xref: /titanic_50/usr/src/uts/common/os/timers.c (revision 324baee521b7360f7bc4027190c768db9ed6faa7)
1 /*
2  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 #pragma ident	"%Z%%M%	%I%	%E% SMI"
7 
8 /*
9  * Copyright (c) 1982, 1986 Regents of the University of California.
10  * All rights reserved.  The Berkeley software License Agreement
11  * specifies the terms and conditions for redistribution.
12  */
13 
14 #include <sys/param.h>
15 #include <sys/user.h>
16 #include <sys/vnode.h>
17 #include <sys/proc.h>
18 #include <sys/time.h>
19 #include <sys/systm.h>
20 #include <sys/kmem.h>
21 #include <sys/cmn_err.h>
22 #include <sys/cpuvar.h>
23 #include <sys/timer.h>
24 #include <sys/debug.h>
25 #include <sys/sysmacros.h>
26 #include <sys/cyclic.h>
27 
28 static void	realitexpire(void *);
29 static void	realprofexpire(void *);
30 static void	timeval_advance(struct timeval *, struct timeval *);
31 
32 kmutex_t tod_lock;	/* protects time-of-day stuff */
33 
34 /*
35  * Constant to define the minimum interval value of the ITIMER_REALPROF timer.
36  * Value is in microseconds; defaults to 500 usecs.  Setting this value
37  * significantly lower may allow for denial-of-service attacks.
38  */
39 int itimer_realprof_minimum = 500;
40 
41 /*
42  * macro to compare a timeval to a timestruc
43  */
44 
45 #define	TVTSCMP(tvp, tsp, cmp) \
46 	/* CSTYLED */ \
47 	((tvp)->tv_sec cmp (tsp)->tv_sec || \
48 	((tvp)->tv_sec == (tsp)->tv_sec && \
49 	/* CSTYLED */ \
50 	(tvp)->tv_usec * 1000 cmp (tsp)->tv_nsec))
51 
52 /*
53  * Time of day and interval timer support.
54  *
55  * These routines provide the kernel entry points to get and set
56  * the time-of-day and per-process interval timers.  Subroutines
57  * here provide support for adding and subtracting timeval structures
58  * and decrementing interval timers, optionally reloading the interval
59  * timers when they expire.
60  */
61 
62 /*
63  * SunOS function to generate monotonically increasing time values.
64  */
65 void
66 uniqtime(struct timeval *tv)
67 {
68 	static struct timeval last;
69 	timestruc_t ts;
70 	time_t sec;
71 	int usec, nsec;
72 
73 	/*
74 	 * protect modification of last
75 	 */
76 	mutex_enter(&tod_lock);
77 	gethrestime(&ts);
78 
79 	/*
80 	 * Fast algorithm to convert nsec to usec -- see hrt2ts()
81 	 * in common/os/timers.c for a full description.
82 	 */
83 	nsec = ts.tv_nsec;
84 	usec = nsec + (nsec >> 2);
85 	usec = nsec + (usec >> 1);
86 	usec = nsec + (usec >> 2);
87 	usec = nsec + (usec >> 4);
88 	usec = nsec - (usec >> 3);
89 	usec = nsec + (usec >> 2);
90 	usec = nsec + (usec >> 3);
91 	usec = nsec + (usec >> 4);
92 	usec = nsec + (usec >> 1);
93 	usec = nsec + (usec >> 6);
94 	usec = usec >> 10;
95 	sec = ts.tv_sec;
96 
97 	/*
98 	 * Try to keep timestamps unique, but don't be obsessive about
99 	 * it in the face of large differences.
100 	 */
101 	if ((sec <= last.tv_sec) &&		/* same or lower seconds, and */
102 	    ((sec != last.tv_sec) ||		/* either different second or */
103 	    (usec <= last.tv_usec)) &&		/* lower microsecond, and */
104 	    ((last.tv_sec - sec) <= 5)) {	/* not way back in time */
105 		sec = last.tv_sec;
106 		usec = last.tv_usec + 1;
107 		if (usec >= MICROSEC) {
108 			usec -= MICROSEC;
109 			sec++;
110 		}
111 	}
112 	last.tv_sec = sec;
113 	last.tv_usec = usec;
114 	mutex_exit(&tod_lock);
115 
116 	tv->tv_sec = sec;
117 	tv->tv_usec = usec;
118 }
119 
120 /*
121  * Timestamps are exported from the kernel in several places.
122  * Such timestamps are commonly used for either uniqueness or for
123  * sequencing - truncation to 32-bits is fine for uniqueness,
124  * but sequencing is going to take more work as we get closer to 2038!
125  */
126 void
127 uniqtime32(struct timeval32 *tv32p)
128 {
129 	struct timeval tv;
130 
131 	uniqtime(&tv);
132 	TIMEVAL_TO_TIMEVAL32(tv32p, &tv);
133 }
134 
135 int
136 gettimeofday(struct timeval *tp)
137 {
138 	struct timeval atv;
139 
140 	if (tp) {
141 		uniqtime(&atv);
142 		if (get_udatamodel() == DATAMODEL_NATIVE) {
143 			if (copyout(&atv, tp, sizeof (atv)))
144 				return (set_errno(EFAULT));
145 		} else {
146 			struct timeval32 tv32;
147 
148 			if (TIMEVAL_OVERFLOW(&atv))
149 				return (set_errno(EOVERFLOW));
150 			TIMEVAL_TO_TIMEVAL32(&tv32, &atv);
151 
152 			if (copyout(&tv32, tp, sizeof (tv32)))
153 				return (set_errno(EFAULT));
154 		}
155 	}
156 	return (0);
157 }
158 
159 int
160 getitimer(uint_t which, struct itimerval *itv)
161 {
162 	int error;
163 
164 	if (get_udatamodel() == DATAMODEL_NATIVE)
165 		error = xgetitimer(which, itv, 0);
166 	else {
167 		struct itimerval kitv;
168 
169 		if ((error = xgetitimer(which, &kitv, 1)) == 0) {
170 			if (ITIMERVAL_OVERFLOW(&kitv)) {
171 				error = EOVERFLOW;
172 			} else {
173 				struct itimerval32 itv32;
174 
175 				ITIMERVAL_TO_ITIMERVAL32(&itv32, &kitv);
176 				if (copyout(&itv32, itv, sizeof (itv32)) != 0)
177 					error = EFAULT;
178 			}
179 		}
180 	}
181 
182 	return (error ? (set_errno(error)) : 0);
183 }
184 
185 int
186 xgetitimer(uint_t which, struct itimerval *itv, int iskaddr)
187 {
188 	struct proc *p = curproc;
189 	struct timeval now;
190 	struct itimerval aitv;
191 	hrtime_t ts, first, interval, remain;
192 
193 	mutex_enter(&p->p_lock);
194 
195 	switch (which) {
196 	case ITIMER_VIRTUAL:
197 	case ITIMER_PROF:
198 		aitv = ttolwp(curthread)->lwp_timer[which];
199 		break;
200 
201 	case ITIMER_REAL:
202 		uniqtime(&now);
203 		aitv = p->p_realitimer;
204 
205 		if (timerisset(&aitv.it_value)) {
206 			/*CSTYLED*/
207 			if (timercmp(&aitv.it_value, &now, <)) {
208 				timerclear(&aitv.it_value);
209 			} else {
210 				timevalsub(&aitv.it_value, &now);
211 			}
212 		}
213 		break;
214 
215 	case ITIMER_REALPROF:
216 		if (curproc->p_rprof_cyclic == CYCLIC_NONE) {
217 			bzero(&aitv, sizeof (aitv));
218 			break;
219 		}
220 
221 		aitv = curproc->p_rprof_timer;
222 
223 		first = tv2hrt(&aitv.it_value);
224 		interval = tv2hrt(&aitv.it_interval);
225 
226 		if ((ts = gethrtime()) < first) {
227 			/*
228 			 * We haven't gone off for the first time; the time
229 			 * remaining is simply the first time we will go
230 			 * off minus the current time.
231 			 */
232 			remain = first - ts;
233 		} else {
234 			if (interval == 0) {
235 				/*
236 				 * This was set as a one-shot, and we've
237 				 * already gone off; there is no time
238 				 * remaining.
239 				 */
240 				remain = 0;
241 			} else {
242 				/*
243 				 * We have a non-zero interval; we need to
244 				 * determine how far we are into the current
245 				 * interval, and subtract that from the
246 				 * interval to determine the time remaining.
247 				 */
248 				remain = interval - ((ts - first) % interval);
249 			}
250 		}
251 
252 		hrt2tv(remain, &aitv.it_value);
253 		break;
254 
255 	default:
256 		mutex_exit(&p->p_lock);
257 		return (EINVAL);
258 	}
259 
260 	mutex_exit(&p->p_lock);
261 
262 	if (iskaddr) {
263 		bcopy(&aitv, itv, sizeof (*itv));
264 	} else {
265 		ASSERT(get_udatamodel() == DATAMODEL_NATIVE);
266 		if (copyout(&aitv, itv, sizeof (*itv)))
267 			return (EFAULT);
268 	}
269 
270 	return (0);
271 }
272 
273 
274 int
275 setitimer(uint_t which, struct itimerval *itv, struct itimerval *oitv)
276 {
277 	int error;
278 
279 	if (oitv != NULL)
280 		if ((error = getitimer(which, oitv)) != 0)
281 			return (error);
282 
283 	if (itv == NULL)
284 		return (0);
285 
286 	if (get_udatamodel() == DATAMODEL_NATIVE)
287 		error = xsetitimer(which, itv, 0);
288 	else {
289 		struct itimerval32 itv32;
290 		struct itimerval kitv;
291 
292 		if (copyin(itv, &itv32, sizeof (itv32)))
293 			error = EFAULT;
294 		ITIMERVAL32_TO_ITIMERVAL(&kitv, &itv32);
295 		error = xsetitimer(which, &kitv, 1);
296 	}
297 
298 	return (error ? (set_errno(error)) : 0);
299 }
300 
301 int
302 xsetitimer(uint_t which, struct itimerval *itv, int iskaddr)
303 {
304 	struct itimerval aitv;
305 	struct timeval now;
306 	struct proc *p = curproc;
307 	kthread_t *t;
308 	timeout_id_t tmp_id;
309 	cyc_handler_t hdlr;
310 	cyc_time_t when;
311 	cyclic_id_t cyclic;
312 	hrtime_t ts;
313 	int min;
314 
315 	if (itv == NULL)
316 		return (0);
317 
318 	if (iskaddr) {
319 		bcopy(itv, &aitv, sizeof (aitv));
320 	} else {
321 		ASSERT(get_udatamodel() == DATAMODEL_NATIVE);
322 		if (copyin(itv, &aitv, sizeof (aitv)))
323 			return (EFAULT);
324 	}
325 
326 	if (which == ITIMER_REALPROF) {
327 		min = MAX((int)(cyclic_getres() / (NANOSEC / MICROSEC)),
328 		    itimer_realprof_minimum);
329 	} else {
330 		min = usec_per_tick;
331 	}
332 
333 	if (itimerfix(&aitv.it_value, min) ||
334 	    (itimerfix(&aitv.it_interval, min) && timerisset(&aitv.it_value)))
335 		return (EINVAL);
336 
337 	mutex_enter(&p->p_lock);
338 	switch (which) {
339 	case ITIMER_REAL:
340 		/*
341 		 * The SITBUSY flag prevents conflicts with multiple
342 		 * threads attempting to perform setitimer(ITIMER_REAL)
343 		 * at the same time, even when we drop p->p_lock below.
344 		 * Any blocked thread returns successfully because the
345 		 * effect is the same as if it got here first, finished,
346 		 * and the other thread then came through and destroyed
347 		 * what it did.  We are just protecting the system from
348 		 * malfunctioning due to the race condition.
349 		 */
350 		if (p->p_flag & SITBUSY) {
351 			mutex_exit(&p->p_lock);
352 			return (0);
353 		}
354 		p->p_flag |= SITBUSY;
355 		while ((tmp_id = p->p_itimerid) != 0) {
356 			/*
357 			 * Avoid deadlock in callout_delete (called from
358 			 * untimeout) which may go to sleep (while holding
359 			 * p_lock). Drop p_lock and re-acquire it after
360 			 * untimeout returns. Need to clear p_itimerid
361 			 * while holding p_lock.
362 			 */
363 			p->p_itimerid = 0;
364 			mutex_exit(&p->p_lock);
365 			(void) untimeout(tmp_id);
366 			mutex_enter(&p->p_lock);
367 		}
368 		if (timerisset(&aitv.it_value)) {
369 			uniqtime(&now);
370 			timevaladd(&aitv.it_value, &now);
371 			p->p_itimerid = realtime_timeout(realitexpire,
372 			    p, hzto(&aitv.it_value));
373 		}
374 		p->p_realitimer = aitv;
375 		p->p_flag &= ~SITBUSY;
376 		break;
377 
378 	case ITIMER_REALPROF:
379 		cyclic = p->p_rprof_cyclic;
380 		p->p_rprof_cyclic = CYCLIC_NONE;
381 
382 		mutex_exit(&p->p_lock);
383 
384 		/*
385 		 * We're now going to acquire cpu_lock, remove the old cyclic
386 		 * if necessary, and add our new cyclic.
387 		 */
388 		mutex_enter(&cpu_lock);
389 
390 		if (cyclic != CYCLIC_NONE)
391 			cyclic_remove(cyclic);
392 
393 		if (!timerisset(&aitv.it_value)) {
394 			/*
395 			 * If we were passed a value of 0, we're done.
396 			 */
397 			mutex_exit(&cpu_lock);
398 			return (0);
399 		}
400 
401 		hdlr.cyh_func = realprofexpire;
402 		hdlr.cyh_arg = p;
403 		hdlr.cyh_level = CY_LOW_LEVEL;
404 
405 		when.cyt_when = (ts = gethrtime() + tv2hrt(&aitv.it_value));
406 		when.cyt_interval = tv2hrt(&aitv.it_interval);
407 
408 		if (when.cyt_interval == 0) {
409 			/*
410 			 * Using the same logic as for CLOCK_HIGHRES timers, we
411 			 * set the interval to be INT64_MAX - when.cyt_when to
412 			 * effect a one-shot; see the comment in clock_highres.c
413 			 * for more details on why this works.
414 			 */
415 			when.cyt_interval = INT64_MAX - when.cyt_when;
416 		}
417 
418 		cyclic = cyclic_add(&hdlr, &when);
419 
420 		mutex_exit(&cpu_lock);
421 
422 		/*
423 		 * We have now successfully added the cyclic.  Reacquire
424 		 * p_lock, and see if anyone has snuck in.
425 		 */
426 		mutex_enter(&p->p_lock);
427 
428 		if (p->p_rprof_cyclic != CYCLIC_NONE) {
429 			/*
430 			 * We're racing with another thread establishing an
431 			 * ITIMER_REALPROF interval timer.  We'll let the other
432 			 * thread win (this is a race at the application level,
433 			 * so letting the other thread win is acceptable).
434 			 */
435 			mutex_exit(&p->p_lock);
436 			mutex_enter(&cpu_lock);
437 			cyclic_remove(cyclic);
438 			mutex_exit(&cpu_lock);
439 
440 			return (0);
441 		}
442 
443 		/*
444 		 * Success.  Set our tracking variables in the proc structure,
445 		 * cancel any outstanding ITIMER_PROF, and allocate the
446 		 * per-thread SIGPROF buffers, if possible.
447 		 */
448 		hrt2tv(ts, &aitv.it_value);
449 		p->p_rprof_timer = aitv;
450 		p->p_rprof_cyclic = cyclic;
451 
452 		t = p->p_tlist;
453 		do {
454 			struct itimerval *itvp;
455 
456 			itvp = &ttolwp(t)->lwp_timer[ITIMER_PROF];
457 			timerclear(&itvp->it_interval);
458 			timerclear(&itvp->it_value);
459 
460 			if (t->t_rprof != NULL)
461 				continue;
462 
463 			t->t_rprof =
464 			    kmem_zalloc(sizeof (struct rprof), KM_NOSLEEP);
465 			aston(t);
466 		} while ((t = t->t_forw) != p->p_tlist);
467 
468 		break;
469 
470 	case ITIMER_VIRTUAL:
471 		ttolwp(curthread)->lwp_timer[ITIMER_VIRTUAL] = aitv;
472 		break;
473 
474 	case ITIMER_PROF:
475 		if (p->p_rprof_cyclic != CYCLIC_NONE) {
476 			/*
477 			 * Silently ignore ITIMER_PROF if ITIMER_REALPROF
478 			 * is in effect.
479 			 */
480 			break;
481 		}
482 
483 		ttolwp(curthread)->lwp_timer[ITIMER_PROF] = aitv;
484 		break;
485 
486 	default:
487 		mutex_exit(&p->p_lock);
488 		return (EINVAL);
489 	}
490 	mutex_exit(&p->p_lock);
491 	return (0);
492 }
493 
494 /*
495  * Real interval timer expired:
496  * send process whose timer expired an alarm signal.
497  * If time is not set up to reload, then just return.
498  * Else compute next time timer should go off which is > current time.
499  * This is where delay in processing this timeout causes multiple
500  * SIGALRM calls to be compressed into one.
501  */
502 static void
503 realitexpire(void *arg)
504 {
505 	struct proc *p = arg;
506 	struct timeval *valp = &p->p_realitimer.it_value;
507 	struct timeval *intervalp = &p->p_realitimer.it_interval;
508 #if !defined(_LP64)
509 	clock_t	ticks;
510 #endif
511 
512 	mutex_enter(&p->p_lock);
513 #if !defined(_LP64)
514 	if ((ticks = hzto(valp)) > 1) {
515 		/*
516 		 * If we are executing before we were meant to, it must be
517 		 * because of an overflow in a prior hzto() calculation.
518 		 * In this case, we want to go to sleep for the recalculated
519 		 * number of ticks. For the special meaning of the value "1"
520 		 * see comment in timespectohz().
521 		 */
522 		p->p_itimerid = realtime_timeout(realitexpire, p, ticks);
523 		mutex_exit(&p->p_lock);
524 		return;
525 	}
526 #endif
527 	sigtoproc(p, NULL, SIGALRM);
528 	if (!timerisset(intervalp)) {
529 		timerclear(valp);
530 		p->p_itimerid = 0;
531 	} else {
532 		/* advance timer value past current time */
533 		timeval_advance(valp, intervalp);
534 		p->p_itimerid = realtime_timeout(realitexpire, p, hzto(valp));
535 	}
536 	mutex_exit(&p->p_lock);
537 }
538 
539 /*
540  * Real time profiling interval timer expired:
541  * Increment microstate counters for each lwp in the process
542  * and ensure that running lwps are kicked into the kernel.
543  * If time is not set up to reload, then just return.
544  * Else compute next time timer should go off which is > current time,
545  * as above.
546  */
547 static void
548 realprofexpire(void *arg)
549 {
550 	struct proc *p = arg;
551 	kthread_t *t;
552 
553 	mutex_enter(&p->p_lock);
554 	if ((t = p->p_tlist) == NULL) {
555 		mutex_exit(&p->p_lock);
556 		return;
557 	}
558 	do {
559 		int mstate;
560 
561 		/*
562 		 * Attempt to allocate the SIGPROF buffer, but don't sleep.
563 		 */
564 		if (t->t_rprof == NULL)
565 			t->t_rprof = kmem_zalloc(sizeof (struct rprof),
566 			    KM_NOSLEEP);
567 		if (t->t_rprof == NULL)
568 			continue;
569 
570 		thread_lock(t);
571 		switch (t->t_state) {
572 		case TS_SLEEP:
573 			/*
574 			 * Don't touch the lwp is it is swapped out.
575 			 */
576 			if (!(t->t_schedflag & TS_LOAD)) {
577 				mstate = LMS_SLEEP;
578 				break;
579 			}
580 			switch (mstate = ttolwp(t)->lwp_mstate.ms_prev) {
581 			case LMS_TFAULT:
582 			case LMS_DFAULT:
583 			case LMS_KFAULT:
584 			case LMS_USER_LOCK:
585 				break;
586 			default:
587 				mstate = LMS_SLEEP;
588 				break;
589 			}
590 			break;
591 		case TS_RUN:
592 		case TS_WAIT:
593 			mstate = LMS_WAIT_CPU;
594 			break;
595 		case TS_ONPROC:
596 			switch (mstate = t->t_mstate) {
597 			case LMS_USER:
598 			case LMS_SYSTEM:
599 			case LMS_TRAP:
600 				break;
601 			default:
602 				mstate = LMS_SYSTEM;
603 				break;
604 			}
605 			break;
606 		default:
607 			mstate = t->t_mstate;
608 			break;
609 		}
610 		t->t_rprof->rp_anystate = 1;
611 		t->t_rprof->rp_state[mstate]++;
612 		aston(t);
613 		/*
614 		 * force the thread into the kernel
615 		 * if it is not already there.
616 		 */
617 		if (t->t_state == TS_ONPROC && t->t_cpu != CPU)
618 			poke_cpu(t->t_cpu->cpu_id);
619 		thread_unlock(t);
620 	} while ((t = t->t_forw) != p->p_tlist);
621 
622 	mutex_exit(&p->p_lock);
623 }
624 
625 /*
626  * Advances timer value past the current time of day.  See the detailed
627  * comment for this logic in realitsexpire(), above.
628  */
629 static void
630 timeval_advance(struct timeval *valp, struct timeval *intervalp)
631 {
632 	int cnt2nth;
633 	struct timeval interval2nth;
634 
635 	for (;;) {
636 		interval2nth = *intervalp;
637 		for (cnt2nth = 0; ; cnt2nth++) {
638 			timevaladd(valp, &interval2nth);
639 			/*CSTYLED*/
640 			if (TVTSCMP(valp, &hrestime, >))
641 				break;
642 			timevaladd(&interval2nth, &interval2nth);
643 		}
644 		if (cnt2nth == 0)
645 			break;
646 		timevalsub(valp, &interval2nth);
647 	}
648 }
649 
650 /*
651  * Check that a proposed value to load into the .it_value or .it_interval
652  * part of an interval timer is acceptable, and set it to at least a
653  * specified minimal value.
654  */
655 int
656 itimerfix(struct timeval *tv, int minimum)
657 {
658 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
659 	    tv->tv_usec < 0 || tv->tv_usec >= MICROSEC)
660 		return (EINVAL);
661 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < minimum)
662 		tv->tv_usec = minimum;
663 	return (0);
664 }
665 
666 /*
667  * Same as itimerfix, except a) it takes a timespec instead of a timeval and
668  * b) it doesn't truncate based on timeout granularity; consumers of this
669  * interface (e.g. timer_settime()) depend on the passed timespec not being
670  * modified implicitly.
671  */
672 int
673 itimerspecfix(timespec_t *tv)
674 {
675 	if (tv->tv_sec < 0 || tv->tv_nsec < 0 || tv->tv_nsec >= NANOSEC)
676 		return (EINVAL);
677 	return (0);
678 }
679 
680 /*
681  * Decrement an interval timer by a specified number
682  * of microseconds, which must be less than a second,
683  * i.e. < 1000000.  If the timer expires, then reload
684  * it.  In this case, carry over (usec - old value) to
685  * reducint the value reloaded into the timer so that
686  * the timer does not drift.  This routine assumes
687  * that it is called in a context where the timers
688  * on which it is operating cannot change in value.
689  */
690 int
691 itimerdecr(struct itimerval *itp, int usec)
692 {
693 	if (itp->it_value.tv_usec < usec) {
694 		if (itp->it_value.tv_sec == 0) {
695 			/* expired, and already in next interval */
696 			usec -= itp->it_value.tv_usec;
697 			goto expire;
698 		}
699 		itp->it_value.tv_usec += MICROSEC;
700 		itp->it_value.tv_sec--;
701 	}
702 	itp->it_value.tv_usec -= usec;
703 	usec = 0;
704 	if (timerisset(&itp->it_value))
705 		return (1);
706 	/* expired, exactly at end of interval */
707 expire:
708 	if (timerisset(&itp->it_interval)) {
709 		itp->it_value = itp->it_interval;
710 		itp->it_value.tv_usec -= usec;
711 		if (itp->it_value.tv_usec < 0) {
712 			itp->it_value.tv_usec += MICROSEC;
713 			itp->it_value.tv_sec--;
714 		}
715 	} else
716 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
717 	return (0);
718 }
719 
720 /*
721  * Add and subtract routines for timevals.
722  * N.B.: subtract routine doesn't deal with
723  * results which are before the beginning,
724  * it just gets very confused in this case.
725  * Caveat emptor.
726  */
727 void
728 timevaladd(struct timeval *t1, struct timeval *t2)
729 {
730 	t1->tv_sec += t2->tv_sec;
731 	t1->tv_usec += t2->tv_usec;
732 	timevalfix(t1);
733 }
734 
735 void
736 timevalsub(struct timeval *t1, struct timeval *t2)
737 {
738 	t1->tv_sec -= t2->tv_sec;
739 	t1->tv_usec -= t2->tv_usec;
740 	timevalfix(t1);
741 }
742 
743 void
744 timevalfix(struct timeval *t1)
745 {
746 	if (t1->tv_usec < 0) {
747 		t1->tv_sec--;
748 		t1->tv_usec += MICROSEC;
749 	}
750 	if (t1->tv_usec >= MICROSEC) {
751 		t1->tv_sec++;
752 		t1->tv_usec -= MICROSEC;
753 	}
754 }
755 
756 /*
757  * Same as the routines above. These routines take a timespec instead
758  * of a timeval.
759  */
760 void
761 timespecadd(timespec_t *t1, timespec_t *t2)
762 {
763 	t1->tv_sec += t2->tv_sec;
764 	t1->tv_nsec += t2->tv_nsec;
765 	timespecfix(t1);
766 }
767 
768 void
769 timespecsub(timespec_t *t1, timespec_t *t2)
770 {
771 	t1->tv_sec -= t2->tv_sec;
772 	t1->tv_nsec -= t2->tv_nsec;
773 	timespecfix(t1);
774 }
775 
776 void
777 timespecfix(timespec_t *t1)
778 {
779 	if (t1->tv_nsec < 0) {
780 		t1->tv_sec--;
781 		t1->tv_nsec += NANOSEC;
782 	} else {
783 		if (t1->tv_nsec >= NANOSEC) {
784 			t1->tv_sec++;
785 			t1->tv_nsec -= NANOSEC;
786 		}
787 	}
788 }
789 
790 /*
791  * Compute number of hz until specified time.
792  * Used to compute third argument to timeout() from an absolute time.
793  */
794 clock_t
795 hzto(struct timeval *tv)
796 {
797 	timespec_t ts, now;
798 
799 	ts.tv_sec = tv->tv_sec;
800 	ts.tv_nsec = tv->tv_usec * 1000;
801 	gethrestime_lasttick(&now);
802 
803 	return (timespectohz(&ts, now));
804 }
805 
806 /*
807  * Compute number of hz until specified time for a given timespec value.
808  * Used to compute third argument to timeout() from an absolute time.
809  */
810 clock_t
811 timespectohz(timespec_t *tv, timespec_t now)
812 {
813 	clock_t	ticks;
814 	time_t	sec;
815 	int	nsec;
816 
817 	/*
818 	 * Compute number of ticks we will see between now and
819 	 * the target time; returns "1" if the destination time
820 	 * is before the next tick, so we always get some delay,
821 	 * and returns LONG_MAX ticks if we would overflow.
822 	 */
823 	sec = tv->tv_sec - now.tv_sec;
824 	nsec = tv->tv_nsec - now.tv_nsec + nsec_per_tick - 1;
825 
826 	if (nsec < 0) {
827 		sec--;
828 		nsec += NANOSEC;
829 	} else if (nsec >= NANOSEC) {
830 		sec++;
831 		nsec -= NANOSEC;
832 	}
833 
834 	ticks = NSEC_TO_TICK(nsec);
835 
836 	/*
837 	 * Compute ticks, accounting for negative and overflow as above.
838 	 * Overflow protection kicks in at about 70 weeks for hz=50
839 	 * and at about 35 weeks for hz=100. (Rather longer for the 64-bit
840 	 * kernel :-)
841 	 */
842 	if (sec < 0 || (sec == 0 && ticks < 1))
843 		ticks = 1;			/* protect vs nonpositive */
844 	else if (sec > (LONG_MAX - ticks) / hz)
845 		ticks = LONG_MAX;		/* protect vs overflow */
846 	else
847 		ticks += sec * hz;		/* common case */
848 
849 	return (ticks);
850 }
851 
852 /*
853  * hrt2ts(): convert from hrtime_t to timestruc_t.
854  *
855  * All this routine really does is:
856  *
857  *	tsp->sec  = hrt / NANOSEC;
858  *	tsp->nsec = hrt % NANOSEC;
859  *
860  * The black magic below avoids doing a 64-bit by 32-bit integer divide,
861  * which is quite expensive.  There's actually much more going on here than
862  * it might first appear -- don't try this at home.
863  *
864  * For the adventuresome, here's an explanation of how it works.
865  *
866  * Multiplication by a fixed constant is easy -- you just do the appropriate
867  * shifts and adds.  For example, to multiply by 10, we observe that
868  *
869  *	x * 10	= x * (8 + 2)
870  *		= (x * 8) + (x * 2)
871  *		= (x << 3) + (x << 1).
872  *
873  * In general, you can read the algorithm right off the bits: the number 10
874  * is 1010 in binary; bits 1 and 3 are ones, so x * 10 = (x << 1) + (x << 3).
875  *
876  * Sometimes you can do better.  For example, 15 is 1111 binary, so the normal
877  * shift/add computation is x * 15 = (x << 0) + (x << 1) + (x << 2) + (x << 3).
878  * But, it's cheaper if you capitalize on the fact that you have a run of ones:
879  * 1111 = 10000 - 1, hence x * 15 = (x << 4) - (x << 0).  [You would never
880  * actually perform the operation << 0, since it's a no-op; I'm just writing
881  * it that way for clarity.]
882  *
883  * The other way you can win is if you get lucky with the prime factorization
884  * of your constant.  The number 1,000,000,000, which we have to multiply
885  * by below, is a good example.  One billion is 111011100110101100101000000000
886  * in binary.  If you apply the bit-grouping trick, it doesn't buy you very
887  * much, because it's only a win for groups of three or more equal bits:
888  *
889  * 111011100110101100101000000000 = 1000000000000000000000000000000
890  *				  -  000100011001010011011000000000
891  *
892  * Thus, instead of the 13 shift/add pairs (26 operations) implied by the LHS,
893  * we have reduced this to 10 shift/add pairs (20 operations) on the RHS.
894  * This is better, but not great.
895  *
896  * However, we can factor 1,000,000,000 = 2^9 * 5^9 = 2^9 * 125 * 125 * 125,
897  * and multiply by each factor.  Multiplication by 125 is particularly easy,
898  * since 128 is nearby: x * 125 = (x << 7) - x - x - x, which is just four
899  * operations.  So, to multiply by 1,000,000,000, we perform three multipli-
900  * cations by 125, then << 9, a total of only 3 * 4 + 1 = 13 operations.
901  * This is the algorithm we actually use in both hrt2ts() and ts2hrt().
902  *
903  * Division is harder; there is no equivalent of the simple shift-add algorithm
904  * we used for multiplication.  However, we can convert the division problem
905  * into a multiplication problem by pre-computing the binary representation
906  * of the reciprocal of the divisor.  For the case of interest, we have
907  *
908  *	1 / 1,000,000,000 = 1.0001001011100000101111101000001B-30,
909  *
910  * to 32 bits of precision.  (The notation B-30 means "* 2^-30", just like
911  * E-18 means "* 10^-18".)
912  *
913  * So, to compute x / 1,000,000,000, we just multiply x by the 32-bit
914  * integer 10001001011100000101111101000001, then normalize (shift) the
915  * result.  This constant has several large bits runs, so the multiply
916  * is relatively cheap:
917  *
918  *	10001001011100000101111101000001 = 10001001100000000110000001000001
919  *					 - 00000000000100000000000100000000
920  *
921  * Again, you can just read the algorithm right off the bits:
922  *
923  *			sec = hrt;
924  *			sec += (hrt << 6);
925  *			sec -= (hrt << 8);
926  *			sec += (hrt << 13);
927  *			sec += (hrt << 14);
928  *			sec -= (hrt << 20);
929  *			sec += (hrt << 23);
930  *			sec += (hrt << 24);
931  *			sec += (hrt << 27);
932  *			sec += (hrt << 31);
933  *			sec >>= (32 + 30);
934  *
935  * Voila!  The only problem is, since hrt is 64 bits, we need to use 96-bit
936  * arithmetic to perform this calculation.  That's a waste, because ultimately
937  * we only need the highest 32 bits of the result.
938  *
939  * The first thing we do is to realize that we don't need to use all of hrt
940  * in the calculation.  The lowest 30 bits can contribute at most 1 to the
941  * quotient (2^30 / 1,000,000,000 = 1.07...), so we'll deal with them later.
942  * The highest 2 bits have to be zero, or hrt won't fit in a timestruc_t.
943  * Thus, the only bits of hrt that matter for division are bits 30..61.
944  * These 32 bits are just the lower-order word of (hrt >> 30).  This brings
945  * us down from 96-bit math to 64-bit math, and our algorithm becomes:
946  *
947  *			tmp = (uint32_t) (hrt >> 30);
948  *			sec = tmp;
949  *			sec += (tmp << 6);
950  *			sec -= (tmp << 8);
951  *			sec += (tmp << 13);
952  *			sec += (tmp << 14);
953  *			sec -= (tmp << 20);
954  *			sec += (tmp << 23);
955  *			sec += (tmp << 24);
956  *			sec += (tmp << 27);
957  *			sec += (tmp << 31);
958  *			sec >>= 32;
959  *
960  * Next, we're going to reduce this 64-bit computation to a 32-bit
961  * computation.  We begin by rewriting the above algorithm to use relative
962  * shifts instead of absolute shifts.  That is, instead of computing
963  * tmp << 6, tmp << 8, tmp << 13, etc, we'll just shift incrementally:
964  * tmp <<= 6, tmp <<= 2 (== 8 - 6), tmp <<= 5 (== 13 - 8), etc:
965  *
966  *			tmp = (uint32_t) (hrt >> 30);
967  *			sec = tmp;
968  *			tmp <<= 6; sec += tmp;
969  *			tmp <<= 2; sec -= tmp;
970  *			tmp <<= 5; sec += tmp;
971  *			tmp <<= 1; sec += tmp;
972  *			tmp <<= 6; sec -= tmp;
973  *			tmp <<= 3; sec += tmp;
974  *			tmp <<= 1; sec += tmp;
975  *			tmp <<= 3; sec += tmp;
976  *			tmp <<= 4; sec += tmp;
977  *			sec >>= 32;
978  *
979  * Now for the final step.  Instead of throwing away the low 32 bits at
980  * the end, we can throw them away as we go, only keeping the high 32 bits
981  * of the product at each step.  So, for example, where we now have
982  *
983  *			tmp <<= 6; sec = sec + tmp;
984  * we will instead have
985  *			tmp <<= 6; sec = (sec + tmp) >> 6;
986  * which is equivalent to
987  *			sec = (sec >> 6) + tmp;
988  *
989  * The final shift ("sec >>= 32") goes away.
990  *
991  * All we're really doing here is long multiplication, just like we learned in
992  * grade school, except that at each step, we only look at the leftmost 32
993  * columns.  The cumulative error is, at most, the sum of all the bits we
994  * throw away, which is 2^-32 + 2^-31 + ... + 2^-2 + 2^-1 == 1 - 2^-32.
995  * Thus, the final result ("sec") is correct to +/- 1.
996  *
997  * It turns out to be important to keep "sec" positive at each step, because
998  * we don't want to have to explicitly extend the sign bit.  Therefore,
999  * starting with the last line of code above, each line that would have read
1000  * "sec = (sec >> n) - tmp" must be changed to "sec = tmp - (sec >> n)", and
1001  * the operators (+ or -) in all previous lines must be toggled accordingly.
1002  * Thus, we end up with:
1003  *
1004  *			tmp = (uint32_t) (hrt >> 30);
1005  *			sec = tmp + (sec >> 6);
1006  *			sec = tmp - (tmp >> 2);
1007  *			sec = tmp - (sec >> 5);
1008  *			sec = tmp + (sec >> 1);
1009  *			sec = tmp - (sec >> 6);
1010  *			sec = tmp - (sec >> 3);
1011  *			sec = tmp + (sec >> 1);
1012  *			sec = tmp + (sec >> 3);
1013  *			sec = tmp + (sec >> 4);
1014  *
1015  * This yields a value for sec that is accurate to +1/-1, so we have two
1016  * cases to deal with.  The mysterious-looking "+ 7" in the code below biases
1017  * the rounding toward zero, so that sec is always less than or equal to
1018  * the correct value.  With this modified code, sec is accurate to +0/-2, with
1019  * the -2 case being very rare in practice.  With this change, we only have to
1020  * deal with one case (sec too small) in the cleanup code.
1021  *
1022  * The other modification we make is to delete the second line above
1023  * ("sec = tmp + (sec >> 6);"), since it only has an effect when bit 31 is
1024  * set, and the cleanup code can handle that rare case.  This reduces the
1025  * *guaranteed* accuracy of sec to +0/-3, but speeds up the common cases.
1026  *
1027  * Finally, we compute nsec = hrt - (sec * 1,000,000,000).  nsec will always
1028  * be positive (since sec is never too large), and will at most be equal to
1029  * the error in sec (times 1,000,000,000) plus the low-order 30 bits of hrt.
1030  * Thus, nsec < 3 * 1,000,000,000 + 2^30, which is less than 2^32, so we can
1031  * safely assume that nsec fits in 32 bits.  Consequently, when we compute
1032  * sec * 1,000,000,000, we only need the low 32 bits, so we can just do 32-bit
1033  * arithmetic and let the high-order bits fall off the end.
1034  *
1035  * Since nsec < 3 * 1,000,000,000 + 2^30 == 4,073,741,824, the cleanup loop:
1036  *
1037  *			while (nsec >= NANOSEC) {
1038  *				nsec -= NANOSEC;
1039  *				sec++;
1040  *			}
1041  *
1042  * is guaranteed to complete in at most 4 iterations.  In practice, the loop
1043  * completes in 0 or 1 iteration over 95% of the time.
1044  *
1045  * On an SS2, this implementation of hrt2ts() takes 1.7 usec, versus about
1046  * 35 usec for software division -- about 20 times faster.
1047  */
1048 void
1049 hrt2ts(hrtime_t hrt, timestruc_t *tsp)
1050 {
1051 	uint32_t sec, nsec, tmp;
1052 
1053 	tmp = (uint32_t)(hrt >> 30);
1054 	sec = tmp - (tmp >> 2);
1055 	sec = tmp - (sec >> 5);
1056 	sec = tmp + (sec >> 1);
1057 	sec = tmp - (sec >> 6) + 7;
1058 	sec = tmp - (sec >> 3);
1059 	sec = tmp + (sec >> 1);
1060 	sec = tmp + (sec >> 3);
1061 	sec = tmp + (sec >> 4);
1062 	tmp = (sec << 7) - sec - sec - sec;
1063 	tmp = (tmp << 7) - tmp - tmp - tmp;
1064 	tmp = (tmp << 7) - tmp - tmp - tmp;
1065 	nsec = (uint32_t)hrt - (tmp << 9);
1066 	while (nsec >= NANOSEC) {
1067 		nsec -= NANOSEC;
1068 		sec++;
1069 	}
1070 	tsp->tv_sec = (time_t)sec;
1071 	tsp->tv_nsec = nsec;
1072 }
1073 
1074 /*
1075  * Convert from timestruc_t to hrtime_t.
1076  *
1077  * The code below is equivalent to:
1078  *
1079  *	hrt = tsp->tv_sec * NANOSEC + tsp->tv_nsec;
1080  *
1081  * but requires no integer multiply.
1082  */
1083 hrtime_t
1084 ts2hrt(const timestruc_t *tsp)
1085 {
1086 	hrtime_t hrt;
1087 
1088 	hrt = tsp->tv_sec;
1089 	hrt = (hrt << 7) - hrt - hrt - hrt;
1090 	hrt = (hrt << 7) - hrt - hrt - hrt;
1091 	hrt = (hrt << 7) - hrt - hrt - hrt;
1092 	hrt = (hrt << 9) + tsp->tv_nsec;
1093 	return (hrt);
1094 }
1095 
1096 /*
1097  * For the various 32-bit "compatibility" paths in the system.
1098  */
1099 void
1100 hrt2ts32(hrtime_t hrt, timestruc32_t *ts32p)
1101 {
1102 	timestruc_t ts;
1103 
1104 	hrt2ts(hrt, &ts);
1105 	TIMESPEC_TO_TIMESPEC32(ts32p, &ts);
1106 }
1107 
1108 /*
1109  * If this ever becomes performance critical (ha!), we can borrow the
1110  * code from ts2hrt(), above, to multiply tv_sec by 1,000,000 and the
1111  * straightforward (x << 10) - (x << 5) + (x << 3) to multiply tv_usec by
1112  * 1,000.  For now, we'll opt for readability (besides, the compiler does
1113  * a passable job of optimizing constant multiplication into shifts and adds).
1114  */
1115 hrtime_t
1116 tv2hrt(struct timeval *tvp)
1117 {
1118 	return ((hrtime_t)tvp->tv_sec * NANOSEC +
1119 	    (hrtime_t)tvp->tv_usec * (NANOSEC / MICROSEC));
1120 }
1121 
1122 void
1123 hrt2tv(hrtime_t hrt, struct timeval *tvp)
1124 {
1125 	uint32_t sec, nsec, tmp;
1126 	uint32_t q, r, t;
1127 
1128 	tmp = (uint32_t)(hrt >> 30);
1129 	sec = tmp - (tmp >> 2);
1130 	sec = tmp - (sec >> 5);
1131 	sec = tmp + (sec >> 1);
1132 	sec = tmp - (sec >> 6) + 7;
1133 	sec = tmp - (sec >> 3);
1134 	sec = tmp + (sec >> 1);
1135 	sec = tmp + (sec >> 3);
1136 	sec = tmp + (sec >> 4);
1137 	tmp = (sec << 7) - sec - sec - sec;
1138 	tmp = (tmp << 7) - tmp - tmp - tmp;
1139 	tmp = (tmp << 7) - tmp - tmp - tmp;
1140 	nsec = (uint32_t)hrt - (tmp << 9);
1141 	while (nsec >= NANOSEC) {
1142 		nsec -= NANOSEC;
1143 		sec++;
1144 	}
1145 	tvp->tv_sec = (time_t)sec;
1146 /*
1147  * this routine is very similar to hr2ts, but requires microseconds
1148  * instead of nanoseconds, so an interger divide by 1000 routine
1149  * completes the conversion
1150  */
1151 	t = (nsec >> 7) + (nsec >> 8) + (nsec >> 12);
1152 	q = (nsec >> 1) + t + (nsec >> 15) + (t >> 11) + (t >> 14);
1153 	q = q >> 9;
1154 	r = nsec - q*1000;
1155 	tvp->tv_usec = q + ((r + 24) >> 10);
1156 
1157 }
1158 
1159 int
1160 nanosleep(timespec_t *rqtp, timespec_t *rmtp)
1161 {
1162 	timespec_t rqtime;
1163 	timespec_t rmtime;
1164 	timespec_t now;
1165 	int ret = 1;
1166 	model_t datamodel = get_udatamodel();
1167 
1168 	if (datamodel == DATAMODEL_NATIVE) {
1169 		if (copyin(rqtp, &rqtime, sizeof (rqtime)))
1170 			return (set_errno(EFAULT));
1171 	} else {
1172 		timespec32_t rqtime32;
1173 
1174 		if (copyin(rqtp, &rqtime32, sizeof (rqtime32)))
1175 			return (set_errno(EFAULT));
1176 		TIMESPEC32_TO_TIMESPEC(&rqtime, &rqtime32);
1177 	}
1178 
1179 	if (rqtime.tv_sec < 0 || rqtime.tv_nsec < 0 ||
1180 	    rqtime.tv_nsec >= NANOSEC)
1181 		return (set_errno(EINVAL));
1182 
1183 	if (timerspecisset(&rqtime)) {
1184 		gethrestime(&now);
1185 		timespecadd(&rqtime, &now);
1186 		mutex_enter(&curthread->t_delay_lock);
1187 		while ((ret = cv_waituntil_sig(&curthread->t_delay_cv,
1188 		    &curthread->t_delay_lock, &rqtime)) > 0)
1189 			continue;
1190 		mutex_exit(&curthread->t_delay_lock);
1191 	}
1192 
1193 	if (rmtp) {
1194 		/*
1195 		 * If cv_waituntil_sig() returned due to a signal, and
1196 		 * there is time remaining, then set the time remaining.
1197 		 * Else set time remaining to zero
1198 		 */
1199 		rmtime.tv_sec = rmtime.tv_nsec = 0;
1200 		if (ret == 0) {
1201 			timespec_t delta = rqtime;
1202 
1203 			gethrestime(&now);
1204 			timespecsub(&delta, &now);
1205 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
1206 			    delta.tv_nsec > 0))
1207 				rmtime = delta;
1208 		}
1209 
1210 		if (datamodel == DATAMODEL_NATIVE) {
1211 			if (copyout(&rmtime, rmtp, sizeof (rmtime)))
1212 				return (set_errno(EFAULT));
1213 		} else {
1214 			timespec32_t rmtime32;
1215 
1216 			TIMESPEC_TO_TIMESPEC32(&rmtime32, &rmtime);
1217 			if (copyout(&rmtime32, rmtp, sizeof (rmtime32)))
1218 				return (set_errno(EFAULT));
1219 		}
1220 	}
1221 
1222 	if (ret == 0)
1223 		return (set_errno(EINTR));
1224 	return (0);
1225 }
1226 
1227 /*
1228  * Routines to convert standard UNIX time (seconds since Jan 1, 1970)
1229  * into year/month/day/hour/minute/second format, and back again.
1230  * Note: these routines require tod_lock held to protect cached state.
1231  */
1232 static int days_thru_month[64] = {
1233 	0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366, 0, 0,
1234 	0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0,
1235 	0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0,
1236 	0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0,
1237 };
1238 
1239 todinfo_t saved_tod;
1240 int saved_utc = -60;
1241 
1242 todinfo_t
1243 utc_to_tod(time_t utc)
1244 {
1245 	long dse, day, month, year;
1246 	todinfo_t tod;
1247 
1248 	ASSERT(MUTEX_HELD(&tod_lock));
1249 
1250 	if (utc < 0)			/* should never happen */
1251 		utc = 0;
1252 
1253 	saved_tod.tod_sec += utc - saved_utc;
1254 	saved_utc = utc;
1255 	if (saved_tod.tod_sec >= 0 && saved_tod.tod_sec < 60)
1256 		return (saved_tod);	/* only the seconds changed */
1257 
1258 	dse = utc / 86400;		/* days since epoch */
1259 
1260 	tod.tod_sec = utc % 60;
1261 	tod.tod_min = (utc % 3600) / 60;
1262 	tod.tod_hour = (utc % 86400) / 3600;
1263 	tod.tod_dow = (dse + 4) % 7 + 1;	/* epoch was a Thursday */
1264 
1265 	year = dse / 365 + 72;	/* first guess -- always a bit too large */
1266 	do {
1267 		year--;
1268 		day = dse - 365 * (year - 70) - ((year - 69) >> 2);
1269 	} while (day < 0);
1270 
1271 	month = ((year & 3) << 4) + 1;
1272 	while (day >= days_thru_month[month + 1])
1273 		month++;
1274 
1275 	tod.tod_day = day - days_thru_month[month] + 1;
1276 	tod.tod_month = month & 15;
1277 	tod.tod_year = year;
1278 
1279 	saved_tod = tod;
1280 	return (tod);
1281 }
1282 
1283 time_t
1284 tod_to_utc(todinfo_t tod)
1285 {
1286 	time_t utc;
1287 	int year = tod.tod_year;
1288 	int month = tod.tod_month + ((year & 3) << 4);
1289 #ifdef DEBUG
1290 	/* only warn once, not each time called */
1291 	static int year_warn = 1;
1292 	static int month_warn = 1;
1293 	static int day_warn = 1;
1294 	static int hour_warn = 1;
1295 	static int min_warn = 1;
1296 	static int sec_warn = 1;
1297 	int days_diff = days_thru_month[month + 1] - days_thru_month[month];
1298 #endif
1299 
1300 	ASSERT(MUTEX_HELD(&tod_lock));
1301 
1302 #ifdef DEBUG
1303 	if (year_warn && (year < 70 || year > 8029)) {
1304 		cmn_err(CE_WARN,
1305 			"The hardware real-time clock appears to have the "
1306 			"wrong years value %d -- time needs to be reset\n",
1307 			year);
1308 		year_warn = 0;
1309 	}
1310 
1311 	if (month_warn && (tod.tod_month < 1 || tod.tod_month > 12)) {
1312 		cmn_err(CE_WARN,
1313 			"The hardware real-time clock appears to have the "
1314 			"wrong months value %d -- time needs to be reset\n",
1315 			tod.tod_month);
1316 		month_warn = 0;
1317 	}
1318 
1319 	if (day_warn && (tod.tod_day < 1 || tod.tod_day > days_diff)) {
1320 		cmn_err(CE_WARN,
1321 			"The hardware real-time clock appears to have the "
1322 			"wrong days value %d -- time needs to be reset\n",
1323 			tod.tod_day);
1324 		day_warn = 0;
1325 	}
1326 
1327 	if (hour_warn && (tod.tod_hour < 0 || tod.tod_hour > 23)) {
1328 		cmn_err(CE_WARN,
1329 			"The hardware real-time clock appears to have the "
1330 			"wrong hours value %d -- time needs to be reset\n",
1331 			tod.tod_hour);
1332 		hour_warn = 0;
1333 	}
1334 
1335 	if (min_warn && (tod.tod_min < 0 || tod.tod_min > 59)) {
1336 		cmn_err(CE_WARN,
1337 			"The hardware real-time clock appears to have the "
1338 			"wrong minutes value %d -- time needs to be reset\n",
1339 			tod.tod_min);
1340 		min_warn = 0;
1341 	}
1342 
1343 	if (sec_warn && (tod.tod_sec < 0 || tod.tod_sec > 59)) {
1344 		cmn_err(CE_WARN,
1345 			"The hardware real-time clock appears to have the "
1346 			"wrong seconds value %d -- time needs to be reset\n",
1347 			tod.tod_sec);
1348 		sec_warn = 0;
1349 	}
1350 #endif
1351 
1352 	utc = (year - 70);		/* next 3 lines: utc = 365y + y/4 */
1353 	utc += (utc << 3) + (utc << 6);
1354 	utc += (utc << 2) + ((year - 69) >> 2);
1355 	utc += days_thru_month[month] + tod.tod_day - 1;
1356 	utc = (utc << 3) + (utc << 4) + tod.tod_hour;	/* 24 * day + hour */
1357 	utc = (utc << 6) - (utc << 2) + tod.tod_min;	/* 60 * hour + min */
1358 	utc = (utc << 6) - (utc << 2) + tod.tod_sec;	/* 60 * min + sec */
1359 
1360 	return (utc);
1361 }
1362