1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Big Theory Statement for the virtual memory allocator. 30 * 31 * For a more complete description of the main ideas, see: 32 * 33 * Jeff Bonwick and Jonathan Adams, 34 * 35 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 36 * Arbitrary Resources. 37 * 38 * Proceedings of the 2001 Usenix Conference. 39 * Available as http://www.usenix.org/event/usenix01/bonwick.html 40 * 41 * 42 * 1. General Concepts 43 * ------------------- 44 * 45 * 1.1 Overview 46 * ------------ 47 * We divide the kernel address space into a number of logically distinct 48 * pieces, or *arenas*: text, data, heap, stack, and so on. Within these 49 * arenas we often subdivide further; for example, we use heap addresses 50 * not only for the kernel heap (kmem_alloc() space), but also for DVMA, 51 * bp_mapin(), /dev/kmem, and even some device mappings like the TOD chip. 52 * The kernel address space, therefore, is most accurately described as 53 * a tree of arenas in which each node of the tree *imports* some subset 54 * of its parent. The virtual memory allocator manages these arenas and 55 * supports their natural hierarchical structure. 56 * 57 * 1.2 Arenas 58 * ---------- 59 * An arena is nothing more than a set of integers. These integers most 60 * commonly represent virtual addresses, but in fact they can represent 61 * anything at all. For example, we could use an arena containing the 62 * integers minpid through maxpid to allocate process IDs. vmem_create() 63 * and vmem_destroy() create and destroy vmem arenas. In order to 64 * differentiate between arenas used for adresses and arenas used for 65 * identifiers, the VMC_IDENTIFIER flag is passed to vmem_create(). This 66 * prevents identifier exhaustion from being diagnosed as general memory 67 * failure. 68 * 69 * 1.3 Spans 70 * --------- 71 * We represent the integers in an arena as a collection of *spans*, or 72 * contiguous ranges of integers. For example, the kernel heap consists 73 * of just one span: [kernelheap, ekernelheap). Spans can be added to an 74 * arena in two ways: explicitly, by vmem_add(), or implicitly, by 75 * importing, as described in Section 1.5 below. 76 * 77 * 1.4 Segments 78 * ------------ 79 * Spans are subdivided into *segments*, each of which is either allocated 80 * or free. A segment, like a span, is a contiguous range of integers. 81 * Each allocated segment [addr, addr + size) represents exactly one 82 * vmem_alloc(size) that returned addr. Free segments represent the space 83 * between allocated segments. If two free segments are adjacent, we 84 * coalesce them into one larger segment; that is, if segments [a, b) and 85 * [b, c) are both free, we merge them into a single segment [a, c). 86 * The segments within a span are linked together in increasing-address order 87 * so we can easily determine whether coalescing is possible. 88 * 89 * Segments never cross span boundaries. When all segments within 90 * an imported span become free, we return the span to its source. 91 * 92 * 1.5 Imported Memory 93 * ------------------- 94 * As mentioned in the overview, some arenas are logical subsets of 95 * other arenas. For example, kmem_va_arena (a virtual address cache 96 * that satisfies most kmem_slab_create() requests) is just a subset 97 * of heap_arena (the kernel heap) that provides caching for the most 98 * common slab sizes. When kmem_va_arena runs out of virtual memory, 99 * it *imports* more from the heap; we say that heap_arena is the 100 * *vmem source* for kmem_va_arena. vmem_create() allows you to 101 * specify any existing vmem arena as the source for your new arena. 102 * Topologically, since every arena is a child of at most one source, 103 * the set of all arenas forms a collection of trees. 104 * 105 * 1.6 Constrained Allocations 106 * --------------------------- 107 * Some vmem clients are quite picky about the kind of address they want. 108 * For example, the DVMA code may need an address that is at a particular 109 * phase with respect to some alignment (to get good cache coloring), or 110 * that lies within certain limits (the addressable range of a device), 111 * or that doesn't cross some boundary (a DMA counter restriction) -- 112 * or all of the above. vmem_xalloc() allows the client to specify any 113 * or all of these constraints. 114 * 115 * 1.7 The Vmem Quantum 116 * -------------------- 117 * Every arena has a notion of 'quantum', specified at vmem_create() time, 118 * that defines the arena's minimum unit of currency. Most commonly the 119 * quantum is either 1 or PAGESIZE, but any power of 2 is legal. 120 * All vmem allocations are guaranteed to be quantum-aligned. 121 * 122 * 1.8 Quantum Caching 123 * ------------------- 124 * A vmem arena may be so hot (frequently used) that the scalability of vmem 125 * allocation is a significant concern. We address this by allowing the most 126 * common allocation sizes to be serviced by the kernel memory allocator, 127 * which provides low-latency per-cpu caching. The qcache_max argument to 128 * vmem_create() specifies the largest allocation size to cache. 129 * 130 * 1.9 Relationship to Kernel Memory Allocator 131 * ------------------------------------------- 132 * Every kmem cache has a vmem arena as its slab supplier. The kernel memory 133 * allocator uses vmem_alloc() and vmem_free() to create and destroy slabs. 134 * 135 * 136 * 2. Implementation 137 * ----------------- 138 * 139 * 2.1 Segment lists and markers 140 * ----------------------------- 141 * The segment structure (vmem_seg_t) contains two doubly-linked lists. 142 * 143 * The arena list (vs_anext/vs_aprev) links all segments in the arena. 144 * In addition to the allocated and free segments, the arena contains 145 * special marker segments at span boundaries. Span markers simplify 146 * coalescing and importing logic by making it easy to tell both when 147 * we're at a span boundary (so we don't coalesce across it), and when 148 * a span is completely free (its neighbors will both be span markers). 149 * 150 * Imported spans will have vs_import set. 151 * 152 * The next-of-kin list (vs_knext/vs_kprev) links segments of the same type: 153 * (1) for allocated segments, vs_knext is the hash chain linkage; 154 * (2) for free segments, vs_knext is the freelist linkage; 155 * (3) for span marker segments, vs_knext is the next span marker. 156 * 157 * 2.2 Allocation hashing 158 * ---------------------- 159 * We maintain a hash table of all allocated segments, hashed by address. 160 * This allows vmem_free() to discover the target segment in constant time. 161 * vmem_update() periodically resizes hash tables to keep hash chains short. 162 * 163 * 2.3 Freelist management 164 * ----------------------- 165 * We maintain power-of-2 freelists for free segments, i.e. free segments 166 * of size >= 2^n reside in vmp->vm_freelist[n]. To ensure constant-time 167 * allocation, vmem_xalloc() looks not in the first freelist that *might* 168 * satisfy the allocation, but in the first freelist that *definitely* 169 * satisfies the allocation (unless VM_BESTFIT is specified, or all larger 170 * freelists are empty). For example, a 1000-byte allocation will be 171 * satisfied not from the 512..1023-byte freelist, whose members *might* 172 * contains a 1000-byte segment, but from a 1024-byte or larger freelist, 173 * the first member of which will *definitely* satisfy the allocation. 174 * This ensures that vmem_xalloc() works in constant time. 175 * 176 * We maintain a bit map to determine quickly which freelists are non-empty. 177 * vmp->vm_freemap & (1 << n) is non-zero iff vmp->vm_freelist[n] is non-empty. 178 * 179 * The different freelists are linked together into one large freelist, 180 * with the freelist heads serving as markers. Freelist markers simplify 181 * the maintenance of vm_freemap by making it easy to tell when we're taking 182 * the last member of a freelist (both of its neighbors will be markers). 183 * 184 * 2.4 Vmem Locking 185 * ---------------- 186 * For simplicity, all arena state is protected by a per-arena lock. 187 * For very hot arenas, use quantum caching for scalability. 188 * 189 * 2.5 Vmem Population 190 * ------------------- 191 * Any internal vmem routine that might need to allocate new segment 192 * structures must prepare in advance by calling vmem_populate(), which 193 * will preallocate enough vmem_seg_t's to get is through the entire 194 * operation without dropping the arena lock. 195 * 196 * 2.6 Auditing 197 * ------------ 198 * If KMF_AUDIT is set in kmem_flags, we audit vmem allocations as well. 199 * Since virtual addresses cannot be scribbled on, there is no equivalent 200 * in vmem to redzone checking, deadbeef, or other kmem debugging features. 201 * Moreover, we do not audit frees because segment coalescing destroys the 202 * association between an address and its segment structure. Auditing is 203 * thus intended primarily to keep track of who's consuming the arena. 204 * Debugging support could certainly be extended in the future if it proves 205 * necessary, but we do so much live checking via the allocation hash table 206 * that even non-DEBUG systems get quite a bit of sanity checking already. 207 */ 208 209 #include <sys/vmem_impl.h> 210 #include <sys/kmem.h> 211 #include <sys/kstat.h> 212 #include <sys/param.h> 213 #include <sys/systm.h> 214 #include <sys/atomic.h> 215 #include <sys/bitmap.h> 216 #include <sys/sysmacros.h> 217 #include <sys/cmn_err.h> 218 #include <sys/debug.h> 219 #include <sys/panic.h> 220 221 #define VMEM_INITIAL 10 /* early vmem arenas */ 222 #define VMEM_SEG_INITIAL 200 /* early segments */ 223 224 /* 225 * Adding a new span to an arena requires two segment structures: one to 226 * represent the span, and one to represent the free segment it contains. 227 */ 228 #define VMEM_SEGS_PER_SPAN_CREATE 2 229 230 /* 231 * Allocating a piece of an existing segment requires 0-2 segment structures 232 * depending on how much of the segment we're allocating. 233 * 234 * To allocate the entire segment, no new segment structures are needed; we 235 * simply move the existing segment structure from the freelist to the 236 * allocation hash table. 237 * 238 * To allocate a piece from the left or right end of the segment, we must 239 * split the segment into two pieces (allocated part and remainder), so we 240 * need one new segment structure to represent the remainder. 241 * 242 * To allocate from the middle of a segment, we need two new segment strucures 243 * to represent the remainders on either side of the allocated part. 244 */ 245 #define VMEM_SEGS_PER_EXACT_ALLOC 0 246 #define VMEM_SEGS_PER_LEFT_ALLOC 1 247 #define VMEM_SEGS_PER_RIGHT_ALLOC 1 248 #define VMEM_SEGS_PER_MIDDLE_ALLOC 2 249 250 /* 251 * vmem_populate() preallocates segment structures for vmem to do its work. 252 * It must preallocate enough for the worst case, which is when we must import 253 * a new span and then allocate from the middle of it. 254 */ 255 #define VMEM_SEGS_PER_ALLOC_MAX \ 256 (VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC) 257 258 /* 259 * The segment structures themselves are allocated from vmem_seg_arena, so 260 * we have a recursion problem when vmem_seg_arena needs to populate itself. 261 * We address this by working out the maximum number of segment structures 262 * this act will require, and multiplying by the maximum number of threads 263 * that we'll allow to do it simultaneously. 264 * 265 * The worst-case segment consumption to populate vmem_seg_arena is as 266 * follows (depicted as a stack trace to indicate why events are occurring): 267 * 268 * (In order to lower the fragmentation in the heap_arena, we specify a 269 * minimum import size for the vmem_metadata_arena which is the same size 270 * as the kmem_va quantum cache allocations. This causes the worst-case 271 * allocation from the vmem_metadata_arena to be 3 segments.) 272 * 273 * vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc) 274 * segkmem_alloc(vmem_metadata_arena) 275 * vmem_alloc(vmem_metadata_arena) -> 3 segs (span create + left alloc) 276 * vmem_alloc(heap_arena) -> 1 seg (left alloc) 277 * page_create() 278 * hat_memload() 279 * kmem_cache_alloc() 280 * kmem_slab_create() 281 * vmem_alloc(hat_memload_arena) -> 2 segs (span create + exact alloc) 282 * segkmem_alloc(heap_arena) 283 * vmem_alloc(heap_arena) -> 1 seg (left alloc) 284 * page_create() 285 * hat_memload() -> (hat layer won't recurse further) 286 * 287 * The worst-case consumption for each arena is 3 segment structures. 288 * Of course, a 3-seg reserve could easily be blown by multiple threads. 289 * Therefore, we serialize all allocations from vmem_seg_arena (which is OK 290 * because they're rare). We cannot allow a non-blocking allocation to get 291 * tied up behind a blocking allocation, however, so we use separate locks 292 * for VM_SLEEP and VM_NOSLEEP allocations. Similarly, VM_PUSHPAGE allocations 293 * must not block behind ordinary VM_SLEEPs. In addition, if the system is 294 * panicking then we must keep enough resources for panic_thread to do its 295 * work. Thus we have at most four threads trying to allocate from 296 * vmem_seg_arena, and each thread consumes at most three segment structures, 297 * so we must maintain a 12-seg reserve. 298 */ 299 #define VMEM_POPULATE_RESERVE 12 300 301 /* 302 * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures 303 * so that it can satisfy the worst-case allocation *and* participate in 304 * worst-case allocation from vmem_seg_arena. 305 */ 306 #define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX) 307 308 static vmem_t vmem0[VMEM_INITIAL]; 309 static vmem_t *vmem_populator[VMEM_INITIAL]; 310 static uint32_t vmem_id; 311 static uint32_t vmem_populators; 312 static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL]; 313 static vmem_seg_t *vmem_segfree; 314 static kmutex_t vmem_list_lock; 315 static kmutex_t vmem_segfree_lock; 316 static kmutex_t vmem_sleep_lock; 317 static kmutex_t vmem_nosleep_lock; 318 static kmutex_t vmem_pushpage_lock; 319 static kmutex_t vmem_panic_lock; 320 static vmem_t *vmem_list; 321 static vmem_t *vmem_metadata_arena; 322 static vmem_t *vmem_seg_arena; 323 static vmem_t *vmem_hash_arena; 324 static vmem_t *vmem_vmem_arena; 325 static long vmem_update_interval = 15; /* vmem_update() every 15 seconds */ 326 uint32_t vmem_mtbf; /* mean time between failures [default: off] */ 327 size_t vmem_seg_size = sizeof (vmem_seg_t); 328 329 static vmem_kstat_t vmem_kstat_template = { 330 { "mem_inuse", KSTAT_DATA_UINT64 }, 331 { "mem_import", KSTAT_DATA_UINT64 }, 332 { "mem_total", KSTAT_DATA_UINT64 }, 333 { "vmem_source", KSTAT_DATA_UINT32 }, 334 { "alloc", KSTAT_DATA_UINT64 }, 335 { "free", KSTAT_DATA_UINT64 }, 336 { "wait", KSTAT_DATA_UINT64 }, 337 { "fail", KSTAT_DATA_UINT64 }, 338 { "lookup", KSTAT_DATA_UINT64 }, 339 { "search", KSTAT_DATA_UINT64 }, 340 { "populate_wait", KSTAT_DATA_UINT64 }, 341 { "populate_fail", KSTAT_DATA_UINT64 }, 342 { "contains", KSTAT_DATA_UINT64 }, 343 { "contains_search", KSTAT_DATA_UINT64 }, 344 }; 345 346 /* 347 * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k'). 348 */ 349 #define VMEM_INSERT(vprev, vsp, type) \ 350 { \ 351 vmem_seg_t *vnext = (vprev)->vs_##type##next; \ 352 (vsp)->vs_##type##next = (vnext); \ 353 (vsp)->vs_##type##prev = (vprev); \ 354 (vprev)->vs_##type##next = (vsp); \ 355 (vnext)->vs_##type##prev = (vsp); \ 356 } 357 358 #define VMEM_DELETE(vsp, type) \ 359 { \ 360 vmem_seg_t *vprev = (vsp)->vs_##type##prev; \ 361 vmem_seg_t *vnext = (vsp)->vs_##type##next; \ 362 (vprev)->vs_##type##next = (vnext); \ 363 (vnext)->vs_##type##prev = (vprev); \ 364 } 365 366 /* 367 * Get a vmem_seg_t from the global segfree list. 368 */ 369 static vmem_seg_t * 370 vmem_getseg_global(void) 371 { 372 vmem_seg_t *vsp; 373 374 mutex_enter(&vmem_segfree_lock); 375 if ((vsp = vmem_segfree) != NULL) 376 vmem_segfree = vsp->vs_knext; 377 mutex_exit(&vmem_segfree_lock); 378 379 return (vsp); 380 } 381 382 /* 383 * Put a vmem_seg_t on the global segfree list. 384 */ 385 static void 386 vmem_putseg_global(vmem_seg_t *vsp) 387 { 388 mutex_enter(&vmem_segfree_lock); 389 vsp->vs_knext = vmem_segfree; 390 vmem_segfree = vsp; 391 mutex_exit(&vmem_segfree_lock); 392 } 393 394 /* 395 * Get a vmem_seg_t from vmp's segfree list. 396 */ 397 static vmem_seg_t * 398 vmem_getseg(vmem_t *vmp) 399 { 400 vmem_seg_t *vsp; 401 402 ASSERT(vmp->vm_nsegfree > 0); 403 404 vsp = vmp->vm_segfree; 405 vmp->vm_segfree = vsp->vs_knext; 406 vmp->vm_nsegfree--; 407 408 return (vsp); 409 } 410 411 /* 412 * Put a vmem_seg_t on vmp's segfree list. 413 */ 414 static void 415 vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp) 416 { 417 vsp->vs_knext = vmp->vm_segfree; 418 vmp->vm_segfree = vsp; 419 vmp->vm_nsegfree++; 420 } 421 422 /* 423 * Add vsp to the appropriate freelist. 424 */ 425 static void 426 vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp) 427 { 428 vmem_seg_t *vprev; 429 430 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); 431 432 vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1]; 433 vsp->vs_type = VMEM_FREE; 434 vmp->vm_freemap |= VS_SIZE(vprev); 435 VMEM_INSERT(vprev, vsp, k); 436 437 cv_broadcast(&vmp->vm_cv); 438 } 439 440 /* 441 * Take vsp from the freelist. 442 */ 443 static void 444 vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp) 445 { 446 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); 447 ASSERT(vsp->vs_type == VMEM_FREE); 448 449 if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) { 450 /* 451 * The segments on both sides of 'vsp' are freelist heads, 452 * so taking vsp leaves the freelist at vsp->vs_kprev empty. 453 */ 454 ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev)); 455 vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev); 456 } 457 VMEM_DELETE(vsp, k); 458 } 459 460 /* 461 * Add vsp to the allocated-segment hash table and update kstats. 462 */ 463 static void 464 vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp) 465 { 466 vmem_seg_t **bucket; 467 468 vsp->vs_type = VMEM_ALLOC; 469 bucket = VMEM_HASH(vmp, vsp->vs_start); 470 vsp->vs_knext = *bucket; 471 *bucket = vsp; 472 473 if (vmem_seg_size == sizeof (vmem_seg_t)) { 474 vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack, 475 VMEM_STACK_DEPTH); 476 vsp->vs_thread = curthread; 477 vsp->vs_timestamp = gethrtime(); 478 } else { 479 vsp->vs_depth = 0; 480 } 481 482 vmp->vm_kstat.vk_alloc.value.ui64++; 483 vmp->vm_kstat.vk_mem_inuse.value.ui64 += VS_SIZE(vsp); 484 } 485 486 /* 487 * Remove vsp from the allocated-segment hash table and update kstats. 488 */ 489 static vmem_seg_t * 490 vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size) 491 { 492 vmem_seg_t *vsp, **prev_vspp; 493 494 prev_vspp = VMEM_HASH(vmp, addr); 495 while ((vsp = *prev_vspp) != NULL) { 496 if (vsp->vs_start == addr) { 497 *prev_vspp = vsp->vs_knext; 498 break; 499 } 500 vmp->vm_kstat.vk_lookup.value.ui64++; 501 prev_vspp = &vsp->vs_knext; 502 } 503 504 if (vsp == NULL) 505 panic("vmem_hash_delete(%p, %lx, %lu): bad free", 506 (void *)vmp, addr, size); 507 if (VS_SIZE(vsp) != size) 508 panic("vmem_hash_delete(%p, %lx, %lu): wrong size (expect %lu)", 509 (void *)vmp, addr, size, VS_SIZE(vsp)); 510 511 vmp->vm_kstat.vk_free.value.ui64++; 512 vmp->vm_kstat.vk_mem_inuse.value.ui64 -= size; 513 514 return (vsp); 515 } 516 517 /* 518 * Create a segment spanning the range [start, end) and add it to the arena. 519 */ 520 static vmem_seg_t * 521 vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end) 522 { 523 vmem_seg_t *newseg = vmem_getseg(vmp); 524 525 newseg->vs_start = start; 526 newseg->vs_end = end; 527 newseg->vs_type = 0; 528 newseg->vs_import = 0; 529 530 VMEM_INSERT(vprev, newseg, a); 531 532 return (newseg); 533 } 534 535 /* 536 * Remove segment vsp from the arena. 537 */ 538 static void 539 vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp) 540 { 541 ASSERT(vsp->vs_type != VMEM_ROTOR); 542 VMEM_DELETE(vsp, a); 543 544 vmem_putseg(vmp, vsp); 545 } 546 547 /* 548 * Add the span [vaddr, vaddr + size) to vmp and update kstats. 549 */ 550 static vmem_seg_t * 551 vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import) 552 { 553 vmem_seg_t *newseg, *span; 554 uintptr_t start = (uintptr_t)vaddr; 555 uintptr_t end = start + size; 556 557 ASSERT(MUTEX_HELD(&vmp->vm_lock)); 558 559 if ((start | end) & (vmp->vm_quantum - 1)) 560 panic("vmem_span_create(%p, %p, %lu): misaligned", 561 (void *)vmp, vaddr, size); 562 563 span = vmem_seg_create(vmp, vmp->vm_seg0.vs_aprev, start, end); 564 span->vs_type = VMEM_SPAN; 565 span->vs_import = import; 566 VMEM_INSERT(vmp->vm_seg0.vs_kprev, span, k); 567 568 newseg = vmem_seg_create(vmp, span, start, end); 569 vmem_freelist_insert(vmp, newseg); 570 571 if (import) 572 vmp->vm_kstat.vk_mem_import.value.ui64 += size; 573 vmp->vm_kstat.vk_mem_total.value.ui64 += size; 574 575 return (newseg); 576 } 577 578 /* 579 * Remove span vsp from vmp and update kstats. 580 */ 581 static void 582 vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp) 583 { 584 vmem_seg_t *span = vsp->vs_aprev; 585 size_t size = VS_SIZE(vsp); 586 587 ASSERT(MUTEX_HELD(&vmp->vm_lock)); 588 ASSERT(span->vs_type == VMEM_SPAN); 589 590 if (span->vs_import) 591 vmp->vm_kstat.vk_mem_import.value.ui64 -= size; 592 vmp->vm_kstat.vk_mem_total.value.ui64 -= size; 593 594 VMEM_DELETE(span, k); 595 596 vmem_seg_destroy(vmp, vsp); 597 vmem_seg_destroy(vmp, span); 598 } 599 600 /* 601 * Allocate the subrange [addr, addr + size) from segment vsp. 602 * If there are leftovers on either side, place them on the freelist. 603 * Returns a pointer to the segment representing [addr, addr + size). 604 */ 605 static vmem_seg_t * 606 vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size) 607 { 608 uintptr_t vs_start = vsp->vs_start; 609 uintptr_t vs_end = vsp->vs_end; 610 size_t vs_size = vs_end - vs_start; 611 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); 612 uintptr_t addr_end = addr + realsize; 613 614 ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0); 615 ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0); 616 ASSERT(vsp->vs_type == VMEM_FREE); 617 ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1); 618 ASSERT(addr - 1 <= addr_end - 1); 619 620 /* 621 * If we're allocating from the start of the segment, and the 622 * remainder will be on the same freelist, we can save quite 623 * a bit of work. 624 */ 625 if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) { 626 ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); 627 vsp->vs_start = addr_end; 628 vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size); 629 vmem_hash_insert(vmp, vsp); 630 return (vsp); 631 } 632 633 vmem_freelist_delete(vmp, vsp); 634 635 if (vs_end != addr_end) 636 vmem_freelist_insert(vmp, 637 vmem_seg_create(vmp, vsp, addr_end, vs_end)); 638 639 if (vs_start != addr) 640 vmem_freelist_insert(vmp, 641 vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr)); 642 643 vsp->vs_start = addr; 644 vsp->vs_end = addr + size; 645 646 vmem_hash_insert(vmp, vsp); 647 return (vsp); 648 } 649 650 /* 651 * Returns 1 if we are populating, 0 otherwise. 652 * Call it if we want to prevent recursion from HAT. 653 */ 654 int 655 vmem_is_populator() 656 { 657 return (mutex_owner(&vmem_sleep_lock) == curthread || 658 mutex_owner(&vmem_nosleep_lock) == curthread || 659 mutex_owner(&vmem_pushpage_lock) == curthread || 660 mutex_owner(&vmem_panic_lock) == curthread); 661 } 662 663 /* 664 * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures. 665 */ 666 static int 667 vmem_populate(vmem_t *vmp, int vmflag) 668 { 669 char *p; 670 vmem_seg_t *vsp; 671 ssize_t nseg; 672 size_t size; 673 kmutex_t *lp; 674 int i; 675 676 while (vmp->vm_nsegfree < VMEM_MINFREE && 677 (vsp = vmem_getseg_global()) != NULL) 678 vmem_putseg(vmp, vsp); 679 680 if (vmp->vm_nsegfree >= VMEM_MINFREE) 681 return (1); 682 683 /* 684 * If we're already populating, tap the reserve. 685 */ 686 if (vmem_is_populator()) { 687 ASSERT(vmp->vm_cflags & VMC_POPULATOR); 688 return (1); 689 } 690 691 mutex_exit(&vmp->vm_lock); 692 693 if (panic_thread == curthread) 694 lp = &vmem_panic_lock; 695 else if (vmflag & VM_NOSLEEP) 696 lp = &vmem_nosleep_lock; 697 else if (vmflag & VM_PUSHPAGE) 698 lp = &vmem_pushpage_lock; 699 else 700 lp = &vmem_sleep_lock; 701 702 mutex_enter(lp); 703 704 nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE; 705 size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum); 706 nseg = size / vmem_seg_size; 707 708 /* 709 * The following vmem_alloc() may need to populate vmem_seg_arena 710 * and all the things it imports from. When doing so, it will tap 711 * each arena's reserve to prevent recursion (see the block comment 712 * above the definition of VMEM_POPULATE_RESERVE). 713 */ 714 p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_KMFLAGS); 715 if (p == NULL) { 716 mutex_exit(lp); 717 mutex_enter(&vmp->vm_lock); 718 vmp->vm_kstat.vk_populate_fail.value.ui64++; 719 return (0); 720 } 721 722 /* 723 * Restock the arenas that may have been depleted during population. 724 */ 725 for (i = 0; i < vmem_populators; i++) { 726 mutex_enter(&vmem_populator[i]->vm_lock); 727 while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE) 728 vmem_putseg(vmem_populator[i], 729 (vmem_seg_t *)(p + --nseg * vmem_seg_size)); 730 mutex_exit(&vmem_populator[i]->vm_lock); 731 } 732 733 mutex_exit(lp); 734 mutex_enter(&vmp->vm_lock); 735 736 /* 737 * Now take our own segments. 738 */ 739 ASSERT(nseg >= VMEM_MINFREE); 740 while (vmp->vm_nsegfree < VMEM_MINFREE) 741 vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size)); 742 743 /* 744 * Give the remainder to charity. 745 */ 746 while (nseg > 0) 747 vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size)); 748 749 return (1); 750 } 751 752 /* 753 * Advance a walker from its previous position to 'afterme'. 754 * Note: may drop and reacquire vmp->vm_lock. 755 */ 756 static void 757 vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme) 758 { 759 vmem_seg_t *vprev = walker->vs_aprev; 760 vmem_seg_t *vnext = walker->vs_anext; 761 vmem_seg_t *vsp = NULL; 762 763 VMEM_DELETE(walker, a); 764 765 if (afterme != NULL) 766 VMEM_INSERT(afterme, walker, a); 767 768 /* 769 * The walker segment's presence may have prevented its neighbors 770 * from coalescing. If so, coalesce them now. 771 */ 772 if (vprev->vs_type == VMEM_FREE) { 773 if (vnext->vs_type == VMEM_FREE) { 774 ASSERT(vprev->vs_end == vnext->vs_start); 775 vmem_freelist_delete(vmp, vnext); 776 vmem_freelist_delete(vmp, vprev); 777 vprev->vs_end = vnext->vs_end; 778 vmem_freelist_insert(vmp, vprev); 779 vmem_seg_destroy(vmp, vnext); 780 } 781 vsp = vprev; 782 } else if (vnext->vs_type == VMEM_FREE) { 783 vsp = vnext; 784 } 785 786 /* 787 * vsp could represent a complete imported span, 788 * in which case we must return it to the source. 789 */ 790 if (vsp != NULL && vsp->vs_aprev->vs_import && 791 vmp->vm_source_free != NULL && 792 vsp->vs_aprev->vs_type == VMEM_SPAN && 793 vsp->vs_anext->vs_type == VMEM_SPAN) { 794 void *vaddr = (void *)vsp->vs_start; 795 size_t size = VS_SIZE(vsp); 796 ASSERT(size == VS_SIZE(vsp->vs_aprev)); 797 vmem_freelist_delete(vmp, vsp); 798 vmem_span_destroy(vmp, vsp); 799 mutex_exit(&vmp->vm_lock); 800 vmp->vm_source_free(vmp->vm_source, vaddr, size); 801 mutex_enter(&vmp->vm_lock); 802 } 803 } 804 805 /* 806 * VM_NEXTFIT allocations deliberately cycle through all virtual addresses 807 * in an arena, so that we avoid reusing addresses for as long as possible. 808 * This helps to catch used-after-freed bugs. It's also the perfect policy 809 * for allocating things like process IDs, where we want to cycle through 810 * all values in order. 811 */ 812 static void * 813 vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag) 814 { 815 vmem_seg_t *vsp, *rotor; 816 uintptr_t addr; 817 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); 818 size_t vs_size; 819 820 mutex_enter(&vmp->vm_lock); 821 822 if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) { 823 mutex_exit(&vmp->vm_lock); 824 return (NULL); 825 } 826 827 /* 828 * The common case is that the segment right after the rotor is free, 829 * and large enough that extracting 'size' bytes won't change which 830 * freelist it's on. In this case we can avoid a *lot* of work. 831 * Instead of the normal vmem_seg_alloc(), we just advance the start 832 * address of the victim segment. Instead of moving the rotor, we 833 * create the new segment structure *behind the rotor*, which has 834 * the same effect. And finally, we know we don't have to coalesce 835 * the rotor's neighbors because the new segment lies between them. 836 */ 837 rotor = &vmp->vm_rotor; 838 vsp = rotor->vs_anext; 839 if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize && 840 P2SAMEHIGHBIT(vs_size, vs_size - realsize)) { 841 ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); 842 addr = vsp->vs_start; 843 vsp->vs_start = addr + realsize; 844 vmem_hash_insert(vmp, 845 vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size)); 846 mutex_exit(&vmp->vm_lock); 847 return ((void *)addr); 848 } 849 850 /* 851 * Starting at the rotor, look for a segment large enough to 852 * satisfy the allocation. 853 */ 854 for (;;) { 855 vmp->vm_kstat.vk_search.value.ui64++; 856 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) 857 break; 858 vsp = vsp->vs_anext; 859 if (vsp == rotor) { 860 /* 861 * We've come full circle. One possibility is that the 862 * there's actually enough space, but the rotor itself 863 * is preventing the allocation from succeeding because 864 * it's sitting between two free segments. Therefore, 865 * we advance the rotor and see if that liberates a 866 * suitable segment. 867 */ 868 vmem_advance(vmp, rotor, rotor->vs_anext); 869 vsp = rotor->vs_aprev; 870 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) 871 break; 872 /* 873 * If there's a lower arena we can import from, or it's 874 * a VM_NOSLEEP allocation, let vmem_xalloc() handle it. 875 * Otherwise, wait until another thread frees something. 876 */ 877 if (vmp->vm_source_alloc != NULL || 878 (vmflag & VM_NOSLEEP)) { 879 mutex_exit(&vmp->vm_lock); 880 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 881 0, 0, NULL, NULL, vmflag & VM_KMFLAGS)); 882 } 883 vmp->vm_kstat.vk_wait.value.ui64++; 884 cv_wait(&vmp->vm_cv, &vmp->vm_lock); 885 vsp = rotor->vs_anext; 886 } 887 } 888 889 /* 890 * We found a segment. Extract enough space to satisfy the allocation. 891 */ 892 addr = vsp->vs_start; 893 vsp = vmem_seg_alloc(vmp, vsp, addr, size); 894 ASSERT(vsp->vs_type == VMEM_ALLOC && 895 vsp->vs_start == addr && vsp->vs_end == addr + size); 896 897 /* 898 * Advance the rotor to right after the newly-allocated segment. 899 * That's where the next VM_NEXTFIT allocation will begin searching. 900 */ 901 vmem_advance(vmp, rotor, vsp); 902 mutex_exit(&vmp->vm_lock); 903 return ((void *)addr); 904 } 905 906 /* 907 * Checks if vmp is guaranteed to have a size-byte buffer somewhere on its 908 * freelist. If size is not a power-of-2, it can return a false-negative. 909 * 910 * Used to decide if a newly imported span is superfluous after re-acquiring 911 * the arena lock. 912 */ 913 static int 914 vmem_canalloc(vmem_t *vmp, size_t size) 915 { 916 int hb; 917 int flist = 0; 918 ASSERT(MUTEX_HELD(&vmp->vm_lock)); 919 920 if ((size & (size - 1)) == 0) 921 flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); 922 else if ((hb = highbit(size)) < VMEM_FREELISTS) 923 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); 924 925 return (flist); 926 } 927 928 /* 929 * Allocate size bytes at offset phase from an align boundary such that the 930 * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr) 931 * that does not straddle a nocross-aligned boundary. 932 */ 933 void * 934 vmem_xalloc(vmem_t *vmp, size_t size, size_t align_arg, size_t phase, 935 size_t nocross, void *minaddr, void *maxaddr, int vmflag) 936 { 937 vmem_seg_t *vsp; 938 vmem_seg_t *vbest = NULL; 939 uintptr_t addr, taddr, start, end; 940 uintptr_t align = (align_arg != 0) ? align_arg : vmp->vm_quantum; 941 void *vaddr, *xvaddr = NULL; 942 size_t xsize; 943 int hb, flist, resv; 944 uint32_t mtbf; 945 946 if ((align | phase | nocross) & (vmp->vm_quantum - 1)) 947 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 948 "parameters not vm_quantum aligned", 949 (void *)vmp, size, align_arg, phase, nocross, 950 minaddr, maxaddr, vmflag); 951 952 if (nocross != 0 && 953 (align > nocross || P2ROUNDUP(phase + size, align) > nocross)) 954 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 955 "overconstrained allocation", 956 (void *)vmp, size, align_arg, phase, nocross, 957 minaddr, maxaddr, vmflag); 958 959 if (phase >= align || (align & (align - 1)) != 0 || 960 (nocross & (nocross - 1)) != 0) 961 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 962 "parameters inconsistent or invalid", 963 (void *)vmp, size, align_arg, phase, nocross, 964 minaddr, maxaddr, vmflag); 965 966 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && 967 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) 968 return (NULL); 969 970 mutex_enter(&vmp->vm_lock); 971 for (;;) { 972 if (vmp->vm_nsegfree < VMEM_MINFREE && 973 !vmem_populate(vmp, vmflag)) 974 break; 975 do_alloc: 976 /* 977 * highbit() returns the highest bit + 1, which is exactly 978 * what we want: we want to search the first freelist whose 979 * members are *definitely* large enough to satisfy our 980 * allocation. However, there are certain cases in which we 981 * want to look at the next-smallest freelist (which *might* 982 * be able to satisfy the allocation): 983 * 984 * (1) The size is exactly a power of 2, in which case 985 * the smaller freelist is always big enough; 986 * 987 * (2) All other freelists are empty; 988 * 989 * (3) We're in the highest possible freelist, which is 990 * always empty (e.g. the 4GB freelist on 32-bit systems); 991 * 992 * (4) We're doing a best-fit or first-fit allocation. 993 */ 994 if ((size & (size - 1)) == 0) { 995 flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); 996 } else { 997 hb = highbit(size); 998 if ((vmp->vm_freemap >> hb) == 0 || 999 hb == VMEM_FREELISTS || 1000 (vmflag & (VM_BESTFIT | VM_FIRSTFIT))) 1001 hb--; 1002 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); 1003 } 1004 1005 for (vbest = NULL, vsp = (flist == 0) ? NULL : 1006 vmp->vm_freelist[flist - 1].vs_knext; 1007 vsp != NULL; vsp = vsp->vs_knext) { 1008 vmp->vm_kstat.vk_search.value.ui64++; 1009 if (vsp->vs_start == 0) { 1010 /* 1011 * We're moving up to a larger freelist, 1012 * so if we've already found a candidate, 1013 * the fit can't possibly get any better. 1014 */ 1015 if (vbest != NULL) 1016 break; 1017 /* 1018 * Find the next non-empty freelist. 1019 */ 1020 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1021 VS_SIZE(vsp))); 1022 if (flist-- == 0) 1023 break; 1024 vsp = (vmem_seg_t *)&vmp->vm_freelist[flist]; 1025 ASSERT(vsp->vs_knext->vs_type == VMEM_FREE); 1026 continue; 1027 } 1028 if (vsp->vs_end - 1 < (uintptr_t)minaddr) 1029 continue; 1030 if (vsp->vs_start > (uintptr_t)maxaddr - 1) 1031 continue; 1032 start = MAX(vsp->vs_start, (uintptr_t)minaddr); 1033 end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1; 1034 taddr = P2PHASEUP(start, align, phase); 1035 if (P2CROSS(taddr, taddr + size - 1, nocross)) 1036 taddr += 1037 P2ROUNDUP(P2NPHASE(taddr, nocross), align); 1038 if ((taddr - start) + size > end - start || 1039 (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest))) 1040 continue; 1041 vbest = vsp; 1042 addr = taddr; 1043 if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size) 1044 break; 1045 } 1046 if (vbest != NULL) 1047 break; 1048 ASSERT(xvaddr == NULL); 1049 if (size == 0) 1050 panic("vmem_xalloc(): size == 0"); 1051 if (vmp->vm_source_alloc != NULL && nocross == 0 && 1052 minaddr == NULL && maxaddr == NULL) { 1053 size_t aneeded, asize; 1054 size_t aquantum = MAX(vmp->vm_quantum, 1055 vmp->vm_source->vm_quantum); 1056 size_t aphase = phase; 1057 if ((align > aquantum) && 1058 !(vmp->vm_cflags & VMC_XALIGN)) { 1059 aphase = (P2PHASE(phase, aquantum) != 0) ? 1060 align - vmp->vm_quantum : align - aquantum; 1061 ASSERT(aphase >= phase); 1062 } 1063 aneeded = MAX(size + aphase, vmp->vm_min_import); 1064 asize = P2ROUNDUP(aneeded, aquantum); 1065 1066 /* 1067 * Determine how many segment structures we'll consume. 1068 * The calculation must be precise because if we're 1069 * here on behalf of vmem_populate(), we are taking 1070 * segments from a very limited reserve. 1071 */ 1072 if (size == asize && !(vmp->vm_cflags & VMC_XALLOC)) 1073 resv = VMEM_SEGS_PER_SPAN_CREATE + 1074 VMEM_SEGS_PER_EXACT_ALLOC; 1075 else if (phase == 0 && 1076 align <= vmp->vm_source->vm_quantum) 1077 resv = VMEM_SEGS_PER_SPAN_CREATE + 1078 VMEM_SEGS_PER_LEFT_ALLOC; 1079 else 1080 resv = VMEM_SEGS_PER_ALLOC_MAX; 1081 1082 ASSERT(vmp->vm_nsegfree >= resv); 1083 vmp->vm_nsegfree -= resv; /* reserve our segs */ 1084 mutex_exit(&vmp->vm_lock); 1085 if (vmp->vm_cflags & VMC_XALLOC) { 1086 size_t oasize = asize; 1087 vaddr = ((vmem_ximport_t *) 1088 vmp->vm_source_alloc)(vmp->vm_source, 1089 &asize, align, vmflag & VM_KMFLAGS); 1090 ASSERT(asize >= oasize); 1091 ASSERT(P2PHASE(asize, 1092 vmp->vm_source->vm_quantum) == 0); 1093 ASSERT(!(vmp->vm_cflags & VMC_XALIGN) || 1094 IS_P2ALIGNED(vaddr, align)); 1095 } else { 1096 vaddr = vmp->vm_source_alloc(vmp->vm_source, 1097 asize, vmflag & VM_KMFLAGS); 1098 } 1099 mutex_enter(&vmp->vm_lock); 1100 vmp->vm_nsegfree += resv; /* claim reservation */ 1101 aneeded = size + align - vmp->vm_quantum; 1102 aneeded = P2ROUNDUP(aneeded, vmp->vm_quantum); 1103 if (vaddr != NULL) { 1104 /* 1105 * Since we dropped the vmem lock while 1106 * calling the import function, other 1107 * threads could have imported space 1108 * and made our import unnecessary. In 1109 * order to save space, we return 1110 * excess imports immediately. 1111 */ 1112 if (asize > aneeded && 1113 vmp->vm_source_free != NULL && 1114 vmem_canalloc(vmp, aneeded)) { 1115 ASSERT(resv >= 1116 VMEM_SEGS_PER_MIDDLE_ALLOC); 1117 xvaddr = vaddr; 1118 xsize = asize; 1119 goto do_alloc; 1120 } 1121 vbest = vmem_span_create(vmp, vaddr, asize, 1); 1122 addr = P2PHASEUP(vbest->vs_start, align, phase); 1123 break; 1124 } else if (vmem_canalloc(vmp, aneeded)) { 1125 /* 1126 * Our import failed, but another thread 1127 * added sufficient free memory to the arena 1128 * to satisfy our request. Go back and 1129 * grab it. 1130 */ 1131 ASSERT(resv >= VMEM_SEGS_PER_MIDDLE_ALLOC); 1132 goto do_alloc; 1133 } 1134 } 1135 1136 /* 1137 * If the requestor chooses to fail the allocation attempt 1138 * rather than reap wait and retry - get out of the loop. 1139 */ 1140 if (vmflag & VM_ABORT) 1141 break; 1142 mutex_exit(&vmp->vm_lock); 1143 if (vmp->vm_cflags & VMC_IDENTIFIER) 1144 kmem_reap_idspace(); 1145 else 1146 kmem_reap(); 1147 mutex_enter(&vmp->vm_lock); 1148 if (vmflag & VM_NOSLEEP) 1149 break; 1150 vmp->vm_kstat.vk_wait.value.ui64++; 1151 cv_wait(&vmp->vm_cv, &vmp->vm_lock); 1152 } 1153 if (vbest != NULL) { 1154 ASSERT(vbest->vs_type == VMEM_FREE); 1155 ASSERT(vbest->vs_knext != vbest); 1156 (void) vmem_seg_alloc(vmp, vbest, addr, size); 1157 mutex_exit(&vmp->vm_lock); 1158 if (xvaddr) 1159 vmp->vm_source_free(vmp->vm_source, xvaddr, xsize); 1160 ASSERT(P2PHASE(addr, align) == phase); 1161 ASSERT(!P2CROSS(addr, addr + size - 1, nocross)); 1162 ASSERT(addr >= (uintptr_t)minaddr); 1163 ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1); 1164 return ((void *)addr); 1165 } 1166 vmp->vm_kstat.vk_fail.value.ui64++; 1167 mutex_exit(&vmp->vm_lock); 1168 if (vmflag & VM_PANIC) 1169 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 1170 "cannot satisfy mandatory allocation", 1171 (void *)vmp, size, align_arg, phase, nocross, 1172 minaddr, maxaddr, vmflag); 1173 ASSERT(xvaddr == NULL); 1174 return (NULL); 1175 } 1176 1177 /* 1178 * Free the segment [vaddr, vaddr + size), where vaddr was a constrained 1179 * allocation. vmem_xalloc() and vmem_xfree() must always be paired because 1180 * both routines bypass the quantum caches. 1181 */ 1182 void 1183 vmem_xfree(vmem_t *vmp, void *vaddr, size_t size) 1184 { 1185 vmem_seg_t *vsp, *vnext, *vprev; 1186 1187 mutex_enter(&vmp->vm_lock); 1188 1189 vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size); 1190 vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum); 1191 1192 /* 1193 * Attempt to coalesce with the next segment. 1194 */ 1195 vnext = vsp->vs_anext; 1196 if (vnext->vs_type == VMEM_FREE) { 1197 ASSERT(vsp->vs_end == vnext->vs_start); 1198 vmem_freelist_delete(vmp, vnext); 1199 vsp->vs_end = vnext->vs_end; 1200 vmem_seg_destroy(vmp, vnext); 1201 } 1202 1203 /* 1204 * Attempt to coalesce with the previous segment. 1205 */ 1206 vprev = vsp->vs_aprev; 1207 if (vprev->vs_type == VMEM_FREE) { 1208 ASSERT(vprev->vs_end == vsp->vs_start); 1209 vmem_freelist_delete(vmp, vprev); 1210 vprev->vs_end = vsp->vs_end; 1211 vmem_seg_destroy(vmp, vsp); 1212 vsp = vprev; 1213 } 1214 1215 /* 1216 * If the entire span is free, return it to the source. 1217 */ 1218 if (vsp->vs_aprev->vs_import && vmp->vm_source_free != NULL && 1219 vsp->vs_aprev->vs_type == VMEM_SPAN && 1220 vsp->vs_anext->vs_type == VMEM_SPAN) { 1221 vaddr = (void *)vsp->vs_start; 1222 size = VS_SIZE(vsp); 1223 ASSERT(size == VS_SIZE(vsp->vs_aprev)); 1224 vmem_span_destroy(vmp, vsp); 1225 mutex_exit(&vmp->vm_lock); 1226 vmp->vm_source_free(vmp->vm_source, vaddr, size); 1227 } else { 1228 vmem_freelist_insert(vmp, vsp); 1229 mutex_exit(&vmp->vm_lock); 1230 } 1231 } 1232 1233 /* 1234 * Allocate size bytes from arena vmp. Returns the allocated address 1235 * on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP, 1236 * and may also specify best-fit, first-fit, or next-fit allocation policy 1237 * instead of the default instant-fit policy. VM_SLEEP allocations are 1238 * guaranteed to succeed. 1239 */ 1240 void * 1241 vmem_alloc(vmem_t *vmp, size_t size, int vmflag) 1242 { 1243 vmem_seg_t *vsp; 1244 uintptr_t addr; 1245 int hb; 1246 int flist = 0; 1247 uint32_t mtbf; 1248 1249 if (size - 1 < vmp->vm_qcache_max) 1250 return (kmem_cache_alloc(vmp->vm_qcache[(size - 1) >> 1251 vmp->vm_qshift], vmflag & VM_KMFLAGS)); 1252 1253 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && 1254 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) 1255 return (NULL); 1256 1257 if (vmflag & VM_NEXTFIT) 1258 return (vmem_nextfit_alloc(vmp, size, vmflag)); 1259 1260 if (vmflag & (VM_BESTFIT | VM_FIRSTFIT)) 1261 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0, 1262 NULL, NULL, vmflag)); 1263 1264 /* 1265 * Unconstrained instant-fit allocation from the segment list. 1266 */ 1267 mutex_enter(&vmp->vm_lock); 1268 1269 if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) { 1270 if ((size & (size - 1)) == 0) 1271 flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); 1272 else if ((hb = highbit(size)) < VMEM_FREELISTS) 1273 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); 1274 } 1275 1276 if (flist-- == 0) { 1277 mutex_exit(&vmp->vm_lock); 1278 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 1279 0, 0, NULL, NULL, vmflag)); 1280 } 1281 1282 ASSERT(size <= (1UL << flist)); 1283 vsp = vmp->vm_freelist[flist].vs_knext; 1284 addr = vsp->vs_start; 1285 (void) vmem_seg_alloc(vmp, vsp, addr, size); 1286 mutex_exit(&vmp->vm_lock); 1287 return ((void *)addr); 1288 } 1289 1290 /* 1291 * Free the segment [vaddr, vaddr + size). 1292 */ 1293 void 1294 vmem_free(vmem_t *vmp, void *vaddr, size_t size) 1295 { 1296 if (size - 1 < vmp->vm_qcache_max) 1297 kmem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift], 1298 vaddr); 1299 else 1300 vmem_xfree(vmp, vaddr, size); 1301 } 1302 1303 /* 1304 * Determine whether arena vmp contains the segment [vaddr, vaddr + size). 1305 */ 1306 int 1307 vmem_contains(vmem_t *vmp, void *vaddr, size_t size) 1308 { 1309 uintptr_t start = (uintptr_t)vaddr; 1310 uintptr_t end = start + size; 1311 vmem_seg_t *vsp; 1312 vmem_seg_t *seg0 = &vmp->vm_seg0; 1313 1314 mutex_enter(&vmp->vm_lock); 1315 vmp->vm_kstat.vk_contains.value.ui64++; 1316 for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) { 1317 vmp->vm_kstat.vk_contains_search.value.ui64++; 1318 ASSERT(vsp->vs_type == VMEM_SPAN); 1319 if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1) 1320 break; 1321 } 1322 mutex_exit(&vmp->vm_lock); 1323 return (vsp != seg0); 1324 } 1325 1326 /* 1327 * Add the span [vaddr, vaddr + size) to arena vmp. 1328 */ 1329 void * 1330 vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag) 1331 { 1332 if (vaddr == NULL || size == 0) 1333 panic("vmem_add(%p, %p, %lu): bad arguments", 1334 (void *)vmp, vaddr, size); 1335 1336 ASSERT(!vmem_contains(vmp, vaddr, size)); 1337 1338 mutex_enter(&vmp->vm_lock); 1339 if (vmem_populate(vmp, vmflag)) 1340 (void) vmem_span_create(vmp, vaddr, size, 0); 1341 else 1342 vaddr = NULL; 1343 mutex_exit(&vmp->vm_lock); 1344 return (vaddr); 1345 } 1346 1347 /* 1348 * Walk the vmp arena, applying func to each segment matching typemask. 1349 * If VMEM_REENTRANT is specified, the arena lock is dropped across each 1350 * call to func(); otherwise, it is held for the duration of vmem_walk() 1351 * to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks 1352 * are *not* necessarily consistent, so they may only be used when a hint 1353 * is adequate. 1354 */ 1355 void 1356 vmem_walk(vmem_t *vmp, int typemask, 1357 void (*func)(void *, void *, size_t), void *arg) 1358 { 1359 vmem_seg_t *vsp; 1360 vmem_seg_t *seg0 = &vmp->vm_seg0; 1361 vmem_seg_t walker; 1362 1363 if (typemask & VMEM_WALKER) 1364 return; 1365 1366 bzero(&walker, sizeof (walker)); 1367 walker.vs_type = VMEM_WALKER; 1368 1369 mutex_enter(&vmp->vm_lock); 1370 VMEM_INSERT(seg0, &walker, a); 1371 for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) { 1372 if (vsp->vs_type & typemask) { 1373 void *start = (void *)vsp->vs_start; 1374 size_t size = VS_SIZE(vsp); 1375 if (typemask & VMEM_REENTRANT) { 1376 vmem_advance(vmp, &walker, vsp); 1377 mutex_exit(&vmp->vm_lock); 1378 func(arg, start, size); 1379 mutex_enter(&vmp->vm_lock); 1380 vsp = &walker; 1381 } else { 1382 func(arg, start, size); 1383 } 1384 } 1385 } 1386 vmem_advance(vmp, &walker, NULL); 1387 mutex_exit(&vmp->vm_lock); 1388 } 1389 1390 /* 1391 * Return the total amount of memory whose type matches typemask. Thus: 1392 * 1393 * typemask VMEM_ALLOC yields total memory allocated (in use). 1394 * typemask VMEM_FREE yields total memory free (available). 1395 * typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size. 1396 */ 1397 size_t 1398 vmem_size(vmem_t *vmp, int typemask) 1399 { 1400 uint64_t size = 0; 1401 1402 if (typemask & VMEM_ALLOC) 1403 size += vmp->vm_kstat.vk_mem_inuse.value.ui64; 1404 if (typemask & VMEM_FREE) 1405 size += vmp->vm_kstat.vk_mem_total.value.ui64 - 1406 vmp->vm_kstat.vk_mem_inuse.value.ui64; 1407 return ((size_t)size); 1408 } 1409 1410 /* 1411 * Create an arena called name whose initial span is [base, base + size). 1412 * The arena's natural unit of currency is quantum, so vmem_alloc() 1413 * guarantees quantum-aligned results. The arena may import new spans 1414 * by invoking afunc() on source, and may return those spans by invoking 1415 * ffunc() on source. To make small allocations fast and scalable, 1416 * the arena offers high-performance caching for each integer multiple 1417 * of quantum up to qcache_max. 1418 */ 1419 static vmem_t * 1420 vmem_create_common(const char *name, void *base, size_t size, size_t quantum, 1421 void *(*afunc)(vmem_t *, size_t, int), 1422 void (*ffunc)(vmem_t *, void *, size_t), 1423 vmem_t *source, size_t qcache_max, int vmflag) 1424 { 1425 int i; 1426 size_t nqcache; 1427 vmem_t *vmp, *cur, **vmpp; 1428 vmem_seg_t *vsp; 1429 vmem_freelist_t *vfp; 1430 uint32_t id = atomic_add_32_nv(&vmem_id, 1); 1431 1432 if (vmem_vmem_arena != NULL) { 1433 vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t), 1434 vmflag & VM_KMFLAGS); 1435 } else { 1436 ASSERT(id <= VMEM_INITIAL); 1437 vmp = &vmem0[id - 1]; 1438 } 1439 1440 /* An identifier arena must inherit from another identifier arena */ 1441 ASSERT(source == NULL || ((source->vm_cflags & VMC_IDENTIFIER) == 1442 (vmflag & VMC_IDENTIFIER))); 1443 1444 if (vmp == NULL) 1445 return (NULL); 1446 bzero(vmp, sizeof (vmem_t)); 1447 1448 (void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name); 1449 mutex_init(&vmp->vm_lock, NULL, MUTEX_DEFAULT, NULL); 1450 cv_init(&vmp->vm_cv, NULL, CV_DEFAULT, NULL); 1451 vmp->vm_cflags = vmflag; 1452 vmflag &= VM_KMFLAGS; 1453 1454 vmp->vm_quantum = quantum; 1455 vmp->vm_qshift = highbit(quantum) - 1; 1456 nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX); 1457 1458 for (i = 0; i <= VMEM_FREELISTS; i++) { 1459 vfp = &vmp->vm_freelist[i]; 1460 vfp->vs_end = 1UL << i; 1461 vfp->vs_knext = (vmem_seg_t *)(vfp + 1); 1462 vfp->vs_kprev = (vmem_seg_t *)(vfp - 1); 1463 } 1464 1465 vmp->vm_freelist[0].vs_kprev = NULL; 1466 vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL; 1467 vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0; 1468 vmp->vm_hash_table = vmp->vm_hash0; 1469 vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1; 1470 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); 1471 1472 vsp = &vmp->vm_seg0; 1473 vsp->vs_anext = vsp; 1474 vsp->vs_aprev = vsp; 1475 vsp->vs_knext = vsp; 1476 vsp->vs_kprev = vsp; 1477 vsp->vs_type = VMEM_SPAN; 1478 1479 vsp = &vmp->vm_rotor; 1480 vsp->vs_type = VMEM_ROTOR; 1481 VMEM_INSERT(&vmp->vm_seg0, vsp, a); 1482 1483 bcopy(&vmem_kstat_template, &vmp->vm_kstat, sizeof (vmem_kstat_t)); 1484 1485 vmp->vm_id = id; 1486 if (source != NULL) 1487 vmp->vm_kstat.vk_source_id.value.ui32 = source->vm_id; 1488 vmp->vm_source = source; 1489 vmp->vm_source_alloc = afunc; 1490 vmp->vm_source_free = ffunc; 1491 1492 /* 1493 * Some arenas (like vmem_metadata and kmem_metadata) cannot 1494 * use quantum caching to lower fragmentation. Instead, we 1495 * increase their imports, giving a similar effect. 1496 */ 1497 if (vmp->vm_cflags & VMC_NO_QCACHE) { 1498 vmp->vm_min_import = 1499 VMEM_QCACHE_SLABSIZE(nqcache << vmp->vm_qshift); 1500 nqcache = 0; 1501 } 1502 1503 if (nqcache != 0) { 1504 ASSERT(!(vmflag & VM_NOSLEEP)); 1505 vmp->vm_qcache_max = nqcache << vmp->vm_qshift; 1506 for (i = 0; i < nqcache; i++) { 1507 char buf[VMEM_NAMELEN + 21]; 1508 (void) sprintf(buf, "%s_%lu", vmp->vm_name, 1509 (i + 1) * quantum); 1510 vmp->vm_qcache[i] = kmem_cache_create(buf, 1511 (i + 1) * quantum, quantum, NULL, NULL, NULL, 1512 NULL, vmp, KMC_QCACHE | KMC_NOTOUCH); 1513 } 1514 } 1515 1516 if ((vmp->vm_ksp = kstat_create("vmem", vmp->vm_id, vmp->vm_name, 1517 "vmem", KSTAT_TYPE_NAMED, sizeof (vmem_kstat_t) / 1518 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) { 1519 vmp->vm_ksp->ks_data = &vmp->vm_kstat; 1520 kstat_install(vmp->vm_ksp); 1521 } 1522 1523 mutex_enter(&vmem_list_lock); 1524 vmpp = &vmem_list; 1525 while ((cur = *vmpp) != NULL) 1526 vmpp = &cur->vm_next; 1527 *vmpp = vmp; 1528 mutex_exit(&vmem_list_lock); 1529 1530 if (vmp->vm_cflags & VMC_POPULATOR) { 1531 ASSERT(vmem_populators < VMEM_INITIAL); 1532 vmem_populator[atomic_add_32_nv(&vmem_populators, 1) - 1] = vmp; 1533 mutex_enter(&vmp->vm_lock); 1534 (void) vmem_populate(vmp, vmflag | VM_PANIC); 1535 mutex_exit(&vmp->vm_lock); 1536 } 1537 1538 if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) { 1539 vmem_destroy(vmp); 1540 return (NULL); 1541 } 1542 1543 return (vmp); 1544 } 1545 1546 vmem_t * 1547 vmem_xcreate(const char *name, void *base, size_t size, size_t quantum, 1548 vmem_ximport_t *afunc, vmem_free_t *ffunc, vmem_t *source, 1549 size_t qcache_max, int vmflag) 1550 { 1551 ASSERT(!(vmflag & (VMC_POPULATOR | VMC_XALLOC))); 1552 vmflag &= ~(VMC_POPULATOR | VMC_XALLOC); 1553 1554 return (vmem_create_common(name, base, size, quantum, 1555 (vmem_alloc_t *)afunc, ffunc, source, qcache_max, 1556 vmflag | VMC_XALLOC)); 1557 } 1558 1559 vmem_t * 1560 vmem_create(const char *name, void *base, size_t size, size_t quantum, 1561 vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source, 1562 size_t qcache_max, int vmflag) 1563 { 1564 ASSERT(!(vmflag & (VMC_XALLOC | VMC_XALIGN))); 1565 vmflag &= ~(VMC_XALLOC | VMC_XALIGN); 1566 1567 return (vmem_create_common(name, base, size, quantum, 1568 afunc, ffunc, source, qcache_max, vmflag)); 1569 } 1570 1571 /* 1572 * Destroy arena vmp. 1573 */ 1574 void 1575 vmem_destroy(vmem_t *vmp) 1576 { 1577 vmem_t *cur, **vmpp; 1578 vmem_seg_t *seg0 = &vmp->vm_seg0; 1579 vmem_seg_t *vsp; 1580 size_t leaked; 1581 int i; 1582 1583 mutex_enter(&vmem_list_lock); 1584 vmpp = &vmem_list; 1585 while ((cur = *vmpp) != vmp) 1586 vmpp = &cur->vm_next; 1587 *vmpp = vmp->vm_next; 1588 mutex_exit(&vmem_list_lock); 1589 1590 for (i = 0; i < VMEM_NQCACHE_MAX; i++) 1591 if (vmp->vm_qcache[i]) 1592 kmem_cache_destroy(vmp->vm_qcache[i]); 1593 1594 leaked = vmem_size(vmp, VMEM_ALLOC); 1595 if (leaked != 0) 1596 cmn_err(CE_WARN, "vmem_destroy('%s'): leaked %lu %s", 1597 vmp->vm_name, leaked, (vmp->vm_cflags & VMC_IDENTIFIER) ? 1598 "identifiers" : "bytes"); 1599 1600 if (vmp->vm_hash_table != vmp->vm_hash0) 1601 vmem_free(vmem_hash_arena, vmp->vm_hash_table, 1602 (vmp->vm_hash_mask + 1) * sizeof (void *)); 1603 1604 /* 1605 * Give back the segment structures for anything that's left in the 1606 * arena, e.g. the primary spans and their free segments. 1607 */ 1608 VMEM_DELETE(&vmp->vm_rotor, a); 1609 for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) 1610 vmem_putseg_global(vsp); 1611 1612 while (vmp->vm_nsegfree > 0) 1613 vmem_putseg_global(vmem_getseg(vmp)); 1614 1615 kstat_delete(vmp->vm_ksp); 1616 1617 mutex_destroy(&vmp->vm_lock); 1618 cv_destroy(&vmp->vm_cv); 1619 vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t)); 1620 } 1621 1622 /* 1623 * Resize vmp's hash table to keep the average lookup depth near 1.0. 1624 */ 1625 static void 1626 vmem_hash_rescale(vmem_t *vmp) 1627 { 1628 vmem_seg_t **old_table, **new_table, *vsp; 1629 size_t old_size, new_size, h, nseg; 1630 1631 nseg = (size_t)(vmp->vm_kstat.vk_alloc.value.ui64 - 1632 vmp->vm_kstat.vk_free.value.ui64); 1633 1634 new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2)); 1635 old_size = vmp->vm_hash_mask + 1; 1636 1637 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) 1638 return; 1639 1640 new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *), 1641 VM_NOSLEEP); 1642 if (new_table == NULL) 1643 return; 1644 bzero(new_table, new_size * sizeof (void *)); 1645 1646 mutex_enter(&vmp->vm_lock); 1647 1648 old_size = vmp->vm_hash_mask + 1; 1649 old_table = vmp->vm_hash_table; 1650 1651 vmp->vm_hash_mask = new_size - 1; 1652 vmp->vm_hash_table = new_table; 1653 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); 1654 1655 for (h = 0; h < old_size; h++) { 1656 vsp = old_table[h]; 1657 while (vsp != NULL) { 1658 uintptr_t addr = vsp->vs_start; 1659 vmem_seg_t *next_vsp = vsp->vs_knext; 1660 vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr); 1661 vsp->vs_knext = *hash_bucket; 1662 *hash_bucket = vsp; 1663 vsp = next_vsp; 1664 } 1665 } 1666 1667 mutex_exit(&vmp->vm_lock); 1668 1669 if (old_table != vmp->vm_hash0) 1670 vmem_free(vmem_hash_arena, old_table, 1671 old_size * sizeof (void *)); 1672 } 1673 1674 /* 1675 * Perform periodic maintenance on all vmem arenas. 1676 */ 1677 void 1678 vmem_update(void *dummy) 1679 { 1680 vmem_t *vmp; 1681 1682 mutex_enter(&vmem_list_lock); 1683 for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) { 1684 /* 1685 * If threads are waiting for resources, wake them up 1686 * periodically so they can issue another kmem_reap() 1687 * to reclaim resources cached by the slab allocator. 1688 */ 1689 cv_broadcast(&vmp->vm_cv); 1690 1691 /* 1692 * Rescale the hash table to keep the hash chains short. 1693 */ 1694 vmem_hash_rescale(vmp); 1695 } 1696 mutex_exit(&vmem_list_lock); 1697 1698 (void) timeout(vmem_update, dummy, vmem_update_interval * hz); 1699 } 1700 1701 /* 1702 * Prepare vmem for use. 1703 */ 1704 vmem_t * 1705 vmem_init(const char *heap_name, 1706 void *heap_start, size_t heap_size, size_t heap_quantum, 1707 void *(*heap_alloc)(vmem_t *, size_t, int), 1708 void (*heap_free)(vmem_t *, void *, size_t)) 1709 { 1710 uint32_t id; 1711 int nseg = VMEM_SEG_INITIAL; 1712 vmem_t *heap; 1713 1714 while (--nseg >= 0) 1715 vmem_putseg_global(&vmem_seg0[nseg]); 1716 1717 heap = vmem_create(heap_name, 1718 heap_start, heap_size, heap_quantum, 1719 NULL, NULL, NULL, 0, 1720 VM_SLEEP | VMC_POPULATOR); 1721 1722 vmem_metadata_arena = vmem_create("vmem_metadata", 1723 NULL, 0, heap_quantum, 1724 vmem_alloc, vmem_free, heap, 8 * heap_quantum, 1725 VM_SLEEP | VMC_POPULATOR | VMC_NO_QCACHE); 1726 1727 vmem_seg_arena = vmem_create("vmem_seg", 1728 NULL, 0, heap_quantum, 1729 heap_alloc, heap_free, vmem_metadata_arena, 0, 1730 VM_SLEEP | VMC_POPULATOR); 1731 1732 vmem_hash_arena = vmem_create("vmem_hash", 1733 NULL, 0, 8, 1734 heap_alloc, heap_free, vmem_metadata_arena, 0, 1735 VM_SLEEP); 1736 1737 vmem_vmem_arena = vmem_create("vmem_vmem", 1738 vmem0, sizeof (vmem0), 1, 1739 heap_alloc, heap_free, vmem_metadata_arena, 0, 1740 VM_SLEEP); 1741 1742 for (id = 0; id < vmem_id; id++) 1743 (void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t), 1744 1, 0, 0, &vmem0[id], &vmem0[id + 1], 1745 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1746 1747 return (heap); 1748 } 1749