xref: /titanic_50/usr/src/uts/common/os/timer.c (revision b65731f1f612238279eb4d997f43589b535c5646)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/timer.h>
30 #include <sys/systm.h>
31 #include <sys/param.h>
32 #include <sys/kmem.h>
33 #include <sys/debug.h>
34 #include <sys/policy.h>
35 #include <sys/port.h>
36 #include <sys/port_kernel.h>
37 #include <sys/contract/process_impl.h>
38 
39 static kmem_cache_t *clock_timer_cache;
40 static clock_backend_t *clock_backend[CLOCK_MAX];
41 static int timer_port_callback(void *, int *, pid_t, int, void *);
42 static void timer_close_port(void *, int, pid_t, int);
43 
44 #define	CLOCK_BACKEND(clk) \
45 	((clk) < CLOCK_MAX && (clk) >= 0 ? clock_backend[(clk)] : NULL)
46 
47 /*
48  * Tunable to increase the maximum number of POSIX timers per-process.  This
49  * may _only_ be tuned in /etc/system or by patching the kernel binary; it
50  * _cannot_ be tuned on a running system.
51  */
52 int timer_max = _TIMER_MAX;
53 
54 /*
55  * timer_lock() locks the specified interval timer.  It doesn't look at the
56  * ITLK_REMOVE bit; it's up to callers to look at this if they need to
57  * care.  p_lock must be held on entry; it may be dropped and reaquired,
58  * but timer_lock() will always return with p_lock held.
59  *
60  * Note that timer_create() doesn't call timer_lock(); it creates timers
61  * with the ITLK_LOCKED bit explictly set.
62  */
63 static void
64 timer_lock(proc_t *p, itimer_t *it)
65 {
66 	ASSERT(MUTEX_HELD(&p->p_lock));
67 
68 	while (it->it_lock & ITLK_LOCKED) {
69 		it->it_blockers++;
70 		cv_wait(&it->it_cv, &p->p_lock);
71 		it->it_blockers--;
72 	}
73 
74 	it->it_lock |= ITLK_LOCKED;
75 }
76 
77 /*
78  * timer_unlock() unlocks the specified interval timer, waking up any
79  * waiters.  p_lock must be held on entry; it will not be dropped by
80  * timer_unlock().
81  */
82 static void
83 timer_unlock(proc_t *p, itimer_t *it)
84 {
85 	ASSERT(MUTEX_HELD(&p->p_lock));
86 	ASSERT(it->it_lock & ITLK_LOCKED);
87 	it->it_lock &= ~ITLK_LOCKED;
88 	cv_signal(&it->it_cv);
89 }
90 
91 /*
92  * timer_delete_locked() takes a proc pointer, timer ID and locked interval
93  * timer, and deletes the specified timer.  It must be called with p_lock
94  * held, and cannot be called on a timer which already has ITLK_REMOVE set;
95  * the caller must check this.  timer_delete_locked() will set the ITLK_REMOVE
96  * bit and will iteratively unlock and lock the interval timer until all
97  * blockers have seen the ITLK_REMOVE and cleared out.  It will then zero
98  * out the specified entry in the p_itimer array, and call into the clock
99  * backend to complete the deletion.
100  *
101  * This function will always return with p_lock held.
102  */
103 static void
104 timer_delete_locked(proc_t *p, timer_t tid, itimer_t *it)
105 {
106 	ASSERT(MUTEX_HELD(&p->p_lock));
107 	ASSERT(!(it->it_lock & ITLK_REMOVE));
108 	ASSERT(it->it_lock & ITLK_LOCKED);
109 
110 	it->it_lock |= ITLK_REMOVE;
111 
112 	/*
113 	 * If there are threads waiting to lock this timer, we'll unlock
114 	 * the timer, and block on the cv.  Threads blocking our removal will
115 	 * have the opportunity to run; when they see the ITLK_REMOVE flag
116 	 * set, they will immediately unlock the timer.
117 	 */
118 	while (it->it_blockers) {
119 		timer_unlock(p, it);
120 		cv_wait(&it->it_cv, &p->p_lock);
121 		timer_lock(p, it);
122 	}
123 
124 	ASSERT(p->p_itimer[tid] == it);
125 	p->p_itimer[tid] = NULL;
126 
127 	/*
128 	 * No one is blocked on this timer, and no one will be (we've set
129 	 * p_itimer[tid] to be NULL; no one can find it).  Now we call into
130 	 * the clock backend to delete the timer; it is up to the backend to
131 	 * guarantee that timer_fire() has completed (and will never again
132 	 * be called) for this timer.
133 	 */
134 	mutex_exit(&p->p_lock);
135 
136 	it->it_backend->clk_timer_delete(it);
137 
138 	if (it->it_portev) {
139 		mutex_enter(&it->it_mutex);
140 		if (it->it_portev) {
141 			/* dissociate timer from the event port */
142 			(void) port_dissociate_ksource(it->it_portfd,
143 			    PORT_SOURCE_TIMER, (port_source_t *)it->it_portsrc);
144 			port_free_event((port_kevent_t *)it->it_portev);
145 			it->it_portev = NULL;
146 			it->it_flags &= ~IT_PORT;
147 			it->it_pending = 0;
148 		}
149 		mutex_exit(&it->it_mutex);
150 	}
151 
152 	mutex_enter(&p->p_lock);
153 
154 	/*
155 	 * We need to be careful freeing the sigqueue for this timer;
156 	 * if a signal is pending, the sigqueue needs to be freed
157 	 * synchronously in siginfofree().  The need to free the sigqueue
158 	 * in siginfofree() is indicated by setting sq_func to NULL.
159 	 */
160 	if (it->it_pending > 0) {
161 		it->it_sigq->sq_func = NULL;
162 	} else {
163 		kmem_free(it->it_sigq, sizeof (sigqueue_t));
164 	}
165 
166 	ASSERT(it->it_blockers == 0);
167 	kmem_cache_free(clock_timer_cache, it);
168 }
169 
170 /*
171  * timer_grab() and its companion routine, timer_release(), are wrappers
172  * around timer_lock()/_unlock() which allow the timer_*(3R) routines to
173  * (a) share error handling code and (b) not grab p_lock themselves.  Routines
174  * which are called with p_lock held (e.g. timer_lwpbind(), timer_lwpexit())
175  * must call timer_lock()/_unlock() explictly.
176  *
177  * timer_grab() takes a proc and a timer ID, and returns a pointer to a
178  * locked interval timer.  p_lock must _not_ be held on entry; timer_grab()
179  * may acquire p_lock, but will always return with p_lock dropped.
180  *
181  * If timer_grab() fails, it will return NULL.  timer_grab() will fail if
182  * one or more of the following is true:
183  *
184  *  (a)	The specified timer ID is out of range.
185  *
186  *  (b)	The specified timer ID does not correspond to a timer ID returned
187  *	from timer_create(3R).
188  *
189  *  (c)	The specified timer ID is currently being removed.
190  *
191  */
192 static itimer_t *
193 timer_grab(proc_t *p, timer_t tid)
194 {
195 	itimer_t **itp, *it;
196 
197 	if (tid >= timer_max || tid < 0)
198 		return (NULL);
199 
200 	mutex_enter(&p->p_lock);
201 
202 	if ((itp = p->p_itimer) == NULL || (it = itp[tid]) == NULL) {
203 		mutex_exit(&p->p_lock);
204 		return (NULL);
205 	}
206 
207 	timer_lock(p, it);
208 
209 	if (it->it_lock & ITLK_REMOVE) {
210 		/*
211 		 * Someone is removing this timer; it will soon be invalid.
212 		 */
213 		timer_unlock(p, it);
214 		mutex_exit(&p->p_lock);
215 		return (NULL);
216 	}
217 
218 	mutex_exit(&p->p_lock);
219 
220 	return (it);
221 }
222 
223 /*
224  * timer_release() releases a timer acquired with timer_grab().  p_lock
225  * should not be held on entry; timer_release() will acquire p_lock but
226  * will drop it before returning.
227  */
228 static void
229 timer_release(proc_t *p, itimer_t *it)
230 {
231 	mutex_enter(&p->p_lock);
232 	timer_unlock(p, it);
233 	mutex_exit(&p->p_lock);
234 }
235 
236 /*
237  * timer_delete_grabbed() deletes a timer acquired with timer_grab().
238  * p_lock should not be held on entry; timer_delete_grabbed() will acquire
239  * p_lock, but will drop it before returning.
240  */
241 static void
242 timer_delete_grabbed(proc_t *p, timer_t tid, itimer_t *it)
243 {
244 	mutex_enter(&p->p_lock);
245 	timer_delete_locked(p, tid, it);
246 	mutex_exit(&p->p_lock);
247 }
248 
249 void
250 clock_timer_init()
251 {
252 	clock_timer_cache = kmem_cache_create("timer_cache",
253 	    sizeof (itimer_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
254 }
255 
256 void
257 clock_add_backend(clockid_t clock, clock_backend_t *backend)
258 {
259 	ASSERT(clock >= 0 && clock < CLOCK_MAX);
260 	ASSERT(clock_backend[clock] == NULL);
261 
262 	clock_backend[clock] = backend;
263 }
264 
265 int
266 clock_settime(clockid_t clock, timespec_t *tp)
267 {
268 	timespec_t t;
269 	clock_backend_t *backend;
270 	int error;
271 
272 	if ((backend = CLOCK_BACKEND(clock)) == NULL)
273 		return (set_errno(EINVAL));
274 
275 	if (secpolicy_settime(CRED()) != 0)
276 		return (set_errno(EPERM));
277 
278 	if (get_udatamodel() == DATAMODEL_NATIVE) {
279 		if (copyin(tp, &t, sizeof (timespec_t)) != 0)
280 			return (set_errno(EFAULT));
281 	} else {
282 		timespec32_t t32;
283 
284 		if (copyin(tp, &t32, sizeof (timespec32_t)) != 0)
285 			return (set_errno(EFAULT));
286 
287 		TIMESPEC32_TO_TIMESPEC(&t, &t32);
288 	}
289 
290 	if (itimerspecfix(&t))
291 		return (set_errno(EINVAL));
292 
293 	error = backend->clk_clock_settime(&t);
294 
295 	if (error)
296 		return (set_errno(error));
297 
298 	return (0);
299 }
300 
301 int
302 clock_gettime(clockid_t clock, timespec_t *tp)
303 {
304 	timespec_t t;
305 	clock_backend_t *backend;
306 	int error;
307 
308 	if ((backend = CLOCK_BACKEND(clock)) == NULL)
309 		return (set_errno(EINVAL));
310 
311 	error = backend->clk_clock_gettime(&t);
312 
313 	if (error)
314 		return (set_errno(error));
315 
316 	if (get_udatamodel() == DATAMODEL_NATIVE) {
317 		if (copyout(&t, tp, sizeof (timespec_t)) != 0)
318 			return (set_errno(EFAULT));
319 	} else {
320 		timespec32_t t32;
321 
322 		if (TIMESPEC_OVERFLOW(&t))
323 			return (set_errno(EOVERFLOW));
324 		TIMESPEC_TO_TIMESPEC32(&t32, &t);
325 
326 		if (copyout(&t32, tp, sizeof (timespec32_t)) != 0)
327 			return (set_errno(EFAULT));
328 	}
329 
330 	return (0);
331 }
332 
333 int
334 clock_getres(clockid_t clock, timespec_t *tp)
335 {
336 	timespec_t t;
337 	clock_backend_t *backend;
338 	int error;
339 
340 	/*
341 	 * Strangely, the standard defines clock_getres() with a NULL tp
342 	 * to do nothing (regardless of the validity of the specified
343 	 * clock_id).  Go figure.
344 	 */
345 	if (tp == NULL)
346 		return (0);
347 
348 	if ((backend = CLOCK_BACKEND(clock)) == NULL)
349 		return (set_errno(EINVAL));
350 
351 	error = backend->clk_clock_getres(&t);
352 
353 	if (error)
354 		return (set_errno(error));
355 
356 	if (get_udatamodel() == DATAMODEL_NATIVE) {
357 		if (copyout(&t, tp, sizeof (timespec_t)) != 0)
358 			return (set_errno(EFAULT));
359 	} else {
360 		timespec32_t t32;
361 
362 		if (TIMESPEC_OVERFLOW(&t))
363 			return (set_errno(EOVERFLOW));
364 		TIMESPEC_TO_TIMESPEC32(&t32, &t);
365 
366 		if (copyout(&t32, tp, sizeof (timespec32_t)) != 0)
367 			return (set_errno(EFAULT));
368 	}
369 
370 	return (0);
371 }
372 
373 void
374 timer_signal(sigqueue_t *sigq)
375 {
376 	itimer_t *it = (itimer_t *)sigq->sq_backptr;
377 
378 	/*
379 	 * There are some conditions during a fork or an exit when we can
380 	 * call siginfofree() without p_lock held.  To prevent a race
381 	 * between timer_signal() and timer_fire() with regard to it_pending,
382 	 * we therefore acquire it_mutex in both paths.
383 	 */
384 	mutex_enter(&it->it_mutex);
385 	ASSERT(it->it_pending > 0);
386 	it->it_overrun = it->it_pending - 1;
387 	it->it_pending = 0;
388 	mutex_exit(&it->it_mutex);
389 }
390 
391 /*
392  * This routine is called from the clock backend.
393  */
394 void
395 timer_fire(itimer_t *it)
396 {
397 	proc_t *p;
398 	int proc_lock_held;
399 
400 	if (it->it_flags & IT_SIGNAL) {
401 		/*
402 		 * See the comment in timer_signal() for why it is not
403 		 * sufficient to only grab p_lock here. Because p_lock can be
404 		 * held on entry to timer_signal(), the lock ordering is
405 		 * necessarily p_lock before it_mutex.
406 		 */
407 
408 		p = it->it_proc;
409 		proc_lock_held = 1;
410 		mutex_enter(&p->p_lock);
411 	} else {
412 		/*
413 		 * IT_PORT:
414 		 * If a timer was ever programmed to send events to a port,
415 		 * the IT_PORT flag will remain set until:
416 		 * a) the timer is deleted (see timer_delete_locked()) or
417 		 * b) the port is being closed (see timer_close_port()).
418 		 * Both cases are synchronized with the it_mutex.
419 		 * We don't need to use the p_lock because it is only
420 		 * required in the IT_SIGNAL case.
421 		 * If IT_PORT was set and the port is being closed then
422 		 * the timer notification is set to NONE. In such a case
423 		 * the timer itself and the it_pending counter remain active
424 		 * until the application deletes the counter or the process
425 		 * exits.
426 		 */
427 		proc_lock_held = 0;
428 	}
429 	mutex_enter(&it->it_mutex);
430 
431 	if (it->it_pending > 0) {
432 		if (it->it_pending < INT_MAX)
433 			it->it_pending++;
434 		mutex_exit(&it->it_mutex);
435 	} else {
436 		if (it->it_flags & IT_PORT) {
437 			it->it_pending = 1;
438 			(void) port_send_event((port_kevent_t *)it->it_portev);
439 			mutex_exit(&it->it_mutex);
440 		} else if (it->it_flags & IT_SIGNAL) {
441 			it->it_pending = 1;
442 			mutex_exit(&it->it_mutex);
443 			sigaddqa(p, NULL, it->it_sigq);
444 		} else {
445 			mutex_exit(&it->it_mutex);
446 		}
447 	}
448 
449 	if (proc_lock_held)
450 		mutex_exit(&p->p_lock);
451 }
452 
453 int
454 timer_create(clockid_t clock, struct sigevent *evp, timer_t *tid)
455 {
456 	struct sigevent ev;
457 	proc_t *p = curproc;
458 	clock_backend_t *backend;
459 	itimer_t *it, **itp;
460 	sigqueue_t *sigq;
461 	cred_t *cr = CRED();
462 	int error = 0;
463 	timer_t i;
464 	port_notify_t tim_pnevp;
465 	port_kevent_t *pkevp = NULL;
466 
467 	if ((backend = CLOCK_BACKEND(clock)) == NULL)
468 		return (set_errno(EINVAL));
469 
470 	if (evp != NULL) {
471 		/*
472 		 * short copyin() for binary compatibility
473 		 * fetch oldsigevent to determine how much to copy in.
474 		 */
475 		if (get_udatamodel() == DATAMODEL_NATIVE) {
476 			if (copyin(evp, &ev, sizeof (struct oldsigevent)))
477 				return (set_errno(EFAULT));
478 
479 			if (ev.sigev_notify == SIGEV_PORT) {
480 				if (copyin(ev.sigev_value.sival_ptr, &tim_pnevp,
481 				    sizeof (port_notify_t)))
482 					return (set_errno(EFAULT));
483 			}
484 #ifdef	_SYSCALL32_IMPL
485 		} else {
486 			struct sigevent32 ev32;
487 			port_notify32_t tim_pnevp32;
488 
489 			if (copyin(evp, &ev32, sizeof (struct oldsigevent32)))
490 				return (set_errno(EFAULT));
491 			ev.sigev_notify = ev32.sigev_notify;
492 			ev.sigev_signo = ev32.sigev_signo;
493 			/*
494 			 * See comment in sigqueue32() on handling of 32-bit
495 			 * sigvals in a 64-bit kernel.
496 			 */
497 			ev.sigev_value.sival_int = ev32.sigev_value.sival_int;
498 			if (ev.sigev_notify == SIGEV_PORT) {
499 				if (copyin((void *)(uintptr_t)
500 				    ev32.sigev_value.sival_ptr,
501 				    (void *)&tim_pnevp32,
502 				    sizeof (port_notify32_t)))
503 					return (set_errno(EFAULT));
504 				tim_pnevp.portnfy_port =
505 				    tim_pnevp32.portnfy_port;
506 				tim_pnevp.portnfy_user =
507 				    (void *)(uintptr_t)tim_pnevp32.portnfy_user;
508 			}
509 #endif
510 		}
511 		switch (ev.sigev_notify) {
512 		case SIGEV_NONE:
513 			break;
514 
515 		case SIGEV_SIGNAL:
516 			if (ev.sigev_signo < 1 || ev.sigev_signo >= NSIG)
517 				return (set_errno(EINVAL));
518 			break;
519 		case SIGEV_PORT:
520 			break;
521 		default:
522 			return (set_errno(EINVAL));
523 		}
524 	} else {
525 		/*
526 		 * Use the clock's default sigevent (this is a structure copy).
527 		 */
528 		ev = backend->clk_default;
529 	}
530 
531 	/*
532 	 * We'll allocate our timer and sigqueue now, before we grab p_lock.
533 	 * If we can't find an empty slot, we'll free them before returning.
534 	 */
535 	it = kmem_cache_alloc(clock_timer_cache, KM_SLEEP);
536 	bzero(it, sizeof (itimer_t));
537 	mutex_init(&it->it_mutex, NULL, MUTEX_DEFAULT, NULL);
538 	sigq = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
539 
540 	mutex_enter(&p->p_lock);
541 
542 	/*
543 	 * If this is this process' first timer, we need to attempt to allocate
544 	 * an array of timerstr_t pointers.  We drop p_lock to perform the
545 	 * allocation; if we return to discover that p_itimer is non-NULL,
546 	 * we will free our allocation and drive on.
547 	 */
548 	if ((itp = p->p_itimer) == NULL) {
549 		mutex_exit(&p->p_lock);
550 		itp = kmem_zalloc(timer_max * sizeof (itimer_t *), KM_SLEEP);
551 		mutex_enter(&p->p_lock);
552 
553 		if (p->p_itimer == NULL)
554 			p->p_itimer = itp;
555 		else {
556 			kmem_free(itp, timer_max * sizeof (itimer_t *));
557 			itp = p->p_itimer;
558 		}
559 	}
560 
561 	for (i = 0; i < timer_max && itp[i] != NULL; i++)
562 		continue;
563 
564 	if (i == timer_max) {
565 		/*
566 		 * We couldn't find a slot.  Drop p_lock, free the preallocated
567 		 * timer and sigqueue, and return an error.
568 		 */
569 		mutex_exit(&p->p_lock);
570 		kmem_cache_free(clock_timer_cache, it);
571 		kmem_free(sigq, sizeof (sigqueue_t));
572 
573 		return (set_errno(EAGAIN));
574 	}
575 
576 	ASSERT(i < timer_max && itp[i] == NULL);
577 
578 	/*
579 	 * If we develop other notification mechanisms, this will need
580 	 * to call into (yet another) backend.
581 	 */
582 	sigq->sq_info.si_signo = ev.sigev_signo;
583 	sigq->sq_info.si_value = ev.sigev_value;
584 	sigq->sq_info.si_code = SI_TIMER;
585 	sigq->sq_info.si_pid = p->p_pid;
586 	sigq->sq_info.si_ctid = PRCTID(p);
587 	sigq->sq_info.si_zoneid = getzoneid();
588 	sigq->sq_info.si_uid = crgetruid(cr);
589 	sigq->sq_func = timer_signal;
590 	sigq->sq_next = NULL;
591 	sigq->sq_backptr = it;
592 	it->it_sigq = sigq;
593 	it->it_backend = backend;
594 	it->it_lock = ITLK_LOCKED;
595 	itp[i] = it;
596 
597 
598 	if (ev.sigev_notify == SIGEV_PORT) {
599 		int port;
600 
601 		/*
602 		 * This timer is programmed to use event port notification when
603 		 * the timer fires:
604 		 * - allocate a port event structure and prepare it to be sent
605 		 *   to the port as soon as the timer fires.
606 		 * - when the timer fires :
607 		 *   - if event structure was already sent to the port then this
608 		 *	is a timer fire overflow => increment overflow counter.
609 		 *   - otherwise send pre-allocated event structure to the port.
610 		 * - the events field of the port_event_t structure counts the
611 		 *   number of timer fired events.
612 		 * - The event structured is allocated using the
613 		 *   PORT_ALLOC_CACHED flag.
614 		 *   This flag indicates that the timer itself will manage and
615 		 *   free the event structure when required.
616 		 */
617 
618 		it->it_flags |= IT_PORT;
619 		port = tim_pnevp.portnfy_port;
620 
621 		/* associate timer as event source with the port */
622 		error = port_associate_ksource(port, PORT_SOURCE_TIMER,
623 		    (port_source_t **)&it->it_portsrc, timer_close_port,
624 		    (void *)it, NULL);
625 		if (error) {
626 			itp[i] = NULL;		/* clear slot */
627 			mutex_exit(&p->p_lock);
628 			kmem_cache_free(clock_timer_cache, it);
629 			kmem_free(sigq, sizeof (sigqueue_t));
630 			return (set_errno(error));
631 		}
632 
633 		/* allocate an event structure/slot */
634 		error = port_alloc_event(port, PORT_ALLOC_SCACHED,
635 		    PORT_SOURCE_TIMER, &pkevp);
636 		if (error) {
637 			(void) port_dissociate_ksource(port, PORT_SOURCE_TIMER,
638 			    (port_source_t *)it->it_portsrc);
639 			itp[i] = NULL;		/* clear slot */
640 			mutex_exit(&p->p_lock);
641 			kmem_cache_free(clock_timer_cache, it);
642 			kmem_free(sigq, sizeof (sigqueue_t));
643 			return (set_errno(error));
644 		}
645 
646 		/* initialize event data */
647 		port_init_event(pkevp, i, tim_pnevp.portnfy_user,
648 		    timer_port_callback, it);
649 		it->it_portev = pkevp;
650 		it->it_portfd = port;
651 	} else {
652 		if (ev.sigev_notify == SIGEV_SIGNAL)
653 			it->it_flags |= IT_SIGNAL;
654 	}
655 
656 	mutex_exit(&p->p_lock);
657 
658 	/*
659 	 * Call on the backend to verify the event argument (or return
660 	 * EINVAL if this clock type does not support timers).
661 	 */
662 	if ((error = backend->clk_timer_create(it, &ev)) != 0)
663 		goto err;
664 
665 	it->it_lwp = ttolwp(curthread);
666 	it->it_proc = p;
667 
668 	if (copyout(&i, tid, sizeof (timer_t)) != 0) {
669 		error = EFAULT;
670 		goto err;
671 	}
672 
673 	/*
674 	 * If we're here, then we have successfully created the timer; we
675 	 * just need to release the timer and return.
676 	 */
677 	timer_release(p, it);
678 
679 	return (0);
680 
681 err:
682 	/*
683 	 * If we're here, an error has occurred late in the timer creation
684 	 * process.  We need to regrab p_lock, and delete the incipient timer.
685 	 * Since we never unlocked the timer (it was born locked), it's
686 	 * impossible for a removal to be pending.
687 	 */
688 	ASSERT(!(it->it_lock & ITLK_REMOVE));
689 	timer_delete_grabbed(p, i, it);
690 
691 	return (set_errno(error));
692 }
693 
694 int
695 timer_gettime(timer_t tid, itimerspec_t *val)
696 {
697 	proc_t *p = curproc;
698 	itimer_t *it;
699 	itimerspec_t when;
700 	int error;
701 
702 	if ((it = timer_grab(p, tid)) == NULL)
703 		return (set_errno(EINVAL));
704 
705 	error = it->it_backend->clk_timer_gettime(it, &when);
706 
707 	timer_release(p, it);
708 
709 	if (error == 0) {
710 		if (get_udatamodel() == DATAMODEL_NATIVE) {
711 			if (copyout(&when, val, sizeof (itimerspec_t)))
712 				error = EFAULT;
713 		} else {
714 			if (ITIMERSPEC_OVERFLOW(&when))
715 				error = EOVERFLOW;
716 			else {
717 				itimerspec32_t w32;
718 
719 				ITIMERSPEC_TO_ITIMERSPEC32(&w32, &when)
720 				if (copyout(&w32, val, sizeof (itimerspec32_t)))
721 					error = EFAULT;
722 			}
723 		}
724 	}
725 
726 	return (error ? set_errno(error) : 0);
727 }
728 
729 int
730 timer_settime(timer_t tid, int flags, itimerspec_t *val, itimerspec_t *oval)
731 {
732 	itimerspec_t when;
733 	timespec_t res;
734 	itimer_t *it;
735 	proc_t *p = curproc;
736 	int error;
737 
738 	if (oval != NULL) {
739 		if ((error = timer_gettime(tid, oval)) != 0)
740 			return (error);
741 	}
742 
743 	if (get_udatamodel() == DATAMODEL_NATIVE) {
744 		if (copyin(val, &when, sizeof (itimerspec_t)))
745 			return (set_errno(EFAULT));
746 	} else {
747 		itimerspec32_t w32;
748 
749 		if (copyin(val, &w32, sizeof (itimerspec32_t)))
750 			return (set_errno(EFAULT));
751 
752 		ITIMERSPEC32_TO_ITIMERSPEC(&when, &w32);
753 	}
754 
755 	if (itimerspecfix(&when.it_value) ||
756 	    (itimerspecfix(&when.it_interval) &&
757 	    timerspecisset(&when.it_value))) {
758 		return (set_errno(EINVAL));
759 	}
760 
761 	if ((it = timer_grab(p, tid)) == NULL)
762 		return (set_errno(EINVAL));
763 
764 	/*
765 	 * From the man page:
766 	 *	Time values that are between two consecutive non-negative
767 	 *	integer multiples of the resolution of the specified timer
768 	 *	shall be rounded up to the larger multiple of the resolution.
769 	 * We assume that the resolution of any clock is less than one second.
770 	 */
771 	if (it->it_backend->clk_clock_getres(&res) == 0 && res.tv_nsec > 1) {
772 		long rem;
773 
774 		if ((rem = when.it_interval.tv_nsec % res.tv_nsec) != 0) {
775 			when.it_interval.tv_nsec += res.tv_nsec - rem;
776 			timespecfix(&when.it_interval);
777 		}
778 		if ((rem = when.it_value.tv_nsec % res.tv_nsec) != 0) {
779 			when.it_value.tv_nsec += res.tv_nsec - rem;
780 			timespecfix(&when.it_value);
781 		}
782 	}
783 	error = it->it_backend->clk_timer_settime(it, flags, &when);
784 
785 	timer_release(p, it);
786 
787 	return (error ? set_errno(error) : 0);
788 }
789 
790 int
791 timer_delete(timer_t tid)
792 {
793 	proc_t *p = curproc;
794 	itimer_t *it;
795 
796 	if ((it = timer_grab(p, tid)) == NULL)
797 		return (set_errno(EINVAL));
798 
799 	timer_delete_grabbed(p, tid, it);
800 
801 	return (0);
802 }
803 
804 int
805 timer_getoverrun(timer_t tid)
806 {
807 	int overrun;
808 	proc_t *p = curproc;
809 	itimer_t *it;
810 
811 	if ((it = timer_grab(p, tid)) == NULL)
812 		return (set_errno(EINVAL));
813 
814 	/*
815 	 * The it_overrun field is protected by p_lock; we need to acquire
816 	 * it before looking at the value.
817 	 */
818 	mutex_enter(&p->p_lock);
819 	overrun = it->it_overrun;
820 	mutex_exit(&p->p_lock);
821 
822 	timer_release(p, it);
823 
824 	return (overrun);
825 }
826 
827 /*
828  * Entered/exited with p_lock held, but will repeatedly drop and regrab p_lock.
829  */
830 void
831 timer_lwpexit(void)
832 {
833 	timer_t i;
834 	proc_t *p = curproc;
835 	klwp_t *lwp = ttolwp(curthread);
836 	itimer_t *it, **itp;
837 
838 	ASSERT(MUTEX_HELD(&p->p_lock));
839 
840 	if ((itp = p->p_itimer) == NULL)
841 		return;
842 
843 	for (i = 0; i < timer_max; i++) {
844 		if ((it = itp[i]) == NULL)
845 			continue;
846 
847 		timer_lock(p, it);
848 
849 		if ((it->it_lock & ITLK_REMOVE) || it->it_lwp != lwp) {
850 			/*
851 			 * This timer is either being removed or it isn't
852 			 * associated with this lwp.
853 			 */
854 			timer_unlock(p, it);
855 			continue;
856 		}
857 
858 		/*
859 		 * The LWP that created this timer is going away.  To the user,
860 		 * our behavior here is explicitly undefined.  We will simply
861 		 * null out the it_lwp field; if the LWP was bound to a CPU,
862 		 * the cyclic will stay bound to that CPU until the process
863 		 * exits.
864 		 */
865 		it->it_lwp = NULL;
866 		timer_unlock(p, it);
867 	}
868 }
869 
870 /*
871  * Called to notify of an LWP binding change.  Entered/exited with p_lock
872  * held, but will repeatedly drop and regrab p_lock.
873  */
874 void
875 timer_lwpbind()
876 {
877 	timer_t i;
878 	proc_t *p = curproc;
879 	klwp_t *lwp = ttolwp(curthread);
880 	itimer_t *it, **itp;
881 
882 	ASSERT(MUTEX_HELD(&p->p_lock));
883 
884 	if ((itp = p->p_itimer) == NULL)
885 		return;
886 
887 	for (i = 0; i < timer_max; i++) {
888 		if ((it = itp[i]) == NULL)
889 			continue;
890 
891 		timer_lock(p, it);
892 
893 		if (!(it->it_lock & ITLK_REMOVE) && it->it_lwp == lwp) {
894 			/*
895 			 * Drop p_lock and jump into the backend.
896 			 */
897 			mutex_exit(&p->p_lock);
898 			it->it_backend->clk_timer_lwpbind(it);
899 			mutex_enter(&p->p_lock);
900 		}
901 
902 		timer_unlock(p, it);
903 	}
904 }
905 
906 /*
907  * This function should only be called if p_itimer is non-NULL.
908  */
909 void
910 timer_exit(void)
911 {
912 	timer_t i;
913 	proc_t *p = curproc;
914 
915 	ASSERT(p->p_itimer != NULL);
916 
917 	for (i = 0; i < timer_max; i++)
918 		(void) timer_delete(i);
919 
920 	kmem_free(p->p_itimer, timer_max * sizeof (itimer_t *));
921 	p->p_itimer = NULL;
922 }
923 
924 /*
925  * timer_port_callback() is a callback function which is associated with the
926  * timer event and is activated just before the event is delivered to the user.
927  * The timer uses this function to update/set the overflow counter and
928  * to reenable the use of the event structure.
929  */
930 
931 /* ARGSUSED */
932 static int
933 timer_port_callback(void *arg, int *events, pid_t pid, int flag, void *evp)
934 {
935 	itimer_t	*it = arg;
936 
937 	mutex_enter(&it->it_mutex);
938 	if (curproc != it->it_proc) {
939 		/* can not deliver timer events to another proc */
940 		mutex_exit(&it->it_mutex);
941 		return (EACCES);
942 	}
943 	*events = it->it_pending;	/* 1 = 1 event, >1 # of overflows */
944 	it->it_pending = 0;		/* reinit overflow counter	*/
945 	/*
946 	 * This function can also be activated when the port is being closed
947 	 * and a timer event is already submitted to the port.
948 	 * In such a case the event port framework will use the
949 	 * close-callback function to notify the events sources.
950 	 * The timer close-callback function is timer_close_port() which
951 	 * will free all allocated resources (including the allocated
952 	 * port event structure).
953 	 * For that reason we don't need to check the value of flag here.
954 	 */
955 	mutex_exit(&it->it_mutex);
956 	return (0);
957 }
958 
959 /*
960  * port is being closed ... free all allocated port event structures
961  * The delivered arg currently correspond to the first timer associated with
962  * the port and it is not useable in this case.
963  * We have to scan the list of activated timers in the current proc and
964  * compare them with the delivered port id.
965  */
966 
967 /* ARGSUSED */
968 static void
969 timer_close_port(void *arg, int port, pid_t pid, int lastclose)
970 {
971 	proc_t		*p = curproc;
972 	timer_t		tid;
973 	itimer_t	*it;
974 
975 	for (tid = 0; tid < timer_max; tid++) {
976 		if ((it = timer_grab(p, tid)) == NULL)
977 			continue;
978 		if (it->it_portev) {
979 			mutex_enter(&it->it_mutex);
980 			if (it->it_portfd == port) {
981 				port_free_event((port_kevent_t *)it->it_portev);
982 				it->it_portev = NULL;
983 				it->it_flags &= ~IT_PORT;
984 			}
985 			mutex_exit(&it->it_mutex);
986 		}
987 		timer_release(p, it);
988 	}
989 }
990