xref: /titanic_50/usr/src/uts/common/os/taskq.c (revision 6d2259e1baf8d4ac11c96570f45ecdcd9771a68d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Kernel task queues: general-purpose asynchronous task scheduling.
28  *
29  * A common problem in kernel programming is the need to schedule tasks
30  * to be performed later, by another thread. There are several reasons
31  * you may want or need to do this:
32  *
33  * (1) The task isn't time-critical, but your current code path is.
34  *
35  * (2) The task may require grabbing locks that you already hold.
36  *
37  * (3) The task may need to block (e.g. to wait for memory), but you
38  *     cannot block in your current context.
39  *
40  * (4) Your code path can't complete because of some condition, but you can't
41  *     sleep or fail, so you queue the task for later execution when condition
42  *     disappears.
43  *
44  * (5) You just want a simple way to launch multiple tasks in parallel.
45  *
46  * Task queues provide such a facility. In its simplest form (used when
47  * performance is not a critical consideration) a task queue consists of a
48  * single list of tasks, together with one or more threads to service the
49  * list. There are some cases when this simple queue is not sufficient:
50  *
51  * (1) The task queues are very hot and there is a need to avoid data and lock
52  *	contention over global resources.
53  *
54  * (2) Some tasks may depend on other tasks to complete, so they can't be put in
55  *	the same list managed by the same thread.
56  *
57  * (3) Some tasks may block for a long time, and this should not block other
58  * 	tasks in the queue.
59  *
60  * To provide useful service in such cases we define a "dynamic task queue"
61  * which has an individual thread for each of the tasks. These threads are
62  * dynamically created as they are needed and destroyed when they are not in
63  * use. The API for managing task pools is the same as for managing task queues
64  * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
65  * dynamic task pool behavior is desired.
66  *
67  * Dynamic task queues may also place tasks in the normal queue (called "backing
68  * queue") when task pool runs out of resources. Users of task queues may
69  * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch
70  * flags.
71  *
72  * The backing task queue is also used for scheduling internal tasks needed for
73  * dynamic task queue maintenance.
74  *
75  * INTERFACES ==================================================================
76  *
77  * taskq_t *taskq_create(name, nthreads, pri_t pri, minalloc, maxall, flags);
78  *
79  *	Create a taskq with specified properties.
80  *	Possible 'flags':
81  *
82  *	  TASKQ_DYNAMIC: Create task pool for task management. If this flag is
83  *		specified, 'nthreads' specifies the maximum number of threads in
84  *		the task queue. Task execution order for dynamic task queues is
85  *		not predictable.
86  *
87  *		If this flag is not specified (default case) a
88  *		single-list task queue is created with 'nthreads' threads
89  *		servicing it. Entries in this queue are managed by
90  *		taskq_ent_alloc() and taskq_ent_free() which try to keep the
91  *		task population between 'minalloc' and 'maxalloc', but the
92  *		latter limit is only advisory for TQ_SLEEP dispatches and the
93  *		former limit is only advisory for TQ_NOALLOC dispatches. If
94  *		TASKQ_PREPOPULATE is set in 'flags', the taskq will be
95  *		prepopulated with 'minalloc' task structures.
96  *
97  *		Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
98  *		executed in the order they are scheduled if nthreads == 1.
99  *		If nthreads > 1, task execution order is not predictable.
100  *
101  *	  TASKQ_PREPOPULATE: Prepopulate task queue with threads.
102  *		Also prepopulate the task queue with 'minalloc' task structures.
103  *
104  *	  TASKQ_THREADS_CPU_PCT: This flag specifies that 'nthreads' should be
105  *		interpreted as a percentage of the # of online CPUs on the
106  *		system.  The taskq subsystem will automatically adjust the
107  *		number of threads in the taskq in response to CPU online
108  *		and offline events, to keep the ratio.  nthreads must be in
109  *		the range [0,100].
110  *
111  *		The calculation used is:
112  *
113  *			MAX((ncpus_online * percentage)/100, 1)
114  *
115  *		This flag is not supported for DYNAMIC task queues.
116  *		This flag is not compatible with TASKQ_CPR_SAFE.
117  *
118  *	  TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
119  *		use their own protocol for handling CPR issues. This flag is not
120  *		supported for DYNAMIC task queues.  This flag is not compatible
121  *		with TASKQ_THREADS_CPU_PCT.
122  *
123  *	The 'pri' field specifies the default priority for the threads that
124  *	service all scheduled tasks.
125  *
126  * void taskq_destroy(tap):
127  *
128  *	Waits for any scheduled tasks to complete, then destroys the taskq.
129  *	Caller should guarantee that no new tasks are scheduled in the closing
130  *	taskq.
131  *
132  * taskqid_t taskq_dispatch(tq, func, arg, flags):
133  *
134  *	Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether
135  *	the caller is willing to block for memory.  The function returns an
136  *	opaque value which is zero iff dispatch fails.  If flags is TQ_NOSLEEP
137  *	or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails
138  *	and returns (taskqid_t)0.
139  *
140  *	ASSUMES: func != NULL.
141  *
142  *	Possible flags:
143  *	  TQ_NOSLEEP: Do not wait for resources; may fail.
144  *
145  *	  TQ_NOALLOC: Do not allocate memory; may fail.  May only be used with
146  *		non-dynamic task queues.
147  *
148  *	  TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to
149  *		lack of available resources and fail. If this flag is not
150  * 		set, and the task pool is exhausted, the task may be scheduled
151  *		in the backing queue. This flag may ONLY be used with dynamic
152  *		task queues.
153  *
154  *		NOTE: This flag should always be used when a task queue is used
155  *		for tasks that may depend on each other for completion.
156  *		Enqueueing dependent tasks may create deadlocks.
157  *
158  *	  TQ_SLEEP:   May block waiting for resources. May still fail for
159  * 		dynamic task queues if TQ_NOQUEUE is also specified, otherwise
160  *		always succeed.
161  *
162  *	NOTE: Dynamic task queues are much more likely to fail in
163  *		taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
164  *		is important to have backup strategies handling such failures.
165  *
166  * void taskq_wait(tq):
167  *
168  *	Waits for all previously scheduled tasks to complete.
169  *
170  *	NOTE: It does not stop any new task dispatches.
171  *	      Do NOT call taskq_wait() from a task: it will cause deadlock.
172  *
173  * void taskq_suspend(tq)
174  *
175  *	Suspend all task execution. Tasks already scheduled for a dynamic task
176  *	queue will still be executed, but all new scheduled tasks will be
177  *	suspended until taskq_resume() is called.
178  *
179  * int  taskq_suspended(tq)
180  *
181  *	Returns 1 if taskq is suspended and 0 otherwise. It is intended to
182  *	ASSERT that the task queue is suspended.
183  *
184  * void taskq_resume(tq)
185  *
186  *	Resume task queue execution.
187  *
188  * int  taskq_member(tq, thread)
189  *
190  *	Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The
191  *	intended use is to ASSERT that a given function is called in taskq
192  *	context only.
193  *
194  * system_taskq
195  *
196  *	Global system-wide dynamic task queue for common uses. It may be used by
197  *	any subsystem that needs to schedule tasks and does not need to manage
198  *	its own task queues. It is initialized quite early during system boot.
199  *
200  * IMPLEMENTATION ==============================================================
201  *
202  * This is schematic representation of the task queue structures.
203  *
204  *   taskq:
205  *   +-------------+
206  *   | tq_lock     | +---< taskq_ent_free()
207  *   +-------------+ |
208  *   |...          | | tqent:                  tqent:
209  *   +-------------+ | +------------+          +------------+
210  *   | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
211  *   +-------------+   +------------+          +------------+
212  *   |...          |   | ...        |          | ...        |
213  *   +-------------+   +------------+          +------------+
214  *   | tq_task     |    |
215  *   |             |    +-------------->taskq_ent_alloc()
216  * +--------------------------------------------------------------------------+
217  * | |                     |            tqent                   tqent         |
218  * | +---------------------+     +--> +------------+     +--> +------------+  |
219  * | | ...		   |     |    | func, arg  |     |    | func, arg  |  |
220  * +>+---------------------+ <---|-+  +------------+ <---|-+  +------------+  |
221  *   | tq_taskq.tqent_next | ----+ |  | tqent_next | --->+ |  | tqent_next |--+
222  *   +---------------------+	   |  +------------+     ^ |  +------------+
223  * +-| tq_task.tqent_prev  |	   +--| tqent_prev |     | +--| tqent_prev |  ^
224  * | +---------------------+	      +------------+     |    +------------+  |
225  * | |...		   |	      | ...        |     |    | ...        |  |
226  * | +---------------------+	      +------------+     |    +------------+  |
227  * |                                      ^              |                    |
228  * |                                      |              |                    |
229  * +--------------------------------------+--------------+       TQ_APPEND() -+
230  *   |             |                      |
231  *   |...          |   taskq_thread()-----+
232  *   +-------------+
233  *   | tq_buckets  |--+-------> [ NULL ] (for regular task queues)
234  *   +-------------+  |
235  *                    |   DYNAMIC TASK QUEUES:
236  *                    |
237  *                    +-> taskq_bucket[nCPU]       	taskq_bucket_dispatch()
238  *                        +-------------------+                    ^
239  *                   +--->| tqbucket_lock     |                    |
240  *                   |    +-------------------+   +--------+      +--------+
241  *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  | ^
242  *                   |    +-------------------+<--+--------+<--...+--------+ |
243  *                   |    | ...               |   | thread |      | thread | |
244  *                   |    +-------------------+   +--------+      +--------+ |
245  *                   |    +-------------------+                              |
246  * taskq_dispatch()--+--->| tqbucket_lock     |             TQ_APPEND()------+
247  *      TQ_HASH()    |    +-------------------+   +--------+      +--------+
248  *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  |
249  *                   |    +-------------------+<--+--------+<--...+--------+
250  *                   |    | ...               |   | thread |      | thread |
251  *                   |    +-------------------+   +--------+      +--------+
252  *		     +---> 	...
253  *
254  *
255  * Task queues use tq_task field to link new entry in the queue. The queue is a
256  * circular doubly-linked list. Entries are put in the end of the list with
257  * TQ_APPEND() and processed from the front of the list by taskq_thread() in
258  * FIFO order. Task queue entries are cached in the free list managed by
259  * taskq_ent_alloc() and taskq_ent_free() functions.
260  *
261  *	All threads used by task queues mark t_taskq field of the thread to
262  *	point to the task queue.
263  *
264  * Taskq Thread Management -----------------------------------------------------
265  *
266  * Taskq's non-dynamic threads are managed with several variables and flags:
267  *
268  *	* tq_nthreads	- The number of threads in taskq_thread() for the
269  *			  taskq.
270  *
271  *	* tq_active	- The number of threads not waiting on a CV in
272  *			  taskq_thread(); includes newly created threads
273  *			  not yet counted in tq_nthreads.
274  *
275  *	* tq_nthreads_target
276  *			- The number of threads desired for the taskq.
277  *
278  *	* tq_flags & TASKQ_CHANGING
279  *			- Indicates that tq_nthreads != tq_nthreads_target.
280  *
281  *	* tq_flags & TASKQ_THREAD_CREATED
282  *			- Indicates that a thread is being created in the taskq.
283  *
284  * During creation, tq_nthreads and tq_active are set to 0, and
285  * tq_nthreads_target is set to the number of threads desired.  The
286  * TASKQ_CHANGING flag is set, and taskq_create_thread() is called to
287  * create the first thread. taskq_create_thread() increments tq_active,
288  * sets TASKQ_THREAD_CREATED, and creates the new thread.
289  *
290  * Each thread starts in taskq_thread(), clears the TASKQ_THREAD_CREATED
291  * flag, and increments tq_nthreads.  It stores the new value of
292  * tq_nthreads as its "thread_id", and stores its thread pointer in the
293  * tq_threadlist at the (thread_id - 1).  We keep the thread_id space
294  * densely packed by requiring that only the largest thread_id can exit during
295  * normal adjustment.   The exception is during the destruction of the
296  * taskq; once tq_nthreads_target is set to zero, no new threads will be created
297  * for the taskq queue, so every thread can exit without any ordering being
298  * necessary.
299  *
300  * Threads will only process work if their thread id is <= tq_nthreads_target.
301  *
302  * When TASKQ_CHANGING is set, threads will check the current thread target
303  * whenever they wake up, and do whatever they can to apply its effects.
304  *
305  * TASKQ_THREAD_CPU_PCT --------------------------------------------------------
306  *
307  * When a taskq is created with TASKQ_THREAD_CPU_PCT, we store their requested
308  * percentage in tq_threads_ncpus_pct, start them off with the correct thread
309  * target, and add them to the taskq_cpupct_list for later adjustment.
310  *
311  * We register taskq_cpu_setup() to be called whenever a CPU changes state.  It
312  * walks the list of TASKQ_THREAD_CPU_PCT taskqs, adjusts their nthread_target
313  * if need be, and wakes up all of the threads to process the change.
314  *
315  * Dynamic Task Queues Implementation ------------------------------------------
316  *
317  * For a dynamic task queues there is a 1-to-1 mapping between a thread and
318  * taskq_ent_structure. Each entry is serviced by its own thread and each thread
319  * is controlled by a single entry.
320  *
321  * Entries are distributed over a set of buckets. To avoid using modulo
322  * arithmetics the number of buckets is 2^n and is determined as the nearest
323  * power of two roundown of the number of CPUs in the system. Tunable
324  * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry
325  * is attached to a bucket for its lifetime and can't migrate to other buckets.
326  *
327  * Entries that have scheduled tasks are not placed in any list. The dispatch
328  * function sets their "func" and "arg" fields and signals the corresponding
329  * thread to execute the task. Once the thread executes the task it clears the
330  * "func" field and places an entry on the bucket cache of free entries pointed
331  * by "tqbucket_freelist" field. ALL entries on the free list should have "func"
332  * field equal to NULL. The free list is a circular doubly-linked list identical
333  * in structure to the tq_task list above, but entries are taken from it in LIFO
334  * order - the last freed entry is the first to be allocated. The
335  * taskq_bucket_dispatch() function gets the most recently used entry from the
336  * free list, sets its "func" and "arg" fields and signals a worker thread.
337  *
338  * After executing each task a per-entry thread taskq_d_thread() places its
339  * entry on the bucket free list and goes to a timed sleep. If it wakes up
340  * without getting new task it removes the entry from the free list and destroys
341  * itself. The thread sleep time is controlled by a tunable variable
342  * `taskq_thread_timeout'.
343  *
344  * There are various statistics kept in the bucket which allows for later
345  * analysis of taskq usage patterns. Also, a global copy of taskq creation and
346  * death statistics is kept in the global taskq data structure. Since thread
347  * creation and death happen rarely, updating such global data does not present
348  * a performance problem.
349  *
350  * NOTE: Threads are not bound to any CPU and there is absolutely no association
351  *       between the bucket and actual thread CPU, so buckets are used only to
352  *	 split resources and reduce resource contention. Having threads attached
353  *	 to the CPU denoted by a bucket may reduce number of times the job
354  *	 switches between CPUs.
355  *
356  *	 Current algorithm creates a thread whenever a bucket has no free
357  *	 entries. It would be nice to know how many threads are in the running
358  *	 state and don't create threads if all CPUs are busy with existing
359  *	 tasks, but it is unclear how such strategy can be implemented.
360  *
361  *	 Currently buckets are created statically as an array attached to task
362  *	 queue. On some system with nCPUs < max_ncpus it may waste system
363  *	 memory. One solution may be allocation of buckets when they are first
364  *	 touched, but it is not clear how useful it is.
365  *
366  * SUSPEND/RESUME implementation -----------------------------------------------
367  *
368  *	Before executing a task taskq_thread() (executing non-dynamic task
369  *	queues) obtains taskq's thread lock as a reader. The taskq_suspend()
370  *	function gets the same lock as a writer blocking all non-dynamic task
371  *	execution. The taskq_resume() function releases the lock allowing
372  *	taskq_thread to continue execution.
373  *
374  *	For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
375  *	taskq_suspend() function. After that taskq_bucket_dispatch() always
376  *	fails, so that taskq_dispatch() will either enqueue tasks for a
377  *	suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
378  *	flags.
379  *
380  *	NOTE: taskq_suspend() does not immediately block any tasks already
381  *	      scheduled for dynamic task queues. It only suspends new tasks
382  *	      scheduled after taskq_suspend() was called.
383  *
384  *	taskq_member() function works by comparing a thread t_taskq pointer with
385  *	the passed thread pointer.
386  *
387  * LOCKS and LOCK Hierarchy ----------------------------------------------------
388  *
389  *   There are three locks used in task queues:
390  *
391  *   1) The taskq_t's tq_lock, protecting global task queue state.
392  *
393  *   2) Each per-CPU bucket has a lock for bucket management.
394  *
395  *   3) The global taskq_cpupct_lock, which protects the list of
396  *      TASKQ_THREADS_CPU_PCT taskqs.
397  *
398  *   If both (1) and (2) are needed, tq_lock should be taken *after* the bucket
399  *   lock.
400  *
401  *   If both (1) and (3) are needed, tq_lock should be taken *after*
402  *   taskq_cpupct_lock.
403  *
404  * DEBUG FACILITIES ------------------------------------------------------------
405  *
406  * For DEBUG kernels it is possible to induce random failures to
407  * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
408  * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
409  * failures for dynamic and static task queues respectively.
410  *
411  * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
412  *
413  * TUNABLES --------------------------------------------------------------------
414  *
415  *	system_taskq_size	- Size of the global system_taskq.
416  *				  This value is multiplied by nCPUs to determine
417  *				  actual size.
418  *				  Default value: 64
419  *
420  *	taskq_minimum_nthreads_max
421  *				- Minimum size of the thread list for a taskq.
422  *				  Useful for testing different thread pool
423  *				  sizes by overwriting tq_nthreads_target.
424  *
425  *	taskq_thread_timeout	- Maximum idle time for taskq_d_thread()
426  *				  Default value: 5 minutes
427  *
428  *	taskq_maxbuckets	- Maximum number of buckets in any task queue
429  *				  Default value: 128
430  *
431  *	taskq_search_depth	- Maximum # of buckets searched for a free entry
432  *				  Default value: 4
433  *
434  *	taskq_dmtbf		- Mean time between induced dispatch failures
435  *				  for dynamic task queues.
436  *				  Default value: UINT_MAX (no induced failures)
437  *
438  *	taskq_smtbf		- Mean time between induced dispatch failures
439  *				  for static task queues.
440  *				  Default value: UINT_MAX (no induced failures)
441  *
442  * CONDITIONAL compilation -----------------------------------------------------
443  *
444  *    TASKQ_STATISTIC	- If set will enable bucket statistic (default).
445  *
446  */
447 
448 #include <sys/taskq_impl.h>
449 #include <sys/thread.h>
450 #include <sys/proc.h>
451 #include <sys/kmem.h>
452 #include <sys/vmem.h>
453 #include <sys/callb.h>
454 #include <sys/systm.h>
455 #include <sys/cmn_err.h>
456 #include <sys/debug.h>
457 #include <sys/vmsystm.h>	/* For throttlefree */
458 #include <sys/sysmacros.h>
459 #include <sys/cpuvar.h>
460 #include <sys/sdt.h>
461 #include <sys/note.h>
462 
463 static kmem_cache_t *taskq_ent_cache, *taskq_cache;
464 
465 /*
466  * Pseudo instance numbers for taskqs without explicitly provided instance.
467  */
468 static vmem_t *taskq_id_arena;
469 
470 /* Global system task queue for common use */
471 taskq_t	*system_taskq;
472 
473 /*
474  * Maximum number of entries in global system taskq is
475  * 	system_taskq_size * max_ncpus
476  */
477 #define	SYSTEM_TASKQ_SIZE 64
478 int system_taskq_size = SYSTEM_TASKQ_SIZE;
479 
480 /*
481  * Minimum size for tq_nthreads_max; useful for those who want to play around
482  * with increasing a taskq's tq_nthreads_target.
483  */
484 int taskq_minimum_nthreads_max = 1;
485 
486 /* Maximum percentage allowed for TASKQ_THREADS_CPU_PCT */
487 #define	TASKQ_CPUPCT_MAX_PERCENT	1000
488 int taskq_cpupct_max_percent = TASKQ_CPUPCT_MAX_PERCENT;
489 
490 /*
491  * Dynamic task queue threads that don't get any work within
492  * taskq_thread_timeout destroy themselves
493  */
494 #define	TASKQ_THREAD_TIMEOUT (60 * 5)
495 int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT;
496 
497 #define	TASKQ_MAXBUCKETS 128
498 int taskq_maxbuckets = TASKQ_MAXBUCKETS;
499 
500 /*
501  * When a bucket has no available entries another buckets are tried.
502  * taskq_search_depth parameter limits the amount of buckets that we search
503  * before failing. This is mostly useful in systems with many CPUs where we may
504  * spend too much time scanning busy buckets.
505  */
506 #define	TASKQ_SEARCH_DEPTH 4
507 int taskq_search_depth = TASKQ_SEARCH_DEPTH;
508 
509 /*
510  * Hashing function: mix various bits of x. May be pretty much anything.
511  */
512 #define	TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27))
513 
514 /*
515  * We do not create any new threads when the system is low on memory and start
516  * throttling memory allocations. The following macro tries to estimate such
517  * condition.
518  */
519 #define	ENOUGH_MEMORY() (freemem > throttlefree)
520 
521 /*
522  * Static functions.
523  */
524 static taskq_t	*taskq_create_common(const char *, int, int, pri_t, int,
525     int, uint_t);
526 static void taskq_thread(void *);
527 static void taskq_d_thread(taskq_ent_t *);
528 static void taskq_bucket_extend(void *);
529 static int  taskq_constructor(void *, void *, int);
530 static void taskq_destructor(void *, void *);
531 static int  taskq_ent_constructor(void *, void *, int);
532 static void taskq_ent_destructor(void *, void *);
533 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);
534 static void taskq_ent_free(taskq_t *, taskq_ent_t *);
535 static taskq_ent_t *taskq_bucket_dispatch(taskq_bucket_t *, task_func_t,
536     void *);
537 
538 /*
539  * Task queues kstats.
540  */
541 struct taskq_kstat {
542 	kstat_named_t	tq_tasks;
543 	kstat_named_t	tq_executed;
544 	kstat_named_t	tq_maxtasks;
545 	kstat_named_t	tq_totaltime;
546 	kstat_named_t	tq_nalloc;
547 	kstat_named_t	tq_nactive;
548 	kstat_named_t	tq_pri;
549 	kstat_named_t	tq_nthreads;
550 } taskq_kstat = {
551 	{ "tasks",		KSTAT_DATA_UINT64 },
552 	{ "executed",		KSTAT_DATA_UINT64 },
553 	{ "maxtasks",		KSTAT_DATA_UINT64 },
554 	{ "totaltime",		KSTAT_DATA_UINT64 },
555 	{ "nactive",		KSTAT_DATA_UINT64 },
556 	{ "nalloc",		KSTAT_DATA_UINT64 },
557 	{ "priority",		KSTAT_DATA_UINT64 },
558 	{ "threads",		KSTAT_DATA_UINT64 },
559 };
560 
561 struct taskq_d_kstat {
562 	kstat_named_t	tqd_pri;
563 	kstat_named_t	tqd_btasks;
564 	kstat_named_t	tqd_bexecuted;
565 	kstat_named_t	tqd_bmaxtasks;
566 	kstat_named_t	tqd_bnalloc;
567 	kstat_named_t	tqd_bnactive;
568 	kstat_named_t	tqd_btotaltime;
569 	kstat_named_t	tqd_hits;
570 	kstat_named_t	tqd_misses;
571 	kstat_named_t	tqd_overflows;
572 	kstat_named_t	tqd_tcreates;
573 	kstat_named_t	tqd_tdeaths;
574 	kstat_named_t	tqd_maxthreads;
575 	kstat_named_t	tqd_nomem;
576 	kstat_named_t	tqd_disptcreates;
577 	kstat_named_t	tqd_totaltime;
578 	kstat_named_t	tqd_nalloc;
579 	kstat_named_t	tqd_nfree;
580 } taskq_d_kstat = {
581 	{ "priority",		KSTAT_DATA_UINT64 },
582 	{ "btasks",		KSTAT_DATA_UINT64 },
583 	{ "bexecuted",		KSTAT_DATA_UINT64 },
584 	{ "bmaxtasks",		KSTAT_DATA_UINT64 },
585 	{ "bnalloc",		KSTAT_DATA_UINT64 },
586 	{ "bnactive",		KSTAT_DATA_UINT64 },
587 	{ "btotaltime",		KSTAT_DATA_UINT64 },
588 	{ "hits",		KSTAT_DATA_UINT64 },
589 	{ "misses",		KSTAT_DATA_UINT64 },
590 	{ "overflows",		KSTAT_DATA_UINT64 },
591 	{ "tcreates",		KSTAT_DATA_UINT64 },
592 	{ "tdeaths",		KSTAT_DATA_UINT64 },
593 	{ "maxthreads",		KSTAT_DATA_UINT64 },
594 	{ "nomem",		KSTAT_DATA_UINT64 },
595 	{ "disptcreates",	KSTAT_DATA_UINT64 },
596 	{ "totaltime",		KSTAT_DATA_UINT64 },
597 	{ "nalloc",		KSTAT_DATA_UINT64 },
598 	{ "nfree",		KSTAT_DATA_UINT64 },
599 };
600 
601 static kmutex_t taskq_kstat_lock;
602 static kmutex_t taskq_d_kstat_lock;
603 static int taskq_kstat_update(kstat_t *, int);
604 static int taskq_d_kstat_update(kstat_t *, int);
605 
606 /*
607  * State for THREAD_CPU_PCT management
608  */
609 typedef struct taskq_cpupct_ent {
610 	list_node_t	tp_link;
611 	taskq_t		*tp_taskq;
612 } taskq_cpupct_ent_t;
613 
614 static kmutex_t taskq_cpupct_lock;
615 static list_t taskq_cpupct_list;
616 static int taskq_cpupct_ncpus_online;
617 
618 /*
619  * Collect per-bucket statistic when TASKQ_STATISTIC is defined.
620  */
621 #define	TASKQ_STATISTIC 1
622 
623 #if TASKQ_STATISTIC
624 #define	TQ_STAT(b, x)	b->tqbucket_stat.x++
625 #else
626 #define	TQ_STAT(b, x)
627 #endif
628 
629 /*
630  * Random fault injection.
631  */
632 uint_t taskq_random;
633 uint_t taskq_dmtbf = UINT_MAX;    /* mean time between injected failures */
634 uint_t taskq_smtbf = UINT_MAX;    /* mean time between injected failures */
635 
636 /*
637  * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail.
638  *
639  * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because
640  * they could prepopulate the cache and make sure that they do not use more
641  * then minalloc entries.  So, fault injection in this case insures that
642  * either TASKQ_PREPOPULATE is not set or there are more entries allocated
643  * than is specified by minalloc.  TQ_NOALLOC dispatches are always allowed
644  * to fail, but for simplicity we treat them identically to TQ_NOSLEEP
645  * dispatches.
646  */
647 #ifdef DEBUG
648 #define	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)		\
649 	taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
650 	if ((flag & TQ_NOSLEEP) &&				\
651 	    taskq_random < 1771875 / taskq_dmtbf) {		\
652 		return (NULL);					\
653 	}
654 
655 #define	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)		\
656 	taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
657 	if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) &&		\
658 	    (!(tq->tq_flags & TASKQ_PREPOPULATE) ||		\
659 	    (tq->tq_nalloc > tq->tq_minalloc)) &&		\
660 	    (taskq_random < (1771875 / taskq_smtbf))) {		\
661 		mutex_exit(&tq->tq_lock);			\
662 		return (NULL);					\
663 	}
664 #else
665 #define	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)
666 #define	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)
667 #endif
668 
669 #define	IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) &&	\
670 	((l).tqent_prev == &(l)))
671 
672 /*
673  * Append `tqe' in the end of the doubly-linked list denoted by l.
674  */
675 #define	TQ_APPEND(l, tqe) {					\
676 	tqe->tqent_next = &l;					\
677 	tqe->tqent_prev = l.tqent_prev;				\
678 	tqe->tqent_next->tqent_prev = tqe;			\
679 	tqe->tqent_prev->tqent_next = tqe;			\
680 }
681 
682 /*
683  * Schedule a task specified by func and arg into the task queue entry tqe.
684  */
685 #define	TQ_ENQUEUE(tq, tqe, func, arg) {			\
686 	ASSERT(MUTEX_HELD(&tq->tq_lock));			\
687 	TQ_APPEND(tq->tq_task, tqe);				\
688 	tqe->tqent_func = (func);				\
689 	tqe->tqent_arg = (arg);					\
690 	tq->tq_tasks++;						\
691 	if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks)	\
692 		tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed;	\
693 	cv_signal(&tq->tq_dispatch_cv);				\
694 	DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \
695 }
696 
697 /*
698  * Do-nothing task which may be used to prepopulate thread caches.
699  */
700 /*ARGSUSED*/
701 void
702 nulltask(void *unused)
703 {
704 }
705 
706 
707 /*ARGSUSED*/
708 static int
709 taskq_constructor(void *buf, void *cdrarg, int kmflags)
710 {
711 	taskq_t *tq = buf;
712 
713 	bzero(tq, sizeof (taskq_t));
714 
715 	mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
716 	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
717 	cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
718 	cv_init(&tq->tq_exit_cv, NULL, CV_DEFAULT, NULL);
719 	cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
720 
721 	tq->tq_task.tqent_next = &tq->tq_task;
722 	tq->tq_task.tqent_prev = &tq->tq_task;
723 
724 	return (0);
725 }
726 
727 /*ARGSUSED*/
728 static void
729 taskq_destructor(void *buf, void *cdrarg)
730 {
731 	taskq_t *tq = buf;
732 
733 	ASSERT(tq->tq_nthreads == 0);
734 	ASSERT(tq->tq_buckets == NULL);
735 	ASSERT(tq->tq_tcreates == 0);
736 	ASSERT(tq->tq_tdeaths == 0);
737 
738 	mutex_destroy(&tq->tq_lock);
739 	rw_destroy(&tq->tq_threadlock);
740 	cv_destroy(&tq->tq_dispatch_cv);
741 	cv_destroy(&tq->tq_exit_cv);
742 	cv_destroy(&tq->tq_wait_cv);
743 }
744 
745 /*ARGSUSED*/
746 static int
747 taskq_ent_constructor(void *buf, void *cdrarg, int kmflags)
748 {
749 	taskq_ent_t *tqe = buf;
750 
751 	tqe->tqent_thread = NULL;
752 	cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL);
753 
754 	return (0);
755 }
756 
757 /*ARGSUSED*/
758 static void
759 taskq_ent_destructor(void *buf, void *cdrarg)
760 {
761 	taskq_ent_t *tqe = buf;
762 
763 	ASSERT(tqe->tqent_thread == NULL);
764 	cv_destroy(&tqe->tqent_cv);
765 }
766 
767 void
768 taskq_init(void)
769 {
770 	taskq_ent_cache = kmem_cache_create("taskq_ent_cache",
771 	    sizeof (taskq_ent_t), 0, taskq_ent_constructor,
772 	    taskq_ent_destructor, NULL, NULL, NULL, 0);
773 	taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t),
774 	    0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0);
775 	taskq_id_arena = vmem_create("taskq_id_arena",
776 	    (void *)1, INT32_MAX, 1, NULL, NULL, NULL, 0,
777 	    VM_SLEEP | VMC_IDENTIFIER);
778 
779 	list_create(&taskq_cpupct_list, sizeof (taskq_cpupct_ent_t),
780 	    offsetof(taskq_cpupct_ent_t, tp_link));
781 }
782 
783 /*ARGSUSED*/
784 static int
785 taskq_cpu_setup(cpu_setup_t what, int id, void *arg)
786 {
787 	taskq_cpupct_ent_t *tpp;
788 	int cpus_online = ncpus_online;
789 
790 	/* offlines are called *before* the cpu is offlined. */
791 	if (what == CPU_OFF)
792 		cpus_online--;
793 	if (cpus_online < 1)
794 		cpus_online = 1;
795 
796 	mutex_enter(&taskq_cpupct_lock);
797 	if (cpus_online == taskq_cpupct_ncpus_online) {
798 		mutex_exit(&taskq_cpupct_lock);
799 		return (0);
800 	}
801 
802 	for (tpp = list_head(&taskq_cpupct_list); tpp != NULL;
803 	    tpp = list_next(&taskq_cpupct_list, tpp)) {
804 		taskq_t *tq = tpp->tp_taskq;
805 		int newtarget;
806 
807 		mutex_enter(&tq->tq_lock);
808 		newtarget =
809 		    TASKQ_THREADS_PCT(cpus_online, tq->tq_threads_ncpus_pct);
810 		ASSERT3S(newtarget, <=, tq->tq_nthreads_max);
811 		if (newtarget != tq->tq_nthreads_target) {
812 			/* The taskq must not be exiting */
813 			ASSERT3S(tq->tq_nthreads_target, !=, 0);
814 			tq->tq_flags |= TASKQ_CHANGING;
815 			tq->tq_nthreads_target = newtarget;
816 			cv_broadcast(&tq->tq_dispatch_cv);
817 			cv_broadcast(&tq->tq_exit_cv);
818 		}
819 		mutex_exit(&tq->tq_lock);
820 	}
821 
822 	taskq_cpupct_ncpus_online = cpus_online;
823 	mutex_exit(&taskq_cpupct_lock);
824 	return (0);
825 }
826 
827 void
828 taskq_mp_init(void)
829 {
830 	mutex_enter(&cpu_lock);
831 	register_cpu_setup_func(taskq_cpu_setup, NULL);
832 	(void) taskq_cpu_setup(CPU_ON, 0, NULL);
833 	mutex_exit(&cpu_lock);
834 }
835 
836 /*
837  * Create global system dynamic task queue.
838  */
839 void
840 system_taskq_init(void)
841 {
842 	system_taskq = taskq_create_common("system_taskq", 0,
843 	    system_taskq_size * max_ncpus, minclsyspri, 4, 512,
844 	    TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
845 }
846 
847 /*
848  * taskq_ent_alloc()
849  *
850  * Allocates a new taskq_ent_t structure either from the free list or from the
851  * cache. Returns NULL if it can't be allocated.
852  *
853  * Assumes: tq->tq_lock is held.
854  */
855 static taskq_ent_t *
856 taskq_ent_alloc(taskq_t *tq, int flags)
857 {
858 	int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
859 
860 	taskq_ent_t *tqe;
861 
862 	ASSERT(MUTEX_HELD(&tq->tq_lock));
863 
864 	/*
865 	 * TQ_NOALLOC allocations are allowed to use the freelist, even if
866 	 * we are below tq_minalloc.
867 	 */
868 	if ((tqe = tq->tq_freelist) != NULL &&
869 	    ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) {
870 		tq->tq_freelist = tqe->tqent_next;
871 	} else {
872 		if (flags & TQ_NOALLOC)
873 			return (NULL);
874 
875 		mutex_exit(&tq->tq_lock);
876 		if (tq->tq_nalloc >= tq->tq_maxalloc) {
877 			if (kmflags & KM_NOSLEEP) {
878 				mutex_enter(&tq->tq_lock);
879 				return (NULL);
880 			}
881 			/*
882 			 * We don't want to exceed tq_maxalloc, but we can't
883 			 * wait for other tasks to complete (and thus free up
884 			 * task structures) without risking deadlock with
885 			 * the caller.  So, we just delay for one second
886 			 * to throttle the allocation rate.
887 			 */
888 			delay(hz);
889 		}
890 		tqe = kmem_cache_alloc(taskq_ent_cache, kmflags);
891 		mutex_enter(&tq->tq_lock);
892 		if (tqe != NULL)
893 			tq->tq_nalloc++;
894 	}
895 	return (tqe);
896 }
897 
898 /*
899  * taskq_ent_free()
900  *
901  * Free taskq_ent_t structure by either putting it on the free list or freeing
902  * it to the cache.
903  *
904  * Assumes: tq->tq_lock is held.
905  */
906 static void
907 taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
908 {
909 	ASSERT(MUTEX_HELD(&tq->tq_lock));
910 
911 	if (tq->tq_nalloc <= tq->tq_minalloc) {
912 		tqe->tqent_next = tq->tq_freelist;
913 		tq->tq_freelist = tqe;
914 	} else {
915 		tq->tq_nalloc--;
916 		mutex_exit(&tq->tq_lock);
917 		kmem_cache_free(taskq_ent_cache, tqe);
918 		mutex_enter(&tq->tq_lock);
919 	}
920 }
921 
922 /*
923  * Dispatch a task "func(arg)" to a free entry of bucket b.
924  *
925  * Assumes: no bucket locks is held.
926  *
927  * Returns: a pointer to an entry if dispatch was successful.
928  *	    NULL if there are no free entries or if the bucket is suspended.
929  */
930 static taskq_ent_t *
931 taskq_bucket_dispatch(taskq_bucket_t *b, task_func_t func, void *arg)
932 {
933 	taskq_ent_t *tqe;
934 
935 	ASSERT(MUTEX_NOT_HELD(&b->tqbucket_lock));
936 	ASSERT(func != NULL);
937 
938 	mutex_enter(&b->tqbucket_lock);
939 
940 	ASSERT(b->tqbucket_nfree != 0 || IS_EMPTY(b->tqbucket_freelist));
941 	ASSERT(b->tqbucket_nfree == 0 || !IS_EMPTY(b->tqbucket_freelist));
942 
943 	/*
944 	 * Get en entry from the freelist if there is one.
945 	 * Schedule task into the entry.
946 	 */
947 	if ((b->tqbucket_nfree != 0) &&
948 	    !(b->tqbucket_flags & TQBUCKET_SUSPEND)) {
949 		tqe = b->tqbucket_freelist.tqent_prev;
950 
951 		ASSERT(tqe != &b->tqbucket_freelist);
952 		ASSERT(tqe->tqent_thread != NULL);
953 
954 		tqe->tqent_prev->tqent_next = tqe->tqent_next;
955 		tqe->tqent_next->tqent_prev = tqe->tqent_prev;
956 		b->tqbucket_nalloc++;
957 		b->tqbucket_nfree--;
958 		tqe->tqent_func = func;
959 		tqe->tqent_arg = arg;
960 		TQ_STAT(b, tqs_hits);
961 		cv_signal(&tqe->tqent_cv);
962 		DTRACE_PROBE2(taskq__d__enqueue, taskq_bucket_t *, b,
963 		    taskq_ent_t *, tqe);
964 	} else {
965 		tqe = NULL;
966 		TQ_STAT(b, tqs_misses);
967 	}
968 	mutex_exit(&b->tqbucket_lock);
969 	return (tqe);
970 }
971 
972 /*
973  * Dispatch a task.
974  *
975  * Assumes: func != NULL
976  *
977  * Returns: NULL if dispatch failed.
978  *	    non-NULL if task dispatched successfully.
979  *	    Actual return value is the pointer to taskq entry that was used to
980  *	    dispatch a task. This is useful for debugging.
981  */
982 /* ARGSUSED */
983 taskqid_t
984 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
985 {
986 	taskq_bucket_t *bucket = NULL;	/* Which bucket needs extension */
987 	taskq_ent_t *tqe = NULL;
988 	taskq_ent_t *tqe1;
989 	uint_t bsize;
990 
991 	ASSERT(tq != NULL);
992 	ASSERT(func != NULL);
993 
994 	if (!(tq->tq_flags & TASKQ_DYNAMIC)) {
995 		/*
996 		 * TQ_NOQUEUE flag can't be used with non-dynamic task queues.
997 		 */
998 		ASSERT(! (flags & TQ_NOQUEUE));
999 		/*
1000 		 * Enqueue the task to the underlying queue.
1001 		 */
1002 		mutex_enter(&tq->tq_lock);
1003 
1004 		TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags);
1005 
1006 		if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) {
1007 			mutex_exit(&tq->tq_lock);
1008 			return (NULL);
1009 		}
1010 		TQ_ENQUEUE(tq, tqe, func, arg);
1011 		mutex_exit(&tq->tq_lock);
1012 		return ((taskqid_t)tqe);
1013 	}
1014 
1015 	/*
1016 	 * Dynamic taskq dispatching.
1017 	 */
1018 	ASSERT(!(flags & TQ_NOALLOC));
1019 	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flags);
1020 
1021 	bsize = tq->tq_nbuckets;
1022 
1023 	if (bsize == 1) {
1024 		/*
1025 		 * In a single-CPU case there is only one bucket, so get
1026 		 * entry directly from there.
1027 		 */
1028 		if ((tqe = taskq_bucket_dispatch(tq->tq_buckets, func, arg))
1029 		    != NULL)
1030 			return ((taskqid_t)tqe);	/* Fastpath */
1031 		bucket = tq->tq_buckets;
1032 	} else {
1033 		int loopcount;
1034 		taskq_bucket_t *b;
1035 		uintptr_t h = ((uintptr_t)CPU + (uintptr_t)arg) >> 3;
1036 
1037 		h = TQ_HASH(h);
1038 
1039 		/*
1040 		 * The 'bucket' points to the original bucket that we hit. If we
1041 		 * can't allocate from it, we search other buckets, but only
1042 		 * extend this one.
1043 		 */
1044 		b = &tq->tq_buckets[h & (bsize - 1)];
1045 		ASSERT(b->tqbucket_taskq == tq);	/* Sanity check */
1046 
1047 		/*
1048 		 * Do a quick check before grabbing the lock. If the bucket does
1049 		 * not have free entries now, chances are very small that it
1050 		 * will after we take the lock, so we just skip it.
1051 		 */
1052 		if (b->tqbucket_nfree != 0) {
1053 			if ((tqe = taskq_bucket_dispatch(b, func, arg)) != NULL)
1054 				return ((taskqid_t)tqe);	/* Fastpath */
1055 		} else {
1056 			TQ_STAT(b, tqs_misses);
1057 		}
1058 
1059 		bucket = b;
1060 		loopcount = MIN(taskq_search_depth, bsize);
1061 		/*
1062 		 * If bucket dispatch failed, search loopcount number of buckets
1063 		 * before we give up and fail.
1064 		 */
1065 		do {
1066 			b = &tq->tq_buckets[++h & (bsize - 1)];
1067 			ASSERT(b->tqbucket_taskq == tq);  /* Sanity check */
1068 			loopcount--;
1069 
1070 			if (b->tqbucket_nfree != 0) {
1071 				tqe = taskq_bucket_dispatch(b, func, arg);
1072 			} else {
1073 				TQ_STAT(b, tqs_misses);
1074 			}
1075 		} while ((tqe == NULL) && (loopcount > 0));
1076 	}
1077 
1078 	/*
1079 	 * At this point we either scheduled a task and (tqe != NULL) or failed
1080 	 * (tqe == NULL). Try to recover from fails.
1081 	 */
1082 
1083 	/*
1084 	 * For KM_SLEEP dispatches, try to extend the bucket and retry dispatch.
1085 	 */
1086 	if ((tqe == NULL) && !(flags & TQ_NOSLEEP)) {
1087 		/*
1088 		 * taskq_bucket_extend() may fail to do anything, but this is
1089 		 * fine - we deal with it later. If the bucket was successfully
1090 		 * extended, there is a good chance that taskq_bucket_dispatch()
1091 		 * will get this new entry, unless someone is racing with us and
1092 		 * stealing the new entry from under our nose.
1093 		 * taskq_bucket_extend() may sleep.
1094 		 */
1095 		taskq_bucket_extend(bucket);
1096 		TQ_STAT(bucket, tqs_disptcreates);
1097 		if ((tqe = taskq_bucket_dispatch(bucket, func, arg)) != NULL)
1098 			return ((taskqid_t)tqe);
1099 	}
1100 
1101 	ASSERT(bucket != NULL);
1102 	/*
1103 	 * Since there are not enough free entries in the bucket, extend it
1104 	 * in the background using backing queue.
1105 	 */
1106 	mutex_enter(&tq->tq_lock);
1107 	if ((tqe1 = taskq_ent_alloc(tq, TQ_NOSLEEP)) != NULL) {
1108 		TQ_ENQUEUE(tq, tqe1, taskq_bucket_extend,
1109 		    bucket);
1110 	} else {
1111 		TQ_STAT(bucket, tqs_nomem);
1112 	}
1113 
1114 	/*
1115 	 * Dispatch failed and we can't find an entry to schedule a task.
1116 	 * Revert to the backing queue unless TQ_NOQUEUE was asked.
1117 	 */
1118 	if ((tqe == NULL) && !(flags & TQ_NOQUEUE)) {
1119 		if ((tqe = taskq_ent_alloc(tq, flags)) != NULL) {
1120 			TQ_ENQUEUE(tq, tqe, func, arg);
1121 		} else {
1122 			TQ_STAT(bucket, tqs_nomem);
1123 		}
1124 	}
1125 	mutex_exit(&tq->tq_lock);
1126 
1127 	return ((taskqid_t)tqe);
1128 }
1129 
1130 /*
1131  * Wait for all pending tasks to complete.
1132  * Calling taskq_wait from a task will cause deadlock.
1133  */
1134 void
1135 taskq_wait(taskq_t *tq)
1136 {
1137 	ASSERT(tq != curthread->t_taskq);
1138 
1139 	mutex_enter(&tq->tq_lock);
1140 	while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
1141 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1142 	mutex_exit(&tq->tq_lock);
1143 
1144 	if (tq->tq_flags & TASKQ_DYNAMIC) {
1145 		taskq_bucket_t *b = tq->tq_buckets;
1146 		int bid = 0;
1147 		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1148 			mutex_enter(&b->tqbucket_lock);
1149 			while (b->tqbucket_nalloc > 0)
1150 				cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
1151 			mutex_exit(&b->tqbucket_lock);
1152 		}
1153 	}
1154 }
1155 
1156 /*
1157  * Suspend execution of tasks.
1158  *
1159  * Tasks in the queue part will be suspended immediately upon return from this
1160  * function. Pending tasks in the dynamic part will continue to execute, but all
1161  * new tasks will  be suspended.
1162  */
1163 void
1164 taskq_suspend(taskq_t *tq)
1165 {
1166 	rw_enter(&tq->tq_threadlock, RW_WRITER);
1167 
1168 	if (tq->tq_flags & TASKQ_DYNAMIC) {
1169 		taskq_bucket_t *b = tq->tq_buckets;
1170 		int bid = 0;
1171 		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1172 			mutex_enter(&b->tqbucket_lock);
1173 			b->tqbucket_flags |= TQBUCKET_SUSPEND;
1174 			mutex_exit(&b->tqbucket_lock);
1175 		}
1176 	}
1177 	/*
1178 	 * Mark task queue as being suspended. Needed for taskq_suspended().
1179 	 */
1180 	mutex_enter(&tq->tq_lock);
1181 	ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED));
1182 	tq->tq_flags |= TASKQ_SUSPENDED;
1183 	mutex_exit(&tq->tq_lock);
1184 }
1185 
1186 /*
1187  * returns: 1 if tq is suspended, 0 otherwise.
1188  */
1189 int
1190 taskq_suspended(taskq_t *tq)
1191 {
1192 	return ((tq->tq_flags & TASKQ_SUSPENDED) != 0);
1193 }
1194 
1195 /*
1196  * Resume taskq execution.
1197  */
1198 void
1199 taskq_resume(taskq_t *tq)
1200 {
1201 	ASSERT(RW_WRITE_HELD(&tq->tq_threadlock));
1202 
1203 	if (tq->tq_flags & TASKQ_DYNAMIC) {
1204 		taskq_bucket_t *b = tq->tq_buckets;
1205 		int bid = 0;
1206 		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1207 			mutex_enter(&b->tqbucket_lock);
1208 			b->tqbucket_flags &= ~TQBUCKET_SUSPEND;
1209 			mutex_exit(&b->tqbucket_lock);
1210 		}
1211 	}
1212 	mutex_enter(&tq->tq_lock);
1213 	ASSERT(tq->tq_flags & TASKQ_SUSPENDED);
1214 	tq->tq_flags &= ~TASKQ_SUSPENDED;
1215 	mutex_exit(&tq->tq_lock);
1216 
1217 	rw_exit(&tq->tq_threadlock);
1218 }
1219 
1220 int
1221 taskq_member(taskq_t *tq, kthread_t *thread)
1222 {
1223 	return (thread->t_taskq == tq);
1224 }
1225 
1226 static void
1227 taskq_thread_create(taskq_t *tq)
1228 {
1229 	kthread_t *t;
1230 
1231 	ASSERT(MUTEX_HELD(&tq->tq_lock));
1232 	ASSERT(!(tq->tq_flags & TASKQ_THREAD_CREATED));
1233 
1234 	tq->tq_flags |= TASKQ_THREAD_CREATED;
1235 	tq->tq_active++;
1236 	t = thread_create(NULL, 0, taskq_thread, tq, 0, &p0, TS_RUN,
1237 	    tq->tq_pri);
1238 	t->t_taskq = tq;
1239 }
1240 
1241 /*
1242  * Common "sleep taskq thread" function, which handles CPR stuff, as well
1243  * as giving a nice common point for debuggers to find inactive threads.
1244  */
1245 static clock_t
1246 taskq_thread_wait(taskq_t *tq, kmutex_t *mx, kcondvar_t *cv,
1247     callb_cpr_t *cprinfo, clock_t timeout)
1248 {
1249 	clock_t ret = 0;
1250 
1251 	if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
1252 		CALLB_CPR_SAFE_BEGIN(cprinfo);
1253 	}
1254 	if (timeout < 0)
1255 		cv_wait(cv, mx);
1256 	else
1257 		ret = cv_timedwait(cv, mx, lbolt + timeout);
1258 
1259 	if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
1260 		CALLB_CPR_SAFE_END(cprinfo, mx);
1261 	}
1262 
1263 	return (ret);
1264 }
1265 
1266 /*
1267  * Worker thread for processing task queue.
1268  */
1269 static void
1270 taskq_thread(void *arg)
1271 {
1272 	int thread_id;
1273 
1274 	taskq_t *tq = arg;
1275 	taskq_ent_t *tqe;
1276 	callb_cpr_t cprinfo;
1277 	hrtime_t start, end;
1278 
1279 	if (tq->tq_flags & TASKQ_CPR_SAFE) {
1280 		CALLB_CPR_INIT_SAFE(curthread, tq->tq_name);
1281 	} else {
1282 		CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr,
1283 		    tq->tq_name);
1284 	}
1285 	mutex_enter(&tq->tq_lock);
1286 	thread_id = ++tq->tq_nthreads;
1287 	ASSERT(tq->tq_flags & TASKQ_THREAD_CREATED);
1288 	tq->tq_flags &= ~TASKQ_THREAD_CREATED;
1289 
1290 	VERIFY3S(thread_id, <=, tq->tq_nthreads_max);
1291 
1292 	if (tq->tq_nthreads_max == 1)
1293 		tq->tq_thread = curthread;
1294 	else
1295 		tq->tq_threadlist[thread_id - 1] = curthread;
1296 
1297 	for (;;) {
1298 		if (tq->tq_flags & TASKQ_CHANGING) {
1299 			/* we're done; clear the CHANGING flag */
1300 			if (tq->tq_nthreads == tq->tq_nthreads_target) {
1301 				tq->tq_flags &= ~TASKQ_CHANGING;
1302 				continue;
1303 			}
1304 			/* We're low on threads and none have been created */
1305 			if (tq->tq_nthreads < tq->tq_nthreads_target &&
1306 			    !(tq->tq_flags & TASKQ_THREAD_CREATED)) {
1307 				taskq_thread_create(tq);
1308 				continue;
1309 			}
1310 			/* We're no longer needed */
1311 			if (thread_id > tq->tq_nthreads_target) {
1312 				/*
1313 				 * To preserve the one-to-one mapping between
1314 				 * thread_id and thread, we must exit from
1315 				 * highest thread ID to least.
1316 				 *
1317 				 * However, if everyone is exiting, the order
1318 				 * doesn't matter, so just exit immediately.
1319 				 * (this is safe, since you must wait for
1320 				 * nthreads to reach 0 after setting
1321 				 * tq_nthreads_target to 0)
1322 				 */
1323 				if (thread_id == tq->tq_nthreads ||
1324 				    tq->tq_nthreads_target == 0)
1325 					break;
1326 
1327 				/* Wait for higher thread_ids to exit */
1328 				(void) taskq_thread_wait(tq, &tq->tq_lock,
1329 				    &tq->tq_exit_cv, &cprinfo, -1);
1330 				continue;
1331 			}
1332 		}
1333 		if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) {
1334 			if (--tq->tq_active == 0)
1335 				cv_broadcast(&tq->tq_wait_cv);
1336 			(void) taskq_thread_wait(tq, &tq->tq_lock,
1337 			    &tq->tq_dispatch_cv, &cprinfo, -1);
1338 			tq->tq_active++;
1339 			continue;
1340 		}
1341 		tqe->tqent_prev->tqent_next = tqe->tqent_next;
1342 		tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1343 		mutex_exit(&tq->tq_lock);
1344 
1345 		rw_enter(&tq->tq_threadlock, RW_READER);
1346 		start = gethrtime();
1347 		DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq,
1348 		    taskq_ent_t *, tqe);
1349 		tqe->tqent_func(tqe->tqent_arg);
1350 		DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq,
1351 		    taskq_ent_t *, tqe);
1352 		end = gethrtime();
1353 		rw_exit(&tq->tq_threadlock);
1354 
1355 		mutex_enter(&tq->tq_lock);
1356 		tq->tq_totaltime += end - start;
1357 		tq->tq_executed++;
1358 
1359 		taskq_ent_free(tq, tqe);
1360 	}
1361 
1362 	if (tq->tq_nthreads_max == 1)
1363 		tq->tq_thread = NULL;
1364 	else
1365 		tq->tq_threadlist[thread_id - 1] = NULL;
1366 
1367 	ASSERT(tq->tq_nthreads > 0);
1368 	if (--tq->tq_nthreads == 0)
1369 		cv_broadcast(&tq->tq_wait_cv);
1370 
1371 	/* let the other threads which need to exit know we're done */
1372 	cv_broadcast(&tq->tq_exit_cv);
1373 
1374 	/* We're exiting, and therefore no longer active */
1375 	tq->tq_active--;
1376 
1377 	ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE));
1378 	CALLB_CPR_EXIT(&cprinfo);
1379 	thread_exit();
1380 }
1381 
1382 /*
1383  * Worker per-entry thread for dynamic dispatches.
1384  */
1385 static void
1386 taskq_d_thread(taskq_ent_t *tqe)
1387 {
1388 	taskq_bucket_t	*bucket = tqe->tqent_bucket;
1389 	taskq_t		*tq = bucket->tqbucket_taskq;
1390 	kmutex_t	*lock = &bucket->tqbucket_lock;
1391 	kcondvar_t	*cv = &tqe->tqent_cv;
1392 	callb_cpr_t	cprinfo;
1393 	clock_t		w;
1394 
1395 	CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, tq->tq_name);
1396 
1397 	mutex_enter(lock);
1398 
1399 	for (;;) {
1400 		/*
1401 		 * If a task is scheduled (func != NULL), execute it, otherwise
1402 		 * sleep, waiting for a job.
1403 		 */
1404 		if (tqe->tqent_func != NULL) {
1405 			hrtime_t	start;
1406 			hrtime_t	end;
1407 
1408 			ASSERT(bucket->tqbucket_nalloc > 0);
1409 
1410 			/*
1411 			 * It is possible to free the entry right away before
1412 			 * actually executing the task so that subsequent
1413 			 * dispatches may immediately reuse it. But this,
1414 			 * effectively, creates a two-length queue in the entry
1415 			 * and may lead to a deadlock if the execution of the
1416 			 * current task depends on the execution of the next
1417 			 * scheduled task. So, we keep the entry busy until the
1418 			 * task is processed.
1419 			 */
1420 
1421 			mutex_exit(lock);
1422 			start = gethrtime();
1423 			DTRACE_PROBE3(taskq__d__exec__start, taskq_t *, tq,
1424 			    taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
1425 			tqe->tqent_func(tqe->tqent_arg);
1426 			DTRACE_PROBE3(taskq__d__exec__end, taskq_t *, tq,
1427 			    taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
1428 			end = gethrtime();
1429 			mutex_enter(lock);
1430 			bucket->tqbucket_totaltime += end - start;
1431 
1432 			/*
1433 			 * Return the entry to the bucket free list.
1434 			 */
1435 			tqe->tqent_func = NULL;
1436 			TQ_APPEND(bucket->tqbucket_freelist, tqe);
1437 			bucket->tqbucket_nalloc--;
1438 			bucket->tqbucket_nfree++;
1439 			ASSERT(!IS_EMPTY(bucket->tqbucket_freelist));
1440 			/*
1441 			 * taskq_wait() waits for nalloc to drop to zero on
1442 			 * tqbucket_cv.
1443 			 */
1444 			cv_signal(&bucket->tqbucket_cv);
1445 		}
1446 
1447 		/*
1448 		 * At this point the entry must be in the bucket free list -
1449 		 * either because it was there initially or because it just
1450 		 * finished executing a task and put itself on the free list.
1451 		 */
1452 		ASSERT(bucket->tqbucket_nfree > 0);
1453 		/*
1454 		 * Go to sleep unless we are closing.
1455 		 * If a thread is sleeping too long, it dies.
1456 		 */
1457 		if (! (bucket->tqbucket_flags & TQBUCKET_CLOSE)) {
1458 			w = taskq_thread_wait(tq, lock, cv,
1459 			    &cprinfo, taskq_thread_timeout * hz);
1460 		}
1461 
1462 		/*
1463 		 * At this point we may be in two different states:
1464 		 *
1465 		 * (1) tqent_func is set which means that a new task is
1466 		 *	dispatched and we need to execute it.
1467 		 *
1468 		 * (2) Thread is sleeping for too long or we are closing. In
1469 		 *	both cases destroy the thread and the entry.
1470 		 */
1471 
1472 		/* If func is NULL we should be on the freelist. */
1473 		ASSERT((tqe->tqent_func != NULL) ||
1474 		    (bucket->tqbucket_nfree > 0));
1475 		/* If func is non-NULL we should be allocated */
1476 		ASSERT((tqe->tqent_func == NULL) ||
1477 		    (bucket->tqbucket_nalloc > 0));
1478 
1479 		/* Check freelist consistency */
1480 		ASSERT((bucket->tqbucket_nfree > 0) ||
1481 		    IS_EMPTY(bucket->tqbucket_freelist));
1482 		ASSERT((bucket->tqbucket_nfree == 0) ||
1483 		    !IS_EMPTY(bucket->tqbucket_freelist));
1484 
1485 		if ((tqe->tqent_func == NULL) &&
1486 		    ((w == -1) || (bucket->tqbucket_flags & TQBUCKET_CLOSE))) {
1487 			/*
1488 			 * This thread is sleeping for too long or we are
1489 			 * closing - time to die.
1490 			 * Thread creation/destruction happens rarely,
1491 			 * so grabbing the lock is not a big performance issue.
1492 			 * The bucket lock is dropped by CALLB_CPR_EXIT().
1493 			 */
1494 
1495 			/* Remove the entry from the free list. */
1496 			tqe->tqent_prev->tqent_next = tqe->tqent_next;
1497 			tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1498 			ASSERT(bucket->tqbucket_nfree > 0);
1499 			bucket->tqbucket_nfree--;
1500 
1501 			TQ_STAT(bucket, tqs_tdeaths);
1502 			cv_signal(&bucket->tqbucket_cv);
1503 			tqe->tqent_thread = NULL;
1504 			mutex_enter(&tq->tq_lock);
1505 			tq->tq_tdeaths++;
1506 			mutex_exit(&tq->tq_lock);
1507 			CALLB_CPR_EXIT(&cprinfo);
1508 			kmem_cache_free(taskq_ent_cache, tqe);
1509 			thread_exit();
1510 		}
1511 	}
1512 }
1513 
1514 
1515 /*
1516  * Taskq creation. May sleep for memory.
1517  * Always use automatically generated instances to avoid kstat name space
1518  * collisions.
1519  */
1520 
1521 taskq_t *
1522 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
1523     int maxalloc, uint_t flags)
1524 {
1525 	return taskq_create_common(name, 0, nthreads, pri, minalloc,
1526 	    maxalloc, flags | TASKQ_NOINSTANCE);
1527 }
1528 
1529 /*
1530  * Create an instance of task queue. It is legal to create task queues with the
1531  * same name and different instances.
1532  *
1533  * taskq_create_instance is used by ddi_taskq_create() where it gets the
1534  * instance from ddi_get_instance(). In some cases the instance is not
1535  * initialized and is set to -1. This case is handled as if no instance was
1536  * passed at all.
1537  */
1538 taskq_t *
1539 taskq_create_instance(const char *name, int instance, int nthreads, pri_t pri,
1540     int minalloc, int maxalloc, uint_t flags)
1541 {
1542 	ASSERT((instance >= 0) || (instance == -1));
1543 
1544 	if (instance < 0) {
1545 		flags |= TASKQ_NOINSTANCE;
1546 	}
1547 
1548 	return (taskq_create_common(name, instance, nthreads,
1549 	    pri, minalloc, maxalloc, flags));
1550 }
1551 
1552 static taskq_t *
1553 taskq_create_common(const char *name, int instance, int nthreads, pri_t pri,
1554     int minalloc, int maxalloc, uint_t flags)
1555 {
1556 	taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP);
1557 	uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
1558 	uint_t bsize;	/* # of buckets - always power of 2 */
1559 	int max_nthreads;
1560 
1561 	/*
1562 	 * TASKQ_DYNAMIC is incompatible with TASKQ_CPR_SAFE and
1563 	 * TASKQ_THREADS_CPU_PCT.
1564 	 */
1565 	ASSERT(!(flags & TASKQ_DYNAMIC) ||
1566 	    !(flags & (TASKQ_CPR_SAFE | TASKQ_THREADS_CPU_PCT)));
1567 	/* TASKQ_CPR_SAFE is incompatible with TASKQ_THREADS_CPU_PCT */
1568 
1569 	ASSERT(!(flags & TASKQ_CPR_SAFE) || !(flags & TASKQ_THREADS_CPU_PCT));
1570 
1571 	bsize = 1 << (highbit(ncpus) - 1);
1572 	ASSERT(bsize >= 1);
1573 	bsize = MIN(bsize, taskq_maxbuckets);
1574 
1575 	if (flags & TASKQ_DYNAMIC) {
1576 		ASSERT3S(nthreads, >=, 1);
1577 		tq->tq_maxsize = nthreads;
1578 
1579 		/* For dynamic task queues use just one backup thread */
1580 		nthreads = max_nthreads = 1;
1581 
1582 	} else if (!(flags & TASKQ_THREADS_CPU_PCT)) {
1583 		ASSERT3S(nthreads, >=, 1);
1584 		max_nthreads = nthreads;
1585 	} else {
1586 		uint_t pct;
1587 		ASSERT3S(nthreads, >=, 0);
1588 		pct = nthreads;
1589 
1590 		if (pct > taskq_cpupct_max_percent)
1591 			pct = taskq_cpupct_max_percent;
1592 
1593 		tq->tq_threads_ncpus_pct = pct;
1594 		nthreads = TASKQ_THREADS_PCT(ncpus_online, pct);
1595 		max_nthreads = TASKQ_THREADS_PCT(max_ncpus, pct);
1596 	}
1597 
1598 	if (max_nthreads < taskq_minimum_nthreads_max)
1599 		max_nthreads = taskq_minimum_nthreads_max;
1600 
1601 	/*
1602 	 * Make sure the name is 0-terminated, and conforms to the rules for
1603 	 * C indentifiers
1604 	 */
1605 	(void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
1606 	strident_canon(tq->tq_name, TASKQ_NAMELEN + 1);
1607 
1608 	tq->tq_flags = flags | TASKQ_CHANGING;
1609 	tq->tq_active = 0;
1610 	tq->tq_instance = instance;
1611 	tq->tq_nthreads_target = nthreads;
1612 	tq->tq_nthreads_max = max_nthreads;
1613 	tq->tq_minalloc = minalloc;
1614 	tq->tq_maxalloc = maxalloc;
1615 	tq->tq_nbuckets = bsize;
1616 	tq->tq_pri = pri;
1617 
1618 	if (max_nthreads > 1)
1619 		tq->tq_threadlist = kmem_alloc(
1620 		    sizeof (kthread_t *) * max_nthreads, KM_SLEEP);
1621 
1622 	/* Add the taskq to the list of CPU_PCT taskqs */
1623 	if (flags & TASKQ_THREADS_CPU_PCT) {
1624 		taskq_cpupct_ent_t *tpp = kmem_zalloc(sizeof (*tpp), KM_SLEEP);
1625 
1626 		list_link_init(&tpp->tp_link);
1627 		tpp->tp_taskq = tq;
1628 
1629 		mutex_enter(&taskq_cpupct_lock);
1630 		list_insert_tail(&taskq_cpupct_list, tpp);
1631 		/* reset our target, to avoid race conditions */
1632 		tq->tq_nthreads_target = TASKQ_THREADS_PCT(ncpus_online,
1633 		    tq->tq_threads_ncpus_pct);
1634 		mutex_exit(&taskq_cpupct_lock);
1635 	}
1636 
1637 	mutex_enter(&tq->tq_lock);
1638 	if (flags & TASKQ_PREPOPULATE) {
1639 		while (minalloc-- > 0)
1640 			taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
1641 	}
1642 
1643 	/* create the first thread; if more are needed, it'll create them */
1644 	taskq_thread_create(tq);
1645 	mutex_exit(&tq->tq_lock);
1646 
1647 	if (flags & TASKQ_DYNAMIC) {
1648 		taskq_bucket_t *bucket = kmem_zalloc(sizeof (taskq_bucket_t) *
1649 		    bsize, KM_SLEEP);
1650 		int b_id;
1651 
1652 		tq->tq_buckets = bucket;
1653 
1654 		/* Initialize each bucket */
1655 		for (b_id = 0; b_id < bsize; b_id++, bucket++) {
1656 			mutex_init(&bucket->tqbucket_lock, NULL, MUTEX_DEFAULT,
1657 			    NULL);
1658 			cv_init(&bucket->tqbucket_cv, NULL, CV_DEFAULT, NULL);
1659 			bucket->tqbucket_taskq = tq;
1660 			bucket->tqbucket_freelist.tqent_next =
1661 			    bucket->tqbucket_freelist.tqent_prev =
1662 			    &bucket->tqbucket_freelist;
1663 			if (flags & TASKQ_PREPOPULATE)
1664 				taskq_bucket_extend(bucket);
1665 		}
1666 	}
1667 
1668 	/*
1669 	 * Install kstats.
1670 	 * We have two cases:
1671 	 *   1) Instance is provided to taskq_create_instance(). In this case it
1672 	 * 	should be >= 0 and we use it.
1673 	 *
1674 	 *   2) Instance is not provided and is automatically generated
1675 	 */
1676 	if (flags & TASKQ_NOINSTANCE) {
1677 		instance = tq->tq_instance =
1678 		    (int)(uintptr_t)vmem_alloc(taskq_id_arena, 1, VM_SLEEP);
1679 	}
1680 
1681 	if (flags & TASKQ_DYNAMIC) {
1682 		if ((tq->tq_kstat = kstat_create("unix", instance,
1683 		    tq->tq_name, "taskq_d", KSTAT_TYPE_NAMED,
1684 		    sizeof (taskq_d_kstat) / sizeof (kstat_named_t),
1685 		    KSTAT_FLAG_VIRTUAL)) != NULL) {
1686 			tq->tq_kstat->ks_lock = &taskq_d_kstat_lock;
1687 			tq->tq_kstat->ks_data = &taskq_d_kstat;
1688 			tq->tq_kstat->ks_update = taskq_d_kstat_update;
1689 			tq->tq_kstat->ks_private = tq;
1690 			kstat_install(tq->tq_kstat);
1691 		}
1692 	} else {
1693 		if ((tq->tq_kstat = kstat_create("unix", instance, tq->tq_name,
1694 		    "taskq", KSTAT_TYPE_NAMED,
1695 		    sizeof (taskq_kstat) / sizeof (kstat_named_t),
1696 		    KSTAT_FLAG_VIRTUAL)) != NULL) {
1697 			tq->tq_kstat->ks_lock = &taskq_kstat_lock;
1698 			tq->tq_kstat->ks_data = &taskq_kstat;
1699 			tq->tq_kstat->ks_update = taskq_kstat_update;
1700 			tq->tq_kstat->ks_private = tq;
1701 			kstat_install(tq->tq_kstat);
1702 		}
1703 	}
1704 
1705 	return (tq);
1706 }
1707 
1708 /*
1709  * taskq_destroy().
1710  *
1711  * Assumes: by the time taskq_destroy is called no one will use this task queue
1712  * in any way and no one will try to dispatch entries in it.
1713  */
1714 void
1715 taskq_destroy(taskq_t *tq)
1716 {
1717 	taskq_bucket_t *b = tq->tq_buckets;
1718 	int bid = 0;
1719 
1720 	ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE));
1721 
1722 	/*
1723 	 * Destroy kstats.
1724 	 */
1725 	if (tq->tq_kstat != NULL) {
1726 		kstat_delete(tq->tq_kstat);
1727 		tq->tq_kstat = NULL;
1728 	}
1729 
1730 	/*
1731 	 * Destroy instance if needed.
1732 	 */
1733 	if (tq->tq_flags & TASKQ_NOINSTANCE) {
1734 		vmem_free(taskq_id_arena, (void *)(uintptr_t)(tq->tq_instance),
1735 		    1);
1736 		tq->tq_instance = 0;
1737 	}
1738 
1739 	/*
1740 	 * Unregister from the cpupct list.
1741 	 */
1742 	if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) {
1743 		taskq_cpupct_ent_t *tpp;
1744 
1745 		mutex_enter(&taskq_cpupct_lock);
1746 		for (tpp = list_head(&taskq_cpupct_list); tpp != NULL;
1747 		    tpp = list_next(&taskq_cpupct_list, tpp)) {
1748 			if (tpp->tp_taskq == tq)
1749 				break;
1750 		}
1751 		ASSERT3P(tpp, !=, NULL);
1752 
1753 		list_remove(&taskq_cpupct_list, tpp);
1754 		mutex_exit(&taskq_cpupct_lock);
1755 
1756 		kmem_free(tpp, sizeof (*tpp));
1757 	}
1758 
1759 	/*
1760 	 * Wait for any pending entries to complete.
1761 	 */
1762 	taskq_wait(tq);
1763 
1764 	mutex_enter(&tq->tq_lock);
1765 	ASSERT((tq->tq_task.tqent_next == &tq->tq_task) &&
1766 	    (tq->tq_active == 0));
1767 
1768 	/* notify all the threads that they need to exit */
1769 	tq->tq_nthreads_target = 0;
1770 
1771 	tq->tq_flags |= TASKQ_CHANGING;
1772 	cv_broadcast(&tq->tq_dispatch_cv);
1773 	cv_broadcast(&tq->tq_exit_cv);
1774 
1775 	while (tq->tq_nthreads != 0)
1776 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1777 
1778 	if (tq->tq_nthreads_max != 1)
1779 		kmem_free(tq->tq_threadlist, sizeof (kthread_t *) *
1780 		    tq->tq_nthreads_max);
1781 
1782 	tq->tq_minalloc = 0;
1783 	while (tq->tq_nalloc != 0)
1784 		taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
1785 
1786 	mutex_exit(&tq->tq_lock);
1787 
1788 	/*
1789 	 * Mark each bucket as closing and wakeup all sleeping threads.
1790 	 */
1791 	for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1792 		taskq_ent_t *tqe;
1793 
1794 		mutex_enter(&b->tqbucket_lock);
1795 
1796 		b->tqbucket_flags |= TQBUCKET_CLOSE;
1797 		/* Wakeup all sleeping threads */
1798 
1799 		for (tqe = b->tqbucket_freelist.tqent_next;
1800 		    tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next)
1801 			cv_signal(&tqe->tqent_cv);
1802 
1803 		ASSERT(b->tqbucket_nalloc == 0);
1804 
1805 		/*
1806 		 * At this point we waited for all pending jobs to complete (in
1807 		 * both the task queue and the bucket and no new jobs should
1808 		 * arrive. Wait for all threads to die.
1809 		 */
1810 		while (b->tqbucket_nfree > 0)
1811 			cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
1812 		mutex_exit(&b->tqbucket_lock);
1813 		mutex_destroy(&b->tqbucket_lock);
1814 		cv_destroy(&b->tqbucket_cv);
1815 	}
1816 
1817 	if (tq->tq_buckets != NULL) {
1818 		ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
1819 		kmem_free(tq->tq_buckets,
1820 		    sizeof (taskq_bucket_t) * tq->tq_nbuckets);
1821 
1822 		/* Cleanup fields before returning tq to the cache */
1823 		tq->tq_buckets = NULL;
1824 		tq->tq_tcreates = 0;
1825 		tq->tq_tdeaths = 0;
1826 	} else {
1827 		ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
1828 	}
1829 
1830 	tq->tq_threads_ncpus_pct = 0;
1831 	tq->tq_totaltime = 0;
1832 	tq->tq_tasks = 0;
1833 	tq->tq_maxtasks = 0;
1834 	tq->tq_executed = 0;
1835 	kmem_cache_free(taskq_cache, tq);
1836 }
1837 
1838 /*
1839  * Extend a bucket with a new entry on the free list and attach a worker thread
1840  * to it.
1841  *
1842  * Argument: pointer to the bucket.
1843  *
1844  * This function may quietly fail. It is only used by taskq_dispatch() which
1845  * handles such failures properly.
1846  */
1847 static void
1848 taskq_bucket_extend(void *arg)
1849 {
1850 	taskq_ent_t *tqe;
1851 	taskq_bucket_t *b = (taskq_bucket_t *)arg;
1852 	taskq_t *tq = b->tqbucket_taskq;
1853 	int nthreads;
1854 
1855 	if (! ENOUGH_MEMORY()) {
1856 		TQ_STAT(b, tqs_nomem);
1857 		return;
1858 	}
1859 
1860 	mutex_enter(&tq->tq_lock);
1861 
1862 	/*
1863 	 * Observe global taskq limits on the number of threads.
1864 	 */
1865 	if (tq->tq_tcreates++ - tq->tq_tdeaths > tq->tq_maxsize) {
1866 		tq->tq_tcreates--;
1867 		mutex_exit(&tq->tq_lock);
1868 		return;
1869 	}
1870 	mutex_exit(&tq->tq_lock);
1871 
1872 	tqe = kmem_cache_alloc(taskq_ent_cache, KM_NOSLEEP);
1873 
1874 	if (tqe == NULL) {
1875 		mutex_enter(&tq->tq_lock);
1876 		TQ_STAT(b, tqs_nomem);
1877 		tq->tq_tcreates--;
1878 		mutex_exit(&tq->tq_lock);
1879 		return;
1880 	}
1881 
1882 	ASSERT(tqe->tqent_thread == NULL);
1883 
1884 	tqe->tqent_bucket = b;
1885 
1886 	/*
1887 	 * Create a thread in a TS_STOPPED state first. If it is successfully
1888 	 * created, place the entry on the free list and start the thread.
1889 	 */
1890 	tqe->tqent_thread = thread_create(NULL, 0, taskq_d_thread, tqe,
1891 	    0, &p0, TS_STOPPED, tq->tq_pri);
1892 
1893 	/*
1894 	 * Once the entry is ready, link it to the the bucket free list.
1895 	 */
1896 	mutex_enter(&b->tqbucket_lock);
1897 	tqe->tqent_func = NULL;
1898 	TQ_APPEND(b->tqbucket_freelist, tqe);
1899 	b->tqbucket_nfree++;
1900 	TQ_STAT(b, tqs_tcreates);
1901 
1902 #if TASKQ_STATISTIC
1903 	nthreads = b->tqbucket_stat.tqs_tcreates -
1904 	    b->tqbucket_stat.tqs_tdeaths;
1905 	b->tqbucket_stat.tqs_maxthreads = MAX(nthreads,
1906 	    b->tqbucket_stat.tqs_maxthreads);
1907 #endif
1908 
1909 	mutex_exit(&b->tqbucket_lock);
1910 	/*
1911 	 * Start the stopped thread.
1912 	 */
1913 	thread_lock(tqe->tqent_thread);
1914 	tqe->tqent_thread->t_taskq = tq;
1915 	tqe->tqent_thread->t_schedflag |= TS_ALLSTART;
1916 	setrun_locked(tqe->tqent_thread);
1917 	thread_unlock(tqe->tqent_thread);
1918 }
1919 
1920 static int
1921 taskq_kstat_update(kstat_t *ksp, int rw)
1922 {
1923 	struct taskq_kstat *tqsp = &taskq_kstat;
1924 	taskq_t *tq = ksp->ks_private;
1925 
1926 	if (rw == KSTAT_WRITE)
1927 		return (EACCES);
1928 
1929 	tqsp->tq_tasks.value.ui64 = tq->tq_tasks;
1930 	tqsp->tq_executed.value.ui64 = tq->tq_executed;
1931 	tqsp->tq_maxtasks.value.ui64 = tq->tq_maxtasks;
1932 	tqsp->tq_totaltime.value.ui64 = tq->tq_totaltime;
1933 	tqsp->tq_nactive.value.ui64 = tq->tq_active;
1934 	tqsp->tq_nalloc.value.ui64 = tq->tq_nalloc;
1935 	tqsp->tq_pri.value.ui64 = tq->tq_pri;
1936 	tqsp->tq_nthreads.value.ui64 = tq->tq_nthreads;
1937 	return (0);
1938 }
1939 
1940 static int
1941 taskq_d_kstat_update(kstat_t *ksp, int rw)
1942 {
1943 	struct taskq_d_kstat *tqsp = &taskq_d_kstat;
1944 	taskq_t *tq = ksp->ks_private;
1945 	taskq_bucket_t *b = tq->tq_buckets;
1946 	int bid = 0;
1947 
1948 	if (rw == KSTAT_WRITE)
1949 		return (EACCES);
1950 
1951 	ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
1952 
1953 	tqsp->tqd_btasks.value.ui64 = tq->tq_tasks;
1954 	tqsp->tqd_bexecuted.value.ui64 = tq->tq_executed;
1955 	tqsp->tqd_bmaxtasks.value.ui64 = tq->tq_maxtasks;
1956 	tqsp->tqd_bnalloc.value.ui64 = tq->tq_nalloc;
1957 	tqsp->tqd_bnactive.value.ui64 = tq->tq_active;
1958 	tqsp->tqd_btotaltime.value.ui64 = tq->tq_totaltime;
1959 	tqsp->tqd_pri.value.ui64 = tq->tq_pri;
1960 
1961 	tqsp->tqd_hits.value.ui64 = 0;
1962 	tqsp->tqd_misses.value.ui64 = 0;
1963 	tqsp->tqd_overflows.value.ui64 = 0;
1964 	tqsp->tqd_tcreates.value.ui64 = 0;
1965 	tqsp->tqd_tdeaths.value.ui64 = 0;
1966 	tqsp->tqd_maxthreads.value.ui64 = 0;
1967 	tqsp->tqd_nomem.value.ui64 = 0;
1968 	tqsp->tqd_disptcreates.value.ui64 = 0;
1969 	tqsp->tqd_totaltime.value.ui64 = 0;
1970 	tqsp->tqd_nalloc.value.ui64 = 0;
1971 	tqsp->tqd_nfree.value.ui64 = 0;
1972 
1973 	for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1974 		tqsp->tqd_hits.value.ui64 += b->tqbucket_stat.tqs_hits;
1975 		tqsp->tqd_misses.value.ui64 += b->tqbucket_stat.tqs_misses;
1976 		tqsp->tqd_overflows.value.ui64 += b->tqbucket_stat.tqs_overflow;
1977 		tqsp->tqd_tcreates.value.ui64 += b->tqbucket_stat.tqs_tcreates;
1978 		tqsp->tqd_tdeaths.value.ui64 += b->tqbucket_stat.tqs_tdeaths;
1979 		tqsp->tqd_maxthreads.value.ui64 +=
1980 		    b->tqbucket_stat.tqs_maxthreads;
1981 		tqsp->tqd_nomem.value.ui64 += b->tqbucket_stat.tqs_nomem;
1982 		tqsp->tqd_disptcreates.value.ui64 +=
1983 		    b->tqbucket_stat.tqs_disptcreates;
1984 		tqsp->tqd_totaltime.value.ui64 += b->tqbucket_totaltime;
1985 		tqsp->tqd_nalloc.value.ui64 += b->tqbucket_nalloc;
1986 		tqsp->tqd_nfree.value.ui64 += b->tqbucket_nfree;
1987 	}
1988 	return (0);
1989 }
1990