xref: /titanic_50/usr/src/uts/common/os/streamio.c (revision afd1ac7b1c9a8cdf273c865aa5e9a14620341443)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
23 /*	  All Rights Reserved  	*/
24 
25 
26 /*
27  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/types.h>
34 #include <sys/sysmacros.h>
35 #include <sys/param.h>
36 #include <sys/errno.h>
37 #include <sys/signal.h>
38 #include <sys/stat.h>
39 #include <sys/proc.h>
40 #include <sys/cred.h>
41 #include <sys/user.h>
42 #include <sys/vnode.h>
43 #include <sys/file.h>
44 #include <sys/stream.h>
45 #include <sys/strsubr.h>
46 #include <sys/stropts.h>
47 #include <sys/tihdr.h>
48 #include <sys/var.h>
49 #include <sys/poll.h>
50 #include <sys/termio.h>
51 #include <sys/ttold.h>
52 #include <sys/systm.h>
53 #include <sys/uio.h>
54 #include <sys/cmn_err.h>
55 #include <sys/sad.h>
56 #include <sys/priocntl.h>
57 #include <sys/jioctl.h>
58 #include <sys/procset.h>
59 #include <sys/session.h>
60 #include <sys/kmem.h>
61 #include <sys/filio.h>
62 #include <sys/vtrace.h>
63 #include <sys/debug.h>
64 #include <sys/strredir.h>
65 #include <sys/fs/fifonode.h>
66 #include <sys/fs/snode.h>
67 #include <sys/strlog.h>
68 #include <sys/strsun.h>
69 #include <sys/project.h>
70 #include <sys/kbio.h>
71 #include <sys/msio.h>
72 #include <sys/tty.h>
73 #include <sys/ptyvar.h>
74 #include <sys/vuid_event.h>
75 #include <sys/modctl.h>
76 #include <sys/sunddi.h>
77 #include <sys/sunldi_impl.h>
78 #include <sys/autoconf.h>
79 #include <sys/policy.h>
80 
81 /*
82  * what is mblk_pull_len?
83  *
84  * If a streams message consists of many short messages,
85  * a performance degradation occurs from copyout overhead.
86  * To decrease the per mblk overhead, messages that are
87  * likely to consist of many small mblks are pulled up into
88  * one continuous chunk of memory.
89  *
90  * To avoid the processing overhead of examining every
91  * mblk, a quick heuristic is used. If the first mblk in
92  * the message is shorter than mblk_pull_len, it is likely
93  * that the rest of the mblk will be short.
94  *
95  * This heuristic was decided upon after performance tests
96  * indicated that anything more complex slowed down the main
97  * code path.
98  */
99 #define	MBLK_PULL_LEN 64
100 uint32_t mblk_pull_len = MBLK_PULL_LEN;
101 
102 /*
103  * The sgttyb_handling flag controls the handling of the old BSD
104  * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows:
105  *
106  * 0 - Emit no warnings at all and retain old, broken behavior.
107  * 1 - Emit no warnings and silently handle new semantics.
108  * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used
109  *     (once per system invocation).  Handle with new semantics.
110  * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is
111  *     made (so that offenders drop core and are easy to debug).
112  *
113  * The "new semantics" are that TIOCGETP returns B38400 for
114  * sg_[io]speed if the corresponding value is over B38400, and that
115  * TIOCSET[PN] accept B38400 in these cases to mean "retain current
116  * bit rate."
117  */
118 int sgttyb_handling = 1;
119 static boolean_t sgttyb_complaint;
120 
121 /* don't push drcompat module by default on Style-2 streams */
122 static int push_drcompat = 0;
123 
124 /*
125  * id value used to distinguish between different ioctl messages
126  */
127 static uint32_t ioc_id;
128 
129 static void putback(struct stdata *, queue_t *, mblk_t *, int);
130 static void strcleanall(struct vnode *);
131 static int strwsrv(queue_t *);
132 
133 /*
134  * qinit and module_info structures for stream head read and write queues
135  */
136 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW };
137 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 };
138 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info };
139 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info };
140 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT,
141     FIFOLOWAT };
142 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 };
143 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info };
144 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info };
145 
146 extern kmutex_t	strresources;	/* protects global resources */
147 extern kmutex_t muxifier;	/* single-threads multiplexor creation */
148 kmutex_t sad_lock;		/* protects sad drivers autopush */
149 
150 static boolean_t msghasdata(mblk_t *bp);
151 #define	msgnodata(bp) (!msghasdata(bp))
152 
153 /*
154  * Stream head locking notes:
155  *	There are four monitors associated with the stream head:
156  *	1. v_stream monitor: in stropen() and strclose() v_lock
157  *		is held while the association of vnode and stream
158  *		head is established or tested for.
159  *	2. open/close/push/pop monitor: sd_lock is held while each
160  *		thread bids for exclusive access to this monitor
161  *		for opening or closing a stream.  In addition, this
162  *		monitor is entered during pushes and pops.  This
163  *		guarantees that during plumbing operations there
164  *		is only one thread trying to change the plumbing.
165  *		Any other threads present in the stream are only
166  *		using the plumbing.
167  *	3. read/write monitor: in the case of read, a thread holds
168  *		sd_lock while trying to get data from the stream
169  *		head queue.  if there is none to fulfill a read
170  *		request, it sets RSLEEP and calls cv_wait_sig() down
171  *		in strwaitq() to await the arrival of new data.
172  *		when new data arrives in strrput(), sd_lock is acquired
173  *		before testing for RSLEEP and calling cv_broadcast().
174  *		the behavior of strwrite(), strwsrv(), and WSLEEP
175  *		mirror this.
176  *	4. ioctl monitor: sd_lock is gotten to ensure that only one
177  *		thread is doing an ioctl at a time.
178  */
179 
180 static int
181 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name,
182     int anchor, cred_t *crp)
183 {
184 	int error;
185 	fmodsw_impl_t *fp;
186 
187 	if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) {
188 		error = (stp->sd_flag & STRHUP) ? ENXIO : EIO;
189 		return (error);
190 	}
191 	if (stp->sd_pushcnt >= nstrpush) {
192 		return (EINVAL);
193 	}
194 
195 	if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) {
196 		stp->sd_flag |= STREOPENFAIL;
197 		return (EINVAL);
198 	}
199 
200 	/*
201 	 * push new module and call its open routine via qattach
202 	 */
203 	if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0)
204 		return (error);
205 
206 	/*
207 	 * Check to see if caller wants a STREAMS anchor
208 	 * put at this place in the stream, and add if so.
209 	 */
210 	mutex_enter(&stp->sd_lock);
211 	if (anchor == stp->sd_pushcnt)
212 		stp->sd_anchor = stp->sd_pushcnt;
213 	mutex_exit(&stp->sd_lock);
214 
215 	return (0);
216 }
217 
218 /*
219  * Open a stream device.
220  */
221 int
222 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp)
223 {
224 	struct stdata *stp;
225 	queue_t *qp;
226 	int s;
227 	dev_t dummydev;
228 	struct autopush *ap;
229 	int error = 0;
230 	ssize_t	rmin, rmax;
231 	int cloneopen;
232 	queue_t *brq;
233 	major_t major;
234 
235 #ifdef C2_AUDIT
236 	if (audit_active)
237 		audit_stropen(vp, devp, flag, crp);
238 #endif
239 
240 	/*
241 	 * If the stream already exists, wait for any open in progress
242 	 * to complete, then call the open function of each module and
243 	 * driver in the stream.  Otherwise create the stream.
244 	 */
245 	TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp);
246 retry:
247 	mutex_enter(&vp->v_lock);
248 	if ((stp = vp->v_stream) != NULL) {
249 
250 		/*
251 		 * Waiting for stream to be created to device
252 		 * due to another open.
253 		 */
254 	    mutex_exit(&vp->v_lock);
255 
256 	    if (STRMATED(stp)) {
257 		struct stdata *strmatep = stp->sd_mate;
258 
259 		STRLOCKMATES(stp);
260 		if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
261 			if (flag & (FNDELAY|FNONBLOCK)) {
262 				error = EAGAIN;
263 				mutex_exit(&strmatep->sd_lock);
264 				goto ckreturn;
265 			}
266 			mutex_exit(&stp->sd_lock);
267 			if (!cv_wait_sig(&strmatep->sd_monitor,
268 			    &strmatep->sd_lock)) {
269 				error = EINTR;
270 				mutex_exit(&strmatep->sd_lock);
271 				mutex_enter(&stp->sd_lock);
272 				goto ckreturn;
273 			}
274 			mutex_exit(&strmatep->sd_lock);
275 			goto retry;
276 		}
277 		if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
278 			if (flag & (FNDELAY|FNONBLOCK)) {
279 				error = EAGAIN;
280 				mutex_exit(&strmatep->sd_lock);
281 				goto ckreturn;
282 			}
283 			mutex_exit(&strmatep->sd_lock);
284 			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
285 				error = EINTR;
286 				goto ckreturn;
287 			}
288 			mutex_exit(&stp->sd_lock);
289 			goto retry;
290 		}
291 
292 		if (stp->sd_flag & (STRDERR|STWRERR)) {
293 			error = EIO;
294 			mutex_exit(&strmatep->sd_lock);
295 			goto ckreturn;
296 		}
297 
298 		stp->sd_flag |= STWOPEN;
299 		STRUNLOCKMATES(stp);
300 	    } else {
301 		mutex_enter(&stp->sd_lock);
302 		if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
303 			if (flag & (FNDELAY|FNONBLOCK)) {
304 				error = EAGAIN;
305 				goto ckreturn;
306 			}
307 			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
308 				error = EINTR;
309 				goto ckreturn;
310 			}
311 			mutex_exit(&stp->sd_lock);
312 			goto retry;  /* could be clone! */
313 		}
314 
315 		if (stp->sd_flag & (STRDERR|STWRERR)) {
316 			error = EIO;
317 			goto ckreturn;
318 		}
319 
320 		stp->sd_flag |= STWOPEN;
321 		mutex_exit(&stp->sd_lock);
322 	    }
323 
324 		/*
325 		 * Open all modules and devices down stream to notify
326 		 * that another user is streaming.  For modules, set the
327 		 * last argument to MODOPEN and do not pass any open flags.
328 		 * Ignore dummydev since this is not the first open.
329 		 */
330 	    claimstr(stp->sd_wrq);
331 	    qp = stp->sd_wrq;
332 	    while (_SAMESTR(qp)) {
333 		qp = qp->q_next;
334 		if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0)
335 			break;
336 	    }
337 	    releasestr(stp->sd_wrq);
338 	    mutex_enter(&stp->sd_lock);
339 	    stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR);
340 	    stp->sd_rerror = 0;
341 	    stp->sd_werror = 0;
342 ckreturn:
343 	    cv_broadcast(&stp->sd_monitor);
344 	    mutex_exit(&stp->sd_lock);
345 	    return (error);
346 	}
347 
348 	/*
349 	 * This vnode isn't streaming.  SPECFS already
350 	 * checked for multiple vnodes pointing to the
351 	 * same stream, so create a stream to the driver.
352 	 */
353 	qp = allocq();
354 	stp = shalloc(qp);
355 
356 	/*
357 	 * Initialize stream head.  shalloc() has given us
358 	 * exclusive access, and we have the vnode locked;
359 	 * we can do whatever we want with stp.
360 	 */
361 	stp->sd_flag = STWOPEN;
362 	stp->sd_siglist = NULL;
363 	stp->sd_pollist.ph_list = NULL;
364 	stp->sd_sigflags = 0;
365 	stp->sd_mark = NULL;
366 	stp->sd_closetime = STRTIMOUT;
367 	stp->sd_sidp = NULL;
368 	stp->sd_pgidp = NULL;
369 	stp->sd_vnode = vp;
370 	stp->sd_rerror = 0;
371 	stp->sd_werror = 0;
372 	stp->sd_wroff = 0;
373 	stp->sd_tail = 0;
374 	stp->sd_iocblk = NULL;
375 	stp->sd_pushcnt = 0;
376 	stp->sd_qn_minpsz = 0;
377 	stp->sd_qn_maxpsz = INFPSZ - 1;	/* used to check for initialization */
378 	stp->sd_maxblk = INFPSZ;
379 	qp->q_ptr = _WR(qp)->q_ptr = stp;
380 	STREAM(qp) = STREAM(_WR(qp)) = stp;
381 	vp->v_stream = stp;
382 	mutex_exit(&vp->v_lock);
383 	if (vp->v_type == VFIFO) {
384 		stp->sd_flag |= OLDNDELAY;
385 		/*
386 		 * This means, both for pipes and fifos
387 		 * strwrite will send SIGPIPE if the other
388 		 * end is closed. For putmsg it depends
389 		 * on whether it is a XPG4_2 application
390 		 * or not
391 		 */
392 		stp->sd_wput_opt = SW_SIGPIPE;
393 
394 		/* setq might sleep in kmem_alloc - avoid holding locks. */
395 		setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE,
396 		    SQ_CI|SQ_CO, B_FALSE);
397 
398 		set_qend(qp);
399 		stp->sd_strtab = fifo_getinfo();
400 		_WR(qp)->q_nfsrv = _WR(qp);
401 		qp->q_nfsrv = qp;
402 		/*
403 		 * Wake up others that are waiting for stream to be created.
404 		 */
405 		mutex_enter(&stp->sd_lock);
406 		/*
407 		 * nothing is be pushed on stream yet, so
408 		 * optimized stream head packetsizes are just that
409 		 * of the read queue
410 		 */
411 		stp->sd_qn_minpsz = qp->q_minpsz;
412 		stp->sd_qn_maxpsz = qp->q_maxpsz;
413 		stp->sd_flag &= ~STWOPEN;
414 		goto fifo_opendone;
415 	}
416 	/* setq might sleep in kmem_alloc - avoid holding locks. */
417 	setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE);
418 
419 	set_qend(qp);
420 
421 	/*
422 	 * Open driver and create stream to it (via qattach).
423 	 */
424 	cloneopen = (getmajor(*devp) == clone_major);
425 	if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) {
426 		mutex_enter(&vp->v_lock);
427 		vp->v_stream = NULL;
428 		mutex_exit(&vp->v_lock);
429 		mutex_enter(&stp->sd_lock);
430 		cv_broadcast(&stp->sd_monitor);
431 		mutex_exit(&stp->sd_lock);
432 		freeq(_RD(qp));
433 		shfree(stp);
434 		return (error);
435 	}
436 	/*
437 	 * Set sd_strtab after open in order to handle clonable drivers
438 	 */
439 	stp->sd_strtab = STREAMSTAB(getmajor(*devp));
440 
441 	/*
442 	 * Historical note: dummydev used to be be prior to the initial
443 	 * open (via qattach above), which made the value seen
444 	 * inconsistent between an I_PUSH and an autopush of a module.
445 	 */
446 	dummydev = *devp;
447 
448 	/*
449 	 * For clone open of old style (Q not associated) network driver,
450 	 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH
451 	 */
452 	brq = _RD(_WR(qp)->q_next);
453 	major = getmajor(*devp);
454 	if (push_drcompat && cloneopen && NETWORK_DRV(major) &&
455 	    ((brq->q_flag & _QASSOCIATED) == 0)) {
456 		if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp) != 0)
457 			cmn_err(CE_WARN, "cannot push " DRMODNAME
458 			    " streams module");
459 	}
460 
461 	/*
462 	 * check for autopush
463 	 */
464 	mutex_enter(&sad_lock);
465 	ap = strphash(getemajor(*devp));
466 #define	DEVT(ap)	makedevice(ap->ap_major, ap->ap_minor)
467 #define	DEVLT(ap)	makedevice(ap->ap_major, ap->ap_lastminor)
468 
469 	while (ap) {
470 		if (ap->ap_major == (getemajor(*devp))) {
471 			if (ap->ap_type == SAP_ALL)
472 				break;
473 			else if ((ap->ap_type == SAP_ONE) &&
474 			    (getminor(DEVT(ap)) == getminor(*devp)))
475 				break;
476 			else if (ap->ap_type == SAP_RANGE &&
477 			    getminor(*devp) >= getminor(DEVT(ap)) &&
478 			    getminor(*devp) <= getminor(DEVLT(ap)))
479 				break;
480 		}
481 		ap = ap->ap_nextp;
482 	}
483 	if (ap == NULL) {
484 		mutex_exit(&sad_lock);
485 		goto opendone;
486 	}
487 	ap->ap_cnt++;
488 	mutex_exit(&sad_lock);
489 	for (s = 0; s < ap->ap_npush; s++) {
490 		error = push_mod(qp, &dummydev, stp, ap->ap_list[s],
491 		    ap->ap_anchor, crp);
492 		if (error != 0)
493 			break;
494 	}
495 	mutex_enter(&sad_lock);
496 	if (--(ap->ap_cnt) <= 0)
497 		ap_free(ap);
498 	mutex_exit(&sad_lock);
499 
500 	/*
501 	 * let specfs know that open failed part way through
502 	 */
503 
504 	if (error) {
505 		mutex_enter(&stp->sd_lock);
506 		stp->sd_flag |= STREOPENFAIL;
507 		mutex_exit(&stp->sd_lock);
508 	}
509 
510 opendone:
511 
512 	/*
513 	 * Wake up others that are waiting for stream to be created.
514 	 */
515 	mutex_enter(&stp->sd_lock);
516 	stp->sd_flag &= ~STWOPEN;
517 
518 	/*
519 	 * As a performance concern we are caching the values of
520 	 * q_minpsz and q_maxpsz of the module below the stream
521 	 * head in the stream head.
522 	 */
523 	mutex_enter(QLOCK(stp->sd_wrq->q_next));
524 	rmin = stp->sd_wrq->q_next->q_minpsz;
525 	rmax = stp->sd_wrq->q_next->q_maxpsz;
526 	mutex_exit(QLOCK(stp->sd_wrq->q_next));
527 
528 	/* do this processing here as a performance concern */
529 	if (strmsgsz != 0) {
530 		if (rmax == INFPSZ)
531 			rmax = strmsgsz;
532 		else
533 			rmax = MIN(strmsgsz, rmax);
534 	}
535 
536 	mutex_enter(QLOCK(stp->sd_wrq));
537 	stp->sd_qn_minpsz = rmin;
538 	stp->sd_qn_maxpsz = rmax;
539 	mutex_exit(QLOCK(stp->sd_wrq));
540 
541 fifo_opendone:
542 	cv_broadcast(&stp->sd_monitor);
543 	mutex_exit(&stp->sd_lock);
544 	return (error);
545 }
546 
547 static int strsink(queue_t *, mblk_t *);
548 static struct qinit deadrend = {
549 	strsink, NULL, NULL, NULL, NULL, &strm_info, NULL
550 };
551 static struct qinit deadwend = {
552 	NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL
553 };
554 
555 /*
556  * Close a stream.
557  * This is called from closef() on the last close of an open stream.
558  * Strclean() will already have removed the siglist and pollist
559  * information, so all that remains is to remove all multiplexor links
560  * for the stream, pop all the modules (and the driver), and free the
561  * stream structure.
562  */
563 
564 int
565 strclose(struct vnode *vp, int flag, cred_t *crp)
566 {
567 	struct stdata *stp;
568 	queue_t *qp;
569 	int rval;
570 	int freestp = 1;
571 	queue_t *rmq;
572 
573 #ifdef C2_AUDIT
574 	if (audit_active)
575 		audit_strclose(vp, flag, crp);
576 #endif
577 
578 	TRACE_1(TR_FAC_STREAMS_FR,
579 		TR_STRCLOSE, "strclose:%p", vp);
580 	ASSERT(vp->v_stream);
581 
582 	stp = vp->v_stream;
583 	ASSERT(!(stp->sd_flag & STPLEX));
584 	qp = stp->sd_wrq;
585 
586 	/*
587 	 * Needed so that strpoll will return non-zero for this fd.
588 	 * Note that with POLLNOERR STRHUP does still cause POLLHUP.
589 	 */
590 	mutex_enter(&stp->sd_lock);
591 	stp->sd_flag |= STRHUP;
592 	mutex_exit(&stp->sd_lock);
593 
594 	/*
595 	 * Since we call pollwakeup in close() now, the poll list should
596 	 * be empty in most cases. The only exception is the layered devices
597 	 * (e.g. the console drivers with redirection modules pushed on top
598 	 * of it).
599 	 */
600 	if (stp->sd_pollist.ph_list != NULL) {
601 		pollwakeup(&stp->sd_pollist, POLLERR);
602 		pollhead_clean(&stp->sd_pollist);
603 	}
604 	ASSERT(stp->sd_pollist.ph_list == NULL);
605 	ASSERT(stp->sd_sidp == NULL);
606 	ASSERT(stp->sd_pgidp == NULL);
607 
608 	/*
609 	 * If the registered process or process group did not have an
610 	 * open instance of this stream then strclean would not be
611 	 * called. Thus at the time of closing all remaining siglist entries
612 	 * are removed.
613 	 */
614 	if (stp->sd_siglist != NULL)
615 		strcleanall(vp);
616 
617 	ASSERT(stp->sd_siglist == NULL);
618 	ASSERT(stp->sd_sigflags == 0);
619 
620 	if (STRMATED(stp)) {
621 		struct stdata *strmatep = stp->sd_mate;
622 		int waited = 1;
623 
624 		STRLOCKMATES(stp);
625 		while (waited) {
626 			waited = 0;
627 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
628 				mutex_exit(&strmatep->sd_lock);
629 				cv_wait(&stp->sd_monitor, &stp->sd_lock);
630 				mutex_exit(&stp->sd_lock);
631 				STRLOCKMATES(stp);
632 				waited = 1;
633 			}
634 			while (strmatep->sd_flag &
635 			    (STWOPEN|STRCLOSE|STRPLUMB)) {
636 				mutex_exit(&stp->sd_lock);
637 				cv_wait(&strmatep->sd_monitor,
638 				    &strmatep->sd_lock);
639 				mutex_exit(&strmatep->sd_lock);
640 				STRLOCKMATES(stp);
641 				waited = 1;
642 			}
643 		}
644 		stp->sd_flag |= STRCLOSE;
645 		STRUNLOCKMATES(stp);
646 	} else {
647 		mutex_enter(&stp->sd_lock);
648 		stp->sd_flag |= STRCLOSE;
649 		mutex_exit(&stp->sd_lock);
650 	}
651 
652 	ASSERT(qp->q_first == NULL);	/* No more delayed write */
653 
654 	/* Check if an I_LINK was ever done on this stream */
655 	if (stp->sd_flag & STRHASLINKS) {
656 		(void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval);
657 	}
658 
659 	while (_SAMESTR(qp)) {
660 		/*
661 		 * Holding sd_lock prevents q_next from changing in
662 		 * this stream.
663 		 */
664 		mutex_enter(&stp->sd_lock);
665 		if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) {
666 
667 			/*
668 			 * sleep until awakened by strwsrv() or timeout
669 			 */
670 			for (;;) {
671 				mutex_enter(QLOCK(qp->q_next));
672 				if (!(qp->q_next->q_mblkcnt)) {
673 					mutex_exit(QLOCK(qp->q_next));
674 					break;
675 				}
676 				stp->sd_flag |= WSLEEP;
677 
678 				/* ensure strwsrv gets enabled */
679 				qp->q_next->q_flag |= QWANTW;
680 				mutex_exit(QLOCK(qp->q_next));
681 				/* get out if we timed out or recv'd a signal */
682 				if (str_cv_wait(&qp->q_wait, &stp->sd_lock,
683 				    stp->sd_closetime, 0) <= 0) {
684 					break;
685 				}
686 			}
687 			stp->sd_flag &= ~WSLEEP;
688 		}
689 		mutex_exit(&stp->sd_lock);
690 
691 		rmq = qp->q_next;
692 		if (rmq->q_flag & QISDRV) {
693 			ASSERT(!_SAMESTR(rmq));
694 			wait_sq_svc(_RD(qp)->q_syncq);
695 		}
696 
697 		qdetach(_RD(rmq), 1, flag, crp, B_FALSE);
698 	}
699 
700 	/* Prevent qenable from re-enabling the stream head queue */
701 	disable_svc(_RD(qp));
702 
703 	/*
704 	 * Wait until service procedure of each queue is
705 	 * run, if QINSERVICE is set.
706 	 */
707 	wait_svc(_RD(qp));
708 
709 	/*
710 	 * Now, flush both queues.
711 	 */
712 	flushq(_RD(qp), FLUSHALL);
713 	flushq(qp, FLUSHALL);
714 
715 	/*
716 	 * If the write queue of the stream head is pointing to a
717 	 * read queue, we have a twisted stream.  If the read queue
718 	 * is alive, convert the stream head queues into a dead end.
719 	 * If the read queue is dead, free the dead pair.
720 	 */
721 	if (qp->q_next && !_SAMESTR(qp)) {
722 		if (qp->q_next->q_qinfo == &deadrend) {	/* half-closed pipe */
723 			flushq(qp->q_next, FLUSHALL); /* ensure no message */
724 			shfree(qp->q_next->q_stream);
725 			freeq(qp->q_next);
726 			freeq(_RD(qp));
727 		} else if (qp->q_next == _RD(qp)) {	/* fifo */
728 			freeq(_RD(qp));
729 		} else {				/* pipe */
730 			freestp = 0;
731 			/*
732 			 * The q_info pointers are never accessed when
733 			 * SQLOCK is held.
734 			 */
735 			ASSERT(qp->q_syncq == _RD(qp)->q_syncq);
736 			mutex_enter(SQLOCK(qp->q_syncq));
737 			qp->q_qinfo = &deadwend;
738 			_RD(qp)->q_qinfo = &deadrend;
739 			mutex_exit(SQLOCK(qp->q_syncq));
740 		}
741 	} else {
742 		freeq(_RD(qp)); /* free stream head queue pair */
743 	}
744 
745 	mutex_enter(&vp->v_lock);
746 	if (stp->sd_iocblk) {
747 		if (stp->sd_iocblk != (mblk_t *)-1) {
748 			freemsg(stp->sd_iocblk);
749 		}
750 		stp->sd_iocblk = NULL;
751 	}
752 	stp->sd_vnode = NULL;
753 	vp->v_stream = NULL;
754 	mutex_exit(&vp->v_lock);
755 	mutex_enter(&stp->sd_lock);
756 	stp->sd_flag &= ~STRCLOSE;
757 	cv_broadcast(&stp->sd_monitor);
758 	mutex_exit(&stp->sd_lock);
759 
760 	if (freestp)
761 		shfree(stp);
762 	return (0);
763 }
764 
765 static int
766 strsink(queue_t *q, mblk_t *bp)
767 {
768 	struct copyresp *resp;
769 
770 	switch (bp->b_datap->db_type) {
771 	case M_FLUSH:
772 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
773 			*bp->b_rptr &= ~FLUSHR;
774 			bp->b_flag |= MSGNOLOOP;
775 			/*
776 			 * Protect against the driver passing up
777 			 * messages after it has done a qprocsoff.
778 			 */
779 			if (_OTHERQ(q)->q_next == NULL)
780 				freemsg(bp);
781 			else
782 				qreply(q, bp);
783 		} else {
784 			freemsg(bp);
785 		}
786 		break;
787 
788 	case M_COPYIN:
789 	case M_COPYOUT:
790 		if (bp->b_cont) {
791 			freemsg(bp->b_cont);
792 			bp->b_cont = NULL;
793 		}
794 		bp->b_datap->db_type = M_IOCDATA;
795 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
796 		resp = (struct copyresp *)bp->b_rptr;
797 		resp->cp_rval = (caddr_t)1;	/* failure */
798 		/*
799 		 * Protect against the driver passing up
800 		 * messages after it has done a qprocsoff.
801 		 */
802 		if (_OTHERQ(q)->q_next == NULL)
803 			freemsg(bp);
804 		else
805 			qreply(q, bp);
806 		break;
807 
808 	case M_IOCTL:
809 		if (bp->b_cont) {
810 			freemsg(bp->b_cont);
811 			bp->b_cont = NULL;
812 		}
813 		bp->b_datap->db_type = M_IOCNAK;
814 		/*
815 		 * Protect against the driver passing up
816 		 * messages after it has done a qprocsoff.
817 		 */
818 		if (_OTHERQ(q)->q_next == NULL)
819 			freemsg(bp);
820 		else
821 			qreply(q, bp);
822 		break;
823 
824 	default:
825 		freemsg(bp);
826 		break;
827 	}
828 
829 	return (0);
830 }
831 
832 /*
833  * Clean up after a process when it closes a stream.  This is called
834  * from closef for all closes, whereas strclose is called only for the
835  * last close on a stream.  The siglist is scanned for entries for the
836  * current process, and these are removed.
837  */
838 void
839 strclean(struct vnode *vp)
840 {
841 	strsig_t *ssp, *pssp, *tssp;
842 	stdata_t *stp;
843 	int update = 0;
844 
845 	TRACE_1(TR_FAC_STREAMS_FR,
846 		TR_STRCLEAN, "strclean:%p", vp);
847 	stp = vp->v_stream;
848 	pssp = NULL;
849 	mutex_enter(&stp->sd_lock);
850 	ssp = stp->sd_siglist;
851 	while (ssp) {
852 		if (ssp->ss_pidp == curproc->p_pidp) {
853 			tssp = ssp->ss_next;
854 			if (pssp)
855 				pssp->ss_next = tssp;
856 			else
857 				stp->sd_siglist = tssp;
858 			mutex_enter(&pidlock);
859 			PID_RELE(ssp->ss_pidp);
860 			mutex_exit(&pidlock);
861 			kmem_free(ssp, sizeof (strsig_t));
862 			update = 1;
863 			ssp = tssp;
864 		} else {
865 			pssp = ssp;
866 			ssp = ssp->ss_next;
867 		}
868 	}
869 	if (update) {
870 		stp->sd_sigflags = 0;
871 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
872 			stp->sd_sigflags |= ssp->ss_events;
873 	}
874 	mutex_exit(&stp->sd_lock);
875 }
876 
877 /*
878  * Used on the last close to remove any remaining items on the siglist.
879  * These could be present on the siglist due to I_ESETSIG calls that
880  * use process groups or processed that do not have an open file descriptor
881  * for this stream (Such entries would not be removed by strclean).
882  */
883 static void
884 strcleanall(struct vnode *vp)
885 {
886 	strsig_t *ssp, *nssp;
887 	stdata_t *stp;
888 
889 	stp = vp->v_stream;
890 	mutex_enter(&stp->sd_lock);
891 	ssp = stp->sd_siglist;
892 	stp->sd_siglist = NULL;
893 	while (ssp) {
894 		nssp = ssp->ss_next;
895 		mutex_enter(&pidlock);
896 		PID_RELE(ssp->ss_pidp);
897 		mutex_exit(&pidlock);
898 		kmem_free(ssp, sizeof (strsig_t));
899 		ssp = nssp;
900 	}
901 	stp->sd_sigflags = 0;
902 	mutex_exit(&stp->sd_lock);
903 }
904 
905 /*
906  * Retrieve the next message from the logical stream head read queue
907  * using either rwnext (if sync stream) or getq_noenab.
908  * It is the callers responsibility to call qbackenable after
909  * it is finished with the message. The caller should not call
910  * qbackenable until after any putback calls to avoid spurious backenabling.
911  */
912 mblk_t *
913 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first,
914     int *errorp)
915 {
916 	mblk_t *bp;
917 	int error;
918 
919 	ASSERT(MUTEX_HELD(&stp->sd_lock));
920 	/* Holding sd_lock prevents the read queue from changing  */
921 
922 	if (uiop != NULL && stp->sd_struiordq != NULL &&
923 	    q->q_first == NULL &&
924 	    (!first || (stp->sd_wakeq & RSLEEP))) {
925 		/*
926 		 * Stream supports rwnext() for the read side.
927 		 * If this is the first time we're called by e.g. strread
928 		 * only do the downcall if there is a deferred wakeup
929 		 * (registered in sd_wakeq).
930 		 */
931 		struiod_t uiod;
932 
933 		if (first)
934 			stp->sd_wakeq &= ~RSLEEP;
935 
936 		(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
937 			sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
938 		uiod.d_mp = 0;
939 		/*
940 		 * Mark that a thread is in rwnext on the read side
941 		 * to prevent strrput from nacking ioctls immediately.
942 		 * When the last concurrent rwnext returns
943 		 * the ioctls are nack'ed.
944 		 */
945 		ASSERT(MUTEX_HELD(&stp->sd_lock));
946 		stp->sd_struiodnak++;
947 		/*
948 		 * Note: rwnext will drop sd_lock.
949 		 */
950 		error = rwnext(q, &uiod);
951 		ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
952 		mutex_enter(&stp->sd_lock);
953 		stp->sd_struiodnak--;
954 		while (stp->sd_struiodnak == 0 &&
955 		    ((bp = stp->sd_struionak) != NULL)) {
956 			stp->sd_struionak = bp->b_next;
957 			bp->b_next = NULL;
958 			bp->b_datap->db_type = M_IOCNAK;
959 			/*
960 			 * Protect against the driver passing up
961 			 * messages after it has done a qprocsoff.
962 			 */
963 			if (_OTHERQ(q)->q_next == NULL)
964 				freemsg(bp);
965 			else {
966 				mutex_exit(&stp->sd_lock);
967 				qreply(q, bp);
968 				mutex_enter(&stp->sd_lock);
969 			}
970 		}
971 		ASSERT(MUTEX_HELD(&stp->sd_lock));
972 		if (error == 0 || error == EWOULDBLOCK) {
973 			if ((bp = uiod.d_mp) != NULL) {
974 				*errorp = 0;
975 				ASSERT(MUTEX_HELD(&stp->sd_lock));
976 				return (bp);
977 			}
978 			error = 0;
979 		} else if (error == EINVAL) {
980 			/*
981 			 * The stream plumbing must have
982 			 * changed while we were away, so
983 			 * just turn off rwnext()s.
984 			 */
985 			error = 0;
986 		} else if (error == EBUSY) {
987 			/*
988 			 * The module might have data in transit using putnext
989 			 * Fall back on waiting + getq.
990 			 */
991 			error = 0;
992 		} else {
993 			*errorp = error;
994 			ASSERT(MUTEX_HELD(&stp->sd_lock));
995 			return (NULL);
996 		}
997 		/*
998 		 * Try a getq in case a rwnext() generated mblk
999 		 * has bubbled up via strrput().
1000 		 */
1001 	}
1002 	*errorp = 0;
1003 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1004 	return (getq_noenab(q));
1005 }
1006 
1007 /*
1008  * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'.
1009  * If the message does not fit in the uio the remainder of it is returned;
1010  * otherwise NULL is returned.  Any embedded zero-length mblk_t's are
1011  * consumed, even if uio_resid reaches zero.  On error, `*errorp' is set to
1012  * the error code, the message is consumed, and NULL is returned.
1013  */
1014 static mblk_t *
1015 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp)
1016 {
1017 	int error;
1018 	ptrdiff_t n;
1019 	mblk_t *nbp;
1020 
1021 	ASSERT(bp->b_wptr >= bp->b_rptr);
1022 
1023 	do {
1024 		if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) {
1025 			ASSERT(n > 0);
1026 
1027 			error = uiomove(bp->b_rptr, n, UIO_READ, uiop);
1028 			if (error != 0) {
1029 				freemsg(bp);
1030 				*errorp = error;
1031 				return (NULL);
1032 			}
1033 		}
1034 
1035 		bp->b_rptr += n;
1036 		while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) {
1037 			nbp = bp;
1038 			bp = bp->b_cont;
1039 			freeb(nbp);
1040 		}
1041 	} while (bp != NULL && uiop->uio_resid > 0);
1042 
1043 	*errorp = 0;
1044 	return (bp);
1045 }
1046 
1047 /*
1048  * Read a stream according to the mode flags in sd_flag:
1049  *
1050  * (default mode)		- Byte stream, msg boundaries are ignored
1051  * RD_MSGDIS (msg discard)	- Read on msg boundaries and throw away
1052  *				any data remaining in msg
1053  * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back
1054  *				any remaining data on head of read queue
1055  *
1056  * Consume readable messages on the front of the queue until
1057  * ttolwp(curthread)->lwp_count
1058  * is satisfied, the readable messages are exhausted, or a message
1059  * boundary is reached in a message mode.  If no data was read and
1060  * the stream was not opened with the NDELAY flag, block until data arrives.
1061  * Otherwise return the data read and update the count.
1062  *
1063  * In default mode a 0 length message signifies end-of-file and terminates
1064  * a read in progress.  The 0 length message is removed from the queue
1065  * only if it is the only message read (no data is read).
1066  *
1067  * An attempt to read an M_PROTO or M_PCPROTO message results in an
1068  * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set.
1069  * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data.
1070  * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message
1071  * are unlinked from and M_DATA blocks in the message, the protos are
1072  * thrown away, and the data is read.
1073  */
1074 /* ARGSUSED */
1075 int
1076 strread(struct vnode *vp, struct uio *uiop, cred_t *crp)
1077 {
1078 	struct stdata *stp;
1079 	mblk_t *bp, *nbp;
1080 	queue_t *q;
1081 	int error = 0;
1082 	uint_t old_sd_flag;
1083 	int first;
1084 	char rflg;
1085 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
1086 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
1087 	short delim;
1088 	unsigned char pri = 0;
1089 	char waitflag;
1090 	unsigned char type;
1091 
1092 	TRACE_1(TR_FAC_STREAMS_FR,
1093 		TR_STRREAD_ENTER, "strread:%p", vp);
1094 	ASSERT(vp->v_stream);
1095 	stp = vp->v_stream;
1096 
1097 	if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO)
1098 		if (error = straccess(stp, JCREAD))
1099 			return (error);
1100 
1101 	mutex_enter(&stp->sd_lock);
1102 	if (stp->sd_flag & (STRDERR|STPLEX)) {
1103 		error = strgeterr(stp, STRDERR|STPLEX, 0);
1104 		if (error != 0) {
1105 			mutex_exit(&stp->sd_lock);
1106 			return (error);
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * Loop terminates when uiop->uio_resid == 0.
1112 	 */
1113 	rflg = 0;
1114 	waitflag = READWAIT;
1115 	q = _RD(stp->sd_wrq);
1116 	for (;;) {
1117 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1118 		old_sd_flag = stp->sd_flag;
1119 		mark = 0;
1120 		delim = 0;
1121 		first = 1;
1122 		while ((bp = strget(stp, q, uiop, first, &error)) == NULL) {
1123 			int done = 0;
1124 
1125 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1126 
1127 			if (error != 0)
1128 				goto oops;
1129 
1130 			if (stp->sd_flag & (STRHUP|STREOF)) {
1131 				goto oops;
1132 			}
1133 			if (rflg && !(stp->sd_flag & STRDELIM)) {
1134 				goto oops;
1135 			}
1136 			/*
1137 			 * If a read(fd,buf,0) has been done, there is no
1138 			 * need to sleep. We always have zero bytes to
1139 			 * return.
1140 			 */
1141 			if (uiop->uio_resid == 0) {
1142 				goto oops;
1143 			}
1144 
1145 			qbackenable(q, 0);
1146 
1147 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT,
1148 				"strread calls strwaitq:%p, %p, %p",
1149 				vp, uiop, crp);
1150 			if ((error = strwaitq(stp, waitflag, uiop->uio_resid,
1151 			    uiop->uio_fmode, -1, &done)) != 0 || done) {
1152 				TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE,
1153 					"strread error or done:%p, %p, %p",
1154 					vp, uiop, crp);
1155 				if ((uiop->uio_fmode & FNDELAY) &&
1156 				    (stp->sd_flag & OLDNDELAY) &&
1157 				    (error == EAGAIN))
1158 					error = 0;
1159 				goto oops;
1160 			}
1161 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE,
1162 				"strread awakes:%p, %p, %p", vp, uiop, crp);
1163 			if (stp->sd_sidp != NULL &&
1164 			    stp->sd_vnode->v_type != VFIFO) {
1165 				mutex_exit(&stp->sd_lock);
1166 				if (error = straccess(stp, JCREAD))
1167 					goto oops1;
1168 				mutex_enter(&stp->sd_lock);
1169 			}
1170 			first = 0;
1171 		}
1172 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1173 		ASSERT(bp);
1174 		pri = bp->b_band;
1175 		/*
1176 		 * Extract any mark information. If the message is not
1177 		 * completely consumed this information will be put in the mblk
1178 		 * that is putback.
1179 		 * If MSGMARKNEXT is set and the message is completely consumed
1180 		 * the STRATMARK flag will be set below. Likewise, if
1181 		 * MSGNOTMARKNEXT is set and the message is
1182 		 * completely consumed STRNOTATMARK will be set.
1183 		 *
1184 		 * For some unknown reason strread only breaks the read at the
1185 		 * last mark.
1186 		 */
1187 		mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
1188 		ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
1189 			(MSGMARKNEXT|MSGNOTMARKNEXT));
1190 		if (mark != 0 && bp == stp->sd_mark) {
1191 			if (rflg) {
1192 				putback(stp, q, bp, pri);
1193 				goto oops;
1194 			}
1195 			mark |= _LASTMARK;
1196 			stp->sd_mark = NULL;
1197 		}
1198 		if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM))
1199 			delim = 1;
1200 		mutex_exit(&stp->sd_lock);
1201 
1202 		if (STREAM_NEEDSERVICE(stp))
1203 			stream_runservice(stp);
1204 
1205 		type = bp->b_datap->db_type;
1206 
1207 		switch (type) {
1208 
1209 		case M_DATA:
1210 ismdata:
1211 			if (msgnodata(bp)) {
1212 				if (mark || delim) {
1213 					freemsg(bp);
1214 				} else if (rflg) {
1215 
1216 					/*
1217 					 * If already read data put zero
1218 					 * length message back on queue else
1219 					 * free msg and return 0.
1220 					 */
1221 					bp->b_band = pri;
1222 					mutex_enter(&stp->sd_lock);
1223 					putback(stp, q, bp, pri);
1224 					mutex_exit(&stp->sd_lock);
1225 				} else {
1226 					freemsg(bp);
1227 				}
1228 				error =  0;
1229 				goto oops1;
1230 			}
1231 
1232 			rflg = 1;
1233 			waitflag |= NOINTR;
1234 			bp = struiocopyout(bp, uiop, &error);
1235 			if (error != 0)
1236 				goto oops1;
1237 
1238 			mutex_enter(&stp->sd_lock);
1239 			if (bp) {
1240 				/*
1241 				 * Have remaining data in message.
1242 				 * Free msg if in discard mode.
1243 				 */
1244 				if (stp->sd_read_opt & RD_MSGDIS) {
1245 					freemsg(bp);
1246 				} else {
1247 					bp->b_band = pri;
1248 					if ((mark & _LASTMARK) &&
1249 					    (stp->sd_mark == NULL))
1250 						stp->sd_mark = bp;
1251 					bp->b_flag |= mark & ~_LASTMARK;
1252 					if (delim)
1253 						bp->b_flag |= MSGDELIM;
1254 					if (msgnodata(bp))
1255 						freemsg(bp);
1256 					else
1257 						putback(stp, q, bp, pri);
1258 				}
1259 			} else {
1260 				/*
1261 				 * Consumed the complete message.
1262 				 * Move the MSG*MARKNEXT information
1263 				 * to the stream head just in case
1264 				 * the read queue becomes empty.
1265 				 *
1266 				 * If the stream head was at the mark
1267 				 * (STRATMARK) before we dropped sd_lock above
1268 				 * and some data was consumed then we have
1269 				 * moved past the mark thus STRATMARK is
1270 				 * cleared. However, if a message arrived in
1271 				 * strrput during the copyout above causing
1272 				 * STRATMARK to be set we can not clear that
1273 				 * flag.
1274 				 */
1275 				if (mark &
1276 				    (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
1277 					if (mark & MSGMARKNEXT) {
1278 						stp->sd_flag &= ~STRNOTATMARK;
1279 						stp->sd_flag |= STRATMARK;
1280 					} else if (mark & MSGNOTMARKNEXT) {
1281 						stp->sd_flag &= ~STRATMARK;
1282 						stp->sd_flag |= STRNOTATMARK;
1283 					} else {
1284 						stp->sd_flag &=
1285 						    ~(STRATMARK|STRNOTATMARK);
1286 					}
1287 				} else if (rflg && (old_sd_flag & STRATMARK)) {
1288 					stp->sd_flag &= ~STRATMARK;
1289 				}
1290 			}
1291 
1292 			/*
1293 			 * Check for signal messages at the front of the read
1294 			 * queue and generate the signal(s) if appropriate.
1295 			 * The only signal that can be on queue is M_SIG at
1296 			 * this point.
1297 			 */
1298 			while ((((bp = q->q_first)) != NULL) &&
1299 				(bp->b_datap->db_type == M_SIG)) {
1300 				bp = getq_noenab(q);
1301 				/*
1302 				 * sd_lock is held so the content of the
1303 				 * read queue can not change.
1304 				 */
1305 				ASSERT(bp != NULL &&
1306 					bp->b_datap->db_type == M_SIG);
1307 				strsignal_nolock(stp, *bp->b_rptr,
1308 					(int32_t)bp->b_band);
1309 				mutex_exit(&stp->sd_lock);
1310 				freemsg(bp);
1311 				if (STREAM_NEEDSERVICE(stp))
1312 					stream_runservice(stp);
1313 				mutex_enter(&stp->sd_lock);
1314 			}
1315 
1316 			if ((uiop->uio_resid == 0) || (mark & _LASTMARK) ||
1317 			    delim ||
1318 			    (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) {
1319 				goto oops;
1320 			}
1321 			continue;
1322 
1323 		case M_SIG:
1324 			strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band);
1325 			freemsg(bp);
1326 			mutex_enter(&stp->sd_lock);
1327 			continue;
1328 
1329 		case M_PROTO:
1330 		case M_PCPROTO:
1331 			/*
1332 			 * Only data messages are readable.
1333 			 * Any others generate an error, unless
1334 			 * RD_PROTDIS or RD_PROTDAT is set.
1335 			 */
1336 			if (stp->sd_read_opt & RD_PROTDAT) {
1337 				for (nbp = bp; nbp; nbp = nbp->b_next) {
1338 				    if ((nbp->b_datap->db_type == M_PROTO) ||
1339 					(nbp->b_datap->db_type == M_PCPROTO))
1340 					nbp->b_datap->db_type = M_DATA;
1341 				    else
1342 					break;
1343 				}
1344 				/*
1345 				 * clear stream head hi pri flag based on
1346 				 * first message
1347 				 */
1348 				if (type == M_PCPROTO) {
1349 					mutex_enter(&stp->sd_lock);
1350 					stp->sd_flag &= ~STRPRI;
1351 					mutex_exit(&stp->sd_lock);
1352 				}
1353 				goto ismdata;
1354 			} else if (stp->sd_read_opt & RD_PROTDIS) {
1355 				/*
1356 				 * discard non-data messages
1357 				 */
1358 				while (bp &&
1359 				    ((bp->b_datap->db_type == M_PROTO) ||
1360 				    (bp->b_datap->db_type == M_PCPROTO))) {
1361 					nbp = unlinkb(bp);
1362 					freeb(bp);
1363 					bp = nbp;
1364 				}
1365 				/*
1366 				 * clear stream head hi pri flag based on
1367 				 * first message
1368 				 */
1369 				if (type == M_PCPROTO) {
1370 					mutex_enter(&stp->sd_lock);
1371 					stp->sd_flag &= ~STRPRI;
1372 					mutex_exit(&stp->sd_lock);
1373 				}
1374 				if (bp) {
1375 					bp->b_band = pri;
1376 					goto ismdata;
1377 				} else {
1378 					break;
1379 				}
1380 			}
1381 			/* FALLTHRU */
1382 		case M_PASSFP:
1383 			if ((bp->b_datap->db_type == M_PASSFP) &&
1384 			    (stp->sd_read_opt & RD_PROTDIS)) {
1385 				freemsg(bp);
1386 				break;
1387 			}
1388 			mutex_enter(&stp->sd_lock);
1389 			putback(stp, q, bp, pri);
1390 			mutex_exit(&stp->sd_lock);
1391 			if (rflg == 0)
1392 				error = EBADMSG;
1393 			goto oops1;
1394 
1395 		default:
1396 			/*
1397 			 * Garbage on stream head read queue.
1398 			 */
1399 			cmn_err(CE_WARN, "bad %x found at stream head\n",
1400 				bp->b_datap->db_type);
1401 			freemsg(bp);
1402 			goto oops1;
1403 		}
1404 		mutex_enter(&stp->sd_lock);
1405 	}
1406 oops:
1407 	mutex_exit(&stp->sd_lock);
1408 oops1:
1409 	qbackenable(q, pri);
1410 	return (error);
1411 #undef	_LASTMARK
1412 }
1413 
1414 /*
1415  * Default processing of M_PROTO/M_PCPROTO messages.
1416  * Determine which wakeups and signals are needed.
1417  * This can be replaced by a user-specified procedure for kernel users
1418  * of STREAMS.
1419  */
1420 /* ARGSUSED */
1421 mblk_t *
1422 strrput_proto(vnode_t *vp, mblk_t *mp,
1423     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1424     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1425 {
1426 	*wakeups = RSLEEP;
1427 	*allmsgsigs = 0;
1428 
1429 	switch (mp->b_datap->db_type) {
1430 	case M_PROTO:
1431 		if (mp->b_band == 0) {
1432 			*firstmsgsigs = S_INPUT | S_RDNORM;
1433 			*pollwakeups = POLLIN | POLLRDNORM;
1434 		} else {
1435 			*firstmsgsigs = S_INPUT | S_RDBAND;
1436 			*pollwakeups = POLLIN | POLLRDBAND;
1437 		}
1438 		break;
1439 	case M_PCPROTO:
1440 		*firstmsgsigs = S_HIPRI;
1441 		*pollwakeups = POLLPRI;
1442 		break;
1443 	}
1444 	return (mp);
1445 }
1446 
1447 /*
1448  * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and
1449  * M_PASSFP messages.
1450  * Determine which wakeups and signals are needed.
1451  * This can be replaced by a user-specified procedure for kernel users
1452  * of STREAMS.
1453  */
1454 /* ARGSUSED */
1455 mblk_t *
1456 strrput_misc(vnode_t *vp, mblk_t *mp,
1457     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1458     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1459 {
1460 	*wakeups = 0;
1461 	*firstmsgsigs = 0;
1462 	*allmsgsigs = 0;
1463 	*pollwakeups = 0;
1464 	return (mp);
1465 }
1466 
1467 /*
1468  * Stream read put procedure.  Called from downstream driver/module
1469  * with messages for the stream head.  Data, protocol, and in-stream
1470  * signal messages are placed on the queue, others are handled directly.
1471  */
1472 int
1473 strrput(queue_t *q, mblk_t *bp)
1474 {
1475 	struct stdata	*stp;
1476 	ulong_t		rput_opt;
1477 	strwakeup_t	wakeups;
1478 	strsigset_t	firstmsgsigs;	/* Signals if first message on queue */
1479 	strsigset_t	allmsgsigs;	/* Signals for all messages */
1480 	strsigset_t	signals;	/* Signals events to generate */
1481 	strpollset_t	pollwakeups;
1482 	mblk_t		*nextbp;
1483 	uchar_t		band = 0;
1484 	int		hipri_sig;
1485 
1486 	stp = (struct stdata *)q->q_ptr;
1487 	/*
1488 	 * Use rput_opt for optimized access to the SR_ flags except
1489 	 * SR_POLLIN. That flag has to be checked under sd_lock since it
1490 	 * is modified by strpoll().
1491 	 */
1492 	rput_opt = stp->sd_rput_opt;
1493 
1494 	ASSERT(qclaimed(q));
1495 	TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER,
1496 		"strrput called with message type:q %p bp %p", q, bp);
1497 
1498 	/*
1499 	 * Perform initial processing and pass to the parameterized functions.
1500 	 */
1501 	ASSERT(bp->b_next == NULL);
1502 
1503 	switch (bp->b_datap->db_type) {
1504 	case M_DATA:
1505 		/*
1506 		 * sockfs is the only consumer of STREOF and when it is set,
1507 		 * it implies that the receiver is not interested in receiving
1508 		 * any more data, hence the mblk is freed to prevent unnecessary
1509 		 * message queueing at the stream head.
1510 		 */
1511 		if (stp->sd_flag == STREOF) {
1512 			freemsg(bp);
1513 			return (0);
1514 		}
1515 		if ((rput_opt & SR_IGN_ZEROLEN) &&
1516 		    bp->b_rptr == bp->b_wptr && msgnodata(bp)) {
1517 			/*
1518 			 * Ignore zero-length M_DATA messages. These might be
1519 			 * generated by some transports.
1520 			 * The zero-length M_DATA messages, even if they
1521 			 * are ignored, should effect the atmark tracking and
1522 			 * should wake up a thread sleeping in strwaitmark.
1523 			 */
1524 			mutex_enter(&stp->sd_lock);
1525 			if (bp->b_flag & MSGMARKNEXT) {
1526 				/*
1527 				 * Record the position of the mark either
1528 				 * in q_last or in STRATMARK.
1529 				 */
1530 				if (q->q_last != NULL) {
1531 					q->q_last->b_flag &= ~MSGNOTMARKNEXT;
1532 					q->q_last->b_flag |= MSGMARKNEXT;
1533 				} else {
1534 					stp->sd_flag &= ~STRNOTATMARK;
1535 					stp->sd_flag |= STRATMARK;
1536 				}
1537 			} else if (bp->b_flag & MSGNOTMARKNEXT) {
1538 				/*
1539 				 * Record that this is not the position of
1540 				 * the mark either in q_last or in
1541 				 * STRNOTATMARK.
1542 				 */
1543 				if (q->q_last != NULL) {
1544 					q->q_last->b_flag &= ~MSGMARKNEXT;
1545 					q->q_last->b_flag |= MSGNOTMARKNEXT;
1546 				} else {
1547 					stp->sd_flag &= ~STRATMARK;
1548 					stp->sd_flag |= STRNOTATMARK;
1549 				}
1550 			}
1551 			if (stp->sd_flag & RSLEEP) {
1552 				stp->sd_flag &= ~RSLEEP;
1553 				cv_broadcast(&q->q_wait);
1554 			}
1555 			mutex_exit(&stp->sd_lock);
1556 			freemsg(bp);
1557 			return (0);
1558 		}
1559 		wakeups = RSLEEP;
1560 		if (bp->b_band == 0) {
1561 			firstmsgsigs = S_INPUT | S_RDNORM;
1562 			pollwakeups = POLLIN | POLLRDNORM;
1563 		} else {
1564 			firstmsgsigs = S_INPUT | S_RDBAND;
1565 			pollwakeups = POLLIN | POLLRDBAND;
1566 		}
1567 		if (rput_opt & SR_SIGALLDATA)
1568 			allmsgsigs = firstmsgsigs;
1569 		else
1570 			allmsgsigs = 0;
1571 
1572 		mutex_enter(&stp->sd_lock);
1573 		if ((rput_opt & SR_CONSOL_DATA) &&
1574 		    (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) {
1575 			/*
1576 			 * Consolidate on M_DATA message onto an M_DATA,
1577 			 * M_PROTO, or M_PCPROTO by merging it with q_last.
1578 			 * The consolidation does not take place if
1579 			 * the old message is marked with either of the
1580 			 * marks or the delim flag or if the new
1581 			 * message is marked with MSGMARK. The MSGMARK
1582 			 * check is needed to handle the odd semantics of
1583 			 * MSGMARK where essentially the whole message
1584 			 * is to be treated as marked.
1585 			 * Carry any MSGMARKNEXT  and MSGNOTMARKNEXT from the
1586 			 * new message to the front of the b_cont chain.
1587 			 */
1588 			mblk_t *lbp;
1589 
1590 			lbp = q->q_last;
1591 			if (lbp != NULL &&
1592 			    (lbp->b_datap->db_type == M_DATA ||
1593 			    lbp->b_datap->db_type == M_PROTO ||
1594 			    lbp->b_datap->db_type == M_PCPROTO) &&
1595 			    !(lbp->b_flag & (MSGDELIM|MSGMARK|
1596 			    MSGMARKNEXT))) {
1597 				rmvq_noenab(q, lbp);
1598 				/*
1599 				 * The first message in the b_cont list
1600 				 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
1601 				 * We need to handle the case where we
1602 				 * are appending
1603 				 *
1604 				 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
1605 				 * 2) a MSGMARKNEXT to a plain message.
1606 				 * 3) a MSGNOTMARKNEXT to a plain message
1607 				 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
1608 				 *    message.
1609 				 *
1610 				 * Thus we never append a MSGMARKNEXT or
1611 				 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
1612 				 */
1613 				if (bp->b_flag & MSGMARKNEXT) {
1614 					lbp->b_flag |= MSGMARKNEXT;
1615 					lbp->b_flag &= ~MSGNOTMARKNEXT;
1616 					bp->b_flag &= ~MSGMARKNEXT;
1617 				} else if (bp->b_flag & MSGNOTMARKNEXT) {
1618 					lbp->b_flag |= MSGNOTMARKNEXT;
1619 					bp->b_flag &= ~MSGNOTMARKNEXT;
1620 				}
1621 
1622 				linkb(lbp, bp);
1623 				bp = lbp;
1624 				/*
1625 				 * The new message logically isn't the first
1626 				 * even though the q_first check below thinks
1627 				 * it is. Clear the firstmsgsigs to make it
1628 				 * not appear to be first.
1629 				 */
1630 				firstmsgsigs = 0;
1631 			}
1632 		}
1633 		break;
1634 
1635 	case M_PASSFP:
1636 		wakeups = RSLEEP;
1637 		allmsgsigs = 0;
1638 		if (bp->b_band == 0) {
1639 			firstmsgsigs = S_INPUT | S_RDNORM;
1640 			pollwakeups = POLLIN | POLLRDNORM;
1641 		} else {
1642 			firstmsgsigs = S_INPUT | S_RDBAND;
1643 			pollwakeups = POLLIN | POLLRDBAND;
1644 		}
1645 		mutex_enter(&stp->sd_lock);
1646 		break;
1647 
1648 	case M_PROTO:
1649 	case M_PCPROTO:
1650 		ASSERT(stp->sd_rprotofunc != NULL);
1651 		bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp,
1652 			&wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1653 #define	ALLSIG	(S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\
1654 		S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)
1655 #define	ALLPOLL	(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\
1656 		POLLWRBAND)
1657 
1658 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1659 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1660 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1661 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1662 
1663 		mutex_enter(&stp->sd_lock);
1664 		break;
1665 
1666 	default:
1667 		ASSERT(stp->sd_rmiscfunc != NULL);
1668 		bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp,
1669 			&wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1670 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1671 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1672 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1673 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1674 #undef	ALLSIG
1675 #undef	ALLPOLL
1676 		mutex_enter(&stp->sd_lock);
1677 		break;
1678 	}
1679 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1680 
1681 	/* By default generate superset of signals */
1682 	signals = (firstmsgsigs | allmsgsigs);
1683 
1684 	/*
1685 	 * The  proto and misc functions can return multiple messages
1686 	 * as a b_next chain. Such messages are processed separately.
1687 	 */
1688 one_more:
1689 	hipri_sig = 0;
1690 	if (bp == NULL) {
1691 		nextbp = NULL;
1692 	} else {
1693 		nextbp = bp->b_next;
1694 		bp->b_next = NULL;
1695 
1696 		switch (bp->b_datap->db_type) {
1697 		case M_PCPROTO:
1698 			/*
1699 			 * Only one priority protocol message is allowed at the
1700 			 * stream head at a time.
1701 			 */
1702 			if (stp->sd_flag & STRPRI) {
1703 				TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR,
1704 				    "M_PCPROTO already at head");
1705 				freemsg(bp);
1706 				mutex_exit(&stp->sd_lock);
1707 				goto done;
1708 			}
1709 			stp->sd_flag |= STRPRI;
1710 			hipri_sig = 1;
1711 			/* FALLTHRU */
1712 		case M_DATA:
1713 		case M_PROTO:
1714 		case M_PASSFP:
1715 			band = bp->b_band;
1716 			/*
1717 			 * Marking doesn't work well when messages
1718 			 * are marked in more than one band.  We only
1719 			 * remember the last message received, even if
1720 			 * it is placed on the queue ahead of other
1721 			 * marked messages.
1722 			 */
1723 			if (bp->b_flag & MSGMARK)
1724 				stp->sd_mark = bp;
1725 			(void) putq(q, bp);
1726 
1727 			/*
1728 			 * If message is a PCPROTO message, always use
1729 			 * firstmsgsigs to determine if a signal should be
1730 			 * sent as strrput is the only place to send
1731 			 * signals for PCPROTO. Other messages are based on
1732 			 * the STRGETINPROG flag. The flag determines if
1733 			 * strrput or (k)strgetmsg will be responsible for
1734 			 * sending the signals, in the firstmsgsigs case.
1735 			 */
1736 			if ((hipri_sig == 1) ||
1737 			    (((stp->sd_flag & STRGETINPROG) == 0) &&
1738 			    (q->q_first == bp)))
1739 				signals = (firstmsgsigs | allmsgsigs);
1740 			else
1741 				signals = allmsgsigs;
1742 			break;
1743 
1744 		default:
1745 			mutex_exit(&stp->sd_lock);
1746 			(void) strrput_nondata(q, bp);
1747 			mutex_enter(&stp->sd_lock);
1748 			break;
1749 		}
1750 	}
1751 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1752 	/*
1753 	 * Wake sleeping read/getmsg and cancel deferred wakeup
1754 	 */
1755 	if (wakeups & RSLEEP)
1756 		stp->sd_wakeq &= ~RSLEEP;
1757 
1758 	wakeups &= stp->sd_flag;
1759 	if (wakeups & RSLEEP) {
1760 		stp->sd_flag &= ~RSLEEP;
1761 		cv_broadcast(&q->q_wait);
1762 	}
1763 	if (wakeups & WSLEEP) {
1764 		stp->sd_flag &= ~WSLEEP;
1765 		cv_broadcast(&_WR(q)->q_wait);
1766 	}
1767 
1768 	if (pollwakeups != 0) {
1769 		if (pollwakeups == (POLLIN | POLLRDNORM)) {
1770 			/*
1771 			 * Can't use rput_opt since it was not
1772 			 * read when sd_lock was held and SR_POLLIN is changed
1773 			 * by strpoll() under sd_lock.
1774 			 */
1775 			if (!(stp->sd_rput_opt & SR_POLLIN))
1776 				goto no_pollwake;
1777 			stp->sd_rput_opt &= ~SR_POLLIN;
1778 		}
1779 		mutex_exit(&stp->sd_lock);
1780 		pollwakeup(&stp->sd_pollist, pollwakeups);
1781 		mutex_enter(&stp->sd_lock);
1782 	}
1783 no_pollwake:
1784 
1785 	/*
1786 	 * strsendsig can handle multiple signals with a
1787 	 * single call.
1788 	 */
1789 	if (stp->sd_sigflags & signals)
1790 		strsendsig(stp->sd_siglist, signals, band, 0);
1791 	mutex_exit(&stp->sd_lock);
1792 
1793 
1794 done:
1795 	if (nextbp == NULL)
1796 		return (0);
1797 
1798 	/*
1799 	 * Any signals were handled the first time.
1800 	 * Wakeups and pollwakeups are redone to avoid any race
1801 	 * conditions - all the messages are not queued until the
1802 	 * last message has been processed by strrput.
1803 	 */
1804 	bp = nextbp;
1805 	signals = firstmsgsigs = allmsgsigs = 0;
1806 	mutex_enter(&stp->sd_lock);
1807 	goto one_more;
1808 }
1809 
1810 static void
1811 log_dupioc(queue_t *rq, mblk_t *bp)
1812 {
1813 	queue_t *wq, *qp;
1814 	char *modnames, *mnp, *dname;
1815 	size_t maxmodstr;
1816 	boolean_t islast;
1817 
1818 	/*
1819 	 * Allocate a buffer large enough to hold the names of nstrpush modules
1820 	 * and one driver, with spaces between and NUL terminator.  If we can't
1821 	 * get memory, then we'll just log the driver name.
1822 	 */
1823 	maxmodstr = nstrpush * (FMNAMESZ + 1);
1824 	mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP);
1825 
1826 	/* march down write side to print log message down to the driver */
1827 	wq = WR(rq);
1828 
1829 	/* make sure q_next doesn't shift around while we're grabbing data */
1830 	claimstr(wq);
1831 	qp = wq->q_next;
1832 	do {
1833 		if ((dname = qp->q_qinfo->qi_minfo->mi_idname) == NULL)
1834 			dname = "?";
1835 		islast = !SAMESTR(qp) || qp->q_next == NULL;
1836 		if (modnames == NULL) {
1837 			/*
1838 			 * If we don't have memory, then get the driver name in
1839 			 * the log where we can see it.  Note that memory
1840 			 * pressure is a possible cause of these sorts of bugs.
1841 			 */
1842 			if (islast) {
1843 				modnames = dname;
1844 				maxmodstr = 0;
1845 			}
1846 		} else {
1847 			mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname);
1848 			if (!islast)
1849 				*mnp++ = ' ';
1850 		}
1851 		qp = qp->q_next;
1852 	} while (!islast);
1853 	releasestr(wq);
1854 	/* Cannot happen unless stream head is corrupt. */
1855 	ASSERT(modnames != NULL);
1856 	(void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1,
1857 	    SL_CONSOLE|SL_TRACE|SL_ERROR,
1858 	    "Warning: stream %p received duplicate %X M_IOC%s; module list: %s",
1859 	    rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd,
1860 	    (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames);
1861 	if (maxmodstr != 0)
1862 		kmem_free(modnames, maxmodstr);
1863 }
1864 
1865 int
1866 strrput_nondata(queue_t *q, mblk_t *bp)
1867 {
1868 	struct stdata *stp;
1869 	struct iocblk *iocbp;
1870 	struct stroptions *sop;
1871 	struct copyreq *reqp;
1872 	struct copyresp *resp;
1873 	unsigned char bpri;
1874 	unsigned char  flushed_already = 0;
1875 
1876 	stp = (struct stdata *)q->q_ptr;
1877 
1878 	ASSERT(!(stp->sd_flag & STPLEX));
1879 	ASSERT(qclaimed(q));
1880 
1881 	switch (bp->b_datap->db_type) {
1882 	case M_ERROR:
1883 		/*
1884 		 * An error has occurred downstream, the errno is in the first
1885 		 * bytes of the message.
1886 		 */
1887 		if ((bp->b_wptr - bp->b_rptr) == 2) {	/* New flavor */
1888 			unsigned char rw = 0;
1889 
1890 			mutex_enter(&stp->sd_lock);
1891 			if (*bp->b_rptr != NOERROR) {	/* read error */
1892 				if (*bp->b_rptr != 0) {
1893 					if (stp->sd_flag & STRDERR)
1894 						flushed_already |= FLUSHR;
1895 					stp->sd_flag |= STRDERR;
1896 					rw |= FLUSHR;
1897 				} else {
1898 					stp->sd_flag &= ~STRDERR;
1899 				}
1900 				stp->sd_rerror = *bp->b_rptr;
1901 			}
1902 			bp->b_rptr++;
1903 			if (*bp->b_rptr != NOERROR) {	/* write error */
1904 				if (*bp->b_rptr != 0) {
1905 					if (stp->sd_flag & STWRERR)
1906 						flushed_already |= FLUSHW;
1907 					stp->sd_flag |= STWRERR;
1908 					rw |= FLUSHW;
1909 				} else {
1910 					stp->sd_flag &= ~STWRERR;
1911 				}
1912 				stp->sd_werror = *bp->b_rptr;
1913 			}
1914 			if (rw) {
1915 				TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE,
1916 					"strrput cv_broadcast:q %p, bp %p",
1917 					q, bp);
1918 				cv_broadcast(&q->q_wait); /* readers */
1919 				cv_broadcast(&_WR(q)->q_wait); /* writers */
1920 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
1921 
1922 				mutex_exit(&stp->sd_lock);
1923 				pollwakeup(&stp->sd_pollist, POLLERR);
1924 				mutex_enter(&stp->sd_lock);
1925 
1926 				if (stp->sd_sigflags & S_ERROR)
1927 					strsendsig(stp->sd_siglist, S_ERROR, 0,
1928 					    ((rw & FLUSHR) ? stp->sd_rerror :
1929 					    stp->sd_werror));
1930 				mutex_exit(&stp->sd_lock);
1931 				/*
1932 				 * Send the M_FLUSH only
1933 				 * for the first M_ERROR
1934 				 * message on the stream
1935 				 */
1936 				if (flushed_already == rw) {
1937 					freemsg(bp);
1938 					return (0);
1939 				}
1940 
1941 				bp->b_datap->db_type = M_FLUSH;
1942 				*bp->b_rptr = rw;
1943 				bp->b_wptr = bp->b_rptr + 1;
1944 				/*
1945 				 * Protect against the driver
1946 				 * passing up messages after
1947 				 * it has done a qprocsoff
1948 				 */
1949 				if (_OTHERQ(q)->q_next == NULL)
1950 					freemsg(bp);
1951 				else
1952 					qreply(q, bp);
1953 				return (0);
1954 			} else
1955 				mutex_exit(&stp->sd_lock);
1956 		} else if (*bp->b_rptr != 0) {		/* Old flavor */
1957 				if (stp->sd_flag & (STRDERR|STWRERR))
1958 					flushed_already = FLUSHRW;
1959 				mutex_enter(&stp->sd_lock);
1960 				stp->sd_flag |= (STRDERR|STWRERR);
1961 				stp->sd_rerror = *bp->b_rptr;
1962 				stp->sd_werror = *bp->b_rptr;
1963 				TRACE_2(TR_FAC_STREAMS_FR,
1964 					TR_STRRPUT_WAKE2,
1965 					"strrput wakeup #2:q %p, bp %p", q, bp);
1966 				cv_broadcast(&q->q_wait); /* the readers */
1967 				cv_broadcast(&_WR(q)->q_wait); /* the writers */
1968 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
1969 
1970 				mutex_exit(&stp->sd_lock);
1971 				pollwakeup(&stp->sd_pollist, POLLERR);
1972 				mutex_enter(&stp->sd_lock);
1973 
1974 				if (stp->sd_sigflags & S_ERROR)
1975 					strsendsig(stp->sd_siglist, S_ERROR, 0,
1976 					    (stp->sd_werror ? stp->sd_werror :
1977 					    stp->sd_rerror));
1978 				mutex_exit(&stp->sd_lock);
1979 
1980 				/*
1981 				 * Send the M_FLUSH only
1982 				 * for the first M_ERROR
1983 				 * message on the stream
1984 				 */
1985 				if (flushed_already != FLUSHRW) {
1986 					bp->b_datap->db_type = M_FLUSH;
1987 					*bp->b_rptr = FLUSHRW;
1988 					/*
1989 					 * Protect against the driver passing up
1990 					 * messages after it has done a
1991 					 * qprocsoff.
1992 					 */
1993 				if (_OTHERQ(q)->q_next == NULL)
1994 					freemsg(bp);
1995 				else
1996 					qreply(q, bp);
1997 				return (0);
1998 				}
1999 		}
2000 		freemsg(bp);
2001 		return (0);
2002 
2003 	case M_HANGUP:
2004 
2005 		freemsg(bp);
2006 		mutex_enter(&stp->sd_lock);
2007 		stp->sd_werror = ENXIO;
2008 		stp->sd_flag |= STRHUP;
2009 		stp->sd_flag &= ~(WSLEEP|RSLEEP);
2010 
2011 		/*
2012 		 * send signal if controlling tty
2013 		 */
2014 
2015 		if (stp->sd_sidp) {
2016 			prsignal(stp->sd_sidp, SIGHUP);
2017 			if (stp->sd_sidp != stp->sd_pgidp)
2018 				pgsignal(stp->sd_pgidp, SIGTSTP);
2019 		}
2020 
2021 		/*
2022 		 * wake up read, write, and exception pollers and
2023 		 * reset wakeup mechanism.
2024 		 */
2025 		cv_broadcast(&q->q_wait);	/* the readers */
2026 		cv_broadcast(&_WR(q)->q_wait);	/* the writers */
2027 		cv_broadcast(&stp->sd_monitor);	/* the ioctllers */
2028 		mutex_exit(&stp->sd_lock);
2029 		strhup(stp);
2030 		return (0);
2031 
2032 	case M_UNHANGUP:
2033 		freemsg(bp);
2034 		mutex_enter(&stp->sd_lock);
2035 		stp->sd_werror = 0;
2036 		stp->sd_flag &= ~STRHUP;
2037 		mutex_exit(&stp->sd_lock);
2038 		return (0);
2039 
2040 	case M_SIG:
2041 		/*
2042 		 * Someone downstream wants to post a signal.  The
2043 		 * signal to post is contained in the first byte of the
2044 		 * message.  If the message would go on the front of
2045 		 * the queue, send a signal to the process group
2046 		 * (if not SIGPOLL) or to the siglist processes
2047 		 * (SIGPOLL).  If something is already on the queue,
2048 		 * OR if we are delivering a delayed suspend (*sigh*
2049 		 * another "tty" hack) and there's no one sleeping already,
2050 		 * just enqueue the message.
2051 		 */
2052 		mutex_enter(&stp->sd_lock);
2053 		if (q->q_first || (*bp->b_rptr == SIGTSTP &&
2054 		    !(stp->sd_flag & RSLEEP))) {
2055 			(void) putq(q, bp);
2056 			mutex_exit(&stp->sd_lock);
2057 			return (0);
2058 		}
2059 		mutex_exit(&stp->sd_lock);
2060 		/* FALLTHRU */
2061 
2062 	case M_PCSIG:
2063 		/*
2064 		 * Don't enqueue, just post the signal.
2065 		 */
2066 		strsignal(stp, *bp->b_rptr, 0L);
2067 		freemsg(bp);
2068 		return (0);
2069 
2070 	case M_FLUSH:
2071 		/*
2072 		 * Flush queues.  The indication of which queues to flush
2073 		 * is in the first byte of the message.  If the read queue
2074 		 * is specified, then flush it.  If FLUSHBAND is set, just
2075 		 * flush the band specified by the second byte of the message.
2076 		 *
2077 		 * If a module has issued a M_SETOPT to not flush hi
2078 		 * priority messages off of the stream head, then pass this
2079 		 * flag into the flushq code to preserve such messages.
2080 		 */
2081 
2082 		if (*bp->b_rptr & FLUSHR) {
2083 			mutex_enter(&stp->sd_lock);
2084 			if (*bp->b_rptr & FLUSHBAND) {
2085 				ASSERT((bp->b_wptr - bp->b_rptr) >= 2);
2086 				flushband(q, *(bp->b_rptr + 1), FLUSHALL);
2087 			} else
2088 				flushq_common(q, FLUSHALL,
2089 				    stp->sd_read_opt & RFLUSHPCPROT);
2090 			if ((q->q_first == NULL) ||
2091 			    (q->q_first->b_datap->db_type < QPCTL))
2092 				stp->sd_flag &= ~STRPRI;
2093 			else {
2094 				ASSERT(stp->sd_flag & STRPRI);
2095 			}
2096 			mutex_exit(&stp->sd_lock);
2097 		}
2098 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
2099 			*bp->b_rptr &= ~FLUSHR;
2100 			bp->b_flag |= MSGNOLOOP;
2101 			/*
2102 			 * Protect against the driver passing up
2103 			 * messages after it has done a qprocsoff.
2104 			 */
2105 			if (_OTHERQ(q)->q_next == NULL)
2106 				freemsg(bp);
2107 			else
2108 				qreply(q, bp);
2109 			return (0);
2110 		}
2111 		freemsg(bp);
2112 		return (0);
2113 
2114 	case M_IOCACK:
2115 	case M_IOCNAK:
2116 		iocbp = (struct iocblk *)bp->b_rptr;
2117 		/*
2118 		 * If not waiting for ACK or NAK then just free msg.
2119 		 * If incorrect id sequence number then just free msg.
2120 		 * If already have ACK or NAK for user then this is a
2121 		 *    duplicate, display a warning and free the msg.
2122 		 */
2123 		mutex_enter(&stp->sd_lock);
2124 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2125 		    (stp->sd_iocid != iocbp->ioc_id)) {
2126 			/*
2127 			 * If the ACK/NAK is a dup, display a message
2128 			 * Dup is when sd_iocid == ioc_id, and
2129 			 * sd_iocblk == <valid ptr> or -1 (the former
2130 			 * is when an ioctl has been put on the stream
2131 			 * head, but has not yet been consumed, the
2132 			 * later is when it has been consumed).
2133 			 */
2134 			if ((stp->sd_iocid == iocbp->ioc_id) &&
2135 			    (stp->sd_iocblk != NULL)) {
2136 				log_dupioc(q, bp);
2137 			}
2138 			freemsg(bp);
2139 			mutex_exit(&stp->sd_lock);
2140 			return (0);
2141 		}
2142 
2143 		/*
2144 		 * Assign ACK or NAK to user and wake up.
2145 		 */
2146 		stp->sd_iocblk = bp;
2147 		cv_broadcast(&stp->sd_monitor);
2148 		mutex_exit(&stp->sd_lock);
2149 		return (0);
2150 
2151 	case M_COPYIN:
2152 	case M_COPYOUT:
2153 		reqp = (struct copyreq *)bp->b_rptr;
2154 
2155 		/*
2156 		 * If not waiting for ACK or NAK then just fail request.
2157 		 * If already have ACK, NAK, or copy request, then just
2158 		 * fail request.
2159 		 * If incorrect id sequence number then just fail request.
2160 		 */
2161 		mutex_enter(&stp->sd_lock);
2162 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2163 		    (stp->sd_iocid != reqp->cq_id)) {
2164 			if (bp->b_cont) {
2165 				freemsg(bp->b_cont);
2166 				bp->b_cont = NULL;
2167 			}
2168 			bp->b_datap->db_type = M_IOCDATA;
2169 			bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
2170 			resp = (struct copyresp *)bp->b_rptr;
2171 			resp->cp_rval = (caddr_t)1;	/* failure */
2172 			mutex_exit(&stp->sd_lock);
2173 			putnext(stp->sd_wrq, bp);
2174 			return (0);
2175 		}
2176 
2177 		/*
2178 		 * Assign copy request to user and wake up.
2179 		 */
2180 		stp->sd_iocblk = bp;
2181 		cv_broadcast(&stp->sd_monitor);
2182 		mutex_exit(&stp->sd_lock);
2183 		return (0);
2184 
2185 	case M_SETOPTS:
2186 		/*
2187 		 * Set stream head options (read option, write offset,
2188 		 * min/max packet size, and/or high/low water marks for
2189 		 * the read side only).
2190 		 */
2191 
2192 		bpri = 0;
2193 		sop = (struct stroptions *)bp->b_rptr;
2194 		mutex_enter(&stp->sd_lock);
2195 		if (sop->so_flags & SO_READOPT) {
2196 			switch (sop->so_readopt & RMODEMASK) {
2197 			case RNORM:
2198 				stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
2199 				break;
2200 
2201 			case RMSGD:
2202 				stp->sd_read_opt =
2203 				    ((stp->sd_read_opt & ~RD_MSGNODIS) |
2204 				    RD_MSGDIS);
2205 				break;
2206 
2207 			case RMSGN:
2208 				stp->sd_read_opt =
2209 				    ((stp->sd_read_opt & ~RD_MSGDIS) |
2210 				    RD_MSGNODIS);
2211 				break;
2212 			}
2213 			switch (sop->so_readopt & RPROTMASK) {
2214 			case RPROTNORM:
2215 				stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
2216 				break;
2217 
2218 			case RPROTDAT:
2219 				stp->sd_read_opt =
2220 				    ((stp->sd_read_opt & ~RD_PROTDIS) |
2221 				    RD_PROTDAT);
2222 				break;
2223 
2224 			case RPROTDIS:
2225 				stp->sd_read_opt =
2226 				    ((stp->sd_read_opt & ~RD_PROTDAT) |
2227 				    RD_PROTDIS);
2228 				break;
2229 			}
2230 			switch (sop->so_readopt & RFLUSHMASK) {
2231 			case RFLUSHPCPROT:
2232 				/*
2233 				 * This sets the stream head to NOT flush
2234 				 * M_PCPROTO messages.
2235 				 */
2236 				stp->sd_read_opt |= RFLUSHPCPROT;
2237 				break;
2238 			}
2239 		}
2240 		if (sop->so_flags & SO_ERROPT) {
2241 			switch (sop->so_erropt & RERRMASK) {
2242 			case RERRNORM:
2243 				stp->sd_flag &= ~STRDERRNONPERSIST;
2244 				break;
2245 			case RERRNONPERSIST:
2246 				stp->sd_flag |= STRDERRNONPERSIST;
2247 				break;
2248 			}
2249 			switch (sop->so_erropt & WERRMASK) {
2250 			case WERRNORM:
2251 				stp->sd_flag &= ~STWRERRNONPERSIST;
2252 				break;
2253 			case WERRNONPERSIST:
2254 				stp->sd_flag |= STWRERRNONPERSIST;
2255 				break;
2256 			}
2257 		}
2258 		if (sop->so_flags & SO_COPYOPT) {
2259 			if (sop->so_copyopt & ZCVMSAFE) {
2260 				stp->sd_copyflag |= STZCVMSAFE;
2261 				stp->sd_copyflag &= ~STZCVMUNSAFE;
2262 			} else if (sop->so_copyopt & ZCVMUNSAFE) {
2263 				stp->sd_copyflag |= STZCVMUNSAFE;
2264 				stp->sd_copyflag &= ~STZCVMSAFE;
2265 			}
2266 
2267 			if (sop->so_copyopt & COPYCACHED) {
2268 				stp->sd_copyflag |= STRCOPYCACHED;
2269 			}
2270 		}
2271 		if (sop->so_flags & SO_WROFF)
2272 			stp->sd_wroff = sop->so_wroff;
2273 		if (sop->so_flags & SO_TAIL)
2274 			stp->sd_tail = sop->so_tail;
2275 		if (sop->so_flags & SO_MINPSZ)
2276 			q->q_minpsz = sop->so_minpsz;
2277 		if (sop->so_flags & SO_MAXPSZ)
2278 			q->q_maxpsz = sop->so_maxpsz;
2279 		if (sop->so_flags & SO_MAXBLK)
2280 			stp->sd_maxblk = sop->so_maxblk;
2281 		if (sop->so_flags & SO_HIWAT) {
2282 		    if (sop->so_flags & SO_BAND) {
2283 			if (strqset(q, QHIWAT, sop->so_band, sop->so_hiwat))
2284 				cmn_err(CE_WARN,
2285 				    "strrput: could not allocate qband\n");
2286 			else
2287 				bpri = sop->so_band;
2288 		    } else {
2289 			q->q_hiwat = sop->so_hiwat;
2290 		    }
2291 		}
2292 		if (sop->so_flags & SO_LOWAT) {
2293 		    if (sop->so_flags & SO_BAND) {
2294 			if (strqset(q, QLOWAT, sop->so_band, sop->so_lowat))
2295 				cmn_err(CE_WARN,
2296 				    "strrput: could not allocate qband\n");
2297 			else
2298 				bpri = sop->so_band;
2299 		    } else {
2300 			q->q_lowat = sop->so_lowat;
2301 		    }
2302 		}
2303 		if (sop->so_flags & SO_MREADON)
2304 			stp->sd_flag |= SNDMREAD;
2305 		if (sop->so_flags & SO_MREADOFF)
2306 			stp->sd_flag &= ~SNDMREAD;
2307 		if (sop->so_flags & SO_NDELON)
2308 			stp->sd_flag |= OLDNDELAY;
2309 		if (sop->so_flags & SO_NDELOFF)
2310 			stp->sd_flag &= ~OLDNDELAY;
2311 		if (sop->so_flags & SO_ISTTY)
2312 			stp->sd_flag |= STRISTTY;
2313 		if (sop->so_flags & SO_ISNTTY)
2314 			stp->sd_flag &= ~STRISTTY;
2315 		if (sop->so_flags & SO_TOSTOP)
2316 			stp->sd_flag |= STRTOSTOP;
2317 		if (sop->so_flags & SO_TONSTOP)
2318 			stp->sd_flag &= ~STRTOSTOP;
2319 		if (sop->so_flags & SO_DELIM)
2320 			stp->sd_flag |= STRDELIM;
2321 		if (sop->so_flags & SO_NODELIM)
2322 			stp->sd_flag &= ~STRDELIM;
2323 
2324 		mutex_exit(&stp->sd_lock);
2325 		freemsg(bp);
2326 
2327 		/* Check backenable in case the water marks changed */
2328 		qbackenable(q, bpri);
2329 		return (0);
2330 
2331 	/*
2332 	 * The following set of cases deal with situations where two stream
2333 	 * heads are connected to each other (twisted streams).  These messages
2334 	 * have no meaning at the stream head.
2335 	 */
2336 	case M_BREAK:
2337 	case M_CTL:
2338 	case M_DELAY:
2339 	case M_START:
2340 	case M_STOP:
2341 	case M_IOCDATA:
2342 	case M_STARTI:
2343 	case M_STOPI:
2344 		freemsg(bp);
2345 		return (0);
2346 
2347 	case M_IOCTL:
2348 		/*
2349 		 * Always NAK this condition
2350 		 * (makes no sense)
2351 		 * If there is one or more threads in the read side
2352 		 * rwnext we have to defer the nacking until that thread
2353 		 * returns (in strget).
2354 		 */
2355 		mutex_enter(&stp->sd_lock);
2356 		if (stp->sd_struiodnak != 0) {
2357 			/*
2358 			 * Defer NAK to the streamhead. Queue at the end
2359 			 * the list.
2360 			 */
2361 			mblk_t *mp = stp->sd_struionak;
2362 
2363 			while (mp && mp->b_next)
2364 				mp = mp->b_next;
2365 			if (mp)
2366 				mp->b_next = bp;
2367 			else
2368 				stp->sd_struionak = bp;
2369 			bp->b_next = NULL;
2370 			mutex_exit(&stp->sd_lock);
2371 			return (0);
2372 		}
2373 		mutex_exit(&stp->sd_lock);
2374 
2375 		bp->b_datap->db_type = M_IOCNAK;
2376 		/*
2377 		 * Protect against the driver passing up
2378 		 * messages after it has done a qprocsoff.
2379 		 */
2380 		if (_OTHERQ(q)->q_next == NULL)
2381 			freemsg(bp);
2382 		else
2383 			qreply(q, bp);
2384 		return (0);
2385 
2386 	default:
2387 #ifdef DEBUG
2388 		cmn_err(CE_WARN,
2389 			"bad message type %x received at stream head\n",
2390 			bp->b_datap->db_type);
2391 #endif
2392 		freemsg(bp);
2393 		return (0);
2394 	}
2395 
2396 	/* NOTREACHED */
2397 }
2398 
2399 /*
2400  * Check if the stream pointed to by `stp' can be written to, and return an
2401  * error code if not.  If `eiohup' is set, then return EIO if STRHUP is set.
2402  * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream,
2403  * then always return EPIPE and send a SIGPIPE to the invoking thread.
2404  */
2405 static int
2406 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok)
2407 {
2408 	int error;
2409 
2410 	ASSERT(MUTEX_HELD(&stp->sd_lock));
2411 
2412 	/*
2413 	 * For modem support, POSIX states that on writes, EIO should
2414 	 * be returned if the stream has been hung up.
2415 	 */
2416 	if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP)
2417 		error = EIO;
2418 	else
2419 		error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0);
2420 
2421 	if (error != 0) {
2422 		if (!(stp->sd_flag & STPLEX) &&
2423 		    (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) {
2424 			tsignal(curthread, SIGPIPE);
2425 			error = EPIPE;
2426 		}
2427 	}
2428 
2429 	return (error);
2430 }
2431 
2432 /*
2433  * Copyin and send data down a stream.
2434  * The caller will allocate and copyin any control part that precedes the
2435  * message and pass than in as mctl.
2436  *
2437  * Caller should *not* hold sd_lock.
2438  * When EWOULDBLOCK is returned the caller has to redo the canputnext
2439  * under sd_lock in order to avoid missing a backenabling wakeup.
2440  *
2441  * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA.
2442  *
2443  * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages.
2444  * For sync streams we can only ignore flow control by reverting to using
2445  * putnext.
2446  *
2447  * If sd_maxblk is less than *iosize this routine might return without
2448  * transferring all of *iosize. In all cases, on return *iosize will contain
2449  * the amount of data that was transferred.
2450  */
2451 static int
2452 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize,
2453     int b_flag, int pri, int flags)
2454 {
2455 	struiod_t uiod;
2456 	mblk_t *mp;
2457 	queue_t *wqp = stp->sd_wrq;
2458 	int error = 0;
2459 	ssize_t count = *iosize;
2460 	cred_t *cr;
2461 
2462 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
2463 
2464 	if (uiop != NULL && count >= 0)
2465 		flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0;
2466 
2467 	if (!(flags & STRUIO_POSTPONE)) {
2468 		/*
2469 		 * Use regular canputnext, strmakedata, putnext sequence.
2470 		 */
2471 		if (pri == 0) {
2472 			if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2473 				freemsg(mctl);
2474 				return (EWOULDBLOCK);
2475 			}
2476 		} else {
2477 			if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) {
2478 				freemsg(mctl);
2479 				return (EWOULDBLOCK);
2480 			}
2481 		}
2482 
2483 		if ((error = strmakedata(iosize, uiop, stp, flags,
2484 					&mp)) != 0) {
2485 			freemsg(mctl);
2486 			/*
2487 			 * need to change return code to ENOMEM
2488 			 * so that this is not confused with
2489 			 * flow control, EAGAIN.
2490 			 */
2491 
2492 			if (error == EAGAIN)
2493 				return (ENOMEM);
2494 			else
2495 				return (error);
2496 		}
2497 		if (mctl != NULL) {
2498 			if (mctl->b_cont == NULL)
2499 				mctl->b_cont = mp;
2500 			else if (mp != NULL)
2501 				linkb(mctl, mp);
2502 			mp = mctl;
2503 			/*
2504 			 * Note that for interrupt thread, the CRED() is
2505 			 * NULL. Don't bother with the pid either.
2506 			 */
2507 			if ((cr = CRED()) != NULL) {
2508 				mblk_setcred(mp, cr);
2509 				DB_CPID(mp) = curproc->p_pid;
2510 			}
2511 		} else if (mp == NULL)
2512 			return (0);
2513 
2514 		mp->b_flag |= b_flag;
2515 		mp->b_band = (uchar_t)pri;
2516 
2517 		if (flags & MSG_IGNFLOW) {
2518 			/*
2519 			 * XXX Hack: Don't get stuck running service
2520 			 * procedures. This is needed for sockfs when
2521 			 * sending the unbind message out of the rput
2522 			 * procedure - we don't want a put procedure
2523 			 * to run service procedures.
2524 			 */
2525 			putnext(wqp, mp);
2526 		} else {
2527 			stream_willservice(stp);
2528 			putnext(wqp, mp);
2529 			stream_runservice(stp);
2530 		}
2531 		return (0);
2532 	}
2533 	/*
2534 	 * Stream supports rwnext() for the write side.
2535 	 */
2536 	if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) {
2537 		freemsg(mctl);
2538 		/*
2539 		 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled".
2540 		 */
2541 		return (error == EAGAIN ? ENOMEM : error);
2542 	}
2543 	if (mctl != NULL) {
2544 		if (mctl->b_cont == NULL)
2545 			mctl->b_cont = mp;
2546 		else if (mp != NULL)
2547 			linkb(mctl, mp);
2548 		mp = mctl;
2549 		/*
2550 		 * Note that for interrupt thread, the CRED() is
2551 		 * NULL.  Don't bother with the pid either.
2552 		 */
2553 		if ((cr = CRED()) != NULL) {
2554 			mblk_setcred(mp, cr);
2555 			DB_CPID(mp) = curproc->p_pid;
2556 		}
2557 	} else if (mp == NULL) {
2558 		return (0);
2559 	}
2560 
2561 	mp->b_flag |= b_flag;
2562 	mp->b_band = (uchar_t)pri;
2563 
2564 	(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
2565 		sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
2566 	uiod.d_uio.uio_offset = 0;
2567 	uiod.d_mp = mp;
2568 	error = rwnext(wqp, &uiod);
2569 	if (! uiod.d_mp) {
2570 		uioskip(uiop, *iosize);
2571 		return (error);
2572 	}
2573 	ASSERT(mp == uiod.d_mp);
2574 	if (error == EINVAL) {
2575 		/*
2576 		 * The stream plumbing must have changed while
2577 		 * we were away, so just turn off rwnext()s.
2578 		 */
2579 		error = 0;
2580 	} else if (error == EBUSY || error == EWOULDBLOCK) {
2581 		/*
2582 		 * Couldn't enter a perimeter or took a page fault,
2583 		 * so fall-back to putnext().
2584 		 */
2585 		error = 0;
2586 	} else {
2587 		freemsg(mp);
2588 		return (error);
2589 	}
2590 	/* Have to check canput before consuming data from the uio */
2591 	if (pri == 0) {
2592 		if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2593 			freemsg(mp);
2594 			return (EWOULDBLOCK);
2595 		}
2596 	} else {
2597 		if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) {
2598 			freemsg(mp);
2599 			return (EWOULDBLOCK);
2600 		}
2601 	}
2602 	ASSERT(mp == uiod.d_mp);
2603 	/* Copyin data from the uio */
2604 	if ((error = struioget(wqp, mp, &uiod, 0)) != 0) {
2605 		freemsg(mp);
2606 		return (error);
2607 	}
2608 	uioskip(uiop, *iosize);
2609 	if (flags & MSG_IGNFLOW) {
2610 		/*
2611 		 * XXX Hack: Don't get stuck running service procedures.
2612 		 * This is needed for sockfs when sending the unbind message
2613 		 * out of the rput procedure - we don't want a put procedure
2614 		 * to run service procedures.
2615 		 */
2616 		putnext(wqp, mp);
2617 	} else {
2618 		stream_willservice(stp);
2619 		putnext(wqp, mp);
2620 		stream_runservice(stp);
2621 	}
2622 	return (0);
2623 }
2624 
2625 /*
2626  * Write attempts to break the write request into messages conforming
2627  * with the minimum and maximum packet sizes set downstream.
2628  *
2629  * Write will not block if downstream queue is full and
2630  * O_NDELAY is set, otherwise it will block waiting for the queue to get room.
2631  *
2632  * A write of zero bytes gets packaged into a zero length message and sent
2633  * downstream like any other message.
2634  *
2635  * If buffers of the requested sizes are not available, the write will
2636  * sleep until the buffers become available.
2637  *
2638  * Write (if specified) will supply a write offset in a message if it
2639  * makes sense. This can be specified by downstream modules as part of
2640  * a M_SETOPTS message.  Write will not supply the write offset if it
2641  * cannot supply any data in a buffer.  In other words, write will never
2642  * send down an empty packet due to a write offset.
2643  */
2644 /* ARGSUSED2 */
2645 int
2646 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp)
2647 {
2648 	return (strwrite_common(vp, uiop, crp, 0));
2649 }
2650 
2651 /* ARGSUSED2 */
2652 int
2653 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag)
2654 {
2655 	struct stdata *stp;
2656 	struct queue *wqp;
2657 	ssize_t rmin, rmax;
2658 	ssize_t iosize;
2659 	int waitflag;
2660 	int tempmode;
2661 	int error = 0;
2662 	int b_flag;
2663 
2664 	ASSERT(vp->v_stream);
2665 	stp = vp->v_stream;
2666 
2667 	if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO)
2668 		if ((error = straccess(stp, JCWRITE)) != 0)
2669 			return (error);
2670 
2671 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
2672 		mutex_enter(&stp->sd_lock);
2673 		error = strwriteable(stp, B_TRUE, B_TRUE);
2674 		mutex_exit(&stp->sd_lock);
2675 		if (error != 0)
2676 			return (error);
2677 	}
2678 
2679 	wqp = stp->sd_wrq;
2680 
2681 	/* get these values from them cached in the stream head */
2682 	rmin = stp->sd_qn_minpsz;
2683 	rmax = stp->sd_qn_maxpsz;
2684 
2685 	/*
2686 	 * Check the min/max packet size constraints.  If min packet size
2687 	 * is non-zero, the write cannot be split into multiple messages
2688 	 * and still guarantee the size constraints.
2689 	 */
2690 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp);
2691 
2692 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
2693 	if (rmax == 0) {
2694 		return (0);
2695 	}
2696 	if (rmin > 0) {
2697 		if (uiop->uio_resid < rmin) {
2698 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2699 				"strwrite out:q %p out %d error %d",
2700 				wqp, 0, ERANGE);
2701 			return (ERANGE);
2702 		}
2703 		if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) {
2704 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2705 				"strwrite out:q %p out %d error %d",
2706 				wqp, 1, ERANGE);
2707 			return (ERANGE);
2708 		}
2709 	}
2710 
2711 	/*
2712 	 * Do until count satisfied or error.
2713 	 */
2714 	waitflag = WRITEWAIT | wflag;
2715 	if (stp->sd_flag & OLDNDELAY)
2716 		tempmode = uiop->uio_fmode & ~FNDELAY;
2717 	else
2718 		tempmode = uiop->uio_fmode;
2719 
2720 	if (rmax == INFPSZ)
2721 		rmax = uiop->uio_resid;
2722 
2723 	/*
2724 	 * Note that tempmode does not get used in strput/strmakedata
2725 	 * but only in strwaitq. The other routines use uio_fmode
2726 	 * unmodified.
2727 	 */
2728 
2729 	/* LINTED: constant in conditional context */
2730 	while (1) {	/* breaks when uio_resid reaches zero */
2731 		/*
2732 		 * Determine the size of the next message to be
2733 		 * packaged.  May have to break write into several
2734 		 * messages based on max packet size.
2735 		 */
2736 		iosize = MIN(uiop->uio_resid, rmax);
2737 
2738 		/*
2739 		 * Put block downstream when flow control allows it.
2740 		 */
2741 		if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize))
2742 			b_flag = MSGDELIM;
2743 		else
2744 			b_flag = 0;
2745 
2746 		for (;;) {
2747 			int done = 0;
2748 
2749 			error = strput(stp, NULL, uiop, &iosize, b_flag,
2750 				0, 0);
2751 			if (error == 0)
2752 				break;
2753 			if (error != EWOULDBLOCK)
2754 				goto out;
2755 
2756 			mutex_enter(&stp->sd_lock);
2757 			/*
2758 			 * Check for a missed wakeup.
2759 			 * Needed since strput did not hold sd_lock across
2760 			 * the canputnext.
2761 			 */
2762 			if (canputnext(wqp)) {
2763 				/* Try again */
2764 				mutex_exit(&stp->sd_lock);
2765 				continue;
2766 			}
2767 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT,
2768 				"strwrite wait:q %p wait", wqp);
2769 			if ((error = strwaitq(stp, waitflag, (ssize_t)0,
2770 			    tempmode, -1, &done)) != 0 || done) {
2771 				mutex_exit(&stp->sd_lock);
2772 				if ((vp->v_type == VFIFO) &&
2773 				    (uiop->uio_fmode & FNDELAY) &&
2774 				    (error == EAGAIN))
2775 					error = 0;
2776 				goto out;
2777 			}
2778 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE,
2779 				"strwrite wake:q %p awakes", wqp);
2780 			mutex_exit(&stp->sd_lock);
2781 			if (stp->sd_sidp != NULL &&
2782 			    stp->sd_vnode->v_type != VFIFO)
2783 				if (error = straccess(stp, JCWRITE))
2784 					goto out;
2785 		}
2786 		waitflag |= NOINTR;
2787 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID,
2788 			"strwrite resid:q %p uiop %p", wqp, uiop);
2789 		if (uiop->uio_resid) {
2790 			/* Recheck for errors - needed for sockets */
2791 			if ((stp->sd_wput_opt & SW_RECHECK_ERR) &&
2792 			    (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
2793 				mutex_enter(&stp->sd_lock);
2794 				error = strwriteable(stp, B_FALSE, B_TRUE);
2795 				mutex_exit(&stp->sd_lock);
2796 				if (error != 0)
2797 					return (error);
2798 			}
2799 			continue;
2800 		}
2801 		break;
2802 	}
2803 out:
2804 	/*
2805 	 * For historical reasons, applications expect EAGAIN when a data
2806 	 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN.
2807 	 */
2808 	if (error == ENOMEM)
2809 		error = EAGAIN;
2810 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2811 		"strwrite out:q %p out %d error %d", wqp, 2, error);
2812 	return (error);
2813 }
2814 
2815 /*
2816  * Stream head write service routine.
2817  * Its job is to wake up any sleeping writers when a queue
2818  * downstream needs data (part of the flow control in putq and getq).
2819  * It also must wake anyone sleeping on a poll().
2820  * For stream head right below mux module, it must also invoke put procedure
2821  * of next downstream module.
2822  */
2823 int
2824 strwsrv(queue_t *q)
2825 {
2826 	struct stdata *stp;
2827 	queue_t *tq;
2828 	qband_t *qbp;
2829 	int i;
2830 	qband_t *myqbp;
2831 	int isevent;
2832 	unsigned char	qbf[NBAND];	/* band flushing backenable flags */
2833 
2834 	TRACE_1(TR_FAC_STREAMS_FR,
2835 		TR_STRWSRV, "strwsrv:q %p", q);
2836 	stp = (struct stdata *)q->q_ptr;
2837 	ASSERT(qclaimed(q));
2838 	mutex_enter(&stp->sd_lock);
2839 	ASSERT(!(stp->sd_flag & STPLEX));
2840 
2841 	if (stp->sd_flag & WSLEEP) {
2842 		stp->sd_flag &= ~WSLEEP;
2843 		cv_broadcast(&q->q_wait);
2844 	}
2845 	mutex_exit(&stp->sd_lock);
2846 
2847 	/* The other end of a stream pipe went away. */
2848 	if ((tq = q->q_next) == NULL) {
2849 		return (0);
2850 	}
2851 
2852 	/* Find the next module forward that has a service procedure */
2853 	claimstr(q);
2854 	tq = q->q_nfsrv;
2855 	ASSERT(tq != NULL);
2856 
2857 	if ((q->q_flag & QBACK)) {
2858 		if ((tq->q_flag & QFULL)) {
2859 			mutex_enter(QLOCK(tq));
2860 			if (!(tq->q_flag & QFULL)) {
2861 				mutex_exit(QLOCK(tq));
2862 				goto wakeup;
2863 			}
2864 			/*
2865 			 * The queue must have become full again. Set QWANTW
2866 			 * again so strwsrv will be back enabled when
2867 			 * the queue becomes non-full next time.
2868 			 */
2869 			tq->q_flag |= QWANTW;
2870 			mutex_exit(QLOCK(tq));
2871 		} else {
2872 		wakeup:
2873 			pollwakeup(&stp->sd_pollist, POLLWRNORM);
2874 			mutex_enter(&stp->sd_lock);
2875 			if (stp->sd_sigflags & S_WRNORM)
2876 				strsendsig(stp->sd_siglist, S_WRNORM, 0, 0);
2877 			mutex_exit(&stp->sd_lock);
2878 		}
2879 	}
2880 
2881 	isevent = 0;
2882 	i = 1;
2883 	bzero((caddr_t)qbf, NBAND);
2884 	mutex_enter(QLOCK(tq));
2885 	if ((myqbp = q->q_bandp) != NULL)
2886 		for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) {
2887 			ASSERT(myqbp);
2888 			if ((myqbp->qb_flag & QB_BACK)) {
2889 				if (qbp->qb_flag & QB_FULL) {
2890 					/*
2891 					 * The band must have become full again.
2892 					 * Set QB_WANTW again so strwsrv will
2893 					 * be back enabled when the band becomes
2894 					 * non-full next time.
2895 					 */
2896 					qbp->qb_flag |= QB_WANTW;
2897 				} else {
2898 					isevent = 1;
2899 					qbf[i] = 1;
2900 				}
2901 			}
2902 			myqbp = myqbp->qb_next;
2903 			i++;
2904 		}
2905 	mutex_exit(QLOCK(tq));
2906 
2907 	if (isevent) {
2908 	    for (i = tq->q_nband; i; i--) {
2909 		if (qbf[i]) {
2910 			pollwakeup(&stp->sd_pollist, POLLWRBAND);
2911 			mutex_enter(&stp->sd_lock);
2912 			if (stp->sd_sigflags & S_WRBAND)
2913 				strsendsig(stp->sd_siglist, S_WRBAND,
2914 					(uchar_t)i, 0);
2915 			mutex_exit(&stp->sd_lock);
2916 		}
2917 	    }
2918 	}
2919 
2920 	releasestr(q);
2921 	return (0);
2922 }
2923 
2924 /*
2925  * Special case of strcopyin/strcopyout for copying
2926  * struct strioctl that can deal with both data
2927  * models.
2928  */
2929 
2930 #ifdef	_LP64
2931 
2932 static int
2933 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
2934 {
2935 	struct	strioctl32 strioc32;
2936 	struct	strioctl *striocp;
2937 
2938 	if (copyflag & U_TO_K) {
2939 		ASSERT((copyflag & K_TO_K) == 0);
2940 
2941 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
2942 			if (copyin(from, &strioc32, sizeof (strioc32)))
2943 				return (EFAULT);
2944 
2945 			striocp = (struct strioctl *)to;
2946 			striocp->ic_cmd	= strioc32.ic_cmd;
2947 			striocp->ic_timout = strioc32.ic_timout;
2948 			striocp->ic_len	= strioc32.ic_len;
2949 			striocp->ic_dp	= (char *)(uintptr_t)strioc32.ic_dp;
2950 
2951 		} else { /* NATIVE data model */
2952 			if (copyin(from, to, sizeof (struct strioctl))) {
2953 				return (EFAULT);
2954 			} else {
2955 				return (0);
2956 			}
2957 		}
2958 	} else {
2959 		ASSERT(copyflag & K_TO_K);
2960 		bcopy(from, to, sizeof (struct strioctl));
2961 	}
2962 	return (0);
2963 }
2964 
2965 static int
2966 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
2967 {
2968 	struct	strioctl32 strioc32;
2969 	struct	strioctl *striocp;
2970 
2971 	if (copyflag & U_TO_K) {
2972 		ASSERT((copyflag & K_TO_K) == 0);
2973 
2974 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
2975 			striocp = (struct strioctl *)from;
2976 			strioc32.ic_cmd	= striocp->ic_cmd;
2977 			strioc32.ic_timout = striocp->ic_timout;
2978 			strioc32.ic_len	= striocp->ic_len;
2979 			strioc32.ic_dp	= (caddr32_t)(uintptr_t)striocp->ic_dp;
2980 			ASSERT((char *)(uintptr_t)strioc32.ic_dp ==
2981 			    striocp->ic_dp);
2982 
2983 			if (copyout(&strioc32, to, sizeof (strioc32)))
2984 				return (EFAULT);
2985 
2986 		} else { /* NATIVE data model */
2987 			if (copyout(from, to, sizeof (struct strioctl))) {
2988 				return (EFAULT);
2989 			} else {
2990 				return (0);
2991 			}
2992 		}
2993 	} else {
2994 		ASSERT(copyflag & K_TO_K);
2995 		bcopy(from, to, sizeof (struct strioctl));
2996 	}
2997 	return (0);
2998 }
2999 
3000 #else	/* ! _LP64 */
3001 
3002 /* ARGSUSED2 */
3003 static int
3004 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3005 {
3006 	return (strcopyin(from, to, sizeof (struct strioctl), copyflag));
3007 }
3008 
3009 /* ARGSUSED2 */
3010 static int
3011 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3012 {
3013 	return (strcopyout(from, to, sizeof (struct strioctl), copyflag));
3014 }
3015 
3016 #endif	/* _LP64 */
3017 
3018 /*
3019  * Determine type of job control semantics expected by user.  The
3020  * possibilities are:
3021  *	JCREAD	- Behaves like read() on fd; send SIGTTIN
3022  *	JCWRITE	- Behaves like write() on fd; send SIGTTOU if TOSTOP set
3023  *	JCSETP	- Sets a value in the stream; send SIGTTOU, ignore TOSTOP
3024  *	JCGETP	- Gets a value in the stream; no signals.
3025  * See straccess in strsubr.c for usage of these values.
3026  *
3027  * This routine also returns -1 for I_STR as a special case; the
3028  * caller must call again with the real ioctl number for
3029  * classification.
3030  */
3031 static int
3032 job_control_type(int cmd)
3033 {
3034 	switch (cmd) {
3035 	case I_STR:
3036 		return (-1);
3037 
3038 	case I_RECVFD:
3039 	case I_E_RECVFD:
3040 		return (JCREAD);
3041 
3042 	case I_FDINSERT:
3043 	case I_SENDFD:
3044 		return (JCWRITE);
3045 
3046 	case TCSETA:
3047 	case TCSETAW:
3048 	case TCSETAF:
3049 	case TCSBRK:
3050 	case TCXONC:
3051 	case TCFLSH:
3052 	case TCDSET:	/* Obsolete */
3053 	case TIOCSWINSZ:
3054 	case TCSETS:
3055 	case TCSETSW:
3056 	case TCSETSF:
3057 	case TIOCSETD:
3058 	case TIOCHPCL:
3059 	case TIOCSETP:
3060 	case TIOCSETN:
3061 	case TIOCEXCL:
3062 	case TIOCNXCL:
3063 	case TIOCFLUSH:
3064 	case TIOCSETC:
3065 	case TIOCLBIS:
3066 	case TIOCLBIC:
3067 	case TIOCLSET:
3068 	case TIOCSBRK:
3069 	case TIOCCBRK:
3070 	case TIOCSDTR:
3071 	case TIOCCDTR:
3072 	case TIOCSLTC:
3073 	case TIOCSTOP:
3074 	case TIOCSTART:
3075 	case TIOCSTI:
3076 	case TIOCSPGRP:
3077 	case TIOCMSET:
3078 	case TIOCMBIS:
3079 	case TIOCMBIC:
3080 	case TIOCREMOTE:
3081 	case TIOCSIGNAL:
3082 	case LDSETT:
3083 	case LDSMAP:	/* Obsolete */
3084 	case DIOCSETP:
3085 	case I_FLUSH:
3086 	case I_SRDOPT:
3087 	case I_SETSIG:
3088 	case I_SWROPT:
3089 	case I_FLUSHBAND:
3090 	case I_SETCLTIME:
3091 	case I_SERROPT:
3092 	case I_ESETSIG:
3093 	case FIONBIO:
3094 	case FIOASYNC:
3095 	case FIOSETOWN:
3096 	case JBOOT:	/* Obsolete */
3097 	case JTERM:	/* Obsolete */
3098 	case JTIMOM:	/* Obsolete */
3099 	case JZOMBOOT:	/* Obsolete */
3100 	case JAGENT:	/* Obsolete */
3101 	case JTRUN:	/* Obsolete */
3102 	case JXTPROTO:	/* Obsolete */
3103 		return (JCSETP);
3104 	}
3105 
3106 	return (JCGETP);
3107 }
3108 
3109 /*
3110  * ioctl for streams
3111  */
3112 int
3113 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
3114     cred_t *crp, int *rvalp)
3115 {
3116 	struct stdata *stp;
3117 	struct strioctl strioc;
3118 	struct uio uio;
3119 	struct iovec iov;
3120 	int access;
3121 	mblk_t *mp;
3122 	int error = 0;
3123 	int done = 0;
3124 	ssize_t	rmin, rmax;
3125 	queue_t *wrq;
3126 	queue_t *rdq;
3127 	boolean_t kioctl = B_FALSE;
3128 
3129 	if (flag & FKIOCTL) {
3130 		copyflag = K_TO_K;
3131 		kioctl = B_TRUE;
3132 	}
3133 	ASSERT(vp->v_stream);
3134 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
3135 	stp = vp->v_stream;
3136 
3137 	TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
3138 		"strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);
3139 
3140 #ifdef C2_AUDIT
3141 	if (audit_active)
3142 		audit_strioctl(vp, cmd, arg, flag, copyflag, crp, rvalp);
3143 #endif
3144 
3145 	/*
3146 	 * If the copy is kernel to kernel, make sure that the FNATIVE
3147 	 * flag is set.  After this it would be a serious error to have
3148 	 * no model flag.
3149 	 */
3150 	if (copyflag == K_TO_K)
3151 		flag = (flag & ~FMODELS) | FNATIVE;
3152 
3153 	ASSERT((flag & FMODELS) != 0);
3154 
3155 	wrq = stp->sd_wrq;
3156 	rdq = _RD(wrq);
3157 
3158 	access = job_control_type(cmd);
3159 
3160 	/* We should never see these here, should be handled by iwscn */
3161 	if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
3162 		return (EINVAL);
3163 
3164 	if (access != -1 && stp->sd_sidp != NULL &&
3165 	    stp->sd_vnode->v_type != VFIFO)
3166 		if (error = straccess(stp, access))
3167 			return (error);
3168 
3169 	/*
3170 	 * Check for sgttyb-related ioctls first, and complain as
3171 	 * necessary.
3172 	 */
3173 	switch (cmd) {
3174 	case TIOCGETP:
3175 	case TIOCSETP:
3176 	case TIOCSETN:
3177 		if (sgttyb_handling >= 2 && !sgttyb_complaint) {
3178 			sgttyb_complaint = B_TRUE;
3179 			cmn_err(CE_NOTE,
3180 			    "application used obsolete TIOC[GS]ET");
3181 		}
3182 		if (sgttyb_handling >= 3) {
3183 			tsignal(curthread, SIGSYS);
3184 			return (EIO);
3185 		}
3186 		break;
3187 	}
3188 
3189 	mutex_enter(&stp->sd_lock);
3190 
3191 	switch (cmd) {
3192 	case I_RECVFD:
3193 	case I_E_RECVFD:
3194 	case I_PEEK:
3195 	case I_NREAD:
3196 	case FIONREAD:
3197 	case FIORDCHK:
3198 	case I_ATMARK:
3199 	case FIONBIO:
3200 	case FIOASYNC:
3201 		if (stp->sd_flag & (STRDERR|STPLEX)) {
3202 			error = strgeterr(stp, STRDERR|STPLEX, 0);
3203 			if (error != 0) {
3204 				mutex_exit(&stp->sd_lock);
3205 				return (error);
3206 			}
3207 		}
3208 		break;
3209 
3210 	default:
3211 		if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
3212 			error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
3213 			if (error != 0) {
3214 				mutex_exit(&stp->sd_lock);
3215 				return (error);
3216 			}
3217 		}
3218 	}
3219 
3220 	mutex_exit(&stp->sd_lock);
3221 
3222 	switch (cmd) {
3223 	default:
3224 		/*
3225 		 * The stream head has hardcoded knowledge of a
3226 		 * miscellaneous collection of terminal-, keyboard- and
3227 		 * mouse-related ioctls, enumerated below.  This hardcoded
3228 		 * knowledge allows the stream head to automatically
3229 		 * convert transparent ioctl requests made by userland
3230 		 * programs into I_STR ioctls which many old STREAMS
3231 		 * modules and drivers require.
3232 		 *
3233 		 * No new ioctls should ever be added to this list.
3234 		 * Instead, the STREAMS module or driver should be written
3235 		 * to either handle transparent ioctls or require any
3236 		 * userland programs to use I_STR ioctls (by returning
3237 		 * EINVAL to any transparent ioctl requests).
3238 		 *
3239 		 * More importantly, removing ioctls from this list should
3240 		 * be done with the utmost care, since our STREAMS modules
3241 		 * and drivers *count* on the stream head performing this
3242 		 * conversion, and thus may panic while processing
3243 		 * transparent ioctl request for one of these ioctls (keep
3244 		 * in mind that third party modules and drivers may have
3245 		 * similar problems).
3246 		 */
3247 		if (((cmd & IOCTYPE) == LDIOC) ||
3248 		    ((cmd & IOCTYPE) == tIOC) ||
3249 		    ((cmd & IOCTYPE) == TIOC) ||
3250 		    ((cmd & IOCTYPE) == KIOC) ||
3251 		    ((cmd & IOCTYPE) == MSIOC) ||
3252 		    ((cmd & IOCTYPE) == VUIOC)) {
3253 			/*
3254 			 * The ioctl is a tty ioctl - set up strioc buffer
3255 			 * and call strdoioctl() to do the work.
3256 			 */
3257 			if (stp->sd_flag & STRHUP)
3258 				return (ENXIO);
3259 			strioc.ic_cmd = cmd;
3260 			strioc.ic_timout = INFTIM;
3261 
3262 			switch (cmd) {
3263 
3264 			case TCXONC:
3265 			case TCSBRK:
3266 			case TCFLSH:
3267 			case TCDSET:
3268 				{
3269 				int native_arg = (int)arg;
3270 				strioc.ic_len = sizeof (int);
3271 				strioc.ic_dp = (char *)&native_arg;
3272 				return (strdoioctl(stp, &strioc, flag,
3273 				    K_TO_K, crp, rvalp));
3274 				}
3275 
3276 			case TCSETA:
3277 			case TCSETAW:
3278 			case TCSETAF:
3279 				strioc.ic_len = sizeof (struct termio);
3280 				strioc.ic_dp = (char *)arg;
3281 				return (strdoioctl(stp, &strioc, flag,
3282 					copyflag, crp, rvalp));
3283 
3284 			case TCSETS:
3285 			case TCSETSW:
3286 			case TCSETSF:
3287 				strioc.ic_len = sizeof (struct termios);
3288 				strioc.ic_dp = (char *)arg;
3289 				return (strdoioctl(stp, &strioc, flag,
3290 					copyflag, crp, rvalp));
3291 
3292 			case LDSETT:
3293 				strioc.ic_len = sizeof (struct termcb);
3294 				strioc.ic_dp = (char *)arg;
3295 				return (strdoioctl(stp, &strioc, flag,
3296 					copyflag, crp, rvalp));
3297 
3298 			case TIOCSETP:
3299 				strioc.ic_len = sizeof (struct sgttyb);
3300 				strioc.ic_dp = (char *)arg;
3301 				return (strdoioctl(stp, &strioc, flag,
3302 					copyflag, crp, rvalp));
3303 
3304 			case TIOCSTI:
3305 				if ((flag & FREAD) == 0 &&
3306 				    secpolicy_sti(crp) != 0) {
3307 					return (EPERM);
3308 				}
3309 				if (stp->sd_sidp !=
3310 				    ttoproc(curthread)->p_sessp->s_sidp &&
3311 				    secpolicy_sti(crp) != 0) {
3312 					return (EACCES);
3313 				}
3314 
3315 				strioc.ic_len = sizeof (char);
3316 				strioc.ic_dp = (char *)arg;
3317 				return (strdoioctl(stp, &strioc, flag,
3318 					copyflag, crp, rvalp));
3319 
3320 			case TIOCSWINSZ:
3321 				strioc.ic_len = sizeof (struct winsize);
3322 				strioc.ic_dp = (char *)arg;
3323 				return (strdoioctl(stp, &strioc, flag,
3324 					copyflag, crp, rvalp));
3325 
3326 			case TIOCSSIZE:
3327 				strioc.ic_len = sizeof (struct ttysize);
3328 				strioc.ic_dp = (char *)arg;
3329 				return (strdoioctl(stp, &strioc, flag,
3330 					copyflag, crp, rvalp));
3331 
3332 			case TIOCSSOFTCAR:
3333 			case KIOCTRANS:
3334 			case KIOCTRANSABLE:
3335 			case KIOCCMD:
3336 			case KIOCSDIRECT:
3337 			case KIOCSCOMPAT:
3338 			case KIOCSKABORTEN:
3339 			case KIOCSRPTDELAY:
3340 			case KIOCSRPTRATE:
3341 			case VUIDSFORMAT:
3342 			case TIOCSPPS:
3343 				strioc.ic_len = sizeof (int);
3344 				strioc.ic_dp = (char *)arg;
3345 				return (strdoioctl(stp, &strioc, flag,
3346 					copyflag, crp, rvalp));
3347 
3348 			case KIOCSETKEY:
3349 			case KIOCGETKEY:
3350 				strioc.ic_len = sizeof (struct kiockey);
3351 				strioc.ic_dp = (char *)arg;
3352 				return (strdoioctl(stp, &strioc, flag,
3353 					copyflag, crp, rvalp));
3354 
3355 			case KIOCSKEY:
3356 			case KIOCGKEY:
3357 				strioc.ic_len = sizeof (struct kiockeymap);
3358 				strioc.ic_dp = (char *)arg;
3359 				return (strdoioctl(stp, &strioc, flag,
3360 					copyflag, crp, rvalp));
3361 
3362 			case KIOCSLED:
3363 				/* arg is a pointer to char */
3364 				strioc.ic_len = sizeof (char);
3365 				strioc.ic_dp = (char *)arg;
3366 				return (strdoioctl(stp, &strioc, flag,
3367 					copyflag, crp, rvalp));
3368 
3369 			case MSIOSETPARMS:
3370 				strioc.ic_len = sizeof (Ms_parms);
3371 				strioc.ic_dp = (char *)arg;
3372 				return (strdoioctl(stp, &strioc, flag,
3373 					copyflag, crp, rvalp));
3374 
3375 			case VUIDSADDR:
3376 			case VUIDGADDR:
3377 				strioc.ic_len = sizeof (struct vuid_addr_probe);
3378 				strioc.ic_dp = (char *)arg;
3379 				return (strdoioctl(stp, &strioc, flag,
3380 					copyflag, crp, rvalp));
3381 
3382 			/*
3383 			 * These M_IOCTL's don't require any data to be sent
3384 			 * downstream, and the driver will allocate and link
3385 			 * on its own mblk_t upon M_IOCACK -- thus we set
3386 			 * ic_len to zero and set ic_dp to arg so we know
3387 			 * where to copyout to later.
3388 			 */
3389 			case TIOCGSOFTCAR:
3390 			case TIOCGWINSZ:
3391 			case TIOCGSIZE:
3392 			case KIOCGTRANS:
3393 			case KIOCGTRANSABLE:
3394 			case KIOCTYPE:
3395 			case KIOCGDIRECT:
3396 			case KIOCGCOMPAT:
3397 			case KIOCLAYOUT:
3398 			case KIOCGLED:
3399 			case MSIOGETPARMS:
3400 			case MSIOBUTTONS:
3401 			case VUIDGFORMAT:
3402 			case TIOCGPPS:
3403 			case TIOCGPPSEV:
3404 			case TCGETA:
3405 			case TCGETS:
3406 			case LDGETT:
3407 			case TIOCGETP:
3408 			case KIOCGRPTDELAY:
3409 			case KIOCGRPTRATE:
3410 				strioc.ic_len = 0;
3411 				strioc.ic_dp = (char *)arg;
3412 				return (strdoioctl(stp, &strioc, flag,
3413 					copyflag, crp, rvalp));
3414 			}
3415 		}
3416 
3417 		/*
3418 		 * Unknown cmd - send it down as a transparent ioctl.
3419 		 */
3420 		strioc.ic_cmd = cmd;
3421 		strioc.ic_timout = INFTIM;
3422 		strioc.ic_len = TRANSPARENT;
3423 		strioc.ic_dp = (char *)&arg;
3424 
3425 		return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));
3426 
3427 	case I_STR:
3428 		/*
3429 		 * Stream ioctl.  Read in an strioctl buffer from the user
3430 		 * along with any data specified and send it downstream.
3431 		 * Strdoioctl will wait allow only one ioctl message at
3432 		 * a time, and waits for the acknowledgement.
3433 		 */
3434 
3435 		if (stp->sd_flag & STRHUP)
3436 			return (ENXIO);
3437 
3438 		error = strcopyin_strioctl((void *)arg, &strioc, flag,
3439 		    copyflag);
3440 		if (error != 0)
3441 			return (error);
3442 
3443 		if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
3444 			return (EINVAL);
3445 
3446 		access = job_control_type(strioc.ic_cmd);
3447 		if (access != -1 && stp->sd_sidp != NULL &&
3448 		    stp->sd_vnode->v_type != VFIFO &&
3449 		    (error = straccess(stp, access)) != 0)
3450 			return (error);
3451 
3452 		/*
3453 		 * The I_STR facility provides a trap door for malicious
3454 		 * code to send down bogus streamio(7I) ioctl commands to
3455 		 * unsuspecting STREAMS modules and drivers which expect to
3456 		 * only get these messages from the stream head.
3457 		 * Explicitly prohibit any streamio ioctls which can be
3458 		 * passed downstream by the stream head.  Note that we do
3459 		 * not block all streamio ioctls because the ioctl
3460 		 * numberspace is not well managed and thus it's possible
3461 		 * that a module or driver's ioctl numbers may accidentally
3462 		 * collide with them.
3463 		 */
3464 		switch (strioc.ic_cmd) {
3465 		case I_LINK:
3466 		case I_PLINK:
3467 		case I_UNLINK:
3468 		case I_PUNLINK:
3469 		case _I_GETPEERCRED:
3470 		case _I_PLINK_LH:
3471 			return (EINVAL);
3472 		}
3473 
3474 		error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
3475 		if (error == 0) {
3476 			error = strcopyout_strioctl(&strioc, (void *)arg,
3477 			    flag, copyflag);
3478 		}
3479 		return (error);
3480 
3481 	case I_NREAD:
3482 		/*
3483 		 * Return number of bytes of data in first message
3484 		 * in queue in "arg" and return the number of messages
3485 		 * in queue in return value.
3486 		 */
3487 	    {
3488 		size_t	size;
3489 		int	retval;
3490 		int	count = 0;
3491 
3492 		mutex_enter(QLOCK(rdq));
3493 
3494 		size = msgdsize(rdq->q_first);
3495 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3496 			count++;
3497 
3498 		mutex_exit(QLOCK(rdq));
3499 		if (stp->sd_struiordq) {
3500 			infod_t infod;
3501 
3502 			infod.d_cmd = INFOD_COUNT;
3503 			infod.d_count = 0;
3504 			if (count == 0) {
3505 				infod.d_cmd |= INFOD_FIRSTBYTES;
3506 				infod.d_bytes = 0;
3507 			}
3508 			infod.d_res = 0;
3509 			(void) infonext(rdq, &infod);
3510 			count += infod.d_count;
3511 			if (infod.d_res & INFOD_FIRSTBYTES)
3512 				size = infod.d_bytes;
3513 		}
3514 
3515 		/*
3516 		 * Drop down from size_t to the "int" required by the
3517 		 * interface.  Cap at INT_MAX.
3518 		 */
3519 		retval = MIN(size, INT_MAX);
3520 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3521 		    copyflag);
3522 		if (!error)
3523 			*rvalp = count;
3524 		return (error);
3525 	    }
3526 
3527 	case FIONREAD:
3528 		/*
3529 		 * Return number of bytes of data in all data messages
3530 		 * in queue in "arg".
3531 		 */
3532 	    {
3533 		size_t	size = 0;
3534 		int	retval;
3535 
3536 		mutex_enter(QLOCK(rdq));
3537 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3538 			size += msgdsize(mp);
3539 		mutex_exit(QLOCK(rdq));
3540 
3541 		if (stp->sd_struiordq) {
3542 			infod_t infod;
3543 
3544 			infod.d_cmd = INFOD_BYTES;
3545 			infod.d_res = 0;
3546 			infod.d_bytes = 0;
3547 			(void) infonext(rdq, &infod);
3548 			size += infod.d_bytes;
3549 		}
3550 
3551 		/*
3552 		 * Drop down from size_t to the "int" required by the
3553 		 * interface.  Cap at INT_MAX.
3554 		 */
3555 		retval = MIN(size, INT_MAX);
3556 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3557 		    copyflag);
3558 
3559 		*rvalp = 0;
3560 		return (error);
3561 	    }
3562 	case FIORDCHK:
3563 		/*
3564 		 * FIORDCHK does not use arg value (like FIONREAD),
3565 		 * instead a count is returned. I_NREAD value may
3566 		 * not be accurate but safe. The real thing to do is
3567 		 * to add the msgdsizes of all data  messages until
3568 		 * a non-data message.
3569 		 */
3570 	    {
3571 		size_t size = 0;
3572 
3573 		mutex_enter(QLOCK(rdq));
3574 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3575 			size += msgdsize(mp);
3576 		mutex_exit(QLOCK(rdq));
3577 
3578 		if (stp->sd_struiordq) {
3579 			infod_t infod;
3580 
3581 			infod.d_cmd = INFOD_BYTES;
3582 			infod.d_res = 0;
3583 			infod.d_bytes = 0;
3584 			(void) infonext(rdq, &infod);
3585 			size += infod.d_bytes;
3586 		}
3587 
3588 		/*
3589 		 * Since ioctl returns an int, and memory sizes under
3590 		 * LP64 may not fit, we return INT_MAX if the count was
3591 		 * actually greater.
3592 		 */
3593 		*rvalp = MIN(size, INT_MAX);
3594 		return (0);
3595 	    }
3596 
3597 	case I_FIND:
3598 		/*
3599 		 * Get module name.
3600 		 */
3601 	    {
3602 		char mname[FMNAMESZ + 1];
3603 		queue_t *q;
3604 
3605 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3606 		    mname, FMNAMESZ + 1, NULL);
3607 		if (error)
3608 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3609 
3610 		/*
3611 		 * Return EINVAL if we're handed a bogus module name.
3612 		 */
3613 		if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
3614 			TRACE_0(TR_FAC_STREAMS_FR,
3615 				TR_I_CANT_FIND, "couldn't I_FIND");
3616 			return (EINVAL);
3617 		}
3618 
3619 		*rvalp = 0;
3620 
3621 		/* Look downstream to see if module is there. */
3622 		claimstr(stp->sd_wrq);
3623 		for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3624 			if (q->q_flag&QREADR) {
3625 				q = NULL;
3626 				break;
3627 			}
3628 			if (strcmp(mname, q->q_qinfo->qi_minfo->mi_idname) == 0)
3629 				break;
3630 		}
3631 		releasestr(stp->sd_wrq);
3632 
3633 		*rvalp = (q ? 1 : 0);
3634 		return (error);
3635 	    }
3636 
3637 	case I_PUSH:
3638 	case __I_PUSH_NOCTTY:
3639 		/*
3640 		 * Push a module.
3641 		 * For the case __I_PUSH_NOCTTY push a module but
3642 		 * do not allocate controlling tty. See bugid 4025044
3643 		 */
3644 
3645 	    {
3646 		char mname[FMNAMESZ + 1];
3647 		fmodsw_impl_t *fp;
3648 		dev_t dummydev;
3649 
3650 		if (stp->sd_flag & STRHUP)
3651 			return (ENXIO);
3652 
3653 		/*
3654 		 * Get module name and look up in fmodsw.
3655 		 */
3656 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3657 		    mname, FMNAMESZ + 1, NULL);
3658 		if (error)
3659 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3660 
3661 		if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
3662 		    NULL)
3663 			return (EINVAL);
3664 
3665 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
3666 		    "I_PUSH:fp %p stp %p", fp, stp);
3667 
3668 		if (error = strstartplumb(stp, flag, cmd)) {
3669 			fmodsw_rele(fp);
3670 			return (error);
3671 		}
3672 
3673 		/*
3674 		 * See if any more modules can be pushed on this stream.
3675 		 * Note that this check must be done after strstartplumb()
3676 		 * since otherwise multiple threads issuing I_PUSHes on
3677 		 * the same stream will be able to exceed nstrpush.
3678 		 */
3679 		mutex_enter(&stp->sd_lock);
3680 		if (stp->sd_pushcnt >= nstrpush) {
3681 			fmodsw_rele(fp);
3682 			strendplumb(stp);
3683 			mutex_exit(&stp->sd_lock);
3684 			return (EINVAL);
3685 		}
3686 		mutex_exit(&stp->sd_lock);
3687 
3688 		/*
3689 		 * Push new module and call its open routine
3690 		 * via qattach().  Modules don't change device
3691 		 * numbers, so just ignore dummydev here.
3692 		 */
3693 		dummydev = vp->v_rdev;
3694 		if ((error = qattach(rdq, &dummydev, 0, crp, fp,
3695 		    B_FALSE)) == 0) {
3696 			if (vp->v_type == VCHR && /* sorry, no pipes allowed */
3697 			    (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
3698 				/*
3699 				 * try to allocate it as a controlling terminal
3700 				 */
3701 				stralloctty(stp);
3702 			}
3703 		}
3704 
3705 		mutex_enter(&stp->sd_lock);
3706 
3707 		/*
3708 		 * As a performance concern we are caching the values of
3709 		 * q_minpsz and q_maxpsz of the module below the stream
3710 		 * head in the stream head.
3711 		 */
3712 		mutex_enter(QLOCK(stp->sd_wrq->q_next));
3713 		rmin = stp->sd_wrq->q_next->q_minpsz;
3714 		rmax = stp->sd_wrq->q_next->q_maxpsz;
3715 		mutex_exit(QLOCK(stp->sd_wrq->q_next));
3716 
3717 		/* Do this processing here as a performance concern */
3718 		if (strmsgsz != 0) {
3719 			if (rmax == INFPSZ)
3720 				rmax = strmsgsz;
3721 			else  {
3722 				if (vp->v_type == VFIFO)
3723 					rmax = MIN(PIPE_BUF, rmax);
3724 				else	rmax = MIN(strmsgsz, rmax);
3725 			}
3726 		}
3727 
3728 		mutex_enter(QLOCK(wrq));
3729 		stp->sd_qn_minpsz = rmin;
3730 		stp->sd_qn_maxpsz = rmax;
3731 		mutex_exit(QLOCK(wrq));
3732 
3733 		strendplumb(stp);
3734 		mutex_exit(&stp->sd_lock);
3735 		return (error);
3736 	    }
3737 
3738 	case I_POP:
3739 	    {
3740 		queue_t	*q;
3741 
3742 		if (stp->sd_flag & STRHUP)
3743 			return (ENXIO);
3744 		if (!wrq->q_next)	/* for broken pipes */
3745 			return (EINVAL);
3746 
3747 		if (error = strstartplumb(stp, flag, cmd))
3748 			return (error);
3749 
3750 		/*
3751 		 * If there is an anchor on this stream and popping
3752 		 * the current module would attempt to pop through the
3753 		 * anchor, then disallow the pop unless we have sufficient
3754 		 * privileges; take the cheapest (non-locking) check
3755 		 * first.
3756 		 */
3757 		if (secpolicy_net_config(crp, B_TRUE) != 0) {
3758 			mutex_enter(&stp->sd_lock);
3759 			/*
3760 			 * Anchors only apply if there's at least one
3761 			 * module on the stream (sd_pushcnt > 0).
3762 			 */
3763 			if (stp->sd_pushcnt > 0 &&
3764 			    stp->sd_pushcnt == stp->sd_anchor &&
3765 			    stp->sd_vnode->v_type != VFIFO) {
3766 				strendplumb(stp);
3767 				mutex_exit(&stp->sd_lock);
3768 				/* Audit and report error */
3769 				return (secpolicy_net_config(crp, B_FALSE));
3770 			}
3771 			mutex_exit(&stp->sd_lock);
3772 		}
3773 
3774 		q = wrq->q_next;
3775 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
3776 			"I_POP:%p from %p", q, stp);
3777 		if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
3778 			error = EINVAL;
3779 		} else {
3780 			qdetach(_RD(q), 1, flag, crp, B_FALSE);
3781 			error = 0;
3782 		}
3783 		mutex_enter(&stp->sd_lock);
3784 
3785 		/*
3786 		 * As a performance concern we are caching the values of
3787 		 * q_minpsz and q_maxpsz of the module below the stream
3788 		 * head in the stream head.
3789 		 */
3790 		mutex_enter(QLOCK(wrq->q_next));
3791 		rmin = wrq->q_next->q_minpsz;
3792 		rmax = wrq->q_next->q_maxpsz;
3793 		mutex_exit(QLOCK(wrq->q_next));
3794 
3795 		/* Do this processing here as a performance concern */
3796 		if (strmsgsz != 0) {
3797 			if (rmax == INFPSZ)
3798 				rmax = strmsgsz;
3799 			else  {
3800 				if (vp->v_type == VFIFO)
3801 					rmax = MIN(PIPE_BUF, rmax);
3802 				else	rmax = MIN(strmsgsz, rmax);
3803 			}
3804 		}
3805 
3806 		mutex_enter(QLOCK(wrq));
3807 		stp->sd_qn_minpsz = rmin;
3808 		stp->sd_qn_maxpsz = rmax;
3809 		mutex_exit(QLOCK(wrq));
3810 
3811 		/* If we popped through the anchor, then reset the anchor. */
3812 		if (stp->sd_pushcnt < stp->sd_anchor)
3813 			stp->sd_anchor = 0;
3814 
3815 		strendplumb(stp);
3816 		mutex_exit(&stp->sd_lock);
3817 		return (error);
3818 	    }
3819 
3820 	case _I_MUXID2FD:
3821 	{
3822 		/*
3823 		 * Create a fd for a I_PLINK'ed lower stream with a given
3824 		 * muxid.  With the fd, application can send down ioctls,
3825 		 * like I_LIST, to the previously I_PLINK'ed stream.  Note
3826 		 * that after getting the fd, the application has to do an
3827 		 * I_PUNLINK on the muxid before it can do any operation
3828 		 * on the lower stream.  This is required by spec1170.
3829 		 *
3830 		 * The fd used to do this ioctl should point to the same
3831 		 * controlling device used to do the I_PLINK.  If it uses
3832 		 * a different stream or an invalid muxid, I_MUXID2FD will
3833 		 * fail.  The error code is set to EINVAL.
3834 		 *
3835 		 * The intended use of this interface is the following.
3836 		 * An application I_PLINK'ed a stream and exits.  The fd
3837 		 * to the lower stream is gone.  Another application
3838 		 * wants to get a fd to the lower stream, it uses I_MUXID2FD.
3839 		 */
3840 		int muxid = (int)arg;
3841 		int fd;
3842 		linkinfo_t *linkp;
3843 		struct file *fp;
3844 
3845 		/*
3846 		 * Do not allow the wildcard muxid.  This ioctl is not
3847 		 * intended to find arbitrary link.
3848 		 */
3849 		if (muxid == 0) {
3850 			return (EINVAL);
3851 		}
3852 
3853 		mutex_enter(&muxifier);
3854 		linkp = findlinks(vp->v_stream, muxid, LINKPERSIST);
3855 		if (linkp == NULL) {
3856 			mutex_exit(&muxifier);
3857 			return (EINVAL);
3858 		}
3859 
3860 		if ((fd = ufalloc(0)) == -1) {
3861 			mutex_exit(&muxifier);
3862 			return (EMFILE);
3863 		}
3864 		fp = linkp->li_fpdown;
3865 		mutex_enter(&fp->f_tlock);
3866 		fp->f_count++;
3867 		mutex_exit(&fp->f_tlock);
3868 		mutex_exit(&muxifier);
3869 		setf(fd, fp);
3870 		*rvalp = fd;
3871 		return (0);
3872 	}
3873 
3874 	case _I_INSERT:
3875 	{
3876 		/*
3877 		 * To insert a module to a given position in a stream.
3878 		 * In the first release, only allow privileged user
3879 		 * to use this ioctl.
3880 		 *
3881 		 * Note that we do not plan to support this ioctl
3882 		 * on pipes in the first release.  We want to learn more
3883 		 * about the implications of these ioctls before extending
3884 		 * their support.  And we do not think these features are
3885 		 * valuable for pipes.
3886 		 *
3887 		 * Neither do we support O/C hot stream.  Note that only
3888 		 * the upper streams of TCP/IP stack are O/C hot streams.
3889 		 * The lower IP stream is not.
3890 		 * When there is a O/C cold barrier, we only allow inserts
3891 		 * above the barrier.
3892 		 */
3893 		STRUCT_DECL(strmodconf, strmodinsert);
3894 		char mod_name[FMNAMESZ + 1];
3895 		fmodsw_impl_t *fp;
3896 		dev_t dummydev;
3897 		queue_t *tmp_wrq;
3898 		int pos;
3899 		boolean_t is_insert;
3900 
3901 		STRUCT_INIT(strmodinsert, flag);
3902 		if (stp->sd_flag & STRHUP)
3903 			return (ENXIO);
3904 		if (STRMATED(stp))
3905 			return (EINVAL);
3906 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
3907 			return (error);
3908 
3909 		error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
3910 		    STRUCT_SIZE(strmodinsert), copyflag);
3911 		if (error)
3912 			return (error);
3913 
3914 		/*
3915 		 * Get module name and look up in fmodsw.
3916 		 */
3917 		error = (copyflag & U_TO_K ? copyinstr :
3918 		    copystr)(STRUCT_FGETP(strmodinsert, mod_name),
3919 		    mod_name, FMNAMESZ + 1, NULL);
3920 		if (error)
3921 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3922 
3923 		if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
3924 		    NULL)
3925 			return (EINVAL);
3926 
3927 		if (error = strstartplumb(stp, flag, cmd)) {
3928 			fmodsw_rele(fp);
3929 			return (error);
3930 		}
3931 
3932 		/*
3933 		 * Is this _I_INSERT just like an I_PUSH?  We need to know
3934 		 * this because we do some optimizations if this is a
3935 		 * module being pushed.
3936 		 */
3937 		pos = STRUCT_FGET(strmodinsert, pos);
3938 		is_insert = (pos != 0);
3939 
3940 		/*
3941 		 * Make sure pos is valid.  Even though it is not an I_PUSH,
3942 		 * we impose the same limit on the number of modules in a
3943 		 * stream.
3944 		 */
3945 		mutex_enter(&stp->sd_lock);
3946 		if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
3947 		    pos > stp->sd_pushcnt) {
3948 			fmodsw_rele(fp);
3949 			strendplumb(stp);
3950 			mutex_exit(&stp->sd_lock);
3951 			return (EINVAL);
3952 		}
3953 		mutex_exit(&stp->sd_lock);
3954 
3955 		/*
3956 		 * First find the correct position this module to
3957 		 * be inserted.  We don't need to call claimstr()
3958 		 * as the stream should not be changing at this point.
3959 		 *
3960 		 * Insert new module and call its open routine
3961 		 * via qattach().  Modules don't change device
3962 		 * numbers, so just ignore dummydev here.
3963 		 */
3964 		for (tmp_wrq = stp->sd_wrq; pos > 0;
3965 		    tmp_wrq = tmp_wrq->q_next, pos--) {
3966 			ASSERT(SAMESTR(tmp_wrq));
3967 		}
3968 		dummydev = vp->v_rdev;
3969 		if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
3970 		    fp, is_insert)) != 0) {
3971 			mutex_enter(&stp->sd_lock);
3972 			strendplumb(stp);
3973 			mutex_exit(&stp->sd_lock);
3974 			return (error);
3975 		}
3976 
3977 		mutex_enter(&stp->sd_lock);
3978 
3979 		/*
3980 		 * As a performance concern we are caching the values of
3981 		 * q_minpsz and q_maxpsz of the module below the stream
3982 		 * head in the stream head.
3983 		 */
3984 		if (!is_insert) {
3985 			mutex_enter(QLOCK(stp->sd_wrq->q_next));
3986 			rmin = stp->sd_wrq->q_next->q_minpsz;
3987 			rmax = stp->sd_wrq->q_next->q_maxpsz;
3988 			mutex_exit(QLOCK(stp->sd_wrq->q_next));
3989 
3990 			/* Do this processing here as a performance concern */
3991 			if (strmsgsz != 0) {
3992 				if (rmax == INFPSZ) {
3993 					rmax = strmsgsz;
3994 				} else  {
3995 					rmax = MIN(strmsgsz, rmax);
3996 				}
3997 			}
3998 
3999 			mutex_enter(QLOCK(wrq));
4000 			stp->sd_qn_minpsz = rmin;
4001 			stp->sd_qn_maxpsz = rmax;
4002 			mutex_exit(QLOCK(wrq));
4003 		}
4004 
4005 		/*
4006 		 * Need to update the anchor value if this module is
4007 		 * inserted below the anchor point.
4008 		 */
4009 		if (stp->sd_anchor != 0) {
4010 			pos = STRUCT_FGET(strmodinsert, pos);
4011 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
4012 				stp->sd_anchor++;
4013 		}
4014 
4015 		strendplumb(stp);
4016 		mutex_exit(&stp->sd_lock);
4017 		return (0);
4018 	}
4019 
4020 	case _I_REMOVE:
4021 	{
4022 		/*
4023 		 * To remove a module with a given name in a stream.  The
4024 		 * caller of this ioctl needs to provide both the name and
4025 		 * the position of the module to be removed.  This eliminates
4026 		 * the ambiguity of removal if a module is inserted/pushed
4027 		 * multiple times in a stream.  In the first release, only
4028 		 * allow privileged user to use this ioctl.
4029 		 *
4030 		 * Note that we do not plan to support this ioctl
4031 		 * on pipes in the first release.  We want to learn more
4032 		 * about the implications of these ioctls before extending
4033 		 * their support.  And we do not think these features are
4034 		 * valuable for pipes.
4035 		 *
4036 		 * Neither do we support O/C hot stream.  Note that only
4037 		 * the upper streams of TCP/IP stack are O/C hot streams.
4038 		 * The lower IP stream is not.
4039 		 * When there is a O/C cold barrier we do not allow removal
4040 		 * below the barrier.
4041 		 *
4042 		 * Also note that _I_REMOVE cannot be used to remove a
4043 		 * driver or the stream head.
4044 		 */
4045 		STRUCT_DECL(strmodconf, strmodremove);
4046 		queue_t	*q;
4047 		int pos;
4048 		char mod_name[FMNAMESZ + 1];
4049 		boolean_t is_remove;
4050 
4051 		STRUCT_INIT(strmodremove, flag);
4052 		if (stp->sd_flag & STRHUP)
4053 			return (ENXIO);
4054 		if (STRMATED(stp))
4055 			return (EINVAL);
4056 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4057 			return (error);
4058 
4059 		error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),
4060 		    STRUCT_SIZE(strmodremove), copyflag);
4061 		if (error)
4062 			return (error);
4063 
4064 		error = (copyflag & U_TO_K ? copyinstr :
4065 		    copystr)(STRUCT_FGETP(strmodremove, mod_name),
4066 		    mod_name, FMNAMESZ + 1, NULL);
4067 		if (error)
4068 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4069 
4070 		if ((error = strstartplumb(stp, flag, cmd)) != 0)
4071 			return (error);
4072 
4073 		/*
4074 		 * Match the name of given module to the name of module at
4075 		 * the given position.
4076 		 */
4077 		pos = STRUCT_FGET(strmodremove, pos);
4078 
4079 		is_remove = (pos != 0);
4080 		for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
4081 		    q = q->q_next, pos--)
4082 			;
4083 		if (pos > 0 || ! SAMESTR(q) ||
4084 		    strncmp(q->q_qinfo->qi_minfo->mi_idname, mod_name,
4085 		    strlen(q->q_qinfo->qi_minfo->mi_idname)) != 0) {
4086 			mutex_enter(&stp->sd_lock);
4087 			strendplumb(stp);
4088 			mutex_exit(&stp->sd_lock);
4089 			return (EINVAL);
4090 		}
4091 
4092 		ASSERT(!(q->q_flag & QREADR));
4093 		qdetach(_RD(q), 1, flag, crp, is_remove);
4094 
4095 		mutex_enter(&stp->sd_lock);
4096 
4097 		/*
4098 		 * As a performance concern we are caching the values of
4099 		 * q_minpsz and q_maxpsz of the module below the stream
4100 		 * head in the stream head.
4101 		 */
4102 		if (!is_remove) {
4103 			mutex_enter(QLOCK(wrq->q_next));
4104 			rmin = wrq->q_next->q_minpsz;
4105 			rmax = wrq->q_next->q_maxpsz;
4106 			mutex_exit(QLOCK(wrq->q_next));
4107 
4108 			/* Do this processing here as a performance concern */
4109 			if (strmsgsz != 0) {
4110 				if (rmax == INFPSZ)
4111 					rmax = strmsgsz;
4112 				else  {
4113 					if (vp->v_type == VFIFO)
4114 						rmax = MIN(PIPE_BUF, rmax);
4115 					else	rmax = MIN(strmsgsz, rmax);
4116 				}
4117 			}
4118 
4119 			mutex_enter(QLOCK(wrq));
4120 			stp->sd_qn_minpsz = rmin;
4121 			stp->sd_qn_maxpsz = rmax;
4122 			mutex_exit(QLOCK(wrq));
4123 		}
4124 
4125 		/*
4126 		 * Need to update the anchor value if this module is removed
4127 		 * at or below the anchor point.  If the removed module is at
4128 		 * the anchor point, remove the anchor for this stream if
4129 		 * there is no module above the anchor point.  Otherwise, if
4130 		 * the removed module is below the anchor point, decrement the
4131 		 * anchor point by 1.
4132 		 */
4133 		if (stp->sd_anchor != 0) {
4134 			pos = STRUCT_FGET(strmodremove, pos);
4135 			if (pos == 0)
4136 				stp->sd_anchor = 0;
4137 			else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
4138 				stp->sd_anchor--;
4139 		}
4140 
4141 		strendplumb(stp);
4142 		mutex_exit(&stp->sd_lock);
4143 		return (0);
4144 	}
4145 
4146 	case I_ANCHOR:
4147 		/*
4148 		 * Set the anchor position on the stream to reside at
4149 		 * the top module (in other words, the top module
4150 		 * cannot be popped).  Anchors with a FIFO make no
4151 		 * obvious sense, so they're not allowed.
4152 		 */
4153 		mutex_enter(&stp->sd_lock);
4154 
4155 		if (stp->sd_vnode->v_type == VFIFO) {
4156 			mutex_exit(&stp->sd_lock);
4157 			return (EINVAL);
4158 		}
4159 
4160 		stp->sd_anchor = stp->sd_pushcnt;
4161 
4162 		mutex_exit(&stp->sd_lock);
4163 		return (0);
4164 
4165 	case I_LOOK:
4166 		/*
4167 		 * Get name of first module downstream.
4168 		 * If no module, return an error.
4169 		 */
4170 	    {
4171 		claimstr(wrq);
4172 		if (_SAMESTR(wrq) && wrq->q_next->q_next) {
4173 			char *name = wrq->q_next->q_qinfo->qi_minfo->mi_idname;
4174 			error = strcopyout(name, (void *)arg, strlen(name) + 1,
4175 			    copyflag);
4176 			releasestr(wrq);
4177 			return (error);
4178 		}
4179 		releasestr(wrq);
4180 		return (EINVAL);
4181 	    }
4182 
4183 	case I_LINK:
4184 	case I_PLINK:
4185 		/*
4186 		 * Link a multiplexor.
4187 		 */
4188 		return (mlink(vp, cmd, (int)arg, crp, rvalp, 0));
4189 
4190 	case _I_PLINK_LH:
4191 		/*
4192 		 * Link a multiplexor: Call must originate from kernel.
4193 		 */
4194 		if (kioctl)
4195 			return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));
4196 
4197 		return (EINVAL);
4198 	case I_UNLINK:
4199 	case I_PUNLINK:
4200 		/*
4201 		 * Unlink a multiplexor.
4202 		 * If arg is -1, unlink all links for which this is the
4203 		 * controlling stream.  Otherwise, arg is an index number
4204 		 * for a link to be removed.
4205 		 */
4206 	    {
4207 		struct linkinfo *linkp;
4208 		int native_arg = (int)arg;
4209 		int type;
4210 
4211 		TRACE_1(TR_FAC_STREAMS_FR,
4212 			TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
4213 		if (vp->v_type == VFIFO) {
4214 			return (EINVAL);
4215 		}
4216 		if (cmd == I_UNLINK)
4217 			type = LINKNORMAL;
4218 		else	/* I_PUNLINK */
4219 			type = LINKPERSIST;
4220 		if (native_arg == 0) {
4221 			return (EINVAL);
4222 		}
4223 		if (native_arg == MUXID_ALL)
4224 			error = munlinkall(stp, type, crp, rvalp);
4225 		else {
4226 			mutex_enter(&muxifier);
4227 			if (!(linkp = findlinks(stp, (int)arg, type))) {
4228 				/* invalid user supplied index number */
4229 				mutex_exit(&muxifier);
4230 				return (EINVAL);
4231 			}
4232 			/* munlink drops the muxifier lock */
4233 			error = munlink(stp, linkp, type, crp, rvalp);
4234 		}
4235 		return (error);
4236 	    }
4237 
4238 	case I_FLUSH:
4239 		/*
4240 		 * send a flush message downstream
4241 		 * flush message can indicate
4242 		 * FLUSHR - flush read queue
4243 		 * FLUSHW - flush write queue
4244 		 * FLUSHRW - flush read/write queue
4245 		 */
4246 		if (stp->sd_flag & STRHUP)
4247 			return (ENXIO);
4248 		if (arg & ~FLUSHRW)
4249 			return (EINVAL);
4250 
4251 		for (;;) {
4252 			if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
4253 				break;
4254 			}
4255 			if (error = strwaitbuf(1, BPRI_HI)) {
4256 				return (error);
4257 			}
4258 		}
4259 
4260 		/*
4261 		 * Send down an unsupported ioctl and wait for the nack
4262 		 * in order to allow the M_FLUSH to propagate back
4263 		 * up to the stream head.
4264 		 * Replaces if (qready()) runqueues();
4265 		 */
4266 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4267 		strioc.ic_timout = 0;
4268 		strioc.ic_len = 0;
4269 		strioc.ic_dp = NULL;
4270 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4271 		*rvalp = 0;
4272 		return (0);
4273 
4274 	case I_FLUSHBAND:
4275 	    {
4276 		struct bandinfo binfo;
4277 
4278 		error = strcopyin((void *)arg, &binfo, sizeof (binfo),
4279 		    copyflag);
4280 		if (error)
4281 			return (error);
4282 		if (stp->sd_flag & STRHUP)
4283 			return (ENXIO);
4284 		if (binfo.bi_flag & ~FLUSHRW)
4285 			return (EINVAL);
4286 		while (!(mp = allocb(2, BPRI_HI))) {
4287 			if (error = strwaitbuf(2, BPRI_HI))
4288 				return (error);
4289 		}
4290 		mp->b_datap->db_type = M_FLUSH;
4291 		*mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
4292 		*mp->b_wptr++ = binfo.bi_pri;
4293 		putnext(stp->sd_wrq, mp);
4294 		/*
4295 		 * Send down an unsupported ioctl and wait for the nack
4296 		 * in order to allow the M_FLUSH to propagate back
4297 		 * up to the stream head.
4298 		 * Replaces if (qready()) runqueues();
4299 		 */
4300 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4301 		strioc.ic_timout = 0;
4302 		strioc.ic_len = 0;
4303 		strioc.ic_dp = NULL;
4304 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4305 		*rvalp = 0;
4306 		return (0);
4307 	    }
4308 
4309 	case I_SRDOPT:
4310 		/*
4311 		 * Set read options
4312 		 *
4313 		 * RNORM - default stream mode
4314 		 * RMSGN - message no discard
4315 		 * RMSGD - message discard
4316 		 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
4317 		 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs
4318 		 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
4319 		 */
4320 		if (arg & ~(RMODEMASK | RPROTMASK))
4321 			return (EINVAL);
4322 
4323 		if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
4324 			return (EINVAL);
4325 
4326 		mutex_enter(&stp->sd_lock);
4327 		switch (arg & RMODEMASK) {
4328 		case RNORM:
4329 			stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
4330 			break;
4331 		case RMSGD:
4332 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
4333 			    RD_MSGDIS;
4334 			break;
4335 		case RMSGN:
4336 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
4337 			    RD_MSGNODIS;
4338 			break;
4339 		}
4340 
4341 		switch (arg & RPROTMASK) {
4342 		case RPROTNORM:
4343 			stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
4344 			break;
4345 
4346 		case RPROTDAT:
4347 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
4348 			    RD_PROTDAT);
4349 			break;
4350 
4351 		case RPROTDIS:
4352 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
4353 			    RD_PROTDIS);
4354 			break;
4355 		}
4356 		mutex_exit(&stp->sd_lock);
4357 		return (0);
4358 
4359 	case I_GRDOPT:
4360 		/*
4361 		 * Get read option and return the value
4362 		 * to spot pointed to by arg
4363 		 */
4364 	    {
4365 		int rdopt;
4366 
4367 		rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
4368 		    ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
4369 		rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
4370 		    ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));
4371 
4372 		return (strcopyout(&rdopt, (void *)arg, sizeof (int),
4373 		    copyflag));
4374 	    }
4375 
4376 	case I_SERROPT:
4377 		/*
4378 		 * Set error options
4379 		 *
4380 		 * RERRNORM - persistent read errors
4381 		 * RERRNONPERSIST - non-persistent read errors
4382 		 * WERRNORM - persistent write errors
4383 		 * WERRNONPERSIST - non-persistent write errors
4384 		 */
4385 		if (arg & ~(RERRMASK | WERRMASK))
4386 			return (EINVAL);
4387 
4388 		mutex_enter(&stp->sd_lock);
4389 		switch (arg & RERRMASK) {
4390 		case RERRNORM:
4391 			stp->sd_flag &= ~STRDERRNONPERSIST;
4392 			break;
4393 		case RERRNONPERSIST:
4394 			stp->sd_flag |= STRDERRNONPERSIST;
4395 			break;
4396 		}
4397 		switch (arg & WERRMASK) {
4398 		case WERRNORM:
4399 			stp->sd_flag &= ~STWRERRNONPERSIST;
4400 			break;
4401 		case WERRNONPERSIST:
4402 			stp->sd_flag |= STWRERRNONPERSIST;
4403 			break;
4404 		}
4405 		mutex_exit(&stp->sd_lock);
4406 		return (0);
4407 
4408 	case I_GERROPT:
4409 		/*
4410 		 * Get error option and return the value
4411 		 * to spot pointed to by arg
4412 		 */
4413 	    {
4414 		int erropt = 0;
4415 
4416 		erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
4417 			RERRNORM;
4418 		erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
4419 			WERRNORM;
4420 		return (strcopyout(&erropt, (void *)arg, sizeof (int),
4421 		    copyflag));
4422 	    }
4423 
4424 	case I_SETSIG:
4425 		/*
4426 		 * Register the calling proc to receive the SIGPOLL
4427 		 * signal based on the events given in arg.  If
4428 		 * arg is zero, remove the proc from register list.
4429 		 */
4430 	    {
4431 		strsig_t *ssp, *pssp;
4432 		struct pid *pidp;
4433 
4434 		pssp = NULL;
4435 		pidp = curproc->p_pidp;
4436 		/*
4437 		 * Hold sd_lock to prevent traversal of sd_siglist while
4438 		 * it is modified.
4439 		 */
4440 		mutex_enter(&stp->sd_lock);
4441 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
4442 			pssp = ssp, ssp = ssp->ss_next)
4443 			;
4444 
4445 		if (arg) {
4446 			if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4447 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4448 				mutex_exit(&stp->sd_lock);
4449 				return (EINVAL);
4450 			}
4451 			if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
4452 				mutex_exit(&stp->sd_lock);
4453 				return (EINVAL);
4454 			}
4455 
4456 			/*
4457 			 * If proc not already registered, add it
4458 			 * to list.
4459 			 */
4460 			if (!ssp) {
4461 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4462 				ssp->ss_pidp = pidp;
4463 				ssp->ss_pid = pidp->pid_id;
4464 				ssp->ss_next = NULL;
4465 				if (pssp)
4466 					pssp->ss_next = ssp;
4467 				else
4468 					stp->sd_siglist = ssp;
4469 				mutex_enter(&pidlock);
4470 				PID_HOLD(pidp);
4471 				mutex_exit(&pidlock);
4472 			}
4473 
4474 			/*
4475 			 * Set events.
4476 			 */
4477 			ssp->ss_events = (int)arg;
4478 		} else {
4479 			/*
4480 			 * Remove proc from register list.
4481 			 */
4482 			if (ssp) {
4483 				mutex_enter(&pidlock);
4484 				PID_RELE(pidp);
4485 				mutex_exit(&pidlock);
4486 				if (pssp)
4487 					pssp->ss_next = ssp->ss_next;
4488 				else
4489 					stp->sd_siglist = ssp->ss_next;
4490 				kmem_free(ssp, sizeof (strsig_t));
4491 			} else {
4492 				mutex_exit(&stp->sd_lock);
4493 				return (EINVAL);
4494 			}
4495 		}
4496 
4497 		/*
4498 		 * Recalculate OR of sig events.
4499 		 */
4500 		stp->sd_sigflags = 0;
4501 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4502 			stp->sd_sigflags |= ssp->ss_events;
4503 		mutex_exit(&stp->sd_lock);
4504 		return (0);
4505 	    }
4506 
4507 	case I_GETSIG:
4508 		/*
4509 		 * Return (in arg) the current registration of events
4510 		 * for which the calling proc is to be signaled.
4511 		 */
4512 	    {
4513 		struct strsig *ssp;
4514 		struct pid  *pidp;
4515 
4516 		pidp = curproc->p_pidp;
4517 		mutex_enter(&stp->sd_lock);
4518 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4519 			if (ssp->ss_pidp == pidp) {
4520 				error = strcopyout(&ssp->ss_events, (void *)arg,
4521 				    sizeof (int), copyflag);
4522 				mutex_exit(&stp->sd_lock);
4523 				return (error);
4524 			}
4525 		mutex_exit(&stp->sd_lock);
4526 		return (EINVAL);
4527 	    }
4528 
4529 	case I_ESETSIG:
4530 		/*
4531 		 * Register the ss_pid to receive the SIGPOLL
4532 		 * signal based on the events is ss_events arg.  If
4533 		 * ss_events is zero, remove the proc from register list.
4534 		 */
4535 	{
4536 		struct strsig *ssp, *pssp;
4537 		struct proc *proc;
4538 		struct pid  *pidp;
4539 		pid_t pid;
4540 		struct strsigset ss;
4541 
4542 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4543 		if (error)
4544 			return (error);
4545 
4546 		pid = ss.ss_pid;
4547 
4548 		if (ss.ss_events != 0) {
4549 			/*
4550 			 * Permissions check by sending signal 0.
4551 			 * Note that when kill fails it does a set_errno
4552 			 * causing the system call to fail.
4553 			 */
4554 			error = kill(pid, 0);
4555 			if (error) {
4556 				return (error);
4557 			}
4558 		}
4559 		mutex_enter(&pidlock);
4560 		if (pid == 0)
4561 			proc = curproc;
4562 		else if (pid < 0)
4563 			proc = pgfind(-pid);
4564 		else
4565 			proc = prfind(pid);
4566 		if (proc == NULL) {
4567 			mutex_exit(&pidlock);
4568 			return (ESRCH);
4569 		}
4570 		if (pid < 0)
4571 			pidp = proc->p_pgidp;
4572 		else
4573 			pidp = proc->p_pidp;
4574 		ASSERT(pidp);
4575 		/*
4576 		 * Get a hold on the pid structure while referencing it.
4577 		 * There is a separate PID_HOLD should it be inserted
4578 		 * in the list below.
4579 		 */
4580 		PID_HOLD(pidp);
4581 		mutex_exit(&pidlock);
4582 
4583 		pssp = NULL;
4584 		/*
4585 		 * Hold sd_lock to prevent traversal of sd_siglist while
4586 		 * it is modified.
4587 		 */
4588 		mutex_enter(&stp->sd_lock);
4589 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
4590 				pssp = ssp, ssp = ssp->ss_next)
4591 			;
4592 
4593 		if (ss.ss_events) {
4594 			if (ss.ss_events &
4595 			    ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4596 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4597 				mutex_exit(&stp->sd_lock);
4598 				mutex_enter(&pidlock);
4599 				PID_RELE(pidp);
4600 				mutex_exit(&pidlock);
4601 				return (EINVAL);
4602 			}
4603 			if ((ss.ss_events & S_BANDURG) &&
4604 			    !(ss.ss_events & S_RDBAND)) {
4605 				mutex_exit(&stp->sd_lock);
4606 				mutex_enter(&pidlock);
4607 				PID_RELE(pidp);
4608 				mutex_exit(&pidlock);
4609 				return (EINVAL);
4610 			}
4611 
4612 			/*
4613 			 * If proc not already registered, add it
4614 			 * to list.
4615 			 */
4616 			if (!ssp) {
4617 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4618 				ssp->ss_pidp = pidp;
4619 				ssp->ss_pid = pid;
4620 				ssp->ss_next = NULL;
4621 				if (pssp)
4622 					pssp->ss_next = ssp;
4623 				else
4624 					stp->sd_siglist = ssp;
4625 				mutex_enter(&pidlock);
4626 				PID_HOLD(pidp);
4627 				mutex_exit(&pidlock);
4628 			}
4629 
4630 			/*
4631 			 * Set events.
4632 			 */
4633 			ssp->ss_events = ss.ss_events;
4634 		} else {
4635 			/*
4636 			 * Remove proc from register list.
4637 			 */
4638 			if (ssp) {
4639 				mutex_enter(&pidlock);
4640 				PID_RELE(pidp);
4641 				mutex_exit(&pidlock);
4642 				if (pssp)
4643 					pssp->ss_next = ssp->ss_next;
4644 				else
4645 					stp->sd_siglist = ssp->ss_next;
4646 				kmem_free(ssp, sizeof (strsig_t));
4647 			} else {
4648 				mutex_exit(&stp->sd_lock);
4649 				mutex_enter(&pidlock);
4650 				PID_RELE(pidp);
4651 				mutex_exit(&pidlock);
4652 				return (EINVAL);
4653 			}
4654 		}
4655 
4656 		/*
4657 		 * Recalculate OR of sig events.
4658 		 */
4659 		stp->sd_sigflags = 0;
4660 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4661 			stp->sd_sigflags |= ssp->ss_events;
4662 		mutex_exit(&stp->sd_lock);
4663 		mutex_enter(&pidlock);
4664 		PID_RELE(pidp);
4665 		mutex_exit(&pidlock);
4666 		return (0);
4667 	    }
4668 
4669 	case I_EGETSIG:
4670 		/*
4671 		 * Return (in arg) the current registration of events
4672 		 * for which the calling proc is to be signaled.
4673 		 */
4674 	    {
4675 		struct strsig *ssp;
4676 		struct proc *proc;
4677 		pid_t pid;
4678 		struct pid  *pidp;
4679 		struct strsigset ss;
4680 
4681 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4682 		if (error)
4683 			return (error);
4684 
4685 		pid = ss.ss_pid;
4686 		mutex_enter(&pidlock);
4687 		if (pid == 0)
4688 			proc = curproc;
4689 		else if (pid < 0)
4690 			proc = pgfind(-pid);
4691 		else
4692 			proc = prfind(pid);
4693 		if (proc == NULL) {
4694 			mutex_exit(&pidlock);
4695 			return (ESRCH);
4696 		}
4697 		if (pid < 0)
4698 			pidp = proc->p_pgidp;
4699 		else
4700 			pidp = proc->p_pidp;
4701 
4702 		/* Prevent the pidp from being reassigned */
4703 		PID_HOLD(pidp);
4704 		mutex_exit(&pidlock);
4705 
4706 		mutex_enter(&stp->sd_lock);
4707 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4708 			if (ssp->ss_pid == pid) {
4709 				ss.ss_pid = ssp->ss_pid;
4710 				ss.ss_events = ssp->ss_events;
4711 				error = strcopyout(&ss, (void *)arg,
4712 				    sizeof (struct strsigset), copyflag);
4713 				mutex_exit(&stp->sd_lock);
4714 				mutex_enter(&pidlock);
4715 				PID_RELE(pidp);
4716 				mutex_exit(&pidlock);
4717 				return (error);
4718 			}
4719 		mutex_exit(&stp->sd_lock);
4720 		mutex_enter(&pidlock);
4721 		PID_RELE(pidp);
4722 		mutex_exit(&pidlock);
4723 		return (EINVAL);
4724 	    }
4725 
4726 	case I_PEEK:
4727 	    {
4728 		STRUCT_DECL(strpeek, strpeek);
4729 		size_t n;
4730 		mblk_t *fmp, *tmp_mp = NULL;
4731 
4732 		STRUCT_INIT(strpeek, flag);
4733 
4734 		error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
4735 		    STRUCT_SIZE(strpeek), copyflag);
4736 		if (error)
4737 			return (error);
4738 
4739 		mutex_enter(QLOCK(rdq));
4740 		/*
4741 		 * Skip the invalid messages
4742 		 */
4743 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
4744 			if (mp->b_datap->db_type != M_SIG)
4745 				break;
4746 
4747 		/*
4748 		 * If user has requested to peek at a high priority message
4749 		 * and first message is not, return 0
4750 		 */
4751 		if (mp != NULL) {
4752 			if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
4753 			    queclass(mp) == QNORM) {
4754 				*rvalp = 0;
4755 				mutex_exit(QLOCK(rdq));
4756 				return (0);
4757 			}
4758 		} else if (stp->sd_struiordq == NULL ||
4759 		    (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
4760 			/*
4761 			 * No mblks to look at at the streamhead and
4762 			 * 1). This isn't a synch stream or
4763 			 * 2). This is a synch stream but caller wants high
4764 			 *	priority messages which is not supported by
4765 			 *	the synch stream. (it only supports QNORM)
4766 			 */
4767 			*rvalp = 0;
4768 			mutex_exit(QLOCK(rdq));
4769 			return (0);
4770 		}
4771 
4772 		fmp = mp;
4773 
4774 		if (mp && mp->b_datap->db_type == M_PASSFP) {
4775 			mutex_exit(QLOCK(rdq));
4776 			return (EBADMSG);
4777 		}
4778 
4779 		ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
4780 		    mp->b_datap->db_type == M_PROTO ||
4781 		    mp->b_datap->db_type == M_DATA);
4782 
4783 		if (mp && mp->b_datap->db_type == M_PCPROTO) {
4784 			STRUCT_FSET(strpeek, flags, RS_HIPRI);
4785 		} else {
4786 			STRUCT_FSET(strpeek, flags, 0);
4787 		}
4788 
4789 
4790 		if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
4791 			mutex_exit(QLOCK(rdq));
4792 			return (ENOSR);
4793 		}
4794 		mutex_exit(QLOCK(rdq));
4795 
4796 		/*
4797 		 * set mp = tmp_mp, so that I_PEEK processing can continue.
4798 		 * tmp_mp is used to free the dup'd message.
4799 		 */
4800 		mp = tmp_mp;
4801 
4802 		uio.uio_fmode = 0;
4803 		uio.uio_extflg = UIO_COPY_CACHED;
4804 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
4805 		    UIO_SYSSPACE;
4806 		uio.uio_limit = 0;
4807 		/*
4808 		 * First process PROTO blocks, if any.
4809 		 * If user doesn't want to get ctl info by setting maxlen <= 0,
4810 		 * then set len to -1/0 and skip control blocks part.
4811 		 */
4812 		if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
4813 			STRUCT_FSET(strpeek, ctlbuf.len, -1);
4814 		else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
4815 			STRUCT_FSET(strpeek, ctlbuf.len, 0);
4816 		else {
4817 			int	ctl_part = 0;
4818 
4819 			iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
4820 			iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
4821 			uio.uio_iov = &iov;
4822 			uio.uio_resid = iov.iov_len;
4823 			uio.uio_loffset = 0;
4824 			uio.uio_iovcnt = 1;
4825 			while (mp && mp->b_datap->db_type != M_DATA &&
4826 			    uio.uio_resid >= 0) {
4827 				ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
4828 				    mp->b_datap->db_type == M_PROTO :
4829 				    mp->b_datap->db_type == M_PCPROTO);
4830 
4831 				if ((n = MIN(uio.uio_resid,
4832 				    mp->b_wptr - mp->b_rptr)) != 0 &&
4833 				    (error = uiomove((char *)mp->b_rptr, n,
4834 				    UIO_READ, &uio)) != 0) {
4835 					freemsg(tmp_mp);
4836 					return (error);
4837 				}
4838 				ctl_part = 1;
4839 				mp = mp->b_cont;
4840 			}
4841 			/* No ctl message */
4842 			if (ctl_part == 0)
4843 				STRUCT_FSET(strpeek, ctlbuf.len, -1);
4844 			else
4845 				STRUCT_FSET(strpeek, ctlbuf.len,
4846 				    STRUCT_FGET(strpeek, ctlbuf.maxlen) -
4847 				    uio.uio_resid);
4848 		}
4849 
4850 		/*
4851 		 * Now process DATA blocks, if any.
4852 		 * If user doesn't want to get data info by setting maxlen <= 0,
4853 		 * then set len to -1/0 and skip data blocks part.
4854 		 */
4855 		if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
4856 			STRUCT_FSET(strpeek, databuf.len, -1);
4857 		else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
4858 			STRUCT_FSET(strpeek, databuf.len, 0);
4859 		else {
4860 			int	data_part = 0;
4861 
4862 			iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
4863 			iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
4864 			uio.uio_iov = &iov;
4865 			uio.uio_resid = iov.iov_len;
4866 			uio.uio_loffset = 0;
4867 			uio.uio_iovcnt = 1;
4868 			while (mp && uio.uio_resid) {
4869 				if (mp->b_datap->db_type == M_DATA) {
4870 					if ((n = MIN(uio.uio_resid,
4871 					    mp->b_wptr - mp->b_rptr)) != 0 &&
4872 					    (error = uiomove((char *)mp->b_rptr,
4873 						n, UIO_READ, &uio)) != 0) {
4874 						freemsg(tmp_mp);
4875 						return (error);
4876 					}
4877 					data_part = 1;
4878 				}
4879 				ASSERT(data_part == 0 ||
4880 				    mp->b_datap->db_type == M_DATA);
4881 				mp = mp->b_cont;
4882 			}
4883 			/* No data message */
4884 			if (data_part == 0)
4885 				STRUCT_FSET(strpeek, databuf.len, -1);
4886 			else
4887 				STRUCT_FSET(strpeek, databuf.len,
4888 				    STRUCT_FGET(strpeek, databuf.maxlen) -
4889 				    uio.uio_resid);
4890 		}
4891 		freemsg(tmp_mp);
4892 
4893 		/*
4894 		 * It is a synch stream and user wants to get
4895 		 * data (maxlen > 0).
4896 		 * uio setup is done by the codes that process DATA
4897 		 * blocks above.
4898 		 */
4899 		if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
4900 			infod_t infod;
4901 
4902 			infod.d_cmd = INFOD_COPYOUT;
4903 			infod.d_res = 0;
4904 			infod.d_uiop = &uio;
4905 			error = infonext(rdq, &infod);
4906 			if (error == EINVAL || error == EBUSY)
4907 				error = 0;
4908 			if (error)
4909 				return (error);
4910 			STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
4911 			    databuf.maxlen) - uio.uio_resid);
4912 			if (STRUCT_FGET(strpeek, databuf.len) == 0) {
4913 				/*
4914 				 * No data found by the infonext().
4915 				 */
4916 				STRUCT_FSET(strpeek, databuf.len, -1);
4917 			}
4918 		}
4919 		error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
4920 		    STRUCT_SIZE(strpeek), copyflag);
4921 		if (error) {
4922 			return (error);
4923 		}
4924 		/*
4925 		 * If there is no message retrieved, set return code to 0
4926 		 * otherwise, set it to 1.
4927 		 */
4928 		if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
4929 		    STRUCT_FGET(strpeek, databuf.len) == -1)
4930 			*rvalp = 0;
4931 		else
4932 			*rvalp = 1;
4933 		return (0);
4934 	    }
4935 
4936 	case I_FDINSERT:
4937 	    {
4938 		STRUCT_DECL(strfdinsert, strfdinsert);
4939 		struct file *resftp;
4940 		struct stdata *resstp;
4941 		t_uscalar_t	ival;
4942 		ssize_t msgsize;
4943 		struct strbuf mctl;
4944 
4945 		STRUCT_INIT(strfdinsert, flag);
4946 		if (stp->sd_flag & STRHUP)
4947 			return (ENXIO);
4948 		/*
4949 		 * STRDERR, STWRERR and STPLEX tested above.
4950 		 */
4951 		error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
4952 		    STRUCT_SIZE(strfdinsert), copyflag);
4953 		if (error)
4954 			return (error);
4955 
4956 		if (STRUCT_FGET(strfdinsert, offset) < 0 ||
4957 		    (STRUCT_FGET(strfdinsert, offset) %
4958 		    sizeof (t_uscalar_t)) != 0)
4959 			return (EINVAL);
4960 		if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
4961 			if ((resstp = resftp->f_vnode->v_stream) == NULL) {
4962 				releasef(STRUCT_FGET(strfdinsert, fildes));
4963 				return (EINVAL);
4964 			}
4965 		} else
4966 			return (EINVAL);
4967 
4968 		mutex_enter(&resstp->sd_lock);
4969 		if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4970 			error = strgeterr(resstp,
4971 					STRDERR|STWRERR|STRHUP|STPLEX, 0);
4972 			if (error != 0) {
4973 				mutex_exit(&resstp->sd_lock);
4974 				releasef(STRUCT_FGET(strfdinsert, fildes));
4975 				return (error);
4976 			}
4977 		}
4978 		mutex_exit(&resstp->sd_lock);
4979 
4980 #ifdef	_ILP32
4981 		{
4982 			queue_t	*q;
4983 			queue_t	*mate = NULL;
4984 
4985 			/* get read queue of stream terminus */
4986 			claimstr(resstp->sd_wrq);
4987 			for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
4988 			    q = q->q_next)
4989 				if (!STRMATED(resstp) && STREAM(q) != resstp &&
4990 				    mate == NULL) {
4991 					ASSERT(q->q_qinfo->qi_srvp);
4992 					ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
4993 					claimstr(q);
4994 					mate = q;
4995 				}
4996 			q = _RD(q);
4997 			if (mate)
4998 				releasestr(mate);
4999 			releasestr(resstp->sd_wrq);
5000 			ival = (t_uscalar_t)q;
5001 		}
5002 #else
5003 		ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
5004 #endif	/* _ILP32 */
5005 
5006 		if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
5007 		    STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
5008 			releasef(STRUCT_FGET(strfdinsert, fildes));
5009 			return (EINVAL);
5010 		}
5011 
5012 		/*
5013 		 * Check for legal flag value.
5014 		 */
5015 		if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
5016 			releasef(STRUCT_FGET(strfdinsert, fildes));
5017 			return (EINVAL);
5018 		}
5019 
5020 		/* get these values from those cached in the stream head */
5021 		mutex_enter(QLOCK(stp->sd_wrq));
5022 		rmin = stp->sd_qn_minpsz;
5023 		rmax = stp->sd_qn_maxpsz;
5024 		mutex_exit(QLOCK(stp->sd_wrq));
5025 
5026 		/*
5027 		 * Make sure ctl and data sizes together fall within
5028 		 * the limits of the max and min receive packet sizes
5029 		 * and do not exceed system limit.  A negative data
5030 		 * length means that no data part is to be sent.
5031 		 */
5032 		ASSERT((rmax >= 0) || (rmax == INFPSZ));
5033 		if (rmax == 0) {
5034 			releasef(STRUCT_FGET(strfdinsert, fildes));
5035 			return (ERANGE);
5036 		}
5037 		if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
5038 			msgsize = 0;
5039 		if ((msgsize < rmin) ||
5040 		    ((msgsize > rmax) && (rmax != INFPSZ)) ||
5041 		    (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
5042 			releasef(STRUCT_FGET(strfdinsert, fildes));
5043 			return (ERANGE);
5044 		}
5045 
5046 		mutex_enter(&stp->sd_lock);
5047 		while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
5048 		    !canputnext(stp->sd_wrq)) {
5049 			if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
5050 			    flag, -1, &done)) != 0 || done) {
5051 				mutex_exit(&stp->sd_lock);
5052 				releasef(STRUCT_FGET(strfdinsert, fildes));
5053 				return (error);
5054 			}
5055 			if (stp->sd_sidp != NULL &&
5056 			    stp->sd_vnode->v_type != VFIFO) {
5057 				mutex_exit(&stp->sd_lock);
5058 				if (error = straccess(stp, access)) {
5059 					releasef(
5060 					    STRUCT_FGET(strfdinsert, fildes));
5061 					return (error);
5062 				}
5063 				mutex_enter(&stp->sd_lock);
5064 			}
5065 		}
5066 		mutex_exit(&stp->sd_lock);
5067 
5068 		/*
5069 		 * Copy strfdinsert.ctlbuf into native form of
5070 		 * ctlbuf to pass down into strmakemsg().
5071 		 */
5072 		mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
5073 		mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
5074 		mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);
5075 
5076 		iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
5077 		iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
5078 		uio.uio_iov = &iov;
5079 		uio.uio_iovcnt = 1;
5080 		uio.uio_loffset = 0;
5081 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5082 		    UIO_SYSSPACE;
5083 		uio.uio_fmode = 0;
5084 		uio.uio_extflg = UIO_COPY_CACHED;
5085 		uio.uio_resid = iov.iov_len;
5086 		if ((error = strmakemsg(&mctl,
5087 		    &msgsize, &uio, stp,
5088 		    STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
5089 			STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5090 			releasef(STRUCT_FGET(strfdinsert, fildes));
5091 			return (error);
5092 		}
5093 
5094 		STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5095 
5096 		/*
5097 		 * Place the possibly reencoded queue pointer 'offset' bytes
5098 		 * from the start of the control portion of the message.
5099 		 */
5100 		*((t_uscalar_t *)(mp->b_rptr +
5101 		    STRUCT_FGET(strfdinsert, offset))) = ival;
5102 
5103 		/*
5104 		 * Put message downstream.
5105 		 */
5106 		stream_willservice(stp);
5107 		putnext(stp->sd_wrq, mp);
5108 		stream_runservice(stp);
5109 		releasef(STRUCT_FGET(strfdinsert, fildes));
5110 		return (error);
5111 	    }
5112 
5113 	case I_SENDFD:
5114 	    {
5115 		struct file *fp;
5116 
5117 		if ((fp = getf((int)arg)) == NULL)
5118 			return (EBADF);
5119 		error = do_sendfp(stp, fp, crp);
5120 #ifdef C2_AUDIT
5121 		if (audit_active) {
5122 			audit_fdsend((int)arg, fp, error);
5123 		}
5124 #endif
5125 		releasef((int)arg);
5126 		return (error);
5127 	    }
5128 
5129 	case I_RECVFD:
5130 	case I_E_RECVFD:
5131 	    {
5132 		struct k_strrecvfd *srf;
5133 		int i, fd;
5134 
5135 		mutex_enter(&stp->sd_lock);
5136 		while (!(mp = getq(rdq))) {
5137 			if (stp->sd_flag & (STRHUP|STREOF)) {
5138 				mutex_exit(&stp->sd_lock);
5139 				return (ENXIO);
5140 			}
5141 			if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
5142 			    flag, -1, &done)) != 0 || done) {
5143 				mutex_exit(&stp->sd_lock);
5144 				return (error);
5145 			}
5146 			if (stp->sd_sidp != NULL &&
5147 			    stp->sd_vnode->v_type != VFIFO) {
5148 				mutex_exit(&stp->sd_lock);
5149 				if (error = straccess(stp, access))
5150 					return (error);
5151 				mutex_enter(&stp->sd_lock);
5152 			}
5153 		}
5154 		if (mp->b_datap->db_type != M_PASSFP) {
5155 			putback(stp, rdq, mp, mp->b_band);
5156 			mutex_exit(&stp->sd_lock);
5157 			return (EBADMSG);
5158 		}
5159 		mutex_exit(&stp->sd_lock);
5160 
5161 		srf = (struct k_strrecvfd *)mp->b_rptr;
5162 		if ((fd = ufalloc(0)) == -1) {
5163 			mutex_enter(&stp->sd_lock);
5164 			putback(stp, rdq, mp, mp->b_band);
5165 			mutex_exit(&stp->sd_lock);
5166 			return (EMFILE);
5167 		}
5168 		if (cmd == I_RECVFD) {
5169 			struct o_strrecvfd	ostrfd;
5170 
5171 			/* check to see if uid/gid values are too large. */
5172 
5173 			if (srf->uid > (o_uid_t)USHRT_MAX ||
5174 			    srf->gid > (o_gid_t)USHRT_MAX) {
5175 				mutex_enter(&stp->sd_lock);
5176 				putback(stp, rdq, mp, mp->b_band);
5177 				mutex_exit(&stp->sd_lock);
5178 				setf(fd, NULL);	/* release fd entry */
5179 				return (EOVERFLOW);
5180 			}
5181 
5182 			ostrfd.fd = fd;
5183 			ostrfd.uid = (o_uid_t)srf->uid;
5184 			ostrfd.gid = (o_gid_t)srf->gid;
5185 
5186 			/* Null the filler bits */
5187 			for (i = 0; i < 8; i++)
5188 				ostrfd.fill[i] = 0;
5189 
5190 			error = strcopyout(&ostrfd, (void *)arg,
5191 			    sizeof (struct o_strrecvfd), copyflag);
5192 		} else {		/* I_E_RECVFD */
5193 			struct strrecvfd	strfd;
5194 
5195 			strfd.fd = fd;
5196 			strfd.uid = srf->uid;
5197 			strfd.gid = srf->gid;
5198 
5199 			/* null the filler bits */
5200 			for (i = 0; i < 8; i++)
5201 				strfd.fill[i] = 0;
5202 
5203 			error = strcopyout(&strfd, (void *)arg,
5204 			    sizeof (struct strrecvfd), copyflag);
5205 		}
5206 
5207 		if (error) {
5208 			setf(fd, NULL);	/* release fd entry */
5209 			mutex_enter(&stp->sd_lock);
5210 			putback(stp, rdq, mp, mp->b_band);
5211 			mutex_exit(&stp->sd_lock);
5212 			return (error);
5213 		}
5214 #ifdef C2_AUDIT
5215 		if (audit_active) {
5216 			audit_fdrecv(fd, srf->fp);
5217 		}
5218 #endif
5219 
5220 		/*
5221 		 * Always increment f_count since the freemsg() below will
5222 		 * always call free_passfp() which performs a closef().
5223 		 */
5224 		mutex_enter(&srf->fp->f_tlock);
5225 		srf->fp->f_count++;
5226 		mutex_exit(&srf->fp->f_tlock);
5227 		setf(fd, srf->fp);
5228 		freemsg(mp);
5229 		return (0);
5230 	    }
5231 
5232 	case I_SWROPT:
5233 		/*
5234 		 * Set/clear the write options. arg is a bit
5235 		 * mask with any of the following bits set...
5236 		 * 	SNDZERO - send zero length message
5237 		 *	SNDPIPE - send sigpipe to process if
5238 		 *		sd_werror is set and process is
5239 		 *		doing a write or putmsg.
5240 		 * The new stream head write options should reflect
5241 		 * what is in arg.
5242 		 */
5243 		if (arg & ~(SNDZERO|SNDPIPE))
5244 			return (EINVAL);
5245 
5246 		mutex_enter(&stp->sd_lock);
5247 		stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
5248 		if (arg & SNDZERO)
5249 			stp->sd_wput_opt |= SW_SNDZERO;
5250 		if (arg & SNDPIPE)
5251 			stp->sd_wput_opt |= SW_SIGPIPE;
5252 		mutex_exit(&stp->sd_lock);
5253 		return (0);
5254 
5255 	case I_GWROPT:
5256 	    {
5257 		int wropt = 0;
5258 
5259 		if (stp->sd_wput_opt & SW_SNDZERO)
5260 			wropt |= SNDZERO;
5261 		if (stp->sd_wput_opt & SW_SIGPIPE)
5262 			wropt |= SNDPIPE;
5263 		return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
5264 		    copyflag));
5265 	    }
5266 
5267 	case I_LIST:
5268 		/*
5269 		 * Returns all the modules found on this stream,
5270 		 * upto the driver. If argument is NULL, return the
5271 		 * number of modules (including driver). If argument
5272 		 * is not NULL, copy the names into the structure
5273 		 * provided.
5274 		 */
5275 
5276 	    {
5277 		queue_t *q;
5278 		int num_modules, space_allocated;
5279 		STRUCT_DECL(str_list, strlist);
5280 		struct str_mlist *mlist_ptr;
5281 
5282 		if (arg == NULL) { /* Return number of modules plus driver */
5283 			q = stp->sd_wrq;
5284 			if (stp->sd_vnode->v_type == VFIFO) {
5285 				*rvalp = stp->sd_pushcnt;
5286 			} else {
5287 				*rvalp = stp->sd_pushcnt + 1;
5288 			}
5289 		} else {
5290 			STRUCT_INIT(strlist, flag);
5291 
5292 			error = strcopyin((void *)arg, STRUCT_BUF(strlist),
5293 			    STRUCT_SIZE(strlist), copyflag);
5294 			if (error)
5295 				return (error);
5296 
5297 			space_allocated = STRUCT_FGET(strlist, sl_nmods);
5298 			if ((space_allocated) <= 0)
5299 				return (EINVAL);
5300 			claimstr(stp->sd_wrq);
5301 			q = stp->sd_wrq;
5302 			num_modules = 0;
5303 			while (_SAMESTR(q) && (space_allocated != 0)) {
5304 				char *name =
5305 				    q->q_next->q_qinfo->qi_minfo->mi_idname;
5306 
5307 				mlist_ptr = STRUCT_FGETP(strlist, sl_modlist);
5308 
5309 				error = strcopyout(name, mlist_ptr,
5310 				    strlen(name) + 1, copyflag);
5311 
5312 				if (error) {
5313 					releasestr(stp->sd_wrq);
5314 					return (error);
5315 				}
5316 				q = q->q_next;
5317 				space_allocated--;
5318 				num_modules++;
5319 				mlist_ptr =
5320 				    (struct str_mlist *)((uintptr_t)mlist_ptr +
5321 				    sizeof (struct str_mlist));
5322 				STRUCT_FSETP(strlist, sl_modlist, mlist_ptr);
5323 			}
5324 			releasestr(stp->sd_wrq);
5325 			error = strcopyout(&num_modules, (void *)arg,
5326 			    sizeof (int), copyflag);
5327 		}
5328 		return (error);
5329 	    }
5330 
5331 	case I_CKBAND:
5332 	    {
5333 		queue_t *q;
5334 		qband_t *qbp;
5335 
5336 		if ((arg < 0) || (arg >= NBAND))
5337 			return (EINVAL);
5338 		q = _RD(stp->sd_wrq);
5339 		mutex_enter(QLOCK(q));
5340 		if (arg > (int)q->q_nband) {
5341 			*rvalp = 0;
5342 		} else {
5343 			if (arg == 0) {
5344 				if (q->q_first)
5345 					*rvalp = 1;
5346 				else
5347 					*rvalp = 0;
5348 			} else {
5349 				qbp = q->q_bandp;
5350 				while (--arg > 0)
5351 					qbp = qbp->qb_next;
5352 				if (qbp->qb_first)
5353 					*rvalp = 1;
5354 				else
5355 					*rvalp = 0;
5356 			}
5357 		}
5358 		mutex_exit(QLOCK(q));
5359 		return (0);
5360 	    }
5361 
5362 	case I_GETBAND:
5363 	    {
5364 		int intpri;
5365 		queue_t *q;
5366 
5367 		q = _RD(stp->sd_wrq);
5368 		mutex_enter(QLOCK(q));
5369 		mp = q->q_first;
5370 		if (!mp) {
5371 			mutex_exit(QLOCK(q));
5372 			return (ENODATA);
5373 		}
5374 		intpri = (int)mp->b_band;
5375 		error = strcopyout(&intpri, (void *)arg, sizeof (int),
5376 		    copyflag);
5377 		mutex_exit(QLOCK(q));
5378 		return (error);
5379 	    }
5380 
5381 	case I_ATMARK:
5382 	    {
5383 		queue_t *q;
5384 
5385 		if (arg & ~(ANYMARK|LASTMARK))
5386 			return (EINVAL);
5387 		q = _RD(stp->sd_wrq);
5388 		mutex_enter(&stp->sd_lock);
5389 		if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
5390 			*rvalp = 1;
5391 		} else {
5392 			mutex_enter(QLOCK(q));
5393 			mp = q->q_first;
5394 
5395 			if (mp == NULL)
5396 				*rvalp = 0;
5397 			else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
5398 				*rvalp = 1;
5399 			else if ((arg == LASTMARK) && (mp == stp->sd_mark))
5400 				*rvalp = 1;
5401 			else
5402 				*rvalp = 0;
5403 			mutex_exit(QLOCK(q));
5404 		}
5405 		mutex_exit(&stp->sd_lock);
5406 		return (0);
5407 	    }
5408 
5409 	case I_CANPUT:
5410 	    {
5411 		char band;
5412 
5413 		if ((arg < 0) || (arg >= NBAND))
5414 			return (EINVAL);
5415 		band = (char)arg;
5416 		*rvalp = bcanputnext(stp->sd_wrq, band);
5417 		return (0);
5418 	    }
5419 
5420 	case I_SETCLTIME:
5421 	    {
5422 		int closetime;
5423 
5424 		error = strcopyin((void *)arg, &closetime, sizeof (int),
5425 		    copyflag);
5426 		if (error)
5427 			return (error);
5428 		if (closetime < 0)
5429 			return (EINVAL);
5430 
5431 		stp->sd_closetime = closetime;
5432 		return (0);
5433 	    }
5434 
5435 	case I_GETCLTIME:
5436 	    {
5437 		int closetime;
5438 
5439 		closetime = stp->sd_closetime;
5440 		return (strcopyout(&closetime, (void *)arg, sizeof (int),
5441 		    copyflag));
5442 	    }
5443 
5444 	case TIOCGSID:
5445 	{
5446 		pid_t sid;
5447 
5448 		mutex_enter(&pidlock);
5449 		if (stp->sd_sidp == NULL) {
5450 			mutex_exit(&pidlock);
5451 			return (ENOTTY);
5452 		}
5453 		sid = stp->sd_sidp->pid_id;
5454 		mutex_exit(&pidlock);
5455 		return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
5456 		    copyflag));
5457 	}
5458 
5459 	case TIOCSPGRP:
5460 	{
5461 		pid_t pgrp;
5462 		proc_t *q;
5463 		pid_t	sid, fg_pgid, bg_pgid;
5464 
5465 		if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
5466 		    copyflag))
5467 			return (error);
5468 		mutex_enter(&stp->sd_lock);
5469 		mutex_enter(&pidlock);
5470 		if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
5471 			mutex_exit(&pidlock);
5472 			mutex_exit(&stp->sd_lock);
5473 			return (ENOTTY);
5474 		}
5475 		if (pgrp == stp->sd_pgidp->pid_id) {
5476 			mutex_exit(&pidlock);
5477 			mutex_exit(&stp->sd_lock);
5478 			return (0);
5479 		}
5480 		if (pgrp <= 0 || pgrp >= maxpid) {
5481 			mutex_exit(&pidlock);
5482 			mutex_exit(&stp->sd_lock);
5483 			return (EINVAL);
5484 		}
5485 		if ((q = pgfind(pgrp)) == NULL ||
5486 		    q->p_sessp != ttoproc(curthread)->p_sessp) {
5487 			mutex_exit(&pidlock);
5488 			mutex_exit(&stp->sd_lock);
5489 			return (EPERM);
5490 		}
5491 		sid = stp->sd_sidp->pid_id;
5492 		fg_pgid = q->p_pgrp;
5493 		bg_pgid = stp->sd_pgidp->pid_id;
5494 		CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
5495 		PID_RELE(stp->sd_pgidp);
5496 		stp->sd_pgidp = q->p_pgidp;
5497 		PID_HOLD(stp->sd_pgidp);
5498 		mutex_exit(&pidlock);
5499 		mutex_exit(&stp->sd_lock);
5500 		return (0);
5501 	}
5502 
5503 	case TIOCGPGRP:
5504 	{
5505 		pid_t pgrp;
5506 
5507 		mutex_enter(&pidlock);
5508 		if (stp->sd_sidp == NULL) {
5509 			mutex_exit(&pidlock);
5510 			return (ENOTTY);
5511 		}
5512 		pgrp = stp->sd_pgidp->pid_id;
5513 		mutex_exit(&pidlock);
5514 		return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
5515 		    copyflag));
5516 	}
5517 
5518 	case FIONBIO:
5519 	case FIOASYNC:
5520 		return (0);	/* handled by the upper layer */
5521 	}
5522 }
5523 
5524 /*
5525  * Custom free routine used for M_PASSFP messages.
5526  */
5527 static void
5528 free_passfp(struct k_strrecvfd *srf)
5529 {
5530 	(void) closef(srf->fp);
5531 	kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
5532 }
5533 
5534 /* ARGSUSED */
5535 int
5536 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
5537 {
5538 	queue_t *qp, *nextqp;
5539 	struct k_strrecvfd *srf;
5540 	mblk_t *mp;
5541 	frtn_t *frtnp;
5542 	size_t bufsize;
5543 	queue_t	*mate = NULL;
5544 	syncq_t	*sq = NULL;
5545 	int retval = 0;
5546 
5547 	if (stp->sd_flag & STRHUP)
5548 		return (ENXIO);
5549 
5550 	claimstr(stp->sd_wrq);
5551 
5552 	/* Fastpath, we have a pipe, and we are already mated, use it. */
5553 	if (STRMATED(stp)) {
5554 		qp = _RD(stp->sd_mate->sd_wrq);
5555 		claimstr(qp);
5556 		mate = qp;
5557 	} else { /* Not already mated. */
5558 
5559 		/*
5560 		 * Walk the stream to the end of this one.
5561 		 * assumes that the claimstr() will prevent
5562 		 * plumbing between the stream head and the
5563 		 * driver from changing
5564 		 */
5565 		qp = stp->sd_wrq;
5566 
5567 		/*
5568 		 * Loop until we reach the end of this stream.
5569 		 * On completion, qp points to the write queue
5570 		 * at the end of the stream, or the read queue
5571 		 * at the stream head if this is a fifo.
5572 		 */
5573 		while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
5574 			;
5575 
5576 		/*
5577 		 * Just in case we get a q_next which is NULL, but
5578 		 * not at the end of the stream.  This is actually
5579 		 * broken, so we set an assert to catch it in
5580 		 * debug, and set an error and return if not debug.
5581 		 */
5582 		ASSERT(qp);
5583 		if (qp == NULL) {
5584 			releasestr(stp->sd_wrq);
5585 			return (EINVAL);
5586 		}
5587 
5588 		/*
5589 		 * Enter the syncq for the driver, so (hopefully)
5590 		 * the queue values will not change on us.
5591 		 * XXXX - This will only prevent the race IFF only
5592 		 *   the write side modifies the q_next member, and
5593 		 *   the put procedure is protected by at least
5594 		 *   MT_PERQ.
5595 		 */
5596 		if ((sq = qp->q_syncq) != NULL)
5597 			entersq(sq, SQ_PUT);
5598 
5599 		/* Now get the q_next value from this qp. */
5600 		nextqp = qp->q_next;
5601 
5602 		/*
5603 		 * If nextqp exists and the other stream is different
5604 		 * from this one claim the stream, set the mate, and
5605 		 * get the read queue at the stream head of the other
5606 		 * stream.  Assumes that nextqp was at least valid when
5607 		 * we got it.  Hopefully the entersq of the driver
5608 		 * will prevent it from changing on us.
5609 		 */
5610 		if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
5611 			ASSERT(qp->q_qinfo->qi_srvp);
5612 			ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
5613 			ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
5614 			claimstr(nextqp);
5615 
5616 			/* Make sure we still have a q_next */
5617 			if (nextqp != qp->q_next) {
5618 				releasestr(stp->sd_wrq);
5619 				releasestr(nextqp);
5620 				return (EINVAL);
5621 			}
5622 
5623 			qp = _RD(STREAM(nextqp)->sd_wrq);
5624 			mate = qp;
5625 		}
5626 		/* If we entered the synq above, leave it. */
5627 		if (sq != NULL)
5628 			leavesq(sq, SQ_PUT);
5629 	} /*  STRMATED(STP)  */
5630 
5631 	/* XXX prevents substitution of the ops vector */
5632 	if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
5633 		retval = EINVAL;
5634 		goto out;
5635 	}
5636 
5637 	if (qp->q_flag & QFULL) {
5638 		retval = EAGAIN;
5639 		goto out;
5640 	}
5641 
5642 	/*
5643 	 * Since M_PASSFP messages include a file descriptor, we use
5644 	 * esballoc() and specify a custom free routine (free_passfp()) that
5645 	 * will close the descriptor as part of freeing the message.  For
5646 	 * convenience, we stash the frtn_t right after the data block.
5647 	 */
5648 	bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
5649 	srf = kmem_alloc(bufsize, KM_NOSLEEP);
5650 	if (srf == NULL) {
5651 		retval = EAGAIN;
5652 		goto out;
5653 	}
5654 
5655 	frtnp = (frtn_t *)(srf + 1);
5656 	frtnp->free_arg = (caddr_t)srf;
5657 	frtnp->free_func = free_passfp;
5658 
5659 	mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
5660 	if (mp == NULL) {
5661 		kmem_free(srf, bufsize);
5662 		retval = EAGAIN;
5663 		goto out;
5664 	}
5665 	mp->b_wptr += sizeof (struct k_strrecvfd);
5666 	mp->b_datap->db_type = M_PASSFP;
5667 
5668 	srf->fp = fp;
5669 	srf->uid = crgetuid(curthread->t_cred);
5670 	srf->gid = crgetgid(curthread->t_cred);
5671 	mutex_enter(&fp->f_tlock);
5672 	fp->f_count++;
5673 	mutex_exit(&fp->f_tlock);
5674 
5675 	put(qp, mp);
5676 out:
5677 	releasestr(stp->sd_wrq);
5678 	if (mate)
5679 		releasestr(mate);
5680 	return (retval);
5681 }
5682 
5683 /*
5684  * Send an ioctl message downstream and wait for acknowledgement.
5685  * flags may be set to either U_TO_K or K_TO_K and a combination
5686  * of STR_NOERROR or STR_NOSIG
5687  * STR_NOSIG: Signals are essentially ignored or held and have
5688  *	no effect for the duration of the call.
5689  * STR_NOERROR: Ignores stream head read, write and hup errors.
5690  *	Additionally, if an existing ioctl times out, it is assumed
5691  *	lost and and this ioctl will continue as if the previous ioctl had
5692  *	finished.  ETIME may be returned if this ioctl times out (i.e.
5693  *	ic_timout is not INFTIM).  Non-stream head errors may be returned if
5694  *	the ioc_error indicates that the driver/module had problems,
5695  *	an EFAULT was found when accessing user data, a lack of
5696  * 	resources, etc.
5697  */
5698 int
5699 strdoioctl(
5700 	struct stdata *stp,
5701 	struct strioctl *strioc,
5702 	int fflags,		/* file flags with model info */
5703 	int flag,
5704 	cred_t *crp,
5705 	int *rvalp)
5706 {
5707 	mblk_t *bp;
5708 	struct iocblk *iocbp;
5709 	struct copyreq *reqp;
5710 	struct copyresp *resp;
5711 	int id;
5712 	int transparent = 0;
5713 	int error = 0;
5714 	int len = 0;
5715 	caddr_t taddr;
5716 	int copyflag = (flag & (U_TO_K | K_TO_K));
5717 	int sigflag = (flag & STR_NOSIG);
5718 	int errs;
5719 	uint_t waitflags;
5720 
5721 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
5722 	ASSERT((fflags & FMODELS) != 0);
5723 
5724 	TRACE_2(TR_FAC_STREAMS_FR,
5725 		TR_STRDOIOCTL,
5726 		"strdoioctl:stp %p strioc %p", stp, strioc);
5727 	if (strioc->ic_len == TRANSPARENT) {	/* send arg in M_DATA block */
5728 		transparent = 1;
5729 		strioc->ic_len = sizeof (intptr_t);
5730 	}
5731 
5732 	if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
5733 		return (EINVAL);
5734 
5735 	if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
5736 	    crp)) == NULL)
5737 			return (error);
5738 
5739 	bzero(bp->b_wptr, sizeof (union ioctypes));
5740 
5741 	iocbp = (struct iocblk *)bp->b_wptr;
5742 	iocbp->ioc_count = strioc->ic_len;
5743 	iocbp->ioc_cmd = strioc->ic_cmd;
5744 	iocbp->ioc_flag = (fflags & FMODELS);
5745 
5746 	crhold(crp);
5747 	iocbp->ioc_cr = crp;
5748 	DB_TYPE(bp) = M_IOCTL;
5749 	DB_CPID(bp) = curproc->p_pid;
5750 	bp->b_wptr += sizeof (struct iocblk);
5751 
5752 	if (flag & STR_NOERROR)
5753 		errs = STPLEX;
5754 	else
5755 		errs = STRHUP|STRDERR|STWRERR|STPLEX;
5756 
5757 	/*
5758 	 * If there is data to copy into ioctl block, do so.
5759 	 */
5760 	if (iocbp->ioc_count > 0) {
5761 		if (transparent)
5762 			/*
5763 			 * Note: STR_NOERROR does not have an effect
5764 			 * in putiocd()
5765 			 */
5766 			id = K_TO_K | sigflag;
5767 		else
5768 			id = flag;
5769 		if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
5770 			freemsg(bp);
5771 			crfree(crp);
5772 			return (error);
5773 		}
5774 
5775 		/*
5776 		 * We could have slept copying in user pages.
5777 		 * Recheck the stream head state (the other end
5778 		 * of a pipe could have gone away).
5779 		 */
5780 		if (stp->sd_flag & errs) {
5781 			mutex_enter(&stp->sd_lock);
5782 			error = strgeterr(stp, errs, 0);
5783 			mutex_exit(&stp->sd_lock);
5784 			if (error != 0) {
5785 				freemsg(bp);
5786 				crfree(crp);
5787 				return (error);
5788 			}
5789 		}
5790 	}
5791 	if (transparent)
5792 		iocbp->ioc_count = TRANSPARENT;
5793 
5794 	/*
5795 	 * Block for up to STRTIMOUT milliseconds if there is an outstanding
5796 	 * ioctl for this stream already running.  All processes
5797 	 * sleeping here will be awakened as a result of an ACK
5798 	 * or NAK being received for the outstanding ioctl, or
5799 	 * as a result of the timer expiring on the outstanding
5800 	 * ioctl (a failure), or as a result of any waiting
5801 	 * process's timer expiring (also a failure).
5802 	 */
5803 
5804 	error = 0;
5805 	mutex_enter(&stp->sd_lock);
5806 	while (stp->sd_flag & (IOCWAIT | IOCWAITNE)) {
5807 		clock_t cv_rval;
5808 
5809 		TRACE_0(TR_FAC_STREAMS_FR,
5810 			TR_STRDOIOCTL_WAIT,
5811 			"strdoioctl sleeps - IOCWAIT");
5812 		cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
5813 		    STRTIMOUT, sigflag);
5814 		if (cv_rval <= 0) {
5815 			if (cv_rval == 0) {
5816 				error = EINTR;
5817 			} else {
5818 				if (flag & STR_NOERROR) {
5819 					/*
5820 					 * Terminating current ioctl in
5821 					 * progress -- assume it got lost and
5822 					 * wake up the other thread so that the
5823 					 * operation completes.
5824 					 */
5825 					if (!(stp->sd_flag & IOCWAITNE)) {
5826 						stp->sd_flag |= IOCWAITNE;
5827 						cv_broadcast(&stp->sd_monitor);
5828 					}
5829 					/*
5830 					 * Otherwise, there's a running
5831 					 * STR_NOERROR -- we have no choice
5832 					 * here but to wait forever (or until
5833 					 * interrupted).
5834 					 */
5835 				} else {
5836 					/*
5837 					 * pending ioctl has caused
5838 					 * us to time out
5839 					 */
5840 					error = ETIME;
5841 				}
5842 			}
5843 		} else if ((stp->sd_flag & errs)) {
5844 			error = strgeterr(stp, errs, 0);
5845 		}
5846 		if (error) {
5847 			mutex_exit(&stp->sd_lock);
5848 			freemsg(bp);
5849 			crfree(crp);
5850 			return (error);
5851 		}
5852 	}
5853 
5854 	/*
5855 	 * Have control of ioctl mechanism.
5856 	 * Send down ioctl packet and wait for response.
5857 	 */
5858 	if (stp->sd_iocblk != (mblk_t *)-1) {
5859 		freemsg(stp->sd_iocblk);
5860 	}
5861 	stp->sd_iocblk = NULL;
5862 
5863 	/*
5864 	 * If this is marked with 'noerror' (internal; mostly
5865 	 * I_{P,}{UN,}LINK), then make sure nobody else is able to get
5866 	 * in here by setting IOCWAITNE.
5867 	 */
5868 	waitflags = IOCWAIT;
5869 	if (flag & STR_NOERROR)
5870 		waitflags |= IOCWAITNE;
5871 
5872 	stp->sd_flag |= waitflags;
5873 
5874 	/*
5875 	 * Assign sequence number.
5876 	 */
5877 	iocbp->ioc_id = stp->sd_iocid = getiocseqno();
5878 
5879 	mutex_exit(&stp->sd_lock);
5880 
5881 	TRACE_1(TR_FAC_STREAMS_FR,
5882 		TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
5883 	stream_willservice(stp);
5884 	putnext(stp->sd_wrq, bp);
5885 	stream_runservice(stp);
5886 
5887 	/*
5888 	 * Timed wait for acknowledgment.  The wait time is limited by the
5889 	 * timeout value, which must be a positive integer (number of
5890 	 * milliseconds) to wait, or 0 (use default value of STRTIMOUT
5891 	 * milliseconds), or -1 (wait forever).  This will be awakened
5892 	 * either by an ACK/NAK message arriving, the timer expiring, or
5893 	 * the timer expiring on another ioctl waiting for control of the
5894 	 * mechanism.
5895 	 */
5896 waitioc:
5897 	mutex_enter(&stp->sd_lock);
5898 
5899 
5900 	/*
5901 	 * If the reply has already arrived, don't sleep.  If awakened from
5902 	 * the sleep, fail only if the reply has not arrived by then.
5903 	 * Otherwise, process the reply.
5904 	 */
5905 	while (!stp->sd_iocblk) {
5906 		clock_t cv_rval;
5907 
5908 		if (stp->sd_flag & errs) {
5909 			error = strgeterr(stp, errs, 0);
5910 			if (error != 0) {
5911 				stp->sd_flag &= ~waitflags;
5912 				cv_broadcast(&stp->sd_iocmonitor);
5913 				mutex_exit(&stp->sd_lock);
5914 				crfree(crp);
5915 				return (error);
5916 			}
5917 		}
5918 
5919 		TRACE_0(TR_FAC_STREAMS_FR,
5920 			TR_STRDOIOCTL_WAIT2,
5921 			"strdoioctl sleeps awaiting reply");
5922 		ASSERT(error == 0);
5923 
5924 		cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
5925 		    (strioc->ic_timout ?
5926 		    strioc->ic_timout * 1000 : STRTIMOUT), sigflag);
5927 
5928 		/*
5929 		 * There are four possible cases here: interrupt, timeout,
5930 		 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
5931 		 * valid M_IOCTL reply).
5932 		 *
5933 		 * If we've been awakened by a STR_NOERROR ioctl on some other
5934 		 * thread, then sd_iocblk will still be NULL, and IOCWAITNE
5935 		 * will be set.  Pretend as if we just timed out.  Note that
5936 		 * this other thread waited at least STRTIMOUT before trying to
5937 		 * awaken our thread, so this is indistinguishable (even for
5938 		 * INFTIM) from the case where we failed with ETIME waiting on
5939 		 * IOCWAIT in the prior loop.
5940 		 */
5941 		if (cv_rval > 0 && !(flag & STR_NOERROR) &&
5942 		    stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
5943 			cv_rval = -1;
5944 		}
5945 
5946 		/*
5947 		 * note: STR_NOERROR does not protect
5948 		 * us here.. use ic_timout < 0
5949 		 */
5950 		if (cv_rval <= 0) {
5951 			if (cv_rval == 0) {
5952 				error = EINTR;
5953 			} else {
5954 				error =  ETIME;
5955 			}
5956 			/*
5957 			 * A message could have come in after we were scheduled
5958 			 * but before we were actually run.
5959 			 */
5960 			bp = stp->sd_iocblk;
5961 			stp->sd_iocblk = NULL;
5962 			if (bp != NULL) {
5963 				if ((bp->b_datap->db_type == M_COPYIN) ||
5964 				    (bp->b_datap->db_type == M_COPYOUT)) {
5965 					mutex_exit(&stp->sd_lock);
5966 					if (bp->b_cont) {
5967 						freemsg(bp->b_cont);
5968 						bp->b_cont = NULL;
5969 					}
5970 					bp->b_datap->db_type = M_IOCDATA;
5971 					bp->b_wptr = bp->b_rptr +
5972 						sizeof (struct copyresp);
5973 					resp = (struct copyresp *)bp->b_rptr;
5974 					resp->cp_rval =
5975 					    (caddr_t)1; /* failure */
5976 					stream_willservice(stp);
5977 					putnext(stp->sd_wrq, bp);
5978 					stream_runservice(stp);
5979 					mutex_enter(&stp->sd_lock);
5980 				} else {
5981 					freemsg(bp);
5982 				}
5983 			}
5984 			stp->sd_flag &= ~waitflags;
5985 			cv_broadcast(&stp->sd_iocmonitor);
5986 			mutex_exit(&stp->sd_lock);
5987 			crfree(crp);
5988 			return (error);
5989 		}
5990 	}
5991 	bp = stp->sd_iocblk;
5992 	/*
5993 	 * Note: it is strictly impossible to get here with sd_iocblk set to
5994 	 * -1.  This is because the initial loop above doesn't allow any new
5995 	 * ioctls into the fray until all others have passed this point.
5996 	 */
5997 	ASSERT(bp != NULL && bp != (mblk_t *)-1);
5998 	TRACE_1(TR_FAC_STREAMS_FR,
5999 		TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
6000 	if ((bp->b_datap->db_type == M_IOCACK) ||
6001 	    (bp->b_datap->db_type == M_IOCNAK)) {
6002 		/* for detection of duplicate ioctl replies */
6003 		stp->sd_iocblk = (mblk_t *)-1;
6004 		stp->sd_flag &= ~waitflags;
6005 		cv_broadcast(&stp->sd_iocmonitor);
6006 		mutex_exit(&stp->sd_lock);
6007 	} else {
6008 		/*
6009 		 * flags not cleared here because we're still doing
6010 		 * copy in/out for ioctl.
6011 		 */
6012 		stp->sd_iocblk = NULL;
6013 		mutex_exit(&stp->sd_lock);
6014 	}
6015 
6016 
6017 	/*
6018 	 * Have received acknowledgment.
6019 	 */
6020 
6021 	switch (bp->b_datap->db_type) {
6022 	case M_IOCACK:
6023 		/*
6024 		 * Positive ack.
6025 		 */
6026 		iocbp = (struct iocblk *)bp->b_rptr;
6027 
6028 		/*
6029 		 * Set error if indicated.
6030 		 */
6031 		if (iocbp->ioc_error) {
6032 			error = iocbp->ioc_error;
6033 			break;
6034 		}
6035 
6036 		/*
6037 		 * Set return value.
6038 		 */
6039 		*rvalp = iocbp->ioc_rval;
6040 
6041 		/*
6042 		 * Data may have been returned in ACK message (ioc_count > 0).
6043 		 * If so, copy it out to the user's buffer.
6044 		 */
6045 		if (iocbp->ioc_count && !transparent) {
6046 			if (error = getiocd(bp, strioc->ic_dp, copyflag))
6047 				break;
6048 		}
6049 		if (!transparent) {
6050 			if (len)	/* an M_COPYOUT was used with I_STR */
6051 				strioc->ic_len = len;
6052 			else
6053 				strioc->ic_len = (int)iocbp->ioc_count;
6054 		}
6055 		break;
6056 
6057 	case M_IOCNAK:
6058 		/*
6059 		 * Negative ack.
6060 		 *
6061 		 * The only thing to do is set error as specified
6062 		 * in neg ack packet.
6063 		 */
6064 		iocbp = (struct iocblk *)bp->b_rptr;
6065 
6066 		error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
6067 		break;
6068 
6069 	case M_COPYIN:
6070 		/*
6071 		 * Driver or module has requested user ioctl data.
6072 		 */
6073 		reqp = (struct copyreq *)bp->b_rptr;
6074 
6075 		/*
6076 		 * M_COPYIN should *never* have a message attached, though
6077 		 * it's harmless if it does -- thus, panic on a DEBUG
6078 		 * kernel and just free it on a non-DEBUG build.
6079 		 */
6080 		ASSERT(bp->b_cont == NULL);
6081 		if (bp->b_cont != NULL) {
6082 			freemsg(bp->b_cont);
6083 			bp->b_cont = NULL;
6084 		}
6085 
6086 		error = putiocd(bp, reqp->cq_addr, flag, crp);
6087 		if (error && bp->b_cont) {
6088 			freemsg(bp->b_cont);
6089 			bp->b_cont = NULL;
6090 		}
6091 
6092 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6093 		bp->b_datap->db_type = M_IOCDATA;
6094 
6095 		mblk_setcred(bp, crp);
6096 		DB_CPID(bp) = curproc->p_pid;
6097 		resp = (struct copyresp *)bp->b_rptr;
6098 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6099 		resp->cp_flag = (fflags & FMODELS);
6100 
6101 		stream_willservice(stp);
6102 		putnext(stp->sd_wrq, bp);
6103 		stream_runservice(stp);
6104 
6105 		if (error) {
6106 			mutex_enter(&stp->sd_lock);
6107 			stp->sd_flag &= ~waitflags;
6108 			cv_broadcast(&stp->sd_iocmonitor);
6109 			mutex_exit(&stp->sd_lock);
6110 			crfree(crp);
6111 			return (error);
6112 		}
6113 
6114 		goto waitioc;
6115 
6116 	case M_COPYOUT:
6117 		/*
6118 		 * Driver or module has ioctl data for a user.
6119 		 */
6120 		reqp = (struct copyreq *)bp->b_rptr;
6121 		ASSERT(bp->b_cont != NULL);
6122 
6123 		/*
6124 		 * Always (transparent or non-transparent )
6125 		 * use the address specified in the request
6126 		 */
6127 		taddr = reqp->cq_addr;
6128 		if (!transparent)
6129 			len = (int)reqp->cq_size;
6130 
6131 		/* copyout data to the provided address */
6132 		error = getiocd(bp, taddr, copyflag);
6133 
6134 		freemsg(bp->b_cont);
6135 		bp->b_cont = NULL;
6136 
6137 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6138 		bp->b_datap->db_type = M_IOCDATA;
6139 
6140 		mblk_setcred(bp, crp);
6141 		DB_CPID(bp) = curproc->p_pid;
6142 		resp = (struct copyresp *)bp->b_rptr;
6143 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6144 		resp->cp_flag = (fflags & FMODELS);
6145 
6146 		stream_willservice(stp);
6147 		putnext(stp->sd_wrq, bp);
6148 		stream_runservice(stp);
6149 
6150 		if (error) {
6151 			mutex_enter(&stp->sd_lock);
6152 			stp->sd_flag &= ~waitflags;
6153 			cv_broadcast(&stp->sd_iocmonitor);
6154 			mutex_exit(&stp->sd_lock);
6155 			crfree(crp);
6156 			return (error);
6157 		}
6158 		goto waitioc;
6159 
6160 	default:
6161 		ASSERT(0);
6162 		mutex_enter(&stp->sd_lock);
6163 		stp->sd_flag &= ~waitflags;
6164 		cv_broadcast(&stp->sd_iocmonitor);
6165 		mutex_exit(&stp->sd_lock);
6166 		break;
6167 	}
6168 
6169 	freemsg(bp);
6170 	crfree(crp);
6171 	return (error);
6172 }
6173 
6174 /*
6175  * For the SunOS keyboard driver.
6176  * Return the next available "ioctl" sequence number.
6177  * Exported, so that streams modules can send "ioctl" messages
6178  * downstream from their open routine.
6179  */
6180 int
6181 getiocseqno(void)
6182 {
6183 	int	i;
6184 
6185 	mutex_enter(&strresources);
6186 	i = ++ioc_id;
6187 	mutex_exit(&strresources);
6188 	return (i);
6189 }
6190 
6191 /*
6192  * Get the next message from the read queue.  If the message is
6193  * priority, STRPRI will have been set by strrput().  This flag
6194  * should be reset only when the entire message at the front of the
6195  * queue as been consumed.
6196  *
6197  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6198  */
6199 int
6200 strgetmsg(
6201 	struct vnode *vp,
6202 	struct strbuf *mctl,
6203 	struct strbuf *mdata,
6204 	unsigned char *prip,
6205 	int *flagsp,
6206 	int fmode,
6207 	rval_t *rvp)
6208 {
6209 	struct stdata *stp;
6210 	mblk_t *bp, *nbp;
6211 	mblk_t *savemp = NULL;
6212 	mblk_t *savemptail = NULL;
6213 	uint_t old_sd_flag;
6214 	int flg;
6215 	int more = 0;
6216 	int error = 0;
6217 	char first = 1;
6218 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
6219 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
6220 	unsigned char pri = 0;
6221 	queue_t *q;
6222 	int	pr = 0;			/* Partial read successful */
6223 	struct uio uios;
6224 	struct uio *uiop = &uios;
6225 	struct iovec iovs;
6226 	unsigned char type;
6227 
6228 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
6229 		"strgetmsg:%p", vp);
6230 
6231 	ASSERT(vp->v_stream);
6232 	stp = vp->v_stream;
6233 	rvp->r_val1 = 0;
6234 
6235 	if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO)
6236 		if (error = straccess(stp, JCREAD))
6237 			return (error);
6238 
6239 	/* Fast check of flags before acquiring the lock */
6240 	if (stp->sd_flag & (STRDERR|STPLEX)) {
6241 		mutex_enter(&stp->sd_lock);
6242 		error = strgeterr(stp, STRDERR|STPLEX, 0);
6243 		mutex_exit(&stp->sd_lock);
6244 		if (error != 0)
6245 			return (error);
6246 	}
6247 
6248 	switch (*flagsp) {
6249 	case MSG_HIPRI:
6250 		if (*prip != 0)
6251 			return (EINVAL);
6252 		break;
6253 
6254 	case MSG_ANY:
6255 	case MSG_BAND:
6256 		break;
6257 
6258 	default:
6259 		return (EINVAL);
6260 	}
6261 	/*
6262 	 * Setup uio and iov for data part
6263 	 */
6264 	iovs.iov_base = mdata->buf;
6265 	iovs.iov_len = mdata->maxlen;
6266 	uios.uio_iov = &iovs;
6267 	uios.uio_iovcnt = 1;
6268 	uios.uio_loffset = 0;
6269 	uios.uio_segflg = UIO_USERSPACE;
6270 	uios.uio_fmode = 0;
6271 	uios.uio_extflg = UIO_COPY_CACHED;
6272 	uios.uio_resid = mdata->maxlen;
6273 	uios.uio_offset = 0;
6274 
6275 	q = _RD(stp->sd_wrq);
6276 	mutex_enter(&stp->sd_lock);
6277 	old_sd_flag = stp->sd_flag;
6278 	mark = 0;
6279 	for (;;) {
6280 		int done = 0;
6281 		mblk_t *q_first = q->q_first;
6282 
6283 		/*
6284 		 * Get the next message of appropriate priority
6285 		 * from the stream head.  If the caller is interested
6286 		 * in band or hipri messages, then they should already
6287 		 * be enqueued at the stream head.  On the other hand
6288 		 * if the caller wants normal (band 0) messages, they
6289 		 * might be deferred in a synchronous stream and they
6290 		 * will need to be pulled up.
6291 		 *
6292 		 * After we have dequeued a message, we might find that
6293 		 * it was a deferred M_SIG that was enqueued at the
6294 		 * stream head.  It must now be posted as part of the
6295 		 * read by calling strsignal_nolock().
6296 		 *
6297 		 * Also note that strrput does not enqueue an M_PCSIG,
6298 		 * and there cannot be more than one hipri message,
6299 		 * so there was no need to have the M_PCSIG case.
6300 		 *
6301 		 * At some time it might be nice to try and wrap the
6302 		 * functionality of kstrgetmsg() and strgetmsg() into
6303 		 * a common routine so to reduce the amount of replicated
6304 		 * code (since they are extremely similar).
6305 		 */
6306 		if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
6307 			/* Asking for normal, band0 data */
6308 			bp = strget(stp, q, uiop, first, &error);
6309 			ASSERT(MUTEX_HELD(&stp->sd_lock));
6310 			if (bp != NULL) {
6311 				if (bp->b_datap->db_type == M_SIG) {
6312 					strsignal_nolock(stp, *bp->b_rptr,
6313 					    (int32_t)bp->b_band);
6314 					continue;
6315 				} else {
6316 					break;
6317 				}
6318 			}
6319 			if (error != 0) {
6320 				goto getmout;
6321 			}
6322 
6323 		/*
6324 		 * We can't depend on the value of STRPRI here because
6325 		 * the stream head may be in transit. Therefore, we
6326 		 * must look at the type of the first message to
6327 		 * determine if a high priority messages is waiting
6328 		 */
6329 		} else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
6330 			    q_first->b_datap->db_type >= QPCTL &&
6331 			    (bp = getq_noenab(q)) != NULL) {
6332 			/* Asked for HIPRI and got one */
6333 			ASSERT(bp->b_datap->db_type >= QPCTL);
6334 			break;
6335 		} else if ((*flagsp & MSG_BAND) && q_first != NULL &&
6336 			    ((q_first->b_band >= *prip) ||
6337 			    q_first->b_datap->db_type >= QPCTL) &&
6338 			    (bp = getq_noenab(q)) != NULL) {
6339 			/*
6340 			 * Asked for at least band "prip" and got either at
6341 			 * least that band or a hipri message.
6342 			 */
6343 			ASSERT(bp->b_band >= *prip ||
6344 				bp->b_datap->db_type >= QPCTL);
6345 			if (bp->b_datap->db_type == M_SIG) {
6346 				strsignal_nolock(stp, *bp->b_rptr,
6347 				    (int32_t)bp->b_band);
6348 				continue;
6349 			} else {
6350 				break;
6351 			}
6352 		}
6353 
6354 		/* No data. Time to sleep? */
6355 		qbackenable(q, 0);
6356 
6357 		/*
6358 		 * If STRHUP or STREOF, return 0 length control and data.
6359 		 * If resid is 0, then a read(fd,buf,0) was done. Do not
6360 		 * sleep to satisfy this request because by default we have
6361 		 * zero bytes to return.
6362 		 */
6363 		if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
6364 		    mdata->maxlen == 0)) {
6365 			mctl->len = mdata->len = 0;
6366 			*flagsp = 0;
6367 			mutex_exit(&stp->sd_lock);
6368 			return (0);
6369 		}
6370 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
6371 			"strgetmsg calls strwaitq:%p, %p",
6372 			vp, uiop);
6373 		if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
6374 		    &done)) != 0) || done) {
6375 			TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
6376 				"strgetmsg error or done:%p, %p",
6377 				vp, uiop);
6378 			mutex_exit(&stp->sd_lock);
6379 			return (error);
6380 		}
6381 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
6382 			"strgetmsg awakes:%p, %p", vp, uiop);
6383 		if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) {
6384 			mutex_exit(&stp->sd_lock);
6385 			if (error = straccess(stp, JCREAD))
6386 				return (error);
6387 			mutex_enter(&stp->sd_lock);
6388 		}
6389 		first = 0;
6390 	}
6391 	ASSERT(bp != NULL);
6392 	/*
6393 	 * Extract any mark information. If the message is not completely
6394 	 * consumed this information will be put in the mblk
6395 	 * that is putback.
6396 	 * If MSGMARKNEXT is set and the message is completely consumed
6397 	 * the STRATMARK flag will be set below. Likewise, if
6398 	 * MSGNOTMARKNEXT is set and the message is
6399 	 * completely consumed STRNOTATMARK will be set.
6400 	 */
6401 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6402 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6403 		(MSGMARKNEXT|MSGNOTMARKNEXT));
6404 	if (mark != 0 && bp == stp->sd_mark) {
6405 		mark |= _LASTMARK;
6406 		stp->sd_mark = NULL;
6407 	}
6408 	/*
6409 	 * keep track of the original message type and priority
6410 	 */
6411 	pri = bp->b_band;
6412 	type = bp->b_datap->db_type;
6413 	if (type == M_PASSFP) {
6414 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
6415 			stp->sd_mark = bp;
6416 		bp->b_flag |= mark & ~_LASTMARK;
6417 		putback(stp, q, bp, pri);
6418 		qbackenable(q, pri);
6419 		mutex_exit(&stp->sd_lock);
6420 		return (EBADMSG);
6421 	}
6422 	ASSERT(type != M_SIG);
6423 
6424 	/*
6425 	 * Set this flag so strrput will not generate signals. Need to
6426 	 * make sure this flag is cleared before leaving this routine
6427 	 * else signals will stop being sent.
6428 	 */
6429 	stp->sd_flag |= STRGETINPROG;
6430 	mutex_exit(&stp->sd_lock);
6431 
6432 	if (STREAM_NEEDSERVICE(stp))
6433 		stream_runservice(stp);
6434 
6435 	/*
6436 	 * Set HIPRI flag if message is priority.
6437 	 */
6438 	if (type >= QPCTL)
6439 		flg = MSG_HIPRI;
6440 	else
6441 		flg = MSG_BAND;
6442 
6443 	/*
6444 	 * First process PROTO or PCPROTO blocks, if any.
6445 	 */
6446 	if (mctl->maxlen >= 0 && type != M_DATA) {
6447 		size_t	n, bcnt;
6448 		char	*ubuf;
6449 
6450 		bcnt = mctl->maxlen;
6451 		ubuf = mctl->buf;
6452 		while (bp != NULL && bp->b_datap->db_type != M_DATA) {
6453 			if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
6454 			    copyout(bp->b_rptr, ubuf, n)) {
6455 				error = EFAULT;
6456 				mutex_enter(&stp->sd_lock);
6457 				/*
6458 				 * clear stream head pri flag based on
6459 				 * first message type
6460 				 */
6461 				if (type >= QPCTL) {
6462 					ASSERT(type == M_PCPROTO);
6463 					stp->sd_flag &= ~STRPRI;
6464 				}
6465 				more = 0;
6466 				freemsg(bp);
6467 				goto getmout;
6468 			}
6469 			ubuf += n;
6470 			bp->b_rptr += n;
6471 			if (bp->b_rptr >= bp->b_wptr) {
6472 				nbp = bp;
6473 				bp = bp->b_cont;
6474 				freeb(nbp);
6475 			}
6476 			ASSERT(n <= bcnt);
6477 			bcnt -= n;
6478 			if (bcnt == 0)
6479 				break;
6480 		}
6481 		mctl->len = mctl->maxlen - bcnt;
6482 	} else
6483 		mctl->len = -1;
6484 
6485 	if (bp && bp->b_datap->db_type != M_DATA) {
6486 		/*
6487 		 * More PROTO blocks in msg.
6488 		 */
6489 		more |= MORECTL;
6490 		savemp = bp;
6491 		while (bp && bp->b_datap->db_type != M_DATA) {
6492 			savemptail = bp;
6493 			bp = bp->b_cont;
6494 		}
6495 		savemptail->b_cont = NULL;
6496 	}
6497 
6498 	/*
6499 	 * Now process DATA blocks, if any.
6500 	 */
6501 	if (mdata->maxlen >= 0 && bp) {
6502 		/*
6503 		 * struiocopyout will consume a potential zero-length
6504 		 * M_DATA even if uio_resid is zero.
6505 		 */
6506 		size_t oldresid = uiop->uio_resid;
6507 
6508 		bp = struiocopyout(bp, uiop, &error);
6509 		if (error != 0) {
6510 			mutex_enter(&stp->sd_lock);
6511 			/*
6512 			 * clear stream head hi pri flag based on
6513 			 * first message
6514 			 */
6515 			if (type >= QPCTL) {
6516 				ASSERT(type == M_PCPROTO);
6517 				stp->sd_flag &= ~STRPRI;
6518 			}
6519 			more = 0;
6520 			freemsg(savemp);
6521 			goto getmout;
6522 		}
6523 		/*
6524 		 * (pr == 1) indicates a partial read.
6525 		 */
6526 		if (oldresid > uiop->uio_resid)
6527 			pr = 1;
6528 		mdata->len = mdata->maxlen - uiop->uio_resid;
6529 	} else
6530 		mdata->len = -1;
6531 
6532 	if (bp) {			/* more data blocks in msg */
6533 		more |= MOREDATA;
6534 		if (savemp)
6535 			savemptail->b_cont = bp;
6536 		else
6537 			savemp = bp;
6538 	}
6539 
6540 	mutex_enter(&stp->sd_lock);
6541 	if (savemp) {
6542 		if (pr && (savemp->b_datap->db_type == M_DATA) &&
6543 		    msgnodata(savemp)) {
6544 			/*
6545 			 * Avoid queuing a zero-length tail part of
6546 			 * a message. pr=1 indicates that we read some of
6547 			 * the message.
6548 			 */
6549 			freemsg(savemp);
6550 			more &= ~MOREDATA;
6551 			/*
6552 			 * clear stream head hi pri flag based on
6553 			 * first message
6554 			 */
6555 			if (type >= QPCTL) {
6556 				ASSERT(type == M_PCPROTO);
6557 				stp->sd_flag &= ~STRPRI;
6558 			}
6559 		} else {
6560 			savemp->b_band = pri;
6561 			/*
6562 			 * If the first message was HIPRI and the one we're
6563 			 * putting back isn't, then clear STRPRI, otherwise
6564 			 * set STRPRI again.  Note that we must set STRPRI
6565 			 * again since the flush logic in strrput_nondata()
6566 			 * may have cleared it while we had sd_lock dropped.
6567 			 */
6568 			if (type >= QPCTL) {
6569 				ASSERT(type == M_PCPROTO);
6570 				if (queclass(savemp) < QPCTL)
6571 					stp->sd_flag &= ~STRPRI;
6572 				else
6573 					stp->sd_flag |= STRPRI;
6574 			} else if (queclass(savemp) >= QPCTL) {
6575 				/*
6576 				 * The first message was not a HIPRI message,
6577 				 * but the one we are about to putback is.
6578 				 * For simplicitly, we do not allow for HIPRI
6579 				 * messages to be embedded in the message
6580 				 * body, so just force it to same type as
6581 				 * first message.
6582 				 */
6583 				ASSERT(type == M_DATA || type == M_PROTO);
6584 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
6585 				savemp->b_datap->db_type = type;
6586 			}
6587 			if (mark != 0) {
6588 				savemp->b_flag |= mark & ~_LASTMARK;
6589 				if ((mark & _LASTMARK) &&
6590 				    (stp->sd_mark == NULL)) {
6591 					/*
6592 					 * If another marked message arrived
6593 					 * while sd_lock was not held sd_mark
6594 					 * would be non-NULL.
6595 					 */
6596 					stp->sd_mark = savemp;
6597 				}
6598 			}
6599 			putback(stp, q, savemp, pri);
6600 		}
6601 	} else {
6602 		/*
6603 		 * The complete message was consumed.
6604 		 *
6605 		 * If another M_PCPROTO arrived while sd_lock was not held
6606 		 * it would have been discarded since STRPRI was still set.
6607 		 *
6608 		 * Move the MSG*MARKNEXT information
6609 		 * to the stream head just in case
6610 		 * the read queue becomes empty.
6611 		 * clear stream head hi pri flag based on
6612 		 * first message
6613 		 *
6614 		 * If the stream head was at the mark
6615 		 * (STRATMARK) before we dropped sd_lock above
6616 		 * and some data was consumed then we have
6617 		 * moved past the mark thus STRATMARK is
6618 		 * cleared. However, if a message arrived in
6619 		 * strrput during the copyout above causing
6620 		 * STRATMARK to be set we can not clear that
6621 		 * flag.
6622 		 */
6623 		if (type >= QPCTL) {
6624 			ASSERT(type == M_PCPROTO);
6625 			stp->sd_flag &= ~STRPRI;
6626 		}
6627 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
6628 			if (mark & MSGMARKNEXT) {
6629 				stp->sd_flag &= ~STRNOTATMARK;
6630 				stp->sd_flag |= STRATMARK;
6631 			} else if (mark & MSGNOTMARKNEXT) {
6632 				stp->sd_flag &= ~STRATMARK;
6633 				stp->sd_flag |= STRNOTATMARK;
6634 			} else {
6635 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
6636 			}
6637 		} else if (pr && (old_sd_flag & STRATMARK)) {
6638 			stp->sd_flag &= ~STRATMARK;
6639 		}
6640 	}
6641 
6642 	*flagsp = flg;
6643 	*prip = pri;
6644 
6645 	/*
6646 	 * Getmsg cleanup processing - if the state of the queue has changed
6647 	 * some signals may need to be sent and/or poll awakened.
6648 	 */
6649 getmout:
6650 	qbackenable(q, pri);
6651 
6652 	/*
6653 	 * We dropped the stream head lock above. Send all M_SIG messages
6654 	 * before processing stream head for SIGPOLL messages.
6655 	 */
6656 	ASSERT(MUTEX_HELD(&stp->sd_lock));
6657 	while ((bp = q->q_first) != NULL &&
6658 	    (bp->b_datap->db_type == M_SIG)) {
6659 		/*
6660 		 * sd_lock is held so the content of the read queue can not
6661 		 * change.
6662 		 */
6663 		bp = getq(q);
6664 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
6665 
6666 		strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band);
6667 		mutex_exit(&stp->sd_lock);
6668 		freemsg(bp);
6669 		if (STREAM_NEEDSERVICE(stp))
6670 			stream_runservice(stp);
6671 		mutex_enter(&stp->sd_lock);
6672 	}
6673 
6674 	/*
6675 	 * stream head cannot change while we make the determination
6676 	 * whether or not to send a signal. Drop the flag to allow strrput
6677 	 * to send firstmsgsigs again.
6678 	 */
6679 	stp->sd_flag &= ~STRGETINPROG;
6680 
6681 	/*
6682 	 * If the type of message at the front of the queue changed
6683 	 * due to the receive the appropriate signals and pollwakeup events
6684 	 * are generated. The type of changes are:
6685 	 *	Processed a hipri message, q_first is not hipri.
6686 	 *	Processed a band X message, and q_first is band Y.
6687 	 * The generated signals and pollwakeups are identical to what
6688 	 * strrput() generates should the message that is now on q_first
6689 	 * arrive to an empty read queue.
6690 	 *
6691 	 * Note: only strrput will send a signal for a hipri message.
6692 	 */
6693 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
6694 		strsigset_t signals = 0;
6695 		strpollset_t pollwakeups = 0;
6696 
6697 		if (flg & MSG_HIPRI) {
6698 			/*
6699 			 * Removed a hipri message. Regular data at
6700 			 * the front of  the queue.
6701 			 */
6702 			if (bp->b_band == 0) {
6703 				signals = S_INPUT | S_RDNORM;
6704 				pollwakeups = POLLIN | POLLRDNORM;
6705 			} else {
6706 				signals = S_INPUT | S_RDBAND;
6707 				pollwakeups = POLLIN | POLLRDBAND;
6708 			}
6709 		} else if (pri != bp->b_band) {
6710 			/*
6711 			 * The band is different for the new q_first.
6712 			 */
6713 			if (bp->b_band == 0) {
6714 				signals = S_RDNORM;
6715 				pollwakeups = POLLIN | POLLRDNORM;
6716 			} else {
6717 				signals = S_RDBAND;
6718 				pollwakeups = POLLIN | POLLRDBAND;
6719 			}
6720 		}
6721 
6722 		if (pollwakeups != 0) {
6723 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
6724 				if (!(stp->sd_rput_opt & SR_POLLIN))
6725 					goto no_pollwake;
6726 				stp->sd_rput_opt &= ~SR_POLLIN;
6727 			}
6728 			mutex_exit(&stp->sd_lock);
6729 			pollwakeup(&stp->sd_pollist, pollwakeups);
6730 			mutex_enter(&stp->sd_lock);
6731 		}
6732 no_pollwake:
6733 
6734 		if (stp->sd_sigflags & signals)
6735 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
6736 	}
6737 	mutex_exit(&stp->sd_lock);
6738 
6739 	rvp->r_val1 = more;
6740 	return (error);
6741 #undef	_LASTMARK
6742 }
6743 
6744 /*
6745  * Get the next message from the read queue.  If the message is
6746  * priority, STRPRI will have been set by strrput().  This flag
6747  * should be reset only when the entire message at the front of the
6748  * queue as been consumed.
6749  *
6750  * If uiop is NULL all data is returned in mctlp.
6751  * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
6752  * not enabled.
6753  * The timeout parameter is in milliseconds; -1 for infinity.
6754  * This routine handles the consolidation private flags:
6755  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
6756  *	MSG_DELAYERROR	Defer the error check until the queue is empty.
6757  *	MSG_HOLDSIG	Hold signals while waiting for data.
6758  *	MSG_IPEEK	Only peek at messages.
6759  *	MSG_DISCARDTAIL	Discard the tail M_DATA part of the message
6760  *			that doesn't fit.
6761  *	MSG_NOMARK	If the message is marked leave it on the queue.
6762  *
6763  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6764  */
6765 int
6766 kstrgetmsg(
6767 	struct vnode *vp,
6768 	mblk_t **mctlp,
6769 	struct uio *uiop,
6770 	unsigned char *prip,
6771 	int *flagsp,
6772 	clock_t timout,
6773 	rval_t *rvp)
6774 {
6775 	struct stdata *stp;
6776 	mblk_t *bp, *nbp;
6777 	mblk_t *savemp = NULL;
6778 	mblk_t *savemptail = NULL;
6779 	int flags;
6780 	uint_t old_sd_flag;
6781 	int flg;
6782 	int more = 0;
6783 	int error = 0;
6784 	char first = 1;
6785 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
6786 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
6787 	unsigned char pri = 0;
6788 	queue_t *q;
6789 	int	pr = 0;			/* Partial read successful */
6790 	unsigned char type;
6791 
6792 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
6793 		"kstrgetmsg:%p", vp);
6794 
6795 	ASSERT(vp->v_stream);
6796 	stp = vp->v_stream;
6797 	rvp->r_val1 = 0;
6798 
6799 	if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO)
6800 		if (error = straccess(stp, JCREAD))
6801 			return (error);
6802 
6803 	flags = *flagsp;
6804 	/* Fast check of flags before acquiring the lock */
6805 	if (stp->sd_flag & (STRDERR|STPLEX)) {
6806 		if ((stp->sd_flag & STPLEX) ||
6807 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
6808 			mutex_enter(&stp->sd_lock);
6809 			error = strgeterr(stp, STRDERR|STPLEX,
6810 					(flags & MSG_IPEEK));
6811 			mutex_exit(&stp->sd_lock);
6812 			if (error != 0)
6813 				return (error);
6814 		}
6815 	}
6816 
6817 	switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
6818 	case MSG_HIPRI:
6819 		if (*prip != 0)
6820 			return (EINVAL);
6821 		break;
6822 
6823 	case MSG_ANY:
6824 	case MSG_BAND:
6825 		break;
6826 
6827 	default:
6828 		return (EINVAL);
6829 	}
6830 
6831 retry:
6832 	q = _RD(stp->sd_wrq);
6833 	mutex_enter(&stp->sd_lock);
6834 	old_sd_flag = stp->sd_flag;
6835 	mark = 0;
6836 	for (;;) {
6837 		int done = 0;
6838 		int waitflag;
6839 		int fmode;
6840 		mblk_t *q_first = q->q_first;
6841 
6842 		/*
6843 		 * This section of the code operates just like the code
6844 		 * in strgetmsg().  There is a comment there about what
6845 		 * is going on here.
6846 		 */
6847 		if (!(flags & (MSG_HIPRI|MSG_BAND))) {
6848 			/* Asking for normal, band0 data */
6849 			bp = strget(stp, q, uiop, first, &error);
6850 			ASSERT(MUTEX_HELD(&stp->sd_lock));
6851 			if (bp != NULL) {
6852 				if (bp->b_datap->db_type == M_SIG) {
6853 					strsignal_nolock(stp, *bp->b_rptr,
6854 					    (int32_t)bp->b_band);
6855 					continue;
6856 				} else {
6857 					break;
6858 				}
6859 			}
6860 			if (error != 0) {
6861 				goto getmout;
6862 			}
6863 		/*
6864 		 * We can't depend on the value of STRPRI here because
6865 		 * the stream head may be in transit. Therefore, we
6866 		 * must look at the type of the first message to
6867 		 * determine if a high priority messages is waiting
6868 		 */
6869 		} else if ((flags & MSG_HIPRI) && q_first != NULL &&
6870 			    q_first->b_datap->db_type >= QPCTL &&
6871 			    (bp = getq_noenab(q)) != NULL) {
6872 			ASSERT(bp->b_datap->db_type >= QPCTL);
6873 			break;
6874 		} else if ((flags & MSG_BAND) && q_first != NULL &&
6875 			    ((q_first->b_band >= *prip) ||
6876 			    q_first->b_datap->db_type >= QPCTL) &&
6877 			    (bp = getq_noenab(q)) != NULL) {
6878 			/*
6879 			 * Asked for at least band "prip" and got either at
6880 			 * least that band or a hipri message.
6881 			 */
6882 			ASSERT(bp->b_band >= *prip ||
6883 				bp->b_datap->db_type >= QPCTL);
6884 			if (bp->b_datap->db_type == M_SIG) {
6885 				strsignal_nolock(stp, *bp->b_rptr,
6886 				    (int32_t)bp->b_band);
6887 				continue;
6888 			} else {
6889 				break;
6890 			}
6891 		}
6892 
6893 		/* No data. Time to sleep? */
6894 		qbackenable(q, 0);
6895 
6896 		/*
6897 		 * Delayed error notification?
6898 		 */
6899 		if ((stp->sd_flag & (STRDERR|STPLEX)) &&
6900 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
6901 			error = strgeterr(stp, STRDERR|STPLEX,
6902 					(flags & MSG_IPEEK));
6903 			if (error != 0) {
6904 				mutex_exit(&stp->sd_lock);
6905 				return (error);
6906 			}
6907 		}
6908 
6909 		/*
6910 		 * If STRHUP or STREOF, return 0 length control and data.
6911 		 * If a read(fd,buf,0) has been done, do not sleep, just
6912 		 * return.
6913 		 *
6914 		 * If mctlp == NULL and uiop == NULL, then the code will
6915 		 * do the strwaitq. This is an understood way of saying
6916 		 * sleep "polling" until a message is received.
6917 		 */
6918 		if ((stp->sd_flag & (STRHUP|STREOF)) ||
6919 		    (uiop != NULL && uiop->uio_resid == 0)) {
6920 			if (mctlp != NULL)
6921 				*mctlp = NULL;
6922 			*flagsp = 0;
6923 			mutex_exit(&stp->sd_lock);
6924 			return (0);
6925 		}
6926 
6927 		waitflag = GETWAIT;
6928 		if (flags &
6929 		    (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
6930 			if (flags & MSG_HOLDSIG)
6931 				waitflag |= STR_NOSIG;
6932 			if (flags & MSG_IGNERROR)
6933 				waitflag |= STR_NOERROR;
6934 			if (flags & MSG_IPEEK)
6935 				waitflag |= STR_PEEK;
6936 			if (flags & MSG_DELAYERROR)
6937 				waitflag |= STR_DELAYERR;
6938 		}
6939 		if (uiop != NULL)
6940 			fmode = uiop->uio_fmode;
6941 		else
6942 			fmode = 0;
6943 
6944 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
6945 			"kstrgetmsg calls strwaitq:%p, %p",
6946 			vp, uiop);
6947 		if (((error = strwaitq(stp, waitflag, (ssize_t)0,
6948 		    fmode, timout, &done)) != 0) || done) {
6949 			TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
6950 				"kstrgetmsg error or done:%p, %p",
6951 				vp, uiop);
6952 			mutex_exit(&stp->sd_lock);
6953 			return (error);
6954 		}
6955 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
6956 			"kstrgetmsg awakes:%p, %p", vp, uiop);
6957 		if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) {
6958 			mutex_exit(&stp->sd_lock);
6959 			if (error = straccess(stp, JCREAD))
6960 				return (error);
6961 			mutex_enter(&stp->sd_lock);
6962 		}
6963 		first = 0;
6964 	}
6965 	ASSERT(bp != NULL);
6966 	/*
6967 	 * Extract any mark information. If the message is not completely
6968 	 * consumed this information will be put in the mblk
6969 	 * that is putback.
6970 	 * If MSGMARKNEXT is set and the message is completely consumed
6971 	 * the STRATMARK flag will be set below. Likewise, if
6972 	 * MSGNOTMARKNEXT is set and the message is
6973 	 * completely consumed STRNOTATMARK will be set.
6974 	 */
6975 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6976 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6977 		(MSGMARKNEXT|MSGNOTMARKNEXT));
6978 	pri = bp->b_band;
6979 	if (mark != 0) {
6980 		/*
6981 		 * If the caller doesn't want the mark return.
6982 		 * Used to implement MSG_WAITALL in sockets.
6983 		 */
6984 		if (flags & MSG_NOMARK) {
6985 			putback(stp, q, bp, pri);
6986 			qbackenable(q, pri);
6987 			mutex_exit(&stp->sd_lock);
6988 			return (EWOULDBLOCK);
6989 		}
6990 		if (bp == stp->sd_mark) {
6991 			mark |= _LASTMARK;
6992 			stp->sd_mark = NULL;
6993 		}
6994 	}
6995 
6996 	/*
6997 	 * keep track of the first message type
6998 	 */
6999 	type = bp->b_datap->db_type;
7000 
7001 	if (bp->b_datap->db_type == M_PASSFP) {
7002 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7003 			stp->sd_mark = bp;
7004 		bp->b_flag |= mark & ~_LASTMARK;
7005 		putback(stp, q, bp, pri);
7006 		qbackenable(q, pri);
7007 		mutex_exit(&stp->sd_lock);
7008 		return (EBADMSG);
7009 	}
7010 	ASSERT(type != M_SIG);
7011 
7012 	if (flags & MSG_IPEEK) {
7013 		/*
7014 		 * Clear any struioflag - we do the uiomove over again
7015 		 * when peeking since it simplifies the code.
7016 		 *
7017 		 * Dup the message and put the original back on the queue.
7018 		 * If dupmsg() fails, try again with copymsg() to see if
7019 		 * there is indeed a shortage of memory.  dupmsg() may fail
7020 		 * if db_ref in any of the messages reaches its limit.
7021 		 */
7022 		if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
7023 			/*
7024 			 * Restore the state of the stream head since we
7025 			 * need to drop sd_lock (strwaitbuf is sleeping).
7026 			 */
7027 			size_t size = msgdsize(bp);
7028 
7029 			if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7030 				stp->sd_mark = bp;
7031 			bp->b_flag |= mark & ~_LASTMARK;
7032 			putback(stp, q, bp, pri);
7033 			mutex_exit(&stp->sd_lock);
7034 			error = strwaitbuf(size, BPRI_HI);
7035 			if (error) {
7036 				/*
7037 				 * There is no net change to the queue thus
7038 				 * no need to qbackenable.
7039 				 */
7040 				return (error);
7041 			}
7042 			goto retry;
7043 		}
7044 
7045 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7046 			stp->sd_mark = bp;
7047 		bp->b_flag |= mark & ~_LASTMARK;
7048 		putback(stp, q, bp, pri);
7049 		bp = nbp;
7050 	}
7051 
7052 	/*
7053 	 * Set this flag so strrput will not generate signals. Need to
7054 	 * make sure this flag is cleared before leaving this routine
7055 	 * else signals will stop being sent.
7056 	 */
7057 	stp->sd_flag |= STRGETINPROG;
7058 	mutex_exit(&stp->sd_lock);
7059 
7060 	if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA) &&
7061 	    (!(DB_FLAGS(bp) & DBLK_COOKED))) {
7062 
7063 		bp = (stp->sd_rputdatafunc)(
7064 		    stp->sd_vnode, bp, NULL,
7065 		    NULL, NULL, NULL);
7066 
7067 		if (bp == NULL)
7068 			goto retry;
7069 
7070 		DB_FLAGS(bp) |= DBLK_COOKED;
7071 	}
7072 
7073 	if (STREAM_NEEDSERVICE(stp))
7074 		stream_runservice(stp);
7075 
7076 	/*
7077 	 * Set HIPRI flag if message is priority.
7078 	 */
7079 	if (type >= QPCTL)
7080 		flg = MSG_HIPRI;
7081 	else
7082 		flg = MSG_BAND;
7083 
7084 	/*
7085 	 * First process PROTO or PCPROTO blocks, if any.
7086 	 */
7087 	if (mctlp != NULL && type != M_DATA) {
7088 		mblk_t *nbp;
7089 
7090 		*mctlp = bp;
7091 		while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
7092 			bp = bp->b_cont;
7093 		nbp = bp->b_cont;
7094 		bp->b_cont = NULL;
7095 		bp = nbp;
7096 	}
7097 
7098 	if (bp && bp->b_datap->db_type != M_DATA) {
7099 		/*
7100 		 * More PROTO blocks in msg. Will only happen if mctlp is NULL.
7101 		 */
7102 		more |= MORECTL;
7103 		savemp = bp;
7104 		while (bp && bp->b_datap->db_type != M_DATA) {
7105 			savemptail = bp;
7106 			bp = bp->b_cont;
7107 		}
7108 		savemptail->b_cont = NULL;
7109 	}
7110 
7111 	/*
7112 	 * Now process DATA blocks, if any.
7113 	 */
7114 	if (uiop == NULL) {
7115 		/* Append data to tail of mctlp */
7116 		if (mctlp != NULL) {
7117 			mblk_t **mpp = mctlp;
7118 
7119 			while (*mpp != NULL)
7120 				mpp = &((*mpp)->b_cont);
7121 			*mpp = bp;
7122 			bp = NULL;
7123 		}
7124 	} else if (uiop->uio_resid >= 0 && bp) {
7125 		size_t oldresid = uiop->uio_resid;
7126 
7127 		/*
7128 		 * If a streams message is likely to consist
7129 		 * of many small mblks, it is pulled up into
7130 		 * one continuous chunk of memory.
7131 		 * see longer comment at top of page
7132 		 * by mblk_pull_len declaration.
7133 		 */
7134 
7135 		if (MBLKL(bp) < mblk_pull_len) {
7136 			(void) pullupmsg(bp, -1);
7137 		}
7138 
7139 		bp = struiocopyout(bp, uiop, &error);
7140 		if (error != 0) {
7141 			if (mctlp != NULL) {
7142 				freemsg(*mctlp);
7143 				*mctlp = NULL;
7144 			} else
7145 				freemsg(savemp);
7146 			mutex_enter(&stp->sd_lock);
7147 			/*
7148 			 * clear stream head hi pri flag based on
7149 			 * first message
7150 			 */
7151 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7152 				ASSERT(type == M_PCPROTO);
7153 				stp->sd_flag &= ~STRPRI;
7154 			}
7155 			more = 0;
7156 			goto getmout;
7157 		}
7158 		/*
7159 		 * (pr == 1) indicates a partial read.
7160 		 */
7161 		if (oldresid > uiop->uio_resid)
7162 			pr = 1;
7163 	}
7164 
7165 	if (bp) {			/* more data blocks in msg */
7166 		more |= MOREDATA;
7167 		if (savemp)
7168 			savemptail->b_cont = bp;
7169 		else
7170 			savemp = bp;
7171 	}
7172 
7173 	mutex_enter(&stp->sd_lock);
7174 	if (savemp) {
7175 		if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
7176 			/*
7177 			 * When MSG_DISCARDTAIL is set or
7178 			 * when peeking discard any tail. When peeking this
7179 			 * is the tail of the dup that was copied out - the
7180 			 * message has already been putback on the queue.
7181 			 * Return MOREDATA to the caller even though the data
7182 			 * is discarded. This is used by sockets (to
7183 			 * set MSG_TRUNC).
7184 			 */
7185 			freemsg(savemp);
7186 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7187 				ASSERT(type == M_PCPROTO);
7188 				stp->sd_flag &= ~STRPRI;
7189 			}
7190 		} else if (pr && (savemp->b_datap->db_type == M_DATA) &&
7191 			    msgnodata(savemp)) {
7192 			/*
7193 			 * Avoid queuing a zero-length tail part of
7194 			 * a message. pr=1 indicates that we read some of
7195 			 * the message.
7196 			 */
7197 			freemsg(savemp);
7198 			more &= ~MOREDATA;
7199 			if (type >= QPCTL) {
7200 				ASSERT(type == M_PCPROTO);
7201 				stp->sd_flag &= ~STRPRI;
7202 			}
7203 		} else {
7204 			savemp->b_band = pri;
7205 			/*
7206 			 * If the first message was HIPRI and the one we're
7207 			 * putting back isn't, then clear STRPRI, otherwise
7208 			 * set STRPRI again.  Note that we must set STRPRI
7209 			 * again since the flush logic in strrput_nondata()
7210 			 * may have cleared it while we had sd_lock dropped.
7211 			 */
7212 			if (type >= QPCTL) {
7213 				ASSERT(type == M_PCPROTO);
7214 				if (queclass(savemp) < QPCTL)
7215 					stp->sd_flag &= ~STRPRI;
7216 				else
7217 					stp->sd_flag |= STRPRI;
7218 			} else if (queclass(savemp) >= QPCTL) {
7219 				/*
7220 				 * The first message was not a HIPRI message,
7221 				 * but the one we are about to putback is.
7222 				 * For simplicitly, we do not allow for HIPRI
7223 				 * messages to be embedded in the message
7224 				 * body, so just force it to same type as
7225 				 * first message.
7226 				 */
7227 				ASSERT(type == M_DATA || type == M_PROTO);
7228 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7229 				savemp->b_datap->db_type = type;
7230 			}
7231 			if (mark != 0) {
7232 				if ((mark & _LASTMARK) &&
7233 				    (stp->sd_mark == NULL)) {
7234 					/*
7235 					 * If another marked message arrived
7236 					 * while sd_lock was not held sd_mark
7237 					 * would be non-NULL.
7238 					 */
7239 					stp->sd_mark = savemp;
7240 				}
7241 				savemp->b_flag |= mark & ~_LASTMARK;
7242 			}
7243 			putback(stp, q, savemp, pri);
7244 		}
7245 	} else if (!(flags & MSG_IPEEK)) {
7246 		/*
7247 		 * The complete message was consumed.
7248 		 *
7249 		 * If another M_PCPROTO arrived while sd_lock was not held
7250 		 * it would have been discarded since STRPRI was still set.
7251 		 *
7252 		 * Move the MSG*MARKNEXT information
7253 		 * to the stream head just in case
7254 		 * the read queue becomes empty.
7255 		 * clear stream head hi pri flag based on
7256 		 * first message
7257 		 *
7258 		 * If the stream head was at the mark
7259 		 * (STRATMARK) before we dropped sd_lock above
7260 		 * and some data was consumed then we have
7261 		 * moved past the mark thus STRATMARK is
7262 		 * cleared. However, if a message arrived in
7263 		 * strrput during the copyout above causing
7264 		 * STRATMARK to be set we can not clear that
7265 		 * flag.
7266 		 * XXX A "perimeter" would help by single-threading strrput,
7267 		 * strread, strgetmsg and kstrgetmsg.
7268 		 */
7269 		if (type >= QPCTL) {
7270 			ASSERT(type == M_PCPROTO);
7271 			stp->sd_flag &= ~STRPRI;
7272 		}
7273 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7274 			if (mark & MSGMARKNEXT) {
7275 				stp->sd_flag &= ~STRNOTATMARK;
7276 				stp->sd_flag |= STRATMARK;
7277 			} else if (mark & MSGNOTMARKNEXT) {
7278 				stp->sd_flag &= ~STRATMARK;
7279 				stp->sd_flag |= STRNOTATMARK;
7280 			} else {
7281 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7282 			}
7283 		} else if (pr && (old_sd_flag & STRATMARK)) {
7284 			stp->sd_flag &= ~STRATMARK;
7285 		}
7286 	}
7287 
7288 	*flagsp = flg;
7289 	*prip = pri;
7290 
7291 	/*
7292 	 * Getmsg cleanup processing - if the state of the queue has changed
7293 	 * some signals may need to be sent and/or poll awakened.
7294 	 */
7295 getmout:
7296 	qbackenable(q, pri);
7297 
7298 	/*
7299 	 * We dropped the stream head lock above. Send all M_SIG messages
7300 	 * before processing stream head for SIGPOLL messages.
7301 	 */
7302 	ASSERT(MUTEX_HELD(&stp->sd_lock));
7303 	while ((bp = q->q_first) != NULL &&
7304 	    (bp->b_datap->db_type == M_SIG)) {
7305 		/*
7306 		 * sd_lock is held so the content of the read queue can not
7307 		 * change.
7308 		 */
7309 		bp = getq(q);
7310 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7311 
7312 		strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band);
7313 		mutex_exit(&stp->sd_lock);
7314 		freemsg(bp);
7315 		if (STREAM_NEEDSERVICE(stp))
7316 			stream_runservice(stp);
7317 		mutex_enter(&stp->sd_lock);
7318 	}
7319 
7320 	/*
7321 	 * stream head cannot change while we make the determination
7322 	 * whether or not to send a signal. Drop the flag to allow strrput
7323 	 * to send firstmsgsigs again.
7324 	 */
7325 	stp->sd_flag &= ~STRGETINPROG;
7326 
7327 	/*
7328 	 * If the type of message at the front of the queue changed
7329 	 * due to the receive the appropriate signals and pollwakeup events
7330 	 * are generated. The type of changes are:
7331 	 *	Processed a hipri message, q_first is not hipri.
7332 	 *	Processed a band X message, and q_first is band Y.
7333 	 * The generated signals and pollwakeups are identical to what
7334 	 * strrput() generates should the message that is now on q_first
7335 	 * arrive to an empty read queue.
7336 	 *
7337 	 * Note: only strrput will send a signal for a hipri message.
7338 	 */
7339 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7340 		strsigset_t signals = 0;
7341 		strpollset_t pollwakeups = 0;
7342 
7343 		if (flg & MSG_HIPRI) {
7344 			/*
7345 			 * Removed a hipri message. Regular data at
7346 			 * the front of  the queue.
7347 			 */
7348 			if (bp->b_band == 0) {
7349 				signals = S_INPUT | S_RDNORM;
7350 				pollwakeups = POLLIN | POLLRDNORM;
7351 			} else {
7352 				signals = S_INPUT | S_RDBAND;
7353 				pollwakeups = POLLIN | POLLRDBAND;
7354 			}
7355 		} else if (pri != bp->b_band) {
7356 			/*
7357 			 * The band is different for the new q_first.
7358 			 */
7359 			if (bp->b_band == 0) {
7360 				signals = S_RDNORM;
7361 				pollwakeups = POLLIN | POLLRDNORM;
7362 			} else {
7363 				signals = S_RDBAND;
7364 				pollwakeups = POLLIN | POLLRDBAND;
7365 			}
7366 		}
7367 
7368 		if (pollwakeups != 0) {
7369 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7370 				if (!(stp->sd_rput_opt & SR_POLLIN))
7371 					goto no_pollwake;
7372 				stp->sd_rput_opt &= ~SR_POLLIN;
7373 			}
7374 			mutex_exit(&stp->sd_lock);
7375 			pollwakeup(&stp->sd_pollist, pollwakeups);
7376 			mutex_enter(&stp->sd_lock);
7377 		}
7378 no_pollwake:
7379 
7380 		if (stp->sd_sigflags & signals)
7381 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7382 	}
7383 	mutex_exit(&stp->sd_lock);
7384 
7385 	rvp->r_val1 = more;
7386 	return (error);
7387 #undef	_LASTMARK
7388 }
7389 
7390 /*
7391  * Put a message downstream.
7392  *
7393  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7394  */
7395 int
7396 strputmsg(
7397 	struct vnode *vp,
7398 	struct strbuf *mctl,
7399 	struct strbuf *mdata,
7400 	unsigned char pri,
7401 	int flag,
7402 	int fmode)
7403 {
7404 	struct stdata *stp;
7405 	queue_t *wqp;
7406 	mblk_t *mp;
7407 	ssize_t msgsize;
7408 	ssize_t rmin, rmax;
7409 	int error;
7410 	struct uio uios;
7411 	struct uio *uiop = &uios;
7412 	struct iovec iovs;
7413 	int xpg4 = 0;
7414 
7415 	ASSERT(vp->v_stream);
7416 	stp = vp->v_stream;
7417 	wqp = stp->sd_wrq;
7418 
7419 	/*
7420 	 * If it is an XPG4 application, we need to send
7421 	 * SIGPIPE below
7422 	 */
7423 
7424 	xpg4 = (flag & MSG_XPG4) ? 1 : 0;
7425 	flag &= ~MSG_XPG4;
7426 
7427 #ifdef C2_AUDIT
7428 	if (audit_active)
7429 		audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);
7430 #endif
7431 
7432 	if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO)
7433 		if (error = straccess(stp, JCWRITE))
7434 			return (error);
7435 
7436 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7437 		mutex_enter(&stp->sd_lock);
7438 		error = strwriteable(stp, B_FALSE, xpg4);
7439 		mutex_exit(&stp->sd_lock);
7440 		if (error != 0)
7441 			return (error);
7442 	}
7443 
7444 	/*
7445 	 * Check for legal flag value.
7446 	 */
7447 	switch (flag) {
7448 	case MSG_HIPRI:
7449 		if ((mctl->len < 0) || (pri != 0))
7450 			return (EINVAL);
7451 		break;
7452 	case MSG_BAND:
7453 		break;
7454 
7455 	default:
7456 		return (EINVAL);
7457 	}
7458 
7459 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
7460 		"strputmsg in:stp %p", stp);
7461 
7462 	/* get these values from those cached in the stream head */
7463 	rmin = stp->sd_qn_minpsz;
7464 	rmax = stp->sd_qn_maxpsz;
7465 
7466 	/*
7467 	 * Make sure ctl and data sizes together fall within the
7468 	 * limits of the max and min receive packet sizes and do
7469 	 * not exceed system limit.
7470 	 */
7471 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
7472 	if (rmax == 0) {
7473 		return (ERANGE);
7474 	}
7475 	/*
7476 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7477 	 * Needed to prevent partial failures in the strmakedata loop.
7478 	 */
7479 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7480 		rmax = stp->sd_maxblk;
7481 
7482 	if ((msgsize = mdata->len) < 0) {
7483 		msgsize = 0;
7484 		rmin = 0;	/* no range check for NULL data part */
7485 	}
7486 	if ((msgsize < rmin) ||
7487 	    ((msgsize > rmax) && (rmax != INFPSZ)) ||
7488 	    (mctl->len > strctlsz)) {
7489 		return (ERANGE);
7490 	}
7491 
7492 	/*
7493 	 * Setup uio and iov for data part
7494 	 */
7495 	iovs.iov_base = mdata->buf;
7496 	iovs.iov_len = msgsize;
7497 	uios.uio_iov = &iovs;
7498 	uios.uio_iovcnt = 1;
7499 	uios.uio_loffset = 0;
7500 	uios.uio_segflg = UIO_USERSPACE;
7501 	uios.uio_fmode = fmode;
7502 	uios.uio_extflg = UIO_COPY_DEFAULT;
7503 	uios.uio_resid = msgsize;
7504 	uios.uio_offset = 0;
7505 
7506 	/* Ignore flow control in strput for HIPRI */
7507 	if (flag & MSG_HIPRI)
7508 		flag |= MSG_IGNFLOW;
7509 
7510 	for (;;) {
7511 		int done = 0;
7512 
7513 		/*
7514 		 * strput will always free the ctl mblk - even when strput
7515 		 * fails.
7516 		 */
7517 		if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
7518 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7519 				"strputmsg out:stp %p out %d error %d",
7520 				stp, 1, error);
7521 			return (error);
7522 		}
7523 		/*
7524 		 * Verify that the whole message can be transferred by
7525 		 * strput.
7526 		 */
7527 		ASSERT(stp->sd_maxblk == INFPSZ ||
7528 			stp->sd_maxblk >= mdata->len);
7529 
7530 		msgsize = mdata->len;
7531 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7532 		mdata->len = msgsize;
7533 
7534 		if (error == 0)
7535 			break;
7536 
7537 		if (error != EWOULDBLOCK)
7538 			goto out;
7539 
7540 		mutex_enter(&stp->sd_lock);
7541 		/*
7542 		 * Check for a missed wakeup.
7543 		 * Needed since strput did not hold sd_lock across
7544 		 * the canputnext.
7545 		 */
7546 		if (bcanputnext(wqp, pri)) {
7547 			/* Try again */
7548 			mutex_exit(&stp->sd_lock);
7549 			continue;
7550 		}
7551 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
7552 			"strputmsg wait:stp %p waits pri %d", stp, pri);
7553 		if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
7554 		    &done)) != 0) || done) {
7555 			mutex_exit(&stp->sd_lock);
7556 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7557 				"strputmsg out:q %p out %d error %d",
7558 				stp, 0, error);
7559 			return (error);
7560 		}
7561 		TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
7562 			"strputmsg wake:stp %p wakes", stp);
7563 		mutex_exit(&stp->sd_lock);
7564 		if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO)
7565 			if (error = straccess(stp, JCWRITE))
7566 				return (error);
7567 	}
7568 out:
7569 	/*
7570 	 * For historic reasons, applications expect EAGAIN
7571 	 * when data mblk could not be allocated. so change
7572 	 * ENOMEM back to EAGAIN
7573 	 */
7574 	if (error == ENOMEM)
7575 		error = EAGAIN;
7576 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7577 		"strputmsg out:stp %p out %d error %d", stp, 2, error);
7578 	return (error);
7579 }
7580 
7581 /*
7582  * Put a message downstream.
7583  * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
7584  * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
7585  * and the fmode parameter.
7586  *
7587  * This routine handles the consolidation private flags:
7588  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
7589  *	MSG_HOLDSIG	Hold signals while waiting for data.
7590  *	MSG_IGNFLOW	Don't check streams flow control.
7591  *
7592  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7593  */
7594 int
7595 kstrputmsg(
7596 	struct vnode *vp,
7597 	mblk_t *mctl,
7598 	struct uio *uiop,
7599 	ssize_t msgsize,
7600 	unsigned char pri,
7601 	int flag,
7602 	int fmode)
7603 {
7604 	struct stdata *stp;
7605 	queue_t *wqp;
7606 	ssize_t rmin, rmax;
7607 	int error;
7608 
7609 	ASSERT(vp->v_stream);
7610 	stp = vp->v_stream;
7611 	wqp = stp->sd_wrq;
7612 #ifdef C2_AUDIT
7613 	if (audit_active)
7614 		audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
7615 #endif
7616 	if (mctl == NULL)
7617 		return (EINVAL);
7618 
7619 	if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) {
7620 		if (error = straccess(stp, JCWRITE)) {
7621 			freemsg(mctl);
7622 			return (error);
7623 		}
7624 	}
7625 
7626 	if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
7627 		if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7628 			mutex_enter(&stp->sd_lock);
7629 			error = strwriteable(stp, B_FALSE, B_TRUE);
7630 			mutex_exit(&stp->sd_lock);
7631 			if (error != 0) {
7632 				freemsg(mctl);
7633 				return (error);
7634 			}
7635 		}
7636 	}
7637 
7638 	/*
7639 	 * Check for legal flag value.
7640 	 */
7641 	switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
7642 	case MSG_HIPRI:
7643 		if (pri != 0) {
7644 			freemsg(mctl);
7645 			return (EINVAL);
7646 		}
7647 		break;
7648 	case MSG_BAND:
7649 		break;
7650 	default:
7651 		freemsg(mctl);
7652 		return (EINVAL);
7653 	}
7654 
7655 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
7656 		"kstrputmsg in:stp %p", stp);
7657 
7658 	/* get these values from those cached in the stream head */
7659 	rmin = stp->sd_qn_minpsz;
7660 	rmax = stp->sd_qn_maxpsz;
7661 
7662 	/*
7663 	 * Make sure ctl and data sizes together fall within the
7664 	 * limits of the max and min receive packet sizes and do
7665 	 * not exceed system limit.
7666 	 */
7667 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
7668 	if (rmax == 0) {
7669 		freemsg(mctl);
7670 		return (ERANGE);
7671 	}
7672 	/*
7673 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7674 	 * Needed to prevent partial failures in the strmakedata loop.
7675 	 */
7676 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7677 		rmax = stp->sd_maxblk;
7678 
7679 	if (uiop == NULL) {
7680 		msgsize = -1;
7681 		rmin = -1;	/* no range check for NULL data part */
7682 	} else {
7683 		/* Use uio flags as well as the fmode parameter flags */
7684 		fmode |= uiop->uio_fmode;
7685 
7686 		if ((msgsize < rmin) ||
7687 		    ((msgsize > rmax) && (rmax != INFPSZ))) {
7688 			freemsg(mctl);
7689 			return (ERANGE);
7690 		}
7691 	}
7692 
7693 	/* Ignore flow control in strput for HIPRI */
7694 	if (flag & MSG_HIPRI)
7695 		flag |= MSG_IGNFLOW;
7696 
7697 	for (;;) {
7698 		int done = 0;
7699 		int waitflag;
7700 		mblk_t *mp;
7701 
7702 		/*
7703 		 * strput will always free the ctl mblk - even when strput
7704 		 * fails. If MSG_IGNFLOW is set then any error returned
7705 		 * will cause us to break the loop, so we don't need a copy
7706 		 * of the message. If MSG_IGNFLOW is not set, then we can
7707 		 * get hit by flow control and be forced to try again. In
7708 		 * this case we need to have a copy of the message. We
7709 		 * do this using copymsg since the message may get modified
7710 		 * by something below us.
7711 		 *
7712 		 * We've observed that many TPI providers do not check db_ref
7713 		 * on the control messages but blindly reuse them for the
7714 		 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
7715 		 * friendly to such providers than using dupmsg. Also, note
7716 		 * that sockfs uses MSG_IGNFLOW for all TPI control messages.
7717 		 * Only data messages are subject to flow control, hence
7718 		 * subject to this copymsg.
7719 		 */
7720 		if (flag & MSG_IGNFLOW) {
7721 			mp = mctl;
7722 			mctl = NULL;
7723 		} else {
7724 			do {
7725 				/*
7726 				 * If a message has a free pointer, the message
7727 				 * must be dupmsg to maintain this pointer.
7728 				 * Code using this facility must be sure
7729 				 * that modules below will not change the
7730 				 * contents of the dblk without checking db_ref
7731 				 * first. If db_ref is > 1, then the module
7732 				 * needs to do a copymsg first. Otherwise,
7733 				 * the contents of the dblk may become
7734 				 * inconsistent because the freesmg/freeb below
7735 				 * may end up calling atomic_add_32_nv.
7736 				 * The atomic_add_32_nv in freeb (accessing
7737 				 * all of db_ref, db_type, db_flags, and
7738 				 * db_struioflag) does not prevent other threads
7739 				 * from concurrently trying to modify e.g.
7740 				 * db_type.
7741 				 */
7742 				if (mctl->b_datap->db_frtnp != NULL)
7743 					mp = dupmsg(mctl);
7744 				else
7745 					mp = copymsg(mctl);
7746 
7747 				if (mp != NULL)
7748 					break;
7749 
7750 				error = strwaitbuf(msgdsize(mctl), BPRI_MED);
7751 				if (error) {
7752 					freemsg(mctl);
7753 					return (error);
7754 				}
7755 			} while (mp == NULL);
7756 		}
7757 		/*
7758 		 * Verify that all of msgsize can be transferred by
7759 		 * strput.
7760 		 */
7761 		ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
7762 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7763 		if (error == 0)
7764 			break;
7765 
7766 		if (error != EWOULDBLOCK)
7767 			goto out;
7768 
7769 		/*
7770 		 * IF MSG_IGNFLOW is set we should have broken out of loop
7771 		 * above.
7772 		 */
7773 		ASSERT(!(flag & MSG_IGNFLOW));
7774 		mutex_enter(&stp->sd_lock);
7775 		/*
7776 		 * Check for a missed wakeup.
7777 		 * Needed since strput did not hold sd_lock across
7778 		 * the canputnext.
7779 		 */
7780 		if (bcanputnext(wqp, pri)) {
7781 			/* Try again */
7782 			mutex_exit(&stp->sd_lock);
7783 			continue;
7784 		}
7785 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
7786 			"kstrputmsg wait:stp %p waits pri %d", stp, pri);
7787 
7788 		waitflag = WRITEWAIT;
7789 		if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
7790 			if (flag & MSG_HOLDSIG)
7791 				waitflag |= STR_NOSIG;
7792 			if (flag & MSG_IGNERROR)
7793 				waitflag |= STR_NOERROR;
7794 		}
7795 		if (((error = strwaitq(stp, waitflag,
7796 		    (ssize_t)0, fmode, -1, &done)) != 0) || done) {
7797 			mutex_exit(&stp->sd_lock);
7798 			TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
7799 				"kstrputmsg out:stp %p out %d error %d",
7800 				stp, 0, error);
7801 			freemsg(mctl);
7802 			return (error);
7803 		}
7804 		TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
7805 			"kstrputmsg wake:stp %p wakes", stp);
7806 		mutex_exit(&stp->sd_lock);
7807 		if (stp->sd_sidp != NULL && stp->sd_vnode->v_type != VFIFO) {
7808 			if (error = straccess(stp, JCWRITE)) {
7809 				freemsg(mctl);
7810 				return (error);
7811 			}
7812 		}
7813 	}
7814 out:
7815 	freemsg(mctl);
7816 	/*
7817 	 * For historic reasons, applications expect EAGAIN
7818 	 * when data mblk could not be allocated. so change
7819 	 * ENOMEM back to EAGAIN
7820 	 */
7821 	if (error == ENOMEM)
7822 		error = EAGAIN;
7823 	TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
7824 		"kstrputmsg out:stp %p out %d error %d", stp, 2, error);
7825 	return (error);
7826 }
7827 
7828 /*
7829  * Determines whether the necessary conditions are set on a stream
7830  * for it to be readable, writeable, or have exceptions.
7831  *
7832  * strpoll handles the consolidation private events:
7833  *	POLLNOERR	Do not return POLLERR even if there are stream
7834  *			head errors.
7835  *			Used by sockfs.
7836  *	POLLRDDATA	Do not return POLLIN unless at least one message on
7837  *			the queue contains one or more M_DATA mblks. Thus
7838  *			when this flag is set a queue with only
7839  *			M_PROTO/M_PCPROTO mblks does not return POLLIN.
7840  *			Used by sockfs to ignore T_EXDATA_IND messages.
7841  *
7842  * Note: POLLRDDATA assumes that synch streams only return messages with
7843  * an M_DATA attached (i.e. not messages consisting of only
7844  * an M_PROTO/M_PCPROTO part).
7845  */
7846 int
7847 strpoll(
7848 	struct stdata *stp,
7849 	short events_arg,
7850 	int anyyet,
7851 	short *reventsp,
7852 	struct pollhead **phpp)
7853 {
7854 	int events = (ushort_t)events_arg;
7855 	int retevents = 0;
7856 	mblk_t *mp;
7857 	qband_t *qbp;
7858 	long sd_flags = stp->sd_flag;
7859 	int headlocked = 0;
7860 
7861 	/*
7862 	 * For performance, a single 'if' tests for most possible edge
7863 	 * conditions in one shot
7864 	 */
7865 	if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
7866 		if (sd_flags & STPLEX) {
7867 			*reventsp = POLLNVAL;
7868 			return (EINVAL);
7869 		}
7870 		if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
7871 		    (sd_flags & STRDERR)) ||
7872 		    ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
7873 		    (sd_flags & STWRERR))) {
7874 			if (!(events & POLLNOERR)) {
7875 				*reventsp = POLLERR;
7876 				return (0);
7877 			}
7878 		}
7879 	}
7880 	if (sd_flags & STRHUP) {
7881 		retevents |= POLLHUP;
7882 	} else if (events & (POLLWRNORM | POLLWRBAND)) {
7883 		queue_t *tq;
7884 		queue_t	*qp = stp->sd_wrq;
7885 
7886 		claimstr(qp);
7887 		/* Find next module forward that has a service procedure */
7888 		tq = qp->q_next->q_nfsrv;
7889 		ASSERT(tq != NULL);
7890 
7891 		polllock(&stp->sd_pollist, QLOCK(tq));
7892 		if (events & POLLWRNORM) {
7893 			queue_t *sqp;
7894 
7895 			if (tq->q_flag & QFULL)
7896 				/* ensure backq svc procedure runs */
7897 				tq->q_flag |= QWANTW;
7898 			else if ((sqp = stp->sd_struiowrq) != NULL) {
7899 				/* Check sync stream barrier write q */
7900 				mutex_exit(QLOCK(tq));
7901 				polllock(&stp->sd_pollist, QLOCK(sqp));
7902 				if (sqp->q_flag & QFULL)
7903 					/* ensure pollwakeup() is done */
7904 					sqp->q_flag |= QWANTWSYNC;
7905 				else
7906 					retevents |= POLLOUT;
7907 				/* More write events to process ??? */
7908 				if (! (events & POLLWRBAND)) {
7909 					mutex_exit(QLOCK(sqp));
7910 					releasestr(qp);
7911 					goto chkrd;
7912 				}
7913 				mutex_exit(QLOCK(sqp));
7914 				polllock(&stp->sd_pollist, QLOCK(tq));
7915 			} else
7916 				retevents |= POLLOUT;
7917 		}
7918 		if (events & POLLWRBAND) {
7919 			qbp = tq->q_bandp;
7920 			if (qbp) {
7921 				while (qbp) {
7922 					if (qbp->qb_flag & QB_FULL)
7923 						qbp->qb_flag |= QB_WANTW;
7924 					else
7925 						retevents |= POLLWRBAND;
7926 					qbp = qbp->qb_next;
7927 				}
7928 			} else {
7929 				retevents |= POLLWRBAND;
7930 			}
7931 		}
7932 		mutex_exit(QLOCK(tq));
7933 		releasestr(qp);
7934 	}
7935 chkrd:
7936 	if (sd_flags & STRPRI) {
7937 		retevents |= (events & POLLPRI);
7938 	} else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
7939 		queue_t	*qp = _RD(stp->sd_wrq);
7940 		int normevents = (events & (POLLIN | POLLRDNORM));
7941 
7942 		/*
7943 		 * Note: Need to do polllock() here since ps_lock may be
7944 		 * held. See bug 4191544.
7945 		 */
7946 		polllock(&stp->sd_pollist, &stp->sd_lock);
7947 		headlocked = 1;
7948 		mp = qp->q_first;
7949 		while (mp) {
7950 			/*
7951 			 * For POLLRDDATA we scan b_cont and b_next until we
7952 			 * find an M_DATA.
7953 			 */
7954 			if ((events & POLLRDDATA) &&
7955 			    mp->b_datap->db_type != M_DATA) {
7956 				mblk_t *nmp = mp->b_cont;
7957 
7958 				while (nmp != NULL &&
7959 				    nmp->b_datap->db_type != M_DATA)
7960 					nmp = nmp->b_cont;
7961 				if (nmp == NULL) {
7962 					mp = mp->b_next;
7963 					continue;
7964 				}
7965 			}
7966 			if (mp->b_band == 0)
7967 				retevents |= normevents;
7968 			else
7969 				retevents |= (events & (POLLIN | POLLRDBAND));
7970 			break;
7971 		}
7972 		if (! (retevents & normevents) &&
7973 		    (stp->sd_wakeq & RSLEEP)) {
7974 			/*
7975 			 * Sync stream barrier read queue has data.
7976 			 */
7977 			retevents |= normevents;
7978 		}
7979 		/* Treat eof as normal data */
7980 		if (sd_flags & STREOF)
7981 			retevents |= normevents;
7982 	}
7983 
7984 	*reventsp = (short)retevents;
7985 	if (retevents) {
7986 		if (headlocked)
7987 			mutex_exit(&stp->sd_lock);
7988 		return (0);
7989 	}
7990 
7991 	/*
7992 	 * If poll() has not found any events yet, set up event cell
7993 	 * to wake up the poll if a requested event occurs on this
7994 	 * stream.  Check for collisions with outstanding poll requests.
7995 	 */
7996 	if (!anyyet) {
7997 		*phpp = &stp->sd_pollist;
7998 		if (headlocked == 0) {
7999 			polllock(&stp->sd_pollist, &stp->sd_lock);
8000 			headlocked = 1;
8001 		}
8002 		stp->sd_rput_opt |= SR_POLLIN;
8003 	}
8004 	if (headlocked)
8005 		mutex_exit(&stp->sd_lock);
8006 	return (0);
8007 }
8008 
8009 /*
8010  * The purpose of putback() is to assure sleeping polls/reads
8011  * are awakened when there are no new messages arriving at the,
8012  * stream head, and a message is placed back on the read queue.
8013  *
8014  * sd_lock must be held when messages are placed back on stream
8015  * head.  (getq() holds sd_lock when it removes messages from
8016  * the queue)
8017  */
8018 
8019 static void
8020 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
8021 {
8022 	ASSERT(MUTEX_HELD(&stp->sd_lock));
8023 	(void) putbq(q, bp);
8024 	/*
8025 	 * A message may have come in when the sd_lock was dropped in the
8026 	 * calling routine. If this is the case and STR*ATMARK info was
8027 	 * received, need to move that from the stream head to the q_last
8028 	 * so that SIOCATMARK can return the proper value.
8029 	 */
8030 	if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
8031 		unsigned short *flagp = &q->q_last->b_flag;
8032 		uint_t b_flag = (uint_t)*flagp;
8033 
8034 		if (stp->sd_flag & STRATMARK) {
8035 			b_flag &= ~MSGNOTMARKNEXT;
8036 			b_flag |= MSGMARKNEXT;
8037 			stp->sd_flag &= ~STRATMARK;
8038 		} else {
8039 			b_flag &= ~MSGMARKNEXT;
8040 			b_flag |= MSGNOTMARKNEXT;
8041 			stp->sd_flag &= ~STRNOTATMARK;
8042 		}
8043 		*flagp = (unsigned short) b_flag;
8044 	}
8045 
8046 #ifdef	DEBUG
8047 	/*
8048 	 * Make sure that the flags are not messed up.
8049 	 */
8050 	{
8051 		mblk_t *mp;
8052 		mp = q->q_last;
8053 		while (mp != NULL) {
8054 			ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
8055 			    (MSGMARKNEXT|MSGNOTMARKNEXT));
8056 			mp = mp->b_cont;
8057 		}
8058 	}
8059 #endif
8060 	if (q->q_first == bp) {
8061 		short pollevents;
8062 
8063 		if (stp->sd_flag & RSLEEP) {
8064 			stp->sd_flag &= ~RSLEEP;
8065 			cv_broadcast(&q->q_wait);
8066 		}
8067 		if (stp->sd_flag & STRPRI) {
8068 			pollevents = POLLPRI;
8069 		} else {
8070 			if (band == 0) {
8071 				if (!(stp->sd_rput_opt & SR_POLLIN))
8072 					return;
8073 				stp->sd_rput_opt &= ~SR_POLLIN;
8074 				pollevents = POLLIN | POLLRDNORM;
8075 			} else {
8076 				pollevents = POLLIN | POLLRDBAND;
8077 			}
8078 		}
8079 		mutex_exit(&stp->sd_lock);
8080 		pollwakeup(&stp->sd_pollist, pollevents);
8081 		mutex_enter(&stp->sd_lock);
8082 	}
8083 }
8084 
8085 /*
8086  * Return the held vnode attached to the stream head of a
8087  * given queue
8088  * It is the responsibility of the calling routine to ensure
8089  * that the queue does not go away (e.g. pop).
8090  */
8091 vnode_t *
8092 strq2vp(queue_t *qp)
8093 {
8094 	vnode_t *vp;
8095 	vp = STREAM(qp)->sd_vnode;
8096 	ASSERT(vp != NULL);
8097 	VN_HOLD(vp);
8098 	return (vp);
8099 }
8100 
8101 /*
8102  * return the stream head write queue for the given vp
8103  * It is the responsibility of the calling routine to ensure
8104  * that the stream or vnode do not close.
8105  */
8106 queue_t *
8107 strvp2wq(vnode_t *vp)
8108 {
8109 	ASSERT(vp->v_stream != NULL);
8110 	return (vp->v_stream->sd_wrq);
8111 }
8112 
8113 /*
8114  * pollwakeup stream head
8115  * It is the responsibility of the calling routine to ensure
8116  * that the stream or vnode do not close.
8117  */
8118 void
8119 strpollwakeup(vnode_t *vp, short event)
8120 {
8121 	ASSERT(vp->v_stream);
8122 	pollwakeup(&vp->v_stream->sd_pollist, event);
8123 }
8124 
8125 /*
8126  * Mate the stream heads of two vnodes together. If the two vnodes are the
8127  * same, we just make the write-side point at the read-side -- otherwise,
8128  * we do a full mate.  Only works on vnodes associated with streams that are
8129  * still being built and thus have only a stream head.
8130  */
8131 void
8132 strmate(vnode_t *vp1, vnode_t *vp2)
8133 {
8134 	queue_t *wrq1 = strvp2wq(vp1);
8135 	queue_t *wrq2 = strvp2wq(vp2);
8136 
8137 	/*
8138 	 * Verify that there are no modules on the stream yet.  We also
8139 	 * rely on the stream head always having a service procedure to
8140 	 * avoid tweaking q_nfsrv.
8141 	 */
8142 	ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
8143 	ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
8144 	ASSERT(wrq2->q_qinfo->qi_srvp != NULL);
8145 
8146 	/*
8147 	 * If the queues are the same, just twist; otherwise do a full mate.
8148 	 */
8149 	if (wrq1 == wrq2) {
8150 		wrq1->q_next = _RD(wrq1);
8151 	} else {
8152 		wrq1->q_next = _RD(wrq2);
8153 		wrq2->q_next = _RD(wrq1);
8154 		STREAM(wrq1)->sd_mate = STREAM(wrq2);
8155 		STREAM(wrq1)->sd_flag |= STRMATE;
8156 		STREAM(wrq2)->sd_mate = STREAM(wrq1);
8157 		STREAM(wrq2)->sd_flag |= STRMATE;
8158 	}
8159 }
8160 
8161 /*
8162  * XXX will go away when console is correctly fixed.
8163  * Clean up the console PIDS, from previous I_SETSIG,
8164  * called only for cnopen which never calls strclean().
8165  */
8166 void
8167 str_cn_clean(struct vnode *vp)
8168 {
8169 	strsig_t *ssp, *pssp, *tssp;
8170 	struct stdata *stp;
8171 	struct pid  *pidp;
8172 	int update = 0;
8173 
8174 	ASSERT(vp->v_stream);
8175 	stp = vp->v_stream;
8176 	pssp = NULL;
8177 	mutex_enter(&stp->sd_lock);
8178 	ssp = stp->sd_siglist;
8179 	while (ssp) {
8180 		mutex_enter(&pidlock);
8181 		pidp = ssp->ss_pidp;
8182 		/*
8183 		 * Get rid of PID if the proc is gone.
8184 		 */
8185 		if (pidp->pid_prinactive) {
8186 			tssp = ssp->ss_next;
8187 			if (pssp)
8188 				pssp->ss_next = tssp;
8189 			else
8190 				stp->sd_siglist = tssp;
8191 			ASSERT(pidp->pid_ref <= 1);
8192 			PID_RELE(ssp->ss_pidp);
8193 			mutex_exit(&pidlock);
8194 			kmem_free(ssp, sizeof (strsig_t));
8195 			update = 1;
8196 			ssp = tssp;
8197 			continue;
8198 		} else
8199 			mutex_exit(&pidlock);
8200 		pssp = ssp;
8201 		ssp = ssp->ss_next;
8202 	}
8203 	if (update) {
8204 		stp->sd_sigflags = 0;
8205 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
8206 			stp->sd_sigflags |= ssp->ss_events;
8207 	}
8208 	mutex_exit(&stp->sd_lock);
8209 }
8210 
8211 /*
8212  * Return B_TRUE if there is data in the message, B_FALSE otherwise.
8213  */
8214 static boolean_t
8215 msghasdata(mblk_t *bp)
8216 {
8217 	for (; bp; bp = bp->b_cont)
8218 		if (bp->b_datap->db_type == M_DATA) {
8219 			ASSERT(bp->b_wptr >= bp->b_rptr);
8220 			if (bp->b_wptr > bp->b_rptr)
8221 				return (B_TRUE);
8222 		}
8223 	return (B_FALSE);
8224 }
8225