xref: /titanic_50/usr/src/uts/common/rpc/clnt_clts.c (revision e2ff4ac63d83b80a04de28e4d3d6068fe781fa12)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T
29  * All Rights Reserved
30  */
31 
32 /*
33  * Portions of this source code were derived from Berkeley 4.3 BSD
34  * under license from the Regents of the University of California.
35  */
36 
37 #pragma ident	"%Z%%M%	%I%	%E% SMI"
38 
39 /*
40  * Implements a kernel based, client side RPC.
41  */
42 
43 #include <sys/param.h>
44 #include <sys/types.h>
45 #include <sys/systm.h>
46 #include <sys/sysmacros.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/ddi.h>
50 #include <sys/tiuser.h>
51 #include <sys/tihdr.h>
52 #include <sys/t_kuser.h>
53 #include <sys/errno.h>
54 #include <sys/kmem.h>
55 #include <sys/debug.h>
56 #include <sys/kstat.h>
57 #include <sys/t_lock.h>
58 #include <sys/cmn_err.h>
59 #include <sys/conf.h>
60 #include <sys/disp.h>
61 #include <sys/taskq.h>
62 #include <sys/list.h>
63 #include <sys/atomic.h>
64 #include <sys/zone.h>
65 #include <netinet/in.h>
66 #include <rpc/types.h>
67 #include <rpc/xdr.h>
68 #include <rpc/auth.h>
69 #include <rpc/clnt.h>
70 #include <rpc/rpc_msg.h>
71 
72 static enum clnt_stat clnt_clts_kcallit(CLIENT *, rpcproc_t, xdrproc_t,
73 		    caddr_t, xdrproc_t, caddr_t, struct timeval);
74 static void	clnt_clts_kabort(CLIENT *);
75 static void	clnt_clts_kerror(CLIENT *, struct rpc_err *);
76 static bool_t	clnt_clts_kfreeres(CLIENT *, xdrproc_t, caddr_t);
77 static bool_t	clnt_clts_kcontrol(CLIENT *, int, char *);
78 static void	clnt_clts_kdestroy(CLIENT *);
79 static int	clnt_clts_ksettimers(CLIENT *, struct rpc_timers *,
80 		    struct rpc_timers *, int, void (*)(), caddr_t, uint32_t);
81 
82 /*
83  * Operations vector for CLTS based RPC
84  */
85 static struct clnt_ops clts_ops = {
86 	clnt_clts_kcallit,	/* do rpc call */
87 	clnt_clts_kabort,	/* abort call */
88 	clnt_clts_kerror,	/* return error status */
89 	clnt_clts_kfreeres,	/* free results */
90 	clnt_clts_kdestroy,	/* destroy rpc handle */
91 	clnt_clts_kcontrol,	/* the ioctl() of rpc */
92 	clnt_clts_ksettimers	/* set retry timers */
93 };
94 
95 /*
96  * Endpoint for CLTS (INET, INET6, loopback, etc.)
97  */
98 typedef struct endpnt_type {
99 	struct endpnt_type *e_next;	/* pointer to next endpoint type */
100 	list_t		e_pool;		/* list of available endpoints */
101 	list_t		e_ilist;	/* list of idle endpints */
102 	struct endpnt	*e_pcurr;	/* pointer to current endpoint */
103 	char		e_protofmly[KNC_STRSIZE];	/* protocol family */
104 	dev_t		e_rdev;		/* device */
105 	kmutex_t	e_plock;	/* pool lock */
106 	kmutex_t	e_ilock;	/* idle list lock */
107 	timeout_id_t	e_itimer;	/* timer to dispatch the taskq */
108 	uint_t		e_cnt;		/* number of endpoints in the pool */
109 	zoneid_t	e_zoneid;	/* zoneid of endpoint type */
110 	kcondvar_t	e_async_cv;	/* cv for asynchronous reap threads */
111 	uint_t		e_async_count;	/* count of asynchronous reap threads */
112 } endpnt_type_t;
113 
114 typedef struct endpnt {
115 	list_node_t	e_node;		/* link to the pool */
116 	list_node_t	e_idle;		/* link to the idle list */
117 	endpnt_type_t	*e_type;	/* back pointer to endpoint type */
118 	TIUSER		*e_tiptr;	/* pointer to transport endpoint */
119 	queue_t		*e_wq;		/* write queue */
120 	uint_t		e_flags;	/* endpoint flags */
121 	uint_t		e_ref;		/* ref count on endpoint */
122 	kcondvar_t	e_cv;		/* condition variable */
123 	kmutex_t	e_lock;		/* protects cv and flags */
124 	time_t		e_itime;	/* time when rele'd */
125 } endpnt_t;
126 
127 #define	ENDPNT_ESTABLISHED	0x1	/* endpoint is established */
128 #define	ENDPNT_WAITING		0x2	/* thread waiting for endpoint */
129 #define	ENDPNT_BOUND		0x4	/* endpoint is bound */
130 #define	ENDPNT_STALE		0x8	/* endpoint is dead */
131 #define	ENDPNT_ONIDLE		0x10	/* endpoint is on the idle list */
132 
133 static krwlock_t	endpnt_type_lock; /* protects endpnt_type_list */
134 static endpnt_type_t	*endpnt_type_list = NULL; /* list of CLTS endpoints */
135 static struct kmem_cache	*endpnt_cache; /* cache of endpnt_t's */
136 static taskq_t			*endpnt_taskq; /* endpnt_t reaper thread */
137 static bool_t			taskq_created; /* flag for endpnt_taskq */
138 static kmutex_t			endpnt_taskq_lock; /* taskq lock */
139 static zone_key_t		endpnt_destructor_key;
140 
141 #define	DEFAULT_ENDPOINT_REAP_INTERVAL 60 /* 1 minute */
142 #define	DEFAULT_INTERVAL_SHIFT 30 /* 30 seconds */
143 
144 /*
145  * Endpoint tunables
146  */
147 static int	clnt_clts_max_endpoints = -1;
148 static int	clnt_clts_hash_size = DEFAULT_HASH_SIZE;
149 static time_t	clnt_clts_endpoint_reap_interval = -1;
150 static clock_t	clnt_clts_taskq_dispatch_interval;
151 
152 /*
153  * Response completion hash queue
154  */
155 static call_table_t *clts_call_ht;
156 
157 /*
158  * Routines for the endpoint manager
159  */
160 static struct endpnt_type *endpnt_type_create(struct knetconfig *);
161 static void endpnt_type_free(struct endpnt_type *);
162 static int check_endpnt(struct endpnt *, struct endpnt **);
163 static struct endpnt *endpnt_get(struct knetconfig *, int);
164 static void endpnt_rele(struct endpnt *);
165 static void endpnt_reap_settimer(endpnt_type_t *);
166 static void endpnt_reap(endpnt_type_t *);
167 static void endpnt_reap_dispatch(void *);
168 static void endpnt_reclaim(zoneid_t);
169 
170 
171 /*
172  * Request dipatching function.
173  */
174 static int clnt_clts_dispatch_send(queue_t *q, mblk_t *, struct netbuf *addr,
175 					calllist_t *, uint_t);
176 
177 /*
178  * The size of the preserialized RPC header information.
179  */
180 #define	CKU_HDRSIZE	20
181 /*
182  * The initial allocation size.  It is small to reduce space requirements.
183  */
184 #define	CKU_INITSIZE	2048
185 /*
186  * The size of additional allocations, if required.  It is larger to
187  * reduce the number of actual allocations.
188  */
189 #define	CKU_ALLOCSIZE	8192
190 
191 /*
192  * Private data per rpc handle.  This structure is allocated by
193  * clnt_clts_kcreate, and freed by clnt_clts_kdestroy.
194  */
195 struct cku_private {
196 	CLIENT			 cku_client;	/* client handle */
197 	int			 cku_retrys;	/* request retrys */
198 	calllist_t		 cku_call;
199 	struct endpnt		*cku_endpnt;	/* open end point */
200 	struct knetconfig	 cku_config;
201 	struct netbuf		 cku_addr;	/* remote address */
202 	struct rpc_err		 cku_err;	/* error status */
203 	XDR			 cku_outxdr;	/* xdr stream for output */
204 	XDR			 cku_inxdr;	/* xdr stream for input */
205 	char			 cku_rpchdr[CKU_HDRSIZE + 4]; /* rpc header */
206 	struct cred		*cku_cred;	/* credentials */
207 	struct rpc_timers	*cku_timers;	/* for estimating RTT */
208 	struct rpc_timers	*cku_timeall;	/* for estimating RTT */
209 	void			 (*cku_feedback)(int, int, caddr_t);
210 						/* ptr to feedback rtn */
211 	caddr_t			 cku_feedarg;	/* argument for feedback func */
212 	uint32_t		 cku_xid;	/* current XID */
213 	bool_t			 cku_bcast;	/* RPC broadcast hint */
214 	int			cku_useresvport; /* Use reserved port */
215 	struct rpc_clts_client	*cku_stats;	/* counters for the zone */
216 };
217 
218 static const struct rpc_clts_client {
219 	kstat_named_t	rccalls;
220 	kstat_named_t	rcbadcalls;
221 	kstat_named_t	rcretrans;
222 	kstat_named_t	rcbadxids;
223 	kstat_named_t	rctimeouts;
224 	kstat_named_t	rcnewcreds;
225 	kstat_named_t	rcbadverfs;
226 	kstat_named_t	rctimers;
227 	kstat_named_t	rcnomem;
228 	kstat_named_t	rccantsend;
229 } clts_rcstat_tmpl = {
230 	{ "calls",	KSTAT_DATA_UINT64 },
231 	{ "badcalls",	KSTAT_DATA_UINT64 },
232 	{ "retrans",	KSTAT_DATA_UINT64 },
233 	{ "badxids",	KSTAT_DATA_UINT64 },
234 	{ "timeouts",	KSTAT_DATA_UINT64 },
235 	{ "newcreds",	KSTAT_DATA_UINT64 },
236 	{ "badverfs",	KSTAT_DATA_UINT64 },
237 	{ "timers",	KSTAT_DATA_UINT64 },
238 	{ "nomem",	KSTAT_DATA_UINT64 },
239 	{ "cantsend",	KSTAT_DATA_UINT64 },
240 };
241 
242 static uint_t clts_rcstat_ndata =
243 	sizeof (clts_rcstat_tmpl) / sizeof (kstat_named_t);
244 
245 #define	RCSTAT_INCR(s, x)			\
246 	atomic_add_64(&(s)->x.value.ui64, 1)
247 
248 #define	ptoh(p)		(&((p)->cku_client))
249 #define	htop(h)		((struct cku_private *)((h)->cl_private))
250 
251 /*
252  * Times to retry
253  */
254 #define	SNDTRIES	4
255 #define	REFRESHES	2	/* authentication refreshes */
256 
257 static int clnt_clts_do_bindresvport = 0; /* bind to a non-reserved port */
258 #define	BINDRESVPORT_RETRIES 5
259 
260 void
261 clnt_clts_stats_init(zoneid_t zoneid, struct rpc_clts_client **statsp)
262 {
263 	kstat_t *ksp;
264 	kstat_named_t *knp;
265 
266 	knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_client",
267 	    (const kstat_named_t *)&clts_rcstat_tmpl,
268 	    sizeof (clts_rcstat_tmpl));
269 	/*
270 	 * Backwards compatibility for old kstat clients
271 	 */
272 	ksp = kstat_create_zone("unix", 0, "rpc_client", "rpc",
273 	    KSTAT_TYPE_NAMED, clts_rcstat_ndata,
274 	    KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
275 	if (ksp) {
276 		ksp->ks_data = knp;
277 		kstat_install(ksp);
278 	}
279 	*statsp = (struct rpc_clts_client *)knp;
280 }
281 
282 void
283 clnt_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_client **statsp)
284 {
285 	rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_client");
286 	kstat_delete_byname_zone("unix", 0, "rpc_client", zoneid);
287 	kmem_free(*statsp, sizeof (clts_rcstat_tmpl));
288 }
289 
290 /*
291  * Create an rpc handle for a clts rpc connection.
292  * Allocates space for the handle structure and the private data.
293  */
294 /* ARGSUSED */
295 int
296 clnt_clts_kcreate(struct knetconfig *config, struct netbuf *addr,
297 	rpcprog_t pgm, rpcvers_t vers, int retrys, struct cred *cred,
298 	CLIENT **cl)
299 {
300 	CLIENT *h;
301 	struct cku_private *p;
302 	struct rpc_msg call_msg;
303 	int error;
304 	int plen;
305 
306 	if (cl == NULL)
307 		return (EINVAL);
308 
309 	*cl = NULL;
310 	error = 0;
311 
312 	p = kmem_zalloc(sizeof (*p), KM_SLEEP);
313 
314 	h = ptoh(p);
315 
316 	/* handle */
317 	h->cl_ops = &clts_ops;
318 	h->cl_private = (caddr_t)p;
319 	h->cl_auth = authkern_create();
320 
321 	/* call message, just used to pre-serialize below */
322 	call_msg.rm_xid = 0;
323 	call_msg.rm_direction = CALL;
324 	call_msg.rm_call.cb_rpcvers = RPC_MSG_VERSION;
325 	call_msg.rm_call.cb_prog = pgm;
326 	call_msg.rm_call.cb_vers = vers;
327 
328 	/* private */
329 	clnt_clts_kinit(h, addr, retrys, cred);
330 
331 	xdrmem_create(&p->cku_outxdr, p->cku_rpchdr, CKU_HDRSIZE, XDR_ENCODE);
332 
333 	/* pre-serialize call message header */
334 	if (!xdr_callhdr(&p->cku_outxdr, &call_msg)) {
335 		error = EINVAL;		/* XXX */
336 		goto bad;
337 	}
338 
339 	p->cku_config.knc_rdev = config->knc_rdev;
340 	p->cku_config.knc_semantics = config->knc_semantics;
341 	plen = strlen(config->knc_protofmly) + 1;
342 	p->cku_config.knc_protofmly = kmem_alloc(plen, KM_SLEEP);
343 	bcopy(config->knc_protofmly, p->cku_config.knc_protofmly, plen);
344 	p->cku_useresvport = -1; /* value is has not been set */
345 
346 	cv_init(&p->cku_call.call_cv, NULL, CV_DEFAULT, NULL);
347 	mutex_init(&p->cku_call.call_lock, NULL, MUTEX_DEFAULT, NULL);
348 
349 	*cl = h;
350 	return (0);
351 
352 bad:
353 	auth_destroy(h->cl_auth);
354 	kmem_free(p->cku_addr.buf, addr->maxlen);
355 	kmem_free(p, sizeof (struct cku_private));
356 
357 	return (error);
358 }
359 
360 void
361 clnt_clts_kinit(CLIENT *h, struct netbuf *addr, int retrys, cred_t *cred)
362 {
363 	/* LINTED pointer alignment */
364 	struct cku_private *p = htop(h);
365 	struct rpcstat *rsp;
366 
367 	rsp = zone_getspecific(rpcstat_zone_key, curproc->p_zone);
368 	ASSERT(rsp != NULL);
369 
370 	p->cku_retrys = retrys;
371 
372 	if (p->cku_addr.maxlen < addr->len) {
373 		if (p->cku_addr.maxlen != 0 && p->cku_addr.buf != NULL)
374 			kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
375 
376 		p->cku_addr.buf = kmem_zalloc(addr->maxlen, KM_SLEEP);
377 		p->cku_addr.maxlen = addr->maxlen;
378 	}
379 
380 	p->cku_addr.len = addr->len;
381 	bcopy(addr->buf, p->cku_addr.buf, addr->len);
382 
383 	p->cku_cred = cred;
384 	p->cku_xid = 0;
385 	p->cku_timers = NULL;
386 	p->cku_timeall = NULL;
387 	p->cku_feedback = NULL;
388 	p->cku_bcast = FALSE;
389 	p->cku_call.call_xid = 0;
390 	p->cku_call.call_hash = 0;
391 	p->cku_call.call_notified = FALSE;
392 	p->cku_call.call_next = NULL;
393 	p->cku_call.call_prev = NULL;
394 	p->cku_call.call_reply = NULL;
395 	p->cku_call.call_wq = NULL;
396 	p->cku_stats = rsp->rpc_clts_client;
397 }
398 
399 /*
400  * set the timers.  Return current retransmission timeout.
401  */
402 static int
403 clnt_clts_ksettimers(CLIENT *h, struct rpc_timers *t, struct rpc_timers *all,
404 	int minimum, void (*feedback)(int, int, caddr_t), caddr_t arg,
405 	uint32_t xid)
406 {
407 	/* LINTED pointer alignment */
408 	struct cku_private *p = htop(h);
409 	int value;
410 
411 	p->cku_feedback = feedback;
412 	p->cku_feedarg = arg;
413 	p->cku_timers = t;
414 	p->cku_timeall = all;
415 	if (xid)
416 		p->cku_xid = xid;
417 	value = all->rt_rtxcur;
418 	value += t->rt_rtxcur;
419 	if (value < minimum)
420 		return (minimum);
421 	RCSTAT_INCR(p->cku_stats, rctimers);
422 	return (value);
423 }
424 
425 /*
426  * Time out back off function. tim is in HZ
427  */
428 #define	MAXTIMO	(20 * hz)
429 #define	backoff(tim)	(((tim) < MAXTIMO) ? dobackoff(tim) : (tim))
430 #define	dobackoff(tim)	((((tim) << 1) > MAXTIMO) ? MAXTIMO : ((tim) << 1))
431 
432 #define	RETRY_POLL_TIMO	30
433 
434 /*
435  * Call remote procedure.
436  * Most of the work of rpc is done here.  We serialize what is left
437  * of the header (some was pre-serialized in the handle), serialize
438  * the arguments, and send it off.  We wait for a reply or a time out.
439  * Timeout causes an immediate return, other packet problems may cause
440  * a retry on the receive.  When a good packet is received we deserialize
441  * it, and check verification.  A bad reply code will cause one retry
442  * with full (longhand) credentials.
443  */
444 enum clnt_stat
445 clnt_clts_kcallit_addr(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
446 	caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
447 	struct timeval wait, struct netbuf *sin)
448 {
449 	/* LINTED pointer alignment */
450 	struct cku_private *p = htop(h);
451 	XDR *xdrs;
452 	int stries = p->cku_retrys;
453 	int refreshes = REFRESHES;	/* number of times to refresh cred */
454 	int round_trip;			/* time the RPC */
455 	int error;
456 	int hdrsz;
457 	mblk_t *mp;
458 	mblk_t *mpdup;
459 	mblk_t *resp = NULL;
460 	mblk_t *tmp;
461 	calllist_t *call = &p->cku_call;
462 	clock_t timout = 0;
463 	bool_t interrupted;
464 	enum clnt_stat status;
465 	struct rpc_msg reply_msg;
466 	enum clnt_stat re_status;
467 	endpnt_t *endpt;
468 
469 	RCSTAT_INCR(p->cku_stats, rccalls);
470 
471 	RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_sec: %ld\n", wait.tv_sec);
472 	RPCLOG(2, "clnt_clts_kcallit_addr: wait.tv_usec: %ld\n", wait.tv_usec);
473 
474 	timout = TIMEVAL_TO_TICK(&wait);
475 
476 	if (p->cku_xid == 0) {
477 		p->cku_xid = alloc_xid();
478 		if (p->cku_endpnt != NULL)
479 			endpnt_rele(p->cku_endpnt);
480 		p->cku_endpnt = NULL;
481 	}
482 
483 	mpdup = NULL;
484 call_again:
485 
486 	if (mpdup == NULL) {
487 
488 		while ((mp = allocb(CKU_INITSIZE, BPRI_LO)) == NULL) {
489 			if (strwaitbuf(CKU_INITSIZE, BPRI_LO)) {
490 				p->cku_err.re_status = RPC_SYSTEMERROR;
491 				p->cku_err.re_errno = ENOSR;
492 				goto done;
493 			}
494 		}
495 
496 		xdrs = &p->cku_outxdr;
497 		xdrmblk_init(xdrs, mp, XDR_ENCODE, CKU_ALLOCSIZE);
498 
499 		if (h->cl_auth->ah_cred.oa_flavor != RPCSEC_GSS) {
500 			/*
501 			 * Copy in the preserialized RPC header
502 			 * information.
503 			 */
504 			bcopy(p->cku_rpchdr, mp->b_rptr, CKU_HDRSIZE);
505 
506 			/*
507 			 * transaction id is the 1st thing in the output
508 			 * buffer.
509 			 */
510 			/* LINTED pointer alignment */
511 			(*(uint32_t *)(mp->b_rptr)) = p->cku_xid;
512 
513 			/* Skip the preserialized stuff. */
514 			XDR_SETPOS(xdrs, CKU_HDRSIZE);
515 
516 			/* Serialize dynamic stuff into the output buffer. */
517 			if ((!XDR_PUTINT32(xdrs, (int32_t *)&procnum)) ||
518 			    (!AUTH_MARSHALL(h->cl_auth, xdrs, p->cku_cred)) ||
519 			    (!(*xdr_args)(xdrs, argsp))) {
520 				freemsg(mp);
521 				p->cku_err.re_status = RPC_CANTENCODEARGS;
522 				p->cku_err.re_errno = EIO;
523 				goto done;
524 			}
525 		} else {
526 			uint32_t *uproc = (uint32_t *)
527 			    &p->cku_rpchdr[CKU_HDRSIZE];
528 			IXDR_PUT_U_INT32(uproc, procnum);
529 
530 			(*(uint32_t *)(&p->cku_rpchdr[0])) = p->cku_xid;
531 			XDR_SETPOS(xdrs, 0);
532 
533 			/* Serialize the procedure number and the arguments. */
534 			if (!AUTH_WRAP(h->cl_auth, (caddr_t)p->cku_rpchdr,
535 			    CKU_HDRSIZE+4, xdrs, xdr_args, argsp)) {
536 				freemsg(mp);
537 				p->cku_err.re_status = RPC_CANTENCODEARGS;
538 				p->cku_err.re_errno = EIO;
539 				goto done;
540 			}
541 		}
542 	} else
543 		mp = mpdup;
544 
545 	mpdup = dupmsg(mp);
546 	if (mpdup == NULL) {
547 		freemsg(mp);
548 		p->cku_err.re_status = RPC_SYSTEMERROR;
549 		p->cku_err.re_errno = ENOSR;
550 		goto done;
551 	}
552 
553 	/*
554 	 * Grab an endpnt only if the endpoint is NULL.  We could be retrying
555 	 * the request and in this case we want to go through the same
556 	 * source port, so that the duplicate request cache may detect a
557 	 * retry.
558 	 */
559 
560 	if (p->cku_endpnt == NULL)
561 		p->cku_endpnt = endpnt_get(&p->cku_config, p->cku_useresvport);
562 
563 	if (p->cku_endpnt == NULL) {
564 		freemsg(mp);
565 		p->cku_err.re_status = RPC_SYSTEMERROR;
566 		p->cku_err.re_errno = ENOSR;
567 		goto done;
568 	}
569 
570 	round_trip = lbolt;
571 
572 	error = clnt_clts_dispatch_send(p->cku_endpnt->e_wq, mp,
573 					&p->cku_addr, call, p->cku_xid);
574 
575 	if (error != 0) {
576 		freemsg(mp);
577 		p->cku_err.re_status = RPC_CANTSEND;
578 		p->cku_err.re_errno = error;
579 		RCSTAT_INCR(p->cku_stats, rccantsend);
580 		goto done1;
581 	}
582 
583 	RPCLOG(64, "clnt_clts_kcallit_addr: sent call for xid 0x%x\n",
584 		p->cku_xid);
585 
586 	/*
587 	 * There are two reasons for which we go back to to tryread.
588 	 *
589 	 * a) In case the status is RPC_PROCUNAVAIL and we sent out a
590 	 *    broadcast we should not get any invalid messages with the
591 	 *    RPC_PROCUNAVAIL error back. Some broken RPC implementations
592 	 *    send them and for this we have to ignore them ( as we would
593 	 *    have never received them ) and look for another message
594 	 *    which might contain the valid response because we don't know
595 	 *    how many broken implementations are in the network. So we are
596 	 *    going to loop until
597 	 *    - we received a valid response
598 	 *    - we have processed all invalid responses and
599 	 *	got a time out when we try to receive again a
600 	 *	message.
601 	 *
602 	 * b) We will jump back to tryread also in case we failed
603 	 *    within the AUTH_VALIDATE. In this case we should move
604 	 *    on and loop until we received a valid response or we
605 	 *    have processed all responses with broken authentication
606 	 *    and we got a time out when we try to receive a message.
607 	 */
608 tryread:
609 	mutex_enter(&call->call_lock);
610 	interrupted = FALSE;
611 	if (call->call_notified == FALSE) {
612 		klwp_t *lwp = ttolwp(curthread);
613 		clock_t cv_wait_ret = 1; /* init to > 0 */
614 		clock_t cv_timout = timout;
615 
616 		if (lwp != NULL)
617 			lwp->lwp_nostop++;
618 
619 		cv_timout += lbolt;
620 
621 		if (h->cl_nosignal)
622 			while ((cv_wait_ret =
623 				cv_timedwait(&call->call_cv,
624 				&call->call_lock, cv_timout)) > 0 &&
625 				call->call_notified == FALSE);
626 		else
627 			while ((cv_wait_ret =
628 				cv_timedwait_sig(&call->call_cv,
629 				&call->call_lock, cv_timout)) > 0 &&
630 				call->call_notified == FALSE);
631 
632 		if (cv_wait_ret == 0)
633 			interrupted = TRUE;
634 
635 		if (lwp != NULL)
636 			lwp->lwp_nostop--;
637 	}
638 	resp = call->call_reply;
639 	call->call_reply = NULL;
640 	status = call->call_status;
641 	/*
642 	 * We have to reset the call_notified here. In case we have
643 	 * to do a retry ( e.g. in case we got a RPC_PROCUNAVAIL
644 	 * error ) we need to set this to false to ensure that
645 	 * we will wait for the next message. When the next message
646 	 * is going to arrive the function clnt_clts_dispatch_notify
647 	 * will set this to true again.
648 	 */
649 	call->call_notified = FALSE;
650 	mutex_exit(&call->call_lock);
651 
652 	if (status == RPC_TIMEDOUT) {
653 		if (interrupted) {
654 			/*
655 			 * We got interrupted, bail out
656 			 */
657 			p->cku_err.re_status = RPC_INTR;
658 			p->cku_err.re_errno = EINTR;
659 			goto done1;
660 		} else {
661 			/*
662 			 * It's possible that our response arrived
663 			 * right after we timed out.  Check to see
664 			 * if it has arrived before we remove the
665 			 * calllist from the dispatch queue.
666 			 */
667 			mutex_enter(&call->call_lock);
668 			if (call->call_notified == TRUE) {
669 				resp = call->call_reply;
670 				call->call_reply = NULL;
671 				mutex_exit(&call->call_lock);
672 				RPCLOG(8, "clnt_clts_kcallit_addr: "
673 				"response received for request "
674 				"w/xid 0x%x after timeout\n",
675 				p->cku_xid);
676 				goto getresponse;
677 			}
678 			mutex_exit(&call->call_lock);
679 
680 			RPCLOG(8, "clnt_clts_kcallit_addr: "
681 				"request w/xid 0x%x timedout "
682 				"waiting for reply\n", p->cku_xid);
683 #if 0 /* XXX not yet */
684 			/*
685 			 * Timeout may be due to a dead gateway. Send
686 			 * an ioctl downstream advising deletion of
687 			 * route when we reach the half-way point to
688 			 * timing out.
689 			 */
690 			if (stries == p->cku_retrys/2) {
691 				t_kadvise(p->cku_endpnt->e_tiptr,
692 					(uchar_t *)p->cku_addr.buf,
693 					p->cku_addr.len);
694 			}
695 #endif /* not yet */
696 			p->cku_err.re_status = RPC_TIMEDOUT;
697 			p->cku_err.re_errno = ETIMEDOUT;
698 			RCSTAT_INCR(p->cku_stats, rctimeouts);
699 			goto done1;
700 		}
701 	}
702 
703 getresponse:
704 	/*
705 	 * Check to see if a response arrived.  If it one is
706 	 * present then proceed to process the reponse.  Otherwise
707 	 * fall through to retry or retransmit the request.  This
708 	 * is probably not the optimal thing to do, but since we
709 	 * are most likely dealing with a unrealiable transport it
710 	 * is the safe thing to so.
711 	 */
712 	if (resp == NULL) {
713 		p->cku_err.re_status = RPC_CANTRECV;
714 		p->cku_err.re_errno = EIO;
715 		goto done1;
716 	}
717 
718 	/*
719 	 * Prepare the message for further processing.  We need to remove
720 	 * the datagram header and copy the source address if necessary.  No
721 	 * need to verify the header since rpcmod took care of that.
722 	 */
723 	/*
724 	 * Copy the source address if the caller has supplied a netbuf.
725 	 */
726 	if (sin != NULL) {
727 		union T_primitives *pptr;
728 
729 		pptr = (union T_primitives *)resp->b_rptr;
730 		bcopy(resp->b_rptr + pptr->unitdata_ind.SRC_offset, sin->buf,
731 			pptr->unitdata_ind.SRC_length);
732 		sin->len = pptr->unitdata_ind.SRC_length;
733 	}
734 
735 	/*
736 	 * Pop off the datagram header.
737 	 */
738 	hdrsz = resp->b_wptr - resp->b_rptr;
739 	if ((resp->b_wptr - (resp->b_rptr + hdrsz)) == 0) {
740 		tmp = resp;
741 		resp = resp->b_cont;
742 		tmp->b_cont = NULL;
743 		freeb(tmp);
744 	} else {
745 		unsigned char *ud_off = resp->b_rptr;
746 		resp->b_rptr += hdrsz;
747 		tmp = dupb(resp);
748 		if (tmp == NULL) {
749 			p->cku_err.re_status = RPC_SYSTEMERROR;
750 			p->cku_err.re_errno = ENOSR;
751 			freemsg(resp);
752 			goto done1;
753 		}
754 		tmp->b_cont = resp->b_cont;
755 		resp->b_rptr = ud_off;
756 		freeb(resp);
757 		resp = tmp;
758 	}
759 
760 	round_trip = lbolt - round_trip;
761 	/*
762 	 * Van Jacobson timer algorithm here, only if NOT a retransmission.
763 	 */
764 	if (p->cku_timers != NULL && stries == p->cku_retrys) {
765 		int rt;
766 
767 		rt = round_trip;
768 		rt -= (p->cku_timers->rt_srtt >> 3);
769 		p->cku_timers->rt_srtt += rt;
770 		if (rt < 0)
771 			rt = - rt;
772 		rt -= (p->cku_timers->rt_deviate >> 2);
773 		p->cku_timers->rt_deviate += rt;
774 		p->cku_timers->rt_rtxcur =
775 		    (clock_t)((p->cku_timers->rt_srtt >> 2) +
776 		    p->cku_timers->rt_deviate) >> 1;
777 
778 		rt = round_trip;
779 		rt -= (p->cku_timeall->rt_srtt >> 3);
780 		p->cku_timeall->rt_srtt += rt;
781 		if (rt < 0)
782 			rt = - rt;
783 		rt -= (p->cku_timeall->rt_deviate >> 2);
784 		p->cku_timeall->rt_deviate += rt;
785 		p->cku_timeall->rt_rtxcur =
786 		    (clock_t)((p->cku_timeall->rt_srtt >> 2) +
787 		    p->cku_timeall->rt_deviate) >> 1;
788 		if (p->cku_feedback != NULL) {
789 			(*p->cku_feedback)(FEEDBACK_OK, procnum,
790 			    p->cku_feedarg);
791 		}
792 	}
793 
794 	/*
795 	 * Process reply
796 	 */
797 	xdrs = &(p->cku_inxdr);
798 	xdrmblk_init(xdrs, resp, XDR_DECODE, 0);
799 
800 	reply_msg.rm_direction = REPLY;
801 	reply_msg.rm_reply.rp_stat = MSG_ACCEPTED;
802 	reply_msg.acpted_rply.ar_stat = SUCCESS;
803 	reply_msg.acpted_rply.ar_verf = _null_auth;
804 	/*
805 	 *  xdr_results will be done in AUTH_UNWRAP.
806 	 */
807 	reply_msg.acpted_rply.ar_results.where = NULL;
808 	reply_msg.acpted_rply.ar_results.proc = xdr_void;
809 
810 	/*
811 	 * Decode and validate the response.
812 	 */
813 	if (!xdr_replymsg(xdrs, &reply_msg)) {
814 		p->cku_err.re_status = RPC_CANTDECODERES;
815 		p->cku_err.re_errno = EIO;
816 		(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
817 		goto done1;
818 	}
819 
820 	_seterr_reply(&reply_msg, &(p->cku_err));
821 
822 	re_status = p->cku_err.re_status;
823 	if (re_status == RPC_SUCCESS) {
824 		/*
825 		 * Reply is good, check auth.
826 		 */
827 		if (!AUTH_VALIDATE(h->cl_auth,
828 				    &reply_msg.acpted_rply.ar_verf)) {
829 			p->cku_err.re_status = RPC_AUTHERROR;
830 			p->cku_err.re_why = AUTH_INVALIDRESP;
831 			RCSTAT_INCR(p->cku_stats, rcbadverfs);
832 			(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
833 			goto tryread;
834 		}
835 		if (!AUTH_UNWRAP(h->cl_auth, xdrs, xdr_results, resultsp)) {
836 			p->cku_err.re_status = RPC_CANTDECODERES;
837 			p->cku_err.re_errno = EIO;
838 		}
839 		(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
840 		goto done1;
841 	}
842 	/* set errno in case we can't recover */
843 	if (re_status != RPC_VERSMISMATCH &&
844 			    re_status != RPC_AUTHERROR &&
845 			    re_status != RPC_PROGVERSMISMATCH)
846 		p->cku_err.re_errno = EIO;
847 	/*
848 	 * Determine whether or not we're doing an RPC
849 	 * broadcast. Some server implementations don't
850 	 * follow RFC 1050, section 7.4.2 in that they
851 	 * don't remain silent when they see a proc
852 	 * they don't support. Therefore we keep trying
853 	 * to receive on RPC_PROCUNAVAIL, hoping to get
854 	 * a valid response from a compliant server.
855 	 */
856 	if (re_status == RPC_PROCUNAVAIL && p->cku_bcast) {
857 		(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
858 		goto tryread;
859 	}
860 	if (re_status == RPC_AUTHERROR) {
861 		/*
862 		 * Maybe our credential need to be refreshed
863 		 */
864 		if (refreshes > 0 &&
865 		    AUTH_REFRESH(h->cl_auth, &reply_msg, p->cku_cred)) {
866 			/*
867 			 * The credential is refreshed. Try the request again.
868 			 * Even if stries == 0, we still retry as long as
869 			 * refreshes > 0. This prevents a soft authentication
870 			 * error turning into a hard one at an upper level.
871 			 */
872 			refreshes--;
873 			RCSTAT_INCR(p->cku_stats, rcbadcalls);
874 			RCSTAT_INCR(p->cku_stats, rcnewcreds);
875 
876 			(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
877 			freemsg(mpdup);
878 			call_table_remove(call);
879 			mutex_enter(&call->call_lock);
880 			if (call->call_reply != NULL) {
881 				freemsg(call->call_reply);
882 				call->call_reply = NULL;
883 			}
884 			mutex_exit(&call->call_lock);
885 
886 			freemsg(resp);
887 			mpdup = NULL;
888 			goto call_again;
889 		}
890 		/*
891 		 * We have used the client handle to do an AUTH_REFRESH
892 		 * and the RPC status may be set to RPC_SUCCESS;
893 		 * Let's make sure to set it to RPC_AUTHERROR.
894 		 */
895 		p->cku_err.re_status = RPC_CANTDECODERES;
896 
897 		/*
898 		 * Map recoverable and unrecoverable
899 		 * authentication errors to appropriate errno
900 		 */
901 		switch (p->cku_err.re_why) {
902 		case AUTH_TOOWEAK:
903 			/*
904 			 * Could be an nfsportmon failure, set
905 			 * useresvport and try again.
906 			 */
907 			if (p->cku_useresvport != 1) {
908 				p->cku_useresvport = 1;
909 				(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
910 				freemsg(mpdup);
911 
912 				call_table_remove(call);
913 				mutex_enter(&call->call_lock);
914 				if (call->call_reply != NULL) {
915 					freemsg(call->call_reply);
916 					call->call_reply = NULL;
917 				}
918 				mutex_exit(&call->call_lock);
919 
920 				freemsg(resp);
921 				mpdup = NULL;
922 				endpt = p->cku_endpnt;
923 				if (endpt->e_tiptr != NULL) {
924 					mutex_enter(&endpt->e_lock);
925 					endpt->e_flags &= ~ENDPNT_BOUND;
926 					(void) t_kclose(endpt->e_tiptr, 1);
927 					endpt->e_tiptr = NULL;
928 					mutex_exit(&endpt->e_lock);
929 
930 				}
931 
932 				p->cku_xid = alloc_xid();
933 				endpnt_rele(p->cku_endpnt);
934 				p->cku_endpnt = NULL;
935 				goto call_again;
936 			}
937 			/* FALLTHRU */
938 		case AUTH_BADCRED:
939 		case AUTH_BADVERF:
940 		case AUTH_INVALIDRESP:
941 		case AUTH_FAILED:
942 		case RPCSEC_GSS_NOCRED:
943 		case RPCSEC_GSS_FAILED:
944 			p->cku_err.re_errno = EACCES;
945 			break;
946 		case AUTH_REJECTEDCRED:
947 		case AUTH_REJECTEDVERF:
948 		default:
949 			p->cku_err.re_errno = EIO;
950 			break;
951 		}
952 		RPCLOG(1, "clnt_clts_kcallit : authentication failed "
953 		    "with RPC_AUTHERROR of type %d\n",
954 		    p->cku_err.re_why);
955 	}
956 
957 	(void) xdr_rpc_free_verifier(xdrs, &reply_msg);
958 
959 done1:
960 	call_table_remove(call);
961 	mutex_enter(&call->call_lock);
962 	if (call->call_reply != NULL) {
963 		freemsg(call->call_reply);
964 		call->call_reply = NULL;
965 	}
966 	mutex_exit(&call->call_lock);
967 	RPCLOG(64, "clnt_clts_kcallit_addr: xid 0x%x taken off dispatch list",
968 		p->cku_xid);
969 
970 done:
971 	if (resp != NULL) {
972 		freemsg(resp);
973 		resp = NULL;
974 	}
975 
976 	if ((p->cku_err.re_status != RPC_SUCCESS) &&
977 	    (p->cku_err.re_status != RPC_INTR) &&
978 	    (p->cku_err.re_status != RPC_UDERROR) &&
979 	    !IS_UNRECOVERABLE_RPC(p->cku_err.re_status)) {
980 		if (p->cku_feedback != NULL && stries == p->cku_retrys) {
981 			(*p->cku_feedback)(FEEDBACK_REXMIT1, procnum,
982 			    p->cku_feedarg);
983 		}
984 
985 		timout = backoff(timout);
986 		if (p->cku_timeall != (struct rpc_timers *)0)
987 			p->cku_timeall->rt_rtxcur = timout;
988 
989 		if (p->cku_err.re_status == RPC_SYSTEMERROR ||
990 		    p->cku_err.re_status == RPC_CANTSEND) {
991 			/*
992 			 * Errors due to lack of resources, wait a bit
993 			 * and try again.
994 			 */
995 			(void) delay(hz/10);
996 			/* (void) sleep((caddr_t)&lbolt, PZERO-4); */
997 		}
998 		if (stries-- > 0) {
999 			RCSTAT_INCR(p->cku_stats, rcretrans);
1000 			goto call_again;
1001 		}
1002 	}
1003 
1004 	if (mpdup != NULL)
1005 		freemsg(mpdup);
1006 
1007 	if (p->cku_err.re_status != RPC_SUCCESS) {
1008 		RCSTAT_INCR(p->cku_stats, rcbadcalls);
1009 	}
1010 
1011 	/*
1012 	 * Allow the endpoint to be held by the client handle in case this
1013 	 * RPC was not successful.  A retry may occur at a higher level and
1014 	 * in this case we may want to send the request over the same
1015 	 * source port.
1016 	 */
1017 	if (p->cku_err.re_status == RPC_SUCCESS && p->cku_endpnt != NULL) {
1018 		endpnt_rele(p->cku_endpnt);
1019 		p->cku_endpnt = NULL;
1020 	}
1021 
1022 	return (p->cku_err.re_status);
1023 }
1024 
1025 static enum clnt_stat
1026 clnt_clts_kcallit(CLIENT *h, rpcproc_t procnum, xdrproc_t xdr_args,
1027 	caddr_t argsp, xdrproc_t xdr_results, caddr_t resultsp,
1028 	struct timeval wait)
1029 {
1030 	return (clnt_clts_kcallit_addr(h, procnum, xdr_args, argsp,
1031 				xdr_results, resultsp, wait, NULL));
1032 }
1033 
1034 /*
1035  * Return error info on this handle.
1036  */
1037 static void
1038 clnt_clts_kerror(CLIENT *h, struct rpc_err *err)
1039 {
1040 	/* LINTED pointer alignment */
1041 	struct cku_private *p = htop(h);
1042 
1043 	*err = p->cku_err;
1044 }
1045 
1046 static bool_t
1047 clnt_clts_kfreeres(CLIENT *h, xdrproc_t xdr_res, caddr_t res_ptr)
1048 {
1049 	/* LINTED pointer alignment */
1050 	struct cku_private *p = htop(h);
1051 	XDR *xdrs;
1052 
1053 	xdrs = &(p->cku_outxdr);
1054 	xdrs->x_op = XDR_FREE;
1055 	return ((*xdr_res)(xdrs, res_ptr));
1056 }
1057 
1058 /*ARGSUSED*/
1059 static void
1060 clnt_clts_kabort(CLIENT *h)
1061 {
1062 }
1063 
1064 static bool_t
1065 clnt_clts_kcontrol(CLIENT *h, int cmd, char *arg)
1066 {
1067 	/* LINTED pointer alignment */
1068 	struct cku_private *p = htop(h);
1069 
1070 	switch (cmd) {
1071 	case CLSET_XID:
1072 		p->cku_xid = *((uint32_t *)arg);
1073 		return (TRUE);
1074 
1075 	case CLGET_XID:
1076 		*((uint32_t *)arg) = p->cku_xid;
1077 		return (TRUE);
1078 
1079 	case CLSET_BCAST:
1080 		p->cku_bcast = *((uint32_t *)arg);
1081 		return (TRUE);
1082 
1083 	case CLGET_BCAST:
1084 		*((uint32_t *)arg) = p->cku_bcast;
1085 		return (TRUE);
1086 	case CLSET_BINDRESVPORT:
1087 		if (arg == NULL)
1088 			return (FALSE);
1089 
1090 		if (*(int *)arg != 1 && *(int *)arg != 0)
1091 			return (FALSE);
1092 
1093 		p->cku_useresvport = *(int *)arg;
1094 
1095 		return (TRUE);
1096 
1097 	case CLGET_BINDRESVPORT:
1098 		if (arg == NULL)
1099 			return (FALSE);
1100 
1101 		*(int *)arg = p->cku_useresvport;
1102 
1103 		return (TRUE);
1104 
1105 	default:
1106 		return (FALSE);
1107 	}
1108 }
1109 
1110 /*
1111  * Destroy rpc handle.
1112  * Frees the space used for output buffer, private data, and handle
1113  * structure, and the file pointer/TLI data on last reference.
1114  */
1115 static void
1116 clnt_clts_kdestroy(CLIENT *h)
1117 {
1118 	/* LINTED pointer alignment */
1119 	struct cku_private *p = htop(h);
1120 	calllist_t *call = &p->cku_call;
1121 
1122 	int plen;
1123 
1124 	RPCLOG(8, "clnt_clts_kdestroy h: %p\n", (void *)h);
1125 	RPCLOG(8, "clnt_clts_kdestroy h: xid=0x%x\n", p->cku_xid);
1126 
1127 	if (p->cku_endpnt != NULL)
1128 		endpnt_rele(p->cku_endpnt);
1129 
1130 	cv_destroy(&call->call_cv);
1131 	mutex_destroy(&call->call_lock);
1132 
1133 	plen = strlen(p->cku_config.knc_protofmly) + 1;
1134 	kmem_free(p->cku_config.knc_protofmly, plen);
1135 	kmem_free(p->cku_addr.buf, p->cku_addr.maxlen);
1136 	kmem_free(p, sizeof (*p));
1137 }
1138 
1139 /*
1140  * The connectionless (CLTS) kRPC endpoint management subsystem.
1141  *
1142  * Because endpoints are potentially shared among threads making RPC calls,
1143  * they are managed in a pool according to type (endpnt_type_t).  Each
1144  * endpnt_type_t points to a list of usable endpoints through the e_pool
1145  * field, which is of type list_t.  list_t is a doubly-linked list.
1146  * The number of endpoints in the pool is stored in the e_cnt field of
1147  * endpnt_type_t and the endpoints are reference counted using the e_ref field
1148  * in the endpnt_t structure.
1149  *
1150  * As an optimization, endpoints that have no references are also linked
1151  * to an idle list via e_ilist which is also of type list_t.  When a thread
1152  * calls endpnt_get() to obtain a transport endpoint, the idle list is first
1153  * consulted and if such an endpoint exists, it is removed from the idle list
1154  * and returned to the caller.
1155  *
1156  * If the idle list is empty, then a check is made to see if more endpoints
1157  * can be created.  If so, we proceed and create a new endpoint which is added
1158  * to the pool and returned to the caller.  If we have reached the limit and
1159  * cannot make a new endpoint then one is returned to the caller via round-
1160  * robin policy.
1161  *
1162  * When an endpoint is placed on the idle list by a thread calling
1163  * endpnt_rele(), it is timestamped and then a reaper taskq is scheduled to
1164  * be dispatched if one hasn't already been.  When the timer fires, the
1165  * taskq traverses the idle list and checks to see which endpoints are
1166  * eligible to be closed.  It determines this by checking if the timestamp
1167  * when the endpoint was released has exceeded the the threshold for how long
1168  * it should stay alive.
1169  *
1170  * endpnt_t structures remain persistent until the memory reclaim callback,
1171  * endpnt_reclaim(), is invoked.
1172  *
1173  * Here is an example of how the data structures would be laid out by the
1174  * subsystem:
1175  *
1176  *       endpnt_type_t
1177  *
1178  *	 loopback		                  inet
1179  *	 _______________	                  ______________
1180  *	| e_next        |----------------------->| e_next       |---->>
1181  *	| e_pool        |<---+                   | e_pool       |<----+
1182  *	| e_ilist       |<---+--+                | e_ilist      |<----+--+
1183  *   +->| e_pcurr       |----+--+--+	      +->| e_pcurr      |-----+--+--+
1184  *   |	| ...           |    |  |  |	      |	 | ...	        |     |  |  |
1185  *   |	| e_itimer (90) |    |  |  |	      |	 | e_itimer (0) |     |  |  |
1186  *   |	| e_cnt (1)     |    |  |  |	      |	 | e_cnt (3)    |     |  |  |
1187  *   |	+---------------+    |  |  |	      |	 +--------------+     |  |  |
1188  *   |			     |  |  |	      |			      |  |  |
1189  *   |   endpnt_t            |  |  |          |	                      |  |  |
1190  *   |	 ____________        |  |  |	      |	  ____________        |  |  |
1191  *   |	| e_node     |<------+  |  |	      |	 | e_node     |<------+  |  |
1192  *   |	| e_idle     |<---------+  |	      |	 | e_idle     |       |  |  |
1193  *   +--| e_type     |<------------+	      +--| e_type     |       |  |  |
1194  *	| e_tiptr    |                        |  | e_tiptr    |       |  |  |
1195  *      | ...	     |		              |	 | ...	      |       |  |  |
1196  *	| e_lock     |		              |	 | e_lock     |       |  |  |
1197  *	| ...        |		              |	 | ...	      |       |  |  |
1198  *      | e_ref (0)  |		              |	 | e_ref (2)  |       |  |  |
1199  *	| e_itime    |	                      |	 | e_itime    |       |  |  |
1200  *	+------------+		              |	 +------------+       |  |  |
1201  *					      |			      |  |  |
1202  *					      |			      |  |  |
1203  *					      |	  ____________        |  |  |
1204  *					      |	 | e_node     |<------+  |  |
1205  *					      |	 | e_idle     |<------+--+  |
1206  *					      +--| e_type     |       |     |
1207  *					      |	 | e_tiptr    |       |     |
1208  *					      |	 | ...	      |       |     |
1209  *					      |	 | e_lock     |       |     |
1210  *					      |	 | ...	      |       |     |
1211  *					      |	 | e_ref (0)  |       |     |
1212  *					      |	 | e_itime    |       |     |
1213  *					      |	 +------------+       |     |
1214  *					      |			      |     |
1215  *					      |			      |     |
1216  *					      |	  ____________        |     |
1217  *					      |	 | e_node     |<------+     |
1218  *					      |	 | e_idle     |             |
1219  *					      +--| e_type     |<------------+
1220  *						 | e_tiptr    |
1221  *						 | ...	      |
1222  *						 | e_lock     |
1223  *						 | ...	      |
1224  *						 | e_ref (1)  |
1225  *						 | e_itime    |
1226  *						 +------------+
1227  *
1228  * Endpoint locking strategy:
1229  *
1230  * The following functions manipulate lists which hold the endpoint and the
1231  * endpoints themselves:
1232  *
1233  * endpnt_get()/check_endpnt()/endpnt_rele()/endpnt_reap()/do_endpnt_reclaim()
1234  *
1235  * Lock description follows:
1236  *
1237  * endpnt_type_lock: Global reader/writer lock which protects accesses to the
1238  *		     endpnt_type_list.
1239  *
1240  * e_plock: Lock defined in the endpnt_type_t.  It is intended to
1241  *	    protect accesses to the pool of endopints (e_pool) for a given
1242  *	    endpnt_type_t.
1243  *
1244  * e_ilock: Lock defined in endpnt_type_t.  It is intended to protect accesses
1245  *	    to the idle list (e_ilist) of available endpoints for a given
1246  *	    endpnt_type_t.  It also protects access to the e_itimer, e_async_cv,
1247  *	    and e_async_count fields in endpnt_type_t.
1248  *
1249  * e_lock: Lock defined in the endpnt structure.  It is intended to protect
1250  *	   flags, cv, and ref count.
1251  *
1252  * The order goes as follows so as not to induce deadlock.
1253  *
1254  * endpnt_type_lock -> e_plock -> e_ilock -> e_lock
1255  *
1256  * Interaction with Zones and shutting down:
1257  *
1258  * endpnt_type_ts are uniquely identified by the (e_zoneid, e_rdev, e_protofmly)
1259  * tuple, which means that a zone may not reuse another zone's idle endpoints
1260  * without first doing a t_kclose().
1261  *
1262  * A zone's endpnt_type_ts are destroyed when a zone is shut down; e_async_cv
1263  * and e_async_count are used to keep track of the threads in endpnt_taskq
1264  * trying to reap endpnt_ts in the endpnt_type_t.
1265  */
1266 
1267 /*
1268  * Allocate and initialize an endpnt_type_t
1269  */
1270 static struct endpnt_type *
1271 endpnt_type_create(struct knetconfig *config)
1272 {
1273 	struct endpnt_type	*etype;
1274 
1275 	/*
1276 	 * Allocate a new endpoint type to hang a list of
1277 	 * endpoints off of it.
1278 	 */
1279 	etype = kmem_alloc(sizeof (struct endpnt_type), KM_SLEEP);
1280 	etype->e_next = NULL;
1281 	etype->e_pcurr = NULL;
1282 	etype->e_itimer = 0;
1283 	etype->e_cnt = 0;
1284 
1285 	(void) strncpy(etype->e_protofmly, config->knc_protofmly, KNC_STRSIZE);
1286 	mutex_init(&etype->e_plock, NULL, MUTEX_DEFAULT, NULL);
1287 	mutex_init(&etype->e_ilock, NULL, MUTEX_DEFAULT, NULL);
1288 	etype->e_rdev = config->knc_rdev;
1289 	etype->e_zoneid = getzoneid();
1290 	etype->e_async_count = 0;
1291 	cv_init(&etype->e_async_cv, NULL, CV_DEFAULT, NULL);
1292 
1293 	list_create(&etype->e_pool, sizeof (endpnt_t),
1294 			offsetof(endpnt_t, e_node));
1295 	list_create(&etype->e_ilist, sizeof (endpnt_t),
1296 			offsetof(endpnt_t, e_idle));
1297 
1298 	/*
1299 	 * Check to see if we need to create a taskq for endpoint
1300 	 * reaping
1301 	 */
1302 	mutex_enter(&endpnt_taskq_lock);
1303 	if (taskq_created == FALSE) {
1304 		taskq_created = TRUE;
1305 		mutex_exit(&endpnt_taskq_lock);
1306 		ASSERT(endpnt_taskq == NULL);
1307 		endpnt_taskq = taskq_create("clts_endpnt_taskq", 1,
1308 						minclsyspri, 200, INT_MAX, 0);
1309 	} else
1310 		mutex_exit(&endpnt_taskq_lock);
1311 
1312 	return (etype);
1313 }
1314 
1315 /*
1316  * Free an endpnt_type_t
1317  */
1318 static void
1319 endpnt_type_free(struct endpnt_type *etype)
1320 {
1321 	mutex_destroy(&etype->e_plock);
1322 	mutex_destroy(&etype->e_ilock);
1323 	list_destroy(&etype->e_pool);
1324 	list_destroy(&etype->e_ilist);
1325 	kmem_free(etype, sizeof (endpnt_type_t));
1326 }
1327 
1328 /*
1329  * Check the endpoint to ensure that it is suitable for use.
1330  *
1331  * Possible return values:
1332  *
1333  * return (1) - Endpoint is established, but needs to be re-opened.
1334  * return (0) && *newp == NULL - Endpoint is established, but unusable.
1335  * return (0) && *newp != NULL - Endpoint is established and usable.
1336  */
1337 static int
1338 check_endpnt(struct endpnt *endp, struct endpnt **newp)
1339 {
1340 	*newp = endp;
1341 
1342 	mutex_enter(&endp->e_lock);
1343 	ASSERT(endp->e_ref >= 1);
1344 
1345 	/*
1346 	 * The first condition we check for is if the endpoint has been
1347 	 * allocated, but is unusable either because it has been closed or
1348 	 * has been marked stale.  Only *one* thread will be allowed to
1349 	 * execute the then clause.  This is enforced becuase the first thread
1350 	 * to check this condition will clear the flags, so that subsequent
1351 	 * thread(s) checking this endpoint will move on.
1352 	 */
1353 	if ((endp->e_flags & ENDPNT_ESTABLISHED) &&
1354 		(!(endp->e_flags & ENDPNT_BOUND) ||
1355 		(endp->e_flags & ENDPNT_STALE))) {
1356 		/*
1357 		 * Clear the flags here since they will be
1358 		 * set again by this thread.  They need to be
1359 		 * individually cleared because we want to maintain
1360 		 * the state for ENDPNT_ONIDLE.
1361 		 */
1362 		endp->e_flags &= ~(ENDPNT_ESTABLISHED |
1363 				ENDPNT_WAITING | ENDPNT_BOUND |	ENDPNT_STALE);
1364 		mutex_exit(&endp->e_lock);
1365 		return (1);
1366 	}
1367 
1368 	/*
1369 	 * The second condition is meant for any thread that is waiting for
1370 	 * an endpoint to become established.  It will cv_wait() until
1371 	 * the condition for the endpoint has been changed to ENDPNT_BOUND or
1372 	 * ENDPNT_STALE.
1373 	 */
1374 	while (!(endp->e_flags & ENDPNT_BOUND) &&
1375 		!(endp->e_flags & ENDPNT_STALE)) {
1376 		endp->e_flags |= ENDPNT_WAITING;
1377 		cv_wait(&endp->e_cv, &endp->e_lock);
1378 	}
1379 
1380 	ASSERT(endp->e_flags & ENDPNT_ESTABLISHED);
1381 
1382 	/*
1383 	 * The last case we check for is if the endpoint has been marked stale.
1384 	 * If this is the case then set *newp to NULL and return, so that the
1385 	 * caller is notified of the error and can take appropriate action.
1386 	 */
1387 	if (endp->e_flags & ENDPNT_STALE) {
1388 		endp->e_ref--;
1389 		*newp = NULL;
1390 	}
1391 	mutex_exit(&endp->e_lock);
1392 	return (0);
1393 }
1394 
1395 #ifdef DEBUG
1396 /*
1397  * Provide a fault injection setting to test error conditions.
1398  */
1399 static int endpnt_get_return_null = 0;
1400 #endif
1401 
1402 /*
1403  * Returns a handle (struct endpnt *) to an open and bound endpoint
1404  * specified by the knetconfig passed in.  Returns NULL if no valid endpoint
1405  * can be obtained.
1406  */
1407 static struct endpnt *
1408 endpnt_get(struct knetconfig *config, int useresvport)
1409 {
1410 	struct endpnt_type	*n_etype = NULL;
1411 	struct endpnt_type	*np = NULL;
1412 	struct endpnt		*new = NULL;
1413 	struct endpnt		*endp = NULL;
1414 	struct endpnt		*next = NULL;
1415 	TIUSER			*tiptr = NULL;
1416 	int			rtries = BINDRESVPORT_RETRIES;
1417 	int			i = 0;
1418 	int			error;
1419 	int			retval;
1420 	zoneid_t		zoneid = getzoneid();
1421 
1422 	RPCLOG(1, "endpnt_get: protofmly %s, ", config->knc_protofmly);
1423 	RPCLOG(1, "rdev %ld\n", config->knc_rdev);
1424 
1425 #ifdef DEBUG
1426 	/*
1427 	 * Inject fault if desired.  Pretend we have a stale endpoint
1428 	 * and return NULL.
1429 	 */
1430 	if (endpnt_get_return_null > 0) {
1431 		endpnt_get_return_null--;
1432 		return (NULL);
1433 	}
1434 #endif
1435 	rw_enter(&endpnt_type_lock, RW_READER);
1436 
1437 top:
1438 	for (np = endpnt_type_list; np != NULL; np = np->e_next)
1439 		if ((np->e_zoneid == zoneid) &&
1440 		    (np->e_rdev == config->knc_rdev) &&
1441 		    (strcmp(np->e_protofmly,
1442 			    config->knc_protofmly) == 0))
1443 			break;
1444 
1445 	if (np == NULL && n_etype != NULL) {
1446 		ASSERT(rw_write_held(&endpnt_type_lock));
1447 
1448 		/*
1449 		 * Link the endpoint type onto the list
1450 		 */
1451 		n_etype->e_next = endpnt_type_list;
1452 		endpnt_type_list = n_etype;
1453 		np = n_etype;
1454 		n_etype = NULL;
1455 	}
1456 
1457 	if (np == NULL) {
1458 		/*
1459 		 * The logic here is that we were unable to find an
1460 		 * endpnt_type_t that matched our criteria, so we allocate a
1461 		 * new one.  Because kmem_alloc() needs to be called with
1462 		 * KM_SLEEP, we drop our locks so that we don't induce
1463 		 * deadlock.  After allocating and initializing the
1464 		 * endpnt_type_t, we reaquire the lock and go back to check
1465 		 * if this entry needs to be added to the list.  Since we do
1466 		 * some operations without any locking other threads may
1467 		 * have been looking for the same endpnt_type_t and gone
1468 		 * through this code path.  We check for this case and allow
1469 		 * one thread to link its endpnt_type_t to the list and the
1470 		 * other threads will simply free theirs.
1471 		 */
1472 		rw_exit(&endpnt_type_lock);
1473 		n_etype = endpnt_type_create(config);
1474 
1475 		/*
1476 		 * We need to reaquire the lock with RW_WRITER here so that
1477 		 * we can safely link the new endpoint type onto the list.
1478 		 */
1479 		rw_enter(&endpnt_type_lock, RW_WRITER);
1480 		goto top;
1481 	}
1482 
1483 	rw_exit(&endpnt_type_lock);
1484 	/*
1485 	 * If n_etype is not NULL, then another thread was able to
1486 	 * insert an endpnt_type_t of this type  onto the list before
1487 	 * we did.  Go ahead and free ours.
1488 	 */
1489 	if (n_etype != NULL)
1490 		endpnt_type_free(n_etype);
1491 
1492 	mutex_enter(&np->e_ilock);
1493 	/*
1494 	 * The algorithm to hand out endpoints is to first
1495 	 * give out those that are idle if such endpoints
1496 	 * exist.  Otherwise, create a new one if we haven't
1497 	 * reached the max threshold.  Finally, we give out
1498 	 * endpoints in a pseudo LRU fashion (round-robin).
1499 	 *
1500 	 * Note:  The idle list is merely a hint of those endpoints
1501 	 * that should be idle.  There exists a window after the
1502 	 * endpoint is released and before it is linked back onto the
1503 	 * idle list where a thread could get a reference to it and
1504 	 * use it.  This is okay, since the reference counts will
1505 	 * still be consistent.
1506 	 */
1507 	if ((endp = (endpnt_t *)list_head(&np->e_ilist)) != NULL) {
1508 		timeout_id_t t_id = 0;
1509 
1510 		mutex_enter(&endp->e_lock);
1511 		endp->e_ref++;
1512 		endp->e_itime = 0;
1513 		endp->e_flags &= ~ENDPNT_ONIDLE;
1514 		mutex_exit(&endp->e_lock);
1515 
1516 		/*
1517 		 * Pop the endpoint off the idle list and hand it off
1518 		 */
1519 		list_remove(&np->e_ilist, endp);
1520 
1521 		if (np->e_itimer != 0) {
1522 			t_id = np->e_itimer;
1523 			np->e_itimer = 0;
1524 		}
1525 		mutex_exit(&np->e_ilock);
1526 		/*
1527 		 * Reset the idle timer if it has been set
1528 		 */
1529 		if (t_id != (timeout_id_t)0)
1530 			(void) untimeout(t_id);
1531 
1532 		if (check_endpnt(endp, &new) == 0)
1533 			return (new);
1534 	} else if (np->e_cnt >= clnt_clts_max_endpoints) {
1535 		/*
1536 		 * There are no idle endpoints currently, so
1537 		 * create a new one if we have not reached the maximum or
1538 		 * hand one out in round-robin.
1539 		 */
1540 		mutex_exit(&np->e_ilock);
1541 		mutex_enter(&np->e_plock);
1542 		endp = np->e_pcurr;
1543 		mutex_enter(&endp->e_lock);
1544 		endp->e_ref++;
1545 		mutex_exit(&endp->e_lock);
1546 
1547 		ASSERT(endp != NULL);
1548 		/*
1549 		 * Advance the pointer to the next eligible endpoint, if
1550 		 * necessary.
1551 		 */
1552 		if (np->e_cnt > 1) {
1553 			next = (endpnt_t *)list_next(&np->e_pool, np->e_pcurr);
1554 			if (next == NULL)
1555 				next = (endpnt_t *)list_head(&np->e_pool);
1556 			np->e_pcurr = next;
1557 		}
1558 
1559 		mutex_exit(&np->e_plock);
1560 
1561 		/*
1562 		 * We need to check to see if this endpoint is bound or
1563 		 * not.  If it is in progress then just wait until
1564 		 * the set up is complete
1565 		 */
1566 		if (check_endpnt(endp, &new) == 0)
1567 			return (new);
1568 	} else {
1569 		mutex_exit(&np->e_ilock);
1570 		mutex_enter(&np->e_plock);
1571 
1572 		/*
1573 		 * Allocate a new endpoint to use.  If we can't allocate any
1574 		 * more memory then use one that is already established if any
1575 		 * such endpoints exist.
1576 		 */
1577 		new = kmem_cache_alloc(endpnt_cache, KM_NOSLEEP);
1578 		if (new == NULL) {
1579 			RPCLOG0(1, "endpnt_get: kmem_cache_alloc failed\n");
1580 			/*
1581 			 * Try to recover by using an existing endpoint.
1582 			 */
1583 			if (np->e_cnt <= 0) {
1584 				mutex_exit(&np->e_plock);
1585 				return (NULL);
1586 			}
1587 			endp = np->e_pcurr;
1588 			if ((next = list_next(&np->e_pool, np->e_pcurr)) !=
1589 				NULL)
1590 				np->e_pcurr = next;
1591 			ASSERT(endp != NULL);
1592 			mutex_enter(&endp->e_lock);
1593 			endp->e_ref++;
1594 			mutex_exit(&endp->e_lock);
1595 			mutex_exit(&np->e_plock);
1596 
1597 			if (check_endpnt(endp, &new) == 0)
1598 				return (new);
1599 		} else {
1600 			/*
1601 			 * Partially init an endpoint structure and put
1602 			 * it on the list, so that other interested threads
1603 			 * know that one is being created
1604 			 */
1605 			bzero(new, sizeof (struct endpnt));
1606 
1607 			cv_init(&new->e_cv, NULL, CV_DEFAULT, NULL);
1608 			mutex_init(&new->e_lock, NULL, MUTEX_DEFAULT, NULL);
1609 			new->e_ref = 1;
1610 			new->e_type = np;
1611 
1612 			/*
1613 			 * Link the endpoint into the pool.
1614 			 */
1615 			list_insert_head(&np->e_pool, new);
1616 			np->e_cnt++;
1617 			if (np->e_pcurr == NULL)
1618 				np->e_pcurr = new;
1619 			mutex_exit(&np->e_plock);
1620 		}
1621 	}
1622 
1623 	/*
1624 	 * The transport should be opened with sufficient privs
1625 	 */
1626 	error = t_kopen(NULL, config->knc_rdev, FREAD|FWRITE|FNDELAY, &tiptr,
1627 	    kcred);
1628 	if (error) {
1629 		RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1630 		goto bad;
1631 	}
1632 
1633 	new->e_tiptr = tiptr;
1634 	rpc_poptimod(tiptr->fp->f_vnode);
1635 
1636 	/*
1637 	 * Allow the kernel to push the module on behalf of the user.
1638 	 */
1639 	error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"rpcmod", 0,
1640 			K_TO_K, kcred, &retval);
1641 	if (error) {
1642 		RPCLOG(1, "endpnt_get: kstr_push on rpcmod failed %d\n", error);
1643 		goto bad;
1644 	}
1645 
1646 	error = strioctl(tiptr->fp->f_vnode, RPC_CLIENT, 0, 0, K_TO_K,
1647 				kcred, &retval);
1648 	if (error) {
1649 		RPCLOG(1, "endpnt_get: strioctl failed %d\n", error);
1650 		goto bad;
1651 	}
1652 
1653 	/*
1654 	 * Connectionless data flow should bypass the stream head.
1655 	 */
1656 	new->e_wq = tiptr->fp->f_vnode->v_stream->sd_wrq->q_next;
1657 
1658 	error = strioctl(tiptr->fp->f_vnode, I_PUSH, (intptr_t)"timod", 0,
1659 			K_TO_K, kcred, &retval);
1660 	if (error) {
1661 		RPCLOG(1, "endpnt_get: kstr_push on timod failed %d\n", error);
1662 		goto bad;
1663 	}
1664 
1665 	/*
1666 	 * Attempt to bind the endpoint.  If we fail then propogate
1667 	 * error back to calling subsystem, so that it can be handled
1668 	 * appropriately.
1669 	 * If the caller has not specified reserved port usage then
1670 	 * take the system default.
1671 	 */
1672 	if (useresvport == -1)
1673 		useresvport = clnt_clts_do_bindresvport;
1674 
1675 	if (useresvport &&
1676 	    (strcmp(config->knc_protofmly, NC_INET) == 0 ||
1677 		strcmp(config->knc_protofmly, NC_INET6) == 0)) {
1678 
1679 		while ((error =
1680 			bindresvport(new->e_tiptr, NULL, NULL, FALSE)) != 0) {
1681 			RPCLOG(1,
1682 				"endpnt_get: bindresvport error %d\n",
1683 				error);
1684 			if (error != EPROTO) {
1685 				if (rtries-- <= 0)
1686 					goto bad;
1687 
1688 				delay(hz << i++);
1689 				continue;
1690 			}
1691 
1692 			(void) t_kclose(new->e_tiptr, 1);
1693 			/*
1694 			 * reopen with all privileges
1695 			 */
1696 			error = t_kopen(NULL, config->knc_rdev,
1697 					FREAD|FWRITE|FNDELAY,
1698 					&new->e_tiptr, kcred);
1699 			if (error) {
1700 				RPCLOG(1, "endpnt_get: t_kopen: %d\n", error);
1701 					new->e_tiptr = NULL;
1702 					goto bad;
1703 			}
1704 		}
1705 	} else if ((error = t_kbind(new->e_tiptr, NULL, NULL)) != 0) {
1706 		RPCLOG(1, "endpnt_get: t_kbind failed: %d\n", error);
1707 		goto bad;
1708 	}
1709 
1710 	/*
1711 	 * Set the flags and notify and waiters that we have an established
1712 	 * endpoint.
1713 	 */
1714 	mutex_enter(&new->e_lock);
1715 	new->e_flags |= ENDPNT_ESTABLISHED;
1716 	new->e_flags |= ENDPNT_BOUND;
1717 	if (new->e_flags & ENDPNT_WAITING) {
1718 		cv_broadcast(&new->e_cv);
1719 		new->e_flags &= ~ENDPNT_WAITING;
1720 	}
1721 	mutex_exit(&new->e_lock);
1722 
1723 	return (new);
1724 
1725 bad:
1726 	ASSERT(new != NULL);
1727 	/*
1728 	 * mark this endpoint as stale and notify any threads waiting
1729 	 * on this endpoint that it will be going away.
1730 	 */
1731 	mutex_enter(&new->e_lock);
1732 	if (new->e_ref > 0) {
1733 		new->e_flags |= ENDPNT_ESTABLISHED;
1734 		new->e_flags |= ENDPNT_STALE;
1735 		if (new->e_flags & ENDPNT_WAITING) {
1736 			cv_broadcast(&new->e_cv);
1737 			new->e_flags &= ~ENDPNT_WAITING;
1738 		}
1739 	}
1740 	new->e_ref--;
1741 	new->e_tiptr = NULL;
1742 	mutex_exit(&new->e_lock);
1743 
1744 	/*
1745 	 * If there was a transport endopoint opened, then close it.
1746 	 */
1747 	if (tiptr != NULL)
1748 		(void) t_kclose(tiptr, 1);
1749 
1750 	return (NULL);
1751 }
1752 
1753 /*
1754  * Release a referece to the endpoint
1755  */
1756 static void
1757 endpnt_rele(struct endpnt *sp)
1758 {
1759 	mutex_enter(&sp->e_lock);
1760 	ASSERT(sp->e_ref > 0);
1761 	sp->e_ref--;
1762 	/*
1763 	 * If the ref count is zero, then start the idle timer and link
1764 	 * the endpoint onto the idle list.
1765 	 */
1766 	if (sp->e_ref == 0) {
1767 		sp->e_itime = gethrestime_sec();
1768 
1769 		/*
1770 		 * Check to see if the endpoint is already linked to the idle
1771 		 * list, so that we don't try to reinsert it.
1772 		 */
1773 		if (sp->e_flags & ENDPNT_ONIDLE) {
1774 			mutex_exit(&sp->e_lock);
1775 			mutex_enter(&sp->e_type->e_ilock);
1776 			endpnt_reap_settimer(sp->e_type);
1777 			mutex_exit(&sp->e_type->e_ilock);
1778 			return;
1779 		}
1780 
1781 		sp->e_flags |= ENDPNT_ONIDLE;
1782 		mutex_exit(&sp->e_lock);
1783 		mutex_enter(&sp->e_type->e_ilock);
1784 		list_insert_tail(&sp->e_type->e_ilist, sp);
1785 		endpnt_reap_settimer(sp->e_type);
1786 		mutex_exit(&sp->e_type->e_ilock);
1787 	} else
1788 		mutex_exit(&sp->e_lock);
1789 }
1790 
1791 static void
1792 endpnt_reap_settimer(endpnt_type_t *etp)
1793 {
1794 	if (etp->e_itimer == (timeout_id_t)0)
1795 		etp->e_itimer = timeout(endpnt_reap_dispatch, (void *)etp,
1796 					clnt_clts_taskq_dispatch_interval);
1797 }
1798 
1799 static void
1800 endpnt_reap_dispatch(void *a)
1801 {
1802 	endpnt_type_t *etp = a;
1803 
1804 	/*
1805 	 * The idle timer has fired, so dispatch the taskq to close the
1806 	 * endpoint.
1807 	 */
1808 	if (taskq_dispatch(endpnt_taskq, (task_func_t *)endpnt_reap, etp,
1809 	    TQ_NOSLEEP) == NULL)
1810 		return;
1811 	mutex_enter(&etp->e_ilock);
1812 	etp->e_async_count++;
1813 	mutex_exit(&etp->e_ilock);
1814 }
1815 
1816 /*
1817  * Traverse the idle list and close those endpoints that have reached their
1818  * timeout interval.
1819  */
1820 static void
1821 endpnt_reap(endpnt_type_t *etp)
1822 {
1823 	struct endpnt *e;
1824 	struct endpnt *next_node = NULL;
1825 
1826 	mutex_enter(&etp->e_ilock);
1827 	e = list_head(&etp->e_ilist);
1828 	while (e != NULL) {
1829 		next_node = list_next(&etp->e_ilist, e);
1830 
1831 		mutex_enter(&e->e_lock);
1832 		if (e->e_ref > 0) {
1833 			mutex_exit(&e->e_lock);
1834 			e = next_node;
1835 			continue;
1836 		}
1837 
1838 		ASSERT(e->e_ref == 0);
1839 		if (e->e_itime > 0 &&
1840 		    (e->e_itime + clnt_clts_endpoint_reap_interval) <
1841 		    gethrestime_sec()) {
1842 			e->e_flags &= ~ENDPNT_BOUND;
1843 			(void) t_kclose(e->e_tiptr, 1);
1844 			e->e_tiptr = NULL;
1845 			e->e_itime = 0;
1846 		}
1847 		mutex_exit(&e->e_lock);
1848 		e = next_node;
1849 	}
1850 	etp->e_itimer = 0;
1851 	if (--etp->e_async_count == 0)
1852 		cv_signal(&etp->e_async_cv);
1853 	mutex_exit(&etp->e_ilock);
1854 }
1855 
1856 static void
1857 endpnt_reclaim(zoneid_t zoneid)
1858 {
1859 	struct endpnt_type *np;
1860 	struct endpnt *e;
1861 	struct endpnt *next_node = NULL;
1862 	list_t free_list;
1863 	int rcnt = 0;
1864 
1865 	list_create(&free_list, sizeof (endpnt_t), offsetof(endpnt_t, e_node));
1866 
1867 	RPCLOG0(1, "endpnt_reclaim: reclaim callback started\n");
1868 	rw_enter(&endpnt_type_lock, RW_READER);
1869 	for (np = endpnt_type_list; np != NULL; np = np->e_next) {
1870 		if (zoneid != ALL_ZONES && zoneid != np->e_zoneid)
1871 			continue;
1872 
1873 		mutex_enter(&np->e_plock);
1874 		RPCLOG(1, "endpnt_reclaim: protofmly %s, ",
1875 			np->e_protofmly);
1876 		RPCLOG(1, "rdev %ld\n", np->e_rdev);
1877 		RPCLOG(1, "endpnt_reclaim: found %d endpoint(s)\n",
1878 			np->e_cnt);
1879 
1880 		if (np->e_cnt == 0) {
1881 			mutex_exit(&np->e_plock);
1882 			continue;
1883 		}
1884 
1885 		/*
1886 		 * The nice thing about maintaining an idle list is that if
1887 		 * there are any endpoints to reclaim, they are going to be
1888 		 * on this list.  Just go through and reap the one's that
1889 		 * have ref counts of zero.
1890 		 */
1891 		mutex_enter(&np->e_ilock);
1892 		e = list_head(&np->e_ilist);
1893 		while (e != NULL) {
1894 			next_node = list_next(&np->e_ilist, e);
1895 			mutex_enter(&e->e_lock);
1896 			if (e->e_ref > 0) {
1897 				mutex_exit(&e->e_lock);
1898 				e = next_node;
1899 				continue;
1900 			}
1901 			ASSERT(e->e_ref == 0);
1902 			mutex_exit(&e->e_lock);
1903 
1904 			list_remove(&np->e_ilist, e);
1905 			list_remove(&np->e_pool, e);
1906 			list_insert_head(&free_list, e);
1907 
1908 			rcnt++;
1909 			np->e_cnt--;
1910 			e = next_node;
1911 		}
1912 		mutex_exit(&np->e_ilock);
1913 		/*
1914 		 * Reset the current pointer to be safe
1915 		 */
1916 		if ((e = (struct endpnt *)list_head(&np->e_pool)) != NULL)
1917 			np->e_pcurr = e;
1918 		else {
1919 			ASSERT(np->e_cnt == 0);
1920 			np->e_pcurr = NULL;
1921 		}
1922 
1923 		mutex_exit(&np->e_plock);
1924 	}
1925 	rw_exit(&endpnt_type_lock);
1926 
1927 	while ((e = list_head(&free_list)) != NULL) {
1928 		list_remove(&free_list, e);
1929 		if (e->e_tiptr != NULL)
1930 			(void) t_kclose(e->e_tiptr, 1);
1931 
1932 		cv_destroy(&e->e_cv);
1933 		mutex_destroy(&e->e_lock);
1934 		kmem_cache_free(endpnt_cache, e);
1935 	}
1936 	list_destroy(&free_list);
1937 	RPCLOG(1, "endpnt_reclaim: reclaimed %d endpoint(s)\n", rcnt);
1938 }
1939 
1940 /*
1941  * Endpoint reclaim zones destructor callback routine.
1942  *
1943  * After reclaiming any cached entries, we basically go through the endpnt_type
1944  * list, canceling outstanding timeouts and free'ing data structures.
1945  */
1946 /* ARGSUSED */
1947 static void
1948 endpnt_destructor(zoneid_t zoneid, void *a)
1949 {
1950 	struct endpnt_type **npp;
1951 	struct endpnt_type *np;
1952 	struct endpnt_type *free_list = NULL;
1953 	timeout_id_t t_id = 0;
1954 	extern void clcleanup_zone(zoneid_t);
1955 	extern void clcleanup4_zone(zoneid_t);
1956 
1957 	/* Make sure NFS client handles are released. */
1958 	clcleanup_zone(zoneid);
1959 	clcleanup4_zone(zoneid);
1960 
1961 	endpnt_reclaim(zoneid);
1962 	/*
1963 	 * We don't need to be holding on to any locks across the call to
1964 	 * endpnt_reclaim() and the code below; we know that no-one can
1965 	 * be holding open connections for this zone (all processes and kernel
1966 	 * threads are gone), so nothing could be adding anything to the list.
1967 	 */
1968 	rw_enter(&endpnt_type_lock, RW_WRITER);
1969 	npp = &endpnt_type_list;
1970 	while ((np = *npp) != NULL) {
1971 		if (np->e_zoneid != zoneid) {
1972 			npp = &np->e_next;
1973 			continue;
1974 		}
1975 		mutex_enter(&np->e_plock);
1976 		mutex_enter(&np->e_ilock);
1977 		if (np->e_itimer != 0) {
1978 			t_id = np->e_itimer;
1979 			np->e_itimer = 0;
1980 		}
1981 		ASSERT(np->e_cnt == 0);
1982 		ASSERT(list_head(&np->e_pool) == NULL);
1983 		ASSERT(list_head(&np->e_ilist) == NULL);
1984 
1985 		mutex_exit(&np->e_ilock);
1986 		mutex_exit(&np->e_plock);
1987 
1988 		/*
1989 		 * untimeout() any outstanding timers that have not yet fired.
1990 		 */
1991 		if (t_id != (timeout_id_t)0)
1992 			(void) untimeout(t_id);
1993 		*npp = np->e_next;
1994 		np->e_next = free_list;
1995 		free_list = np;
1996 	}
1997 	rw_exit(&endpnt_type_lock);
1998 
1999 	while (free_list != NULL) {
2000 		np = free_list;
2001 		free_list = free_list->e_next;
2002 		/*
2003 		 * Wait for threads in endpnt_taskq trying to reap endpnt_ts in
2004 		 * the endpnt_type_t.
2005 		 */
2006 		mutex_enter(&np->e_ilock);
2007 		while (np->e_async_count > 0)
2008 			cv_wait(&np->e_async_cv, &np->e_ilock);
2009 		cv_destroy(&np->e_async_cv);
2010 		mutex_destroy(&np->e_plock);
2011 		mutex_destroy(&np->e_ilock);
2012 		list_destroy(&np->e_pool);
2013 		list_destroy(&np->e_ilist);
2014 		kmem_free(np, sizeof (endpnt_type_t));
2015 	}
2016 }
2017 
2018 /*
2019  * Endpoint reclaim kmem callback routine.
2020  */
2021 /* ARGSUSED */
2022 static void
2023 endpnt_repossess(void *a)
2024 {
2025 	/*
2026 	 * Reclaim idle endpnt's from all zones.
2027 	 */
2028 	if (endpnt_taskq != NULL)
2029 		(void) taskq_dispatch(endpnt_taskq,
2030 		    (task_func_t *)endpnt_reclaim, (void *)ALL_ZONES,
2031 		    TQ_NOSLEEP);
2032 }
2033 
2034 /*
2035  * RPC request dispatch routine.  Constructs a datagram message and wraps it
2036  * around the RPC request to pass downstream.
2037  */
2038 static int
2039 clnt_clts_dispatch_send(queue_t *q, mblk_t *mp, struct netbuf *addr,
2040 			calllist_t *cp,	uint_t xid)
2041 {
2042 	mblk_t *bp;
2043 	int msgsz;
2044 	struct T_unitdata_req *udreq;
2045 
2046 	/*
2047 	 * Set up the call record.
2048 	 */
2049 	cp->call_wq = q;
2050 	cp->call_xid = xid;
2051 	cp->call_status = RPC_TIMEDOUT;
2052 	cp->call_notified = FALSE;
2053 	RPCLOG(64,
2054 		"clnt_clts_dispatch_send: putting xid 0x%x on "
2055 		"dispatch list\n", xid);
2056 	cp->call_hash = call_hash(xid, clnt_clts_hash_size);
2057 	cp->call_bucket = &clts_call_ht[cp->call_hash];
2058 	call_table_enter(cp);
2059 
2060 	/*
2061 	 * Construct the datagram
2062 	 */
2063 	msgsz = (int)TUNITDATAREQSZ;
2064 	while (!(bp = allocb(msgsz + addr->len, BPRI_LO))) {
2065 		if (strwaitbuf(msgsz + addr->len, BPRI_LO))
2066 			return (ENOSR);
2067 	}
2068 
2069 	udreq = (struct T_unitdata_req *)bp->b_wptr;
2070 	udreq->PRIM_type = T_UNITDATA_REQ;
2071 	udreq->DEST_length = addr->len;
2072 
2073 	if (addr->len) {
2074 		bcopy(addr->buf, bp->b_wptr + msgsz, addr->len);
2075 		udreq->DEST_offset = (t_scalar_t)msgsz;
2076 		msgsz += addr->len;
2077 	} else
2078 		udreq->DEST_offset = 0;
2079 	udreq->OPT_length = 0;
2080 	udreq->OPT_offset = 0;
2081 
2082 	bp->b_datap->db_type = M_PROTO;
2083 	bp->b_wptr += msgsz;
2084 
2085 	/*
2086 	 * Link the datagram header with the actual data
2087 	 */
2088 	linkb(bp, mp);
2089 
2090 	/*
2091 	 * Send downstream.
2092 	 */
2093 	put(cp->call_wq, bp);
2094 
2095 	return (0);
2096 }
2097 
2098 /*
2099  * RPC response delivery routine.  Deliver the response to the waiting
2100  * thread by matching the xid.
2101  */
2102 void
2103 clnt_clts_dispatch_notify(mblk_t *mp, int resp_off, zoneid_t zoneid)
2104 {
2105 	calllist_t *e = NULL;
2106 	call_table_t *chtp;
2107 	uint32_t xid;
2108 	uint_t hash;
2109 	unsigned char *hdr_offset;
2110 	mblk_t *resp;
2111 
2112 	/*
2113 	 * If the RPC response is not contained in the same mblk as the
2114 	 * datagram header, then move to the next mblk.
2115 	 */
2116 	hdr_offset = mp->b_rptr;
2117 	resp = mp;
2118 	if ((mp->b_wptr - (mp->b_rptr + resp_off)) == 0)
2119 		resp = mp->b_cont;
2120 	else
2121 		resp->b_rptr += resp_off;
2122 
2123 	ASSERT(resp != NULL);
2124 
2125 	if ((IS_P2ALIGNED(resp->b_rptr, sizeof (uint32_t))) &&
2126 	    (resp->b_wptr - resp->b_rptr) >= sizeof (xid))
2127 		xid = *((uint32_t *)resp->b_rptr);
2128 	else {
2129 		int i = 0;
2130 		unsigned char *p = (unsigned char *)&xid;
2131 		unsigned char *rptr;
2132 		mblk_t *tmp = resp;
2133 
2134 		/*
2135 		 * Copy the xid, byte-by-byte into xid.
2136 		 */
2137 		while (tmp) {
2138 			rptr = tmp->b_rptr;
2139 			while (rptr < tmp->b_wptr) {
2140 				*p++ = *rptr++;
2141 				if (++i >= sizeof (xid))
2142 					goto done_xid_copy;
2143 			}
2144 			tmp = tmp->b_cont;
2145 		}
2146 
2147 		/*
2148 		 * If we got here, we ran out of mblk space before the
2149 		 * xid could be copied.
2150 		 */
2151 		ASSERT(tmp == NULL && i < sizeof (xid));
2152 
2153 		RPCLOG0(1,
2154 			"clnt_dispatch_notify(clts): message less than "
2155 			"size of xid\n");
2156 
2157 		freemsg(mp);
2158 		return;
2159 	}
2160 
2161 done_xid_copy:
2162 
2163 	/*
2164 	 * Reset the read pointer back to the beginning of the protocol
2165 	 * header if we moved it.
2166 	 */
2167 	if (mp->b_rptr != hdr_offset)
2168 		mp->b_rptr = hdr_offset;
2169 
2170 	hash = call_hash(xid, clnt_clts_hash_size);
2171 	chtp = &clts_call_ht[hash];
2172 	/* call_table_find returns with the hash bucket locked */
2173 	call_table_find(chtp, xid, e);
2174 
2175 	if (e != NULL) {
2176 		mutex_enter(&e->call_lock);
2177 		/*
2178 		 * found thread waiting for this reply.
2179 		 */
2180 		if (e->call_reply) {
2181 			RPCLOG(8,
2182 				"clnt_dispatch_notify (clts): discarding old "
2183 				"reply for xid 0x%x\n",
2184 				xid);
2185 			freemsg(e->call_reply);
2186 		}
2187 		e->call_notified = TRUE;
2188 		e->call_reply = mp;
2189 		e->call_status = RPC_SUCCESS;
2190 		cv_signal(&e->call_cv);
2191 		mutex_exit(&e->call_lock);
2192 		mutex_exit(&chtp->ct_lock);
2193 	} else {
2194 		zone_t *zone;
2195 		struct rpcstat *rpcstat;
2196 
2197 		mutex_exit(&chtp->ct_lock);
2198 		RPCLOG(8, "clnt_dispatch_notify (clts): no caller for reply "
2199 			"0x%x\n", xid);
2200 		freemsg(mp);
2201 		/*
2202 		 * This is unfortunate, but we need to lookup the zone so we
2203 		 * can increment its "rcbadxids" counter.
2204 		 */
2205 		zone = zone_find_by_id(zoneid);
2206 		if (zone == NULL) {
2207 			/*
2208 			 * The zone went away...
2209 			 */
2210 			return;
2211 		}
2212 		rpcstat = zone_getspecific(rpcstat_zone_key, zone);
2213 		if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
2214 			/*
2215 			 * Not interested
2216 			 */
2217 			zone_rele(zone);
2218 			return;
2219 		}
2220 		RCSTAT_INCR(rpcstat->rpc_clts_client, rcbadxids);
2221 		zone_rele(zone);
2222 	}
2223 }
2224 
2225 /*
2226  * Init routine.  Called when rpcmod is loaded.
2227  */
2228 void
2229 clnt_clts_init(void)
2230 {
2231 	endpnt_cache = kmem_cache_create("clnt_clts_endpnt_cache",
2232 	    sizeof (struct endpnt), 0, NULL, NULL, endpnt_repossess, NULL,
2233 	    NULL, 0);
2234 
2235 	rw_init(&endpnt_type_lock, NULL, RW_DEFAULT, NULL);
2236 
2237 	/*
2238 	 * Perform simple bounds checking to make sure that the setting is
2239 	 * reasonable
2240 	 */
2241 	if (clnt_clts_max_endpoints <= 0) {
2242 		if (clnt_clts_do_bindresvport)
2243 			clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2244 		else
2245 			clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2246 	}
2247 
2248 	if (clnt_clts_do_bindresvport &&
2249 	    clnt_clts_max_endpoints > RESERVED_PORTSPACE)
2250 		clnt_clts_max_endpoints = RESERVED_PORTSPACE;
2251 	else if (clnt_clts_max_endpoints > NONRESERVED_PORTSPACE)
2252 		clnt_clts_max_endpoints = NONRESERVED_PORTSPACE;
2253 
2254 	if (clnt_clts_hash_size < DEFAULT_MIN_HASH_SIZE)
2255 		clnt_clts_hash_size = DEFAULT_MIN_HASH_SIZE;
2256 
2257 	/*
2258 	 * Defer creating the taskq until rpcmod gets pushed.  If we are
2259 	 * in diskless boot mode, rpcmod will get loaded early even before
2260 	 * thread_create() is available.
2261 	 */
2262 	endpnt_taskq = NULL;
2263 	taskq_created = FALSE;
2264 	mutex_init(&endpnt_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
2265 
2266 	if (clnt_clts_endpoint_reap_interval < DEFAULT_ENDPOINT_REAP_INTERVAL)
2267 		clnt_clts_endpoint_reap_interval =
2268 			DEFAULT_ENDPOINT_REAP_INTERVAL;
2269 
2270 	/*
2271 	 * Dispatch the taskq at an interval which is offset from the
2272 	 * interval that the endpoints should be reaped.
2273 	 */
2274 	clnt_clts_taskq_dispatch_interval =
2275 		(clnt_clts_endpoint_reap_interval + DEFAULT_INTERVAL_SHIFT)
2276 		* hz;
2277 
2278 	/*
2279 	 * Initialize the completion queue
2280 	 */
2281 	clts_call_ht = call_table_init(clnt_clts_hash_size);
2282 	/*
2283 	 * Initialize the zone destructor callback.
2284 	 */
2285 	zone_key_create(&endpnt_destructor_key, NULL, NULL, endpnt_destructor);
2286 }
2287 
2288 void
2289 clnt_clts_fini(void)
2290 {
2291 	(void) zone_key_delete(endpnt_destructor_key);
2292 }
2293