1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/param.h> 33 #include <sys/errno.h> 34 #include <sys/signal.h> 35 #include <sys/stat.h> 36 #include <sys/proc.h> 37 #include <sys/cred.h> 38 #include <sys/user.h> 39 #include <sys/vnode.h> 40 #include <sys/file.h> 41 #include <sys/stream.h> 42 #include <sys/strsubr.h> 43 #include <sys/stropts.h> 44 #include <sys/tihdr.h> 45 #include <sys/var.h> 46 #include <sys/poll.h> 47 #include <sys/termio.h> 48 #include <sys/ttold.h> 49 #include <sys/systm.h> 50 #include <sys/uio.h> 51 #include <sys/cmn_err.h> 52 #include <sys/sad.h> 53 #include <sys/netstack.h> 54 #include <sys/priocntl.h> 55 #include <sys/jioctl.h> 56 #include <sys/procset.h> 57 #include <sys/session.h> 58 #include <sys/kmem.h> 59 #include <sys/filio.h> 60 #include <sys/vtrace.h> 61 #include <sys/debug.h> 62 #include <sys/strredir.h> 63 #include <sys/fs/fifonode.h> 64 #include <sys/fs/snode.h> 65 #include <sys/strlog.h> 66 #include <sys/strsun.h> 67 #include <sys/project.h> 68 #include <sys/kbio.h> 69 #include <sys/msio.h> 70 #include <sys/tty.h> 71 #include <sys/ptyvar.h> 72 #include <sys/vuid_event.h> 73 #include <sys/modctl.h> 74 #include <sys/sunddi.h> 75 #include <sys/sunldi_impl.h> 76 #include <sys/autoconf.h> 77 #include <sys/policy.h> 78 #include <sys/dld.h> 79 #include <sys/zone.h> 80 #include <sys/sodirect.h> 81 82 /* 83 * This define helps improve the readability of streams code while 84 * still maintaining a very old streams performance enhancement. The 85 * performance enhancement basically involved having all callers 86 * of straccess() perform the first check that straccess() will do 87 * locally before actually calling straccess(). (There by reducing 88 * the number of unnecessary calls to straccess().) 89 */ 90 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \ 91 (stp->sd_vnode->v_type == VFIFO) ? 0 : \ 92 straccess((x), (y))) 93 94 /* 95 * what is mblk_pull_len? 96 * 97 * If a streams message consists of many short messages, 98 * a performance degradation occurs from copyout overhead. 99 * To decrease the per mblk overhead, messages that are 100 * likely to consist of many small mblks are pulled up into 101 * one continuous chunk of memory. 102 * 103 * To avoid the processing overhead of examining every 104 * mblk, a quick heuristic is used. If the first mblk in 105 * the message is shorter than mblk_pull_len, it is likely 106 * that the rest of the mblk will be short. 107 * 108 * This heuristic was decided upon after performance tests 109 * indicated that anything more complex slowed down the main 110 * code path. 111 */ 112 #define MBLK_PULL_LEN 64 113 uint32_t mblk_pull_len = MBLK_PULL_LEN; 114 115 /* 116 * The sgttyb_handling flag controls the handling of the old BSD 117 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows: 118 * 119 * 0 - Emit no warnings at all and retain old, broken behavior. 120 * 1 - Emit no warnings and silently handle new semantics. 121 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used 122 * (once per system invocation). Handle with new semantics. 123 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is 124 * made (so that offenders drop core and are easy to debug). 125 * 126 * The "new semantics" are that TIOCGETP returns B38400 for 127 * sg_[io]speed if the corresponding value is over B38400, and that 128 * TIOCSET[PN] accept B38400 in these cases to mean "retain current 129 * bit rate." 130 */ 131 int sgttyb_handling = 1; 132 static boolean_t sgttyb_complaint; 133 134 /* don't push drcompat module by default on Style-2 streams */ 135 static int push_drcompat = 0; 136 137 /* 138 * id value used to distinguish between different ioctl messages 139 */ 140 static uint32_t ioc_id; 141 142 static void putback(struct stdata *, queue_t *, mblk_t *, int); 143 static void strcleanall(struct vnode *); 144 static int strwsrv(queue_t *); 145 static int strdocmd(struct stdata *, struct strcmd *, cred_t *); 146 static void struioainit(queue_t *, sodirect_t *, uio_t *); 147 148 /* 149 * qinit and module_info structures for stream head read and write queues 150 */ 151 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW }; 152 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 }; 153 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info }; 154 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info }; 155 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT, 156 FIFOLOWAT }; 157 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 }; 158 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info }; 159 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info }; 160 161 extern kmutex_t strresources; /* protects global resources */ 162 extern kmutex_t muxifier; /* single-threads multiplexor creation */ 163 164 static boolean_t msghasdata(mblk_t *bp); 165 #define msgnodata(bp) (!msghasdata(bp)) 166 167 /* 168 * Stream head locking notes: 169 * There are four monitors associated with the stream head: 170 * 1. v_stream monitor: in stropen() and strclose() v_lock 171 * is held while the association of vnode and stream 172 * head is established or tested for. 173 * 2. open/close/push/pop monitor: sd_lock is held while each 174 * thread bids for exclusive access to this monitor 175 * for opening or closing a stream. In addition, this 176 * monitor is entered during pushes and pops. This 177 * guarantees that during plumbing operations there 178 * is only one thread trying to change the plumbing. 179 * Any other threads present in the stream are only 180 * using the plumbing. 181 * 3. read/write monitor: in the case of read, a thread holds 182 * sd_lock while trying to get data from the stream 183 * head queue. if there is none to fulfill a read 184 * request, it sets RSLEEP and calls cv_wait_sig() down 185 * in strwaitq() to await the arrival of new data. 186 * when new data arrives in strrput(), sd_lock is acquired 187 * before testing for RSLEEP and calling cv_broadcast(). 188 * the behavior of strwrite(), strwsrv(), and WSLEEP 189 * mirror this. 190 * 4. ioctl monitor: sd_lock is gotten to ensure that only one 191 * thread is doing an ioctl at a time. 192 * 193 * Note, for sodirect case 3. is extended to (*sodirect_t.sod_enqueue)() 194 * call-back from below, further the sodirect support is for code paths 195 * called via kstgetmsg(), all other code paths ASSERT() that sodirect 196 * uioa generated mblk_t's (i.e. DBLK_UIOA) aren't processed. 197 */ 198 199 static int 200 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name, 201 int anchor, cred_t *crp, uint_t anchor_zoneid) 202 { 203 int error; 204 fmodsw_impl_t *fp; 205 206 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) { 207 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO; 208 return (error); 209 } 210 if (stp->sd_pushcnt >= nstrpush) { 211 return (EINVAL); 212 } 213 214 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) { 215 stp->sd_flag |= STREOPENFAIL; 216 return (EINVAL); 217 } 218 219 /* 220 * push new module and call its open routine via qattach 221 */ 222 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0) 223 return (error); 224 225 /* 226 * Check to see if caller wants a STREAMS anchor 227 * put at this place in the stream, and add if so. 228 */ 229 mutex_enter(&stp->sd_lock); 230 if (anchor == stp->sd_pushcnt) { 231 stp->sd_anchor = stp->sd_pushcnt; 232 stp->sd_anchorzone = anchor_zoneid; 233 } 234 mutex_exit(&stp->sd_lock); 235 236 return (0); 237 } 238 239 /* 240 * Open a stream device. 241 */ 242 int 243 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp) 244 { 245 struct stdata *stp; 246 queue_t *qp; 247 int s; 248 dev_t dummydev, savedev; 249 struct autopush *ap; 250 struct dlautopush dlap; 251 int error = 0; 252 ssize_t rmin, rmax; 253 int cloneopen; 254 queue_t *brq; 255 major_t major; 256 str_stack_t *ss; 257 zoneid_t zoneid; 258 uint_t anchor; 259 260 if (audit_active) 261 audit_stropen(vp, devp, flag, crp); 262 263 /* 264 * If the stream already exists, wait for any open in progress 265 * to complete, then call the open function of each module and 266 * driver in the stream. Otherwise create the stream. 267 */ 268 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp); 269 retry: 270 mutex_enter(&vp->v_lock); 271 if ((stp = vp->v_stream) != NULL) { 272 273 /* 274 * Waiting for stream to be created to device 275 * due to another open. 276 */ 277 mutex_exit(&vp->v_lock); 278 279 if (STRMATED(stp)) { 280 struct stdata *strmatep = stp->sd_mate; 281 282 STRLOCKMATES(stp); 283 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 284 if (flag & (FNDELAY|FNONBLOCK)) { 285 error = EAGAIN; 286 mutex_exit(&strmatep->sd_lock); 287 goto ckreturn; 288 } 289 mutex_exit(&stp->sd_lock); 290 if (!cv_wait_sig(&strmatep->sd_monitor, 291 &strmatep->sd_lock)) { 292 error = EINTR; 293 mutex_exit(&strmatep->sd_lock); 294 mutex_enter(&stp->sd_lock); 295 goto ckreturn; 296 } 297 mutex_exit(&strmatep->sd_lock); 298 goto retry; 299 } 300 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 301 if (flag & (FNDELAY|FNONBLOCK)) { 302 error = EAGAIN; 303 mutex_exit(&strmatep->sd_lock); 304 goto ckreturn; 305 } 306 mutex_exit(&strmatep->sd_lock); 307 if (!cv_wait_sig(&stp->sd_monitor, 308 &stp->sd_lock)) { 309 error = EINTR; 310 goto ckreturn; 311 } 312 mutex_exit(&stp->sd_lock); 313 goto retry; 314 } 315 316 if (stp->sd_flag & (STRDERR|STWRERR)) { 317 error = EIO; 318 mutex_exit(&strmatep->sd_lock); 319 goto ckreturn; 320 } 321 322 stp->sd_flag |= STWOPEN; 323 STRUNLOCKMATES(stp); 324 } else { 325 mutex_enter(&stp->sd_lock); 326 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 327 if (flag & (FNDELAY|FNONBLOCK)) { 328 error = EAGAIN; 329 goto ckreturn; 330 } 331 if (!cv_wait_sig(&stp->sd_monitor, 332 &stp->sd_lock)) { 333 error = EINTR; 334 goto ckreturn; 335 } 336 mutex_exit(&stp->sd_lock); 337 goto retry; /* could be clone! */ 338 } 339 340 if (stp->sd_flag & (STRDERR|STWRERR)) { 341 error = EIO; 342 goto ckreturn; 343 } 344 345 stp->sd_flag |= STWOPEN; 346 mutex_exit(&stp->sd_lock); 347 } 348 349 /* 350 * Open all modules and devices down stream to notify 351 * that another user is streaming. For modules, set the 352 * last argument to MODOPEN and do not pass any open flags. 353 * Ignore dummydev since this is not the first open. 354 */ 355 claimstr(stp->sd_wrq); 356 qp = stp->sd_wrq; 357 while (_SAMESTR(qp)) { 358 qp = qp->q_next; 359 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0) 360 break; 361 } 362 releasestr(stp->sd_wrq); 363 mutex_enter(&stp->sd_lock); 364 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR); 365 stp->sd_rerror = 0; 366 stp->sd_werror = 0; 367 ckreturn: 368 cv_broadcast(&stp->sd_monitor); 369 mutex_exit(&stp->sd_lock); 370 return (error); 371 } 372 373 /* 374 * This vnode isn't streaming. SPECFS already 375 * checked for multiple vnodes pointing to the 376 * same stream, so create a stream to the driver. 377 */ 378 qp = allocq(); 379 stp = shalloc(qp); 380 381 /* 382 * Initialize stream head. shalloc() has given us 383 * exclusive access, and we have the vnode locked; 384 * we can do whatever we want with stp. 385 */ 386 stp->sd_flag = STWOPEN; 387 stp->sd_siglist = NULL; 388 stp->sd_pollist.ph_list = NULL; 389 stp->sd_sigflags = 0; 390 stp->sd_mark = NULL; 391 stp->sd_closetime = STRTIMOUT; 392 stp->sd_sidp = NULL; 393 stp->sd_pgidp = NULL; 394 stp->sd_vnode = vp; 395 stp->sd_rerror = 0; 396 stp->sd_werror = 0; 397 stp->sd_wroff = 0; 398 stp->sd_tail = 0; 399 stp->sd_iocblk = NULL; 400 stp->sd_cmdblk = NULL; 401 stp->sd_pushcnt = 0; 402 stp->sd_qn_minpsz = 0; 403 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */ 404 stp->sd_maxblk = INFPSZ; 405 stp->sd_sodirect = NULL; 406 qp->q_ptr = _WR(qp)->q_ptr = stp; 407 STREAM(qp) = STREAM(_WR(qp)) = stp; 408 vp->v_stream = stp; 409 mutex_exit(&vp->v_lock); 410 if (vp->v_type == VFIFO) { 411 stp->sd_flag |= OLDNDELAY; 412 /* 413 * This means, both for pipes and fifos 414 * strwrite will send SIGPIPE if the other 415 * end is closed. For putmsg it depends 416 * on whether it is a XPG4_2 application 417 * or not 418 */ 419 stp->sd_wput_opt = SW_SIGPIPE; 420 421 /* setq might sleep in kmem_alloc - avoid holding locks. */ 422 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE, 423 SQ_CI|SQ_CO, B_FALSE); 424 425 set_qend(qp); 426 stp->sd_strtab = fifo_getinfo(); 427 _WR(qp)->q_nfsrv = _WR(qp); 428 qp->q_nfsrv = qp; 429 /* 430 * Wake up others that are waiting for stream to be created. 431 */ 432 mutex_enter(&stp->sd_lock); 433 /* 434 * nothing is be pushed on stream yet, so 435 * optimized stream head packetsizes are just that 436 * of the read queue 437 */ 438 stp->sd_qn_minpsz = qp->q_minpsz; 439 stp->sd_qn_maxpsz = qp->q_maxpsz; 440 stp->sd_flag &= ~STWOPEN; 441 goto fifo_opendone; 442 } 443 /* setq might sleep in kmem_alloc - avoid holding locks. */ 444 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); 445 446 set_qend(qp); 447 448 /* 449 * Open driver and create stream to it (via qattach). 450 */ 451 savedev = *devp; 452 cloneopen = (getmajor(*devp) == clone_major); 453 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) { 454 mutex_enter(&vp->v_lock); 455 vp->v_stream = NULL; 456 mutex_exit(&vp->v_lock); 457 mutex_enter(&stp->sd_lock); 458 cv_broadcast(&stp->sd_monitor); 459 mutex_exit(&stp->sd_lock); 460 freeq(_RD(qp)); 461 shfree(stp); 462 return (error); 463 } 464 /* 465 * Set sd_strtab after open in order to handle clonable drivers 466 */ 467 stp->sd_strtab = STREAMSTAB(getmajor(*devp)); 468 469 /* 470 * Historical note: dummydev used to be be prior to the initial 471 * open (via qattach above), which made the value seen 472 * inconsistent between an I_PUSH and an autopush of a module. 473 */ 474 dummydev = *devp; 475 476 /* 477 * For clone open of old style (Q not associated) network driver, 478 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH 479 */ 480 brq = _RD(_WR(qp)->q_next); 481 major = getmajor(*devp); 482 if (push_drcompat && cloneopen && NETWORK_DRV(major) && 483 ((brq->q_flag & _QASSOCIATED) == 0)) { 484 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0) 485 cmn_err(CE_WARN, "cannot push " DRMODNAME 486 " streams module"); 487 } 488 489 if (!NETWORK_DRV(major)) { 490 savedev = *devp; 491 } else { 492 /* 493 * For network devices, process differently based on the 494 * return value from dld_autopush(): 495 * 496 * 0: the passed-in device points to a GLDv3 datalink with 497 * per-link autopush configuration; use that configuration 498 * and ignore any per-driver autopush configuration. 499 * 500 * 1: the passed-in device points to a physical GLDv3 501 * datalink without per-link autopush configuration. The 502 * passed in device was changed to refer to the actual 503 * physical device (if it's not already); we use that new 504 * device to look up any per-driver autopush configuration. 505 * 506 * -1: neither of the above cases applied; use the initial 507 * device to look up any per-driver autopush configuration. 508 */ 509 switch (dld_autopush(&savedev, &dlap)) { 510 case 0: 511 zoneid = crgetzoneid(crp); 512 for (s = 0; s < dlap.dap_npush; s++) { 513 error = push_mod(qp, &dummydev, stp, 514 dlap.dap_aplist[s], dlap.dap_anchor, crp, 515 zoneid); 516 if (error != 0) 517 break; 518 } 519 goto opendone; 520 case 1: 521 break; 522 case -1: 523 savedev = *devp; 524 break; 525 } 526 } 527 /* 528 * Find the autopush configuration based on "savedev". Start with the 529 * global zone. If not found check in the local zone. 530 */ 531 zoneid = GLOBAL_ZONEID; 532 retryap: 533 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))-> 534 netstack_str; 535 if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) { 536 netstack_rele(ss->ss_netstack); 537 if (zoneid == GLOBAL_ZONEID) { 538 /* 539 * None found. Also look in the zone's autopush table. 540 */ 541 zoneid = crgetzoneid(crp); 542 if (zoneid != GLOBAL_ZONEID) 543 goto retryap; 544 } 545 goto opendone; 546 } 547 anchor = ap->ap_anchor; 548 zoneid = crgetzoneid(crp); 549 for (s = 0; s < ap->ap_npush; s++) { 550 error = push_mod(qp, &dummydev, stp, ap->ap_list[s], 551 anchor, crp, zoneid); 552 if (error != 0) 553 break; 554 } 555 sad_ap_rele(ap, ss); 556 netstack_rele(ss->ss_netstack); 557 558 opendone: 559 560 /* 561 * let specfs know that open failed part way through 562 */ 563 if (error) { 564 mutex_enter(&stp->sd_lock); 565 stp->sd_flag |= STREOPENFAIL; 566 mutex_exit(&stp->sd_lock); 567 } 568 569 /* 570 * Wake up others that are waiting for stream to be created. 571 */ 572 mutex_enter(&stp->sd_lock); 573 stp->sd_flag &= ~STWOPEN; 574 575 /* 576 * As a performance concern we are caching the values of 577 * q_minpsz and q_maxpsz of the module below the stream 578 * head in the stream head. 579 */ 580 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 581 rmin = stp->sd_wrq->q_next->q_minpsz; 582 rmax = stp->sd_wrq->q_next->q_maxpsz; 583 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 584 585 /* do this processing here as a performance concern */ 586 if (strmsgsz != 0) { 587 if (rmax == INFPSZ) 588 rmax = strmsgsz; 589 else 590 rmax = MIN(strmsgsz, rmax); 591 } 592 593 mutex_enter(QLOCK(stp->sd_wrq)); 594 stp->sd_qn_minpsz = rmin; 595 stp->sd_qn_maxpsz = rmax; 596 mutex_exit(QLOCK(stp->sd_wrq)); 597 598 fifo_opendone: 599 cv_broadcast(&stp->sd_monitor); 600 mutex_exit(&stp->sd_lock); 601 return (error); 602 } 603 604 static int strsink(queue_t *, mblk_t *); 605 static struct qinit deadrend = { 606 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL 607 }; 608 static struct qinit deadwend = { 609 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL 610 }; 611 612 /* 613 * Close a stream. 614 * This is called from closef() on the last close of an open stream. 615 * Strclean() will already have removed the siglist and pollist 616 * information, so all that remains is to remove all multiplexor links 617 * for the stream, pop all the modules (and the driver), and free the 618 * stream structure. 619 */ 620 621 int 622 strclose(struct vnode *vp, int flag, cred_t *crp) 623 { 624 struct stdata *stp; 625 queue_t *qp; 626 int rval; 627 int freestp = 1; 628 queue_t *rmq; 629 630 if (audit_active) 631 audit_strclose(vp, flag, crp); 632 633 TRACE_1(TR_FAC_STREAMS_FR, 634 TR_STRCLOSE, "strclose:%p", vp); 635 ASSERT(vp->v_stream); 636 637 stp = vp->v_stream; 638 ASSERT(!(stp->sd_flag & STPLEX)); 639 qp = stp->sd_wrq; 640 641 /* 642 * Needed so that strpoll will return non-zero for this fd. 643 * Note that with POLLNOERR STRHUP does still cause POLLHUP. 644 */ 645 mutex_enter(&stp->sd_lock); 646 stp->sd_flag |= STRHUP; 647 mutex_exit(&stp->sd_lock); 648 649 /* 650 * If the registered process or process group did not have an 651 * open instance of this stream then strclean would not be 652 * called. Thus at the time of closing all remaining siglist entries 653 * are removed. 654 */ 655 if (stp->sd_siglist != NULL) 656 strcleanall(vp); 657 658 ASSERT(stp->sd_siglist == NULL); 659 ASSERT(stp->sd_sigflags == 0); 660 661 if (STRMATED(stp)) { 662 struct stdata *strmatep = stp->sd_mate; 663 int waited = 1; 664 665 STRLOCKMATES(stp); 666 while (waited) { 667 waited = 0; 668 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 669 mutex_exit(&strmatep->sd_lock); 670 cv_wait(&stp->sd_monitor, &stp->sd_lock); 671 mutex_exit(&stp->sd_lock); 672 STRLOCKMATES(stp); 673 waited = 1; 674 } 675 while (strmatep->sd_flag & 676 (STWOPEN|STRCLOSE|STRPLUMB)) { 677 mutex_exit(&stp->sd_lock); 678 cv_wait(&strmatep->sd_monitor, 679 &strmatep->sd_lock); 680 mutex_exit(&strmatep->sd_lock); 681 STRLOCKMATES(stp); 682 waited = 1; 683 } 684 } 685 stp->sd_flag |= STRCLOSE; 686 STRUNLOCKMATES(stp); 687 } else { 688 mutex_enter(&stp->sd_lock); 689 stp->sd_flag |= STRCLOSE; 690 mutex_exit(&stp->sd_lock); 691 } 692 693 ASSERT(qp->q_first == NULL); /* No more delayed write */ 694 695 /* Check if an I_LINK was ever done on this stream */ 696 if (stp->sd_flag & STRHASLINKS) { 697 netstack_t *ns; 698 str_stack_t *ss; 699 700 ns = netstack_find_by_cred(crp); 701 ASSERT(ns != NULL); 702 ss = ns->netstack_str; 703 ASSERT(ss != NULL); 704 705 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss); 706 netstack_rele(ss->ss_netstack); 707 } 708 709 while (_SAMESTR(qp)) { 710 /* 711 * Holding sd_lock prevents q_next from changing in 712 * this stream. 713 */ 714 mutex_enter(&stp->sd_lock); 715 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) { 716 717 /* 718 * sleep until awakened by strwsrv() or timeout 719 */ 720 for (;;) { 721 mutex_enter(QLOCK(qp->q_next)); 722 if (!(qp->q_next->q_mblkcnt)) { 723 mutex_exit(QLOCK(qp->q_next)); 724 break; 725 } 726 stp->sd_flag |= WSLEEP; 727 728 /* ensure strwsrv gets enabled */ 729 qp->q_next->q_flag |= QWANTW; 730 mutex_exit(QLOCK(qp->q_next)); 731 /* get out if we timed out or recv'd a signal */ 732 if (str_cv_wait(&qp->q_wait, &stp->sd_lock, 733 stp->sd_closetime, 0) <= 0) { 734 break; 735 } 736 } 737 stp->sd_flag &= ~WSLEEP; 738 } 739 mutex_exit(&stp->sd_lock); 740 741 rmq = qp->q_next; 742 if (rmq->q_flag & QISDRV) { 743 ASSERT(!_SAMESTR(rmq)); 744 wait_sq_svc(_RD(qp)->q_syncq); 745 } 746 747 qdetach(_RD(rmq), 1, flag, crp, B_FALSE); 748 } 749 750 /* 751 * Since we call pollwakeup in close() now, the poll list should 752 * be empty in most cases. The only exception is the layered devices 753 * (e.g. the console drivers with redirection modules pushed on top 754 * of it). We have to do this after calling qdetach() because 755 * the redirection module won't have torn down the console 756 * redirection until after qdetach() has been invoked. 757 */ 758 if (stp->sd_pollist.ph_list != NULL) { 759 pollwakeup(&stp->sd_pollist, POLLERR); 760 pollhead_clean(&stp->sd_pollist); 761 } 762 ASSERT(stp->sd_pollist.ph_list == NULL); 763 ASSERT(stp->sd_sidp == NULL); 764 ASSERT(stp->sd_pgidp == NULL); 765 766 /* Prevent qenable from re-enabling the stream head queue */ 767 disable_svc(_RD(qp)); 768 769 /* 770 * Wait until service procedure of each queue is 771 * run, if QINSERVICE is set. 772 */ 773 wait_svc(_RD(qp)); 774 775 /* 776 * Now, flush both queues. 777 */ 778 flushq(_RD(qp), FLUSHALL); 779 flushq(qp, FLUSHALL); 780 781 /* 782 * If the write queue of the stream head is pointing to a 783 * read queue, we have a twisted stream. If the read queue 784 * is alive, convert the stream head queues into a dead end. 785 * If the read queue is dead, free the dead pair. 786 */ 787 if (qp->q_next && !_SAMESTR(qp)) { 788 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */ 789 flushq(qp->q_next, FLUSHALL); /* ensure no message */ 790 shfree(qp->q_next->q_stream); 791 freeq(qp->q_next); 792 freeq(_RD(qp)); 793 } else if (qp->q_next == _RD(qp)) { /* fifo */ 794 freeq(_RD(qp)); 795 } else { /* pipe */ 796 freestp = 0; 797 /* 798 * The q_info pointers are never accessed when 799 * SQLOCK is held. 800 */ 801 ASSERT(qp->q_syncq == _RD(qp)->q_syncq); 802 mutex_enter(SQLOCK(qp->q_syncq)); 803 qp->q_qinfo = &deadwend; 804 _RD(qp)->q_qinfo = &deadrend; 805 mutex_exit(SQLOCK(qp->q_syncq)); 806 } 807 } else { 808 freeq(_RD(qp)); /* free stream head queue pair */ 809 } 810 811 mutex_enter(&vp->v_lock); 812 if (stp->sd_iocblk) { 813 if (stp->sd_iocblk != (mblk_t *)-1) { 814 freemsg(stp->sd_iocblk); 815 } 816 stp->sd_iocblk = NULL; 817 } 818 stp->sd_vnode = NULL; 819 vp->v_stream = NULL; 820 mutex_exit(&vp->v_lock); 821 mutex_enter(&stp->sd_lock); 822 freemsg(stp->sd_cmdblk); 823 stp->sd_cmdblk = NULL; 824 stp->sd_flag &= ~STRCLOSE; 825 cv_broadcast(&stp->sd_monitor); 826 mutex_exit(&stp->sd_lock); 827 828 if (freestp) 829 shfree(stp); 830 return (0); 831 } 832 833 static int 834 strsink(queue_t *q, mblk_t *bp) 835 { 836 struct copyresp *resp; 837 838 switch (bp->b_datap->db_type) { 839 case M_FLUSH: 840 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 841 *bp->b_rptr &= ~FLUSHR; 842 bp->b_flag |= MSGNOLOOP; 843 /* 844 * Protect against the driver passing up 845 * messages after it has done a qprocsoff. 846 */ 847 if (_OTHERQ(q)->q_next == NULL) 848 freemsg(bp); 849 else 850 qreply(q, bp); 851 } else { 852 freemsg(bp); 853 } 854 break; 855 856 case M_COPYIN: 857 case M_COPYOUT: 858 if (bp->b_cont) { 859 freemsg(bp->b_cont); 860 bp->b_cont = NULL; 861 } 862 bp->b_datap->db_type = M_IOCDATA; 863 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 864 resp = (struct copyresp *)bp->b_rptr; 865 resp->cp_rval = (caddr_t)1; /* failure */ 866 /* 867 * Protect against the driver passing up 868 * messages after it has done a qprocsoff. 869 */ 870 if (_OTHERQ(q)->q_next == NULL) 871 freemsg(bp); 872 else 873 qreply(q, bp); 874 break; 875 876 case M_IOCTL: 877 if (bp->b_cont) { 878 freemsg(bp->b_cont); 879 bp->b_cont = NULL; 880 } 881 bp->b_datap->db_type = M_IOCNAK; 882 /* 883 * Protect against the driver passing up 884 * messages after it has done a qprocsoff. 885 */ 886 if (_OTHERQ(q)->q_next == NULL) 887 freemsg(bp); 888 else 889 qreply(q, bp); 890 break; 891 892 default: 893 freemsg(bp); 894 break; 895 } 896 897 return (0); 898 } 899 900 /* 901 * Clean up after a process when it closes a stream. This is called 902 * from closef for all closes, whereas strclose is called only for the 903 * last close on a stream. The siglist is scanned for entries for the 904 * current process, and these are removed. 905 */ 906 void 907 strclean(struct vnode *vp) 908 { 909 strsig_t *ssp, *pssp, *tssp; 910 stdata_t *stp; 911 int update = 0; 912 913 TRACE_1(TR_FAC_STREAMS_FR, 914 TR_STRCLEAN, "strclean:%p", vp); 915 stp = vp->v_stream; 916 pssp = NULL; 917 mutex_enter(&stp->sd_lock); 918 ssp = stp->sd_siglist; 919 while (ssp) { 920 if (ssp->ss_pidp == curproc->p_pidp) { 921 tssp = ssp->ss_next; 922 if (pssp) 923 pssp->ss_next = tssp; 924 else 925 stp->sd_siglist = tssp; 926 mutex_enter(&pidlock); 927 PID_RELE(ssp->ss_pidp); 928 mutex_exit(&pidlock); 929 kmem_free(ssp, sizeof (strsig_t)); 930 update = 1; 931 ssp = tssp; 932 } else { 933 pssp = ssp; 934 ssp = ssp->ss_next; 935 } 936 } 937 if (update) { 938 stp->sd_sigflags = 0; 939 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 940 stp->sd_sigflags |= ssp->ss_events; 941 } 942 mutex_exit(&stp->sd_lock); 943 } 944 945 /* 946 * Used on the last close to remove any remaining items on the siglist. 947 * These could be present on the siglist due to I_ESETSIG calls that 948 * use process groups or processed that do not have an open file descriptor 949 * for this stream (Such entries would not be removed by strclean). 950 */ 951 static void 952 strcleanall(struct vnode *vp) 953 { 954 strsig_t *ssp, *nssp; 955 stdata_t *stp; 956 957 stp = vp->v_stream; 958 mutex_enter(&stp->sd_lock); 959 ssp = stp->sd_siglist; 960 stp->sd_siglist = NULL; 961 while (ssp) { 962 nssp = ssp->ss_next; 963 mutex_enter(&pidlock); 964 PID_RELE(ssp->ss_pidp); 965 mutex_exit(&pidlock); 966 kmem_free(ssp, sizeof (strsig_t)); 967 ssp = nssp; 968 } 969 stp->sd_sigflags = 0; 970 mutex_exit(&stp->sd_lock); 971 } 972 973 /* 974 * Retrieve the next message from the logical stream head read queue 975 * using either rwnext (if sync stream) or getq_noenab. 976 * It is the callers responsibility to call qbackenable after 977 * it is finished with the message. The caller should not call 978 * qbackenable until after any putback calls to avoid spurious backenabling. 979 * 980 * Also, handle uioa initialization and process any DBLK_UIOA flaged messages. 981 */ 982 mblk_t * 983 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first, 984 int *errorp) 985 { 986 sodirect_t *sodp = stp->sd_sodirect; 987 mblk_t *bp; 988 int error; 989 ssize_t rbytes = 0; 990 991 /* Holding sd_lock prevents the read queue from changing */ 992 ASSERT(MUTEX_HELD(&stp->sd_lock)); 993 994 if (uiop != NULL && stp->sd_struiordq != NULL && 995 q->q_first == NULL && 996 (!first || (stp->sd_wakeq & RSLEEP))) { 997 /* 998 * Stream supports rwnext() for the read side. 999 * If this is the first time we're called by e.g. strread 1000 * only do the downcall if there is a deferred wakeup 1001 * (registered in sd_wakeq). 1002 */ 1003 struiod_t uiod; 1004 1005 if (first) 1006 stp->sd_wakeq &= ~RSLEEP; 1007 1008 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 1009 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 1010 uiod.d_mp = 0; 1011 /* 1012 * Mark that a thread is in rwnext on the read side 1013 * to prevent strrput from nacking ioctls immediately. 1014 * When the last concurrent rwnext returns 1015 * the ioctls are nack'ed. 1016 */ 1017 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1018 stp->sd_struiodnak++; 1019 /* 1020 * Note: rwnext will drop sd_lock. 1021 */ 1022 error = rwnext(q, &uiod); 1023 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 1024 mutex_enter(&stp->sd_lock); 1025 stp->sd_struiodnak--; 1026 while (stp->sd_struiodnak == 0 && 1027 ((bp = stp->sd_struionak) != NULL)) { 1028 stp->sd_struionak = bp->b_next; 1029 bp->b_next = NULL; 1030 bp->b_datap->db_type = M_IOCNAK; 1031 /* 1032 * Protect against the driver passing up 1033 * messages after it has done a qprocsoff. 1034 */ 1035 if (_OTHERQ(q)->q_next == NULL) 1036 freemsg(bp); 1037 else { 1038 mutex_exit(&stp->sd_lock); 1039 qreply(q, bp); 1040 mutex_enter(&stp->sd_lock); 1041 } 1042 } 1043 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1044 if (error == 0 || error == EWOULDBLOCK) { 1045 if ((bp = uiod.d_mp) != NULL) { 1046 *errorp = 0; 1047 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1048 return (bp); 1049 } 1050 error = 0; 1051 } else if (error == EINVAL) { 1052 /* 1053 * The stream plumbing must have 1054 * changed while we were away, so 1055 * just turn off rwnext()s. 1056 */ 1057 error = 0; 1058 } else if (error == EBUSY) { 1059 /* 1060 * The module might have data in transit using putnext 1061 * Fall back on waiting + getq. 1062 */ 1063 error = 0; 1064 } else { 1065 *errorp = error; 1066 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1067 return (NULL); 1068 } 1069 /* 1070 * Try a getq in case a rwnext() generated mblk 1071 * has bubbled up via strrput(). 1072 */ 1073 } 1074 *errorp = 0; 1075 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1076 1077 if (sodp != NULL && sodp->sod_state & SOD_ENABLED) { 1078 if (sodp->sod_uioa.uioa_state & UIOA_INIT) { 1079 /* 1080 * First kstrgetmsg() call for an uioa_t so if any 1081 * queued mblk_t's need to consume them before uioa 1082 * from below can occur. 1083 */ 1084 sodp->sod_uioa.uioa_state &= UIOA_CLR; 1085 sodp->sod_uioa.uioa_state |= UIOA_ENABLED; 1086 if (q->q_first != NULL) { 1087 struioainit(q, sodp, uiop); 1088 } 1089 } else if (sodp->sod_uioa.uioa_state & 1090 (UIOA_ENABLED|UIOA_FINI)) { 1091 ASSERT(uiop == (uio_t *)&sodp->sod_uioa); 1092 rbytes = 0; 1093 } else { 1094 rbytes = uiop->uio_resid; 1095 } 1096 } else { 1097 /* 1098 * If we have a valid uio, try and use this as a guide for how 1099 * many bytes to retrieve from the queue via getq_noenab(). 1100 * Doing this can avoid unneccesary counting of overlong 1101 * messages in putback(). We currently only do this for sockets 1102 * and only if there is no sd_rputdatafunc hook. 1103 * 1104 * The sd_rputdatafunc hook transforms the entire message 1105 * before any bytes in it can be given to a client. So, rbytes 1106 * must be 0 if there is a hook. 1107 */ 1108 if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) && 1109 (stp->sd_rputdatafunc == NULL)) 1110 rbytes = uiop->uio_resid; 1111 } 1112 1113 bp = getq_noenab(q, rbytes); 1114 sod_uioa_mblk_done(sodp, bp); 1115 1116 return (bp); 1117 } 1118 1119 /* 1120 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'. 1121 * If the message does not fit in the uio the remainder of it is returned; 1122 * otherwise NULL is returned. Any embedded zero-length mblk_t's are 1123 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to 1124 * the error code, the message is consumed, and NULL is returned. 1125 */ 1126 static mblk_t * 1127 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp) 1128 { 1129 int error; 1130 ptrdiff_t n; 1131 mblk_t *nbp; 1132 1133 ASSERT(bp->b_wptr >= bp->b_rptr); 1134 1135 do { 1136 ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA)); 1137 1138 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) { 1139 ASSERT(n > 0); 1140 1141 error = uiomove(bp->b_rptr, n, UIO_READ, uiop); 1142 if (error != 0) { 1143 freemsg(bp); 1144 *errorp = error; 1145 return (NULL); 1146 } 1147 } 1148 1149 bp->b_rptr += n; 1150 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) { 1151 nbp = bp; 1152 bp = bp->b_cont; 1153 freeb(nbp); 1154 } 1155 } while (bp != NULL && uiop->uio_resid > 0); 1156 1157 *errorp = 0; 1158 return (bp); 1159 } 1160 1161 /* 1162 * Read a stream according to the mode flags in sd_flag: 1163 * 1164 * (default mode) - Byte stream, msg boundaries are ignored 1165 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away 1166 * any data remaining in msg 1167 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back 1168 * any remaining data on head of read queue 1169 * 1170 * Consume readable messages on the front of the queue until 1171 * ttolwp(curthread)->lwp_count 1172 * is satisfied, the readable messages are exhausted, or a message 1173 * boundary is reached in a message mode. If no data was read and 1174 * the stream was not opened with the NDELAY flag, block until data arrives. 1175 * Otherwise return the data read and update the count. 1176 * 1177 * In default mode a 0 length message signifies end-of-file and terminates 1178 * a read in progress. The 0 length message is removed from the queue 1179 * only if it is the only message read (no data is read). 1180 * 1181 * An attempt to read an M_PROTO or M_PCPROTO message results in an 1182 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set. 1183 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data. 1184 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message 1185 * are unlinked from and M_DATA blocks in the message, the protos are 1186 * thrown away, and the data is read. 1187 */ 1188 /* ARGSUSED */ 1189 int 1190 strread(struct vnode *vp, struct uio *uiop, cred_t *crp) 1191 { 1192 struct stdata *stp; 1193 mblk_t *bp, *nbp; 1194 queue_t *q; 1195 int error = 0; 1196 uint_t old_sd_flag; 1197 int first; 1198 char rflg; 1199 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 1200 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 1201 short delim; 1202 unsigned char pri = 0; 1203 char waitflag; 1204 unsigned char type; 1205 1206 TRACE_1(TR_FAC_STREAMS_FR, 1207 TR_STRREAD_ENTER, "strread:%p", vp); 1208 ASSERT(vp->v_stream); 1209 stp = vp->v_stream; 1210 1211 mutex_enter(&stp->sd_lock); 1212 1213 if ((error = i_straccess(stp, JCREAD)) != 0) { 1214 mutex_exit(&stp->sd_lock); 1215 return (error); 1216 } 1217 1218 if (stp->sd_flag & (STRDERR|STPLEX)) { 1219 error = strgeterr(stp, STRDERR|STPLEX, 0); 1220 if (error != 0) { 1221 mutex_exit(&stp->sd_lock); 1222 return (error); 1223 } 1224 } 1225 1226 /* 1227 * Loop terminates when uiop->uio_resid == 0. 1228 */ 1229 rflg = 0; 1230 waitflag = READWAIT; 1231 q = _RD(stp->sd_wrq); 1232 for (;;) { 1233 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1234 old_sd_flag = stp->sd_flag; 1235 mark = 0; 1236 delim = 0; 1237 first = 1; 1238 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) { 1239 int done = 0; 1240 1241 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1242 1243 if (error != 0) 1244 goto oops; 1245 1246 if (stp->sd_flag & (STRHUP|STREOF)) { 1247 goto oops; 1248 } 1249 if (rflg && !(stp->sd_flag & STRDELIM)) { 1250 goto oops; 1251 } 1252 /* 1253 * If a read(fd,buf,0) has been done, there is no 1254 * need to sleep. We always have zero bytes to 1255 * return. 1256 */ 1257 if (uiop->uio_resid == 0) { 1258 goto oops; 1259 } 1260 1261 qbackenable(q, 0); 1262 1263 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT, 1264 "strread calls strwaitq:%p, %p, %p", 1265 vp, uiop, crp); 1266 if ((error = strwaitq(stp, waitflag, uiop->uio_resid, 1267 uiop->uio_fmode, -1, &done)) != 0 || done) { 1268 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE, 1269 "strread error or done:%p, %p, %p", 1270 vp, uiop, crp); 1271 if ((uiop->uio_fmode & FNDELAY) && 1272 (stp->sd_flag & OLDNDELAY) && 1273 (error == EAGAIN)) 1274 error = 0; 1275 goto oops; 1276 } 1277 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE, 1278 "strread awakes:%p, %p, %p", vp, uiop, crp); 1279 if ((error = i_straccess(stp, JCREAD)) != 0) { 1280 goto oops; 1281 } 1282 first = 0; 1283 } 1284 1285 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1286 ASSERT(bp); 1287 ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA)); 1288 pri = bp->b_band; 1289 /* 1290 * Extract any mark information. If the message is not 1291 * completely consumed this information will be put in the mblk 1292 * that is putback. 1293 * If MSGMARKNEXT is set and the message is completely consumed 1294 * the STRATMARK flag will be set below. Likewise, if 1295 * MSGNOTMARKNEXT is set and the message is 1296 * completely consumed STRNOTATMARK will be set. 1297 * 1298 * For some unknown reason strread only breaks the read at the 1299 * last mark. 1300 */ 1301 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 1302 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 1303 (MSGMARKNEXT|MSGNOTMARKNEXT)); 1304 if (mark != 0 && bp == stp->sd_mark) { 1305 if (rflg) { 1306 putback(stp, q, bp, pri); 1307 goto oops; 1308 } 1309 mark |= _LASTMARK; 1310 stp->sd_mark = NULL; 1311 } 1312 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM)) 1313 delim = 1; 1314 mutex_exit(&stp->sd_lock); 1315 1316 if (STREAM_NEEDSERVICE(stp)) 1317 stream_runservice(stp); 1318 1319 type = bp->b_datap->db_type; 1320 1321 switch (type) { 1322 1323 case M_DATA: 1324 ismdata: 1325 if (msgnodata(bp)) { 1326 if (mark || delim) { 1327 freemsg(bp); 1328 } else if (rflg) { 1329 1330 /* 1331 * If already read data put zero 1332 * length message back on queue else 1333 * free msg and return 0. 1334 */ 1335 bp->b_band = pri; 1336 mutex_enter(&stp->sd_lock); 1337 putback(stp, q, bp, pri); 1338 mutex_exit(&stp->sd_lock); 1339 } else { 1340 freemsg(bp); 1341 } 1342 error = 0; 1343 goto oops1; 1344 } 1345 1346 rflg = 1; 1347 waitflag |= NOINTR; 1348 bp = struiocopyout(bp, uiop, &error); 1349 if (error != 0) 1350 goto oops1; 1351 1352 mutex_enter(&stp->sd_lock); 1353 if (bp) { 1354 /* 1355 * Have remaining data in message. 1356 * Free msg if in discard mode. 1357 */ 1358 if (stp->sd_read_opt & RD_MSGDIS) { 1359 freemsg(bp); 1360 } else { 1361 bp->b_band = pri; 1362 if ((mark & _LASTMARK) && 1363 (stp->sd_mark == NULL)) 1364 stp->sd_mark = bp; 1365 bp->b_flag |= mark & ~_LASTMARK; 1366 if (delim) 1367 bp->b_flag |= MSGDELIM; 1368 if (msgnodata(bp)) 1369 freemsg(bp); 1370 else 1371 putback(stp, q, bp, pri); 1372 } 1373 } else { 1374 /* 1375 * Consumed the complete message. 1376 * Move the MSG*MARKNEXT information 1377 * to the stream head just in case 1378 * the read queue becomes empty. 1379 * 1380 * If the stream head was at the mark 1381 * (STRATMARK) before we dropped sd_lock above 1382 * and some data was consumed then we have 1383 * moved past the mark thus STRATMARK is 1384 * cleared. However, if a message arrived in 1385 * strrput during the copyout above causing 1386 * STRATMARK to be set we can not clear that 1387 * flag. 1388 */ 1389 if (mark & 1390 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 1391 if (mark & MSGMARKNEXT) { 1392 stp->sd_flag &= ~STRNOTATMARK; 1393 stp->sd_flag |= STRATMARK; 1394 } else if (mark & MSGNOTMARKNEXT) { 1395 stp->sd_flag &= ~STRATMARK; 1396 stp->sd_flag |= STRNOTATMARK; 1397 } else { 1398 stp->sd_flag &= 1399 ~(STRATMARK|STRNOTATMARK); 1400 } 1401 } else if (rflg && (old_sd_flag & STRATMARK)) { 1402 stp->sd_flag &= ~STRATMARK; 1403 } 1404 } 1405 1406 /* 1407 * Check for signal messages at the front of the read 1408 * queue and generate the signal(s) if appropriate. 1409 * The only signal that can be on queue is M_SIG at 1410 * this point. 1411 */ 1412 while ((((bp = q->q_first)) != NULL) && 1413 (bp->b_datap->db_type == M_SIG)) { 1414 bp = getq_noenab(q, 0); 1415 /* 1416 * sd_lock is held so the content of the 1417 * read queue can not change. 1418 */ 1419 ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG); 1420 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 1421 mutex_exit(&stp->sd_lock); 1422 freemsg(bp); 1423 if (STREAM_NEEDSERVICE(stp)) 1424 stream_runservice(stp); 1425 mutex_enter(&stp->sd_lock); 1426 } 1427 1428 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) || 1429 delim || 1430 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) { 1431 goto oops; 1432 } 1433 continue; 1434 1435 case M_SIG: 1436 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band); 1437 freemsg(bp); 1438 mutex_enter(&stp->sd_lock); 1439 continue; 1440 1441 case M_PROTO: 1442 case M_PCPROTO: 1443 /* 1444 * Only data messages are readable. 1445 * Any others generate an error, unless 1446 * RD_PROTDIS or RD_PROTDAT is set. 1447 */ 1448 if (stp->sd_read_opt & RD_PROTDAT) { 1449 for (nbp = bp; nbp; nbp = nbp->b_next) { 1450 if ((nbp->b_datap->db_type == 1451 M_PROTO) || 1452 (nbp->b_datap->db_type == 1453 M_PCPROTO)) { 1454 nbp->b_datap->db_type = M_DATA; 1455 } else { 1456 break; 1457 } 1458 } 1459 /* 1460 * clear stream head hi pri flag based on 1461 * first message 1462 */ 1463 if (type == M_PCPROTO) { 1464 mutex_enter(&stp->sd_lock); 1465 stp->sd_flag &= ~STRPRI; 1466 mutex_exit(&stp->sd_lock); 1467 } 1468 goto ismdata; 1469 } else if (stp->sd_read_opt & RD_PROTDIS) { 1470 /* 1471 * discard non-data messages 1472 */ 1473 while (bp && 1474 ((bp->b_datap->db_type == M_PROTO) || 1475 (bp->b_datap->db_type == M_PCPROTO))) { 1476 nbp = unlinkb(bp); 1477 freeb(bp); 1478 bp = nbp; 1479 } 1480 /* 1481 * clear stream head hi pri flag based on 1482 * first message 1483 */ 1484 if (type == M_PCPROTO) { 1485 mutex_enter(&stp->sd_lock); 1486 stp->sd_flag &= ~STRPRI; 1487 mutex_exit(&stp->sd_lock); 1488 } 1489 if (bp) { 1490 bp->b_band = pri; 1491 goto ismdata; 1492 } else { 1493 break; 1494 } 1495 } 1496 /* FALLTHRU */ 1497 case M_PASSFP: 1498 if ((bp->b_datap->db_type == M_PASSFP) && 1499 (stp->sd_read_opt & RD_PROTDIS)) { 1500 freemsg(bp); 1501 break; 1502 } 1503 mutex_enter(&stp->sd_lock); 1504 putback(stp, q, bp, pri); 1505 mutex_exit(&stp->sd_lock); 1506 if (rflg == 0) 1507 error = EBADMSG; 1508 goto oops1; 1509 1510 default: 1511 /* 1512 * Garbage on stream head read queue. 1513 */ 1514 cmn_err(CE_WARN, "bad %x found at stream head\n", 1515 bp->b_datap->db_type); 1516 freemsg(bp); 1517 goto oops1; 1518 } 1519 mutex_enter(&stp->sd_lock); 1520 } 1521 oops: 1522 mutex_exit(&stp->sd_lock); 1523 oops1: 1524 qbackenable(q, pri); 1525 return (error); 1526 #undef _LASTMARK 1527 } 1528 1529 /* 1530 * Default processing of M_PROTO/M_PCPROTO messages. 1531 * Determine which wakeups and signals are needed. 1532 * This can be replaced by a user-specified procedure for kernel users 1533 * of STREAMS. 1534 */ 1535 /* ARGSUSED */ 1536 mblk_t * 1537 strrput_proto(vnode_t *vp, mblk_t *mp, 1538 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1539 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1540 { 1541 *wakeups = RSLEEP; 1542 *allmsgsigs = 0; 1543 1544 switch (mp->b_datap->db_type) { 1545 case M_PROTO: 1546 if (mp->b_band == 0) { 1547 *firstmsgsigs = S_INPUT | S_RDNORM; 1548 *pollwakeups = POLLIN | POLLRDNORM; 1549 } else { 1550 *firstmsgsigs = S_INPUT | S_RDBAND; 1551 *pollwakeups = POLLIN | POLLRDBAND; 1552 } 1553 break; 1554 case M_PCPROTO: 1555 *firstmsgsigs = S_HIPRI; 1556 *pollwakeups = POLLPRI; 1557 break; 1558 } 1559 return (mp); 1560 } 1561 1562 /* 1563 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and 1564 * M_PASSFP messages. 1565 * Determine which wakeups and signals are needed. 1566 * This can be replaced by a user-specified procedure for kernel users 1567 * of STREAMS. 1568 */ 1569 /* ARGSUSED */ 1570 mblk_t * 1571 strrput_misc(vnode_t *vp, mblk_t *mp, 1572 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1573 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1574 { 1575 *wakeups = 0; 1576 *firstmsgsigs = 0; 1577 *allmsgsigs = 0; 1578 *pollwakeups = 0; 1579 return (mp); 1580 } 1581 1582 /* 1583 * Stream read put procedure. Called from downstream driver/module 1584 * with messages for the stream head. Data, protocol, and in-stream 1585 * signal messages are placed on the queue, others are handled directly. 1586 */ 1587 int 1588 strrput(queue_t *q, mblk_t *bp) 1589 { 1590 struct stdata *stp; 1591 ulong_t rput_opt; 1592 strwakeup_t wakeups; 1593 strsigset_t firstmsgsigs; /* Signals if first message on queue */ 1594 strsigset_t allmsgsigs; /* Signals for all messages */ 1595 strsigset_t signals; /* Signals events to generate */ 1596 strpollset_t pollwakeups; 1597 mblk_t *nextbp; 1598 uchar_t band = 0; 1599 int hipri_sig; 1600 1601 stp = (struct stdata *)q->q_ptr; 1602 /* 1603 * Use rput_opt for optimized access to the SR_ flags except 1604 * SR_POLLIN. That flag has to be checked under sd_lock since it 1605 * is modified by strpoll(). 1606 */ 1607 rput_opt = stp->sd_rput_opt; 1608 1609 ASSERT(qclaimed(q)); 1610 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER, 1611 "strrput called with message type:q %p bp %p", q, bp); 1612 1613 /* 1614 * Perform initial processing and pass to the parameterized functions. 1615 */ 1616 ASSERT(bp->b_next == NULL); 1617 1618 switch (bp->b_datap->db_type) { 1619 case M_DATA: 1620 /* 1621 * sockfs is the only consumer of STREOF and when it is set, 1622 * it implies that the receiver is not interested in receiving 1623 * any more data, hence the mblk is freed to prevent unnecessary 1624 * message queueing at the stream head. 1625 */ 1626 if (stp->sd_flag == STREOF) { 1627 freemsg(bp); 1628 return (0); 1629 } 1630 if ((rput_opt & SR_IGN_ZEROLEN) && 1631 bp->b_rptr == bp->b_wptr && msgnodata(bp)) { 1632 /* 1633 * Ignore zero-length M_DATA messages. These might be 1634 * generated by some transports. 1635 * The zero-length M_DATA messages, even if they 1636 * are ignored, should effect the atmark tracking and 1637 * should wake up a thread sleeping in strwaitmark. 1638 */ 1639 mutex_enter(&stp->sd_lock); 1640 if (bp->b_flag & MSGMARKNEXT) { 1641 /* 1642 * Record the position of the mark either 1643 * in q_last or in STRATMARK. 1644 */ 1645 if (q->q_last != NULL) { 1646 q->q_last->b_flag &= ~MSGNOTMARKNEXT; 1647 q->q_last->b_flag |= MSGMARKNEXT; 1648 } else { 1649 stp->sd_flag &= ~STRNOTATMARK; 1650 stp->sd_flag |= STRATMARK; 1651 } 1652 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1653 /* 1654 * Record that this is not the position of 1655 * the mark either in q_last or in 1656 * STRNOTATMARK. 1657 */ 1658 if (q->q_last != NULL) { 1659 q->q_last->b_flag &= ~MSGMARKNEXT; 1660 q->q_last->b_flag |= MSGNOTMARKNEXT; 1661 } else { 1662 stp->sd_flag &= ~STRATMARK; 1663 stp->sd_flag |= STRNOTATMARK; 1664 } 1665 } 1666 if (stp->sd_flag & RSLEEP) { 1667 stp->sd_flag &= ~RSLEEP; 1668 cv_broadcast(&q->q_wait); 1669 } 1670 mutex_exit(&stp->sd_lock); 1671 freemsg(bp); 1672 return (0); 1673 } 1674 wakeups = RSLEEP; 1675 if (bp->b_band == 0) { 1676 firstmsgsigs = S_INPUT | S_RDNORM; 1677 pollwakeups = POLLIN | POLLRDNORM; 1678 } else { 1679 firstmsgsigs = S_INPUT | S_RDBAND; 1680 pollwakeups = POLLIN | POLLRDBAND; 1681 } 1682 if (rput_opt & SR_SIGALLDATA) 1683 allmsgsigs = firstmsgsigs; 1684 else 1685 allmsgsigs = 0; 1686 1687 mutex_enter(&stp->sd_lock); 1688 if ((rput_opt & SR_CONSOL_DATA) && 1689 (q->q_last != NULL) && 1690 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) { 1691 /* 1692 * Consolidate an M_DATA message onto an M_DATA, 1693 * M_PROTO, or M_PCPROTO by merging it with q_last. 1694 * The consolidation does not take place if 1695 * the old message is marked with either of the 1696 * marks or the delim flag or if the new 1697 * message is marked with MSGMARK. The MSGMARK 1698 * check is needed to handle the odd semantics of 1699 * MSGMARK where essentially the whole message 1700 * is to be treated as marked. 1701 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the 1702 * new message to the front of the b_cont chain. 1703 */ 1704 mblk_t *lbp = q->q_last; 1705 unsigned char db_type = lbp->b_datap->db_type; 1706 1707 if ((db_type == M_DATA || db_type == M_PROTO || 1708 db_type == M_PCPROTO) && 1709 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) { 1710 rmvq_noenab(q, lbp); 1711 /* 1712 * The first message in the b_cont list 1713 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 1714 * We need to handle the case where we 1715 * are appending: 1716 * 1717 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 1718 * 2) a MSGMARKNEXT to a plain message. 1719 * 3) a MSGNOTMARKNEXT to a plain message 1720 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 1721 * message. 1722 * 1723 * Thus we never append a MSGMARKNEXT or 1724 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 1725 */ 1726 if (bp->b_flag & MSGMARKNEXT) { 1727 lbp->b_flag |= MSGMARKNEXT; 1728 lbp->b_flag &= ~MSGNOTMARKNEXT; 1729 bp->b_flag &= ~MSGMARKNEXT; 1730 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1731 lbp->b_flag |= MSGNOTMARKNEXT; 1732 bp->b_flag &= ~MSGNOTMARKNEXT; 1733 } 1734 1735 linkb(lbp, bp); 1736 bp = lbp; 1737 /* 1738 * The new message logically isn't the first 1739 * even though the q_first check below thinks 1740 * it is. Clear the firstmsgsigs to make it 1741 * not appear to be first. 1742 */ 1743 firstmsgsigs = 0; 1744 } 1745 } 1746 break; 1747 1748 case M_PASSFP: 1749 wakeups = RSLEEP; 1750 allmsgsigs = 0; 1751 if (bp->b_band == 0) { 1752 firstmsgsigs = S_INPUT | S_RDNORM; 1753 pollwakeups = POLLIN | POLLRDNORM; 1754 } else { 1755 firstmsgsigs = S_INPUT | S_RDBAND; 1756 pollwakeups = POLLIN | POLLRDBAND; 1757 } 1758 mutex_enter(&stp->sd_lock); 1759 break; 1760 1761 case M_PROTO: 1762 case M_PCPROTO: 1763 ASSERT(stp->sd_rprotofunc != NULL); 1764 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp, 1765 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1766 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\ 1767 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG) 1768 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\ 1769 POLLWRBAND) 1770 1771 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1772 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1773 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1774 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1775 1776 mutex_enter(&stp->sd_lock); 1777 break; 1778 1779 default: 1780 ASSERT(stp->sd_rmiscfunc != NULL); 1781 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp, 1782 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1783 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1784 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1785 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1786 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1787 #undef ALLSIG 1788 #undef ALLPOLL 1789 mutex_enter(&stp->sd_lock); 1790 break; 1791 } 1792 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1793 1794 /* By default generate superset of signals */ 1795 signals = (firstmsgsigs | allmsgsigs); 1796 1797 /* 1798 * The proto and misc functions can return multiple messages 1799 * as a b_next chain. Such messages are processed separately. 1800 */ 1801 one_more: 1802 hipri_sig = 0; 1803 if (bp == NULL) { 1804 nextbp = NULL; 1805 } else { 1806 nextbp = bp->b_next; 1807 bp->b_next = NULL; 1808 1809 switch (bp->b_datap->db_type) { 1810 case M_PCPROTO: 1811 /* 1812 * Only one priority protocol message is allowed at the 1813 * stream head at a time. 1814 */ 1815 if (stp->sd_flag & STRPRI) { 1816 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR, 1817 "M_PCPROTO already at head"); 1818 freemsg(bp); 1819 mutex_exit(&stp->sd_lock); 1820 goto done; 1821 } 1822 stp->sd_flag |= STRPRI; 1823 hipri_sig = 1; 1824 /* FALLTHRU */ 1825 case M_DATA: 1826 case M_PROTO: 1827 case M_PASSFP: 1828 band = bp->b_band; 1829 /* 1830 * Marking doesn't work well when messages 1831 * are marked in more than one band. We only 1832 * remember the last message received, even if 1833 * it is placed on the queue ahead of other 1834 * marked messages. 1835 */ 1836 if (bp->b_flag & MSGMARK) 1837 stp->sd_mark = bp; 1838 (void) putq(q, bp); 1839 1840 /* 1841 * If message is a PCPROTO message, always use 1842 * firstmsgsigs to determine if a signal should be 1843 * sent as strrput is the only place to send 1844 * signals for PCPROTO. Other messages are based on 1845 * the STRGETINPROG flag. The flag determines if 1846 * strrput or (k)strgetmsg will be responsible for 1847 * sending the signals, in the firstmsgsigs case. 1848 */ 1849 if ((hipri_sig == 1) || 1850 (((stp->sd_flag & STRGETINPROG) == 0) && 1851 (q->q_first == bp))) 1852 signals = (firstmsgsigs | allmsgsigs); 1853 else 1854 signals = allmsgsigs; 1855 break; 1856 1857 default: 1858 mutex_exit(&stp->sd_lock); 1859 (void) strrput_nondata(q, bp); 1860 mutex_enter(&stp->sd_lock); 1861 break; 1862 } 1863 } 1864 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1865 /* 1866 * Wake sleeping read/getmsg and cancel deferred wakeup 1867 */ 1868 if (wakeups & RSLEEP) 1869 stp->sd_wakeq &= ~RSLEEP; 1870 1871 wakeups &= stp->sd_flag; 1872 if (wakeups & RSLEEP) { 1873 stp->sd_flag &= ~RSLEEP; 1874 cv_broadcast(&q->q_wait); 1875 } 1876 if (wakeups & WSLEEP) { 1877 stp->sd_flag &= ~WSLEEP; 1878 cv_broadcast(&_WR(q)->q_wait); 1879 } 1880 1881 if (pollwakeups != 0) { 1882 if (pollwakeups == (POLLIN | POLLRDNORM)) { 1883 /* 1884 * Can't use rput_opt since it was not 1885 * read when sd_lock was held and SR_POLLIN is changed 1886 * by strpoll() under sd_lock. 1887 */ 1888 if (!(stp->sd_rput_opt & SR_POLLIN)) 1889 goto no_pollwake; 1890 stp->sd_rput_opt &= ~SR_POLLIN; 1891 } 1892 mutex_exit(&stp->sd_lock); 1893 pollwakeup(&stp->sd_pollist, pollwakeups); 1894 mutex_enter(&stp->sd_lock); 1895 } 1896 no_pollwake: 1897 1898 /* 1899 * strsendsig can handle multiple signals with a 1900 * single call. 1901 */ 1902 if (stp->sd_sigflags & signals) 1903 strsendsig(stp->sd_siglist, signals, band, 0); 1904 mutex_exit(&stp->sd_lock); 1905 1906 1907 done: 1908 if (nextbp == NULL) 1909 return (0); 1910 1911 /* 1912 * Any signals were handled the first time. 1913 * Wakeups and pollwakeups are redone to avoid any race 1914 * conditions - all the messages are not queued until the 1915 * last message has been processed by strrput. 1916 */ 1917 bp = nextbp; 1918 signals = firstmsgsigs = allmsgsigs = 0; 1919 mutex_enter(&stp->sd_lock); 1920 goto one_more; 1921 } 1922 1923 static void 1924 log_dupioc(queue_t *rq, mblk_t *bp) 1925 { 1926 queue_t *wq, *qp; 1927 char *modnames, *mnp, *dname; 1928 size_t maxmodstr; 1929 boolean_t islast; 1930 1931 /* 1932 * Allocate a buffer large enough to hold the names of nstrpush modules 1933 * and one driver, with spaces between and NUL terminator. If we can't 1934 * get memory, then we'll just log the driver name. 1935 */ 1936 maxmodstr = nstrpush * (FMNAMESZ + 1); 1937 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP); 1938 1939 /* march down write side to print log message down to the driver */ 1940 wq = WR(rq); 1941 1942 /* make sure q_next doesn't shift around while we're grabbing data */ 1943 claimstr(wq); 1944 qp = wq->q_next; 1945 do { 1946 dname = Q2NAME(qp); 1947 islast = !SAMESTR(qp) || qp->q_next == NULL; 1948 if (modnames == NULL) { 1949 /* 1950 * If we don't have memory, then get the driver name in 1951 * the log where we can see it. Note that memory 1952 * pressure is a possible cause of these sorts of bugs. 1953 */ 1954 if (islast) { 1955 modnames = dname; 1956 maxmodstr = 0; 1957 } 1958 } else { 1959 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname); 1960 if (!islast) 1961 *mnp++ = ' '; 1962 } 1963 qp = qp->q_next; 1964 } while (!islast); 1965 releasestr(wq); 1966 /* Cannot happen unless stream head is corrupt. */ 1967 ASSERT(modnames != NULL); 1968 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1, 1969 SL_CONSOLE|SL_TRACE|SL_ERROR, 1970 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s", 1971 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd, 1972 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames); 1973 if (maxmodstr != 0) 1974 kmem_free(modnames, maxmodstr); 1975 } 1976 1977 int 1978 strrput_nondata(queue_t *q, mblk_t *bp) 1979 { 1980 struct stdata *stp; 1981 struct iocblk *iocbp; 1982 struct stroptions *sop; 1983 struct copyreq *reqp; 1984 struct copyresp *resp; 1985 unsigned char bpri; 1986 unsigned char flushed_already = 0; 1987 1988 stp = (struct stdata *)q->q_ptr; 1989 1990 ASSERT(!(stp->sd_flag & STPLEX)); 1991 ASSERT(qclaimed(q)); 1992 1993 switch (bp->b_datap->db_type) { 1994 case M_ERROR: 1995 /* 1996 * An error has occurred downstream, the errno is in the first 1997 * bytes of the message. 1998 */ 1999 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */ 2000 unsigned char rw = 0; 2001 2002 mutex_enter(&stp->sd_lock); 2003 if (*bp->b_rptr != NOERROR) { /* read error */ 2004 if (*bp->b_rptr != 0) { 2005 if (stp->sd_flag & STRDERR) 2006 flushed_already |= FLUSHR; 2007 stp->sd_flag |= STRDERR; 2008 rw |= FLUSHR; 2009 } else { 2010 stp->sd_flag &= ~STRDERR; 2011 } 2012 stp->sd_rerror = *bp->b_rptr; 2013 } 2014 bp->b_rptr++; 2015 if (*bp->b_rptr != NOERROR) { /* write error */ 2016 if (*bp->b_rptr != 0) { 2017 if (stp->sd_flag & STWRERR) 2018 flushed_already |= FLUSHW; 2019 stp->sd_flag |= STWRERR; 2020 rw |= FLUSHW; 2021 } else { 2022 stp->sd_flag &= ~STWRERR; 2023 } 2024 stp->sd_werror = *bp->b_rptr; 2025 } 2026 if (rw) { 2027 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE, 2028 "strrput cv_broadcast:q %p, bp %p", 2029 q, bp); 2030 cv_broadcast(&q->q_wait); /* readers */ 2031 cv_broadcast(&_WR(q)->q_wait); /* writers */ 2032 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 2033 2034 mutex_exit(&stp->sd_lock); 2035 pollwakeup(&stp->sd_pollist, POLLERR); 2036 mutex_enter(&stp->sd_lock); 2037 2038 if (stp->sd_sigflags & S_ERROR) 2039 strsendsig(stp->sd_siglist, S_ERROR, 0, 2040 ((rw & FLUSHR) ? stp->sd_rerror : 2041 stp->sd_werror)); 2042 mutex_exit(&stp->sd_lock); 2043 /* 2044 * Send the M_FLUSH only 2045 * for the first M_ERROR 2046 * message on the stream 2047 */ 2048 if (flushed_already == rw) { 2049 freemsg(bp); 2050 return (0); 2051 } 2052 2053 bp->b_datap->db_type = M_FLUSH; 2054 *bp->b_rptr = rw; 2055 bp->b_wptr = bp->b_rptr + 1; 2056 /* 2057 * Protect against the driver 2058 * passing up messages after 2059 * it has done a qprocsoff 2060 */ 2061 if (_OTHERQ(q)->q_next == NULL) 2062 freemsg(bp); 2063 else 2064 qreply(q, bp); 2065 return (0); 2066 } else 2067 mutex_exit(&stp->sd_lock); 2068 } else if (*bp->b_rptr != 0) { /* Old flavor */ 2069 if (stp->sd_flag & (STRDERR|STWRERR)) 2070 flushed_already = FLUSHRW; 2071 mutex_enter(&stp->sd_lock); 2072 stp->sd_flag |= (STRDERR|STWRERR); 2073 stp->sd_rerror = *bp->b_rptr; 2074 stp->sd_werror = *bp->b_rptr; 2075 TRACE_2(TR_FAC_STREAMS_FR, 2076 TR_STRRPUT_WAKE2, 2077 "strrput wakeup #2:q %p, bp %p", q, bp); 2078 cv_broadcast(&q->q_wait); /* the readers */ 2079 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2080 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 2081 2082 mutex_exit(&stp->sd_lock); 2083 pollwakeup(&stp->sd_pollist, POLLERR); 2084 mutex_enter(&stp->sd_lock); 2085 2086 if (stp->sd_sigflags & S_ERROR) 2087 strsendsig(stp->sd_siglist, S_ERROR, 0, 2088 (stp->sd_werror ? stp->sd_werror : 2089 stp->sd_rerror)); 2090 mutex_exit(&stp->sd_lock); 2091 2092 /* 2093 * Send the M_FLUSH only 2094 * for the first M_ERROR 2095 * message on the stream 2096 */ 2097 if (flushed_already != FLUSHRW) { 2098 bp->b_datap->db_type = M_FLUSH; 2099 *bp->b_rptr = FLUSHRW; 2100 /* 2101 * Protect against the driver passing up 2102 * messages after it has done a 2103 * qprocsoff. 2104 */ 2105 if (_OTHERQ(q)->q_next == NULL) 2106 freemsg(bp); 2107 else 2108 qreply(q, bp); 2109 return (0); 2110 } 2111 } 2112 freemsg(bp); 2113 return (0); 2114 2115 case M_HANGUP: 2116 2117 freemsg(bp); 2118 mutex_enter(&stp->sd_lock); 2119 stp->sd_werror = ENXIO; 2120 stp->sd_flag |= STRHUP; 2121 stp->sd_flag &= ~(WSLEEP|RSLEEP); 2122 2123 /* 2124 * send signal if controlling tty 2125 */ 2126 2127 if (stp->sd_sidp) { 2128 prsignal(stp->sd_sidp, SIGHUP); 2129 if (stp->sd_sidp != stp->sd_pgidp) 2130 pgsignal(stp->sd_pgidp, SIGTSTP); 2131 } 2132 2133 /* 2134 * wake up read, write, and exception pollers and 2135 * reset wakeup mechanism. 2136 */ 2137 cv_broadcast(&q->q_wait); /* the readers */ 2138 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2139 cv_broadcast(&stp->sd_monitor); /* the ioctllers */ 2140 strhup(stp); 2141 mutex_exit(&stp->sd_lock); 2142 return (0); 2143 2144 case M_UNHANGUP: 2145 freemsg(bp); 2146 mutex_enter(&stp->sd_lock); 2147 stp->sd_werror = 0; 2148 stp->sd_flag &= ~STRHUP; 2149 mutex_exit(&stp->sd_lock); 2150 return (0); 2151 2152 case M_SIG: 2153 /* 2154 * Someone downstream wants to post a signal. The 2155 * signal to post is contained in the first byte of the 2156 * message. If the message would go on the front of 2157 * the queue, send a signal to the process group 2158 * (if not SIGPOLL) or to the siglist processes 2159 * (SIGPOLL). If something is already on the queue, 2160 * OR if we are delivering a delayed suspend (*sigh* 2161 * another "tty" hack) and there's no one sleeping already, 2162 * just enqueue the message. 2163 */ 2164 mutex_enter(&stp->sd_lock); 2165 if (q->q_first || (*bp->b_rptr == SIGTSTP && 2166 !(stp->sd_flag & RSLEEP))) { 2167 (void) putq(q, bp); 2168 mutex_exit(&stp->sd_lock); 2169 return (0); 2170 } 2171 mutex_exit(&stp->sd_lock); 2172 /* FALLTHRU */ 2173 2174 case M_PCSIG: 2175 /* 2176 * Don't enqueue, just post the signal. 2177 */ 2178 strsignal(stp, *bp->b_rptr, 0L); 2179 freemsg(bp); 2180 return (0); 2181 2182 case M_CMD: 2183 if (MBLKL(bp) != sizeof (cmdblk_t)) { 2184 freemsg(bp); 2185 return (0); 2186 } 2187 2188 mutex_enter(&stp->sd_lock); 2189 if (stp->sd_flag & STRCMDWAIT) { 2190 ASSERT(stp->sd_cmdblk == NULL); 2191 stp->sd_cmdblk = bp; 2192 cv_broadcast(&stp->sd_monitor); 2193 mutex_exit(&stp->sd_lock); 2194 } else { 2195 mutex_exit(&stp->sd_lock); 2196 freemsg(bp); 2197 } 2198 return (0); 2199 2200 case M_FLUSH: 2201 /* 2202 * Flush queues. The indication of which queues to flush 2203 * is in the first byte of the message. If the read queue 2204 * is specified, then flush it. If FLUSHBAND is set, just 2205 * flush the band specified by the second byte of the message. 2206 * 2207 * If a module has issued a M_SETOPT to not flush hi 2208 * priority messages off of the stream head, then pass this 2209 * flag into the flushq code to preserve such messages. 2210 */ 2211 2212 if (*bp->b_rptr & FLUSHR) { 2213 mutex_enter(&stp->sd_lock); 2214 if (*bp->b_rptr & FLUSHBAND) { 2215 ASSERT((bp->b_wptr - bp->b_rptr) >= 2); 2216 flushband(q, *(bp->b_rptr + 1), FLUSHALL); 2217 } else 2218 flushq_common(q, FLUSHALL, 2219 stp->sd_read_opt & RFLUSHPCPROT); 2220 if ((q->q_first == NULL) || 2221 (q->q_first->b_datap->db_type < QPCTL)) 2222 stp->sd_flag &= ~STRPRI; 2223 else { 2224 ASSERT(stp->sd_flag & STRPRI); 2225 } 2226 mutex_exit(&stp->sd_lock); 2227 } 2228 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 2229 *bp->b_rptr &= ~FLUSHR; 2230 bp->b_flag |= MSGNOLOOP; 2231 /* 2232 * Protect against the driver passing up 2233 * messages after it has done a qprocsoff. 2234 */ 2235 if (_OTHERQ(q)->q_next == NULL) 2236 freemsg(bp); 2237 else 2238 qreply(q, bp); 2239 return (0); 2240 } 2241 freemsg(bp); 2242 return (0); 2243 2244 case M_IOCACK: 2245 case M_IOCNAK: 2246 iocbp = (struct iocblk *)bp->b_rptr; 2247 /* 2248 * If not waiting for ACK or NAK then just free msg. 2249 * If incorrect id sequence number then just free msg. 2250 * If already have ACK or NAK for user then this is a 2251 * duplicate, display a warning and free the msg. 2252 */ 2253 mutex_enter(&stp->sd_lock); 2254 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2255 (stp->sd_iocid != iocbp->ioc_id)) { 2256 /* 2257 * If the ACK/NAK is a dup, display a message 2258 * Dup is when sd_iocid == ioc_id, and 2259 * sd_iocblk == <valid ptr> or -1 (the former 2260 * is when an ioctl has been put on the stream 2261 * head, but has not yet been consumed, the 2262 * later is when it has been consumed). 2263 */ 2264 if ((stp->sd_iocid == iocbp->ioc_id) && 2265 (stp->sd_iocblk != NULL)) { 2266 log_dupioc(q, bp); 2267 } 2268 freemsg(bp); 2269 mutex_exit(&stp->sd_lock); 2270 return (0); 2271 } 2272 2273 /* 2274 * Assign ACK or NAK to user and wake up. 2275 */ 2276 stp->sd_iocblk = bp; 2277 cv_broadcast(&stp->sd_monitor); 2278 mutex_exit(&stp->sd_lock); 2279 return (0); 2280 2281 case M_COPYIN: 2282 case M_COPYOUT: 2283 reqp = (struct copyreq *)bp->b_rptr; 2284 2285 /* 2286 * If not waiting for ACK or NAK then just fail request. 2287 * If already have ACK, NAK, or copy request, then just 2288 * fail request. 2289 * If incorrect id sequence number then just fail request. 2290 */ 2291 mutex_enter(&stp->sd_lock); 2292 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2293 (stp->sd_iocid != reqp->cq_id)) { 2294 if (bp->b_cont) { 2295 freemsg(bp->b_cont); 2296 bp->b_cont = NULL; 2297 } 2298 bp->b_datap->db_type = M_IOCDATA; 2299 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 2300 resp = (struct copyresp *)bp->b_rptr; 2301 resp->cp_rval = (caddr_t)1; /* failure */ 2302 mutex_exit(&stp->sd_lock); 2303 putnext(stp->sd_wrq, bp); 2304 return (0); 2305 } 2306 2307 /* 2308 * Assign copy request to user and wake up. 2309 */ 2310 stp->sd_iocblk = bp; 2311 cv_broadcast(&stp->sd_monitor); 2312 mutex_exit(&stp->sd_lock); 2313 return (0); 2314 2315 case M_SETOPTS: 2316 /* 2317 * Set stream head options (read option, write offset, 2318 * min/max packet size, and/or high/low water marks for 2319 * the read side only). 2320 */ 2321 2322 bpri = 0; 2323 sop = (struct stroptions *)bp->b_rptr; 2324 mutex_enter(&stp->sd_lock); 2325 if (sop->so_flags & SO_READOPT) { 2326 switch (sop->so_readopt & RMODEMASK) { 2327 case RNORM: 2328 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 2329 break; 2330 2331 case RMSGD: 2332 stp->sd_read_opt = 2333 ((stp->sd_read_opt & ~RD_MSGNODIS) | 2334 RD_MSGDIS); 2335 break; 2336 2337 case RMSGN: 2338 stp->sd_read_opt = 2339 ((stp->sd_read_opt & ~RD_MSGDIS) | 2340 RD_MSGNODIS); 2341 break; 2342 } 2343 switch (sop->so_readopt & RPROTMASK) { 2344 case RPROTNORM: 2345 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 2346 break; 2347 2348 case RPROTDAT: 2349 stp->sd_read_opt = 2350 ((stp->sd_read_opt & ~RD_PROTDIS) | 2351 RD_PROTDAT); 2352 break; 2353 2354 case RPROTDIS: 2355 stp->sd_read_opt = 2356 ((stp->sd_read_opt & ~RD_PROTDAT) | 2357 RD_PROTDIS); 2358 break; 2359 } 2360 switch (sop->so_readopt & RFLUSHMASK) { 2361 case RFLUSHPCPROT: 2362 /* 2363 * This sets the stream head to NOT flush 2364 * M_PCPROTO messages. 2365 */ 2366 stp->sd_read_opt |= RFLUSHPCPROT; 2367 break; 2368 } 2369 } 2370 if (sop->so_flags & SO_ERROPT) { 2371 switch (sop->so_erropt & RERRMASK) { 2372 case RERRNORM: 2373 stp->sd_flag &= ~STRDERRNONPERSIST; 2374 break; 2375 case RERRNONPERSIST: 2376 stp->sd_flag |= STRDERRNONPERSIST; 2377 break; 2378 } 2379 switch (sop->so_erropt & WERRMASK) { 2380 case WERRNORM: 2381 stp->sd_flag &= ~STWRERRNONPERSIST; 2382 break; 2383 case WERRNONPERSIST: 2384 stp->sd_flag |= STWRERRNONPERSIST; 2385 break; 2386 } 2387 } 2388 if (sop->so_flags & SO_COPYOPT) { 2389 if (sop->so_copyopt & ZCVMSAFE) { 2390 stp->sd_copyflag |= STZCVMSAFE; 2391 stp->sd_copyflag &= ~STZCVMUNSAFE; 2392 } else if (sop->so_copyopt & ZCVMUNSAFE) { 2393 stp->sd_copyflag |= STZCVMUNSAFE; 2394 stp->sd_copyflag &= ~STZCVMSAFE; 2395 } 2396 2397 if (sop->so_copyopt & COPYCACHED) { 2398 stp->sd_copyflag |= STRCOPYCACHED; 2399 } 2400 } 2401 if (sop->so_flags & SO_WROFF) 2402 stp->sd_wroff = sop->so_wroff; 2403 if (sop->so_flags & SO_TAIL) 2404 stp->sd_tail = sop->so_tail; 2405 if (sop->so_flags & SO_MINPSZ) 2406 q->q_minpsz = sop->so_minpsz; 2407 if (sop->so_flags & SO_MAXPSZ) 2408 q->q_maxpsz = sop->so_maxpsz; 2409 if (sop->so_flags & SO_MAXBLK) 2410 stp->sd_maxblk = sop->so_maxblk; 2411 if (sop->so_flags & SO_HIWAT) { 2412 if (sop->so_flags & SO_BAND) { 2413 if (strqset(q, QHIWAT, 2414 sop->so_band, sop->so_hiwat)) { 2415 cmn_err(CE_WARN, "strrput: could not " 2416 "allocate qband\n"); 2417 } else { 2418 bpri = sop->so_band; 2419 } 2420 } else { 2421 q->q_hiwat = sop->so_hiwat; 2422 } 2423 } 2424 if (sop->so_flags & SO_LOWAT) { 2425 if (sop->so_flags & SO_BAND) { 2426 if (strqset(q, QLOWAT, 2427 sop->so_band, sop->so_lowat)) { 2428 cmn_err(CE_WARN, "strrput: could not " 2429 "allocate qband\n"); 2430 } else { 2431 bpri = sop->so_band; 2432 } 2433 } else { 2434 q->q_lowat = sop->so_lowat; 2435 } 2436 } 2437 if (sop->so_flags & SO_MREADON) 2438 stp->sd_flag |= SNDMREAD; 2439 if (sop->so_flags & SO_MREADOFF) 2440 stp->sd_flag &= ~SNDMREAD; 2441 if (sop->so_flags & SO_NDELON) 2442 stp->sd_flag |= OLDNDELAY; 2443 if (sop->so_flags & SO_NDELOFF) 2444 stp->sd_flag &= ~OLDNDELAY; 2445 if (sop->so_flags & SO_ISTTY) 2446 stp->sd_flag |= STRISTTY; 2447 if (sop->so_flags & SO_ISNTTY) 2448 stp->sd_flag &= ~STRISTTY; 2449 if (sop->so_flags & SO_TOSTOP) 2450 stp->sd_flag |= STRTOSTOP; 2451 if (sop->so_flags & SO_TONSTOP) 2452 stp->sd_flag &= ~STRTOSTOP; 2453 if (sop->so_flags & SO_DELIM) 2454 stp->sd_flag |= STRDELIM; 2455 if (sop->so_flags & SO_NODELIM) 2456 stp->sd_flag &= ~STRDELIM; 2457 2458 mutex_exit(&stp->sd_lock); 2459 freemsg(bp); 2460 2461 /* Check backenable in case the water marks changed */ 2462 qbackenable(q, bpri); 2463 return (0); 2464 2465 /* 2466 * The following set of cases deal with situations where two stream 2467 * heads are connected to each other (twisted streams). These messages 2468 * have no meaning at the stream head. 2469 */ 2470 case M_BREAK: 2471 case M_CTL: 2472 case M_DELAY: 2473 case M_START: 2474 case M_STOP: 2475 case M_IOCDATA: 2476 case M_STARTI: 2477 case M_STOPI: 2478 freemsg(bp); 2479 return (0); 2480 2481 case M_IOCTL: 2482 /* 2483 * Always NAK this condition 2484 * (makes no sense) 2485 * If there is one or more threads in the read side 2486 * rwnext we have to defer the nacking until that thread 2487 * returns (in strget). 2488 */ 2489 mutex_enter(&stp->sd_lock); 2490 if (stp->sd_struiodnak != 0) { 2491 /* 2492 * Defer NAK to the streamhead. Queue at the end 2493 * the list. 2494 */ 2495 mblk_t *mp = stp->sd_struionak; 2496 2497 while (mp && mp->b_next) 2498 mp = mp->b_next; 2499 if (mp) 2500 mp->b_next = bp; 2501 else 2502 stp->sd_struionak = bp; 2503 bp->b_next = NULL; 2504 mutex_exit(&stp->sd_lock); 2505 return (0); 2506 } 2507 mutex_exit(&stp->sd_lock); 2508 2509 bp->b_datap->db_type = M_IOCNAK; 2510 /* 2511 * Protect against the driver passing up 2512 * messages after it has done a qprocsoff. 2513 */ 2514 if (_OTHERQ(q)->q_next == NULL) 2515 freemsg(bp); 2516 else 2517 qreply(q, bp); 2518 return (0); 2519 2520 default: 2521 #ifdef DEBUG 2522 cmn_err(CE_WARN, 2523 "bad message type %x received at stream head\n", 2524 bp->b_datap->db_type); 2525 #endif 2526 freemsg(bp); 2527 return (0); 2528 } 2529 2530 /* NOTREACHED */ 2531 } 2532 2533 /* 2534 * Check if the stream pointed to by `stp' can be written to, and return an 2535 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set. 2536 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream, 2537 * then always return EPIPE and send a SIGPIPE to the invoking thread. 2538 */ 2539 static int 2540 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok) 2541 { 2542 int error; 2543 2544 ASSERT(MUTEX_HELD(&stp->sd_lock)); 2545 2546 /* 2547 * For modem support, POSIX states that on writes, EIO should 2548 * be returned if the stream has been hung up. 2549 */ 2550 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP) 2551 error = EIO; 2552 else 2553 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0); 2554 2555 if (error != 0) { 2556 if (!(stp->sd_flag & STPLEX) && 2557 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) { 2558 tsignal(curthread, SIGPIPE); 2559 error = EPIPE; 2560 } 2561 } 2562 2563 return (error); 2564 } 2565 2566 /* 2567 * Copyin and send data down a stream. 2568 * The caller will allocate and copyin any control part that precedes the 2569 * message and pass than in as mctl. 2570 * 2571 * Caller should *not* hold sd_lock. 2572 * When EWOULDBLOCK is returned the caller has to redo the canputnext 2573 * under sd_lock in order to avoid missing a backenabling wakeup. 2574 * 2575 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA. 2576 * 2577 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages. 2578 * For sync streams we can only ignore flow control by reverting to using 2579 * putnext. 2580 * 2581 * If sd_maxblk is less than *iosize this routine might return without 2582 * transferring all of *iosize. In all cases, on return *iosize will contain 2583 * the amount of data that was transferred. 2584 */ 2585 static int 2586 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize, 2587 int b_flag, int pri, int flags) 2588 { 2589 struiod_t uiod; 2590 mblk_t *mp; 2591 queue_t *wqp = stp->sd_wrq; 2592 int error = 0; 2593 ssize_t count = *iosize; 2594 cred_t *cr; 2595 2596 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 2597 2598 if (uiop != NULL && count >= 0) 2599 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0; 2600 2601 if (!(flags & STRUIO_POSTPONE)) { 2602 /* 2603 * Use regular canputnext, strmakedata, putnext sequence. 2604 */ 2605 if (pri == 0) { 2606 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2607 freemsg(mctl); 2608 return (EWOULDBLOCK); 2609 } 2610 } else { 2611 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) { 2612 freemsg(mctl); 2613 return (EWOULDBLOCK); 2614 } 2615 } 2616 2617 if ((error = strmakedata(iosize, uiop, stp, flags, 2618 &mp)) != 0) { 2619 freemsg(mctl); 2620 /* 2621 * need to change return code to ENOMEM 2622 * so that this is not confused with 2623 * flow control, EAGAIN. 2624 */ 2625 2626 if (error == EAGAIN) 2627 return (ENOMEM); 2628 else 2629 return (error); 2630 } 2631 if (mctl != NULL) { 2632 if (mctl->b_cont == NULL) 2633 mctl->b_cont = mp; 2634 else if (mp != NULL) 2635 linkb(mctl, mp); 2636 mp = mctl; 2637 /* 2638 * Note that for interrupt thread, the CRED() is 2639 * NULL. Don't bother with the pid either. 2640 */ 2641 if ((cr = CRED()) != NULL) { 2642 mblk_setcred(mp, cr); 2643 DB_CPID(mp) = curproc->p_pid; 2644 } 2645 } else if (mp == NULL) 2646 return (0); 2647 2648 mp->b_flag |= b_flag; 2649 mp->b_band = (uchar_t)pri; 2650 2651 if (flags & MSG_IGNFLOW) { 2652 /* 2653 * XXX Hack: Don't get stuck running service 2654 * procedures. This is needed for sockfs when 2655 * sending the unbind message out of the rput 2656 * procedure - we don't want a put procedure 2657 * to run service procedures. 2658 */ 2659 putnext(wqp, mp); 2660 } else { 2661 stream_willservice(stp); 2662 putnext(wqp, mp); 2663 stream_runservice(stp); 2664 } 2665 return (0); 2666 } 2667 /* 2668 * Stream supports rwnext() for the write side. 2669 */ 2670 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { 2671 freemsg(mctl); 2672 /* 2673 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled". 2674 */ 2675 return (error == EAGAIN ? ENOMEM : error); 2676 } 2677 if (mctl != NULL) { 2678 if (mctl->b_cont == NULL) 2679 mctl->b_cont = mp; 2680 else if (mp != NULL) 2681 linkb(mctl, mp); 2682 mp = mctl; 2683 /* 2684 * Note that for interrupt thread, the CRED() is 2685 * NULL. Don't bother with the pid either. 2686 */ 2687 if ((cr = CRED()) != NULL) { 2688 mblk_setcred(mp, cr); 2689 DB_CPID(mp) = curproc->p_pid; 2690 } 2691 } else if (mp == NULL) { 2692 return (0); 2693 } 2694 2695 mp->b_flag |= b_flag; 2696 mp->b_band = (uchar_t)pri; 2697 2698 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 2699 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 2700 uiod.d_uio.uio_offset = 0; 2701 uiod.d_mp = mp; 2702 error = rwnext(wqp, &uiod); 2703 if (! uiod.d_mp) { 2704 uioskip(uiop, *iosize); 2705 return (error); 2706 } 2707 ASSERT(mp == uiod.d_mp); 2708 if (error == EINVAL) { 2709 /* 2710 * The stream plumbing must have changed while 2711 * we were away, so just turn off rwnext()s. 2712 */ 2713 error = 0; 2714 } else if (error == EBUSY || error == EWOULDBLOCK) { 2715 /* 2716 * Couldn't enter a perimeter or took a page fault, 2717 * so fall-back to putnext(). 2718 */ 2719 error = 0; 2720 } else { 2721 freemsg(mp); 2722 return (error); 2723 } 2724 /* Have to check canput before consuming data from the uio */ 2725 if (pri == 0) { 2726 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2727 freemsg(mp); 2728 return (EWOULDBLOCK); 2729 } 2730 } else { 2731 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) { 2732 freemsg(mp); 2733 return (EWOULDBLOCK); 2734 } 2735 } 2736 ASSERT(mp == uiod.d_mp); 2737 /* Copyin data from the uio */ 2738 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) { 2739 freemsg(mp); 2740 return (error); 2741 } 2742 uioskip(uiop, *iosize); 2743 if (flags & MSG_IGNFLOW) { 2744 /* 2745 * XXX Hack: Don't get stuck running service procedures. 2746 * This is needed for sockfs when sending the unbind message 2747 * out of the rput procedure - we don't want a put procedure 2748 * to run service procedures. 2749 */ 2750 putnext(wqp, mp); 2751 } else { 2752 stream_willservice(stp); 2753 putnext(wqp, mp); 2754 stream_runservice(stp); 2755 } 2756 return (0); 2757 } 2758 2759 /* 2760 * Write attempts to break the write request into messages conforming 2761 * with the minimum and maximum packet sizes set downstream. 2762 * 2763 * Write will not block if downstream queue is full and 2764 * O_NDELAY is set, otherwise it will block waiting for the queue to get room. 2765 * 2766 * A write of zero bytes gets packaged into a zero length message and sent 2767 * downstream like any other message. 2768 * 2769 * If buffers of the requested sizes are not available, the write will 2770 * sleep until the buffers become available. 2771 * 2772 * Write (if specified) will supply a write offset in a message if it 2773 * makes sense. This can be specified by downstream modules as part of 2774 * a M_SETOPTS message. Write will not supply the write offset if it 2775 * cannot supply any data in a buffer. In other words, write will never 2776 * send down an empty packet due to a write offset. 2777 */ 2778 /* ARGSUSED2 */ 2779 int 2780 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp) 2781 { 2782 return (strwrite_common(vp, uiop, crp, 0)); 2783 } 2784 2785 /* ARGSUSED2 */ 2786 int 2787 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag) 2788 { 2789 struct stdata *stp; 2790 struct queue *wqp; 2791 ssize_t rmin, rmax; 2792 ssize_t iosize; 2793 int waitflag; 2794 int tempmode; 2795 int error = 0; 2796 int b_flag; 2797 2798 ASSERT(vp->v_stream); 2799 stp = vp->v_stream; 2800 2801 mutex_enter(&stp->sd_lock); 2802 2803 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2804 mutex_exit(&stp->sd_lock); 2805 return (error); 2806 } 2807 2808 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 2809 error = strwriteable(stp, B_TRUE, B_TRUE); 2810 if (error != 0) { 2811 mutex_exit(&stp->sd_lock); 2812 return (error); 2813 } 2814 } 2815 2816 mutex_exit(&stp->sd_lock); 2817 2818 wqp = stp->sd_wrq; 2819 2820 /* get these values from them cached in the stream head */ 2821 rmin = stp->sd_qn_minpsz; 2822 rmax = stp->sd_qn_maxpsz; 2823 2824 /* 2825 * Check the min/max packet size constraints. If min packet size 2826 * is non-zero, the write cannot be split into multiple messages 2827 * and still guarantee the size constraints. 2828 */ 2829 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp); 2830 2831 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 2832 if (rmax == 0) { 2833 return (0); 2834 } 2835 if (rmin > 0) { 2836 if (uiop->uio_resid < rmin) { 2837 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2838 "strwrite out:q %p out %d error %d", 2839 wqp, 0, ERANGE); 2840 return (ERANGE); 2841 } 2842 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) { 2843 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2844 "strwrite out:q %p out %d error %d", 2845 wqp, 1, ERANGE); 2846 return (ERANGE); 2847 } 2848 } 2849 2850 /* 2851 * Do until count satisfied or error. 2852 */ 2853 waitflag = WRITEWAIT | wflag; 2854 if (stp->sd_flag & OLDNDELAY) 2855 tempmode = uiop->uio_fmode & ~FNDELAY; 2856 else 2857 tempmode = uiop->uio_fmode; 2858 2859 if (rmax == INFPSZ) 2860 rmax = uiop->uio_resid; 2861 2862 /* 2863 * Note that tempmode does not get used in strput/strmakedata 2864 * but only in strwaitq. The other routines use uio_fmode 2865 * unmodified. 2866 */ 2867 2868 /* LINTED: constant in conditional context */ 2869 while (1) { /* breaks when uio_resid reaches zero */ 2870 /* 2871 * Determine the size of the next message to be 2872 * packaged. May have to break write into several 2873 * messages based on max packet size. 2874 */ 2875 iosize = MIN(uiop->uio_resid, rmax); 2876 2877 /* 2878 * Put block downstream when flow control allows it. 2879 */ 2880 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize)) 2881 b_flag = MSGDELIM; 2882 else 2883 b_flag = 0; 2884 2885 for (;;) { 2886 int done = 0; 2887 2888 error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0); 2889 if (error == 0) 2890 break; 2891 if (error != EWOULDBLOCK) 2892 goto out; 2893 2894 mutex_enter(&stp->sd_lock); 2895 /* 2896 * Check for a missed wakeup. 2897 * Needed since strput did not hold sd_lock across 2898 * the canputnext. 2899 */ 2900 if (canputnext(wqp)) { 2901 /* Try again */ 2902 mutex_exit(&stp->sd_lock); 2903 continue; 2904 } 2905 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT, 2906 "strwrite wait:q %p wait", wqp); 2907 if ((error = strwaitq(stp, waitflag, (ssize_t)0, 2908 tempmode, -1, &done)) != 0 || done) { 2909 mutex_exit(&stp->sd_lock); 2910 if ((vp->v_type == VFIFO) && 2911 (uiop->uio_fmode & FNDELAY) && 2912 (error == EAGAIN)) 2913 error = 0; 2914 goto out; 2915 } 2916 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE, 2917 "strwrite wake:q %p awakes", wqp); 2918 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2919 mutex_exit(&stp->sd_lock); 2920 goto out; 2921 } 2922 mutex_exit(&stp->sd_lock); 2923 } 2924 waitflag |= NOINTR; 2925 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID, 2926 "strwrite resid:q %p uiop %p", wqp, uiop); 2927 if (uiop->uio_resid) { 2928 /* Recheck for errors - needed for sockets */ 2929 if ((stp->sd_wput_opt & SW_RECHECK_ERR) && 2930 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { 2931 mutex_enter(&stp->sd_lock); 2932 error = strwriteable(stp, B_FALSE, B_TRUE); 2933 mutex_exit(&stp->sd_lock); 2934 if (error != 0) 2935 return (error); 2936 } 2937 continue; 2938 } 2939 break; 2940 } 2941 out: 2942 /* 2943 * For historical reasons, applications expect EAGAIN when a data 2944 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN. 2945 */ 2946 if (error == ENOMEM) 2947 error = EAGAIN; 2948 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2949 "strwrite out:q %p out %d error %d", wqp, 2, error); 2950 return (error); 2951 } 2952 2953 /* 2954 * Stream head write service routine. 2955 * Its job is to wake up any sleeping writers when a queue 2956 * downstream needs data (part of the flow control in putq and getq). 2957 * It also must wake anyone sleeping on a poll(). 2958 * For stream head right below mux module, it must also invoke put procedure 2959 * of next downstream module. 2960 */ 2961 int 2962 strwsrv(queue_t *q) 2963 { 2964 struct stdata *stp; 2965 queue_t *tq; 2966 qband_t *qbp; 2967 int i; 2968 qband_t *myqbp; 2969 int isevent; 2970 unsigned char qbf[NBAND]; /* band flushing backenable flags */ 2971 2972 TRACE_1(TR_FAC_STREAMS_FR, 2973 TR_STRWSRV, "strwsrv:q %p", q); 2974 stp = (struct stdata *)q->q_ptr; 2975 ASSERT(qclaimed(q)); 2976 mutex_enter(&stp->sd_lock); 2977 ASSERT(!(stp->sd_flag & STPLEX)); 2978 2979 if (stp->sd_flag & WSLEEP) { 2980 stp->sd_flag &= ~WSLEEP; 2981 cv_broadcast(&q->q_wait); 2982 } 2983 mutex_exit(&stp->sd_lock); 2984 2985 /* The other end of a stream pipe went away. */ 2986 if ((tq = q->q_next) == NULL) { 2987 return (0); 2988 } 2989 2990 /* Find the next module forward that has a service procedure */ 2991 claimstr(q); 2992 tq = q->q_nfsrv; 2993 ASSERT(tq != NULL); 2994 2995 if ((q->q_flag & QBACK)) { 2996 if ((tq->q_flag & QFULL)) { 2997 mutex_enter(QLOCK(tq)); 2998 if (!(tq->q_flag & QFULL)) { 2999 mutex_exit(QLOCK(tq)); 3000 goto wakeup; 3001 } 3002 /* 3003 * The queue must have become full again. Set QWANTW 3004 * again so strwsrv will be back enabled when 3005 * the queue becomes non-full next time. 3006 */ 3007 tq->q_flag |= QWANTW; 3008 mutex_exit(QLOCK(tq)); 3009 } else { 3010 wakeup: 3011 pollwakeup(&stp->sd_pollist, POLLWRNORM); 3012 mutex_enter(&stp->sd_lock); 3013 if (stp->sd_sigflags & S_WRNORM) 3014 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0); 3015 mutex_exit(&stp->sd_lock); 3016 } 3017 } 3018 3019 isevent = 0; 3020 i = 1; 3021 bzero((caddr_t)qbf, NBAND); 3022 mutex_enter(QLOCK(tq)); 3023 if ((myqbp = q->q_bandp) != NULL) 3024 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) { 3025 ASSERT(myqbp); 3026 if ((myqbp->qb_flag & QB_BACK)) { 3027 if (qbp->qb_flag & QB_FULL) { 3028 /* 3029 * The band must have become full again. 3030 * Set QB_WANTW again so strwsrv will 3031 * be back enabled when the band becomes 3032 * non-full next time. 3033 */ 3034 qbp->qb_flag |= QB_WANTW; 3035 } else { 3036 isevent = 1; 3037 qbf[i] = 1; 3038 } 3039 } 3040 myqbp = myqbp->qb_next; 3041 i++; 3042 } 3043 mutex_exit(QLOCK(tq)); 3044 3045 if (isevent) { 3046 for (i = tq->q_nband; i; i--) { 3047 if (qbf[i]) { 3048 pollwakeup(&stp->sd_pollist, POLLWRBAND); 3049 mutex_enter(&stp->sd_lock); 3050 if (stp->sd_sigflags & S_WRBAND) 3051 strsendsig(stp->sd_siglist, S_WRBAND, 3052 (uchar_t)i, 0); 3053 mutex_exit(&stp->sd_lock); 3054 } 3055 } 3056 } 3057 3058 releasestr(q); 3059 return (0); 3060 } 3061 3062 /* 3063 * Special case of strcopyin/strcopyout for copying 3064 * struct strioctl that can deal with both data 3065 * models. 3066 */ 3067 3068 #ifdef _LP64 3069 3070 static int 3071 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3072 { 3073 struct strioctl32 strioc32; 3074 struct strioctl *striocp; 3075 3076 if (copyflag & U_TO_K) { 3077 ASSERT((copyflag & K_TO_K) == 0); 3078 3079 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3080 if (copyin(from, &strioc32, sizeof (strioc32))) 3081 return (EFAULT); 3082 3083 striocp = (struct strioctl *)to; 3084 striocp->ic_cmd = strioc32.ic_cmd; 3085 striocp->ic_timout = strioc32.ic_timout; 3086 striocp->ic_len = strioc32.ic_len; 3087 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp; 3088 3089 } else { /* NATIVE data model */ 3090 if (copyin(from, to, sizeof (struct strioctl))) { 3091 return (EFAULT); 3092 } else { 3093 return (0); 3094 } 3095 } 3096 } else { 3097 ASSERT(copyflag & K_TO_K); 3098 bcopy(from, to, sizeof (struct strioctl)); 3099 } 3100 return (0); 3101 } 3102 3103 static int 3104 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3105 { 3106 struct strioctl32 strioc32; 3107 struct strioctl *striocp; 3108 3109 if (copyflag & U_TO_K) { 3110 ASSERT((copyflag & K_TO_K) == 0); 3111 3112 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3113 striocp = (struct strioctl *)from; 3114 strioc32.ic_cmd = striocp->ic_cmd; 3115 strioc32.ic_timout = striocp->ic_timout; 3116 strioc32.ic_len = striocp->ic_len; 3117 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp; 3118 ASSERT((char *)(uintptr_t)strioc32.ic_dp == 3119 striocp->ic_dp); 3120 3121 if (copyout(&strioc32, to, sizeof (strioc32))) 3122 return (EFAULT); 3123 3124 } else { /* NATIVE data model */ 3125 if (copyout(from, to, sizeof (struct strioctl))) { 3126 return (EFAULT); 3127 } else { 3128 return (0); 3129 } 3130 } 3131 } else { 3132 ASSERT(copyflag & K_TO_K); 3133 bcopy(from, to, sizeof (struct strioctl)); 3134 } 3135 return (0); 3136 } 3137 3138 #else /* ! _LP64 */ 3139 3140 /* ARGSUSED2 */ 3141 static int 3142 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3143 { 3144 return (strcopyin(from, to, sizeof (struct strioctl), copyflag)); 3145 } 3146 3147 /* ARGSUSED2 */ 3148 static int 3149 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3150 { 3151 return (strcopyout(from, to, sizeof (struct strioctl), copyflag)); 3152 } 3153 3154 #endif /* _LP64 */ 3155 3156 /* 3157 * Determine type of job control semantics expected by user. The 3158 * possibilities are: 3159 * JCREAD - Behaves like read() on fd; send SIGTTIN 3160 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set 3161 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP 3162 * JCGETP - Gets a value in the stream; no signals. 3163 * See straccess in strsubr.c for usage of these values. 3164 * 3165 * This routine also returns -1 for I_STR as a special case; the 3166 * caller must call again with the real ioctl number for 3167 * classification. 3168 */ 3169 static int 3170 job_control_type(int cmd) 3171 { 3172 switch (cmd) { 3173 case I_STR: 3174 return (-1); 3175 3176 case I_RECVFD: 3177 case I_E_RECVFD: 3178 return (JCREAD); 3179 3180 case I_FDINSERT: 3181 case I_SENDFD: 3182 return (JCWRITE); 3183 3184 case TCSETA: 3185 case TCSETAW: 3186 case TCSETAF: 3187 case TCSBRK: 3188 case TCXONC: 3189 case TCFLSH: 3190 case TCDSET: /* Obsolete */ 3191 case TIOCSWINSZ: 3192 case TCSETS: 3193 case TCSETSW: 3194 case TCSETSF: 3195 case TIOCSETD: 3196 case TIOCHPCL: 3197 case TIOCSETP: 3198 case TIOCSETN: 3199 case TIOCEXCL: 3200 case TIOCNXCL: 3201 case TIOCFLUSH: 3202 case TIOCSETC: 3203 case TIOCLBIS: 3204 case TIOCLBIC: 3205 case TIOCLSET: 3206 case TIOCSBRK: 3207 case TIOCCBRK: 3208 case TIOCSDTR: 3209 case TIOCCDTR: 3210 case TIOCSLTC: 3211 case TIOCSTOP: 3212 case TIOCSTART: 3213 case TIOCSTI: 3214 case TIOCSPGRP: 3215 case TIOCMSET: 3216 case TIOCMBIS: 3217 case TIOCMBIC: 3218 case TIOCREMOTE: 3219 case TIOCSIGNAL: 3220 case LDSETT: 3221 case LDSMAP: /* Obsolete */ 3222 case DIOCSETP: 3223 case I_FLUSH: 3224 case I_SRDOPT: 3225 case I_SETSIG: 3226 case I_SWROPT: 3227 case I_FLUSHBAND: 3228 case I_SETCLTIME: 3229 case I_SERROPT: 3230 case I_ESETSIG: 3231 case FIONBIO: 3232 case FIOASYNC: 3233 case FIOSETOWN: 3234 case JBOOT: /* Obsolete */ 3235 case JTERM: /* Obsolete */ 3236 case JTIMOM: /* Obsolete */ 3237 case JZOMBOOT: /* Obsolete */ 3238 case JAGENT: /* Obsolete */ 3239 case JTRUN: /* Obsolete */ 3240 case JXTPROTO: /* Obsolete */ 3241 case TIOCSETLD: 3242 return (JCSETP); 3243 } 3244 3245 return (JCGETP); 3246 } 3247 3248 /* 3249 * ioctl for streams 3250 */ 3251 int 3252 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag, 3253 cred_t *crp, int *rvalp) 3254 { 3255 struct stdata *stp; 3256 struct strcmd *scp; 3257 struct strioctl strioc; 3258 struct uio uio; 3259 struct iovec iov; 3260 int access; 3261 mblk_t *mp; 3262 int error = 0; 3263 int done = 0; 3264 ssize_t rmin, rmax; 3265 queue_t *wrq; 3266 queue_t *rdq; 3267 boolean_t kioctl = B_FALSE; 3268 3269 if (flag & FKIOCTL) { 3270 copyflag = K_TO_K; 3271 kioctl = B_TRUE; 3272 } 3273 ASSERT(vp->v_stream); 3274 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 3275 stp = vp->v_stream; 3276 3277 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER, 3278 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg); 3279 3280 if (audit_active) 3281 audit_strioctl(vp, cmd, arg, flag, copyflag, crp, rvalp); 3282 3283 /* 3284 * If the copy is kernel to kernel, make sure that the FNATIVE 3285 * flag is set. After this it would be a serious error to have 3286 * no model flag. 3287 */ 3288 if (copyflag == K_TO_K) 3289 flag = (flag & ~FMODELS) | FNATIVE; 3290 3291 ASSERT((flag & FMODELS) != 0); 3292 3293 wrq = stp->sd_wrq; 3294 rdq = _RD(wrq); 3295 3296 access = job_control_type(cmd); 3297 3298 /* We should never see these here, should be handled by iwscn */ 3299 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR) 3300 return (EINVAL); 3301 3302 mutex_enter(&stp->sd_lock); 3303 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) { 3304 mutex_exit(&stp->sd_lock); 3305 return (error); 3306 } 3307 mutex_exit(&stp->sd_lock); 3308 3309 /* 3310 * Check for sgttyb-related ioctls first, and complain as 3311 * necessary. 3312 */ 3313 switch (cmd) { 3314 case TIOCGETP: 3315 case TIOCSETP: 3316 case TIOCSETN: 3317 if (sgttyb_handling >= 2 && !sgttyb_complaint) { 3318 sgttyb_complaint = B_TRUE; 3319 cmn_err(CE_NOTE, 3320 "application used obsolete TIOC[GS]ET"); 3321 } 3322 if (sgttyb_handling >= 3) { 3323 tsignal(curthread, SIGSYS); 3324 return (EIO); 3325 } 3326 break; 3327 } 3328 3329 mutex_enter(&stp->sd_lock); 3330 3331 switch (cmd) { 3332 case I_RECVFD: 3333 case I_E_RECVFD: 3334 case I_PEEK: 3335 case I_NREAD: 3336 case FIONREAD: 3337 case FIORDCHK: 3338 case I_ATMARK: 3339 case FIONBIO: 3340 case FIOASYNC: 3341 if (stp->sd_flag & (STRDERR|STPLEX)) { 3342 error = strgeterr(stp, STRDERR|STPLEX, 0); 3343 if (error != 0) { 3344 mutex_exit(&stp->sd_lock); 3345 return (error); 3346 } 3347 } 3348 break; 3349 3350 default: 3351 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) { 3352 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0); 3353 if (error != 0) { 3354 mutex_exit(&stp->sd_lock); 3355 return (error); 3356 } 3357 } 3358 } 3359 3360 mutex_exit(&stp->sd_lock); 3361 3362 switch (cmd) { 3363 default: 3364 /* 3365 * The stream head has hardcoded knowledge of a 3366 * miscellaneous collection of terminal-, keyboard- and 3367 * mouse-related ioctls, enumerated below. This hardcoded 3368 * knowledge allows the stream head to automatically 3369 * convert transparent ioctl requests made by userland 3370 * programs into I_STR ioctls which many old STREAMS 3371 * modules and drivers require. 3372 * 3373 * No new ioctls should ever be added to this list. 3374 * Instead, the STREAMS module or driver should be written 3375 * to either handle transparent ioctls or require any 3376 * userland programs to use I_STR ioctls (by returning 3377 * EINVAL to any transparent ioctl requests). 3378 * 3379 * More importantly, removing ioctls from this list should 3380 * be done with the utmost care, since our STREAMS modules 3381 * and drivers *count* on the stream head performing this 3382 * conversion, and thus may panic while processing 3383 * transparent ioctl request for one of these ioctls (keep 3384 * in mind that third party modules and drivers may have 3385 * similar problems). 3386 */ 3387 if (((cmd & IOCTYPE) == LDIOC) || 3388 ((cmd & IOCTYPE) == tIOC) || 3389 ((cmd & IOCTYPE) == TIOC) || 3390 ((cmd & IOCTYPE) == KIOC) || 3391 ((cmd & IOCTYPE) == MSIOC) || 3392 ((cmd & IOCTYPE) == VUIOC)) { 3393 /* 3394 * The ioctl is a tty ioctl - set up strioc buffer 3395 * and call strdoioctl() to do the work. 3396 */ 3397 if (stp->sd_flag & STRHUP) 3398 return (ENXIO); 3399 strioc.ic_cmd = cmd; 3400 strioc.ic_timout = INFTIM; 3401 3402 switch (cmd) { 3403 3404 case TCXONC: 3405 case TCSBRK: 3406 case TCFLSH: 3407 case TCDSET: 3408 { 3409 int native_arg = (int)arg; 3410 strioc.ic_len = sizeof (int); 3411 strioc.ic_dp = (char *)&native_arg; 3412 return (strdoioctl(stp, &strioc, flag, 3413 K_TO_K, crp, rvalp)); 3414 } 3415 3416 case TCSETA: 3417 case TCSETAW: 3418 case TCSETAF: 3419 strioc.ic_len = sizeof (struct termio); 3420 strioc.ic_dp = (char *)arg; 3421 return (strdoioctl(stp, &strioc, flag, 3422 copyflag, crp, rvalp)); 3423 3424 case TCSETS: 3425 case TCSETSW: 3426 case TCSETSF: 3427 strioc.ic_len = sizeof (struct termios); 3428 strioc.ic_dp = (char *)arg; 3429 return (strdoioctl(stp, &strioc, flag, 3430 copyflag, crp, rvalp)); 3431 3432 case LDSETT: 3433 strioc.ic_len = sizeof (struct termcb); 3434 strioc.ic_dp = (char *)arg; 3435 return (strdoioctl(stp, &strioc, flag, 3436 copyflag, crp, rvalp)); 3437 3438 case TIOCSETP: 3439 strioc.ic_len = sizeof (struct sgttyb); 3440 strioc.ic_dp = (char *)arg; 3441 return (strdoioctl(stp, &strioc, flag, 3442 copyflag, crp, rvalp)); 3443 3444 case TIOCSTI: 3445 if ((flag & FREAD) == 0 && 3446 secpolicy_sti(crp) != 0) { 3447 return (EPERM); 3448 } 3449 mutex_enter(&stp->sd_lock); 3450 mutex_enter(&curproc->p_splock); 3451 if (stp->sd_sidp != curproc->p_sessp->s_sidp && 3452 secpolicy_sti(crp) != 0) { 3453 mutex_exit(&curproc->p_splock); 3454 mutex_exit(&stp->sd_lock); 3455 return (EACCES); 3456 } 3457 mutex_exit(&curproc->p_splock); 3458 mutex_exit(&stp->sd_lock); 3459 3460 strioc.ic_len = sizeof (char); 3461 strioc.ic_dp = (char *)arg; 3462 return (strdoioctl(stp, &strioc, flag, 3463 copyflag, crp, rvalp)); 3464 3465 case TIOCSWINSZ: 3466 strioc.ic_len = sizeof (struct winsize); 3467 strioc.ic_dp = (char *)arg; 3468 return (strdoioctl(stp, &strioc, flag, 3469 copyflag, crp, rvalp)); 3470 3471 case TIOCSSIZE: 3472 strioc.ic_len = sizeof (struct ttysize); 3473 strioc.ic_dp = (char *)arg; 3474 return (strdoioctl(stp, &strioc, flag, 3475 copyflag, crp, rvalp)); 3476 3477 case TIOCSSOFTCAR: 3478 case KIOCTRANS: 3479 case KIOCTRANSABLE: 3480 case KIOCCMD: 3481 case KIOCSDIRECT: 3482 case KIOCSCOMPAT: 3483 case KIOCSKABORTEN: 3484 case KIOCSRPTDELAY: 3485 case KIOCSRPTRATE: 3486 case VUIDSFORMAT: 3487 case TIOCSPPS: 3488 strioc.ic_len = sizeof (int); 3489 strioc.ic_dp = (char *)arg; 3490 return (strdoioctl(stp, &strioc, flag, 3491 copyflag, crp, rvalp)); 3492 3493 case KIOCSETKEY: 3494 case KIOCGETKEY: 3495 strioc.ic_len = sizeof (struct kiockey); 3496 strioc.ic_dp = (char *)arg; 3497 return (strdoioctl(stp, &strioc, flag, 3498 copyflag, crp, rvalp)); 3499 3500 case KIOCSKEY: 3501 case KIOCGKEY: 3502 strioc.ic_len = sizeof (struct kiockeymap); 3503 strioc.ic_dp = (char *)arg; 3504 return (strdoioctl(stp, &strioc, flag, 3505 copyflag, crp, rvalp)); 3506 3507 case KIOCSLED: 3508 /* arg is a pointer to char */ 3509 strioc.ic_len = sizeof (char); 3510 strioc.ic_dp = (char *)arg; 3511 return (strdoioctl(stp, &strioc, flag, 3512 copyflag, crp, rvalp)); 3513 3514 case MSIOSETPARMS: 3515 strioc.ic_len = sizeof (Ms_parms); 3516 strioc.ic_dp = (char *)arg; 3517 return (strdoioctl(stp, &strioc, flag, 3518 copyflag, crp, rvalp)); 3519 3520 case VUIDSADDR: 3521 case VUIDGADDR: 3522 strioc.ic_len = sizeof (struct vuid_addr_probe); 3523 strioc.ic_dp = (char *)arg; 3524 return (strdoioctl(stp, &strioc, flag, 3525 copyflag, crp, rvalp)); 3526 3527 /* 3528 * These M_IOCTL's don't require any data to be sent 3529 * downstream, and the driver will allocate and link 3530 * on its own mblk_t upon M_IOCACK -- thus we set 3531 * ic_len to zero and set ic_dp to arg so we know 3532 * where to copyout to later. 3533 */ 3534 case TIOCGSOFTCAR: 3535 case TIOCGWINSZ: 3536 case TIOCGSIZE: 3537 case KIOCGTRANS: 3538 case KIOCGTRANSABLE: 3539 case KIOCTYPE: 3540 case KIOCGDIRECT: 3541 case KIOCGCOMPAT: 3542 case KIOCLAYOUT: 3543 case KIOCGLED: 3544 case MSIOGETPARMS: 3545 case MSIOBUTTONS: 3546 case VUIDGFORMAT: 3547 case TIOCGPPS: 3548 case TIOCGPPSEV: 3549 case TCGETA: 3550 case TCGETS: 3551 case LDGETT: 3552 case TIOCGETP: 3553 case KIOCGRPTDELAY: 3554 case KIOCGRPTRATE: 3555 strioc.ic_len = 0; 3556 strioc.ic_dp = (char *)arg; 3557 return (strdoioctl(stp, &strioc, flag, 3558 copyflag, crp, rvalp)); 3559 } 3560 } 3561 3562 /* 3563 * Unknown cmd - send it down as a transparent ioctl. 3564 */ 3565 strioc.ic_cmd = cmd; 3566 strioc.ic_timout = INFTIM; 3567 strioc.ic_len = TRANSPARENT; 3568 strioc.ic_dp = (char *)&arg; 3569 3570 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); 3571 3572 case I_STR: 3573 /* 3574 * Stream ioctl. Read in an strioctl buffer from the user 3575 * along with any data specified and send it downstream. 3576 * Strdoioctl will wait allow only one ioctl message at 3577 * a time, and waits for the acknowledgement. 3578 */ 3579 3580 if (stp->sd_flag & STRHUP) 3581 return (ENXIO); 3582 3583 error = strcopyin_strioctl((void *)arg, &strioc, flag, 3584 copyflag); 3585 if (error != 0) 3586 return (error); 3587 3588 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1)) 3589 return (EINVAL); 3590 3591 access = job_control_type(strioc.ic_cmd); 3592 mutex_enter(&stp->sd_lock); 3593 if ((access != -1) && 3594 ((error = i_straccess(stp, access)) != 0)) { 3595 mutex_exit(&stp->sd_lock); 3596 return (error); 3597 } 3598 mutex_exit(&stp->sd_lock); 3599 3600 /* 3601 * The I_STR facility provides a trap door for malicious 3602 * code to send down bogus streamio(7I) ioctl commands to 3603 * unsuspecting STREAMS modules and drivers which expect to 3604 * only get these messages from the stream head. 3605 * Explicitly prohibit any streamio ioctls which can be 3606 * passed downstream by the stream head. Note that we do 3607 * not block all streamio ioctls because the ioctl 3608 * numberspace is not well managed and thus it's possible 3609 * that a module or driver's ioctl numbers may accidentally 3610 * collide with them. 3611 */ 3612 switch (strioc.ic_cmd) { 3613 case I_LINK: 3614 case I_PLINK: 3615 case I_UNLINK: 3616 case I_PUNLINK: 3617 case _I_GETPEERCRED: 3618 case _I_PLINK_LH: 3619 return (EINVAL); 3620 } 3621 3622 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp); 3623 if (error == 0) { 3624 error = strcopyout_strioctl(&strioc, (void *)arg, 3625 flag, copyflag); 3626 } 3627 return (error); 3628 3629 case _I_CMD: 3630 /* 3631 * Like I_STR, but without using M_IOC* messages and without 3632 * copyins/copyouts beyond the passed-in argument. 3633 */ 3634 if (stp->sd_flag & STRHUP) 3635 return (ENXIO); 3636 3637 if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL) 3638 return (ENOMEM); 3639 3640 if (copyin((void *)arg, scp, sizeof (strcmd_t))) { 3641 kmem_free(scp, sizeof (strcmd_t)); 3642 return (EFAULT); 3643 } 3644 3645 access = job_control_type(scp->sc_cmd); 3646 mutex_enter(&stp->sd_lock); 3647 if (access != -1 && (error = i_straccess(stp, access)) != 0) { 3648 mutex_exit(&stp->sd_lock); 3649 kmem_free(scp, sizeof (strcmd_t)); 3650 return (error); 3651 } 3652 mutex_exit(&stp->sd_lock); 3653 3654 *rvalp = 0; 3655 if ((error = strdocmd(stp, scp, crp)) == 0) { 3656 if (copyout(scp, (void *)arg, sizeof (strcmd_t))) 3657 error = EFAULT; 3658 } 3659 kmem_free(scp, sizeof (strcmd_t)); 3660 return (error); 3661 3662 case I_NREAD: 3663 /* 3664 * Return number of bytes of data in first message 3665 * in queue in "arg" and return the number of messages 3666 * in queue in return value. 3667 */ 3668 { 3669 size_t size; 3670 int retval; 3671 int count = 0; 3672 3673 mutex_enter(QLOCK(rdq)); 3674 3675 size = msgdsize(rdq->q_first); 3676 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3677 count++; 3678 3679 mutex_exit(QLOCK(rdq)); 3680 if (stp->sd_struiordq) { 3681 infod_t infod; 3682 3683 infod.d_cmd = INFOD_COUNT; 3684 infod.d_count = 0; 3685 if (count == 0) { 3686 infod.d_cmd |= INFOD_FIRSTBYTES; 3687 infod.d_bytes = 0; 3688 } 3689 infod.d_res = 0; 3690 (void) infonext(rdq, &infod); 3691 count += infod.d_count; 3692 if (infod.d_res & INFOD_FIRSTBYTES) 3693 size = infod.d_bytes; 3694 } 3695 3696 /* 3697 * Drop down from size_t to the "int" required by the 3698 * interface. Cap at INT_MAX. 3699 */ 3700 retval = MIN(size, INT_MAX); 3701 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3702 copyflag); 3703 if (!error) 3704 *rvalp = count; 3705 return (error); 3706 } 3707 3708 case FIONREAD: 3709 /* 3710 * Return number of bytes of data in all data messages 3711 * in queue in "arg". 3712 */ 3713 { 3714 size_t size = 0; 3715 int retval; 3716 3717 mutex_enter(QLOCK(rdq)); 3718 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3719 size += msgdsize(mp); 3720 mutex_exit(QLOCK(rdq)); 3721 3722 if (stp->sd_struiordq) { 3723 infod_t infod; 3724 3725 infod.d_cmd = INFOD_BYTES; 3726 infod.d_res = 0; 3727 infod.d_bytes = 0; 3728 (void) infonext(rdq, &infod); 3729 size += infod.d_bytes; 3730 } 3731 3732 /* 3733 * Drop down from size_t to the "int" required by the 3734 * interface. Cap at INT_MAX. 3735 */ 3736 retval = MIN(size, INT_MAX); 3737 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3738 copyflag); 3739 3740 *rvalp = 0; 3741 return (error); 3742 } 3743 case FIORDCHK: 3744 /* 3745 * FIORDCHK does not use arg value (like FIONREAD), 3746 * instead a count is returned. I_NREAD value may 3747 * not be accurate but safe. The real thing to do is 3748 * to add the msgdsizes of all data messages until 3749 * a non-data message. 3750 */ 3751 { 3752 size_t size = 0; 3753 3754 mutex_enter(QLOCK(rdq)); 3755 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3756 size += msgdsize(mp); 3757 mutex_exit(QLOCK(rdq)); 3758 3759 if (stp->sd_struiordq) { 3760 infod_t infod; 3761 3762 infod.d_cmd = INFOD_BYTES; 3763 infod.d_res = 0; 3764 infod.d_bytes = 0; 3765 (void) infonext(rdq, &infod); 3766 size += infod.d_bytes; 3767 } 3768 3769 /* 3770 * Since ioctl returns an int, and memory sizes under 3771 * LP64 may not fit, we return INT_MAX if the count was 3772 * actually greater. 3773 */ 3774 *rvalp = MIN(size, INT_MAX); 3775 return (0); 3776 } 3777 3778 case I_FIND: 3779 /* 3780 * Get module name. 3781 */ 3782 { 3783 char mname[FMNAMESZ + 1]; 3784 queue_t *q; 3785 3786 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3787 mname, FMNAMESZ + 1, NULL); 3788 if (error) 3789 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3790 3791 /* 3792 * Return EINVAL if we're handed a bogus module name. 3793 */ 3794 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) { 3795 TRACE_0(TR_FAC_STREAMS_FR, 3796 TR_I_CANT_FIND, "couldn't I_FIND"); 3797 return (EINVAL); 3798 } 3799 3800 *rvalp = 0; 3801 3802 /* Look downstream to see if module is there. */ 3803 claimstr(stp->sd_wrq); 3804 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3805 if (q->q_flag & QREADR) { 3806 q = NULL; 3807 break; 3808 } 3809 if (strcmp(mname, Q2NAME(q)) == 0) 3810 break; 3811 } 3812 releasestr(stp->sd_wrq); 3813 3814 *rvalp = (q ? 1 : 0); 3815 return (error); 3816 } 3817 3818 case I_PUSH: 3819 case __I_PUSH_NOCTTY: 3820 /* 3821 * Push a module. 3822 * For the case __I_PUSH_NOCTTY push a module but 3823 * do not allocate controlling tty. See bugid 4025044 3824 */ 3825 3826 { 3827 char mname[FMNAMESZ + 1]; 3828 fmodsw_impl_t *fp; 3829 dev_t dummydev; 3830 3831 if (stp->sd_flag & STRHUP) 3832 return (ENXIO); 3833 3834 /* 3835 * Get module name and look up in fmodsw. 3836 */ 3837 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3838 mname, FMNAMESZ + 1, NULL); 3839 if (error) 3840 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3841 3842 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) == 3843 NULL) 3844 return (EINVAL); 3845 3846 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH, 3847 "I_PUSH:fp %p stp %p", fp, stp); 3848 3849 if (error = strstartplumb(stp, flag, cmd)) { 3850 fmodsw_rele(fp); 3851 return (error); 3852 } 3853 3854 /* 3855 * See if any more modules can be pushed on this stream. 3856 * Note that this check must be done after strstartplumb() 3857 * since otherwise multiple threads issuing I_PUSHes on 3858 * the same stream will be able to exceed nstrpush. 3859 */ 3860 mutex_enter(&stp->sd_lock); 3861 if (stp->sd_pushcnt >= nstrpush) { 3862 fmodsw_rele(fp); 3863 strendplumb(stp); 3864 mutex_exit(&stp->sd_lock); 3865 return (EINVAL); 3866 } 3867 mutex_exit(&stp->sd_lock); 3868 3869 /* 3870 * Push new module and call its open routine 3871 * via qattach(). Modules don't change device 3872 * numbers, so just ignore dummydev here. 3873 */ 3874 dummydev = vp->v_rdev; 3875 if ((error = qattach(rdq, &dummydev, 0, crp, fp, 3876 B_FALSE)) == 0) { 3877 if (vp->v_type == VCHR && /* sorry, no pipes allowed */ 3878 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) { 3879 /* 3880 * try to allocate it as a controlling terminal 3881 */ 3882 (void) strctty(stp); 3883 } 3884 } 3885 3886 mutex_enter(&stp->sd_lock); 3887 3888 /* 3889 * As a performance concern we are caching the values of 3890 * q_minpsz and q_maxpsz of the module below the stream 3891 * head in the stream head. 3892 */ 3893 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 3894 rmin = stp->sd_wrq->q_next->q_minpsz; 3895 rmax = stp->sd_wrq->q_next->q_maxpsz; 3896 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 3897 3898 /* Do this processing here as a performance concern */ 3899 if (strmsgsz != 0) { 3900 if (rmax == INFPSZ) 3901 rmax = strmsgsz; 3902 else { 3903 if (vp->v_type == VFIFO) 3904 rmax = MIN(PIPE_BUF, rmax); 3905 else rmax = MIN(strmsgsz, rmax); 3906 } 3907 } 3908 3909 mutex_enter(QLOCK(wrq)); 3910 stp->sd_qn_minpsz = rmin; 3911 stp->sd_qn_maxpsz = rmax; 3912 mutex_exit(QLOCK(wrq)); 3913 3914 strendplumb(stp); 3915 mutex_exit(&stp->sd_lock); 3916 return (error); 3917 } 3918 3919 case I_POP: 3920 { 3921 queue_t *q; 3922 3923 if (stp->sd_flag & STRHUP) 3924 return (ENXIO); 3925 if (!wrq->q_next) /* for broken pipes */ 3926 return (EINVAL); 3927 3928 if (error = strstartplumb(stp, flag, cmd)) 3929 return (error); 3930 3931 /* 3932 * If there is an anchor on this stream and popping 3933 * the current module would attempt to pop through the 3934 * anchor, then disallow the pop unless we have sufficient 3935 * privileges; take the cheapest (non-locking) check 3936 * first. 3937 */ 3938 if (secpolicy_ip_config(crp, B_TRUE) != 0 || 3939 (stp->sd_anchorzone != crgetzoneid(crp))) { 3940 mutex_enter(&stp->sd_lock); 3941 /* 3942 * Anchors only apply if there's at least one 3943 * module on the stream (sd_pushcnt > 0). 3944 */ 3945 if (stp->sd_pushcnt > 0 && 3946 stp->sd_pushcnt == stp->sd_anchor && 3947 stp->sd_vnode->v_type != VFIFO) { 3948 strendplumb(stp); 3949 mutex_exit(&stp->sd_lock); 3950 if (stp->sd_anchorzone != crgetzoneid(crp)) 3951 return (EINVAL); 3952 /* Audit and report error */ 3953 return (secpolicy_ip_config(crp, B_FALSE)); 3954 } 3955 mutex_exit(&stp->sd_lock); 3956 } 3957 3958 q = wrq->q_next; 3959 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP, 3960 "I_POP:%p from %p", q, stp); 3961 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) { 3962 error = EINVAL; 3963 } else { 3964 qdetach(_RD(q), 1, flag, crp, B_FALSE); 3965 error = 0; 3966 } 3967 mutex_enter(&stp->sd_lock); 3968 3969 /* 3970 * As a performance concern we are caching the values of 3971 * q_minpsz and q_maxpsz of the module below the stream 3972 * head in the stream head. 3973 */ 3974 mutex_enter(QLOCK(wrq->q_next)); 3975 rmin = wrq->q_next->q_minpsz; 3976 rmax = wrq->q_next->q_maxpsz; 3977 mutex_exit(QLOCK(wrq->q_next)); 3978 3979 /* Do this processing here as a performance concern */ 3980 if (strmsgsz != 0) { 3981 if (rmax == INFPSZ) 3982 rmax = strmsgsz; 3983 else { 3984 if (vp->v_type == VFIFO) 3985 rmax = MIN(PIPE_BUF, rmax); 3986 else rmax = MIN(strmsgsz, rmax); 3987 } 3988 } 3989 3990 mutex_enter(QLOCK(wrq)); 3991 stp->sd_qn_minpsz = rmin; 3992 stp->sd_qn_maxpsz = rmax; 3993 mutex_exit(QLOCK(wrq)); 3994 3995 /* If we popped through the anchor, then reset the anchor. */ 3996 if (stp->sd_pushcnt < stp->sd_anchor) { 3997 stp->sd_anchor = 0; 3998 stp->sd_anchorzone = 0; 3999 } 4000 strendplumb(stp); 4001 mutex_exit(&stp->sd_lock); 4002 return (error); 4003 } 4004 4005 case _I_MUXID2FD: 4006 { 4007 /* 4008 * Create a fd for a I_PLINK'ed lower stream with a given 4009 * muxid. With the fd, application can send down ioctls, 4010 * like I_LIST, to the previously I_PLINK'ed stream. Note 4011 * that after getting the fd, the application has to do an 4012 * I_PUNLINK on the muxid before it can do any operation 4013 * on the lower stream. This is required by spec1170. 4014 * 4015 * The fd used to do this ioctl should point to the same 4016 * controlling device used to do the I_PLINK. If it uses 4017 * a different stream or an invalid muxid, I_MUXID2FD will 4018 * fail. The error code is set to EINVAL. 4019 * 4020 * The intended use of this interface is the following. 4021 * An application I_PLINK'ed a stream and exits. The fd 4022 * to the lower stream is gone. Another application 4023 * wants to get a fd to the lower stream, it uses I_MUXID2FD. 4024 */ 4025 int muxid = (int)arg; 4026 int fd; 4027 linkinfo_t *linkp; 4028 struct file *fp; 4029 netstack_t *ns; 4030 str_stack_t *ss; 4031 4032 /* 4033 * Do not allow the wildcard muxid. This ioctl is not 4034 * intended to find arbitrary link. 4035 */ 4036 if (muxid == 0) { 4037 return (EINVAL); 4038 } 4039 4040 ns = netstack_find_by_cred(crp); 4041 ASSERT(ns != NULL); 4042 ss = ns->netstack_str; 4043 ASSERT(ss != NULL); 4044 4045 mutex_enter(&muxifier); 4046 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss); 4047 if (linkp == NULL) { 4048 mutex_exit(&muxifier); 4049 netstack_rele(ss->ss_netstack); 4050 return (EINVAL); 4051 } 4052 4053 if ((fd = ufalloc(0)) == -1) { 4054 mutex_exit(&muxifier); 4055 netstack_rele(ss->ss_netstack); 4056 return (EMFILE); 4057 } 4058 fp = linkp->li_fpdown; 4059 mutex_enter(&fp->f_tlock); 4060 fp->f_count++; 4061 mutex_exit(&fp->f_tlock); 4062 mutex_exit(&muxifier); 4063 setf(fd, fp); 4064 *rvalp = fd; 4065 netstack_rele(ss->ss_netstack); 4066 return (0); 4067 } 4068 4069 case _I_INSERT: 4070 { 4071 /* 4072 * To insert a module to a given position in a stream. 4073 * In the first release, only allow privileged user 4074 * to use this ioctl. Furthermore, the insert is only allowed 4075 * below an anchor if the zoneid is the same as the zoneid 4076 * which created the anchor. 4077 * 4078 * Note that we do not plan to support this ioctl 4079 * on pipes in the first release. We want to learn more 4080 * about the implications of these ioctls before extending 4081 * their support. And we do not think these features are 4082 * valuable for pipes. 4083 */ 4084 STRUCT_DECL(strmodconf, strmodinsert); 4085 char mod_name[FMNAMESZ + 1]; 4086 fmodsw_impl_t *fp; 4087 dev_t dummydev; 4088 queue_t *tmp_wrq; 4089 int pos; 4090 boolean_t is_insert; 4091 4092 STRUCT_INIT(strmodinsert, flag); 4093 if (stp->sd_flag & STRHUP) 4094 return (ENXIO); 4095 if (STRMATED(stp)) 4096 return (EINVAL); 4097 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4098 return (error); 4099 if (stp->sd_anchor != 0 && 4100 stp->sd_anchorzone != crgetzoneid(crp)) 4101 return (EINVAL); 4102 4103 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert), 4104 STRUCT_SIZE(strmodinsert), copyflag); 4105 if (error) 4106 return (error); 4107 4108 /* 4109 * Get module name and look up in fmodsw. 4110 */ 4111 error = (copyflag & U_TO_K ? copyinstr : 4112 copystr)(STRUCT_FGETP(strmodinsert, mod_name), 4113 mod_name, FMNAMESZ + 1, NULL); 4114 if (error) 4115 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4116 4117 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) == 4118 NULL) 4119 return (EINVAL); 4120 4121 if (error = strstartplumb(stp, flag, cmd)) { 4122 fmodsw_rele(fp); 4123 return (error); 4124 } 4125 4126 /* 4127 * Is this _I_INSERT just like an I_PUSH? We need to know 4128 * this because we do some optimizations if this is a 4129 * module being pushed. 4130 */ 4131 pos = STRUCT_FGET(strmodinsert, pos); 4132 is_insert = (pos != 0); 4133 4134 /* 4135 * Make sure pos is valid. Even though it is not an I_PUSH, 4136 * we impose the same limit on the number of modules in a 4137 * stream. 4138 */ 4139 mutex_enter(&stp->sd_lock); 4140 if (stp->sd_pushcnt >= nstrpush || pos < 0 || 4141 pos > stp->sd_pushcnt) { 4142 fmodsw_rele(fp); 4143 strendplumb(stp); 4144 mutex_exit(&stp->sd_lock); 4145 return (EINVAL); 4146 } 4147 if (stp->sd_anchor != 0) { 4148 /* 4149 * Is this insert below the anchor? 4150 * Pushcnt hasn't been increased yet hence 4151 * we test for greater than here, and greater or 4152 * equal after qattach. 4153 */ 4154 if (pos > (stp->sd_pushcnt - stp->sd_anchor) && 4155 stp->sd_anchorzone != crgetzoneid(crp)) { 4156 fmodsw_rele(fp); 4157 strendplumb(stp); 4158 mutex_exit(&stp->sd_lock); 4159 return (EPERM); 4160 } 4161 } 4162 4163 mutex_exit(&stp->sd_lock); 4164 4165 /* 4166 * First find the correct position this module to 4167 * be inserted. We don't need to call claimstr() 4168 * as the stream should not be changing at this point. 4169 * 4170 * Insert new module and call its open routine 4171 * via qattach(). Modules don't change device 4172 * numbers, so just ignore dummydev here. 4173 */ 4174 for (tmp_wrq = stp->sd_wrq; pos > 0; 4175 tmp_wrq = tmp_wrq->q_next, pos--) { 4176 ASSERT(SAMESTR(tmp_wrq)); 4177 } 4178 dummydev = vp->v_rdev; 4179 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp, 4180 fp, is_insert)) != 0) { 4181 mutex_enter(&stp->sd_lock); 4182 strendplumb(stp); 4183 mutex_exit(&stp->sd_lock); 4184 return (error); 4185 } 4186 4187 mutex_enter(&stp->sd_lock); 4188 4189 /* 4190 * As a performance concern we are caching the values of 4191 * q_minpsz and q_maxpsz of the module below the stream 4192 * head in the stream head. 4193 */ 4194 if (!is_insert) { 4195 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 4196 rmin = stp->sd_wrq->q_next->q_minpsz; 4197 rmax = stp->sd_wrq->q_next->q_maxpsz; 4198 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 4199 4200 /* Do this processing here as a performance concern */ 4201 if (strmsgsz != 0) { 4202 if (rmax == INFPSZ) { 4203 rmax = strmsgsz; 4204 } else { 4205 rmax = MIN(strmsgsz, rmax); 4206 } 4207 } 4208 4209 mutex_enter(QLOCK(wrq)); 4210 stp->sd_qn_minpsz = rmin; 4211 stp->sd_qn_maxpsz = rmax; 4212 mutex_exit(QLOCK(wrq)); 4213 } 4214 4215 /* 4216 * Need to update the anchor value if this module is 4217 * inserted below the anchor point. 4218 */ 4219 if (stp->sd_anchor != 0) { 4220 pos = STRUCT_FGET(strmodinsert, pos); 4221 if (pos >= (stp->sd_pushcnt - stp->sd_anchor)) 4222 stp->sd_anchor++; 4223 } 4224 4225 strendplumb(stp); 4226 mutex_exit(&stp->sd_lock); 4227 return (0); 4228 } 4229 4230 case _I_REMOVE: 4231 { 4232 /* 4233 * To remove a module with a given name in a stream. The 4234 * caller of this ioctl needs to provide both the name and 4235 * the position of the module to be removed. This eliminates 4236 * the ambiguity of removal if a module is inserted/pushed 4237 * multiple times in a stream. In the first release, only 4238 * allow privileged user to use this ioctl. 4239 * Furthermore, the remove is only allowed 4240 * below an anchor if the zoneid is the same as the zoneid 4241 * which created the anchor. 4242 * 4243 * Note that we do not plan to support this ioctl 4244 * on pipes in the first release. We want to learn more 4245 * about the implications of these ioctls before extending 4246 * their support. And we do not think these features are 4247 * valuable for pipes. 4248 * 4249 * Also note that _I_REMOVE cannot be used to remove a 4250 * driver or the stream head. 4251 */ 4252 STRUCT_DECL(strmodconf, strmodremove); 4253 queue_t *q; 4254 int pos; 4255 char mod_name[FMNAMESZ + 1]; 4256 boolean_t is_remove; 4257 4258 STRUCT_INIT(strmodremove, flag); 4259 if (stp->sd_flag & STRHUP) 4260 return (ENXIO); 4261 if (STRMATED(stp)) 4262 return (EINVAL); 4263 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4264 return (error); 4265 if (stp->sd_anchor != 0 && 4266 stp->sd_anchorzone != crgetzoneid(crp)) 4267 return (EINVAL); 4268 4269 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove), 4270 STRUCT_SIZE(strmodremove), copyflag); 4271 if (error) 4272 return (error); 4273 4274 error = (copyflag & U_TO_K ? copyinstr : 4275 copystr)(STRUCT_FGETP(strmodremove, mod_name), 4276 mod_name, FMNAMESZ + 1, NULL); 4277 if (error) 4278 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4279 4280 if ((error = strstartplumb(stp, flag, cmd)) != 0) 4281 return (error); 4282 4283 /* 4284 * Match the name of given module to the name of module at 4285 * the given position. 4286 */ 4287 pos = STRUCT_FGET(strmodremove, pos); 4288 4289 is_remove = (pos != 0); 4290 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0; 4291 q = q->q_next, pos--) 4292 ; 4293 if (pos > 0 || !SAMESTR(q) || 4294 strcmp(Q2NAME(q), mod_name) != 0) { 4295 mutex_enter(&stp->sd_lock); 4296 strendplumb(stp); 4297 mutex_exit(&stp->sd_lock); 4298 return (EINVAL); 4299 } 4300 4301 /* 4302 * If the position is at or below an anchor, then the zoneid 4303 * must match the zoneid that created the anchor. 4304 */ 4305 if (stp->sd_anchor != 0) { 4306 pos = STRUCT_FGET(strmodremove, pos); 4307 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) && 4308 stp->sd_anchorzone != crgetzoneid(crp)) { 4309 mutex_enter(&stp->sd_lock); 4310 strendplumb(stp); 4311 mutex_exit(&stp->sd_lock); 4312 return (EPERM); 4313 } 4314 } 4315 4316 4317 ASSERT(!(q->q_flag & QREADR)); 4318 qdetach(_RD(q), 1, flag, crp, is_remove); 4319 4320 mutex_enter(&stp->sd_lock); 4321 4322 /* 4323 * As a performance concern we are caching the values of 4324 * q_minpsz and q_maxpsz of the module below the stream 4325 * head in the stream head. 4326 */ 4327 if (!is_remove) { 4328 mutex_enter(QLOCK(wrq->q_next)); 4329 rmin = wrq->q_next->q_minpsz; 4330 rmax = wrq->q_next->q_maxpsz; 4331 mutex_exit(QLOCK(wrq->q_next)); 4332 4333 /* Do this processing here as a performance concern */ 4334 if (strmsgsz != 0) { 4335 if (rmax == INFPSZ) 4336 rmax = strmsgsz; 4337 else { 4338 if (vp->v_type == VFIFO) 4339 rmax = MIN(PIPE_BUF, rmax); 4340 else rmax = MIN(strmsgsz, rmax); 4341 } 4342 } 4343 4344 mutex_enter(QLOCK(wrq)); 4345 stp->sd_qn_minpsz = rmin; 4346 stp->sd_qn_maxpsz = rmax; 4347 mutex_exit(QLOCK(wrq)); 4348 } 4349 4350 /* 4351 * Need to update the anchor value if this module is removed 4352 * at or below the anchor point. If the removed module is at 4353 * the anchor point, remove the anchor for this stream if 4354 * there is no module above the anchor point. Otherwise, if 4355 * the removed module is below the anchor point, decrement the 4356 * anchor point by 1. 4357 */ 4358 if (stp->sd_anchor != 0) { 4359 pos = STRUCT_FGET(strmodremove, pos); 4360 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1) 4361 stp->sd_anchor = 0; 4362 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1)) 4363 stp->sd_anchor--; 4364 } 4365 4366 strendplumb(stp); 4367 mutex_exit(&stp->sd_lock); 4368 return (0); 4369 } 4370 4371 case I_ANCHOR: 4372 /* 4373 * Set the anchor position on the stream to reside at 4374 * the top module (in other words, the top module 4375 * cannot be popped). Anchors with a FIFO make no 4376 * obvious sense, so they're not allowed. 4377 */ 4378 mutex_enter(&stp->sd_lock); 4379 4380 if (stp->sd_vnode->v_type == VFIFO) { 4381 mutex_exit(&stp->sd_lock); 4382 return (EINVAL); 4383 } 4384 /* Only allow the same zoneid to update the anchor */ 4385 if (stp->sd_anchor != 0 && 4386 stp->sd_anchorzone != crgetzoneid(crp)) { 4387 mutex_exit(&stp->sd_lock); 4388 return (EINVAL); 4389 } 4390 stp->sd_anchor = stp->sd_pushcnt; 4391 stp->sd_anchorzone = crgetzoneid(crp); 4392 mutex_exit(&stp->sd_lock); 4393 return (0); 4394 4395 case I_LOOK: 4396 /* 4397 * Get name of first module downstream. 4398 * If no module, return an error. 4399 */ 4400 claimstr(wrq); 4401 if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) { 4402 char *name = Q2NAME(wrq->q_next); 4403 4404 error = strcopyout(name, (void *)arg, strlen(name) + 1, 4405 copyflag); 4406 releasestr(wrq); 4407 return (error); 4408 } 4409 releasestr(wrq); 4410 return (EINVAL); 4411 4412 case I_LINK: 4413 case I_PLINK: 4414 /* 4415 * Link a multiplexor. 4416 */ 4417 return (mlink(vp, cmd, (int)arg, crp, rvalp, 0)); 4418 4419 case _I_PLINK_LH: 4420 /* 4421 * Link a multiplexor: Call must originate from kernel. 4422 */ 4423 if (kioctl) 4424 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp)); 4425 4426 return (EINVAL); 4427 case I_UNLINK: 4428 case I_PUNLINK: 4429 /* 4430 * Unlink a multiplexor. 4431 * If arg is -1, unlink all links for which this is the 4432 * controlling stream. Otherwise, arg is an index number 4433 * for a link to be removed. 4434 */ 4435 { 4436 struct linkinfo *linkp; 4437 int native_arg = (int)arg; 4438 int type; 4439 netstack_t *ns; 4440 str_stack_t *ss; 4441 4442 TRACE_1(TR_FAC_STREAMS_FR, 4443 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp); 4444 if (vp->v_type == VFIFO) { 4445 return (EINVAL); 4446 } 4447 if (cmd == I_UNLINK) 4448 type = LINKNORMAL; 4449 else /* I_PUNLINK */ 4450 type = LINKPERSIST; 4451 if (native_arg == 0) { 4452 return (EINVAL); 4453 } 4454 ns = netstack_find_by_cred(crp); 4455 ASSERT(ns != NULL); 4456 ss = ns->netstack_str; 4457 ASSERT(ss != NULL); 4458 4459 if (native_arg == MUXID_ALL) 4460 error = munlinkall(stp, type, crp, rvalp, ss); 4461 else { 4462 mutex_enter(&muxifier); 4463 if (!(linkp = findlinks(stp, (int)arg, type, ss))) { 4464 /* invalid user supplied index number */ 4465 mutex_exit(&muxifier); 4466 netstack_rele(ss->ss_netstack); 4467 return (EINVAL); 4468 } 4469 /* munlink drops the muxifier lock */ 4470 error = munlink(stp, linkp, type, crp, rvalp, ss); 4471 } 4472 netstack_rele(ss->ss_netstack); 4473 return (error); 4474 } 4475 4476 case I_FLUSH: 4477 /* 4478 * send a flush message downstream 4479 * flush message can indicate 4480 * FLUSHR - flush read queue 4481 * FLUSHW - flush write queue 4482 * FLUSHRW - flush read/write queue 4483 */ 4484 if (stp->sd_flag & STRHUP) 4485 return (ENXIO); 4486 if (arg & ~FLUSHRW) 4487 return (EINVAL); 4488 4489 for (;;) { 4490 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) { 4491 break; 4492 } 4493 if (error = strwaitbuf(1, BPRI_HI)) { 4494 return (error); 4495 } 4496 } 4497 4498 /* 4499 * Send down an unsupported ioctl and wait for the nack 4500 * in order to allow the M_FLUSH to propagate back 4501 * up to the stream head. 4502 * Replaces if (qready()) runqueues(); 4503 */ 4504 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4505 strioc.ic_timout = 0; 4506 strioc.ic_len = 0; 4507 strioc.ic_dp = NULL; 4508 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4509 *rvalp = 0; 4510 return (0); 4511 4512 case I_FLUSHBAND: 4513 { 4514 struct bandinfo binfo; 4515 4516 error = strcopyin((void *)arg, &binfo, sizeof (binfo), 4517 copyflag); 4518 if (error) 4519 return (error); 4520 if (stp->sd_flag & STRHUP) 4521 return (ENXIO); 4522 if (binfo.bi_flag & ~FLUSHRW) 4523 return (EINVAL); 4524 while (!(mp = allocb(2, BPRI_HI))) { 4525 if (error = strwaitbuf(2, BPRI_HI)) 4526 return (error); 4527 } 4528 mp->b_datap->db_type = M_FLUSH; 4529 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND; 4530 *mp->b_wptr++ = binfo.bi_pri; 4531 putnext(stp->sd_wrq, mp); 4532 /* 4533 * Send down an unsupported ioctl and wait for the nack 4534 * in order to allow the M_FLUSH to propagate back 4535 * up to the stream head. 4536 * Replaces if (qready()) runqueues(); 4537 */ 4538 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4539 strioc.ic_timout = 0; 4540 strioc.ic_len = 0; 4541 strioc.ic_dp = NULL; 4542 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4543 *rvalp = 0; 4544 return (0); 4545 } 4546 4547 case I_SRDOPT: 4548 /* 4549 * Set read options 4550 * 4551 * RNORM - default stream mode 4552 * RMSGN - message no discard 4553 * RMSGD - message discard 4554 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs 4555 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs 4556 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs 4557 */ 4558 if (arg & ~(RMODEMASK | RPROTMASK)) 4559 return (EINVAL); 4560 4561 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN)) 4562 return (EINVAL); 4563 4564 mutex_enter(&stp->sd_lock); 4565 switch (arg & RMODEMASK) { 4566 case RNORM: 4567 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 4568 break; 4569 case RMSGD: 4570 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) | 4571 RD_MSGDIS; 4572 break; 4573 case RMSGN: 4574 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) | 4575 RD_MSGNODIS; 4576 break; 4577 } 4578 4579 switch (arg & RPROTMASK) { 4580 case RPROTNORM: 4581 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 4582 break; 4583 4584 case RPROTDAT: 4585 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | 4586 RD_PROTDAT); 4587 break; 4588 4589 case RPROTDIS: 4590 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | 4591 RD_PROTDIS); 4592 break; 4593 } 4594 mutex_exit(&stp->sd_lock); 4595 return (0); 4596 4597 case I_GRDOPT: 4598 /* 4599 * Get read option and return the value 4600 * to spot pointed to by arg 4601 */ 4602 { 4603 int rdopt; 4604 4605 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD : 4606 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM)); 4607 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT : 4608 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM)); 4609 4610 return (strcopyout(&rdopt, (void *)arg, sizeof (int), 4611 copyflag)); 4612 } 4613 4614 case I_SERROPT: 4615 /* 4616 * Set error options 4617 * 4618 * RERRNORM - persistent read errors 4619 * RERRNONPERSIST - non-persistent read errors 4620 * WERRNORM - persistent write errors 4621 * WERRNONPERSIST - non-persistent write errors 4622 */ 4623 if (arg & ~(RERRMASK | WERRMASK)) 4624 return (EINVAL); 4625 4626 mutex_enter(&stp->sd_lock); 4627 switch (arg & RERRMASK) { 4628 case RERRNORM: 4629 stp->sd_flag &= ~STRDERRNONPERSIST; 4630 break; 4631 case RERRNONPERSIST: 4632 stp->sd_flag |= STRDERRNONPERSIST; 4633 break; 4634 } 4635 switch (arg & WERRMASK) { 4636 case WERRNORM: 4637 stp->sd_flag &= ~STWRERRNONPERSIST; 4638 break; 4639 case WERRNONPERSIST: 4640 stp->sd_flag |= STWRERRNONPERSIST; 4641 break; 4642 } 4643 mutex_exit(&stp->sd_lock); 4644 return (0); 4645 4646 case I_GERROPT: 4647 /* 4648 * Get error option and return the value 4649 * to spot pointed to by arg 4650 */ 4651 { 4652 int erropt = 0; 4653 4654 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST : 4655 RERRNORM; 4656 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST : 4657 WERRNORM; 4658 return (strcopyout(&erropt, (void *)arg, sizeof (int), 4659 copyflag)); 4660 } 4661 4662 case I_SETSIG: 4663 /* 4664 * Register the calling proc to receive the SIGPOLL 4665 * signal based on the events given in arg. If 4666 * arg is zero, remove the proc from register list. 4667 */ 4668 { 4669 strsig_t *ssp, *pssp; 4670 struct pid *pidp; 4671 4672 pssp = NULL; 4673 pidp = curproc->p_pidp; 4674 /* 4675 * Hold sd_lock to prevent traversal of sd_siglist while 4676 * it is modified. 4677 */ 4678 mutex_enter(&stp->sd_lock); 4679 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp); 4680 pssp = ssp, ssp = ssp->ss_next) 4681 ; 4682 4683 if (arg) { 4684 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4685 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4686 mutex_exit(&stp->sd_lock); 4687 return (EINVAL); 4688 } 4689 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) { 4690 mutex_exit(&stp->sd_lock); 4691 return (EINVAL); 4692 } 4693 4694 /* 4695 * If proc not already registered, add it 4696 * to list. 4697 */ 4698 if (!ssp) { 4699 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4700 ssp->ss_pidp = pidp; 4701 ssp->ss_pid = pidp->pid_id; 4702 ssp->ss_next = NULL; 4703 if (pssp) 4704 pssp->ss_next = ssp; 4705 else 4706 stp->sd_siglist = ssp; 4707 mutex_enter(&pidlock); 4708 PID_HOLD(pidp); 4709 mutex_exit(&pidlock); 4710 } 4711 4712 /* 4713 * Set events. 4714 */ 4715 ssp->ss_events = (int)arg; 4716 } else { 4717 /* 4718 * Remove proc from register list. 4719 */ 4720 if (ssp) { 4721 mutex_enter(&pidlock); 4722 PID_RELE(pidp); 4723 mutex_exit(&pidlock); 4724 if (pssp) 4725 pssp->ss_next = ssp->ss_next; 4726 else 4727 stp->sd_siglist = ssp->ss_next; 4728 kmem_free(ssp, sizeof (strsig_t)); 4729 } else { 4730 mutex_exit(&stp->sd_lock); 4731 return (EINVAL); 4732 } 4733 } 4734 4735 /* 4736 * Recalculate OR of sig events. 4737 */ 4738 stp->sd_sigflags = 0; 4739 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4740 stp->sd_sigflags |= ssp->ss_events; 4741 mutex_exit(&stp->sd_lock); 4742 return (0); 4743 } 4744 4745 case I_GETSIG: 4746 /* 4747 * Return (in arg) the current registration of events 4748 * for which the calling proc is to be signaled. 4749 */ 4750 { 4751 struct strsig *ssp; 4752 struct pid *pidp; 4753 4754 pidp = curproc->p_pidp; 4755 mutex_enter(&stp->sd_lock); 4756 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4757 if (ssp->ss_pidp == pidp) { 4758 error = strcopyout(&ssp->ss_events, (void *)arg, 4759 sizeof (int), copyflag); 4760 mutex_exit(&stp->sd_lock); 4761 return (error); 4762 } 4763 mutex_exit(&stp->sd_lock); 4764 return (EINVAL); 4765 } 4766 4767 case I_ESETSIG: 4768 /* 4769 * Register the ss_pid to receive the SIGPOLL 4770 * signal based on the events is ss_events arg. If 4771 * ss_events is zero, remove the proc from register list. 4772 */ 4773 { 4774 struct strsig *ssp, *pssp; 4775 struct proc *proc; 4776 struct pid *pidp; 4777 pid_t pid; 4778 struct strsigset ss; 4779 4780 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4781 if (error) 4782 return (error); 4783 4784 pid = ss.ss_pid; 4785 4786 if (ss.ss_events != 0) { 4787 /* 4788 * Permissions check by sending signal 0. 4789 * Note that when kill fails it does a set_errno 4790 * causing the system call to fail. 4791 */ 4792 error = kill(pid, 0); 4793 if (error) { 4794 return (error); 4795 } 4796 } 4797 mutex_enter(&pidlock); 4798 if (pid == 0) 4799 proc = curproc; 4800 else if (pid < 0) 4801 proc = pgfind(-pid); 4802 else 4803 proc = prfind(pid); 4804 if (proc == NULL) { 4805 mutex_exit(&pidlock); 4806 return (ESRCH); 4807 } 4808 if (pid < 0) 4809 pidp = proc->p_pgidp; 4810 else 4811 pidp = proc->p_pidp; 4812 ASSERT(pidp); 4813 /* 4814 * Get a hold on the pid structure while referencing it. 4815 * There is a separate PID_HOLD should it be inserted 4816 * in the list below. 4817 */ 4818 PID_HOLD(pidp); 4819 mutex_exit(&pidlock); 4820 4821 pssp = NULL; 4822 /* 4823 * Hold sd_lock to prevent traversal of sd_siglist while 4824 * it is modified. 4825 */ 4826 mutex_enter(&stp->sd_lock); 4827 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid); 4828 pssp = ssp, ssp = ssp->ss_next) 4829 ; 4830 4831 if (ss.ss_events) { 4832 if (ss.ss_events & 4833 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4834 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4835 mutex_exit(&stp->sd_lock); 4836 mutex_enter(&pidlock); 4837 PID_RELE(pidp); 4838 mutex_exit(&pidlock); 4839 return (EINVAL); 4840 } 4841 if ((ss.ss_events & S_BANDURG) && 4842 !(ss.ss_events & S_RDBAND)) { 4843 mutex_exit(&stp->sd_lock); 4844 mutex_enter(&pidlock); 4845 PID_RELE(pidp); 4846 mutex_exit(&pidlock); 4847 return (EINVAL); 4848 } 4849 4850 /* 4851 * If proc not already registered, add it 4852 * to list. 4853 */ 4854 if (!ssp) { 4855 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4856 ssp->ss_pidp = pidp; 4857 ssp->ss_pid = pid; 4858 ssp->ss_next = NULL; 4859 if (pssp) 4860 pssp->ss_next = ssp; 4861 else 4862 stp->sd_siglist = ssp; 4863 mutex_enter(&pidlock); 4864 PID_HOLD(pidp); 4865 mutex_exit(&pidlock); 4866 } 4867 4868 /* 4869 * Set events. 4870 */ 4871 ssp->ss_events = ss.ss_events; 4872 } else { 4873 /* 4874 * Remove proc from register list. 4875 */ 4876 if (ssp) { 4877 mutex_enter(&pidlock); 4878 PID_RELE(pidp); 4879 mutex_exit(&pidlock); 4880 if (pssp) 4881 pssp->ss_next = ssp->ss_next; 4882 else 4883 stp->sd_siglist = ssp->ss_next; 4884 kmem_free(ssp, sizeof (strsig_t)); 4885 } else { 4886 mutex_exit(&stp->sd_lock); 4887 mutex_enter(&pidlock); 4888 PID_RELE(pidp); 4889 mutex_exit(&pidlock); 4890 return (EINVAL); 4891 } 4892 } 4893 4894 /* 4895 * Recalculate OR of sig events. 4896 */ 4897 stp->sd_sigflags = 0; 4898 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4899 stp->sd_sigflags |= ssp->ss_events; 4900 mutex_exit(&stp->sd_lock); 4901 mutex_enter(&pidlock); 4902 PID_RELE(pidp); 4903 mutex_exit(&pidlock); 4904 return (0); 4905 } 4906 4907 case I_EGETSIG: 4908 /* 4909 * Return (in arg) the current registration of events 4910 * for which the calling proc is to be signaled. 4911 */ 4912 { 4913 struct strsig *ssp; 4914 struct proc *proc; 4915 pid_t pid; 4916 struct pid *pidp; 4917 struct strsigset ss; 4918 4919 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4920 if (error) 4921 return (error); 4922 4923 pid = ss.ss_pid; 4924 mutex_enter(&pidlock); 4925 if (pid == 0) 4926 proc = curproc; 4927 else if (pid < 0) 4928 proc = pgfind(-pid); 4929 else 4930 proc = prfind(pid); 4931 if (proc == NULL) { 4932 mutex_exit(&pidlock); 4933 return (ESRCH); 4934 } 4935 if (pid < 0) 4936 pidp = proc->p_pgidp; 4937 else 4938 pidp = proc->p_pidp; 4939 4940 /* Prevent the pidp from being reassigned */ 4941 PID_HOLD(pidp); 4942 mutex_exit(&pidlock); 4943 4944 mutex_enter(&stp->sd_lock); 4945 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4946 if (ssp->ss_pid == pid) { 4947 ss.ss_pid = ssp->ss_pid; 4948 ss.ss_events = ssp->ss_events; 4949 error = strcopyout(&ss, (void *)arg, 4950 sizeof (struct strsigset), copyflag); 4951 mutex_exit(&stp->sd_lock); 4952 mutex_enter(&pidlock); 4953 PID_RELE(pidp); 4954 mutex_exit(&pidlock); 4955 return (error); 4956 } 4957 mutex_exit(&stp->sd_lock); 4958 mutex_enter(&pidlock); 4959 PID_RELE(pidp); 4960 mutex_exit(&pidlock); 4961 return (EINVAL); 4962 } 4963 4964 case I_PEEK: 4965 { 4966 STRUCT_DECL(strpeek, strpeek); 4967 size_t n; 4968 mblk_t *fmp, *tmp_mp = NULL; 4969 4970 STRUCT_INIT(strpeek, flag); 4971 4972 error = strcopyin((void *)arg, STRUCT_BUF(strpeek), 4973 STRUCT_SIZE(strpeek), copyflag); 4974 if (error) 4975 return (error); 4976 4977 mutex_enter(QLOCK(rdq)); 4978 /* 4979 * Skip the invalid messages 4980 */ 4981 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 4982 if (mp->b_datap->db_type != M_SIG) 4983 break; 4984 4985 /* 4986 * If user has requested to peek at a high priority message 4987 * and first message is not, return 0 4988 */ 4989 if (mp != NULL) { 4990 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) && 4991 queclass(mp) == QNORM) { 4992 *rvalp = 0; 4993 mutex_exit(QLOCK(rdq)); 4994 return (0); 4995 } 4996 } else if (stp->sd_struiordq == NULL || 4997 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) { 4998 /* 4999 * No mblks to look at at the streamhead and 5000 * 1). This isn't a synch stream or 5001 * 2). This is a synch stream but caller wants high 5002 * priority messages which is not supported by 5003 * the synch stream. (it only supports QNORM) 5004 */ 5005 *rvalp = 0; 5006 mutex_exit(QLOCK(rdq)); 5007 return (0); 5008 } 5009 5010 fmp = mp; 5011 5012 if (mp && mp->b_datap->db_type == M_PASSFP) { 5013 mutex_exit(QLOCK(rdq)); 5014 return (EBADMSG); 5015 } 5016 5017 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO || 5018 mp->b_datap->db_type == M_PROTO || 5019 mp->b_datap->db_type == M_DATA); 5020 5021 if (mp && mp->b_datap->db_type == M_PCPROTO) { 5022 STRUCT_FSET(strpeek, flags, RS_HIPRI); 5023 } else { 5024 STRUCT_FSET(strpeek, flags, 0); 5025 } 5026 5027 5028 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) { 5029 mutex_exit(QLOCK(rdq)); 5030 return (ENOSR); 5031 } 5032 mutex_exit(QLOCK(rdq)); 5033 5034 /* 5035 * set mp = tmp_mp, so that I_PEEK processing can continue. 5036 * tmp_mp is used to free the dup'd message. 5037 */ 5038 mp = tmp_mp; 5039 5040 uio.uio_fmode = 0; 5041 uio.uio_extflg = UIO_COPY_CACHED; 5042 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5043 UIO_SYSSPACE; 5044 uio.uio_limit = 0; 5045 /* 5046 * First process PROTO blocks, if any. 5047 * If user doesn't want to get ctl info by setting maxlen <= 0, 5048 * then set len to -1/0 and skip control blocks part. 5049 */ 5050 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0) 5051 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5052 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0) 5053 STRUCT_FSET(strpeek, ctlbuf.len, 0); 5054 else { 5055 int ctl_part = 0; 5056 5057 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf); 5058 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen); 5059 uio.uio_iov = &iov; 5060 uio.uio_resid = iov.iov_len; 5061 uio.uio_loffset = 0; 5062 uio.uio_iovcnt = 1; 5063 while (mp && mp->b_datap->db_type != M_DATA && 5064 uio.uio_resid >= 0) { 5065 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ? 5066 mp->b_datap->db_type == M_PROTO : 5067 mp->b_datap->db_type == M_PCPROTO); 5068 5069 if ((n = MIN(uio.uio_resid, 5070 mp->b_wptr - mp->b_rptr)) != 0 && 5071 (error = uiomove((char *)mp->b_rptr, n, 5072 UIO_READ, &uio)) != 0) { 5073 freemsg(tmp_mp); 5074 return (error); 5075 } 5076 ctl_part = 1; 5077 mp = mp->b_cont; 5078 } 5079 /* No ctl message */ 5080 if (ctl_part == 0) 5081 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5082 else 5083 STRUCT_FSET(strpeek, ctlbuf.len, 5084 STRUCT_FGET(strpeek, ctlbuf.maxlen) - 5085 uio.uio_resid); 5086 } 5087 5088 /* 5089 * Now process DATA blocks, if any. 5090 * If user doesn't want to get data info by setting maxlen <= 0, 5091 * then set len to -1/0 and skip data blocks part. 5092 */ 5093 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0) 5094 STRUCT_FSET(strpeek, databuf.len, -1); 5095 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0) 5096 STRUCT_FSET(strpeek, databuf.len, 0); 5097 else { 5098 int data_part = 0; 5099 5100 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf); 5101 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen); 5102 uio.uio_iov = &iov; 5103 uio.uio_resid = iov.iov_len; 5104 uio.uio_loffset = 0; 5105 uio.uio_iovcnt = 1; 5106 while (mp && uio.uio_resid) { 5107 if (mp->b_datap->db_type == M_DATA) { 5108 if ((n = MIN(uio.uio_resid, 5109 mp->b_wptr - mp->b_rptr)) != 0 && 5110 (error = uiomove((char *)mp->b_rptr, 5111 n, UIO_READ, &uio)) != 0) { 5112 freemsg(tmp_mp); 5113 return (error); 5114 } 5115 data_part = 1; 5116 } 5117 ASSERT(data_part == 0 || 5118 mp->b_datap->db_type == M_DATA); 5119 mp = mp->b_cont; 5120 } 5121 /* No data message */ 5122 if (data_part == 0) 5123 STRUCT_FSET(strpeek, databuf.len, -1); 5124 else 5125 STRUCT_FSET(strpeek, databuf.len, 5126 STRUCT_FGET(strpeek, databuf.maxlen) - 5127 uio.uio_resid); 5128 } 5129 freemsg(tmp_mp); 5130 5131 /* 5132 * It is a synch stream and user wants to get 5133 * data (maxlen > 0). 5134 * uio setup is done by the codes that process DATA 5135 * blocks above. 5136 */ 5137 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) { 5138 infod_t infod; 5139 5140 infod.d_cmd = INFOD_COPYOUT; 5141 infod.d_res = 0; 5142 infod.d_uiop = &uio; 5143 error = infonext(rdq, &infod); 5144 if (error == EINVAL || error == EBUSY) 5145 error = 0; 5146 if (error) 5147 return (error); 5148 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, 5149 databuf.maxlen) - uio.uio_resid); 5150 if (STRUCT_FGET(strpeek, databuf.len) == 0) { 5151 /* 5152 * No data found by the infonext(). 5153 */ 5154 STRUCT_FSET(strpeek, databuf.len, -1); 5155 } 5156 } 5157 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg, 5158 STRUCT_SIZE(strpeek), copyflag); 5159 if (error) { 5160 return (error); 5161 } 5162 /* 5163 * If there is no message retrieved, set return code to 0 5164 * otherwise, set it to 1. 5165 */ 5166 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 && 5167 STRUCT_FGET(strpeek, databuf.len) == -1) 5168 *rvalp = 0; 5169 else 5170 *rvalp = 1; 5171 return (0); 5172 } 5173 5174 case I_FDINSERT: 5175 { 5176 STRUCT_DECL(strfdinsert, strfdinsert); 5177 struct file *resftp; 5178 struct stdata *resstp; 5179 t_uscalar_t ival; 5180 ssize_t msgsize; 5181 struct strbuf mctl; 5182 5183 STRUCT_INIT(strfdinsert, flag); 5184 if (stp->sd_flag & STRHUP) 5185 return (ENXIO); 5186 /* 5187 * STRDERR, STWRERR and STPLEX tested above. 5188 */ 5189 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert), 5190 STRUCT_SIZE(strfdinsert), copyflag); 5191 if (error) 5192 return (error); 5193 5194 if (STRUCT_FGET(strfdinsert, offset) < 0 || 5195 (STRUCT_FGET(strfdinsert, offset) % 5196 sizeof (t_uscalar_t)) != 0) 5197 return (EINVAL); 5198 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) { 5199 if ((resstp = resftp->f_vnode->v_stream) == NULL) { 5200 releasef(STRUCT_FGET(strfdinsert, fildes)); 5201 return (EINVAL); 5202 } 5203 } else 5204 return (EINVAL); 5205 5206 mutex_enter(&resstp->sd_lock); 5207 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 5208 error = strgeterr(resstp, 5209 STRDERR|STWRERR|STRHUP|STPLEX, 0); 5210 if (error != 0) { 5211 mutex_exit(&resstp->sd_lock); 5212 releasef(STRUCT_FGET(strfdinsert, fildes)); 5213 return (error); 5214 } 5215 } 5216 mutex_exit(&resstp->sd_lock); 5217 5218 #ifdef _ILP32 5219 { 5220 queue_t *q; 5221 queue_t *mate = NULL; 5222 5223 /* get read queue of stream terminus */ 5224 claimstr(resstp->sd_wrq); 5225 for (q = resstp->sd_wrq->q_next; q->q_next != NULL; 5226 q = q->q_next) 5227 if (!STRMATED(resstp) && STREAM(q) != resstp && 5228 mate == NULL) { 5229 ASSERT(q->q_qinfo->qi_srvp); 5230 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp); 5231 claimstr(q); 5232 mate = q; 5233 } 5234 q = _RD(q); 5235 if (mate) 5236 releasestr(mate); 5237 releasestr(resstp->sd_wrq); 5238 ival = (t_uscalar_t)q; 5239 } 5240 #else 5241 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev); 5242 #endif /* _ILP32 */ 5243 5244 if (STRUCT_FGET(strfdinsert, ctlbuf.len) < 5245 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) { 5246 releasef(STRUCT_FGET(strfdinsert, fildes)); 5247 return (EINVAL); 5248 } 5249 5250 /* 5251 * Check for legal flag value. 5252 */ 5253 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) { 5254 releasef(STRUCT_FGET(strfdinsert, fildes)); 5255 return (EINVAL); 5256 } 5257 5258 /* get these values from those cached in the stream head */ 5259 mutex_enter(QLOCK(stp->sd_wrq)); 5260 rmin = stp->sd_qn_minpsz; 5261 rmax = stp->sd_qn_maxpsz; 5262 mutex_exit(QLOCK(stp->sd_wrq)); 5263 5264 /* 5265 * Make sure ctl and data sizes together fall within 5266 * the limits of the max and min receive packet sizes 5267 * and do not exceed system limit. A negative data 5268 * length means that no data part is to be sent. 5269 */ 5270 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 5271 if (rmax == 0) { 5272 releasef(STRUCT_FGET(strfdinsert, fildes)); 5273 return (ERANGE); 5274 } 5275 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0) 5276 msgsize = 0; 5277 if ((msgsize < rmin) || 5278 ((msgsize > rmax) && (rmax != INFPSZ)) || 5279 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) { 5280 releasef(STRUCT_FGET(strfdinsert, fildes)); 5281 return (ERANGE); 5282 } 5283 5284 mutex_enter(&stp->sd_lock); 5285 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) && 5286 !canputnext(stp->sd_wrq)) { 5287 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, 5288 flag, -1, &done)) != 0 || done) { 5289 mutex_exit(&stp->sd_lock); 5290 releasef(STRUCT_FGET(strfdinsert, fildes)); 5291 return (error); 5292 } 5293 if ((error = i_straccess(stp, access)) != 0) { 5294 mutex_exit(&stp->sd_lock); 5295 releasef( 5296 STRUCT_FGET(strfdinsert, fildes)); 5297 return (error); 5298 } 5299 } 5300 mutex_exit(&stp->sd_lock); 5301 5302 /* 5303 * Copy strfdinsert.ctlbuf into native form of 5304 * ctlbuf to pass down into strmakemsg(). 5305 */ 5306 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen); 5307 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len); 5308 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf); 5309 5310 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf); 5311 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len); 5312 uio.uio_iov = &iov; 5313 uio.uio_iovcnt = 1; 5314 uio.uio_loffset = 0; 5315 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5316 UIO_SYSSPACE; 5317 uio.uio_fmode = 0; 5318 uio.uio_extflg = UIO_COPY_CACHED; 5319 uio.uio_resid = iov.iov_len; 5320 if ((error = strmakemsg(&mctl, 5321 &msgsize, &uio, stp, 5322 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) { 5323 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5324 releasef(STRUCT_FGET(strfdinsert, fildes)); 5325 return (error); 5326 } 5327 5328 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5329 5330 /* 5331 * Place the possibly reencoded queue pointer 'offset' bytes 5332 * from the start of the control portion of the message. 5333 */ 5334 *((t_uscalar_t *)(mp->b_rptr + 5335 STRUCT_FGET(strfdinsert, offset))) = ival; 5336 5337 /* 5338 * Put message downstream. 5339 */ 5340 stream_willservice(stp); 5341 putnext(stp->sd_wrq, mp); 5342 stream_runservice(stp); 5343 releasef(STRUCT_FGET(strfdinsert, fildes)); 5344 return (error); 5345 } 5346 5347 case I_SENDFD: 5348 { 5349 struct file *fp; 5350 5351 if ((fp = getf((int)arg)) == NULL) 5352 return (EBADF); 5353 error = do_sendfp(stp, fp, crp); 5354 if (audit_active) { 5355 audit_fdsend((int)arg, fp, error); 5356 } 5357 releasef((int)arg); 5358 return (error); 5359 } 5360 5361 case I_RECVFD: 5362 case I_E_RECVFD: 5363 { 5364 struct k_strrecvfd *srf; 5365 int i, fd; 5366 5367 mutex_enter(&stp->sd_lock); 5368 while (!(mp = getq(rdq))) { 5369 if (stp->sd_flag & (STRHUP|STREOF)) { 5370 mutex_exit(&stp->sd_lock); 5371 return (ENXIO); 5372 } 5373 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0, 5374 flag, -1, &done)) != 0 || done) { 5375 mutex_exit(&stp->sd_lock); 5376 return (error); 5377 } 5378 if ((error = i_straccess(stp, access)) != 0) { 5379 mutex_exit(&stp->sd_lock); 5380 return (error); 5381 } 5382 } 5383 if (mp->b_datap->db_type != M_PASSFP) { 5384 putback(stp, rdq, mp, mp->b_band); 5385 mutex_exit(&stp->sd_lock); 5386 return (EBADMSG); 5387 } 5388 mutex_exit(&stp->sd_lock); 5389 5390 srf = (struct k_strrecvfd *)mp->b_rptr; 5391 if ((fd = ufalloc(0)) == -1) { 5392 mutex_enter(&stp->sd_lock); 5393 putback(stp, rdq, mp, mp->b_band); 5394 mutex_exit(&stp->sd_lock); 5395 return (EMFILE); 5396 } 5397 if (cmd == I_RECVFD) { 5398 struct o_strrecvfd ostrfd; 5399 5400 /* check to see if uid/gid values are too large. */ 5401 5402 if (srf->uid > (o_uid_t)USHRT_MAX || 5403 srf->gid > (o_gid_t)USHRT_MAX) { 5404 mutex_enter(&stp->sd_lock); 5405 putback(stp, rdq, mp, mp->b_band); 5406 mutex_exit(&stp->sd_lock); 5407 setf(fd, NULL); /* release fd entry */ 5408 return (EOVERFLOW); 5409 } 5410 5411 ostrfd.fd = fd; 5412 ostrfd.uid = (o_uid_t)srf->uid; 5413 ostrfd.gid = (o_gid_t)srf->gid; 5414 5415 /* Null the filler bits */ 5416 for (i = 0; i < 8; i++) 5417 ostrfd.fill[i] = 0; 5418 5419 error = strcopyout(&ostrfd, (void *)arg, 5420 sizeof (struct o_strrecvfd), copyflag); 5421 } else { /* I_E_RECVFD */ 5422 struct strrecvfd strfd; 5423 5424 strfd.fd = fd; 5425 strfd.uid = srf->uid; 5426 strfd.gid = srf->gid; 5427 5428 /* null the filler bits */ 5429 for (i = 0; i < 8; i++) 5430 strfd.fill[i] = 0; 5431 5432 error = strcopyout(&strfd, (void *)arg, 5433 sizeof (struct strrecvfd), copyflag); 5434 } 5435 5436 if (error) { 5437 setf(fd, NULL); /* release fd entry */ 5438 mutex_enter(&stp->sd_lock); 5439 putback(stp, rdq, mp, mp->b_band); 5440 mutex_exit(&stp->sd_lock); 5441 return (error); 5442 } 5443 if (audit_active) { 5444 audit_fdrecv(fd, srf->fp); 5445 } 5446 5447 /* 5448 * Always increment f_count since the freemsg() below will 5449 * always call free_passfp() which performs a closef(). 5450 */ 5451 mutex_enter(&srf->fp->f_tlock); 5452 srf->fp->f_count++; 5453 mutex_exit(&srf->fp->f_tlock); 5454 setf(fd, srf->fp); 5455 freemsg(mp); 5456 return (0); 5457 } 5458 5459 case I_SWROPT: 5460 /* 5461 * Set/clear the write options. arg is a bit 5462 * mask with any of the following bits set... 5463 * SNDZERO - send zero length message 5464 * SNDPIPE - send sigpipe to process if 5465 * sd_werror is set and process is 5466 * doing a write or putmsg. 5467 * The new stream head write options should reflect 5468 * what is in arg. 5469 */ 5470 if (arg & ~(SNDZERO|SNDPIPE)) 5471 return (EINVAL); 5472 5473 mutex_enter(&stp->sd_lock); 5474 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO); 5475 if (arg & SNDZERO) 5476 stp->sd_wput_opt |= SW_SNDZERO; 5477 if (arg & SNDPIPE) 5478 stp->sd_wput_opt |= SW_SIGPIPE; 5479 mutex_exit(&stp->sd_lock); 5480 return (0); 5481 5482 case I_GWROPT: 5483 { 5484 int wropt = 0; 5485 5486 if (stp->sd_wput_opt & SW_SNDZERO) 5487 wropt |= SNDZERO; 5488 if (stp->sd_wput_opt & SW_SIGPIPE) 5489 wropt |= SNDPIPE; 5490 return (strcopyout(&wropt, (void *)arg, sizeof (wropt), 5491 copyflag)); 5492 } 5493 5494 case I_LIST: 5495 /* 5496 * Returns all the modules found on this stream, 5497 * upto the driver. If argument is NULL, return the 5498 * number of modules (including driver). If argument 5499 * is not NULL, copy the names into the structure 5500 * provided. 5501 */ 5502 5503 { 5504 queue_t *q; 5505 char *qname; 5506 int i, nmods; 5507 struct str_mlist *mlist; 5508 STRUCT_DECL(str_list, strlist); 5509 5510 if (arg == NULL) { /* Return number of modules plus driver */ 5511 if (stp->sd_vnode->v_type == VFIFO) 5512 *rvalp = stp->sd_pushcnt; 5513 else 5514 *rvalp = stp->sd_pushcnt + 1; 5515 return (0); 5516 } 5517 5518 STRUCT_INIT(strlist, flag); 5519 5520 error = strcopyin((void *)arg, STRUCT_BUF(strlist), 5521 STRUCT_SIZE(strlist), copyflag); 5522 if (error != 0) 5523 return (error); 5524 5525 mlist = STRUCT_FGETP(strlist, sl_modlist); 5526 nmods = STRUCT_FGET(strlist, sl_nmods); 5527 if (nmods <= 0) 5528 return (EINVAL); 5529 5530 claimstr(stp->sd_wrq); 5531 q = stp->sd_wrq; 5532 for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) { 5533 qname = Q2NAME(q->q_next); 5534 error = strcopyout(qname, &mlist[i], strlen(qname) + 1, 5535 copyflag); 5536 if (error != 0) { 5537 releasestr(stp->sd_wrq); 5538 return (error); 5539 } 5540 } 5541 releasestr(stp->sd_wrq); 5542 return (strcopyout(&i, (void *)arg, sizeof (int), copyflag)); 5543 } 5544 5545 case I_CKBAND: 5546 { 5547 queue_t *q; 5548 qband_t *qbp; 5549 5550 if ((arg < 0) || (arg >= NBAND)) 5551 return (EINVAL); 5552 q = _RD(stp->sd_wrq); 5553 mutex_enter(QLOCK(q)); 5554 if (arg > (int)q->q_nband) { 5555 *rvalp = 0; 5556 } else { 5557 if (arg == 0) { 5558 if (q->q_first) 5559 *rvalp = 1; 5560 else 5561 *rvalp = 0; 5562 } else { 5563 qbp = q->q_bandp; 5564 while (--arg > 0) 5565 qbp = qbp->qb_next; 5566 if (qbp->qb_first) 5567 *rvalp = 1; 5568 else 5569 *rvalp = 0; 5570 } 5571 } 5572 mutex_exit(QLOCK(q)); 5573 return (0); 5574 } 5575 5576 case I_GETBAND: 5577 { 5578 int intpri; 5579 queue_t *q; 5580 5581 q = _RD(stp->sd_wrq); 5582 mutex_enter(QLOCK(q)); 5583 mp = q->q_first; 5584 if (!mp) { 5585 mutex_exit(QLOCK(q)); 5586 return (ENODATA); 5587 } 5588 intpri = (int)mp->b_band; 5589 error = strcopyout(&intpri, (void *)arg, sizeof (int), 5590 copyflag); 5591 mutex_exit(QLOCK(q)); 5592 return (error); 5593 } 5594 5595 case I_ATMARK: 5596 { 5597 queue_t *q; 5598 5599 if (arg & ~(ANYMARK|LASTMARK)) 5600 return (EINVAL); 5601 q = _RD(stp->sd_wrq); 5602 mutex_enter(&stp->sd_lock); 5603 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) { 5604 *rvalp = 1; 5605 } else { 5606 mutex_enter(QLOCK(q)); 5607 mp = q->q_first; 5608 5609 if (mp == NULL) 5610 *rvalp = 0; 5611 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK)) 5612 *rvalp = 1; 5613 else if ((arg == LASTMARK) && (mp == stp->sd_mark)) 5614 *rvalp = 1; 5615 else 5616 *rvalp = 0; 5617 mutex_exit(QLOCK(q)); 5618 } 5619 mutex_exit(&stp->sd_lock); 5620 return (0); 5621 } 5622 5623 case I_CANPUT: 5624 { 5625 char band; 5626 5627 if ((arg < 0) || (arg >= NBAND)) 5628 return (EINVAL); 5629 band = (char)arg; 5630 *rvalp = bcanputnext(stp->sd_wrq, band); 5631 return (0); 5632 } 5633 5634 case I_SETCLTIME: 5635 { 5636 int closetime; 5637 5638 error = strcopyin((void *)arg, &closetime, sizeof (int), 5639 copyflag); 5640 if (error) 5641 return (error); 5642 if (closetime < 0) 5643 return (EINVAL); 5644 5645 stp->sd_closetime = closetime; 5646 return (0); 5647 } 5648 5649 case I_GETCLTIME: 5650 { 5651 int closetime; 5652 5653 closetime = stp->sd_closetime; 5654 return (strcopyout(&closetime, (void *)arg, sizeof (int), 5655 copyflag)); 5656 } 5657 5658 case TIOCGSID: 5659 { 5660 pid_t sid; 5661 5662 mutex_enter(&stp->sd_lock); 5663 if (stp->sd_sidp == NULL) { 5664 mutex_exit(&stp->sd_lock); 5665 return (ENOTTY); 5666 } 5667 sid = stp->sd_sidp->pid_id; 5668 mutex_exit(&stp->sd_lock); 5669 return (strcopyout(&sid, (void *)arg, sizeof (pid_t), 5670 copyflag)); 5671 } 5672 5673 case TIOCSPGRP: 5674 { 5675 pid_t pgrp; 5676 proc_t *q; 5677 pid_t sid, fg_pgid, bg_pgid; 5678 5679 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t), 5680 copyflag)) 5681 return (error); 5682 mutex_enter(&stp->sd_lock); 5683 mutex_enter(&pidlock); 5684 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) { 5685 mutex_exit(&pidlock); 5686 mutex_exit(&stp->sd_lock); 5687 return (ENOTTY); 5688 } 5689 if (pgrp == stp->sd_pgidp->pid_id) { 5690 mutex_exit(&pidlock); 5691 mutex_exit(&stp->sd_lock); 5692 return (0); 5693 } 5694 if (pgrp <= 0 || pgrp >= maxpid) { 5695 mutex_exit(&pidlock); 5696 mutex_exit(&stp->sd_lock); 5697 return (EINVAL); 5698 } 5699 if ((q = pgfind(pgrp)) == NULL || 5700 q->p_sessp != ttoproc(curthread)->p_sessp) { 5701 mutex_exit(&pidlock); 5702 mutex_exit(&stp->sd_lock); 5703 return (EPERM); 5704 } 5705 sid = stp->sd_sidp->pid_id; 5706 fg_pgid = q->p_pgrp; 5707 bg_pgid = stp->sd_pgidp->pid_id; 5708 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid); 5709 PID_RELE(stp->sd_pgidp); 5710 ctty_clear_sighuped(); 5711 stp->sd_pgidp = q->p_pgidp; 5712 PID_HOLD(stp->sd_pgidp); 5713 mutex_exit(&pidlock); 5714 mutex_exit(&stp->sd_lock); 5715 return (0); 5716 } 5717 5718 case TIOCGPGRP: 5719 { 5720 pid_t pgrp; 5721 5722 mutex_enter(&stp->sd_lock); 5723 if (stp->sd_sidp == NULL) { 5724 mutex_exit(&stp->sd_lock); 5725 return (ENOTTY); 5726 } 5727 pgrp = stp->sd_pgidp->pid_id; 5728 mutex_exit(&stp->sd_lock); 5729 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t), 5730 copyflag)); 5731 } 5732 5733 case TIOCSCTTY: 5734 { 5735 return (strctty(stp)); 5736 } 5737 5738 case TIOCNOTTY: 5739 { 5740 /* freectty() always assumes curproc. */ 5741 if (freectty(B_FALSE) != 0) 5742 return (0); 5743 return (ENOTTY); 5744 } 5745 5746 case FIONBIO: 5747 case FIOASYNC: 5748 return (0); /* handled by the upper layer */ 5749 } 5750 } 5751 5752 /* 5753 * Custom free routine used for M_PASSFP messages. 5754 */ 5755 static void 5756 free_passfp(struct k_strrecvfd *srf) 5757 { 5758 (void) closef(srf->fp); 5759 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t)); 5760 } 5761 5762 /* ARGSUSED */ 5763 int 5764 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr) 5765 { 5766 queue_t *qp, *nextqp; 5767 struct k_strrecvfd *srf; 5768 mblk_t *mp; 5769 frtn_t *frtnp; 5770 size_t bufsize; 5771 queue_t *mate = NULL; 5772 syncq_t *sq = NULL; 5773 int retval = 0; 5774 5775 if (stp->sd_flag & STRHUP) 5776 return (ENXIO); 5777 5778 claimstr(stp->sd_wrq); 5779 5780 /* Fastpath, we have a pipe, and we are already mated, use it. */ 5781 if (STRMATED(stp)) { 5782 qp = _RD(stp->sd_mate->sd_wrq); 5783 claimstr(qp); 5784 mate = qp; 5785 } else { /* Not already mated. */ 5786 5787 /* 5788 * Walk the stream to the end of this one. 5789 * assumes that the claimstr() will prevent 5790 * plumbing between the stream head and the 5791 * driver from changing 5792 */ 5793 qp = stp->sd_wrq; 5794 5795 /* 5796 * Loop until we reach the end of this stream. 5797 * On completion, qp points to the write queue 5798 * at the end of the stream, or the read queue 5799 * at the stream head if this is a fifo. 5800 */ 5801 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp)) 5802 ; 5803 5804 /* 5805 * Just in case we get a q_next which is NULL, but 5806 * not at the end of the stream. This is actually 5807 * broken, so we set an assert to catch it in 5808 * debug, and set an error and return if not debug. 5809 */ 5810 ASSERT(qp); 5811 if (qp == NULL) { 5812 releasestr(stp->sd_wrq); 5813 return (EINVAL); 5814 } 5815 5816 /* 5817 * Enter the syncq for the driver, so (hopefully) 5818 * the queue values will not change on us. 5819 * XXXX - This will only prevent the race IFF only 5820 * the write side modifies the q_next member, and 5821 * the put procedure is protected by at least 5822 * MT_PERQ. 5823 */ 5824 if ((sq = qp->q_syncq) != NULL) 5825 entersq(sq, SQ_PUT); 5826 5827 /* Now get the q_next value from this qp. */ 5828 nextqp = qp->q_next; 5829 5830 /* 5831 * If nextqp exists and the other stream is different 5832 * from this one claim the stream, set the mate, and 5833 * get the read queue at the stream head of the other 5834 * stream. Assumes that nextqp was at least valid when 5835 * we got it. Hopefully the entersq of the driver 5836 * will prevent it from changing on us. 5837 */ 5838 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) { 5839 ASSERT(qp->q_qinfo->qi_srvp); 5840 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp); 5841 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp); 5842 claimstr(nextqp); 5843 5844 /* Make sure we still have a q_next */ 5845 if (nextqp != qp->q_next) { 5846 releasestr(stp->sd_wrq); 5847 releasestr(nextqp); 5848 return (EINVAL); 5849 } 5850 5851 qp = _RD(STREAM(nextqp)->sd_wrq); 5852 mate = qp; 5853 } 5854 /* If we entered the synq above, leave it. */ 5855 if (sq != NULL) 5856 leavesq(sq, SQ_PUT); 5857 } /* STRMATED(STP) */ 5858 5859 /* XXX prevents substitution of the ops vector */ 5860 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) { 5861 retval = EINVAL; 5862 goto out; 5863 } 5864 5865 if (qp->q_flag & QFULL) { 5866 retval = EAGAIN; 5867 goto out; 5868 } 5869 5870 /* 5871 * Since M_PASSFP messages include a file descriptor, we use 5872 * esballoc() and specify a custom free routine (free_passfp()) that 5873 * will close the descriptor as part of freeing the message. For 5874 * convenience, we stash the frtn_t right after the data block. 5875 */ 5876 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t); 5877 srf = kmem_alloc(bufsize, KM_NOSLEEP); 5878 if (srf == NULL) { 5879 retval = EAGAIN; 5880 goto out; 5881 } 5882 5883 frtnp = (frtn_t *)(srf + 1); 5884 frtnp->free_arg = (caddr_t)srf; 5885 frtnp->free_func = free_passfp; 5886 5887 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp); 5888 if (mp == NULL) { 5889 kmem_free(srf, bufsize); 5890 retval = EAGAIN; 5891 goto out; 5892 } 5893 mp->b_wptr += sizeof (struct k_strrecvfd); 5894 mp->b_datap->db_type = M_PASSFP; 5895 5896 srf->fp = fp; 5897 srf->uid = crgetuid(curthread->t_cred); 5898 srf->gid = crgetgid(curthread->t_cred); 5899 mutex_enter(&fp->f_tlock); 5900 fp->f_count++; 5901 mutex_exit(&fp->f_tlock); 5902 5903 put(qp, mp); 5904 out: 5905 releasestr(stp->sd_wrq); 5906 if (mate) 5907 releasestr(mate); 5908 return (retval); 5909 } 5910 5911 /* 5912 * Send an ioctl message downstream and wait for acknowledgement. 5913 * flags may be set to either U_TO_K or K_TO_K and a combination 5914 * of STR_NOERROR or STR_NOSIG 5915 * STR_NOSIG: Signals are essentially ignored or held and have 5916 * no effect for the duration of the call. 5917 * STR_NOERROR: Ignores stream head read, write and hup errors. 5918 * Additionally, if an existing ioctl times out, it is assumed 5919 * lost and and this ioctl will continue as if the previous ioctl had 5920 * finished. ETIME may be returned if this ioctl times out (i.e. 5921 * ic_timout is not INFTIM). Non-stream head errors may be returned if 5922 * the ioc_error indicates that the driver/module had problems, 5923 * an EFAULT was found when accessing user data, a lack of 5924 * resources, etc. 5925 */ 5926 int 5927 strdoioctl( 5928 struct stdata *stp, 5929 struct strioctl *strioc, 5930 int fflags, /* file flags with model info */ 5931 int flag, 5932 cred_t *crp, 5933 int *rvalp) 5934 { 5935 mblk_t *bp; 5936 struct iocblk *iocbp; 5937 struct copyreq *reqp; 5938 struct copyresp *resp; 5939 int id; 5940 int transparent = 0; 5941 int error = 0; 5942 int len = 0; 5943 caddr_t taddr; 5944 int copyflag = (flag & (U_TO_K | K_TO_K)); 5945 int sigflag = (flag & STR_NOSIG); 5946 int errs; 5947 uint_t waitflags; 5948 5949 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 5950 ASSERT((fflags & FMODELS) != 0); 5951 5952 TRACE_2(TR_FAC_STREAMS_FR, 5953 TR_STRDOIOCTL, 5954 "strdoioctl:stp %p strioc %p", stp, strioc); 5955 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */ 5956 transparent = 1; 5957 strioc->ic_len = sizeof (intptr_t); 5958 } 5959 5960 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz)) 5961 return (EINVAL); 5962 5963 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error, 5964 crp)) == NULL) 5965 return (error); 5966 5967 bzero(bp->b_wptr, sizeof (union ioctypes)); 5968 5969 iocbp = (struct iocblk *)bp->b_wptr; 5970 iocbp->ioc_count = strioc->ic_len; 5971 iocbp->ioc_cmd = strioc->ic_cmd; 5972 iocbp->ioc_flag = (fflags & FMODELS); 5973 5974 crhold(crp); 5975 iocbp->ioc_cr = crp; 5976 DB_TYPE(bp) = M_IOCTL; 5977 DB_CPID(bp) = curproc->p_pid; 5978 bp->b_wptr += sizeof (struct iocblk); 5979 5980 if (flag & STR_NOERROR) 5981 errs = STPLEX; 5982 else 5983 errs = STRHUP|STRDERR|STWRERR|STPLEX; 5984 5985 /* 5986 * If there is data to copy into ioctl block, do so. 5987 */ 5988 if (iocbp->ioc_count > 0) { 5989 if (transparent) 5990 /* 5991 * Note: STR_NOERROR does not have an effect 5992 * in putiocd() 5993 */ 5994 id = K_TO_K | sigflag; 5995 else 5996 id = flag; 5997 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) { 5998 freemsg(bp); 5999 crfree(crp); 6000 return (error); 6001 } 6002 6003 /* 6004 * We could have slept copying in user pages. 6005 * Recheck the stream head state (the other end 6006 * of a pipe could have gone away). 6007 */ 6008 if (stp->sd_flag & errs) { 6009 mutex_enter(&stp->sd_lock); 6010 error = strgeterr(stp, errs, 0); 6011 mutex_exit(&stp->sd_lock); 6012 if (error != 0) { 6013 freemsg(bp); 6014 crfree(crp); 6015 return (error); 6016 } 6017 } 6018 } 6019 if (transparent) 6020 iocbp->ioc_count = TRANSPARENT; 6021 6022 /* 6023 * Block for up to STRTIMOUT milliseconds if there is an outstanding 6024 * ioctl for this stream already running. All processes 6025 * sleeping here will be awakened as a result of an ACK 6026 * or NAK being received for the outstanding ioctl, or 6027 * as a result of the timer expiring on the outstanding 6028 * ioctl (a failure), or as a result of any waiting 6029 * process's timer expiring (also a failure). 6030 */ 6031 6032 error = 0; 6033 mutex_enter(&stp->sd_lock); 6034 while (stp->sd_flag & (IOCWAIT | IOCWAITNE)) { 6035 clock_t cv_rval; 6036 6037 TRACE_0(TR_FAC_STREAMS_FR, 6038 TR_STRDOIOCTL_WAIT, 6039 "strdoioctl sleeps - IOCWAIT"); 6040 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock, 6041 STRTIMOUT, sigflag); 6042 if (cv_rval <= 0) { 6043 if (cv_rval == 0) { 6044 error = EINTR; 6045 } else { 6046 if (flag & STR_NOERROR) { 6047 /* 6048 * Terminating current ioctl in 6049 * progress -- assume it got lost and 6050 * wake up the other thread so that the 6051 * operation completes. 6052 */ 6053 if (!(stp->sd_flag & IOCWAITNE)) { 6054 stp->sd_flag |= IOCWAITNE; 6055 cv_broadcast(&stp->sd_monitor); 6056 } 6057 /* 6058 * Otherwise, there's a running 6059 * STR_NOERROR -- we have no choice 6060 * here but to wait forever (or until 6061 * interrupted). 6062 */ 6063 } else { 6064 /* 6065 * pending ioctl has caused 6066 * us to time out 6067 */ 6068 error = ETIME; 6069 } 6070 } 6071 } else if ((stp->sd_flag & errs)) { 6072 error = strgeterr(stp, errs, 0); 6073 } 6074 if (error) { 6075 mutex_exit(&stp->sd_lock); 6076 freemsg(bp); 6077 crfree(crp); 6078 return (error); 6079 } 6080 } 6081 6082 /* 6083 * Have control of ioctl mechanism. 6084 * Send down ioctl packet and wait for response. 6085 */ 6086 if (stp->sd_iocblk != (mblk_t *)-1) { 6087 freemsg(stp->sd_iocblk); 6088 } 6089 stp->sd_iocblk = NULL; 6090 6091 /* 6092 * If this is marked with 'noerror' (internal; mostly 6093 * I_{P,}{UN,}LINK), then make sure nobody else is able to get 6094 * in here by setting IOCWAITNE. 6095 */ 6096 waitflags = IOCWAIT; 6097 if (flag & STR_NOERROR) 6098 waitflags |= IOCWAITNE; 6099 6100 stp->sd_flag |= waitflags; 6101 6102 /* 6103 * Assign sequence number. 6104 */ 6105 iocbp->ioc_id = stp->sd_iocid = getiocseqno(); 6106 6107 mutex_exit(&stp->sd_lock); 6108 6109 TRACE_1(TR_FAC_STREAMS_FR, 6110 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp); 6111 stream_willservice(stp); 6112 putnext(stp->sd_wrq, bp); 6113 stream_runservice(stp); 6114 6115 /* 6116 * Timed wait for acknowledgment. The wait time is limited by the 6117 * timeout value, which must be a positive integer (number of 6118 * milliseconds) to wait, or 0 (use default value of STRTIMOUT 6119 * milliseconds), or -1 (wait forever). This will be awakened 6120 * either by an ACK/NAK message arriving, the timer expiring, or 6121 * the timer expiring on another ioctl waiting for control of the 6122 * mechanism. 6123 */ 6124 waitioc: 6125 mutex_enter(&stp->sd_lock); 6126 6127 6128 /* 6129 * If the reply has already arrived, don't sleep. If awakened from 6130 * the sleep, fail only if the reply has not arrived by then. 6131 * Otherwise, process the reply. 6132 */ 6133 while (!stp->sd_iocblk) { 6134 clock_t cv_rval; 6135 6136 if (stp->sd_flag & errs) { 6137 error = strgeterr(stp, errs, 0); 6138 if (error != 0) { 6139 stp->sd_flag &= ~waitflags; 6140 cv_broadcast(&stp->sd_iocmonitor); 6141 mutex_exit(&stp->sd_lock); 6142 crfree(crp); 6143 return (error); 6144 } 6145 } 6146 6147 TRACE_0(TR_FAC_STREAMS_FR, 6148 TR_STRDOIOCTL_WAIT2, 6149 "strdoioctl sleeps awaiting reply"); 6150 ASSERT(error == 0); 6151 6152 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, 6153 (strioc->ic_timout ? 6154 strioc->ic_timout * 1000 : STRTIMOUT), sigflag); 6155 6156 /* 6157 * There are four possible cases here: interrupt, timeout, 6158 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a 6159 * valid M_IOCTL reply). 6160 * 6161 * If we've been awakened by a STR_NOERROR ioctl on some other 6162 * thread, then sd_iocblk will still be NULL, and IOCWAITNE 6163 * will be set. Pretend as if we just timed out. Note that 6164 * this other thread waited at least STRTIMOUT before trying to 6165 * awaken our thread, so this is indistinguishable (even for 6166 * INFTIM) from the case where we failed with ETIME waiting on 6167 * IOCWAIT in the prior loop. 6168 */ 6169 if (cv_rval > 0 && !(flag & STR_NOERROR) && 6170 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) { 6171 cv_rval = -1; 6172 } 6173 6174 /* 6175 * note: STR_NOERROR does not protect 6176 * us here.. use ic_timout < 0 6177 */ 6178 if (cv_rval <= 0) { 6179 if (cv_rval == 0) { 6180 error = EINTR; 6181 } else { 6182 error = ETIME; 6183 } 6184 /* 6185 * A message could have come in after we were scheduled 6186 * but before we were actually run. 6187 */ 6188 bp = stp->sd_iocblk; 6189 stp->sd_iocblk = NULL; 6190 if (bp != NULL) { 6191 if ((bp->b_datap->db_type == M_COPYIN) || 6192 (bp->b_datap->db_type == M_COPYOUT)) { 6193 mutex_exit(&stp->sd_lock); 6194 if (bp->b_cont) { 6195 freemsg(bp->b_cont); 6196 bp->b_cont = NULL; 6197 } 6198 bp->b_datap->db_type = M_IOCDATA; 6199 bp->b_wptr = bp->b_rptr + 6200 sizeof (struct copyresp); 6201 resp = (struct copyresp *)bp->b_rptr; 6202 resp->cp_rval = 6203 (caddr_t)1; /* failure */ 6204 stream_willservice(stp); 6205 putnext(stp->sd_wrq, bp); 6206 stream_runservice(stp); 6207 mutex_enter(&stp->sd_lock); 6208 } else { 6209 freemsg(bp); 6210 } 6211 } 6212 stp->sd_flag &= ~waitflags; 6213 cv_broadcast(&stp->sd_iocmonitor); 6214 mutex_exit(&stp->sd_lock); 6215 crfree(crp); 6216 return (error); 6217 } 6218 } 6219 bp = stp->sd_iocblk; 6220 /* 6221 * Note: it is strictly impossible to get here with sd_iocblk set to 6222 * -1. This is because the initial loop above doesn't allow any new 6223 * ioctls into the fray until all others have passed this point. 6224 */ 6225 ASSERT(bp != NULL && bp != (mblk_t *)-1); 6226 TRACE_1(TR_FAC_STREAMS_FR, 6227 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp); 6228 if ((bp->b_datap->db_type == M_IOCACK) || 6229 (bp->b_datap->db_type == M_IOCNAK)) { 6230 /* for detection of duplicate ioctl replies */ 6231 stp->sd_iocblk = (mblk_t *)-1; 6232 stp->sd_flag &= ~waitflags; 6233 cv_broadcast(&stp->sd_iocmonitor); 6234 mutex_exit(&stp->sd_lock); 6235 } else { 6236 /* 6237 * flags not cleared here because we're still doing 6238 * copy in/out for ioctl. 6239 */ 6240 stp->sd_iocblk = NULL; 6241 mutex_exit(&stp->sd_lock); 6242 } 6243 6244 6245 /* 6246 * Have received acknowledgment. 6247 */ 6248 6249 switch (bp->b_datap->db_type) { 6250 case M_IOCACK: 6251 /* 6252 * Positive ack. 6253 */ 6254 iocbp = (struct iocblk *)bp->b_rptr; 6255 6256 /* 6257 * Set error if indicated. 6258 */ 6259 if (iocbp->ioc_error) { 6260 error = iocbp->ioc_error; 6261 break; 6262 } 6263 6264 /* 6265 * Set return value. 6266 */ 6267 *rvalp = iocbp->ioc_rval; 6268 6269 /* 6270 * Data may have been returned in ACK message (ioc_count > 0). 6271 * If so, copy it out to the user's buffer. 6272 */ 6273 if (iocbp->ioc_count && !transparent) { 6274 if (error = getiocd(bp, strioc->ic_dp, copyflag)) 6275 break; 6276 } 6277 if (!transparent) { 6278 if (len) /* an M_COPYOUT was used with I_STR */ 6279 strioc->ic_len = len; 6280 else 6281 strioc->ic_len = (int)iocbp->ioc_count; 6282 } 6283 break; 6284 6285 case M_IOCNAK: 6286 /* 6287 * Negative ack. 6288 * 6289 * The only thing to do is set error as specified 6290 * in neg ack packet. 6291 */ 6292 iocbp = (struct iocblk *)bp->b_rptr; 6293 6294 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL); 6295 break; 6296 6297 case M_COPYIN: 6298 /* 6299 * Driver or module has requested user ioctl data. 6300 */ 6301 reqp = (struct copyreq *)bp->b_rptr; 6302 6303 /* 6304 * M_COPYIN should *never* have a message attached, though 6305 * it's harmless if it does -- thus, panic on a DEBUG 6306 * kernel and just free it on a non-DEBUG build. 6307 */ 6308 ASSERT(bp->b_cont == NULL); 6309 if (bp->b_cont != NULL) { 6310 freemsg(bp->b_cont); 6311 bp->b_cont = NULL; 6312 } 6313 6314 error = putiocd(bp, reqp->cq_addr, flag, crp); 6315 if (error && bp->b_cont) { 6316 freemsg(bp->b_cont); 6317 bp->b_cont = NULL; 6318 } 6319 6320 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6321 bp->b_datap->db_type = M_IOCDATA; 6322 6323 mblk_setcred(bp, crp); 6324 DB_CPID(bp) = curproc->p_pid; 6325 resp = (struct copyresp *)bp->b_rptr; 6326 resp->cp_rval = (caddr_t)(uintptr_t)error; 6327 resp->cp_flag = (fflags & FMODELS); 6328 6329 stream_willservice(stp); 6330 putnext(stp->sd_wrq, bp); 6331 stream_runservice(stp); 6332 6333 if (error) { 6334 mutex_enter(&stp->sd_lock); 6335 stp->sd_flag &= ~waitflags; 6336 cv_broadcast(&stp->sd_iocmonitor); 6337 mutex_exit(&stp->sd_lock); 6338 crfree(crp); 6339 return (error); 6340 } 6341 6342 goto waitioc; 6343 6344 case M_COPYOUT: 6345 /* 6346 * Driver or module has ioctl data for a user. 6347 */ 6348 reqp = (struct copyreq *)bp->b_rptr; 6349 ASSERT(bp->b_cont != NULL); 6350 6351 /* 6352 * Always (transparent or non-transparent ) 6353 * use the address specified in the request 6354 */ 6355 taddr = reqp->cq_addr; 6356 if (!transparent) 6357 len = (int)reqp->cq_size; 6358 6359 /* copyout data to the provided address */ 6360 error = getiocd(bp, taddr, copyflag); 6361 6362 freemsg(bp->b_cont); 6363 bp->b_cont = NULL; 6364 6365 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6366 bp->b_datap->db_type = M_IOCDATA; 6367 6368 mblk_setcred(bp, crp); 6369 DB_CPID(bp) = curproc->p_pid; 6370 resp = (struct copyresp *)bp->b_rptr; 6371 resp->cp_rval = (caddr_t)(uintptr_t)error; 6372 resp->cp_flag = (fflags & FMODELS); 6373 6374 stream_willservice(stp); 6375 putnext(stp->sd_wrq, bp); 6376 stream_runservice(stp); 6377 6378 if (error) { 6379 mutex_enter(&stp->sd_lock); 6380 stp->sd_flag &= ~waitflags; 6381 cv_broadcast(&stp->sd_iocmonitor); 6382 mutex_exit(&stp->sd_lock); 6383 crfree(crp); 6384 return (error); 6385 } 6386 goto waitioc; 6387 6388 default: 6389 ASSERT(0); 6390 mutex_enter(&stp->sd_lock); 6391 stp->sd_flag &= ~waitflags; 6392 cv_broadcast(&stp->sd_iocmonitor); 6393 mutex_exit(&stp->sd_lock); 6394 break; 6395 } 6396 6397 freemsg(bp); 6398 crfree(crp); 6399 return (error); 6400 } 6401 6402 /* 6403 * Send an M_CMD message downstream and wait for a reply. This is a ptools 6404 * special used to retrieve information from modules/drivers a stream without 6405 * being subjected to flow control or interfering with pending messages on the 6406 * stream (e.g. an ioctl in flight). 6407 */ 6408 int 6409 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp) 6410 { 6411 mblk_t *mp; 6412 struct cmdblk *cmdp; 6413 int error = 0; 6414 int errs = STRHUP|STRDERR|STWRERR|STPLEX; 6415 clock_t rval, timeout = STRTIMOUT; 6416 6417 if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) || 6418 scp->sc_timeout < -1) 6419 return (EINVAL); 6420 6421 if (scp->sc_timeout > 0) 6422 timeout = scp->sc_timeout * MILLISEC; 6423 6424 if ((mp = allocb_cred(sizeof (struct cmdblk), crp)) == NULL) 6425 return (ENOMEM); 6426 6427 crhold(crp); 6428 6429 cmdp = (struct cmdblk *)mp->b_wptr; 6430 cmdp->cb_cr = crp; 6431 cmdp->cb_cmd = scp->sc_cmd; 6432 cmdp->cb_len = scp->sc_len; 6433 cmdp->cb_error = 0; 6434 mp->b_wptr += sizeof (struct cmdblk); 6435 6436 DB_TYPE(mp) = M_CMD; 6437 DB_CPID(mp) = curproc->p_pid; 6438 6439 /* 6440 * Copy in the payload. 6441 */ 6442 if (cmdp->cb_len > 0) { 6443 mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp); 6444 if (mp->b_cont == NULL) { 6445 error = ENOMEM; 6446 goto out; 6447 } 6448 6449 /* cb_len comes from sc_len, which has already been checked */ 6450 ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf)); 6451 (void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len); 6452 mp->b_cont->b_wptr += cmdp->cb_len; 6453 DB_CPID(mp->b_cont) = curproc->p_pid; 6454 } 6455 6456 /* 6457 * Since this mechanism is strictly for ptools, and since only one 6458 * process can be grabbed at a time, we simply fail if there's 6459 * currently an operation pending. 6460 */ 6461 mutex_enter(&stp->sd_lock); 6462 if (stp->sd_flag & STRCMDWAIT) { 6463 mutex_exit(&stp->sd_lock); 6464 error = EBUSY; 6465 goto out; 6466 } 6467 stp->sd_flag |= STRCMDWAIT; 6468 ASSERT(stp->sd_cmdblk == NULL); 6469 mutex_exit(&stp->sd_lock); 6470 6471 putnext(stp->sd_wrq, mp); 6472 mp = NULL; 6473 6474 /* 6475 * Timed wait for acknowledgment. If the reply has already arrived, 6476 * don't sleep. If awakened from the sleep, fail only if the reply 6477 * has not arrived by then. Otherwise, process the reply. 6478 */ 6479 mutex_enter(&stp->sd_lock); 6480 while (stp->sd_cmdblk == NULL) { 6481 if (stp->sd_flag & errs) { 6482 if ((error = strgeterr(stp, errs, 0)) != 0) 6483 goto waitout; 6484 } 6485 6486 rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0); 6487 if (stp->sd_cmdblk != NULL) 6488 break; 6489 6490 if (rval <= 0) { 6491 error = (rval == 0) ? EINTR : ETIME; 6492 goto waitout; 6493 } 6494 } 6495 6496 /* 6497 * We received a reply. 6498 */ 6499 mp = stp->sd_cmdblk; 6500 stp->sd_cmdblk = NULL; 6501 ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD); 6502 ASSERT(stp->sd_flag & STRCMDWAIT); 6503 stp->sd_flag &= ~STRCMDWAIT; 6504 mutex_exit(&stp->sd_lock); 6505 6506 cmdp = (struct cmdblk *)mp->b_rptr; 6507 if ((error = cmdp->cb_error) != 0) 6508 goto out; 6509 6510 /* 6511 * Data may have been returned in the reply (cb_len > 0). 6512 * If so, copy it out to the user's buffer. 6513 */ 6514 if (cmdp->cb_len > 0) { 6515 if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) { 6516 error = EPROTO; 6517 goto out; 6518 } 6519 6520 cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf)); 6521 (void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len); 6522 } 6523 scp->sc_len = cmdp->cb_len; 6524 out: 6525 freemsg(mp); 6526 crfree(crp); 6527 return (error); 6528 waitout: 6529 ASSERT(stp->sd_cmdblk == NULL); 6530 stp->sd_flag &= ~STRCMDWAIT; 6531 mutex_exit(&stp->sd_lock); 6532 crfree(crp); 6533 return (error); 6534 } 6535 6536 /* 6537 * For the SunOS keyboard driver. 6538 * Return the next available "ioctl" sequence number. 6539 * Exported, so that streams modules can send "ioctl" messages 6540 * downstream from their open routine. 6541 */ 6542 int 6543 getiocseqno(void) 6544 { 6545 int i; 6546 6547 mutex_enter(&strresources); 6548 i = ++ioc_id; 6549 mutex_exit(&strresources); 6550 return (i); 6551 } 6552 6553 /* 6554 * Get the next message from the read queue. If the message is 6555 * priority, STRPRI will have been set by strrput(). This flag 6556 * should be reset only when the entire message at the front of the 6557 * queue as been consumed. 6558 * 6559 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6560 */ 6561 int 6562 strgetmsg( 6563 struct vnode *vp, 6564 struct strbuf *mctl, 6565 struct strbuf *mdata, 6566 unsigned char *prip, 6567 int *flagsp, 6568 int fmode, 6569 rval_t *rvp) 6570 { 6571 struct stdata *stp; 6572 mblk_t *bp, *nbp; 6573 mblk_t *savemp = NULL; 6574 mblk_t *savemptail = NULL; 6575 uint_t old_sd_flag; 6576 int flg; 6577 int more = 0; 6578 int error = 0; 6579 char first = 1; 6580 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6581 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6582 unsigned char pri = 0; 6583 queue_t *q; 6584 int pr = 0; /* Partial read successful */ 6585 struct uio uios; 6586 struct uio *uiop = &uios; 6587 struct iovec iovs; 6588 unsigned char type; 6589 6590 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER, 6591 "strgetmsg:%p", vp); 6592 6593 ASSERT(vp->v_stream); 6594 stp = vp->v_stream; 6595 rvp->r_val1 = 0; 6596 6597 mutex_enter(&stp->sd_lock); 6598 6599 if ((error = i_straccess(stp, JCREAD)) != 0) { 6600 mutex_exit(&stp->sd_lock); 6601 return (error); 6602 } 6603 6604 if (stp->sd_flag & (STRDERR|STPLEX)) { 6605 error = strgeterr(stp, STRDERR|STPLEX, 0); 6606 if (error != 0) { 6607 mutex_exit(&stp->sd_lock); 6608 return (error); 6609 } 6610 } 6611 mutex_exit(&stp->sd_lock); 6612 6613 switch (*flagsp) { 6614 case MSG_HIPRI: 6615 if (*prip != 0) 6616 return (EINVAL); 6617 break; 6618 6619 case MSG_ANY: 6620 case MSG_BAND: 6621 break; 6622 6623 default: 6624 return (EINVAL); 6625 } 6626 /* 6627 * Setup uio and iov for data part 6628 */ 6629 iovs.iov_base = mdata->buf; 6630 iovs.iov_len = mdata->maxlen; 6631 uios.uio_iov = &iovs; 6632 uios.uio_iovcnt = 1; 6633 uios.uio_loffset = 0; 6634 uios.uio_segflg = UIO_USERSPACE; 6635 uios.uio_fmode = 0; 6636 uios.uio_extflg = UIO_COPY_CACHED; 6637 uios.uio_resid = mdata->maxlen; 6638 uios.uio_offset = 0; 6639 6640 q = _RD(stp->sd_wrq); 6641 mutex_enter(&stp->sd_lock); 6642 old_sd_flag = stp->sd_flag; 6643 mark = 0; 6644 for (;;) { 6645 int done = 0; 6646 mblk_t *q_first = q->q_first; 6647 6648 /* 6649 * Get the next message of appropriate priority 6650 * from the stream head. If the caller is interested 6651 * in band or hipri messages, then they should already 6652 * be enqueued at the stream head. On the other hand 6653 * if the caller wants normal (band 0) messages, they 6654 * might be deferred in a synchronous stream and they 6655 * will need to be pulled up. 6656 * 6657 * After we have dequeued a message, we might find that 6658 * it was a deferred M_SIG that was enqueued at the 6659 * stream head. It must now be posted as part of the 6660 * read by calling strsignal_nolock(). 6661 * 6662 * Also note that strrput does not enqueue an M_PCSIG, 6663 * and there cannot be more than one hipri message, 6664 * so there was no need to have the M_PCSIG case. 6665 * 6666 * At some time it might be nice to try and wrap the 6667 * functionality of kstrgetmsg() and strgetmsg() into 6668 * a common routine so to reduce the amount of replicated 6669 * code (since they are extremely similar). 6670 */ 6671 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) { 6672 /* Asking for normal, band0 data */ 6673 bp = strget(stp, q, uiop, first, &error); 6674 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6675 if (bp != NULL) { 6676 ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA)); 6677 if (DB_TYPE(bp) == M_SIG) { 6678 strsignal_nolock(stp, *bp->b_rptr, 6679 bp->b_band); 6680 freemsg(bp); 6681 continue; 6682 } else { 6683 break; 6684 } 6685 } 6686 if (error != 0) 6687 goto getmout; 6688 6689 /* 6690 * We can't depend on the value of STRPRI here because 6691 * the stream head may be in transit. Therefore, we 6692 * must look at the type of the first message to 6693 * determine if a high priority messages is waiting 6694 */ 6695 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL && 6696 DB_TYPE(q_first) >= QPCTL && 6697 (bp = getq_noenab(q, 0)) != NULL) { 6698 /* Asked for HIPRI and got one */ 6699 ASSERT(DB_TYPE(bp) >= QPCTL); 6700 break; 6701 } else if ((*flagsp & MSG_BAND) && q_first != NULL && 6702 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 6703 (bp = getq_noenab(q, 0)) != NULL) { 6704 /* 6705 * Asked for at least band "prip" and got either at 6706 * least that band or a hipri message. 6707 */ 6708 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 6709 if (DB_TYPE(bp) == M_SIG) { 6710 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 6711 freemsg(bp); 6712 continue; 6713 } else { 6714 break; 6715 } 6716 } 6717 6718 /* No data. Time to sleep? */ 6719 qbackenable(q, 0); 6720 6721 /* 6722 * If STRHUP or STREOF, return 0 length control and data. 6723 * If resid is 0, then a read(fd,buf,0) was done. Do not 6724 * sleep to satisfy this request because by default we have 6725 * zero bytes to return. 6726 */ 6727 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 && 6728 mdata->maxlen == 0)) { 6729 mctl->len = mdata->len = 0; 6730 *flagsp = 0; 6731 mutex_exit(&stp->sd_lock); 6732 return (0); 6733 } 6734 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT, 6735 "strgetmsg calls strwaitq:%p, %p", 6736 vp, uiop); 6737 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1, 6738 &done)) != 0) || done) { 6739 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE, 6740 "strgetmsg error or done:%p, %p", 6741 vp, uiop); 6742 mutex_exit(&stp->sd_lock); 6743 return (error); 6744 } 6745 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE, 6746 "strgetmsg awakes:%p, %p", vp, uiop); 6747 if ((error = i_straccess(stp, JCREAD)) != 0) { 6748 mutex_exit(&stp->sd_lock); 6749 return (error); 6750 } 6751 first = 0; 6752 } 6753 ASSERT(bp != NULL); 6754 /* 6755 * Extract any mark information. If the message is not completely 6756 * consumed this information will be put in the mblk 6757 * that is putback. 6758 * If MSGMARKNEXT is set and the message is completely consumed 6759 * the STRATMARK flag will be set below. Likewise, if 6760 * MSGNOTMARKNEXT is set and the message is 6761 * completely consumed STRNOTATMARK will be set. 6762 */ 6763 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 6764 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 6765 (MSGMARKNEXT|MSGNOTMARKNEXT)); 6766 if (mark != 0 && bp == stp->sd_mark) { 6767 mark |= _LASTMARK; 6768 stp->sd_mark = NULL; 6769 } 6770 /* 6771 * keep track of the original message type and priority 6772 */ 6773 pri = bp->b_band; 6774 type = bp->b_datap->db_type; 6775 if (type == M_PASSFP) { 6776 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 6777 stp->sd_mark = bp; 6778 bp->b_flag |= mark & ~_LASTMARK; 6779 putback(stp, q, bp, pri); 6780 qbackenable(q, pri); 6781 mutex_exit(&stp->sd_lock); 6782 return (EBADMSG); 6783 } 6784 ASSERT(type != M_SIG); 6785 6786 /* 6787 * Set this flag so strrput will not generate signals. Need to 6788 * make sure this flag is cleared before leaving this routine 6789 * else signals will stop being sent. 6790 */ 6791 stp->sd_flag |= STRGETINPROG; 6792 mutex_exit(&stp->sd_lock); 6793 6794 if (STREAM_NEEDSERVICE(stp)) 6795 stream_runservice(stp); 6796 6797 /* 6798 * Set HIPRI flag if message is priority. 6799 */ 6800 if (type >= QPCTL) 6801 flg = MSG_HIPRI; 6802 else 6803 flg = MSG_BAND; 6804 6805 /* 6806 * First process PROTO or PCPROTO blocks, if any. 6807 */ 6808 if (mctl->maxlen >= 0 && type != M_DATA) { 6809 size_t n, bcnt; 6810 char *ubuf; 6811 6812 bcnt = mctl->maxlen; 6813 ubuf = mctl->buf; 6814 while (bp != NULL && bp->b_datap->db_type != M_DATA) { 6815 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 && 6816 copyout(bp->b_rptr, ubuf, n)) { 6817 error = EFAULT; 6818 mutex_enter(&stp->sd_lock); 6819 /* 6820 * clear stream head pri flag based on 6821 * first message type 6822 */ 6823 if (type >= QPCTL) { 6824 ASSERT(type == M_PCPROTO); 6825 stp->sd_flag &= ~STRPRI; 6826 } 6827 more = 0; 6828 freemsg(bp); 6829 goto getmout; 6830 } 6831 ubuf += n; 6832 bp->b_rptr += n; 6833 if (bp->b_rptr >= bp->b_wptr) { 6834 nbp = bp; 6835 bp = bp->b_cont; 6836 freeb(nbp); 6837 } 6838 ASSERT(n <= bcnt); 6839 bcnt -= n; 6840 if (bcnt == 0) 6841 break; 6842 } 6843 mctl->len = mctl->maxlen - bcnt; 6844 } else 6845 mctl->len = -1; 6846 6847 if (bp && bp->b_datap->db_type != M_DATA) { 6848 /* 6849 * More PROTO blocks in msg. 6850 */ 6851 more |= MORECTL; 6852 savemp = bp; 6853 while (bp && bp->b_datap->db_type != M_DATA) { 6854 savemptail = bp; 6855 bp = bp->b_cont; 6856 } 6857 savemptail->b_cont = NULL; 6858 } 6859 6860 /* 6861 * Now process DATA blocks, if any. 6862 */ 6863 if (mdata->maxlen >= 0 && bp) { 6864 /* 6865 * struiocopyout will consume a potential zero-length 6866 * M_DATA even if uio_resid is zero. 6867 */ 6868 size_t oldresid = uiop->uio_resid; 6869 6870 bp = struiocopyout(bp, uiop, &error); 6871 if (error != 0) { 6872 mutex_enter(&stp->sd_lock); 6873 /* 6874 * clear stream head hi pri flag based on 6875 * first message 6876 */ 6877 if (type >= QPCTL) { 6878 ASSERT(type == M_PCPROTO); 6879 stp->sd_flag &= ~STRPRI; 6880 } 6881 more = 0; 6882 freemsg(savemp); 6883 goto getmout; 6884 } 6885 /* 6886 * (pr == 1) indicates a partial read. 6887 */ 6888 if (oldresid > uiop->uio_resid) 6889 pr = 1; 6890 mdata->len = mdata->maxlen - uiop->uio_resid; 6891 } else 6892 mdata->len = -1; 6893 6894 if (bp) { /* more data blocks in msg */ 6895 more |= MOREDATA; 6896 if (savemp) 6897 savemptail->b_cont = bp; 6898 else 6899 savemp = bp; 6900 } 6901 6902 mutex_enter(&stp->sd_lock); 6903 if (savemp) { 6904 if (pr && (savemp->b_datap->db_type == M_DATA) && 6905 msgnodata(savemp)) { 6906 /* 6907 * Avoid queuing a zero-length tail part of 6908 * a message. pr=1 indicates that we read some of 6909 * the message. 6910 */ 6911 freemsg(savemp); 6912 more &= ~MOREDATA; 6913 /* 6914 * clear stream head hi pri flag based on 6915 * first message 6916 */ 6917 if (type >= QPCTL) { 6918 ASSERT(type == M_PCPROTO); 6919 stp->sd_flag &= ~STRPRI; 6920 } 6921 } else { 6922 savemp->b_band = pri; 6923 /* 6924 * If the first message was HIPRI and the one we're 6925 * putting back isn't, then clear STRPRI, otherwise 6926 * set STRPRI again. Note that we must set STRPRI 6927 * again since the flush logic in strrput_nondata() 6928 * may have cleared it while we had sd_lock dropped. 6929 */ 6930 if (type >= QPCTL) { 6931 ASSERT(type == M_PCPROTO); 6932 if (queclass(savemp) < QPCTL) 6933 stp->sd_flag &= ~STRPRI; 6934 else 6935 stp->sd_flag |= STRPRI; 6936 } else if (queclass(savemp) >= QPCTL) { 6937 /* 6938 * The first message was not a HIPRI message, 6939 * but the one we are about to putback is. 6940 * For simplicitly, we do not allow for HIPRI 6941 * messages to be embedded in the message 6942 * body, so just force it to same type as 6943 * first message. 6944 */ 6945 ASSERT(type == M_DATA || type == M_PROTO); 6946 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 6947 savemp->b_datap->db_type = type; 6948 } 6949 if (mark != 0) { 6950 savemp->b_flag |= mark & ~_LASTMARK; 6951 if ((mark & _LASTMARK) && 6952 (stp->sd_mark == NULL)) { 6953 /* 6954 * If another marked message arrived 6955 * while sd_lock was not held sd_mark 6956 * would be non-NULL. 6957 */ 6958 stp->sd_mark = savemp; 6959 } 6960 } 6961 putback(stp, q, savemp, pri); 6962 } 6963 } else { 6964 /* 6965 * The complete message was consumed. 6966 * 6967 * If another M_PCPROTO arrived while sd_lock was not held 6968 * it would have been discarded since STRPRI was still set. 6969 * 6970 * Move the MSG*MARKNEXT information 6971 * to the stream head just in case 6972 * the read queue becomes empty. 6973 * clear stream head hi pri flag based on 6974 * first message 6975 * 6976 * If the stream head was at the mark 6977 * (STRATMARK) before we dropped sd_lock above 6978 * and some data was consumed then we have 6979 * moved past the mark thus STRATMARK is 6980 * cleared. However, if a message arrived in 6981 * strrput during the copyout above causing 6982 * STRATMARK to be set we can not clear that 6983 * flag. 6984 */ 6985 if (type >= QPCTL) { 6986 ASSERT(type == M_PCPROTO); 6987 stp->sd_flag &= ~STRPRI; 6988 } 6989 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 6990 if (mark & MSGMARKNEXT) { 6991 stp->sd_flag &= ~STRNOTATMARK; 6992 stp->sd_flag |= STRATMARK; 6993 } else if (mark & MSGNOTMARKNEXT) { 6994 stp->sd_flag &= ~STRATMARK; 6995 stp->sd_flag |= STRNOTATMARK; 6996 } else { 6997 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 6998 } 6999 } else if (pr && (old_sd_flag & STRATMARK)) { 7000 stp->sd_flag &= ~STRATMARK; 7001 } 7002 } 7003 7004 *flagsp = flg; 7005 *prip = pri; 7006 7007 /* 7008 * Getmsg cleanup processing - if the state of the queue has changed 7009 * some signals may need to be sent and/or poll awakened. 7010 */ 7011 getmout: 7012 qbackenable(q, pri); 7013 7014 /* 7015 * We dropped the stream head lock above. Send all M_SIG messages 7016 * before processing stream head for SIGPOLL messages. 7017 */ 7018 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7019 while ((bp = q->q_first) != NULL && 7020 (bp->b_datap->db_type == M_SIG)) { 7021 /* 7022 * sd_lock is held so the content of the read queue can not 7023 * change. 7024 */ 7025 bp = getq(q); 7026 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7027 7028 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7029 mutex_exit(&stp->sd_lock); 7030 freemsg(bp); 7031 if (STREAM_NEEDSERVICE(stp)) 7032 stream_runservice(stp); 7033 mutex_enter(&stp->sd_lock); 7034 } 7035 7036 /* 7037 * stream head cannot change while we make the determination 7038 * whether or not to send a signal. Drop the flag to allow strrput 7039 * to send firstmsgsigs again. 7040 */ 7041 stp->sd_flag &= ~STRGETINPROG; 7042 7043 /* 7044 * If the type of message at the front of the queue changed 7045 * due to the receive the appropriate signals and pollwakeup events 7046 * are generated. The type of changes are: 7047 * Processed a hipri message, q_first is not hipri. 7048 * Processed a band X message, and q_first is band Y. 7049 * The generated signals and pollwakeups are identical to what 7050 * strrput() generates should the message that is now on q_first 7051 * arrive to an empty read queue. 7052 * 7053 * Note: only strrput will send a signal for a hipri message. 7054 */ 7055 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7056 strsigset_t signals = 0; 7057 strpollset_t pollwakeups = 0; 7058 7059 if (flg & MSG_HIPRI) { 7060 /* 7061 * Removed a hipri message. Regular data at 7062 * the front of the queue. 7063 */ 7064 if (bp->b_band == 0) { 7065 signals = S_INPUT | S_RDNORM; 7066 pollwakeups = POLLIN | POLLRDNORM; 7067 } else { 7068 signals = S_INPUT | S_RDBAND; 7069 pollwakeups = POLLIN | POLLRDBAND; 7070 } 7071 } else if (pri != bp->b_band) { 7072 /* 7073 * The band is different for the new q_first. 7074 */ 7075 if (bp->b_band == 0) { 7076 signals = S_RDNORM; 7077 pollwakeups = POLLIN | POLLRDNORM; 7078 } else { 7079 signals = S_RDBAND; 7080 pollwakeups = POLLIN | POLLRDBAND; 7081 } 7082 } 7083 7084 if (pollwakeups != 0) { 7085 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7086 if (!(stp->sd_rput_opt & SR_POLLIN)) 7087 goto no_pollwake; 7088 stp->sd_rput_opt &= ~SR_POLLIN; 7089 } 7090 mutex_exit(&stp->sd_lock); 7091 pollwakeup(&stp->sd_pollist, pollwakeups); 7092 mutex_enter(&stp->sd_lock); 7093 } 7094 no_pollwake: 7095 7096 if (stp->sd_sigflags & signals) 7097 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7098 } 7099 mutex_exit(&stp->sd_lock); 7100 7101 rvp->r_val1 = more; 7102 return (error); 7103 #undef _LASTMARK 7104 } 7105 7106 /* 7107 * Get the next message from the read queue. If the message is 7108 * priority, STRPRI will have been set by strrput(). This flag 7109 * should be reset only when the entire message at the front of the 7110 * queue as been consumed. 7111 * 7112 * If uiop is NULL all data is returned in mctlp. 7113 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed 7114 * not enabled. 7115 * The timeout parameter is in milliseconds; -1 for infinity. 7116 * This routine handles the consolidation private flags: 7117 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7118 * MSG_DELAYERROR Defer the error check until the queue is empty. 7119 * MSG_HOLDSIG Hold signals while waiting for data. 7120 * MSG_IPEEK Only peek at messages. 7121 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message 7122 * that doesn't fit. 7123 * MSG_NOMARK If the message is marked leave it on the queue. 7124 * 7125 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 7126 */ 7127 int 7128 kstrgetmsg( 7129 struct vnode *vp, 7130 mblk_t **mctlp, 7131 struct uio *uiop, 7132 unsigned char *prip, 7133 int *flagsp, 7134 clock_t timout, 7135 rval_t *rvp) 7136 { 7137 struct stdata *stp; 7138 mblk_t *bp, *nbp; 7139 mblk_t *savemp = NULL; 7140 mblk_t *savemptail = NULL; 7141 int flags; 7142 uint_t old_sd_flag; 7143 int flg; 7144 int more = 0; 7145 int error = 0; 7146 char first = 1; 7147 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 7148 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 7149 unsigned char pri = 0; 7150 queue_t *q; 7151 int pr = 0; /* Partial read successful */ 7152 unsigned char type; 7153 7154 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER, 7155 "kstrgetmsg:%p", vp); 7156 7157 ASSERT(vp->v_stream); 7158 stp = vp->v_stream; 7159 rvp->r_val1 = 0; 7160 7161 mutex_enter(&stp->sd_lock); 7162 7163 if ((error = i_straccess(stp, JCREAD)) != 0) { 7164 mutex_exit(&stp->sd_lock); 7165 return (error); 7166 } 7167 7168 flags = *flagsp; 7169 if (stp->sd_flag & (STRDERR|STPLEX)) { 7170 if ((stp->sd_flag & STPLEX) || 7171 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) { 7172 error = strgeterr(stp, STRDERR|STPLEX, 7173 (flags & MSG_IPEEK)); 7174 if (error != 0) { 7175 mutex_exit(&stp->sd_lock); 7176 return (error); 7177 } 7178 } 7179 } 7180 mutex_exit(&stp->sd_lock); 7181 7182 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) { 7183 case MSG_HIPRI: 7184 if (*prip != 0) 7185 return (EINVAL); 7186 break; 7187 7188 case MSG_ANY: 7189 case MSG_BAND: 7190 break; 7191 7192 default: 7193 return (EINVAL); 7194 } 7195 7196 retry: 7197 q = _RD(stp->sd_wrq); 7198 mutex_enter(&stp->sd_lock); 7199 old_sd_flag = stp->sd_flag; 7200 mark = 0; 7201 for (;;) { 7202 int done = 0; 7203 int waitflag; 7204 int fmode; 7205 mblk_t *q_first = q->q_first; 7206 7207 /* 7208 * This section of the code operates just like the code 7209 * in strgetmsg(). There is a comment there about what 7210 * is going on here. 7211 */ 7212 if (!(flags & (MSG_HIPRI|MSG_BAND))) { 7213 /* Asking for normal, band0 data */ 7214 bp = strget(stp, q, uiop, first, &error); 7215 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7216 if (bp != NULL) { 7217 if (DB_TYPE(bp) == M_SIG) { 7218 strsignal_nolock(stp, *bp->b_rptr, 7219 bp->b_band); 7220 freemsg(bp); 7221 continue; 7222 } else { 7223 break; 7224 } 7225 } 7226 if (error != 0) { 7227 goto getmout; 7228 } 7229 /* 7230 * We can't depend on the value of STRPRI here because 7231 * the stream head may be in transit. Therefore, we 7232 * must look at the type of the first message to 7233 * determine if a high priority messages is waiting 7234 */ 7235 } else if ((flags & MSG_HIPRI) && q_first != NULL && 7236 DB_TYPE(q_first) >= QPCTL && 7237 (bp = getq_noenab(q, 0)) != NULL) { 7238 ASSERT(DB_TYPE(bp) >= QPCTL); 7239 break; 7240 } else if ((flags & MSG_BAND) && q_first != NULL && 7241 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 7242 (bp = getq_noenab(q, 0)) != NULL) { 7243 /* 7244 * Asked for at least band "prip" and got either at 7245 * least that band or a hipri message. 7246 */ 7247 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 7248 if (DB_TYPE(bp) == M_SIG) { 7249 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7250 freemsg(bp); 7251 continue; 7252 } else { 7253 break; 7254 } 7255 } 7256 7257 /* No data. Time to sleep? */ 7258 qbackenable(q, 0); 7259 7260 /* 7261 * Delayed error notification? 7262 */ 7263 if ((stp->sd_flag & (STRDERR|STPLEX)) && 7264 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) { 7265 error = strgeterr(stp, STRDERR|STPLEX, 7266 (flags & MSG_IPEEK)); 7267 if (error != 0) { 7268 mutex_exit(&stp->sd_lock); 7269 return (error); 7270 } 7271 } 7272 7273 /* 7274 * If STRHUP or STREOF, return 0 length control and data. 7275 * If a read(fd,buf,0) has been done, do not sleep, just 7276 * return. 7277 * 7278 * If mctlp == NULL and uiop == NULL, then the code will 7279 * do the strwaitq. This is an understood way of saying 7280 * sleep "polling" until a message is received. 7281 */ 7282 if ((stp->sd_flag & (STRHUP|STREOF)) || 7283 (uiop != NULL && uiop->uio_resid == 0)) { 7284 if (mctlp != NULL) 7285 *mctlp = NULL; 7286 *flagsp = 0; 7287 mutex_exit(&stp->sd_lock); 7288 return (0); 7289 } 7290 7291 waitflag = GETWAIT; 7292 if (flags & 7293 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) { 7294 if (flags & MSG_HOLDSIG) 7295 waitflag |= STR_NOSIG; 7296 if (flags & MSG_IGNERROR) 7297 waitflag |= STR_NOERROR; 7298 if (flags & MSG_IPEEK) 7299 waitflag |= STR_PEEK; 7300 if (flags & MSG_DELAYERROR) 7301 waitflag |= STR_DELAYERR; 7302 } 7303 if (uiop != NULL) 7304 fmode = uiop->uio_fmode; 7305 else 7306 fmode = 0; 7307 7308 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT, 7309 "kstrgetmsg calls strwaitq:%p, %p", 7310 vp, uiop); 7311 if (((error = strwaitq(stp, waitflag, (ssize_t)0, 7312 fmode, timout, &done))) != 0 || done) { 7313 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE, 7314 "kstrgetmsg error or done:%p, %p", 7315 vp, uiop); 7316 mutex_exit(&stp->sd_lock); 7317 return (error); 7318 } 7319 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE, 7320 "kstrgetmsg awakes:%p, %p", vp, uiop); 7321 if ((error = i_straccess(stp, JCREAD)) != 0) { 7322 mutex_exit(&stp->sd_lock); 7323 return (error); 7324 } 7325 first = 0; 7326 } 7327 ASSERT(bp != NULL); 7328 /* 7329 * Extract any mark information. If the message is not completely 7330 * consumed this information will be put in the mblk 7331 * that is putback. 7332 * If MSGMARKNEXT is set and the message is completely consumed 7333 * the STRATMARK flag will be set below. Likewise, if 7334 * MSGNOTMARKNEXT is set and the message is 7335 * completely consumed STRNOTATMARK will be set. 7336 */ 7337 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 7338 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 7339 (MSGMARKNEXT|MSGNOTMARKNEXT)); 7340 pri = bp->b_band; 7341 if (mark != 0) { 7342 /* 7343 * If the caller doesn't want the mark return. 7344 * Used to implement MSG_WAITALL in sockets. 7345 */ 7346 if (flags & MSG_NOMARK) { 7347 putback(stp, q, bp, pri); 7348 qbackenable(q, pri); 7349 mutex_exit(&stp->sd_lock); 7350 return (EWOULDBLOCK); 7351 } 7352 if (bp == stp->sd_mark) { 7353 mark |= _LASTMARK; 7354 stp->sd_mark = NULL; 7355 } 7356 } 7357 7358 /* 7359 * keep track of the first message type 7360 */ 7361 type = bp->b_datap->db_type; 7362 7363 if (bp->b_datap->db_type == M_PASSFP) { 7364 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7365 stp->sd_mark = bp; 7366 bp->b_flag |= mark & ~_LASTMARK; 7367 putback(stp, q, bp, pri); 7368 qbackenable(q, pri); 7369 mutex_exit(&stp->sd_lock); 7370 return (EBADMSG); 7371 } 7372 ASSERT(type != M_SIG); 7373 7374 if (flags & MSG_IPEEK) { 7375 /* 7376 * Clear any struioflag - we do the uiomove over again 7377 * when peeking since it simplifies the code. 7378 * 7379 * Dup the message and put the original back on the queue. 7380 * If dupmsg() fails, try again with copymsg() to see if 7381 * there is indeed a shortage of memory. dupmsg() may fail 7382 * if db_ref in any of the messages reaches its limit. 7383 */ 7384 7385 ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA)); 7386 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) { 7387 /* 7388 * Restore the state of the stream head since we 7389 * need to drop sd_lock (strwaitbuf is sleeping). 7390 */ 7391 size_t size = msgdsize(bp); 7392 7393 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7394 stp->sd_mark = bp; 7395 bp->b_flag |= mark & ~_LASTMARK; 7396 putback(stp, q, bp, pri); 7397 mutex_exit(&stp->sd_lock); 7398 error = strwaitbuf(size, BPRI_HI); 7399 if (error) { 7400 /* 7401 * There is no net change to the queue thus 7402 * no need to qbackenable. 7403 */ 7404 return (error); 7405 } 7406 goto retry; 7407 } 7408 7409 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7410 stp->sd_mark = bp; 7411 bp->b_flag |= mark & ~_LASTMARK; 7412 putback(stp, q, bp, pri); 7413 bp = nbp; 7414 } 7415 7416 /* 7417 * Set this flag so strrput will not generate signals. Need to 7418 * make sure this flag is cleared before leaving this routine 7419 * else signals will stop being sent. 7420 */ 7421 stp->sd_flag |= STRGETINPROG; 7422 mutex_exit(&stp->sd_lock); 7423 7424 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) { 7425 mblk_t *tmp, *prevmp; 7426 7427 /* 7428 * Put first non-data mblk back to stream head and 7429 * cut the mblk chain so sd_rputdatafunc only sees 7430 * M_DATA mblks. We can skip the first mblk since it 7431 * is M_DATA according to the condition above. 7432 */ 7433 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL; 7434 prevmp = tmp, tmp = tmp->b_cont) { 7435 if (DB_TYPE(tmp) != M_DATA) { 7436 prevmp->b_cont = NULL; 7437 mutex_enter(&stp->sd_lock); 7438 putback(stp, q, tmp, tmp->b_band); 7439 mutex_exit(&stp->sd_lock); 7440 break; 7441 } 7442 } 7443 7444 ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA)); 7445 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp, 7446 NULL, NULL, NULL, NULL); 7447 7448 if (bp == NULL) 7449 goto retry; 7450 } 7451 7452 if (STREAM_NEEDSERVICE(stp)) 7453 stream_runservice(stp); 7454 7455 /* 7456 * Set HIPRI flag if message is priority. 7457 */ 7458 if (type >= QPCTL) 7459 flg = MSG_HIPRI; 7460 else 7461 flg = MSG_BAND; 7462 7463 /* 7464 * First process PROTO or PCPROTO blocks, if any. 7465 */ 7466 if (mctlp != NULL && type != M_DATA) { 7467 mblk_t *nbp; 7468 7469 *mctlp = bp; 7470 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA) 7471 bp = bp->b_cont; 7472 nbp = bp->b_cont; 7473 bp->b_cont = NULL; 7474 bp = nbp; 7475 } 7476 7477 if (bp && bp->b_datap->db_type != M_DATA) { 7478 /* 7479 * More PROTO blocks in msg. Will only happen if mctlp is NULL. 7480 */ 7481 more |= MORECTL; 7482 savemp = bp; 7483 while (bp && bp->b_datap->db_type != M_DATA) { 7484 savemptail = bp; 7485 bp = bp->b_cont; 7486 } 7487 savemptail->b_cont = NULL; 7488 } 7489 7490 /* 7491 * Now process DATA blocks, if any. 7492 */ 7493 if (uiop == NULL) { 7494 /* Append data to tail of mctlp */ 7495 7496 ASSERT(bp == NULL || !(bp->b_datap->db_flags & DBLK_UIOA)); 7497 if (mctlp != NULL) { 7498 mblk_t **mpp = mctlp; 7499 7500 while (*mpp != NULL) 7501 mpp = &((*mpp)->b_cont); 7502 *mpp = bp; 7503 bp = NULL; 7504 } 7505 } else if (bp && (bp->b_datap->db_flags & DBLK_UIOA)) { 7506 /* 7507 * A uioa mblk_t chain, as uio processing has already 7508 * been done we simple skip over processing. 7509 */ 7510 bp = NULL; 7511 pr = 0; 7512 7513 } else if (uiop->uio_resid >= 0 && bp) { 7514 size_t oldresid = uiop->uio_resid; 7515 7516 /* 7517 * If a streams message is likely to consist 7518 * of many small mblks, it is pulled up into 7519 * one continuous chunk of memory. 7520 * see longer comment at top of page 7521 * by mblk_pull_len declaration. 7522 */ 7523 7524 if (MBLKL(bp) < mblk_pull_len) { 7525 (void) pullupmsg(bp, -1); 7526 } 7527 7528 bp = struiocopyout(bp, uiop, &error); 7529 if (error != 0) { 7530 if (mctlp != NULL) { 7531 freemsg(*mctlp); 7532 *mctlp = NULL; 7533 } else 7534 freemsg(savemp); 7535 mutex_enter(&stp->sd_lock); 7536 /* 7537 * clear stream head hi pri flag based on 7538 * first message 7539 */ 7540 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7541 ASSERT(type == M_PCPROTO); 7542 stp->sd_flag &= ~STRPRI; 7543 } 7544 more = 0; 7545 goto getmout; 7546 } 7547 /* 7548 * (pr == 1) indicates a partial read. 7549 */ 7550 if (oldresid > uiop->uio_resid) 7551 pr = 1; 7552 } 7553 7554 if (bp) { /* more data blocks in msg */ 7555 more |= MOREDATA; 7556 if (savemp) 7557 savemptail->b_cont = bp; 7558 else 7559 savemp = bp; 7560 } 7561 7562 mutex_enter(&stp->sd_lock); 7563 if (savemp) { 7564 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) { 7565 /* 7566 * When MSG_DISCARDTAIL is set or 7567 * when peeking discard any tail. When peeking this 7568 * is the tail of the dup that was copied out - the 7569 * message has already been putback on the queue. 7570 * Return MOREDATA to the caller even though the data 7571 * is discarded. This is used by sockets (to 7572 * set MSG_TRUNC). 7573 */ 7574 freemsg(savemp); 7575 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7576 ASSERT(type == M_PCPROTO); 7577 stp->sd_flag &= ~STRPRI; 7578 } 7579 } else if (pr && (savemp->b_datap->db_type == M_DATA) && 7580 msgnodata(savemp)) { 7581 /* 7582 * Avoid queuing a zero-length tail part of 7583 * a message. pr=1 indicates that we read some of 7584 * the message. 7585 */ 7586 freemsg(savemp); 7587 more &= ~MOREDATA; 7588 if (type >= QPCTL) { 7589 ASSERT(type == M_PCPROTO); 7590 stp->sd_flag &= ~STRPRI; 7591 } 7592 } else { 7593 savemp->b_band = pri; 7594 /* 7595 * If the first message was HIPRI and the one we're 7596 * putting back isn't, then clear STRPRI, otherwise 7597 * set STRPRI again. Note that we must set STRPRI 7598 * again since the flush logic in strrput_nondata() 7599 * may have cleared it while we had sd_lock dropped. 7600 */ 7601 7602 ASSERT(!(savemp->b_datap->db_flags & DBLK_UIOA)); 7603 if (type >= QPCTL) { 7604 ASSERT(type == M_PCPROTO); 7605 if (queclass(savemp) < QPCTL) 7606 stp->sd_flag &= ~STRPRI; 7607 else 7608 stp->sd_flag |= STRPRI; 7609 } else if (queclass(savemp) >= QPCTL) { 7610 /* 7611 * The first message was not a HIPRI message, 7612 * but the one we are about to putback is. 7613 * For simplicitly, we do not allow for HIPRI 7614 * messages to be embedded in the message 7615 * body, so just force it to same type as 7616 * first message. 7617 */ 7618 ASSERT(type == M_DATA || type == M_PROTO); 7619 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 7620 savemp->b_datap->db_type = type; 7621 } 7622 if (mark != 0) { 7623 if ((mark & _LASTMARK) && 7624 (stp->sd_mark == NULL)) { 7625 /* 7626 * If another marked message arrived 7627 * while sd_lock was not held sd_mark 7628 * would be non-NULL. 7629 */ 7630 stp->sd_mark = savemp; 7631 } 7632 savemp->b_flag |= mark & ~_LASTMARK; 7633 } 7634 putback(stp, q, savemp, pri); 7635 } 7636 } else if (!(flags & MSG_IPEEK)) { 7637 /* 7638 * The complete message was consumed. 7639 * 7640 * If another M_PCPROTO arrived while sd_lock was not held 7641 * it would have been discarded since STRPRI was still set. 7642 * 7643 * Move the MSG*MARKNEXT information 7644 * to the stream head just in case 7645 * the read queue becomes empty. 7646 * clear stream head hi pri flag based on 7647 * first message 7648 * 7649 * If the stream head was at the mark 7650 * (STRATMARK) before we dropped sd_lock above 7651 * and some data was consumed then we have 7652 * moved past the mark thus STRATMARK is 7653 * cleared. However, if a message arrived in 7654 * strrput during the copyout above causing 7655 * STRATMARK to be set we can not clear that 7656 * flag. 7657 * XXX A "perimeter" would help by single-threading strrput, 7658 * strread, strgetmsg and kstrgetmsg. 7659 */ 7660 if (type >= QPCTL) { 7661 ASSERT(type == M_PCPROTO); 7662 stp->sd_flag &= ~STRPRI; 7663 } 7664 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 7665 if (mark & MSGMARKNEXT) { 7666 stp->sd_flag &= ~STRNOTATMARK; 7667 stp->sd_flag |= STRATMARK; 7668 } else if (mark & MSGNOTMARKNEXT) { 7669 stp->sd_flag &= ~STRATMARK; 7670 stp->sd_flag |= STRNOTATMARK; 7671 } else { 7672 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 7673 } 7674 } else if (pr && (old_sd_flag & STRATMARK)) { 7675 stp->sd_flag &= ~STRATMARK; 7676 } 7677 } 7678 7679 *flagsp = flg; 7680 *prip = pri; 7681 7682 /* 7683 * Getmsg cleanup processing - if the state of the queue has changed 7684 * some signals may need to be sent and/or poll awakened. 7685 */ 7686 getmout: 7687 qbackenable(q, pri); 7688 7689 /* 7690 * We dropped the stream head lock above. Send all M_SIG messages 7691 * before processing stream head for SIGPOLL messages. 7692 */ 7693 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7694 while ((bp = q->q_first) != NULL && 7695 (bp->b_datap->db_type == M_SIG)) { 7696 /* 7697 * sd_lock is held so the content of the read queue can not 7698 * change. 7699 */ 7700 bp = getq(q); 7701 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7702 7703 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7704 mutex_exit(&stp->sd_lock); 7705 freemsg(bp); 7706 if (STREAM_NEEDSERVICE(stp)) 7707 stream_runservice(stp); 7708 mutex_enter(&stp->sd_lock); 7709 } 7710 7711 /* 7712 * stream head cannot change while we make the determination 7713 * whether or not to send a signal. Drop the flag to allow strrput 7714 * to send firstmsgsigs again. 7715 */ 7716 stp->sd_flag &= ~STRGETINPROG; 7717 7718 /* 7719 * If the type of message at the front of the queue changed 7720 * due to the receive the appropriate signals and pollwakeup events 7721 * are generated. The type of changes are: 7722 * Processed a hipri message, q_first is not hipri. 7723 * Processed a band X message, and q_first is band Y. 7724 * The generated signals and pollwakeups are identical to what 7725 * strrput() generates should the message that is now on q_first 7726 * arrive to an empty read queue. 7727 * 7728 * Note: only strrput will send a signal for a hipri message. 7729 */ 7730 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7731 strsigset_t signals = 0; 7732 strpollset_t pollwakeups = 0; 7733 7734 if (flg & MSG_HIPRI) { 7735 /* 7736 * Removed a hipri message. Regular data at 7737 * the front of the queue. 7738 */ 7739 if (bp->b_band == 0) { 7740 signals = S_INPUT | S_RDNORM; 7741 pollwakeups = POLLIN | POLLRDNORM; 7742 } else { 7743 signals = S_INPUT | S_RDBAND; 7744 pollwakeups = POLLIN | POLLRDBAND; 7745 } 7746 } else if (pri != bp->b_band) { 7747 /* 7748 * The band is different for the new q_first. 7749 */ 7750 if (bp->b_band == 0) { 7751 signals = S_RDNORM; 7752 pollwakeups = POLLIN | POLLRDNORM; 7753 } else { 7754 signals = S_RDBAND; 7755 pollwakeups = POLLIN | POLLRDBAND; 7756 } 7757 } 7758 7759 if (pollwakeups != 0) { 7760 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7761 if (!(stp->sd_rput_opt & SR_POLLIN)) 7762 goto no_pollwake; 7763 stp->sd_rput_opt &= ~SR_POLLIN; 7764 } 7765 mutex_exit(&stp->sd_lock); 7766 pollwakeup(&stp->sd_pollist, pollwakeups); 7767 mutex_enter(&stp->sd_lock); 7768 } 7769 no_pollwake: 7770 7771 if (stp->sd_sigflags & signals) 7772 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7773 } 7774 mutex_exit(&stp->sd_lock); 7775 7776 rvp->r_val1 = more; 7777 return (error); 7778 #undef _LASTMARK 7779 } 7780 7781 /* 7782 * Put a message downstream. 7783 * 7784 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7785 */ 7786 int 7787 strputmsg( 7788 struct vnode *vp, 7789 struct strbuf *mctl, 7790 struct strbuf *mdata, 7791 unsigned char pri, 7792 int flag, 7793 int fmode) 7794 { 7795 struct stdata *stp; 7796 queue_t *wqp; 7797 mblk_t *mp; 7798 ssize_t msgsize; 7799 ssize_t rmin, rmax; 7800 int error; 7801 struct uio uios; 7802 struct uio *uiop = &uios; 7803 struct iovec iovs; 7804 int xpg4 = 0; 7805 7806 ASSERT(vp->v_stream); 7807 stp = vp->v_stream; 7808 wqp = stp->sd_wrq; 7809 7810 /* 7811 * If it is an XPG4 application, we need to send 7812 * SIGPIPE below 7813 */ 7814 7815 xpg4 = (flag & MSG_XPG4) ? 1 : 0; 7816 flag &= ~MSG_XPG4; 7817 7818 if (audit_active) 7819 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode); 7820 7821 mutex_enter(&stp->sd_lock); 7822 7823 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7824 mutex_exit(&stp->sd_lock); 7825 return (error); 7826 } 7827 7828 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7829 error = strwriteable(stp, B_FALSE, xpg4); 7830 if (error != 0) { 7831 mutex_exit(&stp->sd_lock); 7832 return (error); 7833 } 7834 } 7835 7836 mutex_exit(&stp->sd_lock); 7837 7838 /* 7839 * Check for legal flag value. 7840 */ 7841 switch (flag) { 7842 case MSG_HIPRI: 7843 if ((mctl->len < 0) || (pri != 0)) 7844 return (EINVAL); 7845 break; 7846 case MSG_BAND: 7847 break; 7848 7849 default: 7850 return (EINVAL); 7851 } 7852 7853 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN, 7854 "strputmsg in:stp %p", stp); 7855 7856 /* get these values from those cached in the stream head */ 7857 rmin = stp->sd_qn_minpsz; 7858 rmax = stp->sd_qn_maxpsz; 7859 7860 /* 7861 * Make sure ctl and data sizes together fall within the 7862 * limits of the max and min receive packet sizes and do 7863 * not exceed system limit. 7864 */ 7865 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7866 if (rmax == 0) { 7867 return (ERANGE); 7868 } 7869 /* 7870 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7871 * Needed to prevent partial failures in the strmakedata loop. 7872 */ 7873 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7874 rmax = stp->sd_maxblk; 7875 7876 if ((msgsize = mdata->len) < 0) { 7877 msgsize = 0; 7878 rmin = 0; /* no range check for NULL data part */ 7879 } 7880 if ((msgsize < rmin) || 7881 ((msgsize > rmax) && (rmax != INFPSZ)) || 7882 (mctl->len > strctlsz)) { 7883 return (ERANGE); 7884 } 7885 7886 /* 7887 * Setup uio and iov for data part 7888 */ 7889 iovs.iov_base = mdata->buf; 7890 iovs.iov_len = msgsize; 7891 uios.uio_iov = &iovs; 7892 uios.uio_iovcnt = 1; 7893 uios.uio_loffset = 0; 7894 uios.uio_segflg = UIO_USERSPACE; 7895 uios.uio_fmode = fmode; 7896 uios.uio_extflg = UIO_COPY_DEFAULT; 7897 uios.uio_resid = msgsize; 7898 uios.uio_offset = 0; 7899 7900 /* Ignore flow control in strput for HIPRI */ 7901 if (flag & MSG_HIPRI) 7902 flag |= MSG_IGNFLOW; 7903 7904 for (;;) { 7905 int done = 0; 7906 7907 /* 7908 * strput will always free the ctl mblk - even when strput 7909 * fails. 7910 */ 7911 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) { 7912 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7913 "strputmsg out:stp %p out %d error %d", 7914 stp, 1, error); 7915 return (error); 7916 } 7917 /* 7918 * Verify that the whole message can be transferred by 7919 * strput. 7920 */ 7921 ASSERT(stp->sd_maxblk == INFPSZ || 7922 stp->sd_maxblk >= mdata->len); 7923 7924 msgsize = mdata->len; 7925 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7926 mdata->len = msgsize; 7927 7928 if (error == 0) 7929 break; 7930 7931 if (error != EWOULDBLOCK) 7932 goto out; 7933 7934 mutex_enter(&stp->sd_lock); 7935 /* 7936 * Check for a missed wakeup. 7937 * Needed since strput did not hold sd_lock across 7938 * the canputnext. 7939 */ 7940 if (bcanputnext(wqp, pri)) { 7941 /* Try again */ 7942 mutex_exit(&stp->sd_lock); 7943 continue; 7944 } 7945 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT, 7946 "strputmsg wait:stp %p waits pri %d", stp, pri); 7947 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1, 7948 &done)) != 0) || done) { 7949 mutex_exit(&stp->sd_lock); 7950 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7951 "strputmsg out:q %p out %d error %d", 7952 stp, 0, error); 7953 return (error); 7954 } 7955 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE, 7956 "strputmsg wake:stp %p wakes", stp); 7957 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7958 mutex_exit(&stp->sd_lock); 7959 return (error); 7960 } 7961 mutex_exit(&stp->sd_lock); 7962 } 7963 out: 7964 /* 7965 * For historic reasons, applications expect EAGAIN 7966 * when data mblk could not be allocated. so change 7967 * ENOMEM back to EAGAIN 7968 */ 7969 if (error == ENOMEM) 7970 error = EAGAIN; 7971 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7972 "strputmsg out:stp %p out %d error %d", stp, 2, error); 7973 return (error); 7974 } 7975 7976 /* 7977 * Put a message downstream. 7978 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop. 7979 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio 7980 * and the fmode parameter. 7981 * 7982 * This routine handles the consolidation private flags: 7983 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7984 * MSG_HOLDSIG Hold signals while waiting for data. 7985 * MSG_IGNFLOW Don't check streams flow control. 7986 * 7987 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7988 */ 7989 int 7990 kstrputmsg( 7991 struct vnode *vp, 7992 mblk_t *mctl, 7993 struct uio *uiop, 7994 ssize_t msgsize, 7995 unsigned char pri, 7996 int flag, 7997 int fmode) 7998 { 7999 struct stdata *stp; 8000 queue_t *wqp; 8001 ssize_t rmin, rmax; 8002 int error; 8003 8004 ASSERT(vp->v_stream); 8005 stp = vp->v_stream; 8006 wqp = stp->sd_wrq; 8007 if (audit_active) 8008 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode); 8009 if (mctl == NULL) 8010 return (EINVAL); 8011 8012 mutex_enter(&stp->sd_lock); 8013 8014 if ((error = i_straccess(stp, JCWRITE)) != 0) { 8015 mutex_exit(&stp->sd_lock); 8016 freemsg(mctl); 8017 return (error); 8018 } 8019 8020 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) { 8021 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 8022 error = strwriteable(stp, B_FALSE, B_TRUE); 8023 if (error != 0) { 8024 mutex_exit(&stp->sd_lock); 8025 freemsg(mctl); 8026 return (error); 8027 } 8028 } 8029 } 8030 8031 mutex_exit(&stp->sd_lock); 8032 8033 /* 8034 * Check for legal flag value. 8035 */ 8036 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) { 8037 case MSG_HIPRI: 8038 if (pri != 0) { 8039 freemsg(mctl); 8040 return (EINVAL); 8041 } 8042 break; 8043 case MSG_BAND: 8044 break; 8045 default: 8046 freemsg(mctl); 8047 return (EINVAL); 8048 } 8049 8050 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN, 8051 "kstrputmsg in:stp %p", stp); 8052 8053 /* get these values from those cached in the stream head */ 8054 rmin = stp->sd_qn_minpsz; 8055 rmax = stp->sd_qn_maxpsz; 8056 8057 /* 8058 * Make sure ctl and data sizes together fall within the 8059 * limits of the max and min receive packet sizes and do 8060 * not exceed system limit. 8061 */ 8062 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 8063 if (rmax == 0) { 8064 freemsg(mctl); 8065 return (ERANGE); 8066 } 8067 /* 8068 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 8069 * Needed to prevent partial failures in the strmakedata loop. 8070 */ 8071 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 8072 rmax = stp->sd_maxblk; 8073 8074 if (uiop == NULL) { 8075 msgsize = -1; 8076 rmin = -1; /* no range check for NULL data part */ 8077 } else { 8078 /* Use uio flags as well as the fmode parameter flags */ 8079 fmode |= uiop->uio_fmode; 8080 8081 if ((msgsize < rmin) || 8082 ((msgsize > rmax) && (rmax != INFPSZ))) { 8083 freemsg(mctl); 8084 return (ERANGE); 8085 } 8086 } 8087 8088 /* Ignore flow control in strput for HIPRI */ 8089 if (flag & MSG_HIPRI) 8090 flag |= MSG_IGNFLOW; 8091 8092 for (;;) { 8093 int done = 0; 8094 int waitflag; 8095 mblk_t *mp; 8096 8097 /* 8098 * strput will always free the ctl mblk - even when strput 8099 * fails. If MSG_IGNFLOW is set then any error returned 8100 * will cause us to break the loop, so we don't need a copy 8101 * of the message. If MSG_IGNFLOW is not set, then we can 8102 * get hit by flow control and be forced to try again. In 8103 * this case we need to have a copy of the message. We 8104 * do this using copymsg since the message may get modified 8105 * by something below us. 8106 * 8107 * We've observed that many TPI providers do not check db_ref 8108 * on the control messages but blindly reuse them for the 8109 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more 8110 * friendly to such providers than using dupmsg. Also, note 8111 * that sockfs uses MSG_IGNFLOW for all TPI control messages. 8112 * Only data messages are subject to flow control, hence 8113 * subject to this copymsg. 8114 */ 8115 if (flag & MSG_IGNFLOW) { 8116 mp = mctl; 8117 mctl = NULL; 8118 } else { 8119 do { 8120 /* 8121 * If a message has a free pointer, the message 8122 * must be dupmsg to maintain this pointer. 8123 * Code using this facility must be sure 8124 * that modules below will not change the 8125 * contents of the dblk without checking db_ref 8126 * first. If db_ref is > 1, then the module 8127 * needs to do a copymsg first. Otherwise, 8128 * the contents of the dblk may become 8129 * inconsistent because the freesmg/freeb below 8130 * may end up calling atomic_add_32_nv. 8131 * The atomic_add_32_nv in freeb (accessing 8132 * all of db_ref, db_type, db_flags, and 8133 * db_struioflag) does not prevent other threads 8134 * from concurrently trying to modify e.g. 8135 * db_type. 8136 */ 8137 if (mctl->b_datap->db_frtnp != NULL) 8138 mp = dupmsg(mctl); 8139 else 8140 mp = copymsg(mctl); 8141 8142 if (mp != NULL) 8143 break; 8144 8145 error = strwaitbuf(msgdsize(mctl), BPRI_MED); 8146 if (error) { 8147 freemsg(mctl); 8148 return (error); 8149 } 8150 } while (mp == NULL); 8151 } 8152 /* 8153 * Verify that all of msgsize can be transferred by 8154 * strput. 8155 */ 8156 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize); 8157 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 8158 if (error == 0) 8159 break; 8160 8161 if (error != EWOULDBLOCK) 8162 goto out; 8163 8164 /* 8165 * IF MSG_IGNFLOW is set we should have broken out of loop 8166 * above. 8167 */ 8168 ASSERT(!(flag & MSG_IGNFLOW)); 8169 mutex_enter(&stp->sd_lock); 8170 /* 8171 * Check for a missed wakeup. 8172 * Needed since strput did not hold sd_lock across 8173 * the canputnext. 8174 */ 8175 if (bcanputnext(wqp, pri)) { 8176 /* Try again */ 8177 mutex_exit(&stp->sd_lock); 8178 continue; 8179 } 8180 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT, 8181 "kstrputmsg wait:stp %p waits pri %d", stp, pri); 8182 8183 waitflag = WRITEWAIT; 8184 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) { 8185 if (flag & MSG_HOLDSIG) 8186 waitflag |= STR_NOSIG; 8187 if (flag & MSG_IGNERROR) 8188 waitflag |= STR_NOERROR; 8189 } 8190 if (((error = strwaitq(stp, waitflag, 8191 (ssize_t)0, fmode, -1, &done)) != 0) || done) { 8192 mutex_exit(&stp->sd_lock); 8193 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8194 "kstrputmsg out:stp %p out %d error %d", 8195 stp, 0, error); 8196 freemsg(mctl); 8197 return (error); 8198 } 8199 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE, 8200 "kstrputmsg wake:stp %p wakes", stp); 8201 if ((error = i_straccess(stp, JCWRITE)) != 0) { 8202 mutex_exit(&stp->sd_lock); 8203 freemsg(mctl); 8204 return (error); 8205 } 8206 mutex_exit(&stp->sd_lock); 8207 } 8208 out: 8209 freemsg(mctl); 8210 /* 8211 * For historic reasons, applications expect EAGAIN 8212 * when data mblk could not be allocated. so change 8213 * ENOMEM back to EAGAIN 8214 */ 8215 if (error == ENOMEM) 8216 error = EAGAIN; 8217 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8218 "kstrputmsg out:stp %p out %d error %d", stp, 2, error); 8219 return (error); 8220 } 8221 8222 /* 8223 * Determines whether the necessary conditions are set on a stream 8224 * for it to be readable, writeable, or have exceptions. 8225 * 8226 * strpoll handles the consolidation private events: 8227 * POLLNOERR Do not return POLLERR even if there are stream 8228 * head errors. 8229 * Used by sockfs. 8230 * POLLRDDATA Do not return POLLIN unless at least one message on 8231 * the queue contains one or more M_DATA mblks. Thus 8232 * when this flag is set a queue with only 8233 * M_PROTO/M_PCPROTO mblks does not return POLLIN. 8234 * Used by sockfs to ignore T_EXDATA_IND messages. 8235 * 8236 * Note: POLLRDDATA assumes that synch streams only return messages with 8237 * an M_DATA attached (i.e. not messages consisting of only 8238 * an M_PROTO/M_PCPROTO part). 8239 */ 8240 int 8241 strpoll( 8242 struct stdata *stp, 8243 short events_arg, 8244 int anyyet, 8245 short *reventsp, 8246 struct pollhead **phpp) 8247 { 8248 int events = (ushort_t)events_arg; 8249 int retevents = 0; 8250 mblk_t *mp; 8251 qband_t *qbp; 8252 long sd_flags = stp->sd_flag; 8253 int headlocked = 0; 8254 8255 /* 8256 * For performance, a single 'if' tests for most possible edge 8257 * conditions in one shot 8258 */ 8259 if (sd_flags & (STPLEX | STRDERR | STWRERR)) { 8260 if (sd_flags & STPLEX) { 8261 *reventsp = POLLNVAL; 8262 return (EINVAL); 8263 } 8264 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) && 8265 (sd_flags & STRDERR)) || 8266 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) && 8267 (sd_flags & STWRERR))) { 8268 if (!(events & POLLNOERR)) { 8269 *reventsp = POLLERR; 8270 return (0); 8271 } 8272 } 8273 } 8274 if (sd_flags & STRHUP) { 8275 retevents |= POLLHUP; 8276 } else if (events & (POLLWRNORM | POLLWRBAND)) { 8277 queue_t *tq; 8278 queue_t *qp = stp->sd_wrq; 8279 8280 claimstr(qp); 8281 /* Find next module forward that has a service procedure */ 8282 tq = qp->q_next->q_nfsrv; 8283 ASSERT(tq != NULL); 8284 8285 polllock(&stp->sd_pollist, QLOCK(tq)); 8286 if (events & POLLWRNORM) { 8287 queue_t *sqp; 8288 8289 if (tq->q_flag & QFULL) 8290 /* ensure backq svc procedure runs */ 8291 tq->q_flag |= QWANTW; 8292 else if ((sqp = stp->sd_struiowrq) != NULL) { 8293 /* Check sync stream barrier write q */ 8294 mutex_exit(QLOCK(tq)); 8295 polllock(&stp->sd_pollist, QLOCK(sqp)); 8296 if (sqp->q_flag & QFULL) 8297 /* ensure pollwakeup() is done */ 8298 sqp->q_flag |= QWANTWSYNC; 8299 else 8300 retevents |= POLLOUT; 8301 /* More write events to process ??? */ 8302 if (! (events & POLLWRBAND)) { 8303 mutex_exit(QLOCK(sqp)); 8304 releasestr(qp); 8305 goto chkrd; 8306 } 8307 mutex_exit(QLOCK(sqp)); 8308 polllock(&stp->sd_pollist, QLOCK(tq)); 8309 } else 8310 retevents |= POLLOUT; 8311 } 8312 if (events & POLLWRBAND) { 8313 qbp = tq->q_bandp; 8314 if (qbp) { 8315 while (qbp) { 8316 if (qbp->qb_flag & QB_FULL) 8317 qbp->qb_flag |= QB_WANTW; 8318 else 8319 retevents |= POLLWRBAND; 8320 qbp = qbp->qb_next; 8321 } 8322 } else { 8323 retevents |= POLLWRBAND; 8324 } 8325 } 8326 mutex_exit(QLOCK(tq)); 8327 releasestr(qp); 8328 } 8329 chkrd: 8330 if (sd_flags & STRPRI) { 8331 retevents |= (events & POLLPRI); 8332 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) { 8333 queue_t *qp = _RD(stp->sd_wrq); 8334 int normevents = (events & (POLLIN | POLLRDNORM)); 8335 8336 /* 8337 * Note: Need to do polllock() here since ps_lock may be 8338 * held. See bug 4191544. 8339 */ 8340 polllock(&stp->sd_pollist, &stp->sd_lock); 8341 headlocked = 1; 8342 mp = qp->q_first; 8343 while (mp) { 8344 /* 8345 * For POLLRDDATA we scan b_cont and b_next until we 8346 * find an M_DATA. 8347 */ 8348 if ((events & POLLRDDATA) && 8349 mp->b_datap->db_type != M_DATA) { 8350 mblk_t *nmp = mp->b_cont; 8351 8352 while (nmp != NULL && 8353 nmp->b_datap->db_type != M_DATA) 8354 nmp = nmp->b_cont; 8355 if (nmp == NULL) { 8356 mp = mp->b_next; 8357 continue; 8358 } 8359 } 8360 if (mp->b_band == 0) 8361 retevents |= normevents; 8362 else 8363 retevents |= (events & (POLLIN | POLLRDBAND)); 8364 break; 8365 } 8366 if (! (retevents & normevents) && 8367 (stp->sd_wakeq & RSLEEP)) { 8368 /* 8369 * Sync stream barrier read queue has data. 8370 */ 8371 retevents |= normevents; 8372 } 8373 /* Treat eof as normal data */ 8374 if (sd_flags & STREOF) 8375 retevents |= normevents; 8376 } 8377 8378 *reventsp = (short)retevents; 8379 if (retevents) { 8380 if (headlocked) 8381 mutex_exit(&stp->sd_lock); 8382 return (0); 8383 } 8384 8385 /* 8386 * If poll() has not found any events yet, set up event cell 8387 * to wake up the poll if a requested event occurs on this 8388 * stream. Check for collisions with outstanding poll requests. 8389 */ 8390 if (!anyyet) { 8391 *phpp = &stp->sd_pollist; 8392 if (headlocked == 0) { 8393 polllock(&stp->sd_pollist, &stp->sd_lock); 8394 headlocked = 1; 8395 } 8396 stp->sd_rput_opt |= SR_POLLIN; 8397 } 8398 if (headlocked) 8399 mutex_exit(&stp->sd_lock); 8400 return (0); 8401 } 8402 8403 /* 8404 * The purpose of putback() is to assure sleeping polls/reads 8405 * are awakened when there are no new messages arriving at the, 8406 * stream head, and a message is placed back on the read queue. 8407 * 8408 * sd_lock must be held when messages are placed back on stream 8409 * head. (getq() holds sd_lock when it removes messages from 8410 * the queue) 8411 */ 8412 8413 static void 8414 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band) 8415 { 8416 mblk_t *qfirst; 8417 ASSERT(MUTEX_HELD(&stp->sd_lock)); 8418 8419 /* 8420 * As a result of lock-step ordering around q_lock and sd_lock, 8421 * it's possible for function calls like putnext() and 8422 * canputnext() to get an inaccurate picture of how much 8423 * data is really being processed at the stream head. 8424 * We only consolidate with existing messages on the queue 8425 * if the length of the message we want to put back is smaller 8426 * than the queue hiwater mark. 8427 */ 8428 if ((stp->sd_rput_opt & SR_CONSOL_DATA) && 8429 (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) && 8430 (DB_TYPE(qfirst) == M_DATA) && 8431 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) && 8432 ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) && 8433 (mp_cont_len(bp, NULL) < q->q_hiwat)) { 8434 /* 8435 * We use the same logic as defined in strrput() 8436 * but in reverse as we are putting back onto the 8437 * queue and want to retain byte ordering. 8438 * Consolidate M_DATA messages with M_DATA ONLY. 8439 * strrput() allows the consolidation of M_DATA onto 8440 * M_PROTO | M_PCPROTO but not the other way round. 8441 * 8442 * The consolidation does not take place if the message 8443 * we are returning to the queue is marked with either 8444 * of the marks or the delim flag or if q_first 8445 * is marked with MSGMARK. The MSGMARK check is needed to 8446 * handle the odd semantics of MSGMARK where essentially 8447 * the whole message is to be treated as marked. 8448 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first 8449 * to the front of the b_cont chain. 8450 */ 8451 rmvq_noenab(q, qfirst); 8452 8453 /* 8454 * The first message in the b_cont list 8455 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 8456 * We need to handle the case where we 8457 * are appending: 8458 * 8459 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 8460 * 2) a MSGMARKNEXT to a plain message. 8461 * 3) a MSGNOTMARKNEXT to a plain message 8462 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 8463 * message. 8464 * 8465 * Thus we never append a MSGMARKNEXT or 8466 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 8467 */ 8468 if (qfirst->b_flag & MSGMARKNEXT) { 8469 bp->b_flag |= MSGMARKNEXT; 8470 bp->b_flag &= ~MSGNOTMARKNEXT; 8471 qfirst->b_flag &= ~MSGMARKNEXT; 8472 } else if (qfirst->b_flag & MSGNOTMARKNEXT) { 8473 bp->b_flag |= MSGNOTMARKNEXT; 8474 qfirst->b_flag &= ~MSGNOTMARKNEXT; 8475 } 8476 8477 linkb(bp, qfirst); 8478 } 8479 (void) putbq(q, bp); 8480 8481 /* 8482 * A message may have come in when the sd_lock was dropped in the 8483 * calling routine. If this is the case and STR*ATMARK info was 8484 * received, need to move that from the stream head to the q_last 8485 * so that SIOCATMARK can return the proper value. 8486 */ 8487 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) { 8488 unsigned short *flagp = &q->q_last->b_flag; 8489 uint_t b_flag = (uint_t)*flagp; 8490 8491 if (stp->sd_flag & STRATMARK) { 8492 b_flag &= ~MSGNOTMARKNEXT; 8493 b_flag |= MSGMARKNEXT; 8494 stp->sd_flag &= ~STRATMARK; 8495 } else { 8496 b_flag &= ~MSGMARKNEXT; 8497 b_flag |= MSGNOTMARKNEXT; 8498 stp->sd_flag &= ~STRNOTATMARK; 8499 } 8500 *flagp = (unsigned short) b_flag; 8501 } 8502 8503 #ifdef DEBUG 8504 /* 8505 * Make sure that the flags are not messed up. 8506 */ 8507 { 8508 mblk_t *mp; 8509 mp = q->q_last; 8510 while (mp != NULL) { 8511 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 8512 (MSGMARKNEXT|MSGNOTMARKNEXT)); 8513 mp = mp->b_cont; 8514 } 8515 } 8516 #endif 8517 if (q->q_first == bp) { 8518 short pollevents; 8519 8520 if (stp->sd_flag & RSLEEP) { 8521 stp->sd_flag &= ~RSLEEP; 8522 cv_broadcast(&q->q_wait); 8523 } 8524 if (stp->sd_flag & STRPRI) { 8525 pollevents = POLLPRI; 8526 } else { 8527 if (band == 0) { 8528 if (!(stp->sd_rput_opt & SR_POLLIN)) 8529 return; 8530 stp->sd_rput_opt &= ~SR_POLLIN; 8531 pollevents = POLLIN | POLLRDNORM; 8532 } else { 8533 pollevents = POLLIN | POLLRDBAND; 8534 } 8535 } 8536 mutex_exit(&stp->sd_lock); 8537 pollwakeup(&stp->sd_pollist, pollevents); 8538 mutex_enter(&stp->sd_lock); 8539 } 8540 } 8541 8542 /* 8543 * Return the held vnode attached to the stream head of a 8544 * given queue 8545 * It is the responsibility of the calling routine to ensure 8546 * that the queue does not go away (e.g. pop). 8547 */ 8548 vnode_t * 8549 strq2vp(queue_t *qp) 8550 { 8551 vnode_t *vp; 8552 vp = STREAM(qp)->sd_vnode; 8553 ASSERT(vp != NULL); 8554 VN_HOLD(vp); 8555 return (vp); 8556 } 8557 8558 /* 8559 * return the stream head write queue for the given vp 8560 * It is the responsibility of the calling routine to ensure 8561 * that the stream or vnode do not close. 8562 */ 8563 queue_t * 8564 strvp2wq(vnode_t *vp) 8565 { 8566 ASSERT(vp->v_stream != NULL); 8567 return (vp->v_stream->sd_wrq); 8568 } 8569 8570 /* 8571 * pollwakeup stream head 8572 * It is the responsibility of the calling routine to ensure 8573 * that the stream or vnode do not close. 8574 */ 8575 void 8576 strpollwakeup(vnode_t *vp, short event) 8577 { 8578 ASSERT(vp->v_stream); 8579 pollwakeup(&vp->v_stream->sd_pollist, event); 8580 } 8581 8582 /* 8583 * Mate the stream heads of two vnodes together. If the two vnodes are the 8584 * same, we just make the write-side point at the read-side -- otherwise, 8585 * we do a full mate. Only works on vnodes associated with streams that are 8586 * still being built and thus have only a stream head. 8587 */ 8588 void 8589 strmate(vnode_t *vp1, vnode_t *vp2) 8590 { 8591 queue_t *wrq1 = strvp2wq(vp1); 8592 queue_t *wrq2 = strvp2wq(vp2); 8593 8594 /* 8595 * Verify that there are no modules on the stream yet. We also 8596 * rely on the stream head always having a service procedure to 8597 * avoid tweaking q_nfsrv. 8598 */ 8599 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL); 8600 ASSERT(wrq1->q_qinfo->qi_srvp != NULL); 8601 ASSERT(wrq2->q_qinfo->qi_srvp != NULL); 8602 8603 /* 8604 * If the queues are the same, just twist; otherwise do a full mate. 8605 */ 8606 if (wrq1 == wrq2) { 8607 wrq1->q_next = _RD(wrq1); 8608 } else { 8609 wrq1->q_next = _RD(wrq2); 8610 wrq2->q_next = _RD(wrq1); 8611 STREAM(wrq1)->sd_mate = STREAM(wrq2); 8612 STREAM(wrq1)->sd_flag |= STRMATE; 8613 STREAM(wrq2)->sd_mate = STREAM(wrq1); 8614 STREAM(wrq2)->sd_flag |= STRMATE; 8615 } 8616 } 8617 8618 /* 8619 * XXX will go away when console is correctly fixed. 8620 * Clean up the console PIDS, from previous I_SETSIG, 8621 * called only for cnopen which never calls strclean(). 8622 */ 8623 void 8624 str_cn_clean(struct vnode *vp) 8625 { 8626 strsig_t *ssp, *pssp, *tssp; 8627 struct stdata *stp; 8628 struct pid *pidp; 8629 int update = 0; 8630 8631 ASSERT(vp->v_stream); 8632 stp = vp->v_stream; 8633 pssp = NULL; 8634 mutex_enter(&stp->sd_lock); 8635 ssp = stp->sd_siglist; 8636 while (ssp) { 8637 mutex_enter(&pidlock); 8638 pidp = ssp->ss_pidp; 8639 /* 8640 * Get rid of PID if the proc is gone. 8641 */ 8642 if (pidp->pid_prinactive) { 8643 tssp = ssp->ss_next; 8644 if (pssp) 8645 pssp->ss_next = tssp; 8646 else 8647 stp->sd_siglist = tssp; 8648 ASSERT(pidp->pid_ref <= 1); 8649 PID_RELE(ssp->ss_pidp); 8650 mutex_exit(&pidlock); 8651 kmem_free(ssp, sizeof (strsig_t)); 8652 update = 1; 8653 ssp = tssp; 8654 continue; 8655 } else 8656 mutex_exit(&pidlock); 8657 pssp = ssp; 8658 ssp = ssp->ss_next; 8659 } 8660 if (update) { 8661 stp->sd_sigflags = 0; 8662 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 8663 stp->sd_sigflags |= ssp->ss_events; 8664 } 8665 mutex_exit(&stp->sd_lock); 8666 } 8667 8668 /* 8669 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 8670 */ 8671 static boolean_t 8672 msghasdata(mblk_t *bp) 8673 { 8674 for (; bp; bp = bp->b_cont) 8675 if (bp->b_datap->db_type == M_DATA) { 8676 ASSERT(bp->b_wptr >= bp->b_rptr); 8677 if (bp->b_wptr > bp->b_rptr) 8678 return (B_TRUE); 8679 } 8680 return (B_FALSE); 8681 } 8682 8683 /* 8684 * Called on the first strget() of a sodirect/uioa enabled streamhead, 8685 * if any mblk_t(s) enqueued they must first be uioamove()d before uioa 8686 * can be enabled for the underlying transport's use. 8687 */ 8688 void 8689 struioainit(queue_t *q, sodirect_t *sodp, uio_t *uiop) 8690 { 8691 uioa_t *uioap = (uioa_t *)uiop; 8692 mblk_t *bp; 8693 mblk_t *lbp = NULL; 8694 mblk_t *wbp; 8695 int len; 8696 int error; 8697 8698 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 8699 ASSERT(&sodp->sod_uioa == uioap); 8700 8701 /* 8702 * Walk first b_cont chain in sod_q 8703 * and schedule any M_DATA mblk_t's for uio asynchronous move. 8704 */ 8705 mutex_enter(QLOCK(q)); 8706 if ((bp = q->q_first) == NULL) { 8707 mutex_exit(QLOCK(q)); 8708 return; 8709 } 8710 /* Walk the chain */ 8711 wbp = bp; 8712 do { 8713 if (wbp->b_datap->db_type != M_DATA) { 8714 /* Not M_DATA, no more uioa */ 8715 goto nouioa; 8716 } 8717 if ((len = wbp->b_wptr - wbp->b_rptr) > 0) { 8718 /* Have a M_DATA mblk_t with data */ 8719 if (len > uioap->uio_resid) { 8720 /* Not enough uio sapce */ 8721 goto nouioa; 8722 } 8723 ASSERT(!(wbp->b_datap->db_flags & DBLK_UIOA)); 8724 error = uioamove(wbp->b_rptr, len, 8725 UIO_READ, uioap); 8726 if (!error) { 8727 /* Scheduled, mark dblk_t as such */ 8728 wbp->b_datap->db_flags |= DBLK_UIOA; 8729 } else { 8730 /* Break the mblk chain */ 8731 goto nouioa; 8732 } 8733 } 8734 /* Save last wbp processed */ 8735 lbp = wbp; 8736 } while ((wbp = wbp->b_cont) != NULL); 8737 8738 mutex_exit(QLOCK(q)); 8739 return; 8740 8741 nouioa: 8742 /* No more uioa */ 8743 uioap->uioa_state &= UIOA_CLR; 8744 uioap->uioa_state |= UIOA_FINI; 8745 8746 /* 8747 * If we processed 1 or more mblk_t(s) then we need to split the 8748 * current mblk_t chain in 2 so that all the uioamove()ed mblk_t(s) 8749 * are in the current chain and the rest are in the following new 8750 * chain. 8751 */ 8752 if (lbp != NULL) { 8753 /* New end of current chain */ 8754 lbp->b_cont = NULL; 8755 8756 /* Insert new chain wbp after bp */ 8757 if ((wbp->b_next = bp->b_next) != NULL) 8758 bp->b_next->b_prev = wbp; 8759 else 8760 q->q_last = wbp; 8761 wbp->b_prev = bp; 8762 bp->b_next = wbp; 8763 } 8764 mutex_exit(QLOCK(q)); 8765 } 8766