIDLE		0x10	/* endpoint is on the idle list */
132 
133 static krwlock_t	endpnt_type_lock; /* protects endpnt_type_list */
134 static endpnt_type_t	*endpnt_type_list = NULL; /* list of CLTS endpoints */
135 static struct kmem_cache	*endpnt_cache; /* cache of endpnt_t's */
136 static taskq_t			*endpnt_taskq; /* endpnt_t reaper thread */
137 static bool_t			taskq_created; /* flag for endpnt_taskq */
138 static kmutex_t			endpnt_taskq_lock; /* taskq lock */
139 static zone_key_t		endpnt_destructor_key;
140 
141 #define	DEFAULT_ENDPOINT_REAP_INTERVAL 60 /* 1 minute */
142 #define	DEFAULT_INTERVAL_SHIFT 30 /* 30 seconds */
143 
144 /*
145  * Endpoint tunables
146  */
147 static int	clnt_clts_max_endpoints = -1;
148 static int	clnt_clts_hash_size = DEFAULT_HASH_SIZE;
149 static time_t	clnt_clts_endpoint_reap_interval = -1;
150 static clock_t	clnt_clts_taskq_dispatch_interval;
151 
152 /*
153  * Response completion hash queue
154  */
155 static call_table_t *clts_call_ht;
156 
157 /*
158  * Routines for the endpoint manager
159  */
160 static struct endpnt_type *endpnt_type_create(struct knetconfig *);
161 static void endpnt_type_free(struct endpnt_type *);
162 static int check_endpnt(struct endpnt *, struct endpnt **);
163 static struct endpnt *endpnt_get(struct knetconfig *, int);
164 static void endpnt_rele(struct endpnt *);
165 static void endpnt_reap_settimer(endpnt_type_t *);
166 static void endpnt_reap(endpnt_type_t *);
167 static void endpnt_reap_dispatch(void *);
168 static void endpnt_reclaim(zoneid_t);
169 
170 
171 /*
172  * Request dipatching function.
173  */
174 static int clnt_clts_dispatch_send(queue_t *q, mblk_t *, struct netbuf *addr,
175 					calllist_t *, uint_t, cred_t *);
176 
177 /*
178  * The size of the preserialized RPC header information.
179  */
180 #define	CKU_HDRSIZE	20
181 /*
182  * The initial allocation size.  It is small to reduce space requirements.
183  */
184 #define	CKU_INITSIZE	2048
185 /*
186  * The size of additional allocations, if required.  It is larger to
187  * reduce the number of actual allocations.
188  */
189 #define	CKU_ALLOCSIZE	8192
190 
191 /*
192  * Private data per rpc handle.  This structure is allocated by
193  * clnt_clts_kcreate, and freed by clnt_clts_kdestroy.
194  */
195 struct cku_private {
196 	CLIENT			 cku_client;	/* client handle */
197 	int			 cku_retrys;	/* request retrys */
198 	calllist_t		 cku_call;
199 	struct endpnt		*cku_endpnt;	/* open end point */
200 	struct knetconfig	 cku_config;
201 	struct netbuf		 cku_addr;	/* remote address */
202 	struct rpc_err		 cku_err;	/* error status */
203 	XDR			 cku_outxdr;	/* xdr stream for output */
204 	XDR			 cku_inxdr;	/* xdr stream for input */
205 	char			 cku_rpchdr[CKU_HDRSIZE + 4]; /* rpc header */
206 	struct cred		*cku_cred;	/* credentials */
207 	struct rpc_timers	*cku_timers;	/* for estimating RTT */
208 	struct rpc_timers	*cku_timeall;	/* for estimating RTT */
209 	void			 (*cku_feedback)(int, int, caddr_t);
210 						/* ptr to feedback rtn */
211 	caddr_t			 cku_feedarg;	/* argument for feedback func */
212 	uint32_t		 cku_xid;	/* current XID */
213 	bool_t			 cku_bcast;	/* RPC broadcast hint */
214 	int			cku_useresvport; /* Use reserved port */
215 	struct rpc_clts_client	*cku_stats;	/* counters for the zone */
216 };
217 
218 static const struct rpc_clts_client {
219 	kstat_named_t	rccalls;
220 	kstat_named_t	rcbadcalls;
221 	kstat_named_t	rcretrans;
222 	kstat_named_t	rcbadxids;
223 	kstat_named_t	rctimeouts;
224 	kstat_named_t	rcnewcreds;
225 	kstat_named_t	rcbadverfs;
226 	kstat_named_t	rctimers;
227 	kstat_named_t	rcnomem;
228 	kstat_named_t	rccantsend;
229 } clts_rcstat_tmpl = {
230 	{ "calls",	KSTAT_DATA_UINT64 },
231 	{ "badcalls",	KSTAT_DATA_UINT64 },
232 	{ "retrans",	KSTAT_DATA_UINT64 },
233 	{ "badxids",	KSTAT_DATA_UINT64 },
234 	{ "timeouts",	KSTAT_DATA_UINT64 },
235 	{ "newcreds",	KSTAT_DATA_UINT64 },
236 	{ "badverfs",	KSTAT_DATA_UINT64 },
237 	{ "timers",	KSTAT_DATA_UINT64 },
238 	{ "nomem",	KSTAT_DATA_UINT64 },
239 	{ "cantsend",	KSTAT_DATA_UINT64 },
240 };
241 
242 static uint_t clts_rcstat_ndata =
243 	sizeof (clts_rcstat_tmpl) / sizeof (kstat_named_t);
244 
245 #define	RCSTAT_INCR(s, x)			\
246 	atomic_add_64(&(s)->x.value.ui64, 1)
247 
248 #define	ptoh(p)		(&((p)->cku_client))
249 #define	htop(h)		((struct cku_private *)((h)->cl_private))
250 
251 /*
252  * Times to retry
253  */
254 #define	SNDTRIES	4
255 #define	REFRESHES	2	/* authentication refreshes */
256 
257 /*
258  * The following is used to determine the global default behavior for
259  * CLTS when binding to a local port.
260  *
261  * If the value is set to 1 the default will be to select a reserved
262  * (aka privileged) port, if the value is zero the default will be to
263  * use non-reserved ports.  Users of kRPC may override this by using
264  * CLNT_CONTROL() and CLSET_BINDRESVPORT.
265  */
266 static int clnt_clts_do_bindresvport = 1;
267 
268 #define	BINDRESVPORT_RETRIES 5
269 
270 void
271 clnt_clts_stats_init(zoneid_t zoneid, struct rpc_clts_client **statsp)
272 {
273 	kstat_t *ksp;
274 	kstat_named_t *knp;
275 
276 	knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_client",
277 	    (const kstat_named_t *)&clts_rcstat_tmpl,
278 	    sizeof (clts_rcstat_tmpl));
279 	/*
280 	 * Backwards compatibility for old kstat clients
281 	 */
282 	ksp = kstat_create_zone("unix", 0, "rpc_client", "rpc",
283 	    KSTAT_TYPE_NAMED, clts_rcstat_ndata,
284 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
285 	if (ksp) {
286 		ksp->ks_data = knp;
287 		kstat_install(ksp);
288 	}
289 	*statsp = (struct rpc_clts_client *)knp;
290 }
291 
292 void
293 clnt_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_client **statsp)
294 {
295 	rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_client");
296 	kstat_delete_byname_zone("unix", 0, "rpc_client", zoneid);
297 	kmem_free(*statsp, sizeof (clts_rcstat_tmpl));
298 }
299 
300 /*
301  * Create an rpc handle for a clts rpc connection.
302  * Allocates space for the handle structure and the private data.
303  */
304 /* ARGSUSED */
305 int
306 clnt_clts_kcreate(struct knetconfig *config, struct netbuf *addr,
307 	rpcprog_t pgm, rpcvers_t vers, int retrys, struct cred *cred,
308 	CLIENT **cl)
309 {
310 	CLIENT *h;
311 	struct cku_private *p;
312 	struct rpc_msg call_msg;
313 	int error;
314 	int plen;
315 
316 	if (cl == NULL)
317 		return (EINVAL);
318 
319 	*cl = NULL;
320 	error = 0;
321 
322 	p = kmem_zalloc(sizeof (*p), KM_SLEEP);
323 
324 	h = ptoh(p);
325 
326 	/* handle */
327 	h->cl_ops = &clts_ops;
328 	h->cl_private = (caddr_t)p;
329 	h->cl_auth = authkern_create();
330 
331 	/* call message, just used to pre-serialize below */
332 	call_msg.rm_xid = 0;
333 	call_msg.rm_direction = CALL;
334 	call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION;
335 	call_msg.rm_call.cb_prog = pgm;
336 	call_msg.rm_call.cb_vers = vers;
337 
338 	/* private */
339 	clnt_clts_kinit(h, addr, retrys, cred);
340 
341 	xdrmem_create(&p->cku_outxdr, p->cku_rpchdr, CKU_HDRSIZE, XDR_ENCODE);
342 
343 	/* pre-serialize call message header */
344 	if (!xdr_callhdr(&p->cku_outxdr, &call_msg)) {
345 		error = EINVAL;		/* XXX */
346 		goto bad;
347 	}
348 
349 	p->cku_config.knc_rdev = config->knc_rdev;
350 	p->cku_config.knc_semantics = config->knc_semantics;
351 	plen = strlen(config->knc_protofmly) + 1;
352 	p->cku_config.knc_protofmly = kmem_alloc(plen, KM_SLEEP);
353 	bcopy(config->knc_protofmly, p->cku_config.knc_protofmly, plen);
354 	p->cku_useresvport = -1; /* value is has not been set */
355 
356 	cv_init(&p->cku_call.call_cv, NULL, CV_DEFAULT, NULL);
357 	mutex_init(&p->cku_call.call_lock, NULL, MUTEX_DEFAULT, NULL);
358 
359 	*cl = h;
360 	return (0);
361 
362 bad:
363 	auth_destroy(h->cl_auth);
364 	kmem_free(p->cku_addr.buf, addr->maxlen);
365 	kmem_free(p, sizeof (struct cku_private));
366 
367 	return (error);
368 }
369 
370 void
371 clnt_clts_kinit(CLIENT *h, struct netbuf *addr, int retrys, cred_t *cred)
372 {
373 	/* LINTED pointer alignment */
374 	struct cku_private *p = htop(h);
375 	struct rpcstat *rsp;
376 
377 	rsp = zone_getspecific(rpcstat_zone_key, rpc_zone());
378 	ASSERT(rsp != NULL);
379 
380 	p->cku_retrys = retrys;
381 
382 	if (p->cku_addr.maxlen < addr->len) {
383 		if (p->cku_addr.maxlen != 0 && p->cku_addr.buf != NULL)
384 			kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
385 
386 		p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP);
387 		p->cku_addr.maxlen = addr->maxlen;
388 	}
389 
390 	p->cku_addr.len = addr->len;
391 	bcopy(addr->buf, p->cku_addr.buf, addr->len);
392 
393 	p->cku_cred = cred;
394 	p->cku_xid = 0;
395 	p->cku_timers = NULL;
396 	p->cku_timeall = NULL;
397 	p->cku_feedback = NULL;
398 	p->cku_bcast = FALSE;
399 	p->cku_call.call_xid = 0;
400 	p->cku_call.call_hash = 0;
401 	p->cku_call.call_notified = FALSE;
402 	p->cku_call.call_next = NULL;
403 	p->cku_call.call_prev = NULL;
404 	p->cku_call.call_reply = NULL;
405 	p->cku_call.call_wq = NULL;
406 	p->cku_stats = rsp->rpc_clts_client;
407 }
408 
409 /*
410  * set the timers.  Return current retransmission timeout.
411  */
412 static int
413 clnt_clts_ksettimers(CLIENT *h, struct rpc_timers *t, struct rpc_timers *all,
414 	int minimum, void (*feedback)(int, int, caddr_t), caddr_t arg,
415 	uint32_t xid)
416 {
417 	/* LINTED pointer alignment */
418 	struct cku_private *p = htop(h);
419 	int value;
420 
421 	p->cku_feedback = feedback;
422 	p->cku_feedarg = arg;
423 	p->cku_timers = t;
424 	p->cku_timeall = all;
425 	if (xid)
426 		p->cku_xid = xid;
427 	value = all->rt_rtxcur;
428 	value += t->rt_rtxcur;
429 	if (value < minimum)
430 		return (minimum);
431 	RCSTAT_INCR(p->cku_stats, rctimers);
432 	return (value);
433 }
434 
435 /*
436  * Time out back off function. tim is in HZ
437  */
438 #define	MAXTIMO	(20 * hz)
439 #define	backoff(tim)	(((tim) < MAXTIMO) ? dobackoff(tim) : (tim))
440 #define	dobackoff(tim)	((((tim) << 1) > MAXTIMO) ? MAXTIMO : ((tim) << 1))
441 
442 #define	RETRY_POLL_TIMO	30
443 
444 /*
445  * Call remote procedure.
446  * Most of the work of rpc is done here.  We serialize what is left
447  * of the header (some was pre-serialized in the handle), serialize
448  * the arguments, and send it off.  We wait for a reply or a time out.
449  * Timeout causes an immediate return, other packet problems may cause
450  * a retry on the receive.  When a good packet is received we deserialize
451  * it, and check verification.  A bad reply code will cause one retry
452  * with full (longhand) credentials.
453  */
454 enum clnt_stat
455 clnt_clts_kcallit_addr(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
456 	caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
457 	struct timeval wait, struct netbuf *sin)
458 {
459 	/* LINTED pointer alignment */
460 	struct cku_private *p = htop(h);
461 	XDR *xdrs;
462 	int stries = p->cku_retrys;
463 	int refreshes = REFRESHES;	/* number of times to refresh cred */
464 	int round_trip;			/* time the RPC */
465 	int error;
466 	int hdrsz;
467 	mblk_t *mp;
468 	mblk_t *mpdup;
469 	mblk_t *resp = NULL;
470 	mblk_t *tmp;
471 	calllist_t *call = &p->cku_call;
472 	clock_t ori_timout, timout;
473 	bool_t interrupted;
474 	enum clnt_stat status;
475 	struct rpc_msg reply_msg;
476 	enum clnt_stat re_status;
477 	endpnt_t *endpt;
478 
479 	RCSTAT_INCR(p->cku_stats, rccalls);
480 
481 	RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_sec: %ld\n", wait.tv_sec);
482 	RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_usec: %ld\n", wait.tv_usec);
483 
484 	timout = TIMEVAL_TO_TICK(&wait);
485 	ori_timout = timout;
486 
487 	if (p->cku_xid == 0) {
488 		p->cku_xid = alloc_xid();
489 		if (p->cku_endpnt != NULL)
490 			endpnt_rele(p->cku_endpnt);
491 		p->cku_endpnt = NULL;
492 	}
493 	call->call_zoneid = rpc_zoneid();
494 
495 	mpdup = NULL;
496 call_again:
497 
498 	if (mpdup == NULL) {
499 
500 		while ((mp = allocb(CKU_INITSIZE, BPRI_LO)) == NULL) {
501 			if (strwaitbuf(CKU_INITSIZE, BPRI_LO)) {
502 				p->cku_err.re_status = RPC_SYSTEMERROR;
503 				p->cku_err.re_errno = ENOSR;
504 				goto done;
505 			}
506 		}
507 
508 		xdrs = &p->cku_outxdr;
509 		xdrmblk_init(xdrs, mp, XDR_ENCODE, CKU_ALLOCSIZE);
510 
511 		if (h->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) {
512 			/*
513 			 * Copy in the preserialized RPC header
514 			 * information.
515 			 */
516 			bcopy(p->cku_rpchdr, mp->b_rptr, CKU_HDRSIZE);
517 
518 			/*
519 			 * transaction id is the 1st thing in the output
520 			 * buffer.
521 			 */
522 			/* LINTED pointer alignment */
523 			(*(uint32_t *)(mp->b_rptr)) = p->cku_xid;
524 
525 			/* Skip the preserialized stuff. */
526 			XDR_SETPOS(xdrs, CKU_HDRSIZE);
527 
528 			/* Serialize dynamic stuff into the output buffer. */
529 			if ((!XDR_PUTINT32(xdrs, (int32_t *)&procnum)) ||
530 			    (!AUTH_MARSHALL(h->cl_auth, xdrs, p->cku_cred)) ||
531 			    (!(*xdr_args)(xdrs, argsp))) {
532 				freemsg(mp);
533 				p->cku_err.re_status = RPC_CANTENCODEARGS;
534 				p->cku_err.re_errno = EIO;
535 				goto done;
536 			}
537 		} else {
538 			uint32_t *uproc = (uint32_t *)
539 			    &p->cku_rpchdr[CKU_HDRSIZE];
540 			IXDR_PUT_U_INT32(uproc, procnum);
541 
542 			(*(uint32_t *)(&p->cku_rpchdr[0])) = p->cku_xid;
543 			XDR_SETPOS(xdrs, 0);
544 
545 			/* Serialize the procedure number and the arguments. */
546 			if (!AUTH_WRAP(h->cl_auth, (caddr_t)p->cku_rpchdr,
547 			    CKU_HDRSIZE+4, xdrs, xdr_args, argsp)) {
548 				freemsg(mp);
549 				p->cku_err.re_status = RPC_CANTENCODEARGS;
550 				p->cku_err.re_errno = EIO;
551 				goto done;
552 			}
553 		}
554 	} else
555 		mp = mpdup;
556 
557 	mpdup = dupmsg(mp);
558 	if (mpdup == NULL) {
559 		freemsg(mp);
560 		p->cku_err.re_status = RPC_SYSTEMERROR;
561 		p->cku_err.re_errno = ENOSR;
562 		goto done;
563 	}
564 
565 	/*
566 	 * Grab an endpnt only if the endpoint is NULL.  We could be retrying
567 	 * the request and in this case we want to go through the same
568 	 * source port, so that the duplicate request cache may detect a
569 	 * retry.
570 	 */
571 
572 	if (p->cku_endpnt == NULL)
573 		p->cku_endpnt = endpnt_get(&p->cku_config, p->cku_useresvport);
574 
575 	if (p->cku_endpnt == NULL) {
576 		freemsg(mp);
577 		p->cku_err.re_status = RPC_SYSTEMERROR;
578 		p->cku_err.re_errno = ENOSR;
579 		goto done;
580 	}
581 
582 	round_trip = ddi_get_lbolt();
583 
584 	error = clnt_clts_dispatch_send(p->cku_endpnt->e_wq, mp,
585 	    &p->cku_addr, call, p->cku_xid, p->cku_cred);
586 
587 	if (error != 0) {
588 		freemsg(mp);
589 		p->cku_err.re_status = RPC_CANTSEND;
590 		p->cku_err.re_errno = error;
591 		RCSTAT_INCR(p->cku_stats, rccantsend);
592 		goto done1;
593 	}
594 
595 	RPCLOG(64, "clnt_clts_kcallit_addr: sent call for xid 0x%x\n",
596 	    p->cku_xid);
597 
598 	/*
599 	 * There are two reasons for which we go back to to tryread.
600 	 *
601 	 * a) In case the status is RPC_PROCUNAVAIL and we sent out a
602 	 *    broadcast we should not get any invalid messages with the
603 	 *    RPC_PROCUNAVAIL error back. Some broken RPC implementations
604 	 *    send them and for this we have to ignore them ( as we would
605 	 *    have never received them ) and look for another message
606 	 *    which might contain the valid response because we don't know
607 	 *    how many broken implementations are in the network. So we are
608 	 *    going to loop until
609 	 *    - we received a valid response
610 	 *    - we have processed all invalid responses and
611 	 *	got a time out when we try to receive again a
612 	 *	message.
613 	 *
614 	 * b) We will jump back to tryread also in case we failed
615 	 *    within the AUTH_VALIDATE. In this case we should move
616 	 *    on and loop until we received a valid response or we
617 	 *    have processed all responses with broken authentication
618 	 *    and we got a time out when we try to receive a message.
619 	 */
620 tryread:
621 	mutex_enter(&call->call_lock);
622 	interrupted = FALSE;
623 	if (call->call_notified == FALSE) {
624 		klwp_t *lwp = ttolwp(curthread);
625 		clock_t cv_wait_ret = 1; /* init to > 0 */
626 		clock_t cv_timout = timout;
627 
628 		if (lwp != NULL)
629 			lwp->lwp_nostop++;
630 
631 		cv_timout += ddi_get_lbolt();
632 
633 		if (h->cl_nosignal)
634 			while ((cv_wait_ret =
635 			    cv_timedwait(&call->call_cv,
636 			    &call->call_lock, cv_timout)) > 0 &&
637 			    call->call_notified == FALSE)
638 				;
639 		else
640 			while ((cv_wait_ret =
641 			    cv_timedwait_sig(&call->call_cv,
642 			    &call->call_lock, cv_timout)) > 0 &&
643 			    call->call_notified == FALSE)
644 				;
645 
646 		if (cv_wait_ret == 0)
647 			interrupted = TRUE;
648 
649 		if (lwp != NULL)
650 			lwp->lwp_nostop--;
651 	}
652 	resp = call->call_reply;
653 	call->call_reply = NULL;
654 	status = call->call_status;
655 	/*
656 	 * We have to reset the call_notified here. In case we have
657 	 * to do a retry ( e.g. in case we got a RPC_PROCUNAVAIL
658 	 * error ) we need to set this to false to ensure that
659 	 * we will wait for the next message. When the next message
660 	 * is going to arrive the function clnt_clts_dispatch_notify
661 	 * will set this to true again.
662 	 */
663 	call->call_notified = FALSE;
664 	mutex_exit(&call->call_lock);
665 
666 	if (status == RPC_TIMEDOUT) {
667 		if (interrupted) {
668 			/*
669 			 * We got interrupted, bail out
670 			 */
671 			p->cku_err.re_status = RPC_INTR;
672 			p->cku_err.re_errno = EINTR;
673 			goto done1;
674 		} else {
675 			/*
676 			 * It's possible that our response arrived
677 			 * right after we timed out.  Check to see
678 			 * if it has arrived before we remove the
679 			 * calllist from the dispatch queue.
680 			 */
681 			mutex_enter(&call->call_lock);
682 			if (call->call_notified == TRUE) {
683 				resp = call->call_reply;
684 				call->call_reply = NULL;
685 				mutex_exit(&call->call_lock);
686 				RPCLOG(8, "clnt_clts_kcallit_addr: "
687 				    "response received for request "
688 				    "w/xid 0x%x after timeout\n",
689 				    p->cku_xid);
690 				goto getresponse;
691 			}
692 			mutex_exit(&call->call_lock);
693 
694 			RPCLOG(8, "clnt_clts_kcallit_addr: "
695 			    "request w/xid 0x%x timedout "
696 			    "waiting for reply\n", p->cku_xid);
697 #if 0 /* XXX not yet */
698 			/*
699 			 * Timeout may be due to a dead gateway. Send
700 			 * an ioctl downstream advising deletion of
701 			 * route when we reach the half-way point to
702 			 * timing out.
703 			 */
704 			if (stries == p->cku_retrys/2) {
705 				t_kadvise(p->cku_endpnt->e_tiptr,
706 				    (uchar_t *)p->cku_addr.buf,
707 				    p->cku_addr.len);
708 			}
709 #endif /* not yet */
710 			p->cku_err.re_status = RPC_TIMEDOUT;
711 			p->cku_err.re_errno = ETIMEDOUT;
712 			RCSTAT_INCR(p->cku_stats, rctimeouts);
713 			goto done1;
714 		}
715 	}
716 
717 getresponse:
718 	/*
719 	 * Check to see if a response arrived.  If it one is
720 	 * present then proceed to process the reponse.  Otherwise
721 	 * fall through to retry or retransmit the request.  This
722 	 * is probably not the optimal thing to do, but since we
723 	 * are most likely dealing with a unrealiable transport it
724 	 * is the safe thing to so.
725 	 */
726 	if (resp == NULL) {
727 		p->cku_err.re_status = RPC_CANTRECV;
728 		p->cku_err.re_errno = EIO;
729 		goto done1;
730 	}
731 
732 	/*
733 	 * Prepare the message for further processing.  We need to remove
734 	 * the datagram header and copy the source address if necessary.  No
735 	 * need to verify the header since rpcmod took care of that.
736 	 */
737 	/*
738 	 * Copy the source address if the caller has supplied a netbuf.
739 	 */
740 	if (sin != NULL) {
741 		union T_primitives *pptr;
742 
743 		pptr = (union T_primitives *)resp->b_rptr;
744 		bcopy(resp->b_rptr + pptr->unitdata_ind.SRC_offset, sin->buf,
745 		    pptr->unitdata_ind.SRC_length);
746 		sin->len = pptr->unitdata_ind.SRC_length;
747 	}
748 
749 	/*
750 	 * Pop off the datagram header.
751 	 */
752 	hdrsz = resp->b_wptr - resp->b_rptr;
753 	if ((resp->b_wptr - (resp->b_rptr + hdrsz)) == 0) {
754 		tmp = resp;
755 		resp = resp->b_cont;
756 		tmp->b_cont = NULL;
757 		freeb(tmp);
758 	} else {
759 		unsigned char *ud_off = resp->b_rptr;
760 		resp->b_rptr += hdrsz;
761 		tmp = dupb(resp);
762 		if (tmp == NULL) {
763 			p->cku_err.re_status = RPC_SYSTEMERROR;
764 			p->cku_err.re_errno = ENOSR;
765 			freemsg(resp);
766 			goto done1;
767 		}
768 		tmp->b_cont = resp->b_cont;
769 		resp->b_rptr = ud_off;
770 		freeb(resp);
771 		resp = tmp;
772 	}
773 
774 	round_trip = ddi_get_lbolt() - round_trip;
775 	/*
776 	 * Van Jacobson timer algorithm here, only if NOT a retransmission.
777 	 */
778 	if (p->cku_timers != NULL && stries == p->cku_retrys) {
779 		int rt;
780 
781 		rt = round_trip;
782 		rt -= (p->cku_timers->rt_srtt >> 3);
783 		p->cku_timers->rt_srtt += rt;
784 		if (rt < 0)
785 			rt = - rt;
786 		rt -= (p->cku_timers->rt_deviate >> 2);
787 		p->cku_timers->rt_deviate += rt;
788 		p->cku_timers->rt_rtxcur =
789 		    (clock_t)((p->cku_timers->rt_srtt >> 2) +
790 		    p->cku_timers->rt_deviate) >> 1;
791 
792 		rt = round_trip;
793 		rt -= (p->cku_timeall->rt_srtt >> 3);
794 		p->cku_timeall->rt_srtt += rt;
795 		if (rt < 0)
796 			rt = - rt;
797 		rt -= (p->cku_timeall->rt_deviate >> 2);
798 		p->cku_timeall->rt_deviate += rt;
799 		p->cku_timeall->rt_rtxcur =
800 		    (clock_t)((p->cku_timeall->rt_srtt >> 2) +
801 		    p->cku_timeall->rt_deviate) >> 1;
802 		if (p->cku_feedback != NULL) {
803 			(*p->cku_feedback)(FEEDBACK_OK, procnum,
804 			    p->cku_feedarg);
805 		}
806 	}
807 
808 	/*
809 	 * Process reply
810 	 */
811 	xdrs = &(p->cku_inxdr);
812 	xdrmblk_init(xdrs, resp, XDR_DECODE, 0);
813 
814 	reply_msg.rm_direction = REPLY;
815 	reply_msg.rm_reply.rp_stat = MSG_ACCEPTED;
816 	reply_msg.acpted_rply.ar_stat = SUCCESS;
817 	reply_msg.acpted_rply.ar_verf = _null_auth;
818 	/*
819 	 *  xdr_results will be done in AUTH_UNWRAP.
820 	 */
821 	reply_msg.acpted_rply.ar_results.where = NULL;
822 	reply_msg.acpted_rply.ar_results.proc = xdr_void;
823 
824 	/*
825 	 * Decode and validate the response.
826 	 */
827 	if (!xdr_replymsg(xdrs, &reply_msg)) {
828 		p->cku_err.re_status = RPC_CANTDECODERES;
829 		p->cku_err.re_errno = EIO;
830 		(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
831 		goto done1;
832 	}
833 
834 	_seterr_reply(&reply_msg, &(p->cku_err));
835 
836 	re_status = p->cku_err.re_status;
837 	if (re_status == RPC_SUCCESS) {
838 		/*
839 		 * Reply is good, check auth.
840 		 */
841 		if (!AUTH_VALIDATE(h->cl_auth,
842 		    &reply_msg.acpted_rply.ar_verf)) {
843 			p->cku_err.re_status = RPC_AUTHERROR;
844 			p->cku_err.re_why = AUTH_INVALIDRESP;
845 			RCSTAT_INCR(p->cku_stats, rcbadverfs);
846 			(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
847 			goto tryread;
848 		}
849 		if (!AUTH_UNWRAP(h->cl_auth, xdrs, xdr_results, resultsp)) {
850 			p->cku_err.re_status = RPC_CANTDECODERES;
851 			p->cku_err.re_errno = EIO;
852 		}
853 		(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
854 		goto done1;
855 	}
856 	/* set errno in case we can't recover */
857 	if (re_status != RPC_VERSMISMATCH &&
858 	    re_status != RPC_AUTHERROR && re_status != RPC_PROGVERSMISMATCH)
859 		p->cku_err.re_errno = EIO;
860 	/*
861 	 * Determine whether or not we're doing an RPC
862 	 * broadcast. Some server implementations don't
863 	 * follow RFC 1050, section 7.4.2 in that they
864 	 * don't remain silent when they see a proc
865 	 * they don't support. Therefore we keep trying
866 	 * to receive on RPC_PROCUNAVAIL, hoping to get
867 	 * a valid response from a compliant server.
868 	 */
869 	if (re_status == RPC_PROCUNAVAIL && p->cku_bcast) {
870 		(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
871 		goto tryread;
872 	}
873 	if (re_status == RPC_AUTHERROR) {
874 		/*
875 		 * Maybe our credential need to be refreshed
876 		 */
877 		if (refreshes > 0 &&
878 		    AUTH_REFRESH(h->cl_auth, &reply_msg, p->cku_cred)) {
879 			/*
880 			 * The credential is refreshed. Try the request again.
881 			 * Even if stries == 0, we still retry as long as
882 			 * refreshes > 0. This prevents a soft authentication
883 			 * error turning into a hard one at an upper level.
884 			 */
885 			refreshes--;
886 			RCSTAT_INCR(p->cku_stats, rcbadcalls);
887 			RCSTAT_INCR(p->cku_stats, rcnewcreds);
888 
889 			(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
890 			freemsg(mpdup);
891 			call_table_remove(call);
892 			mutex_enter(&call->call_lock);
893 			if (call->call_reply != NULL) {
894 				freemsg(call->call_reply);
895 				call->call_reply = NULL;
896 			}
897 			mutex_exit(&call->call_lock);
898 
899 			freemsg(resp);
900 			mpdup = NULL;
901 			goto call_again;
902 		}
903 		/*
904 		 * We have used the client handle to do an AUTH_REFRESH
905 		 * and the RPC status may be set to RPC_SUCCESS;
906 		 * Let's make sure to set it to RPC_AUTHERROR.
907 		 */
908 		p->cku_err.re_status = RPC_CANTDECODERES;
909 
910 		/*
911 		 * Map recoverable and unrecoverable
912 		 * authentication errors to appropriate errno
913 		 */
914 		switch (p->cku_err.re_why) {
915 		case AUTH_TOOWEAK:
916 			/*
917 			 * Could be an nfsportmon failure, set
918 			 * useresvport and try again.
919 			 */
920 			if (p->cku_useresvport != 1) {
921 				p->cku_useresvport = 1;
922 				(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
923 				freemsg(mpdup);
924 
925 				call_table_remove(call);
926 				mutex_enter(&call->call_lock);
927 				if (call->call_reply != NULL) {
928 					freemsg(call->call_reply);
929 					call->call_reply = NULL;
930 				}
931 				mutex_exit(&call->call_lock);
932 
933 				freemsg(resp);
934 				mpdup = NULL;
935 				endpt = p->cku_endpnt;
936 				if (endpt->e_tiptr != NULL) {
937 					mutex_enter(&endpt->e_lock);
938 					endpt->e_flags &= ~ENDPNT_BOUND;
939 					(void) t_kclose(endpt->e_tiptr, 1);
940 					endpt->e_tiptr = NULL;
941 					mutex_exit(&endpt->e_lock);
942 
943 				}
944 
945 				p->cku_xid = alloc_xid();
946 				endpnt_rele(p->cku_endpnt);
947 				p->cku_endpnt = NULL;
948 				goto call_again;
949 			}
950 			/* FALLTHRU */
951 		case AUTH_BADCRED:
952 		case AUTH_BADVERF:
953 		case AUTH_INVALIDRESP:
954 		case AUTH_FAILED:
955 		case RPCSEC_GSS_NOCRED:
956 		case RPCSEC_GSS_FAILED:
957 			p->cku_err.re_errno = EACCES;
958 			break;
959 		case AUTH_REJECTEDCRED:
960 		case AUTH_REJECTEDVERF:
961 		default:
962 			p->cku_err.re_errno = EIO;
963 			break;
964 		}
965 		RPCLOG(1, "clnt_clts_kcallit : authentication failed "
966 		    "with RPC_AUTHERROR of type %d\n",
967 		    p->cku_err.re_why);
968 	}
969 
970 	(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
971 
972 done1:
973 	call_table_remove(call);
974 	mutex_enter(&call->call_lock);
975 	if (call->call_reply != NULL) {
976 		freemsg(call->call_reply);
977 		call->call_reply = NULL;
978 	}
979 	mutex_exit(&call->call_lock);
980 	RPCLOG(64, "clnt_clts_kcallit_addr: xid 0x%x taken off dispatch list",
981 	    p->cku_xid);
982 
983 done:
984 	if (resp != NULL) {
985 		freemsg(resp);
986 		resp = NULL;
987 	}
988 
989 	if ((p->cku_err.re_status != RPC_SUCCESS) &&
990 	    (p->cku_err.re_status != RPC_INTR) &&
991 	    (p->cku_err.re_status != RPC_UDERROR) &&
992 	    !IS_UNRECOVERABLE_RPC(p->cku_err.re_status)) {
993 		if (p->cku_feedback != NULL && stries == p->cku_retrys) {
994 			(*p->cku_feedback)(FEEDBACK_REXMIT1, procnum,
995 			    p->cku_feedarg);
996 		}
997 
998 		timout = backoff(timout);
999 		if (p->cku_timeall != (struct rpc_timers *)0)
1000 			p->cku_timeall->rt_rtxcur = timout;
1001 
1002 		if (p->cku_err.re_status == RPC_SYSTEMERROR ||
1003 		    p->cku_err.re_status == RPC_CANTSEND) {
1004 			/*
1005 			 * Errors due to lack of resources, wait a bit
1006 			 * and try again.
1007 			 */
1008 			(void) delay(hz/10);
1009 		}
1010 		if (stries-- > 0) {
1011 			RCSTAT_INCR(p->cku_stats, rcretrans);
1012 			goto call_again;
1013 		}
1014 	}
1015 
1016 	if (mpdup != NULL)
1017 		freemsg(mpdup);
1018 
1019 	if (p->cku_err.re_status != RPC_SUCCESS) {
1020 		RCSTAT_INCR(p->cku_stats, rcbadcalls);
1021 	}
1022 
1023 	/*
1024 	 * Allow the endpoint to be held by the client handle in case this
1025 	 * RPC was not successful.  A retry may occur at a higher level and
1026 	 * in this case we may want to send the request over the same
1027 	 * source port.
1028 	 * Endpoint is also released for one-way RPC: no reply, nor retransmit
1029 	 * is expected.
1030 	 */
1031 	if ((p->cku_err.re_status == RPC_SUCCESS ||
1032 	    (p->cku_err.re_status == RPC_TIMEDOUT && ori_timout == 0)) &&
1033 	    p->cku_endpnt != NULL) {
1034 		endpnt_rele(p->cku_endpnt);
1035 		p->cku_endpnt = NULL;
1036 	} else {
1037 		DTRACE_PROBE2(clnt_clts_kcallit_done, int, p->cku_err.re_status,
1038 		    struct endpnt *, p->cku_endpnt);
1039 	}
1040 
1041 	return (p->cku_err.re_status);
1042 }
1043 
1044 static enum clnt_stat
1045 clnt_clts_kcallit(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
1046 	caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
1047 	struct timeval wait)
1048 {
1049 	return (clnt_clts_kcallit_addr(h, procnum, xdr_args, argsp,
1050 	    xdr_results, resultsp, wait, NULL));
1051 }
1052 
1053 /*
1054  * Return error info on this handle.
1055  */
1056 static void
1057 clnt_clts_kerror(CLIENT *h, struct rpc_err *err)
1058 {
1059 	/* LINTED pointer alignment */
1060 	struct cku_private *p = htop(h);
1061 
1062 	*err = p->cku_err;
1063 }
1064 
1065 static bool_t
1066 clnt_clts_kfreeres(CLIENT *h, xdrproc_t xdr_res, caddr_t res_ptr)
1067 {
1068 	/* LINTED pointer alignment */
1069 	struct cku_private *p = htop(h);
1070 	XDR *xdrs;
1071 
1072 	xdrs = &(p->cku_outxdr);
1073 	xdrs->x_op = XDR_FREE;
1074 	return ((*xdr_res)(xdrs, res_ptr));
1075 }
1076 
1077 /*ARGSUSED*/
1078 static void
1079 clnt_clts_kabort(CLIENT *h)
1080 {
1081 }
1082 
1083 static bool_t
1084 clnt_clts_kcontrol(CLIENT *h, int cmd, char *arg)
1085 {
1086 	/* LINTED pointer alignment */
1087 	struct cku_private *p = htop(h);
1088 
1089 	switch (cmd) {
1090 	case CLSET_XID:
1091 		p->cku_xid = *((uint32_t *)arg);
1092 		return (TRUE);
1093 
1094 	case CLGET_XID:
1095 		*((uint32_t *)arg) = p->cku_xid;
1096 		return (TRUE);
1097 
1098 	case CLSET_BCAST:
1099 		p->cku_bcast = *((uint32_t *)arg);
1100 		return (TRUE);
1101 
1102 	case CLGET_BCAST:
1103 		*((uint32_t *)arg) = p->cku_bcast;
1104 		return (TRUE);
1105 	case CLSET_BINDRESVPORT:
1106 		if (arg == NULL)
1107 			return (FALSE);
1108 
1109 		if (*(int *)arg != 1 && *(int *)arg != 0)
1110 			return (FALSE);
1111 
1112 		p->cku_useresvport = *(int *)arg;
1113 
1114 		return (TRUE);
1115 
1116 	case CLGET_BINDRESVPORT:
1117 		if (arg == NULL)
1118 			return (FALSE);
1119 
1120 		*(int *)arg = p->cku_useresvport;
1121 
1122 		return (TRUE);
1123 
1124 	default:
1125 		return (FALSE);
1126 	}
1127 }
1128 
1129 /*
1130  * Destroy rpc handle.
1131  * Frees the space used for output buffer, private data, and handle
1132  * structure, and the file pointer/TLI data on last reference.
1133  */
1134 static void
1135 clnt_clts_kdestroy(CLIENT *h)
1136 {
1137 	/* LINTED pointer alignment */
1138 	struct cku_private *p = htop(h);
1139 	calllist_t *call = &p->cku_call;
1140 
1141 	int plen;
1142 
1143 	RPCLOG(8, "clnt_clts_kdestroy h: %p\n", (void *)h);
1144 	RPCLOG(8, "clnt_clts_kdestroy h: xid=0x%x\n", p->cku_xid);
1145 
1146 	if (p->cku_endpnt != NULL)
1147 		endpnt_rele(p->cku_endpnt);
1148 
1149 	cv_destroy(&call->call_cv);
1150 	mutex_destroy(&call->call_lock);
1151 
1152 	plen = strlen(p->cku_config.knc_protofmly) + 1;
1153 	kmem_free(p->cku_config.knc_protofmly, plen);
1154 	kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
1155 	kmem_free(p, sizeof (*p));
1156 }
1157 
1158 /*
1159  * The connectionless (CLTS) kRPC endpoint management subsystem.
1160  *
1161  * Because endpoints are potentially shared among threads making RPC calls,
1162  * they are managed in a pool according to type (endpnt_type_t).  Each
1163  * endpnt_type_t points to a list of usable endpoints through the e_pool
1164  * field, which is of type list_t.  list_t is a doubly-linked list.
1165  * The number of endpoints in the pool is stored in the e_cnt field of
1166  * endpnt_type_t and the endpoints are reference counted using the e_ref field
1167  * in the endpnt_t structure.
1168  *
1169  * As an optimization, endpoints that have no references are also linked
1170  * to an idle list via e_ilist which is also of type list_t.  When a thread
1171  * calls endpnt_get() to obtain a transport endpoint, the idle list is first
1172  * consulted and if such an endpoint exists, it is removed from the idle list
1173  * and returned to the caller.
1174  *
1175  * If the idle list is empty, then a check is made to see if more endpoints
1176  * can be created.  If so, we proceed and create a new endpoint which is added
1177  * to the pool and returned to the caller.  If we have reached the limit and
1178  * cannot make a new endpoint then one is returned to the caller via round-
1179  * robin policy.
1180  *
1181  * When an endpoint is placed on the idle list by a thread calling
1182  * endpnt_rele(), it is timestamped and then a reaper taskq is scheduled to
1183  * be dispatched if one hasn't already been.  When the timer fires, the
1184  * taskq traverses the idle list and checks to see which endpoints are
1185  * eligible to be closed.  It determines this by checking if the timestamp
1186  * when the endpoint was released has exceeded the the threshold for how long
1187  * it should stay alive.
1188  *
1189  * endpnt_t structures remain persistent until the memory reclaim callback,
1190  * endpnt_reclaim(), is invoked.
1191  *
1192  * Here is an example of how the data structures would be laid out by the
1193  * subsystem:
1194  *
1195  *       endpnt_type_t
1196  *
1197  *	 loopback		                  inet
1198  *	 _______________	                  ______________
1199  *	| e_next        |----------------------->| e_next       |---->>
1200  *	| e_pool        |<---+                   | e_pool       |<----+
1201  *	| e_ilist       |<---+--+                | e_ilist      |<----+--+
1202  *   +->| e_pcurr       |----+--+--+	      +->| e_pcurr      |-----+--+--+
1203  *   |	| ...           |    |  |  |	      |	 | ...	        |     |  |  |
1204  *   |	| e_itimer (90) |    |  |  |	      |	 | e_itimer (0) |     |  |  |
1205  *   |	| e_cnt (1)     |    |  |  |	      |	 | e_cnt (3)    |     |  |  |
1206  *   |	+---------------+    |  |  |	      |	 +--------------+     |  |  |
1207  *   |			     |  |  |	      |			      |  |  |
1208  *   |   endpnt_t            |  |  |          |	                      |  |  |
1209  *   |	 ____________        |  |  |	      |	  ____________        |  |  |
1210  *   |	| e_node     |<------+  |  |	      |	 | e_node     |<------+  |  |
1211  *   |	| e_idle     |<---------+  |	      |	 | e_idle     |       |  |  |
1212  *   +--| e_type     |<------------+	      +--| e_type     |       |  |  |
1213  *	| e_tiptr    |                        |  | e_tiptr    |       |  |  |
1214  *      | ...	     |		              |	 | ...	      |       |  |  |
1215  *	| e_lock     |		              |	 | e_lock     |       |  |  |
1216  *	| ...        |		              |	 | ...	      |       |  |  |
1217  *      | e_ref (0)  |		              |	 | e_ref (2)  |       |  |  |
1218  *	| e_itime    |	                      |	 | e_itime    |       |  |  |
1219  *	+------------+		              |	 +------------+       |  |  |
1220  *					      |			      |  |  |
1221  *					      |			      |  |  |
1222  *					      |	  ____________        |  |  |
1223  *					      |	 | e_node     |<------+  |  |
1224  *					      |	 | e_idle     |<------+--+  |
1225  *					      +--| e_type     |       |     |
1226  *					      |	 | e_tiptr    |       |     |
1227  *					      |	 | ...	      |       |     |
1228  *					      |	 | e_lock     |       |     |
1229  *					      |	 | ...	      |       |     |
1230  *					      |	 | e_ref (0)  |       |     |
1231  *					      |	 | e_itime    |       |     |
1232  *					      |	 +------------+       |     |
1233  *					      |			      |     |
1234  *					      |			      |     |
1235  *					      |	  ____________        |     |
1236  *					      |	 | e_node     |<------+     |
1237  *					      |	 | e_idle     |             |
1238  *					      +--| e_type     |<------------+
1239  *						 | e_tiptr    |
1240  *						 | ...	      |
1241  *						 | e_lock     |
1242  *						 | ...	      |
1243  *						 | e_ref (1)  |
1244  *						 | e_itime    |
1245  *						 +------------+
1246  *
1247  * Endpoint locking strategy:
1248  *
1249  * The following functions manipulate lists which hold the endpoint and the
1250  * endpoints themselves:
1251  *
1252  * endpnt_get()/check_endpnt()/endpnt_rele()/endpnt_reap()/do_endpnt_reclaim()
1253  *
1254  * Lock description follows:
1255  *
1256  * endpnt_type_lock: Global reader/writer lock which protects accesses to the
1257  *		     endpnt_type_list.
1258  *
1259  * e_plock: Lock defined in the endpnt_type_t.  It is intended to
1260  *	    protect accesses to the pool of endopints (e_pool) for a given
1261  *	    endpnt_type_t.
1262  *
1263  * e_ilock: Lock defined in endpnt_type_t.  It is intended to protect accesses
1264  *	    to the idle list (e_ilist) of available endpoints for a given
1265  *	    endpnt_type_t.  It also protects access to the e_itimer, e_async_cv,
1266  *	    and e_async_count fields in endpnt_type_t.
1267  *
1268  * e_lock: Lock defined in the endpnt structure.  It is intended to protect
1269  *	   flags, cv, and ref count.
1270  *
1271  * The order goes as follows so as not to induce deadlock.
1272  *
1273  * endpnt_type_lock -> e_plock -> e_ilock -> e_lock
1274  *
1275  * Interaction with Zones and shutting down:
1276  *
1277  * endpnt_type_ts are uniquely identified by the (e_zoneid, e_rdev, e_protofmly)
1278  * tuple, which means that a zone may not reuse another zone's idle endpoints
1279  * without first doing a t_kclose().
1280  *
1281  * A zone's endpnt_type_ts are destroyed when a zone is shut down; e_async_cv
1282  * and e_async_count are used to keep track of the threads in endpnt_taskq
1283  * trying to reap endpnt_ts in the endpnt_type_t.
1284  */
1285 
1286 /*
1287  * Allocate and initialize an endpnt_type_t
1288  */
1289 static struct endpnt_type *
1290 endpnt_type_create(struct knetconfig *config)
1291 {
1292 	struct endpnt_type	*etype;
1293 
1294 	/*
1295 	 * Allocate a new endpoint type to hang a list of
1296 	 * endpoints off of it.
1297 	 */
1298 	etype = kmem_alloc(sizeof (struct endpnt_type), KM_SLEEP);
1299 	etype->e_next = NULL;
1300 	etype->e_pcurr = NULL;
1301 	etype->e_itimer = 0;
1302 	etype->e_cnt = 0;
1303 
1304 	(void) strncpy(etype->e_protofmly, config->knc_protofmly, KNC_STRSIZE);
1305 	mutex_init(&etype->e_plock, NULL, MUTEX_DEFAULT, NULL);
1306 	mutex_init(&etype->e_ilock, NULL, MUTEX_DEFAULT, NULL);
1307 	etype->e_rdev = config->knc_rdev;
1308 	etype->e_zoneid = rpc_zoneid();
1309 	etype->e_async_count = 0;
1310 	cv_init(&etype->e_async_cv, NULL, CV_DEFAULT, NULL);
1311 
1312 	list_create(&etype->e_pool, sizeof (endpnt_t),
1313 	    offsetof(endpnt_t, e_node));
1314 	list_create(&etype->e_ilist, sizeof (endpnt_t),
1315 	    offsetof(endpnt_t, e_idle));
1316 
1317 	/*
1318 	 * Check to see if we need to create a taskq for endpoint
1319 	 * reaping
1320 	 */
1321 	mutex_enter(&endpnt_taskq_lock);
1322 	if (taskq_created == FALSE) {
1323 		taskq_created = TRUE;
1324 		mutex_exit(&endpnt_taskq_lock);
1325 		ASSERT(endpnt_taskq == NULL);
1326 		endpnt_taskq = taskq_create("clts_endpnt_taskq", 1,
1327 		    minclsyspri, 200, INT_MAX, 0);
1328 	} else
1329 		mutex_exit(&endpnt_taskq_lock);
1330 
1331 	return (etype);
1332 }
1333 
1334 /*
1335  * Free an endpnt_type_t
1336  */
1337 static void
1338 endpnt_type_free(struct endpnt_type *etype)
1339 {
1340 	mutex_destroy(&etype->e_plock);
1341 	mutex_destroy(&etype->e_ilock);
1342 	list_destroy(&etype->e_pool);
1343 	list_destroy(&etype->e_ilist);
1344 	kmem_free(etype, sizeof (endpnt_type_t));
1345 }
1346 
1347 /*
1348  * Check the endpoint to ensure that it is suitable for use.
1349  *
1350  * Possible return values:
1351  *
1352  * return (1) - Endpoint is established, but needs to be re-opened.
1353  * return (0) && *newp == NULL - Endpoint is established, but unusable.
1354  * return (0) && *newp != NULL - Endpoint is established and usable.
1355  */
1356 static int
1357 check_endpnt(struct endpnt *endp, struct endpnt **newp)
1358 {
1359 	*newp = endp;
1360 
1361 	mutex_enter(&endp->e_lock);
1362 	ASSERT(endp->e_ref >= 1);
1363 
1364 	/*
1365 	 * The first condition we check for is if the endpoint has been
1366 	 * allocated, but is unusable either because it has been closed or
1367 	 * has been marked stale.  Only *one* thread will be allowed to
1368 	 * execute the then clause.  This is enforced because the first thread
1369 	 * to check this condition will clear the flags, so that subsequent
1370 	 * thread(s) checking this endpoint will move on.
1371 	 */
1372 	if ((endp->e_flags & ENDPNT_ESTABLISHED) &&
1373 	    (!(endp->e_flags & ENDPNT_BOUND) ||
1374 	    (endp->e_flags & ENDPNT_STALE))) {
1375 		/*
1376 		 * Clear the flags here since they will be
1377 		 * set again by this thread.  They need to be
1378 		 * individually cleared because we want to maintain
1379 		 * the state for ENDPNT_ONIDLE.
1380 		 */
1381 		endp->e_flags &= ~(ENDPNT_ESTABLISHED |
1382 		    ENDPNT_WAITING | ENDPNT_BOUND | ENDPNT_STALE);
1383 		mutex_exit(&endp->e_lock);
1384 		return (1);
1385 	}
1386 
1387 	/*
1388 	 * The second condition is meant for any thread that is waiting for
1389 	 * an endpoint to become established.  It will cv_wait() until
1390 	 * the condition for the endpoint has been changed to ENDPNT_BOUND or
1391 	 * ENDPNT_STALE.
1392 	 */
1393 	while (!(endp->e_flags & ENDPNT_BOUND) &&
1394 	    !(endp->e_flags & ENDPNT_STALE)) {
1395 		endp->e_flags |= ENDPNT_WAITING;
1396 		cv_wait(&endp->e_cv, &endp->e_lock);
1397 	}
1398 
1399 	ASSERT(endp->e_flags & ENDPNT_ESTABLISHED);
1400 
1401 	/*
1402 	 * The last case we check for is if the endpoint has been marked stale.
1403 	 * If this is the case then set *newp to NULL and return, so that the
1404 	 * caller is notified of the error and can take appropriate action.
1405 	 */
1406 	if (endp->e_flags & ENDPNT_STALE) {
1407 		endp->e_ref--;
1408 		*newp = NULL;
1409 	}
1410 	mutex_exit(&endp->e_lock);
1411 	return (0);
1412 }
1413 
1414 #ifdef DEBUG
1415 /*
1416  * Provide a fault injection setting to test error conditions.
1417  */
1418 static int endpnt_get_return_null = 0;
1419 #endif
1420 
1421 /*
1422  * Returns a handle (struct endpnt *) to an open and bound endpoint
1423  * specified by the knetconfig passed in.  Returns NULL if no valid endpoint
1424  * can be obtained.
1425  */
1426 static struct endpnt *
1427 endpnt_get(struct knetconfig *config, int useresvport)
1428 {
1429 	struct endpnt_type	*n_etype = NULL;
1430 	struct endpnt_type	*np = NULL;
1431 	struct endpnt		*new = NULL;
1432 	struct endpnt		*endp = NULL;
1433 	struct endpnt		*next = NULL;
1434 	TIUSER			*tiptr = NULL;
1435 	int			rtries = BINDRESVPORT_RETRIES;
1436 	int			i = 0;
1437 	int			error;
1438 	int			retval;
1439 	zoneid_t		zoneid = rpc_zoneid();
1440 	cred_t			*cr;
1441 
1442 	RPCLOG(1, "endpnt_get: protofmly %s, ", config->knc_protofmly);
1443 	RPCLOG(1, "rdev %ld\n", config->knc_rdev);
1444 
1445 #ifdef DEBUG
1446 	/*
1447 	 * Inject fault if desired.  Pretend we have a stale endpoint
1448 	 * and return NULL.
1449 	 */
1450 	if (endpnt_get_return_null > 0) {
1451 		endpnt_get_return_null--;
1452 		return (NULL);
1453 	}
1454 #endif
1455 	rw_enter(&endpnt_type_lock, RW_READER);
1456 
1457 top:
1458 	for (np = endpnt_type_list; np != NULL; np = np->e_next)
1459 		if ((np->e_zoneid == zoneid) &&
1460 		    (np->e_rdev == config->knc_rdev) &&
1461 		    (strcmp(np->e_protofmly,
1462 		    config->knc_protofmly) == 0))
1463 			break;
1464 
1465 	if (np == NULL && n_etype != NULL) {
1466 		ASSERT(rw_write_held(&endpnt_type_lock));
1467 
1468 		/*
1469 		 * Link the endpoint type onto the list
1470 		 */
1471 		n_etype->e_next = endpnt_type_list;
1472 		endpnt_type_list = n_etype;
1473 		np = n_etype;
1474 		n_etype = NULL;
1475 	}
1476 
1477 	if (np == NULL) {
1478 		/*
1479 		 * The logic here is that we were unable to find an
1480 		 * endpnt_type_t that matched our criteria, so we allocate a
1481 		 * new one.  Because kmem_alloc() needs to be called with
1482 		 * KM_SLEEP, we drop our locks so that we don't induce
1483 		 * deadlock.  After allocating and initializing the
1484 		 * endpnt_type_t, we reaquire the lock and go back to check
1485 		 * if this entry needs to be added to the list.  Since we do
1486 		 * some operations without any locking other threads may
1487 		 * have been looking for the same endpnt_type_t and gone
1488 		 * through this code path.  We check for this case and allow
1489 		 * one thread to link its endpnt_type_t to the list and the
1490 		 * other threads will simply free theirs.
1491 		 */
1492 		rw_exit(&endpnt_type_lock);
1493 		n_etype = endpnt_type_create(config);
1494 
1495 		/*
1496 		 * We need to reaquire the lock with RW_WRITER here so that
1497 		 * we can safely link the new endpoint type onto the list.
1498 		 */
1499 		rw_enter(&endpnt_type_lock, RW_WRITER);
1500 		goto top;
1501 	}
1502 
1503 	rw_exit(&endpnt_type_lock);
1504 	/*
1505 	 * If n_etype is not NULL, then another thread was able to
1506 	 * insert an endpnt_type_t of this type  onto the list before
1507 	 * we did.  Go ahead and free ours.
1508 	 */
1509 	if (n_etype != NULL)
1510 		endpnt_type_free(n_etype);
1511 
1512 	mutex_enter(&np->e_ilock);
1513 	/*
1514 	 * The algorithm to hand out endpoints is to first
1515 	 * give out those that are idle if such endpoints
1516 	 * exist.  Otherwise, create a new one if we haven't
1517 	 * reached the max threshold.  Finally, we give out
1518 	 * endpoints in a pseudo LRU fashion (round-robin).
1519 	 *
1520 	 * Note:  The idle list is merely a hint of those endpoints
1521 	 * that should be idle.  There exists a window after the
1522 	 * endpoint is released and before it is linked back onto the
1523 	 * idle list where a thread could get a reference to it and
1524 	 * use it.  This is okay, since the reference counts will
1525 	 * still be consistent.
1526 	 */
1527 	if ((endp = (endpnt_t *)list_head(&np->e_ilist)) != NULL) {
1528 		timeout_id_t t_id = 0;
1529 
1530 		mutex_enter(&endp->e_lock);
1531 		endp->e_ref++;
1532 		endp->e_itime = 0;
1533 		endp->e_flags &= ~ENDPNT_ONIDLE;
1534 		mutex_exit(&endp->e_lock);
1535 
1536 		/*
1537 		 * Pop the endpoint off the idle list and hand it off
1538 		 */
1539 		list_remove(&np->e_ilist, endp);
1540 
1541 		if (np->e_itimer != 0) {
1542 			t_id = np->e_itimer;
1543 			np->e_itimer = 0;
1544 		}
1545 		mutex_exit(&np->e_ilock);
1546 		/*
1547 		 * Reset the idle timer if it has been set
1548 		 */
1549 		if (t_id != (timeout_id_t)0)
1550 			(void) untimeout(t_id);
1551 
1552 		if (check_endpnt(endp, &new) == 0)
1553 			return (new);
1554 	} else if (np->e_cnt >= clnt_clts_max_endpoints) {
1555 		/*
1556 		 * There are no idle endpoints currently, so
1557 		 * create a new one if we have not reached the maximum or
1558 		 * hand one out in round-robin.
1559 		 */
1560 		mutex_exit(&np->e_ilock);
1561 		mutex_enter(&np->e_plock);
1562 		endp = np->e_pcurr;
1563 		mutex_enter(&endp->e_lock);
1564 		endp->e_ref++;
1565 		mutex_exit(&endp->e_lock);
1566 
1567 		ASSERT(endp != NULL);
1568 		/*
1569 		 * Advance the pointer to the next eligible endpoint, if
1570 		 * necessary.
1571 		 */
1572 		if (np->e_cnt > 1) {
1573 			next = (endpnt_t *)list_next(&np->e_pool, np->e_pcurr);
1574 			if (next == NULL)
1575 				next = (endpnt_t *)list_head(&np->e_pool);
1576 			np->e_pcurr = next;
1577 		}
1578 
1579 		mutex_exit(&np->e_plock);
1580 
1581 		/*
1582 		 * We need to check to see if this endpoint is bound or
1583 		 * not.  If it is in progress then just wait until
1584 		 * the set up is complete
1585 		 */
1586 		if (check_endpnt(endp, &new) == 0)
1587 			return (new);
1588 	} else {
1589 		mutex_exit(&np->e_ilock);
1590 		mutex_enter(&np->e_plock);
1591 
1592 		/*
1593 		 * Allocate a new endpoint to use.  If we can't allocate any
1594 		 * more memory then use one that is already established if any
1595 		 * such endpoints exist.
1596 		 */
1597 		new = kmem_cache_alloc(endpnt_cache, KM_NOSLEEP);
1598 		if (new == NULL) {
1599 			RPCLOG0(1, "endpnt_get: kmem_cache_alloc failed\n");
1600 			/*
1601 			 * Try to recover by using an existing endpoint.
1602 			 */
1603 			if (np->e_cnt <= 0) {
1604 				mutex_exit(&np->e_plock);
1605 				return (NULL);
1606 			}
1607 			endp = np->e_pcurr;
1608 			if ((next = list_next(&np->e_pool, np->e_pcurr)) !=
1609 			    NULL)
1610 				np->e_pcurr = next;
1611 			ASSERT(endp != NULL);
1612 			mutex_enter(&endp->e_lock);
1613 			endp->e_ref++;
1614 			mutex_exit(&endp->e_lock);
1615 			mutex_exit(&np->e_plock);
1616 
1617 			if (check_endpnt(endp, &new) == 0)
1618 				return (new);
1619 		} else {
1620 			/*
1621 			 * Partially init an endpoint structure and put
1622 			 * it on the list, so that other interested threads
1623 			 * know that one is being created
1624 			 */
1625 			bzero(new, sizeof (struct endpnt));
1626 
1627 			cv_init(&new->e_cv, NULL, CV_DEFAULT, NULL);
1628 			mutex_init(&new->e_lock, NULL, MUTEX_DEFAULT, NULL);
1629 			new->e_ref = 1;
1630 			new->e_type = np;
1631 
1632 			/*
1633 			 * Link the endpoint into the pool.
1634 			 */
1635 			list_insert_head(&np->e_pool, new);
1636 			np->e_cnt++;
1637 			if (np->e_pcurr == NULL)
1638 				np->e_pcurr = new;
1639 			mutex_exit(&np->e_plock);
1640 		}
1641 	}
1642 
1643 	/*
1644 	 * The transport should be opened with sufficient privs
1645 	 */
1646 	cr = zone_kcred();
1647 	error = t_kopen(NULL, config->knc_rdev, FREAD|FWRITE|FNDELAY, &tiptr,
1648 	    cr);
1649 	if (error) {
1650 		RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1651 		goto bad;
1652 	}
1653 
1654 	new->e_tiptr = tiptr;
1655 	rpc_poptimod(tiptr->fp->f_vnode);
1656 
1657 	/*
1658 	 * Allow the kernel to push the module on behalf of the user.
1659 	 */
1660 	error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"rpcmod", 0,
1661 	    K_TO_K, cr, &retval);
1662 	if (error) {
1663 		RPCLOG(1, "endpnt_get: kstr_push on rpcmod failed %d\n", error);
1664 		goto bad;
1665 	}
1666 
1667 	error = strioctl(tiptr->fp->f_vnode, RPC_CLIENT, 0, 0, K_TO_K,
1668 	    cr, &retval);
1669 	if (error) {
1670 		RPCLOG(1, "endpnt_get: strioctl failed %d\n", error);
1671 		goto bad;
1672 	}
1673 
1674 	/*
1675 	 * Connectionless data flow should bypass the stream head.
1676 	 */
1677 	new->e_wq = tiptr->fp->f_vnode->v_stream->sd_wrq->q_next;
1678 
1679 	error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"timod", 0,
1680 	    K_TO_K, cr, &retval);
1681 	if (error) {
1682 		RPCLOG(1, "endpnt_get: kstr_push on timod failed %d\n", error);
1683 		goto bad;
1684 	}
1685 
1686 	/*
1687 	 * Attempt to bind the endpoint.  If we fail then propogate
1688 	 * error back to calling subsystem, so that it can be handled
1689 	 * appropriately.
1690 	 * If the caller has not specified reserved port usage then
1691 	 * take the system default.
1692 	 */
1693 	if (useresvport == -1)
1694 		useresvport = clnt_clts_do_bindresvport;
1695 
1696 	if (useresvport &&
1697 	    (strcmp(config->knc_protofmly, NC_INET) == 0 ||
1698 	    strcmp(config->knc_protofmly, NC_INET6) == 0)) {
1699 
1700 		while ((error =
1701 		    bindresvport(new->e_tiptr, NULL, NULL, FALSE)) != 0) {
1702 			RPCLOG(1,
1703 			    "endpnt_get: bindresvport error %d\n", error);
1704 			if (error != EPROTO) {
1705 				if (rtries-- <= 0)
1706 					goto bad;
1707 
1708 				delay(hz << i++);
1709 				continue;
1710 			}
1711 
1712 			(void) t_kclose(new->e_tiptr, 1);
1713 			/*
1714 			 * reopen with all privileges
1715 			 */
1716 			error = t_kopen(NULL, config->knc_rdev,
1717 			    FREAD|FWRITE|FNDELAY,
1718 			    &new->e_tiptr, cr);
1719 			if (error) {
1720 				RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1721 					new->e_tiptr = NULL;
1722 					goto bad;
1723 			}
1724 		}
1725 	} else if ((error = t_kbind(new->e_tiptr, NULL, NULL)) != 0) {
1726 		RPCLOG(1, "endpnt_get: t_kbind failed: %d\n", error);
1727 		goto bad;
1728 	}
1729 
1730 	/*
1731 	 * Set the flags and notify and waiters that we have an established
1732 	 * endpoint.
1733 	 */
1734 	mutex_enter(&new->e_lock);
1735 	new->e_flags |= ENDPNT_ESTABLISHED;
1736 	new->e_flags |= ENDPNT_BOUND;
1737 	if (new->e_flags & ENDPNT_WAITING) {
1738 		cv_broadcast(&new->e_cv);
1739 		new->e_flags &= ~ENDPNT_WAITING;
1740 	}
1741 	mutex_exit(&new->e_lock);
1742 
1743 	return (new);
1744 
1745 bad:
1746 	ASSERT(new != NULL);
1747 	/*
1748 	 * mark this endpoint as stale and notify any threads waiting
1749 	 * on this endpoint that it will be going away.
1750 	 */
1751 	mutex_enter(&new->e_lock);
1752 	if (new->e_ref > 0) {
1753 		new->e_flags |= ENDPNT_ESTABLISHED;
1754 		new->e_flags |= ENDPNT_STALE;
1755 		if (new->e_flags & ENDPNT_WAITING) {
1756 			cv_broadcast(&new->e_cv);
1757 			new->e_flags &= ~ENDPNT_WAITING;
1758 		}
1759 	}
1760 	new->e_ref--;
1761 	new->e_tiptr = NULL;
1762 	mutex_exit(&new->e_lock);
1763 
1764 	/*
1765 	 * If there was a transport endopoint opened, then close it.
1766 	 */
1767 	if (tiptr != NULL)
1768 		(void) t_kclose(tiptr, 1);
1769 
1770 	return (NULL);
1771 }
1772 
1773 /*
1774  * Release a referece to the endpoint
1775  */
1776 static void
1777 endpnt_rele(struct endpnt *sp)
1778 {
1779 	mutex_enter(&sp->e_lock);
1780 	ASSERT(sp->e_ref > 0);
1781 	sp->e_ref--;
1782 	/*
1783 	 * If the ref count is zero, then start the idle timer and link
1784 	 * the endpoint onto the idle list.
1785 	 */
1786 	if (sp->e_ref == 0) {
1787 		sp->e_itime = gethrestime_sec();
1788 
1789 		/*
1790 		 * Check to see if the endpoint is already linked to the idle
1791 		 * list, so that we don't try to reinsert it.
1792 		 */
1793 		if (sp->e_flags & ENDPNT_ONIDLE) {
1794 			mutex_exit(&sp->e_lock);
1795 			mutex_enter(&sp->e_type->e_ilock);
1796 			endpnt_reap_settimer(sp->e_type);
1797 			mutex_exit(&sp->e_type->e_ilock);
1798 			return;
1799 		}
1800 
1801 		sp->e_flags |= ENDPNT_ONIDLE;
1802 		mutex_exit(&sp->e_lock);
1803 		mutex_enter(&sp->e_type->e_ilock);
1804 		list_insert_tail(&sp->e_type->e_ilist, sp);
1805 		endpnt_reap_settimer(sp->e_type);
1806 		mutex_exit(&sp->e_type->e_ilock);
1807 	} else
1808 		mutex_exit(&sp->e_lock);
1809 }
1810 
1811 static void
1812 endpnt_reap_settimer(endpnt_type_t *etp)
1813 {
1814 	if (etp->e_itimer == (timeout_id_t)0)
1815 		etp->e_itimer = timeout(endpnt_reap_dispatch, (void *)etp,
1816 		    clnt_clts_taskq_dispatch_interval);
1817 }
1818 
1819 static void
1820 endpnt_reap_dispatch(void *a)
1821 {
1822 	endpnt_type_t *etp = a;
1823 
1824 	/*
1825 	 * The idle timer has fired, so dispatch the taskq to close the
1826 	 * endpoint.
1827 	 */
1828 	if (taskq_dispatch(endpnt_taskq, (task_func_t *)endpnt_reap, etp,
1829 	    TQ_NOSLEEP) == NULL)
1830 		return;
1831 	mutex_enter(&etp->e_ilock);
1832 	etp->e_async_count++;
1833 	mutex_exit(&etp->e_ilock);
1834 }
1835 
1836 /*
1837  * Traverse the idle list and close those endpoints that have reached their
1838  * timeout interval.
1839  */
1840 static void
1841 endpnt_reap(endpnt_type_t *etp)
1842 {
1843 	struct endpnt *e;
1844 	struct endpnt *next_node = NULL;
1845 
1846 	mutex_enter(&etp->e_ilock);
1847 	e = list_head(&etp->e_ilist);
1848 	while (e != NULL) {
1849 		next_node = list_next(&etp->e_ilist, e);
1850 
1851 		mutex_enter(&e->e_lock);
1852 		if (e->e_ref > 0) {
1853 			mutex_exit(&e->e_lock);
1854 			e = next_node;
1855 			continue;
1856 		}
1857 
1858 		ASSERT(e->e_ref == 0);
1859 		if (e->e_itime > 0 &&
1860 		    (e->e_itime + clnt_clts_endpoint_reap_interval) <
1861 		    gethrestime_sec()) {
1862 			e->e_flags &= ~ENDPNT_BOUND;
1863 			(void) t_kclose(e->e_tiptr, 1);
1864 			e->e_tiptr = NULL;
1865 			e->e_itime = 0;
1866 		}
1867 		mutex_exit(&e->e_lock);
1868 		e = next_node;
1869 	}
1870 	etp->e_itimer = 0;
1871 	if (--etp->e_async_count == 0)
1872 		cv_signal(&etp->e_async_cv);
1873 	mutex_exit(&etp->e_ilock);
1874 }
1875 
1876 static void
1877 endpnt_reclaim(zoneid_t zoneid)
1878 {
1879 	struct endpnt_type *np;
1880 	struct endpnt *e;
1881 	struct endpnt *next_node = NULL;
1882 	list_t free_list;
1883 	int rcnt = 0;
1884 
1885 	list_create(&free_list, sizeof (endpnt_t), offsetof(endpnt_t, e_node));
1886 
1887 	RPCLOG0(1, "endpnt_reclaim: reclaim callback started\n");
1888 	rw_enter(&endpnt_type_lock, RW_READER);
1889 	for (np = endpnt_type_list; np != NULL; np = np->e_next) {
1890 		if (zoneid != ALL_ZONES && zoneid != np->e_zoneid)
1891 			continue;
1892 
1893 		mutex_enter(&np->e_plock);
1894 		RPCLOG(1, "endpnt_reclaim: protofmly %s, ",
1895 		    np->e_protofmly);
1896 		RPCLOG(1, "rdev %ld\n", np->e_rdev);
1897 		RPCLOG(1, "endpnt_reclaim: found %d endpoint(s)\n",
1898 		    np->e_cnt);
1899 
1900 		if (np->e_cnt == 0) {
1901 			mutex_exit(&np->e_plock);
1902 			continue;
1903 		}
1904 
1905 		/*
1906 		 * The nice thing about maintaining an idle list is that if
1907 		 * there are any endpoints to reclaim, they are going to be
1908 		 * on this list.  Just go through and reap the one's that
1909 		 * have ref counts of zero.
1910 		 */
1911 		mutex_enter(&np->e_ilock);
1912 		e = list_head(&np->e_ilist);
1913 		while (e != NULL) {
1914 			next_node = list_next(&np->e_ilist, e);
1915 			mutex_enter(&e->e_lock);
1916 			if (e->e_ref > 0) {
1917 				mutex_exit(&e->e_lock);
1918 				e = next_node;
1919 				continue;
1920 			}
1921 			ASSERT(e->e_ref == 0);
1922 			mutex_exit(&e->e_lock);
1923 
1924 			list_remove(&np->e_ilist, e);
1925 			list_remove(&np->e_pool, e);
1926 			list_insert_head(&free_list, e);
1927 
1928 			rcnt++;
1929 			np->e_cnt--;
1930 			e = next_node;
1931 		}
1932 		mutex_exit(&np->e_ilock);
1933 		/*
1934 		 * Reset the current pointer to be safe
1935 		 */
1936 		if ((e = (struct endpnt *)list_head(&np->e_pool)) != NULL)
1937 			np->e_pcurr = e;
1938 		else {
1939 			ASSERT(np->e_cnt == 0);
1940 			np->e_pcurr = NULL;
1941 		}
1942 
1943 		mutex_exit(&np->e_plock);
1944 	}
1945 	rw_exit(&endpnt_type_lock);
1946 
1947 	while ((e = list_head(&free_list)) != NULL) {
1948 		list_remove(&free_list, e);
1949 		if (e->e_tiptr != NULL)
1950 			(void) t_kclose(e->e_tiptr, 1);
1951 
1952 		cv_destroy(&e->e_cv);
1953 		mutex_destroy(&e->e_lock);
1954 		kmem_cache_free(endpnt_cache, e);
1955 	}
1956 	list_destroy(&free_list);
1957 	RPCLOG(1, "endpnt_reclaim: reclaimed %d endpoint(s)\n", rcnt);
1958 }
1959 
1960 /*
1961  * Endpoint reclaim zones destructor callback routine.
1962  *
1963  * After reclaiming any cached entries, we basically go through the endpnt_type
1964  * list, canceling outstanding timeouts and free'ing data structures.
1965  */
1966 /* ARGSUSED */
1967 static void
1968 endpnt_destructor(zoneid_t zoneid, void *a)
1969 {
1970 	struct endpnt_type **npp;
1971 	struct endpnt_type *np;
1972 	struct endpnt_type *free_list = NULL;
1973 	timeout_id_t t_id = 0;
1974 	extern void clcleanup_zone(zoneid_t);
1975 	extern void clcleanup4_zone(zoneid_t);
1976 
1977 	/* Make sure NFS client handles are released. */
1978 	clcleanup_zone(zoneid);
1979 	clcleanup4_zone(zoneid);
1980 
1981 	endpnt_reclaim(zoneid);
1982 	/*
1983 	 * We don't need to be holding on to any locks across the call to
1984 	 * endpnt_reclaim() and the code below; we know that no-one can
1985 	 * be holding open connections for this zone (all processes and kernel
1986 	 * threads are gone), so nothing could be adding anything to the list.
1987 	 */
1988 	rw_enter(&endpnt_type_lock, RW_WRITER);
1989 	npp = &endpnt_type_list;
1990 	while ((np = *npp) != NULL) {
1991 		if (np->e_zoneid != zoneid) {
1992 			npp = &np->e_next;
1993 			continue;
1994 		}
1995 		mutex_enter(&np->e_plock);
1996 		mutex_enter(&np->e_ilock);
1997 		if (np->e_itimer != 0) {
1998 			t_id = np->e_itimer;
1999 			np->e_itimer = 0;
2000 		}
2001 		ASSERT(np->e_cnt == 0);
2002 		ASSERT(list_head(&np->e_pool) == NULL);
2003 		ASSERT(list_head(&np->e_ilist) == NULL);
2004 
2005 		mutex_exit(&np->e_ilock);
2006 		mutex_exit(&np->e_plock);
2007 
2008 		/*
2009 		 * untimeout() any outstanding timers that have not yet fired.
2010 		 */
2011 		if (t_id != (timeout_id_t)0)
2012 			(void) untimeout(t_id);
2013 		*npp = np->e_next;
2014 		np->e_next = free_list;
2015 		free_list = np;
2016 	}
2017 	rw_exit(&endpnt_type_lock);
2018 
2019 	while (free_list != NULL) {
2020 		np = free_list;
2021 		free_list = free_list->e_next;
2022 		/*
2023 		 * Wait for threads in endpnt_taskq trying to reap endpnt_ts in
2024 		 * the endpnt_type_t.
2025 		 */
2026 		mutex_enter(&np->e_ilock);
2027 		while (np->e_async_count > 0)
2028 			cv_wait(&np->e_async_cv, &np->e_ilock);
2029 		cv_destroy(&np->e_async_cv);
2030 		mutex_destroy(&np->e_plock);
2031 		mutex_destroy(&np->e_ilock);
2032 		list_destroy(&np->e_pool);
2033 		list_destroy(&np->e_ilist);
2034 		kmem_free(np, sizeof (endpnt_type_t));
2035 	}
2036 }
2037 
2038 /*
2039  * Endpoint reclaim kmem callback routine.
2040  */
2041 /* ARGSUSED */
2042 static void
2043 endpnt_repossess(void *a)
2044 {
2045 	/*
2046 	 * Reclaim idle endpnt's from all zones.
2047 	 */
2048 	if (endpnt_taskq != NULL)
2049 		(void) taskq_dispatch(endpnt_taskq,
2050 		    (task_func_t *)endpnt_reclaim, (void *)ALL_ZONES,
2051 		    TQ_NOSLEEP);
2052 }
2053 
2054 /*
2055  * RPC request dispatch routine.  Constructs a datagram message and wraps it
2056  * around the RPC request to pass downstream.
2057  */
2058 static int
2059 clnt_clts_dispatch_send(queue_t *q, mblk_t *mp, struct netbuf *addr,
2060     calllist_t *cp, uint_t xid, cred_t *cr)
2061 {
2062 	mblk_t *bp;
2063 	int msgsz;
2064 	struct T_unitdata_req *udreq;
2065 
2066 	/*
2067 	 * Set up the call record.
2068 	 */
2069 	cp->call_wq = q;
2070 	cp->call_xid = xid;
2071 	cp->call_status = RPC_TIMEDOUT;
2072 	cp->call_notified = FALSE;
2073 	RPCLOG(64,
2074 	    "clnt_clts_dispatch_send: putting xid 0x%x on "
2075 	    "dispatch list\n", xid);
2076 	cp->call_hash = call_hash(xid, clnt_clts_hash_size);
2077 	cp->call_bucket = &clts_call_ht[cp->call_hash];
2078 	call_table_enter(cp);
2079 
2080 	/*
2081 	 * Construct the datagram
2082 	 */
2083 	msgsz = (int)TUNITDATAREQSZ;
2084 	/*
2085 	 * Note: if the receiver uses SCM_UCRED/getpeerucred the pid will
2086 	 * appear as -1.
2087 	 */
2088 	while (!(bp = allocb_cred(msgsz + addr->len, cr, NOPID))) {
2089 		if (strwaitbuf(msgsz + addr->len, BPRI_LO))
2090 			return (ENOSR);
2091 	}
2092 
2093 	udreq = (struct T_unitdata_req *)bp->b_wptr;
2094 	udreq->PRIM_type = T_UNITDATA_REQ;
2095 	udreq->DEST_length = addr->len;
2096 
2097 	if (addr->len) {
2098 		bcopy(addr->buf, bp->b_wptr + msgsz, addr->len);
2099 		udreq->DEST_offset = (t_scalar_t)msgsz;
2100 		msgsz += addr->len;
2101 	} else
2102 		udreq->DEST_offset = 0;
2103 	udreq->OPT_length = 0;
2104 	udreq->OPT_offset = 0;
2105 
2106 	bp->b_datap->db_type = M_PROTO;
2107 	bp->b_wptr += msgsz;
2108 
2109 	/*
2110 	 * Link the datagram header with the actual data
2111 	 */
2112 	linkb(bp, mp);
2113 
2114 	/*
2115 	 * Send downstream.
2116 	 */
2117 	if (canput(cp->call_wq)) {
2118 		put(cp->call_wq, bp);
2119 		return (0);
2120 	}
2121 
2122 	return (EIO);
2123 }
2124 
2125 /*
2126  * RPC response delivery routine.  Deliver the response to the waiting
2127  * thread by matching the xid.
2128  */
2129 void
2130 clnt_clts_dispatch_notify(mblk_t *mp, int resp_off, zoneid_t zoneid)
2131 {
2132 	calllist_t *e = NULL;
2133 	call_table_t *chtp;
2134 	uint32_t xid;
2135 	uint_t hash;
2136 	unsigned char *hdr_offset;
2137 	mblk_t *resp;
2138 
2139 	/*
2140 	 * If the RPC response is not contained in the same mblk as the
2141 	 * datagram header, then move to the next mblk.
2142 	 */
2143 	hdr_offset = mp->b_rptr;
2144 	resp = mp;
2145 	if ((mp->b_wptr - (mp->b_rptr + resp_off)) == 0)
2146 		resp = mp->b_cont;
2147 	else
2148 		resp->b_rptr += resp_off;
2149 
2150 	ASSERT(resp != NULL);
2151 
2152 	if ((IS_P2ALIGNED(resp->b_rptr, sizeof (uint32_t))) &&
2153 	    (resp->b_wptr - resp->b_rptr) >= sizeof (xid))
2154 		xid = *((uint32_t *)resp->b_rptr);
2155 	else {
2156 		int i = 0;
2157 		unsigned char *p = (unsigned char *)&xid;
2158 		unsigned char *rptr;
2159 		mblk_t *tmp = resp;
2160 
2161 		/*
2162 		 * Copy the xid, byte-by-byte into xid.
2163 		 */
2164 		while (tmp) {
2165 			rptr = tmp->b_rptr;
2166 			while (rptr < tmp->b_wptr) {
2167 				*p++ = *rptr++;
2168 				if (++i >= sizeof (xid))
2169 					goto done_xid_copy;
2170 			}
2171 			tmp = tmp->b_cont;
2172 		}
2173 
2174 		/*
2175 		 * If we got here, we ran out of mblk space before the
2176 		 * xid could be copied.
2177 		 */
2178 		ASSERT(tmp == NULL && i < sizeof (xid));
2179 
2180 		RPCLOG0(1,
2181 		    "clnt_dispatch_notify(clts): message less than "
2182 		    "size of xid\n");
2183 
2184 		freemsg(mp);
2185 		return;
2186 	}
2187 
2188 done_xid_copy:
2189 
2190 	/*
2191 	 * Reset the read pointer back to the beginning of the protocol
2192 	 * header if we moved it.
2193 	 */
2194 	if (mp->b_rptr != hdr_offset)
2195 		mp->b_rptr = hdr_offset;
2196 
2197 	hash = call_hash(xid, clnt_clts_hash_size);
2198 	chtp = &clts_call_ht[hash];
2199 	/* call_table_find returns with the hash bucket locked */
2200 	call_table_find(chtp, xid, e);
2201 
2202 	if (e != NULL) {
2203 		mutex_enter(&e->call_lock);
2204 
2205 		/*
2206 		 * verify that the reply is coming in on
2207 		 * the same zone that it was sent from.
2208 		 */
2209 		if (e->call_zoneid != zoneid) {
2210 			mutex_exit(&e->call_lock);
2211 			mutex_exit(&chtp->ct_lock);
2212 			RPCLOG0(8, "clnt_dispatch_notify (clts): incorrect "
2213 			    "zoneid\n");
2214 			freemsg(mp);
2215 			return;
2216 		}
2217 
2218 		/*
2219 		 * found thread waiting for this reply.
2220 		 */
2221 		if (e->call_reply) {
2222 			RPCLOG(8,
2223 			    "clnt_dispatch_notify (clts): discarding old "
2224 			    "reply for xid 0x%x\n",
2225 			    xid);
2226 			freemsg(e->call_reply);
2227 		}
2228 		e->call_notified = TRUE;
2229 		e->call_reply = mp;
2230 		e->call_status = RPC_SUCCESS;
2231 		cv_signal(&e->call_cv);
2232 		mutex_exit(&e->call_lock);
2233 		mutex_exit(&chtp->ct_lock);
2234 	} else {
2235 		zone_t *zone;
2236 		struct rpcstat *rpcstat;
2237 
2238 		mutex_exit(&chtp->ct_lock);
2239 		RPCLOG(8, "clnt_dispatch_notify (clts): no caller for reply "
2240 		    "0x%x\n", xid);
2241 		freemsg(mp);
2242 		/*
2243 		 * This is unfortunate, but we need to lookup the zone so we
2244 		 * can increment its "rcbadxids" counter.
2245 		 */
2246 		zone = zone_find_by_id(zoneid);
2247 		if (zone == NULL) {
2248 			/*
2249 			 * The zone went away...
2250 			 */
2251 			return;
2252 		}
2253 		rpcstat = zone_getspecific(rpcstat_zone_key, zone);
2254 		if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
2255 			/*
2256 			 * Not interested
2257 			 */
2258 			zone_rele(zone);
2259 			return;
2260 		}
2261 		RCSTAT_INCR(rpcstat->rpc_clts_client, rcbadxids);
2262 		zone_rele(zone);
2263 	}
2264 }
2265 
2266 /*
2267  * Init routine.  Called when rpcmod is loaded.
2268  */
2269 void
2270 clnt_clts_init(void)
2271 {
2272 	endpnt_cache = kmem_cache_create("clnt_clts_endpnt_cache",
2273 	    sizeof (struct endpnt), 0, NULL, NULL, endpnt_repossess, NULL,
2274 	    NULL, 0);
2275 
2276 	rw_init(&endpnt_type_lock, NULL, RW_DEFAULT, NULL);
2277 
2278 	/*
2279 	 * Perform simple bounds checking to make sure that the setting is
2280 	 * reasonable
2281 	 */
2282 	if (clnt_clts_max_endpoints <= 0) {
2283 		if (clnt_clts_do_bindresvport)
2284 			clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2285 		else
2286 			clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2287 	}
2288 
2289 	if (clnt_clts_do_bindresvport &&
2290 	    clnt_clts_max_endpoints > RESERVED_PORTSPACE)
2291 		clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2292 	else if (clnt_clts_max_endpoints > NONRESERVED_PORTSPACE)
2293 		clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2294 
2295 	if (clnt_clts_hash_size < DEFAULT_MIN_HASH_SIZE)
2296 		clnt_clts_hash_size = DEFAULT_MIN_HASH_SIZE;
2297 
2298 	/*
2299 	 * Defer creating the taskq until rpcmod gets pushed.  If we are
2300 	 * in diskless boot mode, rpcmod will get loaded early even before
2301 	 * thread_create() is available.
2302 	 */
2303 	endpnt_taskq = NULL;
2304 	taskq_created = FALSE;
2305 	mutex_init(&endpnt_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
2306 
2307 	if (clnt_clts_endpoint_reap_interval < DEFAULT_ENDPOINT_REAP_INTERVAL)
2308 		clnt_clts_endpoint_reap_interval =
2309 		    DEFAULT_ENDPOINT_REAP_INTERVAL;
2310 
2311 	/*
2312 	 * Dispatch the taskq at an interval which is offset from the
2313 	 * interval that the endpoints should be reaped.
2314 	 */
2315 	clnt_clts_taskq_dispatch_interval =
2316 	    (clnt_clts_endpoint_reap_interval + DEFAULT_INTERVAL_SHIFT) * hz;
2317 
2318 	/*
2319 	 * Initialize the completion queue
2320 	 */
2321 	clts_call_ht = call_table_init(clnt_clts_hash_size);
2322 	/*
2323 	 * Initialize the zone destructor callback.
2324 	 */
2325 	zone_key_create(&endpnt_destructor_key, NULL, NULL, endpnt_destructor);
2326 }
2327 
2328 void
2329 clnt_clts_fini(void)
2330 {
2331 	(void) zone_key_delete(endpnt_destructor_key);
2332 }
2333