1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/note.h> 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/uio.h> 35 #include <sys/cred.h> 36 #include <sys/poll.h> 37 #include <sys/mman.h> 38 #include <sys/kmem.h> 39 #include <sys/model.h> 40 #include <sys/file.h> 41 #include <sys/proc.h> 42 #include <sys/open.h> 43 #include <sys/user.h> 44 #include <sys/t_lock.h> 45 #include <sys/vm.h> 46 #include <sys/stat.h> 47 #include <vm/hat.h> 48 #include <vm/seg.h> 49 #include <vm/seg_vn.h> 50 #include <vm/seg_dev.h> 51 #include <vm/as.h> 52 #include <sys/cmn_err.h> 53 #include <sys/cpuvar.h> 54 #include <sys/debug.h> 55 #include <sys/autoconf.h> 56 #include <sys/sunddi.h> 57 #include <sys/esunddi.h> 58 #include <sys/sunndi.h> 59 #include <sys/kstat.h> 60 #include <sys/conf.h> 61 #include <sys/ddi_impldefs.h> /* include implementation structure defs */ 62 #include <sys/ndi_impldefs.h> /* include prototypes */ 63 #include <sys/hwconf.h> 64 #include <sys/pathname.h> 65 #include <sys/modctl.h> 66 #include <sys/epm.h> 67 #include <sys/devctl.h> 68 #include <sys/callb.h> 69 #include <sys/cladm.h> 70 #include <sys/sysevent.h> 71 #include <sys/dacf_impl.h> 72 #include <sys/ddidevmap.h> 73 #include <sys/bootconf.h> 74 #include <sys/disp.h> 75 #include <sys/atomic.h> 76 #include <sys/promif.h> 77 #include <sys/instance.h> 78 #include <sys/sysevent/eventdefs.h> 79 #include <sys/task.h> 80 #include <sys/project.h> 81 #include <sys/taskq.h> 82 #include <sys/devpolicy.h> 83 #include <sys/ctype.h> 84 #include <net/if.h> 85 86 extern pri_t minclsyspri; 87 88 extern rctl_hndl_t rc_project_devlockmem; 89 90 #ifdef DEBUG 91 static int sunddi_debug = 0; 92 #endif /* DEBUG */ 93 94 /* ddi_umem_unlock miscellaneous */ 95 96 static void i_ddi_umem_unlock_thread_start(void); 97 98 static kmutex_t ddi_umem_unlock_mutex; /* unlock list mutex */ 99 static kcondvar_t ddi_umem_unlock_cv; /* unlock list block/unblock */ 100 static kthread_t *ddi_umem_unlock_thread; 101 /* 102 * The ddi_umem_unlock FIFO list. NULL head pointer indicates empty list. 103 */ 104 static struct ddi_umem_cookie *ddi_umem_unlock_head = NULL; 105 static struct ddi_umem_cookie *ddi_umem_unlock_tail = NULL; 106 107 /* 108 * This lock protects the project.max-device-locked-memory counter. 109 * When both p_lock (proc_t) and this lock need to acquired, p_lock 110 * should be acquired first. 111 */ 112 static kmutex_t umem_devlockmem_rctl_lock; 113 114 115 /* 116 * DDI(Sun) Function and flag definitions: 117 */ 118 119 #if defined(__x86) 120 /* 121 * Used to indicate which entries were chosen from a range. 122 */ 123 char *chosen_reg = "chosen-reg"; 124 #endif 125 126 /* 127 * Function used to ring system console bell 128 */ 129 void (*ddi_console_bell_func)(clock_t duration); 130 131 /* 132 * Creating register mappings and handling interrupts: 133 */ 134 135 /* 136 * Generic ddi_map: Call parent to fulfill request... 137 */ 138 139 int 140 ddi_map(dev_info_t *dp, ddi_map_req_t *mp, off_t offset, 141 off_t len, caddr_t *addrp) 142 { 143 dev_info_t *pdip; 144 145 ASSERT(dp); 146 pdip = (dev_info_t *)DEVI(dp)->devi_parent; 147 return ((DEVI(pdip)->devi_ops->devo_bus_ops->bus_map)(pdip, 148 dp, mp, offset, len, addrp)); 149 } 150 151 /* 152 * ddi_apply_range: (Called by nexi only.) 153 * Apply ranges in parent node dp, to child regspec rp... 154 */ 155 156 int 157 ddi_apply_range(dev_info_t *dp, dev_info_t *rdip, struct regspec *rp) 158 { 159 return (i_ddi_apply_range(dp, rdip, rp)); 160 } 161 162 int 163 ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset, 164 off_t len) 165 { 166 ddi_map_req_t mr; 167 #if defined(__x86) 168 struct { 169 int bus; 170 int addr; 171 int size; 172 } reg, *reglist; 173 uint_t length; 174 int rc; 175 176 /* 177 * get the 'registers' or the 'reg' property. 178 * We look up the reg property as an array of 179 * int's. 180 */ 181 rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 182 DDI_PROP_DONTPASS, "registers", (int **)®list, &length); 183 if (rc != DDI_PROP_SUCCESS) 184 rc = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, 185 DDI_PROP_DONTPASS, "reg", (int **)®list, &length); 186 if (rc == DDI_PROP_SUCCESS) { 187 /* 188 * point to the required entry. 189 */ 190 reg = reglist[rnumber]; 191 reg.addr += offset; 192 if (len != 0) 193 reg.size = len; 194 /* 195 * make a new property containing ONLY the required tuple. 196 */ 197 if (ddi_prop_update_int_array(DDI_DEV_T_NONE, dip, 198 chosen_reg, (int *)®, (sizeof (reg)/sizeof (int))) 199 != DDI_PROP_SUCCESS) { 200 cmn_err(CE_WARN, "%s%d: cannot create '%s' " 201 "property", DEVI(dip)->devi_name, 202 DEVI(dip)->devi_instance, chosen_reg); 203 } 204 /* 205 * free the memory allocated by 206 * ddi_prop_lookup_int_array (). 207 */ 208 ddi_prop_free((void *)reglist); 209 } 210 #endif 211 mr.map_op = DDI_MO_MAP_LOCKED; 212 mr.map_type = DDI_MT_RNUMBER; 213 mr.map_obj.rnumber = rnumber; 214 mr.map_prot = PROT_READ | PROT_WRITE; 215 mr.map_flags = DDI_MF_KERNEL_MAPPING; 216 mr.map_handlep = NULL; 217 mr.map_vers = DDI_MAP_VERSION; 218 219 /* 220 * Call my parent to map in my regs. 221 */ 222 223 return (ddi_map(dip, &mr, offset, len, kaddrp)); 224 } 225 226 void 227 ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset, 228 off_t len) 229 { 230 ddi_map_req_t mr; 231 232 mr.map_op = DDI_MO_UNMAP; 233 mr.map_type = DDI_MT_RNUMBER; 234 mr.map_flags = DDI_MF_KERNEL_MAPPING; 235 mr.map_prot = PROT_READ | PROT_WRITE; /* who cares? */ 236 mr.map_obj.rnumber = rnumber; 237 mr.map_handlep = NULL; 238 mr.map_vers = DDI_MAP_VERSION; 239 240 /* 241 * Call my parent to unmap my regs. 242 */ 243 244 (void) ddi_map(dip, &mr, offset, len, kaddrp); 245 *kaddrp = (caddr_t)0; 246 #if defined(__x86) 247 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, chosen_reg); 248 #endif 249 } 250 251 int 252 ddi_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, 253 off_t offset, off_t len, caddr_t *vaddrp) 254 { 255 return (i_ddi_bus_map(dip, rdip, mp, offset, len, vaddrp)); 256 } 257 258 /* 259 * nullbusmap: The/DDI default bus_map entry point for nexi 260 * not conforming to the reg/range paradigm (i.e. scsi, etc.) 261 * with no HAT/MMU layer to be programmed at this level. 262 * 263 * If the call is to map by rnumber, return an error, 264 * otherwise pass anything else up the tree to my parent. 265 */ 266 int 267 nullbusmap(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, 268 off_t offset, off_t len, caddr_t *vaddrp) 269 { 270 _NOTE(ARGUNUSED(rdip)) 271 if (mp->map_type == DDI_MT_RNUMBER) 272 return (DDI_ME_UNSUPPORTED); 273 274 return (ddi_map(dip, mp, offset, len, vaddrp)); 275 } 276 277 /* 278 * ddi_rnumber_to_regspec: Not for use by leaf drivers. 279 * Only for use by nexi using the reg/range paradigm. 280 */ 281 struct regspec * 282 ddi_rnumber_to_regspec(dev_info_t *dip, int rnumber) 283 { 284 return (i_ddi_rnumber_to_regspec(dip, rnumber)); 285 } 286 287 288 /* 289 * Note that we allow the dip to be nil because we may be called 290 * prior even to the instantiation of the devinfo tree itself - all 291 * regular leaf and nexus drivers should always use a non-nil dip! 292 * 293 * We treat peek in a somewhat cavalier fashion .. assuming that we'll 294 * simply get a synchronous fault as soon as we touch a missing address. 295 * 296 * Poke is rather more carefully handled because we might poke to a write 297 * buffer, "succeed", then only find some time later that we got an 298 * asynchronous fault that indicated that the address we were writing to 299 * was not really backed by hardware. 300 */ 301 302 static int 303 i_ddi_peekpoke(dev_info_t *devi, ddi_ctl_enum_t cmd, size_t size, 304 void *addr, void *value_p) 305 { 306 union { 307 uint64_t u64; 308 uint32_t u32; 309 uint16_t u16; 310 uint8_t u8; 311 } peekpoke_value; 312 313 peekpoke_ctlops_t peekpoke_args; 314 uint64_t dummy_result; 315 int rval; 316 317 /* Note: size is assumed to be correct; it is not checked. */ 318 peekpoke_args.size = size; 319 peekpoke_args.dev_addr = (uint64_t)addr; 320 peekpoke_args.handle = NULL; 321 peekpoke_args.repcount = 1; 322 peekpoke_args.flags = 0; 323 324 if (cmd == DDI_CTLOPS_POKE) { 325 switch (size) { 326 case sizeof (uint8_t): 327 peekpoke_value.u8 = *(uint8_t *)value_p; 328 break; 329 case sizeof (uint16_t): 330 peekpoke_value.u16 = *(uint16_t *)value_p; 331 break; 332 case sizeof (uint32_t): 333 peekpoke_value.u32 = *(uint32_t *)value_p; 334 break; 335 case sizeof (uint64_t): 336 peekpoke_value.u64 = *(uint64_t *)value_p; 337 break; 338 } 339 } 340 341 peekpoke_args.host_addr = (uint64_t)&peekpoke_value.u64; 342 343 if (devi != NULL) 344 rval = ddi_ctlops(devi, devi, cmd, &peekpoke_args, 345 &dummy_result); 346 else 347 rval = peekpoke_mem(cmd, &peekpoke_args); 348 349 /* 350 * A NULL value_p is permitted by ddi_peek(9F); discard the result. 351 */ 352 if ((cmd == DDI_CTLOPS_PEEK) & (value_p != NULL)) { 353 switch (size) { 354 case sizeof (uint8_t): 355 *(uint8_t *)value_p = peekpoke_value.u8; 356 break; 357 case sizeof (uint16_t): 358 *(uint16_t *)value_p = peekpoke_value.u16; 359 break; 360 case sizeof (uint32_t): 361 *(uint32_t *)value_p = peekpoke_value.u32; 362 break; 363 case sizeof (uint64_t): 364 *(uint64_t *)value_p = peekpoke_value.u64; 365 break; 366 } 367 } 368 369 return (rval); 370 } 371 372 /* 373 * Keep ddi_peek() and ddi_poke() in case 3rd parties are calling this. 374 * they shouldn't be, but the 9f manpage kind of pseudo exposes it. 375 */ 376 int 377 ddi_peek(dev_info_t *devi, size_t size, void *addr, void *value_p) 378 { 379 switch (size) { 380 case sizeof (uint8_t): 381 case sizeof (uint16_t): 382 case sizeof (uint32_t): 383 case sizeof (uint64_t): 384 break; 385 default: 386 return (DDI_FAILURE); 387 } 388 389 return (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, size, addr, value_p)); 390 } 391 392 int 393 ddi_poke(dev_info_t *devi, size_t size, void *addr, void *value_p) 394 { 395 switch (size) { 396 case sizeof (uint8_t): 397 case sizeof (uint16_t): 398 case sizeof (uint32_t): 399 case sizeof (uint64_t): 400 break; 401 default: 402 return (DDI_FAILURE); 403 } 404 405 return (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, size, addr, value_p)); 406 } 407 408 #ifdef _LP64 409 int 410 ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *val_p) 411 #else /* _ILP32 */ 412 int 413 ddi_peekc(dev_info_t *dip, int8_t *addr, int8_t *val_p) 414 #endif 415 { 416 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr, 417 val_p)); 418 } 419 420 #ifdef _LP64 421 int 422 ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *val_p) 423 #else /* _ILP32 */ 424 int 425 ddi_peeks(dev_info_t *dip, int16_t *addr, int16_t *val_p) 426 #endif 427 { 428 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr, 429 val_p)); 430 } 431 432 #ifdef _LP64 433 int 434 ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *val_p) 435 #else /* _ILP32 */ 436 int 437 ddi_peekl(dev_info_t *dip, int32_t *addr, int32_t *val_p) 438 #endif 439 { 440 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr, 441 val_p)); 442 } 443 444 #ifdef _LP64 445 int 446 ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *val_p) 447 #else /* _ILP32 */ 448 int 449 ddi_peekd(dev_info_t *dip, int64_t *addr, int64_t *val_p) 450 #endif 451 { 452 return (i_ddi_peekpoke(dip, DDI_CTLOPS_PEEK, sizeof (*val_p), addr, 453 val_p)); 454 } 455 456 #ifdef _LP64 457 int 458 ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t val) 459 #else /* _ILP32 */ 460 int 461 ddi_pokec(dev_info_t *dip, int8_t *addr, int8_t val) 462 #endif 463 { 464 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val)); 465 } 466 467 #ifdef _LP64 468 int 469 ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t val) 470 #else /* _ILP32 */ 471 int 472 ddi_pokes(dev_info_t *dip, int16_t *addr, int16_t val) 473 #endif 474 { 475 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val)); 476 } 477 478 #ifdef _LP64 479 int 480 ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t val) 481 #else /* _ILP32 */ 482 int 483 ddi_pokel(dev_info_t *dip, int32_t *addr, int32_t val) 484 #endif 485 { 486 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val)); 487 } 488 489 #ifdef _LP64 490 int 491 ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t val) 492 #else /* _ILP32 */ 493 int 494 ddi_poked(dev_info_t *dip, int64_t *addr, int64_t val) 495 #endif 496 { 497 return (i_ddi_peekpoke(dip, DDI_CTLOPS_POKE, sizeof (val), addr, &val)); 498 } 499 500 /* 501 * ddi_peekpokeio() is used primarily by the mem drivers for moving 502 * data to and from uio structures via peek and poke. Note that we 503 * use "internal" routines ddi_peek and ddi_poke to make this go 504 * slightly faster, avoiding the call overhead .. 505 */ 506 int 507 ddi_peekpokeio(dev_info_t *devi, struct uio *uio, enum uio_rw rw, 508 caddr_t addr, size_t len, uint_t xfersize) 509 { 510 int64_t ibuffer; 511 int8_t w8; 512 size_t sz; 513 int o; 514 515 if (xfersize > sizeof (long)) 516 xfersize = sizeof (long); 517 518 while (len != 0) { 519 if ((len | (uintptr_t)addr) & 1) { 520 sz = sizeof (int8_t); 521 if (rw == UIO_WRITE) { 522 if ((o = uwritec(uio)) == -1) 523 return (DDI_FAILURE); 524 if (ddi_poke8(devi, (int8_t *)addr, 525 (int8_t)o) != DDI_SUCCESS) 526 return (DDI_FAILURE); 527 } else { 528 if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz, 529 (int8_t *)addr, &w8) != DDI_SUCCESS) 530 return (DDI_FAILURE); 531 if (ureadc(w8, uio)) 532 return (DDI_FAILURE); 533 } 534 } else { 535 switch (xfersize) { 536 case sizeof (int64_t): 537 if (((len | (uintptr_t)addr) & 538 (sizeof (int64_t) - 1)) == 0) { 539 sz = xfersize; 540 break; 541 } 542 /*FALLTHROUGH*/ 543 case sizeof (int32_t): 544 if (((len | (uintptr_t)addr) & 545 (sizeof (int32_t) - 1)) == 0) { 546 sz = xfersize; 547 break; 548 } 549 /*FALLTHROUGH*/ 550 default: 551 /* 552 * This still assumes that we might have an 553 * I/O bus out there that permits 16-bit 554 * transfers (and that it would be upset by 555 * 32-bit transfers from such locations). 556 */ 557 sz = sizeof (int16_t); 558 break; 559 } 560 561 if (rw == UIO_READ) { 562 if (i_ddi_peekpoke(devi, DDI_CTLOPS_PEEK, sz, 563 addr, &ibuffer) != DDI_SUCCESS) 564 return (DDI_FAILURE); 565 } 566 567 if (uiomove(&ibuffer, sz, rw, uio)) 568 return (DDI_FAILURE); 569 570 if (rw == UIO_WRITE) { 571 if (i_ddi_peekpoke(devi, DDI_CTLOPS_POKE, sz, 572 addr, &ibuffer) != DDI_SUCCESS) 573 return (DDI_FAILURE); 574 } 575 } 576 addr += sz; 577 len -= sz; 578 } 579 return (DDI_SUCCESS); 580 } 581 582 /* 583 * These routines are used by drivers that do layered ioctls 584 * On sparc, they're implemented in assembler to avoid spilling 585 * register windows in the common (copyin) case .. 586 */ 587 #if !defined(__sparc) 588 int 589 ddi_copyin(const void *buf, void *kernbuf, size_t size, int flags) 590 { 591 if (flags & FKIOCTL) 592 return (kcopy(buf, kernbuf, size) ? -1 : 0); 593 return (copyin(buf, kernbuf, size)); 594 } 595 596 int 597 ddi_copyout(const void *buf, void *kernbuf, size_t size, int flags) 598 { 599 if (flags & FKIOCTL) 600 return (kcopy(buf, kernbuf, size) ? -1 : 0); 601 return (copyout(buf, kernbuf, size)); 602 } 603 #endif /* !__sparc */ 604 605 /* 606 * Conversions in nexus pagesize units. We don't duplicate the 607 * 'nil dip' semantics of peek/poke because btopr/btop/ptob are DDI/DKI 608 * routines anyway. 609 */ 610 unsigned long 611 ddi_btop(dev_info_t *dip, unsigned long bytes) 612 { 613 unsigned long pages; 614 615 (void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOP, &bytes, &pages); 616 return (pages); 617 } 618 619 unsigned long 620 ddi_btopr(dev_info_t *dip, unsigned long bytes) 621 { 622 unsigned long pages; 623 624 (void) ddi_ctlops(dip, dip, DDI_CTLOPS_BTOPR, &bytes, &pages); 625 return (pages); 626 } 627 628 unsigned long 629 ddi_ptob(dev_info_t *dip, unsigned long pages) 630 { 631 unsigned long bytes; 632 633 (void) ddi_ctlops(dip, dip, DDI_CTLOPS_PTOB, &pages, &bytes); 634 return (bytes); 635 } 636 637 unsigned int 638 ddi_enter_critical(void) 639 { 640 return ((uint_t)spl7()); 641 } 642 643 void 644 ddi_exit_critical(unsigned int spl) 645 { 646 splx((int)spl); 647 } 648 649 /* 650 * Nexus ctlops punter 651 */ 652 653 #if !defined(__sparc) 654 /* 655 * Request bus_ctl parent to handle a bus_ctl request 656 * 657 * (The sparc version is in sparc_ddi.s) 658 */ 659 int 660 ddi_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t op, void *a, void *v) 661 { 662 int (*fp)(); 663 664 if (!d || !r) 665 return (DDI_FAILURE); 666 667 if ((d = (dev_info_t *)DEVI(d)->devi_bus_ctl) == NULL) 668 return (DDI_FAILURE); 669 670 fp = DEVI(d)->devi_ops->devo_bus_ops->bus_ctl; 671 return ((*fp)(d, r, op, a, v)); 672 } 673 674 #endif 675 676 /* 677 * DMA/DVMA setup 678 */ 679 680 #if defined(__sparc) 681 static ddi_dma_lim_t standard_limits = { 682 (uint_t)0, /* addr_t dlim_addr_lo */ 683 (uint_t)-1, /* addr_t dlim_addr_hi */ 684 (uint_t)-1, /* uint_t dlim_cntr_max */ 685 (uint_t)1, /* uint_t dlim_burstsizes */ 686 (uint_t)1, /* uint_t dlim_minxfer */ 687 0 /* uint_t dlim_dmaspeed */ 688 }; 689 #elif defined(__x86) 690 static ddi_dma_lim_t standard_limits = { 691 (uint_t)0, /* addr_t dlim_addr_lo */ 692 (uint_t)0xffffff, /* addr_t dlim_addr_hi */ 693 (uint_t)0, /* uint_t dlim_cntr_max */ 694 (uint_t)0x00000001, /* uint_t dlim_burstsizes */ 695 (uint_t)DMA_UNIT_8, /* uint_t dlim_minxfer */ 696 (uint_t)0, /* uint_t dlim_dmaspeed */ 697 (uint_t)0x86<<24+0, /* uint_t dlim_version */ 698 (uint_t)0xffff, /* uint_t dlim_adreg_max */ 699 (uint_t)0xffff, /* uint_t dlim_ctreg_max */ 700 (uint_t)512, /* uint_t dlim_granular */ 701 (int)1, /* int dlim_sgllen */ 702 (uint_t)0xffffffff /* uint_t dlim_reqsizes */ 703 }; 704 705 #endif 706 707 int 708 ddi_dma_setup(dev_info_t *dip, struct ddi_dma_req *dmareqp, 709 ddi_dma_handle_t *handlep) 710 { 711 int (*funcp)() = ddi_dma_map; 712 struct bus_ops *bop; 713 #if defined(__sparc) 714 auto ddi_dma_lim_t dma_lim; 715 716 if (dmareqp->dmar_limits == (ddi_dma_lim_t *)0) { 717 dma_lim = standard_limits; 718 } else { 719 dma_lim = *dmareqp->dmar_limits; 720 } 721 dmareqp->dmar_limits = &dma_lim; 722 #endif 723 #if defined(__x86) 724 if (dmareqp->dmar_limits == (ddi_dma_lim_t *)0) 725 return (DDI_FAILURE); 726 #endif 727 728 /* 729 * Handle the case that the requester is both a leaf 730 * and a nexus driver simultaneously by calling the 731 * requester's bus_dma_map function directly instead 732 * of ddi_dma_map. 733 */ 734 bop = DEVI(dip)->devi_ops->devo_bus_ops; 735 if (bop && bop->bus_dma_map) 736 funcp = bop->bus_dma_map; 737 return ((*funcp)(dip, dip, dmareqp, handlep)); 738 } 739 740 int 741 ddi_dma_addr_setup(dev_info_t *dip, struct as *as, caddr_t addr, size_t len, 742 uint_t flags, int (*waitfp)(), caddr_t arg, 743 ddi_dma_lim_t *limits, ddi_dma_handle_t *handlep) 744 { 745 int (*funcp)() = ddi_dma_map; 746 ddi_dma_lim_t dma_lim; 747 struct ddi_dma_req dmareq; 748 struct bus_ops *bop; 749 750 if (len == 0) { 751 return (DDI_DMA_NOMAPPING); 752 } 753 if (limits == (ddi_dma_lim_t *)0) { 754 dma_lim = standard_limits; 755 } else { 756 dma_lim = *limits; 757 } 758 dmareq.dmar_limits = &dma_lim; 759 dmareq.dmar_flags = flags; 760 dmareq.dmar_fp = waitfp; 761 dmareq.dmar_arg = arg; 762 dmareq.dmar_object.dmao_size = len; 763 dmareq.dmar_object.dmao_type = DMA_OTYP_VADDR; 764 dmareq.dmar_object.dmao_obj.virt_obj.v_as = as; 765 dmareq.dmar_object.dmao_obj.virt_obj.v_addr = addr; 766 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL; 767 768 /* 769 * Handle the case that the requester is both a leaf 770 * and a nexus driver simultaneously by calling the 771 * requester's bus_dma_map function directly instead 772 * of ddi_dma_map. 773 */ 774 bop = DEVI(dip)->devi_ops->devo_bus_ops; 775 if (bop && bop->bus_dma_map) 776 funcp = bop->bus_dma_map; 777 778 return ((*funcp)(dip, dip, &dmareq, handlep)); 779 } 780 781 int 782 ddi_dma_buf_setup(dev_info_t *dip, struct buf *bp, uint_t flags, 783 int (*waitfp)(), caddr_t arg, ddi_dma_lim_t *limits, 784 ddi_dma_handle_t *handlep) 785 { 786 int (*funcp)() = ddi_dma_map; 787 ddi_dma_lim_t dma_lim; 788 struct ddi_dma_req dmareq; 789 struct bus_ops *bop; 790 791 if (limits == (ddi_dma_lim_t *)0) { 792 dma_lim = standard_limits; 793 } else { 794 dma_lim = *limits; 795 } 796 dmareq.dmar_limits = &dma_lim; 797 dmareq.dmar_flags = flags; 798 dmareq.dmar_fp = waitfp; 799 dmareq.dmar_arg = arg; 800 dmareq.dmar_object.dmao_size = (uint_t)bp->b_bcount; 801 802 if ((bp->b_flags & (B_PAGEIO|B_REMAPPED)) == B_PAGEIO) { 803 dmareq.dmar_object.dmao_type = DMA_OTYP_PAGES; 804 dmareq.dmar_object.dmao_obj.pp_obj.pp_pp = bp->b_pages; 805 dmareq.dmar_object.dmao_obj.pp_obj.pp_offset = 806 (uint_t)(((uintptr_t)bp->b_un.b_addr) & MMU_PAGEOFFSET); 807 } else { 808 dmareq.dmar_object.dmao_type = DMA_OTYP_BUFVADDR; 809 dmareq.dmar_object.dmao_obj.virt_obj.v_addr = bp->b_un.b_addr; 810 if ((bp->b_flags & (B_SHADOW|B_REMAPPED)) == B_SHADOW) { 811 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = 812 bp->b_shadow; 813 } else { 814 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL; 815 } 816 817 /* 818 * If the buffer has no proc pointer, or the proc 819 * struct has the kernel address space, or the buffer has 820 * been marked B_REMAPPED (meaning that it is now 821 * mapped into the kernel's address space), then 822 * the address space is kas (kernel address space). 823 */ 824 if (bp->b_proc == NULL || bp->b_proc->p_as == &kas || 825 (bp->b_flags & B_REMAPPED) != 0) { 826 dmareq.dmar_object.dmao_obj.virt_obj.v_as = 0; 827 } else { 828 dmareq.dmar_object.dmao_obj.virt_obj.v_as = 829 bp->b_proc->p_as; 830 } 831 } 832 833 /* 834 * Handle the case that the requester is both a leaf 835 * and a nexus driver simultaneously by calling the 836 * requester's bus_dma_map function directly instead 837 * of ddi_dma_map. 838 */ 839 bop = DEVI(dip)->devi_ops->devo_bus_ops; 840 if (bop && bop->bus_dma_map) 841 funcp = bop->bus_dma_map; 842 843 return ((*funcp)(dip, dip, &dmareq, handlep)); 844 } 845 846 #if !defined(__sparc) 847 /* 848 * Request bus_dma_ctl parent to fiddle with a dma request. 849 * 850 * (The sparc version is in sparc_subr.s) 851 */ 852 int 853 ddi_dma_mctl(dev_info_t *dip, dev_info_t *rdip, 854 ddi_dma_handle_t handle, enum ddi_dma_ctlops request, 855 off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags) 856 { 857 int (*fp)(); 858 859 dip = (dev_info_t *)DEVI(dip)->devi_bus_dma_ctl; 860 fp = DEVI(dip)->devi_ops->devo_bus_ops->bus_dma_ctl; 861 return ((*fp) (dip, rdip, handle, request, offp, lenp, objp, flags)); 862 } 863 #endif 864 865 /* 866 * For all DMA control functions, call the DMA control 867 * routine and return status. 868 * 869 * Just plain assume that the parent is to be called. 870 * If a nexus driver or a thread outside the framework 871 * of a nexus driver or a leaf driver calls these functions, 872 * it is up to them to deal with the fact that the parent's 873 * bus_dma_ctl function will be the first one called. 874 */ 875 876 #define HD ((ddi_dma_impl_t *)h)->dmai_rdip 877 878 int 879 ddi_dma_kvaddrp(ddi_dma_handle_t h, off_t off, size_t len, caddr_t *kp) 880 { 881 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_KVADDR, &off, &len, kp, 0)); 882 } 883 884 int 885 ddi_dma_htoc(ddi_dma_handle_t h, off_t o, ddi_dma_cookie_t *c) 886 { 887 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_HTOC, &o, 0, (caddr_t *)c, 0)); 888 } 889 890 int 891 ddi_dma_coff(ddi_dma_handle_t h, ddi_dma_cookie_t *c, off_t *o) 892 { 893 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_COFF, 894 (off_t *)c, 0, (caddr_t *)o, 0)); 895 } 896 897 int 898 ddi_dma_movwin(ddi_dma_handle_t h, off_t *o, size_t *l, ddi_dma_cookie_t *c) 899 { 900 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_MOVWIN, o, 901 l, (caddr_t *)c, 0)); 902 } 903 904 int 905 ddi_dma_curwin(ddi_dma_handle_t h, off_t *o, size_t *l) 906 { 907 if ((((ddi_dma_impl_t *)h)->dmai_rflags & DDI_DMA_PARTIAL) == 0) 908 return (DDI_FAILURE); 909 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_REPWIN, o, l, 0, 0)); 910 } 911 912 /* 913 * Note: The astute might notice that in the next two routines 914 * the SPARC case passes a pointer to a ddi_dma_win_t as the 5th 915 * argument while the x86 case passes the ddi_dma_win_t directly. 916 * 917 * While it would be nice if the "correct" behavior was 918 * platform independent and specified someplace, it isn't. 919 * Until that point, what's required is that this call and 920 * the relevant bus nexus drivers agree, and in this case they 921 * do, at least for the cases I've looked at. 922 */ 923 int 924 ddi_dma_nextwin(ddi_dma_handle_t h, ddi_dma_win_t win, 925 ddi_dma_win_t *nwin) 926 { 927 #if defined(__sparc) 928 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_NEXTWIN, (off_t *)&win, 0, 929 (caddr_t *)nwin, 0)); 930 #elif defined(__x86) 931 return (((ddi_dma_impl_t *)h)->dmai_mctl(HD, HD, h, DDI_DMA_NEXTWIN, 932 (off_t *)win, 0, (caddr_t *)nwin, 0)); 933 #else 934 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_NEXTWIN, 935 (off_t *)win, 0, (caddr_t *)nwin, 0)); 936 #endif 937 } 938 939 int 940 ddi_dma_nextseg(ddi_dma_win_t win, ddi_dma_seg_t seg, ddi_dma_seg_t *nseg) 941 { 942 #if defined(__sparc) 943 ddi_dma_handle_t h = (ddi_dma_handle_t)win; 944 945 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_NEXTSEG, (off_t *)&win, 946 (size_t *)&seg, (caddr_t *)nseg, 0)); 947 #else 948 ddi_dma_handle_t h = (ddi_dma_handle_t) 949 ((impl_dma_segment_t *)win)->dmais_hndl; 950 951 #if defined(__x86) 952 return (((ddi_dma_impl_t *)h)->dmai_mctl(HD, HD, h, DDI_DMA_NEXTSEG, 953 (off_t *)win, (size_t *)seg, (caddr_t *)nseg, 0)); 954 #else 955 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_NEXTSEG, 956 (off_t *)win, (size_t *)seg, (caddr_t *)nseg, 0)); 957 #endif 958 #endif 959 } 960 961 #if (defined(__i386) && !defined(__amd64)) || defined(__sparc) 962 /* 963 * This routine is Obsolete and should be removed from ALL architectures 964 * in a future release of Solaris. 965 * 966 * It is deliberately NOT ported to amd64; please fix the code that 967 * depends on this routine to use ddi_dma_nextcookie(9F). 968 */ 969 int 970 ddi_dma_segtocookie(ddi_dma_seg_t seg, off_t *o, off_t *l, 971 ddi_dma_cookie_t *cookiep) 972 { 973 #if defined(__sparc) 974 ddi_dma_handle_t h = (ddi_dma_handle_t)seg; 975 976 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_SEGTOC, o, (size_t *)l, 977 (caddr_t *)cookiep, 0)); 978 #elif defined(__i386) && !defined(__amd64) 979 ddi_dma_handle_t h = (ddi_dma_handle_t) 980 ((impl_dma_segment_t *)seg)->dmais_hndl; 981 982 /* 983 * The hack used for i386 won't work here; we can't squeeze a 984 * pointer through the 'cache_flags' field. 985 */ 986 return (((ddi_dma_impl_t *)h)->dmai_mctl(HD, HD, h, DDI_DMA_SEGTOC, 987 o, (size_t *)l, (caddr_t *)cookiep, (uint_t)seg)); 988 #endif 989 } 990 #endif /* (__i386 && !__amd64) || __sparc */ 991 992 #if !defined(__sparc) 993 994 /* 995 * The SPARC versions of these routines are done in assembler to 996 * save register windows, so they're in sparc_subr.s. 997 */ 998 999 int 1000 ddi_dma_map(dev_info_t *dip, dev_info_t *rdip, 1001 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep) 1002 { 1003 dev_info_t *hdip; 1004 int (*funcp)(dev_info_t *, dev_info_t *, struct ddi_dma_req *, 1005 ddi_dma_handle_t *); 1006 1007 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_map; 1008 1009 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_map; 1010 return ((*funcp)(hdip, rdip, dmareqp, handlep)); 1011 } 1012 1013 int 1014 ddi_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 1015 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep) 1016 { 1017 dev_info_t *hdip; 1018 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_attr_t *, 1019 int (*)(caddr_t), caddr_t, ddi_dma_handle_t *); 1020 1021 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl; 1022 1023 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_allochdl; 1024 return ((*funcp)(hdip, rdip, attr, waitfp, arg, handlep)); 1025 } 1026 1027 int 1028 ddi_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handlep) 1029 { 1030 dev_info_t *hdip; 1031 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t); 1032 1033 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_allochdl; 1034 1035 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_freehdl; 1036 return ((*funcp)(hdip, rdip, handlep)); 1037 } 1038 1039 int 1040 ddi_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 1041 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 1042 ddi_dma_cookie_t *cp, uint_t *ccountp) 1043 { 1044 dev_info_t *hdip; 1045 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, 1046 struct ddi_dma_req *, ddi_dma_cookie_t *, uint_t *); 1047 1048 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl; 1049 1050 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_bindhdl; 1051 return ((*funcp)(hdip, rdip, handle, dmareq, cp, ccountp)); 1052 } 1053 1054 int 1055 ddi_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 1056 ddi_dma_handle_t handle) 1057 { 1058 dev_info_t *hdip; 1059 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t); 1060 1061 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl; 1062 1063 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_unbindhdl; 1064 return ((*funcp)(hdip, rdip, handle)); 1065 } 1066 1067 1068 int 1069 ddi_dma_flush(dev_info_t *dip, dev_info_t *rdip, 1070 ddi_dma_handle_t handle, off_t off, size_t len, 1071 uint_t cache_flags) 1072 { 1073 dev_info_t *hdip; 1074 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, 1075 off_t, size_t, uint_t); 1076 1077 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush; 1078 1079 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_flush; 1080 return ((*funcp)(hdip, rdip, handle, off, len, cache_flags)); 1081 } 1082 1083 int 1084 ddi_dma_win(dev_info_t *dip, dev_info_t *rdip, 1085 ddi_dma_handle_t handle, uint_t win, off_t *offp, 1086 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp) 1087 { 1088 dev_info_t *hdip; 1089 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, 1090 uint_t, off_t *, size_t *, ddi_dma_cookie_t *, uint_t *); 1091 1092 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_win; 1093 1094 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_win; 1095 return ((*funcp)(hdip, rdip, handle, win, offp, lenp, 1096 cookiep, ccountp)); 1097 } 1098 1099 int 1100 ddi_dma_sync(ddi_dma_handle_t h, off_t o, size_t l, uint_t whom) 1101 { 1102 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h; 1103 dev_info_t *hdip, *dip; 1104 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t, off_t, 1105 size_t, uint_t); 1106 1107 /* 1108 * the DMA nexus driver will set DMP_NOSYNC if the 1109 * platform does not require any sync operation. For 1110 * example if the memory is uncached or consistent 1111 * and without any I/O write buffers involved. 1112 */ 1113 if ((hp->dmai_rflags & DMP_NOSYNC) == DMP_NOSYNC) 1114 return (DDI_SUCCESS); 1115 1116 dip = hp->dmai_rdip; 1117 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_flush; 1118 funcp = DEVI(hdip)->devi_ops->devo_bus_ops->bus_dma_flush; 1119 return ((*funcp)(hdip, dip, h, o, l, whom)); 1120 } 1121 1122 int 1123 ddi_dma_unbind_handle(ddi_dma_handle_t h) 1124 { 1125 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)h; 1126 dev_info_t *hdip, *dip; 1127 int (*funcp)(dev_info_t *, dev_info_t *, ddi_dma_handle_t); 1128 1129 dip = hp->dmai_rdip; 1130 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_unbindhdl; 1131 funcp = DEVI(dip)->devi_bus_dma_unbindfunc; 1132 return ((*funcp)(hdip, dip, h)); 1133 } 1134 1135 #endif /* !__sparc */ 1136 1137 int 1138 ddi_dma_free(ddi_dma_handle_t h) 1139 { 1140 #if !defined(__x86) 1141 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_FREE, 0, 0, 0, 0)); 1142 #else 1143 return (((ddi_dma_impl_t *)h)->dmai_mctl(HD, HD, h, DDI_DMA_FREE, 1144 0, 0, 0, 0)); 1145 #endif 1146 } 1147 1148 int 1149 ddi_iopb_alloc(dev_info_t *dip, ddi_dma_lim_t *limp, uint_t len, caddr_t *iopbp) 1150 { 1151 ddi_dma_lim_t defalt; 1152 size_t size = len; 1153 1154 if (!limp) { 1155 defalt = standard_limits; 1156 limp = &defalt; 1157 } 1158 #if defined(__sparc) 1159 return (i_ddi_mem_alloc_lim(dip, limp, size, 0, 0, 0, 1160 iopbp, NULL, NULL)); 1161 #else 1162 return (ddi_dma_mctl(dip, dip, 0, DDI_DMA_IOPB_ALLOC, (off_t *)limp, 1163 &size, iopbp, 0)); 1164 #endif 1165 } 1166 1167 void 1168 ddi_iopb_free(caddr_t iopb) 1169 { 1170 i_ddi_mem_free(iopb, 0); 1171 } 1172 1173 int 1174 ddi_mem_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, 1175 uint_t flags, caddr_t *kaddrp, uint_t *real_length) 1176 { 1177 ddi_dma_lim_t defalt; 1178 size_t size = length; 1179 1180 if (!limits) { 1181 defalt = standard_limits; 1182 limits = &defalt; 1183 } 1184 #if defined(__sparc) 1185 return (i_ddi_mem_alloc_lim(dip, limits, size, flags & 0x1, 1186 1, 0, kaddrp, real_length, NULL)); 1187 #else 1188 return (ddi_dma_mctl(dip, dip, (ddi_dma_handle_t)real_length, 1189 DDI_DMA_SMEM_ALLOC, (off_t *)limits, &size, 1190 kaddrp, (flags & 0x1))); 1191 #endif 1192 } 1193 1194 void 1195 ddi_mem_free(caddr_t kaddr) 1196 { 1197 i_ddi_mem_free(kaddr, 1); 1198 } 1199 1200 /* 1201 * DMA attributes, alignment, burst sizes, and transfer minimums 1202 */ 1203 int 1204 ddi_dma_get_attr(ddi_dma_handle_t handle, ddi_dma_attr_t *attrp) 1205 { 1206 ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle; 1207 1208 if (attrp == NULL) 1209 return (DDI_FAILURE); 1210 *attrp = dimp->dmai_attr; 1211 return (DDI_SUCCESS); 1212 } 1213 1214 int 1215 ddi_dma_burstsizes(ddi_dma_handle_t handle) 1216 { 1217 ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle; 1218 1219 if (!dimp) 1220 return (0); 1221 else 1222 return (dimp->dmai_burstsizes); 1223 } 1224 1225 int 1226 ddi_dma_devalign(ddi_dma_handle_t handle, uint_t *alignment, uint_t *mineffect) 1227 { 1228 ddi_dma_impl_t *dimp = (ddi_dma_impl_t *)handle; 1229 1230 if (!dimp || !alignment || !mineffect) 1231 return (DDI_FAILURE); 1232 if (!(dimp->dmai_rflags & DDI_DMA_SBUS_64BIT)) { 1233 *alignment = 1 << ddi_ffs(dimp->dmai_burstsizes); 1234 } else { 1235 if (dimp->dmai_burstsizes & 0xff0000) { 1236 *alignment = 1 << ddi_ffs(dimp->dmai_burstsizes >> 16); 1237 } else { 1238 *alignment = 1 << ddi_ffs(dimp->dmai_burstsizes); 1239 } 1240 } 1241 *mineffect = dimp->dmai_minxfer; 1242 return (DDI_SUCCESS); 1243 } 1244 1245 int 1246 ddi_iomin(dev_info_t *a, int i, int stream) 1247 { 1248 int r; 1249 1250 /* 1251 * Make sure that the initial value is sane 1252 */ 1253 if (i & (i - 1)) 1254 return (0); 1255 if (i == 0) 1256 i = (stream) ? 4 : 1; 1257 1258 r = ddi_ctlops(a, a, 1259 DDI_CTLOPS_IOMIN, (void *)(uintptr_t)stream, (void *)&i); 1260 if (r != DDI_SUCCESS || (i & (i - 1))) 1261 return (0); 1262 return (i); 1263 } 1264 1265 /* 1266 * Given two DMA attribute structures, apply the attributes 1267 * of one to the other, following the rules of attributes 1268 * and the wishes of the caller. 1269 * 1270 * The rules of DMA attribute structures are that you cannot 1271 * make things *less* restrictive as you apply one set 1272 * of attributes to another. 1273 * 1274 */ 1275 void 1276 ddi_dma_attr_merge(ddi_dma_attr_t *attr, ddi_dma_attr_t *mod) 1277 { 1278 attr->dma_attr_addr_lo = 1279 MAX(attr->dma_attr_addr_lo, mod->dma_attr_addr_lo); 1280 attr->dma_attr_addr_hi = 1281 MIN(attr->dma_attr_addr_hi, mod->dma_attr_addr_hi); 1282 attr->dma_attr_count_max = 1283 MIN(attr->dma_attr_count_max, mod->dma_attr_count_max); 1284 attr->dma_attr_align = 1285 MAX(attr->dma_attr_align, mod->dma_attr_align); 1286 attr->dma_attr_burstsizes = 1287 (uint_t)(attr->dma_attr_burstsizes & mod->dma_attr_burstsizes); 1288 attr->dma_attr_minxfer = 1289 maxbit(attr->dma_attr_minxfer, mod->dma_attr_minxfer); 1290 attr->dma_attr_maxxfer = 1291 MIN(attr->dma_attr_maxxfer, mod->dma_attr_maxxfer); 1292 attr->dma_attr_seg = MIN(attr->dma_attr_seg, mod->dma_attr_seg); 1293 attr->dma_attr_sgllen = MIN((uint_t)attr->dma_attr_sgllen, 1294 (uint_t)mod->dma_attr_sgllen); 1295 attr->dma_attr_granular = 1296 MAX(attr->dma_attr_granular, mod->dma_attr_granular); 1297 } 1298 1299 /* 1300 * mmap/segmap interface: 1301 */ 1302 1303 /* 1304 * ddi_segmap: setup the default segment driver. Calls the drivers 1305 * XXmmap routine to validate the range to be mapped. 1306 * Return ENXIO of the range is not valid. Create 1307 * a seg_dev segment that contains all of the 1308 * necessary information and will reference the 1309 * default segment driver routines. It returns zero 1310 * on success or non-zero on failure. 1311 */ 1312 int 1313 ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len, 1314 uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp) 1315 { 1316 extern int spec_segmap(dev_t, off_t, struct as *, caddr_t *, 1317 off_t, uint_t, uint_t, uint_t, struct cred *); 1318 1319 return (spec_segmap(dev, offset, asp, addrp, len, 1320 prot, maxprot, flags, credp)); 1321 } 1322 1323 /* 1324 * ddi_map_fault: Resolve mappings at fault time. Used by segment 1325 * drivers. Allows each successive parent to resolve 1326 * address translations and add its mappings to the 1327 * mapping list supplied in the page structure. It 1328 * returns zero on success or non-zero on failure. 1329 */ 1330 1331 int 1332 ddi_map_fault(dev_info_t *dip, struct hat *hat, struct seg *seg, 1333 caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock) 1334 { 1335 return (i_ddi_map_fault(dip, dip, hat, seg, addr, dp, pfn, prot, lock)); 1336 } 1337 1338 /* 1339 * ddi_device_mapping_check: Called from ddi_segmap_setup. 1340 * Invokes platform specific DDI to determine whether attributes specified 1341 * in attr(9s) are valid for the region of memory that will be made 1342 * available for direct access to user process via the mmap(2) system call. 1343 */ 1344 int 1345 ddi_device_mapping_check(dev_t dev, ddi_device_acc_attr_t *accattrp, 1346 uint_t rnumber, uint_t *hat_flags) 1347 { 1348 ddi_acc_handle_t handle; 1349 ddi_map_req_t mr; 1350 ddi_acc_hdl_t *hp; 1351 int result; 1352 dev_info_t *dip; 1353 1354 /* 1355 * we use e_ddi_hold_devi_by_dev to search for the devi. We 1356 * release it immediately since it should already be held by 1357 * a devfs vnode. 1358 */ 1359 if ((dip = 1360 e_ddi_hold_devi_by_dev(dev, E_DDI_HOLD_DEVI_NOATTACH)) == NULL) 1361 return (-1); 1362 ddi_release_devi(dip); /* for e_ddi_hold_devi_by_dev() */ 1363 1364 /* 1365 * Allocate and initialize the common elements of data 1366 * access handle. 1367 */ 1368 handle = impl_acc_hdl_alloc(KM_SLEEP, NULL); 1369 if (handle == NULL) 1370 return (-1); 1371 1372 hp = impl_acc_hdl_get(handle); 1373 hp->ah_vers = VERS_ACCHDL; 1374 hp->ah_dip = dip; 1375 hp->ah_rnumber = rnumber; 1376 hp->ah_offset = 0; 1377 hp->ah_len = 0; 1378 hp->ah_acc = *accattrp; 1379 1380 /* 1381 * Set up the mapping request and call to parent. 1382 */ 1383 mr.map_op = DDI_MO_MAP_HANDLE; 1384 mr.map_type = DDI_MT_RNUMBER; 1385 mr.map_obj.rnumber = rnumber; 1386 mr.map_prot = PROT_READ | PROT_WRITE; 1387 mr.map_flags = DDI_MF_KERNEL_MAPPING; 1388 mr.map_handlep = hp; 1389 mr.map_vers = DDI_MAP_VERSION; 1390 result = ddi_map(dip, &mr, 0, 0, NULL); 1391 1392 /* 1393 * Region must be mappable, pick up flags from the framework. 1394 */ 1395 *hat_flags = hp->ah_hat_flags; 1396 1397 impl_acc_hdl_free(handle); 1398 1399 /* 1400 * check for end result. 1401 */ 1402 if (result != DDI_SUCCESS) 1403 return (-1); 1404 return (0); 1405 } 1406 1407 1408 /* 1409 * Property functions: See also, ddipropdefs.h. 1410 * 1411 * These functions are the framework for the property functions, 1412 * i.e. they support software defined properties. All implementation 1413 * specific property handling (i.e.: self-identifying devices and 1414 * PROM defined properties are handled in the implementation specific 1415 * functions (defined in ddi_implfuncs.h). 1416 */ 1417 1418 /* 1419 * nopropop: Shouldn't be called, right? 1420 */ 1421 int 1422 nopropop(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 1423 char *name, caddr_t valuep, int *lengthp) 1424 { 1425 _NOTE(ARGUNUSED(dev, dip, prop_op, mod_flags, name, valuep, lengthp)) 1426 return (DDI_PROP_NOT_FOUND); 1427 } 1428 1429 #ifdef DDI_PROP_DEBUG 1430 int ddi_prop_debug_flag = 0; 1431 1432 int 1433 ddi_prop_debug(int enable) 1434 { 1435 int prev = ddi_prop_debug_flag; 1436 1437 if ((enable != 0) || (prev != 0)) 1438 printf("ddi_prop_debug: debugging %s\n", 1439 enable ? "enabled" : "disabled"); 1440 ddi_prop_debug_flag = enable; 1441 return (prev); 1442 } 1443 1444 #endif /* DDI_PROP_DEBUG */ 1445 1446 /* 1447 * Search a property list for a match, if found return pointer 1448 * to matching prop struct, else return NULL. 1449 */ 1450 1451 ddi_prop_t * 1452 i_ddi_prop_search(dev_t dev, char *name, uint_t flags, ddi_prop_t **list_head) 1453 { 1454 ddi_prop_t *propp; 1455 1456 /* 1457 * find the property in child's devinfo: 1458 */ 1459 1460 /* 1461 * Search order defined by this search function is 1462 * first matching property with input dev == 1463 * DDI_DEV_T_ANY matching any dev or dev == propp->prop_dev, 1464 * name == propp->name, and the correct data type as specified 1465 * in the flags 1466 */ 1467 1468 for (propp = *list_head; propp != NULL; propp = propp->prop_next) { 1469 1470 if (strcmp(propp->prop_name, name) != 0) 1471 continue; 1472 1473 if ((dev != DDI_DEV_T_ANY) && (propp->prop_dev != dev)) 1474 continue; 1475 1476 if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0) 1477 continue; 1478 1479 return (propp); 1480 } 1481 1482 return ((ddi_prop_t *)0); 1483 } 1484 1485 /* 1486 * Search for property within devnames structures 1487 */ 1488 ddi_prop_t * 1489 i_ddi_search_global_prop(dev_t dev, char *name, uint_t flags) 1490 { 1491 major_t major; 1492 struct devnames *dnp; 1493 ddi_prop_t *propp; 1494 1495 /* 1496 * Valid dev_t value is needed to index into the 1497 * correct devnames entry, therefore a dev_t 1498 * value of DDI_DEV_T_ANY is not appropriate. 1499 */ 1500 ASSERT(dev != DDI_DEV_T_ANY); 1501 if (dev == DDI_DEV_T_ANY) { 1502 return ((ddi_prop_t *)0); 1503 } 1504 1505 major = getmajor(dev); 1506 dnp = &(devnamesp[major]); 1507 1508 if (dnp->dn_global_prop_ptr == NULL) 1509 return ((ddi_prop_t *)0); 1510 1511 LOCK_DEV_OPS(&dnp->dn_lock); 1512 1513 for (propp = dnp->dn_global_prop_ptr->prop_list; 1514 propp != NULL; 1515 propp = (ddi_prop_t *)propp->prop_next) { 1516 1517 if (strcmp(propp->prop_name, name) != 0) 1518 continue; 1519 1520 if ((!(flags & LDI_DEV_T_ANY)) && (propp->prop_dev != dev)) 1521 continue; 1522 1523 if (((propp->prop_flags & flags) & DDI_PROP_TYPE_MASK) == 0) 1524 continue; 1525 1526 /* Property found, return it */ 1527 UNLOCK_DEV_OPS(&dnp->dn_lock); 1528 return (propp); 1529 } 1530 1531 UNLOCK_DEV_OPS(&dnp->dn_lock); 1532 return ((ddi_prop_t *)0); 1533 } 1534 1535 static char prop_no_mem_msg[] = "can't allocate memory for ddi property <%s>"; 1536 1537 /* 1538 * ddi_prop_search_global: 1539 * Search the global property list within devnames 1540 * for the named property. Return the encoded value. 1541 */ 1542 static int 1543 i_ddi_prop_search_global(dev_t dev, uint_t flags, char *name, 1544 void *valuep, uint_t *lengthp) 1545 { 1546 ddi_prop_t *propp; 1547 caddr_t buffer; 1548 1549 propp = i_ddi_search_global_prop(dev, name, flags); 1550 1551 /* Property NOT found, bail */ 1552 if (propp == (ddi_prop_t *)0) 1553 return (DDI_PROP_NOT_FOUND); 1554 1555 if (propp->prop_flags & DDI_PROP_UNDEF_IT) 1556 return (DDI_PROP_UNDEFINED); 1557 1558 if ((buffer = kmem_alloc(propp->prop_len, KM_NOSLEEP)) == NULL) { 1559 cmn_err(CE_CONT, prop_no_mem_msg, name); 1560 return (DDI_PROP_NO_MEMORY); 1561 } 1562 1563 /* 1564 * Return the encoded data 1565 */ 1566 *(caddr_t *)valuep = buffer; 1567 *lengthp = propp->prop_len; 1568 bcopy(propp->prop_val, buffer, propp->prop_len); 1569 1570 return (DDI_PROP_SUCCESS); 1571 } 1572 1573 /* 1574 * ddi_prop_search_common: Lookup and return the encoded value 1575 */ 1576 int 1577 ddi_prop_search_common(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1578 uint_t flags, char *name, void *valuep, uint_t *lengthp) 1579 { 1580 ddi_prop_t *propp; 1581 int i; 1582 caddr_t buffer; 1583 caddr_t prealloc = NULL; 1584 int plength = 0; 1585 dev_info_t *pdip; 1586 int (*bop)(); 1587 1588 /*CONSTANTCONDITION*/ 1589 while (1) { 1590 1591 mutex_enter(&(DEVI(dip)->devi_lock)); 1592 1593 1594 /* 1595 * find the property in child's devinfo: 1596 * Search order is: 1597 * 1. driver defined properties 1598 * 2. system defined properties 1599 * 3. driver global properties 1600 * 4. boot defined properties 1601 */ 1602 1603 propp = i_ddi_prop_search(dev, name, flags, 1604 &(DEVI(dip)->devi_drv_prop_ptr)); 1605 if (propp == NULL) { 1606 propp = i_ddi_prop_search(dev, name, flags, 1607 &(DEVI(dip)->devi_sys_prop_ptr)); 1608 } 1609 if ((propp == NULL) && DEVI(dip)->devi_global_prop_list) { 1610 propp = i_ddi_prop_search(dev, name, flags, 1611 &DEVI(dip)->devi_global_prop_list->prop_list); 1612 } 1613 1614 if (propp == NULL) { 1615 propp = i_ddi_prop_search(dev, name, flags, 1616 &(DEVI(dip)->devi_hw_prop_ptr)); 1617 } 1618 1619 /* 1620 * Software property found? 1621 */ 1622 if (propp != (ddi_prop_t *)0) { 1623 1624 /* 1625 * If explicit undefine, return now. 1626 */ 1627 if (propp->prop_flags & DDI_PROP_UNDEF_IT) { 1628 mutex_exit(&(DEVI(dip)->devi_lock)); 1629 if (prealloc) 1630 kmem_free(prealloc, plength); 1631 return (DDI_PROP_UNDEFINED); 1632 } 1633 1634 /* 1635 * If we only want to know if it exists, return now 1636 */ 1637 if (prop_op == PROP_EXISTS) { 1638 mutex_exit(&(DEVI(dip)->devi_lock)); 1639 ASSERT(prealloc == NULL); 1640 return (DDI_PROP_SUCCESS); 1641 } 1642 1643 /* 1644 * If length only request or prop length == 0, 1645 * service request and return now. 1646 */ 1647 if ((prop_op == PROP_LEN) ||(propp->prop_len == 0)) { 1648 *lengthp = propp->prop_len; 1649 1650 /* 1651 * if prop_op is PROP_LEN_AND_VAL_ALLOC 1652 * that means prop_len is 0, so set valuep 1653 * also to NULL 1654 */ 1655 if (prop_op == PROP_LEN_AND_VAL_ALLOC) 1656 *(caddr_t *)valuep = NULL; 1657 1658 mutex_exit(&(DEVI(dip)->devi_lock)); 1659 if (prealloc) 1660 kmem_free(prealloc, plength); 1661 return (DDI_PROP_SUCCESS); 1662 } 1663 1664 /* 1665 * If LEN_AND_VAL_ALLOC and the request can sleep, 1666 * drop the mutex, allocate the buffer, and go 1667 * through the loop again. If we already allocated 1668 * the buffer, and the size of the property changed, 1669 * keep trying... 1670 */ 1671 if ((prop_op == PROP_LEN_AND_VAL_ALLOC) && 1672 (flags & DDI_PROP_CANSLEEP)) { 1673 if (prealloc && (propp->prop_len != plength)) { 1674 kmem_free(prealloc, plength); 1675 prealloc = NULL; 1676 } 1677 if (prealloc == NULL) { 1678 plength = propp->prop_len; 1679 mutex_exit(&(DEVI(dip)->devi_lock)); 1680 prealloc = kmem_alloc(plength, 1681 KM_SLEEP); 1682 continue; 1683 } 1684 } 1685 1686 /* 1687 * Allocate buffer, if required. Either way, 1688 * set `buffer' variable. 1689 */ 1690 i = *lengthp; /* Get callers length */ 1691 *lengthp = propp->prop_len; /* Set callers length */ 1692 1693 switch (prop_op) { 1694 1695 case PROP_LEN_AND_VAL_ALLOC: 1696 1697 if (prealloc == NULL) { 1698 buffer = kmem_alloc(propp->prop_len, 1699 KM_NOSLEEP); 1700 } else { 1701 buffer = prealloc; 1702 } 1703 1704 if (buffer == NULL) { 1705 mutex_exit(&(DEVI(dip)->devi_lock)); 1706 cmn_err(CE_CONT, prop_no_mem_msg, name); 1707 return (DDI_PROP_NO_MEMORY); 1708 } 1709 /* Set callers buf ptr */ 1710 *(caddr_t *)valuep = buffer; 1711 break; 1712 1713 case PROP_LEN_AND_VAL_BUF: 1714 1715 if (propp->prop_len > (i)) { 1716 mutex_exit(&(DEVI(dip)->devi_lock)); 1717 return (DDI_PROP_BUF_TOO_SMALL); 1718 } 1719 1720 buffer = valuep; /* Get callers buf ptr */ 1721 break; 1722 1723 default: 1724 break; 1725 } 1726 1727 /* 1728 * Do the copy. 1729 */ 1730 bcopy(propp->prop_val, buffer, propp->prop_len); 1731 mutex_exit(&(DEVI(dip)->devi_lock)); 1732 return (DDI_PROP_SUCCESS); 1733 } 1734 1735 mutex_exit(&(DEVI(dip)->devi_lock)); 1736 if (prealloc) 1737 kmem_free(prealloc, plength); 1738 prealloc = NULL; 1739 1740 /* 1741 * Prop not found, call parent bus_ops to deal with possible 1742 * h/w layer (possible PROM defined props, etc.) and to 1743 * possibly ascend the hierarchy, if allowed by flags. 1744 */ 1745 pdip = (dev_info_t *)DEVI(dip)->devi_parent; 1746 1747 /* 1748 * One last call for the root driver PROM props? 1749 */ 1750 if (dip == ddi_root_node()) { 1751 return (ddi_bus_prop_op(dev, dip, dip, prop_op, 1752 flags, name, valuep, (int *)lengthp)); 1753 } 1754 1755 /* 1756 * We may have been called to check for properties 1757 * within a single devinfo node that has no parent - 1758 * see make_prop() 1759 */ 1760 if (pdip == NULL) { 1761 ASSERT((flags & 1762 (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM)) == 1763 (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM)); 1764 return (DDI_PROP_NOT_FOUND); 1765 } 1766 1767 /* 1768 * Instead of recursing, we do iterative calls up the tree. 1769 * As a bit of optimization, skip the bus_op level if the 1770 * node is a s/w node and if the parent's bus_prop_op function 1771 * is `ddi_bus_prop_op', because we know that in this case, 1772 * this function does nothing. 1773 * 1774 * 4225415: If the parent isn't attached, or the child 1775 * hasn't been named by the parent yet, use the default 1776 * ddi_bus_prop_op as a proxy for the parent. This 1777 * allows property lookups in any child/parent state to 1778 * include 'prom' and inherited properties, even when 1779 * there are no drivers attached to the child or parent. 1780 */ 1781 1782 bop = ddi_bus_prop_op; 1783 if ((i_ddi_node_state(pdip) == DS_READY) && 1784 (i_ddi_node_state(dip) >= DS_INITIALIZED)) 1785 bop = DEVI(pdip)->devi_ops->devo_bus_ops->bus_prop_op; 1786 1787 i = DDI_PROP_NOT_FOUND; 1788 1789 if ((bop != ddi_bus_prop_op) || ndi_dev_is_prom_node(dip)) { 1790 i = (*bop)(dev, pdip, dip, prop_op, 1791 flags | DDI_PROP_DONTPASS, 1792 name, valuep, lengthp); 1793 } 1794 1795 if ((flags & DDI_PROP_DONTPASS) || 1796 (i != DDI_PROP_NOT_FOUND)) 1797 return (i); 1798 1799 dip = pdip; 1800 } 1801 /*NOTREACHED*/ 1802 } 1803 1804 1805 /* 1806 * ddi_prop_op: The basic property operator for drivers. 1807 * 1808 * In ddi_prop_op, the type of valuep is interpreted based on prop_op: 1809 * 1810 * prop_op valuep 1811 * ------ ------ 1812 * 1813 * PROP_LEN <unused> 1814 * 1815 * PROP_LEN_AND_VAL_BUF Pointer to callers buffer 1816 * 1817 * PROP_LEN_AND_VAL_ALLOC Address of callers pointer (will be set to 1818 * address of allocated buffer, if successful) 1819 */ 1820 int 1821 ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 1822 char *name, caddr_t valuep, int *lengthp) 1823 { 1824 int i; 1825 1826 ASSERT((mod_flags & DDI_PROP_TYPE_MASK) == 0); 1827 1828 /* 1829 * If this was originally an LDI prop lookup then we bail here. 1830 * The reason is that the LDI property lookup interfaces first call 1831 * a drivers prop_op() entry point to allow it to override 1832 * properties. But if we've made it here, then the driver hasn't 1833 * overriden any properties. We don't want to continue with the 1834 * property search here because we don't have any type inforamtion. 1835 * When we return failure, the LDI interfaces will then proceed to 1836 * call the typed property interfaces to look up the property. 1837 */ 1838 if (mod_flags & DDI_PROP_DYNAMIC) 1839 return (DDI_PROP_NOT_FOUND); 1840 1841 /* 1842 * check for pre-typed property consumer asking for typed property: 1843 * see e_ddi_getprop_int64. 1844 */ 1845 if (mod_flags & DDI_PROP_CONSUMER_TYPED) 1846 mod_flags |= DDI_PROP_TYPE_INT64; 1847 mod_flags |= DDI_PROP_TYPE_ANY; 1848 1849 i = ddi_prop_search_common(dev, dip, prop_op, 1850 mod_flags, name, valuep, (uint_t *)lengthp); 1851 if (i == DDI_PROP_FOUND_1275) 1852 return (DDI_PROP_SUCCESS); 1853 return (i); 1854 } 1855 1856 /* 1857 * ddi_prop_op_nblocks: The basic property operator for drivers that maintain 1858 * size in number of DEV_BSIZE blocks. Provides a dynamic property 1859 * implementation for size oriented properties based on nblocks64 values passed 1860 * in by the driver. Fallback to ddi_prop_op if the nblocks64 is too large. 1861 * This interface should not be used with a nblocks64 that represents the 1862 * driver's idea of how to represent unknown, if nblocks is unknown use 1863 * ddi_prop_op. 1864 */ 1865 int 1866 ddi_prop_op_nblocks(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1867 int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t nblocks64) 1868 { 1869 uint64_t size64; 1870 1871 /* 1872 * There is no point in supporting nblocks64 values that don't have 1873 * an accurate uint64_t byte count representation. 1874 */ 1875 if (nblocks64 >= (UINT64_MAX >> DEV_BSHIFT)) 1876 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 1877 name, valuep, lengthp)); 1878 1879 size64 = nblocks64 << DEV_BSHIFT; 1880 return (ddi_prop_op_size(dev, dip, prop_op, mod_flags, 1881 name, valuep, lengthp, size64)); 1882 } 1883 1884 /* 1885 * ddi_prop_op_size: The basic property operator for drivers that maintain size 1886 * in bytes. Provides a of dynamic property implementation for size oriented 1887 * properties based on size64 values passed in by the driver. Fallback to 1888 * ddi_prop_op if the size64 is too large. This interface should not be used 1889 * with a size64 that represents the driver's idea of how to represent unknown, 1890 * if size is unknown use ddi_prop_op. 1891 * 1892 * NOTE: the legacy "nblocks"/"size" properties are treated as 32-bit unsigned 1893 * integers. While the most likely interface to request them ([bc]devi_size) 1894 * is declared int (signed) there is no enforcement of this, which means we 1895 * can't enforce limitations here without risking regression. 1896 */ 1897 int 1898 ddi_prop_op_size(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1899 int mod_flags, char *name, caddr_t valuep, int *lengthp, uint64_t size64) 1900 { 1901 uint64_t nblocks64; 1902 int callers_length; 1903 caddr_t buffer; 1904 1905 /* compute DEV_BSIZE nblocks value */ 1906 nblocks64 = lbtodb(size64); 1907 1908 /* get callers length, establish length of our dynamic properties */ 1909 callers_length = *lengthp; 1910 1911 if (strcmp(name, "Nblocks") == 0) 1912 *lengthp = sizeof (uint64_t); 1913 else if (strcmp(name, "Size") == 0) 1914 *lengthp = sizeof (uint64_t); 1915 else if ((strcmp(name, "nblocks") == 0) && (nblocks64 < UINT_MAX)) 1916 *lengthp = sizeof (uint32_t); 1917 else if ((strcmp(name, "size") == 0) && (size64 < UINT_MAX)) 1918 *lengthp = sizeof (uint32_t); 1919 else { 1920 /* fallback to ddi_prop_op */ 1921 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 1922 name, valuep, lengthp)); 1923 } 1924 1925 /* service request for the length of the property */ 1926 if (prop_op == PROP_LEN) 1927 return (DDI_PROP_SUCCESS); 1928 1929 /* the length of the property and the request must match */ 1930 if (callers_length != *lengthp) 1931 return (DDI_PROP_INVAL_ARG); 1932 1933 switch (prop_op) { 1934 case PROP_LEN_AND_VAL_ALLOC: 1935 if ((buffer = kmem_alloc(*lengthp, 1936 (mod_flags & DDI_PROP_CANSLEEP) ? 1937 KM_SLEEP : KM_NOSLEEP)) == NULL) 1938 return (DDI_PROP_NO_MEMORY); 1939 1940 *(caddr_t *)valuep = buffer; /* set callers buf ptr */ 1941 break; 1942 1943 case PROP_LEN_AND_VAL_BUF: 1944 buffer = valuep; /* get callers buf ptr */ 1945 break; 1946 1947 default: 1948 return (DDI_PROP_INVAL_ARG); 1949 } 1950 1951 /* transfer the value into the buffer */ 1952 if (strcmp(name, "Nblocks") == 0) 1953 *((uint64_t *)buffer) = nblocks64; 1954 else if (strcmp(name, "Size") == 0) 1955 *((uint64_t *)buffer) = size64; 1956 else if (strcmp(name, "nblocks") == 0) 1957 *((uint32_t *)buffer) = (uint32_t)nblocks64; 1958 else if (strcmp(name, "size") == 0) 1959 *((uint32_t *)buffer) = (uint32_t)size64; 1960 return (DDI_PROP_SUCCESS); 1961 } 1962 1963 /* 1964 * Variable length props... 1965 */ 1966 1967 /* 1968 * ddi_getlongprop: Get variable length property len+val into a buffer 1969 * allocated by property provider via kmem_alloc. Requester 1970 * is responsible for freeing returned property via kmem_free. 1971 * 1972 * Arguments: 1973 * 1974 * dev_t: Input: dev_t of property. 1975 * dip: Input: dev_info_t pointer of child. 1976 * flags: Input: Possible flag modifiers are: 1977 * DDI_PROP_DONTPASS: Don't pass to parent if prop not found. 1978 * DDI_PROP_CANSLEEP: Memory allocation may sleep. 1979 * name: Input: name of property. 1980 * valuep: Output: Addr of callers buffer pointer. 1981 * lengthp:Output: *lengthp will contain prop length on exit. 1982 * 1983 * Possible Returns: 1984 * 1985 * DDI_PROP_SUCCESS: Prop found and returned. 1986 * DDI_PROP_NOT_FOUND: Prop not found 1987 * DDI_PROP_UNDEFINED: Prop explicitly undefined. 1988 * DDI_PROP_NO_MEMORY: Prop found, but unable to alloc mem. 1989 */ 1990 1991 int 1992 ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags, 1993 char *name, caddr_t valuep, int *lengthp) 1994 { 1995 return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_ALLOC, 1996 flags, name, valuep, lengthp)); 1997 } 1998 1999 /* 2000 * 2001 * ddi_getlongprop_buf: Get long prop into pre-allocated callers 2002 * buffer. (no memory allocation by provider). 2003 * 2004 * dev_t: Input: dev_t of property. 2005 * dip: Input: dev_info_t pointer of child. 2006 * flags: Input: DDI_PROP_DONTPASS or NULL 2007 * name: Input: name of property 2008 * valuep: Input: ptr to callers buffer. 2009 * lengthp:I/O: ptr to length of callers buffer on entry, 2010 * actual length of property on exit. 2011 * 2012 * Possible returns: 2013 * 2014 * DDI_PROP_SUCCESS Prop found and returned 2015 * DDI_PROP_NOT_FOUND Prop not found 2016 * DDI_PROP_UNDEFINED Prop explicitly undefined. 2017 * DDI_PROP_BUF_TOO_SMALL Prop found, callers buf too small, 2018 * no value returned, but actual prop 2019 * length returned in *lengthp 2020 * 2021 */ 2022 2023 int 2024 ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags, 2025 char *name, caddr_t valuep, int *lengthp) 2026 { 2027 return (ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF, 2028 flags, name, valuep, lengthp)); 2029 } 2030 2031 /* 2032 * Integer/boolean sized props. 2033 * 2034 * Call is value only... returns found boolean or int sized prop value or 2035 * defvalue if prop not found or is wrong length or is explicitly undefined. 2036 * Only flag is DDI_PROP_DONTPASS... 2037 * 2038 * By convention, this interface returns boolean (0) sized properties 2039 * as value (int)1. 2040 * 2041 * This never returns an error, if property not found or specifically 2042 * undefined, the input `defvalue' is returned. 2043 */ 2044 2045 int 2046 ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue) 2047 { 2048 int propvalue = defvalue; 2049 int proplength = sizeof (int); 2050 int error; 2051 2052 error = ddi_prop_op(dev, dip, PROP_LEN_AND_VAL_BUF, 2053 flags, name, (caddr_t)&propvalue, &proplength); 2054 2055 if ((error == DDI_PROP_SUCCESS) && (proplength == 0)) 2056 propvalue = 1; 2057 2058 return (propvalue); 2059 } 2060 2061 /* 2062 * Get prop length interface: flags are 0 or DDI_PROP_DONTPASS 2063 * if returns DDI_PROP_SUCCESS, length returned in *lengthp. 2064 */ 2065 2066 int 2067 ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp) 2068 { 2069 return (ddi_prop_op(dev, dip, PROP_LEN, flags, name, NULL, lengthp)); 2070 } 2071 2072 /* 2073 * Allocate a struct prop_driver_data, along with 'size' bytes 2074 * for decoded property data. This structure is freed by 2075 * calling ddi_prop_free(9F). 2076 */ 2077 static void * 2078 ddi_prop_decode_alloc(size_t size, void (*prop_free)(struct prop_driver_data *)) 2079 { 2080 struct prop_driver_data *pdd; 2081 2082 /* 2083 * Allocate a structure with enough memory to store the decoded data. 2084 */ 2085 pdd = kmem_zalloc(sizeof (struct prop_driver_data) + size, KM_SLEEP); 2086 pdd->pdd_size = (sizeof (struct prop_driver_data) + size); 2087 pdd->pdd_prop_free = prop_free; 2088 2089 /* 2090 * Return a pointer to the location to put the decoded data. 2091 */ 2092 return ((void *)((caddr_t)pdd + sizeof (struct prop_driver_data))); 2093 } 2094 2095 /* 2096 * Allocated the memory needed to store the encoded data in the property 2097 * handle. 2098 */ 2099 static int 2100 ddi_prop_encode_alloc(prop_handle_t *ph, size_t size) 2101 { 2102 /* 2103 * If size is zero, then set data to NULL and size to 0. This 2104 * is a boolean property. 2105 */ 2106 if (size == 0) { 2107 ph->ph_size = 0; 2108 ph->ph_data = NULL; 2109 ph->ph_cur_pos = NULL; 2110 ph->ph_save_pos = NULL; 2111 } else { 2112 if (ph->ph_flags == DDI_PROP_DONTSLEEP) { 2113 ph->ph_data = kmem_zalloc(size, KM_NOSLEEP); 2114 if (ph->ph_data == NULL) 2115 return (DDI_PROP_NO_MEMORY); 2116 } else 2117 ph->ph_data = kmem_zalloc(size, KM_SLEEP); 2118 ph->ph_size = size; 2119 ph->ph_cur_pos = ph->ph_data; 2120 ph->ph_save_pos = ph->ph_data; 2121 } 2122 return (DDI_PROP_SUCCESS); 2123 } 2124 2125 /* 2126 * Free the space allocated by the lookup routines. Each lookup routine 2127 * returns a pointer to the decoded data to the driver. The driver then 2128 * passes this pointer back to us. This data actually lives in a struct 2129 * prop_driver_data. We use negative indexing to find the beginning of 2130 * the structure and then free the entire structure using the size and 2131 * the free routine stored in the structure. 2132 */ 2133 void 2134 ddi_prop_free(void *datap) 2135 { 2136 struct prop_driver_data *pdd; 2137 2138 /* 2139 * Get the structure 2140 */ 2141 pdd = (struct prop_driver_data *) 2142 ((caddr_t)datap - sizeof (struct prop_driver_data)); 2143 /* 2144 * Call the free routine to free it 2145 */ 2146 (*pdd->pdd_prop_free)(pdd); 2147 } 2148 2149 /* 2150 * Free the data associated with an array of ints, 2151 * allocated with ddi_prop_decode_alloc(). 2152 */ 2153 static void 2154 ddi_prop_free_ints(struct prop_driver_data *pdd) 2155 { 2156 kmem_free(pdd, pdd->pdd_size); 2157 } 2158 2159 /* 2160 * Free a single string property or a single string contained within 2161 * the argv style return value of an array of strings. 2162 */ 2163 static void 2164 ddi_prop_free_string(struct prop_driver_data *pdd) 2165 { 2166 kmem_free(pdd, pdd->pdd_size); 2167 2168 } 2169 2170 /* 2171 * Free an array of strings. 2172 */ 2173 static void 2174 ddi_prop_free_strings(struct prop_driver_data *pdd) 2175 { 2176 kmem_free(pdd, pdd->pdd_size); 2177 } 2178 2179 /* 2180 * Free the data associated with an array of bytes. 2181 */ 2182 static void 2183 ddi_prop_free_bytes(struct prop_driver_data *pdd) 2184 { 2185 kmem_free(pdd, pdd->pdd_size); 2186 } 2187 2188 /* 2189 * Reset the current location pointer in the property handle to the 2190 * beginning of the data. 2191 */ 2192 void 2193 ddi_prop_reset_pos(prop_handle_t *ph) 2194 { 2195 ph->ph_cur_pos = ph->ph_data; 2196 ph->ph_save_pos = ph->ph_data; 2197 } 2198 2199 /* 2200 * Restore the current location pointer in the property handle to the 2201 * saved position. 2202 */ 2203 void 2204 ddi_prop_save_pos(prop_handle_t *ph) 2205 { 2206 ph->ph_save_pos = ph->ph_cur_pos; 2207 } 2208 2209 /* 2210 * Save the location that the current location pointer is pointing to.. 2211 */ 2212 void 2213 ddi_prop_restore_pos(prop_handle_t *ph) 2214 { 2215 ph->ph_cur_pos = ph->ph_save_pos; 2216 } 2217 2218 /* 2219 * Property encode/decode functions 2220 */ 2221 2222 /* 2223 * Decode a single integer property 2224 */ 2225 static int 2226 ddi_prop_fm_decode_int(prop_handle_t *ph, void *data, uint_t *nelements) 2227 { 2228 int i; 2229 int tmp; 2230 2231 /* 2232 * If there is nothing to decode return an error 2233 */ 2234 if (ph->ph_size == 0) 2235 return (DDI_PROP_END_OF_DATA); 2236 2237 /* 2238 * Decode the property as a single integer and return it 2239 * in data if we were able to decode it. 2240 */ 2241 i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, &tmp); 2242 if (i < DDI_PROP_RESULT_OK) { 2243 switch (i) { 2244 case DDI_PROP_RESULT_EOF: 2245 return (DDI_PROP_END_OF_DATA); 2246 2247 case DDI_PROP_RESULT_ERROR: 2248 return (DDI_PROP_CANNOT_DECODE); 2249 } 2250 } 2251 2252 *(int *)data = tmp; 2253 *nelements = 1; 2254 return (DDI_PROP_SUCCESS); 2255 } 2256 2257 /* 2258 * Decode a single 64 bit integer property 2259 */ 2260 static int 2261 ddi_prop_fm_decode_int64(prop_handle_t *ph, void *data, uint_t *nelements) 2262 { 2263 int i; 2264 int64_t tmp; 2265 2266 /* 2267 * If there is nothing to decode return an error 2268 */ 2269 if (ph->ph_size == 0) 2270 return (DDI_PROP_END_OF_DATA); 2271 2272 /* 2273 * Decode the property as a single integer and return it 2274 * in data if we were able to decode it. 2275 */ 2276 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, &tmp); 2277 if (i < DDI_PROP_RESULT_OK) { 2278 switch (i) { 2279 case DDI_PROP_RESULT_EOF: 2280 return (DDI_PROP_END_OF_DATA); 2281 2282 case DDI_PROP_RESULT_ERROR: 2283 return (DDI_PROP_CANNOT_DECODE); 2284 } 2285 } 2286 2287 *(int64_t *)data = tmp; 2288 *nelements = 1; 2289 return (DDI_PROP_SUCCESS); 2290 } 2291 2292 /* 2293 * Decode an array of integers property 2294 */ 2295 static int 2296 ddi_prop_fm_decode_ints(prop_handle_t *ph, void *data, uint_t *nelements) 2297 { 2298 int i; 2299 int cnt = 0; 2300 int *tmp; 2301 int *intp; 2302 int n; 2303 2304 /* 2305 * Figure out how many array elements there are by going through the 2306 * data without decoding it first and counting. 2307 */ 2308 for (;;) { 2309 i = DDI_PROP_INT(ph, DDI_PROP_CMD_SKIP, NULL); 2310 if (i < 0) 2311 break; 2312 cnt++; 2313 } 2314 2315 /* 2316 * If there are no elements return an error 2317 */ 2318 if (cnt == 0) 2319 return (DDI_PROP_END_OF_DATA); 2320 2321 /* 2322 * If we cannot skip through the data, we cannot decode it 2323 */ 2324 if (i == DDI_PROP_RESULT_ERROR) 2325 return (DDI_PROP_CANNOT_DECODE); 2326 2327 /* 2328 * Reset the data pointer to the beginning of the encoded data 2329 */ 2330 ddi_prop_reset_pos(ph); 2331 2332 /* 2333 * Allocated memory to store the decoded value in. 2334 */ 2335 intp = ddi_prop_decode_alloc((cnt * sizeof (int)), 2336 ddi_prop_free_ints); 2337 2338 /* 2339 * Decode each element and place it in the space we just allocated 2340 */ 2341 tmp = intp; 2342 for (n = 0; n < cnt; n++, tmp++) { 2343 i = DDI_PROP_INT(ph, DDI_PROP_CMD_DECODE, tmp); 2344 if (i < DDI_PROP_RESULT_OK) { 2345 /* 2346 * Free the space we just allocated 2347 * and return an error. 2348 */ 2349 ddi_prop_free(intp); 2350 switch (i) { 2351 case DDI_PROP_RESULT_EOF: 2352 return (DDI_PROP_END_OF_DATA); 2353 2354 case DDI_PROP_RESULT_ERROR: 2355 return (DDI_PROP_CANNOT_DECODE); 2356 } 2357 } 2358 } 2359 2360 *nelements = cnt; 2361 *(int **)data = intp; 2362 2363 return (DDI_PROP_SUCCESS); 2364 } 2365 2366 /* 2367 * Decode a 64 bit integer array property 2368 */ 2369 static int 2370 ddi_prop_fm_decode_int64_array(prop_handle_t *ph, void *data, uint_t *nelements) 2371 { 2372 int i; 2373 int n; 2374 int cnt = 0; 2375 int64_t *tmp; 2376 int64_t *intp; 2377 2378 /* 2379 * Count the number of array elements by going 2380 * through the data without decoding it. 2381 */ 2382 for (;;) { 2383 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_SKIP, NULL); 2384 if (i < 0) 2385 break; 2386 cnt++; 2387 } 2388 2389 /* 2390 * If there are no elements return an error 2391 */ 2392 if (cnt == 0) 2393 return (DDI_PROP_END_OF_DATA); 2394 2395 /* 2396 * If we cannot skip through the data, we cannot decode it 2397 */ 2398 if (i == DDI_PROP_RESULT_ERROR) 2399 return (DDI_PROP_CANNOT_DECODE); 2400 2401 /* 2402 * Reset the data pointer to the beginning of the encoded data 2403 */ 2404 ddi_prop_reset_pos(ph); 2405 2406 /* 2407 * Allocate memory to store the decoded value. 2408 */ 2409 intp = ddi_prop_decode_alloc((cnt * sizeof (int64_t)), 2410 ddi_prop_free_ints); 2411 2412 /* 2413 * Decode each element and place it in the space allocated 2414 */ 2415 tmp = intp; 2416 for (n = 0; n < cnt; n++, tmp++) { 2417 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_DECODE, tmp); 2418 if (i < DDI_PROP_RESULT_OK) { 2419 /* 2420 * Free the space we just allocated 2421 * and return an error. 2422 */ 2423 ddi_prop_free(intp); 2424 switch (i) { 2425 case DDI_PROP_RESULT_EOF: 2426 return (DDI_PROP_END_OF_DATA); 2427 2428 case DDI_PROP_RESULT_ERROR: 2429 return (DDI_PROP_CANNOT_DECODE); 2430 } 2431 } 2432 } 2433 2434 *nelements = cnt; 2435 *(int64_t **)data = intp; 2436 2437 return (DDI_PROP_SUCCESS); 2438 } 2439 2440 /* 2441 * Encode an array of integers property (Can be one element) 2442 */ 2443 int 2444 ddi_prop_fm_encode_ints(prop_handle_t *ph, void *data, uint_t nelements) 2445 { 2446 int i; 2447 int *tmp; 2448 int cnt; 2449 int size; 2450 2451 /* 2452 * If there is no data, we cannot do anything 2453 */ 2454 if (nelements == 0) 2455 return (DDI_PROP_CANNOT_ENCODE); 2456 2457 /* 2458 * Get the size of an encoded int. 2459 */ 2460 size = DDI_PROP_INT(ph, DDI_PROP_CMD_GET_ESIZE, NULL); 2461 2462 if (size < DDI_PROP_RESULT_OK) { 2463 switch (size) { 2464 case DDI_PROP_RESULT_EOF: 2465 return (DDI_PROP_END_OF_DATA); 2466 2467 case DDI_PROP_RESULT_ERROR: 2468 return (DDI_PROP_CANNOT_ENCODE); 2469 } 2470 } 2471 2472 /* 2473 * Allocate space in the handle to store the encoded int. 2474 */ 2475 if (ddi_prop_encode_alloc(ph, size * nelements) != 2476 DDI_PROP_SUCCESS) 2477 return (DDI_PROP_NO_MEMORY); 2478 2479 /* 2480 * Encode the array of ints. 2481 */ 2482 tmp = (int *)data; 2483 for (cnt = 0; cnt < nelements; cnt++, tmp++) { 2484 i = DDI_PROP_INT(ph, DDI_PROP_CMD_ENCODE, tmp); 2485 if (i < DDI_PROP_RESULT_OK) { 2486 switch (i) { 2487 case DDI_PROP_RESULT_EOF: 2488 return (DDI_PROP_END_OF_DATA); 2489 2490 case DDI_PROP_RESULT_ERROR: 2491 return (DDI_PROP_CANNOT_ENCODE); 2492 } 2493 } 2494 } 2495 2496 return (DDI_PROP_SUCCESS); 2497 } 2498 2499 2500 /* 2501 * Encode a 64 bit integer array property 2502 */ 2503 int 2504 ddi_prop_fm_encode_int64(prop_handle_t *ph, void *data, uint_t nelements) 2505 { 2506 int i; 2507 int cnt; 2508 int size; 2509 int64_t *tmp; 2510 2511 /* 2512 * If there is no data, we cannot do anything 2513 */ 2514 if (nelements == 0) 2515 return (DDI_PROP_CANNOT_ENCODE); 2516 2517 /* 2518 * Get the size of an encoded 64 bit int. 2519 */ 2520 size = DDI_PROP_INT64(ph, DDI_PROP_CMD_GET_ESIZE, NULL); 2521 2522 if (size < DDI_PROP_RESULT_OK) { 2523 switch (size) { 2524 case DDI_PROP_RESULT_EOF: 2525 return (DDI_PROP_END_OF_DATA); 2526 2527 case DDI_PROP_RESULT_ERROR: 2528 return (DDI_PROP_CANNOT_ENCODE); 2529 } 2530 } 2531 2532 /* 2533 * Allocate space in the handle to store the encoded int. 2534 */ 2535 if (ddi_prop_encode_alloc(ph, size * nelements) != 2536 DDI_PROP_SUCCESS) 2537 return (DDI_PROP_NO_MEMORY); 2538 2539 /* 2540 * Encode the array of ints. 2541 */ 2542 tmp = (int64_t *)data; 2543 for (cnt = 0; cnt < nelements; cnt++, tmp++) { 2544 i = DDI_PROP_INT64(ph, DDI_PROP_CMD_ENCODE, tmp); 2545 if (i < DDI_PROP_RESULT_OK) { 2546 switch (i) { 2547 case DDI_PROP_RESULT_EOF: 2548 return (DDI_PROP_END_OF_DATA); 2549 2550 case DDI_PROP_RESULT_ERROR: 2551 return (DDI_PROP_CANNOT_ENCODE); 2552 } 2553 } 2554 } 2555 2556 return (DDI_PROP_SUCCESS); 2557 } 2558 2559 /* 2560 * Decode a single string property 2561 */ 2562 static int 2563 ddi_prop_fm_decode_string(prop_handle_t *ph, void *data, uint_t *nelements) 2564 { 2565 char *tmp; 2566 char *str; 2567 int i; 2568 int size; 2569 2570 /* 2571 * If there is nothing to decode return an error 2572 */ 2573 if (ph->ph_size == 0) 2574 return (DDI_PROP_END_OF_DATA); 2575 2576 /* 2577 * Get the decoded size of the encoded string. 2578 */ 2579 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL); 2580 if (size < DDI_PROP_RESULT_OK) { 2581 switch (size) { 2582 case DDI_PROP_RESULT_EOF: 2583 return (DDI_PROP_END_OF_DATA); 2584 2585 case DDI_PROP_RESULT_ERROR: 2586 return (DDI_PROP_CANNOT_DECODE); 2587 } 2588 } 2589 2590 /* 2591 * Allocated memory to store the decoded value in. 2592 */ 2593 str = ddi_prop_decode_alloc((size_t)size, ddi_prop_free_string); 2594 2595 ddi_prop_reset_pos(ph); 2596 2597 /* 2598 * Decode the str and place it in the space we just allocated 2599 */ 2600 tmp = str; 2601 i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, tmp); 2602 if (i < DDI_PROP_RESULT_OK) { 2603 /* 2604 * Free the space we just allocated 2605 * and return an error. 2606 */ 2607 ddi_prop_free(str); 2608 switch (i) { 2609 case DDI_PROP_RESULT_EOF: 2610 return (DDI_PROP_END_OF_DATA); 2611 2612 case DDI_PROP_RESULT_ERROR: 2613 return (DDI_PROP_CANNOT_DECODE); 2614 } 2615 } 2616 2617 *(char **)data = str; 2618 *nelements = 1; 2619 2620 return (DDI_PROP_SUCCESS); 2621 } 2622 2623 /* 2624 * Decode an array of strings. 2625 */ 2626 int 2627 ddi_prop_fm_decode_strings(prop_handle_t *ph, void *data, uint_t *nelements) 2628 { 2629 int cnt = 0; 2630 char **strs; 2631 char **tmp; 2632 char *ptr; 2633 int i; 2634 int n; 2635 int size; 2636 size_t nbytes; 2637 2638 /* 2639 * Figure out how many array elements there are by going through the 2640 * data without decoding it first and counting. 2641 */ 2642 for (;;) { 2643 i = DDI_PROP_STR(ph, DDI_PROP_CMD_SKIP, NULL); 2644 if (i < 0) 2645 break; 2646 cnt++; 2647 } 2648 2649 /* 2650 * If there are no elements return an error 2651 */ 2652 if (cnt == 0) 2653 return (DDI_PROP_END_OF_DATA); 2654 2655 /* 2656 * If we cannot skip through the data, we cannot decode it 2657 */ 2658 if (i == DDI_PROP_RESULT_ERROR) 2659 return (DDI_PROP_CANNOT_DECODE); 2660 2661 /* 2662 * Reset the data pointer to the beginning of the encoded data 2663 */ 2664 ddi_prop_reset_pos(ph); 2665 2666 /* 2667 * Figure out how much memory we need for the sum total 2668 */ 2669 nbytes = (cnt + 1) * sizeof (char *); 2670 2671 for (n = 0; n < cnt; n++) { 2672 /* 2673 * Get the decoded size of the current encoded string. 2674 */ 2675 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL); 2676 if (size < DDI_PROP_RESULT_OK) { 2677 switch (size) { 2678 case DDI_PROP_RESULT_EOF: 2679 return (DDI_PROP_END_OF_DATA); 2680 2681 case DDI_PROP_RESULT_ERROR: 2682 return (DDI_PROP_CANNOT_DECODE); 2683 } 2684 } 2685 2686 nbytes += size; 2687 } 2688 2689 /* 2690 * Allocate memory in which to store the decoded strings. 2691 */ 2692 strs = ddi_prop_decode_alloc(nbytes, ddi_prop_free_strings); 2693 2694 /* 2695 * Set up pointers for each string by figuring out yet 2696 * again how long each string is. 2697 */ 2698 ddi_prop_reset_pos(ph); 2699 ptr = (caddr_t)strs + ((cnt + 1) * sizeof (char *)); 2700 for (tmp = strs, n = 0; n < cnt; n++, tmp++) { 2701 /* 2702 * Get the decoded size of the current encoded string. 2703 */ 2704 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_DSIZE, NULL); 2705 if (size < DDI_PROP_RESULT_OK) { 2706 ddi_prop_free(strs); 2707 switch (size) { 2708 case DDI_PROP_RESULT_EOF: 2709 return (DDI_PROP_END_OF_DATA); 2710 2711 case DDI_PROP_RESULT_ERROR: 2712 return (DDI_PROP_CANNOT_DECODE); 2713 } 2714 } 2715 2716 *tmp = ptr; 2717 ptr += size; 2718 } 2719 2720 /* 2721 * String array is terminated by a NULL 2722 */ 2723 *tmp = NULL; 2724 2725 /* 2726 * Finally, we can decode each string 2727 */ 2728 ddi_prop_reset_pos(ph); 2729 for (tmp = strs, n = 0; n < cnt; n++, tmp++) { 2730 i = DDI_PROP_STR(ph, DDI_PROP_CMD_DECODE, *tmp); 2731 if (i < DDI_PROP_RESULT_OK) { 2732 /* 2733 * Free the space we just allocated 2734 * and return an error 2735 */ 2736 ddi_prop_free(strs); 2737 switch (i) { 2738 case DDI_PROP_RESULT_EOF: 2739 return (DDI_PROP_END_OF_DATA); 2740 2741 case DDI_PROP_RESULT_ERROR: 2742 return (DDI_PROP_CANNOT_DECODE); 2743 } 2744 } 2745 } 2746 2747 *(char ***)data = strs; 2748 *nelements = cnt; 2749 2750 return (DDI_PROP_SUCCESS); 2751 } 2752 2753 /* 2754 * Encode a string. 2755 */ 2756 int 2757 ddi_prop_fm_encode_string(prop_handle_t *ph, void *data, uint_t nelements) 2758 { 2759 char **tmp; 2760 int size; 2761 int i; 2762 2763 /* 2764 * If there is no data, we cannot do anything 2765 */ 2766 if (nelements == 0) 2767 return (DDI_PROP_CANNOT_ENCODE); 2768 2769 /* 2770 * Get the size of the encoded string. 2771 */ 2772 tmp = (char **)data; 2773 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp); 2774 if (size < DDI_PROP_RESULT_OK) { 2775 switch (size) { 2776 case DDI_PROP_RESULT_EOF: 2777 return (DDI_PROP_END_OF_DATA); 2778 2779 case DDI_PROP_RESULT_ERROR: 2780 return (DDI_PROP_CANNOT_ENCODE); 2781 } 2782 } 2783 2784 /* 2785 * Allocate space in the handle to store the encoded string. 2786 */ 2787 if (ddi_prop_encode_alloc(ph, size) != DDI_PROP_SUCCESS) 2788 return (DDI_PROP_NO_MEMORY); 2789 2790 ddi_prop_reset_pos(ph); 2791 2792 /* 2793 * Encode the string. 2794 */ 2795 tmp = (char **)data; 2796 i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp); 2797 if (i < DDI_PROP_RESULT_OK) { 2798 switch (i) { 2799 case DDI_PROP_RESULT_EOF: 2800 return (DDI_PROP_END_OF_DATA); 2801 2802 case DDI_PROP_RESULT_ERROR: 2803 return (DDI_PROP_CANNOT_ENCODE); 2804 } 2805 } 2806 2807 return (DDI_PROP_SUCCESS); 2808 } 2809 2810 2811 /* 2812 * Encode an array of strings. 2813 */ 2814 int 2815 ddi_prop_fm_encode_strings(prop_handle_t *ph, void *data, uint_t nelements) 2816 { 2817 int cnt = 0; 2818 char **tmp; 2819 int size; 2820 uint_t total_size; 2821 int i; 2822 2823 /* 2824 * If there is no data, we cannot do anything 2825 */ 2826 if (nelements == 0) 2827 return (DDI_PROP_CANNOT_ENCODE); 2828 2829 /* 2830 * Get the total size required to encode all the strings. 2831 */ 2832 total_size = 0; 2833 tmp = (char **)data; 2834 for (cnt = 0; cnt < nelements; cnt++, tmp++) { 2835 size = DDI_PROP_STR(ph, DDI_PROP_CMD_GET_ESIZE, *tmp); 2836 if (size < DDI_PROP_RESULT_OK) { 2837 switch (size) { 2838 case DDI_PROP_RESULT_EOF: 2839 return (DDI_PROP_END_OF_DATA); 2840 2841 case DDI_PROP_RESULT_ERROR: 2842 return (DDI_PROP_CANNOT_ENCODE); 2843 } 2844 } 2845 total_size += (uint_t)size; 2846 } 2847 2848 /* 2849 * Allocate space in the handle to store the encoded strings. 2850 */ 2851 if (ddi_prop_encode_alloc(ph, total_size) != DDI_PROP_SUCCESS) 2852 return (DDI_PROP_NO_MEMORY); 2853 2854 ddi_prop_reset_pos(ph); 2855 2856 /* 2857 * Encode the array of strings. 2858 */ 2859 tmp = (char **)data; 2860 for (cnt = 0; cnt < nelements; cnt++, tmp++) { 2861 i = DDI_PROP_STR(ph, DDI_PROP_CMD_ENCODE, *tmp); 2862 if (i < DDI_PROP_RESULT_OK) { 2863 switch (i) { 2864 case DDI_PROP_RESULT_EOF: 2865 return (DDI_PROP_END_OF_DATA); 2866 2867 case DDI_PROP_RESULT_ERROR: 2868 return (DDI_PROP_CANNOT_ENCODE); 2869 } 2870 } 2871 } 2872 2873 return (DDI_PROP_SUCCESS); 2874 } 2875 2876 2877 /* 2878 * Decode an array of bytes. 2879 */ 2880 static int 2881 ddi_prop_fm_decode_bytes(prop_handle_t *ph, void *data, uint_t *nelements) 2882 { 2883 uchar_t *tmp; 2884 int nbytes; 2885 int i; 2886 2887 /* 2888 * If there are no elements return an error 2889 */ 2890 if (ph->ph_size == 0) 2891 return (DDI_PROP_END_OF_DATA); 2892 2893 /* 2894 * Get the size of the encoded array of bytes. 2895 */ 2896 nbytes = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_DSIZE, 2897 data, ph->ph_size); 2898 if (nbytes < DDI_PROP_RESULT_OK) { 2899 switch (nbytes) { 2900 case DDI_PROP_RESULT_EOF: 2901 return (DDI_PROP_END_OF_DATA); 2902 2903 case DDI_PROP_RESULT_ERROR: 2904 return (DDI_PROP_CANNOT_DECODE); 2905 } 2906 } 2907 2908 /* 2909 * Allocated memory to store the decoded value in. 2910 */ 2911 tmp = ddi_prop_decode_alloc(nbytes, ddi_prop_free_bytes); 2912 2913 /* 2914 * Decode each element and place it in the space we just allocated 2915 */ 2916 i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_DECODE, tmp, nbytes); 2917 if (i < DDI_PROP_RESULT_OK) { 2918 /* 2919 * Free the space we just allocated 2920 * and return an error 2921 */ 2922 ddi_prop_free(tmp); 2923 switch (i) { 2924 case DDI_PROP_RESULT_EOF: 2925 return (DDI_PROP_END_OF_DATA); 2926 2927 case DDI_PROP_RESULT_ERROR: 2928 return (DDI_PROP_CANNOT_DECODE); 2929 } 2930 } 2931 2932 *(uchar_t **)data = tmp; 2933 *nelements = nbytes; 2934 2935 return (DDI_PROP_SUCCESS); 2936 } 2937 2938 /* 2939 * Encode an array of bytes. 2940 */ 2941 int 2942 ddi_prop_fm_encode_bytes(prop_handle_t *ph, void *data, uint_t nelements) 2943 { 2944 int size; 2945 int i; 2946 2947 /* 2948 * If there are no elements, then this is a boolean property, 2949 * so just create a property handle with no data and return. 2950 */ 2951 if (nelements == 0) { 2952 (void) ddi_prop_encode_alloc(ph, 0); 2953 return (DDI_PROP_SUCCESS); 2954 } 2955 2956 /* 2957 * Get the size of the encoded array of bytes. 2958 */ 2959 size = DDI_PROP_BYTES(ph, DDI_PROP_CMD_GET_ESIZE, (uchar_t *)data, 2960 nelements); 2961 if (size < DDI_PROP_RESULT_OK) { 2962 switch (size) { 2963 case DDI_PROP_RESULT_EOF: 2964 return (DDI_PROP_END_OF_DATA); 2965 2966 case DDI_PROP_RESULT_ERROR: 2967 return (DDI_PROP_CANNOT_DECODE); 2968 } 2969 } 2970 2971 /* 2972 * Allocate space in the handle to store the encoded bytes. 2973 */ 2974 if (ddi_prop_encode_alloc(ph, (uint_t)size) != DDI_PROP_SUCCESS) 2975 return (DDI_PROP_NO_MEMORY); 2976 2977 /* 2978 * Encode the array of bytes. 2979 */ 2980 i = DDI_PROP_BYTES(ph, DDI_PROP_CMD_ENCODE, (uchar_t *)data, 2981 nelements); 2982 if (i < DDI_PROP_RESULT_OK) { 2983 switch (i) { 2984 case DDI_PROP_RESULT_EOF: 2985 return (DDI_PROP_END_OF_DATA); 2986 2987 case DDI_PROP_RESULT_ERROR: 2988 return (DDI_PROP_CANNOT_ENCODE); 2989 } 2990 } 2991 2992 return (DDI_PROP_SUCCESS); 2993 } 2994 2995 /* 2996 * OBP 1275 integer, string and byte operators. 2997 * 2998 * DDI_PROP_CMD_DECODE: 2999 * 3000 * DDI_PROP_RESULT_ERROR: cannot decode the data 3001 * DDI_PROP_RESULT_EOF: end of data 3002 * DDI_PROP_OK: data was decoded 3003 * 3004 * DDI_PROP_CMD_ENCODE: 3005 * 3006 * DDI_PROP_RESULT_ERROR: cannot encode the data 3007 * DDI_PROP_RESULT_EOF: end of data 3008 * DDI_PROP_OK: data was encoded 3009 * 3010 * DDI_PROP_CMD_SKIP: 3011 * 3012 * DDI_PROP_RESULT_ERROR: cannot skip the data 3013 * DDI_PROP_RESULT_EOF: end of data 3014 * DDI_PROP_OK: data was skipped 3015 * 3016 * DDI_PROP_CMD_GET_ESIZE: 3017 * 3018 * DDI_PROP_RESULT_ERROR: cannot get encoded size 3019 * DDI_PROP_RESULT_EOF: end of data 3020 * > 0: the encoded size 3021 * 3022 * DDI_PROP_CMD_GET_DSIZE: 3023 * 3024 * DDI_PROP_RESULT_ERROR: cannot get decoded size 3025 * DDI_PROP_RESULT_EOF: end of data 3026 * > 0: the decoded size 3027 */ 3028 3029 /* 3030 * OBP 1275 integer operator 3031 * 3032 * OBP properties are a byte stream of data, so integers may not be 3033 * properly aligned. Therefore we need to copy them one byte at a time. 3034 */ 3035 int 3036 ddi_prop_1275_int(prop_handle_t *ph, uint_t cmd, int *data) 3037 { 3038 int i; 3039 3040 switch (cmd) { 3041 case DDI_PROP_CMD_DECODE: 3042 /* 3043 * Check that there is encoded data 3044 */ 3045 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) 3046 return (DDI_PROP_RESULT_ERROR); 3047 if (ph->ph_flags & PH_FROM_PROM) { 3048 i = MIN(ph->ph_size, PROP_1275_INT_SIZE); 3049 if ((int *)ph->ph_cur_pos > ((int *)ph->ph_data + 3050 ph->ph_size - i)) 3051 return (DDI_PROP_RESULT_ERROR); 3052 } else { 3053 if (ph->ph_size < sizeof (int) || 3054 ((int *)ph->ph_cur_pos > ((int *)ph->ph_data + 3055 ph->ph_size - sizeof (int)))) 3056 return (DDI_PROP_RESULT_ERROR); 3057 } 3058 3059 /* 3060 * Copy the integer, using the implementation-specific 3061 * copy function if the property is coming from the PROM. 3062 */ 3063 if (ph->ph_flags & PH_FROM_PROM) { 3064 *data = impl_ddi_prop_int_from_prom( 3065 (uchar_t *)ph->ph_cur_pos, 3066 (ph->ph_size < PROP_1275_INT_SIZE) ? 3067 ph->ph_size : PROP_1275_INT_SIZE); 3068 } else { 3069 bcopy(ph->ph_cur_pos, data, sizeof (int)); 3070 } 3071 3072 /* 3073 * Move the current location to the start of the next 3074 * bit of undecoded data. 3075 */ 3076 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + 3077 PROP_1275_INT_SIZE; 3078 return (DDI_PROP_RESULT_OK); 3079 3080 case DDI_PROP_CMD_ENCODE: 3081 /* 3082 * Check that there is room to encoded the data 3083 */ 3084 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3085 ph->ph_size < PROP_1275_INT_SIZE || 3086 ((int *)ph->ph_cur_pos > ((int *)ph->ph_data + 3087 ph->ph_size - sizeof (int)))) 3088 return (DDI_PROP_RESULT_ERROR); 3089 3090 /* 3091 * Encode the integer into the byte stream one byte at a 3092 * time. 3093 */ 3094 bcopy(data, ph->ph_cur_pos, sizeof (int)); 3095 3096 /* 3097 * Move the current location to the start of the next bit of 3098 * space where we can store encoded data. 3099 */ 3100 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE; 3101 return (DDI_PROP_RESULT_OK); 3102 3103 case DDI_PROP_CMD_SKIP: 3104 /* 3105 * Check that there is encoded data 3106 */ 3107 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3108 ph->ph_size < PROP_1275_INT_SIZE) 3109 return (DDI_PROP_RESULT_ERROR); 3110 3111 3112 if ((caddr_t)ph->ph_cur_pos == 3113 (caddr_t)ph->ph_data + ph->ph_size) { 3114 return (DDI_PROP_RESULT_EOF); 3115 } else if ((caddr_t)ph->ph_cur_pos > 3116 (caddr_t)ph->ph_data + ph->ph_size) { 3117 return (DDI_PROP_RESULT_EOF); 3118 } 3119 3120 /* 3121 * Move the current location to the start of the next bit of 3122 * undecoded data. 3123 */ 3124 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + PROP_1275_INT_SIZE; 3125 return (DDI_PROP_RESULT_OK); 3126 3127 case DDI_PROP_CMD_GET_ESIZE: 3128 /* 3129 * Return the size of an encoded integer on OBP 3130 */ 3131 return (PROP_1275_INT_SIZE); 3132 3133 case DDI_PROP_CMD_GET_DSIZE: 3134 /* 3135 * Return the size of a decoded integer on the system. 3136 */ 3137 return (sizeof (int)); 3138 3139 default: 3140 #ifdef DEBUG 3141 panic("ddi_prop_1275_int: %x impossible", cmd); 3142 /*NOTREACHED*/ 3143 #else 3144 return (DDI_PROP_RESULT_ERROR); 3145 #endif /* DEBUG */ 3146 } 3147 } 3148 3149 /* 3150 * 64 bit integer operator. 3151 * 3152 * This is an extension, defined by Sun, to the 1275 integer 3153 * operator. This routine handles the encoding/decoding of 3154 * 64 bit integer properties. 3155 */ 3156 int 3157 ddi_prop_int64_op(prop_handle_t *ph, uint_t cmd, int64_t *data) 3158 { 3159 3160 switch (cmd) { 3161 case DDI_PROP_CMD_DECODE: 3162 /* 3163 * Check that there is encoded data 3164 */ 3165 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) 3166 return (DDI_PROP_RESULT_ERROR); 3167 if (ph->ph_flags & PH_FROM_PROM) { 3168 return (DDI_PROP_RESULT_ERROR); 3169 } else { 3170 if (ph->ph_size < sizeof (int64_t) || 3171 ((int64_t *)ph->ph_cur_pos > 3172 ((int64_t *)ph->ph_data + 3173 ph->ph_size - sizeof (int64_t)))) 3174 return (DDI_PROP_RESULT_ERROR); 3175 } 3176 /* 3177 * Copy the integer, using the implementation-specific 3178 * copy function if the property is coming from the PROM. 3179 */ 3180 if (ph->ph_flags & PH_FROM_PROM) { 3181 return (DDI_PROP_RESULT_ERROR); 3182 } else { 3183 bcopy(ph->ph_cur_pos, data, sizeof (int64_t)); 3184 } 3185 3186 /* 3187 * Move the current location to the start of the next 3188 * bit of undecoded data. 3189 */ 3190 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + 3191 sizeof (int64_t); 3192 return (DDI_PROP_RESULT_OK); 3193 3194 case DDI_PROP_CMD_ENCODE: 3195 /* 3196 * Check that there is room to encoded the data 3197 */ 3198 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3199 ph->ph_size < sizeof (int64_t) || 3200 ((int64_t *)ph->ph_cur_pos > ((int64_t *)ph->ph_data + 3201 ph->ph_size - sizeof (int64_t)))) 3202 return (DDI_PROP_RESULT_ERROR); 3203 3204 /* 3205 * Encode the integer into the byte stream one byte at a 3206 * time. 3207 */ 3208 bcopy(data, ph->ph_cur_pos, sizeof (int64_t)); 3209 3210 /* 3211 * Move the current location to the start of the next bit of 3212 * space where we can store encoded data. 3213 */ 3214 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + 3215 sizeof (int64_t); 3216 return (DDI_PROP_RESULT_OK); 3217 3218 case DDI_PROP_CMD_SKIP: 3219 /* 3220 * Check that there is encoded data 3221 */ 3222 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3223 ph->ph_size < sizeof (int64_t)) 3224 return (DDI_PROP_RESULT_ERROR); 3225 3226 if ((caddr_t)ph->ph_cur_pos == 3227 (caddr_t)ph->ph_data + ph->ph_size) { 3228 return (DDI_PROP_RESULT_EOF); 3229 } else if ((caddr_t)ph->ph_cur_pos > 3230 (caddr_t)ph->ph_data + ph->ph_size) { 3231 return (DDI_PROP_RESULT_EOF); 3232 } 3233 3234 /* 3235 * Move the current location to the start of 3236 * the next bit of undecoded data. 3237 */ 3238 ph->ph_cur_pos = (uchar_t *)ph->ph_cur_pos + 3239 sizeof (int64_t); 3240 return (DDI_PROP_RESULT_OK); 3241 3242 case DDI_PROP_CMD_GET_ESIZE: 3243 /* 3244 * Return the size of an encoded integer on OBP 3245 */ 3246 return (sizeof (int64_t)); 3247 3248 case DDI_PROP_CMD_GET_DSIZE: 3249 /* 3250 * Return the size of a decoded integer on the system. 3251 */ 3252 return (sizeof (int64_t)); 3253 3254 default: 3255 #ifdef DEBUG 3256 panic("ddi_prop_int64_op: %x impossible", cmd); 3257 /*NOTREACHED*/ 3258 #else 3259 return (DDI_PROP_RESULT_ERROR); 3260 #endif /* DEBUG */ 3261 } 3262 } 3263 3264 /* 3265 * OBP 1275 string operator. 3266 * 3267 * OBP strings are NULL terminated. 3268 */ 3269 int 3270 ddi_prop_1275_string(prop_handle_t *ph, uint_t cmd, char *data) 3271 { 3272 int n; 3273 char *p; 3274 char *end; 3275 3276 switch (cmd) { 3277 case DDI_PROP_CMD_DECODE: 3278 /* 3279 * Check that there is encoded data 3280 */ 3281 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) { 3282 return (DDI_PROP_RESULT_ERROR); 3283 } 3284 3285 n = strlen((char *)ph->ph_cur_pos) + 1; 3286 if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data + 3287 ph->ph_size - n)) { 3288 return (DDI_PROP_RESULT_ERROR); 3289 } 3290 3291 /* 3292 * Copy the NULL terminated string 3293 */ 3294 bcopy(ph->ph_cur_pos, data, n); 3295 3296 /* 3297 * Move the current location to the start of the next bit of 3298 * undecoded data. 3299 */ 3300 ph->ph_cur_pos = (char *)ph->ph_cur_pos + n; 3301 return (DDI_PROP_RESULT_OK); 3302 3303 case DDI_PROP_CMD_ENCODE: 3304 /* 3305 * Check that there is room to encoded the data 3306 */ 3307 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) { 3308 return (DDI_PROP_RESULT_ERROR); 3309 } 3310 3311 n = strlen(data) + 1; 3312 if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data + 3313 ph->ph_size - n)) { 3314 return (DDI_PROP_RESULT_ERROR); 3315 } 3316 3317 /* 3318 * Copy the NULL terminated string 3319 */ 3320 bcopy(data, ph->ph_cur_pos, n); 3321 3322 /* 3323 * Move the current location to the start of the next bit of 3324 * space where we can store encoded data. 3325 */ 3326 ph->ph_cur_pos = (char *)ph->ph_cur_pos + n; 3327 return (DDI_PROP_RESULT_OK); 3328 3329 case DDI_PROP_CMD_SKIP: 3330 /* 3331 * Check that there is encoded data 3332 */ 3333 if (ph->ph_cur_pos == NULL || ph->ph_size == 0) { 3334 return (DDI_PROP_RESULT_ERROR); 3335 } 3336 3337 /* 3338 * Return the string length plus one for the NULL 3339 * We know the size of the property, we need to 3340 * ensure that the string is properly formatted, 3341 * since we may be looking up random OBP data. 3342 */ 3343 p = (char *)ph->ph_cur_pos; 3344 end = (char *)ph->ph_data + ph->ph_size; 3345 3346 if (p == end) { 3347 return (DDI_PROP_RESULT_EOF); 3348 } 3349 3350 for (n = 0; p < end; n++) { 3351 if (*p++ == 0) { 3352 ph->ph_cur_pos = p; 3353 return (DDI_PROP_RESULT_OK); 3354 } 3355 } 3356 3357 return (DDI_PROP_RESULT_ERROR); 3358 3359 case DDI_PROP_CMD_GET_ESIZE: 3360 /* 3361 * Return the size of the encoded string on OBP. 3362 */ 3363 return (strlen(data) + 1); 3364 3365 case DDI_PROP_CMD_GET_DSIZE: 3366 /* 3367 * Return the string length plus one for the NULL 3368 * We know the size of the property, we need to 3369 * ensure that the string is properly formatted, 3370 * since we may be looking up random OBP data. 3371 */ 3372 p = (char *)ph->ph_cur_pos; 3373 end = (char *)ph->ph_data + ph->ph_size; 3374 for (n = 0; p < end; n++) { 3375 if (*p++ == 0) { 3376 ph->ph_cur_pos = p; 3377 return (n+1); 3378 } 3379 } 3380 return (DDI_PROP_RESULT_ERROR); 3381 3382 default: 3383 #ifdef DEBUG 3384 panic("ddi_prop_1275_string: %x impossible", cmd); 3385 /*NOTREACHED*/ 3386 #else 3387 return (DDI_PROP_RESULT_ERROR); 3388 #endif /* DEBUG */ 3389 } 3390 } 3391 3392 /* 3393 * OBP 1275 byte operator 3394 * 3395 * Caller must specify the number of bytes to get. OBP encodes bytes 3396 * as a byte so there is a 1-to-1 translation. 3397 */ 3398 int 3399 ddi_prop_1275_bytes(prop_handle_t *ph, uint_t cmd, uchar_t *data, 3400 uint_t nelements) 3401 { 3402 switch (cmd) { 3403 case DDI_PROP_CMD_DECODE: 3404 /* 3405 * Check that there is encoded data 3406 */ 3407 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3408 ph->ph_size < nelements || 3409 ((char *)ph->ph_cur_pos > ((char *)ph->ph_data + 3410 ph->ph_size - nelements))) 3411 return (DDI_PROP_RESULT_ERROR); 3412 3413 /* 3414 * Copy out the bytes 3415 */ 3416 bcopy(ph->ph_cur_pos, data, nelements); 3417 3418 /* 3419 * Move the current location 3420 */ 3421 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements; 3422 return (DDI_PROP_RESULT_OK); 3423 3424 case DDI_PROP_CMD_ENCODE: 3425 /* 3426 * Check that there is room to encode the data 3427 */ 3428 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3429 ph->ph_size < nelements || 3430 ((char *)ph->ph_cur_pos > ((char *)ph->ph_data + 3431 ph->ph_size - nelements))) 3432 return (DDI_PROP_RESULT_ERROR); 3433 3434 /* 3435 * Copy in the bytes 3436 */ 3437 bcopy(data, ph->ph_cur_pos, nelements); 3438 3439 /* 3440 * Move the current location to the start of the next bit of 3441 * space where we can store encoded data. 3442 */ 3443 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements; 3444 return (DDI_PROP_RESULT_OK); 3445 3446 case DDI_PROP_CMD_SKIP: 3447 /* 3448 * Check that there is encoded data 3449 */ 3450 if (ph->ph_cur_pos == NULL || ph->ph_size == 0 || 3451 ph->ph_size < nelements) 3452 return (DDI_PROP_RESULT_ERROR); 3453 3454 if ((char *)ph->ph_cur_pos > ((char *)ph->ph_data + 3455 ph->ph_size - nelements)) 3456 return (DDI_PROP_RESULT_EOF); 3457 3458 /* 3459 * Move the current location 3460 */ 3461 ph->ph_cur_pos = (char *)ph->ph_cur_pos + nelements; 3462 return (DDI_PROP_RESULT_OK); 3463 3464 case DDI_PROP_CMD_GET_ESIZE: 3465 /* 3466 * The size in bytes of the encoded size is the 3467 * same as the decoded size provided by the caller. 3468 */ 3469 return (nelements); 3470 3471 case DDI_PROP_CMD_GET_DSIZE: 3472 /* 3473 * Just return the number of bytes specified by the caller. 3474 */ 3475 return (nelements); 3476 3477 default: 3478 #ifdef DEBUG 3479 panic("ddi_prop_1275_bytes: %x impossible", cmd); 3480 /*NOTREACHED*/ 3481 #else 3482 return (DDI_PROP_RESULT_ERROR); 3483 #endif /* DEBUG */ 3484 } 3485 } 3486 3487 /* 3488 * Used for properties that come from the OBP, hardware configuration files, 3489 * or that are created by calls to ddi_prop_update(9F). 3490 */ 3491 static struct prop_handle_ops prop_1275_ops = { 3492 ddi_prop_1275_int, 3493 ddi_prop_1275_string, 3494 ddi_prop_1275_bytes, 3495 ddi_prop_int64_op 3496 }; 3497 3498 3499 /* 3500 * Interface to create/modify a managed property on child's behalf... 3501 * Flags interpreted are: 3502 * DDI_PROP_CANSLEEP: Allow memory allocation to sleep. 3503 * DDI_PROP_SYSTEM_DEF: Manipulate system list rather than driver list. 3504 * 3505 * Use same dev_t when modifying or undefining a property. 3506 * Search for properties with DDI_DEV_T_ANY to match first named 3507 * property on the list. 3508 * 3509 * Properties are stored LIFO and subsequently will match the first 3510 * `matching' instance. 3511 */ 3512 3513 /* 3514 * ddi_prop_add: Add a software defined property 3515 */ 3516 3517 /* 3518 * define to get a new ddi_prop_t. 3519 * km_flags are KM_SLEEP or KM_NOSLEEP. 3520 */ 3521 3522 #define DDI_NEW_PROP_T(km_flags) \ 3523 (kmem_zalloc(sizeof (ddi_prop_t), km_flags)) 3524 3525 static int 3526 ddi_prop_add(dev_t dev, dev_info_t *dip, int flags, 3527 char *name, caddr_t value, int length) 3528 { 3529 ddi_prop_t *new_propp, *propp; 3530 ddi_prop_t **list_head = &(DEVI(dip)->devi_drv_prop_ptr); 3531 int km_flags = KM_NOSLEEP; 3532 int name_buf_len; 3533 3534 /* 3535 * If dev_t is DDI_DEV_T_ANY or name's length is zero return error. 3536 */ 3537 3538 if (dev == DDI_DEV_T_ANY || name == (char *)0 || strlen(name) == 0) 3539 return (DDI_PROP_INVAL_ARG); 3540 3541 if (flags & DDI_PROP_CANSLEEP) 3542 km_flags = KM_SLEEP; 3543 3544 if (flags & DDI_PROP_SYSTEM_DEF) 3545 list_head = &(DEVI(dip)->devi_sys_prop_ptr); 3546 else if (flags & DDI_PROP_HW_DEF) 3547 list_head = &(DEVI(dip)->devi_hw_prop_ptr); 3548 3549 if ((new_propp = DDI_NEW_PROP_T(km_flags)) == NULL) { 3550 cmn_err(CE_CONT, prop_no_mem_msg, name); 3551 return (DDI_PROP_NO_MEMORY); 3552 } 3553 3554 /* 3555 * If dev is major number 0, then we need to do a ddi_name_to_major 3556 * to get the real major number for the device. This needs to be 3557 * done because some drivers need to call ddi_prop_create in their 3558 * attach routines but they don't have a dev. By creating the dev 3559 * ourself if the major number is 0, drivers will not have to know what 3560 * their major number. They can just create a dev with major number 3561 * 0 and pass it in. For device 0, we will be doing a little extra 3562 * work by recreating the same dev that we already have, but its the 3563 * price you pay :-). 3564 * 3565 * This fixes bug #1098060. 3566 */ 3567 if (getmajor(dev) == DDI_MAJOR_T_UNKNOWN) { 3568 new_propp->prop_dev = 3569 makedevice(ddi_name_to_major(DEVI(dip)->devi_binding_name), 3570 getminor(dev)); 3571 } else 3572 new_propp->prop_dev = dev; 3573 3574 /* 3575 * Allocate space for property name and copy it in... 3576 */ 3577 3578 name_buf_len = strlen(name) + 1; 3579 new_propp->prop_name = kmem_alloc(name_buf_len, km_flags); 3580 if (new_propp->prop_name == 0) { 3581 kmem_free(new_propp, sizeof (ddi_prop_t)); 3582 cmn_err(CE_CONT, prop_no_mem_msg, name); 3583 return (DDI_PROP_NO_MEMORY); 3584 } 3585 bcopy(name, new_propp->prop_name, name_buf_len); 3586 3587 /* 3588 * Set the property type 3589 */ 3590 new_propp->prop_flags = flags & DDI_PROP_TYPE_MASK; 3591 3592 /* 3593 * Set length and value ONLY if not an explicit property undefine: 3594 * NOTE: value and length are zero for explicit undefines. 3595 */ 3596 3597 if (flags & DDI_PROP_UNDEF_IT) { 3598 new_propp->prop_flags |= DDI_PROP_UNDEF_IT; 3599 } else { 3600 if ((new_propp->prop_len = length) != 0) { 3601 new_propp->prop_val = kmem_alloc(length, km_flags); 3602 if (new_propp->prop_val == 0) { 3603 kmem_free(new_propp->prop_name, name_buf_len); 3604 kmem_free(new_propp, sizeof (ddi_prop_t)); 3605 cmn_err(CE_CONT, prop_no_mem_msg, name); 3606 return (DDI_PROP_NO_MEMORY); 3607 } 3608 bcopy(value, new_propp->prop_val, length); 3609 } 3610 } 3611 3612 /* 3613 * Link property into beginning of list. (Properties are LIFO order.) 3614 */ 3615 3616 mutex_enter(&(DEVI(dip)->devi_lock)); 3617 propp = *list_head; 3618 new_propp->prop_next = propp; 3619 *list_head = new_propp; 3620 mutex_exit(&(DEVI(dip)->devi_lock)); 3621 return (DDI_PROP_SUCCESS); 3622 } 3623 3624 3625 /* 3626 * ddi_prop_change: Modify a software managed property value 3627 * 3628 * Set new length and value if found. 3629 * returns DDI_PROP_INVAL_ARG if dev is DDI_DEV_T_ANY or 3630 * input name is the NULL string. 3631 * returns DDI_PROP_NO_MEMORY if unable to allocate memory 3632 * 3633 * Note: an undef can be modified to be a define, 3634 * (you can't go the other way.) 3635 */ 3636 3637 static int 3638 ddi_prop_change(dev_t dev, dev_info_t *dip, int flags, 3639 char *name, caddr_t value, int length) 3640 { 3641 ddi_prop_t *propp; 3642 int km_flags = KM_NOSLEEP; 3643 caddr_t p = NULL; 3644 3645 if (dev == DDI_DEV_T_ANY || name == (char *)0 || strlen(name) == 0) 3646 return (DDI_PROP_INVAL_ARG); 3647 3648 if (flags & DDI_PROP_CANSLEEP) 3649 km_flags = KM_SLEEP; 3650 3651 /* 3652 * Preallocate buffer, even if we don't need it... 3653 */ 3654 if (length != 0) { 3655 p = kmem_alloc(length, km_flags); 3656 if (p == NULL) { 3657 cmn_err(CE_CONT, prop_no_mem_msg, name); 3658 return (DDI_PROP_NO_MEMORY); 3659 } 3660 } 3661 3662 /* 3663 * Check to see if the property exists. If so we modify it. 3664 * Else we create it by calling ddi_prop_add(). 3665 */ 3666 mutex_enter(&(DEVI(dip)->devi_lock)); 3667 3668 propp = DEVI(dip)->devi_drv_prop_ptr; 3669 if (flags & DDI_PROP_SYSTEM_DEF) 3670 propp = DEVI(dip)->devi_sys_prop_ptr; 3671 else if (flags & DDI_PROP_HW_DEF) 3672 propp = DEVI(dip)->devi_hw_prop_ptr; 3673 3674 while (propp != NULL) { 3675 if (strcmp(name, propp->prop_name) == 0 && 3676 dev == propp->prop_dev) { 3677 3678 /* 3679 * Need to reallocate buffer? If so, do it 3680 * (carefully). (Reuse same space if new prop 3681 * is same size and non-NULL sized). 3682 */ 3683 3684 if (length != 0) 3685 bcopy(value, p, length); 3686 3687 if (propp->prop_len != 0) 3688 kmem_free(propp->prop_val, propp->prop_len); 3689 3690 propp->prop_len = length; 3691 propp->prop_val = p; 3692 propp->prop_flags &= ~DDI_PROP_UNDEF_IT; 3693 mutex_exit(&(DEVI(dip)->devi_lock)); 3694 return (DDI_PROP_SUCCESS); 3695 } 3696 propp = propp->prop_next; 3697 } 3698 3699 mutex_exit(&(DEVI(dip)->devi_lock)); 3700 if (length != 0) 3701 kmem_free(p, length); 3702 return (ddi_prop_add(dev, dip, flags, name, value, length)); 3703 } 3704 3705 3706 3707 /* 3708 * Common update routine used to update and encode a property. Creates 3709 * a property handle, calls the property encode routine, figures out if 3710 * the property already exists and updates if it does. Otherwise it 3711 * creates if it does not exist. 3712 */ 3713 int 3714 ddi_prop_update_common(dev_t match_dev, dev_info_t *dip, int flags, 3715 char *name, void *data, uint_t nelements, 3716 int (*prop_create)(prop_handle_t *, void *data, uint_t nelements)) 3717 { 3718 prop_handle_t ph; 3719 int rval; 3720 uint_t ourflags; 3721 3722 /* 3723 * If dev_t is DDI_DEV_T_ANY or name's length is zero, 3724 * return error. 3725 */ 3726 if (match_dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0) 3727 return (DDI_PROP_INVAL_ARG); 3728 3729 /* 3730 * Create the handle 3731 */ 3732 ph.ph_data = NULL; 3733 ph.ph_cur_pos = NULL; 3734 ph.ph_save_pos = NULL; 3735 ph.ph_size = 0; 3736 ph.ph_ops = &prop_1275_ops; 3737 3738 /* 3739 * ourflags: 3740 * For compatibility with the old interfaces. The old interfaces 3741 * didn't sleep by default and slept when the flag was set. These 3742 * interfaces to the opposite. So the old interfaces now set the 3743 * DDI_PROP_DONTSLEEP flag by default which tells us not to sleep. 3744 * 3745 * ph.ph_flags: 3746 * Blocked data or unblocked data allocation 3747 * for ph.ph_data in ddi_prop_encode_alloc() 3748 */ 3749 if (flags & DDI_PROP_DONTSLEEP) { 3750 ourflags = flags; 3751 ph.ph_flags = DDI_PROP_DONTSLEEP; 3752 } else { 3753 ourflags = flags | DDI_PROP_CANSLEEP; 3754 ph.ph_flags = DDI_PROP_CANSLEEP; 3755 } 3756 3757 /* 3758 * Encode the data and store it in the property handle by 3759 * calling the prop_encode routine. 3760 */ 3761 if ((rval = (*prop_create)(&ph, data, nelements)) != 3762 DDI_PROP_SUCCESS) { 3763 if (rval == DDI_PROP_NO_MEMORY) 3764 cmn_err(CE_CONT, prop_no_mem_msg, name); 3765 if (ph.ph_size != 0) 3766 kmem_free(ph.ph_data, ph.ph_size); 3767 return (rval); 3768 } 3769 3770 /* 3771 * The old interfaces use a stacking approach to creating 3772 * properties. If we are being called from the old interfaces, 3773 * the DDI_PROP_STACK_CREATE flag will be set, so we just do a 3774 * create without checking. 3775 */ 3776 if (flags & DDI_PROP_STACK_CREATE) { 3777 rval = ddi_prop_add(match_dev, dip, 3778 ourflags, name, ph.ph_data, ph.ph_size); 3779 } else { 3780 rval = ddi_prop_change(match_dev, dip, 3781 ourflags, name, ph.ph_data, ph.ph_size); 3782 } 3783 3784 /* 3785 * Free the encoded data allocated in the prop_encode routine. 3786 */ 3787 if (ph.ph_size != 0) 3788 kmem_free(ph.ph_data, ph.ph_size); 3789 3790 return (rval); 3791 } 3792 3793 3794 /* 3795 * ddi_prop_create: Define a managed property: 3796 * See above for details. 3797 */ 3798 3799 int 3800 ddi_prop_create(dev_t dev, dev_info_t *dip, int flag, 3801 char *name, caddr_t value, int length) 3802 { 3803 if (!(flag & DDI_PROP_CANSLEEP)) { 3804 flag |= DDI_PROP_DONTSLEEP; 3805 #ifdef DDI_PROP_DEBUG 3806 if (length != 0) 3807 cmn_err(CE_NOTE, "!ddi_prop_create: interface obsolete," 3808 "use ddi_prop_update (prop = %s, node = %s%d)", 3809 name, ddi_driver_name(dip), ddi_get_instance(dip)); 3810 #endif /* DDI_PROP_DEBUG */ 3811 } 3812 flag &= ~DDI_PROP_SYSTEM_DEF; 3813 return (ddi_prop_update_common(dev, dip, 3814 (flag | DDI_PROP_STACK_CREATE | DDI_PROP_TYPE_ANY), name, 3815 value, length, ddi_prop_fm_encode_bytes)); 3816 } 3817 3818 int 3819 e_ddi_prop_create(dev_t dev, dev_info_t *dip, int flag, 3820 char *name, caddr_t value, int length) 3821 { 3822 if (!(flag & DDI_PROP_CANSLEEP)) 3823 flag |= DDI_PROP_DONTSLEEP; 3824 return (ddi_prop_update_common(dev, dip, 3825 (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE | 3826 DDI_PROP_TYPE_ANY), 3827 name, value, length, ddi_prop_fm_encode_bytes)); 3828 } 3829 3830 int 3831 ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag, 3832 char *name, caddr_t value, int length) 3833 { 3834 ASSERT((flag & DDI_PROP_TYPE_MASK) == 0); 3835 3836 /* 3837 * If dev_t is DDI_DEV_T_ANY or name's length is zero, 3838 * return error. 3839 */ 3840 if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0) 3841 return (DDI_PROP_INVAL_ARG); 3842 3843 if (!(flag & DDI_PROP_CANSLEEP)) 3844 flag |= DDI_PROP_DONTSLEEP; 3845 flag &= ~DDI_PROP_SYSTEM_DEF; 3846 if (ddi_prop_exists((dev == DDI_DEV_T_NONE) ? DDI_DEV_T_ANY : dev, 3847 dip, (flag | DDI_PROP_NOTPROM), name) == 0) 3848 return (DDI_PROP_NOT_FOUND); 3849 3850 return (ddi_prop_update_common(dev, dip, 3851 (flag | DDI_PROP_TYPE_BYTE), name, 3852 value, length, ddi_prop_fm_encode_bytes)); 3853 } 3854 3855 int 3856 e_ddi_prop_modify(dev_t dev, dev_info_t *dip, int flag, 3857 char *name, caddr_t value, int length) 3858 { 3859 ASSERT((flag & DDI_PROP_TYPE_MASK) == 0); 3860 3861 /* 3862 * If dev_t is DDI_DEV_T_ANY or name's length is zero, 3863 * return error. 3864 */ 3865 if (dev == DDI_DEV_T_ANY || name == NULL || strlen(name) == 0) 3866 return (DDI_PROP_INVAL_ARG); 3867 3868 if (ddi_prop_exists((dev == DDI_DEV_T_NONE) ? DDI_DEV_T_ANY : dev, 3869 dip, (flag | DDI_PROP_SYSTEM_DEF), name) == 0) 3870 return (DDI_PROP_NOT_FOUND); 3871 3872 if (!(flag & DDI_PROP_CANSLEEP)) 3873 flag |= DDI_PROP_DONTSLEEP; 3874 return (ddi_prop_update_common(dev, dip, 3875 (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE), 3876 name, value, length, ddi_prop_fm_encode_bytes)); 3877 } 3878 3879 3880 /* 3881 * Common lookup routine used to lookup and decode a property. 3882 * Creates a property handle, searches for the raw encoded data, 3883 * fills in the handle, and calls the property decode functions 3884 * passed in. 3885 * 3886 * This routine is not static because ddi_bus_prop_op() which lives in 3887 * ddi_impl.c calls it. No driver should be calling this routine. 3888 */ 3889 int 3890 ddi_prop_lookup_common(dev_t match_dev, dev_info_t *dip, 3891 uint_t flags, char *name, void *data, uint_t *nelements, 3892 int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements)) 3893 { 3894 int rval; 3895 uint_t ourflags; 3896 prop_handle_t ph; 3897 3898 if ((match_dev == DDI_DEV_T_NONE) || 3899 (name == NULL) || (strlen(name) == 0)) 3900 return (DDI_PROP_INVAL_ARG); 3901 3902 ourflags = (flags & DDI_PROP_DONTSLEEP) ? flags : 3903 flags | DDI_PROP_CANSLEEP; 3904 3905 /* 3906 * Get the encoded data 3907 */ 3908 bzero(&ph, sizeof (prop_handle_t)); 3909 3910 if (flags & DDI_UNBND_DLPI2) { 3911 /* 3912 * For unbound dlpi style-2 devices, index into 3913 * the devnames' array and search the global 3914 * property list. 3915 */ 3916 ourflags &= ~DDI_UNBND_DLPI2; 3917 rval = i_ddi_prop_search_global(match_dev, 3918 ourflags, name, &ph.ph_data, &ph.ph_size); 3919 } else { 3920 rval = ddi_prop_search_common(match_dev, dip, 3921 PROP_LEN_AND_VAL_ALLOC, ourflags, name, 3922 &ph.ph_data, &ph.ph_size); 3923 3924 } 3925 3926 if (rval != DDI_PROP_SUCCESS && rval != DDI_PROP_FOUND_1275) { 3927 ASSERT(ph.ph_data == NULL); 3928 ASSERT(ph.ph_size == 0); 3929 return (rval); 3930 } 3931 3932 /* 3933 * If the encoded data came from a OBP or software 3934 * use the 1275 OBP decode/encode routines. 3935 */ 3936 ph.ph_cur_pos = ph.ph_data; 3937 ph.ph_save_pos = ph.ph_data; 3938 ph.ph_ops = &prop_1275_ops; 3939 ph.ph_flags = (rval == DDI_PROP_FOUND_1275) ? PH_FROM_PROM : 0; 3940 3941 rval = (*prop_decoder)(&ph, data, nelements); 3942 3943 /* 3944 * Free the encoded data 3945 */ 3946 if (ph.ph_size != 0) 3947 kmem_free(ph.ph_data, ph.ph_size); 3948 3949 return (rval); 3950 } 3951 3952 /* 3953 * Lookup and return an array of composite properties. The driver must 3954 * provide the decode routine. 3955 */ 3956 int 3957 ddi_prop_lookup(dev_t match_dev, dev_info_t *dip, 3958 uint_t flags, char *name, void *data, uint_t *nelements, 3959 int (*prop_decoder)(prop_handle_t *, void *data, uint_t *nelements)) 3960 { 3961 return (ddi_prop_lookup_common(match_dev, dip, 3962 (flags | DDI_PROP_TYPE_COMPOSITE), name, 3963 data, nelements, prop_decoder)); 3964 } 3965 3966 /* 3967 * Return 1 if a property exists (no type checking done). 3968 * Return 0 if it does not exist. 3969 */ 3970 int 3971 ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags, char *name) 3972 { 3973 int i; 3974 uint_t x = 0; 3975 3976 i = ddi_prop_search_common(match_dev, dip, PROP_EXISTS, 3977 flags | DDI_PROP_TYPE_MASK, name, NULL, &x); 3978 return (i == DDI_PROP_SUCCESS || i == DDI_PROP_FOUND_1275); 3979 } 3980 3981 3982 /* 3983 * Update an array of composite properties. The driver must 3984 * provide the encode routine. 3985 */ 3986 int 3987 ddi_prop_update(dev_t match_dev, dev_info_t *dip, 3988 char *name, void *data, uint_t nelements, 3989 int (*prop_create)(prop_handle_t *, void *data, uint_t nelements)) 3990 { 3991 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_COMPOSITE, 3992 name, data, nelements, prop_create)); 3993 } 3994 3995 /* 3996 * Get a single integer or boolean property and return it. 3997 * If the property does not exists, or cannot be decoded, 3998 * then return the defvalue passed in. 3999 * 4000 * This routine always succeeds. 4001 */ 4002 int 4003 ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags, 4004 char *name, int defvalue) 4005 { 4006 int data; 4007 uint_t nelements; 4008 int rval; 4009 4010 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4011 LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) { 4012 #ifdef DEBUG 4013 if (dip != NULL) { 4014 cmn_err(CE_WARN, "ddi_prop_get_int: invalid flag" 4015 " 0x%x (prop = %s, node = %s%d)", flags, 4016 name, ddi_driver_name(dip), ddi_get_instance(dip)); 4017 } 4018 #endif /* DEBUG */ 4019 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4020 LDI_DEV_T_ANY | DDI_UNBND_DLPI2; 4021 } 4022 4023 if ((rval = ddi_prop_lookup_common(match_dev, dip, 4024 (flags | DDI_PROP_TYPE_INT), name, &data, &nelements, 4025 ddi_prop_fm_decode_int)) != DDI_PROP_SUCCESS) { 4026 if (rval == DDI_PROP_END_OF_DATA) 4027 data = 1; 4028 else 4029 data = defvalue; 4030 } 4031 return (data); 4032 } 4033 4034 /* 4035 * Get a single 64 bit integer or boolean property and return it. 4036 * If the property does not exists, or cannot be decoded, 4037 * then return the defvalue passed in. 4038 * 4039 * This routine always succeeds. 4040 */ 4041 int64_t 4042 ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t flags, 4043 char *name, int64_t defvalue) 4044 { 4045 int64_t data; 4046 uint_t nelements; 4047 int rval; 4048 4049 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4050 LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) { 4051 #ifdef DEBUG 4052 if (dip != NULL) { 4053 cmn_err(CE_WARN, "ddi_prop_get_int64: invalid flag" 4054 " 0x%x (prop = %s, node = %s%d)", flags, 4055 name, ddi_driver_name(dip), ddi_get_instance(dip)); 4056 } 4057 #endif /* DEBUG */ 4058 return (DDI_PROP_INVAL_ARG); 4059 } 4060 4061 if ((rval = ddi_prop_lookup_common(match_dev, dip, 4062 (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM), 4063 name, &data, &nelements, ddi_prop_fm_decode_int64)) 4064 != DDI_PROP_SUCCESS) { 4065 if (rval == DDI_PROP_END_OF_DATA) 4066 data = 1; 4067 else 4068 data = defvalue; 4069 } 4070 return (data); 4071 } 4072 4073 /* 4074 * Get an array of integer property 4075 */ 4076 int 4077 ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 4078 char *name, int **data, uint_t *nelements) 4079 { 4080 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4081 LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) { 4082 #ifdef DEBUG 4083 if (dip != NULL) { 4084 cmn_err(CE_WARN, "ddi_prop_lookup_int_array: " 4085 "invalid flag 0x%x (prop = %s, node = %s%d)", 4086 flags, name, ddi_driver_name(dip), 4087 ddi_get_instance(dip)); 4088 } 4089 #endif /* DEBUG */ 4090 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4091 LDI_DEV_T_ANY | DDI_UNBND_DLPI2; 4092 } 4093 4094 return (ddi_prop_lookup_common(match_dev, dip, 4095 (flags | DDI_PROP_TYPE_INT), name, data, 4096 nelements, ddi_prop_fm_decode_ints)); 4097 } 4098 4099 /* 4100 * Get an array of 64 bit integer properties 4101 */ 4102 int 4103 ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 4104 char *name, int64_t **data, uint_t *nelements) 4105 { 4106 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4107 LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) { 4108 #ifdef DEBUG 4109 if (dip != NULL) { 4110 cmn_err(CE_WARN, "ddi_prop_lookup_int64_array: " 4111 "invalid flag 0x%x (prop = %s, node = %s%d)", 4112 flags, name, ddi_driver_name(dip), 4113 ddi_get_instance(dip)); 4114 } 4115 #endif /* DEBUG */ 4116 return (DDI_PROP_INVAL_ARG); 4117 } 4118 4119 return (ddi_prop_lookup_common(match_dev, dip, 4120 (flags | DDI_PROP_TYPE_INT64 | DDI_PROP_NOTPROM), 4121 name, data, nelements, ddi_prop_fm_decode_int64_array)); 4122 } 4123 4124 /* 4125 * Update a single integer property. If the property exists on the drivers 4126 * property list it updates, else it creates it. 4127 */ 4128 int 4129 ddi_prop_update_int(dev_t match_dev, dev_info_t *dip, 4130 char *name, int data) 4131 { 4132 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT, 4133 name, &data, 1, ddi_prop_fm_encode_ints)); 4134 } 4135 4136 /* 4137 * Update a single 64 bit integer property. 4138 * Update the driver property list if it exists, else create it. 4139 */ 4140 int 4141 ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip, 4142 char *name, int64_t data) 4143 { 4144 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64, 4145 name, &data, 1, ddi_prop_fm_encode_int64)); 4146 } 4147 4148 int 4149 e_ddi_prop_update_int(dev_t match_dev, dev_info_t *dip, 4150 char *name, int data) 4151 { 4152 return (ddi_prop_update_common(match_dev, dip, 4153 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT, 4154 name, &data, 1, ddi_prop_fm_encode_ints)); 4155 } 4156 4157 int 4158 e_ddi_prop_update_int64(dev_t match_dev, dev_info_t *dip, 4159 char *name, int64_t data) 4160 { 4161 return (ddi_prop_update_common(match_dev, dip, 4162 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64, 4163 name, &data, 1, ddi_prop_fm_encode_int64)); 4164 } 4165 4166 /* 4167 * Update an array of integer property. If the property exists on the drivers 4168 * property list it updates, else it creates it. 4169 */ 4170 int 4171 ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip, 4172 char *name, int *data, uint_t nelements) 4173 { 4174 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT, 4175 name, data, nelements, ddi_prop_fm_encode_ints)); 4176 } 4177 4178 /* 4179 * Update an array of 64 bit integer properties. 4180 * Update the driver property list if it exists, else create it. 4181 */ 4182 int 4183 ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip, 4184 char *name, int64_t *data, uint_t nelements) 4185 { 4186 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_INT64, 4187 name, data, nelements, ddi_prop_fm_encode_int64)); 4188 } 4189 4190 int 4191 e_ddi_prop_update_int64_array(dev_t match_dev, dev_info_t *dip, 4192 char *name, int64_t *data, uint_t nelements) 4193 { 4194 return (ddi_prop_update_common(match_dev, dip, 4195 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT64, 4196 name, data, nelements, ddi_prop_fm_encode_int64)); 4197 } 4198 4199 int 4200 e_ddi_prop_update_int_array(dev_t match_dev, dev_info_t *dip, 4201 char *name, int *data, uint_t nelements) 4202 { 4203 return (ddi_prop_update_common(match_dev, dip, 4204 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_INT, 4205 name, data, nelements, ddi_prop_fm_encode_ints)); 4206 } 4207 4208 /* 4209 * Get a single string property. 4210 */ 4211 int 4212 ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t flags, 4213 char *name, char **data) 4214 { 4215 uint_t x; 4216 4217 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4218 LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) { 4219 #ifdef DEBUG 4220 if (dip != NULL) { 4221 cmn_err(CE_WARN, "%s: invalid flag 0x%x " 4222 "(prop = %s, node = %s%d); invalid bits ignored", 4223 "ddi_prop_lookup_string", flags, name, 4224 ddi_driver_name(dip), ddi_get_instance(dip)); 4225 } 4226 #endif /* DEBUG */ 4227 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4228 LDI_DEV_T_ANY | DDI_UNBND_DLPI2; 4229 } 4230 4231 return (ddi_prop_lookup_common(match_dev, dip, 4232 (flags | DDI_PROP_TYPE_STRING), name, data, 4233 &x, ddi_prop_fm_decode_string)); 4234 } 4235 4236 /* 4237 * Get an array of strings property. 4238 */ 4239 int 4240 ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 4241 char *name, char ***data, uint_t *nelements) 4242 { 4243 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4244 LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) { 4245 #ifdef DEBUG 4246 if (dip != NULL) { 4247 cmn_err(CE_WARN, "ddi_prop_lookup_string_array: " 4248 "invalid flag 0x%x (prop = %s, node = %s%d)", 4249 flags, name, ddi_driver_name(dip), 4250 ddi_get_instance(dip)); 4251 } 4252 #endif /* DEBUG */ 4253 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4254 LDI_DEV_T_ANY | DDI_UNBND_DLPI2; 4255 } 4256 4257 return (ddi_prop_lookup_common(match_dev, dip, 4258 (flags | DDI_PROP_TYPE_STRING), name, data, 4259 nelements, ddi_prop_fm_decode_strings)); 4260 } 4261 4262 /* 4263 * Update a single string property. 4264 */ 4265 int 4266 ddi_prop_update_string(dev_t match_dev, dev_info_t *dip, 4267 char *name, char *data) 4268 { 4269 return (ddi_prop_update_common(match_dev, dip, 4270 DDI_PROP_TYPE_STRING, name, &data, 1, 4271 ddi_prop_fm_encode_string)); 4272 } 4273 4274 int 4275 e_ddi_prop_update_string(dev_t match_dev, dev_info_t *dip, 4276 char *name, char *data) 4277 { 4278 return (ddi_prop_update_common(match_dev, dip, 4279 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING, 4280 name, &data, 1, ddi_prop_fm_encode_string)); 4281 } 4282 4283 4284 /* 4285 * Update an array of strings property. 4286 */ 4287 int 4288 ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip, 4289 char *name, char **data, uint_t nelements) 4290 { 4291 return (ddi_prop_update_common(match_dev, dip, 4292 DDI_PROP_TYPE_STRING, name, data, nelements, 4293 ddi_prop_fm_encode_strings)); 4294 } 4295 4296 int 4297 e_ddi_prop_update_string_array(dev_t match_dev, dev_info_t *dip, 4298 char *name, char **data, uint_t nelements) 4299 { 4300 return (ddi_prop_update_common(match_dev, dip, 4301 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_STRING, 4302 name, data, nelements, 4303 ddi_prop_fm_encode_strings)); 4304 } 4305 4306 4307 /* 4308 * Get an array of bytes property. 4309 */ 4310 int 4311 ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip, uint_t flags, 4312 char *name, uchar_t **data, uint_t *nelements) 4313 { 4314 if (flags & ~(DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4315 LDI_DEV_T_ANY | DDI_UNBND_DLPI2)) { 4316 #ifdef DEBUG 4317 if (dip != NULL) { 4318 cmn_err(CE_WARN, "ddi_prop_lookup_byte_array: " 4319 " invalid flag 0x%x (prop = %s, node = %s%d)", 4320 flags, name, ddi_driver_name(dip), 4321 ddi_get_instance(dip)); 4322 } 4323 #endif /* DEBUG */ 4324 flags &= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM | 4325 LDI_DEV_T_ANY | DDI_UNBND_DLPI2; 4326 } 4327 4328 return (ddi_prop_lookup_common(match_dev, dip, 4329 (flags | DDI_PROP_TYPE_BYTE), name, data, 4330 nelements, ddi_prop_fm_decode_bytes)); 4331 } 4332 4333 /* 4334 * Update an array of bytes property. 4335 */ 4336 int 4337 ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip, 4338 char *name, uchar_t *data, uint_t nelements) 4339 { 4340 if (nelements == 0) 4341 return (DDI_PROP_INVAL_ARG); 4342 4343 return (ddi_prop_update_common(match_dev, dip, DDI_PROP_TYPE_BYTE, 4344 name, data, nelements, ddi_prop_fm_encode_bytes)); 4345 } 4346 4347 4348 int 4349 e_ddi_prop_update_byte_array(dev_t match_dev, dev_info_t *dip, 4350 char *name, uchar_t *data, uint_t nelements) 4351 { 4352 if (nelements == 0) 4353 return (DDI_PROP_INVAL_ARG); 4354 4355 return (ddi_prop_update_common(match_dev, dip, 4356 DDI_PROP_SYSTEM_DEF | DDI_PROP_TYPE_BYTE, 4357 name, data, nelements, ddi_prop_fm_encode_bytes)); 4358 } 4359 4360 4361 /* 4362 * ddi_prop_remove_common: Undefine a managed property: 4363 * Input dev_t must match dev_t when defined. 4364 * Returns DDI_PROP_NOT_FOUND, possibly. 4365 * DDI_PROP_INVAL_ARG is also possible if dev is 4366 * DDI_DEV_T_ANY or incoming name is the NULL string. 4367 */ 4368 int 4369 ddi_prop_remove_common(dev_t dev, dev_info_t *dip, char *name, int flag) 4370 { 4371 ddi_prop_t **list_head = &(DEVI(dip)->devi_drv_prop_ptr); 4372 ddi_prop_t *propp; 4373 ddi_prop_t *lastpropp = NULL; 4374 4375 if ((dev == DDI_DEV_T_ANY) || (name == (char *)0) || 4376 (strlen(name) == 0)) { 4377 return (DDI_PROP_INVAL_ARG); 4378 } 4379 4380 if (flag & DDI_PROP_SYSTEM_DEF) 4381 list_head = &(DEVI(dip)->devi_sys_prop_ptr); 4382 else if (flag & DDI_PROP_HW_DEF) 4383 list_head = &(DEVI(dip)->devi_hw_prop_ptr); 4384 4385 mutex_enter(&(DEVI(dip)->devi_lock)); 4386 4387 for (propp = *list_head; propp != NULL; propp = propp->prop_next) { 4388 if ((strcmp(name, propp->prop_name) == 0) && 4389 (dev == propp->prop_dev)) { 4390 /* 4391 * Unlink this propp allowing for it to 4392 * be first in the list: 4393 */ 4394 4395 if (lastpropp == NULL) 4396 *list_head = propp->prop_next; 4397 else 4398 lastpropp->prop_next = propp->prop_next; 4399 4400 mutex_exit(&(DEVI(dip)->devi_lock)); 4401 4402 /* 4403 * Free memory and return... 4404 */ 4405 kmem_free(propp->prop_name, 4406 strlen(propp->prop_name) + 1); 4407 if (propp->prop_len != 0) 4408 kmem_free(propp->prop_val, propp->prop_len); 4409 kmem_free(propp, sizeof (ddi_prop_t)); 4410 return (DDI_PROP_SUCCESS); 4411 } 4412 lastpropp = propp; 4413 } 4414 mutex_exit(&(DEVI(dip)->devi_lock)); 4415 return (DDI_PROP_NOT_FOUND); 4416 } 4417 4418 int 4419 ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name) 4420 { 4421 return (ddi_prop_remove_common(dev, dip, name, 0)); 4422 } 4423 4424 int 4425 e_ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name) 4426 { 4427 return (ddi_prop_remove_common(dev, dip, name, DDI_PROP_SYSTEM_DEF)); 4428 } 4429 4430 /* 4431 * e_ddi_prop_list_delete: remove a list of properties 4432 * Note that the caller needs to provide the required protection 4433 * (eg. devi_lock if these properties are still attached to a devi) 4434 */ 4435 void 4436 e_ddi_prop_list_delete(ddi_prop_t *props) 4437 { 4438 i_ddi_prop_list_delete(props); 4439 } 4440 4441 /* 4442 * ddi_prop_remove_all_common: 4443 * Used before unloading a driver to remove 4444 * all properties. (undefines all dev_t's props.) 4445 * Also removes `explicitly undefined' props. 4446 * No errors possible. 4447 */ 4448 void 4449 ddi_prop_remove_all_common(dev_info_t *dip, int flag) 4450 { 4451 ddi_prop_t **list_head; 4452 4453 mutex_enter(&(DEVI(dip)->devi_lock)); 4454 if (flag & DDI_PROP_SYSTEM_DEF) { 4455 list_head = &(DEVI(dip)->devi_sys_prop_ptr); 4456 } else if (flag & DDI_PROP_HW_DEF) { 4457 list_head = &(DEVI(dip)->devi_hw_prop_ptr); 4458 } else { 4459 list_head = &(DEVI(dip)->devi_drv_prop_ptr); 4460 } 4461 i_ddi_prop_list_delete(*list_head); 4462 *list_head = NULL; 4463 mutex_exit(&(DEVI(dip)->devi_lock)); 4464 } 4465 4466 4467 /* 4468 * ddi_prop_remove_all: Remove all driver prop definitions. 4469 */ 4470 4471 void 4472 ddi_prop_remove_all(dev_info_t *dip) 4473 { 4474 ddi_prop_remove_all_common(dip, 0); 4475 } 4476 4477 /* 4478 * e_ddi_prop_remove_all: Remove all system prop definitions. 4479 */ 4480 4481 void 4482 e_ddi_prop_remove_all(dev_info_t *dip) 4483 { 4484 ddi_prop_remove_all_common(dip, (int)DDI_PROP_SYSTEM_DEF); 4485 } 4486 4487 4488 /* 4489 * ddi_prop_undefine: Explicitly undefine a property. Property 4490 * searches which match this property return 4491 * the error code DDI_PROP_UNDEFINED. 4492 * 4493 * Use ddi_prop_remove to negate effect of 4494 * ddi_prop_undefine 4495 * 4496 * See above for error returns. 4497 */ 4498 4499 int 4500 ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name) 4501 { 4502 if (!(flag & DDI_PROP_CANSLEEP)) 4503 flag |= DDI_PROP_DONTSLEEP; 4504 return (ddi_prop_update_common(dev, dip, 4505 (flag | DDI_PROP_STACK_CREATE | DDI_PROP_UNDEF_IT | 4506 DDI_PROP_TYPE_ANY), name, NULL, 0, ddi_prop_fm_encode_bytes)); 4507 } 4508 4509 int 4510 e_ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flag, char *name) 4511 { 4512 if (!(flag & DDI_PROP_CANSLEEP)) 4513 flag |= DDI_PROP_DONTSLEEP; 4514 return (ddi_prop_update_common(dev, dip, 4515 (flag | DDI_PROP_SYSTEM_DEF | DDI_PROP_STACK_CREATE | 4516 DDI_PROP_UNDEF_IT | DDI_PROP_TYPE_ANY), 4517 name, NULL, 0, ddi_prop_fm_encode_bytes)); 4518 } 4519 4520 /* 4521 * Code to search hardware layer (PROM), if it exists, on behalf of child. 4522 * 4523 * if input dip != child_dip, then call is on behalf of child 4524 * to search PROM, do it via ddi_prop_search_common() and ascend only 4525 * if allowed. 4526 * 4527 * if input dip == ch_dip (child_dip), call is on behalf of root driver, 4528 * to search for PROM defined props only. 4529 * 4530 * Note that the PROM search is done only if the requested dev 4531 * is either DDI_DEV_T_ANY or DDI_DEV_T_NONE. PROM properties 4532 * have no associated dev, thus are automatically associated with 4533 * DDI_DEV_T_NONE. 4534 * 4535 * Modifying flag DDI_PROP_NOTPROM inhibits the search in the h/w layer. 4536 * 4537 * Returns DDI_PROP_FOUND_1275 if found to indicate to framework 4538 * that the property resides in the prom. 4539 */ 4540 int 4541 impl_ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip, 4542 ddi_prop_op_t prop_op, int mod_flags, 4543 char *name, caddr_t valuep, int *lengthp) 4544 { 4545 int len; 4546 caddr_t buffer; 4547 4548 /* 4549 * If requested dev is DDI_DEV_T_NONE or DDI_DEV_T_ANY, then 4550 * look in caller's PROM if it's a self identifying device... 4551 * 4552 * Note that this is very similar to ddi_prop_op, but we 4553 * search the PROM instead of the s/w defined properties, 4554 * and we are called on by the parent driver to do this for 4555 * the child. 4556 */ 4557 4558 if (((dev == DDI_DEV_T_NONE) || (dev == DDI_DEV_T_ANY)) && 4559 ndi_dev_is_prom_node(ch_dip) && 4560 ((mod_flags & DDI_PROP_NOTPROM) == 0)) { 4561 len = prom_getproplen((dnode_t)DEVI(ch_dip)->devi_nodeid, name); 4562 if (len == -1) { 4563 return (DDI_PROP_NOT_FOUND); 4564 } 4565 4566 /* 4567 * If exists only request, we're done 4568 */ 4569 if (prop_op == PROP_EXISTS) { 4570 return (DDI_PROP_FOUND_1275); 4571 } 4572 4573 /* 4574 * If length only request or prop length == 0, get out 4575 */ 4576 if ((prop_op == PROP_LEN) || (len == 0)) { 4577 *lengthp = len; 4578 return (DDI_PROP_FOUND_1275); 4579 } 4580 4581 /* 4582 * Allocate buffer if required... (either way `buffer' 4583 * is receiving address). 4584 */ 4585 4586 switch (prop_op) { 4587 4588 case PROP_LEN_AND_VAL_ALLOC: 4589 4590 buffer = kmem_alloc((size_t)len, 4591 mod_flags & DDI_PROP_CANSLEEP ? 4592 KM_SLEEP : KM_NOSLEEP); 4593 if (buffer == NULL) { 4594 return (DDI_PROP_NO_MEMORY); 4595 } 4596 *(caddr_t *)valuep = buffer; 4597 break; 4598 4599 case PROP_LEN_AND_VAL_BUF: 4600 4601 if (len > (*lengthp)) { 4602 *lengthp = len; 4603 return (DDI_PROP_BUF_TOO_SMALL); 4604 } 4605 4606 buffer = valuep; 4607 break; 4608 4609 default: 4610 break; 4611 } 4612 4613 /* 4614 * Call the PROM function to do the copy. 4615 */ 4616 (void) prom_getprop((dnode_t)DEVI(ch_dip)->devi_nodeid, 4617 name, buffer); 4618 4619 *lengthp = len; /* return the actual length to the caller */ 4620 (void) impl_fix_props(dip, ch_dip, name, len, buffer); 4621 return (DDI_PROP_FOUND_1275); 4622 } 4623 4624 return (DDI_PROP_NOT_FOUND); 4625 } 4626 4627 /* 4628 * The ddi_bus_prop_op default bus nexus prop op function. 4629 * 4630 * Code to search hardware layer (PROM), if it exists, 4631 * on behalf of child, then, if appropriate, ascend and check 4632 * my own software defined properties... 4633 */ 4634 int 4635 ddi_bus_prop_op(dev_t dev, dev_info_t *dip, dev_info_t *ch_dip, 4636 ddi_prop_op_t prop_op, int mod_flags, 4637 char *name, caddr_t valuep, int *lengthp) 4638 { 4639 int error; 4640 4641 error = impl_ddi_bus_prop_op(dev, dip, ch_dip, prop_op, mod_flags, 4642 name, valuep, lengthp); 4643 4644 if (error == DDI_PROP_SUCCESS || error == DDI_PROP_FOUND_1275 || 4645 error == DDI_PROP_BUF_TOO_SMALL) 4646 return (error); 4647 4648 if (error == DDI_PROP_NO_MEMORY) { 4649 cmn_err(CE_CONT, prop_no_mem_msg, name); 4650 return (DDI_PROP_NO_MEMORY); 4651 } 4652 4653 /* 4654 * Check the 'options' node as a last resort 4655 */ 4656 if ((mod_flags & DDI_PROP_DONTPASS) != 0) 4657 return (DDI_PROP_NOT_FOUND); 4658 4659 if (ch_dip == ddi_root_node()) { 4660 /* 4661 * As a last resort, when we've reached 4662 * the top and still haven't found the 4663 * property, see if the desired property 4664 * is attached to the options node. 4665 * 4666 * The options dip is attached right after boot. 4667 */ 4668 ASSERT(options_dip != NULL); 4669 /* 4670 * Force the "don't pass" flag to *just* see 4671 * what the options node has to offer. 4672 */ 4673 return (ddi_prop_search_common(dev, options_dip, prop_op, 4674 mod_flags|DDI_PROP_DONTPASS, name, valuep, 4675 (uint_t *)lengthp)); 4676 } 4677 4678 /* 4679 * Otherwise, continue search with parent's s/w defined properties... 4680 * NOTE: Using `dip' in following call increments the level. 4681 */ 4682 4683 return (ddi_prop_search_common(dev, dip, prop_op, mod_flags, 4684 name, valuep, (uint_t *)lengthp)); 4685 } 4686 4687 /* 4688 * External property functions used by other parts of the kernel... 4689 */ 4690 4691 /* 4692 * e_ddi_getlongprop: See comments for ddi_get_longprop. 4693 */ 4694 4695 int 4696 e_ddi_getlongprop(dev_t dev, vtype_t type, char *name, int flags, 4697 caddr_t valuep, int *lengthp) 4698 { 4699 _NOTE(ARGUNUSED(type)) 4700 dev_info_t *devi; 4701 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_ALLOC; 4702 int error; 4703 4704 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 4705 return (DDI_PROP_NOT_FOUND); 4706 4707 error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp); 4708 ddi_release_devi(devi); 4709 return (error); 4710 } 4711 4712 /* 4713 * e_ddi_getlongprop_buf: See comments for ddi_getlongprop_buf. 4714 */ 4715 4716 int 4717 e_ddi_getlongprop_buf(dev_t dev, vtype_t type, char *name, int flags, 4718 caddr_t valuep, int *lengthp) 4719 { 4720 _NOTE(ARGUNUSED(type)) 4721 dev_info_t *devi; 4722 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF; 4723 int error; 4724 4725 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 4726 return (DDI_PROP_NOT_FOUND); 4727 4728 error = cdev_prop_op(dev, devi, prop_op, flags, name, valuep, lengthp); 4729 ddi_release_devi(devi); 4730 return (error); 4731 } 4732 4733 /* 4734 * e_ddi_getprop: See comments for ddi_getprop. 4735 */ 4736 int 4737 e_ddi_getprop(dev_t dev, vtype_t type, char *name, int flags, int defvalue) 4738 { 4739 _NOTE(ARGUNUSED(type)) 4740 dev_info_t *devi; 4741 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF; 4742 int propvalue = defvalue; 4743 int proplength = sizeof (int); 4744 int error; 4745 4746 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 4747 return (defvalue); 4748 4749 error = cdev_prop_op(dev, devi, prop_op, 4750 flags, name, (caddr_t)&propvalue, &proplength); 4751 ddi_release_devi(devi); 4752 4753 if ((error == DDI_PROP_SUCCESS) && (proplength == 0)) 4754 propvalue = 1; 4755 4756 return (propvalue); 4757 } 4758 4759 /* 4760 * e_ddi_getprop_int64: 4761 * 4762 * This is a typed interfaces, but predates typed properties. With the 4763 * introduction of typed properties the framework tries to ensure 4764 * consistent use of typed interfaces. This is why TYPE_INT64 is not 4765 * part of TYPE_ANY. E_ddi_getprop_int64 is a special case where a 4766 * typed interface invokes legacy (non-typed) interfaces: 4767 * cdev_prop_op(), prop_op(9E), ddi_prop_op(9F)). In this case the 4768 * fact that TYPE_INT64 is not part of TYPE_ANY matters. To support 4769 * this type of lookup as a single operation we invoke the legacy 4770 * non-typed interfaces with the special CONSUMER_TYPED bit set. The 4771 * framework ddi_prop_op(9F) implementation is expected to check for 4772 * CONSUMER_TYPED and, if set, expand type bits beyond TYPE_ANY 4773 * (currently TYPE_INT64). 4774 */ 4775 int64_t 4776 e_ddi_getprop_int64(dev_t dev, vtype_t type, char *name, 4777 int flags, int64_t defvalue) 4778 { 4779 _NOTE(ARGUNUSED(type)) 4780 dev_info_t *devi; 4781 ddi_prop_op_t prop_op = PROP_LEN_AND_VAL_BUF; 4782 int64_t propvalue = defvalue; 4783 int proplength = sizeof (propvalue); 4784 int error; 4785 4786 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 4787 return (defvalue); 4788 4789 error = cdev_prop_op(dev, devi, prop_op, flags | 4790 DDI_PROP_CONSUMER_TYPED, name, (caddr_t)&propvalue, &proplength); 4791 ddi_release_devi(devi); 4792 4793 if ((error == DDI_PROP_SUCCESS) && (proplength == 0)) 4794 propvalue = 1; 4795 4796 return (propvalue); 4797 } 4798 4799 /* 4800 * e_ddi_getproplen: See comments for ddi_getproplen. 4801 */ 4802 int 4803 e_ddi_getproplen(dev_t dev, vtype_t type, char *name, int flags, int *lengthp) 4804 { 4805 _NOTE(ARGUNUSED(type)) 4806 dev_info_t *devi; 4807 ddi_prop_op_t prop_op = PROP_LEN; 4808 int error; 4809 4810 if ((devi = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 4811 return (DDI_PROP_NOT_FOUND); 4812 4813 error = cdev_prop_op(dev, devi, prop_op, flags, name, NULL, lengthp); 4814 ddi_release_devi(devi); 4815 return (error); 4816 } 4817 4818 /* 4819 * Routines to get at elements of the dev_info structure 4820 */ 4821 4822 /* 4823 * ddi_binding_name: Return the driver binding name of the devinfo node 4824 * This is the name the OS used to bind the node to a driver. 4825 */ 4826 char * 4827 ddi_binding_name(dev_info_t *dip) 4828 { 4829 return (DEVI(dip)->devi_binding_name); 4830 } 4831 4832 /* 4833 * ddi_driver_major: Return the major number of the driver that 4834 * the supplied devinfo is bound to (-1 if none) 4835 */ 4836 major_t 4837 ddi_driver_major(dev_info_t *devi) 4838 { 4839 return (DEVI(devi)->devi_major); 4840 } 4841 4842 /* 4843 * ddi_driver_name: Return the normalized driver name. this is the 4844 * actual driver name 4845 */ 4846 const char * 4847 ddi_driver_name(dev_info_t *devi) 4848 { 4849 major_t major; 4850 4851 if ((major = ddi_driver_major(devi)) != (major_t)-1) 4852 return (ddi_major_to_name(major)); 4853 4854 return (ddi_node_name(devi)); 4855 } 4856 4857 /* 4858 * i_ddi_set_binding_name: Set binding name. 4859 * 4860 * Set the binding name to the given name. 4861 * This routine is for use by the ddi implementation, not by drivers. 4862 */ 4863 void 4864 i_ddi_set_binding_name(dev_info_t *dip, char *name) 4865 { 4866 DEVI(dip)->devi_binding_name = name; 4867 4868 } 4869 4870 /* 4871 * ddi_get_name: A synonym of ddi_binding_name() ... returns a name 4872 * the implementation has used to bind the node to a driver. 4873 */ 4874 char * 4875 ddi_get_name(dev_info_t *dip) 4876 { 4877 return (DEVI(dip)->devi_binding_name); 4878 } 4879 4880 /* 4881 * ddi_node_name: Return the name property of the devinfo node 4882 * This may differ from ddi_binding_name if the node name 4883 * does not define a binding to a driver (i.e. generic names). 4884 */ 4885 char * 4886 ddi_node_name(dev_info_t *dip) 4887 { 4888 return (DEVI(dip)->devi_node_name); 4889 } 4890 4891 4892 /* 4893 * ddi_get_nodeid: Get nodeid stored in dev_info structure. 4894 */ 4895 int 4896 ddi_get_nodeid(dev_info_t *dip) 4897 { 4898 return (DEVI(dip)->devi_nodeid); 4899 } 4900 4901 int 4902 ddi_get_instance(dev_info_t *dip) 4903 { 4904 return (DEVI(dip)->devi_instance); 4905 } 4906 4907 struct dev_ops * 4908 ddi_get_driver(dev_info_t *dip) 4909 { 4910 return (DEVI(dip)->devi_ops); 4911 } 4912 4913 void 4914 ddi_set_driver(dev_info_t *dip, struct dev_ops *devo) 4915 { 4916 DEVI(dip)->devi_ops = devo; 4917 } 4918 4919 /* 4920 * ddi_set_driver_private/ddi_get_driver_private: 4921 * Get/set device driver private data in devinfo. 4922 */ 4923 void 4924 ddi_set_driver_private(dev_info_t *dip, void *data) 4925 { 4926 DEVI(dip)->devi_driver_data = data; 4927 } 4928 4929 void * 4930 ddi_get_driver_private(dev_info_t *dip) 4931 { 4932 return (DEVI(dip)->devi_driver_data); 4933 } 4934 4935 /* 4936 * ddi_get_parent, ddi_get_child, ddi_get_next_sibling 4937 */ 4938 4939 dev_info_t * 4940 ddi_get_parent(dev_info_t *dip) 4941 { 4942 return ((dev_info_t *)DEVI(dip)->devi_parent); 4943 } 4944 4945 dev_info_t * 4946 ddi_get_child(dev_info_t *dip) 4947 { 4948 return ((dev_info_t *)DEVI(dip)->devi_child); 4949 } 4950 4951 dev_info_t * 4952 ddi_get_next_sibling(dev_info_t *dip) 4953 { 4954 return ((dev_info_t *)DEVI(dip)->devi_sibling); 4955 } 4956 4957 dev_info_t * 4958 ddi_get_next(dev_info_t *dip) 4959 { 4960 return ((dev_info_t *)DEVI(dip)->devi_next); 4961 } 4962 4963 void 4964 ddi_set_next(dev_info_t *dip, dev_info_t *nextdip) 4965 { 4966 DEVI(dip)->devi_next = DEVI(nextdip); 4967 } 4968 4969 /* 4970 * ddi_root_node: Return root node of devinfo tree 4971 */ 4972 4973 dev_info_t * 4974 ddi_root_node(void) 4975 { 4976 extern dev_info_t *top_devinfo; 4977 4978 return (top_devinfo); 4979 } 4980 4981 /* 4982 * Miscellaneous functions: 4983 */ 4984 4985 /* 4986 * Implementation specific hooks 4987 */ 4988 4989 void 4990 ddi_report_dev(dev_info_t *d) 4991 { 4992 char *b; 4993 4994 (void) ddi_ctlops(d, d, DDI_CTLOPS_REPORTDEV, (void *)0, (void *)0); 4995 4996 /* 4997 * If this devinfo node has cb_ops, it's implicitly accessible from 4998 * userland, so we print its full name together with the instance 4999 * number 'abbreviation' that the driver may use internally. 5000 */ 5001 if (DEVI(d)->devi_ops->devo_cb_ops != (struct cb_ops *)0 && 5002 (b = kmem_zalloc(MAXPATHLEN, KM_NOSLEEP))) { 5003 cmn_err(CE_CONT, "?%s%d is %s\n", 5004 ddi_driver_name(d), ddi_get_instance(d), 5005 ddi_pathname(d, b)); 5006 kmem_free(b, MAXPATHLEN); 5007 } 5008 } 5009 5010 /* 5011 * ddi_ctlops() is described in the assembler not to buy a new register 5012 * window when it's called and can reduce cost in climbing the device tree 5013 * without using the tail call optimization. 5014 */ 5015 int 5016 ddi_dev_regsize(dev_info_t *dev, uint_t rnumber, off_t *result) 5017 { 5018 int ret; 5019 5020 ret = ddi_ctlops(dev, dev, DDI_CTLOPS_REGSIZE, 5021 (void *)&rnumber, (void *)result); 5022 5023 return (ret == DDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE); 5024 } 5025 5026 int 5027 ddi_dev_nregs(dev_info_t *dev, int *result) 5028 { 5029 return (ddi_ctlops(dev, dev, DDI_CTLOPS_NREGS, 0, (void *)result)); 5030 } 5031 5032 int 5033 ddi_dev_is_sid(dev_info_t *d) 5034 { 5035 return (ddi_ctlops(d, d, DDI_CTLOPS_SIDDEV, (void *)0, (void *)0)); 5036 } 5037 5038 int 5039 ddi_slaveonly(dev_info_t *d) 5040 { 5041 return (ddi_ctlops(d, d, DDI_CTLOPS_SLAVEONLY, (void *)0, (void *)0)); 5042 } 5043 5044 int 5045 ddi_dev_affinity(dev_info_t *a, dev_info_t *b) 5046 { 5047 return (ddi_ctlops(a, a, DDI_CTLOPS_AFFINITY, (void *)b, (void *)0)); 5048 } 5049 5050 int 5051 ddi_streams_driver(dev_info_t *dip) 5052 { 5053 if ((i_ddi_node_state(dip) >= DS_ATTACHED) && 5054 (DEVI(dip)->devi_ops->devo_cb_ops != NULL) && 5055 (DEVI(dip)->devi_ops->devo_cb_ops->cb_str != NULL)) 5056 return (DDI_SUCCESS); 5057 return (DDI_FAILURE); 5058 } 5059 5060 /* 5061 * callback free list 5062 */ 5063 5064 static int ncallbacks; 5065 static int nc_low = 170; 5066 static int nc_med = 512; 5067 static int nc_high = 2048; 5068 static struct ddi_callback *callbackq; 5069 static struct ddi_callback *callbackqfree; 5070 5071 /* 5072 * set/run callback lists 5073 */ 5074 struct cbstats { 5075 kstat_named_t cb_asked; 5076 kstat_named_t cb_new; 5077 kstat_named_t cb_run; 5078 kstat_named_t cb_delete; 5079 kstat_named_t cb_maxreq; 5080 kstat_named_t cb_maxlist; 5081 kstat_named_t cb_alloc; 5082 kstat_named_t cb_runouts; 5083 kstat_named_t cb_L2; 5084 kstat_named_t cb_grow; 5085 } cbstats = { 5086 {"asked", KSTAT_DATA_UINT32}, 5087 {"new", KSTAT_DATA_UINT32}, 5088 {"run", KSTAT_DATA_UINT32}, 5089 {"delete", KSTAT_DATA_UINT32}, 5090 {"maxreq", KSTAT_DATA_UINT32}, 5091 {"maxlist", KSTAT_DATA_UINT32}, 5092 {"alloc", KSTAT_DATA_UINT32}, 5093 {"runouts", KSTAT_DATA_UINT32}, 5094 {"L2", KSTAT_DATA_UINT32}, 5095 {"grow", KSTAT_DATA_UINT32}, 5096 }; 5097 5098 #define nc_asked cb_asked.value.ui32 5099 #define nc_new cb_new.value.ui32 5100 #define nc_run cb_run.value.ui32 5101 #define nc_delete cb_delete.value.ui32 5102 #define nc_maxreq cb_maxreq.value.ui32 5103 #define nc_maxlist cb_maxlist.value.ui32 5104 #define nc_alloc cb_alloc.value.ui32 5105 #define nc_runouts cb_runouts.value.ui32 5106 #define nc_L2 cb_L2.value.ui32 5107 #define nc_grow cb_grow.value.ui32 5108 5109 static kmutex_t ddi_callback_mutex; 5110 5111 /* 5112 * callbacks are handled using a L1/L2 cache. The L1 cache 5113 * comes out of kmem_cache_alloc and can expand/shrink dynamically. If 5114 * we can't get callbacks from the L1 cache [because pageout is doing 5115 * I/O at the time freemem is 0], we allocate callbacks out of the 5116 * L2 cache. The L2 cache is static and depends on the memory size. 5117 * [We might also count the number of devices at probe time and 5118 * allocate one structure per device and adjust for deferred attach] 5119 */ 5120 void 5121 impl_ddi_callback_init(void) 5122 { 5123 int i; 5124 uint_t physmegs; 5125 kstat_t *ksp; 5126 5127 physmegs = physmem >> (20 - PAGESHIFT); 5128 if (physmegs < 48) { 5129 ncallbacks = nc_low; 5130 } else if (physmegs < 128) { 5131 ncallbacks = nc_med; 5132 } else { 5133 ncallbacks = nc_high; 5134 } 5135 5136 /* 5137 * init free list 5138 */ 5139 callbackq = kmem_zalloc( 5140 ncallbacks * sizeof (struct ddi_callback), KM_SLEEP); 5141 for (i = 0; i < ncallbacks-1; i++) 5142 callbackq[i].c_nfree = &callbackq[i+1]; 5143 callbackqfree = callbackq; 5144 5145 /* init kstats */ 5146 if (ksp = kstat_create("unix", 0, "cbstats", "misc", KSTAT_TYPE_NAMED, 5147 sizeof (cbstats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) { 5148 ksp->ks_data = (void *) &cbstats; 5149 kstat_install(ksp); 5150 } 5151 5152 } 5153 5154 static void 5155 callback_insert(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid, 5156 int count) 5157 { 5158 struct ddi_callback *list, *marker, *new; 5159 size_t size = sizeof (struct ddi_callback); 5160 5161 list = marker = (struct ddi_callback *)*listid; 5162 while (list != NULL) { 5163 if (list->c_call == funcp && list->c_arg == arg) { 5164 list->c_count += count; 5165 return; 5166 } 5167 marker = list; 5168 list = list->c_nlist; 5169 } 5170 new = kmem_alloc(size, KM_NOSLEEP); 5171 if (new == NULL) { 5172 new = callbackqfree; 5173 if (new == NULL) { 5174 new = kmem_alloc_tryhard(sizeof (struct ddi_callback), 5175 &size, KM_NOSLEEP | KM_PANIC); 5176 cbstats.nc_grow++; 5177 } else { 5178 callbackqfree = new->c_nfree; 5179 cbstats.nc_L2++; 5180 } 5181 } 5182 if (marker != NULL) { 5183 marker->c_nlist = new; 5184 } else { 5185 *listid = (uintptr_t)new; 5186 } 5187 new->c_size = size; 5188 new->c_nlist = NULL; 5189 new->c_call = funcp; 5190 new->c_arg = arg; 5191 new->c_count = count; 5192 cbstats.nc_new++; 5193 cbstats.nc_alloc++; 5194 if (cbstats.nc_alloc > cbstats.nc_maxlist) 5195 cbstats.nc_maxlist = cbstats.nc_alloc; 5196 } 5197 5198 void 5199 ddi_set_callback(int (*funcp)(caddr_t), caddr_t arg, uintptr_t *listid) 5200 { 5201 mutex_enter(&ddi_callback_mutex); 5202 cbstats.nc_asked++; 5203 if ((cbstats.nc_asked - cbstats.nc_run) > cbstats.nc_maxreq) 5204 cbstats.nc_maxreq = (cbstats.nc_asked - cbstats.nc_run); 5205 (void) callback_insert(funcp, arg, listid, 1); 5206 mutex_exit(&ddi_callback_mutex); 5207 } 5208 5209 static void 5210 real_callback_run(void *Queue) 5211 { 5212 int (*funcp)(caddr_t); 5213 caddr_t arg; 5214 int count, rval; 5215 uintptr_t *listid; 5216 struct ddi_callback *list, *marker; 5217 int check_pending = 1; 5218 int pending = 0; 5219 5220 do { 5221 mutex_enter(&ddi_callback_mutex); 5222 listid = Queue; 5223 list = (struct ddi_callback *)*listid; 5224 if (list == NULL) { 5225 mutex_exit(&ddi_callback_mutex); 5226 return; 5227 } 5228 if (check_pending) { 5229 marker = list; 5230 while (marker != NULL) { 5231 pending += marker->c_count; 5232 marker = marker->c_nlist; 5233 } 5234 check_pending = 0; 5235 } 5236 ASSERT(pending > 0); 5237 ASSERT(list->c_count > 0); 5238 funcp = list->c_call; 5239 arg = list->c_arg; 5240 count = list->c_count; 5241 *(uintptr_t *)Queue = (uintptr_t)list->c_nlist; 5242 if (list >= &callbackq[0] && 5243 list <= &callbackq[ncallbacks-1]) { 5244 list->c_nfree = callbackqfree; 5245 callbackqfree = list; 5246 } else 5247 kmem_free(list, list->c_size); 5248 5249 cbstats.nc_delete++; 5250 cbstats.nc_alloc--; 5251 mutex_exit(&ddi_callback_mutex); 5252 5253 do { 5254 if ((rval = (*funcp)(arg)) == 0) { 5255 pending -= count; 5256 mutex_enter(&ddi_callback_mutex); 5257 (void) callback_insert(funcp, arg, listid, 5258 count); 5259 cbstats.nc_runouts++; 5260 } else { 5261 pending--; 5262 mutex_enter(&ddi_callback_mutex); 5263 cbstats.nc_run++; 5264 } 5265 mutex_exit(&ddi_callback_mutex); 5266 } while (rval != 0 && (--count > 0)); 5267 } while (pending > 0); 5268 } 5269 5270 void 5271 ddi_run_callback(uintptr_t *listid) 5272 { 5273 softcall(real_callback_run, listid); 5274 } 5275 5276 dev_info_t * 5277 nodevinfo(dev_t dev, int otyp) 5278 { 5279 _NOTE(ARGUNUSED(dev, otyp)) 5280 return ((dev_info_t *)0); 5281 } 5282 5283 /* 5284 * A driver should support its own getinfo(9E) entry point. This function 5285 * is provided as a convenience for ON drivers that don't expect their 5286 * getinfo(9E) entry point to be called. A driver that uses this must not 5287 * call ddi_create_minor_node. 5288 */ 5289 int 5290 ddi_no_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 5291 { 5292 _NOTE(ARGUNUSED(dip, infocmd, arg, result)) 5293 return (DDI_FAILURE); 5294 } 5295 5296 /* 5297 * A driver should support its own getinfo(9E) entry point. This function 5298 * is provided as a convenience for ON drivers that where the minor number 5299 * is the instance. Drivers that do not have 1:1 mapping must implement 5300 * their own getinfo(9E) function. 5301 */ 5302 int 5303 ddi_getinfo_1to1(dev_info_t *dip, ddi_info_cmd_t infocmd, 5304 void *arg, void **result) 5305 { 5306 _NOTE(ARGUNUSED(dip)) 5307 int instance; 5308 5309 if (infocmd != DDI_INFO_DEVT2INSTANCE) 5310 return (DDI_FAILURE); 5311 5312 instance = getminor((dev_t)(uintptr_t)arg); 5313 *result = (void *)(uintptr_t)instance; 5314 return (DDI_SUCCESS); 5315 } 5316 5317 int 5318 ddifail(dev_info_t *devi, ddi_attach_cmd_t cmd) 5319 { 5320 _NOTE(ARGUNUSED(devi, cmd)) 5321 return (DDI_FAILURE); 5322 } 5323 5324 int 5325 ddi_no_dma_map(dev_info_t *dip, dev_info_t *rdip, 5326 struct ddi_dma_req *dmareqp, ddi_dma_handle_t *handlep) 5327 { 5328 _NOTE(ARGUNUSED(dip, rdip, dmareqp, handlep)) 5329 return (DDI_DMA_NOMAPPING); 5330 } 5331 5332 int 5333 ddi_no_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr, 5334 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep) 5335 { 5336 _NOTE(ARGUNUSED(dip, rdip, attr, waitfp, arg, handlep)) 5337 return (DDI_DMA_BADATTR); 5338 } 5339 5340 int 5341 ddi_no_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, 5342 ddi_dma_handle_t handle) 5343 { 5344 _NOTE(ARGUNUSED(dip, rdip, handle)) 5345 return (DDI_FAILURE); 5346 } 5347 5348 int 5349 ddi_no_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip, 5350 ddi_dma_handle_t handle, struct ddi_dma_req *dmareq, 5351 ddi_dma_cookie_t *cp, uint_t *ccountp) 5352 { 5353 _NOTE(ARGUNUSED(dip, rdip, handle, dmareq, cp, ccountp)) 5354 return (DDI_DMA_NOMAPPING); 5355 } 5356 5357 int 5358 ddi_no_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip, 5359 ddi_dma_handle_t handle) 5360 { 5361 _NOTE(ARGUNUSED(dip, rdip, handle)) 5362 return (DDI_FAILURE); 5363 } 5364 5365 int 5366 ddi_no_dma_flush(dev_info_t *dip, dev_info_t *rdip, 5367 ddi_dma_handle_t handle, off_t off, size_t len, 5368 uint_t cache_flags) 5369 { 5370 _NOTE(ARGUNUSED(dip, rdip, handle, off, len, cache_flags)) 5371 return (DDI_FAILURE); 5372 } 5373 5374 int 5375 ddi_no_dma_win(dev_info_t *dip, dev_info_t *rdip, 5376 ddi_dma_handle_t handle, uint_t win, off_t *offp, 5377 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp) 5378 { 5379 _NOTE(ARGUNUSED(dip, rdip, handle, win, offp, lenp, cookiep, ccountp)) 5380 return (DDI_FAILURE); 5381 } 5382 5383 int 5384 ddi_no_dma_mctl(dev_info_t *dip, dev_info_t *rdip, 5385 ddi_dma_handle_t handle, enum ddi_dma_ctlops request, 5386 off_t *offp, size_t *lenp, caddr_t *objp, uint_t flags) 5387 { 5388 _NOTE(ARGUNUSED(dip, rdip, handle, request, offp, lenp, objp, flags)) 5389 return (DDI_FAILURE); 5390 } 5391 5392 void 5393 ddivoid(void) 5394 {} 5395 5396 int 5397 nochpoll(dev_t dev, short events, int anyyet, short *reventsp, 5398 struct pollhead **pollhdrp) 5399 { 5400 _NOTE(ARGUNUSED(dev, events, anyyet, reventsp, pollhdrp)) 5401 return (ENXIO); 5402 } 5403 5404 cred_t * 5405 ddi_get_cred(void) 5406 { 5407 return (CRED()); 5408 } 5409 5410 clock_t 5411 ddi_get_lbolt(void) 5412 { 5413 return (lbolt); 5414 } 5415 5416 time_t 5417 ddi_get_time(void) 5418 { 5419 time_t now; 5420 5421 if ((now = gethrestime_sec()) == 0) { 5422 timestruc_t ts; 5423 mutex_enter(&tod_lock); 5424 ts = tod_get(); 5425 mutex_exit(&tod_lock); 5426 return (ts.tv_sec); 5427 } else { 5428 return (now); 5429 } 5430 } 5431 5432 pid_t 5433 ddi_get_pid(void) 5434 { 5435 return (ttoproc(curthread)->p_pid); 5436 } 5437 5438 kt_did_t 5439 ddi_get_kt_did(void) 5440 { 5441 return (curthread->t_did); 5442 } 5443 5444 /* 5445 * This function returns B_TRUE if the caller can reasonably expect that a call 5446 * to cv_wait_sig(9F), cv_timedwait_sig(9F), or qwait_sig(9F) could be awakened 5447 * by user-level signal. If it returns B_FALSE, then the caller should use 5448 * other means to make certain that the wait will not hang "forever." 5449 * 5450 * It does not check the signal mask, nor for reception of any particular 5451 * signal. 5452 * 5453 * Currently, a thread can receive a signal if it's not a kernel thread and it 5454 * is not in the middle of exit(2) tear-down. Threads that are in that 5455 * tear-down effectively convert cv_wait_sig to cv_wait, cv_timedwait_sig to 5456 * cv_timedwait, and qwait_sig to qwait. 5457 */ 5458 boolean_t 5459 ddi_can_receive_sig(void) 5460 { 5461 proc_t *pp; 5462 5463 if (curthread->t_proc_flag & TP_LWPEXIT) 5464 return (B_FALSE); 5465 if ((pp = ttoproc(curthread)) == NULL) 5466 return (B_FALSE); 5467 return (pp->p_as != &kas); 5468 } 5469 5470 /* 5471 * Swap bytes in 16-bit [half-]words 5472 */ 5473 void 5474 swab(void *src, void *dst, size_t nbytes) 5475 { 5476 uchar_t *pf = (uchar_t *)src; 5477 uchar_t *pt = (uchar_t *)dst; 5478 uchar_t tmp; 5479 int nshorts; 5480 5481 nshorts = nbytes >> 1; 5482 5483 while (--nshorts >= 0) { 5484 tmp = *pf++; 5485 *pt++ = *pf++; 5486 *pt++ = tmp; 5487 } 5488 } 5489 5490 static void 5491 ddi_append_minor_node(dev_info_t *ddip, struct ddi_minor_data *dmdp) 5492 { 5493 struct ddi_minor_data *dp; 5494 5495 mutex_enter(&(DEVI(ddip)->devi_lock)); 5496 i_devi_enter(ddip, DEVI_S_MD_UPDATE, DEVI_S_MD_UPDATE, 1); 5497 5498 if ((dp = DEVI(ddip)->devi_minor) == (struct ddi_minor_data *)NULL) { 5499 DEVI(ddip)->devi_minor = dmdp; 5500 } else { 5501 while (dp->next != (struct ddi_minor_data *)NULL) 5502 dp = dp->next; 5503 dp->next = dmdp; 5504 } 5505 5506 i_devi_exit(ddip, DEVI_S_MD_UPDATE, 1); 5507 mutex_exit(&(DEVI(ddip)->devi_lock)); 5508 } 5509 5510 /* 5511 * Part of the obsolete SunCluster DDI Hooks. 5512 * Keep for binary compatibility 5513 */ 5514 minor_t 5515 ddi_getiminor(dev_t dev) 5516 { 5517 return (getminor(dev)); 5518 } 5519 5520 static int 5521 i_log_devfs_minor_create(dev_info_t *dip, char *minor_name) 5522 { 5523 int se_flag; 5524 int kmem_flag; 5525 int se_err; 5526 char *pathname; 5527 sysevent_t *ev = NULL; 5528 sysevent_id_t eid; 5529 sysevent_value_t se_val; 5530 sysevent_attr_list_t *ev_attr_list = NULL; 5531 5532 /* determine interrupt context */ 5533 se_flag = (servicing_interrupt()) ? SE_NOSLEEP : SE_SLEEP; 5534 kmem_flag = (se_flag == SE_SLEEP) ? KM_SLEEP : KM_NOSLEEP; 5535 5536 i_ddi_di_cache_invalidate(kmem_flag); 5537 5538 #ifdef DEBUG 5539 if ((se_flag == SE_NOSLEEP) && sunddi_debug) { 5540 cmn_err(CE_CONT, "ddi_create_minor_node: called from " 5541 "interrupt level by driver %s", 5542 ddi_driver_name(dip)); 5543 } 5544 #endif /* DEBUG */ 5545 5546 ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_CREATE, EP_DDI, se_flag); 5547 if (ev == NULL) { 5548 goto fail; 5549 } 5550 5551 pathname = kmem_alloc(MAXPATHLEN, kmem_flag); 5552 if (pathname == NULL) { 5553 sysevent_free(ev); 5554 goto fail; 5555 } 5556 5557 (void) ddi_pathname(dip, pathname); 5558 ASSERT(strlen(pathname)); 5559 se_val.value_type = SE_DATA_TYPE_STRING; 5560 se_val.value.sv_string = pathname; 5561 if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME, 5562 &se_val, se_flag) != 0) { 5563 kmem_free(pathname, MAXPATHLEN); 5564 sysevent_free(ev); 5565 goto fail; 5566 } 5567 kmem_free(pathname, MAXPATHLEN); 5568 5569 /* 5570 * allow for NULL minor names 5571 */ 5572 if (minor_name != NULL) { 5573 se_val.value.sv_string = minor_name; 5574 if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME, 5575 &se_val, se_flag) != 0) { 5576 sysevent_free_attr(ev_attr_list); 5577 sysevent_free(ev); 5578 goto fail; 5579 } 5580 } 5581 5582 if (sysevent_attach_attributes(ev, ev_attr_list) != 0) { 5583 sysevent_free_attr(ev_attr_list); 5584 sysevent_free(ev); 5585 goto fail; 5586 } 5587 5588 if ((se_err = log_sysevent(ev, se_flag, &eid)) != 0) { 5589 if (se_err == SE_NO_TRANSPORT) { 5590 cmn_err(CE_WARN, "/devices or /dev may not be current " 5591 "for driver %s (%s). Run devfsadm -i %s", 5592 ddi_driver_name(dip), "syseventd not responding", 5593 ddi_driver_name(dip)); 5594 } else { 5595 sysevent_free(ev); 5596 goto fail; 5597 } 5598 } 5599 5600 sysevent_free(ev); 5601 return (DDI_SUCCESS); 5602 fail: 5603 cmn_err(CE_WARN, "/devices or /dev may not be current " 5604 "for driver %s. Run devfsadm -i %s", 5605 ddi_driver_name(dip), ddi_driver_name(dip)); 5606 return (DDI_SUCCESS); 5607 } 5608 5609 /* 5610 * failing to remove a minor node is not of interest 5611 * therefore we do not generate an error message 5612 */ 5613 static int 5614 i_log_devfs_minor_remove(dev_info_t *dip, char *minor_name) 5615 { 5616 char *pathname; 5617 sysevent_t *ev; 5618 sysevent_id_t eid; 5619 sysevent_value_t se_val; 5620 sysevent_attr_list_t *ev_attr_list = NULL; 5621 5622 /* 5623 * only log ddi_remove_minor_node() calls outside the scope 5624 * of attach/detach reconfigurations and when the dip is 5625 * still initialized. 5626 */ 5627 if (DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip) || 5628 (i_ddi_node_state(dip) < DS_INITIALIZED)) { 5629 return (DDI_SUCCESS); 5630 } 5631 5632 i_ddi_di_cache_invalidate(KM_SLEEP); 5633 5634 ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_MINOR_REMOVE, EP_DDI, SE_SLEEP); 5635 if (ev == NULL) { 5636 return (DDI_SUCCESS); 5637 } 5638 5639 pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 5640 if (pathname == NULL) { 5641 sysevent_free(ev); 5642 return (DDI_SUCCESS); 5643 } 5644 5645 (void) ddi_pathname(dip, pathname); 5646 ASSERT(strlen(pathname)); 5647 se_val.value_type = SE_DATA_TYPE_STRING; 5648 se_val.value.sv_string = pathname; 5649 if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME, 5650 &se_val, SE_SLEEP) != 0) { 5651 kmem_free(pathname, MAXPATHLEN); 5652 sysevent_free(ev); 5653 return (DDI_SUCCESS); 5654 } 5655 5656 kmem_free(pathname, MAXPATHLEN); 5657 5658 /* 5659 * allow for NULL minor names 5660 */ 5661 if (minor_name != NULL) { 5662 se_val.value.sv_string = minor_name; 5663 if (sysevent_add_attr(&ev_attr_list, DEVFS_MINOR_NAME, 5664 &se_val, SE_SLEEP) != 0) { 5665 sysevent_free_attr(ev_attr_list); 5666 goto fail; 5667 } 5668 } 5669 5670 if (sysevent_attach_attributes(ev, ev_attr_list) != 0) { 5671 sysevent_free_attr(ev_attr_list); 5672 } else { 5673 (void) log_sysevent(ev, SE_SLEEP, &eid); 5674 } 5675 fail: 5676 sysevent_free(ev); 5677 return (DDI_SUCCESS); 5678 } 5679 5680 /* 5681 * Derive the device class of the node. 5682 * Device class names aren't defined yet. Until this is done we use 5683 * devfs event subclass names as device class names. 5684 */ 5685 static int 5686 derive_devi_class(dev_info_t *dip, char *node_type, int flag) 5687 { 5688 int rv = DDI_SUCCESS; 5689 5690 if (i_ddi_devi_class(dip) == NULL) { 5691 if (strncmp(node_type, DDI_NT_BLOCK, 5692 sizeof (DDI_NT_BLOCK) - 1) == 0 && 5693 (node_type[sizeof (DDI_NT_BLOCK) - 1] == '\0' || 5694 node_type[sizeof (DDI_NT_BLOCK) - 1] == ':') && 5695 strcmp(node_type, DDI_NT_FD) != 0) { 5696 5697 rv = i_ddi_set_devi_class(dip, ESC_DISK, flag); 5698 5699 } else if (strncmp(node_type, DDI_NT_NET, 5700 sizeof (DDI_NT_NET) - 1) == 0 && 5701 (node_type[sizeof (DDI_NT_NET) - 1] == '\0' || 5702 node_type[sizeof (DDI_NT_NET) - 1] == ':')) { 5703 5704 rv = i_ddi_set_devi_class(dip, ESC_NETWORK, flag); 5705 } 5706 } 5707 5708 return (rv); 5709 } 5710 5711 /* 5712 * Check compliance with PSARC 2003/375: 5713 * 5714 * The name must contain only characters a-z, A-Z, 0-9 or _ and it must not 5715 * exceed IFNAMSIZ (16) characters in length. 5716 */ 5717 static boolean_t 5718 verify_name(char *name) 5719 { 5720 size_t len = strlen(name); 5721 char *cp; 5722 5723 if (len == 0 || len > IFNAMSIZ) 5724 return (B_FALSE); 5725 5726 for (cp = name; *cp != '\0'; cp++) { 5727 if (!isalnum(*cp) && *cp != '_') 5728 return (B_FALSE); 5729 } 5730 5731 return (B_TRUE); 5732 } 5733 5734 /* 5735 * ddi_create_minor_common: Create a ddi_minor_data structure and 5736 * attach it to the given devinfo node. 5737 */ 5738 5739 int 5740 ddi_create_minor_common(dev_info_t *dip, char *name, int spec_type, 5741 minor_t minor_num, char *node_type, int flag, ddi_minor_type mtype, 5742 const char *read_priv, const char *write_priv, mode_t priv_mode) 5743 { 5744 struct ddi_minor_data *dmdp; 5745 major_t major; 5746 5747 if (spec_type != S_IFCHR && spec_type != S_IFBLK) 5748 return (DDI_FAILURE); 5749 5750 if (name == NULL) 5751 return (DDI_FAILURE); 5752 5753 /* 5754 * Log a message if the minor number the driver is creating 5755 * is not expressible on the on-disk filesystem (currently 5756 * this is limited to 18 bits both by UFS). The device can 5757 * be opened via devfs, but not by device special files created 5758 * via mknod(). 5759 */ 5760 if (minor_num > L_MAXMIN32) { 5761 cmn_err(CE_WARN, 5762 "%s%d:%s minor 0x%x too big for 32-bit applications", 5763 ddi_driver_name(dip), ddi_get_instance(dip), 5764 name, minor_num); 5765 return (DDI_FAILURE); 5766 } 5767 5768 /* dip must be bound and attached */ 5769 major = ddi_driver_major(dip); 5770 ASSERT(major != (major_t)-1); 5771 5772 /* 5773 * Default node_type to DDI_PSEUDO and issue notice in debug mode 5774 */ 5775 if (node_type == NULL) { 5776 node_type = DDI_PSEUDO; 5777 NDI_CONFIG_DEBUG((CE_NOTE, "!illegal node_type NULL for %s%d " 5778 " minor node %s; default to DDI_PSEUDO", 5779 ddi_driver_name(dip), ddi_get_instance(dip), name)); 5780 } 5781 5782 /* 5783 * If the driver is a network driver, ensure that the name falls within 5784 * the interface naming constraints specified by PSARC/2003/375. 5785 */ 5786 if (strcmp(node_type, DDI_NT_NET) == 0) { 5787 if (!verify_name(name)) 5788 return (DDI_FAILURE); 5789 5790 if (mtype == DDM_MINOR) { 5791 struct devnames *dnp = &devnamesp[major]; 5792 5793 /* Mark driver as a network driver */ 5794 LOCK_DEV_OPS(&dnp->dn_lock); 5795 dnp->dn_flags |= DN_NETWORK_DRIVER; 5796 UNLOCK_DEV_OPS(&dnp->dn_lock); 5797 } 5798 } 5799 5800 if (mtype == DDM_MINOR) { 5801 if (derive_devi_class(dip, node_type, KM_NOSLEEP) != 5802 DDI_SUCCESS) 5803 return (DDI_FAILURE); 5804 } 5805 5806 /* 5807 * Take care of minor number information for the node. 5808 */ 5809 5810 if ((dmdp = kmem_zalloc(sizeof (struct ddi_minor_data), 5811 KM_NOSLEEP)) == NULL) { 5812 return (DDI_FAILURE); 5813 } 5814 if ((dmdp->ddm_name = i_ddi_strdup(name, KM_NOSLEEP)) == NULL) { 5815 kmem_free(dmdp, sizeof (struct ddi_minor_data)); 5816 return (DDI_FAILURE); 5817 } 5818 dmdp->dip = dip; 5819 dmdp->ddm_dev = makedevice(major, minor_num); 5820 dmdp->ddm_spec_type = spec_type; 5821 dmdp->ddm_node_type = node_type; 5822 dmdp->type = mtype; 5823 if (flag & CLONE_DEV) { 5824 dmdp->type = DDM_ALIAS; 5825 dmdp->ddm_dev = makedevice(ddi_driver_major(clone_dip), major); 5826 } 5827 if (flag & PRIVONLY_DEV) { 5828 dmdp->ddm_flags |= DM_NO_FSPERM; 5829 } 5830 if (read_priv || write_priv) { 5831 dmdp->ddm_node_priv = 5832 devpolicy_priv_by_name(read_priv, write_priv); 5833 } 5834 dmdp->ddm_priv_mode = priv_mode; 5835 5836 ddi_append_minor_node(dip, dmdp); 5837 5838 /* 5839 * only log ddi_create_minor_node() calls which occur 5840 * outside the scope of attach(9e)/detach(9e) reconfigurations 5841 */ 5842 if (!(DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip))) { 5843 (void) i_log_devfs_minor_create(dip, name); 5844 } 5845 5846 /* 5847 * Check if any dacf rules match the creation of this minor node 5848 */ 5849 dacfc_match_create_minor(name, node_type, dip, dmdp, flag); 5850 return (DDI_SUCCESS); 5851 } 5852 5853 int 5854 ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type, 5855 minor_t minor_num, char *node_type, int flag) 5856 { 5857 return (ddi_create_minor_common(dip, name, spec_type, minor_num, 5858 node_type, flag, DDM_MINOR, NULL, NULL, 0)); 5859 } 5860 5861 int 5862 ddi_create_priv_minor_node(dev_info_t *dip, char *name, int spec_type, 5863 minor_t minor_num, char *node_type, int flag, 5864 const char *rdpriv, const char *wrpriv, mode_t priv_mode) 5865 { 5866 return (ddi_create_minor_common(dip, name, spec_type, minor_num, 5867 node_type, flag, DDM_MINOR, rdpriv, wrpriv, priv_mode)); 5868 } 5869 5870 int 5871 ddi_create_default_minor_node(dev_info_t *dip, char *name, int spec_type, 5872 minor_t minor_num, char *node_type, int flag) 5873 { 5874 return (ddi_create_minor_common(dip, name, spec_type, minor_num, 5875 node_type, flag, DDM_DEFAULT, NULL, NULL, 0)); 5876 } 5877 5878 /* 5879 * Internal (non-ddi) routine for drivers to export names known 5880 * to the kernel (especially ddi_pathname_to_dev_t and friends) 5881 * but not exported externally to /dev 5882 */ 5883 int 5884 ddi_create_internal_pathname(dev_info_t *dip, char *name, int spec_type, 5885 minor_t minor_num) 5886 { 5887 return (ddi_create_minor_common(dip, name, spec_type, minor_num, 5888 "internal", 0, DDM_INTERNAL_PATH, NULL, NULL, 0)); 5889 } 5890 5891 void 5892 ddi_remove_minor_node(dev_info_t *dip, char *name) 5893 { 5894 struct ddi_minor_data *dmdp, *dmdp1; 5895 struct ddi_minor_data **dmdp_prev; 5896 5897 mutex_enter(&(DEVI(dip)->devi_lock)); 5898 i_devi_enter(dip, DEVI_S_MD_UPDATE, DEVI_S_MD_UPDATE, 1); 5899 5900 dmdp_prev = &DEVI(dip)->devi_minor; 5901 dmdp = DEVI(dip)->devi_minor; 5902 while (dmdp != NULL) { 5903 dmdp1 = dmdp->next; 5904 if ((name == NULL || (dmdp->ddm_name != NULL && 5905 strcmp(name, dmdp->ddm_name) == 0))) { 5906 if (dmdp->ddm_name != NULL) { 5907 (void) i_log_devfs_minor_remove(dip, 5908 dmdp->ddm_name); 5909 kmem_free(dmdp->ddm_name, 5910 strlen(dmdp->ddm_name) + 1); 5911 } 5912 /* 5913 * Release device privilege, if any. 5914 * Release dacf client data associated with this minor 5915 * node by storing NULL. 5916 */ 5917 if (dmdp->ddm_node_priv) 5918 dpfree(dmdp->ddm_node_priv); 5919 dacf_store_info((dacf_infohdl_t)dmdp, NULL); 5920 kmem_free(dmdp, sizeof (struct ddi_minor_data)); 5921 *dmdp_prev = dmdp1; 5922 /* 5923 * OK, we found it, so get out now -- if we drive on, 5924 * we will strcmp against garbage. See 1139209. 5925 */ 5926 if (name != NULL) 5927 break; 5928 } else { 5929 dmdp_prev = &dmdp->next; 5930 } 5931 dmdp = dmdp1; 5932 } 5933 5934 i_devi_exit(dip, DEVI_S_MD_UPDATE, 1); 5935 mutex_exit(&(DEVI(dip)->devi_lock)); 5936 } 5937 5938 5939 int 5940 ddi_in_panic() 5941 { 5942 return (panicstr != NULL); 5943 } 5944 5945 5946 /* 5947 * Find first bit set in a mask (returned counting from 1 up) 5948 */ 5949 5950 int 5951 ddi_ffs(long mask) 5952 { 5953 extern int ffs(long mask); 5954 return (ffs(mask)); 5955 } 5956 5957 /* 5958 * Find last bit set. Take mask and clear 5959 * all but the most significant bit, and 5960 * then let ffs do the rest of the work. 5961 * 5962 * Algorithm courtesy of Steve Chessin. 5963 */ 5964 5965 int 5966 ddi_fls(long mask) 5967 { 5968 extern int ffs(long); 5969 5970 while (mask) { 5971 long nx; 5972 5973 if ((nx = (mask & (mask - 1))) == 0) 5974 break; 5975 mask = nx; 5976 } 5977 return (ffs(mask)); 5978 } 5979 5980 /* 5981 * The next five routines comprise generic storage management utilities 5982 * for driver soft state structures (in "the old days," this was done 5983 * with a statically sized array - big systems and dynamic loading 5984 * and unloading make heap allocation more attractive) 5985 */ 5986 5987 /* 5988 * Allocate a set of pointers to 'n_items' objects of size 'size' 5989 * bytes. Each pointer is initialized to nil. 5990 * 5991 * The 'size' and 'n_items' values are stashed in the opaque 5992 * handle returned to the caller. 5993 * 5994 * This implementation interprets 'set of pointers' to mean 'array 5995 * of pointers' but note that nothing in the interface definition 5996 * precludes an implementation that uses, for example, a linked list. 5997 * However there should be a small efficiency gain from using an array 5998 * at lookup time. 5999 * 6000 * NOTE As an optimization, we make our growable array allocations in 6001 * powers of two (bytes), since that's how much kmem_alloc (currently) 6002 * gives us anyway. It should save us some free/realloc's .. 6003 * 6004 * As a further optimization, we make the growable array start out 6005 * with MIN_N_ITEMS in it. 6006 */ 6007 6008 #define MIN_N_ITEMS 8 /* 8 void *'s == 32 bytes */ 6009 6010 int 6011 ddi_soft_state_init(void **state_p, size_t size, size_t n_items) 6012 { 6013 struct i_ddi_soft_state *ss; 6014 6015 if (state_p == NULL || *state_p != NULL || size == 0) 6016 return (EINVAL); 6017 6018 ss = kmem_zalloc(sizeof (*ss), KM_SLEEP); 6019 mutex_init(&ss->lock, NULL, MUTEX_DRIVER, NULL); 6020 ss->size = size; 6021 6022 if (n_items < MIN_N_ITEMS) 6023 ss->n_items = MIN_N_ITEMS; 6024 else { 6025 int bitlog; 6026 6027 if ((bitlog = ddi_fls(n_items)) == ddi_ffs(n_items)) 6028 bitlog--; 6029 ss->n_items = 1 << bitlog; 6030 } 6031 6032 ASSERT(ss->n_items >= n_items); 6033 6034 ss->array = kmem_zalloc(ss->n_items * sizeof (void *), KM_SLEEP); 6035 6036 *state_p = ss; 6037 6038 return (0); 6039 } 6040 6041 6042 /* 6043 * Allocate a state structure of size 'size' to be associated 6044 * with item 'item'. 6045 * 6046 * In this implementation, the array is extended to 6047 * allow the requested offset, if needed. 6048 */ 6049 int 6050 ddi_soft_state_zalloc(void *state, int item) 6051 { 6052 struct i_ddi_soft_state *ss; 6053 void **array; 6054 void *new_element; 6055 6056 if ((ss = state) == NULL || item < 0) 6057 return (DDI_FAILURE); 6058 6059 mutex_enter(&ss->lock); 6060 if (ss->size == 0) { 6061 mutex_exit(&ss->lock); 6062 cmn_err(CE_WARN, "ddi_soft_state_zalloc: bad handle: %s", 6063 mod_containing_pc(caller())); 6064 return (DDI_FAILURE); 6065 } 6066 6067 array = ss->array; /* NULL if ss->n_items == 0 */ 6068 ASSERT(ss->n_items != 0 && array != NULL); 6069 6070 /* 6071 * refuse to tread on an existing element 6072 */ 6073 if (item < ss->n_items && array[item] != NULL) { 6074 mutex_exit(&ss->lock); 6075 return (DDI_FAILURE); 6076 } 6077 6078 /* 6079 * Allocate a new element to plug in 6080 */ 6081 new_element = kmem_zalloc(ss->size, KM_SLEEP); 6082 6083 /* 6084 * Check if the array is big enough, if not, grow it. 6085 */ 6086 if (item >= ss->n_items) { 6087 void **new_array; 6088 size_t new_n_items; 6089 struct i_ddi_soft_state *dirty; 6090 6091 /* 6092 * Allocate a new array of the right length, copy 6093 * all the old pointers to the new array, then 6094 * if it exists at all, put the old array on the 6095 * dirty list. 6096 * 6097 * Note that we can't kmem_free() the old array. 6098 * 6099 * Why -- well the 'get' operation is 'mutex-free', so we 6100 * can't easily catch a suspended thread that is just about 6101 * to dereference the array we just grew out of. So we 6102 * cons up a header and put it on a list of 'dirty' 6103 * pointer arrays. (Dirty in the sense that there may 6104 * be suspended threads somewhere that are in the middle 6105 * of referencing them). Fortunately, we -can- garbage 6106 * collect it all at ddi_soft_state_fini time. 6107 */ 6108 new_n_items = ss->n_items; 6109 while (new_n_items < (1 + item)) 6110 new_n_items <<= 1; /* double array size .. */ 6111 6112 ASSERT(new_n_items >= (1 + item)); /* sanity check! */ 6113 6114 new_array = kmem_zalloc(new_n_items * sizeof (void *), 6115 KM_SLEEP); 6116 /* 6117 * Copy the pointers into the new array 6118 */ 6119 bcopy(array, new_array, ss->n_items * sizeof (void *)); 6120 6121 /* 6122 * Save the old array on the dirty list 6123 */ 6124 dirty = kmem_zalloc(sizeof (*dirty), KM_SLEEP); 6125 dirty->array = ss->array; 6126 dirty->n_items = ss->n_items; 6127 dirty->next = ss->next; 6128 ss->next = dirty; 6129 6130 ss->array = (array = new_array); 6131 ss->n_items = new_n_items; 6132 } 6133 6134 ASSERT(array != NULL && item < ss->n_items && array[item] == NULL); 6135 6136 array[item] = new_element; 6137 6138 mutex_exit(&ss->lock); 6139 return (DDI_SUCCESS); 6140 } 6141 6142 6143 /* 6144 * Fetch a pointer to the allocated soft state structure. 6145 * 6146 * This is designed to be cheap. 6147 * 6148 * There's an argument that there should be more checking for 6149 * nil pointers and out of bounds on the array.. but we do a lot 6150 * of that in the alloc/free routines. 6151 * 6152 * An array has the convenience that we don't need to lock read-access 6153 * to it c.f. a linked list. However our "expanding array" strategy 6154 * means that we should hold a readers lock on the i_ddi_soft_state 6155 * structure. 6156 * 6157 * However, from a performance viewpoint, we need to do it without 6158 * any locks at all -- this also makes it a leaf routine. The algorithm 6159 * is 'lock-free' because we only discard the pointer arrays at 6160 * ddi_soft_state_fini() time. 6161 */ 6162 void * 6163 ddi_get_soft_state(void *state, int item) 6164 { 6165 struct i_ddi_soft_state *ss = state; 6166 6167 ASSERT(ss != NULL && item >= 0); 6168 6169 if (item < ss->n_items && ss->array != NULL) 6170 return (ss->array[item]); 6171 return (NULL); 6172 } 6173 6174 /* 6175 * Free the state structure corresponding to 'item.' Freeing an 6176 * element that has either gone or was never allocated is not 6177 * considered an error. Note that we free the state structure, but 6178 * we don't shrink our pointer array, or discard 'dirty' arrays, 6179 * since even a few pointers don't really waste too much memory. 6180 * 6181 * Passing an item number that is out of bounds, or a null pointer will 6182 * provoke an error message. 6183 */ 6184 void 6185 ddi_soft_state_free(void *state, int item) 6186 { 6187 struct i_ddi_soft_state *ss; 6188 void **array; 6189 void *element; 6190 static char msg[] = "ddi_soft_state_free:"; 6191 6192 if ((ss = state) == NULL) { 6193 cmn_err(CE_WARN, "%s null handle: %s", 6194 msg, mod_containing_pc(caller())); 6195 return; 6196 } 6197 6198 element = NULL; 6199 6200 mutex_enter(&ss->lock); 6201 6202 if ((array = ss->array) == NULL || ss->size == 0) { 6203 cmn_err(CE_WARN, "%s bad handle: %s", 6204 msg, mod_containing_pc(caller())); 6205 } else if (item < 0 || item >= ss->n_items) { 6206 cmn_err(CE_WARN, "%s item %d not in range [0..%lu]: %s", 6207 msg, item, ss->n_items - 1, mod_containing_pc(caller())); 6208 } else if (array[item] != NULL) { 6209 element = array[item]; 6210 array[item] = NULL; 6211 } 6212 6213 mutex_exit(&ss->lock); 6214 6215 if (element) 6216 kmem_free(element, ss->size); 6217 } 6218 6219 6220 /* 6221 * Free the entire set of pointers, and any 6222 * soft state structures contained therein. 6223 * 6224 * Note that we don't grab the ss->lock mutex, even though 6225 * we're inspecting the various fields of the data structure. 6226 * 6227 * There is an implicit assumption that this routine will 6228 * never run concurrently with any of the above on this 6229 * particular state structure i.e. by the time the driver 6230 * calls this routine, there should be no other threads 6231 * running in the driver. 6232 */ 6233 void 6234 ddi_soft_state_fini(void **state_p) 6235 { 6236 struct i_ddi_soft_state *ss, *dirty; 6237 int item; 6238 static char msg[] = "ddi_soft_state_fini:"; 6239 6240 if (state_p == NULL || (ss = *state_p) == NULL) { 6241 cmn_err(CE_WARN, "%s null handle: %s", 6242 msg, mod_containing_pc(caller())); 6243 return; 6244 } 6245 6246 if (ss->size == 0) { 6247 cmn_err(CE_WARN, "%s bad handle: %s", 6248 msg, mod_containing_pc(caller())); 6249 return; 6250 } 6251 6252 if (ss->n_items > 0) { 6253 for (item = 0; item < ss->n_items; item++) 6254 ddi_soft_state_free(ss, item); 6255 kmem_free(ss->array, ss->n_items * sizeof (void *)); 6256 } 6257 6258 /* 6259 * Now delete any dirty arrays from previous 'grow' operations 6260 */ 6261 for (dirty = ss->next; dirty; dirty = ss->next) { 6262 ss->next = dirty->next; 6263 kmem_free(dirty->array, dirty->n_items * sizeof (void *)); 6264 kmem_free(dirty, sizeof (*dirty)); 6265 } 6266 6267 mutex_destroy(&ss->lock); 6268 kmem_free(ss, sizeof (*ss)); 6269 6270 *state_p = NULL; 6271 } 6272 6273 6274 /* 6275 * This sets the devi_addr entry in the dev_info structure 'dip' to 'name' 6276 * If name is NULL, this frees the devi_addr entry, if any. 6277 */ 6278 void 6279 ddi_set_name_addr(dev_info_t *dip, char *name) 6280 { 6281 char *oldname = DEVI(dip)->devi_addr; 6282 6283 DEVI(dip)->devi_addr = i_ddi_strdup(name, KM_SLEEP); 6284 if (oldname) { 6285 kmem_free(oldname, strlen(oldname) + 1); 6286 } 6287 } 6288 6289 char * 6290 ddi_get_name_addr(dev_info_t *dip) 6291 { 6292 return (DEVI(dip)->devi_addr); 6293 } 6294 6295 void 6296 ddi_set_parent_data(dev_info_t *dip, void *pd) 6297 { 6298 DEVI(dip)->devi_parent_data = pd; 6299 } 6300 6301 void * 6302 ddi_get_parent_data(dev_info_t *dip) 6303 { 6304 return (DEVI(dip)->devi_parent_data); 6305 } 6306 6307 /* 6308 * ddi_name_to_major: Returns the major number of a module given its name. 6309 */ 6310 major_t 6311 ddi_name_to_major(char *name) 6312 { 6313 return (mod_name_to_major(name)); 6314 } 6315 6316 /* 6317 * ddi_major_to_name: Returns the module name bound to a major number. 6318 */ 6319 char * 6320 ddi_major_to_name(major_t major) 6321 { 6322 return (mod_major_to_name(major)); 6323 } 6324 6325 /* 6326 * Return the name of the devinfo node pointed at by 'dip' in the buffer 6327 * pointed at by 'name.' A devinfo node is named as a result of calling 6328 * ddi_initchild(). 6329 * 6330 * Note: the driver must be held before calling this function! 6331 */ 6332 char * 6333 ddi_deviname(dev_info_t *dip, char *name) 6334 { 6335 char *addrname; 6336 char none = '\0'; 6337 6338 if (dip == ddi_root_node()) { 6339 *name = '\0'; 6340 return (name); 6341 } 6342 6343 if (i_ddi_node_state(dip) < DS_INITIALIZED) { 6344 addrname = &none; 6345 } else { 6346 addrname = ddi_get_name_addr(dip); 6347 } 6348 6349 if (*addrname == '\0') { 6350 (void) sprintf(name, "/%s", ddi_node_name(dip)); 6351 } else { 6352 (void) sprintf(name, "/%s@%s", ddi_node_name(dip), addrname); 6353 } 6354 6355 return (name); 6356 } 6357 6358 /* 6359 * Spits out the name of device node, typically name@addr, for a given node, 6360 * using the driver name, not the nodename. 6361 * 6362 * Used by match_parent. Not to be used elsewhere. 6363 */ 6364 char * 6365 i_ddi_parname(dev_info_t *dip, char *name) 6366 { 6367 char *addrname; 6368 6369 if (dip == ddi_root_node()) { 6370 *name = '\0'; 6371 return (name); 6372 } 6373 6374 ASSERT(i_ddi_node_state(dip) >= DS_INITIALIZED); 6375 6376 if (*(addrname = ddi_get_name_addr(dip)) == '\0') 6377 (void) sprintf(name, "%s", ddi_binding_name(dip)); 6378 else 6379 (void) sprintf(name, "%s@%s", ddi_binding_name(dip), addrname); 6380 return (name); 6381 } 6382 6383 static char * 6384 pathname_work(dev_info_t *dip, char *path) 6385 { 6386 char *bp; 6387 6388 if (dip == ddi_root_node()) { 6389 *path = '\0'; 6390 return (path); 6391 } 6392 (void) pathname_work(ddi_get_parent(dip), path); 6393 bp = path + strlen(path); 6394 (void) ddi_deviname(dip, bp); 6395 return (path); 6396 } 6397 6398 char * 6399 ddi_pathname(dev_info_t *dip, char *path) 6400 { 6401 return (pathname_work(dip, path)); 6402 } 6403 6404 /* 6405 * Given a dev_t, return the pathname of the corresponding device in the 6406 * buffer pointed at by "path." The buffer is assumed to be large enough 6407 * to hold the pathname of the device (MAXPATHLEN). 6408 * 6409 * The pathname of a device is the pathname of the devinfo node to which 6410 * the device "belongs," concatenated with the character ':' and the name 6411 * of the minor node corresponding to the dev_t. If spec_type is 0 then 6412 * just the pathname of the devinfo node is returned without driving attach 6413 * of that node. For a non-zero spec_type, an attach is performed and a 6414 * search of the minor list occurs. 6415 * 6416 * It is possible that the path associated with the dev_t is not 6417 * currently available in the devinfo tree. In order to have a 6418 * dev_t, a device must have been discovered before, which means 6419 * that the path is always in the instance tree. The one exception 6420 * to this is if the dev_t is associated with a pseudo driver, in 6421 * which case the device must exist on the pseudo branch of the 6422 * devinfo tree as a result of parsing .conf files. 6423 */ 6424 int 6425 ddi_dev_pathname(dev_t devt, int spec_type, char *path) 6426 { 6427 major_t major = getmajor(devt); 6428 int instance; 6429 dev_info_t *dip; 6430 char *minorname; 6431 char *drvname; 6432 6433 if (major >= devcnt) 6434 goto fail; 6435 if (major == clone_major) { 6436 /* clone has no minor nodes, manufacture the path here */ 6437 if ((drvname = ddi_major_to_name(getminor(devt))) == NULL) 6438 goto fail; 6439 6440 (void) snprintf(path, MAXPATHLEN, "%s:%s", CLONE_PATH, drvname); 6441 return (DDI_SUCCESS); 6442 } 6443 6444 /* extract instance from devt (getinfo(9E) DDI_INFO_DEVT2INSTANCE). */ 6445 if ((instance = dev_to_instance(devt)) == -1) 6446 goto fail; 6447 6448 /* reconstruct the path given the major/instance */ 6449 if (e_ddi_majorinstance_to_path(major, instance, path) != DDI_SUCCESS) 6450 goto fail; 6451 6452 /* if spec_type given we must drive attach and search minor nodes */ 6453 if ((spec_type == S_IFCHR) || (spec_type == S_IFBLK)) { 6454 /* attach the path so we can search minors */ 6455 if ((dip = e_ddi_hold_devi_by_path(path, 0)) == NULL) 6456 goto fail; 6457 6458 /* Add minorname to path. */ 6459 mutex_enter(&(DEVI(dip)->devi_lock)); 6460 minorname = i_ddi_devtspectype_to_minorname(dip, 6461 devt, spec_type); 6462 if (minorname) { 6463 (void) strcat(path, ":"); 6464 (void) strcat(path, minorname); 6465 } 6466 mutex_exit(&(DEVI(dip)->devi_lock)); 6467 ddi_release_devi(dip); 6468 if (minorname == NULL) 6469 goto fail; 6470 } 6471 ASSERT(strlen(path) < MAXPATHLEN); 6472 return (DDI_SUCCESS); 6473 6474 fail: *path = 0; 6475 return (DDI_FAILURE); 6476 } 6477 6478 /* 6479 * Given a major number and an instance, return the path. 6480 * This interface does NOT drive attach. 6481 */ 6482 int 6483 e_ddi_majorinstance_to_path(major_t major, int instance, char *path) 6484 { 6485 dev_info_t *dip; 6486 6487 /* look for the major/instance in the instance tree */ 6488 if (e_ddi_instance_majorinstance_to_path(major, instance, 6489 path) != DDI_SUCCESS) { 6490 /* not in instance tree, look in 'pseudo' branch */ 6491 if ((dip = ddi_hold_devi_by_instance(major, 6492 instance, E_DDI_HOLD_DEVI_NOATTACH)) == NULL) { 6493 *path = 0; 6494 return (DDI_FAILURE); 6495 } 6496 (void) ddi_pathname(dip, path); 6497 ddi_release_devi(dip); 6498 } 6499 ASSERT(strlen(path) < MAXPATHLEN); 6500 return (DDI_SUCCESS); 6501 } 6502 6503 6504 #define GLD_DRIVER_PPA "SUNW,gld_v0_ppa" 6505 6506 /* 6507 * Given the dip for a network interface return the ppa for that interface. 6508 * 6509 * In all cases except GLD v0 drivers, the ppa == instance. 6510 * In the case of GLD v0 drivers, the ppa is equal to the attach order. 6511 * So for these drivers when the attach routine calls gld_register(), 6512 * the GLD framework creates an integer property called "gld_driver_ppa" 6513 * that can be queried here. 6514 * 6515 * The only time this function is used is when a system is booting over nfs. 6516 * In this case the system has to resolve the pathname of the boot device 6517 * to it's ppa. 6518 */ 6519 int 6520 i_ddi_devi_get_ppa(dev_info_t *dip) 6521 { 6522 return (ddi_prop_get_int(DDI_DEV_T_ANY, dip, 6523 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, 6524 GLD_DRIVER_PPA, ddi_get_instance(dip))); 6525 } 6526 6527 /* 6528 * i_ddi_devi_set_ppa() should only be called from gld_register() 6529 * and only for GLD v0 drivers 6530 */ 6531 void 6532 i_ddi_devi_set_ppa(dev_info_t *dip, int ppa) 6533 { 6534 (void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip, GLD_DRIVER_PPA, ppa); 6535 } 6536 6537 6538 /* 6539 * Private DDI Console bell functions. 6540 */ 6541 void 6542 ddi_ring_console_bell(clock_t duration) 6543 { 6544 if (ddi_console_bell_func != NULL) 6545 (*ddi_console_bell_func)(duration); 6546 } 6547 6548 void 6549 ddi_set_console_bell(void (*bellfunc)(clock_t duration)) 6550 { 6551 ddi_console_bell_func = bellfunc; 6552 } 6553 6554 int 6555 ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr, 6556 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep) 6557 { 6558 int (*funcp)() = ddi_dma_allochdl; 6559 ddi_dma_attr_t dma_attr; 6560 struct bus_ops *bop; 6561 6562 if (attr == (ddi_dma_attr_t *)0) 6563 return (DDI_DMA_BADATTR); 6564 6565 dma_attr = *attr; 6566 6567 bop = DEVI(dip)->devi_ops->devo_bus_ops; 6568 if (bop && bop->bus_dma_allochdl) 6569 funcp = bop->bus_dma_allochdl; 6570 6571 return ((*funcp)(dip, dip, &dma_attr, waitfp, arg, handlep)); 6572 } 6573 6574 void 6575 ddi_dma_free_handle(ddi_dma_handle_t *handlep) 6576 { 6577 ddi_dma_handle_t h = *handlep; 6578 (void) ddi_dma_freehdl(HD, HD, h); 6579 } 6580 6581 static uintptr_t dma_mem_list_id = 0; 6582 6583 6584 int 6585 ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length, 6586 ddi_device_acc_attr_t *accattrp, uint_t xfermodes, 6587 int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp, 6588 size_t *real_length, ddi_acc_handle_t *handlep) 6589 { 6590 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 6591 dev_info_t *dip = hp->dmai_rdip; 6592 ddi_acc_hdl_t *ap; 6593 ddi_dma_attr_t *attrp = &hp->dmai_attr; 6594 uint_t sleepflag; 6595 int (*fp)(caddr_t); 6596 int rval; 6597 6598 if (waitfp == DDI_DMA_SLEEP) 6599 fp = (int (*)())KM_SLEEP; 6600 else if (waitfp == DDI_DMA_DONTWAIT) 6601 fp = (int (*)())KM_NOSLEEP; 6602 else 6603 fp = waitfp; 6604 *handlep = impl_acc_hdl_alloc(fp, arg); 6605 if (*handlep == NULL) 6606 return (DDI_FAILURE); 6607 6608 /* 6609 * initialize the common elements of data access handle 6610 */ 6611 ap = impl_acc_hdl_get(*handlep); 6612 ap->ah_vers = VERS_ACCHDL; 6613 ap->ah_dip = dip; 6614 ap->ah_offset = 0; 6615 ap->ah_len = 0; 6616 ap->ah_xfermodes = xfermodes; 6617 ap->ah_acc = *accattrp; 6618 6619 sleepflag = ((waitfp == DDI_DMA_SLEEP) ? 1 : 0); 6620 if (xfermodes == DDI_DMA_CONSISTENT) { 6621 rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag, 0, 6622 accattrp, kaddrp, NULL, ap); 6623 *real_length = length; 6624 } else { 6625 rval = i_ddi_mem_alloc(dip, attrp, length, sleepflag, 1, 6626 accattrp, kaddrp, real_length, ap); 6627 } 6628 if (rval == DDI_SUCCESS) { 6629 ap->ah_len = (off_t)(*real_length); 6630 ap->ah_addr = *kaddrp; 6631 } else { 6632 impl_acc_hdl_free(*handlep); 6633 *handlep = (ddi_acc_handle_t)NULL; 6634 if (waitfp != DDI_DMA_SLEEP && waitfp != DDI_DMA_DONTWAIT) { 6635 ddi_set_callback(waitfp, arg, &dma_mem_list_id); 6636 } 6637 rval = DDI_FAILURE; 6638 } 6639 return (rval); 6640 } 6641 6642 void 6643 ddi_dma_mem_free(ddi_acc_handle_t *handlep) 6644 { 6645 ddi_acc_hdl_t *ap; 6646 6647 ap = impl_acc_hdl_get(*handlep); 6648 ASSERT(ap); 6649 6650 if (ap->ah_xfermodes == DDI_DMA_CONSISTENT) { 6651 i_ddi_mem_free((caddr_t)ap->ah_addr, 0); 6652 } else { 6653 i_ddi_mem_free((caddr_t)ap->ah_addr, 1); 6654 } 6655 6656 /* 6657 * free the handle 6658 */ 6659 impl_acc_hdl_free(*handlep); 6660 *handlep = (ddi_acc_handle_t)NULL; 6661 6662 if (dma_mem_list_id != 0) { 6663 ddi_run_callback(&dma_mem_list_id); 6664 } 6665 } 6666 6667 int 6668 ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf *bp, 6669 uint_t flags, int (*waitfp)(caddr_t), caddr_t arg, 6670 ddi_dma_cookie_t *cookiep, uint_t *ccountp) 6671 { 6672 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 6673 dev_info_t *hdip, *dip; 6674 struct ddi_dma_req dmareq; 6675 int (*funcp)(); 6676 6677 dmareq.dmar_flags = flags; 6678 dmareq.dmar_fp = waitfp; 6679 dmareq.dmar_arg = arg; 6680 dmareq.dmar_object.dmao_size = (uint_t)bp->b_bcount; 6681 6682 if ((bp->b_flags & (B_PAGEIO|B_REMAPPED)) == B_PAGEIO) { 6683 dmareq.dmar_object.dmao_type = DMA_OTYP_PAGES; 6684 dmareq.dmar_object.dmao_obj.pp_obj.pp_pp = bp->b_pages; 6685 dmareq.dmar_object.dmao_obj.pp_obj.pp_offset = 6686 (uint_t)(((uintptr_t)bp->b_un.b_addr) & MMU_PAGEOFFSET); 6687 } else { 6688 dmareq.dmar_object.dmao_obj.virt_obj.v_addr = bp->b_un.b_addr; 6689 if ((bp->b_flags & (B_SHADOW|B_REMAPPED)) == B_SHADOW) { 6690 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = 6691 bp->b_shadow; 6692 dmareq.dmar_object.dmao_type = DMA_OTYP_BUFVADDR; 6693 } else { 6694 dmareq.dmar_object.dmao_type = 6695 (bp->b_flags & (B_PHYS | B_REMAPPED))? 6696 DMA_OTYP_BUFVADDR : DMA_OTYP_VADDR; 6697 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL; 6698 } 6699 6700 /* 6701 * If the buffer has no proc pointer, or the proc 6702 * struct has the kernel address space, or the buffer has 6703 * been marked B_REMAPPED (meaning that it is now 6704 * mapped into the kernel's address space), then 6705 * the address space is kas (kernel address space). 6706 */ 6707 if (bp->b_proc == NULL || bp->b_proc->p_as == &kas || 6708 (bp->b_flags & B_REMAPPED) != 0) { 6709 dmareq.dmar_object.dmao_obj.virt_obj.v_as = 0; 6710 } else { 6711 dmareq.dmar_object.dmao_obj.virt_obj.v_as = 6712 bp->b_proc->p_as; 6713 } 6714 } 6715 6716 dip = hp->dmai_rdip; 6717 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl; 6718 funcp = DEVI(dip)->devi_bus_dma_bindfunc; 6719 return ((*funcp)(hdip, dip, handle, &dmareq, cookiep, ccountp)); 6720 } 6721 6722 int 6723 ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as *as, 6724 caddr_t addr, size_t len, uint_t flags, int (*waitfp)(caddr_t), 6725 caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp) 6726 { 6727 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 6728 dev_info_t *hdip, *dip; 6729 struct ddi_dma_req dmareq; 6730 int (*funcp)(); 6731 6732 if (len == (uint_t)0) { 6733 return (DDI_DMA_NOMAPPING); 6734 } 6735 dmareq.dmar_flags = flags; 6736 dmareq.dmar_fp = waitfp; 6737 dmareq.dmar_arg = arg; 6738 dmareq.dmar_object.dmao_size = len; 6739 dmareq.dmar_object.dmao_type = DMA_OTYP_VADDR; 6740 dmareq.dmar_object.dmao_obj.virt_obj.v_as = as; 6741 dmareq.dmar_object.dmao_obj.virt_obj.v_addr = addr; 6742 dmareq.dmar_object.dmao_obj.virt_obj.v_priv = NULL; 6743 6744 dip = hp->dmai_rdip; 6745 hdip = (dev_info_t *)DEVI(dip)->devi_bus_dma_bindhdl; 6746 funcp = DEVI(dip)->devi_bus_dma_bindfunc; 6747 return ((*funcp)(hdip, dip, handle, &dmareq, cookiep, ccountp)); 6748 } 6749 6750 void 6751 ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep) 6752 { 6753 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 6754 ddi_dma_cookie_t *cp; 6755 6756 cp = hp->dmai_cookie; 6757 ASSERT(cp); 6758 6759 cookiep->dmac_notused = cp->dmac_notused; 6760 cookiep->dmac_type = cp->dmac_type; 6761 cookiep->dmac_address = cp->dmac_address; 6762 cookiep->dmac_size = cp->dmac_size; 6763 hp->dmai_cookie++; 6764 } 6765 6766 int 6767 ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp) 6768 { 6769 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 6770 if ((hp->dmai_rflags & DDI_DMA_PARTIAL) == 0) { 6771 return (DDI_FAILURE); 6772 } else { 6773 *nwinp = hp->dmai_nwin; 6774 return (DDI_SUCCESS); 6775 } 6776 } 6777 6778 int 6779 ddi_dma_getwin(ddi_dma_handle_t h, uint_t win, off_t *offp, 6780 size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp) 6781 { 6782 int (*funcp)() = ddi_dma_win; 6783 struct bus_ops *bop; 6784 6785 bop = DEVI(HD)->devi_ops->devo_bus_ops; 6786 if (bop && bop->bus_dma_win) 6787 funcp = bop->bus_dma_win; 6788 6789 return ((*funcp)(HD, HD, h, win, offp, lenp, cookiep, ccountp)); 6790 } 6791 6792 int 6793 ddi_dma_set_sbus64(ddi_dma_handle_t h, ulong_t burstsizes) 6794 { 6795 return (ddi_dma_mctl(HD, HD, h, DDI_DMA_SET_SBUS64, 0, 6796 &burstsizes, 0, 0)); 6797 } 6798 6799 int 6800 i_ddi_dma_fault_check(ddi_dma_impl_t *hp) 6801 { 6802 return (hp->dmai_fault); 6803 } 6804 6805 int 6806 ddi_check_dma_handle(ddi_dma_handle_t handle) 6807 { 6808 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 6809 int (*check)(ddi_dma_impl_t *); 6810 6811 if ((check = hp->dmai_fault_check) == NULL) 6812 check = i_ddi_dma_fault_check; 6813 6814 return (((*check)(hp) == DDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE); 6815 } 6816 6817 void 6818 i_ddi_dma_set_fault(ddi_dma_handle_t handle) 6819 { 6820 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 6821 void (*notify)(ddi_dma_impl_t *); 6822 6823 if (!hp->dmai_fault) { 6824 hp->dmai_fault = 1; 6825 if ((notify = hp->dmai_fault_notify) != NULL) 6826 (*notify)(hp); 6827 } 6828 } 6829 6830 void 6831 i_ddi_dma_clr_fault(ddi_dma_handle_t handle) 6832 { 6833 ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle; 6834 void (*notify)(ddi_dma_impl_t *); 6835 6836 if (hp->dmai_fault) { 6837 hp->dmai_fault = 0; 6838 if ((notify = hp->dmai_fault_notify) != NULL) 6839 (*notify)(hp); 6840 } 6841 } 6842 6843 /* 6844 * register mapping routines. 6845 */ 6846 int 6847 ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t *addrp, 6848 offset_t offset, offset_t len, ddi_device_acc_attr_t *accattrp, 6849 ddi_acc_handle_t *handle) 6850 { 6851 ddi_map_req_t mr; 6852 ddi_acc_hdl_t *hp; 6853 int result; 6854 6855 /* 6856 * Allocate and initialize the common elements of data access handle. 6857 */ 6858 *handle = impl_acc_hdl_alloc(KM_SLEEP, NULL); 6859 hp = impl_acc_hdl_get(*handle); 6860 hp->ah_vers = VERS_ACCHDL; 6861 hp->ah_dip = dip; 6862 hp->ah_rnumber = rnumber; 6863 hp->ah_offset = offset; 6864 hp->ah_len = len; 6865 hp->ah_acc = *accattrp; 6866 6867 /* 6868 * Set up the mapping request and call to parent. 6869 */ 6870 mr.map_op = DDI_MO_MAP_LOCKED; 6871 mr.map_type = DDI_MT_RNUMBER; 6872 mr.map_obj.rnumber = rnumber; 6873 mr.map_prot = PROT_READ | PROT_WRITE; 6874 mr.map_flags = DDI_MF_KERNEL_MAPPING; 6875 mr.map_handlep = hp; 6876 mr.map_vers = DDI_MAP_VERSION; 6877 result = ddi_map(dip, &mr, offset, len, addrp); 6878 6879 /* 6880 * check for end result 6881 */ 6882 if (result != DDI_SUCCESS) { 6883 impl_acc_hdl_free(*handle); 6884 *handle = (ddi_acc_handle_t)NULL; 6885 } else { 6886 hp->ah_addr = *addrp; 6887 } 6888 6889 return (result); 6890 } 6891 6892 void 6893 ddi_regs_map_free(ddi_acc_handle_t *handlep) 6894 { 6895 ddi_map_req_t mr; 6896 ddi_acc_hdl_t *hp; 6897 6898 hp = impl_acc_hdl_get(*handlep); 6899 ASSERT(hp); 6900 6901 mr.map_op = DDI_MO_UNMAP; 6902 mr.map_type = DDI_MT_RNUMBER; 6903 mr.map_obj.rnumber = hp->ah_rnumber; 6904 mr.map_prot = PROT_READ | PROT_WRITE; 6905 mr.map_flags = DDI_MF_KERNEL_MAPPING; 6906 mr.map_handlep = hp; 6907 mr.map_vers = DDI_MAP_VERSION; 6908 6909 /* 6910 * Call my parent to unmap my regs. 6911 */ 6912 (void) ddi_map(hp->ah_dip, &mr, hp->ah_offset, 6913 hp->ah_len, &hp->ah_addr); 6914 /* 6915 * free the handle 6916 */ 6917 impl_acc_hdl_free(*handlep); 6918 *handlep = (ddi_acc_handle_t)NULL; 6919 } 6920 6921 int 6922 ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr, size_t bytecount, 6923 ssize_t dev_advcnt, uint_t dev_datasz) 6924 { 6925 uint8_t *b; 6926 uint16_t *w; 6927 uint32_t *l; 6928 uint64_t *ll; 6929 6930 /* check for total byte count is multiple of data transfer size */ 6931 if (bytecount != ((bytecount / dev_datasz) * dev_datasz)) 6932 return (DDI_FAILURE); 6933 6934 switch (dev_datasz) { 6935 case DDI_DATA_SZ01_ACC: 6936 for (b = (uint8_t *)dev_addr; 6937 bytecount != 0; bytecount -= 1, b += dev_advcnt) 6938 ddi_put8(handle, b, 0); 6939 break; 6940 case DDI_DATA_SZ02_ACC: 6941 for (w = (uint16_t *)dev_addr; 6942 bytecount != 0; bytecount -= 2, w += dev_advcnt) 6943 ddi_put16(handle, w, 0); 6944 break; 6945 case DDI_DATA_SZ04_ACC: 6946 for (l = (uint32_t *)dev_addr; 6947 bytecount != 0; bytecount -= 4, l += dev_advcnt) 6948 ddi_put32(handle, l, 0); 6949 break; 6950 case DDI_DATA_SZ08_ACC: 6951 for (ll = (uint64_t *)dev_addr; 6952 bytecount != 0; bytecount -= 8, ll += dev_advcnt) 6953 ddi_put64(handle, ll, 0x0ll); 6954 break; 6955 default: 6956 return (DDI_FAILURE); 6957 } 6958 return (DDI_SUCCESS); 6959 } 6960 6961 int 6962 ddi_device_copy( 6963 ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt, 6964 ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt, 6965 size_t bytecount, uint_t dev_datasz) 6966 { 6967 uint8_t *b_src, *b_dst; 6968 uint16_t *w_src, *w_dst; 6969 uint32_t *l_src, *l_dst; 6970 uint64_t *ll_src, *ll_dst; 6971 6972 /* check for total byte count is multiple of data transfer size */ 6973 if (bytecount != ((bytecount / dev_datasz) * dev_datasz)) 6974 return (DDI_FAILURE); 6975 6976 switch (dev_datasz) { 6977 case DDI_DATA_SZ01_ACC: 6978 b_src = (uint8_t *)src_addr; 6979 b_dst = (uint8_t *)dest_addr; 6980 6981 for (; bytecount != 0; bytecount -= 1) { 6982 ddi_put8(dest_handle, b_dst, 6983 ddi_get8(src_handle, b_src)); 6984 b_dst += dest_advcnt; 6985 b_src += src_advcnt; 6986 } 6987 break; 6988 case DDI_DATA_SZ02_ACC: 6989 w_src = (uint16_t *)src_addr; 6990 w_dst = (uint16_t *)dest_addr; 6991 6992 for (; bytecount != 0; bytecount -= 2) { 6993 ddi_put16(dest_handle, w_dst, 6994 ddi_get16(src_handle, w_src)); 6995 w_dst += dest_advcnt; 6996 w_src += src_advcnt; 6997 } 6998 break; 6999 case DDI_DATA_SZ04_ACC: 7000 l_src = (uint32_t *)src_addr; 7001 l_dst = (uint32_t *)dest_addr; 7002 7003 for (; bytecount != 0; bytecount -= 4) { 7004 ddi_put32(dest_handle, l_dst, 7005 ddi_get32(src_handle, l_src)); 7006 l_dst += dest_advcnt; 7007 l_src += src_advcnt; 7008 } 7009 break; 7010 case DDI_DATA_SZ08_ACC: 7011 ll_src = (uint64_t *)src_addr; 7012 ll_dst = (uint64_t *)dest_addr; 7013 7014 for (; bytecount != 0; bytecount -= 8) { 7015 ddi_put64(dest_handle, ll_dst, 7016 ddi_get64(src_handle, ll_src)); 7017 ll_dst += dest_advcnt; 7018 ll_src += src_advcnt; 7019 } 7020 break; 7021 default: 7022 return (DDI_FAILURE); 7023 } 7024 return (DDI_SUCCESS); 7025 } 7026 7027 #define swap16(value) \ 7028 ((((value) & 0xff) << 8) | ((value) >> 8)) 7029 7030 #define swap32(value) \ 7031 (((uint32_t)swap16((uint16_t)((value) & 0xffff)) << 16) | \ 7032 (uint32_t)swap16((uint16_t)((value) >> 16))) 7033 7034 #define swap64(value) \ 7035 (((uint64_t)swap32((uint32_t)((value) & 0xffffffff)) \ 7036 << 32) | \ 7037 (uint64_t)swap32((uint32_t)((value) >> 32))) 7038 7039 uint16_t 7040 ddi_swap16(uint16_t value) 7041 { 7042 return (swap16(value)); 7043 } 7044 7045 uint32_t 7046 ddi_swap32(uint32_t value) 7047 { 7048 return (swap32(value)); 7049 } 7050 7051 uint64_t 7052 ddi_swap64(uint64_t value) 7053 { 7054 return (swap64(value)); 7055 } 7056 7057 /* 7058 * Convert a binding name to a driver name. 7059 * A binding name is the name used to determine the driver for a 7060 * device - it may be either an alias for the driver or the name 7061 * of the driver itself. 7062 */ 7063 char * 7064 i_binding_to_drv_name(char *bname) 7065 { 7066 major_t major_no; 7067 7068 ASSERT(bname != NULL); 7069 7070 if ((major_no = ddi_name_to_major(bname)) == -1) 7071 return (NULL); 7072 return (ddi_major_to_name(major_no)); 7073 } 7074 7075 /* 7076 * Search for minor name that has specified dev_t and spec_type. 7077 * If spec_type is zero then any dev_t match works. Since we 7078 * are returning a pointer to the minor name string, we require the 7079 * caller to do the locking. 7080 */ 7081 char * 7082 i_ddi_devtspectype_to_minorname(dev_info_t *dip, dev_t dev, int spec_type) 7083 { 7084 struct ddi_minor_data *dmdp; 7085 7086 /* 7087 * The did layered driver currently intentionally returns a 7088 * devinfo ptr for an underlying sd instance based on a did 7089 * dev_t. In this case it is not an error. 7090 * 7091 * The did layered driver is associated with Sun Cluster. 7092 */ 7093 ASSERT((ddi_driver_major(dip) == getmajor(dev)) || 7094 (strcmp(ddi_major_to_name(getmajor(dev)), "did") == 0)); 7095 ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_lock))); 7096 7097 for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) { 7098 if (((dmdp->type == DDM_MINOR) || 7099 (dmdp->type == DDM_INTERNAL_PATH) || 7100 (dmdp->type == DDM_DEFAULT)) && 7101 (dmdp->ddm_dev == dev) && 7102 ((((spec_type & (S_IFCHR|S_IFBLK))) == 0) || 7103 (dmdp->ddm_spec_type == spec_type))) 7104 return (dmdp->ddm_name); 7105 } 7106 7107 return (NULL); 7108 } 7109 7110 /* 7111 * Find the devt and spectype of the specified minor_name. 7112 * Return DDI_FAILURE if minor_name not found. Since we are 7113 * returning everything via arguments we can do the locking. 7114 */ 7115 int 7116 i_ddi_minorname_to_devtspectype(dev_info_t *dip, char *minor_name, 7117 dev_t *devtp, int *spectypep) 7118 { 7119 struct ddi_minor_data *dmdp; 7120 7121 /* deal with clone minor nodes */ 7122 if (dip == clone_dip) { 7123 major_t major; 7124 /* 7125 * Make sure minor_name is a STREAMS driver. 7126 * We load the driver but don't attach to any instances. 7127 */ 7128 7129 major = ddi_name_to_major(minor_name); 7130 if (major == (major_t)-1) 7131 return (DDI_FAILURE); 7132 7133 if (ddi_hold_driver(major) == NULL) 7134 return (DDI_FAILURE); 7135 7136 if (STREAMSTAB(major) == NULL) { 7137 ddi_rele_driver(major); 7138 return (DDI_FAILURE); 7139 } 7140 ddi_rele_driver(major); 7141 7142 if (devtp) 7143 *devtp = makedevice(clone_major, (minor_t)major); 7144 7145 if (spectypep) 7146 *spectypep = S_IFCHR; 7147 7148 return (DDI_SUCCESS); 7149 } 7150 7151 ASSERT(!MUTEX_HELD(&(DEVI(dip)->devi_lock))); 7152 mutex_enter(&(DEVI(dip)->devi_lock)); 7153 7154 for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) { 7155 if (((dmdp->type != DDM_MINOR) && 7156 (dmdp->type != DDM_INTERNAL_PATH) && 7157 (dmdp->type != DDM_DEFAULT)) || 7158 strcmp(minor_name, dmdp->ddm_name)) 7159 continue; 7160 7161 if (devtp) 7162 *devtp = dmdp->ddm_dev; 7163 7164 if (spectypep) 7165 *spectypep = dmdp->ddm_spec_type; 7166 7167 mutex_exit(&(DEVI(dip)->devi_lock)); 7168 return (DDI_SUCCESS); 7169 } 7170 7171 mutex_exit(&(DEVI(dip)->devi_lock)); 7172 return (DDI_FAILURE); 7173 } 7174 7175 extern char hw_serial[]; 7176 static kmutex_t devid_gen_mutex; 7177 static short devid_gen_number; 7178 7179 #ifdef DEBUG 7180 7181 static int devid_register_corrupt = 0; 7182 static int devid_register_corrupt_major = 0; 7183 static int devid_register_corrupt_hint = 0; 7184 static int devid_register_corrupt_hint_major = 0; 7185 7186 static int devid_lyr_debug = 0; 7187 7188 #define DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs) \ 7189 if (devid_lyr_debug) \ 7190 ddi_debug_devid_devts(msg, ndevs, devs) 7191 7192 #else 7193 7194 #define DDI_DEBUG_DEVID_DEVTS(msg, ndevs, devs) 7195 7196 #endif /* DEBUG */ 7197 7198 7199 #ifdef DEBUG 7200 7201 static void 7202 ddi_debug_devid_devts(char *msg, int ndevs, dev_t *devs) 7203 { 7204 int i; 7205 7206 cmn_err(CE_CONT, "%s:\n", msg); 7207 for (i = 0; i < ndevs; i++) { 7208 cmn_err(CE_CONT, " 0x%lx\n", devs[i]); 7209 } 7210 } 7211 7212 static void 7213 ddi_debug_devid_paths(char *msg, int npaths, char **paths) 7214 { 7215 int i; 7216 7217 cmn_err(CE_CONT, "%s:\n", msg); 7218 for (i = 0; i < npaths; i++) { 7219 cmn_err(CE_CONT, " %s\n", paths[i]); 7220 } 7221 } 7222 7223 static void 7224 ddi_debug_devid_devts_per_path(char *path, int ndevs, dev_t *devs) 7225 { 7226 int i; 7227 7228 cmn_err(CE_CONT, "dev_ts per path %s\n", path); 7229 for (i = 0; i < ndevs; i++) { 7230 cmn_err(CE_CONT, " 0x%lx\n", devs[i]); 7231 } 7232 } 7233 7234 #endif /* DEBUG */ 7235 7236 /* 7237 * Register device id into DDI framework. 7238 * Must be called when device is attached. 7239 */ 7240 static int 7241 i_ddi_devid_register(dev_info_t *dip, ddi_devid_t devid) 7242 { 7243 impl_devid_t *i_devid = (impl_devid_t *)devid; 7244 size_t driver_len; 7245 const char *driver_name; 7246 char *devid_str; 7247 major_t major; 7248 7249 if ((dip == NULL) || 7250 ((major = ddi_driver_major(dip)) == (major_t)-1)) 7251 return (DDI_FAILURE); 7252 7253 /* verify that the devid is valid */ 7254 if (ddi_devid_valid(devid) != DDI_SUCCESS) 7255 return (DDI_FAILURE); 7256 7257 /* Updating driver name hint in devid */ 7258 driver_name = ddi_driver_name(dip); 7259 driver_len = strlen(driver_name); 7260 if (driver_len > DEVID_HINT_SIZE) { 7261 /* Pick up last four characters of driver name */ 7262 driver_name += driver_len - DEVID_HINT_SIZE; 7263 driver_len = DEVID_HINT_SIZE; 7264 } 7265 bzero(i_devid->did_driver, DEVID_HINT_SIZE); 7266 bcopy(driver_name, i_devid->did_driver, driver_len); 7267 7268 #ifdef DEBUG 7269 /* Corrupt the devid for testing. */ 7270 if (devid_register_corrupt) 7271 i_devid->did_id[0] += devid_register_corrupt; 7272 if (devid_register_corrupt_major && 7273 (major == devid_register_corrupt_major)) 7274 i_devid->did_id[0] += 1; 7275 if (devid_register_corrupt_hint) 7276 i_devid->did_driver[0] += devid_register_corrupt_hint; 7277 if (devid_register_corrupt_hint_major && 7278 (major == devid_register_corrupt_hint_major)) 7279 i_devid->did_driver[0] += 1; 7280 #endif /* DEBUG */ 7281 7282 /* encode the devid as a string */ 7283 if ((devid_str = ddi_devid_str_encode(devid, NULL)) == NULL) 7284 return (DDI_FAILURE); 7285 7286 /* add string as a string property */ 7287 if (ndi_prop_update_string(DDI_DEV_T_NONE, dip, 7288 DEVID_PROP_NAME, devid_str) != DDI_SUCCESS) { 7289 cmn_err(CE_WARN, "%s%d: devid property update failed", 7290 ddi_driver_name(dip), ddi_get_instance(dip)); 7291 ddi_devid_str_free(devid_str); 7292 return (DDI_FAILURE); 7293 } 7294 7295 ddi_devid_str_free(devid_str); 7296 7297 #ifdef DEVID_COMPATIBILITY 7298 /* 7299 * marker for devinfo snapshot compatibility. 7300 * This code gets deleted when di_devid is gone from libdevid 7301 */ 7302 DEVI(dip)->devi_devid = DEVID_COMPATIBILITY; 7303 #endif /* DEVID_COMPATIBILITY */ 7304 return (DDI_SUCCESS); 7305 } 7306 7307 int 7308 ddi_devid_register(dev_info_t *dip, ddi_devid_t devid) 7309 { 7310 int rval; 7311 7312 rval = i_ddi_devid_register(dip, devid); 7313 if (rval == DDI_SUCCESS) { 7314 /* 7315 * Register devid in devid-to-path cache 7316 */ 7317 if (e_devid_cache_register(dip, devid) == DDI_SUCCESS) { 7318 mutex_enter(&DEVI(dip)->devi_lock); 7319 DEVI(dip)->devi_flags |= DEVI_REGISTERED_DEVID; 7320 mutex_exit(&DEVI(dip)->devi_lock); 7321 } else { 7322 cmn_err(CE_WARN, "%s%d: failed to cache devid", 7323 ddi_driver_name(dip), ddi_get_instance(dip)); 7324 } 7325 } else { 7326 cmn_err(CE_WARN, "%s%d: failed to register devid", 7327 ddi_driver_name(dip), ddi_get_instance(dip)); 7328 } 7329 return (rval); 7330 } 7331 7332 /* 7333 * Remove (unregister) device id from DDI framework. 7334 * Must be called when device is detached. 7335 */ 7336 static void 7337 i_ddi_devid_unregister(dev_info_t *dip) 7338 { 7339 #ifdef DEVID_COMPATIBILITY 7340 /* 7341 * marker for micro release devinfo snapshot compatibility. 7342 * This code gets deleted for the minor release. 7343 */ 7344 DEVI(dip)->devi_devid = NULL; /* unset DEVID_PROP */ 7345 #endif /* DEVID_COMPATIBILITY */ 7346 7347 /* remove the devid property */ 7348 (void) ndi_prop_remove(DDI_DEV_T_NONE, dip, DEVID_PROP_NAME); 7349 } 7350 7351 void 7352 ddi_devid_unregister(dev_info_t *dip) 7353 { 7354 mutex_enter(&DEVI(dip)->devi_lock); 7355 DEVI(dip)->devi_flags &= ~DEVI_REGISTERED_DEVID; 7356 mutex_exit(&DEVI(dip)->devi_lock); 7357 e_devid_cache_unregister(dip); 7358 i_ddi_devid_unregister(dip); 7359 } 7360 7361 /* 7362 * Allocate and initialize a device id. 7363 */ 7364 int 7365 ddi_devid_init( 7366 dev_info_t *dip, 7367 ushort_t devid_type, 7368 ushort_t nbytes, 7369 void *id, 7370 ddi_devid_t *ret_devid) 7371 { 7372 impl_devid_t *i_devid; 7373 int sz = sizeof (*i_devid) + nbytes - sizeof (char); 7374 int driver_len; 7375 const char *driver_name; 7376 7377 switch (devid_type) { 7378 case DEVID_SCSI3_WWN: 7379 /*FALLTHRU*/ 7380 case DEVID_SCSI_SERIAL: 7381 /*FALLTHRU*/ 7382 case DEVID_ATA_SERIAL: 7383 /*FALLTHRU*/ 7384 case DEVID_ENCAP: 7385 if (nbytes == 0) 7386 return (DDI_FAILURE); 7387 if (id == NULL) 7388 return (DDI_FAILURE); 7389 break; 7390 case DEVID_FAB: 7391 if (nbytes != 0) 7392 return (DDI_FAILURE); 7393 if (id != NULL) 7394 return (DDI_FAILURE); 7395 nbytes = sizeof (int) + 7396 sizeof (struct timeval32) + sizeof (short); 7397 sz += nbytes; 7398 break; 7399 default: 7400 return (DDI_FAILURE); 7401 } 7402 7403 if ((i_devid = kmem_zalloc(sz, KM_SLEEP)) == NULL) 7404 return (DDI_FAILURE); 7405 7406 i_devid->did_magic_hi = DEVID_MAGIC_MSB; 7407 i_devid->did_magic_lo = DEVID_MAGIC_LSB; 7408 i_devid->did_rev_hi = DEVID_REV_MSB; 7409 i_devid->did_rev_lo = DEVID_REV_LSB; 7410 DEVID_FORMTYPE(i_devid, devid_type); 7411 DEVID_FORMLEN(i_devid, nbytes); 7412 7413 /* Fill in driver name hint */ 7414 driver_name = ddi_driver_name(dip); 7415 driver_len = strlen(driver_name); 7416 if (driver_len > DEVID_HINT_SIZE) { 7417 /* Pick up last four characters of driver name */ 7418 driver_name += driver_len - DEVID_HINT_SIZE; 7419 driver_len = DEVID_HINT_SIZE; 7420 } 7421 7422 bcopy(driver_name, i_devid->did_driver, driver_len); 7423 7424 /* Fill in id field */ 7425 if (devid_type == DEVID_FAB) { 7426 char *cp; 7427 int hostid; 7428 char *hostid_cp = &hw_serial[0]; 7429 struct timeval32 timestamp32; 7430 int i; 7431 int *ip; 7432 short gen; 7433 7434 /* increase the generation number */ 7435 mutex_enter(&devid_gen_mutex); 7436 gen = devid_gen_number++; 7437 mutex_exit(&devid_gen_mutex); 7438 7439 cp = i_devid->did_id; 7440 7441 /* Fill in host id (big-endian byte ordering) */ 7442 hostid = stoi(&hostid_cp); 7443 *cp++ = hibyte(hiword(hostid)); 7444 *cp++ = lobyte(hiword(hostid)); 7445 *cp++ = hibyte(loword(hostid)); 7446 *cp++ = lobyte(loword(hostid)); 7447 7448 /* 7449 * Fill in timestamp (big-endian byte ordering) 7450 * 7451 * (Note that the format may have to be changed 7452 * before 2038 comes around, though it's arguably 7453 * unique enough as it is..) 7454 */ 7455 uniqtime32(×tamp32); 7456 ip = (int *)×tamp32; 7457 for (i = 0; 7458 i < sizeof (timestamp32) / sizeof (int); i++, ip++) { 7459 int val; 7460 val = *ip; 7461 *cp++ = hibyte(hiword(val)); 7462 *cp++ = lobyte(hiword(val)); 7463 *cp++ = hibyte(loword(val)); 7464 *cp++ = lobyte(loword(val)); 7465 } 7466 7467 /* fill in the generation number */ 7468 *cp++ = hibyte(gen); 7469 *cp++ = lobyte(gen); 7470 } else 7471 bcopy(id, i_devid->did_id, nbytes); 7472 7473 /* return device id */ 7474 *ret_devid = (ddi_devid_t)i_devid; 7475 return (DDI_SUCCESS); 7476 } 7477 7478 int 7479 i_ddi_devi_get_devid(dev_t dev, dev_info_t *dip, ddi_devid_t *ret_devid) 7480 { 7481 char *devidstr; 7482 7483 ASSERT(dev != DDI_DEV_T_NONE); 7484 7485 /* look up the property, devt specific first */ 7486 if (ddi_prop_lookup_string(dev, dip, DDI_PROP_DONTPASS, 7487 DEVID_PROP_NAME, &devidstr) != DDI_PROP_SUCCESS) { 7488 if ((dev == DDI_DEV_T_ANY) || 7489 (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 7490 DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) != 7491 DDI_PROP_SUCCESS)) { 7492 return (DDI_FAILURE); 7493 } 7494 } 7495 7496 /* convert to binary form */ 7497 if (ddi_devid_str_decode(devidstr, ret_devid, NULL) == -1) { 7498 ddi_prop_free(devidstr); 7499 return (DDI_FAILURE); 7500 } 7501 ddi_prop_free(devidstr); 7502 return (DDI_SUCCESS); 7503 } 7504 7505 /* 7506 * Return a copy of the device id for dev_t 7507 */ 7508 int 7509 ddi_lyr_get_devid(dev_t dev, ddi_devid_t *ret_devid) 7510 { 7511 dev_info_t *dip; 7512 int rval; 7513 7514 /* get the dip */ 7515 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 7516 return (DDI_FAILURE); 7517 7518 rval = i_ddi_devi_get_devid(dev, dip, ret_devid); 7519 7520 ddi_release_devi(dip); /* e_ddi_hold_devi_by_dev() */ 7521 return (rval); 7522 } 7523 7524 /* 7525 * Return a copy of the minor name for dev_t and spec_type 7526 */ 7527 int 7528 ddi_lyr_get_minor_name(dev_t dev, int spec_type, char **minor_name) 7529 { 7530 dev_info_t *dip; 7531 char *nm; 7532 size_t alloc_sz, sz; 7533 7534 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 7535 return (DDI_FAILURE); 7536 7537 mutex_enter(&(DEVI(dip)->devi_lock)); 7538 7539 if ((nm = i_ddi_devtspectype_to_minorname(dip, 7540 dev, spec_type)) == NULL) { 7541 mutex_exit(&(DEVI(dip)->devi_lock)); 7542 ddi_release_devi(dip); /* e_ddi_hold_devi_by_dev() */ 7543 return (DDI_FAILURE); 7544 } 7545 7546 /* make a copy */ 7547 alloc_sz = strlen(nm) + 1; 7548 retry: 7549 /* drop lock to allocate memory */ 7550 mutex_exit(&(DEVI(dip)->devi_lock)); 7551 *minor_name = kmem_alloc(alloc_sz, KM_SLEEP); 7552 mutex_enter(&(DEVI(dip)->devi_lock)); 7553 7554 /* re-check things, since we dropped the lock */ 7555 if ((nm = i_ddi_devtspectype_to_minorname(dip, 7556 dev, spec_type)) == NULL) { 7557 mutex_exit(&(DEVI(dip)->devi_lock)); 7558 kmem_free(*minor_name, alloc_sz); 7559 *minor_name = NULL; 7560 ddi_release_devi(dip); /* e_ddi_hold_devi_by_dev() */ 7561 return (DDI_FAILURE); 7562 } 7563 7564 /* verify size is the same */ 7565 sz = strlen(nm) + 1; 7566 if (alloc_sz != sz) { 7567 kmem_free(*minor_name, alloc_sz); 7568 alloc_sz = sz; 7569 goto retry; 7570 } 7571 7572 /* sz == alloc_sz - make a copy */ 7573 (void) strcpy(*minor_name, nm); 7574 7575 mutex_exit(&(DEVI(dip)->devi_lock)); 7576 ddi_release_devi(dip); /* e_ddi_hold_devi_by_dev() */ 7577 return (DDI_SUCCESS); 7578 } 7579 7580 int 7581 ddi_lyr_devid_to_devlist( 7582 ddi_devid_t devid, 7583 char *minor_name, 7584 int *retndevs, 7585 dev_t **retdevs) 7586 { 7587 ASSERT(ddi_devid_valid(devid) == DDI_SUCCESS); 7588 7589 if (e_devid_cache_to_devt_list(devid, minor_name, 7590 retndevs, retdevs) == DDI_SUCCESS) { 7591 ASSERT(*retndevs > 0); 7592 DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist", 7593 *retndevs, *retdevs); 7594 return (DDI_SUCCESS); 7595 } 7596 7597 if (e_ddi_devid_discovery(devid) == DDI_FAILURE) { 7598 return (DDI_FAILURE); 7599 } 7600 7601 if (e_devid_cache_to_devt_list(devid, minor_name, 7602 retndevs, retdevs) == DDI_SUCCESS) { 7603 ASSERT(*retndevs > 0); 7604 DDI_DEBUG_DEVID_DEVTS("ddi_lyr_devid_to_devlist", 7605 *retndevs, *retdevs); 7606 return (DDI_SUCCESS); 7607 } 7608 7609 return (DDI_FAILURE); 7610 } 7611 7612 void 7613 ddi_lyr_free_devlist(dev_t *devlist, int ndevs) 7614 { 7615 kmem_free(devlist, sizeof (dev_t) * ndevs); 7616 } 7617 7618 /* 7619 * Note: This will need to be fixed if we ever allow processes to 7620 * have more than one data model per exec. 7621 */ 7622 model_t 7623 ddi_mmap_get_model(void) 7624 { 7625 return (get_udatamodel()); 7626 } 7627 7628 model_t 7629 ddi_model_convert_from(model_t model) 7630 { 7631 return ((model & DDI_MODEL_MASK) & ~DDI_MODEL_NATIVE); 7632 } 7633 7634 /* 7635 * ddi interfaces managing storage and retrieval of eventcookies. 7636 */ 7637 7638 /* 7639 * Invoke bus nexus driver's implementation of the 7640 * (*bus_remove_eventcall)() interface to remove a registered 7641 * callback handler for "event". 7642 */ 7643 int 7644 ddi_remove_event_handler(ddi_callback_id_t id) 7645 { 7646 ndi_event_callbacks_t *cb = (ndi_event_callbacks_t *)id; 7647 dev_info_t *ddip; 7648 7649 ASSERT(cb); 7650 if (!cb) { 7651 return (DDI_FAILURE); 7652 } 7653 7654 ddip = NDI_EVENT_DDIP(cb->ndi_evtcb_cookie); 7655 return (ndi_busop_remove_eventcall(ddip, id)); 7656 } 7657 7658 /* 7659 * Invoke bus nexus driver's implementation of the 7660 * (*bus_add_eventcall)() interface to register a callback handler 7661 * for "event". 7662 */ 7663 int 7664 ddi_add_event_handler(dev_info_t *dip, ddi_eventcookie_t event, 7665 void (*handler)(dev_info_t *, ddi_eventcookie_t, void *, void *), 7666 void *arg, ddi_callback_id_t *id) 7667 { 7668 return (ndi_busop_add_eventcall(dip, dip, event, handler, arg, id)); 7669 } 7670 7671 7672 /* 7673 * Return a handle for event "name" by calling up the device tree 7674 * hierarchy via (*bus_get_eventcookie)() interface until claimed 7675 * by a bus nexus or top of dev_info tree is reached. 7676 */ 7677 int 7678 ddi_get_eventcookie(dev_info_t *dip, char *name, 7679 ddi_eventcookie_t *event_cookiep) 7680 { 7681 return (ndi_busop_get_eventcookie(dip, dip, 7682 name, event_cookiep)); 7683 } 7684 7685 /* 7686 * single thread access to dev_info node and set state 7687 */ 7688 void 7689 i_devi_enter(dev_info_t *dip, uint_t s_mask, uint_t w_mask, int has_lock) 7690 { 7691 if (!has_lock) 7692 mutex_enter(&(DEVI(dip)->devi_lock)); 7693 7694 ASSERT(mutex_owned(&(DEVI(dip)->devi_lock))); 7695 7696 /* 7697 * wait until state(s) have been changed 7698 */ 7699 while ((DEVI(dip)->devi_state & w_mask) != 0) { 7700 cv_wait(&(DEVI(dip)->devi_cv), &(DEVI(dip)->devi_lock)); 7701 } 7702 DEVI(dip)->devi_state |= s_mask; 7703 7704 if (!has_lock) 7705 mutex_exit(&(DEVI(dip)->devi_lock)); 7706 } 7707 7708 void 7709 i_devi_exit(dev_info_t *dip, uint_t c_mask, int has_lock) 7710 { 7711 if (!has_lock) 7712 mutex_enter(&(DEVI(dip)->devi_lock)); 7713 7714 ASSERT(mutex_owned(&(DEVI(dip)->devi_lock))); 7715 7716 /* 7717 * clear the state(s) and wakeup any threads waiting 7718 * for state change 7719 */ 7720 DEVI(dip)->devi_state &= ~c_mask; 7721 cv_broadcast(&(DEVI(dip)->devi_cv)); 7722 7723 if (!has_lock) 7724 mutex_exit(&(DEVI(dip)->devi_lock)); 7725 } 7726 7727 /* 7728 * This procedure is provided as the general callback function when 7729 * umem_lockmemory calls as_add_callback for long term memory locking. 7730 * When as_unmap, as_setprot, or as_free encounter segments which have 7731 * locked memory, this callback will be invoked. 7732 */ 7733 void 7734 umem_lock_undo(struct as *as, void *arg, uint_t event) 7735 { 7736 _NOTE(ARGUNUSED(as, event)) 7737 struct ddi_umem_cookie *cp = (struct ddi_umem_cookie *)arg; 7738 7739 /* 7740 * Call the cleanup function. Decrement the cookie reference 7741 * count, if it goes to zero, return the memory for the cookie. 7742 * The i_ddi_umem_unlock for this cookie may or may not have been 7743 * called already. It is the responsibility of the caller of 7744 * umem_lockmemory to handle the case of the cleanup routine 7745 * being called after a ddi_umem_unlock for the cookie 7746 * was called. 7747 */ 7748 7749 (*cp->callbacks.cbo_umem_lock_cleanup)((ddi_umem_cookie_t)cp); 7750 7751 /* remove the cookie if reference goes to zero */ 7752 if (atomic_add_long_nv((ulong_t *)(&(cp->cook_refcnt)), -1) == 0) { 7753 kmem_free(cp, sizeof (struct ddi_umem_cookie)); 7754 } 7755 } 7756 7757 /* 7758 * The following two Consolidation Private routines provide generic 7759 * interfaces to increase/decrease the amount of device-locked memory. 7760 * 7761 * To keep project_rele and project_hold consistent, i_ddi_decr_locked_memory() 7762 * must be called every time i_ddi_incr_locked_memory() is called. 7763 */ 7764 int 7765 /* ARGSUSED */ 7766 i_ddi_incr_locked_memory(proc_t *procp, task_t *taskp, 7767 kproject_t *projectp, zone_t *zonep, rctl_qty_t inc) 7768 { 7769 kproject_t *projp; 7770 7771 ASSERT(procp); 7772 ASSERT(mutex_owned(&procp->p_lock)); 7773 7774 projp = procp->p_task->tk_proj; 7775 mutex_enter(&umem_devlockmem_rctl_lock); 7776 /* 7777 * Test if the requested memory can be locked without exceeding the 7778 * limits. 7779 */ 7780 if (rctl_test(rc_project_devlockmem, projp->kpj_rctls, 7781 procp, inc, RCA_SAFE) & RCT_DENY) { 7782 mutex_exit(&umem_devlockmem_rctl_lock); 7783 return (ENOMEM); 7784 } 7785 projp->kpj_data.kpd_devlockmem += inc; 7786 mutex_exit(&umem_devlockmem_rctl_lock); 7787 /* 7788 * Grab a hold on the project. 7789 */ 7790 (void) project_hold(projp); 7791 7792 return (0); 7793 } 7794 7795 /* 7796 * To keep project_rele and project_hold consistent, i_ddi_incr_locked_memory() 7797 * must be called every time i_ddi_decr_locked_memory() is called. 7798 */ 7799 /* ARGSUSED */ 7800 void 7801 i_ddi_decr_locked_memory(proc_t *procp, task_t *taskp, 7802 kproject_t *projectp, zone_t *zonep, rctl_qty_t dec) 7803 { 7804 ASSERT(projectp); 7805 7806 mutex_enter(&umem_devlockmem_rctl_lock); 7807 projectp->kpj_data.kpd_devlockmem -= dec; 7808 mutex_exit(&umem_devlockmem_rctl_lock); 7809 7810 /* 7811 * Release the project pointer reference accquired in 7812 * i_ddi_incr_locked_memory(). 7813 */ 7814 (void) project_rele(projectp); 7815 } 7816 7817 /* 7818 * This routine checks if the max-device-locked-memory resource ctl is 7819 * exceeded, if not increments it, grabs a hold on the project. 7820 * Returns 0 if successful otherwise returns error code 7821 */ 7822 static int 7823 umem_incr_devlockmem(struct ddi_umem_cookie *cookie) 7824 { 7825 proc_t *procp; 7826 int ret; 7827 7828 ASSERT(cookie); 7829 procp = cookie->procp; 7830 ASSERT(procp); 7831 7832 mutex_enter(&procp->p_lock); 7833 7834 if ((ret = i_ddi_incr_locked_memory(procp, NULL, 7835 NULL, NULL, cookie->size)) != 0) { 7836 mutex_exit(&procp->p_lock); 7837 return (ret); 7838 } 7839 7840 /* 7841 * save the project pointer in the 7842 * umem cookie, project pointer already 7843 * hold in i_ddi_incr_locked_memory 7844 */ 7845 cookie->lockmem_proj = (void *)procp->p_task->tk_proj; 7846 mutex_exit(&procp->p_lock); 7847 7848 return (0); 7849 } 7850 7851 /* 7852 * Decrements the max-device-locked-memory resource ctl and releases 7853 * the hold on the project that was acquired during umem_incr_devlockmem 7854 */ 7855 static void 7856 umem_decr_devlockmem(struct ddi_umem_cookie *cookie) 7857 { 7858 kproject_t *projp; 7859 7860 if (!cookie->lockmem_proj) 7861 return; 7862 7863 projp = (kproject_t *)cookie->lockmem_proj; 7864 i_ddi_decr_locked_memory(NULL, NULL, projp, NULL, cookie->size); 7865 7866 cookie->lockmem_proj = NULL; 7867 } 7868 7869 /* 7870 * A consolidation private function which is essentially equivalent to 7871 * ddi_umem_lock but with the addition of arguments ops_vector and procp. 7872 * A call to as_add_callback is done if DDI_UMEMLOCK_LONGTERM is set, and 7873 * the ops_vector is valid. 7874 * 7875 * Lock the virtual address range in the current process and create a 7876 * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to 7877 * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export 7878 * to user space. 7879 * 7880 * Note: The resource control accounting currently uses a full charge model 7881 * in other words attempts to lock the same/overlapping areas of memory 7882 * will deduct the full size of the buffer from the projects running 7883 * counter for the device locked memory. 7884 * 7885 * addr, size should be PAGESIZE aligned 7886 * 7887 * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both 7888 * identifies whether the locked memory will be read or written or both 7889 * DDI_UMEMLOCK_LONGTERM must be set when the locking will 7890 * be maintained for an indefinitely long period (essentially permanent), 7891 * rather than for what would be required for a typical I/O completion. 7892 * When DDI_UMEMLOCK_LONGTERM is set, umem_lockmemory will return EFAULT 7893 * if the memory pertains to a regular file which is mapped MAP_SHARED. 7894 * This is to prevent a deadlock if a file truncation is attempted after 7895 * after the locking is done. 7896 * 7897 * Returns 0 on success 7898 * EINVAL - for invalid parameters 7899 * EPERM, ENOMEM and other error codes returned by as_pagelock 7900 * ENOMEM - is returned if the current request to lock memory exceeds 7901 * project.max-device-locked-memory resource control value. 7902 * EFAULT - memory pertains to a regular file mapped shared and 7903 * and DDI_UMEMLOCK_LONGTERM flag is set 7904 * EAGAIN - could not start the ddi_umem_unlock list processing thread 7905 */ 7906 int 7907 umem_lockmemory(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie, 7908 struct umem_callback_ops *ops_vector, 7909 proc_t *procp) 7910 { 7911 int error; 7912 struct ddi_umem_cookie *p; 7913 void (*driver_callback)() = NULL; 7914 struct as *as = procp->p_as; 7915 struct seg *seg; 7916 vnode_t *vp; 7917 7918 *cookie = NULL; /* in case of any error return */ 7919 7920 /* These are the only three valid flags */ 7921 if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE | 7922 DDI_UMEMLOCK_LONGTERM)) != 0) 7923 return (EINVAL); 7924 7925 /* At least one (can be both) of the two access flags must be set */ 7926 if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0) 7927 return (EINVAL); 7928 7929 /* addr and len must be page-aligned */ 7930 if (((uintptr_t)addr & PAGEOFFSET) != 0) 7931 return (EINVAL); 7932 7933 if ((len & PAGEOFFSET) != 0) 7934 return (EINVAL); 7935 7936 /* 7937 * For longterm locking a driver callback must be specified; if 7938 * not longterm then a callback is optional. 7939 */ 7940 if (ops_vector != NULL) { 7941 if (ops_vector->cbo_umem_callback_version != 7942 UMEM_CALLBACK_VERSION) 7943 return (EINVAL); 7944 else 7945 driver_callback = ops_vector->cbo_umem_lock_cleanup; 7946 } 7947 if ((driver_callback == NULL) && (flags & DDI_UMEMLOCK_LONGTERM)) 7948 return (EINVAL); 7949 7950 /* 7951 * Call i_ddi_umem_unlock_thread_start if necessary. It will 7952 * be called on first ddi_umem_lock or umem_lockmemory call. 7953 */ 7954 if (ddi_umem_unlock_thread == NULL) 7955 i_ddi_umem_unlock_thread_start(); 7956 7957 /* Allocate memory for the cookie */ 7958 p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP); 7959 7960 /* Convert the flags to seg_rw type */ 7961 if (flags & DDI_UMEMLOCK_WRITE) { 7962 p->s_flags = S_WRITE; 7963 } else { 7964 p->s_flags = S_READ; 7965 } 7966 7967 /* Store procp in cookie for later iosetup/unlock */ 7968 p->procp = (void *)procp; 7969 7970 /* 7971 * Store the struct as pointer in cookie for later use by 7972 * ddi_umem_unlock. The proc->p_as will be stale if ddi_umem_unlock 7973 * is called after relvm is called. 7974 */ 7975 p->asp = as; 7976 7977 /* 7978 * The size field is needed for lockmem accounting. 7979 */ 7980 p->size = len; 7981 7982 if (umem_incr_devlockmem(p) != 0) { 7983 /* 7984 * The requested memory cannot be locked 7985 */ 7986 kmem_free(p, sizeof (struct ddi_umem_cookie)); 7987 *cookie = (ddi_umem_cookie_t)NULL; 7988 return (ENOMEM); 7989 } 7990 /* 7991 * umem_incr_devlockmem stashes the project ptr into the 7992 * cookie. This is needed during unlock since that can 7993 * happen in a non-USER context 7994 */ 7995 ASSERT(p->lockmem_proj); 7996 7997 /* Lock the pages corresponding to addr, len in memory */ 7998 error = as_pagelock(as, &(p->pparray), addr, len, p->s_flags); 7999 if (error != 0) { 8000 umem_decr_devlockmem(p); 8001 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8002 *cookie = (ddi_umem_cookie_t)NULL; 8003 return (error); 8004 } 8005 8006 /* 8007 * For longterm locking the addr must pertain to a seg_vn segment or 8008 * or a seg_spt segment. 8009 * If the segment pertains to a regular file, it cannot be 8010 * mapped MAP_SHARED. 8011 * This is to prevent a deadlock if a file truncation is attempted 8012 * after the locking is done. 8013 * Doing this after as_pagelock guarantees persistence of the as; if 8014 * an unacceptable segment is found, the cleanup includes calling 8015 * as_pageunlock before returning EFAULT. 8016 */ 8017 if (flags & DDI_UMEMLOCK_LONGTERM) { 8018 extern struct seg_ops segspt_shmops; 8019 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 8020 for (seg = as_segat(as, addr); ; seg = AS_SEGNEXT(as, seg)) { 8021 if (seg == NULL || seg->s_base > addr + len) 8022 break; 8023 if (((seg->s_ops != &segvn_ops) && 8024 (seg->s_ops != &segspt_shmops)) || 8025 ((SEGOP_GETVP(seg, addr, &vp) == 0 && 8026 vp != NULL && vp->v_type == VREG) && 8027 (SEGOP_GETTYPE(seg, addr) & MAP_SHARED))) { 8028 as_pageunlock(as, p->pparray, 8029 addr, len, p->s_flags); 8030 AS_LOCK_EXIT(as, &as->a_lock); 8031 umem_decr_devlockmem(p); 8032 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8033 *cookie = (ddi_umem_cookie_t)NULL; 8034 return (EFAULT); 8035 } 8036 } 8037 AS_LOCK_EXIT(as, &as->a_lock); 8038 } 8039 8040 8041 /* Initialize the fields in the ddi_umem_cookie */ 8042 p->cvaddr = addr; 8043 p->type = UMEM_LOCKED; 8044 if (driver_callback != NULL) { 8045 /* i_ddi_umem_unlock and umem_lock_undo may need the cookie */ 8046 p->cook_refcnt = 2; 8047 p->callbacks = *ops_vector; 8048 } else { 8049 /* only i_ddi_umme_unlock needs the cookie */ 8050 p->cook_refcnt = 1; 8051 } 8052 8053 *cookie = (ddi_umem_cookie_t)p; 8054 8055 /* 8056 * If a driver callback was specified, add an entry to the 8057 * as struct callback list. The as_pagelock above guarantees 8058 * the persistence of as. 8059 */ 8060 if (driver_callback) { 8061 error = as_add_callback(as, umem_lock_undo, p, AS_ALL_EVENT, 8062 addr, len, KM_SLEEP); 8063 if (error != 0) { 8064 as_pageunlock(as, p->pparray, 8065 addr, len, p->s_flags); 8066 umem_decr_devlockmem(p); 8067 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8068 *cookie = (ddi_umem_cookie_t)NULL; 8069 } 8070 } 8071 return (error); 8072 } 8073 8074 /* 8075 * Unlock the pages locked by ddi_umem_lock or umem_lockmemory and free 8076 * the cookie. Called from i_ddi_umem_unlock_thread. 8077 */ 8078 8079 static void 8080 i_ddi_umem_unlock(struct ddi_umem_cookie *p) 8081 { 8082 uint_t rc; 8083 8084 /* 8085 * There is no way to determine whether a callback to 8086 * umem_lock_undo was registered via as_add_callback. 8087 * (i.e. umem_lockmemory was called with DDI_MEMLOCK_LONGTERM and 8088 * a valid callback function structure.) as_delete_callback 8089 * is called to delete a possible registered callback. If the 8090 * return from as_delete_callbacks is AS_CALLBACK_DELETED, it 8091 * indicates that there was a callback registered, and that is was 8092 * successfully deleted. Thus, the cookie reference count 8093 * will never be decremented by umem_lock_undo. Just return the 8094 * memory for the cookie, since both users of the cookie are done. 8095 * A return of AS_CALLBACK_NOTFOUND indicates a callback was 8096 * never registered. A return of AS_CALLBACK_DELETE_DEFERRED 8097 * indicates that callback processing is taking place and, and 8098 * umem_lock_undo is, or will be, executing, and thus decrementing 8099 * the cookie reference count when it is complete. 8100 * 8101 * This needs to be done before as_pageunlock so that the 8102 * persistence of as is guaranteed because of the locked pages. 8103 * 8104 */ 8105 rc = as_delete_callback(p->asp, p); 8106 8107 8108 /* 8109 * The proc->p_as will be stale if i_ddi_umem_unlock is called 8110 * after relvm is called so use p->asp. 8111 */ 8112 as_pageunlock(p->asp, p->pparray, p->cvaddr, p->size, p->s_flags); 8113 8114 /* 8115 * Now that we have unlocked the memory decrement the 8116 * max-device-locked-memory rctl 8117 */ 8118 umem_decr_devlockmem(p); 8119 8120 if (rc == AS_CALLBACK_DELETED) { 8121 /* umem_lock_undo will not happen, return the cookie memory */ 8122 ASSERT(p->cook_refcnt == 2); 8123 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8124 } else { 8125 /* 8126 * umem_undo_lock may happen if as_delete_callback returned 8127 * AS_CALLBACK_DELETE_DEFERRED. In that case, decrement the 8128 * reference count, atomically, and return the cookie 8129 * memory if the reference count goes to zero. The only 8130 * other value for rc is AS_CALLBACK_NOTFOUND. In that 8131 * case, just return the cookie memory. 8132 */ 8133 if ((rc != AS_CALLBACK_DELETE_DEFERRED) || 8134 (atomic_add_long_nv((ulong_t *)(&(p->cook_refcnt)), -1) 8135 == 0)) { 8136 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8137 } 8138 } 8139 } 8140 8141 /* 8142 * i_ddi_umem_unlock_thread - deferred ddi_umem_unlock list handler. 8143 * 8144 * Call i_ddi_umem_unlock for entries in the ddi_umem_unlock list 8145 * until it is empty. Then, wait for more to be added. This thread is awoken 8146 * via calls to ddi_umem_unlock. 8147 */ 8148 8149 static void 8150 i_ddi_umem_unlock_thread(void) 8151 { 8152 struct ddi_umem_cookie *ret_cookie; 8153 callb_cpr_t cprinfo; 8154 8155 /* process the ddi_umem_unlock list */ 8156 CALLB_CPR_INIT(&cprinfo, &ddi_umem_unlock_mutex, 8157 callb_generic_cpr, "unlock_thread"); 8158 for (;;) { 8159 mutex_enter(&ddi_umem_unlock_mutex); 8160 if (ddi_umem_unlock_head != NULL) { /* list not empty */ 8161 ret_cookie = ddi_umem_unlock_head; 8162 /* take if off the list */ 8163 if ((ddi_umem_unlock_head = 8164 ddi_umem_unlock_head->unl_forw) == NULL) { 8165 ddi_umem_unlock_tail = NULL; 8166 } 8167 mutex_exit(&ddi_umem_unlock_mutex); 8168 /* unlock the pages in this cookie */ 8169 (void) i_ddi_umem_unlock(ret_cookie); 8170 } else { /* list is empty, wait for next ddi_umem_unlock */ 8171 CALLB_CPR_SAFE_BEGIN(&cprinfo); 8172 cv_wait(&ddi_umem_unlock_cv, &ddi_umem_unlock_mutex); 8173 CALLB_CPR_SAFE_END(&cprinfo, &ddi_umem_unlock_mutex); 8174 mutex_exit(&ddi_umem_unlock_mutex); 8175 } 8176 } 8177 /* ddi_umem_unlock_thread does not exit */ 8178 /* NOTREACHED */ 8179 } 8180 8181 /* 8182 * Start the thread that will process the ddi_umem_unlock list if it is 8183 * not already started (i_ddi_umem_unlock_thread). 8184 */ 8185 static void 8186 i_ddi_umem_unlock_thread_start(void) 8187 { 8188 mutex_enter(&ddi_umem_unlock_mutex); 8189 if (ddi_umem_unlock_thread == NULL) { 8190 ddi_umem_unlock_thread = thread_create(NULL, 0, 8191 i_ddi_umem_unlock_thread, NULL, 0, &p0, 8192 TS_RUN, minclsyspri); 8193 } 8194 mutex_exit(&ddi_umem_unlock_mutex); 8195 } 8196 8197 /* 8198 * Lock the virtual address range in the current process and create a 8199 * ddi_umem_cookie (of type UMEM_LOCKED). This can be used to pass to 8200 * ddi_umem_iosetup to create a buf or do devmap_umem_setup/remap to export 8201 * to user space. 8202 * 8203 * Note: The resource control accounting currently uses a full charge model 8204 * in other words attempts to lock the same/overlapping areas of memory 8205 * will deduct the full size of the buffer from the projects running 8206 * counter for the device locked memory. This applies to umem_lockmemory too. 8207 * 8208 * addr, size should be PAGESIZE aligned 8209 * flags - DDI_UMEMLOCK_READ, DDI_UMEMLOCK_WRITE or both 8210 * identifies whether the locked memory will be read or written or both 8211 * 8212 * Returns 0 on success 8213 * EINVAL - for invalid parameters 8214 * EPERM, ENOMEM and other error codes returned by as_pagelock 8215 * ENOMEM - is returned if the current request to lock memory exceeds 8216 * project.max-device-locked-memory resource control value. 8217 * EAGAIN - could not start the ddi_umem_unlock list processing thread 8218 */ 8219 int 8220 ddi_umem_lock(caddr_t addr, size_t len, int flags, ddi_umem_cookie_t *cookie) 8221 { 8222 int error; 8223 struct ddi_umem_cookie *p; 8224 8225 *cookie = NULL; /* in case of any error return */ 8226 8227 /* These are the only two valid flags */ 8228 if ((flags & ~(DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) != 0) { 8229 return (EINVAL); 8230 } 8231 8232 /* At least one of the two flags (or both) must be set */ 8233 if ((flags & (DDI_UMEMLOCK_READ | DDI_UMEMLOCK_WRITE)) == 0) { 8234 return (EINVAL); 8235 } 8236 8237 /* addr and len must be page-aligned */ 8238 if (((uintptr_t)addr & PAGEOFFSET) != 0) { 8239 return (EINVAL); 8240 } 8241 8242 if ((len & PAGEOFFSET) != 0) { 8243 return (EINVAL); 8244 } 8245 8246 /* 8247 * Call i_ddi_umem_unlock_thread_start if necessary. It will 8248 * be called on first ddi_umem_lock or umem_lockmemory call. 8249 */ 8250 if (ddi_umem_unlock_thread == NULL) 8251 i_ddi_umem_unlock_thread_start(); 8252 8253 /* Allocate memory for the cookie */ 8254 p = kmem_zalloc(sizeof (struct ddi_umem_cookie), KM_SLEEP); 8255 8256 /* Convert the flags to seg_rw type */ 8257 if (flags & DDI_UMEMLOCK_WRITE) { 8258 p->s_flags = S_WRITE; 8259 } else { 8260 p->s_flags = S_READ; 8261 } 8262 8263 /* Store curproc in cookie for later iosetup/unlock */ 8264 p->procp = (void *)curproc; 8265 8266 /* 8267 * Store the struct as pointer in cookie for later use by 8268 * ddi_umem_unlock. The proc->p_as will be stale if ddi_umem_unlock 8269 * is called after relvm is called. 8270 */ 8271 p->asp = curproc->p_as; 8272 /* 8273 * The size field is needed for lockmem accounting. 8274 */ 8275 p->size = len; 8276 8277 if (umem_incr_devlockmem(p) != 0) { 8278 /* 8279 * The requested memory cannot be locked 8280 */ 8281 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8282 *cookie = (ddi_umem_cookie_t)NULL; 8283 return (ENOMEM); 8284 } 8285 /* 8286 * umem_incr_devlockmem stashes the project ptr into the 8287 * cookie. This is needed during unlock since that can 8288 * happen in a non-USER context 8289 */ 8290 ASSERT(p->lockmem_proj); 8291 8292 /* Lock the pages corresponding to addr, len in memory */ 8293 error = as_pagelock(((proc_t *)p->procp)->p_as, &(p->pparray), 8294 addr, len, p->s_flags); 8295 if (error != 0) { 8296 umem_decr_devlockmem(p); 8297 kmem_free(p, sizeof (struct ddi_umem_cookie)); 8298 *cookie = (ddi_umem_cookie_t)NULL; 8299 return (error); 8300 } 8301 8302 /* Initialize the fields in the ddi_umem_cookie */ 8303 p->cvaddr = addr; 8304 p->type = UMEM_LOCKED; 8305 p->cook_refcnt = 1; 8306 8307 *cookie = (ddi_umem_cookie_t)p; 8308 return (error); 8309 } 8310 8311 /* 8312 * Add the cookie to the ddi_umem_unlock list. Pages will be 8313 * unlocked by i_ddi_umem_unlock_thread. 8314 */ 8315 8316 void 8317 ddi_umem_unlock(ddi_umem_cookie_t cookie) 8318 { 8319 struct ddi_umem_cookie *p = (struct ddi_umem_cookie *)cookie; 8320 8321 ASSERT(p->type == UMEM_LOCKED); 8322 ASSERT(CPU_ON_INTR(CPU) == 0); /* cannot be high level */ 8323 ASSERT(ddi_umem_unlock_thread != NULL); 8324 8325 p->unl_forw = (struct ddi_umem_cookie *)NULL; /* end of list */ 8326 mutex_enter(&ddi_umem_unlock_mutex); 8327 if (ddi_umem_unlock_head == NULL) { 8328 ddi_umem_unlock_head = ddi_umem_unlock_tail = p; 8329 cv_broadcast(&ddi_umem_unlock_cv); 8330 } else { 8331 ddi_umem_unlock_tail->unl_forw = p; 8332 ddi_umem_unlock_tail = p; 8333 } 8334 mutex_exit(&ddi_umem_unlock_mutex); 8335 } 8336 8337 /* 8338 * Create a buf structure from a ddi_umem_cookie 8339 * cookie - is a ddi_umem_cookie for from ddi_umem_lock and ddi_umem_alloc 8340 * (only UMEM_LOCKED & KMEM_NON_PAGEABLE types supported) 8341 * off, len - identifies the portion of the memory represented by the cookie 8342 * that the buf points to. 8343 * NOTE: off, len need to follow the alignment/size restrictions of the 8344 * device (dev) that this buf will be passed to. Some devices 8345 * will accept unrestricted alignment/size, whereas others (such as 8346 * st) require some block-size alignment/size. It is the caller's 8347 * responsibility to ensure that the alignment/size restrictions 8348 * are met (we cannot assert as we do not know the restrictions) 8349 * 8350 * direction - is one of B_READ or B_WRITE and needs to be compatible with 8351 * the flags used in ddi_umem_lock 8352 * 8353 * The following three arguments are used to initialize fields in the 8354 * buf structure and are uninterpreted by this routine. 8355 * 8356 * dev 8357 * blkno 8358 * iodone 8359 * 8360 * sleepflag - is one of DDI_UMEM_SLEEP or DDI_UMEM_NOSLEEP 8361 * 8362 * Returns a buf structure pointer on success (to be freed by freerbuf) 8363 * NULL on any parameter error or memory alloc failure 8364 * 8365 */ 8366 struct buf * 8367 ddi_umem_iosetup(ddi_umem_cookie_t cookie, off_t off, size_t len, 8368 int direction, dev_t dev, daddr_t blkno, 8369 int (*iodone)(struct buf *), int sleepflag) 8370 { 8371 struct ddi_umem_cookie *p = (struct ddi_umem_cookie *)cookie; 8372 struct buf *bp; 8373 8374 /* 8375 * check for valid cookie offset, len 8376 */ 8377 if ((off + len) > p->size) { 8378 return (NULL); 8379 } 8380 8381 if (len > p->size) { 8382 return (NULL); 8383 } 8384 8385 /* direction has to be one of B_READ or B_WRITE */ 8386 if ((direction != B_READ) && (direction != B_WRITE)) { 8387 return (NULL); 8388 } 8389 8390 /* These are the only two valid sleepflags */ 8391 if ((sleepflag != DDI_UMEM_SLEEP) && (sleepflag != DDI_UMEM_NOSLEEP)) { 8392 return (NULL); 8393 } 8394 8395 /* 8396 * Only cookies of type UMEM_LOCKED and KMEM_NON_PAGEABLE are supported 8397 */ 8398 if ((p->type != UMEM_LOCKED) && (p->type != KMEM_NON_PAGEABLE)) { 8399 return (NULL); 8400 } 8401 8402 /* If type is KMEM_NON_PAGEABLE procp is NULL */ 8403 ASSERT((p->type == KMEM_NON_PAGEABLE) ? 8404 (p->procp == NULL) : (p->procp != NULL)); 8405 8406 bp = kmem_alloc(sizeof (struct buf), sleepflag); 8407 if (bp == NULL) { 8408 return (NULL); 8409 } 8410 bioinit(bp); 8411 8412 bp->b_flags = B_BUSY | B_PHYS | direction; 8413 bp->b_edev = dev; 8414 bp->b_lblkno = blkno; 8415 bp->b_iodone = iodone; 8416 bp->b_bcount = len; 8417 bp->b_proc = (proc_t *)p->procp; 8418 ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0); 8419 bp->b_un.b_addr = (caddr_t)((uintptr_t)(p->cvaddr) + off); 8420 if (p->pparray != NULL) { 8421 bp->b_flags |= B_SHADOW; 8422 ASSERT(((uintptr_t)(p->cvaddr) & PAGEOFFSET) == 0); 8423 bp->b_shadow = p->pparray + btop(off); 8424 } 8425 return (bp); 8426 } 8427 8428 /* 8429 * Fault-handling and related routines 8430 */ 8431 8432 ddi_devstate_t 8433 ddi_get_devstate(dev_info_t *dip) 8434 { 8435 if (DEVI_IS_DEVICE_OFFLINE(dip)) 8436 return (DDI_DEVSTATE_OFFLINE); 8437 else if (DEVI_IS_DEVICE_DOWN(dip) || DEVI_IS_BUS_DOWN(dip)) 8438 return (DDI_DEVSTATE_DOWN); 8439 else if (DEVI_IS_BUS_QUIESCED(dip)) 8440 return (DDI_DEVSTATE_QUIESCED); 8441 else if (DEVI_IS_DEVICE_DEGRADED(dip)) 8442 return (DDI_DEVSTATE_DEGRADED); 8443 else 8444 return (DDI_DEVSTATE_UP); 8445 } 8446 8447 void 8448 ddi_dev_report_fault(dev_info_t *dip, ddi_fault_impact_t impact, 8449 ddi_fault_location_t location, const char *message) 8450 { 8451 struct ddi_fault_event_data fd; 8452 ddi_eventcookie_t ec; 8453 8454 /* 8455 * Assemble all the information into a fault-event-data structure 8456 */ 8457 fd.f_dip = dip; 8458 fd.f_impact = impact; 8459 fd.f_location = location; 8460 fd.f_message = message; 8461 fd.f_oldstate = ddi_get_devstate(dip); 8462 8463 /* 8464 * Get eventcookie from defining parent. 8465 */ 8466 if (ddi_get_eventcookie(dip, DDI_DEVI_FAULT_EVENT, &ec) != 8467 DDI_SUCCESS) 8468 return; 8469 8470 (void) ndi_post_event(dip, dip, ec, &fd); 8471 } 8472 8473 char * 8474 i_ddi_devi_class(dev_info_t *dip) 8475 { 8476 return (DEVI(dip)->devi_device_class); 8477 } 8478 8479 int 8480 i_ddi_set_devi_class(dev_info_t *dip, char *devi_class, int flag) 8481 { 8482 struct dev_info *devi = DEVI(dip); 8483 8484 mutex_enter(&devi->devi_lock); 8485 8486 if (devi->devi_device_class) 8487 kmem_free(devi->devi_device_class, 8488 strlen(devi->devi_device_class) + 1); 8489 8490 if ((devi->devi_device_class = i_ddi_strdup(devi_class, flag)) 8491 != NULL) { 8492 mutex_exit(&devi->devi_lock); 8493 return (DDI_SUCCESS); 8494 } 8495 8496 mutex_exit(&devi->devi_lock); 8497 8498 return (DDI_FAILURE); 8499 } 8500 8501 8502 /* 8503 * Task Queues DDI interfaces. 8504 */ 8505 8506 /* ARGSUSED */ 8507 ddi_taskq_t * 8508 ddi_taskq_create(dev_info_t *dip, const char *name, int nthreads, 8509 pri_t pri, uint_t cflags) 8510 { 8511 char full_name[TASKQ_NAMELEN]; 8512 const char *tq_name; 8513 int nodeid = 0; 8514 8515 if (dip == NULL) 8516 tq_name = name; 8517 else { 8518 nodeid = ddi_get_instance(dip); 8519 8520 if (name == NULL) 8521 name = "tq"; 8522 8523 (void) snprintf(full_name, sizeof (full_name), "%s_%s", 8524 ddi_driver_name(dip), name); 8525 8526 tq_name = full_name; 8527 } 8528 8529 return ((ddi_taskq_t *)taskq_create_instance(tq_name, nodeid, nthreads, 8530 pri == TASKQ_DEFAULTPRI ? minclsyspri : pri, 8531 nthreads, INT_MAX, TASKQ_PREPOPULATE)); 8532 } 8533 8534 void 8535 ddi_taskq_destroy(ddi_taskq_t *tq) 8536 { 8537 taskq_destroy((taskq_t *)tq); 8538 } 8539 8540 int 8541 ddi_taskq_dispatch(ddi_taskq_t *tq, void (* func)(void *), 8542 void *arg, uint_t dflags) 8543 { 8544 taskqid_t id = taskq_dispatch((taskq_t *)tq, func, arg, 8545 dflags == DDI_SLEEP ? TQ_SLEEP : TQ_NOSLEEP); 8546 8547 return (id != 0 ? DDI_SUCCESS : DDI_FAILURE); 8548 } 8549 8550 void 8551 ddi_taskq_wait(ddi_taskq_t *tq) 8552 { 8553 taskq_wait((taskq_t *)tq); 8554 } 8555 8556 void 8557 ddi_taskq_suspend(ddi_taskq_t *tq) 8558 { 8559 taskq_suspend((taskq_t *)tq); 8560 } 8561 8562 boolean_t 8563 ddi_taskq_suspended(ddi_taskq_t *tq) 8564 { 8565 return (taskq_suspended((taskq_t *)tq)); 8566 } 8567 8568 void 8569 ddi_taskq_resume(ddi_taskq_t *tq) 8570 { 8571 taskq_resume((taskq_t *)tq); 8572 } 8573 8574 int 8575 ddi_parse( 8576 const char *ifname, 8577 char *alnum, 8578 uint_t *nump) 8579 { 8580 const char *p; 8581 int l; 8582 ulong_t num; 8583 boolean_t nonum = B_TRUE; 8584 char c; 8585 8586 l = strlen(ifname); 8587 for (p = ifname + l; p != ifname; l--) { 8588 c = *--p; 8589 if (!isdigit(c)) { 8590 (void) strlcpy(alnum, ifname, l + 1); 8591 if (ddi_strtoul(p + 1, NULL, 10, &num) != 0) 8592 return (DDI_FAILURE); 8593 break; 8594 } 8595 nonum = B_FALSE; 8596 } 8597 if (l == 0 || nonum) 8598 return (DDI_FAILURE); 8599 8600 *nump = num; 8601 return (DDI_SUCCESS); 8602 } 8603