1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2013, Joyent Inc. All rights reserved. 25 */ 26 27 /* 28 * Zones 29 * 30 * A zone is a named collection of processes, namespace constraints, 31 * and other system resources which comprise a secure and manageable 32 * application containment facility. 33 * 34 * Zones (represented by the reference counted zone_t) are tracked in 35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 36 * (zoneid_t) are used to track zone association. Zone IDs are 37 * dynamically generated when the zone is created; if a persistent 38 * identifier is needed (core files, accounting logs, audit trail, 39 * etc.), the zone name should be used. 40 * 41 * 42 * Global Zone: 43 * 44 * The global zone (zoneid 0) is automatically associated with all 45 * system resources that have not been bound to a user-created zone. 46 * This means that even systems where zones are not in active use 47 * have a global zone, and all processes, mounts, etc. are 48 * associated with that zone. The global zone is generally 49 * unconstrained in terms of privileges and access, though the usual 50 * credential and privilege based restrictions apply. 51 * 52 * 53 * Zone States: 54 * 55 * The states in which a zone may be in and the transitions are as 56 * follows: 57 * 58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 59 * initialized zone is added to the list of active zones on the system but 60 * isn't accessible. 61 * 62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 63 * not yet completed. Not possible to enter the zone, but attributes can 64 * be retrieved. 65 * 66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 67 * ready. The zone is made visible after the ZSD constructor callbacks are 68 * executed. A zone remains in this state until it transitions into 69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 70 * 71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 73 * state. 74 * 75 * ZONE_IS_RUNNING: The zone is open for business: zsched has 76 * successfully started init. A zone remains in this state until 77 * zone_shutdown() is called. 78 * 79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 80 * killing all processes running in the zone. The zone remains 81 * in this state until there are no more user processes running in the zone. 82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 83 * Since zone_shutdown() is restartable, it may be called successfully 84 * multiple times for the same zone_t. Setting of the zone's state to 85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 86 * the zone's status without worrying about it being a moving target. 87 * 88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 89 * are no more user processes in the zone. The zone remains in this 90 * state until there are no more kernel threads associated with the 91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 92 * fail. 93 * 94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 95 * have exited. zone_shutdown() returns. Henceforth it is not possible to 96 * join the zone or create kernel threads therein. 97 * 98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 99 * remains in this state until zsched exits. Calls to zone_find_by_*() 100 * return NULL from now on. 101 * 102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 103 * processes or threads doing work on behalf of the zone. The zone is 104 * removed from the list of active zones. zone_destroy() returns, and 105 * the zone can be recreated. 106 * 107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 108 * callbacks are executed, and all memory associated with the zone is 109 * freed. 110 * 111 * Threads can wait for the zone to enter a requested state by using 112 * zone_status_wait() or zone_status_timedwait() with the desired 113 * state passed in as an argument. Zone state transitions are 114 * uni-directional; it is not possible to move back to an earlier state. 115 * 116 * 117 * Zone-Specific Data: 118 * 119 * Subsystems needing to maintain zone-specific data can store that 120 * data using the ZSD mechanism. This provides a zone-specific data 121 * store, similar to thread-specific data (see pthread_getspecific(3C) 122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 123 * to register callbacks to be invoked when a zone is created, shut 124 * down, or destroyed. This can be used to initialize zone-specific 125 * data for new zones and to clean up when zones go away. 126 * 127 * 128 * Data Structures: 129 * 130 * The per-zone structure (zone_t) is reference counted, and freed 131 * when all references are released. zone_hold and zone_rele can be 132 * used to adjust the reference count. In addition, reference counts 133 * associated with the cred_t structure are tracked separately using 134 * zone_cred_hold and zone_cred_rele. 135 * 136 * Pointers to active zone_t's are stored in two hash tables; one 137 * for searching by id, the other for searching by name. Lookups 138 * can be performed on either basis, using zone_find_by_id and 139 * zone_find_by_name. Both return zone_t pointers with the zone 140 * held, so zone_rele should be called when the pointer is no longer 141 * needed. Zones can also be searched by path; zone_find_by_path 142 * returns the zone with which a path name is associated (global 143 * zone if the path is not within some other zone's file system 144 * hierarchy). This currently requires iterating through each zone, 145 * so it is slower than an id or name search via a hash table. 146 * 147 * 148 * Locking: 149 * 150 * zonehash_lock: This is a top-level global lock used to protect the 151 * zone hash tables and lists. Zones cannot be created or destroyed 152 * while this lock is held. 153 * zone_status_lock: This is a global lock protecting zone state. 154 * Zones cannot change state while this lock is held. It also 155 * protects the list of kernel threads associated with a zone. 156 * zone_lock: This is a per-zone lock used to protect several fields of 157 * the zone_t (see <sys/zone.h> for details). In addition, holding 158 * this lock means that the zone cannot go away. 159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-lwps rctl. 161 * zone_mem_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-locked-memory and zone.max-swap rctls. 163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 164 * currently just max_lofi 165 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 166 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 167 * list (a list of zones in the ZONE_IS_DEAD state). 168 * 169 * Ordering requirements: 170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 172 * 173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 176 * 177 * Blocking memory allocations are permitted while holding any of the 178 * zone locks. 179 * 180 * 181 * System Call Interface: 182 * 183 * The zone subsystem can be managed and queried from user level with 184 * the following system calls (all subcodes of the primary "zone" 185 * system call): 186 * - zone_create: creates a zone with selected attributes (name, 187 * root path, privileges, resource controls, ZFS datasets) 188 * - zone_enter: allows the current process to enter a zone 189 * - zone_getattr: reports attributes of a zone 190 * - zone_setattr: set attributes of a zone 191 * - zone_boot: set 'init' running for the zone 192 * - zone_list: lists all zones active in the system 193 * - zone_lookup: looks up zone id based on name 194 * - zone_shutdown: initiates shutdown process (see states above) 195 * - zone_destroy: completes shutdown process (see states above) 196 * 197 */ 198 199 #include <sys/priv_impl.h> 200 #include <sys/cred.h> 201 #include <c2/audit.h> 202 #include <sys/debug.h> 203 #include <sys/file.h> 204 #include <sys/kmem.h> 205 #include <sys/kstat.h> 206 #include <sys/mutex.h> 207 #include <sys/note.h> 208 #include <sys/pathname.h> 209 #include <sys/proc.h> 210 #include <sys/project.h> 211 #include <sys/sysevent.h> 212 #include <sys/task.h> 213 #include <sys/systm.h> 214 #include <sys/types.h> 215 #include <sys/utsname.h> 216 #include <sys/vnode.h> 217 #include <sys/vfs.h> 218 #include <sys/systeminfo.h> 219 #include <sys/policy.h> 220 #include <sys/cred_impl.h> 221 #include <sys/contract_impl.h> 222 #include <sys/contract/process_impl.h> 223 #include <sys/class.h> 224 #include <sys/pool.h> 225 #include <sys/pool_pset.h> 226 #include <sys/pset.h> 227 #include <sys/strlog.h> 228 #include <sys/sysmacros.h> 229 #include <sys/callb.h> 230 #include <sys/vmparam.h> 231 #include <sys/corectl.h> 232 #include <sys/ipc_impl.h> 233 #include <sys/klpd.h> 234 235 #include <sys/door.h> 236 #include <sys/cpuvar.h> 237 #include <sys/sdt.h> 238 239 #include <sys/uadmin.h> 240 #include <sys/session.h> 241 #include <sys/cmn_err.h> 242 #include <sys/modhash.h> 243 #include <sys/sunddi.h> 244 #include <sys/nvpair.h> 245 #include <sys/rctl.h> 246 #include <sys/fss.h> 247 #include <sys/brand.h> 248 #include <sys/zone.h> 249 #include <net/if.h> 250 #include <sys/cpucaps.h> 251 #include <vm/seg.h> 252 #include <sys/mac.h> 253 254 /* 255 * This constant specifies the number of seconds that threads waiting for 256 * subsystems to release a zone's general-purpose references will wait before 257 * they log the zone's reference counts. The constant's value shouldn't 258 * be so small that reference counts are unnecessarily reported for zones 259 * whose references are slowly released. On the other hand, it shouldn't be so 260 * large that users reboot their systems out of frustration over hung zones 261 * before the system logs the zones' reference counts. 262 */ 263 #define ZONE_DESTROY_TIMEOUT_SECS 60 264 265 /* List of data link IDs which are accessible from the zone */ 266 typedef struct zone_dl { 267 datalink_id_t zdl_id; 268 nvlist_t *zdl_net; 269 list_node_t zdl_linkage; 270 } zone_dl_t; 271 272 /* 273 * cv used to signal that all references to the zone have been released. This 274 * needs to be global since there may be multiple waiters, and the first to 275 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 276 */ 277 static kcondvar_t zone_destroy_cv; 278 /* 279 * Lock used to serialize access to zone_cv. This could have been per-zone, 280 * but then we'd need another lock for zone_destroy_cv, and why bother? 281 */ 282 static kmutex_t zone_status_lock; 283 284 /* 285 * ZSD-related global variables. 286 */ 287 static kmutex_t zsd_key_lock; /* protects the following two */ 288 /* 289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 290 */ 291 static zone_key_t zsd_keyval = 0; 292 /* 293 * Global list of registered keys. We use this when a new zone is created. 294 */ 295 static list_t zsd_registered_keys; 296 297 int zone_hash_size = 256; 298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 299 static kmutex_t zonehash_lock; 300 static uint_t zonecount; 301 static id_space_t *zoneid_space; 302 303 /* 304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 305 * kernel proper runs, and which manages all other zones. 306 * 307 * Although not declared as static, the variable "zone0" should not be used 308 * except for by code that needs to reference the global zone early on in boot, 309 * before it is fully initialized. All other consumers should use 310 * 'global_zone'. 311 */ 312 zone_t zone0; 313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 314 315 /* 316 * List of active zones, protected by zonehash_lock. 317 */ 318 static list_t zone_active; 319 320 /* 321 * List of destroyed zones that still have outstanding cred references. 322 * Used for debugging. Uses a separate lock to avoid lock ordering 323 * problems in zone_free. 324 */ 325 static list_t zone_deathrow; 326 static kmutex_t zone_deathrow_lock; 327 328 /* number of zones is limited by virtual interface limit in IP */ 329 uint_t maxzones = 8192; 330 331 /* Event channel to sent zone state change notifications */ 332 evchan_t *zone_event_chan; 333 334 /* 335 * This table holds the mapping from kernel zone states to 336 * states visible in the state notification API. 337 * The idea is that we only expose "obvious" states and 338 * do not expose states which are just implementation details. 339 */ 340 const char *zone_status_table[] = { 341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 342 ZONE_EVENT_INITIALIZED, /* initialized */ 343 ZONE_EVENT_READY, /* ready */ 344 ZONE_EVENT_READY, /* booting */ 345 ZONE_EVENT_RUNNING, /* running */ 346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 347 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 348 ZONE_EVENT_SHUTTING_DOWN, /* down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 350 ZONE_EVENT_UNINITIALIZED, /* dead */ 351 }; 352 353 /* 354 * This array contains the names of the subsystems listed in zone_ref_subsys_t 355 * (see sys/zone.h). 356 */ 357 static char *zone_ref_subsys_names[] = { 358 "NFS", /* ZONE_REF_NFS */ 359 "NFSv4", /* ZONE_REF_NFSV4 */ 360 "SMBFS", /* ZONE_REF_SMBFS */ 361 "MNTFS", /* ZONE_REF_MNTFS */ 362 "LOFI", /* ZONE_REF_LOFI */ 363 "VFS", /* ZONE_REF_VFS */ 364 "IPC" /* ZONE_REF_IPC */ 365 }; 366 367 /* 368 * This isn't static so lint doesn't complain. 369 */ 370 rctl_hndl_t rc_zone_cpu_shares; 371 rctl_hndl_t rc_zone_locked_mem; 372 rctl_hndl_t rc_zone_max_swap; 373 rctl_hndl_t rc_zone_max_lofi; 374 rctl_hndl_t rc_zone_cpu_cap; 375 rctl_hndl_t rc_zone_nlwps; 376 rctl_hndl_t rc_zone_nprocs; 377 rctl_hndl_t rc_zone_shmmax; 378 rctl_hndl_t rc_zone_shmmni; 379 rctl_hndl_t rc_zone_semmni; 380 rctl_hndl_t rc_zone_msgmni; 381 /* 382 * Synchronization primitives used to synchronize between mounts and zone 383 * creation/destruction. 384 */ 385 static int mounts_in_progress; 386 static kcondvar_t mount_cv; 387 static kmutex_t mount_lock; 388 389 const char * const zone_default_initname = "/sbin/init"; 390 static char * const zone_prefix = "/zone/"; 391 static int zone_shutdown(zoneid_t zoneid); 392 static int zone_add_datalink(zoneid_t, datalink_id_t); 393 static int zone_remove_datalink(zoneid_t, datalink_id_t); 394 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 395 static int zone_set_network(zoneid_t, zone_net_data_t *); 396 static int zone_get_network(zoneid_t, zone_net_data_t *); 397 398 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 399 400 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 401 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 402 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 403 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 404 zone_key_t); 405 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 406 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 407 kmutex_t *); 408 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 409 kmutex_t *); 410 411 /* 412 * Bump this number when you alter the zone syscall interfaces; this is 413 * because we need to have support for previous API versions in libc 414 * to support patching; libc calls into the kernel to determine this number. 415 * 416 * Version 1 of the API is the version originally shipped with Solaris 10 417 * Version 2 alters the zone_create system call in order to support more 418 * arguments by moving the args into a structure; and to do better 419 * error reporting when zone_create() fails. 420 * Version 3 alters the zone_create system call in order to support the 421 * import of ZFS datasets to zones. 422 * Version 4 alters the zone_create system call in order to support 423 * Trusted Extensions. 424 * Version 5 alters the zone_boot system call, and converts its old 425 * bootargs parameter to be set by the zone_setattr API instead. 426 * Version 6 adds the flag argument to zone_create. 427 */ 428 static const int ZONE_SYSCALL_API_VERSION = 6; 429 430 /* 431 * Certain filesystems (such as NFS and autofs) need to know which zone 432 * the mount is being placed in. Because of this, we need to be able to 433 * ensure that a zone isn't in the process of being created such that 434 * nfs_mount() thinks it is in the global zone, while by the time it 435 * gets added the list of mounted zones, it ends up on zoneA's mount 436 * list. 437 * 438 * The following functions: block_mounts()/resume_mounts() and 439 * mount_in_progress()/mount_completed() are used by zones and the VFS 440 * layer (respectively) to synchronize zone creation and new mounts. 441 * 442 * The semantics are like a reader-reader lock such that there may 443 * either be multiple mounts (or zone creations, if that weren't 444 * serialized by zonehash_lock) in progress at the same time, but not 445 * both. 446 * 447 * We use cv's so the user can ctrl-C out of the operation if it's 448 * taking too long. 449 * 450 * The semantics are such that there is unfair bias towards the 451 * "current" operation. This means that zone creations may starve if 452 * there is a rapid succession of new mounts coming in to the system, or 453 * there is a remote possibility that zones will be created at such a 454 * rate that new mounts will not be able to proceed. 455 */ 456 /* 457 * Prevent new mounts from progressing to the point of calling 458 * VFS_MOUNT(). If there are already mounts in this "region", wait for 459 * them to complete. 460 */ 461 static int 462 block_mounts(void) 463 { 464 int retval = 0; 465 466 /* 467 * Since it may block for a long time, block_mounts() shouldn't be 468 * called with zonehash_lock held. 469 */ 470 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 471 mutex_enter(&mount_lock); 472 while (mounts_in_progress > 0) { 473 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 474 goto signaled; 475 } 476 /* 477 * A negative value of mounts_in_progress indicates that mounts 478 * have been blocked by (-mounts_in_progress) different callers. 479 */ 480 mounts_in_progress--; 481 retval = 1; 482 signaled: 483 mutex_exit(&mount_lock); 484 return (retval); 485 } 486 487 /* 488 * The VFS layer may progress with new mounts as far as we're concerned. 489 * Allow them to progress if we were the last obstacle. 490 */ 491 static void 492 resume_mounts(void) 493 { 494 mutex_enter(&mount_lock); 495 if (++mounts_in_progress == 0) 496 cv_broadcast(&mount_cv); 497 mutex_exit(&mount_lock); 498 } 499 500 /* 501 * The VFS layer is busy with a mount; zones should wait until all 502 * mounts are completed to progress. 503 */ 504 void 505 mount_in_progress(void) 506 { 507 mutex_enter(&mount_lock); 508 while (mounts_in_progress < 0) 509 cv_wait(&mount_cv, &mount_lock); 510 mounts_in_progress++; 511 mutex_exit(&mount_lock); 512 } 513 514 /* 515 * VFS is done with one mount; wake up any waiting block_mounts() 516 * callers if this is the last mount. 517 */ 518 void 519 mount_completed(void) 520 { 521 mutex_enter(&mount_lock); 522 if (--mounts_in_progress == 0) 523 cv_broadcast(&mount_cv); 524 mutex_exit(&mount_lock); 525 } 526 527 /* 528 * ZSD routines. 529 * 530 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 531 * defined by the pthread_key_create() and related interfaces. 532 * 533 * Kernel subsystems may register one or more data items and/or 534 * callbacks to be executed when a zone is created, shutdown, or 535 * destroyed. 536 * 537 * Unlike the thread counterpart, destructor callbacks will be executed 538 * even if the data pointer is NULL and/or there are no constructor 539 * callbacks, so it is the responsibility of such callbacks to check for 540 * NULL data values if necessary. 541 * 542 * The locking strategy and overall picture is as follows: 543 * 544 * When someone calls zone_key_create(), a template ZSD entry is added to the 545 * global list "zsd_registered_keys", protected by zsd_key_lock. While 546 * holding that lock all the existing zones are marked as 547 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 548 * zone_zsd list (protected by zone_lock). The global list is updated first 549 * (under zone_key_lock) to make sure that newly created zones use the 550 * most recent list of keys. Then under zonehash_lock we walk the zones 551 * and mark them. Similar locking is used in zone_key_delete(). 552 * 553 * The actual create, shutdown, and destroy callbacks are done without 554 * holding any lock. And zsd_flags are used to ensure that the operations 555 * completed so that when zone_key_create (and zone_create) is done, as well as 556 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 557 * are completed. 558 * 559 * When new zones are created constructor callbacks for all registered ZSD 560 * entries will be called. That also uses the above two phases of marking 561 * what needs to be done, and then running the callbacks without holding 562 * any locks. 563 * 564 * The framework does not provide any locking around zone_getspecific() and 565 * zone_setspecific() apart from that needed for internal consistency, so 566 * callers interested in atomic "test-and-set" semantics will need to provide 567 * their own locking. 568 */ 569 570 /* 571 * Helper function to find the zsd_entry associated with the key in the 572 * given list. 573 */ 574 static struct zsd_entry * 575 zsd_find(list_t *l, zone_key_t key) 576 { 577 struct zsd_entry *zsd; 578 579 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 580 if (zsd->zsd_key == key) { 581 return (zsd); 582 } 583 } 584 return (NULL); 585 } 586 587 /* 588 * Helper function to find the zsd_entry associated with the key in the 589 * given list. Move it to the front of the list. 590 */ 591 static struct zsd_entry * 592 zsd_find_mru(list_t *l, zone_key_t key) 593 { 594 struct zsd_entry *zsd; 595 596 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 597 if (zsd->zsd_key == key) { 598 /* 599 * Move to head of list to keep list in MRU order. 600 */ 601 if (zsd != list_head(l)) { 602 list_remove(l, zsd); 603 list_insert_head(l, zsd); 604 } 605 return (zsd); 606 } 607 } 608 return (NULL); 609 } 610 611 void 612 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 613 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 614 { 615 struct zsd_entry *zsdp; 616 struct zsd_entry *t; 617 struct zone *zone; 618 zone_key_t key; 619 620 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 621 zsdp->zsd_data = NULL; 622 zsdp->zsd_create = create; 623 zsdp->zsd_shutdown = shutdown; 624 zsdp->zsd_destroy = destroy; 625 626 /* 627 * Insert in global list of callbacks. Makes future zone creations 628 * see it. 629 */ 630 mutex_enter(&zsd_key_lock); 631 key = zsdp->zsd_key = ++zsd_keyval; 632 ASSERT(zsd_keyval != 0); 633 list_insert_tail(&zsd_registered_keys, zsdp); 634 mutex_exit(&zsd_key_lock); 635 636 /* 637 * Insert for all existing zones and mark them as needing 638 * a create callback. 639 */ 640 mutex_enter(&zonehash_lock); /* stop the world */ 641 for (zone = list_head(&zone_active); zone != NULL; 642 zone = list_next(&zone_active, zone)) { 643 zone_status_t status; 644 645 mutex_enter(&zone->zone_lock); 646 647 /* Skip zones that are on the way down or not yet up */ 648 status = zone_status_get(zone); 649 if (status >= ZONE_IS_DOWN || 650 status == ZONE_IS_UNINITIALIZED) { 651 mutex_exit(&zone->zone_lock); 652 continue; 653 } 654 655 t = zsd_find_mru(&zone->zone_zsd, key); 656 if (t != NULL) { 657 /* 658 * A zsd_configure already inserted it after 659 * we dropped zsd_key_lock above. 660 */ 661 mutex_exit(&zone->zone_lock); 662 continue; 663 } 664 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 665 t->zsd_key = key; 666 t->zsd_create = create; 667 t->zsd_shutdown = shutdown; 668 t->zsd_destroy = destroy; 669 if (create != NULL) { 670 t->zsd_flags = ZSD_CREATE_NEEDED; 671 DTRACE_PROBE2(zsd__create__needed, 672 zone_t *, zone, zone_key_t, key); 673 } 674 list_insert_tail(&zone->zone_zsd, t); 675 mutex_exit(&zone->zone_lock); 676 } 677 mutex_exit(&zonehash_lock); 678 679 if (create != NULL) { 680 /* Now call the create callback for this key */ 681 zsd_apply_all_zones(zsd_apply_create, key); 682 } 683 /* 684 * It is safe for consumers to use the key now, make it 685 * globally visible. Specifically zone_getspecific() will 686 * always successfully return the zone specific data associated 687 * with the key. 688 */ 689 *keyp = key; 690 691 } 692 693 /* 694 * Function called when a module is being unloaded, or otherwise wishes 695 * to unregister its ZSD key and callbacks. 696 * 697 * Remove from the global list and determine the functions that need to 698 * be called under a global lock. Then call the functions without 699 * holding any locks. Finally free up the zone_zsd entries. (The apply 700 * functions need to access the zone_zsd entries to find zsd_data etc.) 701 */ 702 int 703 zone_key_delete(zone_key_t key) 704 { 705 struct zsd_entry *zsdp = NULL; 706 zone_t *zone; 707 708 mutex_enter(&zsd_key_lock); 709 zsdp = zsd_find_mru(&zsd_registered_keys, key); 710 if (zsdp == NULL) { 711 mutex_exit(&zsd_key_lock); 712 return (-1); 713 } 714 list_remove(&zsd_registered_keys, zsdp); 715 mutex_exit(&zsd_key_lock); 716 717 mutex_enter(&zonehash_lock); 718 for (zone = list_head(&zone_active); zone != NULL; 719 zone = list_next(&zone_active, zone)) { 720 struct zsd_entry *del; 721 722 mutex_enter(&zone->zone_lock); 723 del = zsd_find_mru(&zone->zone_zsd, key); 724 if (del == NULL) { 725 /* 726 * Somebody else got here first e.g the zone going 727 * away. 728 */ 729 mutex_exit(&zone->zone_lock); 730 continue; 731 } 732 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 733 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 734 if (del->zsd_shutdown != NULL && 735 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 736 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 737 DTRACE_PROBE2(zsd__shutdown__needed, 738 zone_t *, zone, zone_key_t, key); 739 } 740 if (del->zsd_destroy != NULL && 741 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 742 del->zsd_flags |= ZSD_DESTROY_NEEDED; 743 DTRACE_PROBE2(zsd__destroy__needed, 744 zone_t *, zone, zone_key_t, key); 745 } 746 mutex_exit(&zone->zone_lock); 747 } 748 mutex_exit(&zonehash_lock); 749 kmem_free(zsdp, sizeof (*zsdp)); 750 751 /* Now call the shutdown and destroy callback for this key */ 752 zsd_apply_all_zones(zsd_apply_shutdown, key); 753 zsd_apply_all_zones(zsd_apply_destroy, key); 754 755 /* Now we can free up the zsdp structures in each zone */ 756 mutex_enter(&zonehash_lock); 757 for (zone = list_head(&zone_active); zone != NULL; 758 zone = list_next(&zone_active, zone)) { 759 struct zsd_entry *del; 760 761 mutex_enter(&zone->zone_lock); 762 del = zsd_find(&zone->zone_zsd, key); 763 if (del != NULL) { 764 list_remove(&zone->zone_zsd, del); 765 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 766 kmem_free(del, sizeof (*del)); 767 } 768 mutex_exit(&zone->zone_lock); 769 } 770 mutex_exit(&zonehash_lock); 771 772 return (0); 773 } 774 775 /* 776 * ZSD counterpart of pthread_setspecific(). 777 * 778 * Since all zsd callbacks, including those with no create function, 779 * have an entry in zone_zsd, if the key is registered it is part of 780 * the zone_zsd list. 781 * Return an error if the key wasn't registerd. 782 */ 783 int 784 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 785 { 786 struct zsd_entry *t; 787 788 mutex_enter(&zone->zone_lock); 789 t = zsd_find_mru(&zone->zone_zsd, key); 790 if (t != NULL) { 791 /* 792 * Replace old value with new 793 */ 794 t->zsd_data = (void *)data; 795 mutex_exit(&zone->zone_lock); 796 return (0); 797 } 798 mutex_exit(&zone->zone_lock); 799 return (-1); 800 } 801 802 /* 803 * ZSD counterpart of pthread_getspecific(). 804 */ 805 void * 806 zone_getspecific(zone_key_t key, zone_t *zone) 807 { 808 struct zsd_entry *t; 809 void *data; 810 811 mutex_enter(&zone->zone_lock); 812 t = zsd_find_mru(&zone->zone_zsd, key); 813 data = (t == NULL ? NULL : t->zsd_data); 814 mutex_exit(&zone->zone_lock); 815 return (data); 816 } 817 818 /* 819 * Function used to initialize a zone's list of ZSD callbacks and data 820 * when the zone is being created. The callbacks are initialized from 821 * the template list (zsd_registered_keys). The constructor callback is 822 * executed later (once the zone exists and with locks dropped). 823 */ 824 static void 825 zone_zsd_configure(zone_t *zone) 826 { 827 struct zsd_entry *zsdp; 828 struct zsd_entry *t; 829 830 ASSERT(MUTEX_HELD(&zonehash_lock)); 831 ASSERT(list_head(&zone->zone_zsd) == NULL); 832 mutex_enter(&zone->zone_lock); 833 mutex_enter(&zsd_key_lock); 834 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 835 zsdp = list_next(&zsd_registered_keys, zsdp)) { 836 /* 837 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 838 * should not have added anything to it. 839 */ 840 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 841 842 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 843 t->zsd_key = zsdp->zsd_key; 844 t->zsd_create = zsdp->zsd_create; 845 t->zsd_shutdown = zsdp->zsd_shutdown; 846 t->zsd_destroy = zsdp->zsd_destroy; 847 if (zsdp->zsd_create != NULL) { 848 t->zsd_flags = ZSD_CREATE_NEEDED; 849 DTRACE_PROBE2(zsd__create__needed, 850 zone_t *, zone, zone_key_t, zsdp->zsd_key); 851 } 852 list_insert_tail(&zone->zone_zsd, t); 853 } 854 mutex_exit(&zsd_key_lock); 855 mutex_exit(&zone->zone_lock); 856 } 857 858 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 859 860 /* 861 * Helper function to execute shutdown or destructor callbacks. 862 */ 863 static void 864 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 865 { 866 struct zsd_entry *t; 867 868 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 869 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 870 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 871 872 /* 873 * Run the callback solely based on what is registered for the zone 874 * in zone_zsd. The global list can change independently of this 875 * as keys are registered and unregistered and we don't register new 876 * callbacks for a zone that is in the process of going away. 877 */ 878 mutex_enter(&zone->zone_lock); 879 for (t = list_head(&zone->zone_zsd); t != NULL; 880 t = list_next(&zone->zone_zsd, t)) { 881 zone_key_t key = t->zsd_key; 882 883 /* Skip if no callbacks registered */ 884 885 if (ct == ZSD_SHUTDOWN) { 886 if (t->zsd_shutdown != NULL && 887 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 888 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 889 DTRACE_PROBE2(zsd__shutdown__needed, 890 zone_t *, zone, zone_key_t, key); 891 } 892 } else { 893 if (t->zsd_destroy != NULL && 894 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 895 t->zsd_flags |= ZSD_DESTROY_NEEDED; 896 DTRACE_PROBE2(zsd__destroy__needed, 897 zone_t *, zone, zone_key_t, key); 898 } 899 } 900 } 901 mutex_exit(&zone->zone_lock); 902 903 /* Now call the shutdown and destroy callback for this key */ 904 zsd_apply_all_keys(zsd_apply_shutdown, zone); 905 zsd_apply_all_keys(zsd_apply_destroy, zone); 906 907 } 908 909 /* 910 * Called when the zone is going away; free ZSD-related memory, and 911 * destroy the zone_zsd list. 912 */ 913 static void 914 zone_free_zsd(zone_t *zone) 915 { 916 struct zsd_entry *t, *next; 917 918 /* 919 * Free all the zsd_entry's we had on this zone. 920 */ 921 mutex_enter(&zone->zone_lock); 922 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 923 next = list_next(&zone->zone_zsd, t); 924 list_remove(&zone->zone_zsd, t); 925 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 926 kmem_free(t, sizeof (*t)); 927 } 928 list_destroy(&zone->zone_zsd); 929 mutex_exit(&zone->zone_lock); 930 931 } 932 933 /* 934 * Apply a function to all zones for particular key value. 935 * 936 * The applyfn has to drop zonehash_lock if it does some work, and 937 * then reacquire it before it returns. 938 * When the lock is dropped we don't follow list_next even 939 * if it is possible to do so without any hazards. This is 940 * because we want the design to allow for the list of zones 941 * to change in any arbitrary way during the time the 942 * lock was dropped. 943 * 944 * It is safe to restart the loop at list_head since the applyfn 945 * changes the zsd_flags as it does work, so a subsequent 946 * pass through will have no effect in applyfn, hence the loop will terminate 947 * in at worst O(N^2). 948 */ 949 static void 950 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 951 { 952 zone_t *zone; 953 954 mutex_enter(&zonehash_lock); 955 zone = list_head(&zone_active); 956 while (zone != NULL) { 957 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 958 /* Lock dropped - restart at head */ 959 zone = list_head(&zone_active); 960 } else { 961 zone = list_next(&zone_active, zone); 962 } 963 } 964 mutex_exit(&zonehash_lock); 965 } 966 967 /* 968 * Apply a function to all keys for a particular zone. 969 * 970 * The applyfn has to drop zonehash_lock if it does some work, and 971 * then reacquire it before it returns. 972 * When the lock is dropped we don't follow list_next even 973 * if it is possible to do so without any hazards. This is 974 * because we want the design to allow for the list of zsd callbacks 975 * to change in any arbitrary way during the time the 976 * lock was dropped. 977 * 978 * It is safe to restart the loop at list_head since the applyfn 979 * changes the zsd_flags as it does work, so a subsequent 980 * pass through will have no effect in applyfn, hence the loop will terminate 981 * in at worst O(N^2). 982 */ 983 static void 984 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 985 { 986 struct zsd_entry *t; 987 988 mutex_enter(&zone->zone_lock); 989 t = list_head(&zone->zone_zsd); 990 while (t != NULL) { 991 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 992 /* Lock dropped - restart at head */ 993 t = list_head(&zone->zone_zsd); 994 } else { 995 t = list_next(&zone->zone_zsd, t); 996 } 997 } 998 mutex_exit(&zone->zone_lock); 999 } 1000 1001 /* 1002 * Call the create function for the zone and key if CREATE_NEEDED 1003 * is set. 1004 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1005 * we wait for that thread to complete so that we can ensure that 1006 * all the callbacks are done when we've looped over all zones/keys. 1007 * 1008 * When we call the create function, we drop the global held by the 1009 * caller, and return true to tell the caller it needs to re-evalute the 1010 * state. 1011 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1012 * remains held on exit. 1013 */ 1014 static boolean_t 1015 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1016 zone_t *zone, zone_key_t key) 1017 { 1018 void *result; 1019 struct zsd_entry *t; 1020 boolean_t dropped; 1021 1022 if (lockp != NULL) { 1023 ASSERT(MUTEX_HELD(lockp)); 1024 } 1025 if (zone_lock_held) { 1026 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1027 } else { 1028 mutex_enter(&zone->zone_lock); 1029 } 1030 1031 t = zsd_find(&zone->zone_zsd, key); 1032 if (t == NULL) { 1033 /* 1034 * Somebody else got here first e.g the zone going 1035 * away. 1036 */ 1037 if (!zone_lock_held) 1038 mutex_exit(&zone->zone_lock); 1039 return (B_FALSE); 1040 } 1041 dropped = B_FALSE; 1042 if (zsd_wait_for_inprogress(zone, t, lockp)) 1043 dropped = B_TRUE; 1044 1045 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1046 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1047 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1048 DTRACE_PROBE2(zsd__create__inprogress, 1049 zone_t *, zone, zone_key_t, key); 1050 mutex_exit(&zone->zone_lock); 1051 if (lockp != NULL) 1052 mutex_exit(lockp); 1053 1054 dropped = B_TRUE; 1055 ASSERT(t->zsd_create != NULL); 1056 DTRACE_PROBE2(zsd__create__start, 1057 zone_t *, zone, zone_key_t, key); 1058 1059 result = (*t->zsd_create)(zone->zone_id); 1060 1061 DTRACE_PROBE2(zsd__create__end, 1062 zone_t *, zone, voidn *, result); 1063 1064 ASSERT(result != NULL); 1065 if (lockp != NULL) 1066 mutex_enter(lockp); 1067 mutex_enter(&zone->zone_lock); 1068 t->zsd_data = result; 1069 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1070 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1071 cv_broadcast(&t->zsd_cv); 1072 DTRACE_PROBE2(zsd__create__completed, 1073 zone_t *, zone, zone_key_t, key); 1074 } 1075 if (!zone_lock_held) 1076 mutex_exit(&zone->zone_lock); 1077 return (dropped); 1078 } 1079 1080 /* 1081 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1082 * is set. 1083 * If some other thread gets here first and sets *_INPROGRESS, then 1084 * we wait for that thread to complete so that we can ensure that 1085 * all the callbacks are done when we've looped over all zones/keys. 1086 * 1087 * When we call the shutdown function, we drop the global held by the 1088 * caller, and return true to tell the caller it needs to re-evalute the 1089 * state. 1090 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1091 * remains held on exit. 1092 */ 1093 static boolean_t 1094 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1095 zone_t *zone, zone_key_t key) 1096 { 1097 struct zsd_entry *t; 1098 void *data; 1099 boolean_t dropped; 1100 1101 if (lockp != NULL) { 1102 ASSERT(MUTEX_HELD(lockp)); 1103 } 1104 if (zone_lock_held) { 1105 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1106 } else { 1107 mutex_enter(&zone->zone_lock); 1108 } 1109 1110 t = zsd_find(&zone->zone_zsd, key); 1111 if (t == NULL) { 1112 /* 1113 * Somebody else got here first e.g the zone going 1114 * away. 1115 */ 1116 if (!zone_lock_held) 1117 mutex_exit(&zone->zone_lock); 1118 return (B_FALSE); 1119 } 1120 dropped = B_FALSE; 1121 if (zsd_wait_for_creator(zone, t, lockp)) 1122 dropped = B_TRUE; 1123 1124 if (zsd_wait_for_inprogress(zone, t, lockp)) 1125 dropped = B_TRUE; 1126 1127 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1128 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1129 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1130 DTRACE_PROBE2(zsd__shutdown__inprogress, 1131 zone_t *, zone, zone_key_t, key); 1132 mutex_exit(&zone->zone_lock); 1133 if (lockp != NULL) 1134 mutex_exit(lockp); 1135 dropped = B_TRUE; 1136 1137 ASSERT(t->zsd_shutdown != NULL); 1138 data = t->zsd_data; 1139 1140 DTRACE_PROBE2(zsd__shutdown__start, 1141 zone_t *, zone, zone_key_t, key); 1142 1143 (t->zsd_shutdown)(zone->zone_id, data); 1144 DTRACE_PROBE2(zsd__shutdown__end, 1145 zone_t *, zone, zone_key_t, key); 1146 1147 if (lockp != NULL) 1148 mutex_enter(lockp); 1149 mutex_enter(&zone->zone_lock); 1150 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1151 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1152 cv_broadcast(&t->zsd_cv); 1153 DTRACE_PROBE2(zsd__shutdown__completed, 1154 zone_t *, zone, zone_key_t, key); 1155 } 1156 if (!zone_lock_held) 1157 mutex_exit(&zone->zone_lock); 1158 return (dropped); 1159 } 1160 1161 /* 1162 * Call the destroy function for the zone and key if DESTROY_NEEDED 1163 * is set. 1164 * If some other thread gets here first and sets *_INPROGRESS, then 1165 * we wait for that thread to complete so that we can ensure that 1166 * all the callbacks are done when we've looped over all zones/keys. 1167 * 1168 * When we call the destroy function, we drop the global held by the 1169 * caller, and return true to tell the caller it needs to re-evalute the 1170 * state. 1171 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1172 * remains held on exit. 1173 */ 1174 static boolean_t 1175 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1176 zone_t *zone, zone_key_t key) 1177 { 1178 struct zsd_entry *t; 1179 void *data; 1180 boolean_t dropped; 1181 1182 if (lockp != NULL) { 1183 ASSERT(MUTEX_HELD(lockp)); 1184 } 1185 if (zone_lock_held) { 1186 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1187 } else { 1188 mutex_enter(&zone->zone_lock); 1189 } 1190 1191 t = zsd_find(&zone->zone_zsd, key); 1192 if (t == NULL) { 1193 /* 1194 * Somebody else got here first e.g the zone going 1195 * away. 1196 */ 1197 if (!zone_lock_held) 1198 mutex_exit(&zone->zone_lock); 1199 return (B_FALSE); 1200 } 1201 dropped = B_FALSE; 1202 if (zsd_wait_for_creator(zone, t, lockp)) 1203 dropped = B_TRUE; 1204 1205 if (zsd_wait_for_inprogress(zone, t, lockp)) 1206 dropped = B_TRUE; 1207 1208 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1209 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1210 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1211 DTRACE_PROBE2(zsd__destroy__inprogress, 1212 zone_t *, zone, zone_key_t, key); 1213 mutex_exit(&zone->zone_lock); 1214 if (lockp != NULL) 1215 mutex_exit(lockp); 1216 dropped = B_TRUE; 1217 1218 ASSERT(t->zsd_destroy != NULL); 1219 data = t->zsd_data; 1220 DTRACE_PROBE2(zsd__destroy__start, 1221 zone_t *, zone, zone_key_t, key); 1222 1223 (t->zsd_destroy)(zone->zone_id, data); 1224 DTRACE_PROBE2(zsd__destroy__end, 1225 zone_t *, zone, zone_key_t, key); 1226 1227 if (lockp != NULL) 1228 mutex_enter(lockp); 1229 mutex_enter(&zone->zone_lock); 1230 t->zsd_data = NULL; 1231 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1232 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1233 cv_broadcast(&t->zsd_cv); 1234 DTRACE_PROBE2(zsd__destroy__completed, 1235 zone_t *, zone, zone_key_t, key); 1236 } 1237 if (!zone_lock_held) 1238 mutex_exit(&zone->zone_lock); 1239 return (dropped); 1240 } 1241 1242 /* 1243 * Wait for any CREATE_NEEDED flag to be cleared. 1244 * Returns true if lockp was temporarily dropped while waiting. 1245 */ 1246 static boolean_t 1247 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1248 { 1249 boolean_t dropped = B_FALSE; 1250 1251 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1252 DTRACE_PROBE2(zsd__wait__for__creator, 1253 zone_t *, zone, struct zsd_entry *, t); 1254 if (lockp != NULL) { 1255 dropped = B_TRUE; 1256 mutex_exit(lockp); 1257 } 1258 cv_wait(&t->zsd_cv, &zone->zone_lock); 1259 if (lockp != NULL) { 1260 /* First drop zone_lock to preserve order */ 1261 mutex_exit(&zone->zone_lock); 1262 mutex_enter(lockp); 1263 mutex_enter(&zone->zone_lock); 1264 } 1265 } 1266 return (dropped); 1267 } 1268 1269 /* 1270 * Wait for any INPROGRESS flag to be cleared. 1271 * Returns true if lockp was temporarily dropped while waiting. 1272 */ 1273 static boolean_t 1274 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1275 { 1276 boolean_t dropped = B_FALSE; 1277 1278 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1279 DTRACE_PROBE2(zsd__wait__for__inprogress, 1280 zone_t *, zone, struct zsd_entry *, t); 1281 if (lockp != NULL) { 1282 dropped = B_TRUE; 1283 mutex_exit(lockp); 1284 } 1285 cv_wait(&t->zsd_cv, &zone->zone_lock); 1286 if (lockp != NULL) { 1287 /* First drop zone_lock to preserve order */ 1288 mutex_exit(&zone->zone_lock); 1289 mutex_enter(lockp); 1290 mutex_enter(&zone->zone_lock); 1291 } 1292 } 1293 return (dropped); 1294 } 1295 1296 /* 1297 * Frees memory associated with the zone dataset list. 1298 */ 1299 static void 1300 zone_free_datasets(zone_t *zone) 1301 { 1302 zone_dataset_t *t, *next; 1303 1304 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1305 next = list_next(&zone->zone_datasets, t); 1306 list_remove(&zone->zone_datasets, t); 1307 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1308 kmem_free(t, sizeof (*t)); 1309 } 1310 list_destroy(&zone->zone_datasets); 1311 } 1312 1313 /* 1314 * zone.cpu-shares resource control support. 1315 */ 1316 /*ARGSUSED*/ 1317 static rctl_qty_t 1318 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1319 { 1320 ASSERT(MUTEX_HELD(&p->p_lock)); 1321 return (p->p_zone->zone_shares); 1322 } 1323 1324 /*ARGSUSED*/ 1325 static int 1326 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1327 rctl_qty_t nv) 1328 { 1329 ASSERT(MUTEX_HELD(&p->p_lock)); 1330 ASSERT(e->rcep_t == RCENTITY_ZONE); 1331 if (e->rcep_p.zone == NULL) 1332 return (0); 1333 1334 e->rcep_p.zone->zone_shares = nv; 1335 return (0); 1336 } 1337 1338 static rctl_ops_t zone_cpu_shares_ops = { 1339 rcop_no_action, 1340 zone_cpu_shares_usage, 1341 zone_cpu_shares_set, 1342 rcop_no_test 1343 }; 1344 1345 /* 1346 * zone.cpu-cap resource control support. 1347 */ 1348 /*ARGSUSED*/ 1349 static rctl_qty_t 1350 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1351 { 1352 ASSERT(MUTEX_HELD(&p->p_lock)); 1353 return (cpucaps_zone_get(p->p_zone)); 1354 } 1355 1356 /*ARGSUSED*/ 1357 static int 1358 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1359 rctl_qty_t nv) 1360 { 1361 zone_t *zone = e->rcep_p.zone; 1362 1363 ASSERT(MUTEX_HELD(&p->p_lock)); 1364 ASSERT(e->rcep_t == RCENTITY_ZONE); 1365 1366 if (zone == NULL) 1367 return (0); 1368 1369 /* 1370 * set cap to the new value. 1371 */ 1372 return (cpucaps_zone_set(zone, nv)); 1373 } 1374 1375 static rctl_ops_t zone_cpu_cap_ops = { 1376 rcop_no_action, 1377 zone_cpu_cap_get, 1378 zone_cpu_cap_set, 1379 rcop_no_test 1380 }; 1381 1382 /*ARGSUSED*/ 1383 static rctl_qty_t 1384 zone_lwps_usage(rctl_t *r, proc_t *p) 1385 { 1386 rctl_qty_t nlwps; 1387 zone_t *zone = p->p_zone; 1388 1389 ASSERT(MUTEX_HELD(&p->p_lock)); 1390 1391 mutex_enter(&zone->zone_nlwps_lock); 1392 nlwps = zone->zone_nlwps; 1393 mutex_exit(&zone->zone_nlwps_lock); 1394 1395 return (nlwps); 1396 } 1397 1398 /*ARGSUSED*/ 1399 static int 1400 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1401 rctl_qty_t incr, uint_t flags) 1402 { 1403 rctl_qty_t nlwps; 1404 1405 ASSERT(MUTEX_HELD(&p->p_lock)); 1406 ASSERT(e->rcep_t == RCENTITY_ZONE); 1407 if (e->rcep_p.zone == NULL) 1408 return (0); 1409 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1410 nlwps = e->rcep_p.zone->zone_nlwps; 1411 1412 if (nlwps + incr > rcntl->rcv_value) 1413 return (1); 1414 1415 return (0); 1416 } 1417 1418 /*ARGSUSED*/ 1419 static int 1420 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1421 { 1422 ASSERT(MUTEX_HELD(&p->p_lock)); 1423 ASSERT(e->rcep_t == RCENTITY_ZONE); 1424 if (e->rcep_p.zone == NULL) 1425 return (0); 1426 e->rcep_p.zone->zone_nlwps_ctl = nv; 1427 return (0); 1428 } 1429 1430 static rctl_ops_t zone_lwps_ops = { 1431 rcop_no_action, 1432 zone_lwps_usage, 1433 zone_lwps_set, 1434 zone_lwps_test, 1435 }; 1436 1437 /*ARGSUSED*/ 1438 static rctl_qty_t 1439 zone_procs_usage(rctl_t *r, proc_t *p) 1440 { 1441 rctl_qty_t nprocs; 1442 zone_t *zone = p->p_zone; 1443 1444 ASSERT(MUTEX_HELD(&p->p_lock)); 1445 1446 mutex_enter(&zone->zone_nlwps_lock); 1447 nprocs = zone->zone_nprocs; 1448 mutex_exit(&zone->zone_nlwps_lock); 1449 1450 return (nprocs); 1451 } 1452 1453 /*ARGSUSED*/ 1454 static int 1455 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1456 rctl_qty_t incr, uint_t flags) 1457 { 1458 rctl_qty_t nprocs; 1459 1460 ASSERT(MUTEX_HELD(&p->p_lock)); 1461 ASSERT(e->rcep_t == RCENTITY_ZONE); 1462 if (e->rcep_p.zone == NULL) 1463 return (0); 1464 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1465 nprocs = e->rcep_p.zone->zone_nprocs; 1466 1467 if (nprocs + incr > rcntl->rcv_value) 1468 return (1); 1469 1470 return (0); 1471 } 1472 1473 /*ARGSUSED*/ 1474 static int 1475 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1476 { 1477 ASSERT(MUTEX_HELD(&p->p_lock)); 1478 ASSERT(e->rcep_t == RCENTITY_ZONE); 1479 if (e->rcep_p.zone == NULL) 1480 return (0); 1481 e->rcep_p.zone->zone_nprocs_ctl = nv; 1482 return (0); 1483 } 1484 1485 static rctl_ops_t zone_procs_ops = { 1486 rcop_no_action, 1487 zone_procs_usage, 1488 zone_procs_set, 1489 zone_procs_test, 1490 }; 1491 1492 /*ARGSUSED*/ 1493 static int 1494 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1495 rctl_qty_t incr, uint_t flags) 1496 { 1497 rctl_qty_t v; 1498 ASSERT(MUTEX_HELD(&p->p_lock)); 1499 ASSERT(e->rcep_t == RCENTITY_ZONE); 1500 v = e->rcep_p.zone->zone_shmmax + incr; 1501 if (v > rval->rcv_value) 1502 return (1); 1503 return (0); 1504 } 1505 1506 static rctl_ops_t zone_shmmax_ops = { 1507 rcop_no_action, 1508 rcop_no_usage, 1509 rcop_no_set, 1510 zone_shmmax_test 1511 }; 1512 1513 /*ARGSUSED*/ 1514 static int 1515 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1516 rctl_qty_t incr, uint_t flags) 1517 { 1518 rctl_qty_t v; 1519 ASSERT(MUTEX_HELD(&p->p_lock)); 1520 ASSERT(e->rcep_t == RCENTITY_ZONE); 1521 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1522 if (v > rval->rcv_value) 1523 return (1); 1524 return (0); 1525 } 1526 1527 static rctl_ops_t zone_shmmni_ops = { 1528 rcop_no_action, 1529 rcop_no_usage, 1530 rcop_no_set, 1531 zone_shmmni_test 1532 }; 1533 1534 /*ARGSUSED*/ 1535 static int 1536 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1537 rctl_qty_t incr, uint_t flags) 1538 { 1539 rctl_qty_t v; 1540 ASSERT(MUTEX_HELD(&p->p_lock)); 1541 ASSERT(e->rcep_t == RCENTITY_ZONE); 1542 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1543 if (v > rval->rcv_value) 1544 return (1); 1545 return (0); 1546 } 1547 1548 static rctl_ops_t zone_semmni_ops = { 1549 rcop_no_action, 1550 rcop_no_usage, 1551 rcop_no_set, 1552 zone_semmni_test 1553 }; 1554 1555 /*ARGSUSED*/ 1556 static int 1557 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1558 rctl_qty_t incr, uint_t flags) 1559 { 1560 rctl_qty_t v; 1561 ASSERT(MUTEX_HELD(&p->p_lock)); 1562 ASSERT(e->rcep_t == RCENTITY_ZONE); 1563 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1564 if (v > rval->rcv_value) 1565 return (1); 1566 return (0); 1567 } 1568 1569 static rctl_ops_t zone_msgmni_ops = { 1570 rcop_no_action, 1571 rcop_no_usage, 1572 rcop_no_set, 1573 zone_msgmni_test 1574 }; 1575 1576 /*ARGSUSED*/ 1577 static rctl_qty_t 1578 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1579 { 1580 rctl_qty_t q; 1581 ASSERT(MUTEX_HELD(&p->p_lock)); 1582 mutex_enter(&p->p_zone->zone_mem_lock); 1583 q = p->p_zone->zone_locked_mem; 1584 mutex_exit(&p->p_zone->zone_mem_lock); 1585 return (q); 1586 } 1587 1588 /*ARGSUSED*/ 1589 static int 1590 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1591 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1592 { 1593 rctl_qty_t q; 1594 zone_t *z; 1595 1596 z = e->rcep_p.zone; 1597 ASSERT(MUTEX_HELD(&p->p_lock)); 1598 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1599 q = z->zone_locked_mem; 1600 if (q + incr > rcntl->rcv_value) 1601 return (1); 1602 return (0); 1603 } 1604 1605 /*ARGSUSED*/ 1606 static int 1607 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1608 rctl_qty_t nv) 1609 { 1610 ASSERT(MUTEX_HELD(&p->p_lock)); 1611 ASSERT(e->rcep_t == RCENTITY_ZONE); 1612 if (e->rcep_p.zone == NULL) 1613 return (0); 1614 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1615 return (0); 1616 } 1617 1618 static rctl_ops_t zone_locked_mem_ops = { 1619 rcop_no_action, 1620 zone_locked_mem_usage, 1621 zone_locked_mem_set, 1622 zone_locked_mem_test 1623 }; 1624 1625 /*ARGSUSED*/ 1626 static rctl_qty_t 1627 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1628 { 1629 rctl_qty_t q; 1630 zone_t *z = p->p_zone; 1631 1632 ASSERT(MUTEX_HELD(&p->p_lock)); 1633 mutex_enter(&z->zone_mem_lock); 1634 q = z->zone_max_swap; 1635 mutex_exit(&z->zone_mem_lock); 1636 return (q); 1637 } 1638 1639 /*ARGSUSED*/ 1640 static int 1641 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1642 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1643 { 1644 rctl_qty_t q; 1645 zone_t *z; 1646 1647 z = e->rcep_p.zone; 1648 ASSERT(MUTEX_HELD(&p->p_lock)); 1649 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1650 q = z->zone_max_swap; 1651 if (q + incr > rcntl->rcv_value) 1652 return (1); 1653 return (0); 1654 } 1655 1656 /*ARGSUSED*/ 1657 static int 1658 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1659 rctl_qty_t nv) 1660 { 1661 ASSERT(MUTEX_HELD(&p->p_lock)); 1662 ASSERT(e->rcep_t == RCENTITY_ZONE); 1663 if (e->rcep_p.zone == NULL) 1664 return (0); 1665 e->rcep_p.zone->zone_max_swap_ctl = nv; 1666 return (0); 1667 } 1668 1669 static rctl_ops_t zone_max_swap_ops = { 1670 rcop_no_action, 1671 zone_max_swap_usage, 1672 zone_max_swap_set, 1673 zone_max_swap_test 1674 }; 1675 1676 /*ARGSUSED*/ 1677 static rctl_qty_t 1678 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1679 { 1680 rctl_qty_t q; 1681 zone_t *z = p->p_zone; 1682 1683 ASSERT(MUTEX_HELD(&p->p_lock)); 1684 mutex_enter(&z->zone_rctl_lock); 1685 q = z->zone_max_lofi; 1686 mutex_exit(&z->zone_rctl_lock); 1687 return (q); 1688 } 1689 1690 /*ARGSUSED*/ 1691 static int 1692 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1693 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1694 { 1695 rctl_qty_t q; 1696 zone_t *z; 1697 1698 z = e->rcep_p.zone; 1699 ASSERT(MUTEX_HELD(&p->p_lock)); 1700 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1701 q = z->zone_max_lofi; 1702 if (q + incr > rcntl->rcv_value) 1703 return (1); 1704 return (0); 1705 } 1706 1707 /*ARGSUSED*/ 1708 static int 1709 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1710 rctl_qty_t nv) 1711 { 1712 ASSERT(MUTEX_HELD(&p->p_lock)); 1713 ASSERT(e->rcep_t == RCENTITY_ZONE); 1714 if (e->rcep_p.zone == NULL) 1715 return (0); 1716 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1717 return (0); 1718 } 1719 1720 static rctl_ops_t zone_max_lofi_ops = { 1721 rcop_no_action, 1722 zone_max_lofi_usage, 1723 zone_max_lofi_set, 1724 zone_max_lofi_test 1725 }; 1726 1727 /* 1728 * Helper function to brand the zone with a unique ID. 1729 */ 1730 static void 1731 zone_uniqid(zone_t *zone) 1732 { 1733 static uint64_t uniqid = 0; 1734 1735 ASSERT(MUTEX_HELD(&zonehash_lock)); 1736 zone->zone_uniqid = uniqid++; 1737 } 1738 1739 /* 1740 * Returns a held pointer to the "kcred" for the specified zone. 1741 */ 1742 struct cred * 1743 zone_get_kcred(zoneid_t zoneid) 1744 { 1745 zone_t *zone; 1746 cred_t *cr; 1747 1748 if ((zone = zone_find_by_id(zoneid)) == NULL) 1749 return (NULL); 1750 cr = zone->zone_kcred; 1751 crhold(cr); 1752 zone_rele(zone); 1753 return (cr); 1754 } 1755 1756 static int 1757 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1758 { 1759 zone_t *zone = ksp->ks_private; 1760 zone_kstat_t *zk = ksp->ks_data; 1761 1762 if (rw == KSTAT_WRITE) 1763 return (EACCES); 1764 1765 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1766 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1767 return (0); 1768 } 1769 1770 static int 1771 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1772 { 1773 zone_t *zone = ksp->ks_private; 1774 zone_kstat_t *zk = ksp->ks_data; 1775 1776 if (rw == KSTAT_WRITE) 1777 return (EACCES); 1778 1779 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1780 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1781 return (0); 1782 } 1783 1784 static int 1785 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1786 { 1787 zone_t *zone = ksp->ks_private; 1788 zone_kstat_t *zk = ksp->ks_data; 1789 1790 if (rw == KSTAT_WRITE) 1791 return (EACCES); 1792 1793 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1794 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1795 return (0); 1796 } 1797 1798 static kstat_t * 1799 zone_kstat_create_common(zone_t *zone, char *name, 1800 int (*updatefunc) (kstat_t *, int)) 1801 { 1802 kstat_t *ksp; 1803 zone_kstat_t *zk; 1804 1805 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1806 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1807 KSTAT_FLAG_VIRTUAL); 1808 1809 if (ksp == NULL) 1810 return (NULL); 1811 1812 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1813 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1814 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1815 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1816 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1817 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1818 ksp->ks_update = updatefunc; 1819 ksp->ks_private = zone; 1820 kstat_install(ksp); 1821 return (ksp); 1822 } 1823 1824 static int 1825 zone_misc_kstat_update(kstat_t *ksp, int rw) 1826 { 1827 zone_t *zone = ksp->ks_private; 1828 zone_misc_kstat_t *zmp = ksp->ks_data; 1829 hrtime_t tmp; 1830 1831 if (rw == KSTAT_WRITE) 1832 return (EACCES); 1833 1834 tmp = zone->zone_utime; 1835 scalehrtime(&tmp); 1836 zmp->zm_utime.value.ui64 = tmp; 1837 tmp = zone->zone_stime; 1838 scalehrtime(&tmp); 1839 zmp->zm_stime.value.ui64 = tmp; 1840 tmp = zone->zone_wtime; 1841 scalehrtime(&tmp); 1842 zmp->zm_wtime.value.ui64 = tmp; 1843 1844 return (0); 1845 } 1846 1847 static kstat_t * 1848 zone_misc_kstat_create(zone_t *zone) 1849 { 1850 kstat_t *ksp; 1851 zone_misc_kstat_t *zmp; 1852 1853 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1854 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1855 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1856 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1857 return (NULL); 1858 1859 if (zone->zone_id != GLOBAL_ZONEID) 1860 kstat_zone_add(ksp, GLOBAL_ZONEID); 1861 1862 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1863 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1864 ksp->ks_lock = &zone->zone_misc_lock; 1865 zone->zone_misc_stats = zmp; 1866 1867 /* The kstat "name" field is not large enough for a full zonename */ 1868 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1869 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1870 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1871 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1872 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1873 1874 ksp->ks_update = zone_misc_kstat_update; 1875 ksp->ks_private = zone; 1876 1877 kstat_install(ksp); 1878 return (ksp); 1879 } 1880 1881 static void 1882 zone_kstat_create(zone_t *zone) 1883 { 1884 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1885 "lockedmem", zone_lockedmem_kstat_update); 1886 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 1887 "swapresv", zone_swapresv_kstat_update); 1888 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 1889 "nprocs", zone_nprocs_kstat_update); 1890 1891 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 1892 zone->zone_misc_stats = kmem_zalloc( 1893 sizeof (zone_misc_kstat_t), KM_SLEEP); 1894 } 1895 } 1896 1897 static void 1898 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 1899 { 1900 void *data; 1901 1902 if (*pkstat != NULL) { 1903 data = (*pkstat)->ks_data; 1904 kstat_delete(*pkstat); 1905 kmem_free(data, datasz); 1906 *pkstat = NULL; 1907 } 1908 } 1909 1910 static void 1911 zone_kstat_delete(zone_t *zone) 1912 { 1913 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 1914 sizeof (zone_kstat_t)); 1915 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 1916 sizeof (zone_kstat_t)); 1917 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 1918 sizeof (zone_kstat_t)); 1919 zone_kstat_delete_common(&zone->zone_misc_ksp, 1920 sizeof (zone_misc_kstat_t)); 1921 } 1922 1923 /* 1924 * Called very early on in boot to initialize the ZSD list so that 1925 * zone_key_create() can be called before zone_init(). It also initializes 1926 * portions of zone0 which may be used before zone_init() is called. The 1927 * variable "global_zone" will be set when zone0 is fully initialized by 1928 * zone_init(). 1929 */ 1930 void 1931 zone_zsd_init(void) 1932 { 1933 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1934 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1935 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1936 offsetof(struct zsd_entry, zsd_linkage)); 1937 list_create(&zone_active, sizeof (zone_t), 1938 offsetof(zone_t, zone_linkage)); 1939 list_create(&zone_deathrow, sizeof (zone_t), 1940 offsetof(zone_t, zone_linkage)); 1941 1942 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1943 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1944 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1945 zone0.zone_shares = 1; 1946 zone0.zone_nlwps = 0; 1947 zone0.zone_nlwps_ctl = INT_MAX; 1948 zone0.zone_nprocs = 0; 1949 zone0.zone_nprocs_ctl = INT_MAX; 1950 zone0.zone_locked_mem = 0; 1951 zone0.zone_locked_mem_ctl = UINT64_MAX; 1952 ASSERT(zone0.zone_max_swap == 0); 1953 zone0.zone_max_swap_ctl = UINT64_MAX; 1954 zone0.zone_max_lofi = 0; 1955 zone0.zone_max_lofi_ctl = UINT64_MAX; 1956 zone0.zone_shmmax = 0; 1957 zone0.zone_ipc.ipcq_shmmni = 0; 1958 zone0.zone_ipc.ipcq_semmni = 0; 1959 zone0.zone_ipc.ipcq_msgmni = 0; 1960 zone0.zone_name = GLOBAL_ZONENAME; 1961 zone0.zone_nodename = utsname.nodename; 1962 zone0.zone_domain = srpc_domain; 1963 zone0.zone_hostid = HW_INVALID_HOSTID; 1964 zone0.zone_fs_allowed = NULL; 1965 zone0.zone_ref = 1; 1966 zone0.zone_id = GLOBAL_ZONEID; 1967 zone0.zone_status = ZONE_IS_RUNNING; 1968 zone0.zone_rootpath = "/"; 1969 zone0.zone_rootpathlen = 2; 1970 zone0.zone_psetid = ZONE_PS_INVAL; 1971 zone0.zone_ncpus = 0; 1972 zone0.zone_ncpus_online = 0; 1973 zone0.zone_proc_initpid = 1; 1974 zone0.zone_initname = initname; 1975 zone0.zone_lockedmem_kstat = NULL; 1976 zone0.zone_swapresv_kstat = NULL; 1977 zone0.zone_nprocs_kstat = NULL; 1978 1979 zone0.zone_stime = 0; 1980 zone0.zone_utime = 0; 1981 zone0.zone_wtime = 0; 1982 1983 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 1984 offsetof(zone_ref_t, zref_linkage)); 1985 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1986 offsetof(struct zsd_entry, zsd_linkage)); 1987 list_insert_head(&zone_active, &zone0); 1988 1989 /* 1990 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1991 * to anything meaningful. It is assigned to be 'rootdir' in 1992 * vfs_mountroot(). 1993 */ 1994 zone0.zone_rootvp = NULL; 1995 zone0.zone_vfslist = NULL; 1996 zone0.zone_bootargs = initargs; 1997 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1998 /* 1999 * The global zone has all privileges 2000 */ 2001 priv_fillset(zone0.zone_privset); 2002 /* 2003 * Add p0 to the global zone 2004 */ 2005 zone0.zone_zsched = &p0; 2006 p0.p_zone = &zone0; 2007 } 2008 2009 /* 2010 * Compute a hash value based on the contents of the label and the DOI. The 2011 * hash algorithm is somewhat arbitrary, but is based on the observation that 2012 * humans will likely pick labels that differ by amounts that work out to be 2013 * multiples of the number of hash chains, and thus stirring in some primes 2014 * should help. 2015 */ 2016 static uint_t 2017 hash_bylabel(void *hdata, mod_hash_key_t key) 2018 { 2019 const ts_label_t *lab = (ts_label_t *)key; 2020 const uint32_t *up, *ue; 2021 uint_t hash; 2022 int i; 2023 2024 _NOTE(ARGUNUSED(hdata)); 2025 2026 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2027 /* we depend on alignment of label, but not representation */ 2028 up = (const uint32_t *)&lab->tsl_label; 2029 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2030 i = 1; 2031 while (up < ue) { 2032 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2033 hash += *up + (*up << ((i % 16) + 1)); 2034 up++; 2035 i++; 2036 } 2037 return (hash); 2038 } 2039 2040 /* 2041 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2042 * equal). This may need to be changed if less than / greater than is ever 2043 * needed. 2044 */ 2045 static int 2046 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2047 { 2048 ts_label_t *lab1 = (ts_label_t *)key1; 2049 ts_label_t *lab2 = (ts_label_t *)key2; 2050 2051 return (label_equal(lab1, lab2) ? 0 : 1); 2052 } 2053 2054 /* 2055 * Called by main() to initialize the zones framework. 2056 */ 2057 void 2058 zone_init(void) 2059 { 2060 rctl_dict_entry_t *rde; 2061 rctl_val_t *dval; 2062 rctl_set_t *set; 2063 rctl_alloc_gp_t *gp; 2064 rctl_entity_p_t e; 2065 int res; 2066 2067 ASSERT(curproc == &p0); 2068 2069 /* 2070 * Create ID space for zone IDs. ID 0 is reserved for the 2071 * global zone. 2072 */ 2073 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2074 2075 /* 2076 * Initialize generic zone resource controls, if any. 2077 */ 2078 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2079 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2080 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2081 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2082 2083 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2084 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2085 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2086 RCTL_GLOBAL_INFINITE, 2087 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2088 2089 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2090 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2091 INT_MAX, INT_MAX, &zone_lwps_ops); 2092 2093 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2094 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2095 INT_MAX, INT_MAX, &zone_procs_ops); 2096 2097 /* 2098 * System V IPC resource controls 2099 */ 2100 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2101 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2102 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2103 2104 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2105 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2106 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2107 2108 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2109 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2110 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2111 2112 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2113 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2114 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2115 2116 /* 2117 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2118 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2119 */ 2120 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2121 bzero(dval, sizeof (rctl_val_t)); 2122 dval->rcv_value = 1; 2123 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2124 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2125 dval->rcv_action_recip_pid = -1; 2126 2127 rde = rctl_dict_lookup("zone.cpu-shares"); 2128 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2129 2130 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2131 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2132 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2133 &zone_locked_mem_ops); 2134 2135 rc_zone_max_swap = rctl_register("zone.max-swap", 2136 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2137 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2138 &zone_max_swap_ops); 2139 2140 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2141 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2142 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2143 &zone_max_lofi_ops); 2144 2145 /* 2146 * Initialize the ``global zone''. 2147 */ 2148 set = rctl_set_create(); 2149 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2150 mutex_enter(&p0.p_lock); 2151 e.rcep_p.zone = &zone0; 2152 e.rcep_t = RCENTITY_ZONE; 2153 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2154 gp); 2155 2156 zone0.zone_nlwps = p0.p_lwpcnt; 2157 zone0.zone_nprocs = 1; 2158 zone0.zone_ntasks = 1; 2159 mutex_exit(&p0.p_lock); 2160 zone0.zone_restart_init = B_TRUE; 2161 zone0.zone_brand = &native_brand; 2162 rctl_prealloc_destroy(gp); 2163 /* 2164 * pool_default hasn't been initialized yet, so we let pool_init() 2165 * take care of making sure the global zone is in the default pool. 2166 */ 2167 2168 /* 2169 * Initialize global zone kstats 2170 */ 2171 zone_kstat_create(&zone0); 2172 2173 /* 2174 * Initialize zone label. 2175 * mlp are initialized when tnzonecfg is loaded. 2176 */ 2177 zone0.zone_slabel = l_admin_low; 2178 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2179 label_hold(l_admin_low); 2180 2181 /* 2182 * Initialise the lock for the database structure used by mntfs. 2183 */ 2184 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2185 2186 mutex_enter(&zonehash_lock); 2187 zone_uniqid(&zone0); 2188 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2189 2190 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2191 mod_hash_null_valdtor); 2192 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2193 zone_hash_size, mod_hash_null_valdtor); 2194 /* 2195 * maintain zonehashbylabel only for labeled systems 2196 */ 2197 if (is_system_labeled()) 2198 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2199 zone_hash_size, mod_hash_null_keydtor, 2200 mod_hash_null_valdtor, hash_bylabel, NULL, 2201 hash_labelkey_cmp, KM_SLEEP); 2202 zonecount = 1; 2203 2204 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2205 (mod_hash_val_t)&zone0); 2206 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2207 (mod_hash_val_t)&zone0); 2208 if (is_system_labeled()) { 2209 zone0.zone_flags |= ZF_HASHED_LABEL; 2210 (void) mod_hash_insert(zonehashbylabel, 2211 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2212 } 2213 mutex_exit(&zonehash_lock); 2214 2215 /* 2216 * We avoid setting zone_kcred until now, since kcred is initialized 2217 * sometime after zone_zsd_init() and before zone_init(). 2218 */ 2219 zone0.zone_kcred = kcred; 2220 /* 2221 * The global zone is fully initialized (except for zone_rootvp which 2222 * will be set when the root filesystem is mounted). 2223 */ 2224 global_zone = &zone0; 2225 2226 /* 2227 * Setup an event channel to send zone status change notifications on 2228 */ 2229 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2230 EVCH_CREAT); 2231 2232 if (res) 2233 panic("Sysevent_evc_bind failed during zone setup.\n"); 2234 2235 } 2236 2237 static void 2238 zone_free(zone_t *zone) 2239 { 2240 ASSERT(zone != global_zone); 2241 ASSERT(zone->zone_ntasks == 0); 2242 ASSERT(zone->zone_nlwps == 0); 2243 ASSERT(zone->zone_nprocs == 0); 2244 ASSERT(zone->zone_cred_ref == 0); 2245 ASSERT(zone->zone_kcred == NULL); 2246 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2247 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2248 ASSERT(list_is_empty(&zone->zone_ref_list)); 2249 2250 /* 2251 * Remove any zone caps. 2252 */ 2253 cpucaps_zone_remove(zone); 2254 2255 ASSERT(zone->zone_cpucap == NULL); 2256 2257 /* remove from deathrow list */ 2258 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2259 ASSERT(zone->zone_ref == 0); 2260 mutex_enter(&zone_deathrow_lock); 2261 list_remove(&zone_deathrow, zone); 2262 mutex_exit(&zone_deathrow_lock); 2263 } 2264 2265 list_destroy(&zone->zone_ref_list); 2266 zone_free_zsd(zone); 2267 zone_free_datasets(zone); 2268 list_destroy(&zone->zone_dl_list); 2269 2270 if (zone->zone_rootvp != NULL) 2271 VN_RELE(zone->zone_rootvp); 2272 if (zone->zone_rootpath) 2273 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2274 if (zone->zone_name != NULL) 2275 kmem_free(zone->zone_name, ZONENAME_MAX); 2276 if (zone->zone_slabel != NULL) 2277 label_rele(zone->zone_slabel); 2278 if (zone->zone_nodename != NULL) 2279 kmem_free(zone->zone_nodename, _SYS_NMLN); 2280 if (zone->zone_domain != NULL) 2281 kmem_free(zone->zone_domain, _SYS_NMLN); 2282 if (zone->zone_privset != NULL) 2283 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2284 if (zone->zone_rctls != NULL) 2285 rctl_set_free(zone->zone_rctls); 2286 if (zone->zone_bootargs != NULL) 2287 strfree(zone->zone_bootargs); 2288 if (zone->zone_initname != NULL) 2289 strfree(zone->zone_initname); 2290 if (zone->zone_fs_allowed != NULL) 2291 strfree(zone->zone_fs_allowed); 2292 if (zone->zone_pfexecd != NULL) 2293 klpd_freelist(&zone->zone_pfexecd); 2294 id_free(zoneid_space, zone->zone_id); 2295 mutex_destroy(&zone->zone_lock); 2296 cv_destroy(&zone->zone_cv); 2297 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2298 rw_destroy(&zone->zone_mntfs_db_lock); 2299 kmem_free(zone, sizeof (zone_t)); 2300 } 2301 2302 /* 2303 * See block comment at the top of this file for information about zone 2304 * status values. 2305 */ 2306 /* 2307 * Convenience function for setting zone status. 2308 */ 2309 static void 2310 zone_status_set(zone_t *zone, zone_status_t status) 2311 { 2312 2313 nvlist_t *nvl = NULL; 2314 ASSERT(MUTEX_HELD(&zone_status_lock)); 2315 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2316 status >= zone_status_get(zone)); 2317 2318 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2319 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2320 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2321 zone_status_table[status]) || 2322 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2323 zone_status_table[zone->zone_status]) || 2324 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2325 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2326 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2327 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2328 #ifdef DEBUG 2329 (void) printf( 2330 "Failed to allocate and send zone state change event.\n"); 2331 #endif 2332 } 2333 nvlist_free(nvl); 2334 2335 zone->zone_status = status; 2336 2337 cv_broadcast(&zone->zone_cv); 2338 } 2339 2340 /* 2341 * Public function to retrieve the zone status. The zone status may 2342 * change after it is retrieved. 2343 */ 2344 zone_status_t 2345 zone_status_get(zone_t *zone) 2346 { 2347 return (zone->zone_status); 2348 } 2349 2350 static int 2351 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2352 { 2353 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2354 int err = 0; 2355 2356 ASSERT(zone != global_zone); 2357 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2358 goto done; /* EFAULT or ENAMETOOLONG */ 2359 2360 if (zone->zone_bootargs != NULL) 2361 strfree(zone->zone_bootargs); 2362 2363 zone->zone_bootargs = strdup(buf); 2364 2365 done: 2366 kmem_free(buf, BOOTARGS_MAX); 2367 return (err); 2368 } 2369 2370 static int 2371 zone_set_brand(zone_t *zone, const char *brand) 2372 { 2373 struct brand_attr *attrp; 2374 brand_t *bp; 2375 2376 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2377 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2378 kmem_free(attrp, sizeof (struct brand_attr)); 2379 return (EFAULT); 2380 } 2381 2382 bp = brand_register_zone(attrp); 2383 kmem_free(attrp, sizeof (struct brand_attr)); 2384 if (bp == NULL) 2385 return (EINVAL); 2386 2387 /* 2388 * This is the only place where a zone can change it's brand. 2389 * We already need to hold zone_status_lock to check the zone 2390 * status, so we'll just use that lock to serialize zone 2391 * branding requests as well. 2392 */ 2393 mutex_enter(&zone_status_lock); 2394 2395 /* Re-Branding is not allowed and the zone can't be booted yet */ 2396 if ((ZONE_IS_BRANDED(zone)) || 2397 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2398 mutex_exit(&zone_status_lock); 2399 brand_unregister_zone(bp); 2400 return (EINVAL); 2401 } 2402 2403 /* set up the brand specific data */ 2404 zone->zone_brand = bp; 2405 ZBROP(zone)->b_init_brand_data(zone); 2406 2407 mutex_exit(&zone_status_lock); 2408 return (0); 2409 } 2410 2411 static int 2412 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2413 { 2414 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2415 int err = 0; 2416 2417 ASSERT(zone != global_zone); 2418 if ((err = copyinstr(zone_fs_allowed, buf, 2419 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2420 goto done; 2421 2422 if (zone->zone_fs_allowed != NULL) 2423 strfree(zone->zone_fs_allowed); 2424 2425 zone->zone_fs_allowed = strdup(buf); 2426 2427 done: 2428 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2429 return (err); 2430 } 2431 2432 static int 2433 zone_set_initname(zone_t *zone, const char *zone_initname) 2434 { 2435 char initname[INITNAME_SZ]; 2436 size_t len; 2437 int err = 0; 2438 2439 ASSERT(zone != global_zone); 2440 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2441 return (err); /* EFAULT or ENAMETOOLONG */ 2442 2443 if (zone->zone_initname != NULL) 2444 strfree(zone->zone_initname); 2445 2446 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2447 (void) strcpy(zone->zone_initname, initname); 2448 return (0); 2449 } 2450 2451 static int 2452 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2453 { 2454 uint64_t mcap; 2455 int err = 0; 2456 2457 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2458 zone->zone_phys_mcap = mcap; 2459 2460 return (err); 2461 } 2462 2463 static int 2464 zone_set_sched_class(zone_t *zone, const char *new_class) 2465 { 2466 char sched_class[PC_CLNMSZ]; 2467 id_t classid; 2468 int err; 2469 2470 ASSERT(zone != global_zone); 2471 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2472 return (err); /* EFAULT or ENAMETOOLONG */ 2473 2474 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2475 return (set_errno(EINVAL)); 2476 zone->zone_defaultcid = classid; 2477 ASSERT(zone->zone_defaultcid > 0 && 2478 zone->zone_defaultcid < loaded_classes); 2479 2480 return (0); 2481 } 2482 2483 /* 2484 * Block indefinitely waiting for (zone_status >= status) 2485 */ 2486 void 2487 zone_status_wait(zone_t *zone, zone_status_t status) 2488 { 2489 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2490 2491 mutex_enter(&zone_status_lock); 2492 while (zone->zone_status < status) { 2493 cv_wait(&zone->zone_cv, &zone_status_lock); 2494 } 2495 mutex_exit(&zone_status_lock); 2496 } 2497 2498 /* 2499 * Private CPR-safe version of zone_status_wait(). 2500 */ 2501 static void 2502 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2503 { 2504 callb_cpr_t cprinfo; 2505 2506 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2507 2508 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2509 str); 2510 mutex_enter(&zone_status_lock); 2511 while (zone->zone_status < status) { 2512 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2513 cv_wait(&zone->zone_cv, &zone_status_lock); 2514 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2515 } 2516 /* 2517 * zone_status_lock is implicitly released by the following. 2518 */ 2519 CALLB_CPR_EXIT(&cprinfo); 2520 } 2521 2522 /* 2523 * Block until zone enters requested state or signal is received. Return (0) 2524 * if signaled, non-zero otherwise. 2525 */ 2526 int 2527 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2528 { 2529 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2530 2531 mutex_enter(&zone_status_lock); 2532 while (zone->zone_status < status) { 2533 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2534 mutex_exit(&zone_status_lock); 2535 return (0); 2536 } 2537 } 2538 mutex_exit(&zone_status_lock); 2539 return (1); 2540 } 2541 2542 /* 2543 * Block until the zone enters the requested state or the timeout expires, 2544 * whichever happens first. Return (-1) if operation timed out, time remaining 2545 * otherwise. 2546 */ 2547 clock_t 2548 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2549 { 2550 clock_t timeleft = 0; 2551 2552 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2553 2554 mutex_enter(&zone_status_lock); 2555 while (zone->zone_status < status && timeleft != -1) { 2556 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2557 } 2558 mutex_exit(&zone_status_lock); 2559 return (timeleft); 2560 } 2561 2562 /* 2563 * Block until the zone enters the requested state, the current process is 2564 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2565 * operation timed out, 0 if signaled, time remaining otherwise. 2566 */ 2567 clock_t 2568 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2569 { 2570 clock_t timeleft = tim - ddi_get_lbolt(); 2571 2572 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2573 2574 mutex_enter(&zone_status_lock); 2575 while (zone->zone_status < status) { 2576 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2577 tim); 2578 if (timeleft <= 0) 2579 break; 2580 } 2581 mutex_exit(&zone_status_lock); 2582 return (timeleft); 2583 } 2584 2585 /* 2586 * Zones have two reference counts: one for references from credential 2587 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2588 * This is so we can allow a zone to be rebooted while there are still 2589 * outstanding cred references, since certain drivers cache dblks (which 2590 * implicitly results in cached creds). We wait for zone_ref to drop to 2591 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2592 * later freed when the zone_cred_ref drops to 0, though nothing other 2593 * than the zone id and privilege set should be accessed once the zone 2594 * is "dead". 2595 * 2596 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2597 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2598 * to 0. This can be useful to flush out other sources of cached creds 2599 * that may be less innocuous than the driver case. 2600 * 2601 * Zones also provide a tracked reference counting mechanism in which zone 2602 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2603 * debuggers determine the sources of leaked zone references. See 2604 * zone_hold_ref() and zone_rele_ref() below for more information. 2605 */ 2606 2607 int zone_wait_for_cred = 0; 2608 2609 static void 2610 zone_hold_locked(zone_t *z) 2611 { 2612 ASSERT(MUTEX_HELD(&z->zone_lock)); 2613 z->zone_ref++; 2614 ASSERT(z->zone_ref != 0); 2615 } 2616 2617 /* 2618 * Increment the specified zone's reference count. The zone's zone_t structure 2619 * will not be freed as long as the zone's reference count is nonzero. 2620 * Decrement the zone's reference count via zone_rele(). 2621 * 2622 * NOTE: This function should only be used to hold zones for short periods of 2623 * time. Use zone_hold_ref() if the zone must be held for a long time. 2624 */ 2625 void 2626 zone_hold(zone_t *z) 2627 { 2628 mutex_enter(&z->zone_lock); 2629 zone_hold_locked(z); 2630 mutex_exit(&z->zone_lock); 2631 } 2632 2633 /* 2634 * If the non-cred ref count drops to 1 and either the cred ref count 2635 * is 0 or we aren't waiting for cred references, the zone is ready to 2636 * be destroyed. 2637 */ 2638 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2639 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2640 2641 /* 2642 * Common zone reference release function invoked by zone_rele() and 2643 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2644 * zone's subsystem-specific reference counters are not affected by the 2645 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2646 * removed from the specified zone's reference list. ref must be non-NULL iff 2647 * subsys is not ZONE_REF_NUM_SUBSYS. 2648 */ 2649 static void 2650 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2651 { 2652 boolean_t wakeup; 2653 2654 mutex_enter(&z->zone_lock); 2655 ASSERT(z->zone_ref != 0); 2656 z->zone_ref--; 2657 if (subsys != ZONE_REF_NUM_SUBSYS) { 2658 ASSERT(z->zone_subsys_ref[subsys] != 0); 2659 z->zone_subsys_ref[subsys]--; 2660 list_remove(&z->zone_ref_list, ref); 2661 } 2662 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2663 /* no more refs, free the structure */ 2664 mutex_exit(&z->zone_lock); 2665 zone_free(z); 2666 return; 2667 } 2668 /* signal zone_destroy so the zone can finish halting */ 2669 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2670 mutex_exit(&z->zone_lock); 2671 2672 if (wakeup) { 2673 /* 2674 * Grabbing zonehash_lock here effectively synchronizes with 2675 * zone_destroy() to avoid missed signals. 2676 */ 2677 mutex_enter(&zonehash_lock); 2678 cv_broadcast(&zone_destroy_cv); 2679 mutex_exit(&zonehash_lock); 2680 } 2681 } 2682 2683 /* 2684 * Decrement the specified zone's reference count. The specified zone will 2685 * cease to exist after this function returns if the reference count drops to 2686 * zero. This function should be paired with zone_hold(). 2687 */ 2688 void 2689 zone_rele(zone_t *z) 2690 { 2691 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2692 } 2693 2694 /* 2695 * Initialize a zone reference structure. This function must be invoked for 2696 * a reference structure before the structure is passed to zone_hold_ref(). 2697 */ 2698 void 2699 zone_init_ref(zone_ref_t *ref) 2700 { 2701 ref->zref_zone = NULL; 2702 list_link_init(&ref->zref_linkage); 2703 } 2704 2705 /* 2706 * Acquire a reference to zone z. The caller must specify the 2707 * zone_ref_subsys_t constant associated with its subsystem. The specified 2708 * zone_ref_t structure will represent a reference to the specified zone. Use 2709 * zone_rele_ref() to release the reference. 2710 * 2711 * The referenced zone_t structure will not be freed as long as the zone_t's 2712 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2713 * references. 2714 * 2715 * NOTE: The zone_ref_t structure must be initialized before it is used. 2716 * See zone_init_ref() above. 2717 */ 2718 void 2719 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2720 { 2721 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2722 2723 /* 2724 * Prevent consumers from reusing a reference structure before 2725 * releasing it. 2726 */ 2727 VERIFY(ref->zref_zone == NULL); 2728 2729 ref->zref_zone = z; 2730 mutex_enter(&z->zone_lock); 2731 zone_hold_locked(z); 2732 z->zone_subsys_ref[subsys]++; 2733 ASSERT(z->zone_subsys_ref[subsys] != 0); 2734 list_insert_head(&z->zone_ref_list, ref); 2735 mutex_exit(&z->zone_lock); 2736 } 2737 2738 /* 2739 * Release the zone reference represented by the specified zone_ref_t. 2740 * The reference is invalid after it's released; however, the zone_ref_t 2741 * structure can be reused without having to invoke zone_init_ref(). 2742 * subsys should be the same value that was passed to zone_hold_ref() 2743 * when the reference was acquired. 2744 */ 2745 void 2746 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2747 { 2748 zone_rele_common(ref->zref_zone, ref, subsys); 2749 2750 /* 2751 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2752 * when consumers dereference the reference. This helps us catch 2753 * consumers who use released references. Furthermore, this lets 2754 * consumers reuse the zone_ref_t structure without having to 2755 * invoke zone_init_ref(). 2756 */ 2757 ref->zref_zone = NULL; 2758 } 2759 2760 void 2761 zone_cred_hold(zone_t *z) 2762 { 2763 mutex_enter(&z->zone_lock); 2764 z->zone_cred_ref++; 2765 ASSERT(z->zone_cred_ref != 0); 2766 mutex_exit(&z->zone_lock); 2767 } 2768 2769 void 2770 zone_cred_rele(zone_t *z) 2771 { 2772 boolean_t wakeup; 2773 2774 mutex_enter(&z->zone_lock); 2775 ASSERT(z->zone_cred_ref != 0); 2776 z->zone_cred_ref--; 2777 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2778 /* no more refs, free the structure */ 2779 mutex_exit(&z->zone_lock); 2780 zone_free(z); 2781 return; 2782 } 2783 /* 2784 * If zone_destroy is waiting for the cred references to drain 2785 * out, and they have, signal it. 2786 */ 2787 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2788 zone_status_get(z) >= ZONE_IS_DEAD); 2789 mutex_exit(&z->zone_lock); 2790 2791 if (wakeup) { 2792 /* 2793 * Grabbing zonehash_lock here effectively synchronizes with 2794 * zone_destroy() to avoid missed signals. 2795 */ 2796 mutex_enter(&zonehash_lock); 2797 cv_broadcast(&zone_destroy_cv); 2798 mutex_exit(&zonehash_lock); 2799 } 2800 } 2801 2802 void 2803 zone_task_hold(zone_t *z) 2804 { 2805 mutex_enter(&z->zone_lock); 2806 z->zone_ntasks++; 2807 ASSERT(z->zone_ntasks != 0); 2808 mutex_exit(&z->zone_lock); 2809 } 2810 2811 void 2812 zone_task_rele(zone_t *zone) 2813 { 2814 uint_t refcnt; 2815 2816 mutex_enter(&zone->zone_lock); 2817 ASSERT(zone->zone_ntasks != 0); 2818 refcnt = --zone->zone_ntasks; 2819 if (refcnt > 1) { /* Common case */ 2820 mutex_exit(&zone->zone_lock); 2821 return; 2822 } 2823 zone_hold_locked(zone); /* so we can use the zone_t later */ 2824 mutex_exit(&zone->zone_lock); 2825 if (refcnt == 1) { 2826 /* 2827 * See if the zone is shutting down. 2828 */ 2829 mutex_enter(&zone_status_lock); 2830 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2831 goto out; 2832 } 2833 2834 /* 2835 * Make sure the ntasks didn't change since we 2836 * dropped zone_lock. 2837 */ 2838 mutex_enter(&zone->zone_lock); 2839 if (refcnt != zone->zone_ntasks) { 2840 mutex_exit(&zone->zone_lock); 2841 goto out; 2842 } 2843 mutex_exit(&zone->zone_lock); 2844 2845 /* 2846 * No more user processes in the zone. The zone is empty. 2847 */ 2848 zone_status_set(zone, ZONE_IS_EMPTY); 2849 goto out; 2850 } 2851 2852 ASSERT(refcnt == 0); 2853 /* 2854 * zsched has exited; the zone is dead. 2855 */ 2856 zone->zone_zsched = NULL; /* paranoia */ 2857 mutex_enter(&zone_status_lock); 2858 zone_status_set(zone, ZONE_IS_DEAD); 2859 out: 2860 mutex_exit(&zone_status_lock); 2861 zone_rele(zone); 2862 } 2863 2864 zoneid_t 2865 getzoneid(void) 2866 { 2867 return (curproc->p_zone->zone_id); 2868 } 2869 2870 /* 2871 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2872 * check the validity of a zone's state. 2873 */ 2874 static zone_t * 2875 zone_find_all_by_id(zoneid_t zoneid) 2876 { 2877 mod_hash_val_t hv; 2878 zone_t *zone = NULL; 2879 2880 ASSERT(MUTEX_HELD(&zonehash_lock)); 2881 2882 if (mod_hash_find(zonehashbyid, 2883 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2884 zone = (zone_t *)hv; 2885 return (zone); 2886 } 2887 2888 static zone_t * 2889 zone_find_all_by_label(const ts_label_t *label) 2890 { 2891 mod_hash_val_t hv; 2892 zone_t *zone = NULL; 2893 2894 ASSERT(MUTEX_HELD(&zonehash_lock)); 2895 2896 /* 2897 * zonehashbylabel is not maintained for unlabeled systems 2898 */ 2899 if (!is_system_labeled()) 2900 return (NULL); 2901 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2902 zone = (zone_t *)hv; 2903 return (zone); 2904 } 2905 2906 static zone_t * 2907 zone_find_all_by_name(char *name) 2908 { 2909 mod_hash_val_t hv; 2910 zone_t *zone = NULL; 2911 2912 ASSERT(MUTEX_HELD(&zonehash_lock)); 2913 2914 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2915 zone = (zone_t *)hv; 2916 return (zone); 2917 } 2918 2919 /* 2920 * Public interface for looking up a zone by zoneid. Only returns the zone if 2921 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2922 * Caller must call zone_rele() once it is done with the zone. 2923 * 2924 * The zone may begin the zone_destroy() sequence immediately after this 2925 * function returns, but may be safely used until zone_rele() is called. 2926 */ 2927 zone_t * 2928 zone_find_by_id(zoneid_t zoneid) 2929 { 2930 zone_t *zone; 2931 zone_status_t status; 2932 2933 mutex_enter(&zonehash_lock); 2934 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2935 mutex_exit(&zonehash_lock); 2936 return (NULL); 2937 } 2938 status = zone_status_get(zone); 2939 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2940 /* 2941 * For all practical purposes the zone doesn't exist. 2942 */ 2943 mutex_exit(&zonehash_lock); 2944 return (NULL); 2945 } 2946 zone_hold(zone); 2947 mutex_exit(&zonehash_lock); 2948 return (zone); 2949 } 2950 2951 /* 2952 * Similar to zone_find_by_id, but using zone label as the key. 2953 */ 2954 zone_t * 2955 zone_find_by_label(const ts_label_t *label) 2956 { 2957 zone_t *zone; 2958 zone_status_t status; 2959 2960 mutex_enter(&zonehash_lock); 2961 if ((zone = zone_find_all_by_label(label)) == NULL) { 2962 mutex_exit(&zonehash_lock); 2963 return (NULL); 2964 } 2965 2966 status = zone_status_get(zone); 2967 if (status > ZONE_IS_DOWN) { 2968 /* 2969 * For all practical purposes the zone doesn't exist. 2970 */ 2971 mutex_exit(&zonehash_lock); 2972 return (NULL); 2973 } 2974 zone_hold(zone); 2975 mutex_exit(&zonehash_lock); 2976 return (zone); 2977 } 2978 2979 /* 2980 * Similar to zone_find_by_id, but using zone name as the key. 2981 */ 2982 zone_t * 2983 zone_find_by_name(char *name) 2984 { 2985 zone_t *zone; 2986 zone_status_t status; 2987 2988 mutex_enter(&zonehash_lock); 2989 if ((zone = zone_find_all_by_name(name)) == NULL) { 2990 mutex_exit(&zonehash_lock); 2991 return (NULL); 2992 } 2993 status = zone_status_get(zone); 2994 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2995 /* 2996 * For all practical purposes the zone doesn't exist. 2997 */ 2998 mutex_exit(&zonehash_lock); 2999 return (NULL); 3000 } 3001 zone_hold(zone); 3002 mutex_exit(&zonehash_lock); 3003 return (zone); 3004 } 3005 3006 /* 3007 * Similar to zone_find_by_id(), using the path as a key. For instance, 3008 * if there is a zone "foo" rooted at /foo/root, and the path argument 3009 * is "/foo/root/proc", it will return the held zone_t corresponding to 3010 * zone "foo". 3011 * 3012 * zone_find_by_path() always returns a non-NULL value, since at the 3013 * very least every path will be contained in the global zone. 3014 * 3015 * As with the other zone_find_by_*() functions, the caller is 3016 * responsible for zone_rele()ing the return value of this function. 3017 */ 3018 zone_t * 3019 zone_find_by_path(const char *path) 3020 { 3021 zone_t *zone; 3022 zone_t *zret = NULL; 3023 zone_status_t status; 3024 3025 if (path == NULL) { 3026 /* 3027 * Call from rootconf(). 3028 */ 3029 zone_hold(global_zone); 3030 return (global_zone); 3031 } 3032 ASSERT(*path == '/'); 3033 mutex_enter(&zonehash_lock); 3034 for (zone = list_head(&zone_active); zone != NULL; 3035 zone = list_next(&zone_active, zone)) { 3036 if (ZONE_PATH_VISIBLE(path, zone)) 3037 zret = zone; 3038 } 3039 ASSERT(zret != NULL); 3040 status = zone_status_get(zret); 3041 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3042 /* 3043 * Zone practically doesn't exist. 3044 */ 3045 zret = global_zone; 3046 } 3047 zone_hold(zret); 3048 mutex_exit(&zonehash_lock); 3049 return (zret); 3050 } 3051 3052 /* 3053 * Get the number of cpus visible to this zone. The system-wide global 3054 * 'ncpus' is returned if pools are disabled, the caller is in the 3055 * global zone, or a NULL zone argument is passed in. 3056 */ 3057 int 3058 zone_ncpus_get(zone_t *zone) 3059 { 3060 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3061 3062 return (myncpus != 0 ? myncpus : ncpus); 3063 } 3064 3065 /* 3066 * Get the number of online cpus visible to this zone. The system-wide 3067 * global 'ncpus_online' is returned if pools are disabled, the caller 3068 * is in the global zone, or a NULL zone argument is passed in. 3069 */ 3070 int 3071 zone_ncpus_online_get(zone_t *zone) 3072 { 3073 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3074 3075 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3076 } 3077 3078 /* 3079 * Return the pool to which the zone is currently bound. 3080 */ 3081 pool_t * 3082 zone_pool_get(zone_t *zone) 3083 { 3084 ASSERT(pool_lock_held()); 3085 3086 return (zone->zone_pool); 3087 } 3088 3089 /* 3090 * Set the zone's pool pointer and update the zone's visibility to match 3091 * the resources in the new pool. 3092 */ 3093 void 3094 zone_pool_set(zone_t *zone, pool_t *pool) 3095 { 3096 ASSERT(pool_lock_held()); 3097 ASSERT(MUTEX_HELD(&cpu_lock)); 3098 3099 zone->zone_pool = pool; 3100 zone_pset_set(zone, pool->pool_pset->pset_id); 3101 } 3102 3103 /* 3104 * Return the cached value of the id of the processor set to which the 3105 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3106 * facility is disabled. 3107 */ 3108 psetid_t 3109 zone_pset_get(zone_t *zone) 3110 { 3111 ASSERT(MUTEX_HELD(&cpu_lock)); 3112 3113 return (zone->zone_psetid); 3114 } 3115 3116 /* 3117 * Set the cached value of the id of the processor set to which the zone 3118 * is currently bound. Also update the zone's visibility to match the 3119 * resources in the new processor set. 3120 */ 3121 void 3122 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3123 { 3124 psetid_t oldpsetid; 3125 3126 ASSERT(MUTEX_HELD(&cpu_lock)); 3127 oldpsetid = zone_pset_get(zone); 3128 3129 if (oldpsetid == newpsetid) 3130 return; 3131 /* 3132 * Global zone sees all. 3133 */ 3134 if (zone != global_zone) { 3135 zone->zone_psetid = newpsetid; 3136 if (newpsetid != ZONE_PS_INVAL) 3137 pool_pset_visibility_add(newpsetid, zone); 3138 if (oldpsetid != ZONE_PS_INVAL) 3139 pool_pset_visibility_remove(oldpsetid, zone); 3140 } 3141 /* 3142 * Disabling pools, so we should start using the global values 3143 * for ncpus and ncpus_online. 3144 */ 3145 if (newpsetid == ZONE_PS_INVAL) { 3146 zone->zone_ncpus = 0; 3147 zone->zone_ncpus_online = 0; 3148 } 3149 } 3150 3151 /* 3152 * Walk the list of active zones and issue the provided callback for 3153 * each of them. 3154 * 3155 * Caller must not be holding any locks that may be acquired under 3156 * zonehash_lock. See comment at the beginning of the file for a list of 3157 * common locks and their interactions with zones. 3158 */ 3159 int 3160 zone_walk(int (*cb)(zone_t *, void *), void *data) 3161 { 3162 zone_t *zone; 3163 int ret = 0; 3164 zone_status_t status; 3165 3166 mutex_enter(&zonehash_lock); 3167 for (zone = list_head(&zone_active); zone != NULL; 3168 zone = list_next(&zone_active, zone)) { 3169 /* 3170 * Skip zones that shouldn't be externally visible. 3171 */ 3172 status = zone_status_get(zone); 3173 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3174 continue; 3175 /* 3176 * Bail immediately if any callback invocation returns a 3177 * non-zero value. 3178 */ 3179 ret = (*cb)(zone, data); 3180 if (ret != 0) 3181 break; 3182 } 3183 mutex_exit(&zonehash_lock); 3184 return (ret); 3185 } 3186 3187 static int 3188 zone_set_root(zone_t *zone, const char *upath) 3189 { 3190 vnode_t *vp; 3191 int trycount; 3192 int error = 0; 3193 char *path; 3194 struct pathname upn, pn; 3195 size_t pathlen; 3196 3197 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3198 return (error); 3199 3200 pn_alloc(&pn); 3201 3202 /* prevent infinite loop */ 3203 trycount = 10; 3204 for (;;) { 3205 if (--trycount <= 0) { 3206 error = ESTALE; 3207 goto out; 3208 } 3209 3210 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3211 /* 3212 * VOP_ACCESS() may cover 'vp' with a new 3213 * filesystem, if 'vp' is an autoFS vnode. 3214 * Get the new 'vp' if so. 3215 */ 3216 if ((error = 3217 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3218 (!vn_ismntpt(vp) || 3219 (error = traverse(&vp)) == 0)) { 3220 pathlen = pn.pn_pathlen + 2; 3221 path = kmem_alloc(pathlen, KM_SLEEP); 3222 (void) strncpy(path, pn.pn_path, 3223 pn.pn_pathlen + 1); 3224 path[pathlen - 2] = '/'; 3225 path[pathlen - 1] = '\0'; 3226 pn_free(&pn); 3227 pn_free(&upn); 3228 3229 /* Success! */ 3230 break; 3231 } 3232 VN_RELE(vp); 3233 } 3234 if (error != ESTALE) 3235 goto out; 3236 } 3237 3238 ASSERT(error == 0); 3239 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3240 zone->zone_rootpath = path; 3241 zone->zone_rootpathlen = pathlen; 3242 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3243 zone->zone_flags |= ZF_IS_SCRATCH; 3244 return (0); 3245 3246 out: 3247 pn_free(&pn); 3248 pn_free(&upn); 3249 return (error); 3250 } 3251 3252 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3253 ((c) >= 'a' && (c) <= 'z') || \ 3254 ((c) >= 'A' && (c) <= 'Z')) 3255 3256 static int 3257 zone_set_name(zone_t *zone, const char *uname) 3258 { 3259 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3260 size_t len; 3261 int i, err; 3262 3263 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3264 kmem_free(kname, ZONENAME_MAX); 3265 return (err); /* EFAULT or ENAMETOOLONG */ 3266 } 3267 3268 /* must be less than ZONENAME_MAX */ 3269 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3270 kmem_free(kname, ZONENAME_MAX); 3271 return (EINVAL); 3272 } 3273 3274 /* 3275 * Name must start with an alphanumeric and must contain only 3276 * alphanumerics, '-', '_' and '.'. 3277 */ 3278 if (!isalnum(kname[0])) { 3279 kmem_free(kname, ZONENAME_MAX); 3280 return (EINVAL); 3281 } 3282 for (i = 1; i < len - 1; i++) { 3283 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3284 kname[i] != '.') { 3285 kmem_free(kname, ZONENAME_MAX); 3286 return (EINVAL); 3287 } 3288 } 3289 3290 zone->zone_name = kname; 3291 return (0); 3292 } 3293 3294 /* 3295 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3296 * is NULL or it points to a zone with no hostid emulation, then the machine's 3297 * hostid (i.e., the global zone's hostid) is returned. This function returns 3298 * zero if neither the zone nor the host machine (global zone) have hostids. It 3299 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3300 * hostid and the machine's hostid is invalid. 3301 */ 3302 uint32_t 3303 zone_get_hostid(zone_t *zonep) 3304 { 3305 unsigned long machine_hostid; 3306 3307 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3308 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3309 return (HW_INVALID_HOSTID); 3310 return ((uint32_t)machine_hostid); 3311 } 3312 return (zonep->zone_hostid); 3313 } 3314 3315 /* 3316 * Similar to thread_create(), but makes sure the thread is in the appropriate 3317 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3318 */ 3319 /*ARGSUSED*/ 3320 kthread_t * 3321 zthread_create( 3322 caddr_t stk, 3323 size_t stksize, 3324 void (*proc)(), 3325 void *arg, 3326 size_t len, 3327 pri_t pri) 3328 { 3329 kthread_t *t; 3330 zone_t *zone = curproc->p_zone; 3331 proc_t *pp = zone->zone_zsched; 3332 3333 zone_hold(zone); /* Reference to be dropped when thread exits */ 3334 3335 /* 3336 * No-one should be trying to create threads if the zone is shutting 3337 * down and there aren't any kernel threads around. See comment 3338 * in zthread_exit(). 3339 */ 3340 ASSERT(!(zone->zone_kthreads == NULL && 3341 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3342 /* 3343 * Create a thread, but don't let it run until we've finished setting 3344 * things up. 3345 */ 3346 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3347 ASSERT(t->t_forw == NULL); 3348 mutex_enter(&zone_status_lock); 3349 if (zone->zone_kthreads == NULL) { 3350 t->t_forw = t->t_back = t; 3351 } else { 3352 kthread_t *tx = zone->zone_kthreads; 3353 3354 t->t_forw = tx; 3355 t->t_back = tx->t_back; 3356 tx->t_back->t_forw = t; 3357 tx->t_back = t; 3358 } 3359 zone->zone_kthreads = t; 3360 mutex_exit(&zone_status_lock); 3361 3362 mutex_enter(&pp->p_lock); 3363 t->t_proc_flag |= TP_ZTHREAD; 3364 project_rele(t->t_proj); 3365 t->t_proj = project_hold(pp->p_task->tk_proj); 3366 3367 /* 3368 * Setup complete, let it run. 3369 */ 3370 thread_lock(t); 3371 t->t_schedflag |= TS_ALLSTART; 3372 setrun_locked(t); 3373 thread_unlock(t); 3374 3375 mutex_exit(&pp->p_lock); 3376 3377 return (t); 3378 } 3379 3380 /* 3381 * Similar to thread_exit(). Must be called by threads created via 3382 * zthread_exit(). 3383 */ 3384 void 3385 zthread_exit(void) 3386 { 3387 kthread_t *t = curthread; 3388 proc_t *pp = curproc; 3389 zone_t *zone = pp->p_zone; 3390 3391 mutex_enter(&zone_status_lock); 3392 3393 /* 3394 * Reparent to p0 3395 */ 3396 kpreempt_disable(); 3397 mutex_enter(&pp->p_lock); 3398 t->t_proc_flag &= ~TP_ZTHREAD; 3399 t->t_procp = &p0; 3400 hat_thread_exit(t); 3401 mutex_exit(&pp->p_lock); 3402 kpreempt_enable(); 3403 3404 if (t->t_back == t) { 3405 ASSERT(t->t_forw == t); 3406 /* 3407 * If the zone is empty, once the thread count 3408 * goes to zero no further kernel threads can be 3409 * created. This is because if the creator is a process 3410 * in the zone, then it must have exited before the zone 3411 * state could be set to ZONE_IS_EMPTY. 3412 * Otherwise, if the creator is a kernel thread in the 3413 * zone, the thread count is non-zero. 3414 * 3415 * This really means that non-zone kernel threads should 3416 * not create zone kernel threads. 3417 */ 3418 zone->zone_kthreads = NULL; 3419 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3420 zone_status_set(zone, ZONE_IS_DOWN); 3421 /* 3422 * Remove any CPU caps on this zone. 3423 */ 3424 cpucaps_zone_remove(zone); 3425 } 3426 } else { 3427 t->t_forw->t_back = t->t_back; 3428 t->t_back->t_forw = t->t_forw; 3429 if (zone->zone_kthreads == t) 3430 zone->zone_kthreads = t->t_forw; 3431 } 3432 mutex_exit(&zone_status_lock); 3433 zone_rele(zone); 3434 thread_exit(); 3435 /* NOTREACHED */ 3436 } 3437 3438 static void 3439 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3440 { 3441 vnode_t *oldvp; 3442 3443 /* we're going to hold a reference here to the directory */ 3444 VN_HOLD(vp); 3445 3446 /* update abs cwd/root path see c2/audit.c */ 3447 if (AU_AUDITING()) 3448 audit_chdirec(vp, vpp); 3449 3450 mutex_enter(&pp->p_lock); 3451 oldvp = *vpp; 3452 *vpp = vp; 3453 mutex_exit(&pp->p_lock); 3454 if (oldvp != NULL) 3455 VN_RELE(oldvp); 3456 } 3457 3458 /* 3459 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3460 */ 3461 static int 3462 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3463 { 3464 nvpair_t *nvp = NULL; 3465 boolean_t priv_set = B_FALSE; 3466 boolean_t limit_set = B_FALSE; 3467 boolean_t action_set = B_FALSE; 3468 3469 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3470 const char *name; 3471 uint64_t ui64; 3472 3473 name = nvpair_name(nvp); 3474 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3475 return (EINVAL); 3476 (void) nvpair_value_uint64(nvp, &ui64); 3477 if (strcmp(name, "privilege") == 0) { 3478 /* 3479 * Currently only privileged values are allowed, but 3480 * this may change in the future. 3481 */ 3482 if (ui64 != RCPRIV_PRIVILEGED) 3483 return (EINVAL); 3484 rv->rcv_privilege = ui64; 3485 priv_set = B_TRUE; 3486 } else if (strcmp(name, "limit") == 0) { 3487 rv->rcv_value = ui64; 3488 limit_set = B_TRUE; 3489 } else if (strcmp(name, "action") == 0) { 3490 if (ui64 != RCTL_LOCAL_NOACTION && 3491 ui64 != RCTL_LOCAL_DENY) 3492 return (EINVAL); 3493 rv->rcv_flagaction = ui64; 3494 action_set = B_TRUE; 3495 } else { 3496 return (EINVAL); 3497 } 3498 } 3499 3500 if (!(priv_set && limit_set && action_set)) 3501 return (EINVAL); 3502 rv->rcv_action_signal = 0; 3503 rv->rcv_action_recipient = NULL; 3504 rv->rcv_action_recip_pid = -1; 3505 rv->rcv_firing_time = 0; 3506 3507 return (0); 3508 } 3509 3510 /* 3511 * Non-global zone version of start_init. 3512 */ 3513 void 3514 zone_start_init(void) 3515 { 3516 proc_t *p = ttoproc(curthread); 3517 zone_t *z = p->p_zone; 3518 3519 ASSERT(!INGLOBALZONE(curproc)); 3520 3521 /* 3522 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3523 * storing just the pid of init is sufficient. 3524 */ 3525 z->zone_proc_initpid = p->p_pid; 3526 3527 /* 3528 * We maintain zone_boot_err so that we can return the cause of the 3529 * failure back to the caller of the zone_boot syscall. 3530 */ 3531 p->p_zone->zone_boot_err = start_init_common(); 3532 3533 /* 3534 * We will prevent booting zones from becoming running zones if the 3535 * global zone is shutting down. 3536 */ 3537 mutex_enter(&zone_status_lock); 3538 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3539 ZONE_IS_SHUTTING_DOWN) { 3540 /* 3541 * Make sure we are still in the booting state-- we could have 3542 * raced and already be shutting down, or even further along. 3543 */ 3544 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3545 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3546 } 3547 mutex_exit(&zone_status_lock); 3548 /* It's gone bad, dispose of the process */ 3549 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3550 mutex_enter(&p->p_lock); 3551 ASSERT(p->p_flag & SEXITLWPS); 3552 lwp_exit(); 3553 } 3554 } else { 3555 if (zone_status_get(z) == ZONE_IS_BOOTING) 3556 zone_status_set(z, ZONE_IS_RUNNING); 3557 mutex_exit(&zone_status_lock); 3558 /* cause the process to return to userland. */ 3559 lwp_rtt(); 3560 } 3561 } 3562 3563 struct zsched_arg { 3564 zone_t *zone; 3565 nvlist_t *nvlist; 3566 }; 3567 3568 /* 3569 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3570 * anything to do with scheduling, but rather with the fact that 3571 * per-zone kernel threads are parented to zsched, just like regular 3572 * kernel threads are parented to sched (p0). 3573 * 3574 * zsched is also responsible for launching init for the zone. 3575 */ 3576 static void 3577 zsched(void *arg) 3578 { 3579 struct zsched_arg *za = arg; 3580 proc_t *pp = curproc; 3581 proc_t *initp = proc_init; 3582 zone_t *zone = za->zone; 3583 cred_t *cr, *oldcred; 3584 rctl_set_t *set; 3585 rctl_alloc_gp_t *gp; 3586 contract_t *ct = NULL; 3587 task_t *tk, *oldtk; 3588 rctl_entity_p_t e; 3589 kproject_t *pj; 3590 3591 nvlist_t *nvl = za->nvlist; 3592 nvpair_t *nvp = NULL; 3593 3594 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3595 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3596 PTOU(pp)->u_argc = 0; 3597 PTOU(pp)->u_argv = NULL; 3598 PTOU(pp)->u_envp = NULL; 3599 closeall(P_FINFO(pp)); 3600 3601 /* 3602 * We are this zone's "zsched" process. As the zone isn't generally 3603 * visible yet we don't need to grab any locks before initializing its 3604 * zone_proc pointer. 3605 */ 3606 zone_hold(zone); /* this hold is released by zone_destroy() */ 3607 zone->zone_zsched = pp; 3608 mutex_enter(&pp->p_lock); 3609 pp->p_zone = zone; 3610 mutex_exit(&pp->p_lock); 3611 3612 /* 3613 * Disassociate process from its 'parent'; parent ourselves to init 3614 * (pid 1) and change other values as needed. 3615 */ 3616 sess_create(); 3617 3618 mutex_enter(&pidlock); 3619 proc_detach(pp); 3620 pp->p_ppid = 1; 3621 pp->p_flag |= SZONETOP; 3622 pp->p_ancpid = 1; 3623 pp->p_parent = initp; 3624 pp->p_psibling = NULL; 3625 if (initp->p_child) 3626 initp->p_child->p_psibling = pp; 3627 pp->p_sibling = initp->p_child; 3628 initp->p_child = pp; 3629 3630 /* Decrement what newproc() incremented. */ 3631 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3632 /* 3633 * Our credentials are about to become kcred-like, so we don't care 3634 * about the caller's ruid. 3635 */ 3636 upcount_inc(crgetruid(kcred), zone->zone_id); 3637 mutex_exit(&pidlock); 3638 3639 /* 3640 * getting out of global zone, so decrement lwp and process counts 3641 */ 3642 pj = pp->p_task->tk_proj; 3643 mutex_enter(&global_zone->zone_nlwps_lock); 3644 pj->kpj_nlwps -= pp->p_lwpcnt; 3645 global_zone->zone_nlwps -= pp->p_lwpcnt; 3646 pj->kpj_nprocs--; 3647 global_zone->zone_nprocs--; 3648 mutex_exit(&global_zone->zone_nlwps_lock); 3649 3650 /* 3651 * Decrement locked memory counts on old zone and project. 3652 */ 3653 mutex_enter(&global_zone->zone_mem_lock); 3654 global_zone->zone_locked_mem -= pp->p_locked_mem; 3655 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3656 mutex_exit(&global_zone->zone_mem_lock); 3657 3658 /* 3659 * Create and join a new task in project '0' of this zone. 3660 * 3661 * We don't need to call holdlwps() since we know we're the only lwp in 3662 * this process. 3663 * 3664 * task_join() returns with p_lock held. 3665 */ 3666 tk = task_create(0, zone); 3667 mutex_enter(&cpu_lock); 3668 oldtk = task_join(tk, 0); 3669 3670 pj = pp->p_task->tk_proj; 3671 3672 mutex_enter(&zone->zone_mem_lock); 3673 zone->zone_locked_mem += pp->p_locked_mem; 3674 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3675 mutex_exit(&zone->zone_mem_lock); 3676 3677 /* 3678 * add lwp and process counts to zsched's zone, and increment 3679 * project's task and process count due to the task created in 3680 * the above task_create. 3681 */ 3682 mutex_enter(&zone->zone_nlwps_lock); 3683 pj->kpj_nlwps += pp->p_lwpcnt; 3684 pj->kpj_ntasks += 1; 3685 zone->zone_nlwps += pp->p_lwpcnt; 3686 pj->kpj_nprocs++; 3687 zone->zone_nprocs++; 3688 mutex_exit(&zone->zone_nlwps_lock); 3689 3690 mutex_exit(&curproc->p_lock); 3691 mutex_exit(&cpu_lock); 3692 task_rele(oldtk); 3693 3694 /* 3695 * The process was created by a process in the global zone, hence the 3696 * credentials are wrong. We might as well have kcred-ish credentials. 3697 */ 3698 cr = zone->zone_kcred; 3699 crhold(cr); 3700 mutex_enter(&pp->p_crlock); 3701 oldcred = pp->p_cred; 3702 pp->p_cred = cr; 3703 mutex_exit(&pp->p_crlock); 3704 crfree(oldcred); 3705 3706 /* 3707 * Hold credentials again (for thread) 3708 */ 3709 crhold(cr); 3710 3711 /* 3712 * p_lwpcnt can't change since this is a kernel process. 3713 */ 3714 crset(pp, cr); 3715 3716 /* 3717 * Chroot 3718 */ 3719 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3720 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3721 3722 /* 3723 * Initialize zone's rctl set. 3724 */ 3725 set = rctl_set_create(); 3726 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3727 mutex_enter(&pp->p_lock); 3728 e.rcep_p.zone = zone; 3729 e.rcep_t = RCENTITY_ZONE; 3730 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3731 mutex_exit(&pp->p_lock); 3732 rctl_prealloc_destroy(gp); 3733 3734 /* 3735 * Apply the rctls passed in to zone_create(). This is basically a list 3736 * assignment: all of the old values are removed and the new ones 3737 * inserted. That is, if an empty list is passed in, all values are 3738 * removed. 3739 */ 3740 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3741 rctl_dict_entry_t *rde; 3742 rctl_hndl_t hndl; 3743 char *name; 3744 nvlist_t **nvlarray; 3745 uint_t i, nelem; 3746 int error; /* For ASSERT()s */ 3747 3748 name = nvpair_name(nvp); 3749 hndl = rctl_hndl_lookup(name); 3750 ASSERT(hndl != -1); 3751 rde = rctl_dict_lookup_hndl(hndl); 3752 ASSERT(rde != NULL); 3753 3754 for (; /* ever */; ) { 3755 rctl_val_t oval; 3756 3757 mutex_enter(&pp->p_lock); 3758 error = rctl_local_get(hndl, NULL, &oval, pp); 3759 mutex_exit(&pp->p_lock); 3760 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3761 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3762 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3763 break; 3764 mutex_enter(&pp->p_lock); 3765 error = rctl_local_delete(hndl, &oval, pp); 3766 mutex_exit(&pp->p_lock); 3767 ASSERT(error == 0); 3768 } 3769 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3770 ASSERT(error == 0); 3771 for (i = 0; i < nelem; i++) { 3772 rctl_val_t *nvalp; 3773 3774 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3775 error = nvlist2rctlval(nvlarray[i], nvalp); 3776 ASSERT(error == 0); 3777 /* 3778 * rctl_local_insert can fail if the value being 3779 * inserted is a duplicate; this is OK. 3780 */ 3781 mutex_enter(&pp->p_lock); 3782 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3783 kmem_cache_free(rctl_val_cache, nvalp); 3784 mutex_exit(&pp->p_lock); 3785 } 3786 } 3787 /* 3788 * Tell the world that we're done setting up. 3789 * 3790 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3791 * and atomically set the zone's processor set visibility. Once 3792 * we drop pool_lock() this zone will automatically get updated 3793 * to reflect any future changes to the pools configuration. 3794 * 3795 * Note that after we drop the locks below (zonehash_lock in 3796 * particular) other operations such as a zone_getattr call can 3797 * now proceed and observe the zone. That is the reason for doing a 3798 * state transition to the INITIALIZED state. 3799 */ 3800 pool_lock(); 3801 mutex_enter(&cpu_lock); 3802 mutex_enter(&zonehash_lock); 3803 zone_uniqid(zone); 3804 zone_zsd_configure(zone); 3805 if (pool_state == POOL_ENABLED) 3806 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3807 mutex_enter(&zone_status_lock); 3808 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3809 zone_status_set(zone, ZONE_IS_INITIALIZED); 3810 mutex_exit(&zone_status_lock); 3811 mutex_exit(&zonehash_lock); 3812 mutex_exit(&cpu_lock); 3813 pool_unlock(); 3814 3815 /* Now call the create callback for this key */ 3816 zsd_apply_all_keys(zsd_apply_create, zone); 3817 3818 /* The callbacks are complete. Mark ZONE_IS_READY */ 3819 mutex_enter(&zone_status_lock); 3820 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3821 zone_status_set(zone, ZONE_IS_READY); 3822 mutex_exit(&zone_status_lock); 3823 3824 /* 3825 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3826 * we launch init, and set the state to running. 3827 */ 3828 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3829 3830 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3831 id_t cid; 3832 3833 /* 3834 * Ok, this is a little complicated. We need to grab the 3835 * zone's pool's scheduling class ID; note that by now, we 3836 * are already bound to a pool if we need to be (zoneadmd 3837 * will have done that to us while we're in the READY 3838 * state). *But* the scheduling class for the zone's 'init' 3839 * must be explicitly passed to newproc, which doesn't 3840 * respect pool bindings. 3841 * 3842 * We hold the pool_lock across the call to newproc() to 3843 * close the obvious race: the pool's scheduling class 3844 * could change before we manage to create the LWP with 3845 * classid 'cid'. 3846 */ 3847 pool_lock(); 3848 if (zone->zone_defaultcid > 0) 3849 cid = zone->zone_defaultcid; 3850 else 3851 cid = pool_get_class(zone->zone_pool); 3852 if (cid == -1) 3853 cid = defaultcid; 3854 3855 /* 3856 * If this fails, zone_boot will ultimately fail. The 3857 * state of the zone will be set to SHUTTING_DOWN-- userland 3858 * will have to tear down the zone, and fail, or try again. 3859 */ 3860 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3861 minclsyspri - 1, &ct, 0)) != 0) { 3862 mutex_enter(&zone_status_lock); 3863 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3864 mutex_exit(&zone_status_lock); 3865 } else { 3866 zone->zone_boot_time = gethrestime_sec(); 3867 } 3868 3869 pool_unlock(); 3870 } 3871 3872 /* 3873 * Wait for zone_destroy() to be called. This is what we spend 3874 * most of our life doing. 3875 */ 3876 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3877 3878 if (ct) 3879 /* 3880 * At this point the process contract should be empty. 3881 * (Though if it isn't, it's not the end of the world.) 3882 */ 3883 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3884 3885 /* 3886 * Allow kcred to be freed when all referring processes 3887 * (including this one) go away. We can't just do this in 3888 * zone_free because we need to wait for the zone_cred_ref to 3889 * drop to 0 before calling zone_free, and the existence of 3890 * zone_kcred will prevent that. Thus, we call crfree here to 3891 * balance the crdup in zone_create. The crhold calls earlier 3892 * in zsched will be dropped when the thread and process exit. 3893 */ 3894 crfree(zone->zone_kcred); 3895 zone->zone_kcred = NULL; 3896 3897 exit(CLD_EXITED, 0); 3898 } 3899 3900 /* 3901 * Helper function to determine if there are any submounts of the 3902 * provided path. Used to make sure the zone doesn't "inherit" any 3903 * mounts from before it is created. 3904 */ 3905 static uint_t 3906 zone_mount_count(const char *rootpath) 3907 { 3908 vfs_t *vfsp; 3909 uint_t count = 0; 3910 size_t rootpathlen = strlen(rootpath); 3911 3912 /* 3913 * Holding zonehash_lock prevents race conditions with 3914 * vfs_list_add()/vfs_list_remove() since we serialize with 3915 * zone_find_by_path(). 3916 */ 3917 ASSERT(MUTEX_HELD(&zonehash_lock)); 3918 /* 3919 * The rootpath must end with a '/' 3920 */ 3921 ASSERT(rootpath[rootpathlen - 1] == '/'); 3922 3923 /* 3924 * This intentionally does not count the rootpath itself if that 3925 * happens to be a mount point. 3926 */ 3927 vfs_list_read_lock(); 3928 vfsp = rootvfs; 3929 do { 3930 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 3931 rootpathlen) == 0) 3932 count++; 3933 vfsp = vfsp->vfs_next; 3934 } while (vfsp != rootvfs); 3935 vfs_list_unlock(); 3936 return (count); 3937 } 3938 3939 /* 3940 * Helper function to make sure that a zone created on 'rootpath' 3941 * wouldn't end up containing other zones' rootpaths. 3942 */ 3943 static boolean_t 3944 zone_is_nested(const char *rootpath) 3945 { 3946 zone_t *zone; 3947 size_t rootpathlen = strlen(rootpath); 3948 size_t len; 3949 3950 ASSERT(MUTEX_HELD(&zonehash_lock)); 3951 3952 /* 3953 * zone_set_root() appended '/' and '\0' at the end of rootpath 3954 */ 3955 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 3956 (rootpath[1] == '/') && (rootpath[2] == '\0')) 3957 return (B_TRUE); 3958 3959 for (zone = list_head(&zone_active); zone != NULL; 3960 zone = list_next(&zone_active, zone)) { 3961 if (zone == global_zone) 3962 continue; 3963 len = strlen(zone->zone_rootpath); 3964 if (strncmp(rootpath, zone->zone_rootpath, 3965 MIN(rootpathlen, len)) == 0) 3966 return (B_TRUE); 3967 } 3968 return (B_FALSE); 3969 } 3970 3971 static int 3972 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 3973 size_t zone_privssz) 3974 { 3975 priv_set_t *privs; 3976 3977 if (zone_privssz < sizeof (priv_set_t)) 3978 return (ENOMEM); 3979 3980 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 3981 3982 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 3983 kmem_free(privs, sizeof (priv_set_t)); 3984 return (EFAULT); 3985 } 3986 3987 zone->zone_privset = privs; 3988 return (0); 3989 } 3990 3991 /* 3992 * We make creative use of nvlists to pass in rctls from userland. The list is 3993 * a list of the following structures: 3994 * 3995 * (name = rctl_name, value = nvpair_list_array) 3996 * 3997 * Where each element of the nvpair_list_array is of the form: 3998 * 3999 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4000 * (name = "limit", value = uint64_t), 4001 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4002 */ 4003 static int 4004 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4005 { 4006 nvpair_t *nvp = NULL; 4007 nvlist_t *nvl = NULL; 4008 char *kbuf; 4009 int error; 4010 rctl_val_t rv; 4011 4012 *nvlp = NULL; 4013 4014 if (buflen == 0) 4015 return (0); 4016 4017 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4018 return (ENOMEM); 4019 if (copyin(ubuf, kbuf, buflen)) { 4020 error = EFAULT; 4021 goto out; 4022 } 4023 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4024 /* 4025 * nvl may have been allocated/free'd, but the value set to 4026 * non-NULL, so we reset it here. 4027 */ 4028 nvl = NULL; 4029 error = EINVAL; 4030 goto out; 4031 } 4032 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4033 rctl_dict_entry_t *rde; 4034 rctl_hndl_t hndl; 4035 nvlist_t **nvlarray; 4036 uint_t i, nelem; 4037 char *name; 4038 4039 error = EINVAL; 4040 name = nvpair_name(nvp); 4041 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4042 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4043 goto out; 4044 } 4045 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4046 goto out; 4047 } 4048 rde = rctl_dict_lookup_hndl(hndl); 4049 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4050 ASSERT(error == 0); 4051 for (i = 0; i < nelem; i++) { 4052 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4053 goto out; 4054 } 4055 if (rctl_invalid_value(rde, &rv)) { 4056 error = EINVAL; 4057 goto out; 4058 } 4059 } 4060 error = 0; 4061 *nvlp = nvl; 4062 out: 4063 kmem_free(kbuf, buflen); 4064 if (error && nvl != NULL) 4065 nvlist_free(nvl); 4066 return (error); 4067 } 4068 4069 int 4070 zone_create_error(int er_error, int er_ext, int *er_out) { 4071 if (er_out != NULL) { 4072 if (copyout(&er_ext, er_out, sizeof (int))) { 4073 return (set_errno(EFAULT)); 4074 } 4075 } 4076 return (set_errno(er_error)); 4077 } 4078 4079 static int 4080 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4081 { 4082 ts_label_t *tsl; 4083 bslabel_t blab; 4084 4085 /* Get label from user */ 4086 if (copyin(lab, &blab, sizeof (blab)) != 0) 4087 return (EFAULT); 4088 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4089 if (tsl == NULL) 4090 return (ENOMEM); 4091 4092 zone->zone_slabel = tsl; 4093 return (0); 4094 } 4095 4096 /* 4097 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4098 */ 4099 static int 4100 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4101 { 4102 char *kbuf; 4103 char *dataset, *next; 4104 zone_dataset_t *zd; 4105 size_t len; 4106 4107 if (ubuf == NULL || buflen == 0) 4108 return (0); 4109 4110 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4111 return (ENOMEM); 4112 4113 if (copyin(ubuf, kbuf, buflen) != 0) { 4114 kmem_free(kbuf, buflen); 4115 return (EFAULT); 4116 } 4117 4118 dataset = next = kbuf; 4119 for (;;) { 4120 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4121 4122 next = strchr(dataset, ','); 4123 4124 if (next == NULL) 4125 len = strlen(dataset); 4126 else 4127 len = next - dataset; 4128 4129 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4130 bcopy(dataset, zd->zd_dataset, len); 4131 zd->zd_dataset[len] = '\0'; 4132 4133 list_insert_head(&zone->zone_datasets, zd); 4134 4135 if (next == NULL) 4136 break; 4137 4138 dataset = next + 1; 4139 } 4140 4141 kmem_free(kbuf, buflen); 4142 return (0); 4143 } 4144 4145 /* 4146 * System call to create/initialize a new zone named 'zone_name', rooted 4147 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4148 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4149 * with labeling set by 'match', 'doi', and 'label'. 4150 * 4151 * If extended error is non-null, we may use it to return more detailed 4152 * error information. 4153 */ 4154 static zoneid_t 4155 zone_create(const char *zone_name, const char *zone_root, 4156 const priv_set_t *zone_privs, size_t zone_privssz, 4157 caddr_t rctlbuf, size_t rctlbufsz, 4158 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4159 int match, uint32_t doi, const bslabel_t *label, 4160 int flags) 4161 { 4162 struct zsched_arg zarg; 4163 nvlist_t *rctls = NULL; 4164 proc_t *pp = curproc; 4165 zone_t *zone, *ztmp; 4166 zoneid_t zoneid; 4167 int error; 4168 int error2 = 0; 4169 char *str; 4170 cred_t *zkcr; 4171 boolean_t insert_label_hash; 4172 4173 if (secpolicy_zone_config(CRED()) != 0) 4174 return (set_errno(EPERM)); 4175 4176 /* can't boot zone from within chroot environment */ 4177 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4178 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4179 extended_error)); 4180 4181 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4182 zoneid = zone->zone_id = id_alloc(zoneid_space); 4183 zone->zone_status = ZONE_IS_UNINITIALIZED; 4184 zone->zone_pool = pool_default; 4185 zone->zone_pool_mod = gethrtime(); 4186 zone->zone_psetid = ZONE_PS_INVAL; 4187 zone->zone_ncpus = 0; 4188 zone->zone_ncpus_online = 0; 4189 zone->zone_restart_init = B_TRUE; 4190 zone->zone_brand = &native_brand; 4191 zone->zone_initname = NULL; 4192 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4193 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4194 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4195 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4196 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4197 offsetof(zone_ref_t, zref_linkage)); 4198 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4199 offsetof(struct zsd_entry, zsd_linkage)); 4200 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4201 offsetof(zone_dataset_t, zd_linkage)); 4202 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4203 offsetof(zone_dl_t, zdl_linkage)); 4204 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4205 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4206 4207 if (flags & ZCF_NET_EXCL) { 4208 zone->zone_flags |= ZF_NET_EXCL; 4209 } 4210 4211 if ((error = zone_set_name(zone, zone_name)) != 0) { 4212 zone_free(zone); 4213 return (zone_create_error(error, 0, extended_error)); 4214 } 4215 4216 if ((error = zone_set_root(zone, zone_root)) != 0) { 4217 zone_free(zone); 4218 return (zone_create_error(error, 0, extended_error)); 4219 } 4220 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4221 zone_free(zone); 4222 return (zone_create_error(error, 0, extended_error)); 4223 } 4224 4225 /* initialize node name to be the same as zone name */ 4226 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4227 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4228 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4229 4230 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4231 zone->zone_domain[0] = '\0'; 4232 zone->zone_hostid = HW_INVALID_HOSTID; 4233 zone->zone_shares = 1; 4234 zone->zone_shmmax = 0; 4235 zone->zone_ipc.ipcq_shmmni = 0; 4236 zone->zone_ipc.ipcq_semmni = 0; 4237 zone->zone_ipc.ipcq_msgmni = 0; 4238 zone->zone_bootargs = NULL; 4239 zone->zone_fs_allowed = NULL; 4240 zone->zone_initname = 4241 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4242 (void) strcpy(zone->zone_initname, zone_default_initname); 4243 zone->zone_nlwps = 0; 4244 zone->zone_nlwps_ctl = INT_MAX; 4245 zone->zone_nprocs = 0; 4246 zone->zone_nprocs_ctl = INT_MAX; 4247 zone->zone_locked_mem = 0; 4248 zone->zone_locked_mem_ctl = UINT64_MAX; 4249 zone->zone_max_swap = 0; 4250 zone->zone_max_swap_ctl = UINT64_MAX; 4251 zone->zone_max_lofi = 0; 4252 zone->zone_max_lofi_ctl = UINT64_MAX; 4253 zone0.zone_lockedmem_kstat = NULL; 4254 zone0.zone_swapresv_kstat = NULL; 4255 4256 /* 4257 * Zsched initializes the rctls. 4258 */ 4259 zone->zone_rctls = NULL; 4260 4261 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4262 zone_free(zone); 4263 return (zone_create_error(error, 0, extended_error)); 4264 } 4265 4266 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4267 zone_free(zone); 4268 return (set_errno(error)); 4269 } 4270 4271 /* 4272 * Read in the trusted system parameters: 4273 * match flag and sensitivity label. 4274 */ 4275 zone->zone_match = match; 4276 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4277 /* Fail if requested to set doi to anything but system's doi */ 4278 if (doi != 0 && doi != default_doi) { 4279 zone_free(zone); 4280 return (set_errno(EINVAL)); 4281 } 4282 /* Always apply system's doi to the zone */ 4283 error = zone_set_label(zone, label, default_doi); 4284 if (error != 0) { 4285 zone_free(zone); 4286 return (set_errno(error)); 4287 } 4288 insert_label_hash = B_TRUE; 4289 } else { 4290 /* all zones get an admin_low label if system is not labeled */ 4291 zone->zone_slabel = l_admin_low; 4292 label_hold(l_admin_low); 4293 insert_label_hash = B_FALSE; 4294 } 4295 4296 /* 4297 * Stop all lwps since that's what normally happens as part of fork(). 4298 * This needs to happen before we grab any locks to avoid deadlock 4299 * (another lwp in the process could be waiting for the held lock). 4300 */ 4301 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4302 zone_free(zone); 4303 if (rctls) 4304 nvlist_free(rctls); 4305 return (zone_create_error(error, 0, extended_error)); 4306 } 4307 4308 if (block_mounts() == 0) { 4309 mutex_enter(&pp->p_lock); 4310 if (curthread != pp->p_agenttp) 4311 continuelwps(pp); 4312 mutex_exit(&pp->p_lock); 4313 zone_free(zone); 4314 if (rctls) 4315 nvlist_free(rctls); 4316 return (zone_create_error(error, 0, extended_error)); 4317 } 4318 4319 /* 4320 * Set up credential for kernel access. After this, any errors 4321 * should go through the dance in errout rather than calling 4322 * zone_free directly. 4323 */ 4324 zone->zone_kcred = crdup(kcred); 4325 crsetzone(zone->zone_kcred, zone); 4326 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4327 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4328 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4329 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4330 4331 mutex_enter(&zonehash_lock); 4332 /* 4333 * Make sure zone doesn't already exist. 4334 * 4335 * If the system and zone are labeled, 4336 * make sure no other zone exists that has the same label. 4337 */ 4338 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4339 (insert_label_hash && 4340 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4341 zone_status_t status; 4342 4343 status = zone_status_get(ztmp); 4344 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4345 error = EEXIST; 4346 else 4347 error = EBUSY; 4348 4349 if (insert_label_hash) 4350 error2 = ZE_LABELINUSE; 4351 4352 goto errout; 4353 } 4354 4355 /* 4356 * Don't allow zone creations which would cause one zone's rootpath to 4357 * be accessible from that of another (non-global) zone. 4358 */ 4359 if (zone_is_nested(zone->zone_rootpath)) { 4360 error = EBUSY; 4361 goto errout; 4362 } 4363 4364 ASSERT(zonecount != 0); /* check for leaks */ 4365 if (zonecount + 1 > maxzones) { 4366 error = ENOMEM; 4367 goto errout; 4368 } 4369 4370 if (zone_mount_count(zone->zone_rootpath) != 0) { 4371 error = EBUSY; 4372 error2 = ZE_AREMOUNTS; 4373 goto errout; 4374 } 4375 4376 /* 4377 * Zone is still incomplete, but we need to drop all locks while 4378 * zsched() initializes this zone's kernel process. We 4379 * optimistically add the zone to the hashtable and associated 4380 * lists so a parallel zone_create() doesn't try to create the 4381 * same zone. 4382 */ 4383 zonecount++; 4384 (void) mod_hash_insert(zonehashbyid, 4385 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4386 (mod_hash_val_t)(uintptr_t)zone); 4387 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4388 (void) strcpy(str, zone->zone_name); 4389 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4390 (mod_hash_val_t)(uintptr_t)zone); 4391 if (insert_label_hash) { 4392 (void) mod_hash_insert(zonehashbylabel, 4393 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4394 zone->zone_flags |= ZF_HASHED_LABEL; 4395 } 4396 4397 /* 4398 * Insert into active list. At this point there are no 'hold's 4399 * on the zone, but everyone else knows not to use it, so we can 4400 * continue to use it. zsched() will do a zone_hold() if the 4401 * newproc() is successful. 4402 */ 4403 list_insert_tail(&zone_active, zone); 4404 mutex_exit(&zonehash_lock); 4405 4406 zarg.zone = zone; 4407 zarg.nvlist = rctls; 4408 /* 4409 * The process, task, and project rctls are probably wrong; 4410 * we need an interface to get the default values of all rctls, 4411 * and initialize zsched appropriately. I'm not sure that that 4412 * makes much of a difference, though. 4413 */ 4414 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4415 if (error != 0) { 4416 /* 4417 * We need to undo all globally visible state. 4418 */ 4419 mutex_enter(&zonehash_lock); 4420 list_remove(&zone_active, zone); 4421 if (zone->zone_flags & ZF_HASHED_LABEL) { 4422 ASSERT(zone->zone_slabel != NULL); 4423 (void) mod_hash_destroy(zonehashbylabel, 4424 (mod_hash_key_t)zone->zone_slabel); 4425 } 4426 (void) mod_hash_destroy(zonehashbyname, 4427 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4428 (void) mod_hash_destroy(zonehashbyid, 4429 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4430 ASSERT(zonecount > 1); 4431 zonecount--; 4432 goto errout; 4433 } 4434 4435 /* 4436 * Zone creation can't fail from now on. 4437 */ 4438 4439 /* 4440 * Create zone kstats 4441 */ 4442 zone_kstat_create(zone); 4443 4444 /* 4445 * Let the other lwps continue. 4446 */ 4447 mutex_enter(&pp->p_lock); 4448 if (curthread != pp->p_agenttp) 4449 continuelwps(pp); 4450 mutex_exit(&pp->p_lock); 4451 4452 /* 4453 * Wait for zsched to finish initializing the zone. 4454 */ 4455 zone_status_wait(zone, ZONE_IS_READY); 4456 /* 4457 * The zone is fully visible, so we can let mounts progress. 4458 */ 4459 resume_mounts(); 4460 if (rctls) 4461 nvlist_free(rctls); 4462 4463 return (zoneid); 4464 4465 errout: 4466 mutex_exit(&zonehash_lock); 4467 /* 4468 * Let the other lwps continue. 4469 */ 4470 mutex_enter(&pp->p_lock); 4471 if (curthread != pp->p_agenttp) 4472 continuelwps(pp); 4473 mutex_exit(&pp->p_lock); 4474 4475 resume_mounts(); 4476 if (rctls) 4477 nvlist_free(rctls); 4478 /* 4479 * There is currently one reference to the zone, a cred_ref from 4480 * zone_kcred. To free the zone, we call crfree, which will call 4481 * zone_cred_rele, which will call zone_free. 4482 */ 4483 ASSERT(zone->zone_cred_ref == 1); 4484 ASSERT(zone->zone_kcred->cr_ref == 1); 4485 ASSERT(zone->zone_ref == 0); 4486 zkcr = zone->zone_kcred; 4487 zone->zone_kcred = NULL; 4488 crfree(zkcr); /* triggers call to zone_free */ 4489 return (zone_create_error(error, error2, extended_error)); 4490 } 4491 4492 /* 4493 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4494 * the heavy lifting. initname is the path to the program to launch 4495 * at the "top" of the zone; if this is NULL, we use the system default, 4496 * which is stored at zone_default_initname. 4497 */ 4498 static int 4499 zone_boot(zoneid_t zoneid) 4500 { 4501 int err; 4502 zone_t *zone; 4503 4504 if (secpolicy_zone_config(CRED()) != 0) 4505 return (set_errno(EPERM)); 4506 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4507 return (set_errno(EINVAL)); 4508 4509 mutex_enter(&zonehash_lock); 4510 /* 4511 * Look for zone under hash lock to prevent races with calls to 4512 * zone_shutdown, zone_destroy, etc. 4513 */ 4514 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4515 mutex_exit(&zonehash_lock); 4516 return (set_errno(EINVAL)); 4517 } 4518 4519 mutex_enter(&zone_status_lock); 4520 if (zone_status_get(zone) != ZONE_IS_READY) { 4521 mutex_exit(&zone_status_lock); 4522 mutex_exit(&zonehash_lock); 4523 return (set_errno(EINVAL)); 4524 } 4525 zone_status_set(zone, ZONE_IS_BOOTING); 4526 mutex_exit(&zone_status_lock); 4527 4528 zone_hold(zone); /* so we can use the zone_t later */ 4529 mutex_exit(&zonehash_lock); 4530 4531 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4532 zone_rele(zone); 4533 return (set_errno(EINTR)); 4534 } 4535 4536 /* 4537 * Boot (starting init) might have failed, in which case the zone 4538 * will go to the SHUTTING_DOWN state; an appropriate errno will 4539 * be placed in zone->zone_boot_err, and so we return that. 4540 */ 4541 err = zone->zone_boot_err; 4542 zone_rele(zone); 4543 return (err ? set_errno(err) : 0); 4544 } 4545 4546 /* 4547 * Kills all user processes in the zone, waiting for them all to exit 4548 * before returning. 4549 */ 4550 static int 4551 zone_empty(zone_t *zone) 4552 { 4553 int waitstatus; 4554 4555 /* 4556 * We need to drop zonehash_lock before killing all 4557 * processes, otherwise we'll deadlock with zone_find_* 4558 * which can be called from the exit path. 4559 */ 4560 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4561 while ((waitstatus = zone_status_timedwait_sig(zone, 4562 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4563 killall(zone->zone_id); 4564 } 4565 /* 4566 * return EINTR if we were signaled 4567 */ 4568 if (waitstatus == 0) 4569 return (EINTR); 4570 return (0); 4571 } 4572 4573 /* 4574 * This function implements the policy for zone visibility. 4575 * 4576 * In standard Solaris, a non-global zone can only see itself. 4577 * 4578 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4579 * it dominates. For this test, the label of the global zone is treated as 4580 * admin_high so it is special-cased instead of being checked for dominance. 4581 * 4582 * Returns true if zone attributes are viewable, false otherwise. 4583 */ 4584 static boolean_t 4585 zone_list_access(zone_t *zone) 4586 { 4587 4588 if (curproc->p_zone == global_zone || 4589 curproc->p_zone == zone) { 4590 return (B_TRUE); 4591 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4592 bslabel_t *curproc_label; 4593 bslabel_t *zone_label; 4594 4595 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4596 zone_label = label2bslabel(zone->zone_slabel); 4597 4598 if (zone->zone_id != GLOBAL_ZONEID && 4599 bldominates(curproc_label, zone_label)) { 4600 return (B_TRUE); 4601 } else { 4602 return (B_FALSE); 4603 } 4604 } else { 4605 return (B_FALSE); 4606 } 4607 } 4608 4609 /* 4610 * Systemcall to start the zone's halt sequence. By the time this 4611 * function successfully returns, all user processes and kernel threads 4612 * executing in it will have exited, ZSD shutdown callbacks executed, 4613 * and the zone status set to ZONE_IS_DOWN. 4614 * 4615 * It is possible that the call will interrupt itself if the caller is the 4616 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4617 */ 4618 static int 4619 zone_shutdown(zoneid_t zoneid) 4620 { 4621 int error; 4622 zone_t *zone; 4623 zone_status_t status; 4624 4625 if (secpolicy_zone_config(CRED()) != 0) 4626 return (set_errno(EPERM)); 4627 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4628 return (set_errno(EINVAL)); 4629 4630 /* 4631 * Block mounts so that VFS_MOUNT() can get an accurate view of 4632 * the zone's status with regards to ZONE_IS_SHUTTING down. 4633 * 4634 * e.g. NFS can fail the mount if it determines that the zone 4635 * has already begun the shutdown sequence. 4636 */ 4637 if (block_mounts() == 0) 4638 return (set_errno(EINTR)); 4639 mutex_enter(&zonehash_lock); 4640 /* 4641 * Look for zone under hash lock to prevent races with other 4642 * calls to zone_shutdown and zone_destroy. 4643 */ 4644 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4645 mutex_exit(&zonehash_lock); 4646 resume_mounts(); 4647 return (set_errno(EINVAL)); 4648 } 4649 mutex_enter(&zone_status_lock); 4650 status = zone_status_get(zone); 4651 /* 4652 * Fail if the zone isn't fully initialized yet. 4653 */ 4654 if (status < ZONE_IS_READY) { 4655 mutex_exit(&zone_status_lock); 4656 mutex_exit(&zonehash_lock); 4657 resume_mounts(); 4658 return (set_errno(EINVAL)); 4659 } 4660 /* 4661 * If conditions required for zone_shutdown() to return have been met, 4662 * return success. 4663 */ 4664 if (status >= ZONE_IS_DOWN) { 4665 mutex_exit(&zone_status_lock); 4666 mutex_exit(&zonehash_lock); 4667 resume_mounts(); 4668 return (0); 4669 } 4670 /* 4671 * If zone_shutdown() hasn't been called before, go through the motions. 4672 * If it has, there's nothing to do but wait for the kernel threads to 4673 * drain. 4674 */ 4675 if (status < ZONE_IS_EMPTY) { 4676 uint_t ntasks; 4677 4678 mutex_enter(&zone->zone_lock); 4679 if ((ntasks = zone->zone_ntasks) != 1) { 4680 /* 4681 * There's still stuff running. 4682 */ 4683 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4684 } 4685 mutex_exit(&zone->zone_lock); 4686 if (ntasks == 1) { 4687 /* 4688 * The only way to create another task is through 4689 * zone_enter(), which will block until we drop 4690 * zonehash_lock. The zone is empty. 4691 */ 4692 if (zone->zone_kthreads == NULL) { 4693 /* 4694 * Skip ahead to ZONE_IS_DOWN 4695 */ 4696 zone_status_set(zone, ZONE_IS_DOWN); 4697 } else { 4698 zone_status_set(zone, ZONE_IS_EMPTY); 4699 } 4700 } 4701 } 4702 zone_hold(zone); /* so we can use the zone_t later */ 4703 mutex_exit(&zone_status_lock); 4704 mutex_exit(&zonehash_lock); 4705 resume_mounts(); 4706 4707 if (error = zone_empty(zone)) { 4708 zone_rele(zone); 4709 return (set_errno(error)); 4710 } 4711 /* 4712 * After the zone status goes to ZONE_IS_DOWN this zone will no 4713 * longer be notified of changes to the pools configuration, so 4714 * in order to not end up with a stale pool pointer, we point 4715 * ourselves at the default pool and remove all resource 4716 * visibility. This is especially important as the zone_t may 4717 * languish on the deathrow for a very long time waiting for 4718 * cred's to drain out. 4719 * 4720 * This rebinding of the zone can happen multiple times 4721 * (presumably due to interrupted or parallel systemcalls) 4722 * without any adverse effects. 4723 */ 4724 if (pool_lock_intr() != 0) { 4725 zone_rele(zone); 4726 return (set_errno(EINTR)); 4727 } 4728 if (pool_state == POOL_ENABLED) { 4729 mutex_enter(&cpu_lock); 4730 zone_pool_set(zone, pool_default); 4731 /* 4732 * The zone no longer needs to be able to see any cpus. 4733 */ 4734 zone_pset_set(zone, ZONE_PS_INVAL); 4735 mutex_exit(&cpu_lock); 4736 } 4737 pool_unlock(); 4738 4739 /* 4740 * ZSD shutdown callbacks can be executed multiple times, hence 4741 * it is safe to not be holding any locks across this call. 4742 */ 4743 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4744 4745 mutex_enter(&zone_status_lock); 4746 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4747 zone_status_set(zone, ZONE_IS_DOWN); 4748 mutex_exit(&zone_status_lock); 4749 4750 /* 4751 * Wait for kernel threads to drain. 4752 */ 4753 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4754 zone_rele(zone); 4755 return (set_errno(EINTR)); 4756 } 4757 4758 /* 4759 * Zone can be become down/destroyable even if the above wait 4760 * returns EINTR, so any code added here may never execute. 4761 * (i.e. don't add code here) 4762 */ 4763 4764 zone_rele(zone); 4765 return (0); 4766 } 4767 4768 /* 4769 * Log the specified zone's reference counts. The caller should not be 4770 * holding the zone's zone_lock. 4771 */ 4772 static void 4773 zone_log_refcounts(zone_t *zone) 4774 { 4775 char *buffer; 4776 char *buffer_position; 4777 uint32_t buffer_size; 4778 uint32_t index; 4779 uint_t ref; 4780 uint_t cred_ref; 4781 4782 /* 4783 * Construct a string representing the subsystem-specific reference 4784 * counts. The counts are printed in ascending order by index into the 4785 * zone_t::zone_subsys_ref array. The list will be surrounded by 4786 * square brackets [] and will only contain nonzero reference counts. 4787 * 4788 * The buffer will hold two square bracket characters plus ten digits, 4789 * one colon, one space, one comma, and some characters for a 4790 * subsystem name per subsystem-specific reference count. (Unsigned 32- 4791 * bit integers have at most ten decimal digits.) The last 4792 * reference count's comma is replaced by the closing square 4793 * bracket and a NULL character to terminate the string. 4794 * 4795 * NOTE: We have to grab the zone's zone_lock to create a consistent 4796 * snapshot of the zone's reference counters. 4797 * 4798 * First, figure out how much space the string buffer will need. 4799 * The buffer's size is stored in buffer_size. 4800 */ 4801 buffer_size = 2; /* for the square brackets */ 4802 mutex_enter(&zone->zone_lock); 4803 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 4804 ref = zone->zone_ref; 4805 cred_ref = zone->zone_cred_ref; 4806 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 4807 if (zone->zone_subsys_ref[index] != 0) 4808 buffer_size += strlen(zone_ref_subsys_names[index]) + 4809 13; 4810 if (buffer_size == 2) { 4811 /* 4812 * No subsystems had nonzero reference counts. Don't bother 4813 * with allocating a buffer; just log the general-purpose and 4814 * credential reference counts. 4815 */ 4816 mutex_exit(&zone->zone_lock); 4817 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4818 "Zone '%s' (ID: %d) is shutting down, but %u zone " 4819 "references and %u credential references are still extant", 4820 zone->zone_name, zone->zone_id, ref, cred_ref); 4821 return; 4822 } 4823 4824 /* 4825 * buffer_size contains the exact number of characters that the 4826 * buffer will need. Allocate the buffer and fill it with nonzero 4827 * subsystem-specific reference counts. Surround the results with 4828 * square brackets afterwards. 4829 */ 4830 buffer = kmem_alloc(buffer_size, KM_SLEEP); 4831 buffer_position = &buffer[1]; 4832 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 4833 /* 4834 * NOTE: The DDI's version of sprintf() returns a pointer to 4835 * the modified buffer rather than the number of bytes written 4836 * (as in snprintf(3C)). This is unfortunate and annoying. 4837 * Therefore, we'll use snprintf() with INT_MAX to get the 4838 * number of bytes written. Using INT_MAX is safe because 4839 * the buffer is perfectly sized for the data: we'll never 4840 * overrun the buffer. 4841 */ 4842 if (zone->zone_subsys_ref[index] != 0) 4843 buffer_position += snprintf(buffer_position, INT_MAX, 4844 "%s: %u,", zone_ref_subsys_names[index], 4845 zone->zone_subsys_ref[index]); 4846 } 4847 mutex_exit(&zone->zone_lock); 4848 buffer[0] = '['; 4849 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 4850 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 4851 buffer_position[-1] = ']'; 4852 4853 /* 4854 * Log the reference counts and free the message buffer. 4855 */ 4856 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4857 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 4858 "%u credential references are still extant %s", zone->zone_name, 4859 zone->zone_id, ref, cred_ref, buffer); 4860 kmem_free(buffer, buffer_size); 4861 } 4862 4863 /* 4864 * Systemcall entry point to finalize the zone halt process. The caller 4865 * must have already successfully called zone_shutdown(). 4866 * 4867 * Upon successful completion, the zone will have been fully destroyed: 4868 * zsched will have exited, destructor callbacks executed, and the zone 4869 * removed from the list of active zones. 4870 */ 4871 static int 4872 zone_destroy(zoneid_t zoneid) 4873 { 4874 uint64_t uniqid; 4875 zone_t *zone; 4876 zone_status_t status; 4877 clock_t wait_time; 4878 boolean_t log_refcounts; 4879 4880 if (secpolicy_zone_config(CRED()) != 0) 4881 return (set_errno(EPERM)); 4882 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4883 return (set_errno(EINVAL)); 4884 4885 mutex_enter(&zonehash_lock); 4886 /* 4887 * Look for zone under hash lock to prevent races with other 4888 * calls to zone_destroy. 4889 */ 4890 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4891 mutex_exit(&zonehash_lock); 4892 return (set_errno(EINVAL)); 4893 } 4894 4895 if (zone_mount_count(zone->zone_rootpath) != 0) { 4896 mutex_exit(&zonehash_lock); 4897 return (set_errno(EBUSY)); 4898 } 4899 mutex_enter(&zone_status_lock); 4900 status = zone_status_get(zone); 4901 if (status < ZONE_IS_DOWN) { 4902 mutex_exit(&zone_status_lock); 4903 mutex_exit(&zonehash_lock); 4904 return (set_errno(EBUSY)); 4905 } else if (status == ZONE_IS_DOWN) { 4906 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 4907 } 4908 mutex_exit(&zone_status_lock); 4909 zone_hold(zone); 4910 mutex_exit(&zonehash_lock); 4911 4912 /* 4913 * wait for zsched to exit 4914 */ 4915 zone_status_wait(zone, ZONE_IS_DEAD); 4916 zone_zsd_callbacks(zone, ZSD_DESTROY); 4917 zone->zone_netstack = NULL; 4918 uniqid = zone->zone_uniqid; 4919 zone_rele(zone); 4920 zone = NULL; /* potentially free'd */ 4921 4922 log_refcounts = B_FALSE; 4923 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 4924 mutex_enter(&zonehash_lock); 4925 for (; /* ever */; ) { 4926 boolean_t unref; 4927 boolean_t refs_have_been_logged; 4928 4929 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 4930 zone->zone_uniqid != uniqid) { 4931 /* 4932 * The zone has gone away. Necessary conditions 4933 * are met, so we return success. 4934 */ 4935 mutex_exit(&zonehash_lock); 4936 return (0); 4937 } 4938 mutex_enter(&zone->zone_lock); 4939 unref = ZONE_IS_UNREF(zone); 4940 refs_have_been_logged = (zone->zone_flags & 4941 ZF_REFCOUNTS_LOGGED); 4942 mutex_exit(&zone->zone_lock); 4943 if (unref) { 4944 /* 4945 * There is only one reference to the zone -- that 4946 * added when the zone was added to the hashtables -- 4947 * and things will remain this way until we drop 4948 * zonehash_lock... we can go ahead and cleanup the 4949 * zone. 4950 */ 4951 break; 4952 } 4953 4954 /* 4955 * Wait for zone_rele_common() or zone_cred_rele() to signal 4956 * zone_destroy_cv. zone_destroy_cv is signaled only when 4957 * some zone's general-purpose reference count reaches one. 4958 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 4959 * on zone_destroy_cv, then log the zone's reference counts and 4960 * continue to wait for zone_rele() and zone_cred_rele(). 4961 */ 4962 if (!refs_have_been_logged) { 4963 if (!log_refcounts) { 4964 /* 4965 * This thread hasn't timed out waiting on 4966 * zone_destroy_cv yet. Wait wait_time clock 4967 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 4968 * seconds) for the zone's references to clear. 4969 */ 4970 ASSERT(wait_time > 0); 4971 wait_time = cv_reltimedwait_sig( 4972 &zone_destroy_cv, &zonehash_lock, wait_time, 4973 TR_SEC); 4974 if (wait_time > 0) { 4975 /* 4976 * A thread in zone_rele() or 4977 * zone_cred_rele() signaled 4978 * zone_destroy_cv before this thread's 4979 * wait timed out. The zone might have 4980 * only one reference left; find out! 4981 */ 4982 continue; 4983 } else if (wait_time == 0) { 4984 /* The thread's process was signaled. */ 4985 mutex_exit(&zonehash_lock); 4986 return (set_errno(EINTR)); 4987 } 4988 4989 /* 4990 * The thread timed out while waiting on 4991 * zone_destroy_cv. Even though the thread 4992 * timed out, it has to check whether another 4993 * thread woke up from zone_destroy_cv and 4994 * destroyed the zone. 4995 * 4996 * If the zone still exists and has more than 4997 * one unreleased general-purpose reference, 4998 * then log the zone's reference counts. 4999 */ 5000 log_refcounts = B_TRUE; 5001 continue; 5002 } 5003 5004 /* 5005 * The thread already timed out on zone_destroy_cv while 5006 * waiting for subsystems to release the zone's last 5007 * general-purpose references. Log the zone's reference 5008 * counts and wait indefinitely on zone_destroy_cv. 5009 */ 5010 zone_log_refcounts(zone); 5011 } 5012 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5013 /* The thread's process was signaled. */ 5014 mutex_exit(&zonehash_lock); 5015 return (set_errno(EINTR)); 5016 } 5017 } 5018 5019 /* 5020 * Remove CPU cap for this zone now since we're not going to 5021 * fail below this point. 5022 */ 5023 cpucaps_zone_remove(zone); 5024 5025 /* Get rid of the zone's kstats */ 5026 zone_kstat_delete(zone); 5027 5028 /* remove the pfexecd doors */ 5029 if (zone->zone_pfexecd != NULL) { 5030 klpd_freelist(&zone->zone_pfexecd); 5031 zone->zone_pfexecd = NULL; 5032 } 5033 5034 /* free brand specific data */ 5035 if (ZONE_IS_BRANDED(zone)) 5036 ZBROP(zone)->b_free_brand_data(zone); 5037 5038 /* Say goodbye to brand framework. */ 5039 brand_unregister_zone(zone->zone_brand); 5040 5041 /* 5042 * It is now safe to let the zone be recreated; remove it from the 5043 * lists. The memory will not be freed until the last cred 5044 * reference goes away. 5045 */ 5046 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5047 zonecount--; 5048 /* remove from active list and hash tables */ 5049 list_remove(&zone_active, zone); 5050 (void) mod_hash_destroy(zonehashbyname, 5051 (mod_hash_key_t)zone->zone_name); 5052 (void) mod_hash_destroy(zonehashbyid, 5053 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5054 if (zone->zone_flags & ZF_HASHED_LABEL) 5055 (void) mod_hash_destroy(zonehashbylabel, 5056 (mod_hash_key_t)zone->zone_slabel); 5057 mutex_exit(&zonehash_lock); 5058 5059 /* 5060 * Release the root vnode; we're not using it anymore. Nor should any 5061 * other thread that might access it exist. 5062 */ 5063 if (zone->zone_rootvp != NULL) { 5064 VN_RELE(zone->zone_rootvp); 5065 zone->zone_rootvp = NULL; 5066 } 5067 5068 /* add to deathrow list */ 5069 mutex_enter(&zone_deathrow_lock); 5070 list_insert_tail(&zone_deathrow, zone); 5071 mutex_exit(&zone_deathrow_lock); 5072 5073 /* 5074 * Drop last reference (which was added by zsched()), this will 5075 * free the zone unless there are outstanding cred references. 5076 */ 5077 zone_rele(zone); 5078 return (0); 5079 } 5080 5081 /* 5082 * Systemcall entry point for zone_getattr(2). 5083 */ 5084 static ssize_t 5085 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5086 { 5087 size_t size; 5088 int error = 0, err; 5089 zone_t *zone; 5090 char *zonepath; 5091 char *outstr; 5092 zone_status_t zone_status; 5093 pid_t initpid; 5094 boolean_t global = (curzone == global_zone); 5095 boolean_t inzone = (curzone->zone_id == zoneid); 5096 ushort_t flags; 5097 zone_net_data_t *zbuf; 5098 5099 mutex_enter(&zonehash_lock); 5100 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5101 mutex_exit(&zonehash_lock); 5102 return (set_errno(EINVAL)); 5103 } 5104 zone_status = zone_status_get(zone); 5105 if (zone_status < ZONE_IS_INITIALIZED) { 5106 mutex_exit(&zonehash_lock); 5107 return (set_errno(EINVAL)); 5108 } 5109 zone_hold(zone); 5110 mutex_exit(&zonehash_lock); 5111 5112 /* 5113 * If not in the global zone, don't show information about other zones, 5114 * unless the system is labeled and the local zone's label dominates 5115 * the other zone. 5116 */ 5117 if (!zone_list_access(zone)) { 5118 zone_rele(zone); 5119 return (set_errno(EINVAL)); 5120 } 5121 5122 switch (attr) { 5123 case ZONE_ATTR_ROOT: 5124 if (global) { 5125 /* 5126 * Copy the path to trim the trailing "/" (except for 5127 * the global zone). 5128 */ 5129 if (zone != global_zone) 5130 size = zone->zone_rootpathlen - 1; 5131 else 5132 size = zone->zone_rootpathlen; 5133 zonepath = kmem_alloc(size, KM_SLEEP); 5134 bcopy(zone->zone_rootpath, zonepath, size); 5135 zonepath[size - 1] = '\0'; 5136 } else { 5137 if (inzone || !is_system_labeled()) { 5138 /* 5139 * Caller is not in the global zone. 5140 * if the query is on the current zone 5141 * or the system is not labeled, 5142 * just return faked-up path for current zone. 5143 */ 5144 zonepath = "/"; 5145 size = 2; 5146 } else { 5147 /* 5148 * Return related path for current zone. 5149 */ 5150 int prefix_len = strlen(zone_prefix); 5151 int zname_len = strlen(zone->zone_name); 5152 5153 size = prefix_len + zname_len + 1; 5154 zonepath = kmem_alloc(size, KM_SLEEP); 5155 bcopy(zone_prefix, zonepath, prefix_len); 5156 bcopy(zone->zone_name, zonepath + 5157 prefix_len, zname_len); 5158 zonepath[size - 1] = '\0'; 5159 } 5160 } 5161 if (bufsize > size) 5162 bufsize = size; 5163 if (buf != NULL) { 5164 err = copyoutstr(zonepath, buf, bufsize, NULL); 5165 if (err != 0 && err != ENAMETOOLONG) 5166 error = EFAULT; 5167 } 5168 if (global || (is_system_labeled() && !inzone)) 5169 kmem_free(zonepath, size); 5170 break; 5171 5172 case ZONE_ATTR_NAME: 5173 size = strlen(zone->zone_name) + 1; 5174 if (bufsize > size) 5175 bufsize = size; 5176 if (buf != NULL) { 5177 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5178 if (err != 0 && err != ENAMETOOLONG) 5179 error = EFAULT; 5180 } 5181 break; 5182 5183 case ZONE_ATTR_STATUS: 5184 /* 5185 * Since we're not holding zonehash_lock, the zone status 5186 * may be anything; leave it up to userland to sort it out. 5187 */ 5188 size = sizeof (zone_status); 5189 if (bufsize > size) 5190 bufsize = size; 5191 zone_status = zone_status_get(zone); 5192 if (buf != NULL && 5193 copyout(&zone_status, buf, bufsize) != 0) 5194 error = EFAULT; 5195 break; 5196 case ZONE_ATTR_FLAGS: 5197 size = sizeof (zone->zone_flags); 5198 if (bufsize > size) 5199 bufsize = size; 5200 flags = zone->zone_flags; 5201 if (buf != NULL && 5202 copyout(&flags, buf, bufsize) != 0) 5203 error = EFAULT; 5204 break; 5205 case ZONE_ATTR_PRIVSET: 5206 size = sizeof (priv_set_t); 5207 if (bufsize > size) 5208 bufsize = size; 5209 if (buf != NULL && 5210 copyout(zone->zone_privset, buf, bufsize) != 0) 5211 error = EFAULT; 5212 break; 5213 case ZONE_ATTR_UNIQID: 5214 size = sizeof (zone->zone_uniqid); 5215 if (bufsize > size) 5216 bufsize = size; 5217 if (buf != NULL && 5218 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5219 error = EFAULT; 5220 break; 5221 case ZONE_ATTR_POOLID: 5222 { 5223 pool_t *pool; 5224 poolid_t poolid; 5225 5226 if (pool_lock_intr() != 0) { 5227 error = EINTR; 5228 break; 5229 } 5230 pool = zone_pool_get(zone); 5231 poolid = pool->pool_id; 5232 pool_unlock(); 5233 size = sizeof (poolid); 5234 if (bufsize > size) 5235 bufsize = size; 5236 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5237 error = EFAULT; 5238 } 5239 break; 5240 case ZONE_ATTR_SLBL: 5241 size = sizeof (bslabel_t); 5242 if (bufsize > size) 5243 bufsize = size; 5244 if (zone->zone_slabel == NULL) 5245 error = EINVAL; 5246 else if (buf != NULL && 5247 copyout(label2bslabel(zone->zone_slabel), buf, 5248 bufsize) != 0) 5249 error = EFAULT; 5250 break; 5251 case ZONE_ATTR_INITPID: 5252 size = sizeof (initpid); 5253 if (bufsize > size) 5254 bufsize = size; 5255 initpid = zone->zone_proc_initpid; 5256 if (initpid == -1) { 5257 error = ESRCH; 5258 break; 5259 } 5260 if (buf != NULL && 5261 copyout(&initpid, buf, bufsize) != 0) 5262 error = EFAULT; 5263 break; 5264 case ZONE_ATTR_BRAND: 5265 size = strlen(zone->zone_brand->b_name) + 1; 5266 5267 if (bufsize > size) 5268 bufsize = size; 5269 if (buf != NULL) { 5270 err = copyoutstr(zone->zone_brand->b_name, buf, 5271 bufsize, NULL); 5272 if (err != 0 && err != ENAMETOOLONG) 5273 error = EFAULT; 5274 } 5275 break; 5276 case ZONE_ATTR_INITNAME: 5277 size = strlen(zone->zone_initname) + 1; 5278 if (bufsize > size) 5279 bufsize = size; 5280 if (buf != NULL) { 5281 err = copyoutstr(zone->zone_initname, buf, bufsize, 5282 NULL); 5283 if (err != 0 && err != ENAMETOOLONG) 5284 error = EFAULT; 5285 } 5286 break; 5287 case ZONE_ATTR_BOOTARGS: 5288 if (zone->zone_bootargs == NULL) 5289 outstr = ""; 5290 else 5291 outstr = zone->zone_bootargs; 5292 size = strlen(outstr) + 1; 5293 if (bufsize > size) 5294 bufsize = size; 5295 if (buf != NULL) { 5296 err = copyoutstr(outstr, buf, bufsize, NULL); 5297 if (err != 0 && err != ENAMETOOLONG) 5298 error = EFAULT; 5299 } 5300 break; 5301 case ZONE_ATTR_PHYS_MCAP: 5302 size = sizeof (zone->zone_phys_mcap); 5303 if (bufsize > size) 5304 bufsize = size; 5305 if (buf != NULL && 5306 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5307 error = EFAULT; 5308 break; 5309 case ZONE_ATTR_SCHED_CLASS: 5310 mutex_enter(&class_lock); 5311 5312 if (zone->zone_defaultcid >= loaded_classes) 5313 outstr = ""; 5314 else 5315 outstr = sclass[zone->zone_defaultcid].cl_name; 5316 size = strlen(outstr) + 1; 5317 if (bufsize > size) 5318 bufsize = size; 5319 if (buf != NULL) { 5320 err = copyoutstr(outstr, buf, bufsize, NULL); 5321 if (err != 0 && err != ENAMETOOLONG) 5322 error = EFAULT; 5323 } 5324 5325 mutex_exit(&class_lock); 5326 break; 5327 case ZONE_ATTR_HOSTID: 5328 if (zone->zone_hostid != HW_INVALID_HOSTID && 5329 bufsize == sizeof (zone->zone_hostid)) { 5330 size = sizeof (zone->zone_hostid); 5331 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5332 bufsize) != 0) 5333 error = EFAULT; 5334 } else { 5335 error = EINVAL; 5336 } 5337 break; 5338 case ZONE_ATTR_FS_ALLOWED: 5339 if (zone->zone_fs_allowed == NULL) 5340 outstr = ""; 5341 else 5342 outstr = zone->zone_fs_allowed; 5343 size = strlen(outstr) + 1; 5344 if (bufsize > size) 5345 bufsize = size; 5346 if (buf != NULL) { 5347 err = copyoutstr(outstr, buf, bufsize, NULL); 5348 if (err != 0 && err != ENAMETOOLONG) 5349 error = EFAULT; 5350 } 5351 break; 5352 case ZONE_ATTR_NETWORK: 5353 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5354 if (copyin(buf, zbuf, bufsize) != 0) { 5355 error = EFAULT; 5356 } else { 5357 error = zone_get_network(zoneid, zbuf); 5358 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5359 error = EFAULT; 5360 } 5361 kmem_free(zbuf, bufsize); 5362 break; 5363 default: 5364 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5365 size = bufsize; 5366 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5367 } else { 5368 error = EINVAL; 5369 } 5370 } 5371 zone_rele(zone); 5372 5373 if (error) 5374 return (set_errno(error)); 5375 return ((ssize_t)size); 5376 } 5377 5378 /* 5379 * Systemcall entry point for zone_setattr(2). 5380 */ 5381 /*ARGSUSED*/ 5382 static int 5383 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5384 { 5385 zone_t *zone; 5386 zone_status_t zone_status; 5387 int err = -1; 5388 zone_net_data_t *zbuf; 5389 5390 if (secpolicy_zone_config(CRED()) != 0) 5391 return (set_errno(EPERM)); 5392 5393 /* 5394 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5395 * global zone. 5396 */ 5397 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5398 return (set_errno(EINVAL)); 5399 } 5400 5401 mutex_enter(&zonehash_lock); 5402 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5403 mutex_exit(&zonehash_lock); 5404 return (set_errno(EINVAL)); 5405 } 5406 zone_hold(zone); 5407 mutex_exit(&zonehash_lock); 5408 5409 /* 5410 * At present most attributes can only be set on non-running, 5411 * non-global zones. 5412 */ 5413 zone_status = zone_status_get(zone); 5414 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5415 err = EINVAL; 5416 goto done; 5417 } 5418 5419 switch (attr) { 5420 case ZONE_ATTR_INITNAME: 5421 err = zone_set_initname(zone, (const char *)buf); 5422 break; 5423 case ZONE_ATTR_BOOTARGS: 5424 err = zone_set_bootargs(zone, (const char *)buf); 5425 break; 5426 case ZONE_ATTR_BRAND: 5427 err = zone_set_brand(zone, (const char *)buf); 5428 break; 5429 case ZONE_ATTR_FS_ALLOWED: 5430 err = zone_set_fs_allowed(zone, (const char *)buf); 5431 break; 5432 case ZONE_ATTR_PHYS_MCAP: 5433 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5434 break; 5435 case ZONE_ATTR_SCHED_CLASS: 5436 err = zone_set_sched_class(zone, (const char *)buf); 5437 break; 5438 case ZONE_ATTR_HOSTID: 5439 if (bufsize == sizeof (zone->zone_hostid)) { 5440 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5441 err = 0; 5442 else 5443 err = EFAULT; 5444 } else { 5445 err = EINVAL; 5446 } 5447 break; 5448 case ZONE_ATTR_NETWORK: 5449 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5450 err = EINVAL; 5451 break; 5452 } 5453 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5454 if (copyin(buf, zbuf, bufsize) != 0) { 5455 kmem_free(zbuf, bufsize); 5456 err = EFAULT; 5457 break; 5458 } 5459 err = zone_set_network(zoneid, zbuf); 5460 kmem_free(zbuf, bufsize); 5461 break; 5462 default: 5463 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5464 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5465 else 5466 err = EINVAL; 5467 } 5468 5469 done: 5470 zone_rele(zone); 5471 ASSERT(err != -1); 5472 return (err != 0 ? set_errno(err) : 0); 5473 } 5474 5475 /* 5476 * Return zero if the process has at least one vnode mapped in to its 5477 * address space which shouldn't be allowed to change zones. 5478 * 5479 * Also return zero if the process has any shared mappings which reserve 5480 * swap. This is because the counting for zone.max-swap does not allow swap 5481 * reservation to be shared between zones. zone swap reservation is counted 5482 * on zone->zone_max_swap. 5483 */ 5484 static int 5485 as_can_change_zones(void) 5486 { 5487 proc_t *pp = curproc; 5488 struct seg *seg; 5489 struct as *as = pp->p_as; 5490 vnode_t *vp; 5491 int allow = 1; 5492 5493 ASSERT(pp->p_as != &kas); 5494 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 5495 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5496 5497 /* 5498 * Cannot enter zone with shared anon memory which 5499 * reserves swap. See comment above. 5500 */ 5501 if (seg_can_change_zones(seg) == B_FALSE) { 5502 allow = 0; 5503 break; 5504 } 5505 /* 5506 * if we can't get a backing vnode for this segment then skip 5507 * it. 5508 */ 5509 vp = NULL; 5510 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5511 continue; 5512 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5513 allow = 0; 5514 break; 5515 } 5516 } 5517 AS_LOCK_EXIT(as, &as->a_lock); 5518 return (allow); 5519 } 5520 5521 /* 5522 * Count swap reserved by curproc's address space 5523 */ 5524 static size_t 5525 as_swresv(void) 5526 { 5527 proc_t *pp = curproc; 5528 struct seg *seg; 5529 struct as *as = pp->p_as; 5530 size_t swap = 0; 5531 5532 ASSERT(pp->p_as != &kas); 5533 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 5534 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5535 swap += seg_swresv(seg); 5536 5537 return (swap); 5538 } 5539 5540 /* 5541 * Systemcall entry point for zone_enter(). 5542 * 5543 * The current process is injected into said zone. In the process 5544 * it will change its project membership, privileges, rootdir/cwd, 5545 * zone-wide rctls, and pool association to match those of the zone. 5546 * 5547 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5548 * state will transition it to ZONE_IS_RUNNING. Processes may only 5549 * enter a zone that is "ready" or "running". 5550 */ 5551 static int 5552 zone_enter(zoneid_t zoneid) 5553 { 5554 zone_t *zone; 5555 vnode_t *vp; 5556 proc_t *pp = curproc; 5557 contract_t *ct; 5558 cont_process_t *ctp; 5559 task_t *tk, *oldtk; 5560 kproject_t *zone_proj0; 5561 cred_t *cr, *newcr; 5562 pool_t *oldpool, *newpool; 5563 sess_t *sp; 5564 uid_t uid; 5565 zone_status_t status; 5566 int err = 0; 5567 rctl_entity_p_t e; 5568 size_t swap; 5569 kthread_id_t t; 5570 5571 if (secpolicy_zone_config(CRED()) != 0) 5572 return (set_errno(EPERM)); 5573 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5574 return (set_errno(EINVAL)); 5575 5576 /* 5577 * Stop all lwps so we don't need to hold a lock to look at 5578 * curproc->p_zone. This needs to happen before we grab any 5579 * locks to avoid deadlock (another lwp in the process could 5580 * be waiting for the held lock). 5581 */ 5582 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5583 return (set_errno(EINTR)); 5584 5585 /* 5586 * Make sure we're not changing zones with files open or mapped in 5587 * to our address space which shouldn't be changing zones. 5588 */ 5589 if (!files_can_change_zones()) { 5590 err = EBADF; 5591 goto out; 5592 } 5593 if (!as_can_change_zones()) { 5594 err = EFAULT; 5595 goto out; 5596 } 5597 5598 mutex_enter(&zonehash_lock); 5599 if (pp->p_zone != global_zone) { 5600 mutex_exit(&zonehash_lock); 5601 err = EINVAL; 5602 goto out; 5603 } 5604 5605 zone = zone_find_all_by_id(zoneid); 5606 if (zone == NULL) { 5607 mutex_exit(&zonehash_lock); 5608 err = EINVAL; 5609 goto out; 5610 } 5611 5612 /* 5613 * To prevent processes in a zone from holding contracts on 5614 * extrazonal resources, and to avoid process contract 5615 * memberships which span zones, contract holders and processes 5616 * which aren't the sole members of their encapsulating process 5617 * contracts are not allowed to zone_enter. 5618 */ 5619 ctp = pp->p_ct_process; 5620 ct = &ctp->conp_contract; 5621 mutex_enter(&ct->ct_lock); 5622 mutex_enter(&pp->p_lock); 5623 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5624 mutex_exit(&pp->p_lock); 5625 mutex_exit(&ct->ct_lock); 5626 mutex_exit(&zonehash_lock); 5627 err = EINVAL; 5628 goto out; 5629 } 5630 5631 /* 5632 * Moreover, we don't allow processes whose encapsulating 5633 * process contracts have inherited extrazonal contracts. 5634 * While it would be easier to eliminate all process contracts 5635 * with inherited contracts, we need to be able to give a 5636 * restarted init (or other zone-penetrating process) its 5637 * predecessor's contracts. 5638 */ 5639 if (ctp->conp_ninherited != 0) { 5640 contract_t *next; 5641 for (next = list_head(&ctp->conp_inherited); next; 5642 next = list_next(&ctp->conp_inherited, next)) { 5643 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5644 mutex_exit(&pp->p_lock); 5645 mutex_exit(&ct->ct_lock); 5646 mutex_exit(&zonehash_lock); 5647 err = EINVAL; 5648 goto out; 5649 } 5650 } 5651 } 5652 5653 mutex_exit(&pp->p_lock); 5654 mutex_exit(&ct->ct_lock); 5655 5656 status = zone_status_get(zone); 5657 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5658 /* 5659 * Can't join 5660 */ 5661 mutex_exit(&zonehash_lock); 5662 err = EINVAL; 5663 goto out; 5664 } 5665 5666 /* 5667 * Make sure new priv set is within the permitted set for caller 5668 */ 5669 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5670 mutex_exit(&zonehash_lock); 5671 err = EPERM; 5672 goto out; 5673 } 5674 /* 5675 * We want to momentarily drop zonehash_lock while we optimistically 5676 * bind curproc to the pool it should be running in. This is safe 5677 * since the zone can't disappear (we have a hold on it). 5678 */ 5679 zone_hold(zone); 5680 mutex_exit(&zonehash_lock); 5681 5682 /* 5683 * Grab pool_lock to keep the pools configuration from changing 5684 * and to stop ourselves from getting rebound to another pool 5685 * until we join the zone. 5686 */ 5687 if (pool_lock_intr() != 0) { 5688 zone_rele(zone); 5689 err = EINTR; 5690 goto out; 5691 } 5692 ASSERT(secpolicy_pool(CRED()) == 0); 5693 /* 5694 * Bind ourselves to the pool currently associated with the zone. 5695 */ 5696 oldpool = curproc->p_pool; 5697 newpool = zone_pool_get(zone); 5698 if (pool_state == POOL_ENABLED && newpool != oldpool && 5699 (err = pool_do_bind(newpool, P_PID, P_MYID, 5700 POOL_BIND_ALL)) != 0) { 5701 pool_unlock(); 5702 zone_rele(zone); 5703 goto out; 5704 } 5705 5706 /* 5707 * Grab cpu_lock now; we'll need it later when we call 5708 * task_join(). 5709 */ 5710 mutex_enter(&cpu_lock); 5711 mutex_enter(&zonehash_lock); 5712 /* 5713 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5714 */ 5715 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5716 /* 5717 * Can't join anymore. 5718 */ 5719 mutex_exit(&zonehash_lock); 5720 mutex_exit(&cpu_lock); 5721 if (pool_state == POOL_ENABLED && 5722 newpool != oldpool) 5723 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5724 POOL_BIND_ALL); 5725 pool_unlock(); 5726 zone_rele(zone); 5727 err = EINVAL; 5728 goto out; 5729 } 5730 5731 /* 5732 * a_lock must be held while transfering locked memory and swap 5733 * reservation from the global zone to the non global zone because 5734 * asynchronous faults on the processes' address space can lock 5735 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5736 * segments respectively. 5737 */ 5738 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 5739 swap = as_swresv(); 5740 mutex_enter(&pp->p_lock); 5741 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5742 /* verify that we do not exceed and task or lwp limits */ 5743 mutex_enter(&zone->zone_nlwps_lock); 5744 /* add new lwps to zone and zone's proj0 */ 5745 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5746 zone->zone_nlwps += pp->p_lwpcnt; 5747 /* add 1 task to zone's proj0 */ 5748 zone_proj0->kpj_ntasks += 1; 5749 5750 zone_proj0->kpj_nprocs++; 5751 zone->zone_nprocs++; 5752 mutex_exit(&zone->zone_nlwps_lock); 5753 5754 mutex_enter(&zone->zone_mem_lock); 5755 zone->zone_locked_mem += pp->p_locked_mem; 5756 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5757 zone->zone_max_swap += swap; 5758 mutex_exit(&zone->zone_mem_lock); 5759 5760 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5761 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5762 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5763 5764 /* remove lwps and process from proc's old zone and old project */ 5765 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5766 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5767 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5768 pp->p_task->tk_proj->kpj_nprocs--; 5769 pp->p_zone->zone_nprocs--; 5770 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5771 5772 mutex_enter(&pp->p_zone->zone_mem_lock); 5773 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5774 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5775 pp->p_zone->zone_max_swap -= swap; 5776 mutex_exit(&pp->p_zone->zone_mem_lock); 5777 5778 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5779 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5780 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5781 5782 pp->p_flag |= SZONETOP; 5783 pp->p_zone = zone; 5784 mutex_exit(&pp->p_lock); 5785 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 5786 5787 /* 5788 * Joining the zone cannot fail from now on. 5789 * 5790 * This means that a lot of the following code can be commonized and 5791 * shared with zsched(). 5792 */ 5793 5794 /* 5795 * If the process contract fmri was inherited, we need to 5796 * flag this so that any contract status will not leak 5797 * extra zone information, svc_fmri in this case 5798 */ 5799 if (ctp->conp_svc_ctid != ct->ct_id) { 5800 mutex_enter(&ct->ct_lock); 5801 ctp->conp_svc_zone_enter = ct->ct_id; 5802 mutex_exit(&ct->ct_lock); 5803 } 5804 5805 /* 5806 * Reset the encapsulating process contract's zone. 5807 */ 5808 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5809 contract_setzuniqid(ct, zone->zone_uniqid); 5810 5811 /* 5812 * Create a new task and associate the process with the project keyed 5813 * by (projid,zoneid). 5814 * 5815 * We might as well be in project 0; the global zone's projid doesn't 5816 * make much sense in a zone anyhow. 5817 * 5818 * This also increments zone_ntasks, and returns with p_lock held. 5819 */ 5820 tk = task_create(0, zone); 5821 oldtk = task_join(tk, 0); 5822 mutex_exit(&cpu_lock); 5823 5824 /* 5825 * call RCTLOP_SET functions on this proc 5826 */ 5827 e.rcep_p.zone = zone; 5828 e.rcep_t = RCENTITY_ZONE; 5829 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5830 RCD_CALLBACK); 5831 mutex_exit(&pp->p_lock); 5832 5833 /* 5834 * We don't need to hold any of zsched's locks here; not only do we know 5835 * the process and zone aren't going away, we know its session isn't 5836 * changing either. 5837 * 5838 * By joining zsched's session here, we mimic the behavior in the 5839 * global zone of init's sid being the pid of sched. We extend this 5840 * to all zlogin-like zone_enter()'ing processes as well. 5841 */ 5842 mutex_enter(&pidlock); 5843 sp = zone->zone_zsched->p_sessp; 5844 sess_hold(zone->zone_zsched); 5845 mutex_enter(&pp->p_lock); 5846 pgexit(pp); 5847 sess_rele(pp->p_sessp, B_TRUE); 5848 pp->p_sessp = sp; 5849 pgjoin(pp, zone->zone_zsched->p_pidp); 5850 5851 /* 5852 * If any threads are scheduled to be placed on zone wait queue they 5853 * should abandon the idea since the wait queue is changing. 5854 * We need to be holding pidlock & p_lock to do this. 5855 */ 5856 if ((t = pp->p_tlist) != NULL) { 5857 do { 5858 thread_lock(t); 5859 /* 5860 * Kick this thread so that he doesn't sit 5861 * on a wrong wait queue. 5862 */ 5863 if (ISWAITING(t)) 5864 setrun_locked(t); 5865 5866 if (t->t_schedflag & TS_ANYWAITQ) 5867 t->t_schedflag &= ~ TS_ANYWAITQ; 5868 5869 thread_unlock(t); 5870 } while ((t = t->t_forw) != pp->p_tlist); 5871 } 5872 5873 /* 5874 * If there is a default scheduling class for the zone and it is not 5875 * the class we are currently in, change all of the threads in the 5876 * process to the new class. We need to be holding pidlock & p_lock 5877 * when we call parmsset so this is a good place to do it. 5878 */ 5879 if (zone->zone_defaultcid > 0 && 5880 zone->zone_defaultcid != curthread->t_cid) { 5881 pcparms_t pcparms; 5882 5883 pcparms.pc_cid = zone->zone_defaultcid; 5884 pcparms.pc_clparms[0] = 0; 5885 5886 /* 5887 * If setting the class fails, we still want to enter the zone. 5888 */ 5889 if ((t = pp->p_tlist) != NULL) { 5890 do { 5891 (void) parmsset(&pcparms, t); 5892 } while ((t = t->t_forw) != pp->p_tlist); 5893 } 5894 } 5895 5896 mutex_exit(&pp->p_lock); 5897 mutex_exit(&pidlock); 5898 5899 mutex_exit(&zonehash_lock); 5900 /* 5901 * We're firmly in the zone; let pools progress. 5902 */ 5903 pool_unlock(); 5904 task_rele(oldtk); 5905 /* 5906 * We don't need to retain a hold on the zone since we already 5907 * incremented zone_ntasks, so the zone isn't going anywhere. 5908 */ 5909 zone_rele(zone); 5910 5911 /* 5912 * Chroot 5913 */ 5914 vp = zone->zone_rootvp; 5915 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 5916 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 5917 5918 /* 5919 * Change process credentials 5920 */ 5921 newcr = cralloc(); 5922 mutex_enter(&pp->p_crlock); 5923 cr = pp->p_cred; 5924 crcopy_to(cr, newcr); 5925 crsetzone(newcr, zone); 5926 pp->p_cred = newcr; 5927 5928 /* 5929 * Restrict all process privilege sets to zone limit 5930 */ 5931 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 5932 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 5933 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 5934 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 5935 mutex_exit(&pp->p_crlock); 5936 crset(pp, newcr); 5937 5938 /* 5939 * Adjust upcount to reflect zone entry. 5940 */ 5941 uid = crgetruid(newcr); 5942 mutex_enter(&pidlock); 5943 upcount_dec(uid, GLOBAL_ZONEID); 5944 upcount_inc(uid, zoneid); 5945 mutex_exit(&pidlock); 5946 5947 /* 5948 * Set up core file path and content. 5949 */ 5950 set_core_defaults(); 5951 5952 out: 5953 /* 5954 * Let the other lwps continue. 5955 */ 5956 mutex_enter(&pp->p_lock); 5957 if (curthread != pp->p_agenttp) 5958 continuelwps(pp); 5959 mutex_exit(&pp->p_lock); 5960 5961 return (err != 0 ? set_errno(err) : 0); 5962 } 5963 5964 /* 5965 * Systemcall entry point for zone_list(2). 5966 * 5967 * Processes running in a (non-global) zone only see themselves. 5968 * On labeled systems, they see all zones whose label they dominate. 5969 */ 5970 static int 5971 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 5972 { 5973 zoneid_t *zoneids; 5974 zone_t *zone, *myzone; 5975 uint_t user_nzones, real_nzones; 5976 uint_t domi_nzones; 5977 int error; 5978 5979 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 5980 return (set_errno(EFAULT)); 5981 5982 myzone = curproc->p_zone; 5983 if (myzone != global_zone) { 5984 bslabel_t *mybslab; 5985 5986 if (!is_system_labeled()) { 5987 /* just return current zone */ 5988 real_nzones = domi_nzones = 1; 5989 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 5990 zoneids[0] = myzone->zone_id; 5991 } else { 5992 /* return all zones that are dominated */ 5993 mutex_enter(&zonehash_lock); 5994 real_nzones = zonecount; 5995 domi_nzones = 0; 5996 if (real_nzones > 0) { 5997 zoneids = kmem_alloc(real_nzones * 5998 sizeof (zoneid_t), KM_SLEEP); 5999 mybslab = label2bslabel(myzone->zone_slabel); 6000 for (zone = list_head(&zone_active); 6001 zone != NULL; 6002 zone = list_next(&zone_active, zone)) { 6003 if (zone->zone_id == GLOBAL_ZONEID) 6004 continue; 6005 if (zone != myzone && 6006 (zone->zone_flags & ZF_IS_SCRATCH)) 6007 continue; 6008 /* 6009 * Note that a label always dominates 6010 * itself, so myzone is always included 6011 * in the list. 6012 */ 6013 if (bldominates(mybslab, 6014 label2bslabel(zone->zone_slabel))) { 6015 zoneids[domi_nzones++] = 6016 zone->zone_id; 6017 } 6018 } 6019 } 6020 mutex_exit(&zonehash_lock); 6021 } 6022 } else { 6023 mutex_enter(&zonehash_lock); 6024 real_nzones = zonecount; 6025 domi_nzones = 0; 6026 if (real_nzones > 0) { 6027 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 6028 KM_SLEEP); 6029 for (zone = list_head(&zone_active); zone != NULL; 6030 zone = list_next(&zone_active, zone)) 6031 zoneids[domi_nzones++] = zone->zone_id; 6032 ASSERT(domi_nzones == real_nzones); 6033 } 6034 mutex_exit(&zonehash_lock); 6035 } 6036 6037 /* 6038 * If user has allocated space for fewer entries than we found, then 6039 * return only up to his limit. Either way, tell him exactly how many 6040 * we found. 6041 */ 6042 if (domi_nzones < user_nzones) 6043 user_nzones = domi_nzones; 6044 error = 0; 6045 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6046 error = EFAULT; 6047 } else if (zoneidlist != NULL && user_nzones != 0) { 6048 if (copyout(zoneids, zoneidlist, 6049 user_nzones * sizeof (zoneid_t)) != 0) 6050 error = EFAULT; 6051 } 6052 6053 if (real_nzones > 0) 6054 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6055 6056 if (error != 0) 6057 return (set_errno(error)); 6058 else 6059 return (0); 6060 } 6061 6062 /* 6063 * Systemcall entry point for zone_lookup(2). 6064 * 6065 * Non-global zones are only able to see themselves and (on labeled systems) 6066 * the zones they dominate. 6067 */ 6068 static zoneid_t 6069 zone_lookup(const char *zone_name) 6070 { 6071 char *kname; 6072 zone_t *zone; 6073 zoneid_t zoneid; 6074 int err; 6075 6076 if (zone_name == NULL) { 6077 /* return caller's zone id */ 6078 return (getzoneid()); 6079 } 6080 6081 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6082 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6083 kmem_free(kname, ZONENAME_MAX); 6084 return (set_errno(err)); 6085 } 6086 6087 mutex_enter(&zonehash_lock); 6088 zone = zone_find_all_by_name(kname); 6089 kmem_free(kname, ZONENAME_MAX); 6090 /* 6091 * In a non-global zone, can only lookup global and own name. 6092 * In Trusted Extensions zone label dominance rules apply. 6093 */ 6094 if (zone == NULL || 6095 zone_status_get(zone) < ZONE_IS_READY || 6096 !zone_list_access(zone)) { 6097 mutex_exit(&zonehash_lock); 6098 return (set_errno(EINVAL)); 6099 } else { 6100 zoneid = zone->zone_id; 6101 mutex_exit(&zonehash_lock); 6102 return (zoneid); 6103 } 6104 } 6105 6106 static int 6107 zone_version(int *version_arg) 6108 { 6109 int version = ZONE_SYSCALL_API_VERSION; 6110 6111 if (copyout(&version, version_arg, sizeof (int)) != 0) 6112 return (set_errno(EFAULT)); 6113 return (0); 6114 } 6115 6116 /* ARGSUSED */ 6117 long 6118 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6119 { 6120 zone_def zs; 6121 int err; 6122 6123 switch (cmd) { 6124 case ZONE_CREATE: 6125 if (get_udatamodel() == DATAMODEL_NATIVE) { 6126 if (copyin(arg1, &zs, sizeof (zone_def))) { 6127 return (set_errno(EFAULT)); 6128 } 6129 } else { 6130 #ifdef _SYSCALL32_IMPL 6131 zone_def32 zs32; 6132 6133 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6134 return (set_errno(EFAULT)); 6135 } 6136 zs.zone_name = 6137 (const char *)(unsigned long)zs32.zone_name; 6138 zs.zone_root = 6139 (const char *)(unsigned long)zs32.zone_root; 6140 zs.zone_privs = 6141 (const struct priv_set *) 6142 (unsigned long)zs32.zone_privs; 6143 zs.zone_privssz = zs32.zone_privssz; 6144 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6145 zs.rctlbufsz = zs32.rctlbufsz; 6146 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6147 zs.zfsbufsz = zs32.zfsbufsz; 6148 zs.extended_error = 6149 (int *)(unsigned long)zs32.extended_error; 6150 zs.match = zs32.match; 6151 zs.doi = zs32.doi; 6152 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6153 zs.flags = zs32.flags; 6154 #else 6155 panic("get_udatamodel() returned bogus result\n"); 6156 #endif 6157 } 6158 6159 return (zone_create(zs.zone_name, zs.zone_root, 6160 zs.zone_privs, zs.zone_privssz, 6161 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6162 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6163 zs.extended_error, zs.match, zs.doi, 6164 zs.label, zs.flags)); 6165 case ZONE_BOOT: 6166 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6167 case ZONE_DESTROY: 6168 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6169 case ZONE_GETATTR: 6170 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6171 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6172 case ZONE_SETATTR: 6173 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6174 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6175 case ZONE_ENTER: 6176 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6177 case ZONE_LIST: 6178 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6179 case ZONE_SHUTDOWN: 6180 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6181 case ZONE_LOOKUP: 6182 return (zone_lookup((const char *)arg1)); 6183 case ZONE_VERSION: 6184 return (zone_version((int *)arg1)); 6185 case ZONE_ADD_DATALINK: 6186 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6187 (datalink_id_t)(uintptr_t)arg2)); 6188 case ZONE_DEL_DATALINK: 6189 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6190 (datalink_id_t)(uintptr_t)arg2)); 6191 case ZONE_CHECK_DATALINK: { 6192 zoneid_t zoneid; 6193 boolean_t need_copyout; 6194 6195 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6196 return (EFAULT); 6197 need_copyout = (zoneid == ALL_ZONES); 6198 err = zone_check_datalink(&zoneid, 6199 (datalink_id_t)(uintptr_t)arg2); 6200 if (err == 0 && need_copyout) { 6201 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6202 err = EFAULT; 6203 } 6204 return (err == 0 ? 0 : set_errno(err)); 6205 } 6206 case ZONE_LIST_DATALINK: 6207 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6208 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6209 default: 6210 return (set_errno(EINVAL)); 6211 } 6212 } 6213 6214 struct zarg { 6215 zone_t *zone; 6216 zone_cmd_arg_t arg; 6217 }; 6218 6219 static int 6220 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6221 { 6222 char *buf; 6223 size_t buflen; 6224 int error; 6225 6226 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6227 buf = kmem_alloc(buflen, KM_SLEEP); 6228 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6229 error = door_ki_open(buf, doorp); 6230 kmem_free(buf, buflen); 6231 return (error); 6232 } 6233 6234 static void 6235 zone_release_door(door_handle_t *doorp) 6236 { 6237 door_ki_rele(*doorp); 6238 *doorp = NULL; 6239 } 6240 6241 static void 6242 zone_ki_call_zoneadmd(struct zarg *zargp) 6243 { 6244 door_handle_t door = NULL; 6245 door_arg_t darg, save_arg; 6246 char *zone_name; 6247 size_t zone_namelen; 6248 zoneid_t zoneid; 6249 zone_t *zone; 6250 zone_cmd_arg_t arg; 6251 uint64_t uniqid; 6252 size_t size; 6253 int error; 6254 int retry; 6255 6256 zone = zargp->zone; 6257 arg = zargp->arg; 6258 kmem_free(zargp, sizeof (*zargp)); 6259 6260 zone_namelen = strlen(zone->zone_name) + 1; 6261 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6262 bcopy(zone->zone_name, zone_name, zone_namelen); 6263 zoneid = zone->zone_id; 6264 uniqid = zone->zone_uniqid; 6265 /* 6266 * zoneadmd may be down, but at least we can empty out the zone. 6267 * We can ignore the return value of zone_empty() since we're called 6268 * from a kernel thread and know we won't be delivered any signals. 6269 */ 6270 ASSERT(curproc == &p0); 6271 (void) zone_empty(zone); 6272 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6273 zone_rele(zone); 6274 6275 size = sizeof (arg); 6276 darg.rbuf = (char *)&arg; 6277 darg.data_ptr = (char *)&arg; 6278 darg.rsize = size; 6279 darg.data_size = size; 6280 darg.desc_ptr = NULL; 6281 darg.desc_num = 0; 6282 6283 save_arg = darg; 6284 /* 6285 * Since we're not holding a reference to the zone, any number of 6286 * things can go wrong, including the zone disappearing before we get a 6287 * chance to talk to zoneadmd. 6288 */ 6289 for (retry = 0; /* forever */; retry++) { 6290 if (door == NULL && 6291 (error = zone_lookup_door(zone_name, &door)) != 0) { 6292 goto next; 6293 } 6294 ASSERT(door != NULL); 6295 6296 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6297 SIZE_MAX, 0)) == 0) { 6298 break; 6299 } 6300 switch (error) { 6301 case EINTR: 6302 /* FALLTHROUGH */ 6303 case EAGAIN: /* process may be forking */ 6304 /* 6305 * Back off for a bit 6306 */ 6307 break; 6308 case EBADF: 6309 zone_release_door(&door); 6310 if (zone_lookup_door(zone_name, &door) != 0) { 6311 /* 6312 * zoneadmd may be dead, but it may come back to 6313 * life later. 6314 */ 6315 break; 6316 } 6317 break; 6318 default: 6319 cmn_err(CE_WARN, 6320 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6321 error); 6322 goto out; 6323 } 6324 next: 6325 /* 6326 * If this isn't the same zone_t that we originally had in mind, 6327 * then this is the same as if two kadmin requests come in at 6328 * the same time: the first one wins. This means we lose, so we 6329 * bail. 6330 */ 6331 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6332 /* 6333 * Problem is solved. 6334 */ 6335 break; 6336 } 6337 if (zone->zone_uniqid != uniqid) { 6338 /* 6339 * zoneid recycled 6340 */ 6341 zone_rele(zone); 6342 break; 6343 } 6344 /* 6345 * We could zone_status_timedwait(), but there doesn't seem to 6346 * be much point in doing that (plus, it would mean that 6347 * zone_free() isn't called until this thread exits). 6348 */ 6349 zone_rele(zone); 6350 delay(hz); 6351 darg = save_arg; 6352 } 6353 out: 6354 if (door != NULL) { 6355 zone_release_door(&door); 6356 } 6357 kmem_free(zone_name, zone_namelen); 6358 thread_exit(); 6359 } 6360 6361 /* 6362 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6363 * kadmin(). The caller is a process in the zone. 6364 * 6365 * In order to shutdown the zone, we will hand off control to zoneadmd 6366 * (running in the global zone) via a door. We do a half-hearted job at 6367 * killing all processes in the zone, create a kernel thread to contact 6368 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6369 * a form of generation number used to let zoneadmd (as well as 6370 * zone_destroy()) know exactly which zone they're re talking about. 6371 */ 6372 int 6373 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6374 { 6375 struct zarg *zargp; 6376 zone_cmd_t zcmd; 6377 zone_t *zone; 6378 6379 zone = curproc->p_zone; 6380 ASSERT(getzoneid() != GLOBAL_ZONEID); 6381 6382 switch (cmd) { 6383 case A_SHUTDOWN: 6384 switch (fcn) { 6385 case AD_HALT: 6386 case AD_POWEROFF: 6387 zcmd = Z_HALT; 6388 break; 6389 case AD_BOOT: 6390 zcmd = Z_REBOOT; 6391 break; 6392 case AD_IBOOT: 6393 case AD_SBOOT: 6394 case AD_SIBOOT: 6395 case AD_NOSYNC: 6396 return (ENOTSUP); 6397 default: 6398 return (EINVAL); 6399 } 6400 break; 6401 case A_REBOOT: 6402 zcmd = Z_REBOOT; 6403 break; 6404 case A_FTRACE: 6405 case A_REMOUNT: 6406 case A_FREEZE: 6407 case A_DUMP: 6408 case A_CONFIG: 6409 return (ENOTSUP); 6410 default: 6411 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6412 return (EINVAL); 6413 } 6414 6415 if (secpolicy_zone_admin(credp, B_FALSE)) 6416 return (EPERM); 6417 mutex_enter(&zone_status_lock); 6418 6419 /* 6420 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6421 * is in the zone. 6422 */ 6423 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6424 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6425 /* 6426 * This zone is already on its way down. 6427 */ 6428 mutex_exit(&zone_status_lock); 6429 return (0); 6430 } 6431 /* 6432 * Prevent future zone_enter()s 6433 */ 6434 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6435 mutex_exit(&zone_status_lock); 6436 6437 /* 6438 * Kill everyone now and call zoneadmd later. 6439 * zone_ki_call_zoneadmd() will do a more thorough job of this 6440 * later. 6441 */ 6442 killall(zone->zone_id); 6443 /* 6444 * Now, create the thread to contact zoneadmd and do the rest of the 6445 * work. This thread can't be created in our zone otherwise 6446 * zone_destroy() would deadlock. 6447 */ 6448 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6449 zargp->arg.cmd = zcmd; 6450 zargp->arg.uniqid = zone->zone_uniqid; 6451 zargp->zone = zone; 6452 (void) strcpy(zargp->arg.locale, "C"); 6453 /* mdep was already copied in for us by uadmin */ 6454 if (mdep != NULL) 6455 (void) strlcpy(zargp->arg.bootbuf, mdep, 6456 sizeof (zargp->arg.bootbuf)); 6457 zone_hold(zone); 6458 6459 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6460 TS_RUN, minclsyspri); 6461 exit(CLD_EXITED, 0); 6462 6463 return (EINVAL); 6464 } 6465 6466 /* 6467 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6468 * status to ZONE_IS_SHUTTING_DOWN. 6469 * 6470 * This function also shuts down all running zones to ensure that they won't 6471 * fork new processes. 6472 */ 6473 void 6474 zone_shutdown_global(void) 6475 { 6476 zone_t *current_zonep; 6477 6478 ASSERT(INGLOBALZONE(curproc)); 6479 mutex_enter(&zonehash_lock); 6480 mutex_enter(&zone_status_lock); 6481 6482 /* Modify the global zone's status first. */ 6483 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6484 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6485 6486 /* 6487 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6488 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6489 * could cause assertions to fail (e.g., assertions about a zone's 6490 * state during initialization, readying, or booting) or produce races. 6491 * We'll let threads continue to initialize and ready new zones: they'll 6492 * fail to boot the new zones when they see that the global zone is 6493 * shutting down. 6494 */ 6495 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6496 current_zonep = list_next(&zone_active, current_zonep)) { 6497 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6498 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6499 } 6500 mutex_exit(&zone_status_lock); 6501 mutex_exit(&zonehash_lock); 6502 } 6503 6504 /* 6505 * Returns true if the named dataset is visible in the current zone. 6506 * The 'write' parameter is set to 1 if the dataset is also writable. 6507 */ 6508 int 6509 zone_dataset_visible(const char *dataset, int *write) 6510 { 6511 static int zfstype = -1; 6512 zone_dataset_t *zd; 6513 size_t len; 6514 zone_t *zone = curproc->p_zone; 6515 const char *name = NULL; 6516 vfs_t *vfsp = NULL; 6517 6518 if (dataset[0] == '\0') 6519 return (0); 6520 6521 /* 6522 * Walk the list once, looking for datasets which match exactly, or 6523 * specify a dataset underneath an exported dataset. If found, return 6524 * true and note that it is writable. 6525 */ 6526 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6527 zd = list_next(&zone->zone_datasets, zd)) { 6528 6529 len = strlen(zd->zd_dataset); 6530 if (strlen(dataset) >= len && 6531 bcmp(dataset, zd->zd_dataset, len) == 0 && 6532 (dataset[len] == '\0' || dataset[len] == '/' || 6533 dataset[len] == '@')) { 6534 if (write) 6535 *write = 1; 6536 return (1); 6537 } 6538 } 6539 6540 /* 6541 * Walk the list a second time, searching for datasets which are parents 6542 * of exported datasets. These should be visible, but read-only. 6543 * 6544 * Note that we also have to support forms such as 'pool/dataset/', with 6545 * a trailing slash. 6546 */ 6547 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6548 zd = list_next(&zone->zone_datasets, zd)) { 6549 6550 len = strlen(dataset); 6551 if (dataset[len - 1] == '/') 6552 len--; /* Ignore trailing slash */ 6553 if (len < strlen(zd->zd_dataset) && 6554 bcmp(dataset, zd->zd_dataset, len) == 0 && 6555 zd->zd_dataset[len] == '/') { 6556 if (write) 6557 *write = 0; 6558 return (1); 6559 } 6560 } 6561 6562 /* 6563 * We reach here if the given dataset is not found in the zone_dataset 6564 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6565 * instead of delegation. For this we search for the dataset in the 6566 * zone_vfslist of this zone. If found, return true and note that it is 6567 * not writable. 6568 */ 6569 6570 /* 6571 * Initialize zfstype if it is not initialized yet. 6572 */ 6573 if (zfstype == -1) { 6574 struct vfssw *vswp = vfs_getvfssw("zfs"); 6575 zfstype = vswp - vfssw; 6576 vfs_unrefvfssw(vswp); 6577 } 6578 6579 vfs_list_read_lock(); 6580 vfsp = zone->zone_vfslist; 6581 do { 6582 ASSERT(vfsp); 6583 if (vfsp->vfs_fstype == zfstype) { 6584 name = refstr_value(vfsp->vfs_resource); 6585 6586 /* 6587 * Check if we have an exact match. 6588 */ 6589 if (strcmp(dataset, name) == 0) { 6590 vfs_list_unlock(); 6591 if (write) 6592 *write = 0; 6593 return (1); 6594 } 6595 /* 6596 * We need to check if we are looking for parents of 6597 * a dataset. These should be visible, but read-only. 6598 */ 6599 len = strlen(dataset); 6600 if (dataset[len - 1] == '/') 6601 len--; 6602 6603 if (len < strlen(name) && 6604 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6605 vfs_list_unlock(); 6606 if (write) 6607 *write = 0; 6608 return (1); 6609 } 6610 } 6611 vfsp = vfsp->vfs_zone_next; 6612 } while (vfsp != zone->zone_vfslist); 6613 6614 vfs_list_unlock(); 6615 return (0); 6616 } 6617 6618 /* 6619 * zone_find_by_any_path() - 6620 * 6621 * kernel-private routine similar to zone_find_by_path(), but which 6622 * effectively compares against zone paths rather than zonerootpath 6623 * (i.e., the last component of zonerootpaths, which should be "root/", 6624 * are not compared.) This is done in order to accurately identify all 6625 * paths, whether zone-visible or not, including those which are parallel 6626 * to /root/, such as /dev/, /home/, etc... 6627 * 6628 * If the specified path does not fall under any zone path then global 6629 * zone is returned. 6630 * 6631 * The treat_abs parameter indicates whether the path should be treated as 6632 * an absolute path although it does not begin with "/". (This supports 6633 * nfs mount syntax such as host:any/path.) 6634 * 6635 * The caller is responsible for zone_rele of the returned zone. 6636 */ 6637 zone_t * 6638 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6639 { 6640 zone_t *zone; 6641 int path_offset = 0; 6642 6643 if (path == NULL) { 6644 zone_hold(global_zone); 6645 return (global_zone); 6646 } 6647 6648 if (*path != '/') { 6649 ASSERT(treat_abs); 6650 path_offset = 1; 6651 } 6652 6653 mutex_enter(&zonehash_lock); 6654 for (zone = list_head(&zone_active); zone != NULL; 6655 zone = list_next(&zone_active, zone)) { 6656 char *c; 6657 size_t pathlen; 6658 char *rootpath_start; 6659 6660 if (zone == global_zone) /* skip global zone */ 6661 continue; 6662 6663 /* scan backwards to find start of last component */ 6664 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6665 do { 6666 c--; 6667 } while (*c != '/'); 6668 6669 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6670 rootpath_start = (zone->zone_rootpath + path_offset); 6671 if (strncmp(path, rootpath_start, pathlen) == 0) 6672 break; 6673 } 6674 if (zone == NULL) 6675 zone = global_zone; 6676 zone_hold(zone); 6677 mutex_exit(&zonehash_lock); 6678 return (zone); 6679 } 6680 6681 /* 6682 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6683 * zone_dl_t pointer if found, and NULL otherwise. 6684 */ 6685 static zone_dl_t * 6686 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6687 { 6688 zone_dl_t *zdl; 6689 6690 ASSERT(mutex_owned(&zone->zone_lock)); 6691 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6692 zdl = list_next(&zone->zone_dl_list, zdl)) { 6693 if (zdl->zdl_id == linkid) 6694 break; 6695 } 6696 return (zdl); 6697 } 6698 6699 static boolean_t 6700 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6701 { 6702 boolean_t exists; 6703 6704 mutex_enter(&zone->zone_lock); 6705 exists = (zone_find_dl(zone, linkid) != NULL); 6706 mutex_exit(&zone->zone_lock); 6707 return (exists); 6708 } 6709 6710 /* 6711 * Add an data link name for the zone. 6712 */ 6713 static int 6714 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6715 { 6716 zone_dl_t *zdl; 6717 zone_t *zone; 6718 zone_t *thiszone; 6719 6720 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6721 return (set_errno(ENXIO)); 6722 6723 /* Verify that the datalink ID doesn't already belong to a zone. */ 6724 mutex_enter(&zonehash_lock); 6725 for (zone = list_head(&zone_active); zone != NULL; 6726 zone = list_next(&zone_active, zone)) { 6727 if (zone_dl_exists(zone, linkid)) { 6728 mutex_exit(&zonehash_lock); 6729 zone_rele(thiszone); 6730 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6731 } 6732 } 6733 6734 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6735 zdl->zdl_id = linkid; 6736 zdl->zdl_net = NULL; 6737 mutex_enter(&thiszone->zone_lock); 6738 list_insert_head(&thiszone->zone_dl_list, zdl); 6739 mutex_exit(&thiszone->zone_lock); 6740 mutex_exit(&zonehash_lock); 6741 zone_rele(thiszone); 6742 return (0); 6743 } 6744 6745 static int 6746 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6747 { 6748 zone_dl_t *zdl; 6749 zone_t *zone; 6750 int err = 0; 6751 6752 if ((zone = zone_find_by_id(zoneid)) == NULL) 6753 return (set_errno(EINVAL)); 6754 6755 mutex_enter(&zone->zone_lock); 6756 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6757 err = ENXIO; 6758 } else { 6759 list_remove(&zone->zone_dl_list, zdl); 6760 if (zdl->zdl_net != NULL) 6761 nvlist_free(zdl->zdl_net); 6762 kmem_free(zdl, sizeof (zone_dl_t)); 6763 } 6764 mutex_exit(&zone->zone_lock); 6765 zone_rele(zone); 6766 return (err == 0 ? 0 : set_errno(err)); 6767 } 6768 6769 /* 6770 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 6771 * the linkid. Otherwise we just check if the specified zoneidp has been 6772 * assigned the supplied linkid. 6773 */ 6774 int 6775 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 6776 { 6777 zone_t *zone; 6778 int err = ENXIO; 6779 6780 if (*zoneidp != ALL_ZONES) { 6781 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 6782 if (zone_dl_exists(zone, linkid)) 6783 err = 0; 6784 zone_rele(zone); 6785 } 6786 return (err); 6787 } 6788 6789 mutex_enter(&zonehash_lock); 6790 for (zone = list_head(&zone_active); zone != NULL; 6791 zone = list_next(&zone_active, zone)) { 6792 if (zone_dl_exists(zone, linkid)) { 6793 *zoneidp = zone->zone_id; 6794 err = 0; 6795 break; 6796 } 6797 } 6798 mutex_exit(&zonehash_lock); 6799 return (err); 6800 } 6801 6802 /* 6803 * Get the list of datalink IDs assigned to a zone. 6804 * 6805 * On input, *nump is the number of datalink IDs that can fit in the supplied 6806 * idarray. Upon return, *nump is either set to the number of datalink IDs 6807 * that were placed in the array if the array was large enough, or to the 6808 * number of datalink IDs that the function needs to place in the array if the 6809 * array is too small. 6810 */ 6811 static int 6812 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 6813 { 6814 uint_t num, dlcount; 6815 zone_t *zone; 6816 zone_dl_t *zdl; 6817 datalink_id_t *idptr = idarray; 6818 6819 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6820 return (set_errno(EFAULT)); 6821 if ((zone = zone_find_by_id(zoneid)) == NULL) 6822 return (set_errno(ENXIO)); 6823 6824 num = 0; 6825 mutex_enter(&zone->zone_lock); 6826 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6827 zdl = list_next(&zone->zone_dl_list, zdl)) { 6828 /* 6829 * If the list is bigger than what the caller supplied, just 6830 * count, don't do copyout. 6831 */ 6832 if (++num > dlcount) 6833 continue; 6834 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 6835 mutex_exit(&zone->zone_lock); 6836 zone_rele(zone); 6837 return (set_errno(EFAULT)); 6838 } 6839 idptr++; 6840 } 6841 mutex_exit(&zone->zone_lock); 6842 zone_rele(zone); 6843 6844 /* Increased or decreased, caller should be notified. */ 6845 if (num != dlcount) { 6846 if (copyout(&num, nump, sizeof (num)) != 0) 6847 return (set_errno(EFAULT)); 6848 } 6849 return (0); 6850 } 6851 6852 /* 6853 * Public interface for looking up a zone by zoneid. It's a customized version 6854 * for netstack_zone_create(). It can only be called from the zsd create 6855 * callbacks, since it doesn't have reference on the zone structure hence if 6856 * it is called elsewhere the zone could disappear after the zonehash_lock 6857 * is dropped. 6858 * 6859 * Furthermore it 6860 * 1. Doesn't check the status of the zone. 6861 * 2. It will be called even before zone_init is called, in that case the 6862 * address of zone0 is returned directly, and netstack_zone_create() 6863 * will only assign a value to zone0.zone_netstack, won't break anything. 6864 * 3. Returns without the zone being held. 6865 */ 6866 zone_t * 6867 zone_find_by_id_nolock(zoneid_t zoneid) 6868 { 6869 zone_t *zone; 6870 6871 mutex_enter(&zonehash_lock); 6872 if (zonehashbyid == NULL) 6873 zone = &zone0; 6874 else 6875 zone = zone_find_all_by_id(zoneid); 6876 mutex_exit(&zonehash_lock); 6877 return (zone); 6878 } 6879 6880 /* 6881 * Walk the datalinks for a given zone 6882 */ 6883 int 6884 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 6885 void *data) 6886 { 6887 zone_t *zone; 6888 zone_dl_t *zdl; 6889 datalink_id_t *idarray; 6890 uint_t idcount = 0; 6891 int i, ret = 0; 6892 6893 if ((zone = zone_find_by_id(zoneid)) == NULL) 6894 return (ENOENT); 6895 6896 /* 6897 * We first build an array of linkid's so that we can walk these and 6898 * execute the callback with the zone_lock dropped. 6899 */ 6900 mutex_enter(&zone->zone_lock); 6901 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6902 zdl = list_next(&zone->zone_dl_list, zdl)) { 6903 idcount++; 6904 } 6905 6906 if (idcount == 0) { 6907 mutex_exit(&zone->zone_lock); 6908 zone_rele(zone); 6909 return (0); 6910 } 6911 6912 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 6913 if (idarray == NULL) { 6914 mutex_exit(&zone->zone_lock); 6915 zone_rele(zone); 6916 return (ENOMEM); 6917 } 6918 6919 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6920 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 6921 idarray[i] = zdl->zdl_id; 6922 } 6923 6924 mutex_exit(&zone->zone_lock); 6925 6926 for (i = 0; i < idcount && ret == 0; i++) { 6927 if ((ret = (*cb)(idarray[i], data)) != 0) 6928 break; 6929 } 6930 6931 zone_rele(zone); 6932 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 6933 return (ret); 6934 } 6935 6936 static char * 6937 zone_net_type2name(int type) 6938 { 6939 switch (type) { 6940 case ZONE_NETWORK_ADDRESS: 6941 return (ZONE_NET_ADDRNAME); 6942 case ZONE_NETWORK_DEFROUTER: 6943 return (ZONE_NET_RTRNAME); 6944 default: 6945 return (NULL); 6946 } 6947 } 6948 6949 static int 6950 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 6951 { 6952 zone_t *zone; 6953 zone_dl_t *zdl; 6954 nvlist_t *nvl; 6955 int err = 0; 6956 uint8_t *new = NULL; 6957 char *nvname; 6958 int bufsize; 6959 datalink_id_t linkid = znbuf->zn_linkid; 6960 6961 if (secpolicy_zone_config(CRED()) != 0) 6962 return (set_errno(EPERM)); 6963 6964 if (zoneid == GLOBAL_ZONEID) 6965 return (set_errno(EINVAL)); 6966 6967 nvname = zone_net_type2name(znbuf->zn_type); 6968 bufsize = znbuf->zn_len; 6969 new = znbuf->zn_val; 6970 if (nvname == NULL) 6971 return (set_errno(EINVAL)); 6972 6973 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6974 return (set_errno(EINVAL)); 6975 } 6976 6977 mutex_enter(&zone->zone_lock); 6978 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6979 err = ENXIO; 6980 goto done; 6981 } 6982 if ((nvl = zdl->zdl_net) == NULL) { 6983 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 6984 err = ENOMEM; 6985 goto done; 6986 } else { 6987 zdl->zdl_net = nvl; 6988 } 6989 } 6990 if (nvlist_exists(nvl, nvname)) { 6991 err = EINVAL; 6992 goto done; 6993 } 6994 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 6995 ASSERT(err == 0); 6996 done: 6997 mutex_exit(&zone->zone_lock); 6998 zone_rele(zone); 6999 if (err != 0) 7000 return (set_errno(err)); 7001 else 7002 return (0); 7003 } 7004 7005 static int 7006 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7007 { 7008 zone_t *zone; 7009 zone_dl_t *zdl; 7010 nvlist_t *nvl; 7011 uint8_t *ptr; 7012 uint_t psize; 7013 int err = 0; 7014 char *nvname; 7015 int bufsize; 7016 void *buf; 7017 datalink_id_t linkid = znbuf->zn_linkid; 7018 7019 if (zoneid == GLOBAL_ZONEID) 7020 return (set_errno(EINVAL)); 7021 7022 nvname = zone_net_type2name(znbuf->zn_type); 7023 bufsize = znbuf->zn_len; 7024 buf = znbuf->zn_val; 7025 7026 if (nvname == NULL) 7027 return (set_errno(EINVAL)); 7028 if ((zone = zone_find_by_id(zoneid)) == NULL) 7029 return (set_errno(EINVAL)); 7030 7031 mutex_enter(&zone->zone_lock); 7032 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7033 err = ENXIO; 7034 goto done; 7035 } 7036 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7037 err = ENOENT; 7038 goto done; 7039 } 7040 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7041 ASSERT(err == 0); 7042 7043 if (psize > bufsize) { 7044 err = ENOBUFS; 7045 goto done; 7046 } 7047 znbuf->zn_len = psize; 7048 bcopy(ptr, buf, psize); 7049 done: 7050 mutex_exit(&zone->zone_lock); 7051 zone_rele(zone); 7052 if (err != 0) 7053 return (set_errno(err)); 7054 else 7055 return (0); 7056 } 7057