xref: /titanic_50/usr/src/uts/common/os/strsubr.c (revision b695575577bae0337af339d76949713bfe1c9013)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/errno.h>
34 #include <sys/signal.h>
35 #include <sys/proc.h>
36 #include <sys/conf.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/session.h>
42 #include <sys/stream.h>
43 #include <sys/strsubr.h>
44 #include <sys/stropts.h>
45 #include <sys/poll.h>
46 #include <sys/systm.h>
47 #include <sys/cpuvar.h>
48 #include <sys/uio.h>
49 #include <sys/cmn_err.h>
50 #include <sys/priocntl.h>
51 #include <sys/procset.h>
52 #include <sys/vmem.h>
53 #include <sys/bitmap.h>
54 #include <sys/kmem.h>
55 #include <sys/siginfo.h>
56 #include <sys/vtrace.h>
57 #include <sys/callb.h>
58 #include <sys/debug.h>
59 #include <sys/modctl.h>
60 #include <sys/vmsystm.h>
61 #include <vm/page.h>
62 #include <sys/atomic.h>
63 #include <sys/suntpi.h>
64 #include <sys/strlog.h>
65 #include <sys/promif.h>
66 #include <sys/project.h>
67 #include <sys/vm.h>
68 #include <sys/taskq.h>
69 #include <sys/sunddi.h>
70 #include <sys/sunldi_impl.h>
71 #include <sys/strsun.h>
72 #include <sys/isa_defs.h>
73 #include <sys/multidata.h>
74 #include <sys/pattr.h>
75 #include <sys/strft.h>
76 #include <sys/fs/snode.h>
77 #include <sys/zone.h>
78 #include <sys/open.h>
79 #include <sys/sunldi.h>
80 #include <sys/sad.h>
81 #include <sys/netstack.h>
82 
83 #define	O_SAMESTR(q)	(((q)->q_next) && \
84 	(((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
85 
86 /*
87  * WARNING:
88  * The variables and routines in this file are private, belonging
89  * to the STREAMS subsystem. These should not be used by modules
90  * or drivers. Compatibility will not be guaranteed.
91  */
92 
93 /*
94  * Id value used to distinguish between different multiplexor links.
95  */
96 static int32_t lnk_id = 0;
97 
98 #define	STREAMS_LOPRI MINCLSYSPRI
99 static pri_t streams_lopri = STREAMS_LOPRI;
100 
101 #define	STRSTAT(x)	(str_statistics.x.value.ui64++)
102 typedef struct str_stat {
103 	kstat_named_t	sqenables;
104 	kstat_named_t	stenables;
105 	kstat_named_t	syncqservice;
106 	kstat_named_t	freebs;
107 	kstat_named_t	qwr_outer;
108 	kstat_named_t	rservice;
109 	kstat_named_t	strwaits;
110 	kstat_named_t	taskqfails;
111 	kstat_named_t	bufcalls;
112 	kstat_named_t	qhelps;
113 	kstat_named_t	qremoved;
114 	kstat_named_t	sqremoved;
115 	kstat_named_t	bcwaits;
116 	kstat_named_t	sqtoomany;
117 } str_stat_t;
118 
119 static str_stat_t str_statistics = {
120 	{ "sqenables",		KSTAT_DATA_UINT64 },
121 	{ "stenables",		KSTAT_DATA_UINT64 },
122 	{ "syncqservice",	KSTAT_DATA_UINT64 },
123 	{ "freebs",		KSTAT_DATA_UINT64 },
124 	{ "qwr_outer",		KSTAT_DATA_UINT64 },
125 	{ "rservice",		KSTAT_DATA_UINT64 },
126 	{ "strwaits",		KSTAT_DATA_UINT64 },
127 	{ "taskqfails",		KSTAT_DATA_UINT64 },
128 	{ "bufcalls",		KSTAT_DATA_UINT64 },
129 	{ "qhelps",		KSTAT_DATA_UINT64 },
130 	{ "qremoved",		KSTAT_DATA_UINT64 },
131 	{ "sqremoved",		KSTAT_DATA_UINT64 },
132 	{ "bcwaits",		KSTAT_DATA_UINT64 },
133 	{ "sqtoomany",		KSTAT_DATA_UINT64 },
134 };
135 
136 static kstat_t *str_kstat;
137 
138 /*
139  * qrunflag was used previously to control background scheduling of queues. It
140  * is not used anymore, but kept here in case some module still wants to access
141  * it via qready() and setqsched macros.
142  */
143 char qrunflag;			/*  Unused */
144 
145 /*
146  * Most of the streams scheduling is done via task queues. Task queues may fail
147  * for non-sleep dispatches, so there are two backup threads servicing failed
148  * requests for queues and syncqs. Both of these threads also service failed
149  * dispatches freebs requests. Queues are put in the list specified by `qhead'
150  * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
151  * requests are put into `freebs_list' which has no tail pointer. All three
152  * lists are protected by a single `service_queue' lock and use
153  * `services_to_run' condition variable for signaling background threads. Use of
154  * a single lock should not be a problem because it is only used under heavy
155  * loads when task queues start to fail and at that time it may be a good idea
156  * to throttle scheduling requests.
157  *
158  * NOTE: queues and syncqs should be scheduled by two separate threads because
159  * queue servicing may be blocked waiting for a syncq which may be also
160  * scheduled for background execution. This may create a deadlock when only one
161  * thread is used for both.
162  */
163 
164 static taskq_t *streams_taskq;		/* Used for most STREAMS scheduling */
165 
166 static kmutex_t service_queue;		/* protects all of servicing vars */
167 static kcondvar_t services_to_run;	/* wake up background service thread */
168 static kcondvar_t syncqs_to_run;	/* wake up background service thread */
169 
170 /*
171  * List of queues scheduled for background processing dueue to lack of resources
172  * in the task queues. Protected by service_queue lock;
173  */
174 static struct queue *qhead;
175 static struct queue *qtail;
176 
177 /*
178  * Same list for syncqs
179  */
180 static syncq_t *sqhead;
181 static syncq_t *sqtail;
182 
183 static mblk_t *freebs_list;	/* list of buffers to free */
184 
185 /*
186  * Backup threads for servicing queues and syncqs
187  */
188 kthread_t *streams_qbkgrnd_thread;
189 kthread_t *streams_sqbkgrnd_thread;
190 
191 /*
192  * Bufcalls related variables.
193  */
194 struct bclist	strbcalls;	/* list of waiting bufcalls */
195 kmutex_t	strbcall_lock;	/* protects bufcall list (strbcalls) */
196 kcondvar_t	strbcall_cv;	/* Signaling when a bufcall is added */
197 kmutex_t	bcall_monitor;	/* sleep/wakeup style monitor */
198 kcondvar_t	bcall_cv;	/* wait 'till executing bufcall completes */
199 kthread_t	*bc_bkgrnd_thread; /* Thread to service bufcall requests */
200 
201 kmutex_t	strresources;	/* protects global resources */
202 kmutex_t	muxifier;	/* single-threads multiplexor creation */
203 
204 static void	*str_stack_init(netstackid_t stackid, netstack_t *ns);
205 static void	str_stack_shutdown(netstackid_t stackid, void *arg);
206 static void	str_stack_fini(netstackid_t stackid, void *arg);
207 
208 extern void	time_to_wait(clock_t *, clock_t);
209 
210 /*
211  * run_queues is no longer used, but is kept in case some 3-d party
212  * module/driver decides to use it.
213  */
214 int run_queues = 0;
215 
216 /*
217  * sq_max_size is the depth of the syncq (in number of messages) before
218  * qfill_syncq() starts QFULL'ing destination queues. As its primary
219  * consumer - IP is no longer D_MTPERMOD, but there may be other
220  * modules/drivers depend on this syncq flow control, we prefer to
221  * choose a large number as the default value. For potential
222  * performance gain, this value is tunable in /etc/system.
223  */
224 int sq_max_size = 10000;
225 
226 /*
227  * the number of ciputctrl structures per syncq and stream we create when
228  * needed.
229  */
230 int n_ciputctrl;
231 int max_n_ciputctrl = 16;
232 /*
233  * if n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
234  */
235 int min_n_ciputctrl = 2;
236 
237 /*
238  * Per-driver/module syncqs
239  * ========================
240  *
241  * For drivers/modules that use PERMOD or outer syncqs we keep a list of
242  * perdm structures, new entries being added (and new syncqs allocated) when
243  * setq() encounters a module/driver with a streamtab that it hasn't seen
244  * before.
245  * The reason for this mechanism is that some modules and drivers share a
246  * common streamtab and it is necessary for those modules and drivers to also
247  * share a common PERMOD syncq.
248  *
249  * perdm_list --> dm_str == streamtab_1
250  *                dm_sq == syncq_1
251  *                dm_ref
252  *                dm_next --> dm_str == streamtab_2
253  *                            dm_sq == syncq_2
254  *                            dm_ref
255  *                            dm_next --> ... NULL
256  *
257  * The dm_ref field is incremented for each new driver/module that takes
258  * a reference to the perdm structure and hence shares the syncq.
259  * References are held in the fmodsw_impl_t structure for each STREAMS module
260  * or the dev_impl array (indexed by device major number) for each driver.
261  *
262  * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
263  *		     ^                 ^ ^               ^
264  *                   |  ______________/  |               |
265  *                   | /                 |               |
266  * dev_impl:     ...|x|y|...          module A	      module B
267  *
268  * When a module/driver is unloaded the reference count is decremented and,
269  * when it falls to zero, the perdm structure is removed from the list and
270  * the syncq is freed (see rele_dm()).
271  */
272 perdm_t *perdm_list = NULL;
273 static krwlock_t perdm_rwlock;
274 cdevsw_impl_t *devimpl;
275 
276 extern struct qinit strdata;
277 extern struct qinit stwdata;
278 
279 static void runservice(queue_t *);
280 static void streams_bufcall_service(void);
281 static void streams_qbkgrnd_service(void);
282 static void streams_sqbkgrnd_service(void);
283 static syncq_t *new_syncq(void);
284 static void free_syncq(syncq_t *);
285 static void outer_insert(syncq_t *, syncq_t *);
286 static void outer_remove(syncq_t *, syncq_t *);
287 static void write_now(syncq_t *);
288 static void clr_qfull(queue_t *);
289 static void runbufcalls(void);
290 static void sqenable(syncq_t *);
291 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
292 static void wait_q_syncq(queue_t *);
293 static void backenable_insertedq(queue_t *);
294 
295 static void queue_service(queue_t *);
296 static void stream_service(stdata_t *);
297 static void syncq_service(syncq_t *);
298 static void qwriter_outer_service(syncq_t *);
299 static void mblk_free(mblk_t *);
300 #ifdef DEBUG
301 static int qprocsareon(queue_t *);
302 #endif
303 
304 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
305 static void reset_nfsrv_ptr(queue_t *, queue_t *);
306 void set_qfull(queue_t *);
307 
308 static void sq_run_events(syncq_t *);
309 static int propagate_syncq(queue_t *);
310 
311 static void	blocksq(syncq_t *, ushort_t, int);
312 static void	unblocksq(syncq_t *, ushort_t, int);
313 static int	dropsq(syncq_t *, uint16_t);
314 static void	emptysq(syncq_t *);
315 static sqlist_t *sqlist_alloc(struct stdata *, int);
316 static void	sqlist_free(sqlist_t *);
317 static sqlist_t	*sqlist_build(queue_t *, struct stdata *, boolean_t);
318 static void	sqlist_insert(sqlist_t *, syncq_t *);
319 static void	sqlist_insertall(sqlist_t *, queue_t *);
320 
321 static void	strsetuio(stdata_t *);
322 
323 struct kmem_cache *stream_head_cache;
324 struct kmem_cache *queue_cache;
325 struct kmem_cache *syncq_cache;
326 struct kmem_cache *qband_cache;
327 struct kmem_cache *linkinfo_cache;
328 struct kmem_cache *ciputctrl_cache = NULL;
329 
330 static linkinfo_t *linkinfo_list;
331 
332 /* global esballoc throttling queue */
333 static esb_queue_t	system_esbq;
334 
335 /*
336  * esballoc tunable parameters.
337  */
338 int		esbq_max_qlen = 0x16;	/* throttled queue length */
339 clock_t		esbq_timeout = 0x8;	/* timeout to process esb queue */
340 
341 /*
342  * routines to handle esballoc queuing.
343  */
344 static void esballoc_process_queue(esb_queue_t *);
345 static void esballoc_enqueue_mblk(mblk_t *);
346 static void esballoc_timer(void *);
347 static void esballoc_set_timer(esb_queue_t *, clock_t);
348 static void esballoc_mblk_free(mblk_t *);
349 
350 /*
351  *  Qinit structure and Module_info structures
352  *	for passthru read and write queues
353  */
354 
355 static void pass_wput(queue_t *, mblk_t *);
356 static queue_t *link_addpassthru(stdata_t *);
357 static void link_rempassthru(queue_t *);
358 
359 struct  module_info passthru_info = {
360 	0,
361 	"passthru",
362 	0,
363 	INFPSZ,
364 	STRHIGH,
365 	STRLOW
366 };
367 
368 struct  qinit passthru_rinit = {
369 	(int (*)())putnext,
370 	NULL,
371 	NULL,
372 	NULL,
373 	NULL,
374 	&passthru_info,
375 	NULL
376 };
377 
378 struct  qinit passthru_winit = {
379 	(int (*)()) pass_wput,
380 	NULL,
381 	NULL,
382 	NULL,
383 	NULL,
384 	&passthru_info,
385 	NULL
386 };
387 
388 /*
389  * Special form of assertion: verify that X implies Y i.e. when X is true Y
390  * should also be true.
391  */
392 #define	IMPLY(X, Y)	ASSERT(!(X) || (Y))
393 
394 /*
395  * Logical equivalence. Verify that both X and Y are either TRUE or FALSE.
396  */
397 #define	EQUIV(X, Y)	{ IMPLY(X, Y); IMPLY(Y, X); }
398 
399 /*
400  * Verify correctness of list head/tail pointers.
401  */
402 #define	LISTCHECK(head, tail, link) {				\
403 	EQUIV(head, tail);					\
404 	IMPLY(tail != NULL, tail->link == NULL);		\
405 }
406 
407 /*
408  * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
409  * using a `link' field.
410  */
411 #define	ENQUEUE(el, head, tail, link) {				\
412 	ASSERT(el->link == NULL);				\
413 	LISTCHECK(head, tail, link);				\
414 	if (head == NULL)					\
415 		head = el;					\
416 	else							\
417 		tail->link = el;				\
418 	tail = el;						\
419 }
420 
421 /*
422  * Dequeue the first element of the list denoted by `head' and `tail' pointers
423  * using a `link' field and put result into `el'.
424  */
425 #define	DQ(el, head, tail, link) {				\
426 	LISTCHECK(head, tail, link);				\
427 	el = head;						\
428 	if (head != NULL) {					\
429 		head = head->link;				\
430 		if (head == NULL)				\
431 			tail = NULL;				\
432 		el->link = NULL;				\
433 	}							\
434 }
435 
436 /*
437  * Remove `el' from the list using `chase' and `curr' pointers and return result
438  * in `succeed'.
439  */
440 #define	RMQ(el, head, tail, link, chase, curr, succeed) {	\
441 	LISTCHECK(head, tail, link);				\
442 	chase = NULL;						\
443 	succeed = 0;						\
444 	for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
445 		chase = curr;					\
446 	if (curr != NULL) {					\
447 		succeed = 1;					\
448 		ASSERT(curr == el);				\
449 		if (chase != NULL)				\
450 			chase->link = curr->link;		\
451 		else						\
452 			head = curr->link;			\
453 		curr->link = NULL;				\
454 		if (curr == tail)				\
455 			tail = chase;				\
456 	}							\
457 	LISTCHECK(head, tail, link);				\
458 }
459 
460 /* Handling of delayed messages on the inner syncq. */
461 
462 /*
463  * DEBUG versions should use function versions (to simplify tracing) and
464  * non-DEBUG kernels should use macro versions.
465  */
466 
467 /*
468  * Put a queue on the syncq list of queues.
469  * Assumes SQLOCK held.
470  */
471 #define	SQPUT_Q(sq, qp)							\
472 {									\
473 	ASSERT(MUTEX_HELD(SQLOCK(sq)));					\
474 	if (!(qp->q_sqflags & Q_SQQUEUED)) {				\
475 		/* The queue should not be linked anywhere */		\
476 		ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
477 		/* Head and tail may only be NULL simultaneously */	\
478 		EQUIV(sq->sq_head, sq->sq_tail);			\
479 		/* Queue may be only enqueyed on its syncq */		\
480 		ASSERT(sq == qp->q_syncq);				\
481 		/* Check the correctness of SQ_MESSAGES flag */		\
482 		EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES));	\
483 		/* Sanity check first/last elements of the list */	\
484 		IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
485 		IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
486 		/*							\
487 		 * Sanity check of priority field: empty queue should	\
488 		 * have zero priority					\
489 		 * and nqueues equal to zero.				\
490 		 */							\
491 		IMPLY(sq->sq_head == NULL, sq->sq_pri == 0);		\
492 		/* Sanity check of sq_nqueues field */			\
493 		EQUIV(sq->sq_head, sq->sq_nqueues);			\
494 		if (sq->sq_head == NULL) {				\
495 			sq->sq_head = sq->sq_tail = qp;			\
496 			sq->sq_flags |= SQ_MESSAGES;			\
497 		} else if (qp->q_spri == 0) {				\
498 			qp->q_sqprev = sq->sq_tail;			\
499 			sq->sq_tail->q_sqnext = qp;			\
500 			sq->sq_tail = qp;				\
501 		} else {						\
502 			/*						\
503 			 * Put this queue in priority order: higher	\
504 			 * priority gets closer to the head.		\
505 			 */						\
506 			queue_t **qpp = &sq->sq_tail;			\
507 			queue_t *qnext = NULL;				\
508 									\
509 			while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
510 				qnext = *qpp;				\
511 				qpp = &(*qpp)->q_sqprev;		\
512 			}						\
513 			qp->q_sqnext = qnext;				\
514 			qp->q_sqprev = *qpp;				\
515 			if (*qpp != NULL) {				\
516 				(*qpp)->q_sqnext = qp;			\
517 			} else {					\
518 				sq->sq_head = qp;			\
519 				sq->sq_pri = sq->sq_head->q_spri;	\
520 			}						\
521 			*qpp = qp;					\
522 		}							\
523 		qp->q_sqflags |= Q_SQQUEUED;				\
524 		qp->q_sqtstamp = lbolt;					\
525 		sq->sq_nqueues++;					\
526 	}								\
527 }
528 
529 /*
530  * Remove a queue from the syncq list
531  * Assumes SQLOCK held.
532  */
533 #define	SQRM_Q(sq, qp)							\
534 	{								\
535 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
536 		ASSERT(qp->q_sqflags & Q_SQQUEUED);			\
537 		ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL);	\
538 		ASSERT((sq->sq_flags & SQ_MESSAGES) != 0);		\
539 		/* Check that the queue is actually in the list */	\
540 		ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp);	\
541 		ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp);	\
542 		ASSERT(sq->sq_nqueues != 0);				\
543 		if (qp->q_sqprev == NULL) {				\
544 			/* First queue on list, make head q_sqnext */	\
545 			sq->sq_head = qp->q_sqnext;			\
546 		} else {						\
547 			/* Make prev->next == next */			\
548 			qp->q_sqprev->q_sqnext = qp->q_sqnext;		\
549 		}							\
550 		if (qp->q_sqnext == NULL) {				\
551 			/* Last queue on list, make tail sqprev */	\
552 			sq->sq_tail = qp->q_sqprev;			\
553 		} else {						\
554 			/* Make next->prev == prev */			\
555 			qp->q_sqnext->q_sqprev = qp->q_sqprev;		\
556 		}							\
557 		/* clear out references on this queue */		\
558 		qp->q_sqprev = qp->q_sqnext = NULL;			\
559 		qp->q_sqflags &= ~Q_SQQUEUED;				\
560 		/* If there is nothing queued, clear SQ_MESSAGES */	\
561 		if (sq->sq_head != NULL) {				\
562 			sq->sq_pri = sq->sq_head->q_spri;		\
563 		} else	{						\
564 			sq->sq_flags &= ~SQ_MESSAGES;			\
565 			sq->sq_pri = 0;					\
566 		}							\
567 		sq->sq_nqueues--;					\
568 		ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL ||	\
569 		    (sq->sq_flags & SQ_QUEUED) == 0);			\
570 	}
571 
572 /* Hide the definition from the header file. */
573 #ifdef SQPUT_MP
574 #undef SQPUT_MP
575 #endif
576 
577 /*
578  * Put a message on the queue syncq.
579  * Assumes QLOCK held.
580  */
581 #define	SQPUT_MP(qp, mp)						\
582 	{								\
583 		ASSERT(MUTEX_HELD(QLOCK(qp)));				\
584 		ASSERT(qp->q_sqhead == NULL ||				\
585 		    (qp->q_sqtail != NULL &&				\
586 		    qp->q_sqtail->b_next == NULL));			\
587 		qp->q_syncqmsgs++;					\
588 		ASSERT(qp->q_syncqmsgs != 0);	/* Wraparound */	\
589 		if (qp->q_sqhead == NULL) {				\
590 			qp->q_sqhead = qp->q_sqtail = mp;		\
591 		} else {						\
592 			qp->q_sqtail->b_next = mp;			\
593 			qp->q_sqtail = mp;				\
594 		}							\
595 		ASSERT(qp->q_syncqmsgs > 0);				\
596 		set_qfull(qp);						\
597 	}
598 
599 #define	SQ_PUTCOUNT_SETFAST_LOCKED(sq) {				\
600 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
601 		if ((sq)->sq_ciputctrl != NULL) {			\
602 			int i;						\
603 			int nlocks = (sq)->sq_nciputctrl;		\
604 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
605 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
606 			for (i = 0; i <= nlocks; i++) {			\
607 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
608 				cip[i].ciputctrl_count |= SQ_FASTPUT;	\
609 			}						\
610 		}							\
611 	}
612 
613 
614 #define	SQ_PUTCOUNT_CLRFAST_LOCKED(sq) {				\
615 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
616 		if ((sq)->sq_ciputctrl != NULL) {			\
617 			int i;						\
618 			int nlocks = (sq)->sq_nciputctrl;		\
619 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
620 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
621 			for (i = 0; i <= nlocks; i++) {			\
622 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
623 				cip[i].ciputctrl_count &= ~SQ_FASTPUT;	\
624 			}						\
625 		}							\
626 	}
627 
628 /*
629  * Run service procedures for all queues in the stream head.
630  */
631 #define	STR_SERVICE(stp, q) {						\
632 	ASSERT(MUTEX_HELD(&stp->sd_qlock));				\
633 	while (stp->sd_qhead != NULL) {					\
634 		DQ(q, stp->sd_qhead, stp->sd_qtail, q_link);		\
635 		ASSERT(stp->sd_nqueues > 0);				\
636 		stp->sd_nqueues--;					\
637 		ASSERT(!(q->q_flag & QINSERVICE));			\
638 		mutex_exit(&stp->sd_qlock);				\
639 		queue_service(q);					\
640 		mutex_enter(&stp->sd_qlock);				\
641 	}								\
642 	ASSERT(stp->sd_nqueues == 0);					\
643 	ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL));	\
644 }
645 
646 /*
647  * constructor/destructor routines for the stream head cache
648  */
649 /* ARGSUSED */
650 static int
651 stream_head_constructor(void *buf, void *cdrarg, int kmflags)
652 {
653 	stdata_t *stp = buf;
654 
655 	mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
656 	mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
657 	mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
658 	cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
659 	cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
660 	cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
661 	cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
662 	cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
663 	stp->sd_wrq = NULL;
664 
665 	return (0);
666 }
667 
668 /* ARGSUSED */
669 static void
670 stream_head_destructor(void *buf, void *cdrarg)
671 {
672 	stdata_t *stp = buf;
673 
674 	mutex_destroy(&stp->sd_lock);
675 	mutex_destroy(&stp->sd_reflock);
676 	mutex_destroy(&stp->sd_qlock);
677 	cv_destroy(&stp->sd_monitor);
678 	cv_destroy(&stp->sd_iocmonitor);
679 	cv_destroy(&stp->sd_refmonitor);
680 	cv_destroy(&stp->sd_qcv);
681 	cv_destroy(&stp->sd_zcopy_wait);
682 }
683 
684 /*
685  * constructor/destructor routines for the queue cache
686  */
687 /* ARGSUSED */
688 static int
689 queue_constructor(void *buf, void *cdrarg, int kmflags)
690 {
691 	queinfo_t *qip = buf;
692 	queue_t *qp = &qip->qu_rqueue;
693 	queue_t *wqp = &qip->qu_wqueue;
694 	syncq_t	*sq = &qip->qu_syncq;
695 
696 	qp->q_first = NULL;
697 	qp->q_link = NULL;
698 	qp->q_count = 0;
699 	qp->q_mblkcnt = 0;
700 	qp->q_sqhead = NULL;
701 	qp->q_sqtail = NULL;
702 	qp->q_sqnext = NULL;
703 	qp->q_sqprev = NULL;
704 	qp->q_sqflags = 0;
705 	qp->q_rwcnt = 0;
706 	qp->q_spri = 0;
707 
708 	mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
709 	cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
710 
711 	wqp->q_first = NULL;
712 	wqp->q_link = NULL;
713 	wqp->q_count = 0;
714 	wqp->q_mblkcnt = 0;
715 	wqp->q_sqhead = NULL;
716 	wqp->q_sqtail = NULL;
717 	wqp->q_sqnext = NULL;
718 	wqp->q_sqprev = NULL;
719 	wqp->q_sqflags = 0;
720 	wqp->q_rwcnt = 0;
721 	wqp->q_spri = 0;
722 
723 	mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
724 	cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
725 
726 	sq->sq_head = NULL;
727 	sq->sq_tail = NULL;
728 	sq->sq_evhead = NULL;
729 	sq->sq_evtail = NULL;
730 	sq->sq_callbpend = NULL;
731 	sq->sq_outer = NULL;
732 	sq->sq_onext = NULL;
733 	sq->sq_oprev = NULL;
734 	sq->sq_next = NULL;
735 	sq->sq_svcflags = 0;
736 	sq->sq_servcount = 0;
737 	sq->sq_needexcl = 0;
738 	sq->sq_nqueues = 0;
739 	sq->sq_pri = 0;
740 
741 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
742 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
743 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
744 
745 	return (0);
746 }
747 
748 /* ARGSUSED */
749 static void
750 queue_destructor(void *buf, void *cdrarg)
751 {
752 	queinfo_t *qip = buf;
753 	queue_t *qp = &qip->qu_rqueue;
754 	queue_t *wqp = &qip->qu_wqueue;
755 	syncq_t	*sq = &qip->qu_syncq;
756 
757 	ASSERT(qp->q_sqhead == NULL);
758 	ASSERT(wqp->q_sqhead == NULL);
759 	ASSERT(qp->q_sqnext == NULL);
760 	ASSERT(wqp->q_sqnext == NULL);
761 	ASSERT(qp->q_rwcnt == 0);
762 	ASSERT(wqp->q_rwcnt == 0);
763 
764 	mutex_destroy(&qp->q_lock);
765 	cv_destroy(&qp->q_wait);
766 
767 	mutex_destroy(&wqp->q_lock);
768 	cv_destroy(&wqp->q_wait);
769 
770 	mutex_destroy(&sq->sq_lock);
771 	cv_destroy(&sq->sq_wait);
772 	cv_destroy(&sq->sq_exitwait);
773 }
774 
775 /*
776  * constructor/destructor routines for the syncq cache
777  */
778 /* ARGSUSED */
779 static int
780 syncq_constructor(void *buf, void *cdrarg, int kmflags)
781 {
782 	syncq_t	*sq = buf;
783 
784 	bzero(buf, sizeof (syncq_t));
785 
786 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
787 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
788 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
789 
790 	return (0);
791 }
792 
793 /* ARGSUSED */
794 static void
795 syncq_destructor(void *buf, void *cdrarg)
796 {
797 	syncq_t	*sq = buf;
798 
799 	ASSERT(sq->sq_head == NULL);
800 	ASSERT(sq->sq_tail == NULL);
801 	ASSERT(sq->sq_evhead == NULL);
802 	ASSERT(sq->sq_evtail == NULL);
803 	ASSERT(sq->sq_callbpend == NULL);
804 	ASSERT(sq->sq_callbflags == 0);
805 	ASSERT(sq->sq_outer == NULL);
806 	ASSERT(sq->sq_onext == NULL);
807 	ASSERT(sq->sq_oprev == NULL);
808 	ASSERT(sq->sq_next == NULL);
809 	ASSERT(sq->sq_needexcl == 0);
810 	ASSERT(sq->sq_svcflags == 0);
811 	ASSERT(sq->sq_servcount == 0);
812 	ASSERT(sq->sq_nqueues == 0);
813 	ASSERT(sq->sq_pri == 0);
814 	ASSERT(sq->sq_count == 0);
815 	ASSERT(sq->sq_rmqcount == 0);
816 	ASSERT(sq->sq_cancelid == 0);
817 	ASSERT(sq->sq_ciputctrl == NULL);
818 	ASSERT(sq->sq_nciputctrl == 0);
819 	ASSERT(sq->sq_type == 0);
820 	ASSERT(sq->sq_flags == 0);
821 
822 	mutex_destroy(&sq->sq_lock);
823 	cv_destroy(&sq->sq_wait);
824 	cv_destroy(&sq->sq_exitwait);
825 }
826 
827 /* ARGSUSED */
828 static int
829 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
830 {
831 	ciputctrl_t *cip = buf;
832 	int i;
833 
834 	for (i = 0; i < n_ciputctrl; i++) {
835 		cip[i].ciputctrl_count = SQ_FASTPUT;
836 		mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
837 	}
838 
839 	return (0);
840 }
841 
842 /* ARGSUSED */
843 static void
844 ciputctrl_destructor(void *buf, void *cdrarg)
845 {
846 	ciputctrl_t *cip = buf;
847 	int i;
848 
849 	for (i = 0; i < n_ciputctrl; i++) {
850 		ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
851 		mutex_destroy(&cip[i].ciputctrl_lock);
852 	}
853 }
854 
855 /*
856  * Init routine run from main at boot time.
857  */
858 void
859 strinit(void)
860 {
861 	int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
862 
863 	stream_head_cache = kmem_cache_create("stream_head_cache",
864 	    sizeof (stdata_t), 0,
865 	    stream_head_constructor, stream_head_destructor, NULL,
866 	    NULL, NULL, 0);
867 
868 	queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
869 	    queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
870 
871 	syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
872 	    syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
873 
874 	qband_cache = kmem_cache_create("qband_cache",
875 	    sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
876 
877 	linkinfo_cache = kmem_cache_create("linkinfo_cache",
878 	    sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
879 
880 	n_ciputctrl = ncpus;
881 	n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
882 	ASSERT(n_ciputctrl >= 1);
883 	n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
884 	if (n_ciputctrl >= min_n_ciputctrl) {
885 		ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
886 		    sizeof (ciputctrl_t) * n_ciputctrl,
887 		    sizeof (ciputctrl_t), ciputctrl_constructor,
888 		    ciputctrl_destructor, NULL, NULL, NULL, 0);
889 	}
890 
891 	streams_taskq = system_taskq;
892 
893 	if (streams_taskq == NULL)
894 		panic("strinit: no memory for streams taskq!");
895 
896 	bc_bkgrnd_thread = thread_create(NULL, 0,
897 	    streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
898 
899 	streams_qbkgrnd_thread = thread_create(NULL, 0,
900 	    streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
901 
902 	streams_sqbkgrnd_thread = thread_create(NULL, 0,
903 	    streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
904 
905 	/*
906 	 * Create STREAMS kstats.
907 	 */
908 	str_kstat = kstat_create("streams", 0, "strstat",
909 	    "net", KSTAT_TYPE_NAMED,
910 	    sizeof (str_statistics) / sizeof (kstat_named_t),
911 	    KSTAT_FLAG_VIRTUAL);
912 
913 	if (str_kstat != NULL) {
914 		str_kstat->ks_data = &str_statistics;
915 		kstat_install(str_kstat);
916 	}
917 
918 	/*
919 	 * TPI support routine initialisation.
920 	 */
921 	tpi_init();
922 
923 	/*
924 	 * Handle to have autopush and persistent link information per
925 	 * zone.
926 	 * Note: uses shutdown hook instead of destroy hook so that the
927 	 * persistent links can be torn down before the destroy hooks
928 	 * in the TCP/IP stack are called.
929 	 */
930 	netstack_register(NS_STR, str_stack_init, str_stack_shutdown,
931 	    str_stack_fini);
932 }
933 
934 void
935 str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
936 {
937 	struct stdata *stp;
938 
939 	ASSERT(vp->v_stream);
940 	stp = vp->v_stream;
941 	/* Have to hold sd_lock to prevent siglist from changing */
942 	mutex_enter(&stp->sd_lock);
943 	if (stp->sd_sigflags & event)
944 		strsendsig(stp->sd_siglist, event, band, error);
945 	mutex_exit(&stp->sd_lock);
946 }
947 
948 /*
949  * Send the "sevent" set of signals to a process.
950  * This might send more than one signal if the process is registered
951  * for multiple events. The caller should pass in an sevent that only
952  * includes the events for which the process has registered.
953  */
954 static void
955 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
956 	uchar_t band, int error)
957 {
958 	ASSERT(MUTEX_HELD(&proc->p_lock));
959 
960 	info->si_band = 0;
961 	info->si_errno = 0;
962 
963 	if (sevent & S_ERROR) {
964 		sevent &= ~S_ERROR;
965 		info->si_code = POLL_ERR;
966 		info->si_errno = error;
967 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
968 		    "strsendsig:proc %p info %p", proc, info);
969 		sigaddq(proc, NULL, info, KM_NOSLEEP);
970 		info->si_errno = 0;
971 	}
972 	if (sevent & S_HANGUP) {
973 		sevent &= ~S_HANGUP;
974 		info->si_code = POLL_HUP;
975 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
976 		    "strsendsig:proc %p info %p", proc, info);
977 		sigaddq(proc, NULL, info, KM_NOSLEEP);
978 	}
979 	if (sevent & S_HIPRI) {
980 		sevent &= ~S_HIPRI;
981 		info->si_code = POLL_PRI;
982 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
983 		    "strsendsig:proc %p info %p", proc, info);
984 		sigaddq(proc, NULL, info, KM_NOSLEEP);
985 	}
986 	if (sevent & S_RDBAND) {
987 		sevent &= ~S_RDBAND;
988 		if (events & S_BANDURG)
989 			sigtoproc(proc, NULL, SIGURG);
990 		else
991 			sigtoproc(proc, NULL, SIGPOLL);
992 	}
993 	if (sevent & S_WRBAND) {
994 		sevent &= ~S_WRBAND;
995 		sigtoproc(proc, NULL, SIGPOLL);
996 	}
997 	if (sevent & S_INPUT) {
998 		sevent &= ~S_INPUT;
999 		info->si_code = POLL_IN;
1000 		info->si_band = band;
1001 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1002 		    "strsendsig:proc %p info %p", proc, info);
1003 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1004 		info->si_band = 0;
1005 	}
1006 	if (sevent & S_OUTPUT) {
1007 		sevent &= ~S_OUTPUT;
1008 		info->si_code = POLL_OUT;
1009 		info->si_band = band;
1010 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1011 		    "strsendsig:proc %p info %p", proc, info);
1012 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1013 		info->si_band = 0;
1014 	}
1015 	if (sevent & S_MSG) {
1016 		sevent &= ~S_MSG;
1017 		info->si_code = POLL_MSG;
1018 		info->si_band = band;
1019 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1020 		    "strsendsig:proc %p info %p", proc, info);
1021 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1022 		info->si_band = 0;
1023 	}
1024 	if (sevent & S_RDNORM) {
1025 		sevent &= ~S_RDNORM;
1026 		sigtoproc(proc, NULL, SIGPOLL);
1027 	}
1028 	if (sevent != 0) {
1029 		panic("strsendsig: unknown event(s) %x", sevent);
1030 	}
1031 }
1032 
1033 /*
1034  * Send SIGPOLL/SIGURG signal to all processes and process groups
1035  * registered on the given signal list that want a signal for at
1036  * least one of the specified events.
1037  *
1038  * Must be called with exclusive access to siglist (caller holding sd_lock).
1039  *
1040  * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1041  * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1042  * while it is in the siglist.
1043  *
1044  * For performance reasons (MP scalability) the code drops pidlock
1045  * when sending signals to a single process.
1046  * When sending to a process group the code holds
1047  * pidlock to prevent the membership in the process group from changing
1048  * while walking the p_pglink list.
1049  */
1050 void
1051 strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1052 {
1053 	strsig_t *ssp;
1054 	k_siginfo_t info;
1055 	struct pid *pidp;
1056 	proc_t  *proc;
1057 
1058 	info.si_signo = SIGPOLL;
1059 	info.si_errno = 0;
1060 	for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1061 		int sevent;
1062 
1063 		sevent = ssp->ss_events & event;
1064 		if (sevent == 0)
1065 			continue;
1066 
1067 		if ((pidp = ssp->ss_pidp) == NULL) {
1068 			/* pid was released but still on event list */
1069 			continue;
1070 		}
1071 
1072 
1073 		if (ssp->ss_pid > 0) {
1074 			/*
1075 			 * XXX This unfortunately still generates
1076 			 * a signal when a fd is closed but
1077 			 * the proc is active.
1078 			 */
1079 			ASSERT(ssp->ss_pid == pidp->pid_id);
1080 
1081 			mutex_enter(&pidlock);
1082 			proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1083 			if (proc == NULL) {
1084 				mutex_exit(&pidlock);
1085 				continue;
1086 			}
1087 			mutex_enter(&proc->p_lock);
1088 			mutex_exit(&pidlock);
1089 			dosendsig(proc, ssp->ss_events, sevent, &info,
1090 			    band, error);
1091 			mutex_exit(&proc->p_lock);
1092 		} else {
1093 			/*
1094 			 * Send to process group. Hold pidlock across
1095 			 * calls to dosendsig().
1096 			 */
1097 			pid_t pgrp = -ssp->ss_pid;
1098 
1099 			mutex_enter(&pidlock);
1100 			proc = pgfind_zone(pgrp, ALL_ZONES);
1101 			while (proc != NULL) {
1102 				mutex_enter(&proc->p_lock);
1103 				dosendsig(proc, ssp->ss_events, sevent,
1104 				    &info, band, error);
1105 				mutex_exit(&proc->p_lock);
1106 				proc = proc->p_pglink;
1107 			}
1108 			mutex_exit(&pidlock);
1109 		}
1110 	}
1111 }
1112 
1113 /*
1114  * Attach a stream device or module.
1115  * qp is a read queue; the new queue goes in so its next
1116  * read ptr is the argument, and the write queue corresponding
1117  * to the argument points to this queue. Return 0 on success,
1118  * or a non-zero errno on failure.
1119  */
1120 int
1121 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1122     boolean_t is_insert)
1123 {
1124 	major_t			major;
1125 	cdevsw_impl_t		*dp;
1126 	struct streamtab	*str;
1127 	queue_t			*rq;
1128 	queue_t			*wrq;
1129 	uint32_t		qflag;
1130 	uint32_t		sqtype;
1131 	perdm_t			*dmp;
1132 	int			error;
1133 	int			sflag;
1134 
1135 	rq = allocq();
1136 	wrq = _WR(rq);
1137 	STREAM(rq) = STREAM(wrq) = STREAM(qp);
1138 
1139 	if (fp != NULL) {
1140 		str = fp->f_str;
1141 		qflag = fp->f_qflag;
1142 		sqtype = fp->f_sqtype;
1143 		dmp = fp->f_dmp;
1144 		IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1145 		sflag = MODOPEN;
1146 
1147 		/*
1148 		 * stash away a pointer to the module structure so we can
1149 		 * unref it in qdetach.
1150 		 */
1151 		rq->q_fp = fp;
1152 	} else {
1153 		ASSERT(!is_insert);
1154 
1155 		major = getmajor(*devp);
1156 		dp = &devimpl[major];
1157 
1158 		str = dp->d_str;
1159 		ASSERT(str == STREAMSTAB(major));
1160 
1161 		qflag = dp->d_qflag;
1162 		ASSERT(qflag & QISDRV);
1163 		sqtype = dp->d_sqtype;
1164 
1165 		/* create perdm_t if needed */
1166 		if (NEED_DM(dp->d_dmp, qflag))
1167 			dp->d_dmp = hold_dm(str, qflag, sqtype);
1168 
1169 		dmp = dp->d_dmp;
1170 		sflag = 0;
1171 	}
1172 
1173 	TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1174 	    "qattach:qflag == %X(%X)", qflag, *devp);
1175 
1176 	/* setq might sleep in allocator - avoid holding locks. */
1177 	setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1178 
1179 	/*
1180 	 * Before calling the module's open routine, set up the q_next
1181 	 * pointer for inserting a module in the middle of a stream.
1182 	 *
1183 	 * Note that we can always set _QINSERTING and set up q_next
1184 	 * pointer for both inserting and pushing a module.  Then there
1185 	 * is no need for the is_insert parameter.  In insertq(), called
1186 	 * by qprocson(), assume that q_next of the new module always points
1187 	 * to the correct queue and use it for insertion.  Everything should
1188 	 * work out fine.  But in the first release of _I_INSERT, we
1189 	 * distinguish between inserting and pushing to make sure that
1190 	 * pushing a module follows the same code path as before.
1191 	 */
1192 	if (is_insert) {
1193 		rq->q_flag |= _QINSERTING;
1194 		rq->q_next = qp;
1195 	}
1196 
1197 	/*
1198 	 * If there is an outer perimeter get exclusive access during
1199 	 * the open procedure.  Bump up the reference count on the queue.
1200 	 */
1201 	entersq(rq->q_syncq, SQ_OPENCLOSE);
1202 	error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1203 	if (error != 0)
1204 		goto failed;
1205 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1206 	ASSERT(qprocsareon(rq));
1207 	return (0);
1208 
1209 failed:
1210 	rq->q_flag &= ~_QINSERTING;
1211 	if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1212 		qprocsoff(rq);
1213 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1214 	rq->q_next = wrq->q_next = NULL;
1215 	qdetach(rq, 0, 0, crp, B_FALSE);
1216 	return (error);
1217 }
1218 
1219 /*
1220  * Handle second open of stream. For modules, set the
1221  * last argument to MODOPEN and do not pass any open flags.
1222  * Ignore dummydev since this is not the first open.
1223  */
1224 int
1225 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1226 {
1227 	int	error;
1228 	dev_t dummydev;
1229 	queue_t *wqp = _WR(qp);
1230 
1231 	ASSERT(qp->q_flag & QREADR);
1232 	entersq(qp->q_syncq, SQ_OPENCLOSE);
1233 
1234 	dummydev = *devp;
1235 	if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1236 	    (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1237 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1238 		mutex_enter(&STREAM(qp)->sd_lock);
1239 		qp->q_stream->sd_flag |= STREOPENFAIL;
1240 		mutex_exit(&STREAM(qp)->sd_lock);
1241 		return (error);
1242 	}
1243 	leavesq(qp->q_syncq, SQ_OPENCLOSE);
1244 
1245 	/*
1246 	 * successful open should have done qprocson()
1247 	 */
1248 	ASSERT(qprocsareon(_RD(qp)));
1249 	return (0);
1250 }
1251 
1252 /*
1253  * Detach a stream module or device.
1254  * If clmode == 1 then the module or driver was opened and its
1255  * close routine must be called. If clmode == 0, the module
1256  * or driver was never opened or the open failed, and so its close
1257  * should not be called.
1258  */
1259 void
1260 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1261 {
1262 	queue_t *wqp = _WR(qp);
1263 	ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1264 
1265 	if (STREAM_NEEDSERVICE(STREAM(qp)))
1266 		stream_runservice(STREAM(qp));
1267 
1268 	if (clmode) {
1269 		/*
1270 		 * Make sure that all the messages on the write side syncq are
1271 		 * processed and nothing is left. Since we are closing, no new
1272 		 * messages may appear there.
1273 		 */
1274 		wait_q_syncq(wqp);
1275 
1276 		entersq(qp->q_syncq, SQ_OPENCLOSE);
1277 		if (is_remove) {
1278 			mutex_enter(QLOCK(qp));
1279 			qp->q_flag |= _QREMOVING;
1280 			mutex_exit(QLOCK(qp));
1281 		}
1282 		(*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1283 		/*
1284 		 * Check that qprocsoff() was actually called.
1285 		 */
1286 		ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1287 
1288 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1289 	} else {
1290 		disable_svc(qp);
1291 	}
1292 
1293 	/*
1294 	 * Allow any threads blocked in entersq to proceed and discover
1295 	 * the QWCLOSE is set.
1296 	 * Note: This assumes that all users of entersq check QWCLOSE.
1297 	 * Currently runservice is the only entersq that can happen
1298 	 * after removeq has finished.
1299 	 * Removeq will have discarded all messages destined to the closing
1300 	 * pair of queues from the syncq.
1301 	 * NOTE: Calling a function inside an assert is unconventional.
1302 	 * However, it does not cause any problem since flush_syncq() does
1303 	 * not change any state except when it returns non-zero i.e.
1304 	 * when the assert will trigger.
1305 	 */
1306 	ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1307 	ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1308 	ASSERT((qp->q_flag & QPERMOD) ||
1309 	    ((qp->q_syncq->sq_head == NULL) &&
1310 	    (wqp->q_syncq->sq_head == NULL)));
1311 
1312 	/* release any fmodsw_impl_t structure held on behalf of the queue */
1313 	ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1314 	if (qp->q_fp != NULL)
1315 		fmodsw_rele(qp->q_fp);
1316 
1317 	/* freeq removes us from the outer perimeter if any */
1318 	freeq(qp);
1319 }
1320 
1321 /* Prevent service procedures from being called */
1322 void
1323 disable_svc(queue_t *qp)
1324 {
1325 	queue_t *wqp = _WR(qp);
1326 
1327 	ASSERT(qp->q_flag & QREADR);
1328 	mutex_enter(QLOCK(qp));
1329 	qp->q_flag |= QWCLOSE;
1330 	mutex_exit(QLOCK(qp));
1331 	mutex_enter(QLOCK(wqp));
1332 	wqp->q_flag |= QWCLOSE;
1333 	mutex_exit(QLOCK(wqp));
1334 }
1335 
1336 /* allow service procedures to be called again */
1337 void
1338 enable_svc(queue_t *qp)
1339 {
1340 	queue_t *wqp = _WR(qp);
1341 
1342 	ASSERT(qp->q_flag & QREADR);
1343 	mutex_enter(QLOCK(qp));
1344 	qp->q_flag &= ~QWCLOSE;
1345 	mutex_exit(QLOCK(qp));
1346 	mutex_enter(QLOCK(wqp));
1347 	wqp->q_flag &= ~QWCLOSE;
1348 	mutex_exit(QLOCK(wqp));
1349 }
1350 
1351 /*
1352  * Remove queue from qhead/qtail if it is enabled.
1353  * Only reset QENAB if the queue was removed from the runlist.
1354  * A queue goes through 3 stages:
1355  *	It is on the service list and QENAB is set.
1356  *	It is removed from the service list but QENAB is still set.
1357  *	QENAB gets changed to QINSERVICE.
1358  *	QINSERVICE is reset (when the service procedure is done)
1359  * Thus we can not reset QENAB unless we actually removed it from the service
1360  * queue.
1361  */
1362 void
1363 remove_runlist(queue_t *qp)
1364 {
1365 	if (qp->q_flag & QENAB && qhead != NULL) {
1366 		queue_t *q_chase;
1367 		queue_t *q_curr;
1368 		int removed;
1369 
1370 		mutex_enter(&service_queue);
1371 		RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1372 		mutex_exit(&service_queue);
1373 		if (removed) {
1374 			STRSTAT(qremoved);
1375 			qp->q_flag &= ~QENAB;
1376 		}
1377 	}
1378 }
1379 
1380 
1381 /*
1382  * wait for any pending service processing to complete.
1383  * The removal of queues from the runlist is not atomic with the
1384  * clearing of the QENABLED flag and setting the INSERVICE flag.
1385  * consequently it is possible for remove_runlist in strclose
1386  * to not find the queue on the runlist but for it to be QENABLED
1387  * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1388  * as well as INSERVICE.
1389  */
1390 void
1391 wait_svc(queue_t *qp)
1392 {
1393 	queue_t *wqp = _WR(qp);
1394 
1395 	ASSERT(qp->q_flag & QREADR);
1396 
1397 	/*
1398 	 * Try to remove queues from qhead/qtail list.
1399 	 */
1400 	if (qhead != NULL) {
1401 		remove_runlist(qp);
1402 		remove_runlist(wqp);
1403 	}
1404 	/*
1405 	 * Wait till the syncqs associated with the queue
1406 	 * will dissapear from background processing list.
1407 	 * This only needs to be done for non-PERMOD perimeters since
1408 	 * for PERMOD perimeters the syncq may be shared and will only be freed
1409 	 * when the last module/driver is unloaded.
1410 	 * If for PERMOD perimeters queue was on the syncq list, removeq()
1411 	 * should call propagate_syncq() or drain_syncq() for it. Both of these
1412 	 * function remove the queue from its syncq list, so sqthread will not
1413 	 * try to access the queue.
1414 	 */
1415 	if (!(qp->q_flag & QPERMOD)) {
1416 		syncq_t *rsq = qp->q_syncq;
1417 		syncq_t *wsq = wqp->q_syncq;
1418 
1419 		/*
1420 		 * Disable rsq and wsq and wait for any background processing of
1421 		 * syncq to complete.
1422 		 */
1423 		wait_sq_svc(rsq);
1424 		if (wsq != rsq)
1425 			wait_sq_svc(wsq);
1426 	}
1427 
1428 	mutex_enter(QLOCK(qp));
1429 	while (qp->q_flag & (QINSERVICE|QENAB))
1430 		cv_wait(&qp->q_wait, QLOCK(qp));
1431 	mutex_exit(QLOCK(qp));
1432 	mutex_enter(QLOCK(wqp));
1433 	while (wqp->q_flag & (QINSERVICE|QENAB))
1434 		cv_wait(&wqp->q_wait, QLOCK(wqp));
1435 	mutex_exit(QLOCK(wqp));
1436 }
1437 
1438 /*
1439  * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1440  * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1441  * also be set, and is passed through to allocb_cred_wait().
1442  *
1443  * Returns errno on failure, zero on success.
1444  */
1445 int
1446 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1447 {
1448 	mblk_t *tmp;
1449 	ssize_t  count;
1450 	int error = 0;
1451 
1452 	ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1453 	    (flag & (U_TO_K | K_TO_K)) == K_TO_K);
1454 
1455 	if (bp->b_datap->db_type == M_IOCTL) {
1456 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1457 	} else {
1458 		ASSERT(bp->b_datap->db_type == M_COPYIN);
1459 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1460 	}
1461 	/*
1462 	 * strdoioctl validates ioc_count, so if this assert fails it
1463 	 * cannot be due to user error.
1464 	 */
1465 	ASSERT(count >= 0);
1466 
1467 	if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr,
1468 	    curproc->p_pid)) == NULL) {
1469 		return (error);
1470 	}
1471 	error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K));
1472 	if (error != 0) {
1473 		freeb(tmp);
1474 		return (error);
1475 	}
1476 	DB_CPID(tmp) = curproc->p_pid;
1477 	tmp->b_wptr += count;
1478 	bp->b_cont = tmp;
1479 
1480 	return (0);
1481 }
1482 
1483 /*
1484  * Copy ioctl data to user-land. Return non-zero errno on failure,
1485  * 0 for success.
1486  */
1487 int
1488 getiocd(mblk_t *bp, char *arg, int copymode)
1489 {
1490 	ssize_t count;
1491 	size_t  n;
1492 	int	error;
1493 
1494 	if (bp->b_datap->db_type == M_IOCACK)
1495 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1496 	else {
1497 		ASSERT(bp->b_datap->db_type == M_COPYOUT);
1498 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1499 	}
1500 	ASSERT(count >= 0);
1501 
1502 	for (bp = bp->b_cont; bp && count;
1503 	    count -= n, bp = bp->b_cont, arg += n) {
1504 		n = MIN(count, bp->b_wptr - bp->b_rptr);
1505 		error = strcopyout(bp->b_rptr, arg, n, copymode);
1506 		if (error)
1507 			return (error);
1508 	}
1509 	ASSERT(count == 0);
1510 	return (0);
1511 }
1512 
1513 /*
1514  * Allocate a linkinfo entry given the write queue of the
1515  * bottom module of the top stream and the write queue of the
1516  * stream head of the bottom stream.
1517  */
1518 linkinfo_t *
1519 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1520 {
1521 	linkinfo_t *linkp;
1522 
1523 	linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1524 
1525 	linkp->li_lblk.l_qtop = qup;
1526 	linkp->li_lblk.l_qbot = qdown;
1527 	linkp->li_fpdown = fpdown;
1528 
1529 	mutex_enter(&strresources);
1530 	linkp->li_next = linkinfo_list;
1531 	linkp->li_prev = NULL;
1532 	if (linkp->li_next)
1533 		linkp->li_next->li_prev = linkp;
1534 	linkinfo_list = linkp;
1535 	linkp->li_lblk.l_index = ++lnk_id;
1536 	ASSERT(lnk_id != 0);	/* this should never wrap in practice */
1537 	mutex_exit(&strresources);
1538 
1539 	return (linkp);
1540 }
1541 
1542 /*
1543  * Free a linkinfo entry.
1544  */
1545 void
1546 lbfree(linkinfo_t *linkp)
1547 {
1548 	mutex_enter(&strresources);
1549 	if (linkp->li_next)
1550 		linkp->li_next->li_prev = linkp->li_prev;
1551 	if (linkp->li_prev)
1552 		linkp->li_prev->li_next = linkp->li_next;
1553 	else
1554 		linkinfo_list = linkp->li_next;
1555 	mutex_exit(&strresources);
1556 
1557 	kmem_cache_free(linkinfo_cache, linkp);
1558 }
1559 
1560 /*
1561  * Check for a potential linking cycle.
1562  * Return 1 if a link will result in a cycle,
1563  * and 0 otherwise.
1564  */
1565 int
1566 linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss)
1567 {
1568 	struct mux_node *np;
1569 	struct mux_edge *ep;
1570 	int i;
1571 	major_t lomaj;
1572 	major_t upmaj;
1573 	/*
1574 	 * if the lower stream is a pipe/FIFO, return, since link
1575 	 * cycles can not happen on pipes/FIFOs
1576 	 */
1577 	if (lostp->sd_vnode->v_type == VFIFO)
1578 		return (0);
1579 
1580 	for (i = 0; i < ss->ss_devcnt; i++) {
1581 		np = &ss->ss_mux_nodes[i];
1582 		MUX_CLEAR(np);
1583 	}
1584 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
1585 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
1586 	np = &ss->ss_mux_nodes[lomaj];
1587 	for (;;) {
1588 		if (!MUX_DIDVISIT(np)) {
1589 			if (np->mn_imaj == upmaj)
1590 				return (1);
1591 			if (np->mn_outp == NULL) {
1592 				MUX_VISIT(np);
1593 				if (np->mn_originp == NULL)
1594 					return (0);
1595 				np = np->mn_originp;
1596 				continue;
1597 			}
1598 			MUX_VISIT(np);
1599 			np->mn_startp = np->mn_outp;
1600 		} else {
1601 			if (np->mn_startp == NULL) {
1602 				if (np->mn_originp == NULL)
1603 					return (0);
1604 				else {
1605 					np = np->mn_originp;
1606 					continue;
1607 				}
1608 			}
1609 			/*
1610 			 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1611 			 * ignore the edge and move on. ep->me_nodep gets
1612 			 * set to NULL in mux_addedge() if it is a FIFO.
1613 			 *
1614 			 */
1615 			ep = np->mn_startp;
1616 			np->mn_startp = ep->me_nextp;
1617 			if (ep->me_nodep == NULL)
1618 				continue;
1619 			ep->me_nodep->mn_originp = np;
1620 			np = ep->me_nodep;
1621 		}
1622 	}
1623 }
1624 
1625 /*
1626  * Find linkinfo entry corresponding to the parameters.
1627  */
1628 linkinfo_t *
1629 findlinks(stdata_t *stp, int index, int type, str_stack_t *ss)
1630 {
1631 	linkinfo_t *linkp;
1632 	struct mux_edge *mep;
1633 	struct mux_node *mnp;
1634 	queue_t *qup;
1635 
1636 	mutex_enter(&strresources);
1637 	if ((type & LINKTYPEMASK) == LINKNORMAL) {
1638 		qup = getendq(stp->sd_wrq);
1639 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1640 			if ((qup == linkp->li_lblk.l_qtop) &&
1641 			    (!index || (index == linkp->li_lblk.l_index))) {
1642 				mutex_exit(&strresources);
1643 				return (linkp);
1644 			}
1645 		}
1646 	} else {
1647 		ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1648 		mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1649 		mep = mnp->mn_outp;
1650 		while (mep) {
1651 			if ((index == 0) || (index == mep->me_muxid))
1652 				break;
1653 			mep = mep->me_nextp;
1654 		}
1655 		if (!mep) {
1656 			mutex_exit(&strresources);
1657 			return (NULL);
1658 		}
1659 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1660 			if ((!linkp->li_lblk.l_qtop) &&
1661 			    (mep->me_muxid == linkp->li_lblk.l_index)) {
1662 				mutex_exit(&strresources);
1663 				return (linkp);
1664 			}
1665 		}
1666 	}
1667 	mutex_exit(&strresources);
1668 	return (NULL);
1669 }
1670 
1671 /*
1672  * Given a queue ptr, follow the chain of q_next pointers until you reach the
1673  * last queue on the chain and return it.
1674  */
1675 queue_t *
1676 getendq(queue_t *q)
1677 {
1678 	ASSERT(q != NULL);
1679 	while (_SAMESTR(q))
1680 		q = q->q_next;
1681 	return (q);
1682 }
1683 
1684 /*
1685  * wait for the syncq count to drop to zero.
1686  * sq could be either outer or inner.
1687  */
1688 
1689 static void
1690 wait_syncq(syncq_t *sq)
1691 {
1692 	uint16_t count;
1693 
1694 	mutex_enter(SQLOCK(sq));
1695 	count = sq->sq_count;
1696 	SQ_PUTLOCKS_ENTER(sq);
1697 	SUM_SQ_PUTCOUNTS(sq, count);
1698 	while (count != 0) {
1699 		sq->sq_flags |= SQ_WANTWAKEUP;
1700 		SQ_PUTLOCKS_EXIT(sq);
1701 		cv_wait(&sq->sq_wait, SQLOCK(sq));
1702 		count = sq->sq_count;
1703 		SQ_PUTLOCKS_ENTER(sq);
1704 		SUM_SQ_PUTCOUNTS(sq, count);
1705 	}
1706 	SQ_PUTLOCKS_EXIT(sq);
1707 	mutex_exit(SQLOCK(sq));
1708 }
1709 
1710 /*
1711  * Wait while there are any messages for the queue in its syncq.
1712  */
1713 static void
1714 wait_q_syncq(queue_t *q)
1715 {
1716 	if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1717 		syncq_t *sq = q->q_syncq;
1718 
1719 		mutex_enter(SQLOCK(sq));
1720 		while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1721 			sq->sq_flags |= SQ_WANTWAKEUP;
1722 			cv_wait(&sq->sq_wait, SQLOCK(sq));
1723 		}
1724 		mutex_exit(SQLOCK(sq));
1725 	}
1726 }
1727 
1728 
1729 int
1730 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1731     int lhlink)
1732 {
1733 	struct stdata *stp;
1734 	struct strioctl strioc;
1735 	struct linkinfo *linkp;
1736 	struct stdata *stpdown;
1737 	struct streamtab *str;
1738 	queue_t *passq;
1739 	syncq_t *passyncq;
1740 	queue_t *rq;
1741 	cdevsw_impl_t *dp;
1742 	uint32_t qflag;
1743 	uint32_t sqtype;
1744 	perdm_t *dmp;
1745 	int error = 0;
1746 	netstack_t *ns;
1747 	str_stack_t *ss;
1748 
1749 	stp = vp->v_stream;
1750 	TRACE_1(TR_FAC_STREAMS_FR,
1751 	    TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1752 	/*
1753 	 * Test for invalid upper stream
1754 	 */
1755 	if (stp->sd_flag & STRHUP) {
1756 		return (ENXIO);
1757 	}
1758 	if (vp->v_type == VFIFO) {
1759 		return (EINVAL);
1760 	}
1761 	if (stp->sd_strtab == NULL) {
1762 		return (EINVAL);
1763 	}
1764 	if (!stp->sd_strtab->st_muxwinit) {
1765 		return (EINVAL);
1766 	}
1767 	if (fpdown == NULL) {
1768 		return (EBADF);
1769 	}
1770 	ns = netstack_find_by_cred(crp);
1771 	ASSERT(ns != NULL);
1772 	ss = ns->netstack_str;
1773 	ASSERT(ss != NULL);
1774 
1775 	if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) {
1776 		netstack_rele(ss->ss_netstack);
1777 		return (EINVAL);
1778 	}
1779 	mutex_enter(&muxifier);
1780 	if (stp->sd_flag & STPLEX) {
1781 		mutex_exit(&muxifier);
1782 		netstack_rele(ss->ss_netstack);
1783 		return (ENXIO);
1784 	}
1785 
1786 	/*
1787 	 * Test for invalid lower stream.
1788 	 * The check for the v_type != VFIFO and having a major
1789 	 * number not >= devcnt is done to avoid problems with
1790 	 * adding mux_node entry past the end of mux_nodes[].
1791 	 * For FIFO's we don't add an entry so this isn't a
1792 	 * problem.
1793 	 */
1794 	if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1795 	    (stpdown == stp) || (stpdown->sd_flag &
1796 	    (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1797 	    ((stpdown->sd_vnode->v_type != VFIFO) &&
1798 	    (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) ||
1799 	    linkcycle(stp, stpdown, ss)) {
1800 		mutex_exit(&muxifier);
1801 		netstack_rele(ss->ss_netstack);
1802 		return (EINVAL);
1803 	}
1804 	TRACE_1(TR_FAC_STREAMS_FR,
1805 	    TR_STPDOWN, "stpdown:%p", stpdown);
1806 	rq = getendq(stp->sd_wrq);
1807 	if (cmd == I_PLINK)
1808 		rq = NULL;
1809 
1810 	linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1811 
1812 	strioc.ic_cmd = cmd;
1813 	strioc.ic_timout = INFTIM;
1814 	strioc.ic_len = sizeof (struct linkblk);
1815 	strioc.ic_dp = (char *)&linkp->li_lblk;
1816 
1817 	/*
1818 	 * STRPLUMB protects plumbing changes and should be set before
1819 	 * link_addpassthru()/link_rempassthru() are called, so it is set here
1820 	 * and cleared in the end of mlink when passthru queue is removed.
1821 	 * Setting of STRPLUMB prevents reopens of the stream while passthru
1822 	 * queue is in-place (it is not a proper module and doesn't have open
1823 	 * entry point).
1824 	 *
1825 	 * STPLEX prevents any threads from entering the stream from above. It
1826 	 * can't be set before the call to link_addpassthru() because putnext
1827 	 * from below may cause stream head I/O routines to be called and these
1828 	 * routines assert that STPLEX is not set. After link_addpassthru()
1829 	 * nothing may come from below since the pass queue syncq is blocked.
1830 	 * Note also that STPLEX should be cleared before the call to
1831 	 * link_remmpassthru() since when messages start flowing to the stream
1832 	 * head (e.g. because of message propagation from the pass queue) stream
1833 	 * head I/O routines may be called with STPLEX flag set.
1834 	 *
1835 	 * When STPLEX is set, nothing may come into the stream from above and
1836 	 * it is safe to do a setq which will change stream head. So, the
1837 	 * correct sequence of actions is:
1838 	 *
1839 	 * 1) Set STRPLUMB
1840 	 * 2) Call link_addpassthru()
1841 	 * 3) Set STPLEX
1842 	 * 4) Call setq and update the stream state
1843 	 * 5) Clear STPLEX
1844 	 * 6) Call link_rempassthru()
1845 	 * 7) Clear STRPLUMB
1846 	 *
1847 	 * The same sequence applies to munlink() code.
1848 	 */
1849 	mutex_enter(&stpdown->sd_lock);
1850 	stpdown->sd_flag |= STRPLUMB;
1851 	mutex_exit(&stpdown->sd_lock);
1852 	/*
1853 	 * Add passthru queue below lower mux. This will block
1854 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1855 	 */
1856 	passq = link_addpassthru(stpdown);
1857 
1858 	mutex_enter(&stpdown->sd_lock);
1859 	stpdown->sd_flag |= STPLEX;
1860 	mutex_exit(&stpdown->sd_lock);
1861 
1862 	rq = _RD(stpdown->sd_wrq);
1863 	/*
1864 	 * There may be messages in the streamhead's syncq due to messages
1865 	 * that arrived before link_addpassthru() was done. To avoid
1866 	 * background processing of the syncq happening simultaneous with
1867 	 * setq processing, we disable the streamhead syncq and wait until
1868 	 * existing background thread finishes working on it.
1869 	 */
1870 	wait_sq_svc(rq->q_syncq);
1871 	passyncq = passq->q_syncq;
1872 	if (!(passyncq->sq_flags & SQ_BLOCKED))
1873 		blocksq(passyncq, SQ_BLOCKED, 0);
1874 
1875 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1876 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1877 	rq->q_ptr = _WR(rq)->q_ptr = NULL;
1878 
1879 	/* setq might sleep in allocator - avoid holding locks. */
1880 	/* Note: we are holding muxifier here. */
1881 
1882 	str = stp->sd_strtab;
1883 	dp = &devimpl[getmajor(vp->v_rdev)];
1884 	ASSERT(dp->d_str == str);
1885 
1886 	qflag = dp->d_qflag;
1887 	sqtype = dp->d_sqtype;
1888 
1889 	/* create perdm_t if needed */
1890 	if (NEED_DM(dp->d_dmp, qflag))
1891 		dp->d_dmp = hold_dm(str, qflag, sqtype);
1892 
1893 	dmp = dp->d_dmp;
1894 
1895 	setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1896 	    B_TRUE);
1897 
1898 	/*
1899 	 * XXX Remove any "odd" messages from the queue.
1900 	 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1901 	 */
1902 	error = strdoioctl(stp, &strioc, FNATIVE,
1903 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1904 	if (error != 0) {
1905 		lbfree(linkp);
1906 
1907 		if (!(passyncq->sq_flags & SQ_BLOCKED))
1908 			blocksq(passyncq, SQ_BLOCKED, 0);
1909 		/*
1910 		 * Restore the stream head queue and then remove
1911 		 * the passq. Turn off STPLEX before we turn on
1912 		 * the stream by removing the passq.
1913 		 */
1914 		rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1915 		setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1916 		    B_TRUE);
1917 
1918 		mutex_enter(&stpdown->sd_lock);
1919 		stpdown->sd_flag &= ~STPLEX;
1920 		mutex_exit(&stpdown->sd_lock);
1921 
1922 		link_rempassthru(passq);
1923 
1924 		mutex_enter(&stpdown->sd_lock);
1925 		stpdown->sd_flag &= ~STRPLUMB;
1926 		/* Wakeup anyone waiting for STRPLUMB to clear. */
1927 		cv_broadcast(&stpdown->sd_monitor);
1928 		mutex_exit(&stpdown->sd_lock);
1929 
1930 		mutex_exit(&muxifier);
1931 		netstack_rele(ss->ss_netstack);
1932 		return (error);
1933 	}
1934 	mutex_enter(&fpdown->f_tlock);
1935 	fpdown->f_count++;
1936 	mutex_exit(&fpdown->f_tlock);
1937 
1938 	/*
1939 	 * if we've made it here the linkage is all set up so we should also
1940 	 * set up the layered driver linkages
1941 	 */
1942 
1943 	ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1944 	if (cmd == I_LINK) {
1945 		ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1946 	} else {
1947 		ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1948 	}
1949 
1950 	link_rempassthru(passq);
1951 
1952 	mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss);
1953 
1954 	/*
1955 	 * Mark the upper stream as having dependent links
1956 	 * so that strclose can clean it up.
1957 	 */
1958 	if (cmd == I_LINK) {
1959 		mutex_enter(&stp->sd_lock);
1960 		stp->sd_flag |= STRHASLINKS;
1961 		mutex_exit(&stp->sd_lock);
1962 	}
1963 	/*
1964 	 * Wake up any other processes that may have been
1965 	 * waiting on the lower stream. These will all
1966 	 * error out.
1967 	 */
1968 	mutex_enter(&stpdown->sd_lock);
1969 	/* The passthru module is removed so we may release STRPLUMB */
1970 	stpdown->sd_flag &= ~STRPLUMB;
1971 	cv_broadcast(&rq->q_wait);
1972 	cv_broadcast(&_WR(rq)->q_wait);
1973 	cv_broadcast(&stpdown->sd_monitor);
1974 	mutex_exit(&stpdown->sd_lock);
1975 	mutex_exit(&muxifier);
1976 	*rvalp = linkp->li_lblk.l_index;
1977 	netstack_rele(ss->ss_netstack);
1978 	return (0);
1979 }
1980 
1981 int
1982 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1983 {
1984 	int		ret;
1985 	struct file	*fpdown;
1986 
1987 	fpdown = getf(arg);
1988 	ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1989 	if (fpdown != NULL)
1990 		releasef(arg);
1991 	return (ret);
1992 }
1993 
1994 /*
1995  * Unlink a multiplexor link. Stp is the controlling stream for the
1996  * link, and linkp points to the link's entry in the linkinfo list.
1997  * The muxifier lock must be held on entry and is dropped on exit.
1998  *
1999  * NOTE : Currently it is assumed that mux would process all the messages
2000  * sitting on it's queue before ACKing the UNLINK. It is the responsibility
2001  * of the mux to handle all the messages that arrive before UNLINK.
2002  * If the mux has to send down messages on its lower stream before
2003  * ACKing I_UNLINK, then it *should* know to handle messages even
2004  * after the UNLINK is acked (actually it should be able to handle till we
2005  * re-block the read side of the pass queue here). If the mux does not
2006  * open up the lower stream, any messages that arrive during UNLINK
2007  * will be put in the stream head. In the case of lower stream opening
2008  * up, some messages might land in the stream head depending on when
2009  * the message arrived and when the read side of the pass queue was
2010  * re-blocked.
2011  */
2012 int
2013 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp,
2014     str_stack_t *ss)
2015 {
2016 	struct strioctl strioc;
2017 	struct stdata *stpdown;
2018 	queue_t *rq, *wrq;
2019 	queue_t	*passq;
2020 	syncq_t *passyncq;
2021 	int error = 0;
2022 	file_t *fpdown;
2023 
2024 	ASSERT(MUTEX_HELD(&muxifier));
2025 
2026 	stpdown = linkp->li_fpdown->f_vnode->v_stream;
2027 
2028 	/*
2029 	 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2030 	 */
2031 	mutex_enter(&stpdown->sd_lock);
2032 	stpdown->sd_flag |= STRPLUMB;
2033 	mutex_exit(&stpdown->sd_lock);
2034 
2035 	/*
2036 	 * Add passthru queue below lower mux. This will block
2037 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2038 	 */
2039 	passq = link_addpassthru(stpdown);
2040 
2041 	if ((flag & LINKTYPEMASK) == LINKNORMAL)
2042 		strioc.ic_cmd = I_UNLINK;
2043 	else
2044 		strioc.ic_cmd = I_PUNLINK;
2045 	strioc.ic_timout = INFTIM;
2046 	strioc.ic_len = sizeof (struct linkblk);
2047 	strioc.ic_dp = (char *)&linkp->li_lblk;
2048 
2049 	error = strdoioctl(stp, &strioc, FNATIVE,
2050 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2051 
2052 	/*
2053 	 * If there was an error and this is not called via strclose,
2054 	 * return to the user. Otherwise, pretend there was no error
2055 	 * and close the link.
2056 	 */
2057 	if (error) {
2058 		if (flag & LINKCLOSE) {
2059 			cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2060 			    "unlink ioctl, closing anyway (%d)\n", error);
2061 		} else {
2062 			link_rempassthru(passq);
2063 			mutex_enter(&stpdown->sd_lock);
2064 			stpdown->sd_flag &= ~STRPLUMB;
2065 			cv_broadcast(&stpdown->sd_monitor);
2066 			mutex_exit(&stpdown->sd_lock);
2067 			mutex_exit(&muxifier);
2068 			return (error);
2069 		}
2070 	}
2071 
2072 	mux_rmvedge(stp, linkp->li_lblk.l_index, ss);
2073 	fpdown = linkp->li_fpdown;
2074 	lbfree(linkp);
2075 
2076 	/*
2077 	 * We go ahead and drop muxifier here--it's a nasty global lock that
2078 	 * can slow others down. It's okay to since attempts to mlink() this
2079 	 * stream will be stopped because STPLEX is still set in the stdata
2080 	 * structure, and munlink() is stopped because mux_rmvedge() and
2081 	 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2082 	 * respectively.  Note that we defer the closef() of fpdown until
2083 	 * after we drop muxifier since strclose() can call munlinkall().
2084 	 */
2085 	mutex_exit(&muxifier);
2086 
2087 	wrq = stpdown->sd_wrq;
2088 	rq = _RD(wrq);
2089 
2090 	/*
2091 	 * Get rid of outstanding service procedure runs, before we make
2092 	 * it a stream head, since a stream head doesn't have any service
2093 	 * procedure.
2094 	 */
2095 	disable_svc(rq);
2096 	wait_svc(rq);
2097 
2098 	/*
2099 	 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2100 	 * is queued up to be finished. mux should take care that nothing is
2101 	 * send down to this queue. We should do it now as we're going to block
2102 	 * passyncq if it was unblocked.
2103 	 */
2104 	if (wrq->q_flag & QPERMOD) {
2105 		syncq_t	*sq = wrq->q_syncq;
2106 
2107 		mutex_enter(SQLOCK(sq));
2108 		while (wrq->q_sqflags & Q_SQQUEUED) {
2109 			sq->sq_flags |= SQ_WANTWAKEUP;
2110 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2111 		}
2112 		mutex_exit(SQLOCK(sq));
2113 	}
2114 	passyncq = passq->q_syncq;
2115 	if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2116 
2117 		syncq_t *sq, *outer;
2118 
2119 		/*
2120 		 * Messages could be flowing from underneath. We will
2121 		 * block the read side of the passq. This would be
2122 		 * sufficient for QPAIR and QPERQ muxes to ensure
2123 		 * that no data is flowing up into this queue
2124 		 * and hence no thread active in this instance of
2125 		 * lower mux. But for QPERMOD and QMTOUTPERIM there
2126 		 * could be messages on the inner and outer/inner
2127 		 * syncqs respectively. We will wait for them to drain.
2128 		 * Because passq is blocked messages end up in the syncq
2129 		 * And qfill_syncq could possibly end up setting QFULL
2130 		 * which will access the rq->q_flag. Hence, we have to
2131 		 * acquire the QLOCK in setq.
2132 		 *
2133 		 * XXX Messages can also flow from top into this
2134 		 * queue though the unlink is over (Ex. some instance
2135 		 * in putnext() called from top that has still not
2136 		 * accessed this queue. And also putq(lowerq) ?).
2137 		 * Solution : How about blocking the l_qtop queue ?
2138 		 * Do we really care about such pure D_MP muxes ?
2139 		 */
2140 
2141 		blocksq(passyncq, SQ_BLOCKED, 0);
2142 
2143 		sq = rq->q_syncq;
2144 		if ((outer = sq->sq_outer) != NULL) {
2145 
2146 			/*
2147 			 * We have to just wait for the outer sq_count
2148 			 * drop to zero. As this does not prevent new
2149 			 * messages to enter the outer perimeter, this
2150 			 * is subject to starvation.
2151 			 *
2152 			 * NOTE :Because of blocksq above, messages could
2153 			 * be in the inner syncq only because of some
2154 			 * thread holding the outer perimeter exclusively.
2155 			 * Hence it would be sufficient to wait for the
2156 			 * exclusive holder of the outer perimeter to drain
2157 			 * the inner and outer syncqs. But we will not depend
2158 			 * on this feature and hence check the inner syncqs
2159 			 * separately.
2160 			 */
2161 			wait_syncq(outer);
2162 		}
2163 
2164 
2165 		/*
2166 		 * There could be messages destined for
2167 		 * this queue. Let the exclusive holder
2168 		 * drain it.
2169 		 */
2170 
2171 		wait_syncq(sq);
2172 		ASSERT((rq->q_flag & QPERMOD) ||
2173 		    ((rq->q_syncq->sq_head == NULL) &&
2174 		    (_WR(rq)->q_syncq->sq_head == NULL)));
2175 	}
2176 
2177 	/*
2178 	 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2179 	 * case as we don't disable its syncq or remove it off the syncq
2180 	 * service list.
2181 	 */
2182 	if (rq->q_flag & QPERMOD) {
2183 		syncq_t	*sq = rq->q_syncq;
2184 
2185 		mutex_enter(SQLOCK(sq));
2186 		while (rq->q_sqflags & Q_SQQUEUED) {
2187 			sq->sq_flags |= SQ_WANTWAKEUP;
2188 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2189 		}
2190 		mutex_exit(SQLOCK(sq));
2191 	}
2192 
2193 	/*
2194 	 * flush_syncq changes states only when there is some messages to
2195 	 * free. ie when it returns non-zero value to return.
2196 	 */
2197 	ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2198 	ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2199 
2200 	/*
2201 	 * No body else should know about this queue now.
2202 	 * If the mux did not process the messages before
2203 	 * acking the I_UNLINK, free them now.
2204 	 */
2205 
2206 	flushq(rq, FLUSHALL);
2207 	flushq(_WR(rq), FLUSHALL);
2208 
2209 	/*
2210 	 * Convert the mux lower queue into a stream head queue.
2211 	 * Turn off STPLEX before we turn on the stream by removing the passq.
2212 	 */
2213 	rq->q_ptr = wrq->q_ptr = stpdown;
2214 	setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2215 
2216 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2217 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2218 
2219 	enable_svc(rq);
2220 
2221 	/*
2222 	 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2223 	 * needs to be set to prevent reopen() of the stream - such reopen may
2224 	 * try to call non-existent pass queue open routine and panic.
2225 	 */
2226 	mutex_enter(&stpdown->sd_lock);
2227 	stpdown->sd_flag &= ~STPLEX;
2228 	mutex_exit(&stpdown->sd_lock);
2229 
2230 	ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2231 	    ((flag & LINKTYPEMASK) == LINKPERSIST));
2232 
2233 	/* clean up the layered driver linkages */
2234 	if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2235 		ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2236 	} else {
2237 		ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2238 	}
2239 
2240 	link_rempassthru(passq);
2241 
2242 	/*
2243 	 * Now all plumbing changes are finished and STRPLUMB is no
2244 	 * longer needed.
2245 	 */
2246 	mutex_enter(&stpdown->sd_lock);
2247 	stpdown->sd_flag &= ~STRPLUMB;
2248 	cv_broadcast(&stpdown->sd_monitor);
2249 	mutex_exit(&stpdown->sd_lock);
2250 
2251 	(void) closef(fpdown);
2252 	return (0);
2253 }
2254 
2255 /*
2256  * Unlink all multiplexor links for which stp is the controlling stream.
2257  * Return 0, or a non-zero errno on failure.
2258  */
2259 int
2260 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss)
2261 {
2262 	linkinfo_t *linkp;
2263 	int error = 0;
2264 
2265 	mutex_enter(&muxifier);
2266 	while (linkp = findlinks(stp, 0, flag, ss)) {
2267 		/*
2268 		 * munlink() releases the muxifier lock.
2269 		 */
2270 		if (error = munlink(stp, linkp, flag, crp, rvalp, ss))
2271 			return (error);
2272 		mutex_enter(&muxifier);
2273 	}
2274 	mutex_exit(&muxifier);
2275 	return (0);
2276 }
2277 
2278 /*
2279  * A multiplexor link has been made. Add an
2280  * edge to the directed graph.
2281  */
2282 void
2283 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss)
2284 {
2285 	struct mux_node *np;
2286 	struct mux_edge *ep;
2287 	major_t upmaj;
2288 	major_t lomaj;
2289 
2290 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2291 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
2292 	np = &ss->ss_mux_nodes[upmaj];
2293 	if (np->mn_outp) {
2294 		ep = np->mn_outp;
2295 		while (ep->me_nextp)
2296 			ep = ep->me_nextp;
2297 		ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2298 		ep = ep->me_nextp;
2299 	} else {
2300 		np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2301 		ep = np->mn_outp;
2302 	}
2303 	ep->me_nextp = NULL;
2304 	ep->me_muxid = muxid;
2305 	/*
2306 	 * Save the dev_t for the purposes of str_stack_shutdown.
2307 	 * str_stack_shutdown assumes that the device allows reopen, since
2308 	 * this dev_t is the one after any cloning by xx_open().
2309 	 * Would prefer finding the dev_t from before any cloning,
2310 	 * but specfs doesn't retain that.
2311 	 */
2312 	ep->me_dev = upstp->sd_vnode->v_rdev;
2313 	if (lostp->sd_vnode->v_type == VFIFO)
2314 		ep->me_nodep = NULL;
2315 	else
2316 		ep->me_nodep = &ss->ss_mux_nodes[lomaj];
2317 }
2318 
2319 /*
2320  * A multiplexor link has been removed. Remove the
2321  * edge in the directed graph.
2322  */
2323 void
2324 mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss)
2325 {
2326 	struct mux_node *np;
2327 	struct mux_edge *ep;
2328 	struct mux_edge *pep = NULL;
2329 	major_t upmaj;
2330 
2331 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2332 	np = &ss->ss_mux_nodes[upmaj];
2333 	ASSERT(np->mn_outp != NULL);
2334 	ep = np->mn_outp;
2335 	while (ep) {
2336 		if (ep->me_muxid == muxid) {
2337 			if (pep)
2338 				pep->me_nextp = ep->me_nextp;
2339 			else
2340 				np->mn_outp = ep->me_nextp;
2341 			kmem_free(ep, sizeof (struct mux_edge));
2342 			return;
2343 		}
2344 		pep = ep;
2345 		ep = ep->me_nextp;
2346 	}
2347 	ASSERT(0);	/* should not reach here */
2348 }
2349 
2350 /*
2351  * Translate the device flags (from conf.h) to the corresponding
2352  * qflag and sq_flag (type) values.
2353  */
2354 int
2355 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2356 	uint32_t *sqtypep)
2357 {
2358 	uint32_t qflag = 0;
2359 	uint32_t sqtype = 0;
2360 
2361 	if (devflag & _D_OLD)
2362 		goto bad;
2363 
2364 	/* Inner perimeter presence and scope */
2365 	switch (devflag & D_MTINNER_MASK) {
2366 	case D_MP:
2367 		qflag |= QMTSAFE;
2368 		sqtype |= SQ_CI;
2369 		break;
2370 	case D_MTPERQ|D_MP:
2371 		qflag |= QPERQ;
2372 		break;
2373 	case D_MTQPAIR|D_MP:
2374 		qflag |= QPAIR;
2375 		break;
2376 	case D_MTPERMOD|D_MP:
2377 		qflag |= QPERMOD;
2378 		break;
2379 	default:
2380 		goto bad;
2381 	}
2382 
2383 	/* Outer perimeter */
2384 	if (devflag & D_MTOUTPERIM) {
2385 		switch (devflag & D_MTINNER_MASK) {
2386 		case D_MP:
2387 		case D_MTPERQ|D_MP:
2388 		case D_MTQPAIR|D_MP:
2389 			break;
2390 		default:
2391 			goto bad;
2392 		}
2393 		qflag |= QMTOUTPERIM;
2394 	}
2395 
2396 	/* Inner perimeter modifiers */
2397 	if (devflag & D_MTINNER_MOD) {
2398 		switch (devflag & D_MTINNER_MASK) {
2399 		case D_MP:
2400 			goto bad;
2401 		default:
2402 			break;
2403 		}
2404 		if (devflag & D_MTPUTSHARED)
2405 			sqtype |= SQ_CIPUT;
2406 		if (devflag & _D_MTOCSHARED) {
2407 			/*
2408 			 * The code in putnext assumes that it has the
2409 			 * highest concurrency by not checking sq_count.
2410 			 * Thus _D_MTOCSHARED can only be supported when
2411 			 * D_MTPUTSHARED is set.
2412 			 */
2413 			if (!(devflag & D_MTPUTSHARED))
2414 				goto bad;
2415 			sqtype |= SQ_CIOC;
2416 		}
2417 		if (devflag & _D_MTCBSHARED) {
2418 			/*
2419 			 * The code in putnext assumes that it has the
2420 			 * highest concurrency by not checking sq_count.
2421 			 * Thus _D_MTCBSHARED can only be supported when
2422 			 * D_MTPUTSHARED is set.
2423 			 */
2424 			if (!(devflag & D_MTPUTSHARED))
2425 				goto bad;
2426 			sqtype |= SQ_CICB;
2427 		}
2428 		if (devflag & _D_MTSVCSHARED) {
2429 			/*
2430 			 * The code in putnext assumes that it has the
2431 			 * highest concurrency by not checking sq_count.
2432 			 * Thus _D_MTSVCSHARED can only be supported when
2433 			 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2434 			 * supported only for QPERMOD.
2435 			 */
2436 			if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2437 				goto bad;
2438 			sqtype |= SQ_CISVC;
2439 		}
2440 	}
2441 
2442 	/* Default outer perimeter concurrency */
2443 	sqtype |= SQ_CO;
2444 
2445 	/* Outer perimeter modifiers */
2446 	if (devflag & D_MTOCEXCL) {
2447 		if (!(devflag & D_MTOUTPERIM)) {
2448 			/* No outer perimeter */
2449 			goto bad;
2450 		}
2451 		sqtype &= ~SQ_COOC;
2452 	}
2453 
2454 	/* Synchronous Streams extended qinit structure */
2455 	if (devflag & D_SYNCSTR)
2456 		qflag |= QSYNCSTR;
2457 
2458 	/*
2459 	 * Private flag used by a transport module to indicate
2460 	 * to sockfs that it supports direct-access mode without
2461 	 * having to go through STREAMS.
2462 	 */
2463 	if (devflag & _D_DIRECT) {
2464 		/* Reject unless the module is fully-MT (no perimeter) */
2465 		if ((qflag & QMT_TYPEMASK) != QMTSAFE)
2466 			goto bad;
2467 		qflag |= _QDIRECT;
2468 	}
2469 
2470 	*qflagp = qflag;
2471 	*sqtypep = sqtype;
2472 	return (0);
2473 
2474 bad:
2475 	cmn_err(CE_WARN,
2476 	    "stropen: bad MT flags (0x%x) in driver '%s'",
2477 	    (int)(qflag & D_MTSAFETY_MASK),
2478 	    stp->st_rdinit->qi_minfo->mi_idname);
2479 
2480 	return (EINVAL);
2481 }
2482 
2483 /*
2484  * Set the interface values for a pair of queues (qinit structure,
2485  * packet sizes, water marks).
2486  * setq assumes that the caller does not have a claim (entersq or claimq)
2487  * on the queue.
2488  */
2489 void
2490 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2491     perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2492 {
2493 	queue_t *wq;
2494 	syncq_t	*sq, *outer;
2495 
2496 	ASSERT(rq->q_flag & QREADR);
2497 	ASSERT((qflag & QMT_TYPEMASK) != 0);
2498 	IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2499 
2500 	wq = _WR(rq);
2501 	rq->q_qinfo = rinit;
2502 	rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2503 	rq->q_lowat = rinit->qi_minfo->mi_lowat;
2504 	rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2505 	rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2506 	wq->q_qinfo = winit;
2507 	wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2508 	wq->q_lowat = winit->qi_minfo->mi_lowat;
2509 	wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2510 	wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2511 
2512 	/* Remove old syncqs */
2513 	sq = rq->q_syncq;
2514 	outer = sq->sq_outer;
2515 	if (outer != NULL) {
2516 		ASSERT(wq->q_syncq->sq_outer == outer);
2517 		outer_remove(outer, rq->q_syncq);
2518 		if (wq->q_syncq != rq->q_syncq)
2519 			outer_remove(outer, wq->q_syncq);
2520 	}
2521 	ASSERT(sq->sq_outer == NULL);
2522 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2523 
2524 	if (sq != SQ(rq)) {
2525 		if (!(rq->q_flag & QPERMOD))
2526 			free_syncq(sq);
2527 		if (wq->q_syncq == rq->q_syncq)
2528 			wq->q_syncq = NULL;
2529 		rq->q_syncq = NULL;
2530 	}
2531 	if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2532 	    wq->q_syncq != SQ(rq)) {
2533 		free_syncq(wq->q_syncq);
2534 		wq->q_syncq = NULL;
2535 	}
2536 	ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2537 	    rq->q_syncq->sq_tail == NULL));
2538 	ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2539 	    wq->q_syncq->sq_tail == NULL));
2540 
2541 	if (!(rq->q_flag & QPERMOD) &&
2542 	    rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2543 		ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2544 		SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2545 		    rq->q_syncq->sq_nciputctrl, 0);
2546 		ASSERT(ciputctrl_cache != NULL);
2547 		kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2548 		rq->q_syncq->sq_ciputctrl = NULL;
2549 		rq->q_syncq->sq_nciputctrl = 0;
2550 	}
2551 
2552 	if (!(wq->q_flag & QPERMOD) &&
2553 	    wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2554 		ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2555 		SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2556 		    wq->q_syncq->sq_nciputctrl, 0);
2557 		ASSERT(ciputctrl_cache != NULL);
2558 		kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2559 		wq->q_syncq->sq_ciputctrl = NULL;
2560 		wq->q_syncq->sq_nciputctrl = 0;
2561 	}
2562 
2563 	sq = SQ(rq);
2564 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2565 	ASSERT(sq->sq_outer == NULL);
2566 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2567 
2568 	/*
2569 	 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2570 	 * bits in sq_flag based on the sqtype.
2571 	 */
2572 	ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2573 
2574 	rq->q_syncq = wq->q_syncq = sq;
2575 	sq->sq_type = sqtype;
2576 	sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2577 
2578 	/*
2579 	 *  We are making sq_svcflags zero,
2580 	 *  resetting SQ_DISABLED in case it was set by
2581 	 *  wait_svc() in the munlink path.
2582 	 *
2583 	 */
2584 	ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2585 	sq->sq_svcflags = 0;
2586 
2587 	/*
2588 	 * We need to acquire the lock here for the mlink and munlink case,
2589 	 * where canputnext, backenable, etc can access the q_flag.
2590 	 */
2591 	if (lock_needed) {
2592 		mutex_enter(QLOCK(rq));
2593 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2594 		mutex_exit(QLOCK(rq));
2595 		mutex_enter(QLOCK(wq));
2596 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2597 		mutex_exit(QLOCK(wq));
2598 	} else {
2599 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2600 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2601 	}
2602 
2603 	if (qflag & QPERQ) {
2604 		/* Allocate a separate syncq for the write side */
2605 		sq = new_syncq();
2606 		sq->sq_type = rq->q_syncq->sq_type;
2607 		sq->sq_flags = rq->q_syncq->sq_flags;
2608 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2609 		    sq->sq_oprev == NULL);
2610 		wq->q_syncq = sq;
2611 	}
2612 	if (qflag & QPERMOD) {
2613 		sq = dmp->dm_sq;
2614 
2615 		/*
2616 		 * Assert that we do have an inner perimeter syncq and that it
2617 		 * does not have an outer perimeter associated with it.
2618 		 */
2619 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2620 		    sq->sq_oprev == NULL);
2621 		rq->q_syncq = wq->q_syncq = sq;
2622 	}
2623 	if (qflag & QMTOUTPERIM) {
2624 		outer = dmp->dm_sq;
2625 
2626 		ASSERT(outer->sq_outer == NULL);
2627 		outer_insert(outer, rq->q_syncq);
2628 		if (wq->q_syncq != rq->q_syncq)
2629 			outer_insert(outer, wq->q_syncq);
2630 	}
2631 	ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2632 	    (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2633 	ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2634 	    (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2635 	ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2636 
2637 	/*
2638 	 * Initialize struio() types.
2639 	 */
2640 	rq->q_struiot =
2641 	    (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2642 	wq->q_struiot =
2643 	    (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2644 }
2645 
2646 perdm_t *
2647 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2648 {
2649 	syncq_t	*sq;
2650 	perdm_t	**pp;
2651 	perdm_t	*p;
2652 	perdm_t	*dmp;
2653 
2654 	ASSERT(str != NULL);
2655 	ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2656 
2657 	rw_enter(&perdm_rwlock, RW_READER);
2658 	for (p = perdm_list; p != NULL; p = p->dm_next) {
2659 		if (p->dm_str == str) {	/* found one */
2660 			atomic_add_32(&(p->dm_ref), 1);
2661 			rw_exit(&perdm_rwlock);
2662 			return (p);
2663 		}
2664 	}
2665 	rw_exit(&perdm_rwlock);
2666 
2667 	sq = new_syncq();
2668 	if (qflag & QPERMOD) {
2669 		sq->sq_type = sqtype | SQ_PERMOD;
2670 		sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2671 	} else {
2672 		ASSERT(qflag & QMTOUTPERIM);
2673 		sq->sq_onext = sq->sq_oprev = sq;
2674 	}
2675 
2676 	dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2677 	dmp->dm_sq = sq;
2678 	dmp->dm_str = str;
2679 	dmp->dm_ref = 1;
2680 	dmp->dm_next = NULL;
2681 
2682 	rw_enter(&perdm_rwlock, RW_WRITER);
2683 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2684 		if (p->dm_str == str) {	/* already present */
2685 			p->dm_ref++;
2686 			rw_exit(&perdm_rwlock);
2687 			free_syncq(sq);
2688 			kmem_free(dmp, sizeof (perdm_t));
2689 			return (p);
2690 		}
2691 	}
2692 
2693 	*pp = dmp;
2694 	rw_exit(&perdm_rwlock);
2695 	return (dmp);
2696 }
2697 
2698 void
2699 rele_dm(perdm_t *dmp)
2700 {
2701 	perdm_t **pp;
2702 	perdm_t *p;
2703 
2704 	rw_enter(&perdm_rwlock, RW_WRITER);
2705 	ASSERT(dmp->dm_ref > 0);
2706 
2707 	if (--dmp->dm_ref > 0) {
2708 		rw_exit(&perdm_rwlock);
2709 		return;
2710 	}
2711 
2712 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2713 		if (p == dmp)
2714 			break;
2715 	ASSERT(p == dmp);
2716 	*pp = p->dm_next;
2717 	rw_exit(&perdm_rwlock);
2718 
2719 	/*
2720 	 * Wait for any background processing that relies on the
2721 	 * syncq to complete before it is freed.
2722 	 */
2723 	wait_sq_svc(p->dm_sq);
2724 	free_syncq(p->dm_sq);
2725 	kmem_free(p, sizeof (perdm_t));
2726 }
2727 
2728 /*
2729  * Make a protocol message given control and data buffers.
2730  * n.b., this can block; be careful of what locks you hold when calling it.
2731  *
2732  * If sd_maxblk is less than *iosize this routine can fail part way through
2733  * (due to an allocation failure). In this case on return *iosize will contain
2734  * the amount that was consumed. Otherwise *iosize will not be modified
2735  * i.e. it will contain the amount that was consumed.
2736  */
2737 int
2738 strmakemsg(
2739 	struct strbuf *mctl,
2740 	ssize_t *iosize,
2741 	struct uio *uiop,
2742 	stdata_t *stp,
2743 	int32_t flag,
2744 	mblk_t **mpp)
2745 {
2746 	mblk_t *mpctl = NULL;
2747 	mblk_t *mpdata = NULL;
2748 	int error;
2749 
2750 	ASSERT(uiop != NULL);
2751 
2752 	*mpp = NULL;
2753 	/* Create control part, if any */
2754 	if ((mctl != NULL) && (mctl->len >= 0)) {
2755 		error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2756 		if (error)
2757 			return (error);
2758 	}
2759 	/* Create data part, if any */
2760 	if (*iosize >= 0) {
2761 		error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2762 		if (error) {
2763 			freemsg(mpctl);
2764 			return (error);
2765 		}
2766 	}
2767 	if (mpctl != NULL) {
2768 		if (mpdata != NULL)
2769 			linkb(mpctl, mpdata);
2770 		*mpp = mpctl;
2771 	} else {
2772 		*mpp = mpdata;
2773 	}
2774 	return (0);
2775 }
2776 
2777 /*
2778  * Make the control part of a protocol message given a control buffer.
2779  * n.b., this can block; be careful of what locks you hold when calling it.
2780  */
2781 int
2782 strmakectl(
2783 	struct strbuf *mctl,
2784 	int32_t flag,
2785 	int32_t fflag,
2786 	mblk_t **mpp)
2787 {
2788 	mblk_t *bp = NULL;
2789 	unsigned char msgtype;
2790 	int error = 0;
2791 	cred_t *cr = CRED();
2792 
2793 	/* We do not support interrupt threads using the stream head to send */
2794 	ASSERT(cr != NULL);
2795 
2796 	*mpp = NULL;
2797 	/*
2798 	 * Create control part of message, if any.
2799 	 */
2800 	if ((mctl != NULL) && (mctl->len >= 0)) {
2801 		caddr_t base;
2802 		int ctlcount;
2803 		int allocsz;
2804 
2805 		if (flag & RS_HIPRI)
2806 			msgtype = M_PCPROTO;
2807 		else
2808 			msgtype = M_PROTO;
2809 
2810 		ctlcount = mctl->len;
2811 		base = mctl->buf;
2812 
2813 		/*
2814 		 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2815 		 * blocks by increasing the size to something more usable.
2816 		 */
2817 		allocsz = MAX(ctlcount, 64);
2818 
2819 		/*
2820 		 * Range checking has already been done; simply try
2821 		 * to allocate a message block for the ctl part.
2822 		 */
2823 		while ((bp = allocb_cred(allocsz, cr,
2824 		    curproc->p_pid)) == NULL) {
2825 			if (fflag & (FNDELAY|FNONBLOCK))
2826 				return (EAGAIN);
2827 			if (error = strwaitbuf(allocsz, BPRI_MED))
2828 				return (error);
2829 		}
2830 
2831 		bp->b_datap->db_type = msgtype;
2832 		if (copyin(base, bp->b_wptr, ctlcount)) {
2833 			freeb(bp);
2834 			return (EFAULT);
2835 		}
2836 		bp->b_wptr += ctlcount;
2837 	}
2838 	*mpp = bp;
2839 	return (0);
2840 }
2841 
2842 /*
2843  * Make a protocol message given data buffers.
2844  * n.b., this can block; be careful of what locks you hold when calling it.
2845  *
2846  * If sd_maxblk is less than *iosize this routine can fail part way through
2847  * (due to an allocation failure). In this case on return *iosize will contain
2848  * the amount that was consumed. Otherwise *iosize will not be modified
2849  * i.e. it will contain the amount that was consumed.
2850  */
2851 int
2852 strmakedata(
2853 	ssize_t   *iosize,
2854 	struct uio *uiop,
2855 	stdata_t *stp,
2856 	int32_t flag,
2857 	mblk_t **mpp)
2858 {
2859 	mblk_t *mp = NULL;
2860 	mblk_t *bp;
2861 	int wroff = (int)stp->sd_wroff;
2862 	int tail_len = (int)stp->sd_tail;
2863 	int extra = wroff + tail_len;
2864 	int error = 0;
2865 	ssize_t maxblk;
2866 	ssize_t count = *iosize;
2867 	cred_t *cr;
2868 
2869 	*mpp = NULL;
2870 	if (count < 0)
2871 		return (0);
2872 
2873 	/* We do not support interrupt threads using the stream head to send */
2874 	cr = CRED();
2875 	ASSERT(cr != NULL);
2876 
2877 	maxblk = stp->sd_maxblk;
2878 	if (maxblk == INFPSZ)
2879 		maxblk = count;
2880 
2881 	/*
2882 	 * Create data part of message, if any.
2883 	 */
2884 	do {
2885 		ssize_t size;
2886 		dblk_t  *dp;
2887 
2888 		ASSERT(uiop);
2889 
2890 		size = MIN(count, maxblk);
2891 
2892 		while ((bp = allocb_cred(size + extra, cr,
2893 		    curproc->p_pid)) == NULL) {
2894 			error = EAGAIN;
2895 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2896 			    (error = strwaitbuf(size + extra, BPRI_MED)) != 0) {
2897 				if (count == *iosize) {
2898 					freemsg(mp);
2899 					return (error);
2900 				} else {
2901 					*iosize -= count;
2902 					*mpp = mp;
2903 					return (0);
2904 				}
2905 			}
2906 		}
2907 		dp = bp->b_datap;
2908 		dp->db_cpid = curproc->p_pid;
2909 		ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2910 		bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2911 
2912 		if (flag & STRUIO_POSTPONE) {
2913 			/*
2914 			 * Setup the stream uio portion of the
2915 			 * dblk for subsequent use by struioget().
2916 			 */
2917 			dp->db_struioflag = STRUIO_SPEC;
2918 			dp->db_cksumstart = 0;
2919 			dp->db_cksumstuff = 0;
2920 			dp->db_cksumend = size;
2921 			*(long long *)dp->db_struioun.data = 0ll;
2922 			bp->b_wptr += size;
2923 		} else {
2924 			if (stp->sd_copyflag & STRCOPYCACHED)
2925 				uiop->uio_extflg |= UIO_COPY_CACHED;
2926 
2927 			if (size != 0) {
2928 				error = uiomove(bp->b_wptr, size, UIO_WRITE,
2929 				    uiop);
2930 				if (error != 0) {
2931 					freeb(bp);
2932 					freemsg(mp);
2933 					return (error);
2934 				}
2935 			}
2936 			bp->b_wptr += size;
2937 
2938 			if (stp->sd_wputdatafunc != NULL) {
2939 				mblk_t *newbp;
2940 
2941 				newbp = (stp->sd_wputdatafunc)(stp->sd_vnode,
2942 				    bp, NULL, NULL, NULL, NULL);
2943 				if (newbp == NULL) {
2944 					freeb(bp);
2945 					freemsg(mp);
2946 					return (ECOMM);
2947 				}
2948 				bp = newbp;
2949 			}
2950 		}
2951 
2952 		count -= size;
2953 
2954 		if (mp == NULL)
2955 			mp = bp;
2956 		else
2957 			linkb(mp, bp);
2958 	} while (count > 0);
2959 
2960 	*mpp = mp;
2961 	return (0);
2962 }
2963 
2964 /*
2965  * Wait for a buffer to become available. Return non-zero errno
2966  * if not able to wait, 0 if buffer is probably there.
2967  */
2968 int
2969 strwaitbuf(size_t size, int pri)
2970 {
2971 	bufcall_id_t id;
2972 
2973 	mutex_enter(&bcall_monitor);
2974 	if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2975 	    &ttoproc(curthread)->p_flag_cv)) == 0) {
2976 		mutex_exit(&bcall_monitor);
2977 		return (ENOSR);
2978 	}
2979 	if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2980 		unbufcall(id);
2981 		mutex_exit(&bcall_monitor);
2982 		return (EINTR);
2983 	}
2984 	unbufcall(id);
2985 	mutex_exit(&bcall_monitor);
2986 	return (0);
2987 }
2988 
2989 /*
2990  * This function waits for a read or write event to happen on a stream.
2991  * fmode can specify FNDELAY and/or FNONBLOCK.
2992  * The timeout is in ms with -1 meaning infinite.
2993  * The flag values work as follows:
2994  *	READWAIT	Check for read side errors, send M_READ
2995  *	GETWAIT		Check for read side errors, no M_READ
2996  *	WRITEWAIT	Check for write side errors.
2997  *	NOINTR		Do not return error if nonblocking or timeout.
2998  * 	STR_NOERROR	Ignore all errors except STPLEX.
2999  *	STR_NOSIG	Ignore/hold signals during the duration of the call.
3000  *	STR_PEEK	Pass through the strgeterr().
3001  */
3002 int
3003 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
3004     int *done)
3005 {
3006 	int slpflg, errs;
3007 	int error;
3008 	kcondvar_t *sleepon;
3009 	mblk_t *mp;
3010 	ssize_t *rd_count;
3011 	clock_t rval;
3012 
3013 	ASSERT(MUTEX_HELD(&stp->sd_lock));
3014 	if ((flag & READWAIT) || (flag & GETWAIT)) {
3015 		slpflg = RSLEEP;
3016 		sleepon = &_RD(stp->sd_wrq)->q_wait;
3017 		errs = STRDERR|STPLEX;
3018 	} else {
3019 		slpflg = WSLEEP;
3020 		sleepon = &stp->sd_wrq->q_wait;
3021 		errs = STWRERR|STRHUP|STPLEX;
3022 	}
3023 	if (flag & STR_NOERROR)
3024 		errs = STPLEX;
3025 
3026 	if (stp->sd_wakeq & slpflg) {
3027 		/*
3028 		 * A strwakeq() is pending, no need to sleep.
3029 		 */
3030 		stp->sd_wakeq &= ~slpflg;
3031 		*done = 0;
3032 		return (0);
3033 	}
3034 
3035 	if (stp->sd_flag & errs) {
3036 		/*
3037 		 * Check for errors before going to sleep since the
3038 		 * caller might not have checked this while holding
3039 		 * sd_lock.
3040 		 */
3041 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3042 		if (error != 0) {
3043 			*done = 1;
3044 			return (error);
3045 		}
3046 	}
3047 
3048 	/*
3049 	 * If any module downstream has requested read notification
3050 	 * by setting SNDMREAD flag using M_SETOPTS, send a message
3051 	 * down stream.
3052 	 */
3053 	if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3054 		mutex_exit(&stp->sd_lock);
3055 		if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3056 		    (flag & STR_NOSIG), &error))) {
3057 			mutex_enter(&stp->sd_lock);
3058 			*done = 1;
3059 			return (error);
3060 		}
3061 		mp->b_datap->db_type = M_READ;
3062 		rd_count = (ssize_t *)mp->b_wptr;
3063 		*rd_count = count;
3064 		mp->b_wptr += sizeof (ssize_t);
3065 		/*
3066 		 * Send the number of bytes requested by the
3067 		 * read as the argument to M_READ.
3068 		 */
3069 		stream_willservice(stp);
3070 		putnext(stp->sd_wrq, mp);
3071 		stream_runservice(stp);
3072 		mutex_enter(&stp->sd_lock);
3073 
3074 		/*
3075 		 * If any data arrived due to inline processing
3076 		 * of putnext(), don't sleep.
3077 		 */
3078 		if (_RD(stp->sd_wrq)->q_first != NULL) {
3079 			*done = 0;
3080 			return (0);
3081 		}
3082 	}
3083 
3084 	if (fmode & (FNDELAY|FNONBLOCK)) {
3085 		if (!(flag & NOINTR))
3086 			error = EAGAIN;
3087 		else
3088 			error = 0;
3089 		*done = 1;
3090 		return (error);
3091 	}
3092 
3093 	stp->sd_flag |= slpflg;
3094 	TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3095 	    "strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3096 	    stp, flag, count, fmode, done);
3097 
3098 	rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3099 	if (rval > 0) {
3100 		/* EMPTY */
3101 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3102 		    "strwaitq awakes(2):%X, %X, %X, %X, %X",
3103 		    stp, flag, count, fmode, done);
3104 	} else if (rval == 0) {
3105 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3106 		    "strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3107 		    stp, flag, count, fmode, done);
3108 		stp->sd_flag &= ~slpflg;
3109 		cv_broadcast(sleepon);
3110 		if (!(flag & NOINTR))
3111 			error = EINTR;
3112 		else
3113 			error = 0;
3114 		*done = 1;
3115 		return (error);
3116 	} else {
3117 		/* timeout */
3118 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3119 		    "strwaitq timeout:%p, %X, %lX, %X, %p",
3120 		    stp, flag, count, fmode, done);
3121 		*done = 1;
3122 		if (!(flag & NOINTR))
3123 			return (ETIME);
3124 		else
3125 			return (0);
3126 	}
3127 	/*
3128 	 * If the caller implements delayed errors (i.e. queued after data)
3129 	 * we can not check for errors here since data as well as an
3130 	 * error might have arrived at the stream head. We return to
3131 	 * have the caller check the read queue before checking for errors.
3132 	 */
3133 	if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3134 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3135 		if (error != 0) {
3136 			*done = 1;
3137 			return (error);
3138 		}
3139 	}
3140 	*done = 0;
3141 	return (0);
3142 }
3143 
3144 /*
3145  * Perform job control discipline access checks.
3146  * Return 0 for success and the errno for failure.
3147  */
3148 
3149 #define	cantsend(p, t, sig) \
3150 	(sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3151 
3152 int
3153 straccess(struct stdata *stp, enum jcaccess mode)
3154 {
3155 	extern kcondvar_t lbolt_cv;	/* XXX: should be in a header file */
3156 	kthread_t *t = curthread;
3157 	proc_t *p = ttoproc(t);
3158 	sess_t *sp;
3159 
3160 	ASSERT(mutex_owned(&stp->sd_lock));
3161 
3162 	if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3163 		return (0);
3164 
3165 	mutex_enter(&p->p_lock);		/* protects p_pgidp */
3166 
3167 	for (;;) {
3168 		mutex_enter(&p->p_splock);	/* protects p->p_sessp */
3169 		sp = p->p_sessp;
3170 		mutex_enter(&sp->s_lock);	/* protects sp->* */
3171 
3172 		/*
3173 		 * If this is not the calling process's controlling terminal
3174 		 * or if the calling process is already in the foreground
3175 		 * then allow access.
3176 		 */
3177 		if (sp->s_dev != stp->sd_vnode->v_rdev ||
3178 		    p->p_pgidp == stp->sd_pgidp) {
3179 			mutex_exit(&sp->s_lock);
3180 			mutex_exit(&p->p_splock);
3181 			mutex_exit(&p->p_lock);
3182 			return (0);
3183 		}
3184 
3185 		/*
3186 		 * Check to see if controlling terminal has been deallocated.
3187 		 */
3188 		if (sp->s_vp == NULL) {
3189 			if (!cantsend(p, t, SIGHUP))
3190 				sigtoproc(p, t, SIGHUP);
3191 			mutex_exit(&sp->s_lock);
3192 			mutex_exit(&p->p_splock);
3193 			mutex_exit(&p->p_lock);
3194 			return (EIO);
3195 		}
3196 
3197 		mutex_exit(&sp->s_lock);
3198 		mutex_exit(&p->p_splock);
3199 
3200 		if (mode == JCGETP) {
3201 			mutex_exit(&p->p_lock);
3202 			return (0);
3203 		}
3204 
3205 		if (mode == JCREAD) {
3206 			if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3207 				mutex_exit(&p->p_lock);
3208 				return (EIO);
3209 			}
3210 			mutex_exit(&p->p_lock);
3211 			mutex_exit(&stp->sd_lock);
3212 			pgsignal(p->p_pgidp, SIGTTIN);
3213 			mutex_enter(&stp->sd_lock);
3214 			mutex_enter(&p->p_lock);
3215 		} else {  /* mode == JCWRITE or JCSETP */
3216 			if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3217 			    cantsend(p, t, SIGTTOU)) {
3218 				mutex_exit(&p->p_lock);
3219 				return (0);
3220 			}
3221 			if (p->p_detached) {
3222 				mutex_exit(&p->p_lock);
3223 				return (EIO);
3224 			}
3225 			mutex_exit(&p->p_lock);
3226 			mutex_exit(&stp->sd_lock);
3227 			pgsignal(p->p_pgidp, SIGTTOU);
3228 			mutex_enter(&stp->sd_lock);
3229 			mutex_enter(&p->p_lock);
3230 		}
3231 
3232 		/*
3233 		 * We call cv_wait_sig_swap() to cause the appropriate
3234 		 * action for the jobcontrol signal to take place.
3235 		 * If the signal is being caught, we will take the
3236 		 * EINTR error return.  Otherwise, the default action
3237 		 * of causing the process to stop will take place.
3238 		 * In this case, we rely on the periodic cv_broadcast() on
3239 		 * &lbolt_cv to wake us up to loop around and test again.
3240 		 * We can't get here if the signal is ignored or
3241 		 * if the current thread is blocking the signal.
3242 		 */
3243 		mutex_exit(&stp->sd_lock);
3244 		if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3245 			mutex_exit(&p->p_lock);
3246 			mutex_enter(&stp->sd_lock);
3247 			return (EINTR);
3248 		}
3249 		mutex_exit(&p->p_lock);
3250 		mutex_enter(&stp->sd_lock);
3251 		mutex_enter(&p->p_lock);
3252 	}
3253 }
3254 
3255 /*
3256  * Return size of message of block type (bp->b_datap->db_type)
3257  */
3258 size_t
3259 xmsgsize(mblk_t *bp)
3260 {
3261 	unsigned char type;
3262 	size_t count = 0;
3263 
3264 	type = bp->b_datap->db_type;
3265 
3266 	for (; bp; bp = bp->b_cont) {
3267 		if (type != bp->b_datap->db_type)
3268 			break;
3269 		ASSERT(bp->b_wptr >= bp->b_rptr);
3270 		count += bp->b_wptr - bp->b_rptr;
3271 	}
3272 	return (count);
3273 }
3274 
3275 /*
3276  * Allocate a stream head.
3277  */
3278 struct stdata *
3279 shalloc(queue_t *qp)
3280 {
3281 	stdata_t *stp;
3282 
3283 	stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3284 
3285 	stp->sd_wrq = _WR(qp);
3286 	stp->sd_strtab = NULL;
3287 	stp->sd_iocid = 0;
3288 	stp->sd_mate = NULL;
3289 	stp->sd_freezer = NULL;
3290 	stp->sd_refcnt = 0;
3291 	stp->sd_wakeq = 0;
3292 	stp->sd_anchor = 0;
3293 	stp->sd_struiowrq = NULL;
3294 	stp->sd_struiordq = NULL;
3295 	stp->sd_struiodnak = 0;
3296 	stp->sd_struionak = NULL;
3297 	stp->sd_t_audit_data = NULL;
3298 	stp->sd_rput_opt = 0;
3299 	stp->sd_wput_opt = 0;
3300 	stp->sd_read_opt = 0;
3301 	stp->sd_rprotofunc = strrput_proto;
3302 	stp->sd_rmiscfunc = strrput_misc;
3303 	stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3304 	stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL;
3305 	stp->sd_ciputctrl = NULL;
3306 	stp->sd_nciputctrl = 0;
3307 	stp->sd_qhead = NULL;
3308 	stp->sd_qtail = NULL;
3309 	stp->sd_servid = NULL;
3310 	stp->sd_nqueues = 0;
3311 	stp->sd_svcflags = 0;
3312 	stp->sd_copyflag = 0;
3313 
3314 	return (stp);
3315 }
3316 
3317 /*
3318  * Free a stream head.
3319  */
3320 void
3321 shfree(stdata_t *stp)
3322 {
3323 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3324 
3325 	stp->sd_wrq = NULL;
3326 
3327 	mutex_enter(&stp->sd_qlock);
3328 	while (stp->sd_svcflags & STRS_SCHEDULED) {
3329 		STRSTAT(strwaits);
3330 		cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3331 	}
3332 	mutex_exit(&stp->sd_qlock);
3333 
3334 	if (stp->sd_ciputctrl != NULL) {
3335 		ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3336 		SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3337 		    stp->sd_nciputctrl, 0);
3338 		ASSERT(ciputctrl_cache != NULL);
3339 		kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3340 		stp->sd_ciputctrl = NULL;
3341 		stp->sd_nciputctrl = 0;
3342 	}
3343 	ASSERT(stp->sd_qhead == NULL);
3344 	ASSERT(stp->sd_qtail == NULL);
3345 	ASSERT(stp->sd_nqueues == 0);
3346 	kmem_cache_free(stream_head_cache, stp);
3347 }
3348 
3349 /*
3350  * Allocate a pair of queues and a syncq for the pair
3351  */
3352 queue_t *
3353 allocq(void)
3354 {
3355 	queinfo_t *qip;
3356 	queue_t *qp, *wqp;
3357 	syncq_t	*sq;
3358 
3359 	qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3360 
3361 	qp = &qip->qu_rqueue;
3362 	wqp = &qip->qu_wqueue;
3363 	sq = &qip->qu_syncq;
3364 
3365 	qp->q_last	= NULL;
3366 	qp->q_next	= NULL;
3367 	qp->q_ptr	= NULL;
3368 	qp->q_flag	= QUSE | QREADR;
3369 	qp->q_bandp	= NULL;
3370 	qp->q_stream	= NULL;
3371 	qp->q_syncq	= sq;
3372 	qp->q_nband	= 0;
3373 	qp->q_nfsrv	= NULL;
3374 	qp->q_draining	= 0;
3375 	qp->q_syncqmsgs	= 0;
3376 	qp->q_spri	= 0;
3377 	qp->q_qtstamp	= 0;
3378 	qp->q_sqtstamp	= 0;
3379 	qp->q_fp	= NULL;
3380 
3381 	wqp->q_last	= NULL;
3382 	wqp->q_next	= NULL;
3383 	wqp->q_ptr	= NULL;
3384 	wqp->q_flag	= QUSE;
3385 	wqp->q_bandp	= NULL;
3386 	wqp->q_stream	= NULL;
3387 	wqp->q_syncq	= sq;
3388 	wqp->q_nband	= 0;
3389 	wqp->q_nfsrv	= NULL;
3390 	wqp->q_draining	= 0;
3391 	wqp->q_syncqmsgs = 0;
3392 	wqp->q_qtstamp	= 0;
3393 	wqp->q_sqtstamp	= 0;
3394 	wqp->q_spri	= 0;
3395 
3396 	sq->sq_count	= 0;
3397 	sq->sq_rmqcount	= 0;
3398 	sq->sq_flags	= 0;
3399 	sq->sq_type	= 0;
3400 	sq->sq_callbflags = 0;
3401 	sq->sq_cancelid	= 0;
3402 	sq->sq_ciputctrl = NULL;
3403 	sq->sq_nciputctrl = 0;
3404 	sq->sq_needexcl = 0;
3405 	sq->sq_svcflags = 0;
3406 
3407 	return (qp);
3408 }
3409 
3410 /*
3411  * Free a pair of queues and the "attached" syncq.
3412  * Discard any messages left on the syncq(s), remove the syncq(s) from the
3413  * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3414  */
3415 void
3416 freeq(queue_t *qp)
3417 {
3418 	qband_t *qbp, *nqbp;
3419 	syncq_t *sq, *outer;
3420 	queue_t *wqp = _WR(qp);
3421 
3422 	ASSERT(qp->q_flag & QREADR);
3423 
3424 	/*
3425 	 * If a previously dispatched taskq job is scheduled to run
3426 	 * sync_service() or a service routine is scheduled for the
3427 	 * queues about to be freed, wait here until all service is
3428 	 * done on the queue and all associated queues and syncqs.
3429 	 */
3430 	wait_svc(qp);
3431 
3432 	(void) flush_syncq(qp->q_syncq, qp);
3433 	(void) flush_syncq(wqp->q_syncq, wqp);
3434 	ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3435 
3436 	/*
3437 	 * Flush the queues before q_next is set to NULL This is needed
3438 	 * in order to backenable any downstream queue before we go away.
3439 	 * Note: we are already removed from the stream so that the
3440 	 * backenabling will not cause any messages to be delivered to our
3441 	 * put procedures.
3442 	 */
3443 	flushq(qp, FLUSHALL);
3444 	flushq(wqp, FLUSHALL);
3445 
3446 	/* Tidy up - removeq only does a half-remove from stream */
3447 	qp->q_next = wqp->q_next = NULL;
3448 	ASSERT(!(qp->q_flag & QENAB));
3449 	ASSERT(!(wqp->q_flag & QENAB));
3450 
3451 	outer = qp->q_syncq->sq_outer;
3452 	if (outer != NULL) {
3453 		outer_remove(outer, qp->q_syncq);
3454 		if (wqp->q_syncq != qp->q_syncq)
3455 			outer_remove(outer, wqp->q_syncq);
3456 	}
3457 	/*
3458 	 * Free any syncqs that are outside what allocq returned.
3459 	 */
3460 	if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3461 		free_syncq(qp->q_syncq);
3462 	if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3463 		free_syncq(wqp->q_syncq);
3464 
3465 	ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3466 	ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3467 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3468 	ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3469 	sq = SQ(qp);
3470 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3471 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3472 	ASSERT(sq->sq_outer == NULL);
3473 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3474 	ASSERT(sq->sq_callbpend == NULL);
3475 	ASSERT(sq->sq_needexcl == 0);
3476 
3477 	if (sq->sq_ciputctrl != NULL) {
3478 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3479 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3480 		    sq->sq_nciputctrl, 0);
3481 		ASSERT(ciputctrl_cache != NULL);
3482 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3483 		sq->sq_ciputctrl = NULL;
3484 		sq->sq_nciputctrl = 0;
3485 	}
3486 
3487 	ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3488 	ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3489 	ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3490 
3491 	qp->q_flag &= ~QUSE;
3492 	wqp->q_flag &= ~QUSE;
3493 
3494 	/* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3495 	/* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3496 
3497 	qbp = qp->q_bandp;
3498 	while (qbp) {
3499 		nqbp = qbp->qb_next;
3500 		freeband(qbp);
3501 		qbp = nqbp;
3502 	}
3503 	qbp = wqp->q_bandp;
3504 	while (qbp) {
3505 		nqbp = qbp->qb_next;
3506 		freeband(qbp);
3507 		qbp = nqbp;
3508 	}
3509 	kmem_cache_free(queue_cache, qp);
3510 }
3511 
3512 /*
3513  * Allocate a qband structure.
3514  */
3515 qband_t *
3516 allocband(void)
3517 {
3518 	qband_t *qbp;
3519 
3520 	qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3521 	if (qbp == NULL)
3522 		return (NULL);
3523 
3524 	qbp->qb_next	= NULL;
3525 	qbp->qb_count	= 0;
3526 	qbp->qb_mblkcnt	= 0;
3527 	qbp->qb_first	= NULL;
3528 	qbp->qb_last	= NULL;
3529 	qbp->qb_flag	= 0;
3530 
3531 	return (qbp);
3532 }
3533 
3534 /*
3535  * Free a qband structure.
3536  */
3537 void
3538 freeband(qband_t *qbp)
3539 {
3540 	kmem_cache_free(qband_cache, qbp);
3541 }
3542 
3543 /*
3544  * Just like putnextctl(9F), except that allocb_wait() is used.
3545  *
3546  * Consolidation Private, and of course only callable from the stream head or
3547  * routines that may block.
3548  */
3549 int
3550 putnextctl_wait(queue_t *q, int type)
3551 {
3552 	mblk_t *bp;
3553 	int error;
3554 
3555 	if ((datamsg(type) && (type != M_DELAY)) ||
3556 	    (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3557 		return (0);
3558 
3559 	bp->b_datap->db_type = (unsigned char)type;
3560 	putnext(q, bp);
3561 	return (1);
3562 }
3563 
3564 /*
3565  * run any possible bufcalls.
3566  */
3567 void
3568 runbufcalls(void)
3569 {
3570 	strbufcall_t *bcp;
3571 
3572 	mutex_enter(&bcall_monitor);
3573 	mutex_enter(&strbcall_lock);
3574 
3575 	if (strbcalls.bc_head) {
3576 		size_t count;
3577 		int nevent;
3578 
3579 		/*
3580 		 * count how many events are on the list
3581 		 * now so we can check to avoid looping
3582 		 * in low memory situations
3583 		 */
3584 		nevent = 0;
3585 		for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3586 			nevent++;
3587 
3588 		/*
3589 		 * get estimate of available memory from kmem_avail().
3590 		 * awake all bufcall functions waiting for
3591 		 * memory whose request could be satisfied
3592 		 * by 'count' memory and let 'em fight for it.
3593 		 */
3594 		count = kmem_avail();
3595 		while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3596 			STRSTAT(bufcalls);
3597 			--nevent;
3598 			if (bcp->bc_size <= count) {
3599 				bcp->bc_executor = curthread;
3600 				mutex_exit(&strbcall_lock);
3601 				(*bcp->bc_func)(bcp->bc_arg);
3602 				mutex_enter(&strbcall_lock);
3603 				bcp->bc_executor = NULL;
3604 				cv_broadcast(&bcall_cv);
3605 				strbcalls.bc_head = bcp->bc_next;
3606 				kmem_free(bcp, sizeof (strbufcall_t));
3607 			} else {
3608 				/*
3609 				 * too big, try again later - note
3610 				 * that nevent was decremented above
3611 				 * so we won't retry this one on this
3612 				 * iteration of the loop
3613 				 */
3614 				if (bcp->bc_next != NULL) {
3615 					strbcalls.bc_head = bcp->bc_next;
3616 					bcp->bc_next = NULL;
3617 					strbcalls.bc_tail->bc_next = bcp;
3618 					strbcalls.bc_tail = bcp;
3619 				}
3620 			}
3621 		}
3622 		if (strbcalls.bc_head == NULL)
3623 			strbcalls.bc_tail = NULL;
3624 	}
3625 
3626 	mutex_exit(&strbcall_lock);
3627 	mutex_exit(&bcall_monitor);
3628 }
3629 
3630 
3631 /*
3632  * actually run queue's service routine.
3633  */
3634 static void
3635 runservice(queue_t *q)
3636 {
3637 	qband_t *qbp;
3638 
3639 	ASSERT(q->q_qinfo->qi_srvp);
3640 again:
3641 	entersq(q->q_syncq, SQ_SVC);
3642 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3643 	    "runservice starts:%p", q);
3644 
3645 	if (!(q->q_flag & QWCLOSE))
3646 		(*q->q_qinfo->qi_srvp)(q);
3647 
3648 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3649 	    "runservice ends:(%p)", q);
3650 
3651 	leavesq(q->q_syncq, SQ_SVC);
3652 
3653 	mutex_enter(QLOCK(q));
3654 	if (q->q_flag & QENAB) {
3655 		q->q_flag &= ~QENAB;
3656 		mutex_exit(QLOCK(q));
3657 		goto again;
3658 	}
3659 	q->q_flag &= ~QINSERVICE;
3660 	q->q_flag &= ~QBACK;
3661 	for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3662 		qbp->qb_flag &= ~QB_BACK;
3663 	/*
3664 	 * Wakeup thread waiting for the service procedure
3665 	 * to be run (strclose and qdetach).
3666 	 */
3667 	cv_broadcast(&q->q_wait);
3668 
3669 	mutex_exit(QLOCK(q));
3670 }
3671 
3672 /*
3673  * Background processing of bufcalls.
3674  */
3675 void
3676 streams_bufcall_service(void)
3677 {
3678 	callb_cpr_t	cprinfo;
3679 
3680 	CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3681 	    "streams_bufcall_service");
3682 
3683 	mutex_enter(&strbcall_lock);
3684 
3685 	for (;;) {
3686 		if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3687 			mutex_exit(&strbcall_lock);
3688 			runbufcalls();
3689 			mutex_enter(&strbcall_lock);
3690 		}
3691 		if (strbcalls.bc_head != NULL) {
3692 			clock_t wt, tick;
3693 
3694 			STRSTAT(bcwaits);
3695 			/* Wait for memory to become available */
3696 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3697 			tick = SEC_TO_TICK(60);
3698 			time_to_wait(&wt, tick);
3699 			(void) cv_timedwait(&memavail_cv, &strbcall_lock, wt);
3700 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3701 		}
3702 
3703 		/* Wait for new work to arrive */
3704 		if (strbcalls.bc_head == NULL) {
3705 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3706 			cv_wait(&strbcall_cv, &strbcall_lock);
3707 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3708 		}
3709 	}
3710 }
3711 
3712 /*
3713  * Background processing of streams background tasks which failed
3714  * taskq_dispatch.
3715  */
3716 static void
3717 streams_qbkgrnd_service(void)
3718 {
3719 	callb_cpr_t cprinfo;
3720 	queue_t *q;
3721 
3722 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3723 	    "streams_bkgrnd_service");
3724 
3725 	mutex_enter(&service_queue);
3726 
3727 	for (;;) {
3728 		/*
3729 		 * Wait for work to arrive.
3730 		 */
3731 		while ((freebs_list == NULL) && (qhead == NULL)) {
3732 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3733 			cv_wait(&services_to_run, &service_queue);
3734 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3735 		}
3736 		/*
3737 		 * Handle all pending freebs requests to free memory.
3738 		 */
3739 		while (freebs_list != NULL) {
3740 			mblk_t *mp = freebs_list;
3741 			freebs_list = mp->b_next;
3742 			mutex_exit(&service_queue);
3743 			mblk_free(mp);
3744 			mutex_enter(&service_queue);
3745 		}
3746 		/*
3747 		 * Run pending queues.
3748 		 */
3749 		while (qhead != NULL) {
3750 			DQ(q, qhead, qtail, q_link);
3751 			ASSERT(q != NULL);
3752 			mutex_exit(&service_queue);
3753 			queue_service(q);
3754 			mutex_enter(&service_queue);
3755 		}
3756 		ASSERT(qhead == NULL && qtail == NULL);
3757 	}
3758 }
3759 
3760 /*
3761  * Background processing of streams background tasks which failed
3762  * taskq_dispatch.
3763  */
3764 static void
3765 streams_sqbkgrnd_service(void)
3766 {
3767 	callb_cpr_t cprinfo;
3768 	syncq_t *sq;
3769 
3770 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3771 	    "streams_sqbkgrnd_service");
3772 
3773 	mutex_enter(&service_queue);
3774 
3775 	for (;;) {
3776 		/*
3777 		 * Wait for work to arrive.
3778 		 */
3779 		while (sqhead == NULL) {
3780 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3781 			cv_wait(&syncqs_to_run, &service_queue);
3782 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3783 		}
3784 
3785 		/*
3786 		 * Run pending syncqs.
3787 		 */
3788 		while (sqhead != NULL) {
3789 			DQ(sq, sqhead, sqtail, sq_next);
3790 			ASSERT(sq != NULL);
3791 			ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3792 			mutex_exit(&service_queue);
3793 			syncq_service(sq);
3794 			mutex_enter(&service_queue);
3795 		}
3796 	}
3797 }
3798 
3799 /*
3800  * Disable the syncq and wait for background syncq processing to complete.
3801  * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3802  * list.
3803  */
3804 void
3805 wait_sq_svc(syncq_t *sq)
3806 {
3807 	mutex_enter(SQLOCK(sq));
3808 	sq->sq_svcflags |= SQ_DISABLED;
3809 	if (sq->sq_svcflags & SQ_BGTHREAD) {
3810 		syncq_t *sq_chase;
3811 		syncq_t *sq_curr;
3812 		int removed;
3813 
3814 		ASSERT(sq->sq_servcount == 1);
3815 		mutex_enter(&service_queue);
3816 		RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3817 		mutex_exit(&service_queue);
3818 		if (removed) {
3819 			sq->sq_svcflags &= ~SQ_BGTHREAD;
3820 			sq->sq_servcount = 0;
3821 			STRSTAT(sqremoved);
3822 			goto done;
3823 		}
3824 	}
3825 	while (sq->sq_servcount != 0) {
3826 		sq->sq_flags |= SQ_WANTWAKEUP;
3827 		cv_wait(&sq->sq_wait, SQLOCK(sq));
3828 	}
3829 done:
3830 	mutex_exit(SQLOCK(sq));
3831 }
3832 
3833 /*
3834  * Put a syncq on the list of syncq's to be serviced by the sqthread.
3835  * Add the argument to the end of the sqhead list and set the flag
3836  * indicating this syncq has been enabled.  If it has already been
3837  * enabled, don't do anything.
3838  * This routine assumes that SQLOCK is held.
3839  * NOTE that the lock order is to have the SQLOCK first,
3840  * so if the service_syncq lock is held, we need to release it
3841  * before aquiring the SQLOCK (mostly relevant for the background
3842  * thread, and this seems to be common among the STREAMS global locks).
3843  * Note the the sq_svcflags are protected by the SQLOCK.
3844  */
3845 void
3846 sqenable(syncq_t *sq)
3847 {
3848 	/*
3849 	 * This is probably not important except for where I believe it
3850 	 * is being called.  At that point, it should be held (and it
3851 	 * is a pain to release it just for this routine, so don't do
3852 	 * it).
3853 	 */
3854 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
3855 
3856 	IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3857 	IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3858 
3859 	/*
3860 	 * Do not put on list if background thread is scheduled or
3861 	 * syncq is disabled.
3862 	 */
3863 	if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3864 		return;
3865 
3866 	/*
3867 	 * Check whether we should enable sq at all.
3868 	 * Non PERMOD syncqs may be drained by at most one thread.
3869 	 * PERMOD syncqs may be drained by several threads but we limit the
3870 	 * total amount to the lesser of
3871 	 *	Number of queues on the squeue and
3872 	 *	Number of CPUs.
3873 	 */
3874 	if (sq->sq_servcount != 0) {
3875 		if (((sq->sq_type & SQ_PERMOD) == 0) ||
3876 		    (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3877 			STRSTAT(sqtoomany);
3878 			return;
3879 		}
3880 	}
3881 
3882 	sq->sq_tstamp = lbolt;
3883 	STRSTAT(sqenables);
3884 
3885 	/* Attempt a taskq dispatch */
3886 	sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3887 	    (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3888 	if (sq->sq_servid != NULL) {
3889 		sq->sq_servcount++;
3890 		return;
3891 	}
3892 
3893 	/*
3894 	 * This taskq dispatch failed, but a previous one may have succeeded.
3895 	 * Don't try to schedule on the background thread whilst there is
3896 	 * outstanding taskq processing.
3897 	 */
3898 	if (sq->sq_servcount != 0)
3899 		return;
3900 
3901 	/*
3902 	 * System is low on resources and can't perform a non-sleeping
3903 	 * dispatch. Schedule the syncq for a background thread and mark the
3904 	 * syncq to avoid any further taskq dispatch attempts.
3905 	 */
3906 	mutex_enter(&service_queue);
3907 	STRSTAT(taskqfails);
3908 	ENQUEUE(sq, sqhead, sqtail, sq_next);
3909 	sq->sq_svcflags |= SQ_BGTHREAD;
3910 	sq->sq_servcount = 1;
3911 	cv_signal(&syncqs_to_run);
3912 	mutex_exit(&service_queue);
3913 }
3914 
3915 /*
3916  * Note: fifo_close() depends on the mblk_t on the queue being freed
3917  * asynchronously. The asynchronous freeing of messages breaks the
3918  * recursive call chain of fifo_close() while there are I_SENDFD type of
3919  * messages refering other file pointers on the queue. Then when
3920  * closing pipes it can avoid stack overflow in case of daisy-chained
3921  * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3922  * share the same fifolock_t).
3923  */
3924 
3925 void
3926 freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3927 {
3928 	esb_queue_t *eqp = &system_esbq;
3929 
3930 	ASSERT(dbp->db_mblk == mp);
3931 
3932 	/*
3933 	 * Check data sanity. The dblock should have non-empty free function.
3934 	 * It is better to panic here then later when the dblock is freed
3935 	 * asynchronously when the context is lost.
3936 	 */
3937 	if (dbp->db_frtnp->free_func == NULL) {
3938 		panic("freebs_enqueue: dblock %p has a NULL free callback",
3939 		    (void *)dbp);
3940 	}
3941 
3942 	mutex_enter(&eqp->eq_lock);
3943 	/* queue the new mblk on the esballoc queue */
3944 	if (eqp->eq_head == NULL) {
3945 		eqp->eq_head = eqp->eq_tail = mp;
3946 	} else {
3947 		eqp->eq_tail->b_next = mp;
3948 		eqp->eq_tail = mp;
3949 	}
3950 	eqp->eq_len++;
3951 
3952 	/* If we're the first thread to reach the threshold, process */
3953 	if (eqp->eq_len >= esbq_max_qlen &&
3954 	    !(eqp->eq_flags & ESBQ_PROCESSING))
3955 		esballoc_process_queue(eqp);
3956 
3957 	esballoc_set_timer(eqp, esbq_timeout);
3958 	mutex_exit(&eqp->eq_lock);
3959 }
3960 
3961 static void
3962 esballoc_process_queue(esb_queue_t *eqp)
3963 {
3964 	mblk_t	*mp;
3965 
3966 	ASSERT(MUTEX_HELD(&eqp->eq_lock));
3967 
3968 	eqp->eq_flags |= ESBQ_PROCESSING;
3969 
3970 	do {
3971 		/*
3972 		 * Detach the message chain for processing.
3973 		 */
3974 		mp = eqp->eq_head;
3975 		eqp->eq_tail->b_next = NULL;
3976 		eqp->eq_head = eqp->eq_tail = NULL;
3977 		eqp->eq_len = 0;
3978 		mutex_exit(&eqp->eq_lock);
3979 
3980 		/*
3981 		 * Process the message chain.
3982 		 */
3983 		esballoc_enqueue_mblk(mp);
3984 		mutex_enter(&eqp->eq_lock);
3985 	} while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0));
3986 
3987 	eqp->eq_flags &= ~ESBQ_PROCESSING;
3988 }
3989 
3990 /*
3991  * taskq callback routine to free esballoced mblk's
3992  */
3993 static void
3994 esballoc_mblk_free(mblk_t *mp)
3995 {
3996 	mblk_t	*nextmp;
3997 
3998 	for (; mp != NULL; mp = nextmp) {
3999 		nextmp = mp->b_next;
4000 		mp->b_next = NULL;
4001 		mblk_free(mp);
4002 	}
4003 }
4004 
4005 static void
4006 esballoc_enqueue_mblk(mblk_t *mp)
4007 {
4008 
4009 	if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp,
4010 	    TQ_NOSLEEP) == NULL) {
4011 		mblk_t *first_mp = mp;
4012 		/*
4013 		 * System is low on resources and can't perform a non-sleeping
4014 		 * dispatch. Schedule for a background thread.
4015 		 */
4016 		mutex_enter(&service_queue);
4017 		STRSTAT(taskqfails);
4018 
4019 		while (mp->b_next != NULL)
4020 			mp = mp->b_next;
4021 
4022 		mp->b_next = freebs_list;
4023 		freebs_list = first_mp;
4024 		cv_signal(&services_to_run);
4025 		mutex_exit(&service_queue);
4026 	}
4027 }
4028 
4029 static void
4030 esballoc_timer(void *arg)
4031 {
4032 	esb_queue_t *eqp = arg;
4033 
4034 	mutex_enter(&eqp->eq_lock);
4035 	eqp->eq_flags &= ~ESBQ_TIMER;
4036 
4037 	if (!(eqp->eq_flags & ESBQ_PROCESSING) &&
4038 	    eqp->eq_len > 0)
4039 		esballoc_process_queue(eqp);
4040 
4041 	esballoc_set_timer(eqp, esbq_timeout);
4042 	mutex_exit(&eqp->eq_lock);
4043 }
4044 
4045 static void
4046 esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout)
4047 {
4048 	ASSERT(MUTEX_HELD(&eqp->eq_lock));
4049 
4050 	if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) {
4051 		(void) timeout(esballoc_timer, eqp, eq_timeout);
4052 		eqp->eq_flags |= ESBQ_TIMER;
4053 	}
4054 }
4055 
4056 void
4057 esballoc_queue_init(void)
4058 {
4059 	system_esbq.eq_len = 0;
4060 	system_esbq.eq_head = system_esbq.eq_tail = NULL;
4061 	system_esbq.eq_flags = 0;
4062 }
4063 
4064 /*
4065  * Set the QBACK or QB_BACK flag in the given queue for
4066  * the given priority band.
4067  */
4068 void
4069 setqback(queue_t *q, unsigned char pri)
4070 {
4071 	int i;
4072 	qband_t *qbp;
4073 	qband_t **qbpp;
4074 
4075 	ASSERT(MUTEX_HELD(QLOCK(q)));
4076 	if (pri != 0) {
4077 		if (pri > q->q_nband) {
4078 			qbpp = &q->q_bandp;
4079 			while (*qbpp)
4080 				qbpp = &(*qbpp)->qb_next;
4081 			while (pri > q->q_nband) {
4082 				if ((*qbpp = allocband()) == NULL) {
4083 					cmn_err(CE_WARN,
4084 					    "setqback: can't allocate qband\n");
4085 					return;
4086 				}
4087 				(*qbpp)->qb_hiwat = q->q_hiwat;
4088 				(*qbpp)->qb_lowat = q->q_lowat;
4089 				q->q_nband++;
4090 				qbpp = &(*qbpp)->qb_next;
4091 			}
4092 		}
4093 		qbp = q->q_bandp;
4094 		i = pri;
4095 		while (--i)
4096 			qbp = qbp->qb_next;
4097 		qbp->qb_flag |= QB_BACK;
4098 	} else {
4099 		q->q_flag |= QBACK;
4100 	}
4101 }
4102 
4103 int
4104 strcopyin(void *from, void *to, size_t len, int copyflag)
4105 {
4106 	if (copyflag & U_TO_K) {
4107 		ASSERT((copyflag & K_TO_K) == 0);
4108 		if (copyin(from, to, len))
4109 			return (EFAULT);
4110 	} else {
4111 		ASSERT(copyflag & K_TO_K);
4112 		bcopy(from, to, len);
4113 	}
4114 	return (0);
4115 }
4116 
4117 int
4118 strcopyout(void *from, void *to, size_t len, int copyflag)
4119 {
4120 	if (copyflag & U_TO_K) {
4121 		if (copyout(from, to, len))
4122 			return (EFAULT);
4123 	} else {
4124 		ASSERT(copyflag & K_TO_K);
4125 		bcopy(from, to, len);
4126 	}
4127 	return (0);
4128 }
4129 
4130 /*
4131  * strsignal_nolock() posts a signal to the process(es) at the stream head.
4132  * It assumes that the stream head lock is already held, whereas strsignal()
4133  * acquires the lock first.  This routine was created because a few callers
4134  * release the stream head lock before calling only to re-acquire it after
4135  * it returns.
4136  */
4137 void
4138 strsignal_nolock(stdata_t *stp, int sig, uchar_t band)
4139 {
4140 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4141 	switch (sig) {
4142 	case SIGPOLL:
4143 		if (stp->sd_sigflags & S_MSG)
4144 			strsendsig(stp->sd_siglist, S_MSG, band, 0);
4145 		break;
4146 	default:
4147 		if (stp->sd_pgidp)
4148 			pgsignal(stp->sd_pgidp, sig);
4149 		break;
4150 	}
4151 }
4152 
4153 void
4154 strsignal(stdata_t *stp, int sig, int32_t band)
4155 {
4156 	TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
4157 	    "strsignal:%p, %X, %X", stp, sig, band);
4158 
4159 	mutex_enter(&stp->sd_lock);
4160 	switch (sig) {
4161 	case SIGPOLL:
4162 		if (stp->sd_sigflags & S_MSG)
4163 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4164 		break;
4165 
4166 	default:
4167 		if (stp->sd_pgidp) {
4168 			pgsignal(stp->sd_pgidp, sig);
4169 		}
4170 		break;
4171 	}
4172 	mutex_exit(&stp->sd_lock);
4173 }
4174 
4175 void
4176 strhup(stdata_t *stp)
4177 {
4178 	ASSERT(mutex_owned(&stp->sd_lock));
4179 	pollwakeup(&stp->sd_pollist, POLLHUP);
4180 	if (stp->sd_sigflags & S_HANGUP)
4181 		strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
4182 }
4183 
4184 /*
4185  * Backenable the first queue upstream from `q' with a service procedure.
4186  */
4187 void
4188 backenable(queue_t *q, uchar_t pri)
4189 {
4190 	queue_t	*nq;
4191 
4192 	/*
4193 	 * our presence might not prevent other modules in our own
4194 	 * stream from popping/pushing since the caller of getq might not
4195 	 * have a claim on the queue (some drivers do a getq on somebody
4196 	 * else's queue - they know that the queue itself is not going away
4197 	 * but the framework has to guarantee q_next in that stream.)
4198 	 */
4199 	claimstr(q);
4200 
4201 	/* find nearest back queue with service proc */
4202 	for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4203 		ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4204 	}
4205 
4206 	if (nq) {
4207 		kthread_t *freezer;
4208 		/*
4209 		 * backenable can be called either with no locks held
4210 		 * or with the stream frozen (the latter occurs when a module
4211 		 * calls rmvq with the stream frozen.) If the stream is frozen
4212 		 * by the caller the caller will hold all qlocks in the stream.
4213 		 * Note that a frozen stream doesn't freeze a mated stream,
4214 		 * so we explicitly check for that.
4215 		 */
4216 		freezer = STREAM(q)->sd_freezer;
4217 		if (freezer != curthread || STREAM(q) != STREAM(nq)) {
4218 			mutex_enter(QLOCK(nq));
4219 		}
4220 #ifdef DEBUG
4221 		else {
4222 			ASSERT(frozenstr(q));
4223 			ASSERT(MUTEX_HELD(QLOCK(q)));
4224 			ASSERT(MUTEX_HELD(QLOCK(nq)));
4225 		}
4226 #endif
4227 		setqback(nq, pri);
4228 		qenable_locked(nq);
4229 		if (freezer != curthread || STREAM(q) != STREAM(nq))
4230 			mutex_exit(QLOCK(nq));
4231 	}
4232 	releasestr(q);
4233 }
4234 
4235 /*
4236  * Return the appropriate errno when one of flags_to_check is set
4237  * in sd_flags. Uses the exported error routines if they are set.
4238  * Will return 0 if non error is set (or if the exported error routines
4239  * do not return an error).
4240  *
4241  * If there is both a read and write error to check we prefer the read error.
4242  * Also, give preference to recorded errno's over the error functions.
4243  * The flags that are handled are:
4244  *	STPLEX		return EINVAL
4245  *	STRDERR		return sd_rerror (and clear if STRDERRNONPERSIST)
4246  *	STWRERR		return sd_werror (and clear if STWRERRNONPERSIST)
4247  *	STRHUP		return sd_werror
4248  *
4249  * If the caller indicates that the operation is a peek a nonpersistent error
4250  * is not cleared.
4251  */
4252 int
4253 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4254 {
4255 	int32_t sd_flag = stp->sd_flag & flags_to_check;
4256 	int error = 0;
4257 
4258 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4259 	ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4260 	if (sd_flag & STPLEX)
4261 		error = EINVAL;
4262 	else if (sd_flag & STRDERR) {
4263 		error = stp->sd_rerror;
4264 		if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4265 			/*
4266 			 * Read errors are non-persistent i.e. discarded once
4267 			 * returned to a non-peeking caller,
4268 			 */
4269 			stp->sd_rerror = 0;
4270 			stp->sd_flag &= ~STRDERR;
4271 		}
4272 		if (error == 0 && stp->sd_rderrfunc != NULL) {
4273 			int clearerr = 0;
4274 
4275 			error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4276 			    &clearerr);
4277 			if (clearerr) {
4278 				stp->sd_flag &= ~STRDERR;
4279 				stp->sd_rderrfunc = NULL;
4280 			}
4281 		}
4282 	} else if (sd_flag & STWRERR) {
4283 		error = stp->sd_werror;
4284 		if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4285 			/*
4286 			 * Write errors are non-persistent i.e. discarded once
4287 			 * returned to a non-peeking caller,
4288 			 */
4289 			stp->sd_werror = 0;
4290 			stp->sd_flag &= ~STWRERR;
4291 		}
4292 		if (error == 0 && stp->sd_wrerrfunc != NULL) {
4293 			int clearerr = 0;
4294 
4295 			error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4296 			    &clearerr);
4297 			if (clearerr) {
4298 				stp->sd_flag &= ~STWRERR;
4299 				stp->sd_wrerrfunc = NULL;
4300 			}
4301 		}
4302 	} else if (sd_flag & STRHUP) {
4303 		/* sd_werror set when STRHUP */
4304 		error = stp->sd_werror;
4305 	}
4306 	return (error);
4307 }
4308 
4309 
4310 /*
4311  * single-thread open/close/push/pop
4312  * for twisted streams also
4313  */
4314 int
4315 strstartplumb(stdata_t *stp, int flag, int cmd)
4316 {
4317 	int waited = 1;
4318 	int error = 0;
4319 
4320 	if (STRMATED(stp)) {
4321 		struct stdata *stmatep = stp->sd_mate;
4322 
4323 		STRLOCKMATES(stp);
4324 		while (waited) {
4325 			waited = 0;
4326 			while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4327 				if ((cmd == I_POP) &&
4328 				    (flag & (FNDELAY|FNONBLOCK))) {
4329 					STRUNLOCKMATES(stp);
4330 					return (EAGAIN);
4331 				}
4332 				waited = 1;
4333 				mutex_exit(&stp->sd_lock);
4334 				if (!cv_wait_sig(&stmatep->sd_monitor,
4335 				    &stmatep->sd_lock)) {
4336 					mutex_exit(&stmatep->sd_lock);
4337 					return (EINTR);
4338 				}
4339 				mutex_exit(&stmatep->sd_lock);
4340 				STRLOCKMATES(stp);
4341 			}
4342 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4343 				if ((cmd == I_POP) &&
4344 				    (flag & (FNDELAY|FNONBLOCK))) {
4345 					STRUNLOCKMATES(stp);
4346 					return (EAGAIN);
4347 				}
4348 				waited = 1;
4349 				mutex_exit(&stmatep->sd_lock);
4350 				if (!cv_wait_sig(&stp->sd_monitor,
4351 				    &stp->sd_lock)) {
4352 					mutex_exit(&stp->sd_lock);
4353 					return (EINTR);
4354 				}
4355 				mutex_exit(&stp->sd_lock);
4356 				STRLOCKMATES(stp);
4357 			}
4358 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4359 				error = strgeterr(stp,
4360 				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4361 				if (error != 0) {
4362 					STRUNLOCKMATES(stp);
4363 					return (error);
4364 				}
4365 			}
4366 		}
4367 		stp->sd_flag |= STRPLUMB;
4368 		STRUNLOCKMATES(stp);
4369 	} else {
4370 		mutex_enter(&stp->sd_lock);
4371 		while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4372 			if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4373 			    (flag & (FNDELAY|FNONBLOCK))) {
4374 				mutex_exit(&stp->sd_lock);
4375 				return (EAGAIN);
4376 			}
4377 			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4378 				mutex_exit(&stp->sd_lock);
4379 				return (EINTR);
4380 			}
4381 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4382 				error = strgeterr(stp,
4383 				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4384 				if (error != 0) {
4385 					mutex_exit(&stp->sd_lock);
4386 					return (error);
4387 				}
4388 			}
4389 		}
4390 		stp->sd_flag |= STRPLUMB;
4391 		mutex_exit(&stp->sd_lock);
4392 	}
4393 	return (0);
4394 }
4395 
4396 /*
4397  * Complete the plumbing operation associated with stream `stp'.
4398  */
4399 void
4400 strendplumb(stdata_t *stp)
4401 {
4402 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4403 	ASSERT(stp->sd_flag & STRPLUMB);
4404 	stp->sd_flag &= ~STRPLUMB;
4405 	cv_broadcast(&stp->sd_monitor);
4406 }
4407 
4408 /*
4409  * This describes how the STREAMS framework handles synchronization
4410  * during open/push and close/pop.
4411  * The key interfaces for open and close are qprocson and qprocsoff,
4412  * respectively. While the close case in general is harder both open
4413  * have close have significant similarities.
4414  *
4415  * During close the STREAMS framework has to both ensure that there
4416  * are no stale references to the queue pair (and syncq) that
4417  * are being closed and also provide the guarantees that are documented
4418  * in qprocsoff(9F).
4419  * If there are stale references to the queue that is closing it can
4420  * result in kernel memory corruption or kernel panics.
4421  *
4422  * Note that is it up to the module/driver to ensure that it itself
4423  * does not have any stale references to the closing queues once its close
4424  * routine returns. This includes:
4425  *  - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4426  *    associated with the queues. For timeout and bufcall callbacks the
4427  *    module/driver also has to ensure (or wait for) any callbacks that
4428  *    are in progress.
4429  *  - If the module/driver is using esballoc it has to ensure that any
4430  *    esballoc free functions do not refer to a queue that has closed.
4431  *    (Note that in general the close routine can not wait for the esballoc'ed
4432  *    messages to be freed since that can cause a deadlock.)
4433  *  - Cancelling any interrupts that refer to the closing queues and
4434  *    also ensuring that there are no interrupts in progress that will
4435  *    refer to the closing queues once the close routine returns.
4436  *  - For multiplexors removing any driver global state that refers to
4437  *    the closing queue and also ensuring that there are no threads in
4438  *    the multiplexor that has picked up a queue pointer but not yet
4439  *    finished using it.
4440  *
4441  * In addition, a driver/module can only reference the q_next pointer
4442  * in its open, close, put, or service procedures or in a
4443  * qtimeout/qbufcall callback procedure executing "on" the correct
4444  * stream. Thus it can not reference the q_next pointer in an interrupt
4445  * routine or a timeout, bufcall or esballoc callback routine. Likewise
4446  * it can not reference q_next of a different queue e.g. in a mux that
4447  * passes messages from one queues put/service procedure to another queue.
4448  * In all the cases when the driver/module can not access the q_next
4449  * field it must use the *next* versions e.g. canputnext instead of
4450  * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4451  *
4452  *
4453  * Assuming that the driver/module conforms to the above constraints
4454  * the STREAMS framework has to avoid stale references to q_next for all
4455  * the framework internal cases which include (but are not limited to):
4456  *  - Threads in canput/canputnext/backenable and elsewhere that are
4457  *    walking q_next.
4458  *  - Messages on a syncq that have a reference to the queue through b_queue.
4459  *  - Messages on an outer perimeter (syncq) that have a reference to the
4460  *    queue through b_queue.
4461  *  - Threads that use q_nfsrv (e.g. canput) to find a queue.
4462  *    Note that only canput and bcanput use q_nfsrv without any locking.
4463  *
4464  * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4465  * after qprocsoff returns, the framework has to ensure that no threads can
4466  * enter the put or service routines for the closing read or write-side queue.
4467  * In addition to preventing "direct" entry into the put procedures
4468  * the framework also has to prevent messages being drained from
4469  * the syncq or the outer perimeter.
4470  * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4471  * mechanism to prevent qwriter(PERIM_OUTER) from running after
4472  * qprocsoff has returned.
4473  * Note that if a module/driver uses put(9F) on one of its own queues
4474  * it is up to the module/driver to ensure that the put() doesn't
4475  * get called when the queue is closing.
4476  *
4477  *
4478  * The framework aspects of the above "contract" is implemented by
4479  * qprocsoff, removeq, and strlock:
4480  *  - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4481  *    entering the service procedures.
4482  *  - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4483  *    canputnext, backenable etc from dereferencing the q_next that will
4484  *    soon change.
4485  *  - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4486  *    or other q_next walker that uses claimstr/releasestr to finish.
4487  *  - optionally for every syncq in the stream strlock acquires all the
4488  *    sq_lock's and waits for all sq_counts to drop to a value that indicates
4489  *    that no thread executes in the put or service procedures and that no
4490  *    thread is draining into the module/driver. This ensures that no
4491  *    open, close, put, service, or qtimeout/qbufcall callback procedure is
4492  *    currently executing hence no such thread can end up with the old stale
4493  *    q_next value and no canput/backenable can have the old stale
4494  *    q_nfsrv/q_next.
4495  *  - qdetach (wait_svc) makes sure that any scheduled or running threads
4496  *    have either finished or observed the QWCLOSE flag and gone away.
4497  */
4498 
4499 
4500 /*
4501  * Get all the locks necessary to change q_next.
4502  *
4503  * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for  the
4504  * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4505  * the only threads inside the sqncq are threads currently calling removeq().
4506  * Since threads calling removeq() are in the process of removing their queues
4507  * from the stream, we do not need to worry about them accessing a stale q_next
4508  * pointer and thus we do not need to wait for them to exit (in fact, waiting
4509  * for them can cause deadlock).
4510  *
4511  * This routine is subject to starvation since it does not set any flag to
4512  * prevent threads from entering a module in the stream(i.e. sq_count can
4513  * increase on some syncq while it is waiting on some other syncq.)
4514  *
4515  * Assumes that only one thread attempts to call strlock for a given
4516  * stream. If this is not the case the two threads would deadlock.
4517  * This assumption is guaranteed since strlock is only called by insertq
4518  * and removeq and streams plumbing changes are single-threaded for
4519  * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4520  *
4521  * For pipes, it is not difficult to atomically designate a pair of streams
4522  * to be mated. Once mated atomically by the framework the twisted pair remain
4523  * configured that way until dismantled atomically by the framework.
4524  * When plumbing takes place on a twisted stream it is necessary to ensure that
4525  * this operation is done exclusively on the twisted stream since two such
4526  * operations, each initiated on different ends of the pipe will deadlock
4527  * waiting for each other to complete.
4528  *
4529  * On entry, no locks should be held.
4530  * The locks acquired and held by strlock depends on a few factors.
4531  * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4532  *   and held on exit and all sq_count are at an acceptable level.
4533  * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4534  *   sd_refcnt being zero.
4535  */
4536 
4537 static void
4538 strlock(struct stdata *stp, sqlist_t *sqlist)
4539 {
4540 	syncql_t *sql, *sql2;
4541 retry:
4542 	/*
4543 	 * Wait for any claimstr to go away.
4544 	 */
4545 	if (STRMATED(stp)) {
4546 		struct stdata *stp1, *stp2;
4547 
4548 		STRLOCKMATES(stp);
4549 		/*
4550 		 * Note that the selection of locking order is not
4551 		 * important, just that they are always aquired in
4552 		 * the same order.  To assure this, we choose this
4553 		 * order based on the value of the pointer, and since
4554 		 * the pointer will not change for the life of this
4555 		 * pair, we will always grab the locks in the same
4556 		 * order (and hence, prevent deadlocks).
4557 		 */
4558 		if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4559 			stp1 = stp;
4560 			stp2 = stp->sd_mate;
4561 		} else {
4562 			stp2 = stp;
4563 			stp1 = stp->sd_mate;
4564 		}
4565 		mutex_enter(&stp1->sd_reflock);
4566 		if (stp1->sd_refcnt > 0) {
4567 			STRUNLOCKMATES(stp);
4568 			cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4569 			mutex_exit(&stp1->sd_reflock);
4570 			goto retry;
4571 		}
4572 		mutex_enter(&stp2->sd_reflock);
4573 		if (stp2->sd_refcnt > 0) {
4574 			STRUNLOCKMATES(stp);
4575 			mutex_exit(&stp1->sd_reflock);
4576 			cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4577 			mutex_exit(&stp2->sd_reflock);
4578 			goto retry;
4579 		}
4580 		STREAM_PUTLOCKS_ENTER(stp1);
4581 		STREAM_PUTLOCKS_ENTER(stp2);
4582 	} else {
4583 		mutex_enter(&stp->sd_lock);
4584 		mutex_enter(&stp->sd_reflock);
4585 		while (stp->sd_refcnt > 0) {
4586 			mutex_exit(&stp->sd_lock);
4587 			cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4588 			if (mutex_tryenter(&stp->sd_lock) == 0) {
4589 				mutex_exit(&stp->sd_reflock);
4590 				mutex_enter(&stp->sd_lock);
4591 				mutex_enter(&stp->sd_reflock);
4592 			}
4593 		}
4594 		STREAM_PUTLOCKS_ENTER(stp);
4595 	}
4596 
4597 	if (sqlist == NULL)
4598 		return;
4599 
4600 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4601 		syncq_t *sq = sql->sql_sq;
4602 		uint16_t count;
4603 
4604 		mutex_enter(SQLOCK(sq));
4605 		count = sq->sq_count;
4606 		ASSERT(sq->sq_rmqcount <= count);
4607 		SQ_PUTLOCKS_ENTER(sq);
4608 		SUM_SQ_PUTCOUNTS(sq, count);
4609 		if (count == sq->sq_rmqcount)
4610 			continue;
4611 
4612 		/* Failed - drop all locks that we have acquired so far */
4613 		if (STRMATED(stp)) {
4614 			STREAM_PUTLOCKS_EXIT(stp);
4615 			STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4616 			STRUNLOCKMATES(stp);
4617 			mutex_exit(&stp->sd_reflock);
4618 			mutex_exit(&stp->sd_mate->sd_reflock);
4619 		} else {
4620 			STREAM_PUTLOCKS_EXIT(stp);
4621 			mutex_exit(&stp->sd_lock);
4622 			mutex_exit(&stp->sd_reflock);
4623 		}
4624 		for (sql2 = sqlist->sqlist_head; sql2 != sql;
4625 		    sql2 = sql2->sql_next) {
4626 			SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4627 			mutex_exit(SQLOCK(sql2->sql_sq));
4628 		}
4629 
4630 		/*
4631 		 * The wait loop below may starve when there are many threads
4632 		 * claiming the syncq. This is especially a problem with permod
4633 		 * syncqs (IP). To lessen the impact of the problem we increment
4634 		 * sq_needexcl and clear fastbits so that putnexts will slow
4635 		 * down and call sqenable instead of draining right away.
4636 		 */
4637 		sq->sq_needexcl++;
4638 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4639 		while (count > sq->sq_rmqcount) {
4640 			sq->sq_flags |= SQ_WANTWAKEUP;
4641 			SQ_PUTLOCKS_EXIT(sq);
4642 			cv_wait(&sq->sq_wait, SQLOCK(sq));
4643 			count = sq->sq_count;
4644 			SQ_PUTLOCKS_ENTER(sq);
4645 			SUM_SQ_PUTCOUNTS(sq, count);
4646 		}
4647 		sq->sq_needexcl--;
4648 		if (sq->sq_needexcl == 0)
4649 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4650 		SQ_PUTLOCKS_EXIT(sq);
4651 		ASSERT(count == sq->sq_rmqcount);
4652 		mutex_exit(SQLOCK(sq));
4653 		goto retry;
4654 	}
4655 }
4656 
4657 /*
4658  * Drop all the locks that strlock acquired.
4659  */
4660 static void
4661 strunlock(struct stdata *stp, sqlist_t *sqlist)
4662 {
4663 	syncql_t *sql;
4664 
4665 	if (STRMATED(stp)) {
4666 		STREAM_PUTLOCKS_EXIT(stp);
4667 		STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4668 		STRUNLOCKMATES(stp);
4669 		mutex_exit(&stp->sd_reflock);
4670 		mutex_exit(&stp->sd_mate->sd_reflock);
4671 	} else {
4672 		STREAM_PUTLOCKS_EXIT(stp);
4673 		mutex_exit(&stp->sd_lock);
4674 		mutex_exit(&stp->sd_reflock);
4675 	}
4676 
4677 	if (sqlist == NULL)
4678 		return;
4679 
4680 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4681 		SQ_PUTLOCKS_EXIT(sql->sql_sq);
4682 		mutex_exit(SQLOCK(sql->sql_sq));
4683 	}
4684 }
4685 
4686 /*
4687  * When the module has service procedure, we need check if the next
4688  * module which has service procedure is in flow control to trigger
4689  * the backenable.
4690  */
4691 static void
4692 backenable_insertedq(queue_t *q)
4693 {
4694 	qband_t	*qbp;
4695 
4696 	claimstr(q);
4697 	if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4698 		if (q->q_next->q_nfsrv->q_flag & QWANTW)
4699 			backenable(q, 0);
4700 
4701 		qbp = q->q_next->q_nfsrv->q_bandp;
4702 		for (; qbp != NULL; qbp = qbp->qb_next)
4703 			if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4704 				backenable(q, qbp->qb_first->b_band);
4705 	}
4706 	releasestr(q);
4707 }
4708 
4709 /*
4710  * Given two read queues, insert a new single one after another.
4711  *
4712  * This routine acquires all the necessary locks in order to change
4713  * q_next and related pointer using strlock().
4714  * It depends on the stream head ensuring that there are no concurrent
4715  * insertq or removeq on the same stream. The stream head ensures this
4716  * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4717  *
4718  * Note that no syncq locks are held during the q_next change. This is
4719  * applied to all streams since, unlike removeq, there is no problem of stale
4720  * pointers when adding a module to the stream. Thus drivers/modules that do a
4721  * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4722  * applied this optimization to all streams.
4723  */
4724 void
4725 insertq(struct stdata *stp, queue_t *new)
4726 {
4727 	queue_t	*after;
4728 	queue_t *wafter;
4729 	queue_t *wnew = _WR(new);
4730 	boolean_t have_fifo = B_FALSE;
4731 
4732 	if (new->q_flag & _QINSERTING) {
4733 		ASSERT(stp->sd_vnode->v_type != VFIFO);
4734 		after = new->q_next;
4735 		wafter = _WR(new->q_next);
4736 	} else {
4737 		after = _RD(stp->sd_wrq);
4738 		wafter = stp->sd_wrq;
4739 	}
4740 
4741 	TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4742 	    "insertq:%p, %p", after, new);
4743 	ASSERT(after->q_flag & QREADR);
4744 	ASSERT(new->q_flag & QREADR);
4745 
4746 	strlock(stp, NULL);
4747 
4748 	/* Do we have a FIFO? */
4749 	if (wafter->q_next == after) {
4750 		have_fifo = B_TRUE;
4751 		wnew->q_next = new;
4752 	} else {
4753 		wnew->q_next = wafter->q_next;
4754 	}
4755 	new->q_next = after;
4756 
4757 	set_nfsrv_ptr(new, wnew, after, wafter);
4758 	/*
4759 	 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4760 	 * so only reset this flag after calling it.
4761 	 */
4762 	new->q_flag &= ~_QINSERTING;
4763 
4764 	if (have_fifo) {
4765 		wafter->q_next = wnew;
4766 	} else {
4767 		if (wafter->q_next)
4768 			_OTHERQ(wafter->q_next)->q_next = new;
4769 		wafter->q_next = wnew;
4770 	}
4771 
4772 	set_qend(new);
4773 	/* The QEND flag might have to be updated for the upstream guy */
4774 	set_qend(after);
4775 
4776 	ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4777 	ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4778 	ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4779 	ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4780 	strsetuio(stp);
4781 
4782 	/*
4783 	 * If this was a module insertion, bump the push count.
4784 	 */
4785 	if (!(new->q_flag & QISDRV))
4786 		stp->sd_pushcnt++;
4787 
4788 	strunlock(stp, NULL);
4789 
4790 	/* check if the write Q needs backenable */
4791 	backenable_insertedq(wnew);
4792 
4793 	/* check if the read Q needs backenable */
4794 	backenable_insertedq(new);
4795 }
4796 
4797 /*
4798  * Given a read queue, unlink it from any neighbors.
4799  *
4800  * This routine acquires all the necessary locks in order to
4801  * change q_next and related pointers and also guard against
4802  * stale references (e.g. through q_next) to the queue that
4803  * is being removed. It also plays part of the role in ensuring
4804  * that the module's/driver's put procedure doesn't get called
4805  * after qprocsoff returns.
4806  *
4807  * Removeq depends on the stream head ensuring that there are
4808  * no concurrent insertq or removeq on the same stream. The
4809  * stream head ensures this using the flags STWOPEN, STRCLOSE and
4810  * STRPLUMB.
4811  *
4812  * The set of locks needed to remove the queue is different in
4813  * different cases:
4814  *
4815  * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4816  * waiting for the syncq reference count to drop to 0 indicating that no
4817  * non-close threads are present anywhere in the stream. This ensures that any
4818  * module/driver can reference q_next in its open, close, put, or service
4819  * procedures.
4820  *
4821  * The sq_rmqcount counter tracks the number of threads inside removeq().
4822  * strlock() ensures that there is either no threads executing inside perimeter
4823  * or there is only a thread calling qprocsoff().
4824  *
4825  * strlock() compares the value of sq_count with the number of threads inside
4826  * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4827  * any threads waiting in strlock() when the sq_rmqcount increases.
4828  */
4829 
4830 void
4831 removeq(queue_t *qp)
4832 {
4833 	queue_t *wqp = _WR(qp);
4834 	struct stdata *stp = STREAM(qp);
4835 	sqlist_t *sqlist = NULL;
4836 	boolean_t isdriver;
4837 	int moved;
4838 	syncq_t *sq = qp->q_syncq;
4839 	syncq_t *wsq = wqp->q_syncq;
4840 
4841 	ASSERT(stp);
4842 
4843 	TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4844 	    "removeq:%p %p", qp, wqp);
4845 	ASSERT(qp->q_flag&QREADR);
4846 
4847 	/*
4848 	 * For queues using Synchronous streams, we must wait for all threads in
4849 	 * rwnext() to drain out before proceeding.
4850 	 */
4851 	if (qp->q_flag & QSYNCSTR) {
4852 		/* First, we need wakeup any threads blocked in rwnext() */
4853 		mutex_enter(SQLOCK(sq));
4854 		if (sq->sq_flags & SQ_WANTWAKEUP) {
4855 			sq->sq_flags &= ~SQ_WANTWAKEUP;
4856 			cv_broadcast(&sq->sq_wait);
4857 		}
4858 		mutex_exit(SQLOCK(sq));
4859 
4860 		if (wsq != sq) {
4861 			mutex_enter(SQLOCK(wsq));
4862 			if (wsq->sq_flags & SQ_WANTWAKEUP) {
4863 				wsq->sq_flags &= ~SQ_WANTWAKEUP;
4864 				cv_broadcast(&wsq->sq_wait);
4865 			}
4866 			mutex_exit(SQLOCK(wsq));
4867 		}
4868 
4869 		mutex_enter(QLOCK(qp));
4870 		while (qp->q_rwcnt > 0) {
4871 			qp->q_flag |= QWANTRMQSYNC;
4872 			cv_wait(&qp->q_wait, QLOCK(qp));
4873 		}
4874 		mutex_exit(QLOCK(qp));
4875 
4876 		mutex_enter(QLOCK(wqp));
4877 		while (wqp->q_rwcnt > 0) {
4878 			wqp->q_flag |= QWANTRMQSYNC;
4879 			cv_wait(&wqp->q_wait, QLOCK(wqp));
4880 		}
4881 		mutex_exit(QLOCK(wqp));
4882 	}
4883 
4884 	mutex_enter(SQLOCK(sq));
4885 	sq->sq_rmqcount++;
4886 	if (sq->sq_flags & SQ_WANTWAKEUP) {
4887 		sq->sq_flags &= ~SQ_WANTWAKEUP;
4888 		cv_broadcast(&sq->sq_wait);
4889 	}
4890 	mutex_exit(SQLOCK(sq));
4891 
4892 	isdriver = (qp->q_flag & QISDRV);
4893 
4894 	sqlist = sqlist_build(qp, stp, STRMATED(stp));
4895 	strlock(stp, sqlist);
4896 
4897 	reset_nfsrv_ptr(qp, wqp);
4898 
4899 	ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4900 	ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4901 	/* Do we have a FIFO? */
4902 	if (wqp->q_next == qp) {
4903 		stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4904 	} else {
4905 		if (wqp->q_next)
4906 			backq(qp)->q_next = qp->q_next;
4907 		if (qp->q_next)
4908 			backq(wqp)->q_next = wqp->q_next;
4909 	}
4910 
4911 	/* The QEND flag might have to be updated for the upstream guy */
4912 	if (qp->q_next)
4913 		set_qend(qp->q_next);
4914 
4915 	ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4916 	ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4917 
4918 	/*
4919 	 * Move any messages destined for the put procedures to the next
4920 	 * syncq in line. Otherwise free them.
4921 	 */
4922 	moved = 0;
4923 	/*
4924 	 * Quick check to see whether there are any messages or events.
4925 	 */
4926 	if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4927 		moved += propagate_syncq(qp);
4928 	if (wqp->q_syncqmsgs != 0 ||
4929 	    (wqp->q_syncq->sq_flags & SQ_EVENTS))
4930 		moved += propagate_syncq(wqp);
4931 
4932 	strsetuio(stp);
4933 
4934 	/*
4935 	 * If this was a module removal, decrement the push count.
4936 	 */
4937 	if (!isdriver)
4938 		stp->sd_pushcnt--;
4939 
4940 	strunlock(stp, sqlist);
4941 	sqlist_free(sqlist);
4942 
4943 	/*
4944 	 * Make sure any messages that were propagated are drained.
4945 	 * Also clear any QFULL bit caused by messages that were propagated.
4946 	 */
4947 
4948 	if (qp->q_next != NULL) {
4949 		clr_qfull(qp);
4950 		/*
4951 		 * For the driver calling qprocsoff, propagate_syncq
4952 		 * frees all the messages instead of putting it in
4953 		 * the stream head
4954 		 */
4955 		if (!isdriver && (moved > 0))
4956 			emptysq(qp->q_next->q_syncq);
4957 	}
4958 	if (wqp->q_next != NULL) {
4959 		clr_qfull(wqp);
4960 		/*
4961 		 * We come here for any pop of a module except for the
4962 		 * case of driver being removed. We don't call emptysq
4963 		 * if we did not move any messages. This will avoid holding
4964 		 * PERMOD syncq locks in emptysq
4965 		 */
4966 		if (moved > 0)
4967 			emptysq(wqp->q_next->q_syncq);
4968 	}
4969 
4970 	mutex_enter(SQLOCK(sq));
4971 	sq->sq_rmqcount--;
4972 	mutex_exit(SQLOCK(sq));
4973 }
4974 
4975 /*
4976  * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
4977  * SQ_WRITER) on a syncq.
4978  * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
4979  * sync queue and waits until sq_count reaches maxcnt.
4980  *
4981  * if maxcnt is -1 there's no need to grab sq_putlocks since the caller
4982  * does not care about putnext threads that are in the middle of calling put
4983  * entry points.
4984  *
4985  * This routine is used for both inner and outer syncqs.
4986  */
4987 static void
4988 blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
4989 {
4990 	uint16_t count = 0;
4991 
4992 	mutex_enter(SQLOCK(sq));
4993 	/*
4994 	 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
4995 	 * SQ_FROZEN will be set if there is a frozen stream that has a
4996 	 * queue which also refers to this "shared" syncq.
4997 	 * SQ_BLOCKED will be set if there is "off" queue which also
4998 	 * refers to this "shared" syncq.
4999 	 */
5000 	if (maxcnt != -1) {
5001 		count = sq->sq_count;
5002 		SQ_PUTLOCKS_ENTER(sq);
5003 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5004 		SUM_SQ_PUTCOUNTS(sq, count);
5005 	}
5006 	sq->sq_needexcl++;
5007 	ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5008 
5009 	while ((sq->sq_flags & flag) ||
5010 	    (maxcnt != -1 && count > (unsigned)maxcnt)) {
5011 		sq->sq_flags |= SQ_WANTWAKEUP;
5012 		if (maxcnt != -1) {
5013 			SQ_PUTLOCKS_EXIT(sq);
5014 		}
5015 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5016 		if (maxcnt != -1) {
5017 			count = sq->sq_count;
5018 			SQ_PUTLOCKS_ENTER(sq);
5019 			SUM_SQ_PUTCOUNTS(sq, count);
5020 		}
5021 	}
5022 	sq->sq_needexcl--;
5023 	sq->sq_flags |= flag;
5024 	ASSERT(maxcnt == -1 || count == maxcnt);
5025 	if (maxcnt != -1) {
5026 		if (sq->sq_needexcl == 0) {
5027 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5028 		}
5029 		SQ_PUTLOCKS_EXIT(sq);
5030 	} else if (sq->sq_needexcl == 0) {
5031 		SQ_PUTCOUNT_SETFAST(sq);
5032 	}
5033 
5034 	mutex_exit(SQLOCK(sq));
5035 }
5036 
5037 /*
5038  * Reset a flag that was set with blocksq.
5039  *
5040  * Can not use this routine to reset SQ_WRITER.
5041  *
5042  * If "isouter" is set then the syncq is assumed to be an outer perimeter
5043  * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
5044  * to handle the queued qwriter operations.
5045  *
5046  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5047  * sq_putlocks are used.
5048  */
5049 static void
5050 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
5051 {
5052 	uint16_t flags;
5053 
5054 	mutex_enter(SQLOCK(sq));
5055 	ASSERT(resetflag != SQ_WRITER);
5056 	ASSERT(sq->sq_flags & resetflag);
5057 	flags = sq->sq_flags & ~resetflag;
5058 	sq->sq_flags = flags;
5059 	if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
5060 		if (flags & SQ_WANTWAKEUP) {
5061 			flags &= ~SQ_WANTWAKEUP;
5062 			cv_broadcast(&sq->sq_wait);
5063 		}
5064 		sq->sq_flags = flags;
5065 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5066 			if (!isouter) {
5067 				/* drain_syncq drops SQLOCK */
5068 				drain_syncq(sq);
5069 				return;
5070 			}
5071 		}
5072 	}
5073 	mutex_exit(SQLOCK(sq));
5074 }
5075 
5076 /*
5077  * Reset a flag that was set with blocksq.
5078  * Does not drain the syncq. Use emptysq() for that.
5079  * Returns 1 if SQ_QUEUED is set. Otherwise 0.
5080  *
5081  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5082  * sq_putlocks are used.
5083  */
5084 static int
5085 dropsq(syncq_t *sq, uint16_t resetflag)
5086 {
5087 	uint16_t flags;
5088 
5089 	mutex_enter(SQLOCK(sq));
5090 	ASSERT(sq->sq_flags & resetflag);
5091 	flags = sq->sq_flags & ~resetflag;
5092 	if (flags & SQ_WANTWAKEUP) {
5093 		flags &= ~SQ_WANTWAKEUP;
5094 		cv_broadcast(&sq->sq_wait);
5095 	}
5096 	sq->sq_flags = flags;
5097 	mutex_exit(SQLOCK(sq));
5098 	if (flags & SQ_QUEUED)
5099 		return (1);
5100 	return (0);
5101 }
5102 
5103 /*
5104  * Empty all the messages on a syncq.
5105  *
5106  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5107  * sq_putlocks are used.
5108  */
5109 static void
5110 emptysq(syncq_t *sq)
5111 {
5112 	uint16_t flags;
5113 
5114 	mutex_enter(SQLOCK(sq));
5115 	flags = sq->sq_flags;
5116 	if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5117 		/*
5118 		 * To prevent potential recursive invocation of drain_syncq we
5119 		 * do not call drain_syncq if count is non-zero.
5120 		 */
5121 		if (sq->sq_count == 0) {
5122 			/* drain_syncq() drops SQLOCK */
5123 			drain_syncq(sq);
5124 			return;
5125 		} else
5126 			sqenable(sq);
5127 	}
5128 	mutex_exit(SQLOCK(sq));
5129 }
5130 
5131 /*
5132  * Ordered insert while removing duplicates.
5133  */
5134 static void
5135 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
5136 {
5137 	syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
5138 
5139 	prev_sqlpp = &sqlist->sqlist_head;
5140 	while ((sqlp = *prev_sqlpp) != NULL) {
5141 		if (sqlp->sql_sq >= sqp) {
5142 			if (sqlp->sql_sq == sqp)	/* duplicate */
5143 				return;
5144 			break;
5145 		}
5146 		prev_sqlpp = &sqlp->sql_next;
5147 	}
5148 	new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
5149 	ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
5150 	new_sqlp->sql_next = sqlp;
5151 	new_sqlp->sql_sq = sqp;
5152 	*prev_sqlpp = new_sqlp;
5153 }
5154 
5155 /*
5156  * Walk the write side queues until we hit either the driver
5157  * or a twist in the stream (_SAMESTR will return false in both
5158  * these cases) then turn around and walk the read side queues
5159  * back up to the stream head.
5160  */
5161 static void
5162 sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5163 {
5164 	while (q != NULL) {
5165 		sqlist_insert(sqlist, q->q_syncq);
5166 
5167 		if (_SAMESTR(q))
5168 			q = q->q_next;
5169 		else if (!(q->q_flag & QREADR))
5170 			q = _RD(q);
5171 		else
5172 			q = NULL;
5173 	}
5174 }
5175 
5176 /*
5177  * Allocate and build a list of all syncqs in a stream and the syncq(s)
5178  * associated with the "q" parameter. The resulting list is sorted in a
5179  * canonical order and is free of duplicates.
5180  * Assumes the passed queue is a _RD(q).
5181  */
5182 static sqlist_t *
5183 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5184 {
5185 	sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5186 
5187 	/*
5188 	 * start with the current queue/qpair
5189 	 */
5190 	ASSERT(q->q_flag & QREADR);
5191 
5192 	sqlist_insert(sqlist, q->q_syncq);
5193 	sqlist_insert(sqlist, _WR(q)->q_syncq);
5194 
5195 	sqlist_insertall(sqlist, stp->sd_wrq);
5196 	if (do_twist)
5197 		sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5198 
5199 	return (sqlist);
5200 }
5201 
5202 static sqlist_t *
5203 sqlist_alloc(struct stdata *stp, int kmflag)
5204 {
5205 	size_t sqlist_size;
5206 	sqlist_t *sqlist;
5207 
5208 	/*
5209 	 * Allocate 2 syncql_t's for each pushed module. Note that
5210 	 * the sqlist_t structure already has 4 syncql_t's built in:
5211 	 * 2 for the stream head, and 2 for the driver/other stream head.
5212 	 */
5213 	sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5214 	    sizeof (sqlist_t);
5215 	if (STRMATED(stp))
5216 		sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5217 	sqlist = kmem_alloc(sqlist_size, kmflag);
5218 
5219 	sqlist->sqlist_head = NULL;
5220 	sqlist->sqlist_size = sqlist_size;
5221 	sqlist->sqlist_index = 0;
5222 
5223 	return (sqlist);
5224 }
5225 
5226 /*
5227  * Free the list created by sqlist_alloc()
5228  */
5229 static void
5230 sqlist_free(sqlist_t *sqlist)
5231 {
5232 	kmem_free(sqlist, sqlist->sqlist_size);
5233 }
5234 
5235 /*
5236  * Prevent any new entries into any syncq in this stream.
5237  * Used by freezestr.
5238  */
5239 void
5240 strblock(queue_t *q)
5241 {
5242 	struct stdata	*stp;
5243 	syncql_t	*sql;
5244 	sqlist_t	*sqlist;
5245 
5246 	q = _RD(q);
5247 
5248 	stp = STREAM(q);
5249 	ASSERT(stp != NULL);
5250 
5251 	/*
5252 	 * Get a sorted list with all the duplicates removed containing
5253 	 * all the syncqs referenced by this stream.
5254 	 */
5255 	sqlist = sqlist_build(q, stp, B_FALSE);
5256 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5257 		blocksq(sql->sql_sq, SQ_FROZEN, -1);
5258 	sqlist_free(sqlist);
5259 }
5260 
5261 /*
5262  * Release the block on new entries into this stream
5263  */
5264 void
5265 strunblock(queue_t *q)
5266 {
5267 	struct stdata	*stp;
5268 	syncql_t	*sql;
5269 	sqlist_t	*sqlist;
5270 	int		drain_needed;
5271 
5272 	q = _RD(q);
5273 
5274 	/*
5275 	 * Get a sorted list with all the duplicates removed containing
5276 	 * all the syncqs referenced by this stream.
5277 	 * Have to drop the SQ_FROZEN flag on all the syncqs before
5278 	 * starting to drain them; otherwise the draining might
5279 	 * cause a freezestr in some module on the stream (which
5280 	 * would deadlock.)
5281 	 */
5282 	stp = STREAM(q);
5283 	ASSERT(stp != NULL);
5284 	sqlist = sqlist_build(q, stp, B_FALSE);
5285 	drain_needed = 0;
5286 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5287 		drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5288 	if (drain_needed) {
5289 		for (sql = sqlist->sqlist_head; sql != NULL;
5290 		    sql = sql->sql_next)
5291 			emptysq(sql->sql_sq);
5292 	}
5293 	sqlist_free(sqlist);
5294 }
5295 
5296 #ifdef DEBUG
5297 static int
5298 qprocsareon(queue_t *rq)
5299 {
5300 	if (rq->q_next == NULL)
5301 		return (0);
5302 	return (_WR(rq->q_next)->q_next == _WR(rq));
5303 }
5304 
5305 int
5306 qclaimed(queue_t *q)
5307 {
5308 	uint_t count;
5309 
5310 	count = q->q_syncq->sq_count;
5311 	SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5312 	return (count != 0);
5313 }
5314 
5315 /*
5316  * Check if anyone has frozen this stream with freezestr
5317  */
5318 int
5319 frozenstr(queue_t *q)
5320 {
5321 	return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5322 }
5323 #endif /* DEBUG */
5324 
5325 /*
5326  * Enter a queue.
5327  * Obsoleted interface. Should not be used.
5328  */
5329 void
5330 enterq(queue_t *q)
5331 {
5332 	entersq(q->q_syncq, SQ_CALLBACK);
5333 }
5334 
5335 void
5336 leaveq(queue_t *q)
5337 {
5338 	leavesq(q->q_syncq, SQ_CALLBACK);
5339 }
5340 
5341 /*
5342  * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5343  * to check.
5344  * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5345  * calls and the running of open, close and service procedures.
5346  *
5347  * if c_inner bit is set no need to grab sq_putlocks since we don't care
5348  * if other threads have entered or are entering put entry point.
5349  *
5350  * if c_inner bit is set it might have been posible to use
5351  * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5352  * open/close path for IP) but since the count may need to be decremented in
5353  * qwait() we wouldn't know which counter to decrement. Currently counter is
5354  * selected by current cpu_seqid and current CPU can change at any moment. XXX
5355  * in the future we might use curthread id bits to select the counter and this
5356  * would stay constant across routine calls.
5357  */
5358 void
5359 entersq(syncq_t *sq, int entrypoint)
5360 {
5361 	uint16_t	count = 0;
5362 	uint16_t	flags;
5363 	uint16_t	waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5364 	uint16_t	type;
5365 	uint_t		c_inner = entrypoint & SQ_CI;
5366 	uint_t		c_outer = entrypoint & SQ_CO;
5367 
5368 	/*
5369 	 * Increment ref count to keep closes out of this queue.
5370 	 */
5371 	ASSERT(sq);
5372 	ASSERT(c_inner && c_outer);
5373 	mutex_enter(SQLOCK(sq));
5374 	flags = sq->sq_flags;
5375 	type = sq->sq_type;
5376 	if (!(type & c_inner)) {
5377 		/* Make sure all putcounts now use slowlock. */
5378 		count = sq->sq_count;
5379 		SQ_PUTLOCKS_ENTER(sq);
5380 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5381 		SUM_SQ_PUTCOUNTS(sq, count);
5382 		sq->sq_needexcl++;
5383 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5384 		waitflags |= SQ_MESSAGES;
5385 	}
5386 	/*
5387 	 * Wait until we can enter the inner perimeter.
5388 	 * If we want exclusive access we wait until sq_count is 0.
5389 	 * We have to do this before entering the outer perimeter in order
5390 	 * to preserve put/close message ordering.
5391 	 */
5392 	while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5393 		sq->sq_flags = flags | SQ_WANTWAKEUP;
5394 		if (!(type & c_inner)) {
5395 			SQ_PUTLOCKS_EXIT(sq);
5396 		}
5397 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5398 		if (!(type & c_inner)) {
5399 			count = sq->sq_count;
5400 			SQ_PUTLOCKS_ENTER(sq);
5401 			SUM_SQ_PUTCOUNTS(sq, count);
5402 		}
5403 		flags = sq->sq_flags;
5404 	}
5405 
5406 	if (!(type & c_inner)) {
5407 		ASSERT(sq->sq_needexcl > 0);
5408 		sq->sq_needexcl--;
5409 		if (sq->sq_needexcl == 0) {
5410 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5411 		}
5412 	}
5413 
5414 	/* Check if we need to enter the outer perimeter */
5415 	if (!(type & c_outer)) {
5416 		/*
5417 		 * We have to enter the outer perimeter exclusively before
5418 		 * we can increment sq_count to avoid deadlock. This implies
5419 		 * that we have to re-check sq_flags and sq_count.
5420 		 *
5421 		 * is it possible to have c_inner set when c_outer is not set?
5422 		 */
5423 		if (!(type & c_inner)) {
5424 			SQ_PUTLOCKS_EXIT(sq);
5425 		}
5426 		mutex_exit(SQLOCK(sq));
5427 		outer_enter(sq->sq_outer, SQ_GOAWAY);
5428 		mutex_enter(SQLOCK(sq));
5429 		flags = sq->sq_flags;
5430 		/*
5431 		 * there should be no need to recheck sq_putcounts
5432 		 * because outer_enter() has already waited for them to clear
5433 		 * after setting SQ_WRITER.
5434 		 */
5435 		count = sq->sq_count;
5436 #ifdef DEBUG
5437 		/*
5438 		 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5439 		 * of doing an ASSERT internally. Others should do
5440 		 * something like
5441 		 *	 ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5442 		 * without the need to #ifdef DEBUG it.
5443 		 */
5444 		SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5445 #endif
5446 		while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5447 		    (!(type & c_inner) && count != 0)) {
5448 			sq->sq_flags = flags | SQ_WANTWAKEUP;
5449 			cv_wait(&sq->sq_wait, SQLOCK(sq));
5450 			count = sq->sq_count;
5451 			flags = sq->sq_flags;
5452 		}
5453 	}
5454 
5455 	sq->sq_count++;
5456 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5457 	if (!(type & c_inner)) {
5458 		/* Exclusive entry */
5459 		ASSERT(sq->sq_count == 1);
5460 		sq->sq_flags |= SQ_EXCL;
5461 		if (type & c_outer) {
5462 			SQ_PUTLOCKS_EXIT(sq);
5463 		}
5464 	}
5465 	mutex_exit(SQLOCK(sq));
5466 }
5467 
5468 /*
5469  * leave a syncq. announce to framework that closes may proceed.
5470  * c_inner and c_outer specifies which concurrency bits
5471  * to check.
5472  *
5473  * must never be called from driver or module put entry point.
5474  *
5475  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5476  * sq_putlocks are used.
5477  */
5478 void
5479 leavesq(syncq_t *sq, int entrypoint)
5480 {
5481 	uint16_t	flags;
5482 	uint16_t	type;
5483 	uint_t		c_outer = entrypoint & SQ_CO;
5484 #ifdef DEBUG
5485 	uint_t		c_inner = entrypoint & SQ_CI;
5486 #endif
5487 
5488 	/*
5489 	 * decrement ref count, drain the syncq if possible, and wake up
5490 	 * any waiting close.
5491 	 */
5492 	ASSERT(sq);
5493 	ASSERT(c_inner && c_outer);
5494 	mutex_enter(SQLOCK(sq));
5495 	flags = sq->sq_flags;
5496 	type = sq->sq_type;
5497 	if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5498 
5499 		if (flags & SQ_WANTWAKEUP) {
5500 			flags &= ~SQ_WANTWAKEUP;
5501 			cv_broadcast(&sq->sq_wait);
5502 		}
5503 		if (flags & SQ_WANTEXWAKEUP) {
5504 			flags &= ~SQ_WANTEXWAKEUP;
5505 			cv_broadcast(&sq->sq_exitwait);
5506 		}
5507 
5508 		if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5509 			/*
5510 			 * The syncq needs to be drained. "Exit" the syncq
5511 			 * before calling drain_syncq.
5512 			 */
5513 			ASSERT(sq->sq_count != 0);
5514 			sq->sq_count--;
5515 			ASSERT((flags & SQ_EXCL) || (type & c_inner));
5516 			sq->sq_flags = flags & ~SQ_EXCL;
5517 			drain_syncq(sq);
5518 			ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5519 			/* Check if we need to exit the outer perimeter */
5520 			/* XXX will this ever be true? */
5521 			if (!(type & c_outer))
5522 				outer_exit(sq->sq_outer);
5523 			return;
5524 		}
5525 	}
5526 	ASSERT(sq->sq_count != 0);
5527 	sq->sq_count--;
5528 	ASSERT((flags & SQ_EXCL) || (type & c_inner));
5529 	sq->sq_flags = flags & ~SQ_EXCL;
5530 	mutex_exit(SQLOCK(sq));
5531 
5532 	/* Check if we need to exit the outer perimeter */
5533 	if (!(sq->sq_type & c_outer))
5534 		outer_exit(sq->sq_outer);
5535 }
5536 
5537 /*
5538  * Prevent q_next from changing in this stream by incrementing sq_count.
5539  *
5540  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5541  * sq_putlocks are used.
5542  */
5543 void
5544 claimq(queue_t *qp)
5545 {
5546 	syncq_t	*sq = qp->q_syncq;
5547 
5548 	mutex_enter(SQLOCK(sq));
5549 	sq->sq_count++;
5550 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5551 	mutex_exit(SQLOCK(sq));
5552 }
5553 
5554 /*
5555  * Undo claimq.
5556  *
5557  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5558  * sq_putlocks are used.
5559  */
5560 void
5561 releaseq(queue_t *qp)
5562 {
5563 	syncq_t	*sq = qp->q_syncq;
5564 	uint16_t flags;
5565 
5566 	mutex_enter(SQLOCK(sq));
5567 	ASSERT(sq->sq_count > 0);
5568 	sq->sq_count--;
5569 
5570 	flags = sq->sq_flags;
5571 	if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5572 		if (flags & SQ_WANTWAKEUP) {
5573 			flags &= ~SQ_WANTWAKEUP;
5574 			cv_broadcast(&sq->sq_wait);
5575 		}
5576 		sq->sq_flags = flags;
5577 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5578 			/*
5579 			 * To prevent potential recursive invocation of
5580 			 * drain_syncq we do not call drain_syncq if count is
5581 			 * non-zero.
5582 			 */
5583 			if (sq->sq_count == 0) {
5584 				drain_syncq(sq);
5585 				return;
5586 			} else
5587 				sqenable(sq);
5588 		}
5589 	}
5590 	mutex_exit(SQLOCK(sq));
5591 }
5592 
5593 /*
5594  * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5595  */
5596 void
5597 claimstr(queue_t *qp)
5598 {
5599 	struct stdata *stp = STREAM(qp);
5600 
5601 	mutex_enter(&stp->sd_reflock);
5602 	stp->sd_refcnt++;
5603 	ASSERT(stp->sd_refcnt != 0);	/* Wraparound */
5604 	mutex_exit(&stp->sd_reflock);
5605 }
5606 
5607 /*
5608  * Undo claimstr.
5609  */
5610 void
5611 releasestr(queue_t *qp)
5612 {
5613 	struct stdata *stp = STREAM(qp);
5614 
5615 	mutex_enter(&stp->sd_reflock);
5616 	ASSERT(stp->sd_refcnt != 0);
5617 	if (--stp->sd_refcnt == 0)
5618 		cv_broadcast(&stp->sd_refmonitor);
5619 	mutex_exit(&stp->sd_reflock);
5620 }
5621 
5622 static syncq_t *
5623 new_syncq(void)
5624 {
5625 	return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5626 }
5627 
5628 static void
5629 free_syncq(syncq_t *sq)
5630 {
5631 	ASSERT(sq->sq_head == NULL);
5632 	ASSERT(sq->sq_outer == NULL);
5633 	ASSERT(sq->sq_callbpend == NULL);
5634 	ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5635 	    (sq->sq_onext == sq && sq->sq_oprev == sq));
5636 
5637 	if (sq->sq_ciputctrl != NULL) {
5638 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5639 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5640 		    sq->sq_nciputctrl, 0);
5641 		ASSERT(ciputctrl_cache != NULL);
5642 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5643 	}
5644 
5645 	sq->sq_tail = NULL;
5646 	sq->sq_evhead = NULL;
5647 	sq->sq_evtail = NULL;
5648 	sq->sq_ciputctrl = NULL;
5649 	sq->sq_nciputctrl = 0;
5650 	sq->sq_count = 0;
5651 	sq->sq_rmqcount = 0;
5652 	sq->sq_callbflags = 0;
5653 	sq->sq_cancelid = 0;
5654 	sq->sq_next = NULL;
5655 	sq->sq_needexcl = 0;
5656 	sq->sq_svcflags = 0;
5657 	sq->sq_nqueues = 0;
5658 	sq->sq_pri = 0;
5659 	sq->sq_onext = NULL;
5660 	sq->sq_oprev = NULL;
5661 	sq->sq_flags = 0;
5662 	sq->sq_type = 0;
5663 	sq->sq_servcount = 0;
5664 
5665 	kmem_cache_free(syncq_cache, sq);
5666 }
5667 
5668 /* Outer perimeter code */
5669 
5670 /*
5671  * The outer syncq uses the fields and flags in the syncq slightly
5672  * differently from the inner syncqs.
5673  *	sq_count	Incremented when there are pending or running
5674  *			writers at the outer perimeter to prevent the set of
5675  *			inner syncqs that belong to the outer perimeter from
5676  *			changing.
5677  *	sq_head/tail	List of deferred qwriter(OUTER) operations.
5678  *
5679  *	SQ_BLOCKED	Set to prevent traversing of sq_next,sq_prev while
5680  *			inner syncqs are added to or removed from the
5681  *			outer perimeter.
5682  *	SQ_QUEUED	sq_head/tail has messages or eventsqueued.
5683  *
5684  *	SQ_WRITER	A thread is currently traversing all the inner syncqs
5685  *			setting the SQ_WRITER flag.
5686  */
5687 
5688 /*
5689  * Get write access at the outer perimeter.
5690  * Note that read access is done by entersq, putnext, and put by simply
5691  * incrementing sq_count in the inner syncq.
5692  *
5693  * Waits until "flags" is no longer set in the outer to prevent multiple
5694  * threads from having write access at the same time. SQ_WRITER has to be part
5695  * of "flags".
5696  *
5697  * Increases sq_count on the outer syncq to keep away outer_insert/remove
5698  * until the outer_exit is finished.
5699  *
5700  * outer_enter is vulnerable to starvation since it does not prevent new
5701  * threads from entering the inner syncqs while it is waiting for sq_count to
5702  * go to zero.
5703  */
5704 void
5705 outer_enter(syncq_t *outer, uint16_t flags)
5706 {
5707 	syncq_t	*sq;
5708 	int	wait_needed;
5709 	uint16_t	count;
5710 
5711 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5712 	    outer->sq_oprev != NULL);
5713 	ASSERT(flags & SQ_WRITER);
5714 
5715 retry:
5716 	mutex_enter(SQLOCK(outer));
5717 	while (outer->sq_flags & flags) {
5718 		outer->sq_flags |= SQ_WANTWAKEUP;
5719 		cv_wait(&outer->sq_wait, SQLOCK(outer));
5720 	}
5721 
5722 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5723 	outer->sq_flags |= SQ_WRITER;
5724 	outer->sq_count++;
5725 	ASSERT(outer->sq_count != 0);	/* wraparound */
5726 	wait_needed = 0;
5727 	/*
5728 	 * Set SQ_WRITER on all the inner syncqs while holding
5729 	 * the SQLOCK on the outer syncq. This ensures that the changing
5730 	 * of SQ_WRITER is atomic under the outer SQLOCK.
5731 	 */
5732 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5733 		mutex_enter(SQLOCK(sq));
5734 		count = sq->sq_count;
5735 		SQ_PUTLOCKS_ENTER(sq);
5736 		sq->sq_flags |= SQ_WRITER;
5737 		SUM_SQ_PUTCOUNTS(sq, count);
5738 		if (count != 0)
5739 			wait_needed = 1;
5740 		SQ_PUTLOCKS_EXIT(sq);
5741 		mutex_exit(SQLOCK(sq));
5742 	}
5743 	mutex_exit(SQLOCK(outer));
5744 
5745 	/*
5746 	 * Get everybody out of the syncqs sequentially.
5747 	 * Note that we don't actually need to aqiure the PUTLOCKS, since
5748 	 * we have already cleared the fastbit, and set QWRITER.  By
5749 	 * definition, the count can not increase since putnext will
5750 	 * take the slowlock path (and the purpose of aquiring the
5751 	 * putlocks was to make sure it didn't increase while we were
5752 	 * waiting).
5753 	 *
5754 	 * Note that we still aquire the PUTLOCKS to be safe.
5755 	 */
5756 	if (wait_needed) {
5757 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5758 			mutex_enter(SQLOCK(sq));
5759 			count = sq->sq_count;
5760 			SQ_PUTLOCKS_ENTER(sq);
5761 			SUM_SQ_PUTCOUNTS(sq, count);
5762 			while (count != 0) {
5763 				sq->sq_flags |= SQ_WANTWAKEUP;
5764 				SQ_PUTLOCKS_EXIT(sq);
5765 				cv_wait(&sq->sq_wait, SQLOCK(sq));
5766 				count = sq->sq_count;
5767 				SQ_PUTLOCKS_ENTER(sq);
5768 				SUM_SQ_PUTCOUNTS(sq, count);
5769 			}
5770 			SQ_PUTLOCKS_EXIT(sq);
5771 			mutex_exit(SQLOCK(sq));
5772 		}
5773 		/*
5774 		 * Verify that none of the flags got set while we
5775 		 * were waiting for the sq_counts to drop.
5776 		 * If this happens we exit and retry entering the
5777 		 * outer perimeter.
5778 		 */
5779 		mutex_enter(SQLOCK(outer));
5780 		if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5781 			mutex_exit(SQLOCK(outer));
5782 			outer_exit(outer);
5783 			goto retry;
5784 		}
5785 		mutex_exit(SQLOCK(outer));
5786 	}
5787 }
5788 
5789 /*
5790  * Drop the write access at the outer perimeter.
5791  * Read access is dropped implicitly (by putnext, put, and leavesq) by
5792  * decrementing sq_count.
5793  */
5794 void
5795 outer_exit(syncq_t *outer)
5796 {
5797 	syncq_t	*sq;
5798 	int	 drain_needed;
5799 	uint16_t flags;
5800 
5801 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5802 	    outer->sq_oprev != NULL);
5803 	ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5804 
5805 	/*
5806 	 * Atomically (from the perspective of threads calling become_writer)
5807 	 * drop the write access at the outer perimeter by holding
5808 	 * SQLOCK(outer) across all the dropsq calls and the resetting of
5809 	 * SQ_WRITER.
5810 	 * This defines a locking order between the outer perimeter
5811 	 * SQLOCK and the inner perimeter SQLOCKs.
5812 	 */
5813 	mutex_enter(SQLOCK(outer));
5814 	flags = outer->sq_flags;
5815 	ASSERT(outer->sq_flags & SQ_WRITER);
5816 	if (flags & SQ_QUEUED) {
5817 		write_now(outer);
5818 		flags = outer->sq_flags;
5819 	}
5820 
5821 	/*
5822 	 * sq_onext is stable since sq_count has not yet been decreased.
5823 	 * Reset the SQ_WRITER flags in all syncqs.
5824 	 * After dropping SQ_WRITER on the outer syncq we empty all the
5825 	 * inner syncqs.
5826 	 */
5827 	drain_needed = 0;
5828 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5829 		drain_needed += dropsq(sq, SQ_WRITER);
5830 	ASSERT(!(outer->sq_flags & SQ_QUEUED));
5831 	flags &= ~SQ_WRITER;
5832 	if (drain_needed) {
5833 		outer->sq_flags = flags;
5834 		mutex_exit(SQLOCK(outer));
5835 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5836 			emptysq(sq);
5837 		mutex_enter(SQLOCK(outer));
5838 		flags = outer->sq_flags;
5839 	}
5840 	if (flags & SQ_WANTWAKEUP) {
5841 		flags &= ~SQ_WANTWAKEUP;
5842 		cv_broadcast(&outer->sq_wait);
5843 	}
5844 	outer->sq_flags = flags;
5845 	ASSERT(outer->sq_count > 0);
5846 	outer->sq_count--;
5847 	mutex_exit(SQLOCK(outer));
5848 }
5849 
5850 /*
5851  * Add another syncq to an outer perimeter.
5852  * Block out all other access to the outer perimeter while it is being
5853  * changed using blocksq.
5854  * Assumes that the caller has *not* done an outer_enter.
5855  *
5856  * Vulnerable to starvation in blocksq.
5857  */
5858 static void
5859 outer_insert(syncq_t *outer, syncq_t *sq)
5860 {
5861 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5862 	    outer->sq_oprev != NULL);
5863 	ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5864 	    sq->sq_oprev == NULL);	/* Can't be in an outer perimeter */
5865 
5866 	/* Get exclusive access to the outer perimeter list */
5867 	blocksq(outer, SQ_BLOCKED, 0);
5868 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5869 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5870 
5871 	mutex_enter(SQLOCK(sq));
5872 	sq->sq_outer = outer;
5873 	outer->sq_onext->sq_oprev = sq;
5874 	sq->sq_onext = outer->sq_onext;
5875 	outer->sq_onext = sq;
5876 	sq->sq_oprev = outer;
5877 	mutex_exit(SQLOCK(sq));
5878 	unblocksq(outer, SQ_BLOCKED, 1);
5879 }
5880 
5881 /*
5882  * Remove a syncq from an outer perimeter.
5883  * Block out all other access to the outer perimeter while it is being
5884  * changed using blocksq.
5885  * Assumes that the caller has *not* done an outer_enter.
5886  *
5887  * Vulnerable to starvation in blocksq.
5888  */
5889 static void
5890 outer_remove(syncq_t *outer, syncq_t *sq)
5891 {
5892 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5893 	    outer->sq_oprev != NULL);
5894 	ASSERT(sq->sq_outer == outer);
5895 
5896 	/* Get exclusive access to the outer perimeter list */
5897 	blocksq(outer, SQ_BLOCKED, 0);
5898 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5899 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5900 
5901 	mutex_enter(SQLOCK(sq));
5902 	sq->sq_outer = NULL;
5903 	sq->sq_onext->sq_oprev = sq->sq_oprev;
5904 	sq->sq_oprev->sq_onext = sq->sq_onext;
5905 	sq->sq_oprev = sq->sq_onext = NULL;
5906 	mutex_exit(SQLOCK(sq));
5907 	unblocksq(outer, SQ_BLOCKED, 1);
5908 }
5909 
5910 /*
5911  * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5912  * If this is the first callback for this outer perimeter then add
5913  * this outer perimeter to the list of outer perimeters that
5914  * the qwriter_outer_thread will process.
5915  *
5916  * Increments sq_count in the outer syncq to prevent the membership
5917  * of the outer perimeter (in terms of inner syncqs) to change while
5918  * the callback is pending.
5919  */
5920 static void
5921 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5922 {
5923 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5924 
5925 	mp->b_prev = (mblk_t *)func;
5926 	mp->b_queue = q;
5927 	mp->b_next = NULL;
5928 	outer->sq_count++;	/* Decremented when dequeued */
5929 	ASSERT(outer->sq_count != 0);	/* Wraparound */
5930 	if (outer->sq_evhead == NULL) {
5931 		/* First message. */
5932 		outer->sq_evhead = outer->sq_evtail = mp;
5933 		outer->sq_flags |= SQ_EVENTS;
5934 		mutex_exit(SQLOCK(outer));
5935 		STRSTAT(qwr_outer);
5936 		(void) taskq_dispatch(streams_taskq,
5937 		    (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5938 	} else {
5939 		ASSERT(outer->sq_flags & SQ_EVENTS);
5940 		outer->sq_evtail->b_next = mp;
5941 		outer->sq_evtail = mp;
5942 		mutex_exit(SQLOCK(outer));
5943 	}
5944 }
5945 
5946 /*
5947  * Try and upgrade to write access at the outer perimeter. If this can
5948  * not be done without blocking then queue the callback to be done
5949  * by the qwriter_outer_thread.
5950  *
5951  * This routine can only be called from put or service procedures plus
5952  * asynchronous callback routines that have properly entered to
5953  * queue (with entersq.) Thus qwriter(OUTER) assumes the caller has one claim
5954  * on the syncq associated with q.
5955  */
5956 void
5957 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
5958 {
5959 	syncq_t	*osq, *sq, *outer;
5960 	int	failed;
5961 	uint16_t flags;
5962 
5963 	osq = q->q_syncq;
5964 	outer = osq->sq_outer;
5965 	if (outer == NULL)
5966 		panic("qwriter(PERIM_OUTER): no outer perimeter");
5967 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5968 	    outer->sq_oprev != NULL);
5969 
5970 	mutex_enter(SQLOCK(outer));
5971 	flags = outer->sq_flags;
5972 	/*
5973 	 * If some thread is traversing sq_next, or if we are blocked by
5974 	 * outer_insert or outer_remove, or if the we already have queued
5975 	 * callbacks, then queue this callback for later processing.
5976 	 *
5977 	 * Also queue the qwriter for an interrupt thread in order
5978 	 * to reduce the time spent running at high IPL.
5979 	 * to identify there are events.
5980 	 */
5981 	if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
5982 		/*
5983 		 * Queue the become_writer request.
5984 		 * The queueing is atomic under SQLOCK(outer) in order
5985 		 * to synchronize with outer_exit.
5986 		 * queue_writer will drop the outer SQLOCK
5987 		 */
5988 		if (flags & SQ_BLOCKED) {
5989 			/* Must set SQ_WRITER on inner perimeter */
5990 			mutex_enter(SQLOCK(osq));
5991 			osq->sq_flags |= SQ_WRITER;
5992 			mutex_exit(SQLOCK(osq));
5993 		} else {
5994 			if (!(flags & SQ_WRITER)) {
5995 				/*
5996 				 * The outer could have been SQ_BLOCKED thus
5997 				 * SQ_WRITER might not be set on the inner.
5998 				 */
5999 				mutex_enter(SQLOCK(osq));
6000 				osq->sq_flags |= SQ_WRITER;
6001 				mutex_exit(SQLOCK(osq));
6002 			}
6003 			ASSERT(osq->sq_flags & SQ_WRITER);
6004 		}
6005 		queue_writer(outer, func, q, mp);
6006 		return;
6007 	}
6008 	/*
6009 	 * We are half-way to exclusive access to the outer perimeter.
6010 	 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
6011 	 * while the inner syncqs are traversed.
6012 	 */
6013 	outer->sq_count++;
6014 	ASSERT(outer->sq_count != 0);	/* wraparound */
6015 	flags |= SQ_WRITER;
6016 	/*
6017 	 * Check if we can run the function immediately. Mark all
6018 	 * syncqs with the writer flag to prevent new entries into
6019 	 * put and service procedures.
6020 	 *
6021 	 * Set SQ_WRITER on all the inner syncqs while holding
6022 	 * the SQLOCK on the outer syncq. This ensures that the changing
6023 	 * of SQ_WRITER is atomic under the outer SQLOCK.
6024 	 */
6025 	failed = 0;
6026 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
6027 		uint16_t count;
6028 		uint_t	maxcnt = (sq == osq) ? 1 : 0;
6029 
6030 		mutex_enter(SQLOCK(sq));
6031 		count = sq->sq_count;
6032 		SQ_PUTLOCKS_ENTER(sq);
6033 		SUM_SQ_PUTCOUNTS(sq, count);
6034 		if (sq->sq_count > maxcnt)
6035 			failed = 1;
6036 		sq->sq_flags |= SQ_WRITER;
6037 		SQ_PUTLOCKS_EXIT(sq);
6038 		mutex_exit(SQLOCK(sq));
6039 	}
6040 	if (failed) {
6041 		/*
6042 		 * Some other thread has a read claim on the outer perimeter.
6043 		 * Queue the callback for deferred processing.
6044 		 *
6045 		 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
6046 		 * so that other qwriter(OUTER) calls will queue their
6047 		 * callbacks as well. queue_writer increments sq_count so we
6048 		 * decrement to compensate for the our increment.
6049 		 *
6050 		 * Dropping SQ_WRITER enables the writer thread to work
6051 		 * on this outer perimeter.
6052 		 */
6053 		outer->sq_flags = flags;
6054 		queue_writer(outer, func, q, mp);
6055 		/* queue_writer dropper the lock */
6056 		mutex_enter(SQLOCK(outer));
6057 		ASSERT(outer->sq_count > 0);
6058 		outer->sq_count--;
6059 		ASSERT(outer->sq_flags & SQ_WRITER);
6060 		flags = outer->sq_flags;
6061 		flags &= ~SQ_WRITER;
6062 		if (flags & SQ_WANTWAKEUP) {
6063 			flags &= ~SQ_WANTWAKEUP;
6064 			cv_broadcast(&outer->sq_wait);
6065 		}
6066 		outer->sq_flags = flags;
6067 		mutex_exit(SQLOCK(outer));
6068 		return;
6069 	} else {
6070 		outer->sq_flags = flags;
6071 		mutex_exit(SQLOCK(outer));
6072 	}
6073 
6074 	/* Can run it immediately */
6075 	(*func)(q, mp);
6076 
6077 	outer_exit(outer);
6078 }
6079 
6080 /*
6081  * Dequeue all writer callbacks from the outer perimeter and run them.
6082  */
6083 static void
6084 write_now(syncq_t *outer)
6085 {
6086 	mblk_t		*mp;
6087 	queue_t		*q;
6088 	void	(*func)();
6089 
6090 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6091 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6092 	    outer->sq_oprev != NULL);
6093 	while ((mp = outer->sq_evhead) != NULL) {
6094 		/*
6095 		 * queues cannot be placed on the queuelist on the outer
6096 		 * perimiter.
6097 		 */
6098 		ASSERT(!(outer->sq_flags & SQ_MESSAGES));
6099 		ASSERT((outer->sq_flags & SQ_EVENTS));
6100 
6101 		outer->sq_evhead = mp->b_next;
6102 		if (outer->sq_evhead == NULL) {
6103 			outer->sq_evtail = NULL;
6104 			outer->sq_flags &= ~SQ_EVENTS;
6105 		}
6106 		ASSERT(outer->sq_count != 0);
6107 		outer->sq_count--;	/* Incremented when enqueued. */
6108 		mutex_exit(SQLOCK(outer));
6109 		/*
6110 		 * Drop the message if the queue is closing.
6111 		 * Make sure that the queue is "claimed" when the callback
6112 		 * is run in order to satisfy various ASSERTs.
6113 		 */
6114 		q = mp->b_queue;
6115 		func = (void (*)())mp->b_prev;
6116 		ASSERT(func != NULL);
6117 		mp->b_next = mp->b_prev = NULL;
6118 		if (q->q_flag & QWCLOSE) {
6119 			freemsg(mp);
6120 		} else {
6121 			claimq(q);
6122 			(*func)(q, mp);
6123 			releaseq(q);
6124 		}
6125 		mutex_enter(SQLOCK(outer));
6126 	}
6127 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6128 }
6129 
6130 /*
6131  * The list of messages on the inner syncq is effectively hashed
6132  * by destination queue.  These destination queues are doubly
6133  * linked lists (hopefully) in priority order.  Messages are then
6134  * put on the queue referenced by the q_sqhead/q_sqtail elements.
6135  * Additional messages are linked together by the b_next/b_prev
6136  * elements in the mblk, with (similar to putq()) the first message
6137  * having a NULL b_prev and the last message having a NULL b_next.
6138  *
6139  * Events, such as qwriter callbacks, are put onto a list in FIFO
6140  * order referenced by sq_evhead, and sq_evtail.  This is a singly
6141  * linked list, and messages here MUST be processed in the order queued.
6142  */
6143 
6144 /*
6145  * Run the events on the syncq event list (sq_evhead).
6146  * Assumes there is only one claim on the syncq, it is
6147  * already exclusive (SQ_EXCL set), and the SQLOCK held.
6148  * Messages here are processed in order, with the SQ_EXCL bit
6149  * held all the way through till the last message is processed.
6150  */
6151 void
6152 sq_run_events(syncq_t *sq)
6153 {
6154 	mblk_t		*bp;
6155 	queue_t		*qp;
6156 	uint16_t	flags = sq->sq_flags;
6157 	void		(*func)();
6158 
6159 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6160 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6161 	    sq->sq_oprev == NULL) ||
6162 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6163 	    sq->sq_oprev != NULL));
6164 
6165 	ASSERT(flags & SQ_EXCL);
6166 	ASSERT(sq->sq_count == 1);
6167 
6168 	/*
6169 	 * We need to process all of the events on this list.  It
6170 	 * is possible that new events will be added while we are
6171 	 * away processing a callback, so on every loop, we start
6172 	 * back at the beginning of the list.
6173 	 */
6174 	/*
6175 	 * We have to reaccess sq_evhead since there is a
6176 	 * possibility of a new entry while we were running
6177 	 * the callback.
6178 	 */
6179 	for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6180 		ASSERT(bp->b_queue->q_syncq == sq);
6181 		ASSERT(sq->sq_flags & SQ_EVENTS);
6182 
6183 		qp = bp->b_queue;
6184 		func = (void (*)())bp->b_prev;
6185 		ASSERT(func != NULL);
6186 
6187 		/*
6188 		 * Messages from the event queue must be taken off in
6189 		 * FIFO order.
6190 		 */
6191 		ASSERT(sq->sq_evhead == bp);
6192 		sq->sq_evhead = bp->b_next;
6193 
6194 		if (bp->b_next == NULL) {
6195 			/* Deleting last */
6196 			ASSERT(sq->sq_evtail == bp);
6197 			sq->sq_evtail = NULL;
6198 			sq->sq_flags &= ~SQ_EVENTS;
6199 		}
6200 		bp->b_prev = bp->b_next = NULL;
6201 		ASSERT(bp->b_datap->db_ref != 0);
6202 
6203 		mutex_exit(SQLOCK(sq));
6204 
6205 		(*func)(qp, bp);
6206 
6207 		mutex_enter(SQLOCK(sq));
6208 		/*
6209 		 * re-read the flags, since they could have changed.
6210 		 */
6211 		flags = sq->sq_flags;
6212 		ASSERT(flags & SQ_EXCL);
6213 	}
6214 	ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6215 	ASSERT(!(sq->sq_flags & SQ_EVENTS));
6216 
6217 	if (flags & SQ_WANTWAKEUP) {
6218 		flags &= ~SQ_WANTWAKEUP;
6219 		cv_broadcast(&sq->sq_wait);
6220 	}
6221 	if (flags & SQ_WANTEXWAKEUP) {
6222 		flags &= ~SQ_WANTEXWAKEUP;
6223 		cv_broadcast(&sq->sq_exitwait);
6224 	}
6225 	sq->sq_flags = flags;
6226 }
6227 
6228 /*
6229  * Put messages on the event list.
6230  * If we can go exclusive now, do so and process the event list, otherwise
6231  * let the last claim service this list (or wake the sqthread).
6232  * This procedure assumes SQLOCK is held.  To run the event list, it
6233  * must be called with no claims.
6234  */
6235 static void
6236 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6237 {
6238 	uint16_t count;
6239 
6240 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6241 	ASSERT(func != NULL);
6242 
6243 	/*
6244 	 * This is a callback.  Add it to the list of callbacks
6245 	 * and see about upgrading.
6246 	 */
6247 	mp->b_prev = (mblk_t *)func;
6248 	mp->b_queue = q;
6249 	mp->b_next = NULL;
6250 	if (sq->sq_evhead == NULL) {
6251 		sq->sq_evhead = sq->sq_evtail = mp;
6252 		sq->sq_flags |= SQ_EVENTS;
6253 	} else {
6254 		ASSERT(sq->sq_evtail != NULL);
6255 		ASSERT(sq->sq_evtail->b_next == NULL);
6256 		ASSERT(sq->sq_flags & SQ_EVENTS);
6257 		sq->sq_evtail->b_next = mp;
6258 		sq->sq_evtail = mp;
6259 	}
6260 	/*
6261 	 * We have set SQ_EVENTS, so threads will have to
6262 	 * unwind out of the perimiter, and new entries will
6263 	 * not grab a putlock.  But we still need to know
6264 	 * how many threads have already made a claim to the
6265 	 * syncq, so grab the putlocks, and sum the counts.
6266 	 * If there are no claims on the syncq, we can upgrade
6267 	 * to exclusive, and run the event list.
6268 	 * NOTE: We hold the SQLOCK, so we can just grab the
6269 	 * putlocks.
6270 	 */
6271 	count = sq->sq_count;
6272 	SQ_PUTLOCKS_ENTER(sq);
6273 	SUM_SQ_PUTCOUNTS(sq, count);
6274 	/*
6275 	 * We have no claim, so we need to check if there
6276 	 * are no others, then we can upgrade.
6277 	 */
6278 	/*
6279 	 * There are currently no claims on
6280 	 * the syncq by this thread (at least on this entry). The thread who has
6281 	 * the claim should drain syncq.
6282 	 */
6283 	if (count > 0) {
6284 		/*
6285 		 * Can't upgrade - other threads inside.
6286 		 */
6287 		SQ_PUTLOCKS_EXIT(sq);
6288 		mutex_exit(SQLOCK(sq));
6289 		return;
6290 	}
6291 	/*
6292 	 * Need to set SQ_EXCL and make a claim on the syncq.
6293 	 */
6294 	ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6295 	sq->sq_flags |= SQ_EXCL;
6296 	ASSERT(sq->sq_count == 0);
6297 	sq->sq_count++;
6298 	SQ_PUTLOCKS_EXIT(sq);
6299 
6300 	/* Process the events list */
6301 	sq_run_events(sq);
6302 
6303 	/*
6304 	 * Release our claim...
6305 	 */
6306 	sq->sq_count--;
6307 
6308 	/*
6309 	 * And release SQ_EXCL.
6310 	 * We don't need to acquire the putlocks to release
6311 	 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6312 	 */
6313 	sq->sq_flags &= ~SQ_EXCL;
6314 
6315 	/*
6316 	 * sq_run_events should have released SQ_EXCL
6317 	 */
6318 	ASSERT(!(sq->sq_flags & SQ_EXCL));
6319 
6320 	/*
6321 	 * If anything happened while we were running the
6322 	 * events (or was there before), we need to process
6323 	 * them now.  We shouldn't be exclusive sine we
6324 	 * released the perimiter above (plus, we asserted
6325 	 * for it).
6326 	 */
6327 	if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6328 		drain_syncq(sq);
6329 	else
6330 		mutex_exit(SQLOCK(sq));
6331 }
6332 
6333 /*
6334  * Perform delayed processing. The caller has to make sure that it is safe
6335  * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6336  * set.)
6337  *
6338  * Assume that the caller has NO claims on the syncq.  However, a claim
6339  * on the syncq does not indicate that a thread is draining the syncq.
6340  * There may be more claims on the syncq than there are threads draining
6341  * (i.e.  #_threads_draining <= sq_count)
6342  *
6343  * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6344  * in order to preserve qwriter(OUTER) ordering constraints.
6345  *
6346  * sq_putcount only needs to be checked when dispatching the queued
6347  * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6348  */
6349 void
6350 drain_syncq(syncq_t *sq)
6351 {
6352 	queue_t		*qp;
6353 	uint16_t	count;
6354 	uint16_t	type = sq->sq_type;
6355 	uint16_t	flags = sq->sq_flags;
6356 	boolean_t	bg_service = sq->sq_svcflags & SQ_SERVICE;
6357 
6358 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6359 	    "drain_syncq start:%p", sq);
6360 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6361 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6362 	    sq->sq_oprev == NULL) ||
6363 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6364 	    sq->sq_oprev != NULL));
6365 
6366 	/*
6367 	 * Drop SQ_SERVICE flag.
6368 	 */
6369 	if (bg_service)
6370 		sq->sq_svcflags &= ~SQ_SERVICE;
6371 
6372 	/*
6373 	 * If SQ_EXCL is set, someone else is processing this syncq - let him
6374 	 * finish the job.
6375 	 */
6376 	if (flags & SQ_EXCL) {
6377 		if (bg_service) {
6378 			ASSERT(sq->sq_servcount != 0);
6379 			sq->sq_servcount--;
6380 		}
6381 		mutex_exit(SQLOCK(sq));
6382 		return;
6383 	}
6384 
6385 	/*
6386 	 * This routine can be called by a background thread if
6387 	 * it was scheduled by a hi-priority thread.  SO, if there are
6388 	 * NOT messages queued, return (remember, we have the SQLOCK,
6389 	 * and it cannot change until we release it). Wakeup any waiters also.
6390 	 */
6391 	if (!(flags & SQ_QUEUED)) {
6392 		if (flags & SQ_WANTWAKEUP) {
6393 			flags &= ~SQ_WANTWAKEUP;
6394 			cv_broadcast(&sq->sq_wait);
6395 		}
6396 		if (flags & SQ_WANTEXWAKEUP) {
6397 			flags &= ~SQ_WANTEXWAKEUP;
6398 			cv_broadcast(&sq->sq_exitwait);
6399 		}
6400 		sq->sq_flags = flags;
6401 		if (bg_service) {
6402 			ASSERT(sq->sq_servcount != 0);
6403 			sq->sq_servcount--;
6404 		}
6405 		mutex_exit(SQLOCK(sq));
6406 		return;
6407 	}
6408 
6409 	/*
6410 	 * If this is not a concurrent put perimiter, we need to
6411 	 * become exclusive to drain.  Also, if not CIPUT, we would
6412 	 * not have acquired a putlock, so we don't need to check
6413 	 * the putcounts.  If not entering with a claim, we test
6414 	 * for sq_count == 0.
6415 	 */
6416 	type = sq->sq_type;
6417 	if (!(type & SQ_CIPUT)) {
6418 		if (sq->sq_count > 1) {
6419 			if (bg_service) {
6420 				ASSERT(sq->sq_servcount != 0);
6421 				sq->sq_servcount--;
6422 			}
6423 			mutex_exit(SQLOCK(sq));
6424 			return;
6425 		}
6426 		sq->sq_flags |= SQ_EXCL;
6427 	}
6428 
6429 	/*
6430 	 * This is where we make a claim to the syncq.
6431 	 * This can either be done by incrementing a putlock, or
6432 	 * the sq_count.  But since we already have the SQLOCK
6433 	 * here, we just bump the sq_count.
6434 	 *
6435 	 * Note that after we make a claim, we need to let the code
6436 	 * fall through to the end of this routine to clean itself
6437 	 * up.  A return in the while loop will put the syncq in a
6438 	 * very bad state.
6439 	 */
6440 	sq->sq_count++;
6441 	ASSERT(sq->sq_count != 0);	/* wraparound */
6442 
6443 	while ((flags = sq->sq_flags) & SQ_QUEUED) {
6444 		/*
6445 		 * If we are told to stayaway or went exclusive,
6446 		 * we are done.
6447 		 */
6448 		if (flags & (SQ_STAYAWAY)) {
6449 			break;
6450 		}
6451 
6452 		/*
6453 		 * If there are events to run, do so.
6454 		 * We have one claim to the syncq, so if there are
6455 		 * more than one, other threads are running.
6456 		 */
6457 		if (sq->sq_evhead != NULL) {
6458 			ASSERT(sq->sq_flags & SQ_EVENTS);
6459 
6460 			count = sq->sq_count;
6461 			SQ_PUTLOCKS_ENTER(sq);
6462 			SUM_SQ_PUTCOUNTS(sq, count);
6463 			if (count > 1) {
6464 				SQ_PUTLOCKS_EXIT(sq);
6465 				/* Can't upgrade - other threads inside */
6466 				break;
6467 			}
6468 			ASSERT((flags & SQ_EXCL) == 0);
6469 			sq->sq_flags = flags | SQ_EXCL;
6470 			SQ_PUTLOCKS_EXIT(sq);
6471 			/*
6472 			 * we have the only claim, run the events,
6473 			 * sq_run_events will clear the SQ_EXCL flag.
6474 			 */
6475 			sq_run_events(sq);
6476 
6477 			/*
6478 			 * If this is a CIPUT perimiter, we need
6479 			 * to drop the SQ_EXCL flag so we can properly
6480 			 * continue draining the syncq.
6481 			 */
6482 			if (type & SQ_CIPUT) {
6483 				ASSERT(sq->sq_flags & SQ_EXCL);
6484 				sq->sq_flags &= ~SQ_EXCL;
6485 			}
6486 
6487 			/*
6488 			 * And go back to the beginning just in case
6489 			 * anything changed while we were away.
6490 			 */
6491 			ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6492 			continue;
6493 		}
6494 
6495 		ASSERT(sq->sq_evhead == NULL);
6496 		ASSERT(!(sq->sq_flags & SQ_EVENTS));
6497 
6498 		/*
6499 		 * Find the queue that is not draining.
6500 		 *
6501 		 * q_draining is protected by QLOCK which we do not hold.
6502 		 * But if it was set, then a thread was draining, and if it gets
6503 		 * cleared, then it was because the thread has successfully
6504 		 * drained the syncq, or a GOAWAY state occured. For the GOAWAY
6505 		 * state to happen, a thread needs the SQLOCK which we hold, and
6506 		 * if there was such a flag, we whould have already seen it.
6507 		 */
6508 
6509 		for (qp = sq->sq_head;
6510 		    qp != NULL && (qp->q_draining ||
6511 		    (qp->q_sqflags & Q_SQDRAINING));
6512 		    qp = qp->q_sqnext)
6513 			;
6514 
6515 		if (qp == NULL)
6516 			break;
6517 
6518 		/*
6519 		 * We have a queue to work on, and we hold the
6520 		 * SQLOCK and one claim, call qdrain_syncq.
6521 		 * This means we need to release the SQLOCK and
6522 		 * aquire the QLOCK (OK since we have a claim).
6523 		 * Note that qdrain_syncq will actually dequeue
6524 		 * this queue from the sq_head list when it is
6525 		 * convinced all the work is done and release
6526 		 * the QLOCK before returning.
6527 		 */
6528 		qp->q_sqflags |= Q_SQDRAINING;
6529 		mutex_exit(SQLOCK(sq));
6530 		mutex_enter(QLOCK(qp));
6531 		qdrain_syncq(sq, qp);
6532 		mutex_enter(SQLOCK(sq));
6533 
6534 		/* The queue is drained */
6535 		ASSERT(qp->q_sqflags & Q_SQDRAINING);
6536 		qp->q_sqflags &= ~Q_SQDRAINING;
6537 		/*
6538 		 * NOTE: After this point qp should not be used since it may be
6539 		 * closed.
6540 		 */
6541 	}
6542 
6543 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6544 	flags = sq->sq_flags;
6545 
6546 	/*
6547 	 * sq->sq_head cannot change because we hold the
6548 	 * sqlock. However, a thread CAN decide that it is no longer
6549 	 * going to drain that queue.  However, this should be due to
6550 	 * a GOAWAY state, and we should see that here.
6551 	 *
6552 	 * This loop is not very efficient. One solution may be adding a second
6553 	 * pointer to the "draining" queue, but it is difficult to do when
6554 	 * queues are inserted in the middle due to priority ordering. Another
6555 	 * possibility is to yank the queue out of the sq list and put it onto
6556 	 * the "draining list" and then put it back if it can't be drained.
6557 	 */
6558 
6559 	ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6560 	    (type & SQ_CI) || sq->sq_head->q_draining);
6561 
6562 	/* Drop SQ_EXCL for non-CIPUT perimiters */
6563 	if (!(type & SQ_CIPUT))
6564 		flags &= ~SQ_EXCL;
6565 	ASSERT((flags & SQ_EXCL) == 0);
6566 
6567 	/* Wake up any waiters. */
6568 	if (flags & SQ_WANTWAKEUP) {
6569 		flags &= ~SQ_WANTWAKEUP;
6570 		cv_broadcast(&sq->sq_wait);
6571 	}
6572 	if (flags & SQ_WANTEXWAKEUP) {
6573 		flags &= ~SQ_WANTEXWAKEUP;
6574 		cv_broadcast(&sq->sq_exitwait);
6575 	}
6576 	sq->sq_flags = flags;
6577 
6578 	ASSERT(sq->sq_count != 0);
6579 	/* Release our claim. */
6580 	sq->sq_count--;
6581 
6582 	if (bg_service) {
6583 		ASSERT(sq->sq_servcount != 0);
6584 		sq->sq_servcount--;
6585 	}
6586 
6587 	mutex_exit(SQLOCK(sq));
6588 
6589 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6590 	    "drain_syncq end:%p", sq);
6591 }
6592 
6593 
6594 /*
6595  *
6596  * qdrain_syncq can be called (currently) from only one of two places:
6597  *	drain_syncq
6598  * 	putnext  (or some variation of it).
6599  * and eventually
6600  * 	qwait(_sig)
6601  *
6602  * If called from drain_syncq, we found it in the list
6603  * of queue's needing service, so there is work to be done (or it
6604  * wouldn't be on the list).
6605  *
6606  * If called from some putnext variation, it was because the
6607  * perimiter is open, but messages are blocking a putnext and
6608  * there is not a thread working on it.  Now a thread could start
6609  * working on it while we are getting ready to do so ourself, but
6610  * the thread would set the q_draining flag, and we can spin out.
6611  *
6612  * As for qwait(_sig), I think I shall let it continue to call
6613  * drain_syncq directly (after all, it will get here eventually).
6614  *
6615  * qdrain_syncq has to terminate when:
6616  * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6617  * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6618  *
6619  * ASSUMES:
6620  *	One claim
6621  * 	QLOCK held
6622  * 	SQLOCK not held
6623  *	Will release QLOCK before returning
6624  */
6625 void
6626 qdrain_syncq(syncq_t *sq, queue_t *q)
6627 {
6628 	mblk_t		*bp;
6629 	boolean_t	do_clr;
6630 #ifdef DEBUG
6631 	uint16_t	count;
6632 #endif
6633 
6634 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6635 	    "drain_syncq start:%p", sq);
6636 	ASSERT(q->q_syncq == sq);
6637 	ASSERT(MUTEX_HELD(QLOCK(q)));
6638 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6639 	/*
6640 	 * For non-CIPUT perimiters, we should be called with the
6641 	 * exclusive bit set already.  For non-CIPUT perimiters we
6642 	 * will be doing a concurrent drain, so it better not be set.
6643 	 */
6644 	ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6645 	ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6646 	ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6647 	/*
6648 	 * All outer pointers are set, or none of them are
6649 	 */
6650 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6651 	    sq->sq_oprev == NULL) ||
6652 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6653 	    sq->sq_oprev != NULL));
6654 #ifdef DEBUG
6655 	count = sq->sq_count;
6656 	/*
6657 	 * This is OK without the putlocks, because we have one
6658 	 * claim either from the sq_count, or a putcount.  We could
6659 	 * get an erroneous value from other counts, but ours won't
6660 	 * change, so one way or another, we will have at least a
6661 	 * value of one.
6662 	 */
6663 	SUM_SQ_PUTCOUNTS(sq, count);
6664 	ASSERT(count >= 1);
6665 #endif /* DEBUG */
6666 
6667 	/*
6668 	 * The first thing to do here, is find out if a thread is already
6669 	 * draining this queue or the queue is closing. If so, we are done,
6670 	 * just return. Also, if there are no messages, we are done as well.
6671 	 * Note that we check the q_sqhead since there is s window of
6672 	 * opportunity for us to enter here because Q_SQQUEUED was set, but is
6673 	 * not anymore.
6674 	 */
6675 	if (q->q_draining || (q->q_sqhead == NULL)) {
6676 		mutex_exit(QLOCK(q));
6677 		return;
6678 	}
6679 
6680 	/*
6681 	 * If the perimiter is exclusive, there is nothing we can
6682 	 * do right now, go away.
6683 	 * Note that there is nothing to prevent this case from changing
6684 	 * right after this check, but the spin-out will catch it.
6685 	 */
6686 
6687 	/* Tell other threads that we are draining this queue */
6688 	q->q_draining = 1;	/* Protected by QLOCK */
6689 
6690 	for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6691 
6692 		/*
6693 		 * Because we can enter this routine just because
6694 		 * a putnext is blocked, we need to spin out if
6695 		 * the perimiter wants to go exclusive as well
6696 		 * as just blocked. We need to spin out also if
6697 		 * events are queued on the syncq.
6698 		 * Don't check for SQ_EXCL, because non-CIPUT
6699 		 * perimiters would set it, and it can't become
6700 		 * exclusive while we hold a claim.
6701 		 */
6702 		if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6703 			break;
6704 		}
6705 
6706 #ifdef DEBUG
6707 		/*
6708 		 * Since we are in qdrain_syncq, we already know the queue,
6709 		 * but for sanity, we want to check this against the qp that
6710 		 * was passed in by bp->b_queue.
6711 		 */
6712 
6713 		ASSERT(bp->b_queue == q);
6714 		ASSERT(bp->b_queue->q_syncq == sq);
6715 		bp->b_queue = NULL;
6716 
6717 		/*
6718 		 * We would have the following check in the DEBUG code:
6719 		 *
6720 		 * if (bp->b_prev != NULL)  {
6721 		 *	ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6722 		 * }
6723 		 *
6724 		 * This can't be done, however, since IP modifies qinfo
6725 		 * structure at run-time (switching between IPv4 qinfo and IPv6
6726 		 * qinfo), invalidating the check.
6727 		 * So the assignment to func is left here, but the ASSERT itself
6728 		 * is removed until the whole issue is resolved.
6729 		 */
6730 #endif
6731 		ASSERT(q->q_sqhead == bp);
6732 		q->q_sqhead = bp->b_next;
6733 		bp->b_prev = bp->b_next = NULL;
6734 		ASSERT(q->q_syncqmsgs > 0);
6735 		mutex_exit(QLOCK(q));
6736 
6737 		ASSERT(bp->b_datap->db_ref != 0);
6738 
6739 		(void) (*q->q_qinfo->qi_putp)(q, bp);
6740 
6741 		mutex_enter(QLOCK(q));
6742 		/*
6743 		 * We should decrement q_syncqmsgs only after executing the
6744 		 * put procedure to avoid a possible race with putnext().
6745 		 * In putnext() though it sees Q_SQQUEUED is set, there is
6746 		 * an optimization which allows putnext to call the put
6747 		 * procedure directly if (q_syncqmsgs == 0) and thus
6748 		 * a message reodering could otherwise occur.
6749 		 */
6750 		q->q_syncqmsgs--;
6751 
6752 		/*
6753 		 * Clear QFULL in the next service procedure queue if
6754 		 * this is the last message destined to that queue.
6755 		 *
6756 		 * It would make better sense to have some sort of
6757 		 * tunable for the low water mark, but these symantics
6758 		 * are not yet defined.  So, alas, we use a constant.
6759 		 */
6760 		do_clr = (q->q_syncqmsgs == 0);
6761 		mutex_exit(QLOCK(q));
6762 
6763 		if (do_clr)
6764 			clr_qfull(q);
6765 
6766 		mutex_enter(QLOCK(q));
6767 		/*
6768 		 * Always clear SQ_EXCL when CIPUT in order to handle
6769 		 * qwriter(INNER).
6770 		 */
6771 		/*
6772 		 * The putp() can call qwriter and get exclusive access
6773 		 * IFF this is the only claim.  So, we need to test for
6774 		 * this possibility so we can aquire the mutex and clear
6775 		 * the bit.
6776 		 */
6777 		if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6778 			mutex_enter(SQLOCK(sq));
6779 			sq->sq_flags &= ~SQ_EXCL;
6780 			mutex_exit(SQLOCK(sq));
6781 		}
6782 	}
6783 
6784 	/*
6785 	 * We should either have no queues on the syncq, or we were
6786 	 * told to goaway by a waiter (which we will wake up at the
6787 	 * end of this function).
6788 	 */
6789 	ASSERT((q->q_sqhead == NULL) ||
6790 	    (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6791 
6792 	ASSERT(MUTEX_HELD(QLOCK(q)));
6793 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6794 
6795 	/*
6796 	 * Remove the q from the syncq list if all the messages are
6797 	 * drained.
6798 	 */
6799 	if (q->q_sqhead == NULL) {
6800 		mutex_enter(SQLOCK(sq));
6801 		if (q->q_sqflags & Q_SQQUEUED)
6802 			SQRM_Q(sq, q);
6803 		mutex_exit(SQLOCK(sq));
6804 		/*
6805 		 * Since the queue is removed from the list, reset its priority.
6806 		 */
6807 		q->q_spri = 0;
6808 	}
6809 
6810 	/*
6811 	 * Remember, the q_draining flag is used to let another
6812 	 * thread know that there is a thread currently draining
6813 	 * the messages for a queue.  Since we are now done with
6814 	 * this queue (even if there may be messages still there),
6815 	 * we need to clear this flag so some thread will work
6816 	 * on it if needed.
6817 	 */
6818 	ASSERT(q->q_draining);
6819 	q->q_draining = 0;
6820 
6821 	/* called with a claim, so OK to drop all locks. */
6822 	mutex_exit(QLOCK(q));
6823 
6824 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6825 	    "drain_syncq end:%p", sq);
6826 }
6827 /* END OF QDRAIN_SYNCQ  */
6828 
6829 
6830 /*
6831  * This is the mate to qdrain_syncq, except that it is putting the
6832  * message onto the the queue instead draining.  Since the
6833  * message is destined for the queue that is selected, there is
6834  * no need to identify the function because the message is
6835  * intended for the put routine for the queue.  But this
6836  * routine will do it anyway just in case (but only for debug kernels).
6837  *
6838  * After the message is enqueued on the syncq, it calls putnext_tail()
6839  * which will schedule a background thread to actually process the message.
6840  *
6841  * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6842  * SQLOCK(sq) and QLOCK(q) are not held.
6843  */
6844 void
6845 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6846 {
6847 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6848 	ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6849 	ASSERT(sq->sq_count > 0);
6850 	ASSERT(q->q_syncq == sq);
6851 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6852 	    sq->sq_oprev == NULL) ||
6853 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6854 	    sq->sq_oprev != NULL));
6855 
6856 	mutex_enter(QLOCK(q));
6857 
6858 #ifdef DEBUG
6859 	/*
6860 	 * This is used for debug in the qfill_syncq/qdrain_syncq case
6861 	 * to trace the queue that the message is intended for.  Note
6862 	 * that the original use was to identify the queue and function
6863 	 * to call on the drain.  In the new syncq, we have the context
6864 	 * of the queue that we are draining, so call it's putproc and
6865 	 * don't rely on the saved values.  But for debug this is still
6866 	 * usefull information.
6867 	 */
6868 	mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6869 	mp->b_queue = q;
6870 	mp->b_next = NULL;
6871 #endif
6872 	ASSERT(q->q_syncq == sq);
6873 	/*
6874 	 * Enqueue the message on the list.
6875 	 * SQPUT_MP() accesses q_syncqmsgs.  We are already holding QLOCK to
6876 	 * protect it.  So its ok to acquire SQLOCK after SQPUT_MP().
6877 	 */
6878 	SQPUT_MP(q, mp);
6879 	mutex_enter(SQLOCK(sq));
6880 
6881 	/*
6882 	 * And queue on syncq for scheduling, if not already queued.
6883 	 * Note that we need the SQLOCK for this, and for testing flags
6884 	 * at the end to see if we will drain.  So grab it now, and
6885 	 * release it before we call qdrain_syncq or return.
6886 	 */
6887 	if (!(q->q_sqflags & Q_SQQUEUED)) {
6888 		q->q_spri = curthread->t_pri;
6889 		SQPUT_Q(sq, q);
6890 	}
6891 #ifdef DEBUG
6892 	else {
6893 		/*
6894 		 * All of these conditions MUST be true!
6895 		 */
6896 		ASSERT(sq->sq_tail != NULL);
6897 		if (sq->sq_tail == sq->sq_head) {
6898 			ASSERT((q->q_sqprev == NULL) &&
6899 			    (q->q_sqnext == NULL));
6900 		} else {
6901 			ASSERT((q->q_sqprev != NULL) ||
6902 			    (q->q_sqnext != NULL));
6903 		}
6904 		ASSERT(sq->sq_flags & SQ_QUEUED);
6905 		ASSERT(q->q_syncqmsgs != 0);
6906 		ASSERT(q->q_sqflags & Q_SQQUEUED);
6907 	}
6908 #endif
6909 	mutex_exit(QLOCK(q));
6910 	/*
6911 	 * SQLOCK is still held, so sq_count can be safely decremented.
6912 	 */
6913 	sq->sq_count--;
6914 
6915 	putnext_tail(sq, q, 0);
6916 	/* Should not reference sq or q after this point. */
6917 }
6918 
6919 /*  End of qfill_syncq  */
6920 
6921 /*
6922  * Remove all messages from a syncq (if qp is NULL) or remove all messages
6923  * that would be put into qp by drain_syncq.
6924  * Used when deleting the syncq (qp == NULL) or when detaching
6925  * a queue (qp != NULL).
6926  * Return non-zero if one or more messages were freed.
6927  *
6928  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
6929  * sq_putlocks are used.
6930  *
6931  * NOTE: This function assumes that it is called from the close() context and
6932  * that all the queues in the syncq are going aay. For this reason it doesn't
6933  * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6934  * currently valid, but it is useful to rethink this function to behave properly
6935  * in other cases.
6936  */
6937 int
6938 flush_syncq(syncq_t *sq, queue_t *qp)
6939 {
6940 	mblk_t		*bp, *mp_head, *mp_next, *mp_prev;
6941 	queue_t		*q;
6942 	int		ret = 0;
6943 
6944 	mutex_enter(SQLOCK(sq));
6945 
6946 	/*
6947 	 * Before we leave, we need to make sure there are no
6948 	 * events listed for this queue.  All events for this queue
6949 	 * will just be freed.
6950 	 */
6951 	if (qp != NULL && sq->sq_evhead != NULL) {
6952 		ASSERT(sq->sq_flags & SQ_EVENTS);
6953 
6954 		mp_prev = NULL;
6955 		for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6956 			mp_next = bp->b_next;
6957 			if (bp->b_queue == qp) {
6958 				/* Delete this message */
6959 				if (mp_prev != NULL) {
6960 					mp_prev->b_next = mp_next;
6961 					/*
6962 					 * Update sq_evtail if the last element
6963 					 * is removed.
6964 					 */
6965 					if (bp == sq->sq_evtail) {
6966 						ASSERT(mp_next == NULL);
6967 						sq->sq_evtail = mp_prev;
6968 					}
6969 				} else
6970 					sq->sq_evhead = mp_next;
6971 				if (sq->sq_evhead == NULL)
6972 					sq->sq_flags &= ~SQ_EVENTS;
6973 				bp->b_prev = bp->b_next = NULL;
6974 				freemsg(bp);
6975 				ret++;
6976 			} else {
6977 				mp_prev = bp;
6978 			}
6979 		}
6980 	}
6981 
6982 	/*
6983 	 * Walk sq_head and:
6984 	 *	- match qp if qp is set, remove it's messages
6985 	 *	- all if qp is not set
6986 	 */
6987 	q = sq->sq_head;
6988 	while (q != NULL) {
6989 		ASSERT(q->q_syncq == sq);
6990 		if ((qp == NULL) || (qp == q)) {
6991 			/*
6992 			 * Yank the messages as a list off the queue
6993 			 */
6994 			mp_head = q->q_sqhead;
6995 			/*
6996 			 * We do not have QLOCK(q) here (which is safe due to
6997 			 * assumptions mentioned above). To obtain the lock we
6998 			 * need to release SQLOCK which may allow lots of things
6999 			 * to change upon us. This place requires more analysis.
7000 			 */
7001 			q->q_sqhead = q->q_sqtail = NULL;
7002 			ASSERT(mp_head->b_queue &&
7003 			    mp_head->b_queue->q_syncq == sq);
7004 
7005 			/*
7006 			 * Free each of the messages.
7007 			 */
7008 			for (bp = mp_head; bp != NULL; bp = mp_next) {
7009 				mp_next = bp->b_next;
7010 				bp->b_prev = bp->b_next = NULL;
7011 				freemsg(bp);
7012 				ret++;
7013 			}
7014 			/*
7015 			 * Now remove the queue from the syncq.
7016 			 */
7017 			ASSERT(q->q_sqflags & Q_SQQUEUED);
7018 			SQRM_Q(sq, q);
7019 			q->q_spri = 0;
7020 			q->q_syncqmsgs = 0;
7021 
7022 			/*
7023 			 * If qp was specified, we are done with it and are
7024 			 * going to drop SQLOCK(sq) and return. We wakeup syncq
7025 			 * waiters while we still have the SQLOCK.
7026 			 */
7027 			if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
7028 				sq->sq_flags &= ~SQ_WANTWAKEUP;
7029 				cv_broadcast(&sq->sq_wait);
7030 			}
7031 			/* Drop SQLOCK across clr_qfull */
7032 			mutex_exit(SQLOCK(sq));
7033 
7034 			/*
7035 			 * We avoid doing the test that drain_syncq does and
7036 			 * unconditionally clear qfull for every flushed
7037 			 * message. Since flush_syncq is only called during
7038 			 * close this should not be a problem.
7039 			 */
7040 			clr_qfull(q);
7041 			if (qp != NULL) {
7042 				return (ret);
7043 			} else {
7044 				mutex_enter(SQLOCK(sq));
7045 				/*
7046 				 * The head was removed by SQRM_Q above.
7047 				 * reread the new head and flush it.
7048 				 */
7049 				q = sq->sq_head;
7050 			}
7051 		} else {
7052 			q = q->q_sqnext;
7053 		}
7054 		ASSERT(MUTEX_HELD(SQLOCK(sq)));
7055 	}
7056 
7057 	if (sq->sq_flags & SQ_WANTWAKEUP) {
7058 		sq->sq_flags &= ~SQ_WANTWAKEUP;
7059 		cv_broadcast(&sq->sq_wait);
7060 	}
7061 
7062 	mutex_exit(SQLOCK(sq));
7063 	return (ret);
7064 }
7065 
7066 /*
7067  * Propagate all messages from a syncq to the next syncq that are associated
7068  * with the specified queue. If the queue is attached to a driver or if the
7069  * messages have been added due to a qwriter(PERIM_INNER), free the messages.
7070  *
7071  * Assumes that the stream is strlock()'ed. We don't come here if there
7072  * are no messages to propagate.
7073  *
7074  * NOTE : If the queue is attached to a driver, all the messages are freed
7075  * as there is no point in propagating the messages from the driver syncq
7076  * to the closing stream head which will in turn get freed later.
7077  */
7078 static int
7079 propagate_syncq(queue_t *qp)
7080 {
7081 	mblk_t		*bp, *head, *tail, *prev, *next;
7082 	syncq_t 	*sq;
7083 	queue_t		*nqp;
7084 	syncq_t		*nsq;
7085 	boolean_t	isdriver;
7086 	int 		moved = 0;
7087 	uint16_t	flags;
7088 	pri_t		priority = curthread->t_pri;
7089 #ifdef DEBUG
7090 	void		(*func)();
7091 #endif
7092 
7093 	sq = qp->q_syncq;
7094 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7095 	/* debug macro */
7096 	SQ_PUTLOCKS_HELD(sq);
7097 	/*
7098 	 * As entersq() does not increment the sq_count for
7099 	 * the write side, check sq_count for non-QPERQ
7100 	 * perimeters alone.
7101 	 */
7102 	ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
7103 
7104 	/*
7105 	 * propagate_syncq() can be called because of either messages on the
7106 	 * queue syncq or because on events on the queue syncq. Do actual
7107 	 * message propagations if there are any messages.
7108 	 */
7109 	if (qp->q_syncqmsgs) {
7110 		isdriver = (qp->q_flag & QISDRV);
7111 
7112 		if (!isdriver) {
7113 			nqp = qp->q_next;
7114 			nsq = nqp->q_syncq;
7115 			ASSERT(MUTEX_HELD(SQLOCK(nsq)));
7116 			/* debug macro */
7117 			SQ_PUTLOCKS_HELD(nsq);
7118 #ifdef DEBUG
7119 			func = (void (*)())nqp->q_qinfo->qi_putp;
7120 #endif
7121 		}
7122 
7123 		SQRM_Q(sq, qp);
7124 		priority = MAX(qp->q_spri, priority);
7125 		qp->q_spri = 0;
7126 		head = qp->q_sqhead;
7127 		tail = qp->q_sqtail;
7128 		qp->q_sqhead = qp->q_sqtail = NULL;
7129 		qp->q_syncqmsgs = 0;
7130 
7131 		/*
7132 		 * Walk the list of messages, and free them if this is a driver,
7133 		 * otherwise reset the b_prev and b_queue value to the new putp.
7134 		 * Afterward, we will just add the head to the end of the next
7135 		 * syncq, and point the tail to the end of this one.
7136 		 */
7137 
7138 		for (bp = head; bp != NULL; bp = next) {
7139 			next = bp->b_next;
7140 			if (isdriver) {
7141 				bp->b_prev = bp->b_next = NULL;
7142 				freemsg(bp);
7143 				continue;
7144 			}
7145 			/* Change the q values for this message */
7146 			bp->b_queue = nqp;
7147 #ifdef DEBUG
7148 			bp->b_prev = (mblk_t *)func;
7149 #endif
7150 			moved++;
7151 		}
7152 		/*
7153 		 * Attach list of messages to the end of the new queue (if there
7154 		 * is a list of messages).
7155 		 */
7156 
7157 		if (!isdriver && head != NULL) {
7158 			ASSERT(tail != NULL);
7159 			if (nqp->q_sqhead == NULL) {
7160 				nqp->q_sqhead = head;
7161 			} else {
7162 				ASSERT(nqp->q_sqtail != NULL);
7163 				nqp->q_sqtail->b_next = head;
7164 			}
7165 			nqp->q_sqtail = tail;
7166 			/*
7167 			 * When messages are moved from high priority queue to
7168 			 * another queue, the destination queue priority is
7169 			 * upgraded.
7170 			 */
7171 
7172 			if (priority > nqp->q_spri)
7173 				nqp->q_spri = priority;
7174 
7175 			SQPUT_Q(nsq, nqp);
7176 
7177 			nqp->q_syncqmsgs += moved;
7178 			ASSERT(nqp->q_syncqmsgs != 0);
7179 		}
7180 	}
7181 
7182 	/*
7183 	 * Before we leave, we need to make sure there are no
7184 	 * events listed for this queue.  All events for this queue
7185 	 * will just be freed.
7186 	 */
7187 	if (sq->sq_evhead != NULL) {
7188 		ASSERT(sq->sq_flags & SQ_EVENTS);
7189 		prev = NULL;
7190 		for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7191 			next = bp->b_next;
7192 			if (bp->b_queue == qp) {
7193 				/* Delete this message */
7194 				if (prev != NULL) {
7195 					prev->b_next = next;
7196 					/*
7197 					 * Update sq_evtail if the last element
7198 					 * is removed.
7199 					 */
7200 					if (bp == sq->sq_evtail) {
7201 						ASSERT(next == NULL);
7202 						sq->sq_evtail = prev;
7203 					}
7204 				} else
7205 					sq->sq_evhead = next;
7206 				if (sq->sq_evhead == NULL)
7207 					sq->sq_flags &= ~SQ_EVENTS;
7208 				bp->b_prev = bp->b_next = NULL;
7209 				freemsg(bp);
7210 			} else {
7211 				prev = bp;
7212 			}
7213 		}
7214 	}
7215 
7216 	flags = sq->sq_flags;
7217 
7218 	/* Wake up any waiter before leaving. */
7219 	if (flags & SQ_WANTWAKEUP) {
7220 		flags &= ~SQ_WANTWAKEUP;
7221 		cv_broadcast(&sq->sq_wait);
7222 	}
7223 	sq->sq_flags = flags;
7224 
7225 	return (moved);
7226 }
7227 
7228 /*
7229  * Try and upgrade to exclusive access at the inner perimeter. If this can
7230  * not be done without blocking then request will be queued on the syncq
7231  * and drain_syncq will run it later.
7232  *
7233  * This routine can only be called from put or service procedures plus
7234  * asynchronous callback routines that have properly entered to
7235  * queue (with entersq.) Thus qwriter_inner assumes the caller has one claim
7236  * on the syncq associated with q.
7237  */
7238 void
7239 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7240 {
7241 	syncq_t	*sq = q->q_syncq;
7242 	uint16_t count;
7243 
7244 	mutex_enter(SQLOCK(sq));
7245 	count = sq->sq_count;
7246 	SQ_PUTLOCKS_ENTER(sq);
7247 	SUM_SQ_PUTCOUNTS(sq, count);
7248 	ASSERT(count >= 1);
7249 	ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7250 
7251 	if (count == 1) {
7252 		/*
7253 		 * Can upgrade. This case also handles nested qwriter calls
7254 		 * (when the qwriter callback function calls qwriter). In that
7255 		 * case SQ_EXCL is already set.
7256 		 */
7257 		sq->sq_flags |= SQ_EXCL;
7258 		SQ_PUTLOCKS_EXIT(sq);
7259 		mutex_exit(SQLOCK(sq));
7260 		(*func)(q, mp);
7261 		/*
7262 		 * Assumes that leavesq, putnext, and drain_syncq will reset
7263 		 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7264 		 * until putnext, leavesq, or drain_syncq drops it.
7265 		 * That way we handle nested qwriter(INNER) without dropping
7266 		 * SQ_EXCL until the outermost qwriter callback routine is
7267 		 * done.
7268 		 */
7269 		return;
7270 	}
7271 	SQ_PUTLOCKS_EXIT(sq);
7272 	sqfill_events(sq, q, mp, func);
7273 }
7274 
7275 /*
7276  * Synchronous callback support functions
7277  */
7278 
7279 /*
7280  * Allocate a callback parameter structure.
7281  * Assumes that caller initializes the flags and the id.
7282  * Acquires SQLOCK(sq) if non-NULL is returned.
7283  */
7284 callbparams_t *
7285 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7286 {
7287 	callbparams_t *cbp;
7288 	size_t size = sizeof (callbparams_t);
7289 
7290 	cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7291 
7292 	/*
7293 	 * Only try tryhard allocation if the caller is ready to panic.
7294 	 * Otherwise just fail.
7295 	 */
7296 	if (cbp == NULL) {
7297 		if (kmflags & KM_PANIC)
7298 			cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7299 			    &size, kmflags);
7300 		else
7301 			return (NULL);
7302 	}
7303 
7304 	ASSERT(size >= sizeof (callbparams_t));
7305 	cbp->cbp_size = size;
7306 	cbp->cbp_sq = sq;
7307 	cbp->cbp_func = func;
7308 	cbp->cbp_arg = arg;
7309 	mutex_enter(SQLOCK(sq));
7310 	cbp->cbp_next = sq->sq_callbpend;
7311 	sq->sq_callbpend = cbp;
7312 	return (cbp);
7313 }
7314 
7315 void
7316 callbparams_free(syncq_t *sq, callbparams_t *cbp)
7317 {
7318 	callbparams_t **pp, *p;
7319 
7320 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7321 
7322 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7323 		if (p == cbp) {
7324 			*pp = p->cbp_next;
7325 			kmem_free(p, p->cbp_size);
7326 			return;
7327 		}
7328 	}
7329 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7330 	    "callbparams_free: not found\n"));
7331 }
7332 
7333 void
7334 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7335 {
7336 	callbparams_t **pp, *p;
7337 
7338 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7339 
7340 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7341 		if (p->cbp_id == id && p->cbp_flags == flag) {
7342 			*pp = p->cbp_next;
7343 			kmem_free(p, p->cbp_size);
7344 			return;
7345 		}
7346 	}
7347 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7348 	    "callbparams_free_id: not found\n"));
7349 }
7350 
7351 /*
7352  * Callback wrapper function used by once-only callbacks that can be
7353  * cancelled (qtimeout and qbufcall)
7354  * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7355  * cancelled by the qun* functions.
7356  */
7357 void
7358 qcallbwrapper(void *arg)
7359 {
7360 	callbparams_t *cbp = arg;
7361 	syncq_t	*sq;
7362 	uint16_t count = 0;
7363 	uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7364 	uint16_t type;
7365 
7366 	sq = cbp->cbp_sq;
7367 	mutex_enter(SQLOCK(sq));
7368 	type = sq->sq_type;
7369 	if (!(type & SQ_CICB)) {
7370 		count = sq->sq_count;
7371 		SQ_PUTLOCKS_ENTER(sq);
7372 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7373 		SUM_SQ_PUTCOUNTS(sq, count);
7374 		sq->sq_needexcl++;
7375 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
7376 		waitflags |= SQ_MESSAGES;
7377 	}
7378 	/* Can not handle exlusive entry at outer perimeter */
7379 	ASSERT(type & SQ_COCB);
7380 
7381 	while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7382 		if ((sq->sq_callbflags & cbp->cbp_flags) &&
7383 		    (sq->sq_cancelid == cbp->cbp_id)) {
7384 			/* timeout has been cancelled */
7385 			sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7386 			callbparams_free(sq, cbp);
7387 			if (!(type & SQ_CICB)) {
7388 				ASSERT(sq->sq_needexcl > 0);
7389 				sq->sq_needexcl--;
7390 				if (sq->sq_needexcl == 0) {
7391 					SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7392 				}
7393 				SQ_PUTLOCKS_EXIT(sq);
7394 			}
7395 			mutex_exit(SQLOCK(sq));
7396 			return;
7397 		}
7398 		sq->sq_flags |= SQ_WANTWAKEUP;
7399 		if (!(type & SQ_CICB)) {
7400 			SQ_PUTLOCKS_EXIT(sq);
7401 		}
7402 		cv_wait(&sq->sq_wait, SQLOCK(sq));
7403 		if (!(type & SQ_CICB)) {
7404 			count = sq->sq_count;
7405 			SQ_PUTLOCKS_ENTER(sq);
7406 			SUM_SQ_PUTCOUNTS(sq, count);
7407 		}
7408 	}
7409 
7410 	sq->sq_count++;
7411 	ASSERT(sq->sq_count != 0);	/* Wraparound */
7412 	if (!(type & SQ_CICB)) {
7413 		ASSERT(count == 0);
7414 		sq->sq_flags |= SQ_EXCL;
7415 		ASSERT(sq->sq_needexcl > 0);
7416 		sq->sq_needexcl--;
7417 		if (sq->sq_needexcl == 0) {
7418 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7419 		}
7420 		SQ_PUTLOCKS_EXIT(sq);
7421 	}
7422 
7423 	mutex_exit(SQLOCK(sq));
7424 
7425 	cbp->cbp_func(cbp->cbp_arg);
7426 
7427 	/*
7428 	 * We drop the lock only for leavesq to re-acquire it.
7429 	 * Possible optimization is inline of leavesq.
7430 	 */
7431 	mutex_enter(SQLOCK(sq));
7432 	callbparams_free(sq, cbp);
7433 	mutex_exit(SQLOCK(sq));
7434 	leavesq(sq, SQ_CALLBACK);
7435 }
7436 
7437 /*
7438  * no need to grab sq_putlocks here. See comment in strsubr.h that
7439  * explains when sq_putlocks are used.
7440  *
7441  * sq_count (or one of the sq_putcounts) has already been
7442  * decremented by the caller, and if SQ_QUEUED, we need to call
7443  * drain_syncq (the global syncq drain).
7444  * If putnext_tail is called with the SQ_EXCL bit set, we are in
7445  * one of two states, non-CIPUT perimiter, and we need to clear
7446  * it, or we went exclusive in the put procedure.  In any case,
7447  * we want to clear the bit now, and it is probably easier to do
7448  * this at the beginning of this function (remember, we hold
7449  * the SQLOCK).  Lastly, if there are other messages queued
7450  * on the syncq (and not for our destination), enable the syncq
7451  * for background work.
7452  */
7453 
7454 /* ARGSUSED */
7455 void
7456 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7457 {
7458 	uint16_t	flags = sq->sq_flags;
7459 
7460 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7461 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7462 
7463 	/* Clear SQ_EXCL if set in passflags */
7464 	if (passflags & SQ_EXCL) {
7465 		flags &= ~SQ_EXCL;
7466 	}
7467 	if (flags & SQ_WANTWAKEUP) {
7468 		flags &= ~SQ_WANTWAKEUP;
7469 		cv_broadcast(&sq->sq_wait);
7470 	}
7471 	if (flags & SQ_WANTEXWAKEUP) {
7472 		flags &= ~SQ_WANTEXWAKEUP;
7473 		cv_broadcast(&sq->sq_exitwait);
7474 	}
7475 	sq->sq_flags = flags;
7476 
7477 	/*
7478 	 * We have cleared SQ_EXCL if we were asked to, and started
7479 	 * the wakeup process for waiters.  If there are no writers
7480 	 * then we need to drain the syncq if we were told to, or
7481 	 * enable the background thread to do it.
7482 	 */
7483 	if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7484 		if ((passflags & SQ_QUEUED) ||
7485 		    (sq->sq_svcflags & SQ_DISABLED)) {
7486 			/* drain_syncq will take care of events in the list */
7487 			drain_syncq(sq);
7488 			return;
7489 		} else if (flags & SQ_QUEUED) {
7490 			sqenable(sq);
7491 		}
7492 	}
7493 	/* Drop the SQLOCK on exit */
7494 	mutex_exit(SQLOCK(sq));
7495 	TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7496 	    "putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7497 }
7498 
7499 void
7500 set_qend(queue_t *q)
7501 {
7502 	mutex_enter(QLOCK(q));
7503 	if (!O_SAMESTR(q))
7504 		q->q_flag |= QEND;
7505 	else
7506 		q->q_flag &= ~QEND;
7507 	mutex_exit(QLOCK(q));
7508 	q = _OTHERQ(q);
7509 	mutex_enter(QLOCK(q));
7510 	if (!O_SAMESTR(q))
7511 		q->q_flag |= QEND;
7512 	else
7513 		q->q_flag &= ~QEND;
7514 	mutex_exit(QLOCK(q));
7515 }
7516 
7517 /*
7518  * Set QFULL in next service procedure queue (that cares) if not already
7519  * set and if there are already more messages on the syncq than
7520  * sq_max_size.  If sq_max_size is 0, no flow control will be asserted on
7521  * any syncq.
7522  *
7523  * The fq here is the next queue with a service procedure.  This is where
7524  * we would fail canputnext, so this is where we need to set QFULL.
7525  * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag.
7526  *
7527  * We already have QLOCK at this point. To avoid cross-locks with
7528  * freezestr() which grabs all QLOCKs and with strlock() which grabs both
7529  * SQLOCK and sd_reflock, we need to drop respective locks first.
7530  */
7531 void
7532 set_qfull(queue_t *q)
7533 {
7534 	queue_t		*fq = NULL;
7535 
7536 	ASSERT(MUTEX_HELD(QLOCK(q)));
7537 	if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
7538 	    (q->q_syncqmsgs > sq_max_size)) {
7539 		if ((fq = q->q_nfsrv) == q) {
7540 			fq->q_flag |= QFULL;
7541 		} else {
7542 			mutex_exit(QLOCK(q));
7543 			mutex_enter(QLOCK(fq));
7544 			fq->q_flag |= QFULL;
7545 			mutex_exit(QLOCK(fq));
7546 			mutex_enter(QLOCK(q));
7547 		}
7548 	}
7549 }
7550 
7551 void
7552 clr_qfull(queue_t *q)
7553 {
7554 	queue_t	*oq = q;
7555 
7556 	q = q->q_nfsrv;
7557 	/* Fast check if there is any work to do before getting the lock. */
7558 	if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7559 		return;
7560 	}
7561 
7562 	/*
7563 	 * Do not reset QFULL (and backenable) if the q_count is the reason
7564 	 * for QFULL being set.
7565 	 */
7566 	mutex_enter(QLOCK(q));
7567 	/*
7568 	 * If queue is empty i.e q_mblkcnt is zero, queue can not be full.
7569 	 * Hence clear the QFULL.
7570 	 * If both q_count and q_mblkcnt are less than the hiwat mark,
7571 	 * clear the QFULL.
7572 	 */
7573 	if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) &&
7574 	    (q->q_mblkcnt < q->q_hiwat))) {
7575 		q->q_flag &= ~QFULL;
7576 		/*
7577 		 * A little more confusing, how about this way:
7578 		 * if someone wants to write,
7579 		 * AND
7580 		 *    both counts are less than the lowat mark
7581 		 *    OR
7582 		 *    the lowat mark is zero
7583 		 * THEN
7584 		 * backenable
7585 		 */
7586 		if ((q->q_flag & QWANTW) &&
7587 		    (((q->q_count < q->q_lowat) &&
7588 		    (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7589 			q->q_flag &= ~QWANTW;
7590 			mutex_exit(QLOCK(q));
7591 			backenable(oq, 0);
7592 		} else
7593 			mutex_exit(QLOCK(q));
7594 	} else
7595 		mutex_exit(QLOCK(q));
7596 }
7597 
7598 /*
7599  * Set the forward service procedure pointer.
7600  *
7601  * Called at insert-time to cache a queue's next forward service procedure in
7602  * q_nfsrv; used by canput() and canputnext().  If the queue to be inserted
7603  * has a service procedure then q_nfsrv points to itself.  If the queue to be
7604  * inserted does not have a service procedure, then q_nfsrv points to the next
7605  * queue forward that has a service procedure.  If the queue is at the logical
7606  * end of the stream (driver for write side, stream head for the read side)
7607  * and does not have a service procedure, then q_nfsrv also points to itself.
7608  */
7609 void
7610 set_nfsrv_ptr(
7611 	queue_t  *rnew,		/* read queue pointer to new module */
7612 	queue_t  *wnew,		/* write queue pointer to new module */
7613 	queue_t  *prev_rq,	/* read queue pointer to the module above */
7614 	queue_t  *prev_wq)	/* write queue pointer to the module above */
7615 {
7616 	queue_t *qp;
7617 
7618 	if (prev_wq->q_next == NULL) {
7619 		/*
7620 		 * Insert the driver, initialize the driver and stream head.
7621 		 * In this case, prev_rq/prev_wq should be the stream head.
7622 		 * _I_INSERT does not allow inserting a driver.  Make sure
7623 		 * that it is not an insertion.
7624 		 */
7625 		ASSERT(!(rnew->q_flag & _QINSERTING));
7626 		wnew->q_nfsrv = wnew;
7627 		if (rnew->q_qinfo->qi_srvp)
7628 			rnew->q_nfsrv = rnew;
7629 		else
7630 			rnew->q_nfsrv = prev_rq;
7631 		prev_rq->q_nfsrv = prev_rq;
7632 		prev_wq->q_nfsrv = prev_wq;
7633 	} else {
7634 		/*
7635 		 * set up read side q_nfsrv pointer.  This MUST be done
7636 		 * before setting the write side, because the setting of
7637 		 * the write side for a fifo may depend on it.
7638 		 *
7639 		 * Suppose we have a fifo that only has pipemod pushed.
7640 		 * pipemod has no read or write service procedures, so
7641 		 * nfsrv for both pipemod queues points to prev_rq (the
7642 		 * stream read head).  Now push bufmod (which has only a
7643 		 * read service procedure).  Doing the write side first,
7644 		 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7645 		 * is WRONG; the next queue forward from wnew with a
7646 		 * service procedure will be rnew, not the stream read head.
7647 		 * Since the downstream queue (which in the case of a fifo
7648 		 * is the read queue rnew) can affect upstream queues, it
7649 		 * needs to be done first.  Setting up the read side first
7650 		 * sets nfsrv for both pipemod queues to rnew and then
7651 		 * when the write side is set up, wnew-q_nfsrv will also
7652 		 * point to rnew.
7653 		 */
7654 		if (rnew->q_qinfo->qi_srvp) {
7655 			/*
7656 			 * use _OTHERQ() because, if this is a pipe, next
7657 			 * module may have been pushed from other end and
7658 			 * q_next could be a read queue.
7659 			 */
7660 			qp = _OTHERQ(prev_wq->q_next);
7661 			while (qp && qp->q_nfsrv != qp) {
7662 				qp->q_nfsrv = rnew;
7663 				qp = backq(qp);
7664 			}
7665 			rnew->q_nfsrv = rnew;
7666 		} else
7667 			rnew->q_nfsrv = prev_rq->q_nfsrv;
7668 
7669 		/* set up write side q_nfsrv pointer */
7670 		if (wnew->q_qinfo->qi_srvp) {
7671 			wnew->q_nfsrv = wnew;
7672 
7673 			/*
7674 			 * For insertion, need to update nfsrv of the modules
7675 			 * above which do not have a service routine.
7676 			 */
7677 			if (rnew->q_flag & _QINSERTING) {
7678 				for (qp = prev_wq;
7679 				    qp != NULL && qp->q_nfsrv != qp;
7680 				    qp = backq(qp)) {
7681 					qp->q_nfsrv = wnew->q_nfsrv;
7682 				}
7683 			}
7684 		} else {
7685 			if (prev_wq->q_next == prev_rq)
7686 				/*
7687 				 * Since prev_wq/prev_rq are the middle of a
7688 				 * fifo, wnew/rnew will also be the middle of
7689 				 * a fifo and wnew's nfsrv is same as rnew's.
7690 				 */
7691 				wnew->q_nfsrv = rnew->q_nfsrv;
7692 			else
7693 				wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7694 		}
7695 	}
7696 }
7697 
7698 /*
7699  * Reset the forward service procedure pointer; called at remove-time.
7700  */
7701 void
7702 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7703 {
7704 	queue_t *tmp_qp;
7705 
7706 	/* Reset the write side q_nfsrv pointer for _I_REMOVE */
7707 	if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7708 		for (tmp_qp = backq(wqp);
7709 		    tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7710 		    tmp_qp = backq(tmp_qp)) {
7711 			tmp_qp->q_nfsrv = wqp->q_nfsrv;
7712 		}
7713 	}
7714 
7715 	/* reset the read side q_nfsrv pointer */
7716 	if (rqp->q_qinfo->qi_srvp) {
7717 		if (wqp->q_next) {	/* non-driver case */
7718 			tmp_qp = _OTHERQ(wqp->q_next);
7719 			while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7720 				/* Note that rqp->q_next cannot be NULL */
7721 				ASSERT(rqp->q_next != NULL);
7722 				tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7723 				tmp_qp = backq(tmp_qp);
7724 			}
7725 		}
7726 	}
7727 }
7728 
7729 /*
7730  * This routine should be called after all stream geometry changes to update
7731  * the stream head cached struio() rd/wr queue pointers. Note must be called
7732  * with the streamlock()ed.
7733  *
7734  * Note: only enables Synchronous STREAMS for a side of a Stream which has
7735  *	 an explicit synchronous barrier module queue. That is, a queue that
7736  *	 has specified a struio() type.
7737  */
7738 static void
7739 strsetuio(stdata_t *stp)
7740 {
7741 	queue_t *wrq;
7742 
7743 	if (stp->sd_flag & STPLEX) {
7744 		/*
7745 		 * Not stremahead, but a mux, so no Synchronous STREAMS.
7746 		 */
7747 		stp->sd_struiowrq = NULL;
7748 		stp->sd_struiordq = NULL;
7749 		return;
7750 	}
7751 	/*
7752 	 * Scan the write queue(s) while synchronous
7753 	 * until we find a qinfo uio type specified.
7754 	 */
7755 	wrq = stp->sd_wrq->q_next;
7756 	while (wrq) {
7757 		if (wrq->q_struiot == STRUIOT_NONE) {
7758 			wrq = 0;
7759 			break;
7760 		}
7761 		if (wrq->q_struiot != STRUIOT_DONTCARE)
7762 			break;
7763 		if (! _SAMESTR(wrq)) {
7764 			wrq = 0;
7765 			break;
7766 		}
7767 		wrq = wrq->q_next;
7768 	}
7769 	stp->sd_struiowrq = wrq;
7770 	/*
7771 	 * Scan the read queue(s) while synchronous
7772 	 * until we find a qinfo uio type specified.
7773 	 */
7774 	wrq = stp->sd_wrq->q_next;
7775 	while (wrq) {
7776 		if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7777 			wrq = 0;
7778 			break;
7779 		}
7780 		if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7781 			break;
7782 		if (! _SAMESTR(wrq)) {
7783 			wrq = 0;
7784 			break;
7785 		}
7786 		wrq = wrq->q_next;
7787 	}
7788 	stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7789 }
7790 
7791 /*
7792  * pass_wput, unblocks the passthru queues, so that
7793  * messages can arrive at muxs lower read queue, before
7794  * I_LINK/I_UNLINK is acked/nacked.
7795  */
7796 static void
7797 pass_wput(queue_t *q, mblk_t *mp)
7798 {
7799 	syncq_t *sq;
7800 
7801 	sq = _RD(q)->q_syncq;
7802 	if (sq->sq_flags & SQ_BLOCKED)
7803 		unblocksq(sq, SQ_BLOCKED, 0);
7804 	putnext(q, mp);
7805 }
7806 
7807 /*
7808  * Set up queues for the link/unlink.
7809  * Create a new queue and block it and then insert it
7810  * below the stream head on the lower stream.
7811  * This prevents any messages from arriving during the setq
7812  * as well as while the mux is processing the LINK/I_UNLINK.
7813  * The blocked passq is unblocked once the LINK/I_UNLINK has
7814  * been acked or nacked or if a message is generated and sent
7815  * down muxs write put procedure.
7816  * see pass_wput().
7817  *
7818  * After the new queue is inserted, all messages coming from below are
7819  * blocked. The call to strlock will ensure that all activity in the stream head
7820  * read queue syncq is stopped (sq_count drops to zero).
7821  */
7822 static queue_t *
7823 link_addpassthru(stdata_t *stpdown)
7824 {
7825 	queue_t *passq;
7826 	sqlist_t sqlist;
7827 
7828 	passq = allocq();
7829 	STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7830 	/* setq might sleep in allocator - avoid holding locks. */
7831 	setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7832 	    SQ_CI|SQ_CO, B_FALSE);
7833 	claimq(passq);
7834 	blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7835 	insertq(STREAM(passq), passq);
7836 
7837 	/*
7838 	 * Use strlock() to wait for the stream head sq_count to drop to zero
7839 	 * since we are going to change q_ptr in the stream head.  Note that
7840 	 * insertq() doesn't wait for any syncq counts to drop to zero.
7841 	 */
7842 	sqlist.sqlist_head = NULL;
7843 	sqlist.sqlist_index = 0;
7844 	sqlist.sqlist_size = sizeof (sqlist_t);
7845 	sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7846 	strlock(stpdown, &sqlist);
7847 	strunlock(stpdown, &sqlist);
7848 
7849 	releaseq(passq);
7850 	return (passq);
7851 }
7852 
7853 /*
7854  * Let messages flow up into the mux by removing
7855  * the passq.
7856  */
7857 static void
7858 link_rempassthru(queue_t *passq)
7859 {
7860 	claimq(passq);
7861 	removeq(passq);
7862 	releaseq(passq);
7863 	freeq(passq);
7864 }
7865 
7866 /*
7867  * Wait for the condition variable pointed to by `cvp' to be signaled,
7868  * or for `tim' milliseconds to elapse, whichever comes first.  If `tim'
7869  * is negative, then there is no time limit.  If `nosigs' is non-zero,
7870  * then the wait will be non-interruptible.
7871  *
7872  * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
7873  */
7874 clock_t
7875 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7876 {
7877 	clock_t ret, now, tick;
7878 
7879 	if (tim < 0) {
7880 		if (nosigs) {
7881 			cv_wait(cvp, mp);
7882 			ret = 1;
7883 		} else {
7884 			ret = cv_wait_sig(cvp, mp);
7885 		}
7886 	} else if (tim > 0) {
7887 		/*
7888 		 * convert milliseconds to clock ticks
7889 		 */
7890 		tick = MSEC_TO_TICK_ROUNDUP(tim);
7891 		time_to_wait(&now, tick);
7892 		if (nosigs) {
7893 			ret = cv_timedwait(cvp, mp, now);
7894 		} else {
7895 			ret = cv_timedwait_sig(cvp, mp, now);
7896 		}
7897 	} else {
7898 		ret = -1;
7899 	}
7900 	return (ret);
7901 }
7902 
7903 /*
7904  * Wait until the stream head can determine if it is at the mark but
7905  * don't wait forever to prevent a race condition between the "mark" state
7906  * in the stream head and any mark state in the caller/user of this routine.
7907  *
7908  * This is used by sockets and for a socket it would be incorrect
7909  * to return a failure for SIOCATMARK when there is no data in the receive
7910  * queue and the marked urgent data is traveling up the stream.
7911  *
7912  * This routine waits until the mark is known by waiting for one of these
7913  * three events:
7914  *	The stream head read queue becoming non-empty (including an EOF)
7915  *	The STRATMARK flag being set. (Due to a MSGMARKNEXT message.)
7916  *	The STRNOTATMARK flag being set (which indicates that the transport
7917  *	has sent a MSGNOTMARKNEXT message to indicate that it is not at
7918  *	the mark).
7919  *
7920  * The routine returns 1 if the stream is at the mark; 0 if it can
7921  * be determined that the stream is not at the mark.
7922  * If the wait times out and it can't determine
7923  * whether or not the stream might be at the mark the routine will return -1.
7924  *
7925  * Note: This routine should only be used when a mark is pending i.e.,
7926  * in the socket case the SIGURG has been posted.
7927  * Note2: This can not wakeup just because synchronous streams indicate
7928  * that data is available since it is not possible to use the synchronous
7929  * streams interfaces to determine the b_flag value for the data queued below
7930  * the stream head.
7931  */
7932 int
7933 strwaitmark(vnode_t *vp)
7934 {
7935 	struct stdata *stp = vp->v_stream;
7936 	queue_t *rq = _RD(stp->sd_wrq);
7937 	int mark;
7938 
7939 	mutex_enter(&stp->sd_lock);
7940 	while (rq->q_first == NULL &&
7941 	    !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7942 		stp->sd_flag |= RSLEEP;
7943 
7944 		/* Wait for 100 milliseconds for any state change. */
7945 		if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7946 			mutex_exit(&stp->sd_lock);
7947 			return (-1);
7948 		}
7949 	}
7950 	if (stp->sd_flag & STRATMARK)
7951 		mark = 1;
7952 	else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7953 		mark = 1;
7954 	else
7955 		mark = 0;
7956 
7957 	mutex_exit(&stp->sd_lock);
7958 	return (mark);
7959 }
7960 
7961 /*
7962  * Set a read side error. If persist is set change the socket error
7963  * to persistent. If errfunc is set install the function as the exported
7964  * error handler.
7965  */
7966 void
7967 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7968 {
7969 	struct stdata *stp = vp->v_stream;
7970 
7971 	mutex_enter(&stp->sd_lock);
7972 	stp->sd_rerror = error;
7973 	if (error == 0 && errfunc == NULL)
7974 		stp->sd_flag &= ~STRDERR;
7975 	else
7976 		stp->sd_flag |= STRDERR;
7977 	if (persist) {
7978 		stp->sd_flag &= ~STRDERRNONPERSIST;
7979 	} else {
7980 		stp->sd_flag |= STRDERRNONPERSIST;
7981 	}
7982 	stp->sd_rderrfunc = errfunc;
7983 	if (error != 0 || errfunc != NULL) {
7984 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7985 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7986 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7987 
7988 		mutex_exit(&stp->sd_lock);
7989 		pollwakeup(&stp->sd_pollist, POLLERR);
7990 		mutex_enter(&stp->sd_lock);
7991 
7992 		if (stp->sd_sigflags & S_ERROR)
7993 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7994 	}
7995 	mutex_exit(&stp->sd_lock);
7996 }
7997 
7998 /*
7999  * Set a write side error. If persist is set change the socket error
8000  * to persistent.
8001  */
8002 void
8003 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
8004 {
8005 	struct stdata *stp = vp->v_stream;
8006 
8007 	mutex_enter(&stp->sd_lock);
8008 	stp->sd_werror = error;
8009 	if (error == 0 && errfunc == NULL)
8010 		stp->sd_flag &= ~STWRERR;
8011 	else
8012 		stp->sd_flag |= STWRERR;
8013 	if (persist) {
8014 		stp->sd_flag &= ~STWRERRNONPERSIST;
8015 	} else {
8016 		stp->sd_flag |= STWRERRNONPERSIST;
8017 	}
8018 	stp->sd_wrerrfunc = errfunc;
8019 	if (error != 0 || errfunc != NULL) {
8020 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
8021 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
8022 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
8023 
8024 		mutex_exit(&stp->sd_lock);
8025 		pollwakeup(&stp->sd_pollist, POLLERR);
8026 		mutex_enter(&stp->sd_lock);
8027 
8028 		if (stp->sd_sigflags & S_ERROR)
8029 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8030 	}
8031 	mutex_exit(&stp->sd_lock);
8032 }
8033 
8034 /*
8035  * Make the stream return 0 (EOF) when all data has been read.
8036  * No effect on write side.
8037  */
8038 void
8039 strseteof(vnode_t *vp, int eof)
8040 {
8041 	struct stdata *stp = vp->v_stream;
8042 
8043 	mutex_enter(&stp->sd_lock);
8044 	if (!eof) {
8045 		stp->sd_flag &= ~STREOF;
8046 		mutex_exit(&stp->sd_lock);
8047 		return;
8048 	}
8049 	stp->sd_flag |= STREOF;
8050 	if (stp->sd_flag & RSLEEP) {
8051 		stp->sd_flag &= ~RSLEEP;
8052 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
8053 	}
8054 
8055 	mutex_exit(&stp->sd_lock);
8056 	pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
8057 	mutex_enter(&stp->sd_lock);
8058 
8059 	if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
8060 		strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
8061 	mutex_exit(&stp->sd_lock);
8062 }
8063 
8064 void
8065 strflushrq(vnode_t *vp, int flag)
8066 {
8067 	struct stdata *stp = vp->v_stream;
8068 
8069 	mutex_enter(&stp->sd_lock);
8070 	flushq(_RD(stp->sd_wrq), flag);
8071 	mutex_exit(&stp->sd_lock);
8072 }
8073 
8074 void
8075 strsetrputhooks(vnode_t *vp, uint_t flags,
8076 		msgfunc_t protofunc, msgfunc_t miscfunc)
8077 {
8078 	struct stdata *stp = vp->v_stream;
8079 
8080 	mutex_enter(&stp->sd_lock);
8081 
8082 	if (protofunc == NULL)
8083 		stp->sd_rprotofunc = strrput_proto;
8084 	else
8085 		stp->sd_rprotofunc = protofunc;
8086 
8087 	if (miscfunc == NULL)
8088 		stp->sd_rmiscfunc = strrput_misc;
8089 	else
8090 		stp->sd_rmiscfunc = miscfunc;
8091 
8092 	if (flags & SH_CONSOL_DATA)
8093 		stp->sd_rput_opt |= SR_CONSOL_DATA;
8094 	else
8095 		stp->sd_rput_opt &= ~SR_CONSOL_DATA;
8096 
8097 	if (flags & SH_SIGALLDATA)
8098 		stp->sd_rput_opt |= SR_SIGALLDATA;
8099 	else
8100 		stp->sd_rput_opt &= ~SR_SIGALLDATA;
8101 
8102 	if (flags & SH_IGN_ZEROLEN)
8103 		stp->sd_rput_opt |= SR_IGN_ZEROLEN;
8104 	else
8105 		stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
8106 
8107 	mutex_exit(&stp->sd_lock);
8108 }
8109 
8110 void
8111 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
8112 {
8113 	struct stdata *stp = vp->v_stream;
8114 
8115 	mutex_enter(&stp->sd_lock);
8116 	stp->sd_closetime = closetime;
8117 
8118 	if (flags & SH_SIGPIPE)
8119 		stp->sd_wput_opt |= SW_SIGPIPE;
8120 	else
8121 		stp->sd_wput_opt &= ~SW_SIGPIPE;
8122 	if (flags & SH_RECHECK_ERR)
8123 		stp->sd_wput_opt |= SW_RECHECK_ERR;
8124 	else
8125 		stp->sd_wput_opt &= ~SW_RECHECK_ERR;
8126 
8127 	mutex_exit(&stp->sd_lock);
8128 }
8129 
8130 void
8131 strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc)
8132 {
8133 	struct stdata *stp = vp->v_stream;
8134 
8135 	mutex_enter(&stp->sd_lock);
8136 
8137 	stp->sd_rputdatafunc = rdatafunc;
8138 	stp->sd_wputdatafunc = wdatafunc;
8139 
8140 	mutex_exit(&stp->sd_lock);
8141 }
8142 
8143 /* Used within framework when the queue is already locked */
8144 void
8145 qenable_locked(queue_t *q)
8146 {
8147 	stdata_t *stp = STREAM(q);
8148 
8149 	ASSERT(MUTEX_HELD(QLOCK(q)));
8150 
8151 	if (!q->q_qinfo->qi_srvp)
8152 		return;
8153 
8154 	/*
8155 	 * Do not place on run queue if already enabled or closing.
8156 	 */
8157 	if (q->q_flag & (QWCLOSE|QENAB))
8158 		return;
8159 
8160 	/*
8161 	 * mark queue enabled and place on run list if it is not already being
8162 	 * serviced. If it is serviced, the runservice() function will detect
8163 	 * that QENAB is set and call service procedure before clearing
8164 	 * QINSERVICE flag.
8165 	 */
8166 	q->q_flag |= QENAB;
8167 	if (q->q_flag & QINSERVICE)
8168 		return;
8169 
8170 	/* Record the time of qenable */
8171 	q->q_qtstamp = lbolt;
8172 
8173 	/*
8174 	 * Put the queue in the stp list and schedule it for background
8175 	 * processing if it is not already scheduled or if stream head does not
8176 	 * intent to process it in the foreground later by setting
8177 	 * STRS_WILLSERVICE flag.
8178 	 */
8179 	mutex_enter(&stp->sd_qlock);
8180 	/*
8181 	 * If there are already something on the list, stp flags should show
8182 	 * intention to drain it.
8183 	 */
8184 	IMPLY(STREAM_NEEDSERVICE(stp),
8185 	    (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8186 
8187 	ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8188 	stp->sd_nqueues++;
8189 
8190 	/*
8191 	 * If no one will drain this stream we are the first producer and
8192 	 * need to schedule it for background thread.
8193 	 */
8194 	if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8195 		/*
8196 		 * No one will service this stream later, so we have to
8197 		 * schedule it now.
8198 		 */
8199 		STRSTAT(stenables);
8200 		stp->sd_svcflags |= STRS_SCHEDULED;
8201 		stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8202 		    (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8203 
8204 		if (stp->sd_servid == NULL) {
8205 			/*
8206 			 * Task queue failed so fail over to the backup
8207 			 * servicing thread.
8208 			 */
8209 			STRSTAT(taskqfails);
8210 			/*
8211 			 * It is safe to clear STRS_SCHEDULED flag because it
8212 			 * was set by this thread above.
8213 			 */
8214 			stp->sd_svcflags &= ~STRS_SCHEDULED;
8215 
8216 			/*
8217 			 * Failover scheduling is protected by service_queue
8218 			 * lock.
8219 			 */
8220 			mutex_enter(&service_queue);
8221 			ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8222 			ASSERT(q->q_link == NULL);
8223 			/*
8224 			 * Append the queue to qhead/qtail list.
8225 			 */
8226 			if (qhead == NULL)
8227 				qhead = q;
8228 			else
8229 				qtail->q_link = q;
8230 			qtail = q;
8231 			/*
8232 			 * Clear stp queue list.
8233 			 */
8234 			stp->sd_qhead = stp->sd_qtail = NULL;
8235 			stp->sd_nqueues = 0;
8236 			/*
8237 			 * Wakeup background queue processing thread.
8238 			 */
8239 			cv_signal(&services_to_run);
8240 			mutex_exit(&service_queue);
8241 		}
8242 	}
8243 	mutex_exit(&stp->sd_qlock);
8244 }
8245 
8246 static void
8247 queue_service(queue_t *q)
8248 {
8249 	/*
8250 	 * The queue in the list should have
8251 	 * QENAB flag set and should not have
8252 	 * QINSERVICE flag set. QINSERVICE is
8253 	 * set when the queue is dequeued and
8254 	 * qenable_locked doesn't enqueue a
8255 	 * queue with QINSERVICE set.
8256 	 */
8257 
8258 	ASSERT(!(q->q_flag & QINSERVICE));
8259 	ASSERT((q->q_flag & QENAB));
8260 	mutex_enter(QLOCK(q));
8261 	q->q_flag &= ~QENAB;
8262 	q->q_flag |= QINSERVICE;
8263 	mutex_exit(QLOCK(q));
8264 	runservice(q);
8265 }
8266 
8267 static void
8268 syncq_service(syncq_t *sq)
8269 {
8270 	STRSTAT(syncqservice);
8271 	mutex_enter(SQLOCK(sq));
8272 	ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8273 	ASSERT(sq->sq_servcount != 0);
8274 	ASSERT(sq->sq_next == NULL);
8275 
8276 	/* if we came here from the background thread, clear the flag */
8277 	if (sq->sq_svcflags & SQ_BGTHREAD)
8278 		sq->sq_svcflags &= ~SQ_BGTHREAD;
8279 
8280 	/* let drain_syncq know that it's being called in the background */
8281 	sq->sq_svcflags |= SQ_SERVICE;
8282 	drain_syncq(sq);
8283 }
8284 
8285 static void
8286 qwriter_outer_service(syncq_t *outer)
8287 {
8288 	/*
8289 	 * Note that SQ_WRITER is used on the outer perimeter
8290 	 * to signal that a qwriter(OUTER) is either investigating
8291 	 * running or that it is actually running a function.
8292 	 */
8293 	outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8294 
8295 	/*
8296 	 * All inner syncq are empty and have SQ_WRITER set
8297 	 * to block entering the outer perimeter.
8298 	 *
8299 	 * We do not need to explicitly call write_now since
8300 	 * outer_exit does it for us.
8301 	 */
8302 	outer_exit(outer);
8303 }
8304 
8305 static void
8306 mblk_free(mblk_t *mp)
8307 {
8308 	dblk_t *dbp = mp->b_datap;
8309 	frtn_t *frp = dbp->db_frtnp;
8310 
8311 	mp->b_next = NULL;
8312 	if (dbp->db_fthdr != NULL)
8313 		str_ftfree(dbp);
8314 
8315 	ASSERT(dbp->db_fthdr == NULL);
8316 	frp->free_func(frp->free_arg);
8317 	ASSERT(dbp->db_mblk == mp);
8318 
8319 	if (dbp->db_credp != NULL) {
8320 		crfree(dbp->db_credp);
8321 		dbp->db_credp = NULL;
8322 	}
8323 	dbp->db_cpid = -1;
8324 	dbp->db_struioflag = 0;
8325 	dbp->db_struioun.cksum.flags = 0;
8326 
8327 	kmem_cache_free(dbp->db_cache, dbp);
8328 }
8329 
8330 /*
8331  * Background processing of the stream queue list.
8332  */
8333 static void
8334 stream_service(stdata_t *stp)
8335 {
8336 	queue_t *q;
8337 
8338 	mutex_enter(&stp->sd_qlock);
8339 
8340 	STR_SERVICE(stp, q);
8341 
8342 	stp->sd_svcflags &= ~STRS_SCHEDULED;
8343 	stp->sd_servid = NULL;
8344 	cv_signal(&stp->sd_qcv);
8345 	mutex_exit(&stp->sd_qlock);
8346 }
8347 
8348 /*
8349  * Foreground processing of the stream queue list.
8350  */
8351 void
8352 stream_runservice(stdata_t *stp)
8353 {
8354 	queue_t *q;
8355 
8356 	mutex_enter(&stp->sd_qlock);
8357 	STRSTAT(rservice);
8358 	/*
8359 	 * We are going to drain this stream queue list, so qenable_locked will
8360 	 * not schedule it until we finish.
8361 	 */
8362 	stp->sd_svcflags |= STRS_WILLSERVICE;
8363 
8364 	STR_SERVICE(stp, q);
8365 
8366 	stp->sd_svcflags &= ~STRS_WILLSERVICE;
8367 	mutex_exit(&stp->sd_qlock);
8368 	/*
8369 	 * Help backup background thread to drain the qhead/qtail list.
8370 	 */
8371 	while (qhead != NULL) {
8372 		STRSTAT(qhelps);
8373 		mutex_enter(&service_queue);
8374 		DQ(q, qhead, qtail, q_link);
8375 		mutex_exit(&service_queue);
8376 		if (q != NULL)
8377 			queue_service(q);
8378 	}
8379 }
8380 
8381 void
8382 stream_willservice(stdata_t *stp)
8383 {
8384 	mutex_enter(&stp->sd_qlock);
8385 	stp->sd_svcflags |= STRS_WILLSERVICE;
8386 	mutex_exit(&stp->sd_qlock);
8387 }
8388 
8389 /*
8390  * Replace the cred currently in the mblk with a different one.
8391  * Also update db_cpid.
8392  */
8393 void
8394 mblk_setcred(mblk_t *mp, cred_t *cr, pid_t cpid)
8395 {
8396 	dblk_t *dbp = mp->b_datap;
8397 	cred_t *ocr = dbp->db_credp;
8398 
8399 	ASSERT(cr != NULL);
8400 
8401 	if (cr != ocr) {
8402 		crhold(dbp->db_credp = cr);
8403 		if (ocr != NULL)
8404 			crfree(ocr);
8405 	}
8406 	/* Don't overwrite with NOPID */
8407 	if (cpid != NOPID)
8408 		dbp->db_cpid = cpid;
8409 }
8410 
8411 /*
8412  * If the src message has a cred, then replace the cred currently in the mblk
8413  * with it.
8414  * Also update db_cpid.
8415  */
8416 void
8417 mblk_copycred(mblk_t *mp, const mblk_t *src)
8418 {
8419 	dblk_t *dbp = mp->b_datap;
8420 	cred_t *cr, *ocr;
8421 	pid_t cpid;
8422 
8423 	cr = msg_getcred(src, &cpid);
8424 	if (cr == NULL)
8425 		return;
8426 
8427 	ocr = dbp->db_credp;
8428 	if (cr != ocr) {
8429 		crhold(dbp->db_credp = cr);
8430 		if (ocr != NULL)
8431 			crfree(ocr);
8432 	}
8433 	/* Don't overwrite with NOPID */
8434 	if (cpid != NOPID)
8435 		dbp->db_cpid = cpid;
8436 }
8437 
8438 int
8439 hcksum_assoc(mblk_t *mp,  multidata_t *mmd, pdesc_t *pd,
8440     uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8441     uint32_t flags, int km_flags)
8442 {
8443 	int rc = 0;
8444 
8445 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8446 	if (mp->b_datap->db_type == M_DATA) {
8447 		/* Associate values for M_DATA type */
8448 		DB_CKSUMSTART(mp) = (intptr_t)start;
8449 		DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
8450 		DB_CKSUMEND(mp) = (intptr_t)end;
8451 		DB_CKSUMFLAGS(mp) = flags;
8452 		DB_CKSUM16(mp) = (uint16_t)value;
8453 
8454 	} else {
8455 		pattrinfo_t pa_info;
8456 
8457 		ASSERT(mmd != NULL);
8458 
8459 		pa_info.type = PATTR_HCKSUM;
8460 		pa_info.len = sizeof (pattr_hcksum_t);
8461 
8462 		if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8463 			pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8464 
8465 			hck->hcksum_start_offset = start;
8466 			hck->hcksum_stuff_offset = stuff;
8467 			hck->hcksum_end_offset = end;
8468 			hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8469 			hck->hcksum_flags = flags;
8470 		} else {
8471 			rc = -1;
8472 		}
8473 	}
8474 	return (rc);
8475 }
8476 
8477 void
8478 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8479     uint32_t *start, uint32_t *stuff, uint32_t *end,
8480     uint32_t *value, uint32_t *flags)
8481 {
8482 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8483 	if (mp->b_datap->db_type == M_DATA) {
8484 		if (flags != NULL) {
8485 			*flags = DB_CKSUMFLAGS(mp) & (HCK_IPV4_HDRCKSUM |
8486 			    HCK_PARTIALCKSUM | HCK_FULLCKSUM |
8487 			    HCK_FULLCKSUM_OK);
8488 			if ((*flags & (HCK_PARTIALCKSUM |
8489 			    HCK_FULLCKSUM)) != 0) {
8490 				if (value != NULL)
8491 					*value = (uint32_t)DB_CKSUM16(mp);
8492 				if ((*flags & HCK_PARTIALCKSUM) != 0) {
8493 					if (start != NULL)
8494 						*start =
8495 						    (uint32_t)DB_CKSUMSTART(mp);
8496 					if (stuff != NULL)
8497 						*stuff =
8498 						    (uint32_t)DB_CKSUMSTUFF(mp);
8499 					if (end != NULL)
8500 						*end =
8501 						    (uint32_t)DB_CKSUMEND(mp);
8502 				}
8503 			}
8504 		}
8505 	} else {
8506 		pattrinfo_t hck_attr = {PATTR_HCKSUM};
8507 
8508 		ASSERT(mmd != NULL);
8509 
8510 		/* get hardware checksum attribute */
8511 		if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8512 			pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8513 
8514 			ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8515 			if (flags != NULL)
8516 				*flags = hck->hcksum_flags;
8517 			if (start != NULL)
8518 				*start = hck->hcksum_start_offset;
8519 			if (stuff != NULL)
8520 				*stuff = hck->hcksum_stuff_offset;
8521 			if (end != NULL)
8522 				*end = hck->hcksum_end_offset;
8523 			if (value != NULL)
8524 				*value = (uint32_t)
8525 				    hck->hcksum_cksum_val.inet_cksum;
8526 		}
8527 	}
8528 }
8529 
8530 void
8531 lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags)
8532 {
8533 	ASSERT(DB_TYPE(mp) == M_DATA);
8534 
8535 	/* Set the flags */
8536 	DB_LSOFLAGS(mp) |= flags;
8537 	DB_LSOMSS(mp) = mss;
8538 }
8539 
8540 void
8541 lso_info_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
8542 {
8543 	ASSERT(DB_TYPE(mp) == M_DATA);
8544 
8545 	if (flags != NULL) {
8546 		*flags = DB_CKSUMFLAGS(mp) & HW_LSO;
8547 		if ((*flags != 0) && (mss != NULL))
8548 			*mss = (uint32_t)DB_LSOMSS(mp);
8549 	}
8550 }
8551 
8552 /*
8553  * Checksum buffer *bp for len bytes with psum partial checksum,
8554  * or 0 if none, and return the 16 bit partial checksum.
8555  */
8556 unsigned
8557 bcksum(uchar_t *bp, int len, unsigned int psum)
8558 {
8559 	int odd = len & 1;
8560 	extern unsigned int ip_ocsum();
8561 
8562 	if (((intptr_t)bp & 1) == 0 && !odd) {
8563 		/*
8564 		 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8565 		 */
8566 		return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8567 	}
8568 	if (((intptr_t)bp & 1) != 0) {
8569 		/*
8570 		 * Bp isn't 16 bit aligned.
8571 		 */
8572 		unsigned int tsum;
8573 
8574 #ifdef _LITTLE_ENDIAN
8575 		psum += *bp;
8576 #else
8577 		psum += *bp << 8;
8578 #endif
8579 		len--;
8580 		bp++;
8581 		tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8582 		psum += (tsum << 8) & 0xffff | (tsum >> 8);
8583 		if (len & 1) {
8584 			bp += len - 1;
8585 #ifdef _LITTLE_ENDIAN
8586 			psum += *bp << 8;
8587 #else
8588 			psum += *bp;
8589 #endif
8590 		}
8591 	} else {
8592 		/*
8593 		 * Bp is 16 bit aligned.
8594 		 */
8595 		psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8596 		if (odd) {
8597 			bp += len - 1;
8598 #ifdef _LITTLE_ENDIAN
8599 			psum += *bp;
8600 #else
8601 			psum += *bp << 8;
8602 #endif
8603 		}
8604 	}
8605 	/*
8606 	 * Normalize psum to 16 bits before returning the new partial
8607 	 * checksum. The max psum value before normalization is 0x3FDFE.
8608 	 */
8609 	return ((psum >> 16) + (psum & 0xFFFF));
8610 }
8611 
8612 boolean_t
8613 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8614 {
8615 	boolean_t rc;
8616 
8617 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8618 	if (DB_TYPE(mp) == M_DATA) {
8619 		rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8620 	} else {
8621 		pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8622 
8623 		ASSERT(mmd != NULL);
8624 		rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8625 	}
8626 	return (rc);
8627 }
8628 
8629 void
8630 freemsgchain(mblk_t *mp)
8631 {
8632 	mblk_t	*next;
8633 
8634 	while (mp != NULL) {
8635 		next = mp->b_next;
8636 		mp->b_next = NULL;
8637 
8638 		freemsg(mp);
8639 		mp = next;
8640 	}
8641 }
8642 
8643 mblk_t *
8644 copymsgchain(mblk_t *mp)
8645 {
8646 	mblk_t	*nmp = NULL;
8647 	mblk_t	**nmpp = &nmp;
8648 
8649 	for (; mp != NULL; mp = mp->b_next) {
8650 		if ((*nmpp = copymsg(mp)) == NULL) {
8651 			freemsgchain(nmp);
8652 			return (NULL);
8653 		}
8654 
8655 		nmpp = &((*nmpp)->b_next);
8656 	}
8657 
8658 	return (nmp);
8659 }
8660 
8661 /* NOTE: Do not add code after this point. */
8662 #undef QLOCK
8663 
8664 /*
8665  * replacement for QLOCK macro for those that can't use it.
8666  */
8667 kmutex_t *
8668 QLOCK(queue_t *q)
8669 {
8670 	return (&(q)->q_lock);
8671 }
8672 
8673 /*
8674  * Dummy runqueues/queuerun functions functions for backwards compatibility.
8675  */
8676 #undef runqueues
8677 void
8678 runqueues(void)
8679 {
8680 }
8681 
8682 #undef queuerun
8683 void
8684 queuerun(void)
8685 {
8686 }
8687 
8688 /*
8689  * Initialize the STR stack instance, which tracks autopush and persistent
8690  * links.
8691  */
8692 /* ARGSUSED */
8693 static void *
8694 str_stack_init(netstackid_t stackid, netstack_t *ns)
8695 {
8696 	str_stack_t	*ss;
8697 	int i;
8698 
8699 	ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP);
8700 	ss->ss_netstack = ns;
8701 
8702 	/*
8703 	 * set up autopush
8704 	 */
8705 	sad_initspace(ss);
8706 
8707 	/*
8708 	 * set up mux_node structures.
8709 	 */
8710 	ss->ss_devcnt = devcnt;	/* In case it should change before free */
8711 	ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) *
8712 	    ss->ss_devcnt), KM_SLEEP);
8713 	for (i = 0; i < ss->ss_devcnt; i++)
8714 		ss->ss_mux_nodes[i].mn_imaj = i;
8715 	return (ss);
8716 }
8717 
8718 /*
8719  * Note: run at zone shutdown and not destroy so that the PLINKs are
8720  * gone by the time other cleanup happens from the destroy callbacks.
8721  */
8722 static void
8723 str_stack_shutdown(netstackid_t stackid, void *arg)
8724 {
8725 	str_stack_t *ss = (str_stack_t *)arg;
8726 	int i;
8727 	cred_t *cr;
8728 
8729 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
8730 	ASSERT(cr != NULL);
8731 
8732 	/* Undo all the I_PLINKs for this zone */
8733 	for (i = 0; i < ss->ss_devcnt; i++) {
8734 		struct mux_edge		*ep;
8735 		ldi_handle_t		lh;
8736 		ldi_ident_t		li;
8737 		int			ret;
8738 		int			rval;
8739 		dev_t			rdev;
8740 
8741 		ep = ss->ss_mux_nodes[i].mn_outp;
8742 		if (ep == NULL)
8743 			continue;
8744 		ret = ldi_ident_from_major((major_t)i, &li);
8745 		if (ret != 0) {
8746 			continue;
8747 		}
8748 		rdev = ep->me_dev;
8749 		ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE,
8750 		    cr, &lh, li);
8751 		if (ret != 0) {
8752 			ldi_ident_release(li);
8753 			continue;
8754 		}
8755 
8756 		ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL,
8757 		    cr, &rval);
8758 		if (ret) {
8759 			(void) ldi_close(lh, FREAD|FWRITE, cr);
8760 			ldi_ident_release(li);
8761 			continue;
8762 		}
8763 		(void) ldi_close(lh, FREAD|FWRITE, cr);
8764 
8765 		/* Close layered handles */
8766 		ldi_ident_release(li);
8767 	}
8768 	crfree(cr);
8769 
8770 	sad_freespace(ss);
8771 
8772 	kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt);
8773 	ss->ss_mux_nodes = NULL;
8774 }
8775 
8776 /*
8777  * Free the structure; str_stack_shutdown did the other cleanup work.
8778  */
8779 /* ARGSUSED */
8780 static void
8781 str_stack_fini(netstackid_t stackid, void *arg)
8782 {
8783 	str_stack_t	*ss = (str_stack_t *)arg;
8784 
8785 	kmem_free(ss, sizeof (*ss));
8786 }
8787