xref: /titanic_50/usr/src/uts/common/os/urw.c (revision 90f050286227cf4c4f8aa425555d04723d331d48)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /*	  All Rights Reserved   */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/atomic.h>
33 #include <sys/errno.h>
34 #include <sys/stat.h>
35 #include <sys/modctl.h>
36 #include <sys/conf.h>
37 #include <sys/systm.h>
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/cpuvar.h>
41 #include <sys/kmem.h>
42 #include <sys/strsubr.h>
43 #include <sys/sysmacros.h>
44 #include <sys/frame.h>
45 #include <sys/stack.h>
46 #include <sys/proc.h>
47 #include <sys/priv.h>
48 #include <sys/policy.h>
49 #include <sys/ontrap.h>
50 #include <sys/vmsystm.h>
51 #include <sys/prsystm.h>
52 
53 #include <vm/as.h>
54 #include <vm/seg.h>
55 #include <vm/seg_dev.h>
56 #include <vm/seg_vn.h>
57 #include <vm/seg_spt.h>
58 #include <vm/seg_kmem.h>
59 
60 extern struct seg_ops segdev_ops;	/* needs a header file */
61 extern struct seg_ops segspt_shmops;	/* needs a header file */
62 
63 static int
64 page_valid(struct seg *seg, caddr_t addr)
65 {
66 	struct segvn_data *svd;
67 	vnode_t *vp;
68 	vattr_t vattr;
69 
70 	/*
71 	 * Fail if the page doesn't map to a page in the underlying
72 	 * mapped file, if an underlying mapped file exists.
73 	 */
74 	vattr.va_mask = AT_SIZE;
75 	if (seg->s_ops == &segvn_ops &&
76 	    SEGOP_GETVP(seg, addr, &vp) == 0 &&
77 	    vp != NULL && vp->v_type == VREG &&
78 	    VOP_GETATTR(vp, &vattr, 0, CRED()) == 0) {
79 		u_offset_t size = roundup(vattr.va_size, (u_offset_t)PAGESIZE);
80 		u_offset_t offset = SEGOP_GETOFFSET(seg, addr);
81 
82 		if (offset >= size)
83 			return (0);
84 	}
85 
86 	/*
87 	 * Fail if this is an ISM shared segment and the address is
88 	 * not within the real size of the spt segment that backs it.
89 	 */
90 	if (seg->s_ops == &segspt_shmops &&
91 	    addr >= seg->s_base + spt_realsize(seg))
92 		return (0);
93 
94 	/*
95 	 * Fail if the segment is mapped from /dev/null.
96 	 * The key is that the mapping comes from segdev and the
97 	 * type is neither MAP_SHARED nor MAP_PRIVATE.
98 	 */
99 	if (seg->s_ops == &segdev_ops &&
100 	    ((SEGOP_GETTYPE(seg, addr) & (MAP_SHARED | MAP_PRIVATE)) == 0))
101 		return (0);
102 
103 	/*
104 	 * Fail if the page is a MAP_NORESERVE page that has
105 	 * not actually materialized.
106 	 * We cheat by knowing that segvn is the only segment
107 	 * driver that supports MAP_NORESERVE.
108 	 */
109 	if (seg->s_ops == &segvn_ops &&
110 	    (svd = (struct segvn_data *)seg->s_data) != NULL &&
111 	    (svd->vp == NULL || svd->vp->v_type != VREG) &&
112 	    (svd->flags & MAP_NORESERVE)) {
113 		/*
114 		 * Guilty knowledge here.  We know that
115 		 * segvn_incore returns more than just the
116 		 * low-order bit that indicates the page is
117 		 * actually in memory.  If any bits are set,
118 		 * then there is backing store for the page.
119 		 */
120 		char incore = 0;
121 		(void) SEGOP_INCORE(seg, addr, PAGESIZE, &incore);
122 		if (incore == 0)
123 			return (0);
124 	}
125 	return (1);
126 }
127 
128 /*
129  * Map address "addr" in address space "as" into a kernel virtual address.
130  * The memory is guaranteed to be resident and locked down.
131  */
132 static caddr_t
133 mapin(struct as *as, caddr_t addr, int writing)
134 {
135 	page_t *pp;
136 	caddr_t kaddr;
137 	pfn_t pfnum;
138 
139 	/*
140 	 * NB: Because of past mistakes, we have bits being returned
141 	 * by getpfnum that are actually the page type bits of the pte.
142 	 * When the object we are trying to map is a memory page with
143 	 * a page structure everything is ok and we can use the optimal
144 	 * method, ppmapin.  Otherwise, we have to do something special.
145 	 */
146 	pfnum = hat_getpfnum(as->a_hat, addr);
147 	if (pf_is_memory(pfnum)) {
148 		pp = page_numtopp_nolock(pfnum);
149 		if (pp != NULL) {
150 			ASSERT(PAGE_LOCKED(pp));
151 			kaddr = ppmapin(pp, writing ?
152 				(PROT_READ | PROT_WRITE) : PROT_READ,
153 				(caddr_t)-1);
154 			return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
155 		}
156 	}
157 
158 	/*
159 	 * Oh well, we didn't have a page struct for the object we were
160 	 * trying to map in; ppmapin doesn't handle devices, but allocating a
161 	 * heap address allows ppmapout to free virutal space when done.
162 	 */
163 	kaddr = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
164 
165 	hat_devload(kas.a_hat, kaddr, PAGESIZE, pfnum,
166 		writing ? (PROT_READ | PROT_WRITE) : PROT_READ, HAT_LOAD_LOCK);
167 
168 	return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
169 }
170 
171 /*ARGSUSED*/
172 static void
173 mapout(struct as *as, caddr_t addr, caddr_t vaddr, int writing)
174 {
175 	vaddr = (caddr_t)(uintptr_t)((uintptr_t)vaddr & PAGEMASK);
176 	ppmapout(vaddr);
177 }
178 
179 /*
180  * Perform I/O to a given process. This will return EIO if we dectect
181  * corrupt memory and ENXIO if there is no such mapped address in the
182  * user process's address space.
183  */
184 static int
185 urw(proc_t *p, int writing, void *buf, size_t len, uintptr_t a)
186 {
187 	caddr_t addr = (caddr_t)a;
188 	caddr_t page;
189 	caddr_t vaddr;
190 	struct seg *seg;
191 	int error = 0;
192 	int err = 0;
193 	uint_t prot;
194 	uint_t prot_rw = writing ? PROT_WRITE : PROT_READ;
195 	int protchanged;
196 	on_trap_data_t otd;
197 	int retrycnt;
198 	struct as *as = p->p_as;
199 	enum seg_rw rw;
200 
201 	/*
202 	 * Locate segment containing address of interest.
203 	 */
204 	page = (caddr_t)(uintptr_t)((uintptr_t)addr & PAGEMASK);
205 	retrycnt = 0;
206 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
207 retry:
208 	if ((seg = as_segat(as, page)) == NULL ||
209 	    !page_valid(seg, page)) {
210 		AS_LOCK_EXIT(as, &as->a_lock);
211 		return (ENXIO);
212 	}
213 	SEGOP_GETPROT(seg, page, 0, &prot);
214 
215 	protchanged = 0;
216 	if ((prot & prot_rw) == 0) {
217 		protchanged = 1;
218 		err = SEGOP_SETPROT(seg, page, PAGESIZE, prot | prot_rw);
219 
220 		if (err == IE_RETRY) {
221 			protchanged = 0;
222 			ASSERT(retrycnt == 0);
223 			retrycnt++;
224 			goto retry;
225 		}
226 
227 		if (err != 0) {
228 			AS_LOCK_EXIT(as, &as->a_lock);
229 			return (ENXIO);
230 		}
231 	}
232 
233 	/*
234 	 * segvn may do a copy-on-write for F_SOFTLOCK/S_READ case to break
235 	 * sharing to avoid a copy on write of a softlocked page by another
236 	 * thread. But since we locked the address space as a writer no other
237 	 * thread can cause a copy on write. S_READ_NOCOW is passed as the
238 	 * access type to tell segvn that it's ok not to do a copy-on-write
239 	 * for this SOFTLOCK fault.
240 	 */
241 	if (writing)
242 		rw = S_WRITE;
243 	else if (seg->s_ops == &segvn_ops)
244 		rw = S_READ_NOCOW;
245 	else
246 		rw = S_READ;
247 
248 	if (SEGOP_FAULT(as->a_hat, seg, page, PAGESIZE, F_SOFTLOCK, rw)) {
249 		if (protchanged)
250 			(void) SEGOP_SETPROT(seg, page, PAGESIZE, prot);
251 		AS_LOCK_EXIT(as, &as->a_lock);
252 		return (ENXIO);
253 	}
254 	CPU_STATS_ADD_K(vm, softlock, 1);
255 
256 	/*
257 	 * Make sure we're not trying to read or write off the end of the page.
258 	 */
259 	ASSERT(len <= page + PAGESIZE - addr);
260 
261 	/*
262 	 * Map in the locked page, copy to our local buffer,
263 	 * then map the page out and unlock it.
264 	 */
265 	vaddr = mapin(as, addr, writing);
266 
267 	/*
268 	 * Since we are copying memory on behalf of the user process,
269 	 * protect against memory error correction faults.
270 	 */
271 	if (!on_trap(&otd, OT_DATA_EC)) {
272 		if (seg->s_ops == &segdev_ops) {
273 			/*
274 			 * Device memory can behave strangely; invoke
275 			 * a segdev-specific copy operation instead.
276 			 */
277 			if (writing) {
278 				if (segdev_copyto(seg, addr, buf, vaddr, len))
279 					error = ENXIO;
280 			} else {
281 				if (segdev_copyfrom(seg, addr, vaddr, buf, len))
282 					error = ENXIO;
283 			}
284 		} else {
285 			if (writing)
286 				bcopy(buf, vaddr, len);
287 			else
288 				bcopy(vaddr, buf, len);
289 		}
290 	} else {
291 		error = EIO;
292 	}
293 	no_trap();
294 
295 	/*
296 	 * If we're writing to an executable page, we may need to sychronize
297 	 * the I$ with the modifications we made through the D$.
298 	 */
299 	if (writing && (prot & PROT_EXEC))
300 		sync_icache(vaddr, (uint_t)len);
301 
302 	mapout(as, addr, vaddr, writing);
303 
304 	if (rw == S_READ_NOCOW)
305 		rw = S_READ;
306 
307 	(void) SEGOP_FAULT(as->a_hat, seg, page, PAGESIZE, F_SOFTUNLOCK, rw);
308 
309 	if (protchanged)
310 		(void) SEGOP_SETPROT(seg, page, PAGESIZE, prot);
311 
312 	AS_LOCK_EXIT(as, &as->a_lock);
313 
314 	return (error);
315 }
316 
317 int
318 uread(proc_t *p, void *buf, size_t len, uintptr_t a)
319 {
320 	return (urw(p, 0, buf, len, a));
321 }
322 
323 int
324 uwrite(proc_t *p, void *buf, size_t len, uintptr_t a)
325 {
326 	return (urw(p, 1, buf, len, a));
327 }
328