1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2013, Joyent Inc. All rights reserved. 25 */ 26 27 /* 28 * Zones 29 * 30 * A zone is a named collection of processes, namespace constraints, 31 * and other system resources which comprise a secure and manageable 32 * application containment facility. 33 * 34 * Zones (represented by the reference counted zone_t) are tracked in 35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 36 * (zoneid_t) are used to track zone association. Zone IDs are 37 * dynamically generated when the zone is created; if a persistent 38 * identifier is needed (core files, accounting logs, audit trail, 39 * etc.), the zone name should be used. 40 * 41 * 42 * Global Zone: 43 * 44 * The global zone (zoneid 0) is automatically associated with all 45 * system resources that have not been bound to a user-created zone. 46 * This means that even systems where zones are not in active use 47 * have a global zone, and all processes, mounts, etc. are 48 * associated with that zone. The global zone is generally 49 * unconstrained in terms of privileges and access, though the usual 50 * credential and privilege based restrictions apply. 51 * 52 * 53 * Zone States: 54 * 55 * The states in which a zone may be in and the transitions are as 56 * follows: 57 * 58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 59 * initialized zone is added to the list of active zones on the system but 60 * isn't accessible. 61 * 62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 63 * not yet completed. Not possible to enter the zone, but attributes can 64 * be retrieved. 65 * 66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 67 * ready. The zone is made visible after the ZSD constructor callbacks are 68 * executed. A zone remains in this state until it transitions into 69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 70 * 71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 73 * state. 74 * 75 * ZONE_IS_RUNNING: The zone is open for business: zsched has 76 * successfully started init. A zone remains in this state until 77 * zone_shutdown() is called. 78 * 79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 80 * killing all processes running in the zone. The zone remains 81 * in this state until there are no more user processes running in the zone. 82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 83 * Since zone_shutdown() is restartable, it may be called successfully 84 * multiple times for the same zone_t. Setting of the zone's state to 85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 86 * the zone's status without worrying about it being a moving target. 87 * 88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 89 * are no more user processes in the zone. The zone remains in this 90 * state until there are no more kernel threads associated with the 91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 92 * fail. 93 * 94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 95 * have exited. zone_shutdown() returns. Henceforth it is not possible to 96 * join the zone or create kernel threads therein. 97 * 98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 99 * remains in this state until zsched exits. Calls to zone_find_by_*() 100 * return NULL from now on. 101 * 102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 103 * processes or threads doing work on behalf of the zone. The zone is 104 * removed from the list of active zones. zone_destroy() returns, and 105 * the zone can be recreated. 106 * 107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 108 * callbacks are executed, and all memory associated with the zone is 109 * freed. 110 * 111 * Threads can wait for the zone to enter a requested state by using 112 * zone_status_wait() or zone_status_timedwait() with the desired 113 * state passed in as an argument. Zone state transitions are 114 * uni-directional; it is not possible to move back to an earlier state. 115 * 116 * 117 * Zone-Specific Data: 118 * 119 * Subsystems needing to maintain zone-specific data can store that 120 * data using the ZSD mechanism. This provides a zone-specific data 121 * store, similar to thread-specific data (see pthread_getspecific(3C) 122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 123 * to register callbacks to be invoked when a zone is created, shut 124 * down, or destroyed. This can be used to initialize zone-specific 125 * data for new zones and to clean up when zones go away. 126 * 127 * 128 * Data Structures: 129 * 130 * The per-zone structure (zone_t) is reference counted, and freed 131 * when all references are released. zone_hold and zone_rele can be 132 * used to adjust the reference count. In addition, reference counts 133 * associated with the cred_t structure are tracked separately using 134 * zone_cred_hold and zone_cred_rele. 135 * 136 * Pointers to active zone_t's are stored in two hash tables; one 137 * for searching by id, the other for searching by name. Lookups 138 * can be performed on either basis, using zone_find_by_id and 139 * zone_find_by_name. Both return zone_t pointers with the zone 140 * held, so zone_rele should be called when the pointer is no longer 141 * needed. Zones can also be searched by path; zone_find_by_path 142 * returns the zone with which a path name is associated (global 143 * zone if the path is not within some other zone's file system 144 * hierarchy). This currently requires iterating through each zone, 145 * so it is slower than an id or name search via a hash table. 146 * 147 * 148 * Locking: 149 * 150 * zonehash_lock: This is a top-level global lock used to protect the 151 * zone hash tables and lists. Zones cannot be created or destroyed 152 * while this lock is held. 153 * zone_status_lock: This is a global lock protecting zone state. 154 * Zones cannot change state while this lock is held. It also 155 * protects the list of kernel threads associated with a zone. 156 * zone_lock: This is a per-zone lock used to protect several fields of 157 * the zone_t (see <sys/zone.h> for details). In addition, holding 158 * this lock means that the zone cannot go away. 159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-lwps rctl. 161 * zone_mem_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-locked-memory and zone.max-swap rctls. 163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 164 * currently just max_lofi 165 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 166 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 167 * list (a list of zones in the ZONE_IS_DEAD state). 168 * 169 * Ordering requirements: 170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 172 * 173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 176 * 177 * Blocking memory allocations are permitted while holding any of the 178 * zone locks. 179 * 180 * 181 * System Call Interface: 182 * 183 * The zone subsystem can be managed and queried from user level with 184 * the following system calls (all subcodes of the primary "zone" 185 * system call): 186 * - zone_create: creates a zone with selected attributes (name, 187 * root path, privileges, resource controls, ZFS datasets) 188 * - zone_enter: allows the current process to enter a zone 189 * - zone_getattr: reports attributes of a zone 190 * - zone_setattr: set attributes of a zone 191 * - zone_boot: set 'init' running for the zone 192 * - zone_list: lists all zones active in the system 193 * - zone_lookup: looks up zone id based on name 194 * - zone_shutdown: initiates shutdown process (see states above) 195 * - zone_destroy: completes shutdown process (see states above) 196 * 197 */ 198 199 #include <sys/priv_impl.h> 200 #include <sys/cred.h> 201 #include <c2/audit.h> 202 #include <sys/debug.h> 203 #include <sys/file.h> 204 #include <sys/kmem.h> 205 #include <sys/kstat.h> 206 #include <sys/mutex.h> 207 #include <sys/note.h> 208 #include <sys/pathname.h> 209 #include <sys/proc.h> 210 #include <sys/project.h> 211 #include <sys/sysevent.h> 212 #include <sys/task.h> 213 #include <sys/systm.h> 214 #include <sys/types.h> 215 #include <sys/utsname.h> 216 #include <sys/vnode.h> 217 #include <sys/vfs.h> 218 #include <sys/systeminfo.h> 219 #include <sys/policy.h> 220 #include <sys/cred_impl.h> 221 #include <sys/contract_impl.h> 222 #include <sys/contract/process_impl.h> 223 #include <sys/class.h> 224 #include <sys/pool.h> 225 #include <sys/pool_pset.h> 226 #include <sys/pset.h> 227 #include <sys/strlog.h> 228 #include <sys/sysmacros.h> 229 #include <sys/callb.h> 230 #include <sys/vmparam.h> 231 #include <sys/corectl.h> 232 #include <sys/ipc_impl.h> 233 #include <sys/klpd.h> 234 235 #include <sys/door.h> 236 #include <sys/cpuvar.h> 237 #include <sys/sdt.h> 238 239 #include <sys/uadmin.h> 240 #include <sys/session.h> 241 #include <sys/cmn_err.h> 242 #include <sys/modhash.h> 243 #include <sys/sunddi.h> 244 #include <sys/nvpair.h> 245 #include <sys/rctl.h> 246 #include <sys/fss.h> 247 #include <sys/brand.h> 248 #include <sys/zone.h> 249 #include <net/if.h> 250 #include <sys/cpucaps.h> 251 #include <vm/seg.h> 252 #include <sys/mac.h> 253 254 /* 255 * This constant specifies the number of seconds that threads waiting for 256 * subsystems to release a zone's general-purpose references will wait before 257 * they log the zone's reference counts. The constant's value shouldn't 258 * be so small that reference counts are unnecessarily reported for zones 259 * whose references are slowly released. On the other hand, it shouldn't be so 260 * large that users reboot their systems out of frustration over hung zones 261 * before the system logs the zones' reference counts. 262 */ 263 #define ZONE_DESTROY_TIMEOUT_SECS 60 264 265 /* List of data link IDs which are accessible from the zone */ 266 typedef struct zone_dl { 267 datalink_id_t zdl_id; 268 nvlist_t *zdl_net; 269 list_node_t zdl_linkage; 270 } zone_dl_t; 271 272 /* 273 * cv used to signal that all references to the zone have been released. This 274 * needs to be global since there may be multiple waiters, and the first to 275 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 276 */ 277 static kcondvar_t zone_destroy_cv; 278 /* 279 * Lock used to serialize access to zone_cv. This could have been per-zone, 280 * but then we'd need another lock for zone_destroy_cv, and why bother? 281 */ 282 static kmutex_t zone_status_lock; 283 284 /* 285 * ZSD-related global variables. 286 */ 287 static kmutex_t zsd_key_lock; /* protects the following two */ 288 /* 289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 290 */ 291 static zone_key_t zsd_keyval = 0; 292 /* 293 * Global list of registered keys. We use this when a new zone is created. 294 */ 295 static list_t zsd_registered_keys; 296 297 int zone_hash_size = 256; 298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 299 static kmutex_t zonehash_lock; 300 static uint_t zonecount; 301 static id_space_t *zoneid_space; 302 303 /* 304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 305 * kernel proper runs, and which manages all other zones. 306 * 307 * Although not declared as static, the variable "zone0" should not be used 308 * except for by code that needs to reference the global zone early on in boot, 309 * before it is fully initialized. All other consumers should use 310 * 'global_zone'. 311 */ 312 zone_t zone0; 313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 314 315 /* 316 * List of active zones, protected by zonehash_lock. 317 */ 318 static list_t zone_active; 319 320 /* 321 * List of destroyed zones that still have outstanding cred references. 322 * Used for debugging. Uses a separate lock to avoid lock ordering 323 * problems in zone_free. 324 */ 325 static list_t zone_deathrow; 326 static kmutex_t zone_deathrow_lock; 327 328 /* number of zones is limited by virtual interface limit in IP */ 329 uint_t maxzones = 8192; 330 331 /* Event channel to sent zone state change notifications */ 332 evchan_t *zone_event_chan; 333 334 /* 335 * This table holds the mapping from kernel zone states to 336 * states visible in the state notification API. 337 * The idea is that we only expose "obvious" states and 338 * do not expose states which are just implementation details. 339 */ 340 const char *zone_status_table[] = { 341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 342 ZONE_EVENT_INITIALIZED, /* initialized */ 343 ZONE_EVENT_READY, /* ready */ 344 ZONE_EVENT_READY, /* booting */ 345 ZONE_EVENT_RUNNING, /* running */ 346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 347 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 348 ZONE_EVENT_SHUTTING_DOWN, /* down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 350 ZONE_EVENT_UNINITIALIZED, /* dead */ 351 }; 352 353 /* 354 * This array contains the names of the subsystems listed in zone_ref_subsys_t 355 * (see sys/zone.h). 356 */ 357 static char *zone_ref_subsys_names[] = { 358 "NFS", /* ZONE_REF_NFS */ 359 "NFSv4", /* ZONE_REF_NFSV4 */ 360 "SMBFS", /* ZONE_REF_SMBFS */ 361 "MNTFS", /* ZONE_REF_MNTFS */ 362 "LOFI", /* ZONE_REF_LOFI */ 363 "VFS", /* ZONE_REF_VFS */ 364 "IPC" /* ZONE_REF_IPC */ 365 }; 366 367 /* 368 * This isn't static so lint doesn't complain. 369 */ 370 rctl_hndl_t rc_zone_cpu_shares; 371 rctl_hndl_t rc_zone_locked_mem; 372 rctl_hndl_t rc_zone_max_swap; 373 rctl_hndl_t rc_zone_max_lofi; 374 rctl_hndl_t rc_zone_cpu_cap; 375 rctl_hndl_t rc_zone_nlwps; 376 rctl_hndl_t rc_zone_nprocs; 377 rctl_hndl_t rc_zone_shmmax; 378 rctl_hndl_t rc_zone_shmmni; 379 rctl_hndl_t rc_zone_semmni; 380 rctl_hndl_t rc_zone_msgmni; 381 /* 382 * Synchronization primitives used to synchronize between mounts and zone 383 * creation/destruction. 384 */ 385 static int mounts_in_progress; 386 static kcondvar_t mount_cv; 387 static kmutex_t mount_lock; 388 389 const char * const zone_default_initname = "/sbin/init"; 390 static char * const zone_prefix = "/zone/"; 391 static int zone_shutdown(zoneid_t zoneid); 392 static int zone_add_datalink(zoneid_t, datalink_id_t); 393 static int zone_remove_datalink(zoneid_t, datalink_id_t); 394 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 395 static int zone_set_network(zoneid_t, zone_net_data_t *); 396 static int zone_get_network(zoneid_t, zone_net_data_t *); 397 398 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 399 400 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 401 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 402 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 403 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 404 zone_key_t); 405 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 406 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 407 kmutex_t *); 408 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 409 kmutex_t *); 410 411 /* 412 * Bump this number when you alter the zone syscall interfaces; this is 413 * because we need to have support for previous API versions in libc 414 * to support patching; libc calls into the kernel to determine this number. 415 * 416 * Version 1 of the API is the version originally shipped with Solaris 10 417 * Version 2 alters the zone_create system call in order to support more 418 * arguments by moving the args into a structure; and to do better 419 * error reporting when zone_create() fails. 420 * Version 3 alters the zone_create system call in order to support the 421 * import of ZFS datasets to zones. 422 * Version 4 alters the zone_create system call in order to support 423 * Trusted Extensions. 424 * Version 5 alters the zone_boot system call, and converts its old 425 * bootargs parameter to be set by the zone_setattr API instead. 426 * Version 6 adds the flag argument to zone_create. 427 */ 428 static const int ZONE_SYSCALL_API_VERSION = 6; 429 430 /* 431 * Certain filesystems (such as NFS and autofs) need to know which zone 432 * the mount is being placed in. Because of this, we need to be able to 433 * ensure that a zone isn't in the process of being created such that 434 * nfs_mount() thinks it is in the global zone, while by the time it 435 * gets added the list of mounted zones, it ends up on zoneA's mount 436 * list. 437 * 438 * The following functions: block_mounts()/resume_mounts() and 439 * mount_in_progress()/mount_completed() are used by zones and the VFS 440 * layer (respectively) to synchronize zone creation and new mounts. 441 * 442 * The semantics are like a reader-reader lock such that there may 443 * either be multiple mounts (or zone creations, if that weren't 444 * serialized by zonehash_lock) in progress at the same time, but not 445 * both. 446 * 447 * We use cv's so the user can ctrl-C out of the operation if it's 448 * taking too long. 449 * 450 * The semantics are such that there is unfair bias towards the 451 * "current" operation. This means that zone creations may starve if 452 * there is a rapid succession of new mounts coming in to the system, or 453 * there is a remote possibility that zones will be created at such a 454 * rate that new mounts will not be able to proceed. 455 */ 456 /* 457 * Prevent new mounts from progressing to the point of calling 458 * VFS_MOUNT(). If there are already mounts in this "region", wait for 459 * them to complete. 460 */ 461 static int 462 block_mounts(void) 463 { 464 int retval = 0; 465 466 /* 467 * Since it may block for a long time, block_mounts() shouldn't be 468 * called with zonehash_lock held. 469 */ 470 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 471 mutex_enter(&mount_lock); 472 while (mounts_in_progress > 0) { 473 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 474 goto signaled; 475 } 476 /* 477 * A negative value of mounts_in_progress indicates that mounts 478 * have been blocked by (-mounts_in_progress) different callers. 479 */ 480 mounts_in_progress--; 481 retval = 1; 482 signaled: 483 mutex_exit(&mount_lock); 484 return (retval); 485 } 486 487 /* 488 * The VFS layer may progress with new mounts as far as we're concerned. 489 * Allow them to progress if we were the last obstacle. 490 */ 491 static void 492 resume_mounts(void) 493 { 494 mutex_enter(&mount_lock); 495 if (++mounts_in_progress == 0) 496 cv_broadcast(&mount_cv); 497 mutex_exit(&mount_lock); 498 } 499 500 /* 501 * The VFS layer is busy with a mount; zones should wait until all 502 * mounts are completed to progress. 503 */ 504 void 505 mount_in_progress(void) 506 { 507 mutex_enter(&mount_lock); 508 while (mounts_in_progress < 0) 509 cv_wait(&mount_cv, &mount_lock); 510 mounts_in_progress++; 511 mutex_exit(&mount_lock); 512 } 513 514 /* 515 * VFS is done with one mount; wake up any waiting block_mounts() 516 * callers if this is the last mount. 517 */ 518 void 519 mount_completed(void) 520 { 521 mutex_enter(&mount_lock); 522 if (--mounts_in_progress == 0) 523 cv_broadcast(&mount_cv); 524 mutex_exit(&mount_lock); 525 } 526 527 /* 528 * ZSD routines. 529 * 530 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 531 * defined by the pthread_key_create() and related interfaces. 532 * 533 * Kernel subsystems may register one or more data items and/or 534 * callbacks to be executed when a zone is created, shutdown, or 535 * destroyed. 536 * 537 * Unlike the thread counterpart, destructor callbacks will be executed 538 * even if the data pointer is NULL and/or there are no constructor 539 * callbacks, so it is the responsibility of such callbacks to check for 540 * NULL data values if necessary. 541 * 542 * The locking strategy and overall picture is as follows: 543 * 544 * When someone calls zone_key_create(), a template ZSD entry is added to the 545 * global list "zsd_registered_keys", protected by zsd_key_lock. While 546 * holding that lock all the existing zones are marked as 547 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 548 * zone_zsd list (protected by zone_lock). The global list is updated first 549 * (under zone_key_lock) to make sure that newly created zones use the 550 * most recent list of keys. Then under zonehash_lock we walk the zones 551 * and mark them. Similar locking is used in zone_key_delete(). 552 * 553 * The actual create, shutdown, and destroy callbacks are done without 554 * holding any lock. And zsd_flags are used to ensure that the operations 555 * completed so that when zone_key_create (and zone_create) is done, as well as 556 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 557 * are completed. 558 * 559 * When new zones are created constructor callbacks for all registered ZSD 560 * entries will be called. That also uses the above two phases of marking 561 * what needs to be done, and then running the callbacks without holding 562 * any locks. 563 * 564 * The framework does not provide any locking around zone_getspecific() and 565 * zone_setspecific() apart from that needed for internal consistency, so 566 * callers interested in atomic "test-and-set" semantics will need to provide 567 * their own locking. 568 */ 569 570 /* 571 * Helper function to find the zsd_entry associated with the key in the 572 * given list. 573 */ 574 static struct zsd_entry * 575 zsd_find(list_t *l, zone_key_t key) 576 { 577 struct zsd_entry *zsd; 578 579 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 580 if (zsd->zsd_key == key) { 581 return (zsd); 582 } 583 } 584 return (NULL); 585 } 586 587 /* 588 * Helper function to find the zsd_entry associated with the key in the 589 * given list. Move it to the front of the list. 590 */ 591 static struct zsd_entry * 592 zsd_find_mru(list_t *l, zone_key_t key) 593 { 594 struct zsd_entry *zsd; 595 596 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 597 if (zsd->zsd_key == key) { 598 /* 599 * Move to head of list to keep list in MRU order. 600 */ 601 if (zsd != list_head(l)) { 602 list_remove(l, zsd); 603 list_insert_head(l, zsd); 604 } 605 return (zsd); 606 } 607 } 608 return (NULL); 609 } 610 611 void 612 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 613 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 614 { 615 struct zsd_entry *zsdp; 616 struct zsd_entry *t; 617 struct zone *zone; 618 zone_key_t key; 619 620 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 621 zsdp->zsd_data = NULL; 622 zsdp->zsd_create = create; 623 zsdp->zsd_shutdown = shutdown; 624 zsdp->zsd_destroy = destroy; 625 626 /* 627 * Insert in global list of callbacks. Makes future zone creations 628 * see it. 629 */ 630 mutex_enter(&zsd_key_lock); 631 key = zsdp->zsd_key = ++zsd_keyval; 632 ASSERT(zsd_keyval != 0); 633 list_insert_tail(&zsd_registered_keys, zsdp); 634 mutex_exit(&zsd_key_lock); 635 636 /* 637 * Insert for all existing zones and mark them as needing 638 * a create callback. 639 */ 640 mutex_enter(&zonehash_lock); /* stop the world */ 641 for (zone = list_head(&zone_active); zone != NULL; 642 zone = list_next(&zone_active, zone)) { 643 zone_status_t status; 644 645 mutex_enter(&zone->zone_lock); 646 647 /* Skip zones that are on the way down or not yet up */ 648 status = zone_status_get(zone); 649 if (status >= ZONE_IS_DOWN || 650 status == ZONE_IS_UNINITIALIZED) { 651 mutex_exit(&zone->zone_lock); 652 continue; 653 } 654 655 t = zsd_find_mru(&zone->zone_zsd, key); 656 if (t != NULL) { 657 /* 658 * A zsd_configure already inserted it after 659 * we dropped zsd_key_lock above. 660 */ 661 mutex_exit(&zone->zone_lock); 662 continue; 663 } 664 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 665 t->zsd_key = key; 666 t->zsd_create = create; 667 t->zsd_shutdown = shutdown; 668 t->zsd_destroy = destroy; 669 if (create != NULL) { 670 t->zsd_flags = ZSD_CREATE_NEEDED; 671 DTRACE_PROBE2(zsd__create__needed, 672 zone_t *, zone, zone_key_t, key); 673 } 674 list_insert_tail(&zone->zone_zsd, t); 675 mutex_exit(&zone->zone_lock); 676 } 677 mutex_exit(&zonehash_lock); 678 679 if (create != NULL) { 680 /* Now call the create callback for this key */ 681 zsd_apply_all_zones(zsd_apply_create, key); 682 } 683 /* 684 * It is safe for consumers to use the key now, make it 685 * globally visible. Specifically zone_getspecific() will 686 * always successfully return the zone specific data associated 687 * with the key. 688 */ 689 *keyp = key; 690 691 } 692 693 /* 694 * Function called when a module is being unloaded, or otherwise wishes 695 * to unregister its ZSD key and callbacks. 696 * 697 * Remove from the global list and determine the functions that need to 698 * be called under a global lock. Then call the functions without 699 * holding any locks. Finally free up the zone_zsd entries. (The apply 700 * functions need to access the zone_zsd entries to find zsd_data etc.) 701 */ 702 int 703 zone_key_delete(zone_key_t key) 704 { 705 struct zsd_entry *zsdp = NULL; 706 zone_t *zone; 707 708 mutex_enter(&zsd_key_lock); 709 zsdp = zsd_find_mru(&zsd_registered_keys, key); 710 if (zsdp == NULL) { 711 mutex_exit(&zsd_key_lock); 712 return (-1); 713 } 714 list_remove(&zsd_registered_keys, zsdp); 715 mutex_exit(&zsd_key_lock); 716 717 mutex_enter(&zonehash_lock); 718 for (zone = list_head(&zone_active); zone != NULL; 719 zone = list_next(&zone_active, zone)) { 720 struct zsd_entry *del; 721 722 mutex_enter(&zone->zone_lock); 723 del = zsd_find_mru(&zone->zone_zsd, key); 724 if (del == NULL) { 725 /* 726 * Somebody else got here first e.g the zone going 727 * away. 728 */ 729 mutex_exit(&zone->zone_lock); 730 continue; 731 } 732 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 733 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 734 if (del->zsd_shutdown != NULL && 735 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 736 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 737 DTRACE_PROBE2(zsd__shutdown__needed, 738 zone_t *, zone, zone_key_t, key); 739 } 740 if (del->zsd_destroy != NULL && 741 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 742 del->zsd_flags |= ZSD_DESTROY_NEEDED; 743 DTRACE_PROBE2(zsd__destroy__needed, 744 zone_t *, zone, zone_key_t, key); 745 } 746 mutex_exit(&zone->zone_lock); 747 } 748 mutex_exit(&zonehash_lock); 749 kmem_free(zsdp, sizeof (*zsdp)); 750 751 /* Now call the shutdown and destroy callback for this key */ 752 zsd_apply_all_zones(zsd_apply_shutdown, key); 753 zsd_apply_all_zones(zsd_apply_destroy, key); 754 755 /* Now we can free up the zsdp structures in each zone */ 756 mutex_enter(&zonehash_lock); 757 for (zone = list_head(&zone_active); zone != NULL; 758 zone = list_next(&zone_active, zone)) { 759 struct zsd_entry *del; 760 761 mutex_enter(&zone->zone_lock); 762 del = zsd_find(&zone->zone_zsd, key); 763 if (del != NULL) { 764 list_remove(&zone->zone_zsd, del); 765 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 766 kmem_free(del, sizeof (*del)); 767 } 768 mutex_exit(&zone->zone_lock); 769 } 770 mutex_exit(&zonehash_lock); 771 772 return (0); 773 } 774 775 /* 776 * ZSD counterpart of pthread_setspecific(). 777 * 778 * Since all zsd callbacks, including those with no create function, 779 * have an entry in zone_zsd, if the key is registered it is part of 780 * the zone_zsd list. 781 * Return an error if the key wasn't registerd. 782 */ 783 int 784 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 785 { 786 struct zsd_entry *t; 787 788 mutex_enter(&zone->zone_lock); 789 t = zsd_find_mru(&zone->zone_zsd, key); 790 if (t != NULL) { 791 /* 792 * Replace old value with new 793 */ 794 t->zsd_data = (void *)data; 795 mutex_exit(&zone->zone_lock); 796 return (0); 797 } 798 mutex_exit(&zone->zone_lock); 799 return (-1); 800 } 801 802 /* 803 * ZSD counterpart of pthread_getspecific(). 804 */ 805 void * 806 zone_getspecific(zone_key_t key, zone_t *zone) 807 { 808 struct zsd_entry *t; 809 void *data; 810 811 mutex_enter(&zone->zone_lock); 812 t = zsd_find_mru(&zone->zone_zsd, key); 813 data = (t == NULL ? NULL : t->zsd_data); 814 mutex_exit(&zone->zone_lock); 815 return (data); 816 } 817 818 /* 819 * Function used to initialize a zone's list of ZSD callbacks and data 820 * when the zone is being created. The callbacks are initialized from 821 * the template list (zsd_registered_keys). The constructor callback is 822 * executed later (once the zone exists and with locks dropped). 823 */ 824 static void 825 zone_zsd_configure(zone_t *zone) 826 { 827 struct zsd_entry *zsdp; 828 struct zsd_entry *t; 829 830 ASSERT(MUTEX_HELD(&zonehash_lock)); 831 ASSERT(list_head(&zone->zone_zsd) == NULL); 832 mutex_enter(&zone->zone_lock); 833 mutex_enter(&zsd_key_lock); 834 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 835 zsdp = list_next(&zsd_registered_keys, zsdp)) { 836 /* 837 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 838 * should not have added anything to it. 839 */ 840 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 841 842 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 843 t->zsd_key = zsdp->zsd_key; 844 t->zsd_create = zsdp->zsd_create; 845 t->zsd_shutdown = zsdp->zsd_shutdown; 846 t->zsd_destroy = zsdp->zsd_destroy; 847 if (zsdp->zsd_create != NULL) { 848 t->zsd_flags = ZSD_CREATE_NEEDED; 849 DTRACE_PROBE2(zsd__create__needed, 850 zone_t *, zone, zone_key_t, zsdp->zsd_key); 851 } 852 list_insert_tail(&zone->zone_zsd, t); 853 } 854 mutex_exit(&zsd_key_lock); 855 mutex_exit(&zone->zone_lock); 856 } 857 858 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 859 860 /* 861 * Helper function to execute shutdown or destructor callbacks. 862 */ 863 static void 864 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 865 { 866 struct zsd_entry *t; 867 868 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 869 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 870 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 871 872 /* 873 * Run the callback solely based on what is registered for the zone 874 * in zone_zsd. The global list can change independently of this 875 * as keys are registered and unregistered and we don't register new 876 * callbacks for a zone that is in the process of going away. 877 */ 878 mutex_enter(&zone->zone_lock); 879 for (t = list_head(&zone->zone_zsd); t != NULL; 880 t = list_next(&zone->zone_zsd, t)) { 881 zone_key_t key = t->zsd_key; 882 883 /* Skip if no callbacks registered */ 884 885 if (ct == ZSD_SHUTDOWN) { 886 if (t->zsd_shutdown != NULL && 887 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 888 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 889 DTRACE_PROBE2(zsd__shutdown__needed, 890 zone_t *, zone, zone_key_t, key); 891 } 892 } else { 893 if (t->zsd_destroy != NULL && 894 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 895 t->zsd_flags |= ZSD_DESTROY_NEEDED; 896 DTRACE_PROBE2(zsd__destroy__needed, 897 zone_t *, zone, zone_key_t, key); 898 } 899 } 900 } 901 mutex_exit(&zone->zone_lock); 902 903 /* Now call the shutdown and destroy callback for this key */ 904 zsd_apply_all_keys(zsd_apply_shutdown, zone); 905 zsd_apply_all_keys(zsd_apply_destroy, zone); 906 907 } 908 909 /* 910 * Called when the zone is going away; free ZSD-related memory, and 911 * destroy the zone_zsd list. 912 */ 913 static void 914 zone_free_zsd(zone_t *zone) 915 { 916 struct zsd_entry *t, *next; 917 918 /* 919 * Free all the zsd_entry's we had on this zone. 920 */ 921 mutex_enter(&zone->zone_lock); 922 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 923 next = list_next(&zone->zone_zsd, t); 924 list_remove(&zone->zone_zsd, t); 925 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 926 kmem_free(t, sizeof (*t)); 927 } 928 list_destroy(&zone->zone_zsd); 929 mutex_exit(&zone->zone_lock); 930 931 } 932 933 /* 934 * Apply a function to all zones for particular key value. 935 * 936 * The applyfn has to drop zonehash_lock if it does some work, and 937 * then reacquire it before it returns. 938 * When the lock is dropped we don't follow list_next even 939 * if it is possible to do so without any hazards. This is 940 * because we want the design to allow for the list of zones 941 * to change in any arbitrary way during the time the 942 * lock was dropped. 943 * 944 * It is safe to restart the loop at list_head since the applyfn 945 * changes the zsd_flags as it does work, so a subsequent 946 * pass through will have no effect in applyfn, hence the loop will terminate 947 * in at worst O(N^2). 948 */ 949 static void 950 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 951 { 952 zone_t *zone; 953 954 mutex_enter(&zonehash_lock); 955 zone = list_head(&zone_active); 956 while (zone != NULL) { 957 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 958 /* Lock dropped - restart at head */ 959 zone = list_head(&zone_active); 960 } else { 961 zone = list_next(&zone_active, zone); 962 } 963 } 964 mutex_exit(&zonehash_lock); 965 } 966 967 /* 968 * Apply a function to all keys for a particular zone. 969 * 970 * The applyfn has to drop zonehash_lock if it does some work, and 971 * then reacquire it before it returns. 972 * When the lock is dropped we don't follow list_next even 973 * if it is possible to do so without any hazards. This is 974 * because we want the design to allow for the list of zsd callbacks 975 * to change in any arbitrary way during the time the 976 * lock was dropped. 977 * 978 * It is safe to restart the loop at list_head since the applyfn 979 * changes the zsd_flags as it does work, so a subsequent 980 * pass through will have no effect in applyfn, hence the loop will terminate 981 * in at worst O(N^2). 982 */ 983 static void 984 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 985 { 986 struct zsd_entry *t; 987 988 mutex_enter(&zone->zone_lock); 989 t = list_head(&zone->zone_zsd); 990 while (t != NULL) { 991 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 992 /* Lock dropped - restart at head */ 993 t = list_head(&zone->zone_zsd); 994 } else { 995 t = list_next(&zone->zone_zsd, t); 996 } 997 } 998 mutex_exit(&zone->zone_lock); 999 } 1000 1001 /* 1002 * Call the create function for the zone and key if CREATE_NEEDED 1003 * is set. 1004 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1005 * we wait for that thread to complete so that we can ensure that 1006 * all the callbacks are done when we've looped over all zones/keys. 1007 * 1008 * When we call the create function, we drop the global held by the 1009 * caller, and return true to tell the caller it needs to re-evalute the 1010 * state. 1011 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1012 * remains held on exit. 1013 */ 1014 static boolean_t 1015 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1016 zone_t *zone, zone_key_t key) 1017 { 1018 void *result; 1019 struct zsd_entry *t; 1020 boolean_t dropped; 1021 1022 if (lockp != NULL) { 1023 ASSERT(MUTEX_HELD(lockp)); 1024 } 1025 if (zone_lock_held) { 1026 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1027 } else { 1028 mutex_enter(&zone->zone_lock); 1029 } 1030 1031 t = zsd_find(&zone->zone_zsd, key); 1032 if (t == NULL) { 1033 /* 1034 * Somebody else got here first e.g the zone going 1035 * away. 1036 */ 1037 if (!zone_lock_held) 1038 mutex_exit(&zone->zone_lock); 1039 return (B_FALSE); 1040 } 1041 dropped = B_FALSE; 1042 if (zsd_wait_for_inprogress(zone, t, lockp)) 1043 dropped = B_TRUE; 1044 1045 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1046 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1047 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1048 DTRACE_PROBE2(zsd__create__inprogress, 1049 zone_t *, zone, zone_key_t, key); 1050 mutex_exit(&zone->zone_lock); 1051 if (lockp != NULL) 1052 mutex_exit(lockp); 1053 1054 dropped = B_TRUE; 1055 ASSERT(t->zsd_create != NULL); 1056 DTRACE_PROBE2(zsd__create__start, 1057 zone_t *, zone, zone_key_t, key); 1058 1059 result = (*t->zsd_create)(zone->zone_id); 1060 1061 DTRACE_PROBE2(zsd__create__end, 1062 zone_t *, zone, voidn *, result); 1063 1064 ASSERT(result != NULL); 1065 if (lockp != NULL) 1066 mutex_enter(lockp); 1067 mutex_enter(&zone->zone_lock); 1068 t->zsd_data = result; 1069 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1070 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1071 cv_broadcast(&t->zsd_cv); 1072 DTRACE_PROBE2(zsd__create__completed, 1073 zone_t *, zone, zone_key_t, key); 1074 } 1075 if (!zone_lock_held) 1076 mutex_exit(&zone->zone_lock); 1077 return (dropped); 1078 } 1079 1080 /* 1081 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1082 * is set. 1083 * If some other thread gets here first and sets *_INPROGRESS, then 1084 * we wait for that thread to complete so that we can ensure that 1085 * all the callbacks are done when we've looped over all zones/keys. 1086 * 1087 * When we call the shutdown function, we drop the global held by the 1088 * caller, and return true to tell the caller it needs to re-evalute the 1089 * state. 1090 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1091 * remains held on exit. 1092 */ 1093 static boolean_t 1094 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1095 zone_t *zone, zone_key_t key) 1096 { 1097 struct zsd_entry *t; 1098 void *data; 1099 boolean_t dropped; 1100 1101 if (lockp != NULL) { 1102 ASSERT(MUTEX_HELD(lockp)); 1103 } 1104 if (zone_lock_held) { 1105 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1106 } else { 1107 mutex_enter(&zone->zone_lock); 1108 } 1109 1110 t = zsd_find(&zone->zone_zsd, key); 1111 if (t == NULL) { 1112 /* 1113 * Somebody else got here first e.g the zone going 1114 * away. 1115 */ 1116 if (!zone_lock_held) 1117 mutex_exit(&zone->zone_lock); 1118 return (B_FALSE); 1119 } 1120 dropped = B_FALSE; 1121 if (zsd_wait_for_creator(zone, t, lockp)) 1122 dropped = B_TRUE; 1123 1124 if (zsd_wait_for_inprogress(zone, t, lockp)) 1125 dropped = B_TRUE; 1126 1127 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1128 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1129 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1130 DTRACE_PROBE2(zsd__shutdown__inprogress, 1131 zone_t *, zone, zone_key_t, key); 1132 mutex_exit(&zone->zone_lock); 1133 if (lockp != NULL) 1134 mutex_exit(lockp); 1135 dropped = B_TRUE; 1136 1137 ASSERT(t->zsd_shutdown != NULL); 1138 data = t->zsd_data; 1139 1140 DTRACE_PROBE2(zsd__shutdown__start, 1141 zone_t *, zone, zone_key_t, key); 1142 1143 (t->zsd_shutdown)(zone->zone_id, data); 1144 DTRACE_PROBE2(zsd__shutdown__end, 1145 zone_t *, zone, zone_key_t, key); 1146 1147 if (lockp != NULL) 1148 mutex_enter(lockp); 1149 mutex_enter(&zone->zone_lock); 1150 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1151 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1152 cv_broadcast(&t->zsd_cv); 1153 DTRACE_PROBE2(zsd__shutdown__completed, 1154 zone_t *, zone, zone_key_t, key); 1155 } 1156 if (!zone_lock_held) 1157 mutex_exit(&zone->zone_lock); 1158 return (dropped); 1159 } 1160 1161 /* 1162 * Call the destroy function for the zone and key if DESTROY_NEEDED 1163 * is set. 1164 * If some other thread gets here first and sets *_INPROGRESS, then 1165 * we wait for that thread to complete so that we can ensure that 1166 * all the callbacks are done when we've looped over all zones/keys. 1167 * 1168 * When we call the destroy function, we drop the global held by the 1169 * caller, and return true to tell the caller it needs to re-evalute the 1170 * state. 1171 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1172 * remains held on exit. 1173 */ 1174 static boolean_t 1175 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1176 zone_t *zone, zone_key_t key) 1177 { 1178 struct zsd_entry *t; 1179 void *data; 1180 boolean_t dropped; 1181 1182 if (lockp != NULL) { 1183 ASSERT(MUTEX_HELD(lockp)); 1184 } 1185 if (zone_lock_held) { 1186 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1187 } else { 1188 mutex_enter(&zone->zone_lock); 1189 } 1190 1191 t = zsd_find(&zone->zone_zsd, key); 1192 if (t == NULL) { 1193 /* 1194 * Somebody else got here first e.g the zone going 1195 * away. 1196 */ 1197 if (!zone_lock_held) 1198 mutex_exit(&zone->zone_lock); 1199 return (B_FALSE); 1200 } 1201 dropped = B_FALSE; 1202 if (zsd_wait_for_creator(zone, t, lockp)) 1203 dropped = B_TRUE; 1204 1205 if (zsd_wait_for_inprogress(zone, t, lockp)) 1206 dropped = B_TRUE; 1207 1208 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1209 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1210 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1211 DTRACE_PROBE2(zsd__destroy__inprogress, 1212 zone_t *, zone, zone_key_t, key); 1213 mutex_exit(&zone->zone_lock); 1214 if (lockp != NULL) 1215 mutex_exit(lockp); 1216 dropped = B_TRUE; 1217 1218 ASSERT(t->zsd_destroy != NULL); 1219 data = t->zsd_data; 1220 DTRACE_PROBE2(zsd__destroy__start, 1221 zone_t *, zone, zone_key_t, key); 1222 1223 (t->zsd_destroy)(zone->zone_id, data); 1224 DTRACE_PROBE2(zsd__destroy__end, 1225 zone_t *, zone, zone_key_t, key); 1226 1227 if (lockp != NULL) 1228 mutex_enter(lockp); 1229 mutex_enter(&zone->zone_lock); 1230 t->zsd_data = NULL; 1231 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1232 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1233 cv_broadcast(&t->zsd_cv); 1234 DTRACE_PROBE2(zsd__destroy__completed, 1235 zone_t *, zone, zone_key_t, key); 1236 } 1237 if (!zone_lock_held) 1238 mutex_exit(&zone->zone_lock); 1239 return (dropped); 1240 } 1241 1242 /* 1243 * Wait for any CREATE_NEEDED flag to be cleared. 1244 * Returns true if lockp was temporarily dropped while waiting. 1245 */ 1246 static boolean_t 1247 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1248 { 1249 boolean_t dropped = B_FALSE; 1250 1251 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1252 DTRACE_PROBE2(zsd__wait__for__creator, 1253 zone_t *, zone, struct zsd_entry *, t); 1254 if (lockp != NULL) { 1255 dropped = B_TRUE; 1256 mutex_exit(lockp); 1257 } 1258 cv_wait(&t->zsd_cv, &zone->zone_lock); 1259 if (lockp != NULL) { 1260 /* First drop zone_lock to preserve order */ 1261 mutex_exit(&zone->zone_lock); 1262 mutex_enter(lockp); 1263 mutex_enter(&zone->zone_lock); 1264 } 1265 } 1266 return (dropped); 1267 } 1268 1269 /* 1270 * Wait for any INPROGRESS flag to be cleared. 1271 * Returns true if lockp was temporarily dropped while waiting. 1272 */ 1273 static boolean_t 1274 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1275 { 1276 boolean_t dropped = B_FALSE; 1277 1278 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1279 DTRACE_PROBE2(zsd__wait__for__inprogress, 1280 zone_t *, zone, struct zsd_entry *, t); 1281 if (lockp != NULL) { 1282 dropped = B_TRUE; 1283 mutex_exit(lockp); 1284 } 1285 cv_wait(&t->zsd_cv, &zone->zone_lock); 1286 if (lockp != NULL) { 1287 /* First drop zone_lock to preserve order */ 1288 mutex_exit(&zone->zone_lock); 1289 mutex_enter(lockp); 1290 mutex_enter(&zone->zone_lock); 1291 } 1292 } 1293 return (dropped); 1294 } 1295 1296 /* 1297 * Frees memory associated with the zone dataset list. 1298 */ 1299 static void 1300 zone_free_datasets(zone_t *zone) 1301 { 1302 zone_dataset_t *t, *next; 1303 1304 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1305 next = list_next(&zone->zone_datasets, t); 1306 list_remove(&zone->zone_datasets, t); 1307 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1308 kmem_free(t, sizeof (*t)); 1309 } 1310 list_destroy(&zone->zone_datasets); 1311 } 1312 1313 /* 1314 * zone.cpu-shares resource control support. 1315 */ 1316 /*ARGSUSED*/ 1317 static rctl_qty_t 1318 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1319 { 1320 ASSERT(MUTEX_HELD(&p->p_lock)); 1321 return (p->p_zone->zone_shares); 1322 } 1323 1324 /*ARGSUSED*/ 1325 static int 1326 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1327 rctl_qty_t nv) 1328 { 1329 ASSERT(MUTEX_HELD(&p->p_lock)); 1330 ASSERT(e->rcep_t == RCENTITY_ZONE); 1331 if (e->rcep_p.zone == NULL) 1332 return (0); 1333 1334 e->rcep_p.zone->zone_shares = nv; 1335 return (0); 1336 } 1337 1338 static rctl_ops_t zone_cpu_shares_ops = { 1339 rcop_no_action, 1340 zone_cpu_shares_usage, 1341 zone_cpu_shares_set, 1342 rcop_no_test 1343 }; 1344 1345 /* 1346 * zone.cpu-cap resource control support. 1347 */ 1348 /*ARGSUSED*/ 1349 static rctl_qty_t 1350 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1351 { 1352 ASSERT(MUTEX_HELD(&p->p_lock)); 1353 return (cpucaps_zone_get(p->p_zone)); 1354 } 1355 1356 /*ARGSUSED*/ 1357 static int 1358 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1359 rctl_qty_t nv) 1360 { 1361 zone_t *zone = e->rcep_p.zone; 1362 1363 ASSERT(MUTEX_HELD(&p->p_lock)); 1364 ASSERT(e->rcep_t == RCENTITY_ZONE); 1365 1366 if (zone == NULL) 1367 return (0); 1368 1369 /* 1370 * set cap to the new value. 1371 */ 1372 return (cpucaps_zone_set(zone, nv)); 1373 } 1374 1375 static rctl_ops_t zone_cpu_cap_ops = { 1376 rcop_no_action, 1377 zone_cpu_cap_get, 1378 zone_cpu_cap_set, 1379 rcop_no_test 1380 }; 1381 1382 /*ARGSUSED*/ 1383 static rctl_qty_t 1384 zone_lwps_usage(rctl_t *r, proc_t *p) 1385 { 1386 rctl_qty_t nlwps; 1387 zone_t *zone = p->p_zone; 1388 1389 ASSERT(MUTEX_HELD(&p->p_lock)); 1390 1391 mutex_enter(&zone->zone_nlwps_lock); 1392 nlwps = zone->zone_nlwps; 1393 mutex_exit(&zone->zone_nlwps_lock); 1394 1395 return (nlwps); 1396 } 1397 1398 /*ARGSUSED*/ 1399 static int 1400 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1401 rctl_qty_t incr, uint_t flags) 1402 { 1403 rctl_qty_t nlwps; 1404 1405 ASSERT(MUTEX_HELD(&p->p_lock)); 1406 ASSERT(e->rcep_t == RCENTITY_ZONE); 1407 if (e->rcep_p.zone == NULL) 1408 return (0); 1409 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1410 nlwps = e->rcep_p.zone->zone_nlwps; 1411 1412 if (nlwps + incr > rcntl->rcv_value) 1413 return (1); 1414 1415 return (0); 1416 } 1417 1418 /*ARGSUSED*/ 1419 static int 1420 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1421 { 1422 ASSERT(MUTEX_HELD(&p->p_lock)); 1423 ASSERT(e->rcep_t == RCENTITY_ZONE); 1424 if (e->rcep_p.zone == NULL) 1425 return (0); 1426 e->rcep_p.zone->zone_nlwps_ctl = nv; 1427 return (0); 1428 } 1429 1430 static rctl_ops_t zone_lwps_ops = { 1431 rcop_no_action, 1432 zone_lwps_usage, 1433 zone_lwps_set, 1434 zone_lwps_test, 1435 }; 1436 1437 /*ARGSUSED*/ 1438 static rctl_qty_t 1439 zone_procs_usage(rctl_t *r, proc_t *p) 1440 { 1441 rctl_qty_t nprocs; 1442 zone_t *zone = p->p_zone; 1443 1444 ASSERT(MUTEX_HELD(&p->p_lock)); 1445 1446 mutex_enter(&zone->zone_nlwps_lock); 1447 nprocs = zone->zone_nprocs; 1448 mutex_exit(&zone->zone_nlwps_lock); 1449 1450 return (nprocs); 1451 } 1452 1453 /*ARGSUSED*/ 1454 static int 1455 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1456 rctl_qty_t incr, uint_t flags) 1457 { 1458 rctl_qty_t nprocs; 1459 1460 ASSERT(MUTEX_HELD(&p->p_lock)); 1461 ASSERT(e->rcep_t == RCENTITY_ZONE); 1462 if (e->rcep_p.zone == NULL) 1463 return (0); 1464 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1465 nprocs = e->rcep_p.zone->zone_nprocs; 1466 1467 if (nprocs + incr > rcntl->rcv_value) 1468 return (1); 1469 1470 return (0); 1471 } 1472 1473 /*ARGSUSED*/ 1474 static int 1475 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1476 { 1477 ASSERT(MUTEX_HELD(&p->p_lock)); 1478 ASSERT(e->rcep_t == RCENTITY_ZONE); 1479 if (e->rcep_p.zone == NULL) 1480 return (0); 1481 e->rcep_p.zone->zone_nprocs_ctl = nv; 1482 return (0); 1483 } 1484 1485 static rctl_ops_t zone_procs_ops = { 1486 rcop_no_action, 1487 zone_procs_usage, 1488 zone_procs_set, 1489 zone_procs_test, 1490 }; 1491 1492 /*ARGSUSED*/ 1493 static int 1494 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1495 rctl_qty_t incr, uint_t flags) 1496 { 1497 rctl_qty_t v; 1498 ASSERT(MUTEX_HELD(&p->p_lock)); 1499 ASSERT(e->rcep_t == RCENTITY_ZONE); 1500 v = e->rcep_p.zone->zone_shmmax + incr; 1501 if (v > rval->rcv_value) 1502 return (1); 1503 return (0); 1504 } 1505 1506 static rctl_ops_t zone_shmmax_ops = { 1507 rcop_no_action, 1508 rcop_no_usage, 1509 rcop_no_set, 1510 zone_shmmax_test 1511 }; 1512 1513 /*ARGSUSED*/ 1514 static int 1515 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1516 rctl_qty_t incr, uint_t flags) 1517 { 1518 rctl_qty_t v; 1519 ASSERT(MUTEX_HELD(&p->p_lock)); 1520 ASSERT(e->rcep_t == RCENTITY_ZONE); 1521 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1522 if (v > rval->rcv_value) 1523 return (1); 1524 return (0); 1525 } 1526 1527 static rctl_ops_t zone_shmmni_ops = { 1528 rcop_no_action, 1529 rcop_no_usage, 1530 rcop_no_set, 1531 zone_shmmni_test 1532 }; 1533 1534 /*ARGSUSED*/ 1535 static int 1536 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1537 rctl_qty_t incr, uint_t flags) 1538 { 1539 rctl_qty_t v; 1540 ASSERT(MUTEX_HELD(&p->p_lock)); 1541 ASSERT(e->rcep_t == RCENTITY_ZONE); 1542 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1543 if (v > rval->rcv_value) 1544 return (1); 1545 return (0); 1546 } 1547 1548 static rctl_ops_t zone_semmni_ops = { 1549 rcop_no_action, 1550 rcop_no_usage, 1551 rcop_no_set, 1552 zone_semmni_test 1553 }; 1554 1555 /*ARGSUSED*/ 1556 static int 1557 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1558 rctl_qty_t incr, uint_t flags) 1559 { 1560 rctl_qty_t v; 1561 ASSERT(MUTEX_HELD(&p->p_lock)); 1562 ASSERT(e->rcep_t == RCENTITY_ZONE); 1563 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1564 if (v > rval->rcv_value) 1565 return (1); 1566 return (0); 1567 } 1568 1569 static rctl_ops_t zone_msgmni_ops = { 1570 rcop_no_action, 1571 rcop_no_usage, 1572 rcop_no_set, 1573 zone_msgmni_test 1574 }; 1575 1576 /*ARGSUSED*/ 1577 static rctl_qty_t 1578 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1579 { 1580 rctl_qty_t q; 1581 ASSERT(MUTEX_HELD(&p->p_lock)); 1582 mutex_enter(&p->p_zone->zone_mem_lock); 1583 q = p->p_zone->zone_locked_mem; 1584 mutex_exit(&p->p_zone->zone_mem_lock); 1585 return (q); 1586 } 1587 1588 /*ARGSUSED*/ 1589 static int 1590 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1591 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1592 { 1593 rctl_qty_t q; 1594 zone_t *z; 1595 1596 z = e->rcep_p.zone; 1597 ASSERT(MUTEX_HELD(&p->p_lock)); 1598 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1599 q = z->zone_locked_mem; 1600 if (q + incr > rcntl->rcv_value) 1601 return (1); 1602 return (0); 1603 } 1604 1605 /*ARGSUSED*/ 1606 static int 1607 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1608 rctl_qty_t nv) 1609 { 1610 ASSERT(MUTEX_HELD(&p->p_lock)); 1611 ASSERT(e->rcep_t == RCENTITY_ZONE); 1612 if (e->rcep_p.zone == NULL) 1613 return (0); 1614 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1615 return (0); 1616 } 1617 1618 static rctl_ops_t zone_locked_mem_ops = { 1619 rcop_no_action, 1620 zone_locked_mem_usage, 1621 zone_locked_mem_set, 1622 zone_locked_mem_test 1623 }; 1624 1625 /*ARGSUSED*/ 1626 static rctl_qty_t 1627 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1628 { 1629 rctl_qty_t q; 1630 zone_t *z = p->p_zone; 1631 1632 ASSERT(MUTEX_HELD(&p->p_lock)); 1633 mutex_enter(&z->zone_mem_lock); 1634 q = z->zone_max_swap; 1635 mutex_exit(&z->zone_mem_lock); 1636 return (q); 1637 } 1638 1639 /*ARGSUSED*/ 1640 static int 1641 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1642 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1643 { 1644 rctl_qty_t q; 1645 zone_t *z; 1646 1647 z = e->rcep_p.zone; 1648 ASSERT(MUTEX_HELD(&p->p_lock)); 1649 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1650 q = z->zone_max_swap; 1651 if (q + incr > rcntl->rcv_value) 1652 return (1); 1653 return (0); 1654 } 1655 1656 /*ARGSUSED*/ 1657 static int 1658 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1659 rctl_qty_t nv) 1660 { 1661 ASSERT(MUTEX_HELD(&p->p_lock)); 1662 ASSERT(e->rcep_t == RCENTITY_ZONE); 1663 if (e->rcep_p.zone == NULL) 1664 return (0); 1665 e->rcep_p.zone->zone_max_swap_ctl = nv; 1666 return (0); 1667 } 1668 1669 static rctl_ops_t zone_max_swap_ops = { 1670 rcop_no_action, 1671 zone_max_swap_usage, 1672 zone_max_swap_set, 1673 zone_max_swap_test 1674 }; 1675 1676 /*ARGSUSED*/ 1677 static rctl_qty_t 1678 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1679 { 1680 rctl_qty_t q; 1681 zone_t *z = p->p_zone; 1682 1683 ASSERT(MUTEX_HELD(&p->p_lock)); 1684 mutex_enter(&z->zone_rctl_lock); 1685 q = z->zone_max_lofi; 1686 mutex_exit(&z->zone_rctl_lock); 1687 return (q); 1688 } 1689 1690 /*ARGSUSED*/ 1691 static int 1692 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1693 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1694 { 1695 rctl_qty_t q; 1696 zone_t *z; 1697 1698 z = e->rcep_p.zone; 1699 ASSERT(MUTEX_HELD(&p->p_lock)); 1700 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1701 q = z->zone_max_lofi; 1702 if (q + incr > rcntl->rcv_value) 1703 return (1); 1704 return (0); 1705 } 1706 1707 /*ARGSUSED*/ 1708 static int 1709 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1710 rctl_qty_t nv) 1711 { 1712 ASSERT(MUTEX_HELD(&p->p_lock)); 1713 ASSERT(e->rcep_t == RCENTITY_ZONE); 1714 if (e->rcep_p.zone == NULL) 1715 return (0); 1716 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1717 return (0); 1718 } 1719 1720 static rctl_ops_t zone_max_lofi_ops = { 1721 rcop_no_action, 1722 zone_max_lofi_usage, 1723 zone_max_lofi_set, 1724 zone_max_lofi_test 1725 }; 1726 1727 /* 1728 * Helper function to brand the zone with a unique ID. 1729 */ 1730 static void 1731 zone_uniqid(zone_t *zone) 1732 { 1733 static uint64_t uniqid = 0; 1734 1735 ASSERT(MUTEX_HELD(&zonehash_lock)); 1736 zone->zone_uniqid = uniqid++; 1737 } 1738 1739 /* 1740 * Returns a held pointer to the "kcred" for the specified zone. 1741 */ 1742 struct cred * 1743 zone_get_kcred(zoneid_t zoneid) 1744 { 1745 zone_t *zone; 1746 cred_t *cr; 1747 1748 if ((zone = zone_find_by_id(zoneid)) == NULL) 1749 return (NULL); 1750 cr = zone->zone_kcred; 1751 crhold(cr); 1752 zone_rele(zone); 1753 return (cr); 1754 } 1755 1756 static int 1757 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1758 { 1759 zone_t *zone = ksp->ks_private; 1760 zone_kstat_t *zk = ksp->ks_data; 1761 1762 if (rw == KSTAT_WRITE) 1763 return (EACCES); 1764 1765 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1766 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1767 return (0); 1768 } 1769 1770 static int 1771 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1772 { 1773 zone_t *zone = ksp->ks_private; 1774 zone_kstat_t *zk = ksp->ks_data; 1775 1776 if (rw == KSTAT_WRITE) 1777 return (EACCES); 1778 1779 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1780 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1781 return (0); 1782 } 1783 1784 static int 1785 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1786 { 1787 zone_t *zone = ksp->ks_private; 1788 zone_kstat_t *zk = ksp->ks_data; 1789 1790 if (rw == KSTAT_WRITE) 1791 return (EACCES); 1792 1793 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1794 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1795 return (0); 1796 } 1797 1798 static kstat_t * 1799 zone_kstat_create_common(zone_t *zone, char *name, 1800 int (*updatefunc) (kstat_t *, int)) 1801 { 1802 kstat_t *ksp; 1803 zone_kstat_t *zk; 1804 1805 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1806 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1807 KSTAT_FLAG_VIRTUAL); 1808 1809 if (ksp == NULL) 1810 return (NULL); 1811 1812 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1813 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1814 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1815 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1816 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1817 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1818 ksp->ks_update = updatefunc; 1819 ksp->ks_private = zone; 1820 kstat_install(ksp); 1821 return (ksp); 1822 } 1823 1824 static int 1825 zone_misc_kstat_update(kstat_t *ksp, int rw) 1826 { 1827 zone_t *zone = ksp->ks_private; 1828 zone_misc_kstat_t *zmp = ksp->ks_data; 1829 hrtime_t tmp; 1830 1831 if (rw == KSTAT_WRITE) 1832 return (EACCES); 1833 1834 tmp = zone->zone_utime; 1835 scalehrtime(&tmp); 1836 zmp->zm_utime.value.ui64 = tmp; 1837 tmp = zone->zone_stime; 1838 scalehrtime(&tmp); 1839 zmp->zm_stime.value.ui64 = tmp; 1840 tmp = zone->zone_wtime; 1841 scalehrtime(&tmp); 1842 zmp->zm_wtime.value.ui64 = tmp; 1843 1844 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1845 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1846 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1847 1848 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap; 1849 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc; 1850 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem; 1851 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc; 1852 1853 return (0); 1854 } 1855 1856 static kstat_t * 1857 zone_misc_kstat_create(zone_t *zone) 1858 { 1859 kstat_t *ksp; 1860 zone_misc_kstat_t *zmp; 1861 1862 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1863 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1864 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1865 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1866 return (NULL); 1867 1868 if (zone->zone_id != GLOBAL_ZONEID) 1869 kstat_zone_add(ksp, GLOBAL_ZONEID); 1870 1871 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1872 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1873 ksp->ks_lock = &zone->zone_misc_lock; 1874 zone->zone_misc_stats = zmp; 1875 1876 /* The kstat "name" field is not large enough for a full zonename */ 1877 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1878 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1879 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1880 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1881 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1882 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1883 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1884 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1885 KSTAT_DATA_UINT32); 1886 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32); 1887 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc", 1888 KSTAT_DATA_UINT32); 1889 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32); 1890 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32); 1891 1892 1893 ksp->ks_update = zone_misc_kstat_update; 1894 ksp->ks_private = zone; 1895 1896 kstat_install(ksp); 1897 return (ksp); 1898 } 1899 1900 static void 1901 zone_kstat_create(zone_t *zone) 1902 { 1903 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1904 "lockedmem", zone_lockedmem_kstat_update); 1905 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 1906 "swapresv", zone_swapresv_kstat_update); 1907 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 1908 "nprocs", zone_nprocs_kstat_update); 1909 1910 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 1911 zone->zone_misc_stats = kmem_zalloc( 1912 sizeof (zone_misc_kstat_t), KM_SLEEP); 1913 } 1914 } 1915 1916 static void 1917 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 1918 { 1919 void *data; 1920 1921 if (*pkstat != NULL) { 1922 data = (*pkstat)->ks_data; 1923 kstat_delete(*pkstat); 1924 kmem_free(data, datasz); 1925 *pkstat = NULL; 1926 } 1927 } 1928 1929 static void 1930 zone_kstat_delete(zone_t *zone) 1931 { 1932 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 1933 sizeof (zone_kstat_t)); 1934 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 1935 sizeof (zone_kstat_t)); 1936 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 1937 sizeof (zone_kstat_t)); 1938 zone_kstat_delete_common(&zone->zone_misc_ksp, 1939 sizeof (zone_misc_kstat_t)); 1940 } 1941 1942 /* 1943 * Called very early on in boot to initialize the ZSD list so that 1944 * zone_key_create() can be called before zone_init(). It also initializes 1945 * portions of zone0 which may be used before zone_init() is called. The 1946 * variable "global_zone" will be set when zone0 is fully initialized by 1947 * zone_init(). 1948 */ 1949 void 1950 zone_zsd_init(void) 1951 { 1952 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1953 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1954 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1955 offsetof(struct zsd_entry, zsd_linkage)); 1956 list_create(&zone_active, sizeof (zone_t), 1957 offsetof(zone_t, zone_linkage)); 1958 list_create(&zone_deathrow, sizeof (zone_t), 1959 offsetof(zone_t, zone_linkage)); 1960 1961 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1962 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1963 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1964 zone0.zone_shares = 1; 1965 zone0.zone_nlwps = 0; 1966 zone0.zone_nlwps_ctl = INT_MAX; 1967 zone0.zone_nprocs = 0; 1968 zone0.zone_nprocs_ctl = INT_MAX; 1969 zone0.zone_locked_mem = 0; 1970 zone0.zone_locked_mem_ctl = UINT64_MAX; 1971 ASSERT(zone0.zone_max_swap == 0); 1972 zone0.zone_max_swap_ctl = UINT64_MAX; 1973 zone0.zone_max_lofi = 0; 1974 zone0.zone_max_lofi_ctl = UINT64_MAX; 1975 zone0.zone_shmmax = 0; 1976 zone0.zone_ipc.ipcq_shmmni = 0; 1977 zone0.zone_ipc.ipcq_semmni = 0; 1978 zone0.zone_ipc.ipcq_msgmni = 0; 1979 zone0.zone_name = GLOBAL_ZONENAME; 1980 zone0.zone_nodename = utsname.nodename; 1981 zone0.zone_domain = srpc_domain; 1982 zone0.zone_hostid = HW_INVALID_HOSTID; 1983 zone0.zone_fs_allowed = NULL; 1984 zone0.zone_ref = 1; 1985 zone0.zone_id = GLOBAL_ZONEID; 1986 zone0.zone_status = ZONE_IS_RUNNING; 1987 zone0.zone_rootpath = "/"; 1988 zone0.zone_rootpathlen = 2; 1989 zone0.zone_psetid = ZONE_PS_INVAL; 1990 zone0.zone_ncpus = 0; 1991 zone0.zone_ncpus_online = 0; 1992 zone0.zone_proc_initpid = 1; 1993 zone0.zone_initname = initname; 1994 zone0.zone_lockedmem_kstat = NULL; 1995 zone0.zone_swapresv_kstat = NULL; 1996 zone0.zone_nprocs_kstat = NULL; 1997 1998 zone0.zone_stime = 0; 1999 zone0.zone_utime = 0; 2000 zone0.zone_wtime = 0; 2001 2002 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 2003 offsetof(zone_ref_t, zref_linkage)); 2004 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 2005 offsetof(struct zsd_entry, zsd_linkage)); 2006 list_insert_head(&zone_active, &zone0); 2007 2008 /* 2009 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 2010 * to anything meaningful. It is assigned to be 'rootdir' in 2011 * vfs_mountroot(). 2012 */ 2013 zone0.zone_rootvp = NULL; 2014 zone0.zone_vfslist = NULL; 2015 zone0.zone_bootargs = initargs; 2016 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2017 /* 2018 * The global zone has all privileges 2019 */ 2020 priv_fillset(zone0.zone_privset); 2021 /* 2022 * Add p0 to the global zone 2023 */ 2024 zone0.zone_zsched = &p0; 2025 p0.p_zone = &zone0; 2026 } 2027 2028 /* 2029 * Compute a hash value based on the contents of the label and the DOI. The 2030 * hash algorithm is somewhat arbitrary, but is based on the observation that 2031 * humans will likely pick labels that differ by amounts that work out to be 2032 * multiples of the number of hash chains, and thus stirring in some primes 2033 * should help. 2034 */ 2035 static uint_t 2036 hash_bylabel(void *hdata, mod_hash_key_t key) 2037 { 2038 const ts_label_t *lab = (ts_label_t *)key; 2039 const uint32_t *up, *ue; 2040 uint_t hash; 2041 int i; 2042 2043 _NOTE(ARGUNUSED(hdata)); 2044 2045 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2046 /* we depend on alignment of label, but not representation */ 2047 up = (const uint32_t *)&lab->tsl_label; 2048 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2049 i = 1; 2050 while (up < ue) { 2051 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2052 hash += *up + (*up << ((i % 16) + 1)); 2053 up++; 2054 i++; 2055 } 2056 return (hash); 2057 } 2058 2059 /* 2060 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2061 * equal). This may need to be changed if less than / greater than is ever 2062 * needed. 2063 */ 2064 static int 2065 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2066 { 2067 ts_label_t *lab1 = (ts_label_t *)key1; 2068 ts_label_t *lab2 = (ts_label_t *)key2; 2069 2070 return (label_equal(lab1, lab2) ? 0 : 1); 2071 } 2072 2073 /* 2074 * Called by main() to initialize the zones framework. 2075 */ 2076 void 2077 zone_init(void) 2078 { 2079 rctl_dict_entry_t *rde; 2080 rctl_val_t *dval; 2081 rctl_set_t *set; 2082 rctl_alloc_gp_t *gp; 2083 rctl_entity_p_t e; 2084 int res; 2085 2086 ASSERT(curproc == &p0); 2087 2088 /* 2089 * Create ID space for zone IDs. ID 0 is reserved for the 2090 * global zone. 2091 */ 2092 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2093 2094 /* 2095 * Initialize generic zone resource controls, if any. 2096 */ 2097 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2098 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2099 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2100 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2101 2102 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2103 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2104 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2105 RCTL_GLOBAL_INFINITE, 2106 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2107 2108 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2109 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2110 INT_MAX, INT_MAX, &zone_lwps_ops); 2111 2112 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2113 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2114 INT_MAX, INT_MAX, &zone_procs_ops); 2115 2116 /* 2117 * System V IPC resource controls 2118 */ 2119 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2120 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2121 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2122 2123 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2124 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2125 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2126 2127 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2128 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2129 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2130 2131 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2132 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2133 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2134 2135 /* 2136 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2137 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2138 */ 2139 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2140 bzero(dval, sizeof (rctl_val_t)); 2141 dval->rcv_value = 1; 2142 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2143 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2144 dval->rcv_action_recip_pid = -1; 2145 2146 rde = rctl_dict_lookup("zone.cpu-shares"); 2147 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2148 2149 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2150 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2151 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2152 &zone_locked_mem_ops); 2153 2154 rc_zone_max_swap = rctl_register("zone.max-swap", 2155 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2156 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2157 &zone_max_swap_ops); 2158 2159 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2160 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2161 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2162 &zone_max_lofi_ops); 2163 2164 /* 2165 * Initialize the ``global zone''. 2166 */ 2167 set = rctl_set_create(); 2168 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2169 mutex_enter(&p0.p_lock); 2170 e.rcep_p.zone = &zone0; 2171 e.rcep_t = RCENTITY_ZONE; 2172 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2173 gp); 2174 2175 zone0.zone_nlwps = p0.p_lwpcnt; 2176 zone0.zone_nprocs = 1; 2177 zone0.zone_ntasks = 1; 2178 mutex_exit(&p0.p_lock); 2179 zone0.zone_restart_init = B_TRUE; 2180 zone0.zone_brand = &native_brand; 2181 rctl_prealloc_destroy(gp); 2182 /* 2183 * pool_default hasn't been initialized yet, so we let pool_init() 2184 * take care of making sure the global zone is in the default pool. 2185 */ 2186 2187 /* 2188 * Initialize global zone kstats 2189 */ 2190 zone_kstat_create(&zone0); 2191 2192 /* 2193 * Initialize zone label. 2194 * mlp are initialized when tnzonecfg is loaded. 2195 */ 2196 zone0.zone_slabel = l_admin_low; 2197 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2198 label_hold(l_admin_low); 2199 2200 /* 2201 * Initialise the lock for the database structure used by mntfs. 2202 */ 2203 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2204 2205 mutex_enter(&zonehash_lock); 2206 zone_uniqid(&zone0); 2207 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2208 2209 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2210 mod_hash_null_valdtor); 2211 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2212 zone_hash_size, mod_hash_null_valdtor); 2213 /* 2214 * maintain zonehashbylabel only for labeled systems 2215 */ 2216 if (is_system_labeled()) 2217 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2218 zone_hash_size, mod_hash_null_keydtor, 2219 mod_hash_null_valdtor, hash_bylabel, NULL, 2220 hash_labelkey_cmp, KM_SLEEP); 2221 zonecount = 1; 2222 2223 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2224 (mod_hash_val_t)&zone0); 2225 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2226 (mod_hash_val_t)&zone0); 2227 if (is_system_labeled()) { 2228 zone0.zone_flags |= ZF_HASHED_LABEL; 2229 (void) mod_hash_insert(zonehashbylabel, 2230 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2231 } 2232 mutex_exit(&zonehash_lock); 2233 2234 /* 2235 * We avoid setting zone_kcred until now, since kcred is initialized 2236 * sometime after zone_zsd_init() and before zone_init(). 2237 */ 2238 zone0.zone_kcred = kcred; 2239 /* 2240 * The global zone is fully initialized (except for zone_rootvp which 2241 * will be set when the root filesystem is mounted). 2242 */ 2243 global_zone = &zone0; 2244 2245 /* 2246 * Setup an event channel to send zone status change notifications on 2247 */ 2248 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2249 EVCH_CREAT); 2250 2251 if (res) 2252 panic("Sysevent_evc_bind failed during zone setup.\n"); 2253 2254 } 2255 2256 static void 2257 zone_free(zone_t *zone) 2258 { 2259 ASSERT(zone != global_zone); 2260 ASSERT(zone->zone_ntasks == 0); 2261 ASSERT(zone->zone_nlwps == 0); 2262 ASSERT(zone->zone_nprocs == 0); 2263 ASSERT(zone->zone_cred_ref == 0); 2264 ASSERT(zone->zone_kcred == NULL); 2265 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2266 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2267 ASSERT(list_is_empty(&zone->zone_ref_list)); 2268 2269 /* 2270 * Remove any zone caps. 2271 */ 2272 cpucaps_zone_remove(zone); 2273 2274 ASSERT(zone->zone_cpucap == NULL); 2275 2276 /* remove from deathrow list */ 2277 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2278 ASSERT(zone->zone_ref == 0); 2279 mutex_enter(&zone_deathrow_lock); 2280 list_remove(&zone_deathrow, zone); 2281 mutex_exit(&zone_deathrow_lock); 2282 } 2283 2284 list_destroy(&zone->zone_ref_list); 2285 zone_free_zsd(zone); 2286 zone_free_datasets(zone); 2287 list_destroy(&zone->zone_dl_list); 2288 2289 if (zone->zone_rootvp != NULL) 2290 VN_RELE(zone->zone_rootvp); 2291 if (zone->zone_rootpath) 2292 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2293 if (zone->zone_name != NULL) 2294 kmem_free(zone->zone_name, ZONENAME_MAX); 2295 if (zone->zone_slabel != NULL) 2296 label_rele(zone->zone_slabel); 2297 if (zone->zone_nodename != NULL) 2298 kmem_free(zone->zone_nodename, _SYS_NMLN); 2299 if (zone->zone_domain != NULL) 2300 kmem_free(zone->zone_domain, _SYS_NMLN); 2301 if (zone->zone_privset != NULL) 2302 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2303 if (zone->zone_rctls != NULL) 2304 rctl_set_free(zone->zone_rctls); 2305 if (zone->zone_bootargs != NULL) 2306 strfree(zone->zone_bootargs); 2307 if (zone->zone_initname != NULL) 2308 strfree(zone->zone_initname); 2309 if (zone->zone_fs_allowed != NULL) 2310 strfree(zone->zone_fs_allowed); 2311 if (zone->zone_pfexecd != NULL) 2312 klpd_freelist(&zone->zone_pfexecd); 2313 id_free(zoneid_space, zone->zone_id); 2314 mutex_destroy(&zone->zone_lock); 2315 cv_destroy(&zone->zone_cv); 2316 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2317 rw_destroy(&zone->zone_mntfs_db_lock); 2318 kmem_free(zone, sizeof (zone_t)); 2319 } 2320 2321 /* 2322 * See block comment at the top of this file for information about zone 2323 * status values. 2324 */ 2325 /* 2326 * Convenience function for setting zone status. 2327 */ 2328 static void 2329 zone_status_set(zone_t *zone, zone_status_t status) 2330 { 2331 2332 nvlist_t *nvl = NULL; 2333 ASSERT(MUTEX_HELD(&zone_status_lock)); 2334 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2335 status >= zone_status_get(zone)); 2336 2337 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2338 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2339 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2340 zone_status_table[status]) || 2341 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2342 zone_status_table[zone->zone_status]) || 2343 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2344 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2345 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2346 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2347 #ifdef DEBUG 2348 (void) printf( 2349 "Failed to allocate and send zone state change event.\n"); 2350 #endif 2351 } 2352 nvlist_free(nvl); 2353 2354 zone->zone_status = status; 2355 2356 cv_broadcast(&zone->zone_cv); 2357 } 2358 2359 /* 2360 * Public function to retrieve the zone status. The zone status may 2361 * change after it is retrieved. 2362 */ 2363 zone_status_t 2364 zone_status_get(zone_t *zone) 2365 { 2366 return (zone->zone_status); 2367 } 2368 2369 static int 2370 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2371 { 2372 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2373 int err = 0; 2374 2375 ASSERT(zone != global_zone); 2376 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2377 goto done; /* EFAULT or ENAMETOOLONG */ 2378 2379 if (zone->zone_bootargs != NULL) 2380 strfree(zone->zone_bootargs); 2381 2382 zone->zone_bootargs = strdup(buf); 2383 2384 done: 2385 kmem_free(buf, BOOTARGS_MAX); 2386 return (err); 2387 } 2388 2389 static int 2390 zone_set_brand(zone_t *zone, const char *brand) 2391 { 2392 struct brand_attr *attrp; 2393 brand_t *bp; 2394 2395 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2396 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2397 kmem_free(attrp, sizeof (struct brand_attr)); 2398 return (EFAULT); 2399 } 2400 2401 bp = brand_register_zone(attrp); 2402 kmem_free(attrp, sizeof (struct brand_attr)); 2403 if (bp == NULL) 2404 return (EINVAL); 2405 2406 /* 2407 * This is the only place where a zone can change it's brand. 2408 * We already need to hold zone_status_lock to check the zone 2409 * status, so we'll just use that lock to serialize zone 2410 * branding requests as well. 2411 */ 2412 mutex_enter(&zone_status_lock); 2413 2414 /* Re-Branding is not allowed and the zone can't be booted yet */ 2415 if ((ZONE_IS_BRANDED(zone)) || 2416 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2417 mutex_exit(&zone_status_lock); 2418 brand_unregister_zone(bp); 2419 return (EINVAL); 2420 } 2421 2422 /* set up the brand specific data */ 2423 zone->zone_brand = bp; 2424 ZBROP(zone)->b_init_brand_data(zone); 2425 2426 mutex_exit(&zone_status_lock); 2427 return (0); 2428 } 2429 2430 static int 2431 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2432 { 2433 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2434 int err = 0; 2435 2436 ASSERT(zone != global_zone); 2437 if ((err = copyinstr(zone_fs_allowed, buf, 2438 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2439 goto done; 2440 2441 if (zone->zone_fs_allowed != NULL) 2442 strfree(zone->zone_fs_allowed); 2443 2444 zone->zone_fs_allowed = strdup(buf); 2445 2446 done: 2447 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2448 return (err); 2449 } 2450 2451 static int 2452 zone_set_initname(zone_t *zone, const char *zone_initname) 2453 { 2454 char initname[INITNAME_SZ]; 2455 size_t len; 2456 int err = 0; 2457 2458 ASSERT(zone != global_zone); 2459 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2460 return (err); /* EFAULT or ENAMETOOLONG */ 2461 2462 if (zone->zone_initname != NULL) 2463 strfree(zone->zone_initname); 2464 2465 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2466 (void) strcpy(zone->zone_initname, initname); 2467 return (0); 2468 } 2469 2470 static int 2471 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2472 { 2473 uint64_t mcap; 2474 int err = 0; 2475 2476 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2477 zone->zone_phys_mcap = mcap; 2478 2479 return (err); 2480 } 2481 2482 static int 2483 zone_set_sched_class(zone_t *zone, const char *new_class) 2484 { 2485 char sched_class[PC_CLNMSZ]; 2486 id_t classid; 2487 int err; 2488 2489 ASSERT(zone != global_zone); 2490 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2491 return (err); /* EFAULT or ENAMETOOLONG */ 2492 2493 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2494 return (set_errno(EINVAL)); 2495 zone->zone_defaultcid = classid; 2496 ASSERT(zone->zone_defaultcid > 0 && 2497 zone->zone_defaultcid < loaded_classes); 2498 2499 return (0); 2500 } 2501 2502 /* 2503 * Block indefinitely waiting for (zone_status >= status) 2504 */ 2505 void 2506 zone_status_wait(zone_t *zone, zone_status_t status) 2507 { 2508 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2509 2510 mutex_enter(&zone_status_lock); 2511 while (zone->zone_status < status) { 2512 cv_wait(&zone->zone_cv, &zone_status_lock); 2513 } 2514 mutex_exit(&zone_status_lock); 2515 } 2516 2517 /* 2518 * Private CPR-safe version of zone_status_wait(). 2519 */ 2520 static void 2521 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2522 { 2523 callb_cpr_t cprinfo; 2524 2525 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2526 2527 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2528 str); 2529 mutex_enter(&zone_status_lock); 2530 while (zone->zone_status < status) { 2531 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2532 cv_wait(&zone->zone_cv, &zone_status_lock); 2533 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2534 } 2535 /* 2536 * zone_status_lock is implicitly released by the following. 2537 */ 2538 CALLB_CPR_EXIT(&cprinfo); 2539 } 2540 2541 /* 2542 * Block until zone enters requested state or signal is received. Return (0) 2543 * if signaled, non-zero otherwise. 2544 */ 2545 int 2546 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2547 { 2548 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2549 2550 mutex_enter(&zone_status_lock); 2551 while (zone->zone_status < status) { 2552 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2553 mutex_exit(&zone_status_lock); 2554 return (0); 2555 } 2556 } 2557 mutex_exit(&zone_status_lock); 2558 return (1); 2559 } 2560 2561 /* 2562 * Block until the zone enters the requested state or the timeout expires, 2563 * whichever happens first. Return (-1) if operation timed out, time remaining 2564 * otherwise. 2565 */ 2566 clock_t 2567 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2568 { 2569 clock_t timeleft = 0; 2570 2571 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2572 2573 mutex_enter(&zone_status_lock); 2574 while (zone->zone_status < status && timeleft != -1) { 2575 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2576 } 2577 mutex_exit(&zone_status_lock); 2578 return (timeleft); 2579 } 2580 2581 /* 2582 * Block until the zone enters the requested state, the current process is 2583 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2584 * operation timed out, 0 if signaled, time remaining otherwise. 2585 */ 2586 clock_t 2587 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2588 { 2589 clock_t timeleft = tim - ddi_get_lbolt(); 2590 2591 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2592 2593 mutex_enter(&zone_status_lock); 2594 while (zone->zone_status < status) { 2595 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2596 tim); 2597 if (timeleft <= 0) 2598 break; 2599 } 2600 mutex_exit(&zone_status_lock); 2601 return (timeleft); 2602 } 2603 2604 /* 2605 * Zones have two reference counts: one for references from credential 2606 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2607 * This is so we can allow a zone to be rebooted while there are still 2608 * outstanding cred references, since certain drivers cache dblks (which 2609 * implicitly results in cached creds). We wait for zone_ref to drop to 2610 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2611 * later freed when the zone_cred_ref drops to 0, though nothing other 2612 * than the zone id and privilege set should be accessed once the zone 2613 * is "dead". 2614 * 2615 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2616 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2617 * to 0. This can be useful to flush out other sources of cached creds 2618 * that may be less innocuous than the driver case. 2619 * 2620 * Zones also provide a tracked reference counting mechanism in which zone 2621 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2622 * debuggers determine the sources of leaked zone references. See 2623 * zone_hold_ref() and zone_rele_ref() below for more information. 2624 */ 2625 2626 int zone_wait_for_cred = 0; 2627 2628 static void 2629 zone_hold_locked(zone_t *z) 2630 { 2631 ASSERT(MUTEX_HELD(&z->zone_lock)); 2632 z->zone_ref++; 2633 ASSERT(z->zone_ref != 0); 2634 } 2635 2636 /* 2637 * Increment the specified zone's reference count. The zone's zone_t structure 2638 * will not be freed as long as the zone's reference count is nonzero. 2639 * Decrement the zone's reference count via zone_rele(). 2640 * 2641 * NOTE: This function should only be used to hold zones for short periods of 2642 * time. Use zone_hold_ref() if the zone must be held for a long time. 2643 */ 2644 void 2645 zone_hold(zone_t *z) 2646 { 2647 mutex_enter(&z->zone_lock); 2648 zone_hold_locked(z); 2649 mutex_exit(&z->zone_lock); 2650 } 2651 2652 /* 2653 * If the non-cred ref count drops to 1 and either the cred ref count 2654 * is 0 or we aren't waiting for cred references, the zone is ready to 2655 * be destroyed. 2656 */ 2657 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2658 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2659 2660 /* 2661 * Common zone reference release function invoked by zone_rele() and 2662 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2663 * zone's subsystem-specific reference counters are not affected by the 2664 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2665 * removed from the specified zone's reference list. ref must be non-NULL iff 2666 * subsys is not ZONE_REF_NUM_SUBSYS. 2667 */ 2668 static void 2669 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2670 { 2671 boolean_t wakeup; 2672 2673 mutex_enter(&z->zone_lock); 2674 ASSERT(z->zone_ref != 0); 2675 z->zone_ref--; 2676 if (subsys != ZONE_REF_NUM_SUBSYS) { 2677 ASSERT(z->zone_subsys_ref[subsys] != 0); 2678 z->zone_subsys_ref[subsys]--; 2679 list_remove(&z->zone_ref_list, ref); 2680 } 2681 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2682 /* no more refs, free the structure */ 2683 mutex_exit(&z->zone_lock); 2684 zone_free(z); 2685 return; 2686 } 2687 /* signal zone_destroy so the zone can finish halting */ 2688 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2689 mutex_exit(&z->zone_lock); 2690 2691 if (wakeup) { 2692 /* 2693 * Grabbing zonehash_lock here effectively synchronizes with 2694 * zone_destroy() to avoid missed signals. 2695 */ 2696 mutex_enter(&zonehash_lock); 2697 cv_broadcast(&zone_destroy_cv); 2698 mutex_exit(&zonehash_lock); 2699 } 2700 } 2701 2702 /* 2703 * Decrement the specified zone's reference count. The specified zone will 2704 * cease to exist after this function returns if the reference count drops to 2705 * zero. This function should be paired with zone_hold(). 2706 */ 2707 void 2708 zone_rele(zone_t *z) 2709 { 2710 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2711 } 2712 2713 /* 2714 * Initialize a zone reference structure. This function must be invoked for 2715 * a reference structure before the structure is passed to zone_hold_ref(). 2716 */ 2717 void 2718 zone_init_ref(zone_ref_t *ref) 2719 { 2720 ref->zref_zone = NULL; 2721 list_link_init(&ref->zref_linkage); 2722 } 2723 2724 /* 2725 * Acquire a reference to zone z. The caller must specify the 2726 * zone_ref_subsys_t constant associated with its subsystem. The specified 2727 * zone_ref_t structure will represent a reference to the specified zone. Use 2728 * zone_rele_ref() to release the reference. 2729 * 2730 * The referenced zone_t structure will not be freed as long as the zone_t's 2731 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2732 * references. 2733 * 2734 * NOTE: The zone_ref_t structure must be initialized before it is used. 2735 * See zone_init_ref() above. 2736 */ 2737 void 2738 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2739 { 2740 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2741 2742 /* 2743 * Prevent consumers from reusing a reference structure before 2744 * releasing it. 2745 */ 2746 VERIFY(ref->zref_zone == NULL); 2747 2748 ref->zref_zone = z; 2749 mutex_enter(&z->zone_lock); 2750 zone_hold_locked(z); 2751 z->zone_subsys_ref[subsys]++; 2752 ASSERT(z->zone_subsys_ref[subsys] != 0); 2753 list_insert_head(&z->zone_ref_list, ref); 2754 mutex_exit(&z->zone_lock); 2755 } 2756 2757 /* 2758 * Release the zone reference represented by the specified zone_ref_t. 2759 * The reference is invalid after it's released; however, the zone_ref_t 2760 * structure can be reused without having to invoke zone_init_ref(). 2761 * subsys should be the same value that was passed to zone_hold_ref() 2762 * when the reference was acquired. 2763 */ 2764 void 2765 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2766 { 2767 zone_rele_common(ref->zref_zone, ref, subsys); 2768 2769 /* 2770 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2771 * when consumers dereference the reference. This helps us catch 2772 * consumers who use released references. Furthermore, this lets 2773 * consumers reuse the zone_ref_t structure without having to 2774 * invoke zone_init_ref(). 2775 */ 2776 ref->zref_zone = NULL; 2777 } 2778 2779 void 2780 zone_cred_hold(zone_t *z) 2781 { 2782 mutex_enter(&z->zone_lock); 2783 z->zone_cred_ref++; 2784 ASSERT(z->zone_cred_ref != 0); 2785 mutex_exit(&z->zone_lock); 2786 } 2787 2788 void 2789 zone_cred_rele(zone_t *z) 2790 { 2791 boolean_t wakeup; 2792 2793 mutex_enter(&z->zone_lock); 2794 ASSERT(z->zone_cred_ref != 0); 2795 z->zone_cred_ref--; 2796 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2797 /* no more refs, free the structure */ 2798 mutex_exit(&z->zone_lock); 2799 zone_free(z); 2800 return; 2801 } 2802 /* 2803 * If zone_destroy is waiting for the cred references to drain 2804 * out, and they have, signal it. 2805 */ 2806 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2807 zone_status_get(z) >= ZONE_IS_DEAD); 2808 mutex_exit(&z->zone_lock); 2809 2810 if (wakeup) { 2811 /* 2812 * Grabbing zonehash_lock here effectively synchronizes with 2813 * zone_destroy() to avoid missed signals. 2814 */ 2815 mutex_enter(&zonehash_lock); 2816 cv_broadcast(&zone_destroy_cv); 2817 mutex_exit(&zonehash_lock); 2818 } 2819 } 2820 2821 void 2822 zone_task_hold(zone_t *z) 2823 { 2824 mutex_enter(&z->zone_lock); 2825 z->zone_ntasks++; 2826 ASSERT(z->zone_ntasks != 0); 2827 mutex_exit(&z->zone_lock); 2828 } 2829 2830 void 2831 zone_task_rele(zone_t *zone) 2832 { 2833 uint_t refcnt; 2834 2835 mutex_enter(&zone->zone_lock); 2836 ASSERT(zone->zone_ntasks != 0); 2837 refcnt = --zone->zone_ntasks; 2838 if (refcnt > 1) { /* Common case */ 2839 mutex_exit(&zone->zone_lock); 2840 return; 2841 } 2842 zone_hold_locked(zone); /* so we can use the zone_t later */ 2843 mutex_exit(&zone->zone_lock); 2844 if (refcnt == 1) { 2845 /* 2846 * See if the zone is shutting down. 2847 */ 2848 mutex_enter(&zone_status_lock); 2849 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2850 goto out; 2851 } 2852 2853 /* 2854 * Make sure the ntasks didn't change since we 2855 * dropped zone_lock. 2856 */ 2857 mutex_enter(&zone->zone_lock); 2858 if (refcnt != zone->zone_ntasks) { 2859 mutex_exit(&zone->zone_lock); 2860 goto out; 2861 } 2862 mutex_exit(&zone->zone_lock); 2863 2864 /* 2865 * No more user processes in the zone. The zone is empty. 2866 */ 2867 zone_status_set(zone, ZONE_IS_EMPTY); 2868 goto out; 2869 } 2870 2871 ASSERT(refcnt == 0); 2872 /* 2873 * zsched has exited; the zone is dead. 2874 */ 2875 zone->zone_zsched = NULL; /* paranoia */ 2876 mutex_enter(&zone_status_lock); 2877 zone_status_set(zone, ZONE_IS_DEAD); 2878 out: 2879 mutex_exit(&zone_status_lock); 2880 zone_rele(zone); 2881 } 2882 2883 zoneid_t 2884 getzoneid(void) 2885 { 2886 return (curproc->p_zone->zone_id); 2887 } 2888 2889 /* 2890 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2891 * check the validity of a zone's state. 2892 */ 2893 static zone_t * 2894 zone_find_all_by_id(zoneid_t zoneid) 2895 { 2896 mod_hash_val_t hv; 2897 zone_t *zone = NULL; 2898 2899 ASSERT(MUTEX_HELD(&zonehash_lock)); 2900 2901 if (mod_hash_find(zonehashbyid, 2902 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2903 zone = (zone_t *)hv; 2904 return (zone); 2905 } 2906 2907 static zone_t * 2908 zone_find_all_by_label(const ts_label_t *label) 2909 { 2910 mod_hash_val_t hv; 2911 zone_t *zone = NULL; 2912 2913 ASSERT(MUTEX_HELD(&zonehash_lock)); 2914 2915 /* 2916 * zonehashbylabel is not maintained for unlabeled systems 2917 */ 2918 if (!is_system_labeled()) 2919 return (NULL); 2920 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2921 zone = (zone_t *)hv; 2922 return (zone); 2923 } 2924 2925 static zone_t * 2926 zone_find_all_by_name(char *name) 2927 { 2928 mod_hash_val_t hv; 2929 zone_t *zone = NULL; 2930 2931 ASSERT(MUTEX_HELD(&zonehash_lock)); 2932 2933 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2934 zone = (zone_t *)hv; 2935 return (zone); 2936 } 2937 2938 /* 2939 * Public interface for looking up a zone by zoneid. Only returns the zone if 2940 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2941 * Caller must call zone_rele() once it is done with the zone. 2942 * 2943 * The zone may begin the zone_destroy() sequence immediately after this 2944 * function returns, but may be safely used until zone_rele() is called. 2945 */ 2946 zone_t * 2947 zone_find_by_id(zoneid_t zoneid) 2948 { 2949 zone_t *zone; 2950 zone_status_t status; 2951 2952 mutex_enter(&zonehash_lock); 2953 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2954 mutex_exit(&zonehash_lock); 2955 return (NULL); 2956 } 2957 status = zone_status_get(zone); 2958 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2959 /* 2960 * For all practical purposes the zone doesn't exist. 2961 */ 2962 mutex_exit(&zonehash_lock); 2963 return (NULL); 2964 } 2965 zone_hold(zone); 2966 mutex_exit(&zonehash_lock); 2967 return (zone); 2968 } 2969 2970 /* 2971 * Similar to zone_find_by_id, but using zone label as the key. 2972 */ 2973 zone_t * 2974 zone_find_by_label(const ts_label_t *label) 2975 { 2976 zone_t *zone; 2977 zone_status_t status; 2978 2979 mutex_enter(&zonehash_lock); 2980 if ((zone = zone_find_all_by_label(label)) == NULL) { 2981 mutex_exit(&zonehash_lock); 2982 return (NULL); 2983 } 2984 2985 status = zone_status_get(zone); 2986 if (status > ZONE_IS_DOWN) { 2987 /* 2988 * For all practical purposes the zone doesn't exist. 2989 */ 2990 mutex_exit(&zonehash_lock); 2991 return (NULL); 2992 } 2993 zone_hold(zone); 2994 mutex_exit(&zonehash_lock); 2995 return (zone); 2996 } 2997 2998 /* 2999 * Similar to zone_find_by_id, but using zone name as the key. 3000 */ 3001 zone_t * 3002 zone_find_by_name(char *name) 3003 { 3004 zone_t *zone; 3005 zone_status_t status; 3006 3007 mutex_enter(&zonehash_lock); 3008 if ((zone = zone_find_all_by_name(name)) == NULL) { 3009 mutex_exit(&zonehash_lock); 3010 return (NULL); 3011 } 3012 status = zone_status_get(zone); 3013 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3014 /* 3015 * For all practical purposes the zone doesn't exist. 3016 */ 3017 mutex_exit(&zonehash_lock); 3018 return (NULL); 3019 } 3020 zone_hold(zone); 3021 mutex_exit(&zonehash_lock); 3022 return (zone); 3023 } 3024 3025 /* 3026 * Similar to zone_find_by_id(), using the path as a key. For instance, 3027 * if there is a zone "foo" rooted at /foo/root, and the path argument 3028 * is "/foo/root/proc", it will return the held zone_t corresponding to 3029 * zone "foo". 3030 * 3031 * zone_find_by_path() always returns a non-NULL value, since at the 3032 * very least every path will be contained in the global zone. 3033 * 3034 * As with the other zone_find_by_*() functions, the caller is 3035 * responsible for zone_rele()ing the return value of this function. 3036 */ 3037 zone_t * 3038 zone_find_by_path(const char *path) 3039 { 3040 zone_t *zone; 3041 zone_t *zret = NULL; 3042 zone_status_t status; 3043 3044 if (path == NULL) { 3045 /* 3046 * Call from rootconf(). 3047 */ 3048 zone_hold(global_zone); 3049 return (global_zone); 3050 } 3051 ASSERT(*path == '/'); 3052 mutex_enter(&zonehash_lock); 3053 for (zone = list_head(&zone_active); zone != NULL; 3054 zone = list_next(&zone_active, zone)) { 3055 if (ZONE_PATH_VISIBLE(path, zone)) 3056 zret = zone; 3057 } 3058 ASSERT(zret != NULL); 3059 status = zone_status_get(zret); 3060 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3061 /* 3062 * Zone practically doesn't exist. 3063 */ 3064 zret = global_zone; 3065 } 3066 zone_hold(zret); 3067 mutex_exit(&zonehash_lock); 3068 return (zret); 3069 } 3070 3071 /* 3072 * Public interface for updating per-zone load averages. Called once per 3073 * second. 3074 * 3075 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3076 */ 3077 void 3078 zone_loadavg_update() 3079 { 3080 zone_t *zp; 3081 zone_status_t status; 3082 struct loadavg_s *lavg; 3083 hrtime_t zone_total; 3084 int i; 3085 hrtime_t hr_avg; 3086 int nrun; 3087 static int64_t f[3] = { 135, 27, 9 }; 3088 int64_t q, r; 3089 3090 mutex_enter(&zonehash_lock); 3091 for (zp = list_head(&zone_active); zp != NULL; 3092 zp = list_next(&zone_active, zp)) { 3093 mutex_enter(&zp->zone_lock); 3094 3095 /* Skip zones that are on the way down or not yet up */ 3096 status = zone_status_get(zp); 3097 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3098 /* For all practical purposes the zone doesn't exist. */ 3099 mutex_exit(&zp->zone_lock); 3100 continue; 3101 } 3102 3103 /* 3104 * Update the 10 second moving average data in zone_loadavg. 3105 */ 3106 lavg = &zp->zone_loadavg; 3107 3108 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime; 3109 scalehrtime(&zone_total); 3110 3111 /* The zone_total should always be increasing. */ 3112 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3113 zone_total - lavg->lg_total : 0; 3114 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3115 /* lg_total holds the prev. 1 sec. total */ 3116 lavg->lg_total = zone_total; 3117 3118 /* 3119 * To simplify the calculation, we don't calculate the load avg. 3120 * until the zone has been up for at least 10 seconds and our 3121 * moving average is thus full. 3122 */ 3123 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3124 lavg->lg_len++; 3125 mutex_exit(&zp->zone_lock); 3126 continue; 3127 } 3128 3129 /* Now calculate the 1min, 5min, 15 min load avg. */ 3130 hr_avg = 0; 3131 for (i = 0; i < S_LOADAVG_SZ; i++) 3132 hr_avg += lavg->lg_loads[i]; 3133 hr_avg = hr_avg / S_LOADAVG_SZ; 3134 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3135 3136 /* Compute load avg. See comment in calcloadavg() */ 3137 for (i = 0; i < 3; i++) { 3138 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3139 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3140 zp->zone_hp_avenrun[i] += 3141 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3142 3143 /* avenrun[] can only hold 31 bits of load avg. */ 3144 if (zp->zone_hp_avenrun[i] < 3145 ((uint64_t)1<<(31+16-FSHIFT))) 3146 zp->zone_avenrun[i] = (int32_t) 3147 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3148 else 3149 zp->zone_avenrun[i] = 0x7fffffff; 3150 } 3151 3152 mutex_exit(&zp->zone_lock); 3153 } 3154 mutex_exit(&zonehash_lock); 3155 } 3156 3157 /* 3158 * Get the number of cpus visible to this zone. The system-wide global 3159 * 'ncpus' is returned if pools are disabled, the caller is in the 3160 * global zone, or a NULL zone argument is passed in. 3161 */ 3162 int 3163 zone_ncpus_get(zone_t *zone) 3164 { 3165 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3166 3167 return (myncpus != 0 ? myncpus : ncpus); 3168 } 3169 3170 /* 3171 * Get the number of online cpus visible to this zone. The system-wide 3172 * global 'ncpus_online' is returned if pools are disabled, the caller 3173 * is in the global zone, or a NULL zone argument is passed in. 3174 */ 3175 int 3176 zone_ncpus_online_get(zone_t *zone) 3177 { 3178 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3179 3180 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3181 } 3182 3183 /* 3184 * Return the pool to which the zone is currently bound. 3185 */ 3186 pool_t * 3187 zone_pool_get(zone_t *zone) 3188 { 3189 ASSERT(pool_lock_held()); 3190 3191 return (zone->zone_pool); 3192 } 3193 3194 /* 3195 * Set the zone's pool pointer and update the zone's visibility to match 3196 * the resources in the new pool. 3197 */ 3198 void 3199 zone_pool_set(zone_t *zone, pool_t *pool) 3200 { 3201 ASSERT(pool_lock_held()); 3202 ASSERT(MUTEX_HELD(&cpu_lock)); 3203 3204 zone->zone_pool = pool; 3205 zone_pset_set(zone, pool->pool_pset->pset_id); 3206 } 3207 3208 /* 3209 * Return the cached value of the id of the processor set to which the 3210 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3211 * facility is disabled. 3212 */ 3213 psetid_t 3214 zone_pset_get(zone_t *zone) 3215 { 3216 ASSERT(MUTEX_HELD(&cpu_lock)); 3217 3218 return (zone->zone_psetid); 3219 } 3220 3221 /* 3222 * Set the cached value of the id of the processor set to which the zone 3223 * is currently bound. Also update the zone's visibility to match the 3224 * resources in the new processor set. 3225 */ 3226 void 3227 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3228 { 3229 psetid_t oldpsetid; 3230 3231 ASSERT(MUTEX_HELD(&cpu_lock)); 3232 oldpsetid = zone_pset_get(zone); 3233 3234 if (oldpsetid == newpsetid) 3235 return; 3236 /* 3237 * Global zone sees all. 3238 */ 3239 if (zone != global_zone) { 3240 zone->zone_psetid = newpsetid; 3241 if (newpsetid != ZONE_PS_INVAL) 3242 pool_pset_visibility_add(newpsetid, zone); 3243 if (oldpsetid != ZONE_PS_INVAL) 3244 pool_pset_visibility_remove(oldpsetid, zone); 3245 } 3246 /* 3247 * Disabling pools, so we should start using the global values 3248 * for ncpus and ncpus_online. 3249 */ 3250 if (newpsetid == ZONE_PS_INVAL) { 3251 zone->zone_ncpus = 0; 3252 zone->zone_ncpus_online = 0; 3253 } 3254 } 3255 3256 /* 3257 * Walk the list of active zones and issue the provided callback for 3258 * each of them. 3259 * 3260 * Caller must not be holding any locks that may be acquired under 3261 * zonehash_lock. See comment at the beginning of the file for a list of 3262 * common locks and their interactions with zones. 3263 */ 3264 int 3265 zone_walk(int (*cb)(zone_t *, void *), void *data) 3266 { 3267 zone_t *zone; 3268 int ret = 0; 3269 zone_status_t status; 3270 3271 mutex_enter(&zonehash_lock); 3272 for (zone = list_head(&zone_active); zone != NULL; 3273 zone = list_next(&zone_active, zone)) { 3274 /* 3275 * Skip zones that shouldn't be externally visible. 3276 */ 3277 status = zone_status_get(zone); 3278 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3279 continue; 3280 /* 3281 * Bail immediately if any callback invocation returns a 3282 * non-zero value. 3283 */ 3284 ret = (*cb)(zone, data); 3285 if (ret != 0) 3286 break; 3287 } 3288 mutex_exit(&zonehash_lock); 3289 return (ret); 3290 } 3291 3292 static int 3293 zone_set_root(zone_t *zone, const char *upath) 3294 { 3295 vnode_t *vp; 3296 int trycount; 3297 int error = 0; 3298 char *path; 3299 struct pathname upn, pn; 3300 size_t pathlen; 3301 3302 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3303 return (error); 3304 3305 pn_alloc(&pn); 3306 3307 /* prevent infinite loop */ 3308 trycount = 10; 3309 for (;;) { 3310 if (--trycount <= 0) { 3311 error = ESTALE; 3312 goto out; 3313 } 3314 3315 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3316 /* 3317 * VOP_ACCESS() may cover 'vp' with a new 3318 * filesystem, if 'vp' is an autoFS vnode. 3319 * Get the new 'vp' if so. 3320 */ 3321 if ((error = 3322 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3323 (!vn_ismntpt(vp) || 3324 (error = traverse(&vp)) == 0)) { 3325 pathlen = pn.pn_pathlen + 2; 3326 path = kmem_alloc(pathlen, KM_SLEEP); 3327 (void) strncpy(path, pn.pn_path, 3328 pn.pn_pathlen + 1); 3329 path[pathlen - 2] = '/'; 3330 path[pathlen - 1] = '\0'; 3331 pn_free(&pn); 3332 pn_free(&upn); 3333 3334 /* Success! */ 3335 break; 3336 } 3337 VN_RELE(vp); 3338 } 3339 if (error != ESTALE) 3340 goto out; 3341 } 3342 3343 ASSERT(error == 0); 3344 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3345 zone->zone_rootpath = path; 3346 zone->zone_rootpathlen = pathlen; 3347 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3348 zone->zone_flags |= ZF_IS_SCRATCH; 3349 return (0); 3350 3351 out: 3352 pn_free(&pn); 3353 pn_free(&upn); 3354 return (error); 3355 } 3356 3357 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3358 ((c) >= 'a' && (c) <= 'z') || \ 3359 ((c) >= 'A' && (c) <= 'Z')) 3360 3361 static int 3362 zone_set_name(zone_t *zone, const char *uname) 3363 { 3364 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3365 size_t len; 3366 int i, err; 3367 3368 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3369 kmem_free(kname, ZONENAME_MAX); 3370 return (err); /* EFAULT or ENAMETOOLONG */ 3371 } 3372 3373 /* must be less than ZONENAME_MAX */ 3374 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3375 kmem_free(kname, ZONENAME_MAX); 3376 return (EINVAL); 3377 } 3378 3379 /* 3380 * Name must start with an alphanumeric and must contain only 3381 * alphanumerics, '-', '_' and '.'. 3382 */ 3383 if (!isalnum(kname[0])) { 3384 kmem_free(kname, ZONENAME_MAX); 3385 return (EINVAL); 3386 } 3387 for (i = 1; i < len - 1; i++) { 3388 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3389 kname[i] != '.') { 3390 kmem_free(kname, ZONENAME_MAX); 3391 return (EINVAL); 3392 } 3393 } 3394 3395 zone->zone_name = kname; 3396 return (0); 3397 } 3398 3399 /* 3400 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3401 * is NULL or it points to a zone with no hostid emulation, then the machine's 3402 * hostid (i.e., the global zone's hostid) is returned. This function returns 3403 * zero if neither the zone nor the host machine (global zone) have hostids. It 3404 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3405 * hostid and the machine's hostid is invalid. 3406 */ 3407 uint32_t 3408 zone_get_hostid(zone_t *zonep) 3409 { 3410 unsigned long machine_hostid; 3411 3412 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3413 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3414 return (HW_INVALID_HOSTID); 3415 return ((uint32_t)machine_hostid); 3416 } 3417 return (zonep->zone_hostid); 3418 } 3419 3420 /* 3421 * Similar to thread_create(), but makes sure the thread is in the appropriate 3422 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3423 */ 3424 /*ARGSUSED*/ 3425 kthread_t * 3426 zthread_create( 3427 caddr_t stk, 3428 size_t stksize, 3429 void (*proc)(), 3430 void *arg, 3431 size_t len, 3432 pri_t pri) 3433 { 3434 kthread_t *t; 3435 zone_t *zone = curproc->p_zone; 3436 proc_t *pp = zone->zone_zsched; 3437 3438 zone_hold(zone); /* Reference to be dropped when thread exits */ 3439 3440 /* 3441 * No-one should be trying to create threads if the zone is shutting 3442 * down and there aren't any kernel threads around. See comment 3443 * in zthread_exit(). 3444 */ 3445 ASSERT(!(zone->zone_kthreads == NULL && 3446 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3447 /* 3448 * Create a thread, but don't let it run until we've finished setting 3449 * things up. 3450 */ 3451 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3452 ASSERT(t->t_forw == NULL); 3453 mutex_enter(&zone_status_lock); 3454 if (zone->zone_kthreads == NULL) { 3455 t->t_forw = t->t_back = t; 3456 } else { 3457 kthread_t *tx = zone->zone_kthreads; 3458 3459 t->t_forw = tx; 3460 t->t_back = tx->t_back; 3461 tx->t_back->t_forw = t; 3462 tx->t_back = t; 3463 } 3464 zone->zone_kthreads = t; 3465 mutex_exit(&zone_status_lock); 3466 3467 mutex_enter(&pp->p_lock); 3468 t->t_proc_flag |= TP_ZTHREAD; 3469 project_rele(t->t_proj); 3470 t->t_proj = project_hold(pp->p_task->tk_proj); 3471 3472 /* 3473 * Setup complete, let it run. 3474 */ 3475 thread_lock(t); 3476 t->t_schedflag |= TS_ALLSTART; 3477 setrun_locked(t); 3478 thread_unlock(t); 3479 3480 mutex_exit(&pp->p_lock); 3481 3482 return (t); 3483 } 3484 3485 /* 3486 * Similar to thread_exit(). Must be called by threads created via 3487 * zthread_exit(). 3488 */ 3489 void 3490 zthread_exit(void) 3491 { 3492 kthread_t *t = curthread; 3493 proc_t *pp = curproc; 3494 zone_t *zone = pp->p_zone; 3495 3496 mutex_enter(&zone_status_lock); 3497 3498 /* 3499 * Reparent to p0 3500 */ 3501 kpreempt_disable(); 3502 mutex_enter(&pp->p_lock); 3503 t->t_proc_flag &= ~TP_ZTHREAD; 3504 t->t_procp = &p0; 3505 hat_thread_exit(t); 3506 mutex_exit(&pp->p_lock); 3507 kpreempt_enable(); 3508 3509 if (t->t_back == t) { 3510 ASSERT(t->t_forw == t); 3511 /* 3512 * If the zone is empty, once the thread count 3513 * goes to zero no further kernel threads can be 3514 * created. This is because if the creator is a process 3515 * in the zone, then it must have exited before the zone 3516 * state could be set to ZONE_IS_EMPTY. 3517 * Otherwise, if the creator is a kernel thread in the 3518 * zone, the thread count is non-zero. 3519 * 3520 * This really means that non-zone kernel threads should 3521 * not create zone kernel threads. 3522 */ 3523 zone->zone_kthreads = NULL; 3524 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3525 zone_status_set(zone, ZONE_IS_DOWN); 3526 /* 3527 * Remove any CPU caps on this zone. 3528 */ 3529 cpucaps_zone_remove(zone); 3530 } 3531 } else { 3532 t->t_forw->t_back = t->t_back; 3533 t->t_back->t_forw = t->t_forw; 3534 if (zone->zone_kthreads == t) 3535 zone->zone_kthreads = t->t_forw; 3536 } 3537 mutex_exit(&zone_status_lock); 3538 zone_rele(zone); 3539 thread_exit(); 3540 /* NOTREACHED */ 3541 } 3542 3543 static void 3544 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3545 { 3546 vnode_t *oldvp; 3547 3548 /* we're going to hold a reference here to the directory */ 3549 VN_HOLD(vp); 3550 3551 /* update abs cwd/root path see c2/audit.c */ 3552 if (AU_AUDITING()) 3553 audit_chdirec(vp, vpp); 3554 3555 mutex_enter(&pp->p_lock); 3556 oldvp = *vpp; 3557 *vpp = vp; 3558 mutex_exit(&pp->p_lock); 3559 if (oldvp != NULL) 3560 VN_RELE(oldvp); 3561 } 3562 3563 /* 3564 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3565 */ 3566 static int 3567 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3568 { 3569 nvpair_t *nvp = NULL; 3570 boolean_t priv_set = B_FALSE; 3571 boolean_t limit_set = B_FALSE; 3572 boolean_t action_set = B_FALSE; 3573 3574 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3575 const char *name; 3576 uint64_t ui64; 3577 3578 name = nvpair_name(nvp); 3579 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3580 return (EINVAL); 3581 (void) nvpair_value_uint64(nvp, &ui64); 3582 if (strcmp(name, "privilege") == 0) { 3583 /* 3584 * Currently only privileged values are allowed, but 3585 * this may change in the future. 3586 */ 3587 if (ui64 != RCPRIV_PRIVILEGED) 3588 return (EINVAL); 3589 rv->rcv_privilege = ui64; 3590 priv_set = B_TRUE; 3591 } else if (strcmp(name, "limit") == 0) { 3592 rv->rcv_value = ui64; 3593 limit_set = B_TRUE; 3594 } else if (strcmp(name, "action") == 0) { 3595 if (ui64 != RCTL_LOCAL_NOACTION && 3596 ui64 != RCTL_LOCAL_DENY) 3597 return (EINVAL); 3598 rv->rcv_flagaction = ui64; 3599 action_set = B_TRUE; 3600 } else { 3601 return (EINVAL); 3602 } 3603 } 3604 3605 if (!(priv_set && limit_set && action_set)) 3606 return (EINVAL); 3607 rv->rcv_action_signal = 0; 3608 rv->rcv_action_recipient = NULL; 3609 rv->rcv_action_recip_pid = -1; 3610 rv->rcv_firing_time = 0; 3611 3612 return (0); 3613 } 3614 3615 /* 3616 * Non-global zone version of start_init. 3617 */ 3618 void 3619 zone_start_init(void) 3620 { 3621 proc_t *p = ttoproc(curthread); 3622 zone_t *z = p->p_zone; 3623 3624 ASSERT(!INGLOBALZONE(curproc)); 3625 3626 /* 3627 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3628 * storing just the pid of init is sufficient. 3629 */ 3630 z->zone_proc_initpid = p->p_pid; 3631 3632 /* 3633 * We maintain zone_boot_err so that we can return the cause of the 3634 * failure back to the caller of the zone_boot syscall. 3635 */ 3636 p->p_zone->zone_boot_err = start_init_common(); 3637 3638 /* 3639 * We will prevent booting zones from becoming running zones if the 3640 * global zone is shutting down. 3641 */ 3642 mutex_enter(&zone_status_lock); 3643 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3644 ZONE_IS_SHUTTING_DOWN) { 3645 /* 3646 * Make sure we are still in the booting state-- we could have 3647 * raced and already be shutting down, or even further along. 3648 */ 3649 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3650 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3651 } 3652 mutex_exit(&zone_status_lock); 3653 /* It's gone bad, dispose of the process */ 3654 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3655 mutex_enter(&p->p_lock); 3656 ASSERT(p->p_flag & SEXITLWPS); 3657 lwp_exit(); 3658 } 3659 } else { 3660 if (zone_status_get(z) == ZONE_IS_BOOTING) 3661 zone_status_set(z, ZONE_IS_RUNNING); 3662 mutex_exit(&zone_status_lock); 3663 /* cause the process to return to userland. */ 3664 lwp_rtt(); 3665 } 3666 } 3667 3668 struct zsched_arg { 3669 zone_t *zone; 3670 nvlist_t *nvlist; 3671 }; 3672 3673 /* 3674 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3675 * anything to do with scheduling, but rather with the fact that 3676 * per-zone kernel threads are parented to zsched, just like regular 3677 * kernel threads are parented to sched (p0). 3678 * 3679 * zsched is also responsible for launching init for the zone. 3680 */ 3681 static void 3682 zsched(void *arg) 3683 { 3684 struct zsched_arg *za = arg; 3685 proc_t *pp = curproc; 3686 proc_t *initp = proc_init; 3687 zone_t *zone = za->zone; 3688 cred_t *cr, *oldcred; 3689 rctl_set_t *set; 3690 rctl_alloc_gp_t *gp; 3691 contract_t *ct = NULL; 3692 task_t *tk, *oldtk; 3693 rctl_entity_p_t e; 3694 kproject_t *pj; 3695 3696 nvlist_t *nvl = za->nvlist; 3697 nvpair_t *nvp = NULL; 3698 3699 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3700 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3701 PTOU(pp)->u_argc = 0; 3702 PTOU(pp)->u_argv = NULL; 3703 PTOU(pp)->u_envp = NULL; 3704 closeall(P_FINFO(pp)); 3705 3706 /* 3707 * We are this zone's "zsched" process. As the zone isn't generally 3708 * visible yet we don't need to grab any locks before initializing its 3709 * zone_proc pointer. 3710 */ 3711 zone_hold(zone); /* this hold is released by zone_destroy() */ 3712 zone->zone_zsched = pp; 3713 mutex_enter(&pp->p_lock); 3714 pp->p_zone = zone; 3715 mutex_exit(&pp->p_lock); 3716 3717 /* 3718 * Disassociate process from its 'parent'; parent ourselves to init 3719 * (pid 1) and change other values as needed. 3720 */ 3721 sess_create(); 3722 3723 mutex_enter(&pidlock); 3724 proc_detach(pp); 3725 pp->p_ppid = 1; 3726 pp->p_flag |= SZONETOP; 3727 pp->p_ancpid = 1; 3728 pp->p_parent = initp; 3729 pp->p_psibling = NULL; 3730 if (initp->p_child) 3731 initp->p_child->p_psibling = pp; 3732 pp->p_sibling = initp->p_child; 3733 initp->p_child = pp; 3734 3735 /* Decrement what newproc() incremented. */ 3736 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3737 /* 3738 * Our credentials are about to become kcred-like, so we don't care 3739 * about the caller's ruid. 3740 */ 3741 upcount_inc(crgetruid(kcred), zone->zone_id); 3742 mutex_exit(&pidlock); 3743 3744 /* 3745 * getting out of global zone, so decrement lwp and process counts 3746 */ 3747 pj = pp->p_task->tk_proj; 3748 mutex_enter(&global_zone->zone_nlwps_lock); 3749 pj->kpj_nlwps -= pp->p_lwpcnt; 3750 global_zone->zone_nlwps -= pp->p_lwpcnt; 3751 pj->kpj_nprocs--; 3752 global_zone->zone_nprocs--; 3753 mutex_exit(&global_zone->zone_nlwps_lock); 3754 3755 /* 3756 * Decrement locked memory counts on old zone and project. 3757 */ 3758 mutex_enter(&global_zone->zone_mem_lock); 3759 global_zone->zone_locked_mem -= pp->p_locked_mem; 3760 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3761 mutex_exit(&global_zone->zone_mem_lock); 3762 3763 /* 3764 * Create and join a new task in project '0' of this zone. 3765 * 3766 * We don't need to call holdlwps() since we know we're the only lwp in 3767 * this process. 3768 * 3769 * task_join() returns with p_lock held. 3770 */ 3771 tk = task_create(0, zone); 3772 mutex_enter(&cpu_lock); 3773 oldtk = task_join(tk, 0); 3774 3775 pj = pp->p_task->tk_proj; 3776 3777 mutex_enter(&zone->zone_mem_lock); 3778 zone->zone_locked_mem += pp->p_locked_mem; 3779 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3780 mutex_exit(&zone->zone_mem_lock); 3781 3782 /* 3783 * add lwp and process counts to zsched's zone, and increment 3784 * project's task and process count due to the task created in 3785 * the above task_create. 3786 */ 3787 mutex_enter(&zone->zone_nlwps_lock); 3788 pj->kpj_nlwps += pp->p_lwpcnt; 3789 pj->kpj_ntasks += 1; 3790 zone->zone_nlwps += pp->p_lwpcnt; 3791 pj->kpj_nprocs++; 3792 zone->zone_nprocs++; 3793 mutex_exit(&zone->zone_nlwps_lock); 3794 3795 mutex_exit(&curproc->p_lock); 3796 mutex_exit(&cpu_lock); 3797 task_rele(oldtk); 3798 3799 /* 3800 * The process was created by a process in the global zone, hence the 3801 * credentials are wrong. We might as well have kcred-ish credentials. 3802 */ 3803 cr = zone->zone_kcred; 3804 crhold(cr); 3805 mutex_enter(&pp->p_crlock); 3806 oldcred = pp->p_cred; 3807 pp->p_cred = cr; 3808 mutex_exit(&pp->p_crlock); 3809 crfree(oldcred); 3810 3811 /* 3812 * Hold credentials again (for thread) 3813 */ 3814 crhold(cr); 3815 3816 /* 3817 * p_lwpcnt can't change since this is a kernel process. 3818 */ 3819 crset(pp, cr); 3820 3821 /* 3822 * Chroot 3823 */ 3824 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3825 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3826 3827 /* 3828 * Initialize zone's rctl set. 3829 */ 3830 set = rctl_set_create(); 3831 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3832 mutex_enter(&pp->p_lock); 3833 e.rcep_p.zone = zone; 3834 e.rcep_t = RCENTITY_ZONE; 3835 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3836 mutex_exit(&pp->p_lock); 3837 rctl_prealloc_destroy(gp); 3838 3839 /* 3840 * Apply the rctls passed in to zone_create(). This is basically a list 3841 * assignment: all of the old values are removed and the new ones 3842 * inserted. That is, if an empty list is passed in, all values are 3843 * removed. 3844 */ 3845 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3846 rctl_dict_entry_t *rde; 3847 rctl_hndl_t hndl; 3848 char *name; 3849 nvlist_t **nvlarray; 3850 uint_t i, nelem; 3851 int error; /* For ASSERT()s */ 3852 3853 name = nvpair_name(nvp); 3854 hndl = rctl_hndl_lookup(name); 3855 ASSERT(hndl != -1); 3856 rde = rctl_dict_lookup_hndl(hndl); 3857 ASSERT(rde != NULL); 3858 3859 for (; /* ever */; ) { 3860 rctl_val_t oval; 3861 3862 mutex_enter(&pp->p_lock); 3863 error = rctl_local_get(hndl, NULL, &oval, pp); 3864 mutex_exit(&pp->p_lock); 3865 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3866 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3867 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3868 break; 3869 mutex_enter(&pp->p_lock); 3870 error = rctl_local_delete(hndl, &oval, pp); 3871 mutex_exit(&pp->p_lock); 3872 ASSERT(error == 0); 3873 } 3874 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3875 ASSERT(error == 0); 3876 for (i = 0; i < nelem; i++) { 3877 rctl_val_t *nvalp; 3878 3879 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3880 error = nvlist2rctlval(nvlarray[i], nvalp); 3881 ASSERT(error == 0); 3882 /* 3883 * rctl_local_insert can fail if the value being 3884 * inserted is a duplicate; this is OK. 3885 */ 3886 mutex_enter(&pp->p_lock); 3887 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3888 kmem_cache_free(rctl_val_cache, nvalp); 3889 mutex_exit(&pp->p_lock); 3890 } 3891 } 3892 /* 3893 * Tell the world that we're done setting up. 3894 * 3895 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3896 * and atomically set the zone's processor set visibility. Once 3897 * we drop pool_lock() this zone will automatically get updated 3898 * to reflect any future changes to the pools configuration. 3899 * 3900 * Note that after we drop the locks below (zonehash_lock in 3901 * particular) other operations such as a zone_getattr call can 3902 * now proceed and observe the zone. That is the reason for doing a 3903 * state transition to the INITIALIZED state. 3904 */ 3905 pool_lock(); 3906 mutex_enter(&cpu_lock); 3907 mutex_enter(&zonehash_lock); 3908 zone_uniqid(zone); 3909 zone_zsd_configure(zone); 3910 if (pool_state == POOL_ENABLED) 3911 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3912 mutex_enter(&zone_status_lock); 3913 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3914 zone_status_set(zone, ZONE_IS_INITIALIZED); 3915 mutex_exit(&zone_status_lock); 3916 mutex_exit(&zonehash_lock); 3917 mutex_exit(&cpu_lock); 3918 pool_unlock(); 3919 3920 /* Now call the create callback for this key */ 3921 zsd_apply_all_keys(zsd_apply_create, zone); 3922 3923 /* The callbacks are complete. Mark ZONE_IS_READY */ 3924 mutex_enter(&zone_status_lock); 3925 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3926 zone_status_set(zone, ZONE_IS_READY); 3927 mutex_exit(&zone_status_lock); 3928 3929 /* 3930 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3931 * we launch init, and set the state to running. 3932 */ 3933 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3934 3935 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3936 id_t cid; 3937 3938 /* 3939 * Ok, this is a little complicated. We need to grab the 3940 * zone's pool's scheduling class ID; note that by now, we 3941 * are already bound to a pool if we need to be (zoneadmd 3942 * will have done that to us while we're in the READY 3943 * state). *But* the scheduling class for the zone's 'init' 3944 * must be explicitly passed to newproc, which doesn't 3945 * respect pool bindings. 3946 * 3947 * We hold the pool_lock across the call to newproc() to 3948 * close the obvious race: the pool's scheduling class 3949 * could change before we manage to create the LWP with 3950 * classid 'cid'. 3951 */ 3952 pool_lock(); 3953 if (zone->zone_defaultcid > 0) 3954 cid = zone->zone_defaultcid; 3955 else 3956 cid = pool_get_class(zone->zone_pool); 3957 if (cid == -1) 3958 cid = defaultcid; 3959 3960 /* 3961 * If this fails, zone_boot will ultimately fail. The 3962 * state of the zone will be set to SHUTTING_DOWN-- userland 3963 * will have to tear down the zone, and fail, or try again. 3964 */ 3965 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3966 minclsyspri - 1, &ct, 0)) != 0) { 3967 mutex_enter(&zone_status_lock); 3968 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3969 mutex_exit(&zone_status_lock); 3970 } else { 3971 zone->zone_boot_time = gethrestime_sec(); 3972 } 3973 3974 pool_unlock(); 3975 } 3976 3977 /* 3978 * Wait for zone_destroy() to be called. This is what we spend 3979 * most of our life doing. 3980 */ 3981 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3982 3983 if (ct) 3984 /* 3985 * At this point the process contract should be empty. 3986 * (Though if it isn't, it's not the end of the world.) 3987 */ 3988 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3989 3990 /* 3991 * Allow kcred to be freed when all referring processes 3992 * (including this one) go away. We can't just do this in 3993 * zone_free because we need to wait for the zone_cred_ref to 3994 * drop to 0 before calling zone_free, and the existence of 3995 * zone_kcred will prevent that. Thus, we call crfree here to 3996 * balance the crdup in zone_create. The crhold calls earlier 3997 * in zsched will be dropped when the thread and process exit. 3998 */ 3999 crfree(zone->zone_kcred); 4000 zone->zone_kcred = NULL; 4001 4002 exit(CLD_EXITED, 0); 4003 } 4004 4005 /* 4006 * Helper function to determine if there are any submounts of the 4007 * provided path. Used to make sure the zone doesn't "inherit" any 4008 * mounts from before it is created. 4009 */ 4010 static uint_t 4011 zone_mount_count(const char *rootpath) 4012 { 4013 vfs_t *vfsp; 4014 uint_t count = 0; 4015 size_t rootpathlen = strlen(rootpath); 4016 4017 /* 4018 * Holding zonehash_lock prevents race conditions with 4019 * vfs_list_add()/vfs_list_remove() since we serialize with 4020 * zone_find_by_path(). 4021 */ 4022 ASSERT(MUTEX_HELD(&zonehash_lock)); 4023 /* 4024 * The rootpath must end with a '/' 4025 */ 4026 ASSERT(rootpath[rootpathlen - 1] == '/'); 4027 4028 /* 4029 * This intentionally does not count the rootpath itself if that 4030 * happens to be a mount point. 4031 */ 4032 vfs_list_read_lock(); 4033 vfsp = rootvfs; 4034 do { 4035 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 4036 rootpathlen) == 0) 4037 count++; 4038 vfsp = vfsp->vfs_next; 4039 } while (vfsp != rootvfs); 4040 vfs_list_unlock(); 4041 return (count); 4042 } 4043 4044 /* 4045 * Helper function to make sure that a zone created on 'rootpath' 4046 * wouldn't end up containing other zones' rootpaths. 4047 */ 4048 static boolean_t 4049 zone_is_nested(const char *rootpath) 4050 { 4051 zone_t *zone; 4052 size_t rootpathlen = strlen(rootpath); 4053 size_t len; 4054 4055 ASSERT(MUTEX_HELD(&zonehash_lock)); 4056 4057 /* 4058 * zone_set_root() appended '/' and '\0' at the end of rootpath 4059 */ 4060 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 4061 (rootpath[1] == '/') && (rootpath[2] == '\0')) 4062 return (B_TRUE); 4063 4064 for (zone = list_head(&zone_active); zone != NULL; 4065 zone = list_next(&zone_active, zone)) { 4066 if (zone == global_zone) 4067 continue; 4068 len = strlen(zone->zone_rootpath); 4069 if (strncmp(rootpath, zone->zone_rootpath, 4070 MIN(rootpathlen, len)) == 0) 4071 return (B_TRUE); 4072 } 4073 return (B_FALSE); 4074 } 4075 4076 static int 4077 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 4078 size_t zone_privssz) 4079 { 4080 priv_set_t *privs; 4081 4082 if (zone_privssz < sizeof (priv_set_t)) 4083 return (ENOMEM); 4084 4085 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 4086 4087 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 4088 kmem_free(privs, sizeof (priv_set_t)); 4089 return (EFAULT); 4090 } 4091 4092 zone->zone_privset = privs; 4093 return (0); 4094 } 4095 4096 /* 4097 * We make creative use of nvlists to pass in rctls from userland. The list is 4098 * a list of the following structures: 4099 * 4100 * (name = rctl_name, value = nvpair_list_array) 4101 * 4102 * Where each element of the nvpair_list_array is of the form: 4103 * 4104 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4105 * (name = "limit", value = uint64_t), 4106 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4107 */ 4108 static int 4109 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4110 { 4111 nvpair_t *nvp = NULL; 4112 nvlist_t *nvl = NULL; 4113 char *kbuf; 4114 int error; 4115 rctl_val_t rv; 4116 4117 *nvlp = NULL; 4118 4119 if (buflen == 0) 4120 return (0); 4121 4122 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4123 return (ENOMEM); 4124 if (copyin(ubuf, kbuf, buflen)) { 4125 error = EFAULT; 4126 goto out; 4127 } 4128 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4129 /* 4130 * nvl may have been allocated/free'd, but the value set to 4131 * non-NULL, so we reset it here. 4132 */ 4133 nvl = NULL; 4134 error = EINVAL; 4135 goto out; 4136 } 4137 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4138 rctl_dict_entry_t *rde; 4139 rctl_hndl_t hndl; 4140 nvlist_t **nvlarray; 4141 uint_t i, nelem; 4142 char *name; 4143 4144 error = EINVAL; 4145 name = nvpair_name(nvp); 4146 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4147 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4148 goto out; 4149 } 4150 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4151 goto out; 4152 } 4153 rde = rctl_dict_lookup_hndl(hndl); 4154 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4155 ASSERT(error == 0); 4156 for (i = 0; i < nelem; i++) { 4157 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4158 goto out; 4159 } 4160 if (rctl_invalid_value(rde, &rv)) { 4161 error = EINVAL; 4162 goto out; 4163 } 4164 } 4165 error = 0; 4166 *nvlp = nvl; 4167 out: 4168 kmem_free(kbuf, buflen); 4169 if (error && nvl != NULL) 4170 nvlist_free(nvl); 4171 return (error); 4172 } 4173 4174 int 4175 zone_create_error(int er_error, int er_ext, int *er_out) { 4176 if (er_out != NULL) { 4177 if (copyout(&er_ext, er_out, sizeof (int))) { 4178 return (set_errno(EFAULT)); 4179 } 4180 } 4181 return (set_errno(er_error)); 4182 } 4183 4184 static int 4185 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4186 { 4187 ts_label_t *tsl; 4188 bslabel_t blab; 4189 4190 /* Get label from user */ 4191 if (copyin(lab, &blab, sizeof (blab)) != 0) 4192 return (EFAULT); 4193 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4194 if (tsl == NULL) 4195 return (ENOMEM); 4196 4197 zone->zone_slabel = tsl; 4198 return (0); 4199 } 4200 4201 /* 4202 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4203 */ 4204 static int 4205 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4206 { 4207 char *kbuf; 4208 char *dataset, *next; 4209 zone_dataset_t *zd; 4210 size_t len; 4211 4212 if (ubuf == NULL || buflen == 0) 4213 return (0); 4214 4215 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4216 return (ENOMEM); 4217 4218 if (copyin(ubuf, kbuf, buflen) != 0) { 4219 kmem_free(kbuf, buflen); 4220 return (EFAULT); 4221 } 4222 4223 dataset = next = kbuf; 4224 for (;;) { 4225 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4226 4227 next = strchr(dataset, ','); 4228 4229 if (next == NULL) 4230 len = strlen(dataset); 4231 else 4232 len = next - dataset; 4233 4234 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4235 bcopy(dataset, zd->zd_dataset, len); 4236 zd->zd_dataset[len] = '\0'; 4237 4238 list_insert_head(&zone->zone_datasets, zd); 4239 4240 if (next == NULL) 4241 break; 4242 4243 dataset = next + 1; 4244 } 4245 4246 kmem_free(kbuf, buflen); 4247 return (0); 4248 } 4249 4250 /* 4251 * System call to create/initialize a new zone named 'zone_name', rooted 4252 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4253 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4254 * with labeling set by 'match', 'doi', and 'label'. 4255 * 4256 * If extended error is non-null, we may use it to return more detailed 4257 * error information. 4258 */ 4259 static zoneid_t 4260 zone_create(const char *zone_name, const char *zone_root, 4261 const priv_set_t *zone_privs, size_t zone_privssz, 4262 caddr_t rctlbuf, size_t rctlbufsz, 4263 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4264 int match, uint32_t doi, const bslabel_t *label, 4265 int flags) 4266 { 4267 struct zsched_arg zarg; 4268 nvlist_t *rctls = NULL; 4269 proc_t *pp = curproc; 4270 zone_t *zone, *ztmp; 4271 zoneid_t zoneid; 4272 int error; 4273 int error2 = 0; 4274 char *str; 4275 cred_t *zkcr; 4276 boolean_t insert_label_hash; 4277 4278 if (secpolicy_zone_config(CRED()) != 0) 4279 return (set_errno(EPERM)); 4280 4281 /* can't boot zone from within chroot environment */ 4282 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4283 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4284 extended_error)); 4285 4286 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4287 zoneid = zone->zone_id = id_alloc(zoneid_space); 4288 zone->zone_status = ZONE_IS_UNINITIALIZED; 4289 zone->zone_pool = pool_default; 4290 zone->zone_pool_mod = gethrtime(); 4291 zone->zone_psetid = ZONE_PS_INVAL; 4292 zone->zone_ncpus = 0; 4293 zone->zone_ncpus_online = 0; 4294 zone->zone_restart_init = B_TRUE; 4295 zone->zone_brand = &native_brand; 4296 zone->zone_initname = NULL; 4297 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4298 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4299 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4300 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4301 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4302 offsetof(zone_ref_t, zref_linkage)); 4303 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4304 offsetof(struct zsd_entry, zsd_linkage)); 4305 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4306 offsetof(zone_dataset_t, zd_linkage)); 4307 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4308 offsetof(zone_dl_t, zdl_linkage)); 4309 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4310 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4311 4312 if (flags & ZCF_NET_EXCL) { 4313 zone->zone_flags |= ZF_NET_EXCL; 4314 } 4315 4316 if ((error = zone_set_name(zone, zone_name)) != 0) { 4317 zone_free(zone); 4318 return (zone_create_error(error, 0, extended_error)); 4319 } 4320 4321 if ((error = zone_set_root(zone, zone_root)) != 0) { 4322 zone_free(zone); 4323 return (zone_create_error(error, 0, extended_error)); 4324 } 4325 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4326 zone_free(zone); 4327 return (zone_create_error(error, 0, extended_error)); 4328 } 4329 4330 /* initialize node name to be the same as zone name */ 4331 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4332 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4333 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4334 4335 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4336 zone->zone_domain[0] = '\0'; 4337 zone->zone_hostid = HW_INVALID_HOSTID; 4338 zone->zone_shares = 1; 4339 zone->zone_shmmax = 0; 4340 zone->zone_ipc.ipcq_shmmni = 0; 4341 zone->zone_ipc.ipcq_semmni = 0; 4342 zone->zone_ipc.ipcq_msgmni = 0; 4343 zone->zone_bootargs = NULL; 4344 zone->zone_fs_allowed = NULL; 4345 zone->zone_initname = 4346 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4347 (void) strcpy(zone->zone_initname, zone_default_initname); 4348 zone->zone_nlwps = 0; 4349 zone->zone_nlwps_ctl = INT_MAX; 4350 zone->zone_nprocs = 0; 4351 zone->zone_nprocs_ctl = INT_MAX; 4352 zone->zone_locked_mem = 0; 4353 zone->zone_locked_mem_ctl = UINT64_MAX; 4354 zone->zone_max_swap = 0; 4355 zone->zone_max_swap_ctl = UINT64_MAX; 4356 zone->zone_max_lofi = 0; 4357 zone->zone_max_lofi_ctl = UINT64_MAX; 4358 zone0.zone_lockedmem_kstat = NULL; 4359 zone0.zone_swapresv_kstat = NULL; 4360 4361 /* 4362 * Zsched initializes the rctls. 4363 */ 4364 zone->zone_rctls = NULL; 4365 4366 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4367 zone_free(zone); 4368 return (zone_create_error(error, 0, extended_error)); 4369 } 4370 4371 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4372 zone_free(zone); 4373 return (set_errno(error)); 4374 } 4375 4376 /* 4377 * Read in the trusted system parameters: 4378 * match flag and sensitivity label. 4379 */ 4380 zone->zone_match = match; 4381 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4382 /* Fail if requested to set doi to anything but system's doi */ 4383 if (doi != 0 && doi != default_doi) { 4384 zone_free(zone); 4385 return (set_errno(EINVAL)); 4386 } 4387 /* Always apply system's doi to the zone */ 4388 error = zone_set_label(zone, label, default_doi); 4389 if (error != 0) { 4390 zone_free(zone); 4391 return (set_errno(error)); 4392 } 4393 insert_label_hash = B_TRUE; 4394 } else { 4395 /* all zones get an admin_low label if system is not labeled */ 4396 zone->zone_slabel = l_admin_low; 4397 label_hold(l_admin_low); 4398 insert_label_hash = B_FALSE; 4399 } 4400 4401 /* 4402 * Stop all lwps since that's what normally happens as part of fork(). 4403 * This needs to happen before we grab any locks to avoid deadlock 4404 * (another lwp in the process could be waiting for the held lock). 4405 */ 4406 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4407 zone_free(zone); 4408 if (rctls) 4409 nvlist_free(rctls); 4410 return (zone_create_error(error, 0, extended_error)); 4411 } 4412 4413 if (block_mounts() == 0) { 4414 mutex_enter(&pp->p_lock); 4415 if (curthread != pp->p_agenttp) 4416 continuelwps(pp); 4417 mutex_exit(&pp->p_lock); 4418 zone_free(zone); 4419 if (rctls) 4420 nvlist_free(rctls); 4421 return (zone_create_error(error, 0, extended_error)); 4422 } 4423 4424 /* 4425 * Set up credential for kernel access. After this, any errors 4426 * should go through the dance in errout rather than calling 4427 * zone_free directly. 4428 */ 4429 zone->zone_kcred = crdup(kcred); 4430 crsetzone(zone->zone_kcred, zone); 4431 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4432 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4433 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4434 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4435 4436 mutex_enter(&zonehash_lock); 4437 /* 4438 * Make sure zone doesn't already exist. 4439 * 4440 * If the system and zone are labeled, 4441 * make sure no other zone exists that has the same label. 4442 */ 4443 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4444 (insert_label_hash && 4445 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4446 zone_status_t status; 4447 4448 status = zone_status_get(ztmp); 4449 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4450 error = EEXIST; 4451 else 4452 error = EBUSY; 4453 4454 if (insert_label_hash) 4455 error2 = ZE_LABELINUSE; 4456 4457 goto errout; 4458 } 4459 4460 /* 4461 * Don't allow zone creations which would cause one zone's rootpath to 4462 * be accessible from that of another (non-global) zone. 4463 */ 4464 if (zone_is_nested(zone->zone_rootpath)) { 4465 error = EBUSY; 4466 goto errout; 4467 } 4468 4469 ASSERT(zonecount != 0); /* check for leaks */ 4470 if (zonecount + 1 > maxzones) { 4471 error = ENOMEM; 4472 goto errout; 4473 } 4474 4475 if (zone_mount_count(zone->zone_rootpath) != 0) { 4476 error = EBUSY; 4477 error2 = ZE_AREMOUNTS; 4478 goto errout; 4479 } 4480 4481 /* 4482 * Zone is still incomplete, but we need to drop all locks while 4483 * zsched() initializes this zone's kernel process. We 4484 * optimistically add the zone to the hashtable and associated 4485 * lists so a parallel zone_create() doesn't try to create the 4486 * same zone. 4487 */ 4488 zonecount++; 4489 (void) mod_hash_insert(zonehashbyid, 4490 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4491 (mod_hash_val_t)(uintptr_t)zone); 4492 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4493 (void) strcpy(str, zone->zone_name); 4494 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4495 (mod_hash_val_t)(uintptr_t)zone); 4496 if (insert_label_hash) { 4497 (void) mod_hash_insert(zonehashbylabel, 4498 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4499 zone->zone_flags |= ZF_HASHED_LABEL; 4500 } 4501 4502 /* 4503 * Insert into active list. At this point there are no 'hold's 4504 * on the zone, but everyone else knows not to use it, so we can 4505 * continue to use it. zsched() will do a zone_hold() if the 4506 * newproc() is successful. 4507 */ 4508 list_insert_tail(&zone_active, zone); 4509 mutex_exit(&zonehash_lock); 4510 4511 zarg.zone = zone; 4512 zarg.nvlist = rctls; 4513 /* 4514 * The process, task, and project rctls are probably wrong; 4515 * we need an interface to get the default values of all rctls, 4516 * and initialize zsched appropriately. I'm not sure that that 4517 * makes much of a difference, though. 4518 */ 4519 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4520 if (error != 0) { 4521 /* 4522 * We need to undo all globally visible state. 4523 */ 4524 mutex_enter(&zonehash_lock); 4525 list_remove(&zone_active, zone); 4526 if (zone->zone_flags & ZF_HASHED_LABEL) { 4527 ASSERT(zone->zone_slabel != NULL); 4528 (void) mod_hash_destroy(zonehashbylabel, 4529 (mod_hash_key_t)zone->zone_slabel); 4530 } 4531 (void) mod_hash_destroy(zonehashbyname, 4532 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4533 (void) mod_hash_destroy(zonehashbyid, 4534 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4535 ASSERT(zonecount > 1); 4536 zonecount--; 4537 goto errout; 4538 } 4539 4540 /* 4541 * Zone creation can't fail from now on. 4542 */ 4543 4544 /* 4545 * Create zone kstats 4546 */ 4547 zone_kstat_create(zone); 4548 4549 /* 4550 * Let the other lwps continue. 4551 */ 4552 mutex_enter(&pp->p_lock); 4553 if (curthread != pp->p_agenttp) 4554 continuelwps(pp); 4555 mutex_exit(&pp->p_lock); 4556 4557 /* 4558 * Wait for zsched to finish initializing the zone. 4559 */ 4560 zone_status_wait(zone, ZONE_IS_READY); 4561 /* 4562 * The zone is fully visible, so we can let mounts progress. 4563 */ 4564 resume_mounts(); 4565 if (rctls) 4566 nvlist_free(rctls); 4567 4568 return (zoneid); 4569 4570 errout: 4571 mutex_exit(&zonehash_lock); 4572 /* 4573 * Let the other lwps continue. 4574 */ 4575 mutex_enter(&pp->p_lock); 4576 if (curthread != pp->p_agenttp) 4577 continuelwps(pp); 4578 mutex_exit(&pp->p_lock); 4579 4580 resume_mounts(); 4581 if (rctls) 4582 nvlist_free(rctls); 4583 /* 4584 * There is currently one reference to the zone, a cred_ref from 4585 * zone_kcred. To free the zone, we call crfree, which will call 4586 * zone_cred_rele, which will call zone_free. 4587 */ 4588 ASSERT(zone->zone_cred_ref == 1); 4589 ASSERT(zone->zone_kcred->cr_ref == 1); 4590 ASSERT(zone->zone_ref == 0); 4591 zkcr = zone->zone_kcred; 4592 zone->zone_kcred = NULL; 4593 crfree(zkcr); /* triggers call to zone_free */ 4594 return (zone_create_error(error, error2, extended_error)); 4595 } 4596 4597 /* 4598 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4599 * the heavy lifting. initname is the path to the program to launch 4600 * at the "top" of the zone; if this is NULL, we use the system default, 4601 * which is stored at zone_default_initname. 4602 */ 4603 static int 4604 zone_boot(zoneid_t zoneid) 4605 { 4606 int err; 4607 zone_t *zone; 4608 4609 if (secpolicy_zone_config(CRED()) != 0) 4610 return (set_errno(EPERM)); 4611 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4612 return (set_errno(EINVAL)); 4613 4614 mutex_enter(&zonehash_lock); 4615 /* 4616 * Look for zone under hash lock to prevent races with calls to 4617 * zone_shutdown, zone_destroy, etc. 4618 */ 4619 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4620 mutex_exit(&zonehash_lock); 4621 return (set_errno(EINVAL)); 4622 } 4623 4624 mutex_enter(&zone_status_lock); 4625 if (zone_status_get(zone) != ZONE_IS_READY) { 4626 mutex_exit(&zone_status_lock); 4627 mutex_exit(&zonehash_lock); 4628 return (set_errno(EINVAL)); 4629 } 4630 zone_status_set(zone, ZONE_IS_BOOTING); 4631 mutex_exit(&zone_status_lock); 4632 4633 zone_hold(zone); /* so we can use the zone_t later */ 4634 mutex_exit(&zonehash_lock); 4635 4636 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4637 zone_rele(zone); 4638 return (set_errno(EINTR)); 4639 } 4640 4641 /* 4642 * Boot (starting init) might have failed, in which case the zone 4643 * will go to the SHUTTING_DOWN state; an appropriate errno will 4644 * be placed in zone->zone_boot_err, and so we return that. 4645 */ 4646 err = zone->zone_boot_err; 4647 zone_rele(zone); 4648 return (err ? set_errno(err) : 0); 4649 } 4650 4651 /* 4652 * Kills all user processes in the zone, waiting for them all to exit 4653 * before returning. 4654 */ 4655 static int 4656 zone_empty(zone_t *zone) 4657 { 4658 int waitstatus; 4659 4660 /* 4661 * We need to drop zonehash_lock before killing all 4662 * processes, otherwise we'll deadlock with zone_find_* 4663 * which can be called from the exit path. 4664 */ 4665 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4666 while ((waitstatus = zone_status_timedwait_sig(zone, 4667 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4668 killall(zone->zone_id); 4669 } 4670 /* 4671 * return EINTR if we were signaled 4672 */ 4673 if (waitstatus == 0) 4674 return (EINTR); 4675 return (0); 4676 } 4677 4678 /* 4679 * This function implements the policy for zone visibility. 4680 * 4681 * In standard Solaris, a non-global zone can only see itself. 4682 * 4683 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4684 * it dominates. For this test, the label of the global zone is treated as 4685 * admin_high so it is special-cased instead of being checked for dominance. 4686 * 4687 * Returns true if zone attributes are viewable, false otherwise. 4688 */ 4689 static boolean_t 4690 zone_list_access(zone_t *zone) 4691 { 4692 4693 if (curproc->p_zone == global_zone || 4694 curproc->p_zone == zone) { 4695 return (B_TRUE); 4696 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4697 bslabel_t *curproc_label; 4698 bslabel_t *zone_label; 4699 4700 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4701 zone_label = label2bslabel(zone->zone_slabel); 4702 4703 if (zone->zone_id != GLOBAL_ZONEID && 4704 bldominates(curproc_label, zone_label)) { 4705 return (B_TRUE); 4706 } else { 4707 return (B_FALSE); 4708 } 4709 } else { 4710 return (B_FALSE); 4711 } 4712 } 4713 4714 /* 4715 * Systemcall to start the zone's halt sequence. By the time this 4716 * function successfully returns, all user processes and kernel threads 4717 * executing in it will have exited, ZSD shutdown callbacks executed, 4718 * and the zone status set to ZONE_IS_DOWN. 4719 * 4720 * It is possible that the call will interrupt itself if the caller is the 4721 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4722 */ 4723 static int 4724 zone_shutdown(zoneid_t zoneid) 4725 { 4726 int error; 4727 zone_t *zone; 4728 zone_status_t status; 4729 4730 if (secpolicy_zone_config(CRED()) != 0) 4731 return (set_errno(EPERM)); 4732 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4733 return (set_errno(EINVAL)); 4734 4735 /* 4736 * Block mounts so that VFS_MOUNT() can get an accurate view of 4737 * the zone's status with regards to ZONE_IS_SHUTTING down. 4738 * 4739 * e.g. NFS can fail the mount if it determines that the zone 4740 * has already begun the shutdown sequence. 4741 */ 4742 if (block_mounts() == 0) 4743 return (set_errno(EINTR)); 4744 mutex_enter(&zonehash_lock); 4745 /* 4746 * Look for zone under hash lock to prevent races with other 4747 * calls to zone_shutdown and zone_destroy. 4748 */ 4749 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4750 mutex_exit(&zonehash_lock); 4751 resume_mounts(); 4752 return (set_errno(EINVAL)); 4753 } 4754 mutex_enter(&zone_status_lock); 4755 status = zone_status_get(zone); 4756 /* 4757 * Fail if the zone isn't fully initialized yet. 4758 */ 4759 if (status < ZONE_IS_READY) { 4760 mutex_exit(&zone_status_lock); 4761 mutex_exit(&zonehash_lock); 4762 resume_mounts(); 4763 return (set_errno(EINVAL)); 4764 } 4765 /* 4766 * If conditions required for zone_shutdown() to return have been met, 4767 * return success. 4768 */ 4769 if (status >= ZONE_IS_DOWN) { 4770 mutex_exit(&zone_status_lock); 4771 mutex_exit(&zonehash_lock); 4772 resume_mounts(); 4773 return (0); 4774 } 4775 /* 4776 * If zone_shutdown() hasn't been called before, go through the motions. 4777 * If it has, there's nothing to do but wait for the kernel threads to 4778 * drain. 4779 */ 4780 if (status < ZONE_IS_EMPTY) { 4781 uint_t ntasks; 4782 4783 mutex_enter(&zone->zone_lock); 4784 if ((ntasks = zone->zone_ntasks) != 1) { 4785 /* 4786 * There's still stuff running. 4787 */ 4788 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4789 } 4790 mutex_exit(&zone->zone_lock); 4791 if (ntasks == 1) { 4792 /* 4793 * The only way to create another task is through 4794 * zone_enter(), which will block until we drop 4795 * zonehash_lock. The zone is empty. 4796 */ 4797 if (zone->zone_kthreads == NULL) { 4798 /* 4799 * Skip ahead to ZONE_IS_DOWN 4800 */ 4801 zone_status_set(zone, ZONE_IS_DOWN); 4802 } else { 4803 zone_status_set(zone, ZONE_IS_EMPTY); 4804 } 4805 } 4806 } 4807 zone_hold(zone); /* so we can use the zone_t later */ 4808 mutex_exit(&zone_status_lock); 4809 mutex_exit(&zonehash_lock); 4810 resume_mounts(); 4811 4812 if (error = zone_empty(zone)) { 4813 zone_rele(zone); 4814 return (set_errno(error)); 4815 } 4816 /* 4817 * After the zone status goes to ZONE_IS_DOWN this zone will no 4818 * longer be notified of changes to the pools configuration, so 4819 * in order to not end up with a stale pool pointer, we point 4820 * ourselves at the default pool and remove all resource 4821 * visibility. This is especially important as the zone_t may 4822 * languish on the deathrow for a very long time waiting for 4823 * cred's to drain out. 4824 * 4825 * This rebinding of the zone can happen multiple times 4826 * (presumably due to interrupted or parallel systemcalls) 4827 * without any adverse effects. 4828 */ 4829 if (pool_lock_intr() != 0) { 4830 zone_rele(zone); 4831 return (set_errno(EINTR)); 4832 } 4833 if (pool_state == POOL_ENABLED) { 4834 mutex_enter(&cpu_lock); 4835 zone_pool_set(zone, pool_default); 4836 /* 4837 * The zone no longer needs to be able to see any cpus. 4838 */ 4839 zone_pset_set(zone, ZONE_PS_INVAL); 4840 mutex_exit(&cpu_lock); 4841 } 4842 pool_unlock(); 4843 4844 /* 4845 * ZSD shutdown callbacks can be executed multiple times, hence 4846 * it is safe to not be holding any locks across this call. 4847 */ 4848 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4849 4850 mutex_enter(&zone_status_lock); 4851 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4852 zone_status_set(zone, ZONE_IS_DOWN); 4853 mutex_exit(&zone_status_lock); 4854 4855 /* 4856 * Wait for kernel threads to drain. 4857 */ 4858 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4859 zone_rele(zone); 4860 return (set_errno(EINTR)); 4861 } 4862 4863 /* 4864 * Zone can be become down/destroyable even if the above wait 4865 * returns EINTR, so any code added here may never execute. 4866 * (i.e. don't add code here) 4867 */ 4868 4869 zone_rele(zone); 4870 return (0); 4871 } 4872 4873 /* 4874 * Log the specified zone's reference counts. The caller should not be 4875 * holding the zone's zone_lock. 4876 */ 4877 static void 4878 zone_log_refcounts(zone_t *zone) 4879 { 4880 char *buffer; 4881 char *buffer_position; 4882 uint32_t buffer_size; 4883 uint32_t index; 4884 uint_t ref; 4885 uint_t cred_ref; 4886 4887 /* 4888 * Construct a string representing the subsystem-specific reference 4889 * counts. The counts are printed in ascending order by index into the 4890 * zone_t::zone_subsys_ref array. The list will be surrounded by 4891 * square brackets [] and will only contain nonzero reference counts. 4892 * 4893 * The buffer will hold two square bracket characters plus ten digits, 4894 * one colon, one space, one comma, and some characters for a 4895 * subsystem name per subsystem-specific reference count. (Unsigned 32- 4896 * bit integers have at most ten decimal digits.) The last 4897 * reference count's comma is replaced by the closing square 4898 * bracket and a NULL character to terminate the string. 4899 * 4900 * NOTE: We have to grab the zone's zone_lock to create a consistent 4901 * snapshot of the zone's reference counters. 4902 * 4903 * First, figure out how much space the string buffer will need. 4904 * The buffer's size is stored in buffer_size. 4905 */ 4906 buffer_size = 2; /* for the square brackets */ 4907 mutex_enter(&zone->zone_lock); 4908 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 4909 ref = zone->zone_ref; 4910 cred_ref = zone->zone_cred_ref; 4911 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 4912 if (zone->zone_subsys_ref[index] != 0) 4913 buffer_size += strlen(zone_ref_subsys_names[index]) + 4914 13; 4915 if (buffer_size == 2) { 4916 /* 4917 * No subsystems had nonzero reference counts. Don't bother 4918 * with allocating a buffer; just log the general-purpose and 4919 * credential reference counts. 4920 */ 4921 mutex_exit(&zone->zone_lock); 4922 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4923 "Zone '%s' (ID: %d) is shutting down, but %u zone " 4924 "references and %u credential references are still extant", 4925 zone->zone_name, zone->zone_id, ref, cred_ref); 4926 return; 4927 } 4928 4929 /* 4930 * buffer_size contains the exact number of characters that the 4931 * buffer will need. Allocate the buffer and fill it with nonzero 4932 * subsystem-specific reference counts. Surround the results with 4933 * square brackets afterwards. 4934 */ 4935 buffer = kmem_alloc(buffer_size, KM_SLEEP); 4936 buffer_position = &buffer[1]; 4937 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 4938 /* 4939 * NOTE: The DDI's version of sprintf() returns a pointer to 4940 * the modified buffer rather than the number of bytes written 4941 * (as in snprintf(3C)). This is unfortunate and annoying. 4942 * Therefore, we'll use snprintf() with INT_MAX to get the 4943 * number of bytes written. Using INT_MAX is safe because 4944 * the buffer is perfectly sized for the data: we'll never 4945 * overrun the buffer. 4946 */ 4947 if (zone->zone_subsys_ref[index] != 0) 4948 buffer_position += snprintf(buffer_position, INT_MAX, 4949 "%s: %u,", zone_ref_subsys_names[index], 4950 zone->zone_subsys_ref[index]); 4951 } 4952 mutex_exit(&zone->zone_lock); 4953 buffer[0] = '['; 4954 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 4955 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 4956 buffer_position[-1] = ']'; 4957 4958 /* 4959 * Log the reference counts and free the message buffer. 4960 */ 4961 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4962 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 4963 "%u credential references are still extant %s", zone->zone_name, 4964 zone->zone_id, ref, cred_ref, buffer); 4965 kmem_free(buffer, buffer_size); 4966 } 4967 4968 /* 4969 * Systemcall entry point to finalize the zone halt process. The caller 4970 * must have already successfully called zone_shutdown(). 4971 * 4972 * Upon successful completion, the zone will have been fully destroyed: 4973 * zsched will have exited, destructor callbacks executed, and the zone 4974 * removed from the list of active zones. 4975 */ 4976 static int 4977 zone_destroy(zoneid_t zoneid) 4978 { 4979 uint64_t uniqid; 4980 zone_t *zone; 4981 zone_status_t status; 4982 clock_t wait_time; 4983 boolean_t log_refcounts; 4984 4985 if (secpolicy_zone_config(CRED()) != 0) 4986 return (set_errno(EPERM)); 4987 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4988 return (set_errno(EINVAL)); 4989 4990 mutex_enter(&zonehash_lock); 4991 /* 4992 * Look for zone under hash lock to prevent races with other 4993 * calls to zone_destroy. 4994 */ 4995 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4996 mutex_exit(&zonehash_lock); 4997 return (set_errno(EINVAL)); 4998 } 4999 5000 if (zone_mount_count(zone->zone_rootpath) != 0) { 5001 mutex_exit(&zonehash_lock); 5002 return (set_errno(EBUSY)); 5003 } 5004 mutex_enter(&zone_status_lock); 5005 status = zone_status_get(zone); 5006 if (status < ZONE_IS_DOWN) { 5007 mutex_exit(&zone_status_lock); 5008 mutex_exit(&zonehash_lock); 5009 return (set_errno(EBUSY)); 5010 } else if (status == ZONE_IS_DOWN) { 5011 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 5012 } 5013 mutex_exit(&zone_status_lock); 5014 zone_hold(zone); 5015 mutex_exit(&zonehash_lock); 5016 5017 /* 5018 * wait for zsched to exit 5019 */ 5020 zone_status_wait(zone, ZONE_IS_DEAD); 5021 zone_zsd_callbacks(zone, ZSD_DESTROY); 5022 zone->zone_netstack = NULL; 5023 uniqid = zone->zone_uniqid; 5024 zone_rele(zone); 5025 zone = NULL; /* potentially free'd */ 5026 5027 log_refcounts = B_FALSE; 5028 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 5029 mutex_enter(&zonehash_lock); 5030 for (; /* ever */; ) { 5031 boolean_t unref; 5032 boolean_t refs_have_been_logged; 5033 5034 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 5035 zone->zone_uniqid != uniqid) { 5036 /* 5037 * The zone has gone away. Necessary conditions 5038 * are met, so we return success. 5039 */ 5040 mutex_exit(&zonehash_lock); 5041 return (0); 5042 } 5043 mutex_enter(&zone->zone_lock); 5044 unref = ZONE_IS_UNREF(zone); 5045 refs_have_been_logged = (zone->zone_flags & 5046 ZF_REFCOUNTS_LOGGED); 5047 mutex_exit(&zone->zone_lock); 5048 if (unref) { 5049 /* 5050 * There is only one reference to the zone -- that 5051 * added when the zone was added to the hashtables -- 5052 * and things will remain this way until we drop 5053 * zonehash_lock... we can go ahead and cleanup the 5054 * zone. 5055 */ 5056 break; 5057 } 5058 5059 /* 5060 * Wait for zone_rele_common() or zone_cred_rele() to signal 5061 * zone_destroy_cv. zone_destroy_cv is signaled only when 5062 * some zone's general-purpose reference count reaches one. 5063 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 5064 * on zone_destroy_cv, then log the zone's reference counts and 5065 * continue to wait for zone_rele() and zone_cred_rele(). 5066 */ 5067 if (!refs_have_been_logged) { 5068 if (!log_refcounts) { 5069 /* 5070 * This thread hasn't timed out waiting on 5071 * zone_destroy_cv yet. Wait wait_time clock 5072 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 5073 * seconds) for the zone's references to clear. 5074 */ 5075 ASSERT(wait_time > 0); 5076 wait_time = cv_reltimedwait_sig( 5077 &zone_destroy_cv, &zonehash_lock, wait_time, 5078 TR_SEC); 5079 if (wait_time > 0) { 5080 /* 5081 * A thread in zone_rele() or 5082 * zone_cred_rele() signaled 5083 * zone_destroy_cv before this thread's 5084 * wait timed out. The zone might have 5085 * only one reference left; find out! 5086 */ 5087 continue; 5088 } else if (wait_time == 0) { 5089 /* The thread's process was signaled. */ 5090 mutex_exit(&zonehash_lock); 5091 return (set_errno(EINTR)); 5092 } 5093 5094 /* 5095 * The thread timed out while waiting on 5096 * zone_destroy_cv. Even though the thread 5097 * timed out, it has to check whether another 5098 * thread woke up from zone_destroy_cv and 5099 * destroyed the zone. 5100 * 5101 * If the zone still exists and has more than 5102 * one unreleased general-purpose reference, 5103 * then log the zone's reference counts. 5104 */ 5105 log_refcounts = B_TRUE; 5106 continue; 5107 } 5108 5109 /* 5110 * The thread already timed out on zone_destroy_cv while 5111 * waiting for subsystems to release the zone's last 5112 * general-purpose references. Log the zone's reference 5113 * counts and wait indefinitely on zone_destroy_cv. 5114 */ 5115 zone_log_refcounts(zone); 5116 } 5117 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5118 /* The thread's process was signaled. */ 5119 mutex_exit(&zonehash_lock); 5120 return (set_errno(EINTR)); 5121 } 5122 } 5123 5124 /* 5125 * Remove CPU cap for this zone now since we're not going to 5126 * fail below this point. 5127 */ 5128 cpucaps_zone_remove(zone); 5129 5130 /* Get rid of the zone's kstats */ 5131 zone_kstat_delete(zone); 5132 5133 /* remove the pfexecd doors */ 5134 if (zone->zone_pfexecd != NULL) { 5135 klpd_freelist(&zone->zone_pfexecd); 5136 zone->zone_pfexecd = NULL; 5137 } 5138 5139 /* free brand specific data */ 5140 if (ZONE_IS_BRANDED(zone)) 5141 ZBROP(zone)->b_free_brand_data(zone); 5142 5143 /* Say goodbye to brand framework. */ 5144 brand_unregister_zone(zone->zone_brand); 5145 5146 /* 5147 * It is now safe to let the zone be recreated; remove it from the 5148 * lists. The memory will not be freed until the last cred 5149 * reference goes away. 5150 */ 5151 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5152 zonecount--; 5153 /* remove from active list and hash tables */ 5154 list_remove(&zone_active, zone); 5155 (void) mod_hash_destroy(zonehashbyname, 5156 (mod_hash_key_t)zone->zone_name); 5157 (void) mod_hash_destroy(zonehashbyid, 5158 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5159 if (zone->zone_flags & ZF_HASHED_LABEL) 5160 (void) mod_hash_destroy(zonehashbylabel, 5161 (mod_hash_key_t)zone->zone_slabel); 5162 mutex_exit(&zonehash_lock); 5163 5164 /* 5165 * Release the root vnode; we're not using it anymore. Nor should any 5166 * other thread that might access it exist. 5167 */ 5168 if (zone->zone_rootvp != NULL) { 5169 VN_RELE(zone->zone_rootvp); 5170 zone->zone_rootvp = NULL; 5171 } 5172 5173 /* add to deathrow list */ 5174 mutex_enter(&zone_deathrow_lock); 5175 list_insert_tail(&zone_deathrow, zone); 5176 mutex_exit(&zone_deathrow_lock); 5177 5178 /* 5179 * Drop last reference (which was added by zsched()), this will 5180 * free the zone unless there are outstanding cred references. 5181 */ 5182 zone_rele(zone); 5183 return (0); 5184 } 5185 5186 /* 5187 * Systemcall entry point for zone_getattr(2). 5188 */ 5189 static ssize_t 5190 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5191 { 5192 size_t size; 5193 int error = 0, err; 5194 zone_t *zone; 5195 char *zonepath; 5196 char *outstr; 5197 zone_status_t zone_status; 5198 pid_t initpid; 5199 boolean_t global = (curzone == global_zone); 5200 boolean_t inzone = (curzone->zone_id == zoneid); 5201 ushort_t flags; 5202 zone_net_data_t *zbuf; 5203 5204 mutex_enter(&zonehash_lock); 5205 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5206 mutex_exit(&zonehash_lock); 5207 return (set_errno(EINVAL)); 5208 } 5209 zone_status = zone_status_get(zone); 5210 if (zone_status < ZONE_IS_INITIALIZED) { 5211 mutex_exit(&zonehash_lock); 5212 return (set_errno(EINVAL)); 5213 } 5214 zone_hold(zone); 5215 mutex_exit(&zonehash_lock); 5216 5217 /* 5218 * If not in the global zone, don't show information about other zones, 5219 * unless the system is labeled and the local zone's label dominates 5220 * the other zone. 5221 */ 5222 if (!zone_list_access(zone)) { 5223 zone_rele(zone); 5224 return (set_errno(EINVAL)); 5225 } 5226 5227 switch (attr) { 5228 case ZONE_ATTR_ROOT: 5229 if (global) { 5230 /* 5231 * Copy the path to trim the trailing "/" (except for 5232 * the global zone). 5233 */ 5234 if (zone != global_zone) 5235 size = zone->zone_rootpathlen - 1; 5236 else 5237 size = zone->zone_rootpathlen; 5238 zonepath = kmem_alloc(size, KM_SLEEP); 5239 bcopy(zone->zone_rootpath, zonepath, size); 5240 zonepath[size - 1] = '\0'; 5241 } else { 5242 if (inzone || !is_system_labeled()) { 5243 /* 5244 * Caller is not in the global zone. 5245 * if the query is on the current zone 5246 * or the system is not labeled, 5247 * just return faked-up path for current zone. 5248 */ 5249 zonepath = "/"; 5250 size = 2; 5251 } else { 5252 /* 5253 * Return related path for current zone. 5254 */ 5255 int prefix_len = strlen(zone_prefix); 5256 int zname_len = strlen(zone->zone_name); 5257 5258 size = prefix_len + zname_len + 1; 5259 zonepath = kmem_alloc(size, KM_SLEEP); 5260 bcopy(zone_prefix, zonepath, prefix_len); 5261 bcopy(zone->zone_name, zonepath + 5262 prefix_len, zname_len); 5263 zonepath[size - 1] = '\0'; 5264 } 5265 } 5266 if (bufsize > size) 5267 bufsize = size; 5268 if (buf != NULL) { 5269 err = copyoutstr(zonepath, buf, bufsize, NULL); 5270 if (err != 0 && err != ENAMETOOLONG) 5271 error = EFAULT; 5272 } 5273 if (global || (is_system_labeled() && !inzone)) 5274 kmem_free(zonepath, size); 5275 break; 5276 5277 case ZONE_ATTR_NAME: 5278 size = strlen(zone->zone_name) + 1; 5279 if (bufsize > size) 5280 bufsize = size; 5281 if (buf != NULL) { 5282 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5283 if (err != 0 && err != ENAMETOOLONG) 5284 error = EFAULT; 5285 } 5286 break; 5287 5288 case ZONE_ATTR_STATUS: 5289 /* 5290 * Since we're not holding zonehash_lock, the zone status 5291 * may be anything; leave it up to userland to sort it out. 5292 */ 5293 size = sizeof (zone_status); 5294 if (bufsize > size) 5295 bufsize = size; 5296 zone_status = zone_status_get(zone); 5297 if (buf != NULL && 5298 copyout(&zone_status, buf, bufsize) != 0) 5299 error = EFAULT; 5300 break; 5301 case ZONE_ATTR_FLAGS: 5302 size = sizeof (zone->zone_flags); 5303 if (bufsize > size) 5304 bufsize = size; 5305 flags = zone->zone_flags; 5306 if (buf != NULL && 5307 copyout(&flags, buf, bufsize) != 0) 5308 error = EFAULT; 5309 break; 5310 case ZONE_ATTR_PRIVSET: 5311 size = sizeof (priv_set_t); 5312 if (bufsize > size) 5313 bufsize = size; 5314 if (buf != NULL && 5315 copyout(zone->zone_privset, buf, bufsize) != 0) 5316 error = EFAULT; 5317 break; 5318 case ZONE_ATTR_UNIQID: 5319 size = sizeof (zone->zone_uniqid); 5320 if (bufsize > size) 5321 bufsize = size; 5322 if (buf != NULL && 5323 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5324 error = EFAULT; 5325 break; 5326 case ZONE_ATTR_POOLID: 5327 { 5328 pool_t *pool; 5329 poolid_t poolid; 5330 5331 if (pool_lock_intr() != 0) { 5332 error = EINTR; 5333 break; 5334 } 5335 pool = zone_pool_get(zone); 5336 poolid = pool->pool_id; 5337 pool_unlock(); 5338 size = sizeof (poolid); 5339 if (bufsize > size) 5340 bufsize = size; 5341 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5342 error = EFAULT; 5343 } 5344 break; 5345 case ZONE_ATTR_SLBL: 5346 size = sizeof (bslabel_t); 5347 if (bufsize > size) 5348 bufsize = size; 5349 if (zone->zone_slabel == NULL) 5350 error = EINVAL; 5351 else if (buf != NULL && 5352 copyout(label2bslabel(zone->zone_slabel), buf, 5353 bufsize) != 0) 5354 error = EFAULT; 5355 break; 5356 case ZONE_ATTR_INITPID: 5357 size = sizeof (initpid); 5358 if (bufsize > size) 5359 bufsize = size; 5360 initpid = zone->zone_proc_initpid; 5361 if (initpid == -1) { 5362 error = ESRCH; 5363 break; 5364 } 5365 if (buf != NULL && 5366 copyout(&initpid, buf, bufsize) != 0) 5367 error = EFAULT; 5368 break; 5369 case ZONE_ATTR_BRAND: 5370 size = strlen(zone->zone_brand->b_name) + 1; 5371 5372 if (bufsize > size) 5373 bufsize = size; 5374 if (buf != NULL) { 5375 err = copyoutstr(zone->zone_brand->b_name, buf, 5376 bufsize, NULL); 5377 if (err != 0 && err != ENAMETOOLONG) 5378 error = EFAULT; 5379 } 5380 break; 5381 case ZONE_ATTR_INITNAME: 5382 size = strlen(zone->zone_initname) + 1; 5383 if (bufsize > size) 5384 bufsize = size; 5385 if (buf != NULL) { 5386 err = copyoutstr(zone->zone_initname, buf, bufsize, 5387 NULL); 5388 if (err != 0 && err != ENAMETOOLONG) 5389 error = EFAULT; 5390 } 5391 break; 5392 case ZONE_ATTR_BOOTARGS: 5393 if (zone->zone_bootargs == NULL) 5394 outstr = ""; 5395 else 5396 outstr = zone->zone_bootargs; 5397 size = strlen(outstr) + 1; 5398 if (bufsize > size) 5399 bufsize = size; 5400 if (buf != NULL) { 5401 err = copyoutstr(outstr, buf, bufsize, NULL); 5402 if (err != 0 && err != ENAMETOOLONG) 5403 error = EFAULT; 5404 } 5405 break; 5406 case ZONE_ATTR_PHYS_MCAP: 5407 size = sizeof (zone->zone_phys_mcap); 5408 if (bufsize > size) 5409 bufsize = size; 5410 if (buf != NULL && 5411 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5412 error = EFAULT; 5413 break; 5414 case ZONE_ATTR_SCHED_CLASS: 5415 mutex_enter(&class_lock); 5416 5417 if (zone->zone_defaultcid >= loaded_classes) 5418 outstr = ""; 5419 else 5420 outstr = sclass[zone->zone_defaultcid].cl_name; 5421 size = strlen(outstr) + 1; 5422 if (bufsize > size) 5423 bufsize = size; 5424 if (buf != NULL) { 5425 err = copyoutstr(outstr, buf, bufsize, NULL); 5426 if (err != 0 && err != ENAMETOOLONG) 5427 error = EFAULT; 5428 } 5429 5430 mutex_exit(&class_lock); 5431 break; 5432 case ZONE_ATTR_HOSTID: 5433 if (zone->zone_hostid != HW_INVALID_HOSTID && 5434 bufsize == sizeof (zone->zone_hostid)) { 5435 size = sizeof (zone->zone_hostid); 5436 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5437 bufsize) != 0) 5438 error = EFAULT; 5439 } else { 5440 error = EINVAL; 5441 } 5442 break; 5443 case ZONE_ATTR_FS_ALLOWED: 5444 if (zone->zone_fs_allowed == NULL) 5445 outstr = ""; 5446 else 5447 outstr = zone->zone_fs_allowed; 5448 size = strlen(outstr) + 1; 5449 if (bufsize > size) 5450 bufsize = size; 5451 if (buf != NULL) { 5452 err = copyoutstr(outstr, buf, bufsize, NULL); 5453 if (err != 0 && err != ENAMETOOLONG) 5454 error = EFAULT; 5455 } 5456 break; 5457 case ZONE_ATTR_NETWORK: 5458 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5459 if (copyin(buf, zbuf, bufsize) != 0) { 5460 error = EFAULT; 5461 } else { 5462 error = zone_get_network(zoneid, zbuf); 5463 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5464 error = EFAULT; 5465 } 5466 kmem_free(zbuf, bufsize); 5467 break; 5468 default: 5469 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5470 size = bufsize; 5471 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5472 } else { 5473 error = EINVAL; 5474 } 5475 } 5476 zone_rele(zone); 5477 5478 if (error) 5479 return (set_errno(error)); 5480 return ((ssize_t)size); 5481 } 5482 5483 /* 5484 * Systemcall entry point for zone_setattr(2). 5485 */ 5486 /*ARGSUSED*/ 5487 static int 5488 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5489 { 5490 zone_t *zone; 5491 zone_status_t zone_status; 5492 int err = -1; 5493 zone_net_data_t *zbuf; 5494 5495 if (secpolicy_zone_config(CRED()) != 0) 5496 return (set_errno(EPERM)); 5497 5498 /* 5499 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5500 * global zone. 5501 */ 5502 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5503 return (set_errno(EINVAL)); 5504 } 5505 5506 mutex_enter(&zonehash_lock); 5507 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5508 mutex_exit(&zonehash_lock); 5509 return (set_errno(EINVAL)); 5510 } 5511 zone_hold(zone); 5512 mutex_exit(&zonehash_lock); 5513 5514 /* 5515 * At present most attributes can only be set on non-running, 5516 * non-global zones. 5517 */ 5518 zone_status = zone_status_get(zone); 5519 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5520 err = EINVAL; 5521 goto done; 5522 } 5523 5524 switch (attr) { 5525 case ZONE_ATTR_INITNAME: 5526 err = zone_set_initname(zone, (const char *)buf); 5527 break; 5528 case ZONE_ATTR_BOOTARGS: 5529 err = zone_set_bootargs(zone, (const char *)buf); 5530 break; 5531 case ZONE_ATTR_BRAND: 5532 err = zone_set_brand(zone, (const char *)buf); 5533 break; 5534 case ZONE_ATTR_FS_ALLOWED: 5535 err = zone_set_fs_allowed(zone, (const char *)buf); 5536 break; 5537 case ZONE_ATTR_PHYS_MCAP: 5538 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5539 break; 5540 case ZONE_ATTR_SCHED_CLASS: 5541 err = zone_set_sched_class(zone, (const char *)buf); 5542 break; 5543 case ZONE_ATTR_HOSTID: 5544 if (bufsize == sizeof (zone->zone_hostid)) { 5545 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5546 err = 0; 5547 else 5548 err = EFAULT; 5549 } else { 5550 err = EINVAL; 5551 } 5552 break; 5553 case ZONE_ATTR_NETWORK: 5554 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5555 err = EINVAL; 5556 break; 5557 } 5558 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5559 if (copyin(buf, zbuf, bufsize) != 0) { 5560 kmem_free(zbuf, bufsize); 5561 err = EFAULT; 5562 break; 5563 } 5564 err = zone_set_network(zoneid, zbuf); 5565 kmem_free(zbuf, bufsize); 5566 break; 5567 default: 5568 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5569 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5570 else 5571 err = EINVAL; 5572 } 5573 5574 done: 5575 zone_rele(zone); 5576 ASSERT(err != -1); 5577 return (err != 0 ? set_errno(err) : 0); 5578 } 5579 5580 /* 5581 * Return zero if the process has at least one vnode mapped in to its 5582 * address space which shouldn't be allowed to change zones. 5583 * 5584 * Also return zero if the process has any shared mappings which reserve 5585 * swap. This is because the counting for zone.max-swap does not allow swap 5586 * reservation to be shared between zones. zone swap reservation is counted 5587 * on zone->zone_max_swap. 5588 */ 5589 static int 5590 as_can_change_zones(void) 5591 { 5592 proc_t *pp = curproc; 5593 struct seg *seg; 5594 struct as *as = pp->p_as; 5595 vnode_t *vp; 5596 int allow = 1; 5597 5598 ASSERT(pp->p_as != &kas); 5599 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 5600 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5601 5602 /* 5603 * Cannot enter zone with shared anon memory which 5604 * reserves swap. See comment above. 5605 */ 5606 if (seg_can_change_zones(seg) == B_FALSE) { 5607 allow = 0; 5608 break; 5609 } 5610 /* 5611 * if we can't get a backing vnode for this segment then skip 5612 * it. 5613 */ 5614 vp = NULL; 5615 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5616 continue; 5617 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5618 allow = 0; 5619 break; 5620 } 5621 } 5622 AS_LOCK_EXIT(as, &as->a_lock); 5623 return (allow); 5624 } 5625 5626 /* 5627 * Count swap reserved by curproc's address space 5628 */ 5629 static size_t 5630 as_swresv(void) 5631 { 5632 proc_t *pp = curproc; 5633 struct seg *seg; 5634 struct as *as = pp->p_as; 5635 size_t swap = 0; 5636 5637 ASSERT(pp->p_as != &kas); 5638 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 5639 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5640 swap += seg_swresv(seg); 5641 5642 return (swap); 5643 } 5644 5645 /* 5646 * Systemcall entry point for zone_enter(). 5647 * 5648 * The current process is injected into said zone. In the process 5649 * it will change its project membership, privileges, rootdir/cwd, 5650 * zone-wide rctls, and pool association to match those of the zone. 5651 * 5652 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5653 * state will transition it to ZONE_IS_RUNNING. Processes may only 5654 * enter a zone that is "ready" or "running". 5655 */ 5656 static int 5657 zone_enter(zoneid_t zoneid) 5658 { 5659 zone_t *zone; 5660 vnode_t *vp; 5661 proc_t *pp = curproc; 5662 contract_t *ct; 5663 cont_process_t *ctp; 5664 task_t *tk, *oldtk; 5665 kproject_t *zone_proj0; 5666 cred_t *cr, *newcr; 5667 pool_t *oldpool, *newpool; 5668 sess_t *sp; 5669 uid_t uid; 5670 zone_status_t status; 5671 int err = 0; 5672 rctl_entity_p_t e; 5673 size_t swap; 5674 kthread_id_t t; 5675 5676 if (secpolicy_zone_config(CRED()) != 0) 5677 return (set_errno(EPERM)); 5678 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5679 return (set_errno(EINVAL)); 5680 5681 /* 5682 * Stop all lwps so we don't need to hold a lock to look at 5683 * curproc->p_zone. This needs to happen before we grab any 5684 * locks to avoid deadlock (another lwp in the process could 5685 * be waiting for the held lock). 5686 */ 5687 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5688 return (set_errno(EINTR)); 5689 5690 /* 5691 * Make sure we're not changing zones with files open or mapped in 5692 * to our address space which shouldn't be changing zones. 5693 */ 5694 if (!files_can_change_zones()) { 5695 err = EBADF; 5696 goto out; 5697 } 5698 if (!as_can_change_zones()) { 5699 err = EFAULT; 5700 goto out; 5701 } 5702 5703 mutex_enter(&zonehash_lock); 5704 if (pp->p_zone != global_zone) { 5705 mutex_exit(&zonehash_lock); 5706 err = EINVAL; 5707 goto out; 5708 } 5709 5710 zone = zone_find_all_by_id(zoneid); 5711 if (zone == NULL) { 5712 mutex_exit(&zonehash_lock); 5713 err = EINVAL; 5714 goto out; 5715 } 5716 5717 /* 5718 * To prevent processes in a zone from holding contracts on 5719 * extrazonal resources, and to avoid process contract 5720 * memberships which span zones, contract holders and processes 5721 * which aren't the sole members of their encapsulating process 5722 * contracts are not allowed to zone_enter. 5723 */ 5724 ctp = pp->p_ct_process; 5725 ct = &ctp->conp_contract; 5726 mutex_enter(&ct->ct_lock); 5727 mutex_enter(&pp->p_lock); 5728 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5729 mutex_exit(&pp->p_lock); 5730 mutex_exit(&ct->ct_lock); 5731 mutex_exit(&zonehash_lock); 5732 err = EINVAL; 5733 goto out; 5734 } 5735 5736 /* 5737 * Moreover, we don't allow processes whose encapsulating 5738 * process contracts have inherited extrazonal contracts. 5739 * While it would be easier to eliminate all process contracts 5740 * with inherited contracts, we need to be able to give a 5741 * restarted init (or other zone-penetrating process) its 5742 * predecessor's contracts. 5743 */ 5744 if (ctp->conp_ninherited != 0) { 5745 contract_t *next; 5746 for (next = list_head(&ctp->conp_inherited); next; 5747 next = list_next(&ctp->conp_inherited, next)) { 5748 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5749 mutex_exit(&pp->p_lock); 5750 mutex_exit(&ct->ct_lock); 5751 mutex_exit(&zonehash_lock); 5752 err = EINVAL; 5753 goto out; 5754 } 5755 } 5756 } 5757 5758 mutex_exit(&pp->p_lock); 5759 mutex_exit(&ct->ct_lock); 5760 5761 status = zone_status_get(zone); 5762 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5763 /* 5764 * Can't join 5765 */ 5766 mutex_exit(&zonehash_lock); 5767 err = EINVAL; 5768 goto out; 5769 } 5770 5771 /* 5772 * Make sure new priv set is within the permitted set for caller 5773 */ 5774 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5775 mutex_exit(&zonehash_lock); 5776 err = EPERM; 5777 goto out; 5778 } 5779 /* 5780 * We want to momentarily drop zonehash_lock while we optimistically 5781 * bind curproc to the pool it should be running in. This is safe 5782 * since the zone can't disappear (we have a hold on it). 5783 */ 5784 zone_hold(zone); 5785 mutex_exit(&zonehash_lock); 5786 5787 /* 5788 * Grab pool_lock to keep the pools configuration from changing 5789 * and to stop ourselves from getting rebound to another pool 5790 * until we join the zone. 5791 */ 5792 if (pool_lock_intr() != 0) { 5793 zone_rele(zone); 5794 err = EINTR; 5795 goto out; 5796 } 5797 ASSERT(secpolicy_pool(CRED()) == 0); 5798 /* 5799 * Bind ourselves to the pool currently associated with the zone. 5800 */ 5801 oldpool = curproc->p_pool; 5802 newpool = zone_pool_get(zone); 5803 if (pool_state == POOL_ENABLED && newpool != oldpool && 5804 (err = pool_do_bind(newpool, P_PID, P_MYID, 5805 POOL_BIND_ALL)) != 0) { 5806 pool_unlock(); 5807 zone_rele(zone); 5808 goto out; 5809 } 5810 5811 /* 5812 * Grab cpu_lock now; we'll need it later when we call 5813 * task_join(). 5814 */ 5815 mutex_enter(&cpu_lock); 5816 mutex_enter(&zonehash_lock); 5817 /* 5818 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5819 */ 5820 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5821 /* 5822 * Can't join anymore. 5823 */ 5824 mutex_exit(&zonehash_lock); 5825 mutex_exit(&cpu_lock); 5826 if (pool_state == POOL_ENABLED && 5827 newpool != oldpool) 5828 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5829 POOL_BIND_ALL); 5830 pool_unlock(); 5831 zone_rele(zone); 5832 err = EINVAL; 5833 goto out; 5834 } 5835 5836 /* 5837 * a_lock must be held while transfering locked memory and swap 5838 * reservation from the global zone to the non global zone because 5839 * asynchronous faults on the processes' address space can lock 5840 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5841 * segments respectively. 5842 */ 5843 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 5844 swap = as_swresv(); 5845 mutex_enter(&pp->p_lock); 5846 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5847 /* verify that we do not exceed and task or lwp limits */ 5848 mutex_enter(&zone->zone_nlwps_lock); 5849 /* add new lwps to zone and zone's proj0 */ 5850 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5851 zone->zone_nlwps += pp->p_lwpcnt; 5852 /* add 1 task to zone's proj0 */ 5853 zone_proj0->kpj_ntasks += 1; 5854 5855 zone_proj0->kpj_nprocs++; 5856 zone->zone_nprocs++; 5857 mutex_exit(&zone->zone_nlwps_lock); 5858 5859 mutex_enter(&zone->zone_mem_lock); 5860 zone->zone_locked_mem += pp->p_locked_mem; 5861 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5862 zone->zone_max_swap += swap; 5863 mutex_exit(&zone->zone_mem_lock); 5864 5865 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5866 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5867 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5868 5869 /* remove lwps and process from proc's old zone and old project */ 5870 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5871 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5872 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5873 pp->p_task->tk_proj->kpj_nprocs--; 5874 pp->p_zone->zone_nprocs--; 5875 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5876 5877 mutex_enter(&pp->p_zone->zone_mem_lock); 5878 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5879 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5880 pp->p_zone->zone_max_swap -= swap; 5881 mutex_exit(&pp->p_zone->zone_mem_lock); 5882 5883 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5884 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5885 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5886 5887 pp->p_flag |= SZONETOP; 5888 pp->p_zone = zone; 5889 mutex_exit(&pp->p_lock); 5890 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 5891 5892 /* 5893 * Joining the zone cannot fail from now on. 5894 * 5895 * This means that a lot of the following code can be commonized and 5896 * shared with zsched(). 5897 */ 5898 5899 /* 5900 * If the process contract fmri was inherited, we need to 5901 * flag this so that any contract status will not leak 5902 * extra zone information, svc_fmri in this case 5903 */ 5904 if (ctp->conp_svc_ctid != ct->ct_id) { 5905 mutex_enter(&ct->ct_lock); 5906 ctp->conp_svc_zone_enter = ct->ct_id; 5907 mutex_exit(&ct->ct_lock); 5908 } 5909 5910 /* 5911 * Reset the encapsulating process contract's zone. 5912 */ 5913 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5914 contract_setzuniqid(ct, zone->zone_uniqid); 5915 5916 /* 5917 * Create a new task and associate the process with the project keyed 5918 * by (projid,zoneid). 5919 * 5920 * We might as well be in project 0; the global zone's projid doesn't 5921 * make much sense in a zone anyhow. 5922 * 5923 * This also increments zone_ntasks, and returns with p_lock held. 5924 */ 5925 tk = task_create(0, zone); 5926 oldtk = task_join(tk, 0); 5927 mutex_exit(&cpu_lock); 5928 5929 /* 5930 * call RCTLOP_SET functions on this proc 5931 */ 5932 e.rcep_p.zone = zone; 5933 e.rcep_t = RCENTITY_ZONE; 5934 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5935 RCD_CALLBACK); 5936 mutex_exit(&pp->p_lock); 5937 5938 /* 5939 * We don't need to hold any of zsched's locks here; not only do we know 5940 * the process and zone aren't going away, we know its session isn't 5941 * changing either. 5942 * 5943 * By joining zsched's session here, we mimic the behavior in the 5944 * global zone of init's sid being the pid of sched. We extend this 5945 * to all zlogin-like zone_enter()'ing processes as well. 5946 */ 5947 mutex_enter(&pidlock); 5948 sp = zone->zone_zsched->p_sessp; 5949 sess_hold(zone->zone_zsched); 5950 mutex_enter(&pp->p_lock); 5951 pgexit(pp); 5952 sess_rele(pp->p_sessp, B_TRUE); 5953 pp->p_sessp = sp; 5954 pgjoin(pp, zone->zone_zsched->p_pidp); 5955 5956 /* 5957 * If any threads are scheduled to be placed on zone wait queue they 5958 * should abandon the idea since the wait queue is changing. 5959 * We need to be holding pidlock & p_lock to do this. 5960 */ 5961 if ((t = pp->p_tlist) != NULL) { 5962 do { 5963 thread_lock(t); 5964 /* 5965 * Kick this thread so that he doesn't sit 5966 * on a wrong wait queue. 5967 */ 5968 if (ISWAITING(t)) 5969 setrun_locked(t); 5970 5971 if (t->t_schedflag & TS_ANYWAITQ) 5972 t->t_schedflag &= ~ TS_ANYWAITQ; 5973 5974 thread_unlock(t); 5975 } while ((t = t->t_forw) != pp->p_tlist); 5976 } 5977 5978 /* 5979 * If there is a default scheduling class for the zone and it is not 5980 * the class we are currently in, change all of the threads in the 5981 * process to the new class. We need to be holding pidlock & p_lock 5982 * when we call parmsset so this is a good place to do it. 5983 */ 5984 if (zone->zone_defaultcid > 0 && 5985 zone->zone_defaultcid != curthread->t_cid) { 5986 pcparms_t pcparms; 5987 5988 pcparms.pc_cid = zone->zone_defaultcid; 5989 pcparms.pc_clparms[0] = 0; 5990 5991 /* 5992 * If setting the class fails, we still want to enter the zone. 5993 */ 5994 if ((t = pp->p_tlist) != NULL) { 5995 do { 5996 (void) parmsset(&pcparms, t); 5997 } while ((t = t->t_forw) != pp->p_tlist); 5998 } 5999 } 6000 6001 mutex_exit(&pp->p_lock); 6002 mutex_exit(&pidlock); 6003 6004 mutex_exit(&zonehash_lock); 6005 /* 6006 * We're firmly in the zone; let pools progress. 6007 */ 6008 pool_unlock(); 6009 task_rele(oldtk); 6010 /* 6011 * We don't need to retain a hold on the zone since we already 6012 * incremented zone_ntasks, so the zone isn't going anywhere. 6013 */ 6014 zone_rele(zone); 6015 6016 /* 6017 * Chroot 6018 */ 6019 vp = zone->zone_rootvp; 6020 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 6021 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 6022 6023 /* 6024 * Change process credentials 6025 */ 6026 newcr = cralloc(); 6027 mutex_enter(&pp->p_crlock); 6028 cr = pp->p_cred; 6029 crcopy_to(cr, newcr); 6030 crsetzone(newcr, zone); 6031 pp->p_cred = newcr; 6032 6033 /* 6034 * Restrict all process privilege sets to zone limit 6035 */ 6036 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 6037 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 6038 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 6039 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 6040 mutex_exit(&pp->p_crlock); 6041 crset(pp, newcr); 6042 6043 /* 6044 * Adjust upcount to reflect zone entry. 6045 */ 6046 uid = crgetruid(newcr); 6047 mutex_enter(&pidlock); 6048 upcount_dec(uid, GLOBAL_ZONEID); 6049 upcount_inc(uid, zoneid); 6050 mutex_exit(&pidlock); 6051 6052 /* 6053 * Set up core file path and content. 6054 */ 6055 set_core_defaults(); 6056 6057 out: 6058 /* 6059 * Let the other lwps continue. 6060 */ 6061 mutex_enter(&pp->p_lock); 6062 if (curthread != pp->p_agenttp) 6063 continuelwps(pp); 6064 mutex_exit(&pp->p_lock); 6065 6066 return (err != 0 ? set_errno(err) : 0); 6067 } 6068 6069 /* 6070 * Systemcall entry point for zone_list(2). 6071 * 6072 * Processes running in a (non-global) zone only see themselves. 6073 * On labeled systems, they see all zones whose label they dominate. 6074 */ 6075 static int 6076 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 6077 { 6078 zoneid_t *zoneids; 6079 zone_t *zone, *myzone; 6080 uint_t user_nzones, real_nzones; 6081 uint_t domi_nzones; 6082 int error; 6083 6084 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 6085 return (set_errno(EFAULT)); 6086 6087 myzone = curproc->p_zone; 6088 if (myzone != global_zone) { 6089 bslabel_t *mybslab; 6090 6091 if (!is_system_labeled()) { 6092 /* just return current zone */ 6093 real_nzones = domi_nzones = 1; 6094 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 6095 zoneids[0] = myzone->zone_id; 6096 } else { 6097 /* return all zones that are dominated */ 6098 mutex_enter(&zonehash_lock); 6099 real_nzones = zonecount; 6100 domi_nzones = 0; 6101 if (real_nzones > 0) { 6102 zoneids = kmem_alloc(real_nzones * 6103 sizeof (zoneid_t), KM_SLEEP); 6104 mybslab = label2bslabel(myzone->zone_slabel); 6105 for (zone = list_head(&zone_active); 6106 zone != NULL; 6107 zone = list_next(&zone_active, zone)) { 6108 if (zone->zone_id == GLOBAL_ZONEID) 6109 continue; 6110 if (zone != myzone && 6111 (zone->zone_flags & ZF_IS_SCRATCH)) 6112 continue; 6113 /* 6114 * Note that a label always dominates 6115 * itself, so myzone is always included 6116 * in the list. 6117 */ 6118 if (bldominates(mybslab, 6119 label2bslabel(zone->zone_slabel))) { 6120 zoneids[domi_nzones++] = 6121 zone->zone_id; 6122 } 6123 } 6124 } 6125 mutex_exit(&zonehash_lock); 6126 } 6127 } else { 6128 mutex_enter(&zonehash_lock); 6129 real_nzones = zonecount; 6130 domi_nzones = 0; 6131 if (real_nzones > 0) { 6132 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 6133 KM_SLEEP); 6134 for (zone = list_head(&zone_active); zone != NULL; 6135 zone = list_next(&zone_active, zone)) 6136 zoneids[domi_nzones++] = zone->zone_id; 6137 ASSERT(domi_nzones == real_nzones); 6138 } 6139 mutex_exit(&zonehash_lock); 6140 } 6141 6142 /* 6143 * If user has allocated space for fewer entries than we found, then 6144 * return only up to his limit. Either way, tell him exactly how many 6145 * we found. 6146 */ 6147 if (domi_nzones < user_nzones) 6148 user_nzones = domi_nzones; 6149 error = 0; 6150 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6151 error = EFAULT; 6152 } else if (zoneidlist != NULL && user_nzones != 0) { 6153 if (copyout(zoneids, zoneidlist, 6154 user_nzones * sizeof (zoneid_t)) != 0) 6155 error = EFAULT; 6156 } 6157 6158 if (real_nzones > 0) 6159 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6160 6161 if (error != 0) 6162 return (set_errno(error)); 6163 else 6164 return (0); 6165 } 6166 6167 /* 6168 * Systemcall entry point for zone_lookup(2). 6169 * 6170 * Non-global zones are only able to see themselves and (on labeled systems) 6171 * the zones they dominate. 6172 */ 6173 static zoneid_t 6174 zone_lookup(const char *zone_name) 6175 { 6176 char *kname; 6177 zone_t *zone; 6178 zoneid_t zoneid; 6179 int err; 6180 6181 if (zone_name == NULL) { 6182 /* return caller's zone id */ 6183 return (getzoneid()); 6184 } 6185 6186 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6187 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6188 kmem_free(kname, ZONENAME_MAX); 6189 return (set_errno(err)); 6190 } 6191 6192 mutex_enter(&zonehash_lock); 6193 zone = zone_find_all_by_name(kname); 6194 kmem_free(kname, ZONENAME_MAX); 6195 /* 6196 * In a non-global zone, can only lookup global and own name. 6197 * In Trusted Extensions zone label dominance rules apply. 6198 */ 6199 if (zone == NULL || 6200 zone_status_get(zone) < ZONE_IS_READY || 6201 !zone_list_access(zone)) { 6202 mutex_exit(&zonehash_lock); 6203 return (set_errno(EINVAL)); 6204 } else { 6205 zoneid = zone->zone_id; 6206 mutex_exit(&zonehash_lock); 6207 return (zoneid); 6208 } 6209 } 6210 6211 static int 6212 zone_version(int *version_arg) 6213 { 6214 int version = ZONE_SYSCALL_API_VERSION; 6215 6216 if (copyout(&version, version_arg, sizeof (int)) != 0) 6217 return (set_errno(EFAULT)); 6218 return (0); 6219 } 6220 6221 /* ARGSUSED */ 6222 long 6223 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6224 { 6225 zone_def zs; 6226 int err; 6227 6228 switch (cmd) { 6229 case ZONE_CREATE: 6230 if (get_udatamodel() == DATAMODEL_NATIVE) { 6231 if (copyin(arg1, &zs, sizeof (zone_def))) { 6232 return (set_errno(EFAULT)); 6233 } 6234 } else { 6235 #ifdef _SYSCALL32_IMPL 6236 zone_def32 zs32; 6237 6238 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6239 return (set_errno(EFAULT)); 6240 } 6241 zs.zone_name = 6242 (const char *)(unsigned long)zs32.zone_name; 6243 zs.zone_root = 6244 (const char *)(unsigned long)zs32.zone_root; 6245 zs.zone_privs = 6246 (const struct priv_set *) 6247 (unsigned long)zs32.zone_privs; 6248 zs.zone_privssz = zs32.zone_privssz; 6249 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6250 zs.rctlbufsz = zs32.rctlbufsz; 6251 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6252 zs.zfsbufsz = zs32.zfsbufsz; 6253 zs.extended_error = 6254 (int *)(unsigned long)zs32.extended_error; 6255 zs.match = zs32.match; 6256 zs.doi = zs32.doi; 6257 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6258 zs.flags = zs32.flags; 6259 #else 6260 panic("get_udatamodel() returned bogus result\n"); 6261 #endif 6262 } 6263 6264 return (zone_create(zs.zone_name, zs.zone_root, 6265 zs.zone_privs, zs.zone_privssz, 6266 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6267 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6268 zs.extended_error, zs.match, zs.doi, 6269 zs.label, zs.flags)); 6270 case ZONE_BOOT: 6271 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6272 case ZONE_DESTROY: 6273 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6274 case ZONE_GETATTR: 6275 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6276 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6277 case ZONE_SETATTR: 6278 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6279 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6280 case ZONE_ENTER: 6281 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6282 case ZONE_LIST: 6283 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6284 case ZONE_SHUTDOWN: 6285 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6286 case ZONE_LOOKUP: 6287 return (zone_lookup((const char *)arg1)); 6288 case ZONE_VERSION: 6289 return (zone_version((int *)arg1)); 6290 case ZONE_ADD_DATALINK: 6291 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6292 (datalink_id_t)(uintptr_t)arg2)); 6293 case ZONE_DEL_DATALINK: 6294 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6295 (datalink_id_t)(uintptr_t)arg2)); 6296 case ZONE_CHECK_DATALINK: { 6297 zoneid_t zoneid; 6298 boolean_t need_copyout; 6299 6300 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6301 return (EFAULT); 6302 need_copyout = (zoneid == ALL_ZONES); 6303 err = zone_check_datalink(&zoneid, 6304 (datalink_id_t)(uintptr_t)arg2); 6305 if (err == 0 && need_copyout) { 6306 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6307 err = EFAULT; 6308 } 6309 return (err == 0 ? 0 : set_errno(err)); 6310 } 6311 case ZONE_LIST_DATALINK: 6312 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6313 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6314 default: 6315 return (set_errno(EINVAL)); 6316 } 6317 } 6318 6319 struct zarg { 6320 zone_t *zone; 6321 zone_cmd_arg_t arg; 6322 }; 6323 6324 static int 6325 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6326 { 6327 char *buf; 6328 size_t buflen; 6329 int error; 6330 6331 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6332 buf = kmem_alloc(buflen, KM_SLEEP); 6333 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6334 error = door_ki_open(buf, doorp); 6335 kmem_free(buf, buflen); 6336 return (error); 6337 } 6338 6339 static void 6340 zone_release_door(door_handle_t *doorp) 6341 { 6342 door_ki_rele(*doorp); 6343 *doorp = NULL; 6344 } 6345 6346 static void 6347 zone_ki_call_zoneadmd(struct zarg *zargp) 6348 { 6349 door_handle_t door = NULL; 6350 door_arg_t darg, save_arg; 6351 char *zone_name; 6352 size_t zone_namelen; 6353 zoneid_t zoneid; 6354 zone_t *zone; 6355 zone_cmd_arg_t arg; 6356 uint64_t uniqid; 6357 size_t size; 6358 int error; 6359 int retry; 6360 6361 zone = zargp->zone; 6362 arg = zargp->arg; 6363 kmem_free(zargp, sizeof (*zargp)); 6364 6365 zone_namelen = strlen(zone->zone_name) + 1; 6366 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6367 bcopy(zone->zone_name, zone_name, zone_namelen); 6368 zoneid = zone->zone_id; 6369 uniqid = zone->zone_uniqid; 6370 /* 6371 * zoneadmd may be down, but at least we can empty out the zone. 6372 * We can ignore the return value of zone_empty() since we're called 6373 * from a kernel thread and know we won't be delivered any signals. 6374 */ 6375 ASSERT(curproc == &p0); 6376 (void) zone_empty(zone); 6377 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6378 zone_rele(zone); 6379 6380 size = sizeof (arg); 6381 darg.rbuf = (char *)&arg; 6382 darg.data_ptr = (char *)&arg; 6383 darg.rsize = size; 6384 darg.data_size = size; 6385 darg.desc_ptr = NULL; 6386 darg.desc_num = 0; 6387 6388 save_arg = darg; 6389 /* 6390 * Since we're not holding a reference to the zone, any number of 6391 * things can go wrong, including the zone disappearing before we get a 6392 * chance to talk to zoneadmd. 6393 */ 6394 for (retry = 0; /* forever */; retry++) { 6395 if (door == NULL && 6396 (error = zone_lookup_door(zone_name, &door)) != 0) { 6397 goto next; 6398 } 6399 ASSERT(door != NULL); 6400 6401 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6402 SIZE_MAX, 0)) == 0) { 6403 break; 6404 } 6405 switch (error) { 6406 case EINTR: 6407 /* FALLTHROUGH */ 6408 case EAGAIN: /* process may be forking */ 6409 /* 6410 * Back off for a bit 6411 */ 6412 break; 6413 case EBADF: 6414 zone_release_door(&door); 6415 if (zone_lookup_door(zone_name, &door) != 0) { 6416 /* 6417 * zoneadmd may be dead, but it may come back to 6418 * life later. 6419 */ 6420 break; 6421 } 6422 break; 6423 default: 6424 cmn_err(CE_WARN, 6425 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6426 error); 6427 goto out; 6428 } 6429 next: 6430 /* 6431 * If this isn't the same zone_t that we originally had in mind, 6432 * then this is the same as if two kadmin requests come in at 6433 * the same time: the first one wins. This means we lose, so we 6434 * bail. 6435 */ 6436 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6437 /* 6438 * Problem is solved. 6439 */ 6440 break; 6441 } 6442 if (zone->zone_uniqid != uniqid) { 6443 /* 6444 * zoneid recycled 6445 */ 6446 zone_rele(zone); 6447 break; 6448 } 6449 /* 6450 * We could zone_status_timedwait(), but there doesn't seem to 6451 * be much point in doing that (plus, it would mean that 6452 * zone_free() isn't called until this thread exits). 6453 */ 6454 zone_rele(zone); 6455 delay(hz); 6456 darg = save_arg; 6457 } 6458 out: 6459 if (door != NULL) { 6460 zone_release_door(&door); 6461 } 6462 kmem_free(zone_name, zone_namelen); 6463 thread_exit(); 6464 } 6465 6466 /* 6467 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6468 * kadmin(). The caller is a process in the zone. 6469 * 6470 * In order to shutdown the zone, we will hand off control to zoneadmd 6471 * (running in the global zone) via a door. We do a half-hearted job at 6472 * killing all processes in the zone, create a kernel thread to contact 6473 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6474 * a form of generation number used to let zoneadmd (as well as 6475 * zone_destroy()) know exactly which zone they're re talking about. 6476 */ 6477 int 6478 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6479 { 6480 struct zarg *zargp; 6481 zone_cmd_t zcmd; 6482 zone_t *zone; 6483 6484 zone = curproc->p_zone; 6485 ASSERT(getzoneid() != GLOBAL_ZONEID); 6486 6487 switch (cmd) { 6488 case A_SHUTDOWN: 6489 switch (fcn) { 6490 case AD_HALT: 6491 case AD_POWEROFF: 6492 zcmd = Z_HALT; 6493 break; 6494 case AD_BOOT: 6495 zcmd = Z_REBOOT; 6496 break; 6497 case AD_IBOOT: 6498 case AD_SBOOT: 6499 case AD_SIBOOT: 6500 case AD_NOSYNC: 6501 return (ENOTSUP); 6502 default: 6503 return (EINVAL); 6504 } 6505 break; 6506 case A_REBOOT: 6507 zcmd = Z_REBOOT; 6508 break; 6509 case A_FTRACE: 6510 case A_REMOUNT: 6511 case A_FREEZE: 6512 case A_DUMP: 6513 case A_CONFIG: 6514 return (ENOTSUP); 6515 default: 6516 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6517 return (EINVAL); 6518 } 6519 6520 if (secpolicy_zone_admin(credp, B_FALSE)) 6521 return (EPERM); 6522 mutex_enter(&zone_status_lock); 6523 6524 /* 6525 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6526 * is in the zone. 6527 */ 6528 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6529 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6530 /* 6531 * This zone is already on its way down. 6532 */ 6533 mutex_exit(&zone_status_lock); 6534 return (0); 6535 } 6536 /* 6537 * Prevent future zone_enter()s 6538 */ 6539 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6540 mutex_exit(&zone_status_lock); 6541 6542 /* 6543 * Kill everyone now and call zoneadmd later. 6544 * zone_ki_call_zoneadmd() will do a more thorough job of this 6545 * later. 6546 */ 6547 killall(zone->zone_id); 6548 /* 6549 * Now, create the thread to contact zoneadmd and do the rest of the 6550 * work. This thread can't be created in our zone otherwise 6551 * zone_destroy() would deadlock. 6552 */ 6553 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6554 zargp->arg.cmd = zcmd; 6555 zargp->arg.uniqid = zone->zone_uniqid; 6556 zargp->zone = zone; 6557 (void) strcpy(zargp->arg.locale, "C"); 6558 /* mdep was already copied in for us by uadmin */ 6559 if (mdep != NULL) 6560 (void) strlcpy(zargp->arg.bootbuf, mdep, 6561 sizeof (zargp->arg.bootbuf)); 6562 zone_hold(zone); 6563 6564 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6565 TS_RUN, minclsyspri); 6566 exit(CLD_EXITED, 0); 6567 6568 return (EINVAL); 6569 } 6570 6571 /* 6572 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6573 * status to ZONE_IS_SHUTTING_DOWN. 6574 * 6575 * This function also shuts down all running zones to ensure that they won't 6576 * fork new processes. 6577 */ 6578 void 6579 zone_shutdown_global(void) 6580 { 6581 zone_t *current_zonep; 6582 6583 ASSERT(INGLOBALZONE(curproc)); 6584 mutex_enter(&zonehash_lock); 6585 mutex_enter(&zone_status_lock); 6586 6587 /* Modify the global zone's status first. */ 6588 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6589 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6590 6591 /* 6592 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6593 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6594 * could cause assertions to fail (e.g., assertions about a zone's 6595 * state during initialization, readying, or booting) or produce races. 6596 * We'll let threads continue to initialize and ready new zones: they'll 6597 * fail to boot the new zones when they see that the global zone is 6598 * shutting down. 6599 */ 6600 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6601 current_zonep = list_next(&zone_active, current_zonep)) { 6602 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6603 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6604 } 6605 mutex_exit(&zone_status_lock); 6606 mutex_exit(&zonehash_lock); 6607 } 6608 6609 /* 6610 * Returns true if the named dataset is visible in the current zone. 6611 * The 'write' parameter is set to 1 if the dataset is also writable. 6612 */ 6613 int 6614 zone_dataset_visible(const char *dataset, int *write) 6615 { 6616 static int zfstype = -1; 6617 zone_dataset_t *zd; 6618 size_t len; 6619 zone_t *zone = curproc->p_zone; 6620 const char *name = NULL; 6621 vfs_t *vfsp = NULL; 6622 6623 if (dataset[0] == '\0') 6624 return (0); 6625 6626 /* 6627 * Walk the list once, looking for datasets which match exactly, or 6628 * specify a dataset underneath an exported dataset. If found, return 6629 * true and note that it is writable. 6630 */ 6631 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6632 zd = list_next(&zone->zone_datasets, zd)) { 6633 6634 len = strlen(zd->zd_dataset); 6635 if (strlen(dataset) >= len && 6636 bcmp(dataset, zd->zd_dataset, len) == 0 && 6637 (dataset[len] == '\0' || dataset[len] == '/' || 6638 dataset[len] == '@')) { 6639 if (write) 6640 *write = 1; 6641 return (1); 6642 } 6643 } 6644 6645 /* 6646 * Walk the list a second time, searching for datasets which are parents 6647 * of exported datasets. These should be visible, but read-only. 6648 * 6649 * Note that we also have to support forms such as 'pool/dataset/', with 6650 * a trailing slash. 6651 */ 6652 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6653 zd = list_next(&zone->zone_datasets, zd)) { 6654 6655 len = strlen(dataset); 6656 if (dataset[len - 1] == '/') 6657 len--; /* Ignore trailing slash */ 6658 if (len < strlen(zd->zd_dataset) && 6659 bcmp(dataset, zd->zd_dataset, len) == 0 && 6660 zd->zd_dataset[len] == '/') { 6661 if (write) 6662 *write = 0; 6663 return (1); 6664 } 6665 } 6666 6667 /* 6668 * We reach here if the given dataset is not found in the zone_dataset 6669 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6670 * instead of delegation. For this we search for the dataset in the 6671 * zone_vfslist of this zone. If found, return true and note that it is 6672 * not writable. 6673 */ 6674 6675 /* 6676 * Initialize zfstype if it is not initialized yet. 6677 */ 6678 if (zfstype == -1) { 6679 struct vfssw *vswp = vfs_getvfssw("zfs"); 6680 zfstype = vswp - vfssw; 6681 vfs_unrefvfssw(vswp); 6682 } 6683 6684 vfs_list_read_lock(); 6685 vfsp = zone->zone_vfslist; 6686 do { 6687 ASSERT(vfsp); 6688 if (vfsp->vfs_fstype == zfstype) { 6689 name = refstr_value(vfsp->vfs_resource); 6690 6691 /* 6692 * Check if we have an exact match. 6693 */ 6694 if (strcmp(dataset, name) == 0) { 6695 vfs_list_unlock(); 6696 if (write) 6697 *write = 0; 6698 return (1); 6699 } 6700 /* 6701 * We need to check if we are looking for parents of 6702 * a dataset. These should be visible, but read-only. 6703 */ 6704 len = strlen(dataset); 6705 if (dataset[len - 1] == '/') 6706 len--; 6707 6708 if (len < strlen(name) && 6709 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6710 vfs_list_unlock(); 6711 if (write) 6712 *write = 0; 6713 return (1); 6714 } 6715 } 6716 vfsp = vfsp->vfs_zone_next; 6717 } while (vfsp != zone->zone_vfslist); 6718 6719 vfs_list_unlock(); 6720 return (0); 6721 } 6722 6723 /* 6724 * zone_find_by_any_path() - 6725 * 6726 * kernel-private routine similar to zone_find_by_path(), but which 6727 * effectively compares against zone paths rather than zonerootpath 6728 * (i.e., the last component of zonerootpaths, which should be "root/", 6729 * are not compared.) This is done in order to accurately identify all 6730 * paths, whether zone-visible or not, including those which are parallel 6731 * to /root/, such as /dev/, /home/, etc... 6732 * 6733 * If the specified path does not fall under any zone path then global 6734 * zone is returned. 6735 * 6736 * The treat_abs parameter indicates whether the path should be treated as 6737 * an absolute path although it does not begin with "/". (This supports 6738 * nfs mount syntax such as host:any/path.) 6739 * 6740 * The caller is responsible for zone_rele of the returned zone. 6741 */ 6742 zone_t * 6743 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6744 { 6745 zone_t *zone; 6746 int path_offset = 0; 6747 6748 if (path == NULL) { 6749 zone_hold(global_zone); 6750 return (global_zone); 6751 } 6752 6753 if (*path != '/') { 6754 ASSERT(treat_abs); 6755 path_offset = 1; 6756 } 6757 6758 mutex_enter(&zonehash_lock); 6759 for (zone = list_head(&zone_active); zone != NULL; 6760 zone = list_next(&zone_active, zone)) { 6761 char *c; 6762 size_t pathlen; 6763 char *rootpath_start; 6764 6765 if (zone == global_zone) /* skip global zone */ 6766 continue; 6767 6768 /* scan backwards to find start of last component */ 6769 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6770 do { 6771 c--; 6772 } while (*c != '/'); 6773 6774 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6775 rootpath_start = (zone->zone_rootpath + path_offset); 6776 if (strncmp(path, rootpath_start, pathlen) == 0) 6777 break; 6778 } 6779 if (zone == NULL) 6780 zone = global_zone; 6781 zone_hold(zone); 6782 mutex_exit(&zonehash_lock); 6783 return (zone); 6784 } 6785 6786 /* 6787 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6788 * zone_dl_t pointer if found, and NULL otherwise. 6789 */ 6790 static zone_dl_t * 6791 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6792 { 6793 zone_dl_t *zdl; 6794 6795 ASSERT(mutex_owned(&zone->zone_lock)); 6796 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6797 zdl = list_next(&zone->zone_dl_list, zdl)) { 6798 if (zdl->zdl_id == linkid) 6799 break; 6800 } 6801 return (zdl); 6802 } 6803 6804 static boolean_t 6805 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6806 { 6807 boolean_t exists; 6808 6809 mutex_enter(&zone->zone_lock); 6810 exists = (zone_find_dl(zone, linkid) != NULL); 6811 mutex_exit(&zone->zone_lock); 6812 return (exists); 6813 } 6814 6815 /* 6816 * Add an data link name for the zone. 6817 */ 6818 static int 6819 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6820 { 6821 zone_dl_t *zdl; 6822 zone_t *zone; 6823 zone_t *thiszone; 6824 6825 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6826 return (set_errno(ENXIO)); 6827 6828 /* Verify that the datalink ID doesn't already belong to a zone. */ 6829 mutex_enter(&zonehash_lock); 6830 for (zone = list_head(&zone_active); zone != NULL; 6831 zone = list_next(&zone_active, zone)) { 6832 if (zone_dl_exists(zone, linkid)) { 6833 mutex_exit(&zonehash_lock); 6834 zone_rele(thiszone); 6835 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6836 } 6837 } 6838 6839 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6840 zdl->zdl_id = linkid; 6841 zdl->zdl_net = NULL; 6842 mutex_enter(&thiszone->zone_lock); 6843 list_insert_head(&thiszone->zone_dl_list, zdl); 6844 mutex_exit(&thiszone->zone_lock); 6845 mutex_exit(&zonehash_lock); 6846 zone_rele(thiszone); 6847 return (0); 6848 } 6849 6850 static int 6851 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6852 { 6853 zone_dl_t *zdl; 6854 zone_t *zone; 6855 int err = 0; 6856 6857 if ((zone = zone_find_by_id(zoneid)) == NULL) 6858 return (set_errno(EINVAL)); 6859 6860 mutex_enter(&zone->zone_lock); 6861 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6862 err = ENXIO; 6863 } else { 6864 list_remove(&zone->zone_dl_list, zdl); 6865 if (zdl->zdl_net != NULL) 6866 nvlist_free(zdl->zdl_net); 6867 kmem_free(zdl, sizeof (zone_dl_t)); 6868 } 6869 mutex_exit(&zone->zone_lock); 6870 zone_rele(zone); 6871 return (err == 0 ? 0 : set_errno(err)); 6872 } 6873 6874 /* 6875 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 6876 * the linkid. Otherwise we just check if the specified zoneidp has been 6877 * assigned the supplied linkid. 6878 */ 6879 int 6880 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 6881 { 6882 zone_t *zone; 6883 int err = ENXIO; 6884 6885 if (*zoneidp != ALL_ZONES) { 6886 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 6887 if (zone_dl_exists(zone, linkid)) 6888 err = 0; 6889 zone_rele(zone); 6890 } 6891 return (err); 6892 } 6893 6894 mutex_enter(&zonehash_lock); 6895 for (zone = list_head(&zone_active); zone != NULL; 6896 zone = list_next(&zone_active, zone)) { 6897 if (zone_dl_exists(zone, linkid)) { 6898 *zoneidp = zone->zone_id; 6899 err = 0; 6900 break; 6901 } 6902 } 6903 mutex_exit(&zonehash_lock); 6904 return (err); 6905 } 6906 6907 /* 6908 * Get the list of datalink IDs assigned to a zone. 6909 * 6910 * On input, *nump is the number of datalink IDs that can fit in the supplied 6911 * idarray. Upon return, *nump is either set to the number of datalink IDs 6912 * that were placed in the array if the array was large enough, or to the 6913 * number of datalink IDs that the function needs to place in the array if the 6914 * array is too small. 6915 */ 6916 static int 6917 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 6918 { 6919 uint_t num, dlcount; 6920 zone_t *zone; 6921 zone_dl_t *zdl; 6922 datalink_id_t *idptr = idarray; 6923 6924 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6925 return (set_errno(EFAULT)); 6926 if ((zone = zone_find_by_id(zoneid)) == NULL) 6927 return (set_errno(ENXIO)); 6928 6929 num = 0; 6930 mutex_enter(&zone->zone_lock); 6931 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6932 zdl = list_next(&zone->zone_dl_list, zdl)) { 6933 /* 6934 * If the list is bigger than what the caller supplied, just 6935 * count, don't do copyout. 6936 */ 6937 if (++num > dlcount) 6938 continue; 6939 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 6940 mutex_exit(&zone->zone_lock); 6941 zone_rele(zone); 6942 return (set_errno(EFAULT)); 6943 } 6944 idptr++; 6945 } 6946 mutex_exit(&zone->zone_lock); 6947 zone_rele(zone); 6948 6949 /* Increased or decreased, caller should be notified. */ 6950 if (num != dlcount) { 6951 if (copyout(&num, nump, sizeof (num)) != 0) 6952 return (set_errno(EFAULT)); 6953 } 6954 return (0); 6955 } 6956 6957 /* 6958 * Public interface for looking up a zone by zoneid. It's a customized version 6959 * for netstack_zone_create(). It can only be called from the zsd create 6960 * callbacks, since it doesn't have reference on the zone structure hence if 6961 * it is called elsewhere the zone could disappear after the zonehash_lock 6962 * is dropped. 6963 * 6964 * Furthermore it 6965 * 1. Doesn't check the status of the zone. 6966 * 2. It will be called even before zone_init is called, in that case the 6967 * address of zone0 is returned directly, and netstack_zone_create() 6968 * will only assign a value to zone0.zone_netstack, won't break anything. 6969 * 3. Returns without the zone being held. 6970 */ 6971 zone_t * 6972 zone_find_by_id_nolock(zoneid_t zoneid) 6973 { 6974 zone_t *zone; 6975 6976 mutex_enter(&zonehash_lock); 6977 if (zonehashbyid == NULL) 6978 zone = &zone0; 6979 else 6980 zone = zone_find_all_by_id(zoneid); 6981 mutex_exit(&zonehash_lock); 6982 return (zone); 6983 } 6984 6985 /* 6986 * Walk the datalinks for a given zone 6987 */ 6988 int 6989 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 6990 void *data) 6991 { 6992 zone_t *zone; 6993 zone_dl_t *zdl; 6994 datalink_id_t *idarray; 6995 uint_t idcount = 0; 6996 int i, ret = 0; 6997 6998 if ((zone = zone_find_by_id(zoneid)) == NULL) 6999 return (ENOENT); 7000 7001 /* 7002 * We first build an array of linkid's so that we can walk these and 7003 * execute the callback with the zone_lock dropped. 7004 */ 7005 mutex_enter(&zone->zone_lock); 7006 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7007 zdl = list_next(&zone->zone_dl_list, zdl)) { 7008 idcount++; 7009 } 7010 7011 if (idcount == 0) { 7012 mutex_exit(&zone->zone_lock); 7013 zone_rele(zone); 7014 return (0); 7015 } 7016 7017 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 7018 if (idarray == NULL) { 7019 mutex_exit(&zone->zone_lock); 7020 zone_rele(zone); 7021 return (ENOMEM); 7022 } 7023 7024 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7025 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 7026 idarray[i] = zdl->zdl_id; 7027 } 7028 7029 mutex_exit(&zone->zone_lock); 7030 7031 for (i = 0; i < idcount && ret == 0; i++) { 7032 if ((ret = (*cb)(idarray[i], data)) != 0) 7033 break; 7034 } 7035 7036 zone_rele(zone); 7037 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 7038 return (ret); 7039 } 7040 7041 static char * 7042 zone_net_type2name(int type) 7043 { 7044 switch (type) { 7045 case ZONE_NETWORK_ADDRESS: 7046 return (ZONE_NET_ADDRNAME); 7047 case ZONE_NETWORK_DEFROUTER: 7048 return (ZONE_NET_RTRNAME); 7049 default: 7050 return (NULL); 7051 } 7052 } 7053 7054 static int 7055 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7056 { 7057 zone_t *zone; 7058 zone_dl_t *zdl; 7059 nvlist_t *nvl; 7060 int err = 0; 7061 uint8_t *new = NULL; 7062 char *nvname; 7063 int bufsize; 7064 datalink_id_t linkid = znbuf->zn_linkid; 7065 7066 if (secpolicy_zone_config(CRED()) != 0) 7067 return (set_errno(EPERM)); 7068 7069 if (zoneid == GLOBAL_ZONEID) 7070 return (set_errno(EINVAL)); 7071 7072 nvname = zone_net_type2name(znbuf->zn_type); 7073 bufsize = znbuf->zn_len; 7074 new = znbuf->zn_val; 7075 if (nvname == NULL) 7076 return (set_errno(EINVAL)); 7077 7078 if ((zone = zone_find_by_id(zoneid)) == NULL) { 7079 return (set_errno(EINVAL)); 7080 } 7081 7082 mutex_enter(&zone->zone_lock); 7083 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7084 err = ENXIO; 7085 goto done; 7086 } 7087 if ((nvl = zdl->zdl_net) == NULL) { 7088 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 7089 err = ENOMEM; 7090 goto done; 7091 } else { 7092 zdl->zdl_net = nvl; 7093 } 7094 } 7095 if (nvlist_exists(nvl, nvname)) { 7096 err = EINVAL; 7097 goto done; 7098 } 7099 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 7100 ASSERT(err == 0); 7101 done: 7102 mutex_exit(&zone->zone_lock); 7103 zone_rele(zone); 7104 if (err != 0) 7105 return (set_errno(err)); 7106 else 7107 return (0); 7108 } 7109 7110 static int 7111 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7112 { 7113 zone_t *zone; 7114 zone_dl_t *zdl; 7115 nvlist_t *nvl; 7116 uint8_t *ptr; 7117 uint_t psize; 7118 int err = 0; 7119 char *nvname; 7120 int bufsize; 7121 void *buf; 7122 datalink_id_t linkid = znbuf->zn_linkid; 7123 7124 if (zoneid == GLOBAL_ZONEID) 7125 return (set_errno(EINVAL)); 7126 7127 nvname = zone_net_type2name(znbuf->zn_type); 7128 bufsize = znbuf->zn_len; 7129 buf = znbuf->zn_val; 7130 7131 if (nvname == NULL) 7132 return (set_errno(EINVAL)); 7133 if ((zone = zone_find_by_id(zoneid)) == NULL) 7134 return (set_errno(EINVAL)); 7135 7136 mutex_enter(&zone->zone_lock); 7137 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7138 err = ENXIO; 7139 goto done; 7140 } 7141 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7142 err = ENOENT; 7143 goto done; 7144 } 7145 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7146 ASSERT(err == 0); 7147 7148 if (psize > bufsize) { 7149 err = ENOBUFS; 7150 goto done; 7151 } 7152 znbuf->zn_len = psize; 7153 bcopy(ptr, buf, psize); 7154 done: 7155 mutex_exit(&zone->zone_lock); 7156 zone_rele(zone); 7157 if (err != 0) 7158 return (set_errno(err)); 7159 else 7160 return (0); 7161 } 7162