xref: /titanic_50/usr/src/uts/common/os/task.c (revision 63602c90af2802f2ab666ab39bb4aea7d02500c3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/atomic.h>
29 #include <sys/cmn_err.h>
30 #include <sys/exacct.h>
31 #include <sys/id_space.h>
32 #include <sys/kmem.h>
33 #include <sys/modhash.h>
34 #include <sys/mutex.h>
35 #include <sys/proc.h>
36 #include <sys/project.h>
37 #include <sys/rctl.h>
38 #include <sys/systm.h>
39 #include <sys/task.h>
40 #include <sys/time.h>
41 #include <sys/types.h>
42 #include <sys/zone.h>
43 #include <sys/cpuvar.h>
44 #include <sys/fss.h>
45 #include <sys/class.h>
46 #include <sys/project.h>
47 
48 /*
49  * Tasks
50  *
51  *   A task is a collection of processes, associated with a common project ID
52  *   and related by a common initial parent.  The task primarily represents a
53  *   natural process sequence with known resource usage, although it can also be
54  *   viewed as a convenient grouping of processes for signal delivery, processor
55  *   binding, and administrative operations.
56  *
57  * Membership and observership
58  *   We can conceive of situations where processes outside of the task may wish
59  *   to examine the resource usage of the task.  Similarly, a number of the
60  *   administrative operations on a task can be performed by processes who are
61  *   not members of the task.  Accordingly, we must design a locking strategy
62  *   where observers of the task, who wish to examine or operate on the task,
63  *   and members of task, who can perform the mentioned operations, as well as
64  *   leave the task, see a consistent and correct representation of the task at
65  *   all times.
66  *
67  * Locking
68  *   Because the task membership is a new relation between processes, its
69  *   locking becomes an additional responsibility of the pidlock/p_lock locking
70  *   sequence; however, tasks closely resemble sessions and the session locking
71  *   model is mostly appropriate for the interaction of tasks, processes, and
72  *   procfs.
73  *
74  *   kmutex_t task_hash_lock
75  *     task_hash_lock is a global lock protecting the contents of the task
76  *     ID-to-task pointer hash.  Holders of task_hash_lock must not attempt to
77  *     acquire pidlock or p_lock.
78  *   uint_t tk_hold_count
79  *     tk_hold_count, the number of members and observers of the current task,
80  *     must be manipulated atomically.
81  *   proc_t *tk_memb_list
82  *   proc_t *p_tasknext
83  *   proc_t *p_taskprev
84  *     The task's membership list is protected by pidlock, and is therefore
85  *     always acquired before any of its members' p_lock mutexes.  The p_task
86  *     member of the proc structure is protected by pidlock or p_lock for
87  *     reading, and by both pidlock and p_lock for modification, as is done for
88  *     p_sessp.  The key point is that only the process can modify its p_task,
89  *     and not any entity on the system.  (/proc will use prlock() to prevent
90  *     the process from leaving, as opposed to pidlock.)
91  *   kmutex_t tk_usage_lock
92  *     tk_usage_lock is a per-task lock protecting the contents of the task
93  *     usage structure and tk_nlwps counter for the task.max-lwps resource
94  *     control.
95  */
96 
97 int task_hash_size = 256;
98 static kmutex_t task_hash_lock;
99 static mod_hash_t *task_hash;
100 
101 static id_space_t *taskid_space;	/* global taskid space */
102 static kmem_cache_t *task_cache;	/* kmem cache for task structures */
103 
104 rctl_hndl_t rc_task_lwps;
105 rctl_hndl_t rc_task_cpu_time;
106 
107 /*
108  * static rctl_qty_t task_usage_lwps(void *taskp)
109  *
110  * Overview
111  *   task_usage_lwps() is the usage operation for the resource control
112  *   associated with the number of LWPs in a task.
113  *
114  * Return values
115  *   The number of LWPs in the given task is returned.
116  *
117  * Caller's context
118  *   The p->p_lock must be held across the call.
119  */
120 /*ARGSUSED*/
121 static rctl_qty_t
122 task_lwps_usage(rctl_t *r, proc_t *p)
123 {
124 	task_t *t;
125 	rctl_qty_t nlwps;
126 
127 	ASSERT(MUTEX_HELD(&p->p_lock));
128 
129 	t = p->p_task;
130 	mutex_enter(&p->p_zone->zone_nlwps_lock);
131 	nlwps = t->tk_nlwps;
132 	mutex_exit(&p->p_zone->zone_nlwps_lock);
133 
134 	return (nlwps);
135 }
136 
137 /*
138  * static int task_test_lwps(void *taskp, rctl_val_t *, int64_t incr,
139  *   int flags)
140  *
141  * Overview
142  *   task_test_lwps() is the test-if-valid-increment for the resource control
143  *   for the number of processes in a task.
144  *
145  * Return values
146  *   0 if the threshold limit was not passed, 1 if the limit was passed.
147  *
148  * Caller's context
149  *   p->p_lock must be held across the call.
150  */
151 /*ARGSUSED*/
152 static int
153 task_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
154     rctl_qty_t incr,
155     uint_t flags)
156 {
157 	rctl_qty_t nlwps;
158 
159 	ASSERT(MUTEX_HELD(&p->p_lock));
160 	ASSERT(e->rcep_t == RCENTITY_TASK);
161 	if (e->rcep_p.task == NULL)
162 		return (0);
163 
164 	ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock)));
165 	nlwps = e->rcep_p.task->tk_nlwps;
166 
167 	if (nlwps + incr > rcntl->rcv_value)
168 		return (1);
169 
170 	return (0);
171 }
172 /*ARGSUSED*/
173 static int
174 task_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) {
175 
176 	ASSERT(MUTEX_HELD(&p->p_lock));
177 	ASSERT(e->rcep_t == RCENTITY_TASK);
178 	if (e->rcep_p.task == NULL)
179 		return (0);
180 
181 	e->rcep_p.task->tk_nlwps_ctl = nv;
182 	return (0);
183 }
184 
185 /*
186  * static rctl_qty_t task_usage_cpu_secs(void *taskp)
187  *
188  * Overview
189  *   task_usage_cpu_secs() is the usage operation for the resource control
190  *   associated with the total accrued CPU seconds for a task.
191  *
192  * Return values
193  *   The number of CPU seconds consumed by the task is returned.
194  *
195  * Caller's context
196  *   The given task must be held across the call.
197  */
198 /*ARGSUSED*/
199 static rctl_qty_t
200 task_cpu_time_usage(rctl_t *r, proc_t *p)
201 {
202 	task_t *t = p->p_task;
203 
204 	ASSERT(MUTEX_HELD(&p->p_lock));
205 	return (t->tk_cpu_time / hz);
206 }
207 
208 /*
209  * static int task_test_cpu_secs(void *taskp, rctl_val_t *, int64_t incr,
210  *   int flags)
211  *
212  * Overview
213  *   task_test_cpu_secs() is the test-if-valid-increment for the resource
214  *   control for the total accrued CPU seconds for a task.
215  *
216  * Return values
217  *   0 if the threshold limit was not passed, 1 if the limit was passed.
218  *
219  * Caller's context
220  *   The given task must be held across the call.
221  */
222 /*ARGSUSED*/
223 static int
224 task_cpu_time_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
225     struct rctl_val *rcntl, rctl_qty_t incr, uint_t flags)
226 {
227 	task_t *t;
228 
229 	ASSERT(MUTEX_HELD(&p->p_lock));
230 	ASSERT(e->rcep_t == RCENTITY_TASK);
231 	if (e->rcep_p.task == NULL)
232 		return (0);
233 
234 	t = e->rcep_p.task;
235 	if ((t->tk_cpu_time + incr) / hz >= rcntl->rcv_value)
236 		return (1);
237 
238 	return (0);
239 }
240 
241 static task_t *
242 task_find(taskid_t id, zoneid_t zoneid)
243 {
244 	task_t *tk;
245 
246 	ASSERT(MUTEX_HELD(&task_hash_lock));
247 
248 	if (mod_hash_find(task_hash, (mod_hash_key_t)(uintptr_t)id,
249 	    (mod_hash_val_t *)&tk) == MH_ERR_NOTFOUND ||
250 	    (zoneid != ALL_ZONES && zoneid != tk->tk_zone->zone_id))
251 		return (NULL);
252 
253 	return (tk);
254 }
255 
256 /*
257  * task_hold_by_id(), task_hold_by_id_zone()
258  *
259  * Overview
260  *   task_hold_by_id() is used to take a reference on a task by its task id,
261  *   supporting the various system call interfaces for obtaining resource data,
262  *   delivering signals, and so forth.
263  *
264  * Return values
265  *   Returns a pointer to the task_t with taskid_t id.  The task is returned
266  *   with its hold count incremented by one.  Returns NULL if there
267  *   is no task with the requested id.
268  *
269  * Caller's context
270  *   Caller must not be holding task_hash_lock.  No restrictions on context.
271  */
272 task_t *
273 task_hold_by_id_zone(taskid_t id, zoneid_t zoneid)
274 {
275 	task_t *tk;
276 
277 	mutex_enter(&task_hash_lock);
278 	if ((tk = task_find(id, zoneid)) != NULL)
279 		atomic_add_32(&tk->tk_hold_count, 1);
280 	mutex_exit(&task_hash_lock);
281 
282 	return (tk);
283 }
284 
285 task_t *
286 task_hold_by_id(taskid_t id)
287 {
288 	zoneid_t zoneid;
289 
290 	if (INGLOBALZONE(curproc))
291 		zoneid = ALL_ZONES;
292 	else
293 		zoneid = getzoneid();
294 	return (task_hold_by_id_zone(id, zoneid));
295 }
296 
297 /*
298  * void task_hold(task_t *)
299  *
300  * Overview
301  *   task_hold() is used to take an additional reference to the given task.
302  *
303  * Return values
304  *   None.
305  *
306  * Caller's context
307  *   No restriction on context.
308  */
309 void
310 task_hold(task_t *tk)
311 {
312 	atomic_add_32(&tk->tk_hold_count, 1);
313 }
314 
315 /*
316  * void task_rele(task_t *)
317  *
318  * Overview
319  *   task_rele() relinquishes a reference on the given task, which was acquired
320  *   via task_hold() or task_hold_by_id().  If this is the last member or
321  *   observer of the task, dispatch it for commitment via the accounting
322  *   subsystem.
323  *
324  * Return values
325  *   None.
326  *
327  * Caller's context
328  *   Caller must not be holding the task_hash_lock.
329  *   Caller's context must be acceptable for KM_SLEEP allocations.
330  */
331 void
332 task_rele(task_t *tk)
333 {
334 	mutex_enter(&task_hash_lock);
335 	if (atomic_add_32_nv(&tk->tk_hold_count, -1) > 0) {
336 		mutex_exit(&task_hash_lock);
337 		return;
338 	}
339 
340 	mutex_enter(&tk->tk_zone->zone_nlwps_lock);
341 	tk->tk_proj->kpj_ntasks--;
342 	mutex_exit(&tk->tk_zone->zone_nlwps_lock);
343 
344 	if (mod_hash_destroy(task_hash,
345 	    (mod_hash_key_t)(uintptr_t)tk->tk_tkid) != 0)
346 		panic("unable to delete task %d", tk->tk_tkid);
347 	mutex_exit(&task_hash_lock);
348 
349 	/*
350 	 * At this point, there are no members or observers of the task, so we
351 	 * can safely send it on for commitment to the accounting subsystem.
352 	 * The task will be destroyed in task_end() subsequent to commitment.
353 	 */
354 	(void) taskq_dispatch(exacct_queue, exacct_commit_task, tk, KM_SLEEP);
355 }
356 
357 /*
358  * task_t *task_create(projid_t, zone *)
359  *
360  * Overview
361  *   A process constructing a new task calls task_create() to construct and
362  *   preinitialize the task for the appropriate destination project.  Only one
363  *   task, the primordial task0, is not created with task_create().
364  *
365  * Return values
366  *   None.
367  *
368  * Caller's context
369  *   Caller's context should be safe for KM_SLEEP allocations.
370  *   The caller should appropriately bump the kpj_ntasks counter on the
371  *   project that contains this task.
372  */
373 task_t *
374 task_create(projid_t projid, zone_t *zone)
375 {
376 	task_t *tk = kmem_cache_alloc(task_cache, KM_SLEEP);
377 	task_t *ancestor_tk;
378 	taskid_t tkid;
379 	task_usage_t *tu = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
380 	mod_hash_hndl_t hndl;
381 	rctl_set_t *set = rctl_set_create();
382 	rctl_alloc_gp_t *gp;
383 	rctl_entity_p_t e;
384 
385 	bzero(tk, sizeof (task_t));
386 
387 	tk->tk_tkid = tkid = id_alloc(taskid_space);
388 	tk->tk_nlwps = 0;
389 	tk->tk_nlwps_ctl = INT_MAX;
390 	tk->tk_usage = tu;
391 	tk->tk_inherited = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
392 	tk->tk_proj = project_hold_by_id(projid, zone, PROJECT_HOLD_INSERT);
393 	tk->tk_flags = TASK_NORMAL;
394 
395 	/*
396 	 * Copy ancestor task's resource controls.
397 	 */
398 	zone_task_hold(zone);
399 	mutex_enter(&curproc->p_lock);
400 	ancestor_tk = curproc->p_task;
401 	task_hold(ancestor_tk);
402 	tk->tk_zone = zone;
403 	mutex_exit(&curproc->p_lock);
404 
405 	for (;;) {
406 		gp = rctl_set_dup_prealloc(ancestor_tk->tk_rctls);
407 
408 		mutex_enter(&ancestor_tk->tk_rctls->rcs_lock);
409 		if (rctl_set_dup_ready(ancestor_tk->tk_rctls, gp))
410 			break;
411 
412 		mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
413 
414 		rctl_prealloc_destroy(gp);
415 	}
416 
417 	/*
418 	 * At this point, curproc does not have the appropriate linkage
419 	 * through the task to the project. So, rctl_set_dup should only
420 	 * copy the rctls, and leave the callbacks for later.
421 	 */
422 	e.rcep_p.task = tk;
423 	e.rcep_t = RCENTITY_TASK;
424 	tk->tk_rctls = rctl_set_dup(ancestor_tk->tk_rctls, curproc, curproc, &e,
425 	    set, gp, RCD_DUP);
426 	mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
427 
428 	rctl_prealloc_destroy(gp);
429 
430 	/*
431 	 * Record the ancestor task's ID for use by extended accounting.
432 	 */
433 	tu->tu_anctaskid = ancestor_tk->tk_tkid;
434 	task_rele(ancestor_tk);
435 
436 	/*
437 	 * Put new task structure in the hash table.
438 	 */
439 	(void) mod_hash_reserve(task_hash, &hndl);
440 	mutex_enter(&task_hash_lock);
441 	ASSERT(task_find(tkid, getzoneid()) == NULL);
442 	if (mod_hash_insert_reserve(task_hash, (mod_hash_key_t)(uintptr_t)tkid,
443 	    (mod_hash_val_t *)tk, hndl) != 0) {
444 		mod_hash_cancel(task_hash, &hndl);
445 		panic("unable to insert task %d(%p)", tkid, (void *)tk);
446 	}
447 	mutex_exit(&task_hash_lock);
448 
449 	return (tk);
450 }
451 
452 /*
453  * void task_attach(task_t *, proc_t *)
454  *
455  * Overview
456  *   task_attach() is used to attach a process to a task; this operation is only
457  *   performed as a result of a fork() or settaskid() system call.  The proc_t's
458  *   p_tasknext and p_taskprev fields will be set such that the proc_t is a
459  *   member of the doubly-linked list of proc_t's that make up the task.
460  *
461  * Return values
462  *   None.
463  *
464  * Caller's context
465  *   pidlock and p->p_lock must be held on entry.
466  */
467 void
468 task_attach(task_t *tk, proc_t *p)
469 {
470 	proc_t *first, *prev;
471 	rctl_entity_p_t e;
472 	ASSERT(tk != NULL);
473 	ASSERT(p != NULL);
474 	ASSERT(MUTEX_HELD(&pidlock));
475 	ASSERT(MUTEX_HELD(&p->p_lock));
476 
477 	if (tk->tk_memb_list == NULL) {
478 		p->p_tasknext = p;
479 		p->p_taskprev = p;
480 	} else {
481 		first = tk->tk_memb_list;
482 		prev = first->p_taskprev;
483 		first->p_taskprev = p;
484 		p->p_tasknext = first;
485 		p->p_taskprev = prev;
486 		prev->p_tasknext = p;
487 	}
488 	tk->tk_memb_list = p;
489 	task_hold(tk);
490 	p->p_task = tk;
491 
492 	/*
493 	 * Now that the linkage from process to task and project is
494 	 * complete, do the required callbacks for the task and project
495 	 * rctl sets.
496 	 */
497 	e.rcep_p.proj = tk->tk_proj;
498 	e.rcep_t = RCENTITY_PROJECT;
499 	(void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_proj->kpj_rctls, NULL,
500 	    RCD_CALLBACK);
501 
502 	e.rcep_p.task = tk;
503 	e.rcep_t = RCENTITY_TASK;
504 	(void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_rctls, NULL,
505 	    RCD_CALLBACK);
506 
507 }
508 
509 /*
510  * task_begin()
511  *
512  * Overview
513  *   A process constructing a new task calls task_begin() to initialize the
514  *   task, by attaching itself as a member.
515  *
516  * Return values
517  *   None.
518  *
519  * Caller's context
520  *   pidlock and p_lock must be held across the call to task_begin().
521  */
522 void
523 task_begin(task_t *tk, proc_t *p)
524 {
525 	timestruc_t ts;
526 	task_usage_t *tu;
527 
528 	ASSERT(MUTEX_HELD(&pidlock));
529 	ASSERT(MUTEX_HELD(&p->p_lock));
530 
531 	mutex_enter(&tk->tk_usage_lock);
532 	tu = tk->tk_usage;
533 	gethrestime(&ts);
534 	tu->tu_startsec = (uint64_t)ts.tv_sec;
535 	tu->tu_startnsec = (uint64_t)ts.tv_nsec;
536 	mutex_exit(&tk->tk_usage_lock);
537 
538 	/*
539 	 * Join process to the task as a member.
540 	 */
541 	task_attach(tk, p);
542 }
543 
544 /*
545  * void task_detach(proc_t *)
546  *
547  * Overview
548  *   task_detach() removes the specified process from its task.  task_detach
549  *   sets the process's task membership to NULL, in anticipation of a final exit
550  *   or of joining a new task.  Because task_rele() requires a context safe for
551  *   KM_SLEEP allocations, a task_detach() is followed by a subsequent
552  *   task_rele() once appropriate context is available.
553  *
554  *   Because task_detach() involves relinquishing the process's membership in
555  *   the project, any observational rctls the process may have had on the task
556  *   or project are destroyed.
557  *
558  * Return values
559  *   None.
560  *
561  * Caller's context
562  *   pidlock and p_lock held across task_detach().
563  */
564 void
565 task_detach(proc_t *p)
566 {
567 	task_t *tk = p->p_task;
568 
569 	ASSERT(MUTEX_HELD(&pidlock));
570 	ASSERT(MUTEX_HELD(&p->p_lock));
571 	ASSERT(p->p_task != NULL);
572 	ASSERT(tk->tk_memb_list != NULL);
573 
574 	if (tk->tk_memb_list == p)
575 		tk->tk_memb_list = p->p_tasknext;
576 	if (tk->tk_memb_list == p)
577 		tk->tk_memb_list = NULL;
578 	p->p_taskprev->p_tasknext = p->p_tasknext;
579 	p->p_tasknext->p_taskprev = p->p_taskprev;
580 
581 	rctl_set_tearoff(p->p_task->tk_rctls, p);
582 	rctl_set_tearoff(p->p_task->tk_proj->kpj_rctls, p);
583 
584 	p->p_task = NULL;
585 	p->p_tasknext = p->p_taskprev = NULL;
586 }
587 
588 /*
589  * task_change(task_t *, proc_t *)
590  *
591  * Overview
592  *   task_change() removes the specified process from its current task.  The
593  *   process is then attached to the specified task.  This routine is called
594  *   from settaskid() when process is being moved to a new task.
595  *
596  * Return values
597  *   None.
598  *
599  * Caller's context
600  *   pidlock and p_lock held across task_change()
601  */
602 void
603 task_change(task_t *newtk, proc_t *p)
604 {
605 	task_t *oldtk = p->p_task;
606 
607 	ASSERT(MUTEX_HELD(&pidlock));
608 	ASSERT(MUTEX_HELD(&p->p_lock));
609 	ASSERT(oldtk != NULL);
610 	ASSERT(oldtk->tk_memb_list != NULL);
611 
612 	mutex_enter(&p->p_zone->zone_nlwps_lock);
613 	oldtk->tk_nlwps -= p->p_lwpcnt;
614 	mutex_exit(&p->p_zone->zone_nlwps_lock);
615 
616 	mutex_enter(&newtk->tk_zone->zone_nlwps_lock);
617 	newtk->tk_nlwps += p->p_lwpcnt;
618 	mutex_exit(&newtk->tk_zone->zone_nlwps_lock);
619 
620 	task_detach(p);
621 	task_begin(newtk, p);
622 	exacct_move_mstate(p, oldtk, newtk);
623 }
624 
625 /*
626  * task_end()
627  *
628  * Overview
629  *   task_end() contains the actions executed once the final member of
630  *   a task has released the task, and all actions connected with the task, such
631  *   as committing an accounting record to a file, are completed.  It is called
632  *   by the known last consumer of the task information.  Additionally,
633  *   task_end() must never refer to any process in the system.
634  *
635  * Return values
636  *   None.
637  *
638  * Caller's context
639  *   No restrictions on context, beyond that given above.
640  */
641 void
642 task_end(task_t *tk)
643 {
644 	ASSERT(tk->tk_hold_count == 0);
645 
646 	project_rele(tk->tk_proj);
647 	kmem_free(tk->tk_usage, sizeof (task_usage_t));
648 	kmem_free(tk->tk_inherited, sizeof (task_usage_t));
649 	if (tk->tk_prevusage != NULL)
650 		kmem_free(tk->tk_prevusage, sizeof (task_usage_t));
651 	if (tk->tk_zoneusage != NULL)
652 		kmem_free(tk->tk_zoneusage, sizeof (task_usage_t));
653 	rctl_set_free(tk->tk_rctls);
654 	id_free(taskid_space, tk->tk_tkid);
655 	zone_task_rele(tk->tk_zone);
656 	kmem_cache_free(task_cache, tk);
657 }
658 
659 static void
660 changeproj(proc_t *p, kproject_t *kpj, zone_t *zone, void *projbuf,
661     void *zonebuf)
662 {
663 	kproject_t *oldkpj;
664 	kthread_t *t;
665 
666 	ASSERT(MUTEX_HELD(&pidlock));
667 	ASSERT(MUTEX_HELD(&p->p_lock));
668 
669 	if ((t = p->p_tlist) != NULL) {
670 		do {
671 			(void) project_hold(kpj);
672 
673 			thread_lock(t);
674 			oldkpj = ttoproj(t);
675 
676 			/*
677 			 * Kick this thread so that he doesn't sit
678 			 * on a wrong wait queue.
679 			 */
680 			if (ISWAITING(t))
681 				setrun_locked(t);
682 
683 			/*
684 			 * The thread wants to go on the project wait queue, but
685 			 * the waitq is changing.
686 			 */
687 			if (t->t_schedflag & TS_PROJWAITQ)
688 				t->t_schedflag &= ~ TS_PROJWAITQ;
689 
690 			t->t_proj = kpj;
691 			t->t_pre_sys = 1;		/* For cred update */
692 			thread_unlock(t);
693 			fss_changeproj(t, kpj, zone, projbuf, zonebuf);
694 
695 			project_rele(oldkpj);
696 		} while ((t = t->t_forw) != p->p_tlist);
697 	}
698 }
699 
700 /*
701  * task_join()
702  *
703  * Overview
704  *   task_join() contains the actions that must be executed when the first
705  *   member (curproc) of a newly created task joins it.  It may never fail.
706  *
707  *   The caller must make sure holdlwps() is called so that all other lwps are
708  *   stopped prior to calling this function.
709  *
710  *   NB: It returns with curproc->p_lock held.
711  *
712  * Return values
713  *   Pointer to the old task.
714  *
715  * Caller's context
716  *   cpu_lock must be held entering the function.  It will acquire pidlock,
717  *   p_crlock and p_lock during execution.
718  */
719 task_t *
720 task_join(task_t *tk, uint_t flags)
721 {
722 	proc_t *p = ttoproc(curthread);
723 	task_t *prev_tk;
724 	void *projbuf, *zonebuf;
725 	zone_t *zone = tk->tk_zone;
726 	projid_t projid = tk->tk_proj->kpj_id;
727 	cred_t *oldcr;
728 
729 	/*
730 	 * We can't know for sure if holdlwps() was called, but we can check to
731 	 * ensure we're single-threaded.
732 	 */
733 	ASSERT(curthread == p->p_agenttp || p->p_lwprcnt == 1);
734 
735 	/*
736 	 * Changing the credential is always hard because we cannot
737 	 * allocate memory when holding locks but we don't know whether
738 	 * we need to change it.  We first get a reference to the current
739 	 * cred if we need to change it.  Then we create a credential
740 	 * with an updated project id.  Finally we install it, first
741 	 * releasing the reference we had on the p_cred at the time we
742 	 * acquired the lock the first time and later we release the
743 	 * reference to p_cred at the time we acquired the lock the
744 	 * second time.
745 	 */
746 	mutex_enter(&p->p_crlock);
747 	if (crgetprojid(p->p_cred) == projid)
748 		oldcr = NULL;
749 	else
750 		crhold(oldcr = p->p_cred);
751 	mutex_exit(&p->p_crlock);
752 
753 	if (oldcr != NULL) {
754 		cred_t *newcr = crdup(oldcr);
755 		crsetprojid(newcr, projid);
756 		crfree(oldcr);
757 
758 		mutex_enter(&p->p_crlock);
759 		oldcr = p->p_cred;
760 		p->p_cred = newcr;
761 		mutex_exit(&p->p_crlock);
762 		crfree(oldcr);
763 	}
764 
765 	/*
766 	 * Make sure that the number of processor sets is constant
767 	 * across this operation.
768 	 */
769 	ASSERT(MUTEX_HELD(&cpu_lock));
770 
771 	projbuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_PROJ);
772 	zonebuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_ZONE);
773 
774 	mutex_enter(&pidlock);
775 	mutex_enter(&p->p_lock);
776 
777 	prev_tk = p->p_task;
778 	task_change(tk, p);
779 
780 	/*
781 	 * Now move threads one by one to their new project.
782 	 */
783 	changeproj(p, tk->tk_proj, zone, projbuf, zonebuf);
784 	if (flags & TASK_FINAL)
785 		p->p_task->tk_flags |= TASK_FINAL;
786 
787 	mutex_exit(&pidlock);
788 
789 	fss_freebuf(zonebuf, FSS_ALLOC_ZONE);
790 	fss_freebuf(projbuf, FSS_ALLOC_PROJ);
791 	return (prev_tk);
792 }
793 
794 /*
795  * rctl ops vectors
796  */
797 static rctl_ops_t task_lwps_ops = {
798 	rcop_no_action,
799 	task_lwps_usage,
800 	task_lwps_set,
801 	task_lwps_test
802 };
803 
804 static rctl_ops_t task_cpu_time_ops = {
805 	rcop_no_action,
806 	task_cpu_time_usage,
807 	rcop_no_set,
808 	task_cpu_time_test
809 };
810 
811 /*ARGSUSED*/
812 /*
813  * void task_init(void)
814  *
815  * Overview
816  *   task_init() initializes task-related hashes, caches, and the task id
817  *   space.  Additionally, task_init() establishes p0 as a member of task0.
818  *   Called by main().
819  *
820  * Return values
821  *   None.
822  *
823  * Caller's context
824  *   task_init() must be called prior to MP startup.
825  */
826 void
827 task_init(void)
828 {
829 	proc_t *p = &p0;
830 	mod_hash_hndl_t hndl;
831 	rctl_set_t *set;
832 	rctl_alloc_gp_t *gp;
833 	rctl_entity_p_t e;
834 	/*
835 	 * Initialize task_cache and taskid_space.
836 	 */
837 	task_cache = kmem_cache_create("task_cache", sizeof (task_t),
838 	    0, NULL, NULL, NULL, NULL, NULL, 0);
839 	taskid_space = id_space_create("taskid_space", 0, MAX_TASKID);
840 
841 	/*
842 	 * Initialize task hash table.
843 	 */
844 	task_hash = mod_hash_create_idhash("task_hash", task_hash_size,
845 	    mod_hash_null_valdtor);
846 
847 	/*
848 	 * Initialize task-based rctls.
849 	 */
850 	rc_task_lwps = rctl_register("task.max-lwps", RCENTITY_TASK,
851 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX,
852 	    &task_lwps_ops);
853 	rc_task_cpu_time = rctl_register("task.max-cpu-time", RCENTITY_TASK,
854 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_DENY_NEVER |
855 	    RCTL_GLOBAL_CPU_TIME | RCTL_GLOBAL_INFINITE |
856 	    RCTL_GLOBAL_UNOBSERVABLE | RCTL_GLOBAL_SECONDS, UINT64_MAX,
857 	    UINT64_MAX, &task_cpu_time_ops);
858 
859 	/*
860 	 * Create task0 and place p0 in it as a member.
861 	 */
862 	task0p = kmem_cache_alloc(task_cache, KM_SLEEP);
863 	bzero(task0p, sizeof (task_t));
864 
865 	task0p->tk_tkid = id_alloc(taskid_space);
866 	task0p->tk_usage = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
867 	task0p->tk_inherited = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
868 	task0p->tk_proj = project_hold_by_id(0, &zone0,
869 	    PROJECT_HOLD_INSERT);
870 	task0p->tk_flags = TASK_NORMAL;
871 	task0p->tk_nlwps = p->p_lwpcnt;
872 	task0p->tk_zone = global_zone;
873 
874 	set = rctl_set_create();
875 	gp = rctl_set_init_prealloc(RCENTITY_TASK);
876 	mutex_enter(&curproc->p_lock);
877 	e.rcep_p.task = task0p;
878 	e.rcep_t = RCENTITY_TASK;
879 	task0p->tk_rctls = rctl_set_init(RCENTITY_TASK, curproc, &e, set, gp);
880 	mutex_exit(&curproc->p_lock);
881 	rctl_prealloc_destroy(gp);
882 
883 	(void) mod_hash_reserve(task_hash, &hndl);
884 	mutex_enter(&task_hash_lock);
885 	ASSERT(task_find(task0p->tk_tkid, GLOBAL_ZONEID) == NULL);
886 	if (mod_hash_insert_reserve(task_hash,
887 	    (mod_hash_key_t)(uintptr_t)task0p->tk_tkid,
888 	    (mod_hash_val_t *)task0p, hndl) != 0) {
889 		mod_hash_cancel(task_hash, &hndl);
890 		panic("unable to insert task %d(%p)", task0p->tk_tkid,
891 		    (void *)task0p);
892 	}
893 	mutex_exit(&task_hash_lock);
894 
895 	task0p->tk_memb_list = p;
896 
897 	/*
898 	 * Initialize task pointers for p0, including doubly linked list of task
899 	 * members.
900 	 */
901 	p->p_task = task0p;
902 	p->p_taskprev = p->p_tasknext = p;
903 	task_hold(task0p);
904 }
905