xref: /titanic_50/usr/src/uts/common/os/streamio.c (revision 8f2954fa920e8474d4a939a960aff61167bc444a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/types.h>
33 #include <sys/sysmacros.h>
34 #include <sys/param.h>
35 #include <sys/errno.h>
36 #include <sys/signal.h>
37 #include <sys/stat.h>
38 #include <sys/proc.h>
39 #include <sys/cred.h>
40 #include <sys/user.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/stream.h>
44 #include <sys/strsubr.h>
45 #include <sys/stropts.h>
46 #include <sys/tihdr.h>
47 #include <sys/var.h>
48 #include <sys/poll.h>
49 #include <sys/termio.h>
50 #include <sys/ttold.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/cmn_err.h>
54 #include <sys/sad.h>
55 #include <sys/netstack.h>
56 #include <sys/priocntl.h>
57 #include <sys/jioctl.h>
58 #include <sys/procset.h>
59 #include <sys/session.h>
60 #include <sys/kmem.h>
61 #include <sys/filio.h>
62 #include <sys/vtrace.h>
63 #include <sys/debug.h>
64 #include <sys/strredir.h>
65 #include <sys/fs/fifonode.h>
66 #include <sys/fs/snode.h>
67 #include <sys/strlog.h>
68 #include <sys/strsun.h>
69 #include <sys/project.h>
70 #include <sys/kbio.h>
71 #include <sys/msio.h>
72 #include <sys/tty.h>
73 #include <sys/ptyvar.h>
74 #include <sys/vuid_event.h>
75 #include <sys/modctl.h>
76 #include <sys/sunddi.h>
77 #include <sys/sunldi_impl.h>
78 #include <sys/autoconf.h>
79 #include <sys/policy.h>
80 #include <sys/dld.h>
81 #include <sys/zone.h>
82 
83 /*
84  * This define helps improve the readability of streams code while
85  * still maintaining a very old streams performance enhancement.  The
86  * performance enhancement basically involved having all callers
87  * of straccess() perform the first check that straccess() will do
88  * locally before actually calling straccess().  (There by reducing
89  * the number of unnecessary calls to straccess().)
90  */
91 #define	i_straccess(x, y)	((stp->sd_sidp == NULL) ? 0 : \
92 				    (stp->sd_vnode->v_type == VFIFO) ? 0 : \
93 				    straccess((x), (y)))
94 
95 /*
96  * what is mblk_pull_len?
97  *
98  * If a streams message consists of many short messages,
99  * a performance degradation occurs from copyout overhead.
100  * To decrease the per mblk overhead, messages that are
101  * likely to consist of many small mblks are pulled up into
102  * one continuous chunk of memory.
103  *
104  * To avoid the processing overhead of examining every
105  * mblk, a quick heuristic is used. If the first mblk in
106  * the message is shorter than mblk_pull_len, it is likely
107  * that the rest of the mblk will be short.
108  *
109  * This heuristic was decided upon after performance tests
110  * indicated that anything more complex slowed down the main
111  * code path.
112  */
113 #define	MBLK_PULL_LEN 64
114 uint32_t mblk_pull_len = MBLK_PULL_LEN;
115 
116 /*
117  * The sgttyb_handling flag controls the handling of the old BSD
118  * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows:
119  *
120  * 0 - Emit no warnings at all and retain old, broken behavior.
121  * 1 - Emit no warnings and silently handle new semantics.
122  * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used
123  *     (once per system invocation).  Handle with new semantics.
124  * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is
125  *     made (so that offenders drop core and are easy to debug).
126  *
127  * The "new semantics" are that TIOCGETP returns B38400 for
128  * sg_[io]speed if the corresponding value is over B38400, and that
129  * TIOCSET[PN] accept B38400 in these cases to mean "retain current
130  * bit rate."
131  */
132 int sgttyb_handling = 1;
133 static boolean_t sgttyb_complaint;
134 
135 /* don't push drcompat module by default on Style-2 streams */
136 static int push_drcompat = 0;
137 
138 /*
139  * id value used to distinguish between different ioctl messages
140  */
141 static uint32_t ioc_id;
142 
143 static void putback(struct stdata *, queue_t *, mblk_t *, int);
144 static void strcleanall(struct vnode *);
145 static int strwsrv(queue_t *);
146 static int strdocmd(struct stdata *, struct strcmd *, cred_t *);
147 static void struioainit(queue_t *, sodirect_t *, uio_t *);
148 
149 /*
150  * qinit and module_info structures for stream head read and write queues
151  */
152 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW };
153 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 };
154 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info };
155 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info };
156 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT,
157     FIFOLOWAT };
158 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 };
159 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info };
160 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info };
161 
162 extern kmutex_t	strresources;	/* protects global resources */
163 extern kmutex_t muxifier;	/* single-threads multiplexor creation */
164 
165 static boolean_t msghasdata(mblk_t *bp);
166 #define	msgnodata(bp) (!msghasdata(bp))
167 
168 /*
169  * Stream head locking notes:
170  *	There are four monitors associated with the stream head:
171  *	1. v_stream monitor: in stropen() and strclose() v_lock
172  *		is held while the association of vnode and stream
173  *		head is established or tested for.
174  *	2. open/close/push/pop monitor: sd_lock is held while each
175  *		thread bids for exclusive access to this monitor
176  *		for opening or closing a stream.  In addition, this
177  *		monitor is entered during pushes and pops.  This
178  *		guarantees that during plumbing operations there
179  *		is only one thread trying to change the plumbing.
180  *		Any other threads present in the stream are only
181  *		using the plumbing.
182  *	3. read/write monitor: in the case of read, a thread holds
183  *		sd_lock while trying to get data from the stream
184  *		head queue.  if there is none to fulfill a read
185  *		request, it sets RSLEEP and calls cv_wait_sig() down
186  *		in strwaitq() to await the arrival of new data.
187  *		when new data arrives in strrput(), sd_lock is acquired
188  *		before testing for RSLEEP and calling cv_broadcast().
189  *		the behavior of strwrite(), strwsrv(), and WSLEEP
190  *		mirror this.
191  *	4. ioctl monitor: sd_lock is gotten to ensure that only one
192  *		thread is doing an ioctl at a time.
193  *
194  * Note, for sodirect case 3. is extended to (*sodirect_t.sod_enqueue)()
195  * call-back from below, further the sodirect support is for code paths
196  * called via kstgetmsg(), all other code paths ASSERT() that sodirect
197  * uioa generated mblk_t's (i.e. DBLK_UIOA) aren't processed.
198  */
199 
200 static int
201 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name,
202     int anchor, cred_t *crp, uint_t anchor_zoneid)
203 {
204 	int error;
205 	fmodsw_impl_t *fp;
206 
207 	if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) {
208 		error = (stp->sd_flag & STRHUP) ? ENXIO : EIO;
209 		return (error);
210 	}
211 	if (stp->sd_pushcnt >= nstrpush) {
212 		return (EINVAL);
213 	}
214 
215 	if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) {
216 		stp->sd_flag |= STREOPENFAIL;
217 		return (EINVAL);
218 	}
219 
220 	/*
221 	 * push new module and call its open routine via qattach
222 	 */
223 	if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0)
224 		return (error);
225 
226 	/*
227 	 * Check to see if caller wants a STREAMS anchor
228 	 * put at this place in the stream, and add if so.
229 	 */
230 	mutex_enter(&stp->sd_lock);
231 	if (anchor == stp->sd_pushcnt) {
232 		stp->sd_anchor = stp->sd_pushcnt;
233 		stp->sd_anchorzone = anchor_zoneid;
234 	}
235 	mutex_exit(&stp->sd_lock);
236 
237 	return (0);
238 }
239 
240 /*
241  * Open a stream device.
242  */
243 int
244 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp)
245 {
246 	struct stdata *stp;
247 	queue_t *qp;
248 	int s;
249 	dev_t dummydev, savedev;
250 	struct autopush *ap;
251 	struct dlautopush dlap;
252 	int error = 0;
253 	ssize_t	rmin, rmax;
254 	int cloneopen;
255 	queue_t *brq;
256 	major_t major;
257 	str_stack_t *ss;
258 	zoneid_t zoneid;
259 	uint_t anchor;
260 
261 	if (audit_active)
262 		audit_stropen(vp, devp, flag, crp);
263 
264 	/*
265 	 * If the stream already exists, wait for any open in progress
266 	 * to complete, then call the open function of each module and
267 	 * driver in the stream.  Otherwise create the stream.
268 	 */
269 	TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp);
270 retry:
271 	mutex_enter(&vp->v_lock);
272 	if ((stp = vp->v_stream) != NULL) {
273 
274 		/*
275 		 * Waiting for stream to be created to device
276 		 * due to another open.
277 		 */
278 		mutex_exit(&vp->v_lock);
279 
280 		if (STRMATED(stp)) {
281 			struct stdata *strmatep = stp->sd_mate;
282 
283 			STRLOCKMATES(stp);
284 			if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
285 				if (flag & (FNDELAY|FNONBLOCK)) {
286 					error = EAGAIN;
287 					mutex_exit(&strmatep->sd_lock);
288 					goto ckreturn;
289 				}
290 				mutex_exit(&stp->sd_lock);
291 				if (!cv_wait_sig(&strmatep->sd_monitor,
292 				    &strmatep->sd_lock)) {
293 					error = EINTR;
294 					mutex_exit(&strmatep->sd_lock);
295 					mutex_enter(&stp->sd_lock);
296 					goto ckreturn;
297 				}
298 				mutex_exit(&strmatep->sd_lock);
299 				goto retry;
300 			}
301 			if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
302 				if (flag & (FNDELAY|FNONBLOCK)) {
303 					error = EAGAIN;
304 					mutex_exit(&strmatep->sd_lock);
305 					goto ckreturn;
306 				}
307 				mutex_exit(&strmatep->sd_lock);
308 				if (!cv_wait_sig(&stp->sd_monitor,
309 				    &stp->sd_lock)) {
310 					error = EINTR;
311 					goto ckreturn;
312 				}
313 				mutex_exit(&stp->sd_lock);
314 				goto retry;
315 			}
316 
317 			if (stp->sd_flag & (STRDERR|STWRERR)) {
318 				error = EIO;
319 				mutex_exit(&strmatep->sd_lock);
320 				goto ckreturn;
321 			}
322 
323 			stp->sd_flag |= STWOPEN;
324 			STRUNLOCKMATES(stp);
325 		} else {
326 			mutex_enter(&stp->sd_lock);
327 			if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
328 				if (flag & (FNDELAY|FNONBLOCK)) {
329 					error = EAGAIN;
330 					goto ckreturn;
331 				}
332 				if (!cv_wait_sig(&stp->sd_monitor,
333 				    &stp->sd_lock)) {
334 					error = EINTR;
335 					goto ckreturn;
336 				}
337 				mutex_exit(&stp->sd_lock);
338 				goto retry;  /* could be clone! */
339 			}
340 
341 			if (stp->sd_flag & (STRDERR|STWRERR)) {
342 				error = EIO;
343 				goto ckreturn;
344 			}
345 
346 			stp->sd_flag |= STWOPEN;
347 			mutex_exit(&stp->sd_lock);
348 		}
349 
350 		/*
351 		 * Open all modules and devices down stream to notify
352 		 * that another user is streaming.  For modules, set the
353 		 * last argument to MODOPEN and do not pass any open flags.
354 		 * Ignore dummydev since this is not the first open.
355 		 */
356 		claimstr(stp->sd_wrq);
357 		qp = stp->sd_wrq;
358 		while (_SAMESTR(qp)) {
359 			qp = qp->q_next;
360 			if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0)
361 				break;
362 		}
363 		releasestr(stp->sd_wrq);
364 		mutex_enter(&stp->sd_lock);
365 		stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR);
366 		stp->sd_rerror = 0;
367 		stp->sd_werror = 0;
368 ckreturn:
369 		cv_broadcast(&stp->sd_monitor);
370 		mutex_exit(&stp->sd_lock);
371 		return (error);
372 	}
373 
374 	/*
375 	 * This vnode isn't streaming.  SPECFS already
376 	 * checked for multiple vnodes pointing to the
377 	 * same stream, so create a stream to the driver.
378 	 */
379 	qp = allocq();
380 	stp = shalloc(qp);
381 
382 	/*
383 	 * Initialize stream head.  shalloc() has given us
384 	 * exclusive access, and we have the vnode locked;
385 	 * we can do whatever we want with stp.
386 	 */
387 	stp->sd_flag = STWOPEN;
388 	stp->sd_siglist = NULL;
389 	stp->sd_pollist.ph_list = NULL;
390 	stp->sd_sigflags = 0;
391 	stp->sd_mark = NULL;
392 	stp->sd_closetime = STRTIMOUT;
393 	stp->sd_sidp = NULL;
394 	stp->sd_pgidp = NULL;
395 	stp->sd_vnode = vp;
396 	stp->sd_rerror = 0;
397 	stp->sd_werror = 0;
398 	stp->sd_wroff = 0;
399 	stp->sd_tail = 0;
400 	stp->sd_iocblk = NULL;
401 	stp->sd_cmdblk = NULL;
402 	stp->sd_pushcnt = 0;
403 	stp->sd_qn_minpsz = 0;
404 	stp->sd_qn_maxpsz = INFPSZ - 1;	/* used to check for initialization */
405 	stp->sd_maxblk = INFPSZ;
406 	stp->sd_sodirect = NULL;
407 	qp->q_ptr = _WR(qp)->q_ptr = stp;
408 	STREAM(qp) = STREAM(_WR(qp)) = stp;
409 	vp->v_stream = stp;
410 	mutex_exit(&vp->v_lock);
411 	if (vp->v_type == VFIFO) {
412 		stp->sd_flag |= OLDNDELAY;
413 		/*
414 		 * This means, both for pipes and fifos
415 		 * strwrite will send SIGPIPE if the other
416 		 * end is closed. For putmsg it depends
417 		 * on whether it is a XPG4_2 application
418 		 * or not
419 		 */
420 		stp->sd_wput_opt = SW_SIGPIPE;
421 
422 		/* setq might sleep in kmem_alloc - avoid holding locks. */
423 		setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE,
424 		    SQ_CI|SQ_CO, B_FALSE);
425 
426 		set_qend(qp);
427 		stp->sd_strtab = fifo_getinfo();
428 		_WR(qp)->q_nfsrv = _WR(qp);
429 		qp->q_nfsrv = qp;
430 		/*
431 		 * Wake up others that are waiting for stream to be created.
432 		 */
433 		mutex_enter(&stp->sd_lock);
434 		/*
435 		 * nothing is be pushed on stream yet, so
436 		 * optimized stream head packetsizes are just that
437 		 * of the read queue
438 		 */
439 		stp->sd_qn_minpsz = qp->q_minpsz;
440 		stp->sd_qn_maxpsz = qp->q_maxpsz;
441 		stp->sd_flag &= ~STWOPEN;
442 		goto fifo_opendone;
443 	}
444 	/* setq might sleep in kmem_alloc - avoid holding locks. */
445 	setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE);
446 
447 	set_qend(qp);
448 
449 	/*
450 	 * Open driver and create stream to it (via qattach).
451 	 */
452 	savedev = *devp;
453 	cloneopen = (getmajor(*devp) == clone_major);
454 	if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) {
455 		mutex_enter(&vp->v_lock);
456 		vp->v_stream = NULL;
457 		mutex_exit(&vp->v_lock);
458 		mutex_enter(&stp->sd_lock);
459 		cv_broadcast(&stp->sd_monitor);
460 		mutex_exit(&stp->sd_lock);
461 		freeq(_RD(qp));
462 		shfree(stp);
463 		return (error);
464 	}
465 	/*
466 	 * Set sd_strtab after open in order to handle clonable drivers
467 	 */
468 	stp->sd_strtab = STREAMSTAB(getmajor(*devp));
469 
470 	/*
471 	 * Historical note: dummydev used to be be prior to the initial
472 	 * open (via qattach above), which made the value seen
473 	 * inconsistent between an I_PUSH and an autopush of a module.
474 	 */
475 	dummydev = *devp;
476 
477 	/*
478 	 * For clone open of old style (Q not associated) network driver,
479 	 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH
480 	 */
481 	brq = _RD(_WR(qp)->q_next);
482 	major = getmajor(*devp);
483 	if (push_drcompat && cloneopen && NETWORK_DRV(major) &&
484 	    ((brq->q_flag & _QASSOCIATED) == 0)) {
485 		if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0)
486 			cmn_err(CE_WARN, "cannot push " DRMODNAME
487 			    " streams module");
488 	}
489 
490 	if (!NETWORK_DRV(major)) {
491 		savedev = *devp;
492 	} else {
493 		/*
494 		 * For network devices, process differently based on the
495 		 * return value from dld_autopush():
496 		 *
497 		 *   0: the passed-in device points to a GLDv3 datalink with
498 		 *   per-link autopush configuration; use that configuration
499 		 *   and ignore any per-driver autopush configuration.
500 		 *
501 		 *   1: the passed-in device points to a physical GLDv3
502 		 *   datalink without per-link autopush configuration.  The
503 		 *   passed in device was changed to refer to the actual
504 		 *   physical device (if it's not already); we use that new
505 		 *   device to look up any per-driver autopush configuration.
506 		 *
507 		 *   -1: neither of the above cases applied; use the initial
508 		 *   device to look up any per-driver autopush configuration.
509 		 */
510 		switch (dld_autopush(&savedev, &dlap)) {
511 		case 0:
512 			zoneid = crgetzoneid(crp);
513 			for (s = 0; s < dlap.dap_npush; s++) {
514 				error = push_mod(qp, &dummydev, stp,
515 				    dlap.dap_aplist[s], dlap.dap_anchor, crp,
516 				    zoneid);
517 				if (error != 0)
518 					break;
519 			}
520 			goto opendone;
521 		case 1:
522 			break;
523 		case -1:
524 			savedev = *devp;
525 			break;
526 		}
527 	}
528 	/*
529 	 * Find the autopush configuration based on "savedev". Start with the
530 	 * global zone. If not found check in the local zone.
531 	 */
532 	zoneid = GLOBAL_ZONEID;
533 retryap:
534 	ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))->
535 	    netstack_str;
536 	if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) {
537 		netstack_rele(ss->ss_netstack);
538 		if (zoneid == GLOBAL_ZONEID) {
539 			/*
540 			 * None found. Also look in the zone's autopush table.
541 			 */
542 			zoneid = crgetzoneid(crp);
543 			if (zoneid != GLOBAL_ZONEID)
544 				goto retryap;
545 		}
546 		goto opendone;
547 	}
548 	anchor = ap->ap_anchor;
549 	zoneid = crgetzoneid(crp);
550 	for (s = 0; s < ap->ap_npush; s++) {
551 		error = push_mod(qp, &dummydev, stp, ap->ap_list[s],
552 		    anchor, crp, zoneid);
553 		if (error != 0)
554 			break;
555 	}
556 	sad_ap_rele(ap, ss);
557 	netstack_rele(ss->ss_netstack);
558 
559 opendone:
560 
561 	/*
562 	 * let specfs know that open failed part way through
563 	 */
564 	if (error) {
565 		mutex_enter(&stp->sd_lock);
566 		stp->sd_flag |= STREOPENFAIL;
567 		mutex_exit(&stp->sd_lock);
568 	}
569 
570 	/*
571 	 * Wake up others that are waiting for stream to be created.
572 	 */
573 	mutex_enter(&stp->sd_lock);
574 	stp->sd_flag &= ~STWOPEN;
575 
576 	/*
577 	 * As a performance concern we are caching the values of
578 	 * q_minpsz and q_maxpsz of the module below the stream
579 	 * head in the stream head.
580 	 */
581 	mutex_enter(QLOCK(stp->sd_wrq->q_next));
582 	rmin = stp->sd_wrq->q_next->q_minpsz;
583 	rmax = stp->sd_wrq->q_next->q_maxpsz;
584 	mutex_exit(QLOCK(stp->sd_wrq->q_next));
585 
586 	/* do this processing here as a performance concern */
587 	if (strmsgsz != 0) {
588 		if (rmax == INFPSZ)
589 			rmax = strmsgsz;
590 		else
591 			rmax = MIN(strmsgsz, rmax);
592 	}
593 
594 	mutex_enter(QLOCK(stp->sd_wrq));
595 	stp->sd_qn_minpsz = rmin;
596 	stp->sd_qn_maxpsz = rmax;
597 	mutex_exit(QLOCK(stp->sd_wrq));
598 
599 fifo_opendone:
600 	cv_broadcast(&stp->sd_monitor);
601 	mutex_exit(&stp->sd_lock);
602 	return (error);
603 }
604 
605 static int strsink(queue_t *, mblk_t *);
606 static struct qinit deadrend = {
607 	strsink, NULL, NULL, NULL, NULL, &strm_info, NULL
608 };
609 static struct qinit deadwend = {
610 	NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL
611 };
612 
613 /*
614  * Close a stream.
615  * This is called from closef() on the last close of an open stream.
616  * Strclean() will already have removed the siglist and pollist
617  * information, so all that remains is to remove all multiplexor links
618  * for the stream, pop all the modules (and the driver), and free the
619  * stream structure.
620  */
621 
622 int
623 strclose(struct vnode *vp, int flag, cred_t *crp)
624 {
625 	struct stdata *stp;
626 	queue_t *qp;
627 	int rval;
628 	int freestp = 1;
629 	queue_t *rmq;
630 
631 	if (audit_active)
632 		audit_strclose(vp, flag, crp);
633 
634 	TRACE_1(TR_FAC_STREAMS_FR,
635 	    TR_STRCLOSE, "strclose:%p", vp);
636 	ASSERT(vp->v_stream);
637 
638 	stp = vp->v_stream;
639 	ASSERT(!(stp->sd_flag & STPLEX));
640 	qp = stp->sd_wrq;
641 
642 	/*
643 	 * Needed so that strpoll will return non-zero for this fd.
644 	 * Note that with POLLNOERR STRHUP does still cause POLLHUP.
645 	 */
646 	mutex_enter(&stp->sd_lock);
647 	stp->sd_flag |= STRHUP;
648 	mutex_exit(&stp->sd_lock);
649 
650 	/*
651 	 * If the registered process or process group did not have an
652 	 * open instance of this stream then strclean would not be
653 	 * called. Thus at the time of closing all remaining siglist entries
654 	 * are removed.
655 	 */
656 	if (stp->sd_siglist != NULL)
657 		strcleanall(vp);
658 
659 	ASSERT(stp->sd_siglist == NULL);
660 	ASSERT(stp->sd_sigflags == 0);
661 
662 	if (STRMATED(stp)) {
663 		struct stdata *strmatep = stp->sd_mate;
664 		int waited = 1;
665 
666 		STRLOCKMATES(stp);
667 		while (waited) {
668 			waited = 0;
669 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
670 				mutex_exit(&strmatep->sd_lock);
671 				cv_wait(&stp->sd_monitor, &stp->sd_lock);
672 				mutex_exit(&stp->sd_lock);
673 				STRLOCKMATES(stp);
674 				waited = 1;
675 			}
676 			while (strmatep->sd_flag &
677 			    (STWOPEN|STRCLOSE|STRPLUMB)) {
678 				mutex_exit(&stp->sd_lock);
679 				cv_wait(&strmatep->sd_monitor,
680 				    &strmatep->sd_lock);
681 				mutex_exit(&strmatep->sd_lock);
682 				STRLOCKMATES(stp);
683 				waited = 1;
684 			}
685 		}
686 		stp->sd_flag |= STRCLOSE;
687 		STRUNLOCKMATES(stp);
688 	} else {
689 		mutex_enter(&stp->sd_lock);
690 		stp->sd_flag |= STRCLOSE;
691 		mutex_exit(&stp->sd_lock);
692 	}
693 
694 	ASSERT(qp->q_first == NULL);	/* No more delayed write */
695 
696 	/* Check if an I_LINK was ever done on this stream */
697 	if (stp->sd_flag & STRHASLINKS) {
698 		netstack_t *ns;
699 		str_stack_t *ss;
700 
701 		ns = netstack_find_by_cred(crp);
702 		ASSERT(ns != NULL);
703 		ss = ns->netstack_str;
704 		ASSERT(ss != NULL);
705 
706 		(void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss);
707 		netstack_rele(ss->ss_netstack);
708 	}
709 
710 	while (_SAMESTR(qp)) {
711 		/*
712 		 * Holding sd_lock prevents q_next from changing in
713 		 * this stream.
714 		 */
715 		mutex_enter(&stp->sd_lock);
716 		if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) {
717 
718 			/*
719 			 * sleep until awakened by strwsrv() or timeout
720 			 */
721 			for (;;) {
722 				mutex_enter(QLOCK(qp->q_next));
723 				if (!(qp->q_next->q_mblkcnt)) {
724 					mutex_exit(QLOCK(qp->q_next));
725 					break;
726 				}
727 				stp->sd_flag |= WSLEEP;
728 
729 				/* ensure strwsrv gets enabled */
730 				qp->q_next->q_flag |= QWANTW;
731 				mutex_exit(QLOCK(qp->q_next));
732 				/* get out if we timed out or recv'd a signal */
733 				if (str_cv_wait(&qp->q_wait, &stp->sd_lock,
734 				    stp->sd_closetime, 0) <= 0) {
735 					break;
736 				}
737 			}
738 			stp->sd_flag &= ~WSLEEP;
739 		}
740 		mutex_exit(&stp->sd_lock);
741 
742 		rmq = qp->q_next;
743 		if (rmq->q_flag & QISDRV) {
744 			ASSERT(!_SAMESTR(rmq));
745 			wait_sq_svc(_RD(qp)->q_syncq);
746 		}
747 
748 		qdetach(_RD(rmq), 1, flag, crp, B_FALSE);
749 	}
750 
751 	/*
752 	 * Since we call pollwakeup in close() now, the poll list should
753 	 * be empty in most cases. The only exception is the layered devices
754 	 * (e.g. the console drivers with redirection modules pushed on top
755 	 * of it).  We have to do this after calling qdetach() because
756 	 * the redirection module won't have torn down the console
757 	 * redirection until after qdetach() has been invoked.
758 	 */
759 	if (stp->sd_pollist.ph_list != NULL) {
760 		pollwakeup(&stp->sd_pollist, POLLERR);
761 		pollhead_clean(&stp->sd_pollist);
762 	}
763 	ASSERT(stp->sd_pollist.ph_list == NULL);
764 	ASSERT(stp->sd_sidp == NULL);
765 	ASSERT(stp->sd_pgidp == NULL);
766 
767 	/* Prevent qenable from re-enabling the stream head queue */
768 	disable_svc(_RD(qp));
769 
770 	/*
771 	 * Wait until service procedure of each queue is
772 	 * run, if QINSERVICE is set.
773 	 */
774 	wait_svc(_RD(qp));
775 
776 	/*
777 	 * Now, flush both queues.
778 	 */
779 	flushq(_RD(qp), FLUSHALL);
780 	flushq(qp, FLUSHALL);
781 
782 	/*
783 	 * If the write queue of the stream head is pointing to a
784 	 * read queue, we have a twisted stream.  If the read queue
785 	 * is alive, convert the stream head queues into a dead end.
786 	 * If the read queue is dead, free the dead pair.
787 	 */
788 	if (qp->q_next && !_SAMESTR(qp)) {
789 		if (qp->q_next->q_qinfo == &deadrend) {	/* half-closed pipe */
790 			flushq(qp->q_next, FLUSHALL); /* ensure no message */
791 			shfree(qp->q_next->q_stream);
792 			freeq(qp->q_next);
793 			freeq(_RD(qp));
794 		} else if (qp->q_next == _RD(qp)) {	/* fifo */
795 			freeq(_RD(qp));
796 		} else {				/* pipe */
797 			freestp = 0;
798 			/*
799 			 * The q_info pointers are never accessed when
800 			 * SQLOCK is held.
801 			 */
802 			ASSERT(qp->q_syncq == _RD(qp)->q_syncq);
803 			mutex_enter(SQLOCK(qp->q_syncq));
804 			qp->q_qinfo = &deadwend;
805 			_RD(qp)->q_qinfo = &deadrend;
806 			mutex_exit(SQLOCK(qp->q_syncq));
807 		}
808 	} else {
809 		freeq(_RD(qp)); /* free stream head queue pair */
810 	}
811 
812 	mutex_enter(&vp->v_lock);
813 	if (stp->sd_iocblk) {
814 		if (stp->sd_iocblk != (mblk_t *)-1) {
815 			freemsg(stp->sd_iocblk);
816 		}
817 		stp->sd_iocblk = NULL;
818 	}
819 	stp->sd_vnode = NULL;
820 	vp->v_stream = NULL;
821 	mutex_exit(&vp->v_lock);
822 	mutex_enter(&stp->sd_lock);
823 	freemsg(stp->sd_cmdblk);
824 	stp->sd_cmdblk = NULL;
825 	stp->sd_flag &= ~STRCLOSE;
826 	cv_broadcast(&stp->sd_monitor);
827 	mutex_exit(&stp->sd_lock);
828 
829 	if (freestp)
830 		shfree(stp);
831 	return (0);
832 }
833 
834 static int
835 strsink(queue_t *q, mblk_t *bp)
836 {
837 	struct copyresp *resp;
838 
839 	switch (bp->b_datap->db_type) {
840 	case M_FLUSH:
841 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
842 			*bp->b_rptr &= ~FLUSHR;
843 			bp->b_flag |= MSGNOLOOP;
844 			/*
845 			 * Protect against the driver passing up
846 			 * messages after it has done a qprocsoff.
847 			 */
848 			if (_OTHERQ(q)->q_next == NULL)
849 				freemsg(bp);
850 			else
851 				qreply(q, bp);
852 		} else {
853 			freemsg(bp);
854 		}
855 		break;
856 
857 	case M_COPYIN:
858 	case M_COPYOUT:
859 		if (bp->b_cont) {
860 			freemsg(bp->b_cont);
861 			bp->b_cont = NULL;
862 		}
863 		bp->b_datap->db_type = M_IOCDATA;
864 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
865 		resp = (struct copyresp *)bp->b_rptr;
866 		resp->cp_rval = (caddr_t)1;	/* failure */
867 		/*
868 		 * Protect against the driver passing up
869 		 * messages after it has done a qprocsoff.
870 		 */
871 		if (_OTHERQ(q)->q_next == NULL)
872 			freemsg(bp);
873 		else
874 			qreply(q, bp);
875 		break;
876 
877 	case M_IOCTL:
878 		if (bp->b_cont) {
879 			freemsg(bp->b_cont);
880 			bp->b_cont = NULL;
881 		}
882 		bp->b_datap->db_type = M_IOCNAK;
883 		/*
884 		 * Protect against the driver passing up
885 		 * messages after it has done a qprocsoff.
886 		 */
887 		if (_OTHERQ(q)->q_next == NULL)
888 			freemsg(bp);
889 		else
890 			qreply(q, bp);
891 		break;
892 
893 	default:
894 		freemsg(bp);
895 		break;
896 	}
897 
898 	return (0);
899 }
900 
901 /*
902  * Clean up after a process when it closes a stream.  This is called
903  * from closef for all closes, whereas strclose is called only for the
904  * last close on a stream.  The siglist is scanned for entries for the
905  * current process, and these are removed.
906  */
907 void
908 strclean(struct vnode *vp)
909 {
910 	strsig_t *ssp, *pssp, *tssp;
911 	stdata_t *stp;
912 	int update = 0;
913 
914 	TRACE_1(TR_FAC_STREAMS_FR,
915 	    TR_STRCLEAN, "strclean:%p", vp);
916 	stp = vp->v_stream;
917 	pssp = NULL;
918 	mutex_enter(&stp->sd_lock);
919 	ssp = stp->sd_siglist;
920 	while (ssp) {
921 		if (ssp->ss_pidp == curproc->p_pidp) {
922 			tssp = ssp->ss_next;
923 			if (pssp)
924 				pssp->ss_next = tssp;
925 			else
926 				stp->sd_siglist = tssp;
927 			mutex_enter(&pidlock);
928 			PID_RELE(ssp->ss_pidp);
929 			mutex_exit(&pidlock);
930 			kmem_free(ssp, sizeof (strsig_t));
931 			update = 1;
932 			ssp = tssp;
933 		} else {
934 			pssp = ssp;
935 			ssp = ssp->ss_next;
936 		}
937 	}
938 	if (update) {
939 		stp->sd_sigflags = 0;
940 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
941 			stp->sd_sigflags |= ssp->ss_events;
942 	}
943 	mutex_exit(&stp->sd_lock);
944 }
945 
946 /*
947  * Used on the last close to remove any remaining items on the siglist.
948  * These could be present on the siglist due to I_ESETSIG calls that
949  * use process groups or processed that do not have an open file descriptor
950  * for this stream (Such entries would not be removed by strclean).
951  */
952 static void
953 strcleanall(struct vnode *vp)
954 {
955 	strsig_t *ssp, *nssp;
956 	stdata_t *stp;
957 
958 	stp = vp->v_stream;
959 	mutex_enter(&stp->sd_lock);
960 	ssp = stp->sd_siglist;
961 	stp->sd_siglist = NULL;
962 	while (ssp) {
963 		nssp = ssp->ss_next;
964 		mutex_enter(&pidlock);
965 		PID_RELE(ssp->ss_pidp);
966 		mutex_exit(&pidlock);
967 		kmem_free(ssp, sizeof (strsig_t));
968 		ssp = nssp;
969 	}
970 	stp->sd_sigflags = 0;
971 	mutex_exit(&stp->sd_lock);
972 }
973 
974 /*
975  * Retrieve the next message from the logical stream head read queue
976  * using either rwnext (if sync stream) or getq_noenab.
977  * It is the callers responsibility to call qbackenable after
978  * it is finished with the message. The caller should not call
979  * qbackenable until after any putback calls to avoid spurious backenabling.
980  *
981  * Also, handle uioa initialization and process any DBLK_UIOA flaged messages.
982  */
983 mblk_t *
984 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first,
985     int *errorp)
986 {
987 	sodirect_t *sodp = stp->sd_sodirect;
988 	mblk_t *bp;
989 	int error;
990 	ssize_t rbytes = 0;
991 
992 	/* Holding sd_lock prevents the read queue from changing  */
993 	ASSERT(MUTEX_HELD(&stp->sd_lock));
994 
995 	if (uiop != NULL && stp->sd_struiordq != NULL &&
996 	    q->q_first == NULL &&
997 	    (!first || (stp->sd_wakeq & RSLEEP))) {
998 		/*
999 		 * Stream supports rwnext() for the read side.
1000 		 * If this is the first time we're called by e.g. strread
1001 		 * only do the downcall if there is a deferred wakeup
1002 		 * (registered in sd_wakeq).
1003 		 */
1004 		struiod_t uiod;
1005 
1006 		if (first)
1007 			stp->sd_wakeq &= ~RSLEEP;
1008 
1009 		(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
1010 		    sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
1011 		uiod.d_mp = 0;
1012 		/*
1013 		 * Mark that a thread is in rwnext on the read side
1014 		 * to prevent strrput from nacking ioctls immediately.
1015 		 * When the last concurrent rwnext returns
1016 		 * the ioctls are nack'ed.
1017 		 */
1018 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1019 		stp->sd_struiodnak++;
1020 		/*
1021 		 * Note: rwnext will drop sd_lock.
1022 		 */
1023 		error = rwnext(q, &uiod);
1024 		ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
1025 		mutex_enter(&stp->sd_lock);
1026 		stp->sd_struiodnak--;
1027 		while (stp->sd_struiodnak == 0 &&
1028 		    ((bp = stp->sd_struionak) != NULL)) {
1029 			stp->sd_struionak = bp->b_next;
1030 			bp->b_next = NULL;
1031 			bp->b_datap->db_type = M_IOCNAK;
1032 			/*
1033 			 * Protect against the driver passing up
1034 			 * messages after it has done a qprocsoff.
1035 			 */
1036 			if (_OTHERQ(q)->q_next == NULL)
1037 				freemsg(bp);
1038 			else {
1039 				mutex_exit(&stp->sd_lock);
1040 				qreply(q, bp);
1041 				mutex_enter(&stp->sd_lock);
1042 			}
1043 		}
1044 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1045 		if (error == 0 || error == EWOULDBLOCK) {
1046 			if ((bp = uiod.d_mp) != NULL) {
1047 				*errorp = 0;
1048 				ASSERT(MUTEX_HELD(&stp->sd_lock));
1049 				return (bp);
1050 			}
1051 			error = 0;
1052 		} else if (error == EINVAL) {
1053 			/*
1054 			 * The stream plumbing must have
1055 			 * changed while we were away, so
1056 			 * just turn off rwnext()s.
1057 			 */
1058 			error = 0;
1059 		} else if (error == EBUSY) {
1060 			/*
1061 			 * The module might have data in transit using putnext
1062 			 * Fall back on waiting + getq.
1063 			 */
1064 			error = 0;
1065 		} else {
1066 			*errorp = error;
1067 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1068 			return (NULL);
1069 		}
1070 		/*
1071 		 * Try a getq in case a rwnext() generated mblk
1072 		 * has bubbled up via strrput().
1073 		 */
1074 	}
1075 	*errorp = 0;
1076 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1077 
1078 	if (sodp != NULL && (sodp->sod_state & SOD_ENABLED) &&
1079 	    (sodp->sod_uioa.uioa_state & UIOA_INIT)) {
1080 		/*
1081 		 * First kstrgetmsg() call for an uioa_t so if any
1082 		 * queued mblk_t's need to consume them before uioa
1083 		 * from below can occur.
1084 		 */
1085 		sodp->sod_uioa.uioa_state &= UIOA_CLR;
1086 		sodp->sod_uioa.uioa_state |= UIOA_ENABLED;
1087 		if (q->q_first != NULL) {
1088 			struioainit(q, sodp, uiop);
1089 		}
1090 	} else {
1091 		/*
1092 		 * If we have a valid uio, try and use this as a guide for how
1093 		 * many bytes to retrieve from the queue via getq_noenab().
1094 		 * Doing this can avoid unneccesary counting of overlong
1095 		 * messages in putback(). We currently only do this for sockets
1096 		 * and only if there is no sd_rputdatafunc hook.
1097 		 *
1098 		 * The sd_rputdatafunc hook transforms the entire message
1099 		 * before any bytes in it can be given to a client. So, rbytes
1100 		 * must be 0 if there is a hook.
1101 		 */
1102 		if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) &&
1103 		    (stp->sd_rputdatafunc == NULL))
1104 			rbytes = uiop->uio_resid;
1105 	}
1106 
1107 	bp = getq_noenab(q, rbytes);
1108 	if (bp != NULL && (bp->b_datap->db_flags & DBLK_UIOA)) {
1109 		/*
1110 		 * A uioa flaged mblk_t chain, already uio processed,
1111 		 * add it to the sodirect uioa pending free list.
1112 		 *
1113 		 * Note, a b_cont chain headed by a DBLK_UIOA enable
1114 		 * mblk_t must have all mblk_t(s) DBLK_UIOA enabled.
1115 		 */
1116 		mblk_t	*bpt = sodp->sod_uioaft;
1117 
1118 		ASSERT(sodp != NULL);
1119 
1120 		/*
1121 		 * Add first mblk_t of "bp" chain to current sodirect uioa
1122 		 * free list tail mblk_t, if any, else empty list so new head.
1123 		 */
1124 		if (bpt == NULL)
1125 			sodp->sod_uioafh = bp;
1126 		else
1127 			bpt->b_cont = bp;
1128 
1129 		/*
1130 		 * Walk mblk_t "bp" chain to find tail and adjust rptr of
1131 		 * each to reflect that uioamove() has consumed all data.
1132 		 */
1133 		bpt = bp;
1134 		for (;;) {
1135 			bpt->b_rptr = bpt->b_wptr;
1136 			if (bpt->b_cont == NULL)
1137 				break;
1138 			bpt = bpt->b_cont;
1139 
1140 			ASSERT(bpt->b_datap->db_flags & DBLK_UIOA);
1141 		}
1142 		/* New sodirect uioa free list tail */
1143 		sodp->sod_uioaft = bpt;
1144 
1145 		/* Only 1 strget() with data returned per uioa_t */
1146 		if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) {
1147 			sodp->sod_uioa.uioa_state &= UIOA_CLR;
1148 			sodp->sod_uioa.uioa_state |= UIOA_FINI;
1149 		}
1150 	}
1151 
1152 	return (bp);
1153 }
1154 
1155 /*
1156  * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'.
1157  * If the message does not fit in the uio the remainder of it is returned;
1158  * otherwise NULL is returned.  Any embedded zero-length mblk_t's are
1159  * consumed, even if uio_resid reaches zero.  On error, `*errorp' is set to
1160  * the error code, the message is consumed, and NULL is returned.
1161  */
1162 static mblk_t *
1163 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp)
1164 {
1165 	int error;
1166 	ptrdiff_t n;
1167 	mblk_t *nbp;
1168 
1169 	ASSERT(bp->b_wptr >= bp->b_rptr);
1170 
1171 	do {
1172 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
1173 
1174 		if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) {
1175 			ASSERT(n > 0);
1176 
1177 			error = uiomove(bp->b_rptr, n, UIO_READ, uiop);
1178 			if (error != 0) {
1179 				freemsg(bp);
1180 				*errorp = error;
1181 				return (NULL);
1182 			}
1183 		}
1184 
1185 		bp->b_rptr += n;
1186 		while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) {
1187 			nbp = bp;
1188 			bp = bp->b_cont;
1189 			freeb(nbp);
1190 		}
1191 	} while (bp != NULL && uiop->uio_resid > 0);
1192 
1193 	*errorp = 0;
1194 	return (bp);
1195 }
1196 
1197 /*
1198  * Read a stream according to the mode flags in sd_flag:
1199  *
1200  * (default mode)		- Byte stream, msg boundaries are ignored
1201  * RD_MSGDIS (msg discard)	- Read on msg boundaries and throw away
1202  *				any data remaining in msg
1203  * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back
1204  *				any remaining data on head of read queue
1205  *
1206  * Consume readable messages on the front of the queue until
1207  * ttolwp(curthread)->lwp_count
1208  * is satisfied, the readable messages are exhausted, or a message
1209  * boundary is reached in a message mode.  If no data was read and
1210  * the stream was not opened with the NDELAY flag, block until data arrives.
1211  * Otherwise return the data read and update the count.
1212  *
1213  * In default mode a 0 length message signifies end-of-file and terminates
1214  * a read in progress.  The 0 length message is removed from the queue
1215  * only if it is the only message read (no data is read).
1216  *
1217  * An attempt to read an M_PROTO or M_PCPROTO message results in an
1218  * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set.
1219  * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data.
1220  * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message
1221  * are unlinked from and M_DATA blocks in the message, the protos are
1222  * thrown away, and the data is read.
1223  */
1224 /* ARGSUSED */
1225 int
1226 strread(struct vnode *vp, struct uio *uiop, cred_t *crp)
1227 {
1228 	struct stdata *stp;
1229 	mblk_t *bp, *nbp;
1230 	queue_t *q;
1231 	int error = 0;
1232 	uint_t old_sd_flag;
1233 	int first;
1234 	char rflg;
1235 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
1236 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
1237 	short delim;
1238 	unsigned char pri = 0;
1239 	char waitflag;
1240 	unsigned char type;
1241 
1242 	TRACE_1(TR_FAC_STREAMS_FR,
1243 	    TR_STRREAD_ENTER, "strread:%p", vp);
1244 	ASSERT(vp->v_stream);
1245 	stp = vp->v_stream;
1246 
1247 	mutex_enter(&stp->sd_lock);
1248 
1249 	if ((error = i_straccess(stp, JCREAD)) != 0) {
1250 		mutex_exit(&stp->sd_lock);
1251 		return (error);
1252 	}
1253 
1254 	if (stp->sd_flag & (STRDERR|STPLEX)) {
1255 		error = strgeterr(stp, STRDERR|STPLEX, 0);
1256 		if (error != 0) {
1257 			mutex_exit(&stp->sd_lock);
1258 			return (error);
1259 		}
1260 	}
1261 
1262 	/*
1263 	 * Loop terminates when uiop->uio_resid == 0.
1264 	 */
1265 	rflg = 0;
1266 	waitflag = READWAIT;
1267 	q = _RD(stp->sd_wrq);
1268 	for (;;) {
1269 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1270 		old_sd_flag = stp->sd_flag;
1271 		mark = 0;
1272 		delim = 0;
1273 		first = 1;
1274 		while ((bp = strget(stp, q, uiop, first, &error)) == NULL) {
1275 			int done = 0;
1276 
1277 			ASSERT(MUTEX_HELD(&stp->sd_lock));
1278 
1279 			if (error != 0)
1280 				goto oops;
1281 
1282 			if (stp->sd_flag & (STRHUP|STREOF)) {
1283 				goto oops;
1284 			}
1285 			if (rflg && !(stp->sd_flag & STRDELIM)) {
1286 				goto oops;
1287 			}
1288 			/*
1289 			 * If a read(fd,buf,0) has been done, there is no
1290 			 * need to sleep. We always have zero bytes to
1291 			 * return.
1292 			 */
1293 			if (uiop->uio_resid == 0) {
1294 				goto oops;
1295 			}
1296 
1297 			qbackenable(q, 0);
1298 
1299 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT,
1300 			    "strread calls strwaitq:%p, %p, %p",
1301 			    vp, uiop, crp);
1302 			if ((error = strwaitq(stp, waitflag, uiop->uio_resid,
1303 			    uiop->uio_fmode, -1, &done)) != 0 || done) {
1304 				TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE,
1305 				    "strread error or done:%p, %p, %p",
1306 				    vp, uiop, crp);
1307 				if ((uiop->uio_fmode & FNDELAY) &&
1308 				    (stp->sd_flag & OLDNDELAY) &&
1309 				    (error == EAGAIN))
1310 					error = 0;
1311 				goto oops;
1312 			}
1313 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE,
1314 			    "strread awakes:%p, %p, %p", vp, uiop, crp);
1315 			if ((error = i_straccess(stp, JCREAD)) != 0) {
1316 				goto oops;
1317 			}
1318 			first = 0;
1319 		}
1320 
1321 		ASSERT(MUTEX_HELD(&stp->sd_lock));
1322 		ASSERT(bp);
1323 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
1324 		pri = bp->b_band;
1325 		/*
1326 		 * Extract any mark information. If the message is not
1327 		 * completely consumed this information will be put in the mblk
1328 		 * that is putback.
1329 		 * If MSGMARKNEXT is set and the message is completely consumed
1330 		 * the STRATMARK flag will be set below. Likewise, if
1331 		 * MSGNOTMARKNEXT is set and the message is
1332 		 * completely consumed STRNOTATMARK will be set.
1333 		 *
1334 		 * For some unknown reason strread only breaks the read at the
1335 		 * last mark.
1336 		 */
1337 		mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
1338 		ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
1339 		    (MSGMARKNEXT|MSGNOTMARKNEXT));
1340 		if (mark != 0 && bp == stp->sd_mark) {
1341 			if (rflg) {
1342 				putback(stp, q, bp, pri);
1343 				goto oops;
1344 			}
1345 			mark |= _LASTMARK;
1346 			stp->sd_mark = NULL;
1347 		}
1348 		if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM))
1349 			delim = 1;
1350 		mutex_exit(&stp->sd_lock);
1351 
1352 		if (STREAM_NEEDSERVICE(stp))
1353 			stream_runservice(stp);
1354 
1355 		type = bp->b_datap->db_type;
1356 
1357 		switch (type) {
1358 
1359 		case M_DATA:
1360 ismdata:
1361 			if (msgnodata(bp)) {
1362 				if (mark || delim) {
1363 					freemsg(bp);
1364 				} else if (rflg) {
1365 
1366 					/*
1367 					 * If already read data put zero
1368 					 * length message back on queue else
1369 					 * free msg and return 0.
1370 					 */
1371 					bp->b_band = pri;
1372 					mutex_enter(&stp->sd_lock);
1373 					putback(stp, q, bp, pri);
1374 					mutex_exit(&stp->sd_lock);
1375 				} else {
1376 					freemsg(bp);
1377 				}
1378 				error =  0;
1379 				goto oops1;
1380 			}
1381 
1382 			rflg = 1;
1383 			waitflag |= NOINTR;
1384 			bp = struiocopyout(bp, uiop, &error);
1385 			if (error != 0)
1386 				goto oops1;
1387 
1388 			mutex_enter(&stp->sd_lock);
1389 			if (bp) {
1390 				/*
1391 				 * Have remaining data in message.
1392 				 * Free msg if in discard mode.
1393 				 */
1394 				if (stp->sd_read_opt & RD_MSGDIS) {
1395 					freemsg(bp);
1396 				} else {
1397 					bp->b_band = pri;
1398 					if ((mark & _LASTMARK) &&
1399 					    (stp->sd_mark == NULL))
1400 						stp->sd_mark = bp;
1401 					bp->b_flag |= mark & ~_LASTMARK;
1402 					if (delim)
1403 						bp->b_flag |= MSGDELIM;
1404 					if (msgnodata(bp))
1405 						freemsg(bp);
1406 					else
1407 						putback(stp, q, bp, pri);
1408 				}
1409 			} else {
1410 				/*
1411 				 * Consumed the complete message.
1412 				 * Move the MSG*MARKNEXT information
1413 				 * to the stream head just in case
1414 				 * the read queue becomes empty.
1415 				 *
1416 				 * If the stream head was at the mark
1417 				 * (STRATMARK) before we dropped sd_lock above
1418 				 * and some data was consumed then we have
1419 				 * moved past the mark thus STRATMARK is
1420 				 * cleared. However, if a message arrived in
1421 				 * strrput during the copyout above causing
1422 				 * STRATMARK to be set we can not clear that
1423 				 * flag.
1424 				 */
1425 				if (mark &
1426 				    (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
1427 					if (mark & MSGMARKNEXT) {
1428 						stp->sd_flag &= ~STRNOTATMARK;
1429 						stp->sd_flag |= STRATMARK;
1430 					} else if (mark & MSGNOTMARKNEXT) {
1431 						stp->sd_flag &= ~STRATMARK;
1432 						stp->sd_flag |= STRNOTATMARK;
1433 					} else {
1434 						stp->sd_flag &=
1435 						    ~(STRATMARK|STRNOTATMARK);
1436 					}
1437 				} else if (rflg && (old_sd_flag & STRATMARK)) {
1438 					stp->sd_flag &= ~STRATMARK;
1439 				}
1440 			}
1441 
1442 			/*
1443 			 * Check for signal messages at the front of the read
1444 			 * queue and generate the signal(s) if appropriate.
1445 			 * The only signal that can be on queue is M_SIG at
1446 			 * this point.
1447 			 */
1448 			while ((((bp = q->q_first)) != NULL) &&
1449 			    (bp->b_datap->db_type == M_SIG)) {
1450 				bp = getq_noenab(q, 0);
1451 				/*
1452 				 * sd_lock is held so the content of the
1453 				 * read queue can not change.
1454 				 */
1455 				ASSERT(bp != NULL &&
1456 				    bp->b_datap->db_type == M_SIG);
1457 				strsignal_nolock(stp, *bp->b_rptr,
1458 				    (int32_t)bp->b_band);
1459 				mutex_exit(&stp->sd_lock);
1460 				freemsg(bp);
1461 				if (STREAM_NEEDSERVICE(stp))
1462 					stream_runservice(stp);
1463 				mutex_enter(&stp->sd_lock);
1464 			}
1465 
1466 			if ((uiop->uio_resid == 0) || (mark & _LASTMARK) ||
1467 			    delim ||
1468 			    (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) {
1469 				goto oops;
1470 			}
1471 			continue;
1472 
1473 		case M_SIG:
1474 			strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band);
1475 			freemsg(bp);
1476 			mutex_enter(&stp->sd_lock);
1477 			continue;
1478 
1479 		case M_PROTO:
1480 		case M_PCPROTO:
1481 			/*
1482 			 * Only data messages are readable.
1483 			 * Any others generate an error, unless
1484 			 * RD_PROTDIS or RD_PROTDAT is set.
1485 			 */
1486 			if (stp->sd_read_opt & RD_PROTDAT) {
1487 				for (nbp = bp; nbp; nbp = nbp->b_next) {
1488 					if ((nbp->b_datap->db_type ==
1489 					    M_PROTO) ||
1490 					    (nbp->b_datap->db_type ==
1491 					    M_PCPROTO)) {
1492 						nbp->b_datap->db_type = M_DATA;
1493 					} else {
1494 						break;
1495 					}
1496 				}
1497 				/*
1498 				 * clear stream head hi pri flag based on
1499 				 * first message
1500 				 */
1501 				if (type == M_PCPROTO) {
1502 					mutex_enter(&stp->sd_lock);
1503 					stp->sd_flag &= ~STRPRI;
1504 					mutex_exit(&stp->sd_lock);
1505 				}
1506 				goto ismdata;
1507 			} else if (stp->sd_read_opt & RD_PROTDIS) {
1508 				/*
1509 				 * discard non-data messages
1510 				 */
1511 				while (bp &&
1512 				    ((bp->b_datap->db_type == M_PROTO) ||
1513 				    (bp->b_datap->db_type == M_PCPROTO))) {
1514 					nbp = unlinkb(bp);
1515 					freeb(bp);
1516 					bp = nbp;
1517 				}
1518 				/*
1519 				 * clear stream head hi pri flag based on
1520 				 * first message
1521 				 */
1522 				if (type == M_PCPROTO) {
1523 					mutex_enter(&stp->sd_lock);
1524 					stp->sd_flag &= ~STRPRI;
1525 					mutex_exit(&stp->sd_lock);
1526 				}
1527 				if (bp) {
1528 					bp->b_band = pri;
1529 					goto ismdata;
1530 				} else {
1531 					break;
1532 				}
1533 			}
1534 			/* FALLTHRU */
1535 		case M_PASSFP:
1536 			if ((bp->b_datap->db_type == M_PASSFP) &&
1537 			    (stp->sd_read_opt & RD_PROTDIS)) {
1538 				freemsg(bp);
1539 				break;
1540 			}
1541 			mutex_enter(&stp->sd_lock);
1542 			putback(stp, q, bp, pri);
1543 			mutex_exit(&stp->sd_lock);
1544 			if (rflg == 0)
1545 				error = EBADMSG;
1546 			goto oops1;
1547 
1548 		default:
1549 			/*
1550 			 * Garbage on stream head read queue.
1551 			 */
1552 			cmn_err(CE_WARN, "bad %x found at stream head\n",
1553 			    bp->b_datap->db_type);
1554 			freemsg(bp);
1555 			goto oops1;
1556 		}
1557 		mutex_enter(&stp->sd_lock);
1558 	}
1559 oops:
1560 	mutex_exit(&stp->sd_lock);
1561 oops1:
1562 	qbackenable(q, pri);
1563 	return (error);
1564 #undef	_LASTMARK
1565 }
1566 
1567 /*
1568  * Default processing of M_PROTO/M_PCPROTO messages.
1569  * Determine which wakeups and signals are needed.
1570  * This can be replaced by a user-specified procedure for kernel users
1571  * of STREAMS.
1572  */
1573 /* ARGSUSED */
1574 mblk_t *
1575 strrput_proto(vnode_t *vp, mblk_t *mp,
1576     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1577     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1578 {
1579 	*wakeups = RSLEEP;
1580 	*allmsgsigs = 0;
1581 
1582 	switch (mp->b_datap->db_type) {
1583 	case M_PROTO:
1584 		if (mp->b_band == 0) {
1585 			*firstmsgsigs = S_INPUT | S_RDNORM;
1586 			*pollwakeups = POLLIN | POLLRDNORM;
1587 		} else {
1588 			*firstmsgsigs = S_INPUT | S_RDBAND;
1589 			*pollwakeups = POLLIN | POLLRDBAND;
1590 		}
1591 		break;
1592 	case M_PCPROTO:
1593 		*firstmsgsigs = S_HIPRI;
1594 		*pollwakeups = POLLPRI;
1595 		break;
1596 	}
1597 	return (mp);
1598 }
1599 
1600 /*
1601  * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and
1602  * M_PASSFP messages.
1603  * Determine which wakeups and signals are needed.
1604  * This can be replaced by a user-specified procedure for kernel users
1605  * of STREAMS.
1606  */
1607 /* ARGSUSED */
1608 mblk_t *
1609 strrput_misc(vnode_t *vp, mblk_t *mp,
1610     strwakeup_t *wakeups, strsigset_t *firstmsgsigs,
1611     strsigset_t *allmsgsigs, strpollset_t *pollwakeups)
1612 {
1613 	*wakeups = 0;
1614 	*firstmsgsigs = 0;
1615 	*allmsgsigs = 0;
1616 	*pollwakeups = 0;
1617 	return (mp);
1618 }
1619 
1620 /*
1621  * Stream read put procedure.  Called from downstream driver/module
1622  * with messages for the stream head.  Data, protocol, and in-stream
1623  * signal messages are placed on the queue, others are handled directly.
1624  */
1625 int
1626 strrput(queue_t *q, mblk_t *bp)
1627 {
1628 	struct stdata	*stp;
1629 	ulong_t		rput_opt;
1630 	strwakeup_t	wakeups;
1631 	strsigset_t	firstmsgsigs;	/* Signals if first message on queue */
1632 	strsigset_t	allmsgsigs;	/* Signals for all messages */
1633 	strsigset_t	signals;	/* Signals events to generate */
1634 	strpollset_t	pollwakeups;
1635 	mblk_t		*nextbp;
1636 	uchar_t		band = 0;
1637 	int		hipri_sig;
1638 
1639 	stp = (struct stdata *)q->q_ptr;
1640 	/*
1641 	 * Use rput_opt for optimized access to the SR_ flags except
1642 	 * SR_POLLIN. That flag has to be checked under sd_lock since it
1643 	 * is modified by strpoll().
1644 	 */
1645 	rput_opt = stp->sd_rput_opt;
1646 
1647 	ASSERT(qclaimed(q));
1648 	TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER,
1649 	    "strrput called with message type:q %p bp %p", q, bp);
1650 
1651 	/*
1652 	 * Perform initial processing and pass to the parameterized functions.
1653 	 */
1654 	ASSERT(bp->b_next == NULL);
1655 
1656 	switch (bp->b_datap->db_type) {
1657 	case M_DATA:
1658 		/*
1659 		 * sockfs is the only consumer of STREOF and when it is set,
1660 		 * it implies that the receiver is not interested in receiving
1661 		 * any more data, hence the mblk is freed to prevent unnecessary
1662 		 * message queueing at the stream head.
1663 		 */
1664 		if (stp->sd_flag == STREOF) {
1665 			freemsg(bp);
1666 			return (0);
1667 		}
1668 		if ((rput_opt & SR_IGN_ZEROLEN) &&
1669 		    bp->b_rptr == bp->b_wptr && msgnodata(bp)) {
1670 			/*
1671 			 * Ignore zero-length M_DATA messages. These might be
1672 			 * generated by some transports.
1673 			 * The zero-length M_DATA messages, even if they
1674 			 * are ignored, should effect the atmark tracking and
1675 			 * should wake up a thread sleeping in strwaitmark.
1676 			 */
1677 			mutex_enter(&stp->sd_lock);
1678 			if (bp->b_flag & MSGMARKNEXT) {
1679 				/*
1680 				 * Record the position of the mark either
1681 				 * in q_last or in STRATMARK.
1682 				 */
1683 				if (q->q_last != NULL) {
1684 					q->q_last->b_flag &= ~MSGNOTMARKNEXT;
1685 					q->q_last->b_flag |= MSGMARKNEXT;
1686 				} else {
1687 					stp->sd_flag &= ~STRNOTATMARK;
1688 					stp->sd_flag |= STRATMARK;
1689 				}
1690 			} else if (bp->b_flag & MSGNOTMARKNEXT) {
1691 				/*
1692 				 * Record that this is not the position of
1693 				 * the mark either in q_last or in
1694 				 * STRNOTATMARK.
1695 				 */
1696 				if (q->q_last != NULL) {
1697 					q->q_last->b_flag &= ~MSGMARKNEXT;
1698 					q->q_last->b_flag |= MSGNOTMARKNEXT;
1699 				} else {
1700 					stp->sd_flag &= ~STRATMARK;
1701 					stp->sd_flag |= STRNOTATMARK;
1702 				}
1703 			}
1704 			if (stp->sd_flag & RSLEEP) {
1705 				stp->sd_flag &= ~RSLEEP;
1706 				cv_broadcast(&q->q_wait);
1707 			}
1708 			mutex_exit(&stp->sd_lock);
1709 			freemsg(bp);
1710 			return (0);
1711 		}
1712 		wakeups = RSLEEP;
1713 		if (bp->b_band == 0) {
1714 			firstmsgsigs = S_INPUT | S_RDNORM;
1715 			pollwakeups = POLLIN | POLLRDNORM;
1716 		} else {
1717 			firstmsgsigs = S_INPUT | S_RDBAND;
1718 			pollwakeups = POLLIN | POLLRDBAND;
1719 		}
1720 		if (rput_opt & SR_SIGALLDATA)
1721 			allmsgsigs = firstmsgsigs;
1722 		else
1723 			allmsgsigs = 0;
1724 
1725 		mutex_enter(&stp->sd_lock);
1726 		if ((rput_opt & SR_CONSOL_DATA) &&
1727 		    (q->q_last != NULL) &&
1728 		    (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) {
1729 			/*
1730 			 * Consolidate an M_DATA message onto an M_DATA,
1731 			 * M_PROTO, or M_PCPROTO by merging it with q_last.
1732 			 * The consolidation does not take place if
1733 			 * the old message is marked with either of the
1734 			 * marks or the delim flag or if the new
1735 			 * message is marked with MSGMARK. The MSGMARK
1736 			 * check is needed to handle the odd semantics of
1737 			 * MSGMARK where essentially the whole message
1738 			 * is to be treated as marked.
1739 			 * Carry any MSGMARKNEXT  and MSGNOTMARKNEXT from the
1740 			 * new message to the front of the b_cont chain.
1741 			 */
1742 			mblk_t *lbp = q->q_last;
1743 			unsigned char db_type = lbp->b_datap->db_type;
1744 
1745 			if ((db_type == M_DATA || db_type == M_PROTO ||
1746 			    db_type == M_PCPROTO) &&
1747 			    !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) {
1748 				rmvq_noenab(q, lbp);
1749 				/*
1750 				 * The first message in the b_cont list
1751 				 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
1752 				 * We need to handle the case where we
1753 				 * are appending:
1754 				 *
1755 				 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
1756 				 * 2) a MSGMARKNEXT to a plain message.
1757 				 * 3) a MSGNOTMARKNEXT to a plain message
1758 				 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
1759 				 *    message.
1760 				 *
1761 				 * Thus we never append a MSGMARKNEXT or
1762 				 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
1763 				 */
1764 				if (bp->b_flag & MSGMARKNEXT) {
1765 					lbp->b_flag |= MSGMARKNEXT;
1766 					lbp->b_flag &= ~MSGNOTMARKNEXT;
1767 					bp->b_flag &= ~MSGMARKNEXT;
1768 				} else if (bp->b_flag & MSGNOTMARKNEXT) {
1769 					lbp->b_flag |= MSGNOTMARKNEXT;
1770 					bp->b_flag &= ~MSGNOTMARKNEXT;
1771 				}
1772 
1773 				linkb(lbp, bp);
1774 				bp = lbp;
1775 				/*
1776 				 * The new message logically isn't the first
1777 				 * even though the q_first check below thinks
1778 				 * it is. Clear the firstmsgsigs to make it
1779 				 * not appear to be first.
1780 				 */
1781 				firstmsgsigs = 0;
1782 			}
1783 		}
1784 		break;
1785 
1786 	case M_PASSFP:
1787 		wakeups = RSLEEP;
1788 		allmsgsigs = 0;
1789 		if (bp->b_band == 0) {
1790 			firstmsgsigs = S_INPUT | S_RDNORM;
1791 			pollwakeups = POLLIN | POLLRDNORM;
1792 		} else {
1793 			firstmsgsigs = S_INPUT | S_RDBAND;
1794 			pollwakeups = POLLIN | POLLRDBAND;
1795 		}
1796 		mutex_enter(&stp->sd_lock);
1797 		break;
1798 
1799 	case M_PROTO:
1800 	case M_PCPROTO:
1801 		ASSERT(stp->sd_rprotofunc != NULL);
1802 		bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp,
1803 		    &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1804 #define	ALLSIG	(S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\
1805 		S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)
1806 #define	ALLPOLL	(POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\
1807 		POLLWRBAND)
1808 
1809 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1810 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1811 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1812 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1813 
1814 		mutex_enter(&stp->sd_lock);
1815 		break;
1816 
1817 	default:
1818 		ASSERT(stp->sd_rmiscfunc != NULL);
1819 		bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp,
1820 		    &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups);
1821 		ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0);
1822 		ASSERT((firstmsgsigs & ~ALLSIG) == 0);
1823 		ASSERT((allmsgsigs & ~ALLSIG) == 0);
1824 		ASSERT((pollwakeups & ~ALLPOLL) == 0);
1825 #undef	ALLSIG
1826 #undef	ALLPOLL
1827 		mutex_enter(&stp->sd_lock);
1828 		break;
1829 	}
1830 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1831 
1832 	/* By default generate superset of signals */
1833 	signals = (firstmsgsigs | allmsgsigs);
1834 
1835 	/*
1836 	 * The  proto and misc functions can return multiple messages
1837 	 * as a b_next chain. Such messages are processed separately.
1838 	 */
1839 one_more:
1840 	hipri_sig = 0;
1841 	if (bp == NULL) {
1842 		nextbp = NULL;
1843 	} else {
1844 		nextbp = bp->b_next;
1845 		bp->b_next = NULL;
1846 
1847 		switch (bp->b_datap->db_type) {
1848 		case M_PCPROTO:
1849 			/*
1850 			 * Only one priority protocol message is allowed at the
1851 			 * stream head at a time.
1852 			 */
1853 			if (stp->sd_flag & STRPRI) {
1854 				TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR,
1855 				    "M_PCPROTO already at head");
1856 				freemsg(bp);
1857 				mutex_exit(&stp->sd_lock);
1858 				goto done;
1859 			}
1860 			stp->sd_flag |= STRPRI;
1861 			hipri_sig = 1;
1862 			/* FALLTHRU */
1863 		case M_DATA:
1864 		case M_PROTO:
1865 		case M_PASSFP:
1866 			band = bp->b_band;
1867 			/*
1868 			 * Marking doesn't work well when messages
1869 			 * are marked in more than one band.  We only
1870 			 * remember the last message received, even if
1871 			 * it is placed on the queue ahead of other
1872 			 * marked messages.
1873 			 */
1874 			if (bp->b_flag & MSGMARK)
1875 				stp->sd_mark = bp;
1876 			(void) putq(q, bp);
1877 
1878 			/*
1879 			 * If message is a PCPROTO message, always use
1880 			 * firstmsgsigs to determine if a signal should be
1881 			 * sent as strrput is the only place to send
1882 			 * signals for PCPROTO. Other messages are based on
1883 			 * the STRGETINPROG flag. The flag determines if
1884 			 * strrput or (k)strgetmsg will be responsible for
1885 			 * sending the signals, in the firstmsgsigs case.
1886 			 */
1887 			if ((hipri_sig == 1) ||
1888 			    (((stp->sd_flag & STRGETINPROG) == 0) &&
1889 			    (q->q_first == bp)))
1890 				signals = (firstmsgsigs | allmsgsigs);
1891 			else
1892 				signals = allmsgsigs;
1893 			break;
1894 
1895 		default:
1896 			mutex_exit(&stp->sd_lock);
1897 			(void) strrput_nondata(q, bp);
1898 			mutex_enter(&stp->sd_lock);
1899 			break;
1900 		}
1901 	}
1902 	ASSERT(MUTEX_HELD(&stp->sd_lock));
1903 	/*
1904 	 * Wake sleeping read/getmsg and cancel deferred wakeup
1905 	 */
1906 	if (wakeups & RSLEEP)
1907 		stp->sd_wakeq &= ~RSLEEP;
1908 
1909 	wakeups &= stp->sd_flag;
1910 	if (wakeups & RSLEEP) {
1911 		stp->sd_flag &= ~RSLEEP;
1912 		cv_broadcast(&q->q_wait);
1913 	}
1914 	if (wakeups & WSLEEP) {
1915 		stp->sd_flag &= ~WSLEEP;
1916 		cv_broadcast(&_WR(q)->q_wait);
1917 	}
1918 
1919 	if (pollwakeups != 0) {
1920 		if (pollwakeups == (POLLIN | POLLRDNORM)) {
1921 			/*
1922 			 * Can't use rput_opt since it was not
1923 			 * read when sd_lock was held and SR_POLLIN is changed
1924 			 * by strpoll() under sd_lock.
1925 			 */
1926 			if (!(stp->sd_rput_opt & SR_POLLIN))
1927 				goto no_pollwake;
1928 			stp->sd_rput_opt &= ~SR_POLLIN;
1929 		}
1930 		mutex_exit(&stp->sd_lock);
1931 		pollwakeup(&stp->sd_pollist, pollwakeups);
1932 		mutex_enter(&stp->sd_lock);
1933 	}
1934 no_pollwake:
1935 
1936 	/*
1937 	 * strsendsig can handle multiple signals with a
1938 	 * single call.
1939 	 */
1940 	if (stp->sd_sigflags & signals)
1941 		strsendsig(stp->sd_siglist, signals, band, 0);
1942 	mutex_exit(&stp->sd_lock);
1943 
1944 
1945 done:
1946 	if (nextbp == NULL)
1947 		return (0);
1948 
1949 	/*
1950 	 * Any signals were handled the first time.
1951 	 * Wakeups and pollwakeups are redone to avoid any race
1952 	 * conditions - all the messages are not queued until the
1953 	 * last message has been processed by strrput.
1954 	 */
1955 	bp = nextbp;
1956 	signals = firstmsgsigs = allmsgsigs = 0;
1957 	mutex_enter(&stp->sd_lock);
1958 	goto one_more;
1959 }
1960 
1961 static void
1962 log_dupioc(queue_t *rq, mblk_t *bp)
1963 {
1964 	queue_t *wq, *qp;
1965 	char *modnames, *mnp, *dname;
1966 	size_t maxmodstr;
1967 	boolean_t islast;
1968 
1969 	/*
1970 	 * Allocate a buffer large enough to hold the names of nstrpush modules
1971 	 * and one driver, with spaces between and NUL terminator.  If we can't
1972 	 * get memory, then we'll just log the driver name.
1973 	 */
1974 	maxmodstr = nstrpush * (FMNAMESZ + 1);
1975 	mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP);
1976 
1977 	/* march down write side to print log message down to the driver */
1978 	wq = WR(rq);
1979 
1980 	/* make sure q_next doesn't shift around while we're grabbing data */
1981 	claimstr(wq);
1982 	qp = wq->q_next;
1983 	do {
1984 		if ((dname = qp->q_qinfo->qi_minfo->mi_idname) == NULL)
1985 			dname = "?";
1986 		islast = !SAMESTR(qp) || qp->q_next == NULL;
1987 		if (modnames == NULL) {
1988 			/*
1989 			 * If we don't have memory, then get the driver name in
1990 			 * the log where we can see it.  Note that memory
1991 			 * pressure is a possible cause of these sorts of bugs.
1992 			 */
1993 			if (islast) {
1994 				modnames = dname;
1995 				maxmodstr = 0;
1996 			}
1997 		} else {
1998 			mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname);
1999 			if (!islast)
2000 				*mnp++ = ' ';
2001 		}
2002 		qp = qp->q_next;
2003 	} while (!islast);
2004 	releasestr(wq);
2005 	/* Cannot happen unless stream head is corrupt. */
2006 	ASSERT(modnames != NULL);
2007 	(void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1,
2008 	    SL_CONSOLE|SL_TRACE|SL_ERROR,
2009 	    "Warning: stream %p received duplicate %X M_IOC%s; module list: %s",
2010 	    rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd,
2011 	    (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames);
2012 	if (maxmodstr != 0)
2013 		kmem_free(modnames, maxmodstr);
2014 }
2015 
2016 int
2017 strrput_nondata(queue_t *q, mblk_t *bp)
2018 {
2019 	struct stdata *stp;
2020 	struct iocblk *iocbp;
2021 	struct stroptions *sop;
2022 	struct copyreq *reqp;
2023 	struct copyresp *resp;
2024 	unsigned char bpri;
2025 	unsigned char  flushed_already = 0;
2026 
2027 	stp = (struct stdata *)q->q_ptr;
2028 
2029 	ASSERT(!(stp->sd_flag & STPLEX));
2030 	ASSERT(qclaimed(q));
2031 
2032 	switch (bp->b_datap->db_type) {
2033 	case M_ERROR:
2034 		/*
2035 		 * An error has occurred downstream, the errno is in the first
2036 		 * bytes of the message.
2037 		 */
2038 		if ((bp->b_wptr - bp->b_rptr) == 2) {	/* New flavor */
2039 			unsigned char rw = 0;
2040 
2041 			mutex_enter(&stp->sd_lock);
2042 			if (*bp->b_rptr != NOERROR) {	/* read error */
2043 				if (*bp->b_rptr != 0) {
2044 					if (stp->sd_flag & STRDERR)
2045 						flushed_already |= FLUSHR;
2046 					stp->sd_flag |= STRDERR;
2047 					rw |= FLUSHR;
2048 				} else {
2049 					stp->sd_flag &= ~STRDERR;
2050 				}
2051 				stp->sd_rerror = *bp->b_rptr;
2052 			}
2053 			bp->b_rptr++;
2054 			if (*bp->b_rptr != NOERROR) {	/* write error */
2055 				if (*bp->b_rptr != 0) {
2056 					if (stp->sd_flag & STWRERR)
2057 						flushed_already |= FLUSHW;
2058 					stp->sd_flag |= STWRERR;
2059 					rw |= FLUSHW;
2060 				} else {
2061 					stp->sd_flag &= ~STWRERR;
2062 				}
2063 				stp->sd_werror = *bp->b_rptr;
2064 			}
2065 			if (rw) {
2066 				TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE,
2067 				    "strrput cv_broadcast:q %p, bp %p",
2068 				    q, bp);
2069 				cv_broadcast(&q->q_wait); /* readers */
2070 				cv_broadcast(&_WR(q)->q_wait); /* writers */
2071 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
2072 
2073 				mutex_exit(&stp->sd_lock);
2074 				pollwakeup(&stp->sd_pollist, POLLERR);
2075 				mutex_enter(&stp->sd_lock);
2076 
2077 				if (stp->sd_sigflags & S_ERROR)
2078 					strsendsig(stp->sd_siglist, S_ERROR, 0,
2079 					    ((rw & FLUSHR) ? stp->sd_rerror :
2080 					    stp->sd_werror));
2081 				mutex_exit(&stp->sd_lock);
2082 				/*
2083 				 * Send the M_FLUSH only
2084 				 * for the first M_ERROR
2085 				 * message on the stream
2086 				 */
2087 				if (flushed_already == rw) {
2088 					freemsg(bp);
2089 					return (0);
2090 				}
2091 
2092 				bp->b_datap->db_type = M_FLUSH;
2093 				*bp->b_rptr = rw;
2094 				bp->b_wptr = bp->b_rptr + 1;
2095 				/*
2096 				 * Protect against the driver
2097 				 * passing up messages after
2098 				 * it has done a qprocsoff
2099 				 */
2100 				if (_OTHERQ(q)->q_next == NULL)
2101 					freemsg(bp);
2102 				else
2103 					qreply(q, bp);
2104 				return (0);
2105 			} else
2106 				mutex_exit(&stp->sd_lock);
2107 		} else if (*bp->b_rptr != 0) {		/* Old flavor */
2108 				if (stp->sd_flag & (STRDERR|STWRERR))
2109 					flushed_already = FLUSHRW;
2110 				mutex_enter(&stp->sd_lock);
2111 				stp->sd_flag |= (STRDERR|STWRERR);
2112 				stp->sd_rerror = *bp->b_rptr;
2113 				stp->sd_werror = *bp->b_rptr;
2114 				TRACE_2(TR_FAC_STREAMS_FR,
2115 				    TR_STRRPUT_WAKE2,
2116 				    "strrput wakeup #2:q %p, bp %p", q, bp);
2117 				cv_broadcast(&q->q_wait); /* the readers */
2118 				cv_broadcast(&_WR(q)->q_wait); /* the writers */
2119 				cv_broadcast(&stp->sd_monitor); /* ioctllers */
2120 
2121 				mutex_exit(&stp->sd_lock);
2122 				pollwakeup(&stp->sd_pollist, POLLERR);
2123 				mutex_enter(&stp->sd_lock);
2124 
2125 				if (stp->sd_sigflags & S_ERROR)
2126 					strsendsig(stp->sd_siglist, S_ERROR, 0,
2127 					    (stp->sd_werror ? stp->sd_werror :
2128 					    stp->sd_rerror));
2129 				mutex_exit(&stp->sd_lock);
2130 
2131 				/*
2132 				 * Send the M_FLUSH only
2133 				 * for the first M_ERROR
2134 				 * message on the stream
2135 				 */
2136 				if (flushed_already != FLUSHRW) {
2137 					bp->b_datap->db_type = M_FLUSH;
2138 					*bp->b_rptr = FLUSHRW;
2139 					/*
2140 					 * Protect against the driver passing up
2141 					 * messages after it has done a
2142 					 * qprocsoff.
2143 					 */
2144 				if (_OTHERQ(q)->q_next == NULL)
2145 					freemsg(bp);
2146 				else
2147 					qreply(q, bp);
2148 				return (0);
2149 				}
2150 		}
2151 		freemsg(bp);
2152 		return (0);
2153 
2154 	case M_HANGUP:
2155 
2156 		freemsg(bp);
2157 		mutex_enter(&stp->sd_lock);
2158 		stp->sd_werror = ENXIO;
2159 		stp->sd_flag |= STRHUP;
2160 		stp->sd_flag &= ~(WSLEEP|RSLEEP);
2161 
2162 		/*
2163 		 * send signal if controlling tty
2164 		 */
2165 
2166 		if (stp->sd_sidp) {
2167 			prsignal(stp->sd_sidp, SIGHUP);
2168 			if (stp->sd_sidp != stp->sd_pgidp)
2169 				pgsignal(stp->sd_pgidp, SIGTSTP);
2170 		}
2171 
2172 		/*
2173 		 * wake up read, write, and exception pollers and
2174 		 * reset wakeup mechanism.
2175 		 */
2176 		cv_broadcast(&q->q_wait);	/* the readers */
2177 		cv_broadcast(&_WR(q)->q_wait);	/* the writers */
2178 		cv_broadcast(&stp->sd_monitor);	/* the ioctllers */
2179 		strhup(stp);
2180 		mutex_exit(&stp->sd_lock);
2181 		return (0);
2182 
2183 	case M_UNHANGUP:
2184 		freemsg(bp);
2185 		mutex_enter(&stp->sd_lock);
2186 		stp->sd_werror = 0;
2187 		stp->sd_flag &= ~STRHUP;
2188 		mutex_exit(&stp->sd_lock);
2189 		return (0);
2190 
2191 	case M_SIG:
2192 		/*
2193 		 * Someone downstream wants to post a signal.  The
2194 		 * signal to post is contained in the first byte of the
2195 		 * message.  If the message would go on the front of
2196 		 * the queue, send a signal to the process group
2197 		 * (if not SIGPOLL) or to the siglist processes
2198 		 * (SIGPOLL).  If something is already on the queue,
2199 		 * OR if we are delivering a delayed suspend (*sigh*
2200 		 * another "tty" hack) and there's no one sleeping already,
2201 		 * just enqueue the message.
2202 		 */
2203 		mutex_enter(&stp->sd_lock);
2204 		if (q->q_first || (*bp->b_rptr == SIGTSTP &&
2205 		    !(stp->sd_flag & RSLEEP))) {
2206 			(void) putq(q, bp);
2207 			mutex_exit(&stp->sd_lock);
2208 			return (0);
2209 		}
2210 		mutex_exit(&stp->sd_lock);
2211 		/* FALLTHRU */
2212 
2213 	case M_PCSIG:
2214 		/*
2215 		 * Don't enqueue, just post the signal.
2216 		 */
2217 		strsignal(stp, *bp->b_rptr, 0L);
2218 		freemsg(bp);
2219 		return (0);
2220 
2221 	case M_CMD:
2222 		if (MBLKL(bp) != sizeof (cmdblk_t)) {
2223 			freemsg(bp);
2224 			return (0);
2225 		}
2226 
2227 		mutex_enter(&stp->sd_lock);
2228 		if (stp->sd_flag & STRCMDWAIT) {
2229 			ASSERT(stp->sd_cmdblk == NULL);
2230 			stp->sd_cmdblk = bp;
2231 			cv_broadcast(&stp->sd_monitor);
2232 			mutex_exit(&stp->sd_lock);
2233 		} else {
2234 			mutex_exit(&stp->sd_lock);
2235 			freemsg(bp);
2236 		}
2237 		return (0);
2238 
2239 	case M_FLUSH:
2240 		/*
2241 		 * Flush queues.  The indication of which queues to flush
2242 		 * is in the first byte of the message.  If the read queue
2243 		 * is specified, then flush it.  If FLUSHBAND is set, just
2244 		 * flush the band specified by the second byte of the message.
2245 		 *
2246 		 * If a module has issued a M_SETOPT to not flush hi
2247 		 * priority messages off of the stream head, then pass this
2248 		 * flag into the flushq code to preserve such messages.
2249 		 */
2250 
2251 		if (*bp->b_rptr & FLUSHR) {
2252 			mutex_enter(&stp->sd_lock);
2253 			if (*bp->b_rptr & FLUSHBAND) {
2254 				ASSERT((bp->b_wptr - bp->b_rptr) >= 2);
2255 				flushband(q, *(bp->b_rptr + 1), FLUSHALL);
2256 			} else
2257 				flushq_common(q, FLUSHALL,
2258 				    stp->sd_read_opt & RFLUSHPCPROT);
2259 			if ((q->q_first == NULL) ||
2260 			    (q->q_first->b_datap->db_type < QPCTL))
2261 				stp->sd_flag &= ~STRPRI;
2262 			else {
2263 				ASSERT(stp->sd_flag & STRPRI);
2264 			}
2265 			mutex_exit(&stp->sd_lock);
2266 		}
2267 		if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) {
2268 			*bp->b_rptr &= ~FLUSHR;
2269 			bp->b_flag |= MSGNOLOOP;
2270 			/*
2271 			 * Protect against the driver passing up
2272 			 * messages after it has done a qprocsoff.
2273 			 */
2274 			if (_OTHERQ(q)->q_next == NULL)
2275 				freemsg(bp);
2276 			else
2277 				qreply(q, bp);
2278 			return (0);
2279 		}
2280 		freemsg(bp);
2281 		return (0);
2282 
2283 	case M_IOCACK:
2284 	case M_IOCNAK:
2285 		iocbp = (struct iocblk *)bp->b_rptr;
2286 		/*
2287 		 * If not waiting for ACK or NAK then just free msg.
2288 		 * If incorrect id sequence number then just free msg.
2289 		 * If already have ACK or NAK for user then this is a
2290 		 *    duplicate, display a warning and free the msg.
2291 		 */
2292 		mutex_enter(&stp->sd_lock);
2293 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2294 		    (stp->sd_iocid != iocbp->ioc_id)) {
2295 			/*
2296 			 * If the ACK/NAK is a dup, display a message
2297 			 * Dup is when sd_iocid == ioc_id, and
2298 			 * sd_iocblk == <valid ptr> or -1 (the former
2299 			 * is when an ioctl has been put on the stream
2300 			 * head, but has not yet been consumed, the
2301 			 * later is when it has been consumed).
2302 			 */
2303 			if ((stp->sd_iocid == iocbp->ioc_id) &&
2304 			    (stp->sd_iocblk != NULL)) {
2305 				log_dupioc(q, bp);
2306 			}
2307 			freemsg(bp);
2308 			mutex_exit(&stp->sd_lock);
2309 			return (0);
2310 		}
2311 
2312 		/*
2313 		 * Assign ACK or NAK to user and wake up.
2314 		 */
2315 		stp->sd_iocblk = bp;
2316 		cv_broadcast(&stp->sd_monitor);
2317 		mutex_exit(&stp->sd_lock);
2318 		return (0);
2319 
2320 	case M_COPYIN:
2321 	case M_COPYOUT:
2322 		reqp = (struct copyreq *)bp->b_rptr;
2323 
2324 		/*
2325 		 * If not waiting for ACK or NAK then just fail request.
2326 		 * If already have ACK, NAK, or copy request, then just
2327 		 * fail request.
2328 		 * If incorrect id sequence number then just fail request.
2329 		 */
2330 		mutex_enter(&stp->sd_lock);
2331 		if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk ||
2332 		    (stp->sd_iocid != reqp->cq_id)) {
2333 			if (bp->b_cont) {
2334 				freemsg(bp->b_cont);
2335 				bp->b_cont = NULL;
2336 			}
2337 			bp->b_datap->db_type = M_IOCDATA;
2338 			bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
2339 			resp = (struct copyresp *)bp->b_rptr;
2340 			resp->cp_rval = (caddr_t)1;	/* failure */
2341 			mutex_exit(&stp->sd_lock);
2342 			putnext(stp->sd_wrq, bp);
2343 			return (0);
2344 		}
2345 
2346 		/*
2347 		 * Assign copy request to user and wake up.
2348 		 */
2349 		stp->sd_iocblk = bp;
2350 		cv_broadcast(&stp->sd_monitor);
2351 		mutex_exit(&stp->sd_lock);
2352 		return (0);
2353 
2354 	case M_SETOPTS:
2355 		/*
2356 		 * Set stream head options (read option, write offset,
2357 		 * min/max packet size, and/or high/low water marks for
2358 		 * the read side only).
2359 		 */
2360 
2361 		bpri = 0;
2362 		sop = (struct stroptions *)bp->b_rptr;
2363 		mutex_enter(&stp->sd_lock);
2364 		if (sop->so_flags & SO_READOPT) {
2365 			switch (sop->so_readopt & RMODEMASK) {
2366 			case RNORM:
2367 				stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
2368 				break;
2369 
2370 			case RMSGD:
2371 				stp->sd_read_opt =
2372 				    ((stp->sd_read_opt & ~RD_MSGNODIS) |
2373 				    RD_MSGDIS);
2374 				break;
2375 
2376 			case RMSGN:
2377 				stp->sd_read_opt =
2378 				    ((stp->sd_read_opt & ~RD_MSGDIS) |
2379 				    RD_MSGNODIS);
2380 				break;
2381 			}
2382 			switch (sop->so_readopt & RPROTMASK) {
2383 			case RPROTNORM:
2384 				stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
2385 				break;
2386 
2387 			case RPROTDAT:
2388 				stp->sd_read_opt =
2389 				    ((stp->sd_read_opt & ~RD_PROTDIS) |
2390 				    RD_PROTDAT);
2391 				break;
2392 
2393 			case RPROTDIS:
2394 				stp->sd_read_opt =
2395 				    ((stp->sd_read_opt & ~RD_PROTDAT) |
2396 				    RD_PROTDIS);
2397 				break;
2398 			}
2399 			switch (sop->so_readopt & RFLUSHMASK) {
2400 			case RFLUSHPCPROT:
2401 				/*
2402 				 * This sets the stream head to NOT flush
2403 				 * M_PCPROTO messages.
2404 				 */
2405 				stp->sd_read_opt |= RFLUSHPCPROT;
2406 				break;
2407 			}
2408 		}
2409 		if (sop->so_flags & SO_ERROPT) {
2410 			switch (sop->so_erropt & RERRMASK) {
2411 			case RERRNORM:
2412 				stp->sd_flag &= ~STRDERRNONPERSIST;
2413 				break;
2414 			case RERRNONPERSIST:
2415 				stp->sd_flag |= STRDERRNONPERSIST;
2416 				break;
2417 			}
2418 			switch (sop->so_erropt & WERRMASK) {
2419 			case WERRNORM:
2420 				stp->sd_flag &= ~STWRERRNONPERSIST;
2421 				break;
2422 			case WERRNONPERSIST:
2423 				stp->sd_flag |= STWRERRNONPERSIST;
2424 				break;
2425 			}
2426 		}
2427 		if (sop->so_flags & SO_COPYOPT) {
2428 			if (sop->so_copyopt & ZCVMSAFE) {
2429 				stp->sd_copyflag |= STZCVMSAFE;
2430 				stp->sd_copyflag &= ~STZCVMUNSAFE;
2431 			} else if (sop->so_copyopt & ZCVMUNSAFE) {
2432 				stp->sd_copyflag |= STZCVMUNSAFE;
2433 				stp->sd_copyflag &= ~STZCVMSAFE;
2434 			}
2435 
2436 			if (sop->so_copyopt & COPYCACHED) {
2437 				stp->sd_copyflag |= STRCOPYCACHED;
2438 			}
2439 		}
2440 		if (sop->so_flags & SO_WROFF)
2441 			stp->sd_wroff = sop->so_wroff;
2442 		if (sop->so_flags & SO_TAIL)
2443 			stp->sd_tail = sop->so_tail;
2444 		if (sop->so_flags & SO_MINPSZ)
2445 			q->q_minpsz = sop->so_minpsz;
2446 		if (sop->so_flags & SO_MAXPSZ)
2447 			q->q_maxpsz = sop->so_maxpsz;
2448 		if (sop->so_flags & SO_MAXBLK)
2449 			stp->sd_maxblk = sop->so_maxblk;
2450 		if (sop->so_flags & SO_HIWAT) {
2451 			if (sop->so_flags & SO_BAND) {
2452 				if (strqset(q, QHIWAT,
2453 				    sop->so_band, sop->so_hiwat)) {
2454 					cmn_err(CE_WARN, "strrput: could not "
2455 					    "allocate qband\n");
2456 				} else {
2457 					bpri = sop->so_band;
2458 				}
2459 			} else {
2460 				q->q_hiwat = sop->so_hiwat;
2461 			}
2462 		}
2463 		if (sop->so_flags & SO_LOWAT) {
2464 			if (sop->so_flags & SO_BAND) {
2465 				if (strqset(q, QLOWAT,
2466 				    sop->so_band, sop->so_lowat)) {
2467 					cmn_err(CE_WARN, "strrput: could not "
2468 					    "allocate qband\n");
2469 				} else {
2470 					bpri = sop->so_band;
2471 				}
2472 			} else {
2473 				q->q_lowat = sop->so_lowat;
2474 			}
2475 		}
2476 		if (sop->so_flags & SO_MREADON)
2477 			stp->sd_flag |= SNDMREAD;
2478 		if (sop->so_flags & SO_MREADOFF)
2479 			stp->sd_flag &= ~SNDMREAD;
2480 		if (sop->so_flags & SO_NDELON)
2481 			stp->sd_flag |= OLDNDELAY;
2482 		if (sop->so_flags & SO_NDELOFF)
2483 			stp->sd_flag &= ~OLDNDELAY;
2484 		if (sop->so_flags & SO_ISTTY)
2485 			stp->sd_flag |= STRISTTY;
2486 		if (sop->so_flags & SO_ISNTTY)
2487 			stp->sd_flag &= ~STRISTTY;
2488 		if (sop->so_flags & SO_TOSTOP)
2489 			stp->sd_flag |= STRTOSTOP;
2490 		if (sop->so_flags & SO_TONSTOP)
2491 			stp->sd_flag &= ~STRTOSTOP;
2492 		if (sop->so_flags & SO_DELIM)
2493 			stp->sd_flag |= STRDELIM;
2494 		if (sop->so_flags & SO_NODELIM)
2495 			stp->sd_flag &= ~STRDELIM;
2496 
2497 		mutex_exit(&stp->sd_lock);
2498 		freemsg(bp);
2499 
2500 		/* Check backenable in case the water marks changed */
2501 		qbackenable(q, bpri);
2502 		return (0);
2503 
2504 	/*
2505 	 * The following set of cases deal with situations where two stream
2506 	 * heads are connected to each other (twisted streams).  These messages
2507 	 * have no meaning at the stream head.
2508 	 */
2509 	case M_BREAK:
2510 	case M_CTL:
2511 	case M_DELAY:
2512 	case M_START:
2513 	case M_STOP:
2514 	case M_IOCDATA:
2515 	case M_STARTI:
2516 	case M_STOPI:
2517 		freemsg(bp);
2518 		return (0);
2519 
2520 	case M_IOCTL:
2521 		/*
2522 		 * Always NAK this condition
2523 		 * (makes no sense)
2524 		 * If there is one or more threads in the read side
2525 		 * rwnext we have to defer the nacking until that thread
2526 		 * returns (in strget).
2527 		 */
2528 		mutex_enter(&stp->sd_lock);
2529 		if (stp->sd_struiodnak != 0) {
2530 			/*
2531 			 * Defer NAK to the streamhead. Queue at the end
2532 			 * the list.
2533 			 */
2534 			mblk_t *mp = stp->sd_struionak;
2535 
2536 			while (mp && mp->b_next)
2537 				mp = mp->b_next;
2538 			if (mp)
2539 				mp->b_next = bp;
2540 			else
2541 				stp->sd_struionak = bp;
2542 			bp->b_next = NULL;
2543 			mutex_exit(&stp->sd_lock);
2544 			return (0);
2545 		}
2546 		mutex_exit(&stp->sd_lock);
2547 
2548 		bp->b_datap->db_type = M_IOCNAK;
2549 		/*
2550 		 * Protect against the driver passing up
2551 		 * messages after it has done a qprocsoff.
2552 		 */
2553 		if (_OTHERQ(q)->q_next == NULL)
2554 			freemsg(bp);
2555 		else
2556 			qreply(q, bp);
2557 		return (0);
2558 
2559 	default:
2560 #ifdef DEBUG
2561 		cmn_err(CE_WARN,
2562 		    "bad message type %x received at stream head\n",
2563 		    bp->b_datap->db_type);
2564 #endif
2565 		freemsg(bp);
2566 		return (0);
2567 	}
2568 
2569 	/* NOTREACHED */
2570 }
2571 
2572 /*
2573  * Check if the stream pointed to by `stp' can be written to, and return an
2574  * error code if not.  If `eiohup' is set, then return EIO if STRHUP is set.
2575  * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream,
2576  * then always return EPIPE and send a SIGPIPE to the invoking thread.
2577  */
2578 static int
2579 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok)
2580 {
2581 	int error;
2582 
2583 	ASSERT(MUTEX_HELD(&stp->sd_lock));
2584 
2585 	/*
2586 	 * For modem support, POSIX states that on writes, EIO should
2587 	 * be returned if the stream has been hung up.
2588 	 */
2589 	if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP)
2590 		error = EIO;
2591 	else
2592 		error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0);
2593 
2594 	if (error != 0) {
2595 		if (!(stp->sd_flag & STPLEX) &&
2596 		    (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) {
2597 			tsignal(curthread, SIGPIPE);
2598 			error = EPIPE;
2599 		}
2600 	}
2601 
2602 	return (error);
2603 }
2604 
2605 /*
2606  * Copyin and send data down a stream.
2607  * The caller will allocate and copyin any control part that precedes the
2608  * message and pass than in as mctl.
2609  *
2610  * Caller should *not* hold sd_lock.
2611  * When EWOULDBLOCK is returned the caller has to redo the canputnext
2612  * under sd_lock in order to avoid missing a backenabling wakeup.
2613  *
2614  * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA.
2615  *
2616  * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages.
2617  * For sync streams we can only ignore flow control by reverting to using
2618  * putnext.
2619  *
2620  * If sd_maxblk is less than *iosize this routine might return without
2621  * transferring all of *iosize. In all cases, on return *iosize will contain
2622  * the amount of data that was transferred.
2623  */
2624 static int
2625 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize,
2626     int b_flag, int pri, int flags)
2627 {
2628 	struiod_t uiod;
2629 	mblk_t *mp;
2630 	queue_t *wqp = stp->sd_wrq;
2631 	int error = 0;
2632 	ssize_t count = *iosize;
2633 	cred_t *cr;
2634 
2635 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
2636 
2637 	if (uiop != NULL && count >= 0)
2638 		flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0;
2639 
2640 	if (!(flags & STRUIO_POSTPONE)) {
2641 		/*
2642 		 * Use regular canputnext, strmakedata, putnext sequence.
2643 		 */
2644 		if (pri == 0) {
2645 			if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2646 				freemsg(mctl);
2647 				return (EWOULDBLOCK);
2648 			}
2649 		} else {
2650 			if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) {
2651 				freemsg(mctl);
2652 				return (EWOULDBLOCK);
2653 			}
2654 		}
2655 
2656 		if ((error = strmakedata(iosize, uiop, stp, flags,
2657 		    &mp)) != 0) {
2658 			freemsg(mctl);
2659 			/*
2660 			 * need to change return code to ENOMEM
2661 			 * so that this is not confused with
2662 			 * flow control, EAGAIN.
2663 			 */
2664 
2665 			if (error == EAGAIN)
2666 				return (ENOMEM);
2667 			else
2668 				return (error);
2669 		}
2670 		if (mctl != NULL) {
2671 			if (mctl->b_cont == NULL)
2672 				mctl->b_cont = mp;
2673 			else if (mp != NULL)
2674 				linkb(mctl, mp);
2675 			mp = mctl;
2676 			/*
2677 			 * Note that for interrupt thread, the CRED() is
2678 			 * NULL. Don't bother with the pid either.
2679 			 */
2680 			if ((cr = CRED()) != NULL) {
2681 				mblk_setcred(mp, cr);
2682 				DB_CPID(mp) = curproc->p_pid;
2683 			}
2684 		} else if (mp == NULL)
2685 			return (0);
2686 
2687 		mp->b_flag |= b_flag;
2688 		mp->b_band = (uchar_t)pri;
2689 
2690 		if (flags & MSG_IGNFLOW) {
2691 			/*
2692 			 * XXX Hack: Don't get stuck running service
2693 			 * procedures. This is needed for sockfs when
2694 			 * sending the unbind message out of the rput
2695 			 * procedure - we don't want a put procedure
2696 			 * to run service procedures.
2697 			 */
2698 			putnext(wqp, mp);
2699 		} else {
2700 			stream_willservice(stp);
2701 			putnext(wqp, mp);
2702 			stream_runservice(stp);
2703 		}
2704 		return (0);
2705 	}
2706 	/*
2707 	 * Stream supports rwnext() for the write side.
2708 	 */
2709 	if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) {
2710 		freemsg(mctl);
2711 		/*
2712 		 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled".
2713 		 */
2714 		return (error == EAGAIN ? ENOMEM : error);
2715 	}
2716 	if (mctl != NULL) {
2717 		if (mctl->b_cont == NULL)
2718 			mctl->b_cont = mp;
2719 		else if (mp != NULL)
2720 			linkb(mctl, mp);
2721 		mp = mctl;
2722 		/*
2723 		 * Note that for interrupt thread, the CRED() is
2724 		 * NULL.  Don't bother with the pid either.
2725 		 */
2726 		if ((cr = CRED()) != NULL) {
2727 			mblk_setcred(mp, cr);
2728 			DB_CPID(mp) = curproc->p_pid;
2729 		}
2730 	} else if (mp == NULL) {
2731 		return (0);
2732 	}
2733 
2734 	mp->b_flag |= b_flag;
2735 	mp->b_band = (uchar_t)pri;
2736 
2737 	(void) uiodup(uiop, &uiod.d_uio, uiod.d_iov,
2738 	    sizeof (uiod.d_iov) / sizeof (*uiod.d_iov));
2739 	uiod.d_uio.uio_offset = 0;
2740 	uiod.d_mp = mp;
2741 	error = rwnext(wqp, &uiod);
2742 	if (! uiod.d_mp) {
2743 		uioskip(uiop, *iosize);
2744 		return (error);
2745 	}
2746 	ASSERT(mp == uiod.d_mp);
2747 	if (error == EINVAL) {
2748 		/*
2749 		 * The stream plumbing must have changed while
2750 		 * we were away, so just turn off rwnext()s.
2751 		 */
2752 		error = 0;
2753 	} else if (error == EBUSY || error == EWOULDBLOCK) {
2754 		/*
2755 		 * Couldn't enter a perimeter or took a page fault,
2756 		 * so fall-back to putnext().
2757 		 */
2758 		error = 0;
2759 	} else {
2760 		freemsg(mp);
2761 		return (error);
2762 	}
2763 	/* Have to check canput before consuming data from the uio */
2764 	if (pri == 0) {
2765 		if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) {
2766 			freemsg(mp);
2767 			return (EWOULDBLOCK);
2768 		}
2769 	} else {
2770 		if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) {
2771 			freemsg(mp);
2772 			return (EWOULDBLOCK);
2773 		}
2774 	}
2775 	ASSERT(mp == uiod.d_mp);
2776 	/* Copyin data from the uio */
2777 	if ((error = struioget(wqp, mp, &uiod, 0)) != 0) {
2778 		freemsg(mp);
2779 		return (error);
2780 	}
2781 	uioskip(uiop, *iosize);
2782 	if (flags & MSG_IGNFLOW) {
2783 		/*
2784 		 * XXX Hack: Don't get stuck running service procedures.
2785 		 * This is needed for sockfs when sending the unbind message
2786 		 * out of the rput procedure - we don't want a put procedure
2787 		 * to run service procedures.
2788 		 */
2789 		putnext(wqp, mp);
2790 	} else {
2791 		stream_willservice(stp);
2792 		putnext(wqp, mp);
2793 		stream_runservice(stp);
2794 	}
2795 	return (0);
2796 }
2797 
2798 /*
2799  * Write attempts to break the write request into messages conforming
2800  * with the minimum and maximum packet sizes set downstream.
2801  *
2802  * Write will not block if downstream queue is full and
2803  * O_NDELAY is set, otherwise it will block waiting for the queue to get room.
2804  *
2805  * A write of zero bytes gets packaged into a zero length message and sent
2806  * downstream like any other message.
2807  *
2808  * If buffers of the requested sizes are not available, the write will
2809  * sleep until the buffers become available.
2810  *
2811  * Write (if specified) will supply a write offset in a message if it
2812  * makes sense. This can be specified by downstream modules as part of
2813  * a M_SETOPTS message.  Write will not supply the write offset if it
2814  * cannot supply any data in a buffer.  In other words, write will never
2815  * send down an empty packet due to a write offset.
2816  */
2817 /* ARGSUSED2 */
2818 int
2819 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp)
2820 {
2821 	return (strwrite_common(vp, uiop, crp, 0));
2822 }
2823 
2824 /* ARGSUSED2 */
2825 int
2826 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag)
2827 {
2828 	struct stdata *stp;
2829 	struct queue *wqp;
2830 	ssize_t rmin, rmax;
2831 	ssize_t iosize;
2832 	int waitflag;
2833 	int tempmode;
2834 	int error = 0;
2835 	int b_flag;
2836 
2837 	ASSERT(vp->v_stream);
2838 	stp = vp->v_stream;
2839 
2840 	mutex_enter(&stp->sd_lock);
2841 
2842 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
2843 		mutex_exit(&stp->sd_lock);
2844 		return (error);
2845 	}
2846 
2847 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
2848 		error = strwriteable(stp, B_TRUE, B_TRUE);
2849 		if (error != 0) {
2850 			mutex_exit(&stp->sd_lock);
2851 			return (error);
2852 		}
2853 	}
2854 
2855 	mutex_exit(&stp->sd_lock);
2856 
2857 	wqp = stp->sd_wrq;
2858 
2859 	/* get these values from them cached in the stream head */
2860 	rmin = stp->sd_qn_minpsz;
2861 	rmax = stp->sd_qn_maxpsz;
2862 
2863 	/*
2864 	 * Check the min/max packet size constraints.  If min packet size
2865 	 * is non-zero, the write cannot be split into multiple messages
2866 	 * and still guarantee the size constraints.
2867 	 */
2868 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp);
2869 
2870 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
2871 	if (rmax == 0) {
2872 		return (0);
2873 	}
2874 	if (rmin > 0) {
2875 		if (uiop->uio_resid < rmin) {
2876 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2877 			    "strwrite out:q %p out %d error %d",
2878 			    wqp, 0, ERANGE);
2879 			return (ERANGE);
2880 		}
2881 		if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) {
2882 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2883 			    "strwrite out:q %p out %d error %d",
2884 			    wqp, 1, ERANGE);
2885 			return (ERANGE);
2886 		}
2887 	}
2888 
2889 	/*
2890 	 * Do until count satisfied or error.
2891 	 */
2892 	waitflag = WRITEWAIT | wflag;
2893 	if (stp->sd_flag & OLDNDELAY)
2894 		tempmode = uiop->uio_fmode & ~FNDELAY;
2895 	else
2896 		tempmode = uiop->uio_fmode;
2897 
2898 	if (rmax == INFPSZ)
2899 		rmax = uiop->uio_resid;
2900 
2901 	/*
2902 	 * Note that tempmode does not get used in strput/strmakedata
2903 	 * but only in strwaitq. The other routines use uio_fmode
2904 	 * unmodified.
2905 	 */
2906 
2907 	/* LINTED: constant in conditional context */
2908 	while (1) {	/* breaks when uio_resid reaches zero */
2909 		/*
2910 		 * Determine the size of the next message to be
2911 		 * packaged.  May have to break write into several
2912 		 * messages based on max packet size.
2913 		 */
2914 		iosize = MIN(uiop->uio_resid, rmax);
2915 
2916 		/*
2917 		 * Put block downstream when flow control allows it.
2918 		 */
2919 		if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize))
2920 			b_flag = MSGDELIM;
2921 		else
2922 			b_flag = 0;
2923 
2924 		for (;;) {
2925 			int done = 0;
2926 
2927 			error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0);
2928 			if (error == 0)
2929 				break;
2930 			if (error != EWOULDBLOCK)
2931 				goto out;
2932 
2933 			mutex_enter(&stp->sd_lock);
2934 			/*
2935 			 * Check for a missed wakeup.
2936 			 * Needed since strput did not hold sd_lock across
2937 			 * the canputnext.
2938 			 */
2939 			if (canputnext(wqp)) {
2940 				/* Try again */
2941 				mutex_exit(&stp->sd_lock);
2942 				continue;
2943 			}
2944 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT,
2945 			    "strwrite wait:q %p wait", wqp);
2946 			if ((error = strwaitq(stp, waitflag, (ssize_t)0,
2947 			    tempmode, -1, &done)) != 0 || done) {
2948 				mutex_exit(&stp->sd_lock);
2949 				if ((vp->v_type == VFIFO) &&
2950 				    (uiop->uio_fmode & FNDELAY) &&
2951 				    (error == EAGAIN))
2952 					error = 0;
2953 				goto out;
2954 			}
2955 			TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE,
2956 			    "strwrite wake:q %p awakes", wqp);
2957 			if ((error = i_straccess(stp, JCWRITE)) != 0) {
2958 				mutex_exit(&stp->sd_lock);
2959 				goto out;
2960 			}
2961 			mutex_exit(&stp->sd_lock);
2962 		}
2963 		waitflag |= NOINTR;
2964 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID,
2965 		    "strwrite resid:q %p uiop %p", wqp, uiop);
2966 		if (uiop->uio_resid) {
2967 			/* Recheck for errors - needed for sockets */
2968 			if ((stp->sd_wput_opt & SW_RECHECK_ERR) &&
2969 			    (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) {
2970 				mutex_enter(&stp->sd_lock);
2971 				error = strwriteable(stp, B_FALSE, B_TRUE);
2972 				mutex_exit(&stp->sd_lock);
2973 				if (error != 0)
2974 					return (error);
2975 			}
2976 			continue;
2977 		}
2978 		break;
2979 	}
2980 out:
2981 	/*
2982 	 * For historical reasons, applications expect EAGAIN when a data
2983 	 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN.
2984 	 */
2985 	if (error == ENOMEM)
2986 		error = EAGAIN;
2987 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT,
2988 	    "strwrite out:q %p out %d error %d", wqp, 2, error);
2989 	return (error);
2990 }
2991 
2992 /*
2993  * Stream head write service routine.
2994  * Its job is to wake up any sleeping writers when a queue
2995  * downstream needs data (part of the flow control in putq and getq).
2996  * It also must wake anyone sleeping on a poll().
2997  * For stream head right below mux module, it must also invoke put procedure
2998  * of next downstream module.
2999  */
3000 int
3001 strwsrv(queue_t *q)
3002 {
3003 	struct stdata *stp;
3004 	queue_t *tq;
3005 	qband_t *qbp;
3006 	int i;
3007 	qband_t *myqbp;
3008 	int isevent;
3009 	unsigned char	qbf[NBAND];	/* band flushing backenable flags */
3010 
3011 	TRACE_1(TR_FAC_STREAMS_FR,
3012 	    TR_STRWSRV, "strwsrv:q %p", q);
3013 	stp = (struct stdata *)q->q_ptr;
3014 	ASSERT(qclaimed(q));
3015 	mutex_enter(&stp->sd_lock);
3016 	ASSERT(!(stp->sd_flag & STPLEX));
3017 
3018 	if (stp->sd_flag & WSLEEP) {
3019 		stp->sd_flag &= ~WSLEEP;
3020 		cv_broadcast(&q->q_wait);
3021 	}
3022 	mutex_exit(&stp->sd_lock);
3023 
3024 	/* The other end of a stream pipe went away. */
3025 	if ((tq = q->q_next) == NULL) {
3026 		return (0);
3027 	}
3028 
3029 	/* Find the next module forward that has a service procedure */
3030 	claimstr(q);
3031 	tq = q->q_nfsrv;
3032 	ASSERT(tq != NULL);
3033 
3034 	if ((q->q_flag & QBACK)) {
3035 		if ((tq->q_flag & QFULL)) {
3036 			mutex_enter(QLOCK(tq));
3037 			if (!(tq->q_flag & QFULL)) {
3038 				mutex_exit(QLOCK(tq));
3039 				goto wakeup;
3040 			}
3041 			/*
3042 			 * The queue must have become full again. Set QWANTW
3043 			 * again so strwsrv will be back enabled when
3044 			 * the queue becomes non-full next time.
3045 			 */
3046 			tq->q_flag |= QWANTW;
3047 			mutex_exit(QLOCK(tq));
3048 		} else {
3049 		wakeup:
3050 			pollwakeup(&stp->sd_pollist, POLLWRNORM);
3051 			mutex_enter(&stp->sd_lock);
3052 			if (stp->sd_sigflags & S_WRNORM)
3053 				strsendsig(stp->sd_siglist, S_WRNORM, 0, 0);
3054 			mutex_exit(&stp->sd_lock);
3055 		}
3056 	}
3057 
3058 	isevent = 0;
3059 	i = 1;
3060 	bzero((caddr_t)qbf, NBAND);
3061 	mutex_enter(QLOCK(tq));
3062 	if ((myqbp = q->q_bandp) != NULL)
3063 		for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) {
3064 			ASSERT(myqbp);
3065 			if ((myqbp->qb_flag & QB_BACK)) {
3066 				if (qbp->qb_flag & QB_FULL) {
3067 					/*
3068 					 * The band must have become full again.
3069 					 * Set QB_WANTW again so strwsrv will
3070 					 * be back enabled when the band becomes
3071 					 * non-full next time.
3072 					 */
3073 					qbp->qb_flag |= QB_WANTW;
3074 				} else {
3075 					isevent = 1;
3076 					qbf[i] = 1;
3077 				}
3078 			}
3079 			myqbp = myqbp->qb_next;
3080 			i++;
3081 		}
3082 	mutex_exit(QLOCK(tq));
3083 
3084 	if (isevent) {
3085 		for (i = tq->q_nband; i; i--) {
3086 			if (qbf[i]) {
3087 				pollwakeup(&stp->sd_pollist, POLLWRBAND);
3088 				mutex_enter(&stp->sd_lock);
3089 				if (stp->sd_sigflags & S_WRBAND)
3090 					strsendsig(stp->sd_siglist, S_WRBAND,
3091 					    (uchar_t)i, 0);
3092 				mutex_exit(&stp->sd_lock);
3093 			}
3094 		}
3095 	}
3096 
3097 	releasestr(q);
3098 	return (0);
3099 }
3100 
3101 /*
3102  * Special case of strcopyin/strcopyout for copying
3103  * struct strioctl that can deal with both data
3104  * models.
3105  */
3106 
3107 #ifdef	_LP64
3108 
3109 static int
3110 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3111 {
3112 	struct	strioctl32 strioc32;
3113 	struct	strioctl *striocp;
3114 
3115 	if (copyflag & U_TO_K) {
3116 		ASSERT((copyflag & K_TO_K) == 0);
3117 
3118 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
3119 			if (copyin(from, &strioc32, sizeof (strioc32)))
3120 				return (EFAULT);
3121 
3122 			striocp = (struct strioctl *)to;
3123 			striocp->ic_cmd	= strioc32.ic_cmd;
3124 			striocp->ic_timout = strioc32.ic_timout;
3125 			striocp->ic_len	= strioc32.ic_len;
3126 			striocp->ic_dp	= (char *)(uintptr_t)strioc32.ic_dp;
3127 
3128 		} else { /* NATIVE data model */
3129 			if (copyin(from, to, sizeof (struct strioctl))) {
3130 				return (EFAULT);
3131 			} else {
3132 				return (0);
3133 			}
3134 		}
3135 	} else {
3136 		ASSERT(copyflag & K_TO_K);
3137 		bcopy(from, to, sizeof (struct strioctl));
3138 	}
3139 	return (0);
3140 }
3141 
3142 static int
3143 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3144 {
3145 	struct	strioctl32 strioc32;
3146 	struct	strioctl *striocp;
3147 
3148 	if (copyflag & U_TO_K) {
3149 		ASSERT((copyflag & K_TO_K) == 0);
3150 
3151 		if ((flag & FMODELS) == DATAMODEL_ILP32) {
3152 			striocp = (struct strioctl *)from;
3153 			strioc32.ic_cmd	= striocp->ic_cmd;
3154 			strioc32.ic_timout = striocp->ic_timout;
3155 			strioc32.ic_len	= striocp->ic_len;
3156 			strioc32.ic_dp	= (caddr32_t)(uintptr_t)striocp->ic_dp;
3157 			ASSERT((char *)(uintptr_t)strioc32.ic_dp ==
3158 			    striocp->ic_dp);
3159 
3160 			if (copyout(&strioc32, to, sizeof (strioc32)))
3161 				return (EFAULT);
3162 
3163 		} else { /* NATIVE data model */
3164 			if (copyout(from, to, sizeof (struct strioctl))) {
3165 				return (EFAULT);
3166 			} else {
3167 				return (0);
3168 			}
3169 		}
3170 	} else {
3171 		ASSERT(copyflag & K_TO_K);
3172 		bcopy(from, to, sizeof (struct strioctl));
3173 	}
3174 	return (0);
3175 }
3176 
3177 #else	/* ! _LP64 */
3178 
3179 /* ARGSUSED2 */
3180 static int
3181 strcopyin_strioctl(void *from, void *to, int flag, int copyflag)
3182 {
3183 	return (strcopyin(from, to, sizeof (struct strioctl), copyflag));
3184 }
3185 
3186 /* ARGSUSED2 */
3187 static int
3188 strcopyout_strioctl(void *from, void *to, int flag, int copyflag)
3189 {
3190 	return (strcopyout(from, to, sizeof (struct strioctl), copyflag));
3191 }
3192 
3193 #endif	/* _LP64 */
3194 
3195 /*
3196  * Determine type of job control semantics expected by user.  The
3197  * possibilities are:
3198  *	JCREAD	- Behaves like read() on fd; send SIGTTIN
3199  *	JCWRITE	- Behaves like write() on fd; send SIGTTOU if TOSTOP set
3200  *	JCSETP	- Sets a value in the stream; send SIGTTOU, ignore TOSTOP
3201  *	JCGETP	- Gets a value in the stream; no signals.
3202  * See straccess in strsubr.c for usage of these values.
3203  *
3204  * This routine also returns -1 for I_STR as a special case; the
3205  * caller must call again with the real ioctl number for
3206  * classification.
3207  */
3208 static int
3209 job_control_type(int cmd)
3210 {
3211 	switch (cmd) {
3212 	case I_STR:
3213 		return (-1);
3214 
3215 	case I_RECVFD:
3216 	case I_E_RECVFD:
3217 		return (JCREAD);
3218 
3219 	case I_FDINSERT:
3220 	case I_SENDFD:
3221 		return (JCWRITE);
3222 
3223 	case TCSETA:
3224 	case TCSETAW:
3225 	case TCSETAF:
3226 	case TCSBRK:
3227 	case TCXONC:
3228 	case TCFLSH:
3229 	case TCDSET:	/* Obsolete */
3230 	case TIOCSWINSZ:
3231 	case TCSETS:
3232 	case TCSETSW:
3233 	case TCSETSF:
3234 	case TIOCSETD:
3235 	case TIOCHPCL:
3236 	case TIOCSETP:
3237 	case TIOCSETN:
3238 	case TIOCEXCL:
3239 	case TIOCNXCL:
3240 	case TIOCFLUSH:
3241 	case TIOCSETC:
3242 	case TIOCLBIS:
3243 	case TIOCLBIC:
3244 	case TIOCLSET:
3245 	case TIOCSBRK:
3246 	case TIOCCBRK:
3247 	case TIOCSDTR:
3248 	case TIOCCDTR:
3249 	case TIOCSLTC:
3250 	case TIOCSTOP:
3251 	case TIOCSTART:
3252 	case TIOCSTI:
3253 	case TIOCSPGRP:
3254 	case TIOCMSET:
3255 	case TIOCMBIS:
3256 	case TIOCMBIC:
3257 	case TIOCREMOTE:
3258 	case TIOCSIGNAL:
3259 	case LDSETT:
3260 	case LDSMAP:	/* Obsolete */
3261 	case DIOCSETP:
3262 	case I_FLUSH:
3263 	case I_SRDOPT:
3264 	case I_SETSIG:
3265 	case I_SWROPT:
3266 	case I_FLUSHBAND:
3267 	case I_SETCLTIME:
3268 	case I_SERROPT:
3269 	case I_ESETSIG:
3270 	case FIONBIO:
3271 	case FIOASYNC:
3272 	case FIOSETOWN:
3273 	case JBOOT:	/* Obsolete */
3274 	case JTERM:	/* Obsolete */
3275 	case JTIMOM:	/* Obsolete */
3276 	case JZOMBOOT:	/* Obsolete */
3277 	case JAGENT:	/* Obsolete */
3278 	case JTRUN:	/* Obsolete */
3279 	case JXTPROTO:	/* Obsolete */
3280 	case TIOCSETLD:
3281 		return (JCSETP);
3282 	}
3283 
3284 	return (JCGETP);
3285 }
3286 
3287 /*
3288  * ioctl for streams
3289  */
3290 int
3291 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
3292     cred_t *crp, int *rvalp)
3293 {
3294 	struct stdata *stp;
3295 	struct strcmd *scp;
3296 	struct strioctl strioc;
3297 	struct uio uio;
3298 	struct iovec iov;
3299 	int access;
3300 	mblk_t *mp;
3301 	int error = 0;
3302 	int done = 0;
3303 	ssize_t	rmin, rmax;
3304 	queue_t *wrq;
3305 	queue_t *rdq;
3306 	boolean_t kioctl = B_FALSE;
3307 
3308 	if (flag & FKIOCTL) {
3309 		copyflag = K_TO_K;
3310 		kioctl = B_TRUE;
3311 	}
3312 	ASSERT(vp->v_stream);
3313 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
3314 	stp = vp->v_stream;
3315 
3316 	TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
3317 	    "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);
3318 
3319 	if (audit_active)
3320 		audit_strioctl(vp, cmd, arg, flag, copyflag, crp, rvalp);
3321 
3322 	/*
3323 	 * If the copy is kernel to kernel, make sure that the FNATIVE
3324 	 * flag is set.  After this it would be a serious error to have
3325 	 * no model flag.
3326 	 */
3327 	if (copyflag == K_TO_K)
3328 		flag = (flag & ~FMODELS) | FNATIVE;
3329 
3330 	ASSERT((flag & FMODELS) != 0);
3331 
3332 	wrq = stp->sd_wrq;
3333 	rdq = _RD(wrq);
3334 
3335 	access = job_control_type(cmd);
3336 
3337 	/* We should never see these here, should be handled by iwscn */
3338 	if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
3339 		return (EINVAL);
3340 
3341 	mutex_enter(&stp->sd_lock);
3342 	if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) {
3343 		mutex_exit(&stp->sd_lock);
3344 		return (error);
3345 	}
3346 	mutex_exit(&stp->sd_lock);
3347 
3348 	/*
3349 	 * Check for sgttyb-related ioctls first, and complain as
3350 	 * necessary.
3351 	 */
3352 	switch (cmd) {
3353 	case TIOCGETP:
3354 	case TIOCSETP:
3355 	case TIOCSETN:
3356 		if (sgttyb_handling >= 2 && !sgttyb_complaint) {
3357 			sgttyb_complaint = B_TRUE;
3358 			cmn_err(CE_NOTE,
3359 			    "application used obsolete TIOC[GS]ET");
3360 		}
3361 		if (sgttyb_handling >= 3) {
3362 			tsignal(curthread, SIGSYS);
3363 			return (EIO);
3364 		}
3365 		break;
3366 	}
3367 
3368 	mutex_enter(&stp->sd_lock);
3369 
3370 	switch (cmd) {
3371 	case I_RECVFD:
3372 	case I_E_RECVFD:
3373 	case I_PEEK:
3374 	case I_NREAD:
3375 	case FIONREAD:
3376 	case FIORDCHK:
3377 	case I_ATMARK:
3378 	case FIONBIO:
3379 	case FIOASYNC:
3380 		if (stp->sd_flag & (STRDERR|STPLEX)) {
3381 			error = strgeterr(stp, STRDERR|STPLEX, 0);
3382 			if (error != 0) {
3383 				mutex_exit(&stp->sd_lock);
3384 				return (error);
3385 			}
3386 		}
3387 		break;
3388 
3389 	default:
3390 		if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
3391 			error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
3392 			if (error != 0) {
3393 				mutex_exit(&stp->sd_lock);
3394 				return (error);
3395 			}
3396 		}
3397 	}
3398 
3399 	mutex_exit(&stp->sd_lock);
3400 
3401 	switch (cmd) {
3402 	default:
3403 		/*
3404 		 * The stream head has hardcoded knowledge of a
3405 		 * miscellaneous collection of terminal-, keyboard- and
3406 		 * mouse-related ioctls, enumerated below.  This hardcoded
3407 		 * knowledge allows the stream head to automatically
3408 		 * convert transparent ioctl requests made by userland
3409 		 * programs into I_STR ioctls which many old STREAMS
3410 		 * modules and drivers require.
3411 		 *
3412 		 * No new ioctls should ever be added to this list.
3413 		 * Instead, the STREAMS module or driver should be written
3414 		 * to either handle transparent ioctls or require any
3415 		 * userland programs to use I_STR ioctls (by returning
3416 		 * EINVAL to any transparent ioctl requests).
3417 		 *
3418 		 * More importantly, removing ioctls from this list should
3419 		 * be done with the utmost care, since our STREAMS modules
3420 		 * and drivers *count* on the stream head performing this
3421 		 * conversion, and thus may panic while processing
3422 		 * transparent ioctl request for one of these ioctls (keep
3423 		 * in mind that third party modules and drivers may have
3424 		 * similar problems).
3425 		 */
3426 		if (((cmd & IOCTYPE) == LDIOC) ||
3427 		    ((cmd & IOCTYPE) == tIOC) ||
3428 		    ((cmd & IOCTYPE) == TIOC) ||
3429 		    ((cmd & IOCTYPE) == KIOC) ||
3430 		    ((cmd & IOCTYPE) == MSIOC) ||
3431 		    ((cmd & IOCTYPE) == VUIOC)) {
3432 			/*
3433 			 * The ioctl is a tty ioctl - set up strioc buffer
3434 			 * and call strdoioctl() to do the work.
3435 			 */
3436 			if (stp->sd_flag & STRHUP)
3437 				return (ENXIO);
3438 			strioc.ic_cmd = cmd;
3439 			strioc.ic_timout = INFTIM;
3440 
3441 			switch (cmd) {
3442 
3443 			case TCXONC:
3444 			case TCSBRK:
3445 			case TCFLSH:
3446 			case TCDSET:
3447 				{
3448 				int native_arg = (int)arg;
3449 				strioc.ic_len = sizeof (int);
3450 				strioc.ic_dp = (char *)&native_arg;
3451 				return (strdoioctl(stp, &strioc, flag,
3452 				    K_TO_K, crp, rvalp));
3453 				}
3454 
3455 			case TCSETA:
3456 			case TCSETAW:
3457 			case TCSETAF:
3458 				strioc.ic_len = sizeof (struct termio);
3459 				strioc.ic_dp = (char *)arg;
3460 				return (strdoioctl(stp, &strioc, flag,
3461 				    copyflag, crp, rvalp));
3462 
3463 			case TCSETS:
3464 			case TCSETSW:
3465 			case TCSETSF:
3466 				strioc.ic_len = sizeof (struct termios);
3467 				strioc.ic_dp = (char *)arg;
3468 				return (strdoioctl(stp, &strioc, flag,
3469 				    copyflag, crp, rvalp));
3470 
3471 			case LDSETT:
3472 				strioc.ic_len = sizeof (struct termcb);
3473 				strioc.ic_dp = (char *)arg;
3474 				return (strdoioctl(stp, &strioc, flag,
3475 				    copyflag, crp, rvalp));
3476 
3477 			case TIOCSETP:
3478 				strioc.ic_len = sizeof (struct sgttyb);
3479 				strioc.ic_dp = (char *)arg;
3480 				return (strdoioctl(stp, &strioc, flag,
3481 				    copyflag, crp, rvalp));
3482 
3483 			case TIOCSTI:
3484 				if ((flag & FREAD) == 0 &&
3485 				    secpolicy_sti(crp) != 0) {
3486 					return (EPERM);
3487 				}
3488 				mutex_enter(&stp->sd_lock);
3489 				mutex_enter(&curproc->p_splock);
3490 				if (stp->sd_sidp != curproc->p_sessp->s_sidp &&
3491 				    secpolicy_sti(crp) != 0) {
3492 					mutex_exit(&curproc->p_splock);
3493 					mutex_exit(&stp->sd_lock);
3494 					return (EACCES);
3495 				}
3496 				mutex_exit(&curproc->p_splock);
3497 				mutex_exit(&stp->sd_lock);
3498 
3499 				strioc.ic_len = sizeof (char);
3500 				strioc.ic_dp = (char *)arg;
3501 				return (strdoioctl(stp, &strioc, flag,
3502 				    copyflag, crp, rvalp));
3503 
3504 			case TIOCSWINSZ:
3505 				strioc.ic_len = sizeof (struct winsize);
3506 				strioc.ic_dp = (char *)arg;
3507 				return (strdoioctl(stp, &strioc, flag,
3508 				    copyflag, crp, rvalp));
3509 
3510 			case TIOCSSIZE:
3511 				strioc.ic_len = sizeof (struct ttysize);
3512 				strioc.ic_dp = (char *)arg;
3513 				return (strdoioctl(stp, &strioc, flag,
3514 				    copyflag, crp, rvalp));
3515 
3516 			case TIOCSSOFTCAR:
3517 			case KIOCTRANS:
3518 			case KIOCTRANSABLE:
3519 			case KIOCCMD:
3520 			case KIOCSDIRECT:
3521 			case KIOCSCOMPAT:
3522 			case KIOCSKABORTEN:
3523 			case KIOCSRPTDELAY:
3524 			case KIOCSRPTRATE:
3525 			case VUIDSFORMAT:
3526 			case TIOCSPPS:
3527 				strioc.ic_len = sizeof (int);
3528 				strioc.ic_dp = (char *)arg;
3529 				return (strdoioctl(stp, &strioc, flag,
3530 				    copyflag, crp, rvalp));
3531 
3532 			case KIOCSETKEY:
3533 			case KIOCGETKEY:
3534 				strioc.ic_len = sizeof (struct kiockey);
3535 				strioc.ic_dp = (char *)arg;
3536 				return (strdoioctl(stp, &strioc, flag,
3537 				    copyflag, crp, rvalp));
3538 
3539 			case KIOCSKEY:
3540 			case KIOCGKEY:
3541 				strioc.ic_len = sizeof (struct kiockeymap);
3542 				strioc.ic_dp = (char *)arg;
3543 				return (strdoioctl(stp, &strioc, flag,
3544 				    copyflag, crp, rvalp));
3545 
3546 			case KIOCSLED:
3547 				/* arg is a pointer to char */
3548 				strioc.ic_len = sizeof (char);
3549 				strioc.ic_dp = (char *)arg;
3550 				return (strdoioctl(stp, &strioc, flag,
3551 				    copyflag, crp, rvalp));
3552 
3553 			case MSIOSETPARMS:
3554 				strioc.ic_len = sizeof (Ms_parms);
3555 				strioc.ic_dp = (char *)arg;
3556 				return (strdoioctl(stp, &strioc, flag,
3557 				    copyflag, crp, rvalp));
3558 
3559 			case VUIDSADDR:
3560 			case VUIDGADDR:
3561 				strioc.ic_len = sizeof (struct vuid_addr_probe);
3562 				strioc.ic_dp = (char *)arg;
3563 				return (strdoioctl(stp, &strioc, flag,
3564 				    copyflag, crp, rvalp));
3565 
3566 			/*
3567 			 * These M_IOCTL's don't require any data to be sent
3568 			 * downstream, and the driver will allocate and link
3569 			 * on its own mblk_t upon M_IOCACK -- thus we set
3570 			 * ic_len to zero and set ic_dp to arg so we know
3571 			 * where to copyout to later.
3572 			 */
3573 			case TIOCGSOFTCAR:
3574 			case TIOCGWINSZ:
3575 			case TIOCGSIZE:
3576 			case KIOCGTRANS:
3577 			case KIOCGTRANSABLE:
3578 			case KIOCTYPE:
3579 			case KIOCGDIRECT:
3580 			case KIOCGCOMPAT:
3581 			case KIOCLAYOUT:
3582 			case KIOCGLED:
3583 			case MSIOGETPARMS:
3584 			case MSIOBUTTONS:
3585 			case VUIDGFORMAT:
3586 			case TIOCGPPS:
3587 			case TIOCGPPSEV:
3588 			case TCGETA:
3589 			case TCGETS:
3590 			case LDGETT:
3591 			case TIOCGETP:
3592 			case KIOCGRPTDELAY:
3593 			case KIOCGRPTRATE:
3594 				strioc.ic_len = 0;
3595 				strioc.ic_dp = (char *)arg;
3596 				return (strdoioctl(stp, &strioc, flag,
3597 				    copyflag, crp, rvalp));
3598 			}
3599 		}
3600 
3601 		/*
3602 		 * Unknown cmd - send it down as a transparent ioctl.
3603 		 */
3604 		strioc.ic_cmd = cmd;
3605 		strioc.ic_timout = INFTIM;
3606 		strioc.ic_len = TRANSPARENT;
3607 		strioc.ic_dp = (char *)&arg;
3608 
3609 		return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));
3610 
3611 	case I_STR:
3612 		/*
3613 		 * Stream ioctl.  Read in an strioctl buffer from the user
3614 		 * along with any data specified and send it downstream.
3615 		 * Strdoioctl will wait allow only one ioctl message at
3616 		 * a time, and waits for the acknowledgement.
3617 		 */
3618 
3619 		if (stp->sd_flag & STRHUP)
3620 			return (ENXIO);
3621 
3622 		error = strcopyin_strioctl((void *)arg, &strioc, flag,
3623 		    copyflag);
3624 		if (error != 0)
3625 			return (error);
3626 
3627 		if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
3628 			return (EINVAL);
3629 
3630 		access = job_control_type(strioc.ic_cmd);
3631 		mutex_enter(&stp->sd_lock);
3632 		if ((access != -1) &&
3633 		    ((error = i_straccess(stp, access)) != 0)) {
3634 			mutex_exit(&stp->sd_lock);
3635 			return (error);
3636 		}
3637 		mutex_exit(&stp->sd_lock);
3638 
3639 		/*
3640 		 * The I_STR facility provides a trap door for malicious
3641 		 * code to send down bogus streamio(7I) ioctl commands to
3642 		 * unsuspecting STREAMS modules and drivers which expect to
3643 		 * only get these messages from the stream head.
3644 		 * Explicitly prohibit any streamio ioctls which can be
3645 		 * passed downstream by the stream head.  Note that we do
3646 		 * not block all streamio ioctls because the ioctl
3647 		 * numberspace is not well managed and thus it's possible
3648 		 * that a module or driver's ioctl numbers may accidentally
3649 		 * collide with them.
3650 		 */
3651 		switch (strioc.ic_cmd) {
3652 		case I_LINK:
3653 		case I_PLINK:
3654 		case I_UNLINK:
3655 		case I_PUNLINK:
3656 		case _I_GETPEERCRED:
3657 		case _I_PLINK_LH:
3658 			return (EINVAL);
3659 		}
3660 
3661 		error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
3662 		if (error == 0) {
3663 			error = strcopyout_strioctl(&strioc, (void *)arg,
3664 			    flag, copyflag);
3665 		}
3666 		return (error);
3667 
3668 	case _I_CMD:
3669 		/*
3670 		 * Like I_STR, but without using M_IOC* messages and without
3671 		 * copyins/copyouts beyond the passed-in argument.
3672 		 */
3673 		if (stp->sd_flag & STRHUP)
3674 			return (ENXIO);
3675 
3676 		if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL)
3677 			return (ENOMEM);
3678 
3679 		if (copyin((void *)arg, scp, sizeof (strcmd_t))) {
3680 			kmem_free(scp, sizeof (strcmd_t));
3681 			return (EFAULT);
3682 		}
3683 
3684 		access = job_control_type(scp->sc_cmd);
3685 		mutex_enter(&stp->sd_lock);
3686 		if (access != -1 && (error = i_straccess(stp, access)) != 0) {
3687 			mutex_exit(&stp->sd_lock);
3688 			kmem_free(scp, sizeof (strcmd_t));
3689 			return (error);
3690 		}
3691 		mutex_exit(&stp->sd_lock);
3692 
3693 		*rvalp = 0;
3694 		if ((error = strdocmd(stp, scp, crp)) == 0) {
3695 			if (copyout(scp, (void *)arg, sizeof (strcmd_t)))
3696 				error = EFAULT;
3697 		}
3698 		kmem_free(scp, sizeof (strcmd_t));
3699 		return (error);
3700 
3701 	case I_NREAD:
3702 		/*
3703 		 * Return number of bytes of data in first message
3704 		 * in queue in "arg" and return the number of messages
3705 		 * in queue in return value.
3706 		 */
3707 	{
3708 		size_t	size;
3709 		int	retval;
3710 		int	count = 0;
3711 
3712 		mutex_enter(QLOCK(rdq));
3713 
3714 		size = msgdsize(rdq->q_first);
3715 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3716 			count++;
3717 
3718 		mutex_exit(QLOCK(rdq));
3719 		if (stp->sd_struiordq) {
3720 			infod_t infod;
3721 
3722 			infod.d_cmd = INFOD_COUNT;
3723 			infod.d_count = 0;
3724 			if (count == 0) {
3725 				infod.d_cmd |= INFOD_FIRSTBYTES;
3726 				infod.d_bytes = 0;
3727 			}
3728 			infod.d_res = 0;
3729 			(void) infonext(rdq, &infod);
3730 			count += infod.d_count;
3731 			if (infod.d_res & INFOD_FIRSTBYTES)
3732 				size = infod.d_bytes;
3733 		}
3734 
3735 		/*
3736 		 * Drop down from size_t to the "int" required by the
3737 		 * interface.  Cap at INT_MAX.
3738 		 */
3739 		retval = MIN(size, INT_MAX);
3740 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3741 		    copyflag);
3742 		if (!error)
3743 			*rvalp = count;
3744 		return (error);
3745 	}
3746 
3747 	case FIONREAD:
3748 		/*
3749 		 * Return number of bytes of data in all data messages
3750 		 * in queue in "arg".
3751 		 */
3752 	{
3753 		size_t	size = 0;
3754 		int	retval;
3755 
3756 		mutex_enter(QLOCK(rdq));
3757 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3758 			size += msgdsize(mp);
3759 		mutex_exit(QLOCK(rdq));
3760 
3761 		if (stp->sd_struiordq) {
3762 			infod_t infod;
3763 
3764 			infod.d_cmd = INFOD_BYTES;
3765 			infod.d_res = 0;
3766 			infod.d_bytes = 0;
3767 			(void) infonext(rdq, &infod);
3768 			size += infod.d_bytes;
3769 		}
3770 
3771 		/*
3772 		 * Drop down from size_t to the "int" required by the
3773 		 * interface.  Cap at INT_MAX.
3774 		 */
3775 		retval = MIN(size, INT_MAX);
3776 		error = strcopyout(&retval, (void *)arg, sizeof (retval),
3777 		    copyflag);
3778 
3779 		*rvalp = 0;
3780 		return (error);
3781 	}
3782 	case FIORDCHK:
3783 		/*
3784 		 * FIORDCHK does not use arg value (like FIONREAD),
3785 		 * instead a count is returned. I_NREAD value may
3786 		 * not be accurate but safe. The real thing to do is
3787 		 * to add the msgdsizes of all data  messages until
3788 		 * a non-data message.
3789 		 */
3790 	{
3791 		size_t size = 0;
3792 
3793 		mutex_enter(QLOCK(rdq));
3794 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3795 			size += msgdsize(mp);
3796 		mutex_exit(QLOCK(rdq));
3797 
3798 		if (stp->sd_struiordq) {
3799 			infod_t infod;
3800 
3801 			infod.d_cmd = INFOD_BYTES;
3802 			infod.d_res = 0;
3803 			infod.d_bytes = 0;
3804 			(void) infonext(rdq, &infod);
3805 			size += infod.d_bytes;
3806 		}
3807 
3808 		/*
3809 		 * Since ioctl returns an int, and memory sizes under
3810 		 * LP64 may not fit, we return INT_MAX if the count was
3811 		 * actually greater.
3812 		 */
3813 		*rvalp = MIN(size, INT_MAX);
3814 		return (0);
3815 	}
3816 
3817 	case I_FIND:
3818 		/*
3819 		 * Get module name.
3820 		 */
3821 	{
3822 		char mname[FMNAMESZ + 1];
3823 		queue_t *q;
3824 
3825 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3826 		    mname, FMNAMESZ + 1, NULL);
3827 		if (error)
3828 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3829 
3830 		/*
3831 		 * Return EINVAL if we're handed a bogus module name.
3832 		 */
3833 		if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
3834 			TRACE_0(TR_FAC_STREAMS_FR,
3835 			    TR_I_CANT_FIND, "couldn't I_FIND");
3836 			return (EINVAL);
3837 		}
3838 
3839 		*rvalp = 0;
3840 
3841 		/* Look downstream to see if module is there. */
3842 		claimstr(stp->sd_wrq);
3843 		for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3844 			if (q->q_flag&QREADR) {
3845 				q = NULL;
3846 				break;
3847 			}
3848 			if (strcmp(mname, q->q_qinfo->qi_minfo->mi_idname) == 0)
3849 				break;
3850 		}
3851 		releasestr(stp->sd_wrq);
3852 
3853 		*rvalp = (q ? 1 : 0);
3854 		return (error);
3855 	}
3856 
3857 	case I_PUSH:
3858 	case __I_PUSH_NOCTTY:
3859 		/*
3860 		 * Push a module.
3861 		 * For the case __I_PUSH_NOCTTY push a module but
3862 		 * do not allocate controlling tty. See bugid 4025044
3863 		 */
3864 
3865 	{
3866 		char mname[FMNAMESZ + 1];
3867 		fmodsw_impl_t *fp;
3868 		dev_t dummydev;
3869 
3870 		if (stp->sd_flag & STRHUP)
3871 			return (ENXIO);
3872 
3873 		/*
3874 		 * Get module name and look up in fmodsw.
3875 		 */
3876 		error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3877 		    mname, FMNAMESZ + 1, NULL);
3878 		if (error)
3879 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
3880 
3881 		if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
3882 		    NULL)
3883 			return (EINVAL);
3884 
3885 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
3886 		    "I_PUSH:fp %p stp %p", fp, stp);
3887 
3888 		if (error = strstartplumb(stp, flag, cmd)) {
3889 			fmodsw_rele(fp);
3890 			return (error);
3891 		}
3892 
3893 		/*
3894 		 * See if any more modules can be pushed on this stream.
3895 		 * Note that this check must be done after strstartplumb()
3896 		 * since otherwise multiple threads issuing I_PUSHes on
3897 		 * the same stream will be able to exceed nstrpush.
3898 		 */
3899 		mutex_enter(&stp->sd_lock);
3900 		if (stp->sd_pushcnt >= nstrpush) {
3901 			fmodsw_rele(fp);
3902 			strendplumb(stp);
3903 			mutex_exit(&stp->sd_lock);
3904 			return (EINVAL);
3905 		}
3906 		mutex_exit(&stp->sd_lock);
3907 
3908 		/*
3909 		 * Push new module and call its open routine
3910 		 * via qattach().  Modules don't change device
3911 		 * numbers, so just ignore dummydev here.
3912 		 */
3913 		dummydev = vp->v_rdev;
3914 		if ((error = qattach(rdq, &dummydev, 0, crp, fp,
3915 		    B_FALSE)) == 0) {
3916 			if (vp->v_type == VCHR && /* sorry, no pipes allowed */
3917 			    (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
3918 				/*
3919 				 * try to allocate it as a controlling terminal
3920 				 */
3921 				(void) strctty(stp);
3922 			}
3923 		}
3924 
3925 		mutex_enter(&stp->sd_lock);
3926 
3927 		/*
3928 		 * As a performance concern we are caching the values of
3929 		 * q_minpsz and q_maxpsz of the module below the stream
3930 		 * head in the stream head.
3931 		 */
3932 		mutex_enter(QLOCK(stp->sd_wrq->q_next));
3933 		rmin = stp->sd_wrq->q_next->q_minpsz;
3934 		rmax = stp->sd_wrq->q_next->q_maxpsz;
3935 		mutex_exit(QLOCK(stp->sd_wrq->q_next));
3936 
3937 		/* Do this processing here as a performance concern */
3938 		if (strmsgsz != 0) {
3939 			if (rmax == INFPSZ)
3940 				rmax = strmsgsz;
3941 			else  {
3942 				if (vp->v_type == VFIFO)
3943 					rmax = MIN(PIPE_BUF, rmax);
3944 				else	rmax = MIN(strmsgsz, rmax);
3945 			}
3946 		}
3947 
3948 		mutex_enter(QLOCK(wrq));
3949 		stp->sd_qn_minpsz = rmin;
3950 		stp->sd_qn_maxpsz = rmax;
3951 		mutex_exit(QLOCK(wrq));
3952 
3953 		strendplumb(stp);
3954 		mutex_exit(&stp->sd_lock);
3955 		return (error);
3956 	}
3957 
3958 	case I_POP:
3959 	{
3960 		queue_t	*q;
3961 
3962 		if (stp->sd_flag & STRHUP)
3963 			return (ENXIO);
3964 		if (!wrq->q_next)	/* for broken pipes */
3965 			return (EINVAL);
3966 
3967 		if (error = strstartplumb(stp, flag, cmd))
3968 			return (error);
3969 
3970 		/*
3971 		 * If there is an anchor on this stream and popping
3972 		 * the current module would attempt to pop through the
3973 		 * anchor, then disallow the pop unless we have sufficient
3974 		 * privileges; take the cheapest (non-locking) check
3975 		 * first.
3976 		 */
3977 		if (secpolicy_ip_config(crp, B_TRUE) != 0 ||
3978 		    (stp->sd_anchorzone != crgetzoneid(crp))) {
3979 			mutex_enter(&stp->sd_lock);
3980 			/*
3981 			 * Anchors only apply if there's at least one
3982 			 * module on the stream (sd_pushcnt > 0).
3983 			 */
3984 			if (stp->sd_pushcnt > 0 &&
3985 			    stp->sd_pushcnt == stp->sd_anchor &&
3986 			    stp->sd_vnode->v_type != VFIFO) {
3987 				strendplumb(stp);
3988 				mutex_exit(&stp->sd_lock);
3989 				if (stp->sd_anchorzone != crgetzoneid(crp))
3990 					return (EINVAL);
3991 				/* Audit and report error */
3992 				return (secpolicy_ip_config(crp, B_FALSE));
3993 			}
3994 			mutex_exit(&stp->sd_lock);
3995 		}
3996 
3997 		q = wrq->q_next;
3998 		TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
3999 		    "I_POP:%p from %p", q, stp);
4000 		if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
4001 			error = EINVAL;
4002 		} else {
4003 			qdetach(_RD(q), 1, flag, crp, B_FALSE);
4004 			error = 0;
4005 		}
4006 		mutex_enter(&stp->sd_lock);
4007 
4008 		/*
4009 		 * As a performance concern we are caching the values of
4010 		 * q_minpsz and q_maxpsz of the module below the stream
4011 		 * head in the stream head.
4012 		 */
4013 		mutex_enter(QLOCK(wrq->q_next));
4014 		rmin = wrq->q_next->q_minpsz;
4015 		rmax = wrq->q_next->q_maxpsz;
4016 		mutex_exit(QLOCK(wrq->q_next));
4017 
4018 		/* Do this processing here as a performance concern */
4019 		if (strmsgsz != 0) {
4020 			if (rmax == INFPSZ)
4021 				rmax = strmsgsz;
4022 			else  {
4023 				if (vp->v_type == VFIFO)
4024 					rmax = MIN(PIPE_BUF, rmax);
4025 				else	rmax = MIN(strmsgsz, rmax);
4026 			}
4027 		}
4028 
4029 		mutex_enter(QLOCK(wrq));
4030 		stp->sd_qn_minpsz = rmin;
4031 		stp->sd_qn_maxpsz = rmax;
4032 		mutex_exit(QLOCK(wrq));
4033 
4034 		/* If we popped through the anchor, then reset the anchor. */
4035 		if (stp->sd_pushcnt < stp->sd_anchor) {
4036 			stp->sd_anchor = 0;
4037 			stp->sd_anchorzone = 0;
4038 		}
4039 		strendplumb(stp);
4040 		mutex_exit(&stp->sd_lock);
4041 		return (error);
4042 	}
4043 
4044 	case _I_MUXID2FD:
4045 	{
4046 		/*
4047 		 * Create a fd for a I_PLINK'ed lower stream with a given
4048 		 * muxid.  With the fd, application can send down ioctls,
4049 		 * like I_LIST, to the previously I_PLINK'ed stream.  Note
4050 		 * that after getting the fd, the application has to do an
4051 		 * I_PUNLINK on the muxid before it can do any operation
4052 		 * on the lower stream.  This is required by spec1170.
4053 		 *
4054 		 * The fd used to do this ioctl should point to the same
4055 		 * controlling device used to do the I_PLINK.  If it uses
4056 		 * a different stream or an invalid muxid, I_MUXID2FD will
4057 		 * fail.  The error code is set to EINVAL.
4058 		 *
4059 		 * The intended use of this interface is the following.
4060 		 * An application I_PLINK'ed a stream and exits.  The fd
4061 		 * to the lower stream is gone.  Another application
4062 		 * wants to get a fd to the lower stream, it uses I_MUXID2FD.
4063 		 */
4064 		int muxid = (int)arg;
4065 		int fd;
4066 		linkinfo_t *linkp;
4067 		struct file *fp;
4068 		netstack_t *ns;
4069 		str_stack_t *ss;
4070 
4071 		/*
4072 		 * Do not allow the wildcard muxid.  This ioctl is not
4073 		 * intended to find arbitrary link.
4074 		 */
4075 		if (muxid == 0) {
4076 			return (EINVAL);
4077 		}
4078 
4079 		ns = netstack_find_by_cred(crp);
4080 		ASSERT(ns != NULL);
4081 		ss = ns->netstack_str;
4082 		ASSERT(ss != NULL);
4083 
4084 		mutex_enter(&muxifier);
4085 		linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss);
4086 		if (linkp == NULL) {
4087 			mutex_exit(&muxifier);
4088 			netstack_rele(ss->ss_netstack);
4089 			return (EINVAL);
4090 		}
4091 
4092 		if ((fd = ufalloc(0)) == -1) {
4093 			mutex_exit(&muxifier);
4094 			netstack_rele(ss->ss_netstack);
4095 			return (EMFILE);
4096 		}
4097 		fp = linkp->li_fpdown;
4098 		mutex_enter(&fp->f_tlock);
4099 		fp->f_count++;
4100 		mutex_exit(&fp->f_tlock);
4101 		mutex_exit(&muxifier);
4102 		setf(fd, fp);
4103 		*rvalp = fd;
4104 		netstack_rele(ss->ss_netstack);
4105 		return (0);
4106 	}
4107 
4108 	case _I_INSERT:
4109 	{
4110 		/*
4111 		 * To insert a module to a given position in a stream.
4112 		 * In the first release, only allow privileged user
4113 		 * to use this ioctl. Furthermore, the insert is only allowed
4114 		 * below an anchor if the zoneid is the same as the zoneid
4115 		 * which created the anchor.
4116 		 *
4117 		 * Note that we do not plan to support this ioctl
4118 		 * on pipes in the first release.  We want to learn more
4119 		 * about the implications of these ioctls before extending
4120 		 * their support.  And we do not think these features are
4121 		 * valuable for pipes.
4122 		 *
4123 		 * Neither do we support O/C hot stream.  Note that only
4124 		 * the upper streams of TCP/IP stack are O/C hot streams.
4125 		 * The lower IP stream is not.
4126 		 * When there is a O/C cold barrier, we only allow inserts
4127 		 * above the barrier.
4128 		 */
4129 		STRUCT_DECL(strmodconf, strmodinsert);
4130 		char mod_name[FMNAMESZ + 1];
4131 		fmodsw_impl_t *fp;
4132 		dev_t dummydev;
4133 		queue_t *tmp_wrq;
4134 		int pos;
4135 		boolean_t is_insert;
4136 
4137 		STRUCT_INIT(strmodinsert, flag);
4138 		if (stp->sd_flag & STRHUP)
4139 			return (ENXIO);
4140 		if (STRMATED(stp))
4141 			return (EINVAL);
4142 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4143 			return (error);
4144 		if (stp->sd_anchor != 0 &&
4145 		    stp->sd_anchorzone != crgetzoneid(crp))
4146 			return (EINVAL);
4147 
4148 		error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
4149 		    STRUCT_SIZE(strmodinsert), copyflag);
4150 		if (error)
4151 			return (error);
4152 
4153 		/*
4154 		 * Get module name and look up in fmodsw.
4155 		 */
4156 		error = (copyflag & U_TO_K ? copyinstr :
4157 		    copystr)(STRUCT_FGETP(strmodinsert, mod_name),
4158 		    mod_name, FMNAMESZ + 1, NULL);
4159 		if (error)
4160 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4161 
4162 		if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
4163 		    NULL)
4164 			return (EINVAL);
4165 
4166 		if (error = strstartplumb(stp, flag, cmd)) {
4167 			fmodsw_rele(fp);
4168 			return (error);
4169 		}
4170 
4171 		/*
4172 		 * Is this _I_INSERT just like an I_PUSH?  We need to know
4173 		 * this because we do some optimizations if this is a
4174 		 * module being pushed.
4175 		 */
4176 		pos = STRUCT_FGET(strmodinsert, pos);
4177 		is_insert = (pos != 0);
4178 
4179 		/*
4180 		 * Make sure pos is valid.  Even though it is not an I_PUSH,
4181 		 * we impose the same limit on the number of modules in a
4182 		 * stream.
4183 		 */
4184 		mutex_enter(&stp->sd_lock);
4185 		if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
4186 		    pos > stp->sd_pushcnt) {
4187 			fmodsw_rele(fp);
4188 			strendplumb(stp);
4189 			mutex_exit(&stp->sd_lock);
4190 			return (EINVAL);
4191 		}
4192 		if (stp->sd_anchor != 0) {
4193 			/*
4194 			 * Is this insert below the anchor?
4195 			 * Pushcnt hasn't been increased yet hence
4196 			 * we test for greater than here, and greater or
4197 			 * equal after qattach.
4198 			 */
4199 			if (pos > (stp->sd_pushcnt - stp->sd_anchor) &&
4200 			    stp->sd_anchorzone != crgetzoneid(crp)) {
4201 				fmodsw_rele(fp);
4202 				strendplumb(stp);
4203 				mutex_exit(&stp->sd_lock);
4204 				return (EPERM);
4205 			}
4206 		}
4207 
4208 		mutex_exit(&stp->sd_lock);
4209 
4210 		/*
4211 		 * First find the correct position this module to
4212 		 * be inserted.  We don't need to call claimstr()
4213 		 * as the stream should not be changing at this point.
4214 		 *
4215 		 * Insert new module and call its open routine
4216 		 * via qattach().  Modules don't change device
4217 		 * numbers, so just ignore dummydev here.
4218 		 */
4219 		for (tmp_wrq = stp->sd_wrq; pos > 0;
4220 		    tmp_wrq = tmp_wrq->q_next, pos--) {
4221 			ASSERT(SAMESTR(tmp_wrq));
4222 		}
4223 		dummydev = vp->v_rdev;
4224 		if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
4225 		    fp, is_insert)) != 0) {
4226 			mutex_enter(&stp->sd_lock);
4227 			strendplumb(stp);
4228 			mutex_exit(&stp->sd_lock);
4229 			return (error);
4230 		}
4231 
4232 		mutex_enter(&stp->sd_lock);
4233 
4234 		/*
4235 		 * As a performance concern we are caching the values of
4236 		 * q_minpsz and q_maxpsz of the module below the stream
4237 		 * head in the stream head.
4238 		 */
4239 		if (!is_insert) {
4240 			mutex_enter(QLOCK(stp->sd_wrq->q_next));
4241 			rmin = stp->sd_wrq->q_next->q_minpsz;
4242 			rmax = stp->sd_wrq->q_next->q_maxpsz;
4243 			mutex_exit(QLOCK(stp->sd_wrq->q_next));
4244 
4245 			/* Do this processing here as a performance concern */
4246 			if (strmsgsz != 0) {
4247 				if (rmax == INFPSZ) {
4248 					rmax = strmsgsz;
4249 				} else  {
4250 					rmax = MIN(strmsgsz, rmax);
4251 				}
4252 			}
4253 
4254 			mutex_enter(QLOCK(wrq));
4255 			stp->sd_qn_minpsz = rmin;
4256 			stp->sd_qn_maxpsz = rmax;
4257 			mutex_exit(QLOCK(wrq));
4258 		}
4259 
4260 		/*
4261 		 * Need to update the anchor value if this module is
4262 		 * inserted below the anchor point.
4263 		 */
4264 		if (stp->sd_anchor != 0) {
4265 			pos = STRUCT_FGET(strmodinsert, pos);
4266 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
4267 				stp->sd_anchor++;
4268 		}
4269 
4270 		strendplumb(stp);
4271 		mutex_exit(&stp->sd_lock);
4272 		return (0);
4273 	}
4274 
4275 	case _I_REMOVE:
4276 	{
4277 		/*
4278 		 * To remove a module with a given name in a stream.  The
4279 		 * caller of this ioctl needs to provide both the name and
4280 		 * the position of the module to be removed.  This eliminates
4281 		 * the ambiguity of removal if a module is inserted/pushed
4282 		 * multiple times in a stream.  In the first release, only
4283 		 * allow privileged user to use this ioctl.
4284 		 * Furthermore, the remove is only allowed
4285 		 * below an anchor if the zoneid is the same as the zoneid
4286 		 * which created the anchor.
4287 		 *
4288 		 * Note that we do not plan to support this ioctl
4289 		 * on pipes in the first release.  We want to learn more
4290 		 * about the implications of these ioctls before extending
4291 		 * their support.  And we do not think these features are
4292 		 * valuable for pipes.
4293 		 *
4294 		 * Neither do we support O/C hot stream.  Note that only
4295 		 * the upper streams of TCP/IP stack are O/C hot streams.
4296 		 * The lower IP stream is not.
4297 		 * When there is a O/C cold barrier we do not allow removal
4298 		 * below the barrier.
4299 		 *
4300 		 * Also note that _I_REMOVE cannot be used to remove a
4301 		 * driver or the stream head.
4302 		 */
4303 		STRUCT_DECL(strmodconf, strmodremove);
4304 		queue_t	*q;
4305 		int pos;
4306 		char mod_name[FMNAMESZ + 1];
4307 		boolean_t is_remove;
4308 
4309 		STRUCT_INIT(strmodremove, flag);
4310 		if (stp->sd_flag & STRHUP)
4311 			return (ENXIO);
4312 		if (STRMATED(stp))
4313 			return (EINVAL);
4314 		if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4315 			return (error);
4316 		if (stp->sd_anchor != 0 &&
4317 		    stp->sd_anchorzone != crgetzoneid(crp))
4318 			return (EINVAL);
4319 
4320 		error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),
4321 		    STRUCT_SIZE(strmodremove), copyflag);
4322 		if (error)
4323 			return (error);
4324 
4325 		error = (copyflag & U_TO_K ? copyinstr :
4326 		    copystr)(STRUCT_FGETP(strmodremove, mod_name),
4327 		    mod_name, FMNAMESZ + 1, NULL);
4328 		if (error)
4329 			return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);
4330 
4331 		if ((error = strstartplumb(stp, flag, cmd)) != 0)
4332 			return (error);
4333 
4334 		/*
4335 		 * Match the name of given module to the name of module at
4336 		 * the given position.
4337 		 */
4338 		pos = STRUCT_FGET(strmodremove, pos);
4339 
4340 		is_remove = (pos != 0);
4341 		for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
4342 		    q = q->q_next, pos--)
4343 			;
4344 		if (pos > 0 || ! SAMESTR(q) ||
4345 		    strncmp(q->q_qinfo->qi_minfo->mi_idname, mod_name,
4346 		    strlen(q->q_qinfo->qi_minfo->mi_idname)) != 0) {
4347 			mutex_enter(&stp->sd_lock);
4348 			strendplumb(stp);
4349 			mutex_exit(&stp->sd_lock);
4350 			return (EINVAL);
4351 		}
4352 
4353 		/*
4354 		 * If the position is at or below an anchor, then the zoneid
4355 		 * must match the zoneid that created the anchor.
4356 		 */
4357 		if (stp->sd_anchor != 0) {
4358 			pos = STRUCT_FGET(strmodremove, pos);
4359 			if (pos >= (stp->sd_pushcnt - stp->sd_anchor) &&
4360 			    stp->sd_anchorzone != crgetzoneid(crp)) {
4361 				mutex_enter(&stp->sd_lock);
4362 				strendplumb(stp);
4363 				mutex_exit(&stp->sd_lock);
4364 				return (EPERM);
4365 			}
4366 		}
4367 
4368 
4369 		ASSERT(!(q->q_flag & QREADR));
4370 		qdetach(_RD(q), 1, flag, crp, is_remove);
4371 
4372 		mutex_enter(&stp->sd_lock);
4373 
4374 		/*
4375 		 * As a performance concern we are caching the values of
4376 		 * q_minpsz and q_maxpsz of the module below the stream
4377 		 * head in the stream head.
4378 		 */
4379 		if (!is_remove) {
4380 			mutex_enter(QLOCK(wrq->q_next));
4381 			rmin = wrq->q_next->q_minpsz;
4382 			rmax = wrq->q_next->q_maxpsz;
4383 			mutex_exit(QLOCK(wrq->q_next));
4384 
4385 			/* Do this processing here as a performance concern */
4386 			if (strmsgsz != 0) {
4387 				if (rmax == INFPSZ)
4388 					rmax = strmsgsz;
4389 				else  {
4390 					if (vp->v_type == VFIFO)
4391 						rmax = MIN(PIPE_BUF, rmax);
4392 					else	rmax = MIN(strmsgsz, rmax);
4393 				}
4394 			}
4395 
4396 			mutex_enter(QLOCK(wrq));
4397 			stp->sd_qn_minpsz = rmin;
4398 			stp->sd_qn_maxpsz = rmax;
4399 			mutex_exit(QLOCK(wrq));
4400 		}
4401 
4402 		/*
4403 		 * Need to update the anchor value if this module is removed
4404 		 * at or below the anchor point.  If the removed module is at
4405 		 * the anchor point, remove the anchor for this stream if
4406 		 * there is no module above the anchor point.  Otherwise, if
4407 		 * the removed module is below the anchor point, decrement the
4408 		 * anchor point by 1.
4409 		 */
4410 		if (stp->sd_anchor != 0) {
4411 			pos = STRUCT_FGET(strmodremove, pos);
4412 			if (pos == stp->sd_pushcnt - stp->sd_anchor + 1)
4413 				stp->sd_anchor = 0;
4414 			else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
4415 				stp->sd_anchor--;
4416 		}
4417 
4418 		strendplumb(stp);
4419 		mutex_exit(&stp->sd_lock);
4420 		return (0);
4421 	}
4422 
4423 	case I_ANCHOR:
4424 		/*
4425 		 * Set the anchor position on the stream to reside at
4426 		 * the top module (in other words, the top module
4427 		 * cannot be popped).  Anchors with a FIFO make no
4428 		 * obvious sense, so they're not allowed.
4429 		 */
4430 		mutex_enter(&stp->sd_lock);
4431 
4432 		if (stp->sd_vnode->v_type == VFIFO) {
4433 			mutex_exit(&stp->sd_lock);
4434 			return (EINVAL);
4435 		}
4436 		/* Only allow the same zoneid to update the anchor */
4437 		if (stp->sd_anchor != 0 &&
4438 		    stp->sd_anchorzone != crgetzoneid(crp)) {
4439 			mutex_exit(&stp->sd_lock);
4440 			return (EINVAL);
4441 		}
4442 		stp->sd_anchor = stp->sd_pushcnt;
4443 		stp->sd_anchorzone = crgetzoneid(crp);
4444 		mutex_exit(&stp->sd_lock);
4445 		return (0);
4446 
4447 	case I_LOOK:
4448 		/*
4449 		 * Get name of first module downstream.
4450 		 * If no module, return an error.
4451 		 */
4452 	{
4453 		claimstr(wrq);
4454 		if (_SAMESTR(wrq) && wrq->q_next->q_next) {
4455 			char *name = wrq->q_next->q_qinfo->qi_minfo->mi_idname;
4456 			error = strcopyout(name, (void *)arg, strlen(name) + 1,
4457 			    copyflag);
4458 			releasestr(wrq);
4459 			return (error);
4460 		}
4461 		releasestr(wrq);
4462 		return (EINVAL);
4463 	}
4464 
4465 	case I_LINK:
4466 	case I_PLINK:
4467 		/*
4468 		 * Link a multiplexor.
4469 		 */
4470 		error = mlink(vp, cmd, (int)arg, crp, rvalp, 0);
4471 		return (error);
4472 
4473 	case _I_PLINK_LH:
4474 		/*
4475 		 * Link a multiplexor: Call must originate from kernel.
4476 		 */
4477 		if (kioctl)
4478 			return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));
4479 
4480 		return (EINVAL);
4481 	case I_UNLINK:
4482 	case I_PUNLINK:
4483 		/*
4484 		 * Unlink a multiplexor.
4485 		 * If arg is -1, unlink all links for which this is the
4486 		 * controlling stream.  Otherwise, arg is an index number
4487 		 * for a link to be removed.
4488 		 */
4489 	{
4490 		struct linkinfo *linkp;
4491 		int native_arg = (int)arg;
4492 		int type;
4493 		netstack_t *ns;
4494 		str_stack_t *ss;
4495 
4496 		TRACE_1(TR_FAC_STREAMS_FR,
4497 		    TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
4498 		if (vp->v_type == VFIFO) {
4499 			return (EINVAL);
4500 		}
4501 		if (cmd == I_UNLINK)
4502 			type = LINKNORMAL;
4503 		else	/* I_PUNLINK */
4504 			type = LINKPERSIST;
4505 		if (native_arg == 0) {
4506 			return (EINVAL);
4507 		}
4508 		ns = netstack_find_by_cred(crp);
4509 		ASSERT(ns != NULL);
4510 		ss = ns->netstack_str;
4511 		ASSERT(ss != NULL);
4512 
4513 		if (native_arg == MUXID_ALL)
4514 			error = munlinkall(stp, type, crp, rvalp, ss);
4515 		else {
4516 			mutex_enter(&muxifier);
4517 			if (!(linkp = findlinks(stp, (int)arg, type, ss))) {
4518 				/* invalid user supplied index number */
4519 				mutex_exit(&muxifier);
4520 				netstack_rele(ss->ss_netstack);
4521 				return (EINVAL);
4522 			}
4523 			/* munlink drops the muxifier lock */
4524 			error = munlink(stp, linkp, type, crp, rvalp, ss);
4525 		}
4526 		netstack_rele(ss->ss_netstack);
4527 		return (error);
4528 	}
4529 
4530 	case I_FLUSH:
4531 		/*
4532 		 * send a flush message downstream
4533 		 * flush message can indicate
4534 		 * FLUSHR - flush read queue
4535 		 * FLUSHW - flush write queue
4536 		 * FLUSHRW - flush read/write queue
4537 		 */
4538 		if (stp->sd_flag & STRHUP)
4539 			return (ENXIO);
4540 		if (arg & ~FLUSHRW)
4541 			return (EINVAL);
4542 
4543 		for (;;) {
4544 			if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
4545 				break;
4546 			}
4547 			if (error = strwaitbuf(1, BPRI_HI)) {
4548 				return (error);
4549 			}
4550 		}
4551 
4552 		/*
4553 		 * Send down an unsupported ioctl and wait for the nack
4554 		 * in order to allow the M_FLUSH to propagate back
4555 		 * up to the stream head.
4556 		 * Replaces if (qready()) runqueues();
4557 		 */
4558 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4559 		strioc.ic_timout = 0;
4560 		strioc.ic_len = 0;
4561 		strioc.ic_dp = NULL;
4562 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4563 		*rvalp = 0;
4564 		return (0);
4565 
4566 	case I_FLUSHBAND:
4567 	{
4568 		struct bandinfo binfo;
4569 
4570 		error = strcopyin((void *)arg, &binfo, sizeof (binfo),
4571 		    copyflag);
4572 		if (error)
4573 			return (error);
4574 		if (stp->sd_flag & STRHUP)
4575 			return (ENXIO);
4576 		if (binfo.bi_flag & ~FLUSHRW)
4577 			return (EINVAL);
4578 		while (!(mp = allocb(2, BPRI_HI))) {
4579 			if (error = strwaitbuf(2, BPRI_HI))
4580 				return (error);
4581 		}
4582 		mp->b_datap->db_type = M_FLUSH;
4583 		*mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
4584 		*mp->b_wptr++ = binfo.bi_pri;
4585 		putnext(stp->sd_wrq, mp);
4586 		/*
4587 		 * Send down an unsupported ioctl and wait for the nack
4588 		 * in order to allow the M_FLUSH to propagate back
4589 		 * up to the stream head.
4590 		 * Replaces if (qready()) runqueues();
4591 		 */
4592 		strioc.ic_cmd = -1;	/* The unsupported ioctl */
4593 		strioc.ic_timout = 0;
4594 		strioc.ic_len = 0;
4595 		strioc.ic_dp = NULL;
4596 		(void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4597 		*rvalp = 0;
4598 		return (0);
4599 	}
4600 
4601 	case I_SRDOPT:
4602 		/*
4603 		 * Set read options
4604 		 *
4605 		 * RNORM - default stream mode
4606 		 * RMSGN - message no discard
4607 		 * RMSGD - message discard
4608 		 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
4609 		 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs
4610 		 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
4611 		 */
4612 		if (arg & ~(RMODEMASK | RPROTMASK))
4613 			return (EINVAL);
4614 
4615 		if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
4616 			return (EINVAL);
4617 
4618 		mutex_enter(&stp->sd_lock);
4619 		switch (arg & RMODEMASK) {
4620 		case RNORM:
4621 			stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
4622 			break;
4623 		case RMSGD:
4624 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
4625 			    RD_MSGDIS;
4626 			break;
4627 		case RMSGN:
4628 			stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
4629 			    RD_MSGNODIS;
4630 			break;
4631 		}
4632 
4633 		switch (arg & RPROTMASK) {
4634 		case RPROTNORM:
4635 			stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
4636 			break;
4637 
4638 		case RPROTDAT:
4639 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
4640 			    RD_PROTDAT);
4641 			break;
4642 
4643 		case RPROTDIS:
4644 			stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
4645 			    RD_PROTDIS);
4646 			break;
4647 		}
4648 		mutex_exit(&stp->sd_lock);
4649 		return (0);
4650 
4651 	case I_GRDOPT:
4652 		/*
4653 		 * Get read option and return the value
4654 		 * to spot pointed to by arg
4655 		 */
4656 	{
4657 		int rdopt;
4658 
4659 		rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
4660 		    ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
4661 		rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
4662 		    ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));
4663 
4664 		return (strcopyout(&rdopt, (void *)arg, sizeof (int),
4665 		    copyflag));
4666 	}
4667 
4668 	case I_SERROPT:
4669 		/*
4670 		 * Set error options
4671 		 *
4672 		 * RERRNORM - persistent read errors
4673 		 * RERRNONPERSIST - non-persistent read errors
4674 		 * WERRNORM - persistent write errors
4675 		 * WERRNONPERSIST - non-persistent write errors
4676 		 */
4677 		if (arg & ~(RERRMASK | WERRMASK))
4678 			return (EINVAL);
4679 
4680 		mutex_enter(&stp->sd_lock);
4681 		switch (arg & RERRMASK) {
4682 		case RERRNORM:
4683 			stp->sd_flag &= ~STRDERRNONPERSIST;
4684 			break;
4685 		case RERRNONPERSIST:
4686 			stp->sd_flag |= STRDERRNONPERSIST;
4687 			break;
4688 		}
4689 		switch (arg & WERRMASK) {
4690 		case WERRNORM:
4691 			stp->sd_flag &= ~STWRERRNONPERSIST;
4692 			break;
4693 		case WERRNONPERSIST:
4694 			stp->sd_flag |= STWRERRNONPERSIST;
4695 			break;
4696 		}
4697 		mutex_exit(&stp->sd_lock);
4698 		return (0);
4699 
4700 	case I_GERROPT:
4701 		/*
4702 		 * Get error option and return the value
4703 		 * to spot pointed to by arg
4704 		 */
4705 	{
4706 		int erropt = 0;
4707 
4708 		erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
4709 		    RERRNORM;
4710 		erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
4711 		    WERRNORM;
4712 		return (strcopyout(&erropt, (void *)arg, sizeof (int),
4713 		    copyflag));
4714 	}
4715 
4716 	case I_SETSIG:
4717 		/*
4718 		 * Register the calling proc to receive the SIGPOLL
4719 		 * signal based on the events given in arg.  If
4720 		 * arg is zero, remove the proc from register list.
4721 		 */
4722 	{
4723 		strsig_t *ssp, *pssp;
4724 		struct pid *pidp;
4725 
4726 		pssp = NULL;
4727 		pidp = curproc->p_pidp;
4728 		/*
4729 		 * Hold sd_lock to prevent traversal of sd_siglist while
4730 		 * it is modified.
4731 		 */
4732 		mutex_enter(&stp->sd_lock);
4733 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
4734 		    pssp = ssp, ssp = ssp->ss_next)
4735 			;
4736 
4737 		if (arg) {
4738 			if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4739 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4740 				mutex_exit(&stp->sd_lock);
4741 				return (EINVAL);
4742 			}
4743 			if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
4744 				mutex_exit(&stp->sd_lock);
4745 				return (EINVAL);
4746 			}
4747 
4748 			/*
4749 			 * If proc not already registered, add it
4750 			 * to list.
4751 			 */
4752 			if (!ssp) {
4753 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4754 				ssp->ss_pidp = pidp;
4755 				ssp->ss_pid = pidp->pid_id;
4756 				ssp->ss_next = NULL;
4757 				if (pssp)
4758 					pssp->ss_next = ssp;
4759 				else
4760 					stp->sd_siglist = ssp;
4761 				mutex_enter(&pidlock);
4762 				PID_HOLD(pidp);
4763 				mutex_exit(&pidlock);
4764 			}
4765 
4766 			/*
4767 			 * Set events.
4768 			 */
4769 			ssp->ss_events = (int)arg;
4770 		} else {
4771 			/*
4772 			 * Remove proc from register list.
4773 			 */
4774 			if (ssp) {
4775 				mutex_enter(&pidlock);
4776 				PID_RELE(pidp);
4777 				mutex_exit(&pidlock);
4778 				if (pssp)
4779 					pssp->ss_next = ssp->ss_next;
4780 				else
4781 					stp->sd_siglist = ssp->ss_next;
4782 				kmem_free(ssp, sizeof (strsig_t));
4783 			} else {
4784 				mutex_exit(&stp->sd_lock);
4785 				return (EINVAL);
4786 			}
4787 		}
4788 
4789 		/*
4790 		 * Recalculate OR of sig events.
4791 		 */
4792 		stp->sd_sigflags = 0;
4793 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4794 			stp->sd_sigflags |= ssp->ss_events;
4795 		mutex_exit(&stp->sd_lock);
4796 		return (0);
4797 	}
4798 
4799 	case I_GETSIG:
4800 		/*
4801 		 * Return (in arg) the current registration of events
4802 		 * for which the calling proc is to be signaled.
4803 		 */
4804 	{
4805 		struct strsig *ssp;
4806 		struct pid  *pidp;
4807 
4808 		pidp = curproc->p_pidp;
4809 		mutex_enter(&stp->sd_lock);
4810 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4811 			if (ssp->ss_pidp == pidp) {
4812 				error = strcopyout(&ssp->ss_events, (void *)arg,
4813 				    sizeof (int), copyflag);
4814 				mutex_exit(&stp->sd_lock);
4815 				return (error);
4816 			}
4817 		mutex_exit(&stp->sd_lock);
4818 		return (EINVAL);
4819 	}
4820 
4821 	case I_ESETSIG:
4822 		/*
4823 		 * Register the ss_pid to receive the SIGPOLL
4824 		 * signal based on the events is ss_events arg.  If
4825 		 * ss_events is zero, remove the proc from register list.
4826 		 */
4827 	{
4828 		struct strsig *ssp, *pssp;
4829 		struct proc *proc;
4830 		struct pid  *pidp;
4831 		pid_t pid;
4832 		struct strsigset ss;
4833 
4834 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4835 		if (error)
4836 			return (error);
4837 
4838 		pid = ss.ss_pid;
4839 
4840 		if (ss.ss_events != 0) {
4841 			/*
4842 			 * Permissions check by sending signal 0.
4843 			 * Note that when kill fails it does a set_errno
4844 			 * causing the system call to fail.
4845 			 */
4846 			error = kill(pid, 0);
4847 			if (error) {
4848 				return (error);
4849 			}
4850 		}
4851 		mutex_enter(&pidlock);
4852 		if (pid == 0)
4853 			proc = curproc;
4854 		else if (pid < 0)
4855 			proc = pgfind(-pid);
4856 		else
4857 			proc = prfind(pid);
4858 		if (proc == NULL) {
4859 			mutex_exit(&pidlock);
4860 			return (ESRCH);
4861 		}
4862 		if (pid < 0)
4863 			pidp = proc->p_pgidp;
4864 		else
4865 			pidp = proc->p_pidp;
4866 		ASSERT(pidp);
4867 		/*
4868 		 * Get a hold on the pid structure while referencing it.
4869 		 * There is a separate PID_HOLD should it be inserted
4870 		 * in the list below.
4871 		 */
4872 		PID_HOLD(pidp);
4873 		mutex_exit(&pidlock);
4874 
4875 		pssp = NULL;
4876 		/*
4877 		 * Hold sd_lock to prevent traversal of sd_siglist while
4878 		 * it is modified.
4879 		 */
4880 		mutex_enter(&stp->sd_lock);
4881 		for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
4882 		    pssp = ssp, ssp = ssp->ss_next)
4883 			;
4884 
4885 		if (ss.ss_events) {
4886 			if (ss.ss_events &
4887 			    ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4888 			    S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4889 				mutex_exit(&stp->sd_lock);
4890 				mutex_enter(&pidlock);
4891 				PID_RELE(pidp);
4892 				mutex_exit(&pidlock);
4893 				return (EINVAL);
4894 			}
4895 			if ((ss.ss_events & S_BANDURG) &&
4896 			    !(ss.ss_events & S_RDBAND)) {
4897 				mutex_exit(&stp->sd_lock);
4898 				mutex_enter(&pidlock);
4899 				PID_RELE(pidp);
4900 				mutex_exit(&pidlock);
4901 				return (EINVAL);
4902 			}
4903 
4904 			/*
4905 			 * If proc not already registered, add it
4906 			 * to list.
4907 			 */
4908 			if (!ssp) {
4909 				ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4910 				ssp->ss_pidp = pidp;
4911 				ssp->ss_pid = pid;
4912 				ssp->ss_next = NULL;
4913 				if (pssp)
4914 					pssp->ss_next = ssp;
4915 				else
4916 					stp->sd_siglist = ssp;
4917 				mutex_enter(&pidlock);
4918 				PID_HOLD(pidp);
4919 				mutex_exit(&pidlock);
4920 			}
4921 
4922 			/*
4923 			 * Set events.
4924 			 */
4925 			ssp->ss_events = ss.ss_events;
4926 		} else {
4927 			/*
4928 			 * Remove proc from register list.
4929 			 */
4930 			if (ssp) {
4931 				mutex_enter(&pidlock);
4932 				PID_RELE(pidp);
4933 				mutex_exit(&pidlock);
4934 				if (pssp)
4935 					pssp->ss_next = ssp->ss_next;
4936 				else
4937 					stp->sd_siglist = ssp->ss_next;
4938 				kmem_free(ssp, sizeof (strsig_t));
4939 			} else {
4940 				mutex_exit(&stp->sd_lock);
4941 				mutex_enter(&pidlock);
4942 				PID_RELE(pidp);
4943 				mutex_exit(&pidlock);
4944 				return (EINVAL);
4945 			}
4946 		}
4947 
4948 		/*
4949 		 * Recalculate OR of sig events.
4950 		 */
4951 		stp->sd_sigflags = 0;
4952 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4953 			stp->sd_sigflags |= ssp->ss_events;
4954 		mutex_exit(&stp->sd_lock);
4955 		mutex_enter(&pidlock);
4956 		PID_RELE(pidp);
4957 		mutex_exit(&pidlock);
4958 		return (0);
4959 	}
4960 
4961 	case I_EGETSIG:
4962 		/*
4963 		 * Return (in arg) the current registration of events
4964 		 * for which the calling proc is to be signaled.
4965 		 */
4966 	{
4967 		struct strsig *ssp;
4968 		struct proc *proc;
4969 		pid_t pid;
4970 		struct pid  *pidp;
4971 		struct strsigset ss;
4972 
4973 		error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4974 		if (error)
4975 			return (error);
4976 
4977 		pid = ss.ss_pid;
4978 		mutex_enter(&pidlock);
4979 		if (pid == 0)
4980 			proc = curproc;
4981 		else if (pid < 0)
4982 			proc = pgfind(-pid);
4983 		else
4984 			proc = prfind(pid);
4985 		if (proc == NULL) {
4986 			mutex_exit(&pidlock);
4987 			return (ESRCH);
4988 		}
4989 		if (pid < 0)
4990 			pidp = proc->p_pgidp;
4991 		else
4992 			pidp = proc->p_pidp;
4993 
4994 		/* Prevent the pidp from being reassigned */
4995 		PID_HOLD(pidp);
4996 		mutex_exit(&pidlock);
4997 
4998 		mutex_enter(&stp->sd_lock);
4999 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
5000 			if (ssp->ss_pid == pid) {
5001 				ss.ss_pid = ssp->ss_pid;
5002 				ss.ss_events = ssp->ss_events;
5003 				error = strcopyout(&ss, (void *)arg,
5004 				    sizeof (struct strsigset), copyflag);
5005 				mutex_exit(&stp->sd_lock);
5006 				mutex_enter(&pidlock);
5007 				PID_RELE(pidp);
5008 				mutex_exit(&pidlock);
5009 				return (error);
5010 			}
5011 		mutex_exit(&stp->sd_lock);
5012 		mutex_enter(&pidlock);
5013 		PID_RELE(pidp);
5014 		mutex_exit(&pidlock);
5015 		return (EINVAL);
5016 	}
5017 
5018 	case I_PEEK:
5019 	{
5020 		STRUCT_DECL(strpeek, strpeek);
5021 		size_t n;
5022 		mblk_t *fmp, *tmp_mp = NULL;
5023 
5024 		STRUCT_INIT(strpeek, flag);
5025 
5026 		error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
5027 		    STRUCT_SIZE(strpeek), copyflag);
5028 		if (error)
5029 			return (error);
5030 
5031 		mutex_enter(QLOCK(rdq));
5032 		/*
5033 		 * Skip the invalid messages
5034 		 */
5035 		for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
5036 			if (mp->b_datap->db_type != M_SIG)
5037 				break;
5038 
5039 		/*
5040 		 * If user has requested to peek at a high priority message
5041 		 * and first message is not, return 0
5042 		 */
5043 		if (mp != NULL) {
5044 			if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
5045 			    queclass(mp) == QNORM) {
5046 				*rvalp = 0;
5047 				mutex_exit(QLOCK(rdq));
5048 				return (0);
5049 			}
5050 		} else if (stp->sd_struiordq == NULL ||
5051 		    (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
5052 			/*
5053 			 * No mblks to look at at the streamhead and
5054 			 * 1). This isn't a synch stream or
5055 			 * 2). This is a synch stream but caller wants high
5056 			 *	priority messages which is not supported by
5057 			 *	the synch stream. (it only supports QNORM)
5058 			 */
5059 			*rvalp = 0;
5060 			mutex_exit(QLOCK(rdq));
5061 			return (0);
5062 		}
5063 
5064 		fmp = mp;
5065 
5066 		if (mp && mp->b_datap->db_type == M_PASSFP) {
5067 			mutex_exit(QLOCK(rdq));
5068 			return (EBADMSG);
5069 		}
5070 
5071 		ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
5072 		    mp->b_datap->db_type == M_PROTO ||
5073 		    mp->b_datap->db_type == M_DATA);
5074 
5075 		if (mp && mp->b_datap->db_type == M_PCPROTO) {
5076 			STRUCT_FSET(strpeek, flags, RS_HIPRI);
5077 		} else {
5078 			STRUCT_FSET(strpeek, flags, 0);
5079 		}
5080 
5081 
5082 		if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
5083 			mutex_exit(QLOCK(rdq));
5084 			return (ENOSR);
5085 		}
5086 		mutex_exit(QLOCK(rdq));
5087 
5088 		/*
5089 		 * set mp = tmp_mp, so that I_PEEK processing can continue.
5090 		 * tmp_mp is used to free the dup'd message.
5091 		 */
5092 		mp = tmp_mp;
5093 
5094 		uio.uio_fmode = 0;
5095 		uio.uio_extflg = UIO_COPY_CACHED;
5096 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5097 		    UIO_SYSSPACE;
5098 		uio.uio_limit = 0;
5099 		/*
5100 		 * First process PROTO blocks, if any.
5101 		 * If user doesn't want to get ctl info by setting maxlen <= 0,
5102 		 * then set len to -1/0 and skip control blocks part.
5103 		 */
5104 		if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
5105 			STRUCT_FSET(strpeek, ctlbuf.len, -1);
5106 		else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
5107 			STRUCT_FSET(strpeek, ctlbuf.len, 0);
5108 		else {
5109 			int	ctl_part = 0;
5110 
5111 			iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
5112 			iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
5113 			uio.uio_iov = &iov;
5114 			uio.uio_resid = iov.iov_len;
5115 			uio.uio_loffset = 0;
5116 			uio.uio_iovcnt = 1;
5117 			while (mp && mp->b_datap->db_type != M_DATA &&
5118 			    uio.uio_resid >= 0) {
5119 				ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
5120 				    mp->b_datap->db_type == M_PROTO :
5121 				    mp->b_datap->db_type == M_PCPROTO);
5122 
5123 				if ((n = MIN(uio.uio_resid,
5124 				    mp->b_wptr - mp->b_rptr)) != 0 &&
5125 				    (error = uiomove((char *)mp->b_rptr, n,
5126 				    UIO_READ, &uio)) != 0) {
5127 					freemsg(tmp_mp);
5128 					return (error);
5129 				}
5130 				ctl_part = 1;
5131 				mp = mp->b_cont;
5132 			}
5133 			/* No ctl message */
5134 			if (ctl_part == 0)
5135 				STRUCT_FSET(strpeek, ctlbuf.len, -1);
5136 			else
5137 				STRUCT_FSET(strpeek, ctlbuf.len,
5138 				    STRUCT_FGET(strpeek, ctlbuf.maxlen) -
5139 				    uio.uio_resid);
5140 		}
5141 
5142 		/*
5143 		 * Now process DATA blocks, if any.
5144 		 * If user doesn't want to get data info by setting maxlen <= 0,
5145 		 * then set len to -1/0 and skip data blocks part.
5146 		 */
5147 		if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
5148 			STRUCT_FSET(strpeek, databuf.len, -1);
5149 		else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
5150 			STRUCT_FSET(strpeek, databuf.len, 0);
5151 		else {
5152 			int	data_part = 0;
5153 
5154 			iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
5155 			iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
5156 			uio.uio_iov = &iov;
5157 			uio.uio_resid = iov.iov_len;
5158 			uio.uio_loffset = 0;
5159 			uio.uio_iovcnt = 1;
5160 			while (mp && uio.uio_resid) {
5161 				if (mp->b_datap->db_type == M_DATA) {
5162 					if ((n = MIN(uio.uio_resid,
5163 					    mp->b_wptr - mp->b_rptr)) != 0 &&
5164 					    (error = uiomove((char *)mp->b_rptr,
5165 					    n, UIO_READ, &uio)) != 0) {
5166 						freemsg(tmp_mp);
5167 						return (error);
5168 					}
5169 					data_part = 1;
5170 				}
5171 				ASSERT(data_part == 0 ||
5172 				    mp->b_datap->db_type == M_DATA);
5173 				mp = mp->b_cont;
5174 			}
5175 			/* No data message */
5176 			if (data_part == 0)
5177 				STRUCT_FSET(strpeek, databuf.len, -1);
5178 			else
5179 				STRUCT_FSET(strpeek, databuf.len,
5180 				    STRUCT_FGET(strpeek, databuf.maxlen) -
5181 				    uio.uio_resid);
5182 		}
5183 		freemsg(tmp_mp);
5184 
5185 		/*
5186 		 * It is a synch stream and user wants to get
5187 		 * data (maxlen > 0).
5188 		 * uio setup is done by the codes that process DATA
5189 		 * blocks above.
5190 		 */
5191 		if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
5192 			infod_t infod;
5193 
5194 			infod.d_cmd = INFOD_COPYOUT;
5195 			infod.d_res = 0;
5196 			infod.d_uiop = &uio;
5197 			error = infonext(rdq, &infod);
5198 			if (error == EINVAL || error == EBUSY)
5199 				error = 0;
5200 			if (error)
5201 				return (error);
5202 			STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
5203 			    databuf.maxlen) - uio.uio_resid);
5204 			if (STRUCT_FGET(strpeek, databuf.len) == 0) {
5205 				/*
5206 				 * No data found by the infonext().
5207 				 */
5208 				STRUCT_FSET(strpeek, databuf.len, -1);
5209 			}
5210 		}
5211 		error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
5212 		    STRUCT_SIZE(strpeek), copyflag);
5213 		if (error) {
5214 			return (error);
5215 		}
5216 		/*
5217 		 * If there is no message retrieved, set return code to 0
5218 		 * otherwise, set it to 1.
5219 		 */
5220 		if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
5221 		    STRUCT_FGET(strpeek, databuf.len) == -1)
5222 			*rvalp = 0;
5223 		else
5224 			*rvalp = 1;
5225 		return (0);
5226 	}
5227 
5228 	case I_FDINSERT:
5229 	{
5230 		STRUCT_DECL(strfdinsert, strfdinsert);
5231 		struct file *resftp;
5232 		struct stdata *resstp;
5233 		t_uscalar_t	ival;
5234 		ssize_t msgsize;
5235 		struct strbuf mctl;
5236 
5237 		STRUCT_INIT(strfdinsert, flag);
5238 		if (stp->sd_flag & STRHUP)
5239 			return (ENXIO);
5240 		/*
5241 		 * STRDERR, STWRERR and STPLEX tested above.
5242 		 */
5243 		error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
5244 		    STRUCT_SIZE(strfdinsert), copyflag);
5245 		if (error)
5246 			return (error);
5247 
5248 		if (STRUCT_FGET(strfdinsert, offset) < 0 ||
5249 		    (STRUCT_FGET(strfdinsert, offset) %
5250 		    sizeof (t_uscalar_t)) != 0)
5251 			return (EINVAL);
5252 		if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
5253 			if ((resstp = resftp->f_vnode->v_stream) == NULL) {
5254 				releasef(STRUCT_FGET(strfdinsert, fildes));
5255 				return (EINVAL);
5256 			}
5257 		} else
5258 			return (EINVAL);
5259 
5260 		mutex_enter(&resstp->sd_lock);
5261 		if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
5262 			error = strgeterr(resstp,
5263 			    STRDERR|STWRERR|STRHUP|STPLEX, 0);
5264 			if (error != 0) {
5265 				mutex_exit(&resstp->sd_lock);
5266 				releasef(STRUCT_FGET(strfdinsert, fildes));
5267 				return (error);
5268 			}
5269 		}
5270 		mutex_exit(&resstp->sd_lock);
5271 
5272 #ifdef	_ILP32
5273 		{
5274 			queue_t	*q;
5275 			queue_t	*mate = NULL;
5276 
5277 			/* get read queue of stream terminus */
5278 			claimstr(resstp->sd_wrq);
5279 			for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
5280 			    q = q->q_next)
5281 				if (!STRMATED(resstp) && STREAM(q) != resstp &&
5282 				    mate == NULL) {
5283 					ASSERT(q->q_qinfo->qi_srvp);
5284 					ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
5285 					claimstr(q);
5286 					mate = q;
5287 				}
5288 			q = _RD(q);
5289 			if (mate)
5290 				releasestr(mate);
5291 			releasestr(resstp->sd_wrq);
5292 			ival = (t_uscalar_t)q;
5293 		}
5294 #else
5295 		ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
5296 #endif	/* _ILP32 */
5297 
5298 		if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
5299 		    STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
5300 			releasef(STRUCT_FGET(strfdinsert, fildes));
5301 			return (EINVAL);
5302 		}
5303 
5304 		/*
5305 		 * Check for legal flag value.
5306 		 */
5307 		if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
5308 			releasef(STRUCT_FGET(strfdinsert, fildes));
5309 			return (EINVAL);
5310 		}
5311 
5312 		/* get these values from those cached in the stream head */
5313 		mutex_enter(QLOCK(stp->sd_wrq));
5314 		rmin = stp->sd_qn_minpsz;
5315 		rmax = stp->sd_qn_maxpsz;
5316 		mutex_exit(QLOCK(stp->sd_wrq));
5317 
5318 		/*
5319 		 * Make sure ctl and data sizes together fall within
5320 		 * the limits of the max and min receive packet sizes
5321 		 * and do not exceed system limit.  A negative data
5322 		 * length means that no data part is to be sent.
5323 		 */
5324 		ASSERT((rmax >= 0) || (rmax == INFPSZ));
5325 		if (rmax == 0) {
5326 			releasef(STRUCT_FGET(strfdinsert, fildes));
5327 			return (ERANGE);
5328 		}
5329 		if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
5330 			msgsize = 0;
5331 		if ((msgsize < rmin) ||
5332 		    ((msgsize > rmax) && (rmax != INFPSZ)) ||
5333 		    (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
5334 			releasef(STRUCT_FGET(strfdinsert, fildes));
5335 			return (ERANGE);
5336 		}
5337 
5338 		mutex_enter(&stp->sd_lock);
5339 		while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
5340 		    !canputnext(stp->sd_wrq)) {
5341 			if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
5342 			    flag, -1, &done)) != 0 || done) {
5343 				mutex_exit(&stp->sd_lock);
5344 				releasef(STRUCT_FGET(strfdinsert, fildes));
5345 				return (error);
5346 			}
5347 			if ((error = i_straccess(stp, access)) != 0) {
5348 				mutex_exit(&stp->sd_lock);
5349 				releasef(
5350 				    STRUCT_FGET(strfdinsert, fildes));
5351 				return (error);
5352 			}
5353 		}
5354 		mutex_exit(&stp->sd_lock);
5355 
5356 		/*
5357 		 * Copy strfdinsert.ctlbuf into native form of
5358 		 * ctlbuf to pass down into strmakemsg().
5359 		 */
5360 		mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
5361 		mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
5362 		mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);
5363 
5364 		iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
5365 		iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
5366 		uio.uio_iov = &iov;
5367 		uio.uio_iovcnt = 1;
5368 		uio.uio_loffset = 0;
5369 		uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5370 		    UIO_SYSSPACE;
5371 		uio.uio_fmode = 0;
5372 		uio.uio_extflg = UIO_COPY_CACHED;
5373 		uio.uio_resid = iov.iov_len;
5374 		if ((error = strmakemsg(&mctl,
5375 		    &msgsize, &uio, stp,
5376 		    STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
5377 			STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5378 			releasef(STRUCT_FGET(strfdinsert, fildes));
5379 			return (error);
5380 		}
5381 
5382 		STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5383 
5384 		/*
5385 		 * Place the possibly reencoded queue pointer 'offset' bytes
5386 		 * from the start of the control portion of the message.
5387 		 */
5388 		*((t_uscalar_t *)(mp->b_rptr +
5389 		    STRUCT_FGET(strfdinsert, offset))) = ival;
5390 
5391 		/*
5392 		 * Put message downstream.
5393 		 */
5394 		stream_willservice(stp);
5395 		putnext(stp->sd_wrq, mp);
5396 		stream_runservice(stp);
5397 		releasef(STRUCT_FGET(strfdinsert, fildes));
5398 		return (error);
5399 	}
5400 
5401 	case I_SENDFD:
5402 	{
5403 		struct file *fp;
5404 
5405 		if ((fp = getf((int)arg)) == NULL)
5406 			return (EBADF);
5407 		error = do_sendfp(stp, fp, crp);
5408 		if (audit_active) {
5409 			audit_fdsend((int)arg, fp, error);
5410 		}
5411 		releasef((int)arg);
5412 		return (error);
5413 	}
5414 
5415 	case I_RECVFD:
5416 	case I_E_RECVFD:
5417 	{
5418 		struct k_strrecvfd *srf;
5419 		int i, fd;
5420 
5421 		mutex_enter(&stp->sd_lock);
5422 		while (!(mp = getq(rdq))) {
5423 			if (stp->sd_flag & (STRHUP|STREOF)) {
5424 				mutex_exit(&stp->sd_lock);
5425 				return (ENXIO);
5426 			}
5427 			if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
5428 			    flag, -1, &done)) != 0 || done) {
5429 				mutex_exit(&stp->sd_lock);
5430 				return (error);
5431 			}
5432 			if ((error = i_straccess(stp, access)) != 0) {
5433 				mutex_exit(&stp->sd_lock);
5434 				return (error);
5435 			}
5436 		}
5437 		if (mp->b_datap->db_type != M_PASSFP) {
5438 			putback(stp, rdq, mp, mp->b_band);
5439 			mutex_exit(&stp->sd_lock);
5440 			return (EBADMSG);
5441 		}
5442 		mutex_exit(&stp->sd_lock);
5443 
5444 		srf = (struct k_strrecvfd *)mp->b_rptr;
5445 		if ((fd = ufalloc(0)) == -1) {
5446 			mutex_enter(&stp->sd_lock);
5447 			putback(stp, rdq, mp, mp->b_band);
5448 			mutex_exit(&stp->sd_lock);
5449 			return (EMFILE);
5450 		}
5451 		if (cmd == I_RECVFD) {
5452 			struct o_strrecvfd	ostrfd;
5453 
5454 			/* check to see if uid/gid values are too large. */
5455 
5456 			if (srf->uid > (o_uid_t)USHRT_MAX ||
5457 			    srf->gid > (o_gid_t)USHRT_MAX) {
5458 				mutex_enter(&stp->sd_lock);
5459 				putback(stp, rdq, mp, mp->b_band);
5460 				mutex_exit(&stp->sd_lock);
5461 				setf(fd, NULL);	/* release fd entry */
5462 				return (EOVERFLOW);
5463 			}
5464 
5465 			ostrfd.fd = fd;
5466 			ostrfd.uid = (o_uid_t)srf->uid;
5467 			ostrfd.gid = (o_gid_t)srf->gid;
5468 
5469 			/* Null the filler bits */
5470 			for (i = 0; i < 8; i++)
5471 				ostrfd.fill[i] = 0;
5472 
5473 			error = strcopyout(&ostrfd, (void *)arg,
5474 			    sizeof (struct o_strrecvfd), copyflag);
5475 		} else {		/* I_E_RECVFD */
5476 			struct strrecvfd	strfd;
5477 
5478 			strfd.fd = fd;
5479 			strfd.uid = srf->uid;
5480 			strfd.gid = srf->gid;
5481 
5482 			/* null the filler bits */
5483 			for (i = 0; i < 8; i++)
5484 				strfd.fill[i] = 0;
5485 
5486 			error = strcopyout(&strfd, (void *)arg,
5487 			    sizeof (struct strrecvfd), copyflag);
5488 		}
5489 
5490 		if (error) {
5491 			setf(fd, NULL);	/* release fd entry */
5492 			mutex_enter(&stp->sd_lock);
5493 			putback(stp, rdq, mp, mp->b_band);
5494 			mutex_exit(&stp->sd_lock);
5495 			return (error);
5496 		}
5497 		if (audit_active) {
5498 			audit_fdrecv(fd, srf->fp);
5499 		}
5500 
5501 		/*
5502 		 * Always increment f_count since the freemsg() below will
5503 		 * always call free_passfp() which performs a closef().
5504 		 */
5505 		mutex_enter(&srf->fp->f_tlock);
5506 		srf->fp->f_count++;
5507 		mutex_exit(&srf->fp->f_tlock);
5508 		setf(fd, srf->fp);
5509 		freemsg(mp);
5510 		return (0);
5511 	}
5512 
5513 	case I_SWROPT:
5514 		/*
5515 		 * Set/clear the write options. arg is a bit
5516 		 * mask with any of the following bits set...
5517 		 * 	SNDZERO - send zero length message
5518 		 *	SNDPIPE - send sigpipe to process if
5519 		 *		sd_werror is set and process is
5520 		 *		doing a write or putmsg.
5521 		 * The new stream head write options should reflect
5522 		 * what is in arg.
5523 		 */
5524 		if (arg & ~(SNDZERO|SNDPIPE))
5525 			return (EINVAL);
5526 
5527 		mutex_enter(&stp->sd_lock);
5528 		stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
5529 		if (arg & SNDZERO)
5530 			stp->sd_wput_opt |= SW_SNDZERO;
5531 		if (arg & SNDPIPE)
5532 			stp->sd_wput_opt |= SW_SIGPIPE;
5533 		mutex_exit(&stp->sd_lock);
5534 		return (0);
5535 
5536 	case I_GWROPT:
5537 	{
5538 		int wropt = 0;
5539 
5540 		if (stp->sd_wput_opt & SW_SNDZERO)
5541 			wropt |= SNDZERO;
5542 		if (stp->sd_wput_opt & SW_SIGPIPE)
5543 			wropt |= SNDPIPE;
5544 		return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
5545 		    copyflag));
5546 	}
5547 
5548 	case I_LIST:
5549 		/*
5550 		 * Returns all the modules found on this stream,
5551 		 * upto the driver. If argument is NULL, return the
5552 		 * number of modules (including driver). If argument
5553 		 * is not NULL, copy the names into the structure
5554 		 * provided.
5555 		 */
5556 
5557 	{
5558 		queue_t *q;
5559 		int num_modules, space_allocated;
5560 		STRUCT_DECL(str_list, strlist);
5561 		struct str_mlist *mlist_ptr;
5562 
5563 		if (arg == NULL) { /* Return number of modules plus driver */
5564 			q = stp->sd_wrq;
5565 			if (stp->sd_vnode->v_type == VFIFO) {
5566 				*rvalp = stp->sd_pushcnt;
5567 			} else {
5568 				*rvalp = stp->sd_pushcnt + 1;
5569 			}
5570 		} else {
5571 			STRUCT_INIT(strlist, flag);
5572 
5573 			error = strcopyin((void *)arg, STRUCT_BUF(strlist),
5574 			    STRUCT_SIZE(strlist), copyflag);
5575 			if (error)
5576 				return (error);
5577 
5578 			space_allocated = STRUCT_FGET(strlist, sl_nmods);
5579 			if ((space_allocated) <= 0)
5580 				return (EINVAL);
5581 			claimstr(stp->sd_wrq);
5582 			q = stp->sd_wrq;
5583 			num_modules = 0;
5584 			while (_SAMESTR(q) && (space_allocated != 0)) {
5585 				char *name =
5586 				    q->q_next->q_qinfo->qi_minfo->mi_idname;
5587 
5588 				mlist_ptr = STRUCT_FGETP(strlist, sl_modlist);
5589 
5590 				error = strcopyout(name, mlist_ptr,
5591 				    strlen(name) + 1, copyflag);
5592 
5593 				if (error) {
5594 					releasestr(stp->sd_wrq);
5595 					return (error);
5596 				}
5597 				q = q->q_next;
5598 				space_allocated--;
5599 				num_modules++;
5600 				mlist_ptr =
5601 				    (struct str_mlist *)((uintptr_t)mlist_ptr +
5602 				    sizeof (struct str_mlist));
5603 				STRUCT_FSETP(strlist, sl_modlist, mlist_ptr);
5604 			}
5605 			releasestr(stp->sd_wrq);
5606 			error = strcopyout(&num_modules, (void *)arg,
5607 			    sizeof (int), copyflag);
5608 		}
5609 		return (error);
5610 	}
5611 
5612 	case I_CKBAND:
5613 	{
5614 		queue_t *q;
5615 		qband_t *qbp;
5616 
5617 		if ((arg < 0) || (arg >= NBAND))
5618 			return (EINVAL);
5619 		q = _RD(stp->sd_wrq);
5620 		mutex_enter(QLOCK(q));
5621 		if (arg > (int)q->q_nband) {
5622 			*rvalp = 0;
5623 		} else {
5624 			if (arg == 0) {
5625 				if (q->q_first)
5626 					*rvalp = 1;
5627 				else
5628 					*rvalp = 0;
5629 			} else {
5630 				qbp = q->q_bandp;
5631 				while (--arg > 0)
5632 					qbp = qbp->qb_next;
5633 				if (qbp->qb_first)
5634 					*rvalp = 1;
5635 				else
5636 					*rvalp = 0;
5637 			}
5638 		}
5639 		mutex_exit(QLOCK(q));
5640 		return (0);
5641 	}
5642 
5643 	case I_GETBAND:
5644 	{
5645 		int intpri;
5646 		queue_t *q;
5647 
5648 		q = _RD(stp->sd_wrq);
5649 		mutex_enter(QLOCK(q));
5650 		mp = q->q_first;
5651 		if (!mp) {
5652 			mutex_exit(QLOCK(q));
5653 			return (ENODATA);
5654 		}
5655 		intpri = (int)mp->b_band;
5656 		error = strcopyout(&intpri, (void *)arg, sizeof (int),
5657 		    copyflag);
5658 		mutex_exit(QLOCK(q));
5659 		return (error);
5660 	}
5661 
5662 	case I_ATMARK:
5663 	{
5664 		queue_t *q;
5665 
5666 		if (arg & ~(ANYMARK|LASTMARK))
5667 			return (EINVAL);
5668 		q = _RD(stp->sd_wrq);
5669 		mutex_enter(&stp->sd_lock);
5670 		if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
5671 			*rvalp = 1;
5672 		} else {
5673 			mutex_enter(QLOCK(q));
5674 			mp = q->q_first;
5675 
5676 			if (mp == NULL)
5677 				*rvalp = 0;
5678 			else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
5679 				*rvalp = 1;
5680 			else if ((arg == LASTMARK) && (mp == stp->sd_mark))
5681 				*rvalp = 1;
5682 			else
5683 				*rvalp = 0;
5684 			mutex_exit(QLOCK(q));
5685 		}
5686 		mutex_exit(&stp->sd_lock);
5687 		return (0);
5688 	}
5689 
5690 	case I_CANPUT:
5691 	{
5692 		char band;
5693 
5694 		if ((arg < 0) || (arg >= NBAND))
5695 			return (EINVAL);
5696 		band = (char)arg;
5697 		*rvalp = bcanputnext(stp->sd_wrq, band);
5698 		return (0);
5699 	}
5700 
5701 	case I_SETCLTIME:
5702 	{
5703 		int closetime;
5704 
5705 		error = strcopyin((void *)arg, &closetime, sizeof (int),
5706 		    copyflag);
5707 		if (error)
5708 			return (error);
5709 		if (closetime < 0)
5710 			return (EINVAL);
5711 
5712 		stp->sd_closetime = closetime;
5713 		return (0);
5714 	}
5715 
5716 	case I_GETCLTIME:
5717 	{
5718 		int closetime;
5719 
5720 		closetime = stp->sd_closetime;
5721 		return (strcopyout(&closetime, (void *)arg, sizeof (int),
5722 		    copyflag));
5723 	}
5724 
5725 	case TIOCGSID:
5726 	{
5727 		pid_t sid;
5728 
5729 		mutex_enter(&stp->sd_lock);
5730 		if (stp->sd_sidp == NULL) {
5731 			mutex_exit(&stp->sd_lock);
5732 			return (ENOTTY);
5733 		}
5734 		sid = stp->sd_sidp->pid_id;
5735 		mutex_exit(&stp->sd_lock);
5736 		return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
5737 		    copyflag));
5738 	}
5739 
5740 	case TIOCSPGRP:
5741 	{
5742 		pid_t pgrp;
5743 		proc_t *q;
5744 		pid_t	sid, fg_pgid, bg_pgid;
5745 
5746 		if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
5747 		    copyflag))
5748 			return (error);
5749 		mutex_enter(&stp->sd_lock);
5750 		mutex_enter(&pidlock);
5751 		if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
5752 			mutex_exit(&pidlock);
5753 			mutex_exit(&stp->sd_lock);
5754 			return (ENOTTY);
5755 		}
5756 		if (pgrp == stp->sd_pgidp->pid_id) {
5757 			mutex_exit(&pidlock);
5758 			mutex_exit(&stp->sd_lock);
5759 			return (0);
5760 		}
5761 		if (pgrp <= 0 || pgrp >= maxpid) {
5762 			mutex_exit(&pidlock);
5763 			mutex_exit(&stp->sd_lock);
5764 			return (EINVAL);
5765 		}
5766 		if ((q = pgfind(pgrp)) == NULL ||
5767 		    q->p_sessp != ttoproc(curthread)->p_sessp) {
5768 			mutex_exit(&pidlock);
5769 			mutex_exit(&stp->sd_lock);
5770 			return (EPERM);
5771 		}
5772 		sid = stp->sd_sidp->pid_id;
5773 		fg_pgid = q->p_pgrp;
5774 		bg_pgid = stp->sd_pgidp->pid_id;
5775 		CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
5776 		PID_RELE(stp->sd_pgidp);
5777 		ctty_clear_sighuped();
5778 		stp->sd_pgidp = q->p_pgidp;
5779 		PID_HOLD(stp->sd_pgidp);
5780 		mutex_exit(&pidlock);
5781 		mutex_exit(&stp->sd_lock);
5782 		return (0);
5783 	}
5784 
5785 	case TIOCGPGRP:
5786 	{
5787 		pid_t pgrp;
5788 
5789 		mutex_enter(&stp->sd_lock);
5790 		if (stp->sd_sidp == NULL) {
5791 			mutex_exit(&stp->sd_lock);
5792 			return (ENOTTY);
5793 		}
5794 		pgrp = stp->sd_pgidp->pid_id;
5795 		mutex_exit(&stp->sd_lock);
5796 		return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
5797 		    copyflag));
5798 	}
5799 
5800 	case TIOCSCTTY:
5801 	{
5802 		return (strctty(stp));
5803 	}
5804 
5805 	case TIOCNOTTY:
5806 	{
5807 		/* freectty() always assumes curproc. */
5808 		if (freectty(B_FALSE) != 0)
5809 			return (0);
5810 		return (ENOTTY);
5811 	}
5812 
5813 	case FIONBIO:
5814 	case FIOASYNC:
5815 		return (0);	/* handled by the upper layer */
5816 	}
5817 }
5818 
5819 /*
5820  * Custom free routine used for M_PASSFP messages.
5821  */
5822 static void
5823 free_passfp(struct k_strrecvfd *srf)
5824 {
5825 	(void) closef(srf->fp);
5826 	kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
5827 }
5828 
5829 /* ARGSUSED */
5830 int
5831 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
5832 {
5833 	queue_t *qp, *nextqp;
5834 	struct k_strrecvfd *srf;
5835 	mblk_t *mp;
5836 	frtn_t *frtnp;
5837 	size_t bufsize;
5838 	queue_t	*mate = NULL;
5839 	syncq_t	*sq = NULL;
5840 	int retval = 0;
5841 
5842 	if (stp->sd_flag & STRHUP)
5843 		return (ENXIO);
5844 
5845 	claimstr(stp->sd_wrq);
5846 
5847 	/* Fastpath, we have a pipe, and we are already mated, use it. */
5848 	if (STRMATED(stp)) {
5849 		qp = _RD(stp->sd_mate->sd_wrq);
5850 		claimstr(qp);
5851 		mate = qp;
5852 	} else { /* Not already mated. */
5853 
5854 		/*
5855 		 * Walk the stream to the end of this one.
5856 		 * assumes that the claimstr() will prevent
5857 		 * plumbing between the stream head and the
5858 		 * driver from changing
5859 		 */
5860 		qp = stp->sd_wrq;
5861 
5862 		/*
5863 		 * Loop until we reach the end of this stream.
5864 		 * On completion, qp points to the write queue
5865 		 * at the end of the stream, or the read queue
5866 		 * at the stream head if this is a fifo.
5867 		 */
5868 		while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
5869 			;
5870 
5871 		/*
5872 		 * Just in case we get a q_next which is NULL, but
5873 		 * not at the end of the stream.  This is actually
5874 		 * broken, so we set an assert to catch it in
5875 		 * debug, and set an error and return if not debug.
5876 		 */
5877 		ASSERT(qp);
5878 		if (qp == NULL) {
5879 			releasestr(stp->sd_wrq);
5880 			return (EINVAL);
5881 		}
5882 
5883 		/*
5884 		 * Enter the syncq for the driver, so (hopefully)
5885 		 * the queue values will not change on us.
5886 		 * XXXX - This will only prevent the race IFF only
5887 		 *   the write side modifies the q_next member, and
5888 		 *   the put procedure is protected by at least
5889 		 *   MT_PERQ.
5890 		 */
5891 		if ((sq = qp->q_syncq) != NULL)
5892 			entersq(sq, SQ_PUT);
5893 
5894 		/* Now get the q_next value from this qp. */
5895 		nextqp = qp->q_next;
5896 
5897 		/*
5898 		 * If nextqp exists and the other stream is different
5899 		 * from this one claim the stream, set the mate, and
5900 		 * get the read queue at the stream head of the other
5901 		 * stream.  Assumes that nextqp was at least valid when
5902 		 * we got it.  Hopefully the entersq of the driver
5903 		 * will prevent it from changing on us.
5904 		 */
5905 		if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
5906 			ASSERT(qp->q_qinfo->qi_srvp);
5907 			ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
5908 			ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
5909 			claimstr(nextqp);
5910 
5911 			/* Make sure we still have a q_next */
5912 			if (nextqp != qp->q_next) {
5913 				releasestr(stp->sd_wrq);
5914 				releasestr(nextqp);
5915 				return (EINVAL);
5916 			}
5917 
5918 			qp = _RD(STREAM(nextqp)->sd_wrq);
5919 			mate = qp;
5920 		}
5921 		/* If we entered the synq above, leave it. */
5922 		if (sq != NULL)
5923 			leavesq(sq, SQ_PUT);
5924 	} /*  STRMATED(STP)  */
5925 
5926 	/* XXX prevents substitution of the ops vector */
5927 	if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
5928 		retval = EINVAL;
5929 		goto out;
5930 	}
5931 
5932 	if (qp->q_flag & QFULL) {
5933 		retval = EAGAIN;
5934 		goto out;
5935 	}
5936 
5937 	/*
5938 	 * Since M_PASSFP messages include a file descriptor, we use
5939 	 * esballoc() and specify a custom free routine (free_passfp()) that
5940 	 * will close the descriptor as part of freeing the message.  For
5941 	 * convenience, we stash the frtn_t right after the data block.
5942 	 */
5943 	bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
5944 	srf = kmem_alloc(bufsize, KM_NOSLEEP);
5945 	if (srf == NULL) {
5946 		retval = EAGAIN;
5947 		goto out;
5948 	}
5949 
5950 	frtnp = (frtn_t *)(srf + 1);
5951 	frtnp->free_arg = (caddr_t)srf;
5952 	frtnp->free_func = free_passfp;
5953 
5954 	mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
5955 	if (mp == NULL) {
5956 		kmem_free(srf, bufsize);
5957 		retval = EAGAIN;
5958 		goto out;
5959 	}
5960 	mp->b_wptr += sizeof (struct k_strrecvfd);
5961 	mp->b_datap->db_type = M_PASSFP;
5962 
5963 	srf->fp = fp;
5964 	srf->uid = crgetuid(curthread->t_cred);
5965 	srf->gid = crgetgid(curthread->t_cred);
5966 	mutex_enter(&fp->f_tlock);
5967 	fp->f_count++;
5968 	mutex_exit(&fp->f_tlock);
5969 
5970 	put(qp, mp);
5971 out:
5972 	releasestr(stp->sd_wrq);
5973 	if (mate)
5974 		releasestr(mate);
5975 	return (retval);
5976 }
5977 
5978 /*
5979  * Send an ioctl message downstream and wait for acknowledgement.
5980  * flags may be set to either U_TO_K or K_TO_K and a combination
5981  * of STR_NOERROR or STR_NOSIG
5982  * STR_NOSIG: Signals are essentially ignored or held and have
5983  *	no effect for the duration of the call.
5984  * STR_NOERROR: Ignores stream head read, write and hup errors.
5985  *	Additionally, if an existing ioctl times out, it is assumed
5986  *	lost and and this ioctl will continue as if the previous ioctl had
5987  *	finished.  ETIME may be returned if this ioctl times out (i.e.
5988  *	ic_timout is not INFTIM).  Non-stream head errors may be returned if
5989  *	the ioc_error indicates that the driver/module had problems,
5990  *	an EFAULT was found when accessing user data, a lack of
5991  * 	resources, etc.
5992  */
5993 int
5994 strdoioctl(
5995 	struct stdata *stp,
5996 	struct strioctl *strioc,
5997 	int fflags,		/* file flags with model info */
5998 	int flag,
5999 	cred_t *crp,
6000 	int *rvalp)
6001 {
6002 	mblk_t *bp;
6003 	struct iocblk *iocbp;
6004 	struct copyreq *reqp;
6005 	struct copyresp *resp;
6006 	int id;
6007 	int transparent = 0;
6008 	int error = 0;
6009 	int len = 0;
6010 	caddr_t taddr;
6011 	int copyflag = (flag & (U_TO_K | K_TO_K));
6012 	int sigflag = (flag & STR_NOSIG);
6013 	int errs;
6014 	uint_t waitflags;
6015 
6016 	ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
6017 	ASSERT((fflags & FMODELS) != 0);
6018 
6019 	TRACE_2(TR_FAC_STREAMS_FR,
6020 	    TR_STRDOIOCTL,
6021 	    "strdoioctl:stp %p strioc %p", stp, strioc);
6022 	if (strioc->ic_len == TRANSPARENT) {	/* send arg in M_DATA block */
6023 		transparent = 1;
6024 		strioc->ic_len = sizeof (intptr_t);
6025 	}
6026 
6027 	if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
6028 		return (EINVAL);
6029 
6030 	if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
6031 	    crp)) == NULL)
6032 			return (error);
6033 
6034 	bzero(bp->b_wptr, sizeof (union ioctypes));
6035 
6036 	iocbp = (struct iocblk *)bp->b_wptr;
6037 	iocbp->ioc_count = strioc->ic_len;
6038 	iocbp->ioc_cmd = strioc->ic_cmd;
6039 	iocbp->ioc_flag = (fflags & FMODELS);
6040 
6041 	crhold(crp);
6042 	iocbp->ioc_cr = crp;
6043 	DB_TYPE(bp) = M_IOCTL;
6044 	DB_CPID(bp) = curproc->p_pid;
6045 	bp->b_wptr += sizeof (struct iocblk);
6046 
6047 	if (flag & STR_NOERROR)
6048 		errs = STPLEX;
6049 	else
6050 		errs = STRHUP|STRDERR|STWRERR|STPLEX;
6051 
6052 	/*
6053 	 * If there is data to copy into ioctl block, do so.
6054 	 */
6055 	if (iocbp->ioc_count > 0) {
6056 		if (transparent)
6057 			/*
6058 			 * Note: STR_NOERROR does not have an effect
6059 			 * in putiocd()
6060 			 */
6061 			id = K_TO_K | sigflag;
6062 		else
6063 			id = flag;
6064 		if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
6065 			freemsg(bp);
6066 			crfree(crp);
6067 			return (error);
6068 		}
6069 
6070 		/*
6071 		 * We could have slept copying in user pages.
6072 		 * Recheck the stream head state (the other end
6073 		 * of a pipe could have gone away).
6074 		 */
6075 		if (stp->sd_flag & errs) {
6076 			mutex_enter(&stp->sd_lock);
6077 			error = strgeterr(stp, errs, 0);
6078 			mutex_exit(&stp->sd_lock);
6079 			if (error != 0) {
6080 				freemsg(bp);
6081 				crfree(crp);
6082 				return (error);
6083 			}
6084 		}
6085 	}
6086 	if (transparent)
6087 		iocbp->ioc_count = TRANSPARENT;
6088 
6089 	/*
6090 	 * Block for up to STRTIMOUT milliseconds if there is an outstanding
6091 	 * ioctl for this stream already running.  All processes
6092 	 * sleeping here will be awakened as a result of an ACK
6093 	 * or NAK being received for the outstanding ioctl, or
6094 	 * as a result of the timer expiring on the outstanding
6095 	 * ioctl (a failure), or as a result of any waiting
6096 	 * process's timer expiring (also a failure).
6097 	 */
6098 
6099 	error = 0;
6100 	mutex_enter(&stp->sd_lock);
6101 	while (stp->sd_flag & (IOCWAIT | IOCWAITNE)) {
6102 		clock_t cv_rval;
6103 
6104 		TRACE_0(TR_FAC_STREAMS_FR,
6105 		    TR_STRDOIOCTL_WAIT,
6106 		    "strdoioctl sleeps - IOCWAIT");
6107 		cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
6108 		    STRTIMOUT, sigflag);
6109 		if (cv_rval <= 0) {
6110 			if (cv_rval == 0) {
6111 				error = EINTR;
6112 			} else {
6113 				if (flag & STR_NOERROR) {
6114 					/*
6115 					 * Terminating current ioctl in
6116 					 * progress -- assume it got lost and
6117 					 * wake up the other thread so that the
6118 					 * operation completes.
6119 					 */
6120 					if (!(stp->sd_flag & IOCWAITNE)) {
6121 						stp->sd_flag |= IOCWAITNE;
6122 						cv_broadcast(&stp->sd_monitor);
6123 					}
6124 					/*
6125 					 * Otherwise, there's a running
6126 					 * STR_NOERROR -- we have no choice
6127 					 * here but to wait forever (or until
6128 					 * interrupted).
6129 					 */
6130 				} else {
6131 					/*
6132 					 * pending ioctl has caused
6133 					 * us to time out
6134 					 */
6135 					error = ETIME;
6136 				}
6137 			}
6138 		} else if ((stp->sd_flag & errs)) {
6139 			error = strgeterr(stp, errs, 0);
6140 		}
6141 		if (error) {
6142 			mutex_exit(&stp->sd_lock);
6143 			freemsg(bp);
6144 			crfree(crp);
6145 			return (error);
6146 		}
6147 	}
6148 
6149 	/*
6150 	 * Have control of ioctl mechanism.
6151 	 * Send down ioctl packet and wait for response.
6152 	 */
6153 	if (stp->sd_iocblk != (mblk_t *)-1) {
6154 		freemsg(stp->sd_iocblk);
6155 	}
6156 	stp->sd_iocblk = NULL;
6157 
6158 	/*
6159 	 * If this is marked with 'noerror' (internal; mostly
6160 	 * I_{P,}{UN,}LINK), then make sure nobody else is able to get
6161 	 * in here by setting IOCWAITNE.
6162 	 */
6163 	waitflags = IOCWAIT;
6164 	if (flag & STR_NOERROR)
6165 		waitflags |= IOCWAITNE;
6166 
6167 	stp->sd_flag |= waitflags;
6168 
6169 	/*
6170 	 * Assign sequence number.
6171 	 */
6172 	iocbp->ioc_id = stp->sd_iocid = getiocseqno();
6173 
6174 	mutex_exit(&stp->sd_lock);
6175 
6176 	TRACE_1(TR_FAC_STREAMS_FR,
6177 	    TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
6178 	stream_willservice(stp);
6179 	putnext(stp->sd_wrq, bp);
6180 	stream_runservice(stp);
6181 
6182 	/*
6183 	 * Timed wait for acknowledgment.  The wait time is limited by the
6184 	 * timeout value, which must be a positive integer (number of
6185 	 * milliseconds) to wait, or 0 (use default value of STRTIMOUT
6186 	 * milliseconds), or -1 (wait forever).  This will be awakened
6187 	 * either by an ACK/NAK message arriving, the timer expiring, or
6188 	 * the timer expiring on another ioctl waiting for control of the
6189 	 * mechanism.
6190 	 */
6191 waitioc:
6192 	mutex_enter(&stp->sd_lock);
6193 
6194 
6195 	/*
6196 	 * If the reply has already arrived, don't sleep.  If awakened from
6197 	 * the sleep, fail only if the reply has not arrived by then.
6198 	 * Otherwise, process the reply.
6199 	 */
6200 	while (!stp->sd_iocblk) {
6201 		clock_t cv_rval;
6202 
6203 		if (stp->sd_flag & errs) {
6204 			error = strgeterr(stp, errs, 0);
6205 			if (error != 0) {
6206 				stp->sd_flag &= ~waitflags;
6207 				cv_broadcast(&stp->sd_iocmonitor);
6208 				mutex_exit(&stp->sd_lock);
6209 				crfree(crp);
6210 				return (error);
6211 			}
6212 		}
6213 
6214 		TRACE_0(TR_FAC_STREAMS_FR,
6215 		    TR_STRDOIOCTL_WAIT2,
6216 		    "strdoioctl sleeps awaiting reply");
6217 		ASSERT(error == 0);
6218 
6219 		cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
6220 		    (strioc->ic_timout ?
6221 		    strioc->ic_timout * 1000 : STRTIMOUT), sigflag);
6222 
6223 		/*
6224 		 * There are four possible cases here: interrupt, timeout,
6225 		 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
6226 		 * valid M_IOCTL reply).
6227 		 *
6228 		 * If we've been awakened by a STR_NOERROR ioctl on some other
6229 		 * thread, then sd_iocblk will still be NULL, and IOCWAITNE
6230 		 * will be set.  Pretend as if we just timed out.  Note that
6231 		 * this other thread waited at least STRTIMOUT before trying to
6232 		 * awaken our thread, so this is indistinguishable (even for
6233 		 * INFTIM) from the case where we failed with ETIME waiting on
6234 		 * IOCWAIT in the prior loop.
6235 		 */
6236 		if (cv_rval > 0 && !(flag & STR_NOERROR) &&
6237 		    stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
6238 			cv_rval = -1;
6239 		}
6240 
6241 		/*
6242 		 * note: STR_NOERROR does not protect
6243 		 * us here.. use ic_timout < 0
6244 		 */
6245 		if (cv_rval <= 0) {
6246 			if (cv_rval == 0) {
6247 				error = EINTR;
6248 			} else {
6249 				error =  ETIME;
6250 			}
6251 			/*
6252 			 * A message could have come in after we were scheduled
6253 			 * but before we were actually run.
6254 			 */
6255 			bp = stp->sd_iocblk;
6256 			stp->sd_iocblk = NULL;
6257 			if (bp != NULL) {
6258 				if ((bp->b_datap->db_type == M_COPYIN) ||
6259 				    (bp->b_datap->db_type == M_COPYOUT)) {
6260 					mutex_exit(&stp->sd_lock);
6261 					if (bp->b_cont) {
6262 						freemsg(bp->b_cont);
6263 						bp->b_cont = NULL;
6264 					}
6265 					bp->b_datap->db_type = M_IOCDATA;
6266 					bp->b_wptr = bp->b_rptr +
6267 					    sizeof (struct copyresp);
6268 					resp = (struct copyresp *)bp->b_rptr;
6269 					resp->cp_rval =
6270 					    (caddr_t)1; /* failure */
6271 					stream_willservice(stp);
6272 					putnext(stp->sd_wrq, bp);
6273 					stream_runservice(stp);
6274 					mutex_enter(&stp->sd_lock);
6275 				} else {
6276 					freemsg(bp);
6277 				}
6278 			}
6279 			stp->sd_flag &= ~waitflags;
6280 			cv_broadcast(&stp->sd_iocmonitor);
6281 			mutex_exit(&stp->sd_lock);
6282 			crfree(crp);
6283 			return (error);
6284 		}
6285 	}
6286 	bp = stp->sd_iocblk;
6287 	/*
6288 	 * Note: it is strictly impossible to get here with sd_iocblk set to
6289 	 * -1.  This is because the initial loop above doesn't allow any new
6290 	 * ioctls into the fray until all others have passed this point.
6291 	 */
6292 	ASSERT(bp != NULL && bp != (mblk_t *)-1);
6293 	TRACE_1(TR_FAC_STREAMS_FR,
6294 	    TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
6295 	if ((bp->b_datap->db_type == M_IOCACK) ||
6296 	    (bp->b_datap->db_type == M_IOCNAK)) {
6297 		/* for detection of duplicate ioctl replies */
6298 		stp->sd_iocblk = (mblk_t *)-1;
6299 		stp->sd_flag &= ~waitflags;
6300 		cv_broadcast(&stp->sd_iocmonitor);
6301 		mutex_exit(&stp->sd_lock);
6302 	} else {
6303 		/*
6304 		 * flags not cleared here because we're still doing
6305 		 * copy in/out for ioctl.
6306 		 */
6307 		stp->sd_iocblk = NULL;
6308 		mutex_exit(&stp->sd_lock);
6309 	}
6310 
6311 
6312 	/*
6313 	 * Have received acknowledgment.
6314 	 */
6315 
6316 	switch (bp->b_datap->db_type) {
6317 	case M_IOCACK:
6318 		/*
6319 		 * Positive ack.
6320 		 */
6321 		iocbp = (struct iocblk *)bp->b_rptr;
6322 
6323 		/*
6324 		 * Set error if indicated.
6325 		 */
6326 		if (iocbp->ioc_error) {
6327 			error = iocbp->ioc_error;
6328 			break;
6329 		}
6330 
6331 		/*
6332 		 * Set return value.
6333 		 */
6334 		*rvalp = iocbp->ioc_rval;
6335 
6336 		/*
6337 		 * Data may have been returned in ACK message (ioc_count > 0).
6338 		 * If so, copy it out to the user's buffer.
6339 		 */
6340 		if (iocbp->ioc_count && !transparent) {
6341 			if (error = getiocd(bp, strioc->ic_dp, copyflag))
6342 				break;
6343 		}
6344 		if (!transparent) {
6345 			if (len)	/* an M_COPYOUT was used with I_STR */
6346 				strioc->ic_len = len;
6347 			else
6348 				strioc->ic_len = (int)iocbp->ioc_count;
6349 		}
6350 		break;
6351 
6352 	case M_IOCNAK:
6353 		/*
6354 		 * Negative ack.
6355 		 *
6356 		 * The only thing to do is set error as specified
6357 		 * in neg ack packet.
6358 		 */
6359 		iocbp = (struct iocblk *)bp->b_rptr;
6360 
6361 		error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
6362 		break;
6363 
6364 	case M_COPYIN:
6365 		/*
6366 		 * Driver or module has requested user ioctl data.
6367 		 */
6368 		reqp = (struct copyreq *)bp->b_rptr;
6369 
6370 		/*
6371 		 * M_COPYIN should *never* have a message attached, though
6372 		 * it's harmless if it does -- thus, panic on a DEBUG
6373 		 * kernel and just free it on a non-DEBUG build.
6374 		 */
6375 		ASSERT(bp->b_cont == NULL);
6376 		if (bp->b_cont != NULL) {
6377 			freemsg(bp->b_cont);
6378 			bp->b_cont = NULL;
6379 		}
6380 
6381 		error = putiocd(bp, reqp->cq_addr, flag, crp);
6382 		if (error && bp->b_cont) {
6383 			freemsg(bp->b_cont);
6384 			bp->b_cont = NULL;
6385 		}
6386 
6387 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6388 		bp->b_datap->db_type = M_IOCDATA;
6389 
6390 		mblk_setcred(bp, crp);
6391 		DB_CPID(bp) = curproc->p_pid;
6392 		resp = (struct copyresp *)bp->b_rptr;
6393 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6394 		resp->cp_flag = (fflags & FMODELS);
6395 
6396 		stream_willservice(stp);
6397 		putnext(stp->sd_wrq, bp);
6398 		stream_runservice(stp);
6399 
6400 		if (error) {
6401 			mutex_enter(&stp->sd_lock);
6402 			stp->sd_flag &= ~waitflags;
6403 			cv_broadcast(&stp->sd_iocmonitor);
6404 			mutex_exit(&stp->sd_lock);
6405 			crfree(crp);
6406 			return (error);
6407 		}
6408 
6409 		goto waitioc;
6410 
6411 	case M_COPYOUT:
6412 		/*
6413 		 * Driver or module has ioctl data for a user.
6414 		 */
6415 		reqp = (struct copyreq *)bp->b_rptr;
6416 		ASSERT(bp->b_cont != NULL);
6417 
6418 		/*
6419 		 * Always (transparent or non-transparent )
6420 		 * use the address specified in the request
6421 		 */
6422 		taddr = reqp->cq_addr;
6423 		if (!transparent)
6424 			len = (int)reqp->cq_size;
6425 
6426 		/* copyout data to the provided address */
6427 		error = getiocd(bp, taddr, copyflag);
6428 
6429 		freemsg(bp->b_cont);
6430 		bp->b_cont = NULL;
6431 
6432 		bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6433 		bp->b_datap->db_type = M_IOCDATA;
6434 
6435 		mblk_setcred(bp, crp);
6436 		DB_CPID(bp) = curproc->p_pid;
6437 		resp = (struct copyresp *)bp->b_rptr;
6438 		resp->cp_rval = (caddr_t)(uintptr_t)error;
6439 		resp->cp_flag = (fflags & FMODELS);
6440 
6441 		stream_willservice(stp);
6442 		putnext(stp->sd_wrq, bp);
6443 		stream_runservice(stp);
6444 
6445 		if (error) {
6446 			mutex_enter(&stp->sd_lock);
6447 			stp->sd_flag &= ~waitflags;
6448 			cv_broadcast(&stp->sd_iocmonitor);
6449 			mutex_exit(&stp->sd_lock);
6450 			crfree(crp);
6451 			return (error);
6452 		}
6453 		goto waitioc;
6454 
6455 	default:
6456 		ASSERT(0);
6457 		mutex_enter(&stp->sd_lock);
6458 		stp->sd_flag &= ~waitflags;
6459 		cv_broadcast(&stp->sd_iocmonitor);
6460 		mutex_exit(&stp->sd_lock);
6461 		break;
6462 	}
6463 
6464 	freemsg(bp);
6465 	crfree(crp);
6466 	return (error);
6467 }
6468 
6469 /*
6470  * Send an M_CMD message downstream and wait for a reply.  This is a ptools
6471  * special used to retrieve information from modules/drivers a stream without
6472  * being subjected to flow control or interfering with pending messages on the
6473  * stream (e.g. an ioctl in flight).
6474  */
6475 int
6476 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp)
6477 {
6478 	mblk_t *mp;
6479 	struct cmdblk *cmdp;
6480 	int error = 0;
6481 	int errs = STRHUP|STRDERR|STWRERR|STPLEX;
6482 	clock_t rval, timeout = STRTIMOUT;
6483 
6484 	if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) ||
6485 	    scp->sc_timeout < -1)
6486 		return (EINVAL);
6487 
6488 	if (scp->sc_timeout > 0)
6489 		timeout = scp->sc_timeout * MILLISEC;
6490 
6491 	if ((mp = allocb_cred(sizeof (struct cmdblk), crp)) == NULL)
6492 		return (ENOMEM);
6493 
6494 	crhold(crp);
6495 
6496 	cmdp = (struct cmdblk *)mp->b_wptr;
6497 	cmdp->cb_cr = crp;
6498 	cmdp->cb_cmd = scp->sc_cmd;
6499 	cmdp->cb_len = scp->sc_len;
6500 	cmdp->cb_error = 0;
6501 	mp->b_wptr += sizeof (struct cmdblk);
6502 
6503 	DB_TYPE(mp) = M_CMD;
6504 	DB_CPID(mp) = curproc->p_pid;
6505 
6506 	/*
6507 	 * Copy in the payload.
6508 	 */
6509 	if (cmdp->cb_len > 0) {
6510 		mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp);
6511 		if (mp->b_cont == NULL) {
6512 			error = ENOMEM;
6513 			goto out;
6514 		}
6515 
6516 		/* cb_len comes from sc_len, which has already been checked */
6517 		ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf));
6518 		(void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len);
6519 		mp->b_cont->b_wptr += cmdp->cb_len;
6520 		DB_CPID(mp->b_cont) = curproc->p_pid;
6521 	}
6522 
6523 	/*
6524 	 * Since this mechanism is strictly for ptools, and since only one
6525 	 * process can be grabbed at a time, we simply fail if there's
6526 	 * currently an operation pending.
6527 	 */
6528 	mutex_enter(&stp->sd_lock);
6529 	if (stp->sd_flag & STRCMDWAIT) {
6530 		mutex_exit(&stp->sd_lock);
6531 		error = EBUSY;
6532 		goto out;
6533 	}
6534 	stp->sd_flag |= STRCMDWAIT;
6535 	ASSERT(stp->sd_cmdblk == NULL);
6536 	mutex_exit(&stp->sd_lock);
6537 
6538 	putnext(stp->sd_wrq, mp);
6539 	mp = NULL;
6540 
6541 	/*
6542 	 * Timed wait for acknowledgment.  If the reply has already arrived,
6543 	 * don't sleep.  If awakened from the sleep, fail only if the reply
6544 	 * has not arrived by then.  Otherwise, process the reply.
6545 	 */
6546 	mutex_enter(&stp->sd_lock);
6547 	while (stp->sd_cmdblk == NULL) {
6548 		if (stp->sd_flag & errs) {
6549 			if ((error = strgeterr(stp, errs, 0)) != 0)
6550 				goto waitout;
6551 		}
6552 
6553 		rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0);
6554 		if (stp->sd_cmdblk != NULL)
6555 			break;
6556 
6557 		if (rval <= 0) {
6558 			error = (rval == 0) ? EINTR : ETIME;
6559 			goto waitout;
6560 		}
6561 	}
6562 
6563 	/*
6564 	 * We received a reply.
6565 	 */
6566 	mp = stp->sd_cmdblk;
6567 	stp->sd_cmdblk = NULL;
6568 	ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD);
6569 	ASSERT(stp->sd_flag & STRCMDWAIT);
6570 	stp->sd_flag &= ~STRCMDWAIT;
6571 	mutex_exit(&stp->sd_lock);
6572 
6573 	cmdp = (struct cmdblk *)mp->b_rptr;
6574 	if ((error = cmdp->cb_error) != 0)
6575 		goto out;
6576 
6577 	/*
6578 	 * Data may have been returned in the reply (cb_len > 0).
6579 	 * If so, copy it out to the user's buffer.
6580 	 */
6581 	if (cmdp->cb_len > 0) {
6582 		if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) {
6583 			error = EPROTO;
6584 			goto out;
6585 		}
6586 
6587 		cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf));
6588 		(void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len);
6589 	}
6590 	scp->sc_len = cmdp->cb_len;
6591 out:
6592 	freemsg(mp);
6593 	crfree(crp);
6594 	return (error);
6595 waitout:
6596 	ASSERT(stp->sd_cmdblk == NULL);
6597 	stp->sd_flag &= ~STRCMDWAIT;
6598 	mutex_exit(&stp->sd_lock);
6599 	crfree(crp);
6600 	return (error);
6601 }
6602 
6603 /*
6604  * For the SunOS keyboard driver.
6605  * Return the next available "ioctl" sequence number.
6606  * Exported, so that streams modules can send "ioctl" messages
6607  * downstream from their open routine.
6608  */
6609 int
6610 getiocseqno(void)
6611 {
6612 	int	i;
6613 
6614 	mutex_enter(&strresources);
6615 	i = ++ioc_id;
6616 	mutex_exit(&strresources);
6617 	return (i);
6618 }
6619 
6620 /*
6621  * Get the next message from the read queue.  If the message is
6622  * priority, STRPRI will have been set by strrput().  This flag
6623  * should be reset only when the entire message at the front of the
6624  * queue as been consumed.
6625  *
6626  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6627  */
6628 int
6629 strgetmsg(
6630 	struct vnode *vp,
6631 	struct strbuf *mctl,
6632 	struct strbuf *mdata,
6633 	unsigned char *prip,
6634 	int *flagsp,
6635 	int fmode,
6636 	rval_t *rvp)
6637 {
6638 	struct stdata *stp;
6639 	mblk_t *bp, *nbp;
6640 	mblk_t *savemp = NULL;
6641 	mblk_t *savemptail = NULL;
6642 	uint_t old_sd_flag;
6643 	int flg;
6644 	int more = 0;
6645 	int error = 0;
6646 	char first = 1;
6647 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
6648 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
6649 	unsigned char pri = 0;
6650 	queue_t *q;
6651 	int	pr = 0;			/* Partial read successful */
6652 	struct uio uios;
6653 	struct uio *uiop = &uios;
6654 	struct iovec iovs;
6655 	unsigned char type;
6656 
6657 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
6658 	    "strgetmsg:%p", vp);
6659 
6660 	ASSERT(vp->v_stream);
6661 	stp = vp->v_stream;
6662 	rvp->r_val1 = 0;
6663 
6664 	mutex_enter(&stp->sd_lock);
6665 
6666 	if ((error = i_straccess(stp, JCREAD)) != 0) {
6667 		mutex_exit(&stp->sd_lock);
6668 		return (error);
6669 	}
6670 
6671 	if (stp->sd_flag & (STRDERR|STPLEX)) {
6672 		error = strgeterr(stp, STRDERR|STPLEX, 0);
6673 		if (error != 0) {
6674 			mutex_exit(&stp->sd_lock);
6675 			return (error);
6676 		}
6677 	}
6678 	mutex_exit(&stp->sd_lock);
6679 
6680 	switch (*flagsp) {
6681 	case MSG_HIPRI:
6682 		if (*prip != 0)
6683 			return (EINVAL);
6684 		break;
6685 
6686 	case MSG_ANY:
6687 	case MSG_BAND:
6688 		break;
6689 
6690 	default:
6691 		return (EINVAL);
6692 	}
6693 	/*
6694 	 * Setup uio and iov for data part
6695 	 */
6696 	iovs.iov_base = mdata->buf;
6697 	iovs.iov_len = mdata->maxlen;
6698 	uios.uio_iov = &iovs;
6699 	uios.uio_iovcnt = 1;
6700 	uios.uio_loffset = 0;
6701 	uios.uio_segflg = UIO_USERSPACE;
6702 	uios.uio_fmode = 0;
6703 	uios.uio_extflg = UIO_COPY_CACHED;
6704 	uios.uio_resid = mdata->maxlen;
6705 	uios.uio_offset = 0;
6706 
6707 	q = _RD(stp->sd_wrq);
6708 	mutex_enter(&stp->sd_lock);
6709 	old_sd_flag = stp->sd_flag;
6710 	mark = 0;
6711 	for (;;) {
6712 		int done = 0;
6713 		mblk_t *q_first = q->q_first;
6714 
6715 		/*
6716 		 * Get the next message of appropriate priority
6717 		 * from the stream head.  If the caller is interested
6718 		 * in band or hipri messages, then they should already
6719 		 * be enqueued at the stream head.  On the other hand
6720 		 * if the caller wants normal (band 0) messages, they
6721 		 * might be deferred in a synchronous stream and they
6722 		 * will need to be pulled up.
6723 		 *
6724 		 * After we have dequeued a message, we might find that
6725 		 * it was a deferred M_SIG that was enqueued at the
6726 		 * stream head.  It must now be posted as part of the
6727 		 * read by calling strsignal_nolock().
6728 		 *
6729 		 * Also note that strrput does not enqueue an M_PCSIG,
6730 		 * and there cannot be more than one hipri message,
6731 		 * so there was no need to have the M_PCSIG case.
6732 		 *
6733 		 * At some time it might be nice to try and wrap the
6734 		 * functionality of kstrgetmsg() and strgetmsg() into
6735 		 * a common routine so to reduce the amount of replicated
6736 		 * code (since they are extremely similar).
6737 		 */
6738 		if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
6739 			/* Asking for normal, band0 data */
6740 			bp = strget(stp, q, uiop, first, &error);
6741 			ASSERT(MUTEX_HELD(&stp->sd_lock));
6742 			if (bp != NULL) {
6743 				ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
6744 				if (bp->b_datap->db_type == M_SIG) {
6745 					strsignal_nolock(stp, *bp->b_rptr,
6746 					    (int32_t)bp->b_band);
6747 					continue;
6748 				} else {
6749 					break;
6750 				}
6751 			}
6752 			if (error != 0) {
6753 				goto getmout;
6754 			}
6755 
6756 		/*
6757 		 * We can't depend on the value of STRPRI here because
6758 		 * the stream head may be in transit. Therefore, we
6759 		 * must look at the type of the first message to
6760 		 * determine if a high priority messages is waiting
6761 		 */
6762 		} else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
6763 		    q_first->b_datap->db_type >= QPCTL &&
6764 		    (bp = getq_noenab(q, 0)) != NULL) {
6765 			/* Asked for HIPRI and got one */
6766 			ASSERT(bp->b_datap->db_type >= QPCTL);
6767 			break;
6768 		} else if ((*flagsp & MSG_BAND) && q_first != NULL &&
6769 		    ((q_first->b_band >= *prip) ||
6770 		    q_first->b_datap->db_type >= QPCTL) &&
6771 		    (bp = getq_noenab(q, 0)) != NULL) {
6772 			/*
6773 			 * Asked for at least band "prip" and got either at
6774 			 * least that band or a hipri message.
6775 			 */
6776 			ASSERT(bp->b_band >= *prip ||
6777 			    bp->b_datap->db_type >= QPCTL);
6778 			if (bp->b_datap->db_type == M_SIG) {
6779 				strsignal_nolock(stp, *bp->b_rptr,
6780 				    (int32_t)bp->b_band);
6781 				continue;
6782 			} else {
6783 				break;
6784 			}
6785 		}
6786 
6787 		/* No data. Time to sleep? */
6788 		qbackenable(q, 0);
6789 
6790 		/*
6791 		 * If STRHUP or STREOF, return 0 length control and data.
6792 		 * If resid is 0, then a read(fd,buf,0) was done. Do not
6793 		 * sleep to satisfy this request because by default we have
6794 		 * zero bytes to return.
6795 		 */
6796 		if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
6797 		    mdata->maxlen == 0)) {
6798 			mctl->len = mdata->len = 0;
6799 			*flagsp = 0;
6800 			mutex_exit(&stp->sd_lock);
6801 			return (0);
6802 		}
6803 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
6804 		    "strgetmsg calls strwaitq:%p, %p",
6805 		    vp, uiop);
6806 		if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
6807 		    &done)) != 0) || done) {
6808 			TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
6809 			    "strgetmsg error or done:%p, %p",
6810 			    vp, uiop);
6811 			mutex_exit(&stp->sd_lock);
6812 			return (error);
6813 		}
6814 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
6815 		    "strgetmsg awakes:%p, %p", vp, uiop);
6816 		if ((error = i_straccess(stp, JCREAD)) != 0) {
6817 			mutex_exit(&stp->sd_lock);
6818 			return (error);
6819 		}
6820 		first = 0;
6821 	}
6822 	ASSERT(bp != NULL);
6823 	/*
6824 	 * Extract any mark information. If the message is not completely
6825 	 * consumed this information will be put in the mblk
6826 	 * that is putback.
6827 	 * If MSGMARKNEXT is set and the message is completely consumed
6828 	 * the STRATMARK flag will be set below. Likewise, if
6829 	 * MSGNOTMARKNEXT is set and the message is
6830 	 * completely consumed STRNOTATMARK will be set.
6831 	 */
6832 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6833 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6834 	    (MSGMARKNEXT|MSGNOTMARKNEXT));
6835 	if (mark != 0 && bp == stp->sd_mark) {
6836 		mark |= _LASTMARK;
6837 		stp->sd_mark = NULL;
6838 	}
6839 	/*
6840 	 * keep track of the original message type and priority
6841 	 */
6842 	pri = bp->b_band;
6843 	type = bp->b_datap->db_type;
6844 	if (type == M_PASSFP) {
6845 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
6846 			stp->sd_mark = bp;
6847 		bp->b_flag |= mark & ~_LASTMARK;
6848 		putback(stp, q, bp, pri);
6849 		qbackenable(q, pri);
6850 		mutex_exit(&stp->sd_lock);
6851 		return (EBADMSG);
6852 	}
6853 	ASSERT(type != M_SIG);
6854 
6855 	/*
6856 	 * Set this flag so strrput will not generate signals. Need to
6857 	 * make sure this flag is cleared before leaving this routine
6858 	 * else signals will stop being sent.
6859 	 */
6860 	stp->sd_flag |= STRGETINPROG;
6861 	mutex_exit(&stp->sd_lock);
6862 
6863 	if (STREAM_NEEDSERVICE(stp))
6864 		stream_runservice(stp);
6865 
6866 	/*
6867 	 * Set HIPRI flag if message is priority.
6868 	 */
6869 	if (type >= QPCTL)
6870 		flg = MSG_HIPRI;
6871 	else
6872 		flg = MSG_BAND;
6873 
6874 	/*
6875 	 * First process PROTO or PCPROTO blocks, if any.
6876 	 */
6877 	if (mctl->maxlen >= 0 && type != M_DATA) {
6878 		size_t	n, bcnt;
6879 		char	*ubuf;
6880 
6881 		bcnt = mctl->maxlen;
6882 		ubuf = mctl->buf;
6883 		while (bp != NULL && bp->b_datap->db_type != M_DATA) {
6884 			if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
6885 			    copyout(bp->b_rptr, ubuf, n)) {
6886 				error = EFAULT;
6887 				mutex_enter(&stp->sd_lock);
6888 				/*
6889 				 * clear stream head pri flag based on
6890 				 * first message type
6891 				 */
6892 				if (type >= QPCTL) {
6893 					ASSERT(type == M_PCPROTO);
6894 					stp->sd_flag &= ~STRPRI;
6895 				}
6896 				more = 0;
6897 				freemsg(bp);
6898 				goto getmout;
6899 			}
6900 			ubuf += n;
6901 			bp->b_rptr += n;
6902 			if (bp->b_rptr >= bp->b_wptr) {
6903 				nbp = bp;
6904 				bp = bp->b_cont;
6905 				freeb(nbp);
6906 			}
6907 			ASSERT(n <= bcnt);
6908 			bcnt -= n;
6909 			if (bcnt == 0)
6910 				break;
6911 		}
6912 		mctl->len = mctl->maxlen - bcnt;
6913 	} else
6914 		mctl->len = -1;
6915 
6916 	if (bp && bp->b_datap->db_type != M_DATA) {
6917 		/*
6918 		 * More PROTO blocks in msg.
6919 		 */
6920 		more |= MORECTL;
6921 		savemp = bp;
6922 		while (bp && bp->b_datap->db_type != M_DATA) {
6923 			savemptail = bp;
6924 			bp = bp->b_cont;
6925 		}
6926 		savemptail->b_cont = NULL;
6927 	}
6928 
6929 	/*
6930 	 * Now process DATA blocks, if any.
6931 	 */
6932 	if (mdata->maxlen >= 0 && bp) {
6933 		/*
6934 		 * struiocopyout will consume a potential zero-length
6935 		 * M_DATA even if uio_resid is zero.
6936 		 */
6937 		size_t oldresid = uiop->uio_resid;
6938 
6939 		bp = struiocopyout(bp, uiop, &error);
6940 		if (error != 0) {
6941 			mutex_enter(&stp->sd_lock);
6942 			/*
6943 			 * clear stream head hi pri flag based on
6944 			 * first message
6945 			 */
6946 			if (type >= QPCTL) {
6947 				ASSERT(type == M_PCPROTO);
6948 				stp->sd_flag &= ~STRPRI;
6949 			}
6950 			more = 0;
6951 			freemsg(savemp);
6952 			goto getmout;
6953 		}
6954 		/*
6955 		 * (pr == 1) indicates a partial read.
6956 		 */
6957 		if (oldresid > uiop->uio_resid)
6958 			pr = 1;
6959 		mdata->len = mdata->maxlen - uiop->uio_resid;
6960 	} else
6961 		mdata->len = -1;
6962 
6963 	if (bp) {			/* more data blocks in msg */
6964 		more |= MOREDATA;
6965 		if (savemp)
6966 			savemptail->b_cont = bp;
6967 		else
6968 			savemp = bp;
6969 	}
6970 
6971 	mutex_enter(&stp->sd_lock);
6972 	if (savemp) {
6973 		if (pr && (savemp->b_datap->db_type == M_DATA) &&
6974 		    msgnodata(savemp)) {
6975 			/*
6976 			 * Avoid queuing a zero-length tail part of
6977 			 * a message. pr=1 indicates that we read some of
6978 			 * the message.
6979 			 */
6980 			freemsg(savemp);
6981 			more &= ~MOREDATA;
6982 			/*
6983 			 * clear stream head hi pri flag based on
6984 			 * first message
6985 			 */
6986 			if (type >= QPCTL) {
6987 				ASSERT(type == M_PCPROTO);
6988 				stp->sd_flag &= ~STRPRI;
6989 			}
6990 		} else {
6991 			savemp->b_band = pri;
6992 			/*
6993 			 * If the first message was HIPRI and the one we're
6994 			 * putting back isn't, then clear STRPRI, otherwise
6995 			 * set STRPRI again.  Note that we must set STRPRI
6996 			 * again since the flush logic in strrput_nondata()
6997 			 * may have cleared it while we had sd_lock dropped.
6998 			 */
6999 			if (type >= QPCTL) {
7000 				ASSERT(type == M_PCPROTO);
7001 				if (queclass(savemp) < QPCTL)
7002 					stp->sd_flag &= ~STRPRI;
7003 				else
7004 					stp->sd_flag |= STRPRI;
7005 			} else if (queclass(savemp) >= QPCTL) {
7006 				/*
7007 				 * The first message was not a HIPRI message,
7008 				 * but the one we are about to putback is.
7009 				 * For simplicitly, we do not allow for HIPRI
7010 				 * messages to be embedded in the message
7011 				 * body, so just force it to same type as
7012 				 * first message.
7013 				 */
7014 				ASSERT(type == M_DATA || type == M_PROTO);
7015 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7016 				savemp->b_datap->db_type = type;
7017 			}
7018 			if (mark != 0) {
7019 				savemp->b_flag |= mark & ~_LASTMARK;
7020 				if ((mark & _LASTMARK) &&
7021 				    (stp->sd_mark == NULL)) {
7022 					/*
7023 					 * If another marked message arrived
7024 					 * while sd_lock was not held sd_mark
7025 					 * would be non-NULL.
7026 					 */
7027 					stp->sd_mark = savemp;
7028 				}
7029 			}
7030 			putback(stp, q, savemp, pri);
7031 		}
7032 	} else {
7033 		/*
7034 		 * The complete message was consumed.
7035 		 *
7036 		 * If another M_PCPROTO arrived while sd_lock was not held
7037 		 * it would have been discarded since STRPRI was still set.
7038 		 *
7039 		 * Move the MSG*MARKNEXT information
7040 		 * to the stream head just in case
7041 		 * the read queue becomes empty.
7042 		 * clear stream head hi pri flag based on
7043 		 * first message
7044 		 *
7045 		 * If the stream head was at the mark
7046 		 * (STRATMARK) before we dropped sd_lock above
7047 		 * and some data was consumed then we have
7048 		 * moved past the mark thus STRATMARK is
7049 		 * cleared. However, if a message arrived in
7050 		 * strrput during the copyout above causing
7051 		 * STRATMARK to be set we can not clear that
7052 		 * flag.
7053 		 */
7054 		if (type >= QPCTL) {
7055 			ASSERT(type == M_PCPROTO);
7056 			stp->sd_flag &= ~STRPRI;
7057 		}
7058 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7059 			if (mark & MSGMARKNEXT) {
7060 				stp->sd_flag &= ~STRNOTATMARK;
7061 				stp->sd_flag |= STRATMARK;
7062 			} else if (mark & MSGNOTMARKNEXT) {
7063 				stp->sd_flag &= ~STRATMARK;
7064 				stp->sd_flag |= STRNOTATMARK;
7065 			} else {
7066 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7067 			}
7068 		} else if (pr && (old_sd_flag & STRATMARK)) {
7069 			stp->sd_flag &= ~STRATMARK;
7070 		}
7071 	}
7072 
7073 	*flagsp = flg;
7074 	*prip = pri;
7075 
7076 	/*
7077 	 * Getmsg cleanup processing - if the state of the queue has changed
7078 	 * some signals may need to be sent and/or poll awakened.
7079 	 */
7080 getmout:
7081 	qbackenable(q, pri);
7082 
7083 	/*
7084 	 * We dropped the stream head lock above. Send all M_SIG messages
7085 	 * before processing stream head for SIGPOLL messages.
7086 	 */
7087 	ASSERT(MUTEX_HELD(&stp->sd_lock));
7088 	while ((bp = q->q_first) != NULL &&
7089 	    (bp->b_datap->db_type == M_SIG)) {
7090 		/*
7091 		 * sd_lock is held so the content of the read queue can not
7092 		 * change.
7093 		 */
7094 		bp = getq(q);
7095 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7096 
7097 		strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band);
7098 		mutex_exit(&stp->sd_lock);
7099 		freemsg(bp);
7100 		if (STREAM_NEEDSERVICE(stp))
7101 			stream_runservice(stp);
7102 		mutex_enter(&stp->sd_lock);
7103 	}
7104 
7105 	/*
7106 	 * stream head cannot change while we make the determination
7107 	 * whether or not to send a signal. Drop the flag to allow strrput
7108 	 * to send firstmsgsigs again.
7109 	 */
7110 	stp->sd_flag &= ~STRGETINPROG;
7111 
7112 	/*
7113 	 * If the type of message at the front of the queue changed
7114 	 * due to the receive the appropriate signals and pollwakeup events
7115 	 * are generated. The type of changes are:
7116 	 *	Processed a hipri message, q_first is not hipri.
7117 	 *	Processed a band X message, and q_first is band Y.
7118 	 * The generated signals and pollwakeups are identical to what
7119 	 * strrput() generates should the message that is now on q_first
7120 	 * arrive to an empty read queue.
7121 	 *
7122 	 * Note: only strrput will send a signal for a hipri message.
7123 	 */
7124 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7125 		strsigset_t signals = 0;
7126 		strpollset_t pollwakeups = 0;
7127 
7128 		if (flg & MSG_HIPRI) {
7129 			/*
7130 			 * Removed a hipri message. Regular data at
7131 			 * the front of  the queue.
7132 			 */
7133 			if (bp->b_band == 0) {
7134 				signals = S_INPUT | S_RDNORM;
7135 				pollwakeups = POLLIN | POLLRDNORM;
7136 			} else {
7137 				signals = S_INPUT | S_RDBAND;
7138 				pollwakeups = POLLIN | POLLRDBAND;
7139 			}
7140 		} else if (pri != bp->b_band) {
7141 			/*
7142 			 * The band is different for the new q_first.
7143 			 */
7144 			if (bp->b_band == 0) {
7145 				signals = S_RDNORM;
7146 				pollwakeups = POLLIN | POLLRDNORM;
7147 			} else {
7148 				signals = S_RDBAND;
7149 				pollwakeups = POLLIN | POLLRDBAND;
7150 			}
7151 		}
7152 
7153 		if (pollwakeups != 0) {
7154 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7155 				if (!(stp->sd_rput_opt & SR_POLLIN))
7156 					goto no_pollwake;
7157 				stp->sd_rput_opt &= ~SR_POLLIN;
7158 			}
7159 			mutex_exit(&stp->sd_lock);
7160 			pollwakeup(&stp->sd_pollist, pollwakeups);
7161 			mutex_enter(&stp->sd_lock);
7162 		}
7163 no_pollwake:
7164 
7165 		if (stp->sd_sigflags & signals)
7166 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7167 	}
7168 	mutex_exit(&stp->sd_lock);
7169 
7170 	rvp->r_val1 = more;
7171 	return (error);
7172 #undef	_LASTMARK
7173 }
7174 
7175 /*
7176  * Get the next message from the read queue.  If the message is
7177  * priority, STRPRI will have been set by strrput().  This flag
7178  * should be reset only when the entire message at the front of the
7179  * queue as been consumed.
7180  *
7181  * If uiop is NULL all data is returned in mctlp.
7182  * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
7183  * not enabled.
7184  * The timeout parameter is in milliseconds; -1 for infinity.
7185  * This routine handles the consolidation private flags:
7186  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
7187  *	MSG_DELAYERROR	Defer the error check until the queue is empty.
7188  *	MSG_HOLDSIG	Hold signals while waiting for data.
7189  *	MSG_IPEEK	Only peek at messages.
7190  *	MSG_DISCARDTAIL	Discard the tail M_DATA part of the message
7191  *			that doesn't fit.
7192  *	MSG_NOMARK	If the message is marked leave it on the queue.
7193  *
7194  * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
7195  */
7196 int
7197 kstrgetmsg(
7198 	struct vnode *vp,
7199 	mblk_t **mctlp,
7200 	struct uio *uiop,
7201 	unsigned char *prip,
7202 	int *flagsp,
7203 	clock_t timout,
7204 	rval_t *rvp)
7205 {
7206 	struct stdata *stp;
7207 	mblk_t *bp, *nbp;
7208 	mblk_t *savemp = NULL;
7209 	mblk_t *savemptail = NULL;
7210 	int flags;
7211 	uint_t old_sd_flag;
7212 	int flg;
7213 	int more = 0;
7214 	int error = 0;
7215 	char first = 1;
7216 	uint_t mark;		/* Contains MSG*MARK and _LASTMARK */
7217 #define	_LASTMARK	0x8000	/* Distinct from MSG*MARK */
7218 	unsigned char pri = 0;
7219 	queue_t *q;
7220 	int	pr = 0;			/* Partial read successful */
7221 	unsigned char type;
7222 
7223 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
7224 	    "kstrgetmsg:%p", vp);
7225 
7226 	ASSERT(vp->v_stream);
7227 	stp = vp->v_stream;
7228 	rvp->r_val1 = 0;
7229 
7230 	mutex_enter(&stp->sd_lock);
7231 
7232 	if ((error = i_straccess(stp, JCREAD)) != 0) {
7233 		mutex_exit(&stp->sd_lock);
7234 		return (error);
7235 	}
7236 
7237 	flags = *flagsp;
7238 	if (stp->sd_flag & (STRDERR|STPLEX)) {
7239 		if ((stp->sd_flag & STPLEX) ||
7240 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
7241 			error = strgeterr(stp, STRDERR|STPLEX,
7242 			    (flags & MSG_IPEEK));
7243 			if (error != 0) {
7244 				mutex_exit(&stp->sd_lock);
7245 				return (error);
7246 			}
7247 		}
7248 	}
7249 	mutex_exit(&stp->sd_lock);
7250 
7251 	switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
7252 	case MSG_HIPRI:
7253 		if (*prip != 0)
7254 			return (EINVAL);
7255 		break;
7256 
7257 	case MSG_ANY:
7258 	case MSG_BAND:
7259 		break;
7260 
7261 	default:
7262 		return (EINVAL);
7263 	}
7264 
7265 retry:
7266 	q = _RD(stp->sd_wrq);
7267 	mutex_enter(&stp->sd_lock);
7268 	old_sd_flag = stp->sd_flag;
7269 	mark = 0;
7270 	for (;;) {
7271 		int done = 0;
7272 		int waitflag;
7273 		int fmode;
7274 		mblk_t *q_first = q->q_first;
7275 
7276 		/*
7277 		 * This section of the code operates just like the code
7278 		 * in strgetmsg().  There is a comment there about what
7279 		 * is going on here.
7280 		 */
7281 		if (!(flags & (MSG_HIPRI|MSG_BAND))) {
7282 			/* Asking for normal, band0 data */
7283 			bp = strget(stp, q, uiop, first, &error);
7284 			ASSERT(MUTEX_HELD(&stp->sd_lock));
7285 			if (bp != NULL) {
7286 				if (bp->b_datap->db_type == M_SIG) {
7287 					strsignal_nolock(stp, *bp->b_rptr,
7288 					    (int32_t)bp->b_band);
7289 					continue;
7290 				} else {
7291 					break;
7292 				}
7293 			}
7294 			if (error != 0) {
7295 				goto getmout;
7296 			}
7297 		/*
7298 		 * We can't depend on the value of STRPRI here because
7299 		 * the stream head may be in transit. Therefore, we
7300 		 * must look at the type of the first message to
7301 		 * determine if a high priority messages is waiting
7302 		 */
7303 		} else if ((flags & MSG_HIPRI) && q_first != NULL &&
7304 		    q_first->b_datap->db_type >= QPCTL &&
7305 		    (bp = getq_noenab(q, 0)) != NULL) {
7306 			ASSERT(bp->b_datap->db_type >= QPCTL);
7307 			break;
7308 		} else if ((flags & MSG_BAND) && q_first != NULL &&
7309 		    ((q_first->b_band >= *prip) ||
7310 		    q_first->b_datap->db_type >= QPCTL) &&
7311 		    (bp = getq_noenab(q, 0)) != NULL) {
7312 			/*
7313 			 * Asked for at least band "prip" and got either at
7314 			 * least that band or a hipri message.
7315 			 */
7316 			ASSERT(bp->b_band >= *prip ||
7317 			    bp->b_datap->db_type >= QPCTL);
7318 			if (bp->b_datap->db_type == M_SIG) {
7319 				strsignal_nolock(stp, *bp->b_rptr,
7320 				    (int32_t)bp->b_band);
7321 				continue;
7322 			} else {
7323 				break;
7324 			}
7325 		}
7326 
7327 		/* No data. Time to sleep? */
7328 		qbackenable(q, 0);
7329 
7330 		/*
7331 		 * Delayed error notification?
7332 		 */
7333 		if ((stp->sd_flag & (STRDERR|STPLEX)) &&
7334 		    (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
7335 			error = strgeterr(stp, STRDERR|STPLEX,
7336 			    (flags & MSG_IPEEK));
7337 			if (error != 0) {
7338 				mutex_exit(&stp->sd_lock);
7339 				return (error);
7340 			}
7341 		}
7342 
7343 		/*
7344 		 * If STRHUP or STREOF, return 0 length control and data.
7345 		 * If a read(fd,buf,0) has been done, do not sleep, just
7346 		 * return.
7347 		 *
7348 		 * If mctlp == NULL and uiop == NULL, then the code will
7349 		 * do the strwaitq. This is an understood way of saying
7350 		 * sleep "polling" until a message is received.
7351 		 */
7352 		if ((stp->sd_flag & (STRHUP|STREOF)) ||
7353 		    (uiop != NULL && uiop->uio_resid == 0)) {
7354 			if (mctlp != NULL)
7355 				*mctlp = NULL;
7356 			*flagsp = 0;
7357 			mutex_exit(&stp->sd_lock);
7358 			return (0);
7359 		}
7360 
7361 		waitflag = GETWAIT;
7362 		if (flags &
7363 		    (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
7364 			if (flags & MSG_HOLDSIG)
7365 				waitflag |= STR_NOSIG;
7366 			if (flags & MSG_IGNERROR)
7367 				waitflag |= STR_NOERROR;
7368 			if (flags & MSG_IPEEK)
7369 				waitflag |= STR_PEEK;
7370 			if (flags & MSG_DELAYERROR)
7371 				waitflag |= STR_DELAYERR;
7372 		}
7373 		if (uiop != NULL)
7374 			fmode = uiop->uio_fmode;
7375 		else
7376 			fmode = 0;
7377 
7378 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
7379 		    "kstrgetmsg calls strwaitq:%p, %p",
7380 		    vp, uiop);
7381 		if (((error = strwaitq(stp, waitflag, (ssize_t)0,
7382 		    fmode, timout, &done))) != 0 || done) {
7383 			TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
7384 			    "kstrgetmsg error or done:%p, %p",
7385 			    vp, uiop);
7386 			mutex_exit(&stp->sd_lock);
7387 			return (error);
7388 		}
7389 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
7390 		    "kstrgetmsg awakes:%p, %p", vp, uiop);
7391 		if ((error = i_straccess(stp, JCREAD)) != 0) {
7392 			mutex_exit(&stp->sd_lock);
7393 			return (error);
7394 		}
7395 		first = 0;
7396 	}
7397 	ASSERT(bp != NULL);
7398 	/*
7399 	 * Extract any mark information. If the message is not completely
7400 	 * consumed this information will be put in the mblk
7401 	 * that is putback.
7402 	 * If MSGMARKNEXT is set and the message is completely consumed
7403 	 * the STRATMARK flag will be set below. Likewise, if
7404 	 * MSGNOTMARKNEXT is set and the message is
7405 	 * completely consumed STRNOTATMARK will be set.
7406 	 */
7407 	mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
7408 	ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
7409 	    (MSGMARKNEXT|MSGNOTMARKNEXT));
7410 	pri = bp->b_band;
7411 	if (mark != 0) {
7412 		/*
7413 		 * If the caller doesn't want the mark return.
7414 		 * Used to implement MSG_WAITALL in sockets.
7415 		 */
7416 		if (flags & MSG_NOMARK) {
7417 			putback(stp, q, bp, pri);
7418 			qbackenable(q, pri);
7419 			mutex_exit(&stp->sd_lock);
7420 			return (EWOULDBLOCK);
7421 		}
7422 		if (bp == stp->sd_mark) {
7423 			mark |= _LASTMARK;
7424 			stp->sd_mark = NULL;
7425 		}
7426 	}
7427 
7428 	/*
7429 	 * keep track of the first message type
7430 	 */
7431 	type = bp->b_datap->db_type;
7432 
7433 	if (bp->b_datap->db_type == M_PASSFP) {
7434 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7435 			stp->sd_mark = bp;
7436 		bp->b_flag |= mark & ~_LASTMARK;
7437 		putback(stp, q, bp, pri);
7438 		qbackenable(q, pri);
7439 		mutex_exit(&stp->sd_lock);
7440 		return (EBADMSG);
7441 	}
7442 	ASSERT(type != M_SIG);
7443 
7444 	if (flags & MSG_IPEEK) {
7445 		/*
7446 		 * Clear any struioflag - we do the uiomove over again
7447 		 * when peeking since it simplifies the code.
7448 		 *
7449 		 * Dup the message and put the original back on the queue.
7450 		 * If dupmsg() fails, try again with copymsg() to see if
7451 		 * there is indeed a shortage of memory.  dupmsg() may fail
7452 		 * if db_ref in any of the messages reaches its limit.
7453 		 */
7454 
7455 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
7456 		if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
7457 			/*
7458 			 * Restore the state of the stream head since we
7459 			 * need to drop sd_lock (strwaitbuf is sleeping).
7460 			 */
7461 			size_t size = msgdsize(bp);
7462 
7463 			if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7464 				stp->sd_mark = bp;
7465 			bp->b_flag |= mark & ~_LASTMARK;
7466 			putback(stp, q, bp, pri);
7467 			mutex_exit(&stp->sd_lock);
7468 			error = strwaitbuf(size, BPRI_HI);
7469 			if (error) {
7470 				/*
7471 				 * There is no net change to the queue thus
7472 				 * no need to qbackenable.
7473 				 */
7474 				return (error);
7475 			}
7476 			goto retry;
7477 		}
7478 
7479 		if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7480 			stp->sd_mark = bp;
7481 		bp->b_flag |= mark & ~_LASTMARK;
7482 		putback(stp, q, bp, pri);
7483 		bp = nbp;
7484 	}
7485 
7486 	/*
7487 	 * Set this flag so strrput will not generate signals. Need to
7488 	 * make sure this flag is cleared before leaving this routine
7489 	 * else signals will stop being sent.
7490 	 */
7491 	stp->sd_flag |= STRGETINPROG;
7492 	mutex_exit(&stp->sd_lock);
7493 
7494 	if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) {
7495 		mblk_t *tmp, *prevmp;
7496 
7497 		/*
7498 		 * Put first non-data mblk back to stream head and
7499 		 * cut the mblk chain so sd_rputdatafunc only sees
7500 		 * M_DATA mblks. We can skip the first mblk since it
7501 		 * is M_DATA according to the condition above.
7502 		 */
7503 		for (prevmp = bp, tmp = bp->b_cont; tmp != NULL;
7504 		    prevmp = tmp, tmp = tmp->b_cont) {
7505 			if (DB_TYPE(tmp) != M_DATA) {
7506 				prevmp->b_cont = NULL;
7507 				mutex_enter(&stp->sd_lock);
7508 				putback(stp, q, tmp, tmp->b_band);
7509 				mutex_exit(&stp->sd_lock);
7510 				break;
7511 			}
7512 		}
7513 
7514 		ASSERT(!(bp->b_datap->db_flags & DBLK_UIOA));
7515 		bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp,
7516 		    NULL, NULL, NULL, NULL);
7517 
7518 		if (bp == NULL)
7519 			goto retry;
7520 	}
7521 
7522 	if (STREAM_NEEDSERVICE(stp))
7523 		stream_runservice(stp);
7524 
7525 	/*
7526 	 * Set HIPRI flag if message is priority.
7527 	 */
7528 	if (type >= QPCTL)
7529 		flg = MSG_HIPRI;
7530 	else
7531 		flg = MSG_BAND;
7532 
7533 	/*
7534 	 * First process PROTO or PCPROTO blocks, if any.
7535 	 */
7536 	if (mctlp != NULL && type != M_DATA) {
7537 		mblk_t *nbp;
7538 
7539 		*mctlp = bp;
7540 		while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
7541 			bp = bp->b_cont;
7542 		nbp = bp->b_cont;
7543 		bp->b_cont = NULL;
7544 		bp = nbp;
7545 	}
7546 
7547 	if (bp && bp->b_datap->db_type != M_DATA) {
7548 		/*
7549 		 * More PROTO blocks in msg. Will only happen if mctlp is NULL.
7550 		 */
7551 		more |= MORECTL;
7552 		savemp = bp;
7553 		while (bp && bp->b_datap->db_type != M_DATA) {
7554 			savemptail = bp;
7555 			bp = bp->b_cont;
7556 		}
7557 		savemptail->b_cont = NULL;
7558 	}
7559 
7560 	/*
7561 	 * Now process DATA blocks, if any.
7562 	 */
7563 	if (uiop == NULL) {
7564 		/* Append data to tail of mctlp */
7565 
7566 		ASSERT(bp == NULL || !(bp->b_datap->db_flags & DBLK_UIOA));
7567 		if (mctlp != NULL) {
7568 			mblk_t **mpp = mctlp;
7569 
7570 			while (*mpp != NULL)
7571 				mpp = &((*mpp)->b_cont);
7572 			*mpp = bp;
7573 			bp = NULL;
7574 		}
7575 	} else if (bp && (bp->b_datap->db_flags & DBLK_UIOA)) {
7576 		/*
7577 		 * A uioa mblk_t chain, as uio processing has already
7578 		 * been done we simple skip over processing.
7579 		 */
7580 		bp = NULL;
7581 		pr = 0;
7582 
7583 	} else if (uiop->uio_resid >= 0 && bp) {
7584 		size_t oldresid = uiop->uio_resid;
7585 
7586 		/*
7587 		 * If a streams message is likely to consist
7588 		 * of many small mblks, it is pulled up into
7589 		 * one continuous chunk of memory.
7590 		 * see longer comment at top of page
7591 		 * by mblk_pull_len declaration.
7592 		 */
7593 
7594 		if (MBLKL(bp) < mblk_pull_len) {
7595 			(void) pullupmsg(bp, -1);
7596 		}
7597 
7598 		bp = struiocopyout(bp, uiop, &error);
7599 		if (error != 0) {
7600 			if (mctlp != NULL) {
7601 				freemsg(*mctlp);
7602 				*mctlp = NULL;
7603 			} else
7604 				freemsg(savemp);
7605 			mutex_enter(&stp->sd_lock);
7606 			/*
7607 			 * clear stream head hi pri flag based on
7608 			 * first message
7609 			 */
7610 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7611 				ASSERT(type == M_PCPROTO);
7612 				stp->sd_flag &= ~STRPRI;
7613 			}
7614 			more = 0;
7615 			goto getmout;
7616 		}
7617 		/*
7618 		 * (pr == 1) indicates a partial read.
7619 		 */
7620 		if (oldresid > uiop->uio_resid)
7621 			pr = 1;
7622 	}
7623 
7624 	if (bp) {			/* more data blocks in msg */
7625 		more |= MOREDATA;
7626 		if (savemp)
7627 			savemptail->b_cont = bp;
7628 		else
7629 			savemp = bp;
7630 	}
7631 
7632 	mutex_enter(&stp->sd_lock);
7633 	if (savemp) {
7634 		if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
7635 			/*
7636 			 * When MSG_DISCARDTAIL is set or
7637 			 * when peeking discard any tail. When peeking this
7638 			 * is the tail of the dup that was copied out - the
7639 			 * message has already been putback on the queue.
7640 			 * Return MOREDATA to the caller even though the data
7641 			 * is discarded. This is used by sockets (to
7642 			 * set MSG_TRUNC).
7643 			 */
7644 			freemsg(savemp);
7645 			if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7646 				ASSERT(type == M_PCPROTO);
7647 				stp->sd_flag &= ~STRPRI;
7648 			}
7649 		} else if (pr && (savemp->b_datap->db_type == M_DATA) &&
7650 		    msgnodata(savemp)) {
7651 			/*
7652 			 * Avoid queuing a zero-length tail part of
7653 			 * a message. pr=1 indicates that we read some of
7654 			 * the message.
7655 			 */
7656 			freemsg(savemp);
7657 			more &= ~MOREDATA;
7658 			if (type >= QPCTL) {
7659 				ASSERT(type == M_PCPROTO);
7660 				stp->sd_flag &= ~STRPRI;
7661 			}
7662 		} else {
7663 			savemp->b_band = pri;
7664 			/*
7665 			 * If the first message was HIPRI and the one we're
7666 			 * putting back isn't, then clear STRPRI, otherwise
7667 			 * set STRPRI again.  Note that we must set STRPRI
7668 			 * again since the flush logic in strrput_nondata()
7669 			 * may have cleared it while we had sd_lock dropped.
7670 			 */
7671 
7672 			ASSERT(!(savemp->b_datap->db_flags & DBLK_UIOA));
7673 			if (type >= QPCTL) {
7674 				ASSERT(type == M_PCPROTO);
7675 				if (queclass(savemp) < QPCTL)
7676 					stp->sd_flag &= ~STRPRI;
7677 				else
7678 					stp->sd_flag |= STRPRI;
7679 			} else if (queclass(savemp) >= QPCTL) {
7680 				/*
7681 				 * The first message was not a HIPRI message,
7682 				 * but the one we are about to putback is.
7683 				 * For simplicitly, we do not allow for HIPRI
7684 				 * messages to be embedded in the message
7685 				 * body, so just force it to same type as
7686 				 * first message.
7687 				 */
7688 				ASSERT(type == M_DATA || type == M_PROTO);
7689 				ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7690 				savemp->b_datap->db_type = type;
7691 			}
7692 			if (mark != 0) {
7693 				if ((mark & _LASTMARK) &&
7694 				    (stp->sd_mark == NULL)) {
7695 					/*
7696 					 * If another marked message arrived
7697 					 * while sd_lock was not held sd_mark
7698 					 * would be non-NULL.
7699 					 */
7700 					stp->sd_mark = savemp;
7701 				}
7702 				savemp->b_flag |= mark & ~_LASTMARK;
7703 			}
7704 			putback(stp, q, savemp, pri);
7705 		}
7706 	} else if (!(flags & MSG_IPEEK)) {
7707 		/*
7708 		 * The complete message was consumed.
7709 		 *
7710 		 * If another M_PCPROTO arrived while sd_lock was not held
7711 		 * it would have been discarded since STRPRI was still set.
7712 		 *
7713 		 * Move the MSG*MARKNEXT information
7714 		 * to the stream head just in case
7715 		 * the read queue becomes empty.
7716 		 * clear stream head hi pri flag based on
7717 		 * first message
7718 		 *
7719 		 * If the stream head was at the mark
7720 		 * (STRATMARK) before we dropped sd_lock above
7721 		 * and some data was consumed then we have
7722 		 * moved past the mark thus STRATMARK is
7723 		 * cleared. However, if a message arrived in
7724 		 * strrput during the copyout above causing
7725 		 * STRATMARK to be set we can not clear that
7726 		 * flag.
7727 		 * XXX A "perimeter" would help by single-threading strrput,
7728 		 * strread, strgetmsg and kstrgetmsg.
7729 		 */
7730 		if (type >= QPCTL) {
7731 			ASSERT(type == M_PCPROTO);
7732 			stp->sd_flag &= ~STRPRI;
7733 		}
7734 		if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7735 			if (mark & MSGMARKNEXT) {
7736 				stp->sd_flag &= ~STRNOTATMARK;
7737 				stp->sd_flag |= STRATMARK;
7738 			} else if (mark & MSGNOTMARKNEXT) {
7739 				stp->sd_flag &= ~STRATMARK;
7740 				stp->sd_flag |= STRNOTATMARK;
7741 			} else {
7742 				stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7743 			}
7744 		} else if (pr && (old_sd_flag & STRATMARK)) {
7745 			stp->sd_flag &= ~STRATMARK;
7746 		}
7747 	}
7748 
7749 	*flagsp = flg;
7750 	*prip = pri;
7751 
7752 	/*
7753 	 * Getmsg cleanup processing - if the state of the queue has changed
7754 	 * some signals may need to be sent and/or poll awakened.
7755 	 */
7756 getmout:
7757 	qbackenable(q, pri);
7758 
7759 	/*
7760 	 * We dropped the stream head lock above. Send all M_SIG messages
7761 	 * before processing stream head for SIGPOLL messages.
7762 	 */
7763 	ASSERT(MUTEX_HELD(&stp->sd_lock));
7764 	while ((bp = q->q_first) != NULL &&
7765 	    (bp->b_datap->db_type == M_SIG)) {
7766 		/*
7767 		 * sd_lock is held so the content of the read queue can not
7768 		 * change.
7769 		 */
7770 		bp = getq(q);
7771 		ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);
7772 
7773 		strsignal_nolock(stp, *bp->b_rptr, (int32_t)bp->b_band);
7774 		mutex_exit(&stp->sd_lock);
7775 		freemsg(bp);
7776 		if (STREAM_NEEDSERVICE(stp))
7777 			stream_runservice(stp);
7778 		mutex_enter(&stp->sd_lock);
7779 	}
7780 
7781 	/*
7782 	 * stream head cannot change while we make the determination
7783 	 * whether or not to send a signal. Drop the flag to allow strrput
7784 	 * to send firstmsgsigs again.
7785 	 */
7786 	stp->sd_flag &= ~STRGETINPROG;
7787 
7788 	/*
7789 	 * If the type of message at the front of the queue changed
7790 	 * due to the receive the appropriate signals and pollwakeup events
7791 	 * are generated. The type of changes are:
7792 	 *	Processed a hipri message, q_first is not hipri.
7793 	 *	Processed a band X message, and q_first is band Y.
7794 	 * The generated signals and pollwakeups are identical to what
7795 	 * strrput() generates should the message that is now on q_first
7796 	 * arrive to an empty read queue.
7797 	 *
7798 	 * Note: only strrput will send a signal for a hipri message.
7799 	 */
7800 	if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7801 		strsigset_t signals = 0;
7802 		strpollset_t pollwakeups = 0;
7803 
7804 		if (flg & MSG_HIPRI) {
7805 			/*
7806 			 * Removed a hipri message. Regular data at
7807 			 * the front of  the queue.
7808 			 */
7809 			if (bp->b_band == 0) {
7810 				signals = S_INPUT | S_RDNORM;
7811 				pollwakeups = POLLIN | POLLRDNORM;
7812 			} else {
7813 				signals = S_INPUT | S_RDBAND;
7814 				pollwakeups = POLLIN | POLLRDBAND;
7815 			}
7816 		} else if (pri != bp->b_band) {
7817 			/*
7818 			 * The band is different for the new q_first.
7819 			 */
7820 			if (bp->b_band == 0) {
7821 				signals = S_RDNORM;
7822 				pollwakeups = POLLIN | POLLRDNORM;
7823 			} else {
7824 				signals = S_RDBAND;
7825 				pollwakeups = POLLIN | POLLRDBAND;
7826 			}
7827 		}
7828 
7829 		if (pollwakeups != 0) {
7830 			if (pollwakeups == (POLLIN | POLLRDNORM)) {
7831 				if (!(stp->sd_rput_opt & SR_POLLIN))
7832 					goto no_pollwake;
7833 				stp->sd_rput_opt &= ~SR_POLLIN;
7834 			}
7835 			mutex_exit(&stp->sd_lock);
7836 			pollwakeup(&stp->sd_pollist, pollwakeups);
7837 			mutex_enter(&stp->sd_lock);
7838 		}
7839 no_pollwake:
7840 
7841 		if (stp->sd_sigflags & signals)
7842 			strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7843 	}
7844 	mutex_exit(&stp->sd_lock);
7845 
7846 	rvp->r_val1 = more;
7847 	return (error);
7848 #undef	_LASTMARK
7849 }
7850 
7851 /*
7852  * Put a message downstream.
7853  *
7854  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7855  */
7856 int
7857 strputmsg(
7858 	struct vnode *vp,
7859 	struct strbuf *mctl,
7860 	struct strbuf *mdata,
7861 	unsigned char pri,
7862 	int flag,
7863 	int fmode)
7864 {
7865 	struct stdata *stp;
7866 	queue_t *wqp;
7867 	mblk_t *mp;
7868 	ssize_t msgsize;
7869 	ssize_t rmin, rmax;
7870 	int error;
7871 	struct uio uios;
7872 	struct uio *uiop = &uios;
7873 	struct iovec iovs;
7874 	int xpg4 = 0;
7875 
7876 	ASSERT(vp->v_stream);
7877 	stp = vp->v_stream;
7878 	wqp = stp->sd_wrq;
7879 
7880 	/*
7881 	 * If it is an XPG4 application, we need to send
7882 	 * SIGPIPE below
7883 	 */
7884 
7885 	xpg4 = (flag & MSG_XPG4) ? 1 : 0;
7886 	flag &= ~MSG_XPG4;
7887 
7888 	if (audit_active)
7889 		audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);
7890 
7891 	mutex_enter(&stp->sd_lock);
7892 
7893 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
7894 		mutex_exit(&stp->sd_lock);
7895 		return (error);
7896 	}
7897 
7898 	if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7899 		error = strwriteable(stp, B_FALSE, xpg4);
7900 		if (error != 0) {
7901 			mutex_exit(&stp->sd_lock);
7902 			return (error);
7903 		}
7904 	}
7905 
7906 	mutex_exit(&stp->sd_lock);
7907 
7908 	/*
7909 	 * Check for legal flag value.
7910 	 */
7911 	switch (flag) {
7912 	case MSG_HIPRI:
7913 		if ((mctl->len < 0) || (pri != 0))
7914 			return (EINVAL);
7915 		break;
7916 	case MSG_BAND:
7917 		break;
7918 
7919 	default:
7920 		return (EINVAL);
7921 	}
7922 
7923 	TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
7924 	    "strputmsg in:stp %p", stp);
7925 
7926 	/* get these values from those cached in the stream head */
7927 	rmin = stp->sd_qn_minpsz;
7928 	rmax = stp->sd_qn_maxpsz;
7929 
7930 	/*
7931 	 * Make sure ctl and data sizes together fall within the
7932 	 * limits of the max and min receive packet sizes and do
7933 	 * not exceed system limit.
7934 	 */
7935 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
7936 	if (rmax == 0) {
7937 		return (ERANGE);
7938 	}
7939 	/*
7940 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7941 	 * Needed to prevent partial failures in the strmakedata loop.
7942 	 */
7943 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7944 		rmax = stp->sd_maxblk;
7945 
7946 	if ((msgsize = mdata->len) < 0) {
7947 		msgsize = 0;
7948 		rmin = 0;	/* no range check for NULL data part */
7949 	}
7950 	if ((msgsize < rmin) ||
7951 	    ((msgsize > rmax) && (rmax != INFPSZ)) ||
7952 	    (mctl->len > strctlsz)) {
7953 		return (ERANGE);
7954 	}
7955 
7956 	/*
7957 	 * Setup uio and iov for data part
7958 	 */
7959 	iovs.iov_base = mdata->buf;
7960 	iovs.iov_len = msgsize;
7961 	uios.uio_iov = &iovs;
7962 	uios.uio_iovcnt = 1;
7963 	uios.uio_loffset = 0;
7964 	uios.uio_segflg = UIO_USERSPACE;
7965 	uios.uio_fmode = fmode;
7966 	uios.uio_extflg = UIO_COPY_DEFAULT;
7967 	uios.uio_resid = msgsize;
7968 	uios.uio_offset = 0;
7969 
7970 	/* Ignore flow control in strput for HIPRI */
7971 	if (flag & MSG_HIPRI)
7972 		flag |= MSG_IGNFLOW;
7973 
7974 	for (;;) {
7975 		int done = 0;
7976 
7977 		/*
7978 		 * strput will always free the ctl mblk - even when strput
7979 		 * fails.
7980 		 */
7981 		if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
7982 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7983 			    "strputmsg out:stp %p out %d error %d",
7984 			    stp, 1, error);
7985 			return (error);
7986 		}
7987 		/*
7988 		 * Verify that the whole message can be transferred by
7989 		 * strput.
7990 		 */
7991 		ASSERT(stp->sd_maxblk == INFPSZ ||
7992 		    stp->sd_maxblk >= mdata->len);
7993 
7994 		msgsize = mdata->len;
7995 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7996 		mdata->len = msgsize;
7997 
7998 		if (error == 0)
7999 			break;
8000 
8001 		if (error != EWOULDBLOCK)
8002 			goto out;
8003 
8004 		mutex_enter(&stp->sd_lock);
8005 		/*
8006 		 * Check for a missed wakeup.
8007 		 * Needed since strput did not hold sd_lock across
8008 		 * the canputnext.
8009 		 */
8010 		if (bcanputnext(wqp, pri)) {
8011 			/* Try again */
8012 			mutex_exit(&stp->sd_lock);
8013 			continue;
8014 		}
8015 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
8016 		    "strputmsg wait:stp %p waits pri %d", stp, pri);
8017 		if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
8018 		    &done)) != 0) || done) {
8019 			mutex_exit(&stp->sd_lock);
8020 			TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
8021 			    "strputmsg out:q %p out %d error %d",
8022 			    stp, 0, error);
8023 			return (error);
8024 		}
8025 		TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
8026 		    "strputmsg wake:stp %p wakes", stp);
8027 		if ((error = i_straccess(stp, JCWRITE)) != 0) {
8028 			mutex_exit(&stp->sd_lock);
8029 			return (error);
8030 		}
8031 		mutex_exit(&stp->sd_lock);
8032 	}
8033 out:
8034 	/*
8035 	 * For historic reasons, applications expect EAGAIN
8036 	 * when data mblk could not be allocated. so change
8037 	 * ENOMEM back to EAGAIN
8038 	 */
8039 	if (error == ENOMEM)
8040 		error = EAGAIN;
8041 	TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
8042 	    "strputmsg out:stp %p out %d error %d", stp, 2, error);
8043 	return (error);
8044 }
8045 
8046 /*
8047  * Put a message downstream.
8048  * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
8049  * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
8050  * and the fmode parameter.
8051  *
8052  * This routine handles the consolidation private flags:
8053  *	MSG_IGNERROR	Ignore any stream head error except STPLEX.
8054  *	MSG_HOLDSIG	Hold signals while waiting for data.
8055  *	MSG_IGNFLOW	Don't check streams flow control.
8056  *
8057  * NOTE: strputmsg and kstrputmsg have much of the logic in common.
8058  */
8059 int
8060 kstrputmsg(
8061 	struct vnode *vp,
8062 	mblk_t *mctl,
8063 	struct uio *uiop,
8064 	ssize_t msgsize,
8065 	unsigned char pri,
8066 	int flag,
8067 	int fmode)
8068 {
8069 	struct stdata *stp;
8070 	queue_t *wqp;
8071 	ssize_t rmin, rmax;
8072 	int error;
8073 
8074 	ASSERT(vp->v_stream);
8075 	stp = vp->v_stream;
8076 	wqp = stp->sd_wrq;
8077 	if (audit_active)
8078 		audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
8079 	if (mctl == NULL)
8080 		return (EINVAL);
8081 
8082 	mutex_enter(&stp->sd_lock);
8083 
8084 	if ((error = i_straccess(stp, JCWRITE)) != 0) {
8085 		mutex_exit(&stp->sd_lock);
8086 		freemsg(mctl);
8087 		return (error);
8088 	}
8089 
8090 	if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
8091 		if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
8092 			error = strwriteable(stp, B_FALSE, B_TRUE);
8093 			if (error != 0) {
8094 				mutex_exit(&stp->sd_lock);
8095 				freemsg(mctl);
8096 				return (error);
8097 			}
8098 		}
8099 	}
8100 
8101 	mutex_exit(&stp->sd_lock);
8102 
8103 	/*
8104 	 * Check for legal flag value.
8105 	 */
8106 	switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
8107 	case MSG_HIPRI:
8108 		if (pri != 0) {
8109 			freemsg(mctl);
8110 			return (EINVAL);
8111 		}
8112 		break;
8113 	case MSG_BAND:
8114 		break;
8115 	default:
8116 		freemsg(mctl);
8117 		return (EINVAL);
8118 	}
8119 
8120 	TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
8121 	    "kstrputmsg in:stp %p", stp);
8122 
8123 	/* get these values from those cached in the stream head */
8124 	rmin = stp->sd_qn_minpsz;
8125 	rmax = stp->sd_qn_maxpsz;
8126 
8127 	/*
8128 	 * Make sure ctl and data sizes together fall within the
8129 	 * limits of the max and min receive packet sizes and do
8130 	 * not exceed system limit.
8131 	 */
8132 	ASSERT((rmax >= 0) || (rmax == INFPSZ));
8133 	if (rmax == 0) {
8134 		freemsg(mctl);
8135 		return (ERANGE);
8136 	}
8137 	/*
8138 	 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
8139 	 * Needed to prevent partial failures in the strmakedata loop.
8140 	 */
8141 	if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
8142 		rmax = stp->sd_maxblk;
8143 
8144 	if (uiop == NULL) {
8145 		msgsize = -1;
8146 		rmin = -1;	/* no range check for NULL data part */
8147 	} else {
8148 		/* Use uio flags as well as the fmode parameter flags */
8149 		fmode |= uiop->uio_fmode;
8150 
8151 		if ((msgsize < rmin) ||
8152 		    ((msgsize > rmax) && (rmax != INFPSZ))) {
8153 			freemsg(mctl);
8154 			return (ERANGE);
8155 		}
8156 	}
8157 
8158 	/* Ignore flow control in strput for HIPRI */
8159 	if (flag & MSG_HIPRI)
8160 		flag |= MSG_IGNFLOW;
8161 
8162 	for (;;) {
8163 		int done = 0;
8164 		int waitflag;
8165 		mblk_t *mp;
8166 
8167 		/*
8168 		 * strput will always free the ctl mblk - even when strput
8169 		 * fails. If MSG_IGNFLOW is set then any error returned
8170 		 * will cause us to break the loop, so we don't need a copy
8171 		 * of the message. If MSG_IGNFLOW is not set, then we can
8172 		 * get hit by flow control and be forced to try again. In
8173 		 * this case we need to have a copy of the message. We
8174 		 * do this using copymsg since the message may get modified
8175 		 * by something below us.
8176 		 *
8177 		 * We've observed that many TPI providers do not check db_ref
8178 		 * on the control messages but blindly reuse them for the
8179 		 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
8180 		 * friendly to such providers than using dupmsg. Also, note
8181 		 * that sockfs uses MSG_IGNFLOW for all TPI control messages.
8182 		 * Only data messages are subject to flow control, hence
8183 		 * subject to this copymsg.
8184 		 */
8185 		if (flag & MSG_IGNFLOW) {
8186 			mp = mctl;
8187 			mctl = NULL;
8188 		} else {
8189 			do {
8190 				/*
8191 				 * If a message has a free pointer, the message
8192 				 * must be dupmsg to maintain this pointer.
8193 				 * Code using this facility must be sure
8194 				 * that modules below will not change the
8195 				 * contents of the dblk without checking db_ref
8196 				 * first. If db_ref is > 1, then the module
8197 				 * needs to do a copymsg first. Otherwise,
8198 				 * the contents of the dblk may become
8199 				 * inconsistent because the freesmg/freeb below
8200 				 * may end up calling atomic_add_32_nv.
8201 				 * The atomic_add_32_nv in freeb (accessing
8202 				 * all of db_ref, db_type, db_flags, and
8203 				 * db_struioflag) does not prevent other threads
8204 				 * from concurrently trying to modify e.g.
8205 				 * db_type.
8206 				 */
8207 				if (mctl->b_datap->db_frtnp != NULL)
8208 					mp = dupmsg(mctl);
8209 				else
8210 					mp = copymsg(mctl);
8211 
8212 				if (mp != NULL)
8213 					break;
8214 
8215 				error = strwaitbuf(msgdsize(mctl), BPRI_MED);
8216 				if (error) {
8217 					freemsg(mctl);
8218 					return (error);
8219 				}
8220 			} while (mp == NULL);
8221 		}
8222 		/*
8223 		 * Verify that all of msgsize can be transferred by
8224 		 * strput.
8225 		 */
8226 		ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
8227 		error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
8228 		if (error == 0)
8229 			break;
8230 
8231 		if (error != EWOULDBLOCK)
8232 			goto out;
8233 
8234 		/*
8235 		 * IF MSG_IGNFLOW is set we should have broken out of loop
8236 		 * above.
8237 		 */
8238 		ASSERT(!(flag & MSG_IGNFLOW));
8239 		mutex_enter(&stp->sd_lock);
8240 		/*
8241 		 * Check for a missed wakeup.
8242 		 * Needed since strput did not hold sd_lock across
8243 		 * the canputnext.
8244 		 */
8245 		if (bcanputnext(wqp, pri)) {
8246 			/* Try again */
8247 			mutex_exit(&stp->sd_lock);
8248 			continue;
8249 		}
8250 		TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
8251 		    "kstrputmsg wait:stp %p waits pri %d", stp, pri);
8252 
8253 		waitflag = WRITEWAIT;
8254 		if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
8255 			if (flag & MSG_HOLDSIG)
8256 				waitflag |= STR_NOSIG;
8257 			if (flag & MSG_IGNERROR)
8258 				waitflag |= STR_NOERROR;
8259 		}
8260 		if (((error = strwaitq(stp, waitflag,
8261 		    (ssize_t)0, fmode, -1, &done)) != 0) || done) {
8262 			mutex_exit(&stp->sd_lock);
8263 			TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8264 			    "kstrputmsg out:stp %p out %d error %d",
8265 			    stp, 0, error);
8266 			freemsg(mctl);
8267 			return (error);
8268 		}
8269 		TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
8270 		    "kstrputmsg wake:stp %p wakes", stp);
8271 		if ((error = i_straccess(stp, JCWRITE)) != 0) {
8272 			mutex_exit(&stp->sd_lock);
8273 			freemsg(mctl);
8274 			return (error);
8275 		}
8276 		mutex_exit(&stp->sd_lock);
8277 	}
8278 out:
8279 	freemsg(mctl);
8280 	/*
8281 	 * For historic reasons, applications expect EAGAIN
8282 	 * when data mblk could not be allocated. so change
8283 	 * ENOMEM back to EAGAIN
8284 	 */
8285 	if (error == ENOMEM)
8286 		error = EAGAIN;
8287 	TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8288 	    "kstrputmsg out:stp %p out %d error %d", stp, 2, error);
8289 	return (error);
8290 }
8291 
8292 /*
8293  * Determines whether the necessary conditions are set on a stream
8294  * for it to be readable, writeable, or have exceptions.
8295  *
8296  * strpoll handles the consolidation private events:
8297  *	POLLNOERR	Do not return POLLERR even if there are stream
8298  *			head errors.
8299  *			Used by sockfs.
8300  *	POLLRDDATA	Do not return POLLIN unless at least one message on
8301  *			the queue contains one or more M_DATA mblks. Thus
8302  *			when this flag is set a queue with only
8303  *			M_PROTO/M_PCPROTO mblks does not return POLLIN.
8304  *			Used by sockfs to ignore T_EXDATA_IND messages.
8305  *
8306  * Note: POLLRDDATA assumes that synch streams only return messages with
8307  * an M_DATA attached (i.e. not messages consisting of only
8308  * an M_PROTO/M_PCPROTO part).
8309  */
8310 int
8311 strpoll(
8312 	struct stdata *stp,
8313 	short events_arg,
8314 	int anyyet,
8315 	short *reventsp,
8316 	struct pollhead **phpp)
8317 {
8318 	int events = (ushort_t)events_arg;
8319 	int retevents = 0;
8320 	mblk_t *mp;
8321 	qband_t *qbp;
8322 	long sd_flags = stp->sd_flag;
8323 	int headlocked = 0;
8324 
8325 	/*
8326 	 * For performance, a single 'if' tests for most possible edge
8327 	 * conditions in one shot
8328 	 */
8329 	if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
8330 		if (sd_flags & STPLEX) {
8331 			*reventsp = POLLNVAL;
8332 			return (EINVAL);
8333 		}
8334 		if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
8335 		    (sd_flags & STRDERR)) ||
8336 		    ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
8337 		    (sd_flags & STWRERR))) {
8338 			if (!(events & POLLNOERR)) {
8339 				*reventsp = POLLERR;
8340 				return (0);
8341 			}
8342 		}
8343 	}
8344 	if (sd_flags & STRHUP) {
8345 		retevents |= POLLHUP;
8346 	} else if (events & (POLLWRNORM | POLLWRBAND)) {
8347 		queue_t *tq;
8348 		queue_t	*qp = stp->sd_wrq;
8349 
8350 		claimstr(qp);
8351 		/* Find next module forward that has a service procedure */
8352 		tq = qp->q_next->q_nfsrv;
8353 		ASSERT(tq != NULL);
8354 
8355 		polllock(&stp->sd_pollist, QLOCK(tq));
8356 		if (events & POLLWRNORM) {
8357 			queue_t *sqp;
8358 
8359 			if (tq->q_flag & QFULL)
8360 				/* ensure backq svc procedure runs */
8361 				tq->q_flag |= QWANTW;
8362 			else if ((sqp = stp->sd_struiowrq) != NULL) {
8363 				/* Check sync stream barrier write q */
8364 				mutex_exit(QLOCK(tq));
8365 				polllock(&stp->sd_pollist, QLOCK(sqp));
8366 				if (sqp->q_flag & QFULL)
8367 					/* ensure pollwakeup() is done */
8368 					sqp->q_flag |= QWANTWSYNC;
8369 				else
8370 					retevents |= POLLOUT;
8371 				/* More write events to process ??? */
8372 				if (! (events & POLLWRBAND)) {
8373 					mutex_exit(QLOCK(sqp));
8374 					releasestr(qp);
8375 					goto chkrd;
8376 				}
8377 				mutex_exit(QLOCK(sqp));
8378 				polllock(&stp->sd_pollist, QLOCK(tq));
8379 			} else
8380 				retevents |= POLLOUT;
8381 		}
8382 		if (events & POLLWRBAND) {
8383 			qbp = tq->q_bandp;
8384 			if (qbp) {
8385 				while (qbp) {
8386 					if (qbp->qb_flag & QB_FULL)
8387 						qbp->qb_flag |= QB_WANTW;
8388 					else
8389 						retevents |= POLLWRBAND;
8390 					qbp = qbp->qb_next;
8391 				}
8392 			} else {
8393 				retevents |= POLLWRBAND;
8394 			}
8395 		}
8396 		mutex_exit(QLOCK(tq));
8397 		releasestr(qp);
8398 	}
8399 chkrd:
8400 	if (sd_flags & STRPRI) {
8401 		retevents |= (events & POLLPRI);
8402 	} else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
8403 		queue_t	*qp = _RD(stp->sd_wrq);
8404 		int normevents = (events & (POLLIN | POLLRDNORM));
8405 
8406 		/*
8407 		 * Note: Need to do polllock() here since ps_lock may be
8408 		 * held. See bug 4191544.
8409 		 */
8410 		polllock(&stp->sd_pollist, &stp->sd_lock);
8411 		headlocked = 1;
8412 		mp = qp->q_first;
8413 		while (mp) {
8414 			/*
8415 			 * For POLLRDDATA we scan b_cont and b_next until we
8416 			 * find an M_DATA.
8417 			 */
8418 			if ((events & POLLRDDATA) &&
8419 			    mp->b_datap->db_type != M_DATA) {
8420 				mblk_t *nmp = mp->b_cont;
8421 
8422 				while (nmp != NULL &&
8423 				    nmp->b_datap->db_type != M_DATA)
8424 					nmp = nmp->b_cont;
8425 				if (nmp == NULL) {
8426 					mp = mp->b_next;
8427 					continue;
8428 				}
8429 			}
8430 			if (mp->b_band == 0)
8431 				retevents |= normevents;
8432 			else
8433 				retevents |= (events & (POLLIN | POLLRDBAND));
8434 			break;
8435 		}
8436 		if (! (retevents & normevents) &&
8437 		    (stp->sd_wakeq & RSLEEP)) {
8438 			/*
8439 			 * Sync stream barrier read queue has data.
8440 			 */
8441 			retevents |= normevents;
8442 		}
8443 		/* Treat eof as normal data */
8444 		if (sd_flags & STREOF)
8445 			retevents |= normevents;
8446 	}
8447 
8448 	*reventsp = (short)retevents;
8449 	if (retevents) {
8450 		if (headlocked)
8451 			mutex_exit(&stp->sd_lock);
8452 		return (0);
8453 	}
8454 
8455 	/*
8456 	 * If poll() has not found any events yet, set up event cell
8457 	 * to wake up the poll if a requested event occurs on this
8458 	 * stream.  Check for collisions with outstanding poll requests.
8459 	 */
8460 	if (!anyyet) {
8461 		*phpp = &stp->sd_pollist;
8462 		if (headlocked == 0) {
8463 			polllock(&stp->sd_pollist, &stp->sd_lock);
8464 			headlocked = 1;
8465 		}
8466 		stp->sd_rput_opt |= SR_POLLIN;
8467 	}
8468 	if (headlocked)
8469 		mutex_exit(&stp->sd_lock);
8470 	return (0);
8471 }
8472 
8473 /*
8474  * The purpose of putback() is to assure sleeping polls/reads
8475  * are awakened when there are no new messages arriving at the,
8476  * stream head, and a message is placed back on the read queue.
8477  *
8478  * sd_lock must be held when messages are placed back on stream
8479  * head.  (getq() holds sd_lock when it removes messages from
8480  * the queue)
8481  */
8482 
8483 static void
8484 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
8485 {
8486 	mblk_t	*qfirst;
8487 	ASSERT(MUTEX_HELD(&stp->sd_lock));
8488 
8489 	/*
8490 	 * As a result of lock-step ordering around q_lock and sd_lock,
8491 	 * it's possible for function calls like putnext() and
8492 	 * canputnext() to get an inaccurate picture of how much
8493 	 * data is really being processed at the stream head.
8494 	 * We only consolidate with existing messages on the queue
8495 	 * if the length of the message we want to put back is smaller
8496 	 * than the queue hiwater mark.
8497 	 */
8498 	if ((stp->sd_rput_opt & SR_CONSOL_DATA) &&
8499 	    (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) &&
8500 	    (DB_TYPE(qfirst) == M_DATA) &&
8501 	    ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) &&
8502 	    ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) &&
8503 	    (mp_cont_len(bp, NULL) < q->q_hiwat)) {
8504 		/*
8505 		 * We use the same logic as defined in strrput()
8506 		 * but in reverse as we are putting back onto the
8507 		 * queue and want to retain byte ordering.
8508 		 * Consolidate M_DATA messages with M_DATA ONLY.
8509 		 * strrput() allows the consolidation of M_DATA onto
8510 		 * M_PROTO | M_PCPROTO but not the other way round.
8511 		 *
8512 		 * The consolidation does not take place if the message
8513 		 * we are returning to the queue is marked with either
8514 		 * of the marks or the delim flag or if q_first
8515 		 * is marked with MSGMARK. The MSGMARK check is needed to
8516 		 * handle the odd semantics of MSGMARK where essentially
8517 		 * the whole message is to be treated as marked.
8518 		 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first
8519 		 * to the front of the b_cont chain.
8520 		 */
8521 		rmvq_noenab(q, qfirst);
8522 
8523 		/*
8524 		 * The first message in the b_cont list
8525 		 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
8526 		 * We need to handle the case where we
8527 		 * are appending:
8528 		 *
8529 		 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
8530 		 * 2) a MSGMARKNEXT to a plain message.
8531 		 * 3) a MSGNOTMARKNEXT to a plain message
8532 		 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
8533 		 *    message.
8534 		 *
8535 		 * Thus we never append a MSGMARKNEXT or
8536 		 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
8537 		 */
8538 		if (qfirst->b_flag & MSGMARKNEXT) {
8539 			bp->b_flag |= MSGMARKNEXT;
8540 			bp->b_flag &= ~MSGNOTMARKNEXT;
8541 			qfirst->b_flag &= ~MSGMARKNEXT;
8542 		} else if (qfirst->b_flag & MSGNOTMARKNEXT) {
8543 			bp->b_flag |= MSGNOTMARKNEXT;
8544 			qfirst->b_flag &= ~MSGNOTMARKNEXT;
8545 		}
8546 
8547 		linkb(bp, qfirst);
8548 	}
8549 	(void) putbq(q, bp);
8550 
8551 	/*
8552 	 * A message may have come in when the sd_lock was dropped in the
8553 	 * calling routine. If this is the case and STR*ATMARK info was
8554 	 * received, need to move that from the stream head to the q_last
8555 	 * so that SIOCATMARK can return the proper value.
8556 	 */
8557 	if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
8558 		unsigned short *flagp = &q->q_last->b_flag;
8559 		uint_t b_flag = (uint_t)*flagp;
8560 
8561 		if (stp->sd_flag & STRATMARK) {
8562 			b_flag &= ~MSGNOTMARKNEXT;
8563 			b_flag |= MSGMARKNEXT;
8564 			stp->sd_flag &= ~STRATMARK;
8565 		} else {
8566 			b_flag &= ~MSGMARKNEXT;
8567 			b_flag |= MSGNOTMARKNEXT;
8568 			stp->sd_flag &= ~STRNOTATMARK;
8569 		}
8570 		*flagp = (unsigned short) b_flag;
8571 	}
8572 
8573 #ifdef	DEBUG
8574 	/*
8575 	 * Make sure that the flags are not messed up.
8576 	 */
8577 	{
8578 		mblk_t *mp;
8579 		mp = q->q_last;
8580 		while (mp != NULL) {
8581 			ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
8582 			    (MSGMARKNEXT|MSGNOTMARKNEXT));
8583 			mp = mp->b_cont;
8584 		}
8585 	}
8586 #endif
8587 	if (q->q_first == bp) {
8588 		short pollevents;
8589 
8590 		if (stp->sd_flag & RSLEEP) {
8591 			stp->sd_flag &= ~RSLEEP;
8592 			cv_broadcast(&q->q_wait);
8593 		}
8594 		if (stp->sd_flag & STRPRI) {
8595 			pollevents = POLLPRI;
8596 		} else {
8597 			if (band == 0) {
8598 				if (!(stp->sd_rput_opt & SR_POLLIN))
8599 					return;
8600 				stp->sd_rput_opt &= ~SR_POLLIN;
8601 				pollevents = POLLIN | POLLRDNORM;
8602 			} else {
8603 				pollevents = POLLIN | POLLRDBAND;
8604 			}
8605 		}
8606 		mutex_exit(&stp->sd_lock);
8607 		pollwakeup(&stp->sd_pollist, pollevents);
8608 		mutex_enter(&stp->sd_lock);
8609 	}
8610 }
8611 
8612 /*
8613  * Return the held vnode attached to the stream head of a
8614  * given queue
8615  * It is the responsibility of the calling routine to ensure
8616  * that the queue does not go away (e.g. pop).
8617  */
8618 vnode_t *
8619 strq2vp(queue_t *qp)
8620 {
8621 	vnode_t *vp;
8622 	vp = STREAM(qp)->sd_vnode;
8623 	ASSERT(vp != NULL);
8624 	VN_HOLD(vp);
8625 	return (vp);
8626 }
8627 
8628 /*
8629  * return the stream head write queue for the given vp
8630  * It is the responsibility of the calling routine to ensure
8631  * that the stream or vnode do not close.
8632  */
8633 queue_t *
8634 strvp2wq(vnode_t *vp)
8635 {
8636 	ASSERT(vp->v_stream != NULL);
8637 	return (vp->v_stream->sd_wrq);
8638 }
8639 
8640 /*
8641  * pollwakeup stream head
8642  * It is the responsibility of the calling routine to ensure
8643  * that the stream or vnode do not close.
8644  */
8645 void
8646 strpollwakeup(vnode_t *vp, short event)
8647 {
8648 	ASSERT(vp->v_stream);
8649 	pollwakeup(&vp->v_stream->sd_pollist, event);
8650 }
8651 
8652 /*
8653  * Mate the stream heads of two vnodes together. If the two vnodes are the
8654  * same, we just make the write-side point at the read-side -- otherwise,
8655  * we do a full mate.  Only works on vnodes associated with streams that are
8656  * still being built and thus have only a stream head.
8657  */
8658 void
8659 strmate(vnode_t *vp1, vnode_t *vp2)
8660 {
8661 	queue_t *wrq1 = strvp2wq(vp1);
8662 	queue_t *wrq2 = strvp2wq(vp2);
8663 
8664 	/*
8665 	 * Verify that there are no modules on the stream yet.  We also
8666 	 * rely on the stream head always having a service procedure to
8667 	 * avoid tweaking q_nfsrv.
8668 	 */
8669 	ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
8670 	ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
8671 	ASSERT(wrq2->q_qinfo->qi_srvp != NULL);
8672 
8673 	/*
8674 	 * If the queues are the same, just twist; otherwise do a full mate.
8675 	 */
8676 	if (wrq1 == wrq2) {
8677 		wrq1->q_next = _RD(wrq1);
8678 	} else {
8679 		wrq1->q_next = _RD(wrq2);
8680 		wrq2->q_next = _RD(wrq1);
8681 		STREAM(wrq1)->sd_mate = STREAM(wrq2);
8682 		STREAM(wrq1)->sd_flag |= STRMATE;
8683 		STREAM(wrq2)->sd_mate = STREAM(wrq1);
8684 		STREAM(wrq2)->sd_flag |= STRMATE;
8685 	}
8686 }
8687 
8688 /*
8689  * XXX will go away when console is correctly fixed.
8690  * Clean up the console PIDS, from previous I_SETSIG,
8691  * called only for cnopen which never calls strclean().
8692  */
8693 void
8694 str_cn_clean(struct vnode *vp)
8695 {
8696 	strsig_t *ssp, *pssp, *tssp;
8697 	struct stdata *stp;
8698 	struct pid  *pidp;
8699 	int update = 0;
8700 
8701 	ASSERT(vp->v_stream);
8702 	stp = vp->v_stream;
8703 	pssp = NULL;
8704 	mutex_enter(&stp->sd_lock);
8705 	ssp = stp->sd_siglist;
8706 	while (ssp) {
8707 		mutex_enter(&pidlock);
8708 		pidp = ssp->ss_pidp;
8709 		/*
8710 		 * Get rid of PID if the proc is gone.
8711 		 */
8712 		if (pidp->pid_prinactive) {
8713 			tssp = ssp->ss_next;
8714 			if (pssp)
8715 				pssp->ss_next = tssp;
8716 			else
8717 				stp->sd_siglist = tssp;
8718 			ASSERT(pidp->pid_ref <= 1);
8719 			PID_RELE(ssp->ss_pidp);
8720 			mutex_exit(&pidlock);
8721 			kmem_free(ssp, sizeof (strsig_t));
8722 			update = 1;
8723 			ssp = tssp;
8724 			continue;
8725 		} else
8726 			mutex_exit(&pidlock);
8727 		pssp = ssp;
8728 		ssp = ssp->ss_next;
8729 	}
8730 	if (update) {
8731 		stp->sd_sigflags = 0;
8732 		for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
8733 			stp->sd_sigflags |= ssp->ss_events;
8734 	}
8735 	mutex_exit(&stp->sd_lock);
8736 }
8737 
8738 /*
8739  * Return B_TRUE if there is data in the message, B_FALSE otherwise.
8740  */
8741 static boolean_t
8742 msghasdata(mblk_t *bp)
8743 {
8744 	for (; bp; bp = bp->b_cont)
8745 		if (bp->b_datap->db_type == M_DATA) {
8746 			ASSERT(bp->b_wptr >= bp->b_rptr);
8747 			if (bp->b_wptr > bp->b_rptr)
8748 				return (B_TRUE);
8749 		}
8750 	return (B_FALSE);
8751 }
8752 
8753 /*
8754  * Called on the first strget() of a sodirect/uioa enabled streamhead,
8755  * if any mblk_t(s) enqueued they must first be uioamove()d before uioa
8756  * can be enabled for the underlying transport's use.
8757  */
8758 void
8759 struioainit(queue_t *q, sodirect_t *sodp, uio_t *uiop)
8760 {
8761 	uioa_t	*uioap = (uioa_t *)uiop;
8762 	mblk_t	*bp = q->q_first;
8763 	mblk_t	*lbp = NULL;
8764 	mblk_t	*nbp, *wbp;
8765 	int	len;
8766 	int	error;
8767 
8768 	ASSERT(MUTEX_HELD(sodp->sod_lock));
8769 	ASSERT(&sodp->sod_uioa == uioap);
8770 
8771 	/*
8772 	 * Walk the b_next/b_prev doubly linked list of b_cont chain(s)
8773 	 * and schedule any M_DATA mblk_t's for uio asynchronous move.
8774 	 */
8775 	do {
8776 		/* Next mblk_t chain */
8777 		nbp = bp->b_next;
8778 		/* Walk the chain */
8779 		wbp = bp;
8780 		do {
8781 			if (wbp->b_datap->db_type != M_DATA) {
8782 				/* Not M_DATA, no more uioa */
8783 				goto nouioa;
8784 			}
8785 			if ((len = wbp->b_wptr - wbp->b_rptr) > 0) {
8786 				/* Have a M_DATA mblk_t with data */
8787 				if (len > uioap->uio_resid) {
8788 					/* Not enough uio sapce */
8789 					goto nouioa;
8790 				}
8791 				error = uioamove(wbp->b_rptr, len,
8792 				    UIO_READ, uioap);
8793 				if (!error) {
8794 					/* Scheduled, mark dblk_t as such */
8795 					wbp->b_datap->db_flags |= DBLK_UIOA;
8796 				} else {
8797 					/* Error of some sort, no more uioa */
8798 					uioap->uioa_state &= UIOA_CLR;
8799 					uioap->uioa_state |= UIOA_FINI;
8800 					return;
8801 				}
8802 			}
8803 			/* Save last wbp processed */
8804 			lbp = wbp;
8805 		} while ((wbp = wbp->b_cont) != NULL);
8806 	} while ((bp = nbp) != NULL);
8807 
8808 	return;
8809 
8810 nouioa:
8811 	/* No more uioa */
8812 	uioap->uioa_state &= UIOA_CLR;
8813 	uioap->uioa_state |= UIOA_FINI;
8814 
8815 	/*
8816 	 * If we processed 1 or more mblk_t(s) then we need to split the
8817 	 * current mblk_t chain in 2 so that all the uioamove()ed mblk_t(s)
8818 	 * are in the current chain and the rest are in the following new
8819 	 * chain.
8820 	 */
8821 	if (lbp != NULL) {
8822 		/* New end of current chain */
8823 		lbp->b_cont = NULL;
8824 
8825 		/* Insert new chain wbp after bp */
8826 		if ((wbp->b_next = nbp) != NULL)
8827 			nbp->b_prev = wbp;
8828 		else
8829 			q->q_last = wbp;
8830 		wbp->b_prev = bp;
8831 		bp->b_next = wbp;
8832 	}
8833 }
8834