xref: /titanic_50/usr/src/uts/common/os/sig.c (revision 985be8f145003c39bf82ad09a81ad394e4d7d4b6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/bitmap.h>
36 #include <sys/sysmacros.h>
37 #include <sys/systm.h>
38 #include <sys/cred.h>
39 #include <sys/user.h>
40 #include <sys/errno.h>
41 #include <sys/proc.h>
42 #include <sys/poll_impl.h> /* only needed for kludge in sigwaiting_send() */
43 #include <sys/signal.h>
44 #include <sys/siginfo.h>
45 #include <sys/fault.h>
46 #include <sys/ucontext.h>
47 #include <sys/procfs.h>
48 #include <sys/wait.h>
49 #include <sys/class.h>
50 #include <sys/mman.h>
51 #include <sys/procset.h>
52 #include <sys/kmem.h>
53 #include <sys/cpuvar.h>
54 #include <sys/prsystm.h>
55 #include <sys/debug.h>
56 #include <vm/as.h>
57 #include <sys/bitmap.h>
58 #include <c2/audit.h>
59 #include <sys/core.h>
60 #include <sys/schedctl.h>
61 #include <sys/contract/process_impl.h>
62 #include <sys/dtrace.h>
63 #include <sys/sdt.h>
64 
65 				/* MUST be contiguous */
66 k_sigset_t nullsmask = {0, 0};
67 
68 k_sigset_t fillset = {FILLSET0, FILLSET1};
69 
70 k_sigset_t cantmask = {CANTMASK0, CANTMASK1};
71 
72 k_sigset_t cantreset = {(sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGPWR)), 0};
73 
74 k_sigset_t ignoredefault = {(sigmask(SIGCONT)|sigmask(SIGCLD)|sigmask(SIGPWR)
75 			|sigmask(SIGWINCH)|sigmask(SIGURG)|sigmask(SIGWAITING)),
76 			(sigmask(SIGLWP)|sigmask(SIGCANCEL)|sigmask(SIGFREEZE)
77 			|sigmask(SIGTHAW)|sigmask(SIGXRES)|sigmask(SIGJVM1)
78 			|sigmask(SIGJVM2))};
79 
80 k_sigset_t stopdefault = {(sigmask(SIGSTOP)|sigmask(SIGTSTP)
81 			|sigmask(SIGTTOU)|sigmask(SIGTTIN)), 0};
82 
83 k_sigset_t coredefault = {(sigmask(SIGQUIT)|sigmask(SIGILL)|sigmask(SIGTRAP)
84 			|sigmask(SIGIOT)|sigmask(SIGEMT)|sigmask(SIGFPE)
85 			|sigmask(SIGBUS)|sigmask(SIGSEGV)|sigmask(SIGSYS)
86 			|sigmask(SIGXCPU)|sigmask(SIGXFSZ)), 0};
87 
88 k_sigset_t holdvfork = {(sigmask(SIGTTOU)|sigmask(SIGTTIN)|sigmask(SIGTSTP)),
89 			0};
90 
91 static	int	isjobstop(int);
92 static	void	post_sigcld(proc_t *, sigqueue_t *);
93 
94 /*
95  * Internal variables for counting number of user thread stop requests posted.
96  * They may not be accurate at some special situation such as that a virtually
97  * stopped thread starts to run.
98  */
99 static int num_utstop;
100 /*
101  * Internal variables for broadcasting an event when all thread stop requests
102  * are processed.
103  */
104 static kcondvar_t utstop_cv;
105 
106 static kmutex_t thread_stop_lock;
107 void del_one_utstop(void);
108 
109 /*
110  * Send the specified signal to the specified process.
111  */
112 void
113 psignal(proc_t *p, int sig)
114 {
115 	mutex_enter(&p->p_lock);
116 	sigtoproc(p, NULL, sig);
117 	mutex_exit(&p->p_lock);
118 }
119 
120 /*
121  * Send the specified signal to the specified thread.
122  */
123 void
124 tsignal(kthread_t *t, int sig)
125 {
126 	proc_t *p = ttoproc(t);
127 
128 	mutex_enter(&p->p_lock);
129 	sigtoproc(p, t, sig);
130 	mutex_exit(&p->p_lock);
131 }
132 
133 int
134 signal_is_blocked(kthread_t *t, int sig)
135 {
136 	return (sigismember(&t->t_hold, sig) ||
137 	    (schedctl_sigblock(t) && !sigismember(&cantmask, sig)));
138 }
139 
140 /*
141  * Return true if the signal can safely be discarded on generation.
142  * That is, if there is no need for the signal on the receiving end.
143  * The answer is true if the process is a zombie or
144  * if all of these conditions are true:
145  *	the signal is being ignored
146  *	the process is single-threaded
147  *	the signal is not being traced by /proc
148  * 	the signal is not blocked by the process
149  */
150 static int
151 sig_discardable(proc_t *p, int sig)
152 {
153 	kthread_t *t = p->p_tlist;
154 
155 	return (t == NULL ||		/* if zombie or ... */
156 	    (sigismember(&p->p_ignore, sig) &&	/* signal is ignored */
157 	    t->t_forw == t &&			/* and single-threaded */
158 	    !tracing(p, sig) &&			/* and no /proc tracing */
159 	    !signal_is_blocked(t, sig)));	/* and signal not blocked */
160 }
161 
162 /*
163  * Return true if this thread is going to eat this signal soon.
164  * Note that, if the signal is SIGKILL, we force stopped threads to be
165  * set running (to make SIGKILL be a sure kill), but only if the process
166  * is not currently locked by /proc (the P_PR_LOCK flag).  Code in /proc
167  * relies on the fact that a process will not change shape while P_PR_LOCK
168  * is set (it drops and reacquires p->p_lock while leaving P_PR_LOCK set).
169  * We wish that we could simply call prbarrier() below, in sigtoproc(), to
170  * ensure that the process is not locked by /proc, but prbarrier() drops
171  * and reacquires p->p_lock and dropping p->p_lock here would be damaging.
172  */
173 int
174 eat_signal(kthread_t *t, int sig)
175 {
176 	int rval = 0;
177 	ASSERT(THREAD_LOCK_HELD(t));
178 
179 	/*
180 	 * Do not do anything if the target thread has the signal blocked.
181 	 */
182 	if (!signal_is_blocked(t, sig)) {
183 		t->t_sig_check = 1;	/* have thread do an issig */
184 		if (t->t_state == TS_SLEEP && (t->t_flag & T_WAKEABLE)) {
185 			setrun_locked(t);
186 			rval = 1;
187 		} else if (t->t_state == TS_STOPPED && sig == SIGKILL &&
188 		    !(ttoproc(t)->p_proc_flag & P_PR_LOCK)) {
189 			ttoproc(t)->p_stopsig = 0;
190 			t->t_dtrace_stop = 0;
191 			t->t_schedflag |= TS_XSTART | TS_PSTART;
192 			setrun_locked(t);
193 		} else if (t != curthread && t->t_state == TS_ONPROC) {
194 			aston(t);	/* make it do issig promptly */
195 			if (t->t_cpu != CPU)
196 				poke_cpu(t->t_cpu->cpu_id);
197 			rval = 1;
198 		} else if (t->t_state == TS_RUN) {
199 			rval = 1;
200 		}
201 	}
202 
203 	return (rval);
204 }
205 
206 /*
207  * Post a signal.
208  * If a non-null thread pointer is passed, then post the signal
209  * to the thread/lwp, otherwise post the signal to the process.
210  */
211 void
212 sigtoproc(proc_t *p, kthread_t *t, int sig)
213 {
214 	kthread_t *tt;
215 	int ext = !(curproc->p_flag & SSYS) &&
216 	    (curproc->p_ct_process != p->p_ct_process);
217 
218 	ASSERT(MUTEX_HELD(&p->p_lock));
219 
220 	if (sig <= 0 || sig >= NSIG)
221 		return;
222 
223 	/*
224 	 * Regardless of origin or directedness,
225 	 * SIGKILL kills all lwps in the process immediately
226 	 * and jobcontrol signals affect all lwps in the process.
227 	 */
228 	if (sig == SIGKILL) {
229 		p->p_flag |= SKILLED | (ext ? SEXTKILLED : 0);
230 		t = NULL;
231 	} else if (sig == SIGCONT) {
232 		/*
233 		 * The SSCONT flag will remain set until a stopping
234 		 * signal comes in (below).  This is harmless.
235 		 */
236 		p->p_flag |= SSCONT;
237 		sigdelq(p, NULL, SIGSTOP);
238 		sigdelq(p, NULL, SIGTSTP);
239 		sigdelq(p, NULL, SIGTTOU);
240 		sigdelq(p, NULL, SIGTTIN);
241 		sigdiffset(&p->p_sig, &stopdefault);
242 		sigdiffset(&p->p_extsig, &stopdefault);
243 		p->p_stopsig = 0;
244 		if ((tt = p->p_tlist) != NULL) {
245 			do {
246 				sigdelq(p, tt, SIGSTOP);
247 				sigdelq(p, tt, SIGTSTP);
248 				sigdelq(p, tt, SIGTTOU);
249 				sigdelq(p, tt, SIGTTIN);
250 				sigdiffset(&tt->t_sig, &stopdefault);
251 				sigdiffset(&tt->t_extsig, &stopdefault);
252 			} while ((tt = tt->t_forw) != p->p_tlist);
253 		}
254 		if ((tt = p->p_tlist) != NULL) {
255 			do {
256 				thread_lock(tt);
257 				if (tt->t_state == TS_STOPPED &&
258 				    tt->t_whystop == PR_JOBCONTROL) {
259 					tt->t_schedflag |= TS_XSTART;
260 					setrun_locked(tt);
261 				}
262 				thread_unlock(tt);
263 			} while ((tt = tt->t_forw) != p->p_tlist);
264 		}
265 	} else if (sigismember(&stopdefault, sig)) {
266 		/*
267 		 * This test has a race condition which we can't fix:
268 		 * By the time the stopping signal is received by
269 		 * the target process/thread, the signal handler
270 		 * and/or the detached state might have changed.
271 		 */
272 		if (PTOU(p)->u_signal[sig-1] == SIG_DFL &&
273 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned))
274 			p->p_flag &= ~SSCONT;
275 		sigdelq(p, NULL, SIGCONT);
276 		sigdelset(&p->p_sig, SIGCONT);
277 		sigdelset(&p->p_extsig, SIGCONT);
278 		if ((tt = p->p_tlist) != NULL) {
279 			do {
280 				sigdelq(p, tt, SIGCONT);
281 				sigdelset(&tt->t_sig, SIGCONT);
282 				sigdelset(&tt->t_extsig, SIGCONT);
283 			} while ((tt = tt->t_forw) != p->p_tlist);
284 		}
285 	}
286 
287 	if (sig_discardable(p, sig)) {
288 		DTRACE_PROC3(signal__discard, kthread_t *, p->p_tlist,
289 		    proc_t *, p, int, sig);
290 		return;
291 	}
292 
293 	if (t != NULL) {
294 		/*
295 		 * This is a directed signal, wake up the lwp.
296 		 */
297 		sigaddset(&t->t_sig, sig);
298 		if (ext)
299 			sigaddset(&t->t_extsig, sig);
300 		thread_lock(t);
301 		(void) eat_signal(t, sig);
302 		thread_unlock(t);
303 		DTRACE_PROC2(signal__send, kthread_t *, t, int, sig);
304 	} else if ((tt = p->p_tlist) != NULL) {
305 		/*
306 		 * Make sure that some lwp that already exists
307 		 * in the process fields the signal soon.
308 		 * Wake up an interruptibly sleeping lwp if necessary.
309 		 */
310 		int su = 0;
311 
312 		sigaddset(&p->p_sig, sig);
313 		if (ext)
314 			sigaddset(&p->p_extsig, sig);
315 		do {
316 			thread_lock(tt);
317 			if (eat_signal(tt, sig)) {
318 				thread_unlock(tt);
319 				break;
320 			}
321 			if (sig == SIGKILL && SUSPENDED(tt))
322 				su++;
323 			thread_unlock(tt);
324 		} while ((tt = tt->t_forw) != p->p_tlist);
325 		/*
326 		 * If the process is deadlocked, make somebody run and die.
327 		 */
328 		if (sig == SIGKILL && p->p_stat != SIDL &&
329 		    p->p_lwprcnt == 0 && p->p_lwpcnt == su &&
330 		    !(p->p_proc_flag & P_PR_LOCK)) {
331 			thread_lock(tt);
332 			p->p_lwprcnt++;
333 			tt->t_schedflag |= TS_CSTART;
334 			setrun_locked(tt);
335 			thread_unlock(tt);
336 		}
337 
338 		DTRACE_PROC2(signal__send, kthread_t *, tt, int, sig);
339 	}
340 }
341 
342 static int
343 isjobstop(int sig)
344 {
345 	proc_t *p = ttoproc(curthread);
346 
347 	ASSERT(MUTEX_HELD(&p->p_lock));
348 
349 	if (PTOU(curproc)->u_signal[sig-1] == SIG_DFL &&
350 	    sigismember(&stopdefault, sig)) {
351 		/*
352 		 * If SIGCONT has been posted since we promoted this signal
353 		 * from pending to current, then don't do a jobcontrol stop.
354 		 */
355 		if (!(p->p_flag & SSCONT) &&
356 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned) &&
357 		    curthread != p->p_agenttp) {
358 			sigqueue_t *sqp;
359 
360 			stop(PR_JOBCONTROL, sig);
361 			mutex_exit(&p->p_lock);
362 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
363 			mutex_enter(&pidlock);
364 			/*
365 			 * Only the first lwp to continue notifies the parent.
366 			 */
367 			if (p->p_pidflag & CLDCONT)
368 				siginfofree(sqp);
369 			else {
370 				p->p_pidflag |= CLDCONT;
371 				p->p_wcode = CLD_CONTINUED;
372 				p->p_wdata = SIGCONT;
373 				sigcld(p, sqp);
374 			}
375 			mutex_exit(&pidlock);
376 			mutex_enter(&p->p_lock);
377 		}
378 		return (1);
379 	}
380 	return (0);
381 }
382 
383 /*
384  * Returns true if the current process has a signal to process, and
385  * the signal is not held.  The signal to process is put in p_cursig.
386  * This is asked at least once each time a process enters the system
387  * (though this can usually be done without actually calling issig by
388  * checking the pending signal masks).  A signal does not do anything
389  * directly to a process; it sets a flag that asks the process to do
390  * something to itself.
391  *
392  * The "why" argument indicates the allowable side-effects of the call:
393  *
394  * FORREAL:  Extract the next pending signal from p_sig into p_cursig;
395  * stop the process if a stop has been requested or if a traced signal
396  * is pending.
397  *
398  * JUSTLOOKING:  Don't stop the process, just indicate whether or not
399  * a signal might be pending (FORREAL is needed to tell for sure).
400  *
401  * XXX: Changes to the logic in these routines should be propagated
402  * to lm_sigispending().  See bug 1201594.
403  */
404 
405 static int issig_forreal(void);
406 static int issig_justlooking(void);
407 
408 int
409 issig(int why)
410 {
411 	ASSERT(why == FORREAL || why == JUSTLOOKING);
412 
413 	return ((why == FORREAL)? issig_forreal() : issig_justlooking());
414 }
415 
416 
417 static int
418 issig_justlooking(void)
419 {
420 	kthread_t *t = curthread;
421 	klwp_t *lwp = ttolwp(t);
422 	proc_t *p = ttoproc(t);
423 	k_sigset_t set;
424 
425 	/*
426 	 * This function answers the question:
427 	 * "Is there any reason to call issig_forreal()?"
428 	 *
429 	 * We have to answer the question w/o grabbing any locks
430 	 * because we are (most likely) being called after we
431 	 * put ourselves on the sleep queue.
432 	 */
433 
434 	if (t->t_dtrace_stop | t->t_dtrace_sig)
435 		return (1);
436 
437 	/*
438 	 * Another piece of complexity in this process.  When single-stepping a
439 	 * process, we don't want an intervening signal or TP_PAUSE request to
440 	 * suspend the current thread.  Otherwise, the controlling process will
441 	 * hang beacuse we will be stopped with TS_PSTART set in t_schedflag.
442 	 * We will trigger any remaining signals when we re-enter the kernel on
443 	 * the single step trap.
444 	 */
445 	if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP)
446 		return (0);
447 
448 	if ((lwp->lwp_asleep && MUSTRETURN(p, t)) ||
449 	    (p->p_flag & (SEXITLWPS|SKILLED)) ||
450 	    (!lwp->lwp_nostop_r && ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) |
451 		(t->t_proc_flag & TP_HOLDLWP))) ||
452 	    (!lwp->lwp_nostop && (p->p_stopsig | (t->t_proc_flag &
453 		(TP_PRSTOP|TP_CHKPT|TP_PAUSE)))) ||
454 	    lwp->lwp_cursig)
455 		return (1);
456 
457 	if (p->p_flag & SVFWAIT)
458 		return (0);
459 	set = p->p_sig;
460 	sigorset(&set, &t->t_sig);
461 	if (schedctl_sigblock(t))	/* all blockable signals blocked */
462 		sigandset(&set, &cantmask);
463 	else
464 		sigdiffset(&set, &t->t_hold);
465 	if (p->p_flag & SVFORK)
466 		sigdiffset(&set, &holdvfork);
467 
468 	if (!sigisempty(&set)) {
469 		int sig;
470 
471 		for (sig = 1; sig < NSIG; sig++) {
472 			if (sigismember(&set, sig) &&
473 			    (tracing(p, sig) ||
474 			    !sigismember(&p->p_ignore, sig))) {
475 				/*
476 				 * Don't promote a signal that will stop
477 				 * the process when lwp_nostop is set.
478 				 */
479 				if (!lwp->lwp_nostop ||
480 				    PTOU(curproc)->u_signal[sig-1] != SIG_DFL ||
481 				    !sigismember(&stopdefault, sig))
482 					return (1);
483 			}
484 		}
485 	}
486 
487 	return (0);
488 }
489 
490 static int
491 issig_forreal(void)
492 {
493 	int sig = 0, ext = 0;
494 	kthread_t *t = curthread;
495 	klwp_t *lwp = ttolwp(t);
496 	proc_t *p = ttoproc(t);
497 	int toproc = 0;
498 	int sigcld_found = 0;
499 	int nostop_break = 0;
500 
501 	ASSERT(t->t_state == TS_ONPROC);
502 
503 	mutex_enter(&p->p_lock);
504 	schedctl_finish_sigblock(t);
505 
506 	if (t->t_dtrace_stop | t->t_dtrace_sig) {
507 		if (t->t_dtrace_stop) {
508 			/*
509 			 * If DTrace's "stop" action has been invoked on us,
510 			 * set TP_PRSTOP.
511 			 */
512 			t->t_proc_flag |= TP_PRSTOP;
513 		}
514 
515 		if (t->t_dtrace_sig != 0) {
516 			k_siginfo_t info;
517 
518 			/*
519 			 * Post the signal generated as the result of
520 			 * DTrace's "raise" action as a normal signal before
521 			 * the full-fledged signal checking begins.
522 			 */
523 			bzero(&info, sizeof (info));
524 			info.si_signo = t->t_dtrace_sig;
525 			info.si_code = SI_DTRACE;
526 
527 			sigaddq(p, NULL, &info, KM_NOSLEEP);
528 
529 			t->t_dtrace_sig = 0;
530 		}
531 	}
532 
533 	for (;;) {
534 		if (p->p_flag & (SEXITLWPS|SKILLED)) {
535 			lwp->lwp_cursig = sig = SIGKILL;
536 			lwp->lwp_extsig = ext = (p->p_flag & SEXTKILLED) != 0;
537 			break;
538 		}
539 
540 		/*
541 		 * Another piece of complexity in this process.  When
542 		 * single-stepping a process, we don't want an intervening
543 		 * signal or TP_PAUSE request to suspend the current thread.
544 		 * Otherwise, the controlling process will hang beacuse we will
545 		 * be stopped with TS_PSTART set in t_schedflag.  We will
546 		 * trigger any remaining signals when we re-enter the kernel on
547 		 * the single step trap.
548 		 */
549 		if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP) {
550 			sig = 0;
551 			break;
552 		}
553 
554 		/*
555 		 * Hold the lwp here for watchpoint manipulation.
556 		 */
557 		if ((t->t_proc_flag & TP_PAUSE) && !lwp->lwp_nostop) {
558 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
559 			continue;
560 		}
561 
562 		if (lwp->lwp_asleep && MUSTRETURN(p, t)) {
563 			if ((sig = lwp->lwp_cursig) != 0) {
564 				/*
565 				 * Make sure we call ISSIG() in post_syscall()
566 				 * to re-validate this current signal.
567 				 */
568 				t->t_sig_check = 1;
569 			}
570 			break;
571 		}
572 
573 		/*
574 		 * If the request is PR_CHECKPOINT, ignore the rest of signals
575 		 * or requests.  Honor other stop requests or signals later.
576 		 * Go back to top of loop here to check if an exit or hold
577 		 * event has occurred while stopped.
578 		 */
579 		if ((t->t_proc_flag & TP_CHKPT) && !lwp->lwp_nostop) {
580 			stop(PR_CHECKPOINT, 0);
581 			continue;
582 		}
583 
584 		/*
585 		 * Honor SHOLDFORK1, SHOLDWATCH, and TP_HOLDLWP before dealing
586 		 * with signals or /proc.  Another lwp is executing fork1(),
587 		 * or is undergoing watchpoint activity (remapping a page),
588 		 * or is executing lwp_suspend() on this lwp.
589 		 * Again, go back to top of loop to check if an exit
590 		 * or hold event has occurred while stopped.
591 		 * We explicitly allow this form of stopping of one
592 		 * lwp in a process by another lwp in the same process,
593 		 * even if lwp->lwp_nostop is set, because otherwise a
594 		 * process can become deadlocked on a fork1().
595 		 * Allow this only if lwp_nostop_r is not set,
596 		 * to avoid a recursive call to prstop().
597 		 */
598 		if (((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
599 		    (t->t_proc_flag & TP_HOLDLWP)) && !lwp->lwp_nostop_r) {
600 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
601 			continue;
602 		}
603 
604 		/*
605 		 * Honor requested stop before dealing with the
606 		 * current signal; a debugger may change it.
607 		 * Do not want to go back to loop here since this is a special
608 		 * stop that means: make incremental progress before the next
609 		 * stop. The danger is that returning to top of loop would most
610 		 * likely drop the thread right back here to stop soon after it
611 		 * was continued, violating the incremental progress request.
612 		 */
613 		if ((t->t_proc_flag & TP_PRSTOP) && !lwp->lwp_nostop)
614 			stop(PR_REQUESTED, 0);
615 
616 		/*
617 		 * If a debugger wants us to take a signal it will have
618 		 * left it in lwp->lwp_cursig.  If lwp_cursig has been cleared
619 		 * or if it's being ignored, we continue on looking for another
620 		 * signal.  Otherwise we return the specified signal, provided
621 		 * it's not a signal that causes a job control stop.
622 		 *
623 		 * When stopped on PR_JOBCONTROL, there is no current
624 		 * signal; we cancel lwp->lwp_cursig temporarily before
625 		 * calling isjobstop().  The current signal may be reset
626 		 * by a debugger while we are stopped in isjobstop().
627 		 */
628 		if ((sig = lwp->lwp_cursig) != 0) {
629 			ext = lwp->lwp_extsig;
630 			lwp->lwp_cursig = 0;
631 			lwp->lwp_extsig = 0;
632 			if (!sigismember(&p->p_ignore, sig) &&
633 			    !isjobstop(sig)) {
634 				if (p->p_flag & (SEXITLWPS|SKILLED)) {
635 					sig = SIGKILL;
636 					ext = (p->p_flag & SEXTKILLED) != 0;
637 				}
638 				lwp->lwp_cursig = (uchar_t)sig;
639 				lwp->lwp_extsig = (uchar_t)ext;
640 				break;
641 			}
642 			/*
643 			 * The signal is being ignored or it caused a
644 			 * job-control stop.  If another current signal
645 			 * has not been established, return the current
646 			 * siginfo, if any, to the memory manager.
647 			 */
648 			if (lwp->lwp_cursig == 0 && lwp->lwp_curinfo != NULL) {
649 				siginfofree(lwp->lwp_curinfo);
650 				lwp->lwp_curinfo = NULL;
651 			}
652 			/*
653 			 * Loop around again in case we were stopped
654 			 * on a job control signal and a /proc stop
655 			 * request was posted or another current signal
656 			 * was established while we were stopped.
657 			 */
658 			continue;
659 		}
660 
661 		if (p->p_stopsig && !lwp->lwp_nostop &&
662 		    curthread != p->p_agenttp) {
663 			/*
664 			 * Some lwp in the process has already stopped
665 			 * showing PR_JOBCONTROL.  This is a stop in
666 			 * sympathy with the other lwp, even if this
667 			 * lwp is blocking the stopping signal.
668 			 */
669 			stop(PR_JOBCONTROL, p->p_stopsig);
670 			continue;
671 		}
672 
673 		/*
674 		 * Loop on the pending signals until we find a
675 		 * non-held signal that is traced or not ignored.
676 		 * First check the signals pending for the lwp,
677 		 * then the signals pending for the process as a whole.
678 		 */
679 		for (;;) {
680 			k_sigset_t tsig;
681 
682 			tsig = t->t_sig;
683 			if ((sig = fsig(&tsig, t)) != 0) {
684 				if (sig == SIGCLD)
685 					sigcld_found = 1;
686 				toproc = 0;
687 				if (tracing(p, sig) ||
688 				    !sigismember(&p->p_ignore, sig)) {
689 					if (sigismember(&t->t_extsig, sig))
690 						ext = 1;
691 					break;
692 				}
693 				sigdelset(&t->t_sig, sig);
694 				sigdelset(&t->t_extsig, sig);
695 				sigdelq(p, t, sig);
696 			} else if ((sig = fsig(&p->p_sig, t)) != 0) {
697 				if (sig == SIGCLD)
698 					sigcld_found = 1;
699 				toproc = 1;
700 				if (tracing(p, sig) ||
701 				    !sigismember(&p->p_ignore, sig)) {
702 					if (sigismember(&p->p_extsig, sig))
703 						ext = 1;
704 					break;
705 				}
706 				sigdelset(&p->p_sig, sig);
707 				sigdelset(&p->p_extsig, sig);
708 				sigdelq(p, NULL, sig);
709 			} else {
710 				/* no signal was found */
711 				break;
712 			}
713 		}
714 
715 		if (sig == 0) {	/* no signal was found */
716 			if (p->p_flag & (SEXITLWPS|SKILLED)) {
717 				lwp->lwp_cursig = SIGKILL;
718 				sig = SIGKILL;
719 				ext = (p->p_flag & SEXTKILLED) != 0;
720 			}
721 			break;
722 		}
723 
724 		/*
725 		 * If we have been informed not to stop (i.e., we are being
726 		 * called from within a network operation), then don't promote
727 		 * the signal at this time, just return the signal number.
728 		 * We will call issig() again later when it is safe.
729 		 *
730 		 * fsig() does not return a jobcontrol stopping signal
731 		 * with a default action of stopping the process if
732 		 * lwp_nostop is set, so we won't be causing a bogus
733 		 * EINTR by this action.  (Such a signal is eaten by
734 		 * isjobstop() when we loop around to do final checks.)
735 		 */
736 		if (lwp->lwp_nostop) {
737 			nostop_break = 1;
738 			break;
739 		}
740 
741 		/*
742 		 * Promote the signal from pending to current.
743 		 *
744 		 * Note that sigdeq() will set lwp->lwp_curinfo to NULL
745 		 * if no siginfo_t exists for this signal.
746 		 */
747 		lwp->lwp_cursig = (uchar_t)sig;
748 		lwp->lwp_extsig = (uchar_t)ext;
749 		t->t_sig_check = 1;	/* so post_syscall will see signal */
750 		ASSERT(lwp->lwp_curinfo == NULL);
751 		sigdeq(p, toproc ? NULL : t, sig, &lwp->lwp_curinfo);
752 
753 		if (tracing(p, sig))
754 			stop(PR_SIGNALLED, sig);
755 
756 		/*
757 		 * Loop around to check for requested stop before
758 		 * performing the usual current-signal actions.
759 		 */
760 	}
761 
762 	mutex_exit(&p->p_lock);
763 
764 	/*
765 	 * If SIGCLD was dequeued, search for other pending SIGCLD's.
766 	 * Don't do it if we are returning SIGCLD and the signal
767 	 * handler will be reset by psig(); this enables reliable
768 	 * delivery of SIGCLD even when using the old, broken
769 	 * signal() interface for setting the signal handler.
770 	 */
771 	if (sigcld_found &&
772 	    (sig != SIGCLD || !sigismember(&PTOU(curproc)->u_sigresethand,
773 	    SIGCLD)))
774 		sigcld_repost();
775 
776 	if (sig != 0)
777 		(void) undo_watch_step(NULL);
778 
779 	/*
780 	 * If we have been blocked since the p_lock was dropped off
781 	 * above, then this promoted signal might have been handled
782 	 * already when we were on the way back from sleep queue, so
783 	 * just ignore it.
784 	 * If we have been informed not to stop, just return the signal
785 	 * number. Also see comments above.
786 	 */
787 	if (!nostop_break) {
788 		sig = lwp->lwp_cursig;
789 	}
790 
791 	return (sig != 0);
792 }
793 
794 /*
795  * Return true if the process is currently stopped showing PR_JOBCONTROL.
796  * This is true only if all of the process's lwp's are so stopped.
797  * If this is asked by one of the lwps in the process, exclude that lwp.
798  */
799 int
800 jobstopped(proc_t *p)
801 {
802 	kthread_t *t;
803 
804 	ASSERT(MUTEX_HELD(&p->p_lock));
805 
806 	if ((t = p->p_tlist) == NULL)
807 		return (0);
808 
809 	do {
810 		thread_lock(t);
811 		/* ignore current, zombie and suspended lwps in the test */
812 		if (!(t == curthread || t->t_state == TS_ZOMB ||
813 		    SUSPENDED(t)) &&
814 		    (t->t_state != TS_STOPPED ||
815 		    t->t_whystop != PR_JOBCONTROL)) {
816 			thread_unlock(t);
817 			return (0);
818 		}
819 		thread_unlock(t);
820 	} while ((t = t->t_forw) != p->p_tlist);
821 
822 	return (1);
823 }
824 
825 /*
826  * Put ourself (curthread) into the stopped state and notify tracers.
827  */
828 void
829 stop(int why, int what)
830 {
831 	kthread_t	*t = curthread;
832 	proc_t		*p = ttoproc(t);
833 	klwp_t		*lwp = ttolwp(t);
834 	kthread_t	*tx;
835 	lwpent_t	*lep;
836 	int		procstop;
837 	int		flags = TS_ALLSTART;
838 	hrtime_t	stoptime;
839 
840 	/*
841 	 * Can't stop a system process.
842 	 */
843 	if (p == NULL || lwp == NULL || (p->p_flag & SSYS) || p->p_as == &kas)
844 		return;
845 
846 	ASSERT(MUTEX_HELD(&p->p_lock));
847 
848 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
849 		/*
850 		 * Don't stop an lwp with SIGKILL pending.
851 		 * Don't stop if the process or lwp is exiting.
852 		 */
853 		if (lwp->lwp_cursig == SIGKILL ||
854 		    sigismember(&t->t_sig, SIGKILL) ||
855 		    sigismember(&p->p_sig, SIGKILL) ||
856 		    (t->t_proc_flag & TP_LWPEXIT) ||
857 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
858 			p->p_stopsig = 0;
859 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
860 			return;
861 		}
862 	}
863 
864 	/*
865 	 * Make sure we don't deadlock on a recursive call to prstop().
866 	 * prstop() sets the lwp_nostop_r flag and increments lwp_nostop.
867 	 */
868 	if (lwp->lwp_nostop_r ||
869 	    (lwp->lwp_nostop &&
870 	    (why != PR_SUSPENDED || what != SUSPEND_NORMAL)))
871 		return;
872 
873 	/*
874 	 * Make sure the lwp is in an orderly state for inspection
875 	 * by a debugger through /proc or for dumping via core().
876 	 */
877 	schedctl_finish_sigblock(t);
878 	t->t_proc_flag |= TP_STOPPING;	/* must set before dropping p_lock */
879 	mutex_exit(&p->p_lock);
880 	stoptime = gethrtime();
881 	prstop(why, what);
882 	(void) undo_watch_step(NULL);
883 	mutex_enter(&p->p_lock);
884 	ASSERT(t->t_state == TS_ONPROC);
885 
886 	switch (why) {
887 	case PR_CHECKPOINT:
888 		/*
889 		 * The situation may have changed since we dropped
890 		 * and reacquired p->p_lock. Double-check now
891 		 * whether we should stop or not.
892 		 */
893 		if (!(t->t_proc_flag & TP_CHKPT)) {
894 			t->t_proc_flag &= ~TP_STOPPING;
895 			return;
896 		}
897 		t->t_proc_flag &= ~TP_CHKPT;
898 		flags &= ~TS_RESUME;
899 		break;
900 
901 	case PR_JOBCONTROL:
902 		ASSERT(what == SIGSTOP || what == SIGTSTP ||
903 			what == SIGTTIN || what == SIGTTOU);
904 		flags &= ~TS_XSTART;
905 		break;
906 
907 	case PR_SUSPENDED:
908 		ASSERT(what == SUSPEND_NORMAL || what == SUSPEND_PAUSE);
909 		/*
910 		 * The situation may have changed since we dropped
911 		 * and reacquired p->p_lock.  Double-check now
912 		 * whether we should stop or not.
913 		 */
914 		if (what == SUSPEND_PAUSE) {
915 			if (!(t->t_proc_flag & TP_PAUSE)) {
916 				t->t_proc_flag &= ~TP_STOPPING;
917 				return;
918 			}
919 			flags &= ~TS_UNPAUSE;
920 		} else {
921 			if (!((t->t_proc_flag & TP_HOLDLWP) ||
922 			    (p->p_flag & (SHOLDFORK|SHOLDFORK1|SHOLDWATCH)))) {
923 				t->t_proc_flag &= ~TP_STOPPING;
924 				return;
925 			}
926 			/*
927 			 * If SHOLDFORK is in effect and we are stopping
928 			 * while asleep (not at the top of the stack),
929 			 * we return now to allow the hold to take effect
930 			 * when we reach the top of the kernel stack.
931 			 */
932 			if (lwp->lwp_asleep && (p->p_flag & SHOLDFORK)) {
933 				t->t_proc_flag &= ~TP_STOPPING;
934 				return;
935 			}
936 			flags &= ~TS_CSTART;
937 		}
938 		break;
939 
940 	default:	/* /proc stop */
941 		flags &= ~TS_PSTART;
942 		/*
943 		 * Do synchronous stop unless the async-stop flag is set.
944 		 * If why is PR_REQUESTED and t->t_dtrace_stop flag is set,
945 		 * then no debugger is present and we also do synchronous stop.
946 		 */
947 		if ((why != PR_REQUESTED || t->t_dtrace_stop) &&
948 		    !(p->p_proc_flag & P_PR_ASYNC)) {
949 			int notify;
950 
951 			for (tx = t->t_forw; tx != t; tx = tx->t_forw) {
952 				notify = 0;
953 				thread_lock(tx);
954 				if (ISTOPPED(tx) ||
955 				    (tx->t_proc_flag & TP_PRSTOP)) {
956 					thread_unlock(tx);
957 					continue;
958 				}
959 				tx->t_proc_flag |= TP_PRSTOP;
960 				tx->t_sig_check = 1;
961 				if (tx->t_state == TS_SLEEP &&
962 				    (tx->t_flag & T_WAKEABLE)) {
963 					/*
964 					 * Don't actually wake it up if it's
965 					 * in one of the lwp_*() syscalls.
966 					 * Mark it virtually stopped and
967 					 * notify /proc waiters (below).
968 					 */
969 					if (tx->t_wchan0 == NULL)
970 						setrun_locked(tx);
971 					else {
972 						tx->t_proc_flag |= TP_PRVSTOP;
973 						tx->t_stoptime = stoptime;
974 						notify = 1;
975 					}
976 				}
977 				/*
978 				 * force the thread into the kernel
979 				 * if it is not already there.
980 				 */
981 				if (tx->t_state == TS_ONPROC &&
982 				    tx->t_cpu != CPU)
983 					poke_cpu(tx->t_cpu->cpu_id);
984 				thread_unlock(tx);
985 				lep = p->p_lwpdir[tx->t_dslot].ld_entry;
986 				if (notify && lep->le_trace)
987 					prnotify(lep->le_trace);
988 			}
989 			/*
990 			 * We do this just in case one of the threads we asked
991 			 * to stop is in holdlwps() (called from cfork()) or
992 			 * lwp_suspend().
993 			 */
994 			cv_broadcast(&p->p_holdlwps);
995 		}
996 		break;
997 	}
998 
999 	t->t_stoptime = stoptime;
1000 
1001 	if (why == PR_JOBCONTROL || (why == PR_SUSPENDED && p->p_stopsig)) {
1002 		/*
1003 		 * Determine if the whole process is jobstopped.
1004 		 */
1005 		if (jobstopped(p)) {
1006 			sigqueue_t *sqp;
1007 			int sig;
1008 
1009 			if ((sig = p->p_stopsig) == 0)
1010 				p->p_stopsig = (uchar_t)(sig = what);
1011 			mutex_exit(&p->p_lock);
1012 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1013 			mutex_enter(&pidlock);
1014 			/*
1015 			 * The last lwp to stop notifies the parent.
1016 			 * Turn off the CLDCONT flag now so the first
1017 			 * lwp to continue knows what to do.
1018 			 */
1019 			p->p_pidflag &= ~CLDCONT;
1020 			p->p_wcode = CLD_STOPPED;
1021 			p->p_wdata = sig;
1022 			sigcld(p, sqp);
1023 			/*
1024 			 * Grab p->p_lock before releasing pidlock so the
1025 			 * parent and the child don't have a race condition.
1026 			 */
1027 			mutex_enter(&p->p_lock);
1028 			mutex_exit(&pidlock);
1029 			p->p_stopsig = 0;
1030 		} else if (why == PR_JOBCONTROL && p->p_stopsig == 0) {
1031 			/*
1032 			 * Set p->p_stopsig and wake up sleeping lwps
1033 			 * so they will stop in sympathy with this lwp.
1034 			 */
1035 			p->p_stopsig = (uchar_t)what;
1036 			pokelwps(p);
1037 			/*
1038 			 * We do this just in case one of the threads we asked
1039 			 * to stop is in holdlwps() (called from cfork()) or
1040 			 * lwp_suspend().
1041 			 */
1042 			cv_broadcast(&p->p_holdlwps);
1043 		}
1044 	}
1045 
1046 	if (why != PR_JOBCONTROL && why != PR_CHECKPOINT) {
1047 		/*
1048 		 * Do process-level notification when all lwps are
1049 		 * either stopped on events of interest to /proc
1050 		 * or are stopped showing PR_SUSPENDED or are zombies.
1051 		 */
1052 		procstop = 1;
1053 		for (tx = t->t_forw; procstop && tx != t; tx = tx->t_forw) {
1054 			if (VSTOPPED(tx))
1055 				continue;
1056 			thread_lock(tx);
1057 			switch (tx->t_state) {
1058 			case TS_ZOMB:
1059 				break;
1060 			case TS_STOPPED:
1061 				/* neither ISTOPPED nor SUSPENDED? */
1062 				if ((tx->t_schedflag &
1063 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART)) ==
1064 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART))
1065 					procstop = 0;
1066 				break;
1067 			case TS_SLEEP:
1068 				/* not paused for watchpoints? */
1069 				if (!(tx->t_flag & T_WAKEABLE) ||
1070 				    tx->t_wchan0 == NULL ||
1071 				    !(tx->t_proc_flag & TP_PAUSE))
1072 					procstop = 0;
1073 				break;
1074 			default:
1075 				procstop = 0;
1076 				break;
1077 			}
1078 			thread_unlock(tx);
1079 		}
1080 		if (procstop) {
1081 			/* there must not be any remapped watched pages now */
1082 			ASSERT(p->p_mapcnt == 0);
1083 			if (p->p_proc_flag & P_PR_PTRACE) {
1084 				/* ptrace() compatibility */
1085 				mutex_exit(&p->p_lock);
1086 				mutex_enter(&pidlock);
1087 				p->p_wcode = CLD_TRAPPED;
1088 				p->p_wdata = (why == PR_SIGNALLED)?
1089 				    what : SIGTRAP;
1090 				cv_broadcast(&p->p_parent->p_cv);
1091 				/*
1092 				 * Grab p->p_lock before releasing pidlock so
1093 				 * parent and child don't have a race condition.
1094 				 */
1095 				mutex_enter(&p->p_lock);
1096 				mutex_exit(&pidlock);
1097 			}
1098 			if (p->p_trace)			/* /proc */
1099 				prnotify(p->p_trace);
1100 			cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */
1101 			cv_broadcast(&p->p_holdlwps);	/* holdwatch() */
1102 		}
1103 		if (why != PR_SUSPENDED) {
1104 			lep = p->p_lwpdir[t->t_dslot].ld_entry;
1105 			if (lep->le_trace)		/* /proc */
1106 				prnotify(lep->le_trace);
1107 			/*
1108 			 * Special notification for creation of the agent lwp.
1109 			 */
1110 			if (t == p->p_agenttp &&
1111 			    (t->t_proc_flag & TP_PRSTOP) &&
1112 			    p->p_trace)
1113 				prnotify(p->p_trace);
1114 			/*
1115 			 * The situation may have changed since we dropped
1116 			 * and reacquired p->p_lock. Double-check now
1117 			 * whether we should stop or not.
1118 			 */
1119 			if (!(t->t_proc_flag & TP_STOPPING)) {
1120 				if (t->t_proc_flag & TP_PRSTOP)
1121 					t->t_proc_flag |= TP_STOPPING;
1122 			}
1123 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
1124 			prnostep(lwp);
1125 		}
1126 	}
1127 
1128 	if (why == PR_SUSPENDED) {
1129 
1130 		/*
1131 		 * We always broadcast in the case of SUSPEND_PAUSE.  This is
1132 		 * because checks for TP_PAUSE take precedence over checks for
1133 		 * SHOLDWATCH.  If a thread is trying to stop because of
1134 		 * SUSPEND_PAUSE and tries to do a holdwatch(), it will be
1135 		 * waiting for the rest of the threads to enter a stopped state.
1136 		 * If we are stopping for a SUSPEND_PAUSE, we may be the last
1137 		 * lwp and not know it, so broadcast just in case.
1138 		 */
1139 		if (what == SUSPEND_PAUSE ||
1140 		    --p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP))
1141 			cv_broadcast(&p->p_holdlwps);
1142 
1143 	}
1144 
1145 	/*
1146 	 * Need to do this here (rather than after the thread is officially
1147 	 * stopped) because we can't call mutex_enter from a stopped thread.
1148 	 */
1149 	if (why == PR_CHECKPOINT)
1150 		del_one_utstop();
1151 
1152 	thread_lock(t);
1153 	ASSERT((t->t_schedflag & TS_ALLSTART) == 0);
1154 	t->t_schedflag |= flags;
1155 	t->t_whystop = (short)why;
1156 	t->t_whatstop = (short)what;
1157 	CL_STOP(t, why, what);
1158 	(void) new_mstate(t, LMS_STOPPED);
1159 	thread_stop(t);			/* set stop state and drop lock */
1160 
1161 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
1162 		/*
1163 		 * We may have gotten a SIGKILL or a SIGCONT when
1164 		 * we released p->p_lock; make one last check.
1165 		 * Also check for a /proc run-on-last-close.
1166 		 */
1167 		if (sigismember(&t->t_sig, SIGKILL) ||
1168 		    sigismember(&p->p_sig, SIGKILL) ||
1169 		    (t->t_proc_flag & TP_LWPEXIT) ||
1170 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
1171 			p->p_stopsig = 0;
1172 			thread_lock(t);
1173 			t->t_schedflag |= TS_XSTART | TS_PSTART;
1174 			setrun_locked(t);
1175 			thread_unlock_nopreempt(t);
1176 		} else if (why == PR_JOBCONTROL) {
1177 			if (p->p_flag & SSCONT) {
1178 				/*
1179 				 * This resulted from a SIGCONT posted
1180 				 * while we were not holding p->p_lock.
1181 				 */
1182 				p->p_stopsig = 0;
1183 				thread_lock(t);
1184 				t->t_schedflag |= TS_XSTART;
1185 				setrun_locked(t);
1186 				thread_unlock_nopreempt(t);
1187 			}
1188 		} else if (!(t->t_proc_flag & TP_STOPPING)) {
1189 			/*
1190 			 * This resulted from a /proc run-on-last-close.
1191 			 */
1192 			thread_lock(t);
1193 			t->t_schedflag |= TS_PSTART;
1194 			setrun_locked(t);
1195 			thread_unlock_nopreempt(t);
1196 		}
1197 	}
1198 
1199 	t->t_proc_flag &= ~TP_STOPPING;
1200 	mutex_exit(&p->p_lock);
1201 
1202 	swtch();
1203 	setallwatch();	/* reestablish any watchpoints set while stopped */
1204 	mutex_enter(&p->p_lock);
1205 	prbarrier(p);	/* barrier against /proc locking */
1206 }
1207 
1208 /* Interface for resetting user thread stop count. */
1209 void
1210 utstop_init(void)
1211 {
1212 	mutex_enter(&thread_stop_lock);
1213 	num_utstop = 0;
1214 	mutex_exit(&thread_stop_lock);
1215 }
1216 
1217 /* Interface for registering a user thread stop request. */
1218 void
1219 add_one_utstop(void)
1220 {
1221 	mutex_enter(&thread_stop_lock);
1222 	num_utstop++;
1223 	mutex_exit(&thread_stop_lock);
1224 }
1225 
1226 /* Interface for cancelling a user thread stop request */
1227 void
1228 del_one_utstop(void)
1229 {
1230 	mutex_enter(&thread_stop_lock);
1231 	num_utstop--;
1232 	if (num_utstop == 0)
1233 		cv_broadcast(&utstop_cv);
1234 	mutex_exit(&thread_stop_lock);
1235 }
1236 
1237 /* Interface to wait for all user threads to be stopped */
1238 void
1239 utstop_timedwait(clock_t ticks)
1240 {
1241 	mutex_enter(&thread_stop_lock);
1242 	if (num_utstop > 0)
1243 		(void) cv_timedwait(&utstop_cv, &thread_stop_lock,
1244 		    ticks + lbolt);
1245 	mutex_exit(&thread_stop_lock);
1246 }
1247 
1248 /*
1249  * Perform the action specified by the current signal.
1250  * The usual sequence is:
1251  * 	if (issig())
1252  * 		psig();
1253  * The signal bit has already been cleared by issig(),
1254  * the current signal number has been stored in lwp_cursig,
1255  * and the current siginfo is now referenced by lwp_curinfo.
1256  */
1257 void
1258 psig(void)
1259 {
1260 	kthread_t *t = curthread;
1261 	proc_t *p = ttoproc(t);
1262 	klwp_t *lwp = ttolwp(t);
1263 	void (*func)();
1264 	int sig, rc, code, ext;
1265 	pid_t pid = -1;
1266 	id_t ctid = 0;
1267 	zoneid_t zoneid = -1;
1268 	sigqueue_t *sqp = NULL;
1269 
1270 	mutex_enter(&p->p_lock);
1271 	schedctl_finish_sigblock(t);
1272 	code = CLD_KILLED;
1273 
1274 	if (p->p_flag & SEXITLWPS) {
1275 		lwp_exit();
1276 		return;			/* not reached */
1277 	}
1278 	sig = lwp->lwp_cursig;
1279 	ext = lwp->lwp_extsig;
1280 
1281 	ASSERT(sig < NSIG);
1282 
1283 	/*
1284 	 * Re-check lwp_cursig after we acquire p_lock.  Since p_lock was
1285 	 * dropped between issig() and psig(), a debugger may have cleared
1286 	 * lwp_cursig via /proc in the intervening window.
1287 	 */
1288 	if (sig == 0) {
1289 		if (lwp->lwp_curinfo) {
1290 			siginfofree(lwp->lwp_curinfo);
1291 			lwp->lwp_curinfo = NULL;
1292 		}
1293 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1294 			t->t_flag &= ~T_TOMASK;
1295 			t->t_hold = lwp->lwp_sigoldmask;
1296 		}
1297 		mutex_exit(&p->p_lock);
1298 		return;
1299 	}
1300 	func = PTOU(curproc)->u_signal[sig-1];
1301 
1302 	/*
1303 	 * The signal disposition could have changed since we promoted
1304 	 * this signal from pending to current (we dropped p->p_lock).
1305 	 * This can happen only in a multi-threaded process.
1306 	 */
1307 	if (sigismember(&p->p_ignore, sig) ||
1308 	    (func == SIG_DFL && sigismember(&stopdefault, sig))) {
1309 		lwp->lwp_cursig = 0;
1310 		lwp->lwp_extsig = 0;
1311 		if (lwp->lwp_curinfo) {
1312 			siginfofree(lwp->lwp_curinfo);
1313 			lwp->lwp_curinfo = NULL;
1314 		}
1315 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1316 			t->t_flag &= ~T_TOMASK;
1317 			t->t_hold = lwp->lwp_sigoldmask;
1318 		}
1319 		mutex_exit(&p->p_lock);
1320 		return;
1321 	}
1322 
1323 	/*
1324 	 * We check lwp_curinfo first since pr_setsig can actually
1325 	 * stuff a sigqueue_t there for SIGKILL.
1326 	 */
1327 	if (lwp->lwp_curinfo) {
1328 		sqp = lwp->lwp_curinfo;
1329 	} else if (sig == SIGKILL && p->p_killsqp) {
1330 		sqp = p->p_killsqp;
1331 	}
1332 
1333 	if (sqp != NULL) {
1334 		if (SI_FROMUSER(&sqp->sq_info)) {
1335 			pid = sqp->sq_info.si_pid;
1336 			ctid = sqp->sq_info.si_ctid;
1337 			zoneid = sqp->sq_info.si_zoneid;
1338 		}
1339 		/*
1340 		 * If we have a sigqueue_t, its sq_external value
1341 		 * trumps the lwp_extsig value.  It is theoretically
1342 		 * possible to make lwp_extsig reflect reality, but it
1343 		 * would unnecessarily complicate things elsewhere.
1344 		 */
1345 		ext = sqp->sq_external;
1346 	}
1347 
1348 	if (func == SIG_DFL) {
1349 		mutex_exit(&p->p_lock);
1350 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1351 		    NULL, void (*)(void), func);
1352 	} else {
1353 		k_siginfo_t *sip = NULL;
1354 
1355 		/*
1356 		 * If DTrace user-land tracing is active, give DTrace a
1357 		 * chance to defer the signal until after tracing is
1358 		 * complete.
1359 		 */
1360 		if (t->t_dtrace_on && dtrace_safe_defer_signal()) {
1361 			mutex_exit(&p->p_lock);
1362 			return;
1363 		}
1364 
1365 		/*
1366 		 * save siginfo pointer here, in case the
1367 		 * the signal's reset bit is on
1368 		 *
1369 		 * The presence of a current signal prevents paging
1370 		 * from succeeding over a network.  We copy the current
1371 		 * signal information to the side and cancel the current
1372 		 * signal so that sendsig() will succeed.
1373 		 */
1374 		if (sigismember(&p->p_siginfo, sig)) {
1375 			if (sqp) {
1376 				bcopy(&sqp->sq_info, &lwp->lwp_siginfo,
1377 				    sizeof (k_siginfo_t));
1378 				sip = &lwp->lwp_siginfo;
1379 			} else if (sig == SIGPROF &&
1380 			    t->t_rprof != NULL &&
1381 			    t->t_rprof->rp_anystate &&
1382 			    lwp->lwp_siginfo.si_signo == SIGPROF) {
1383 				sip = &lwp->lwp_siginfo;
1384 			}
1385 		}
1386 
1387 		if (t->t_flag & T_TOMASK)
1388 			t->t_flag &= ~T_TOMASK;
1389 		else
1390 			lwp->lwp_sigoldmask = t->t_hold;
1391 		sigorset(&t->t_hold, &PTOU(curproc)->u_sigmask[sig-1]);
1392 		if (!sigismember(&PTOU(curproc)->u_signodefer, sig))
1393 			sigaddset(&t->t_hold, sig);
1394 		if (sigismember(&PTOU(curproc)->u_sigresethand, sig))
1395 			setsigact(sig, SIG_DFL, nullsmask, 0);
1396 
1397 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1398 		    sip, void (*)(void), func);
1399 
1400 		lwp->lwp_cursig = 0;
1401 		lwp->lwp_extsig = 0;
1402 		if (lwp->lwp_curinfo) {
1403 			/* p->p_killsqp is freed by freeproc */
1404 			siginfofree(lwp->lwp_curinfo);
1405 			lwp->lwp_curinfo = NULL;
1406 		}
1407 		mutex_exit(&p->p_lock);
1408 		lwp->lwp_ru.nsignals++;
1409 
1410 		if (p->p_model == DATAMODEL_NATIVE)
1411 			rc = sendsig(sig, sip, func);
1412 #ifdef _SYSCALL32_IMPL
1413 		else
1414 			rc = sendsig32(sig, sip, func);
1415 #endif	/* _SYSCALL32_IMPL */
1416 		if (rc)
1417 			return;
1418 		sig = lwp->lwp_cursig = SIGSEGV;
1419 		ext = 0;	/* lwp_extsig was set above */
1420 		pid = -1;
1421 		ctid = 0;
1422 	}
1423 
1424 	if (sigismember(&coredefault, sig)) {
1425 		/*
1426 		 * Terminate all LWPs but don't discard them.
1427 		 * If another lwp beat us to the punch by calling exit(),
1428 		 * evaporate now.
1429 		 */
1430 		proc_is_exiting(p);
1431 		if (exitlwps(1) != 0) {
1432 			mutex_enter(&p->p_lock);
1433 			lwp_exit();
1434 		}
1435 		/* if we got a SIGKILL from anywhere, no core dump */
1436 		if (p->p_flag & SKILLED) {
1437 			sig = SIGKILL;
1438 			ext = (p->p_flag & SEXTKILLED) != 0;
1439 		} else {
1440 #ifdef C2_AUDIT
1441 			if (audit_active)		/* audit core dump */
1442 				audit_core_start(sig);
1443 #endif
1444 			if (core(sig, ext) == 0)
1445 				code = CLD_DUMPED;
1446 #ifdef C2_AUDIT
1447 			if (audit_active)		/* audit core dump */
1448 				audit_core_finish(code);
1449 #endif
1450 		}
1451 	}
1452 	if (ext)
1453 		contract_process_sig(p->p_ct_process, p, sig, pid, ctid,
1454 		    zoneid);
1455 
1456 	exit(code, sig);
1457 }
1458 
1459 /*
1460  * Find next unheld signal in ssp for thread t.
1461  */
1462 int
1463 fsig(k_sigset_t *ssp, kthread_t *t)
1464 {
1465 	proc_t *p = ttoproc(t);
1466 	user_t *up = PTOU(p);
1467 	int i;
1468 	k_sigset_t temp;
1469 
1470 	ASSERT(MUTEX_HELD(&p->p_lock));
1471 
1472 	/*
1473 	 * Don't promote any signals for the parent of a vfork()d
1474 	 * child that hasn't yet released the parent's memory.
1475 	 */
1476 	if (p->p_flag & SVFWAIT)
1477 		return (0);
1478 
1479 	temp = *ssp;
1480 	sigdiffset(&temp, &t->t_hold);
1481 
1482 	/*
1483 	 * Don't promote stopping signals (except SIGSTOP) for a child
1484 	 * of vfork() that hasn't yet released the parent's memory.
1485 	 */
1486 	if (p->p_flag & SVFORK)
1487 		sigdiffset(&temp, &holdvfork);
1488 
1489 	/*
1490 	 * Don't promote a signal that will stop
1491 	 * the process when lwp_nostop is set.
1492 	 */
1493 	if (ttolwp(t)->lwp_nostop) {
1494 		sigdelset(&temp, SIGSTOP);
1495 		if (!p->p_pgidp->pid_pgorphaned) {
1496 			if (up->u_signal[SIGTSTP-1] == SIG_DFL)
1497 				sigdelset(&temp, SIGTSTP);
1498 			if (up->u_signal[SIGTTIN-1] == SIG_DFL)
1499 				sigdelset(&temp, SIGTTIN);
1500 			if (up->u_signal[SIGTTOU-1] == SIG_DFL)
1501 				sigdelset(&temp, SIGTTOU);
1502 		}
1503 	}
1504 
1505 	/*
1506 	 * Choose SIGKILL and SIGPROF before all other pending signals.
1507 	 * The rest are promoted in signal number order.
1508 	 */
1509 	if (sigismember(&temp, SIGKILL))
1510 		return (SIGKILL);
1511 	if (sigismember(&temp, SIGPROF))
1512 		return (SIGPROF);
1513 
1514 	for (i = 0; i < sizeof (temp) / sizeof (temp.__sigbits[0]); i++) {
1515 		if (temp.__sigbits[i])
1516 			return ((i * NBBY * sizeof (temp.__sigbits[0])) +
1517 			    lowbit(temp.__sigbits[i]));
1518 	}
1519 
1520 	return (0);
1521 }
1522 
1523 void
1524 setsigact(int sig, void (*disp)(), k_sigset_t mask, int flags)
1525 {
1526 	proc_t *p = ttoproc(curthread);
1527 	kthread_t *t;
1528 
1529 	ASSERT(MUTEX_HELD(&p->p_lock));
1530 
1531 	PTOU(curproc)->u_signal[sig - 1] = disp;
1532 
1533 	/*
1534 	 * Honor the SA_SIGINFO flag if the signal is being caught.
1535 	 * Force the SA_SIGINFO flag if the signal is not being caught.
1536 	 * This is necessary to make sigqueue() and sigwaitinfo() work
1537 	 * properly together when the signal is set to default or is
1538 	 * being temporarily ignored.
1539 	 */
1540 	if ((flags & SA_SIGINFO) || disp == SIG_DFL || disp == SIG_IGN)
1541 		sigaddset(&p->p_siginfo, sig);
1542 	else
1543 		sigdelset(&p->p_siginfo, sig);
1544 
1545 	if (disp != SIG_DFL && disp != SIG_IGN) {
1546 		sigdelset(&p->p_ignore, sig);
1547 		PTOU(curproc)->u_sigmask[sig - 1] = mask;
1548 		if (!sigismember(&cantreset, sig)) {
1549 			if (flags & SA_RESETHAND)
1550 				sigaddset(&PTOU(curproc)->u_sigresethand, sig);
1551 			else
1552 				sigdelset(&PTOU(curproc)->u_sigresethand, sig);
1553 		}
1554 		if (flags & SA_NODEFER)
1555 			sigaddset(&PTOU(curproc)->u_signodefer, sig);
1556 		else
1557 			sigdelset(&PTOU(curproc)->u_signodefer, sig);
1558 		if (flags & SA_RESTART)
1559 			sigaddset(&PTOU(curproc)->u_sigrestart, sig);
1560 		else
1561 			sigdelset(&PTOU(curproc)->u_sigrestart, sig);
1562 		if (flags & SA_ONSTACK)
1563 			sigaddset(&PTOU(curproc)->u_sigonstack, sig);
1564 		else
1565 			sigdelset(&PTOU(curproc)->u_sigonstack, sig);
1566 
1567 	} else if (disp == SIG_IGN ||
1568 	    (disp == SIG_DFL && sigismember(&ignoredefault, sig))) {
1569 		/*
1570 		 * Setting the signal action to SIG_IGN results in the
1571 		 * discarding of all pending signals of that signal number.
1572 		 * Setting the signal action to SIG_DFL does the same *only*
1573 		 * if the signal's default behavior is to be ignored.
1574 		 */
1575 		sigaddset(&p->p_ignore, sig);
1576 		sigdelset(&p->p_sig, sig);
1577 		sigdelset(&p->p_extsig, sig);
1578 		sigdelq(p, NULL, sig);
1579 		t = p->p_tlist;
1580 		do {
1581 			sigdelset(&t->t_sig, sig);
1582 			sigdelset(&t->t_extsig, sig);
1583 			sigdelq(p, t, sig);
1584 		} while ((t = t->t_forw) != p->p_tlist);
1585 
1586 	} else {
1587 		/*
1588 		 * The signal action is being set to SIG_DFL and the default
1589 		 * behavior is to do something: make sure it is not ignored.
1590 		 */
1591 		sigdelset(&p->p_ignore, sig);
1592 	}
1593 
1594 	if (sig == SIGCLD) {
1595 		if (flags & SA_NOCLDWAIT)
1596 			p->p_flag |= SNOWAIT;
1597 		else
1598 			p->p_flag &= ~SNOWAIT;
1599 
1600 		if (flags & SA_NOCLDSTOP)
1601 			p->p_flag &= ~SJCTL;
1602 		else
1603 			p->p_flag |= SJCTL;
1604 
1605 		if ((p->p_flag & SNOWAIT) || disp == SIG_IGN) {
1606 			proc_t *cp, *tp;
1607 
1608 			mutex_exit(&p->p_lock);
1609 			mutex_enter(&pidlock);
1610 			for (cp = p->p_child; cp != NULL; cp = tp) {
1611 				tp = cp->p_sibling;
1612 				if (cp->p_stat == SZOMB &&
1613 				    !(cp->p_pidflag & CLDWAITPID))
1614 					freeproc(cp);
1615 			}
1616 			mutex_exit(&pidlock);
1617 			mutex_enter(&p->p_lock);
1618 		}
1619 	}
1620 }
1621 
1622 /*
1623  * Set all signal actions not already set to SIG_DFL or SIG_IGN to SIG_DFL.
1624  * Called from exec_common() for a process undergoing execve()
1625  * and from cfork() for a newly-created child of vfork().
1626  * In the vfork() case, 'p' is not the current process.
1627  * In both cases, there is only one thread in the process.
1628  */
1629 void
1630 sigdefault(proc_t *p)
1631 {
1632 	kthread_t *t = p->p_tlist;
1633 	struct user *up = PTOU(p);
1634 	int sig;
1635 
1636 	ASSERT(MUTEX_HELD(&p->p_lock));
1637 
1638 	for (sig = 1; sig < NSIG; sig++) {
1639 		if (up->u_signal[sig - 1] != SIG_DFL &&
1640 		    up->u_signal[sig - 1] != SIG_IGN) {
1641 			up->u_signal[sig - 1] = SIG_DFL;
1642 			sigemptyset(&up->u_sigmask[sig - 1]);
1643 			if (sigismember(&ignoredefault, sig)) {
1644 				sigdelq(p, NULL, sig);
1645 				sigdelq(p, t, sig);
1646 			}
1647 			if (sig == SIGCLD)
1648 				p->p_flag &= ~(SNOWAIT|SJCTL);
1649 		}
1650 	}
1651 	sigorset(&p->p_ignore, &ignoredefault);
1652 	sigfillset(&p->p_siginfo);
1653 	sigdiffset(&p->p_siginfo, &cantmask);
1654 	sigdiffset(&p->p_sig, &ignoredefault);
1655 	sigdiffset(&p->p_extsig, &ignoredefault);
1656 	sigdiffset(&t->t_sig, &ignoredefault);
1657 	sigdiffset(&t->t_extsig, &ignoredefault);
1658 }
1659 
1660 void
1661 sigcld(proc_t *cp, sigqueue_t *sqp)
1662 {
1663 	proc_t *pp = cp->p_parent;
1664 
1665 	ASSERT(MUTEX_HELD(&pidlock));
1666 
1667 	switch (cp->p_wcode) {
1668 	case CLD_EXITED:
1669 	case CLD_DUMPED:
1670 	case CLD_KILLED:
1671 		ASSERT(cp->p_stat == SZOMB);
1672 		/*
1673 		 * The broadcast on p_srwchan_cv is a kludge to
1674 		 * wakeup a possible thread in uadmin(A_SHUTDOWN).
1675 		 */
1676 		cv_broadcast(&cp->p_srwchan_cv);
1677 
1678 		/*
1679 		 * Add to newstate list of the parent
1680 		 */
1681 		add_ns(pp, cp);
1682 
1683 		cv_broadcast(&pp->p_cv);
1684 		if ((pp->p_flag & SNOWAIT) ||
1685 		    PTOU(pp)->u_signal[SIGCLD - 1] == SIG_IGN) {
1686 			if (!(cp->p_pidflag & CLDWAITPID))
1687 				freeproc(cp);
1688 		} else if (!(cp->p_pidflag & CLDNOSIGCHLD)) {
1689 			post_sigcld(cp, sqp);
1690 			sqp = NULL;
1691 		}
1692 		break;
1693 
1694 	case CLD_STOPPED:
1695 	case CLD_CONTINUED:
1696 		cv_broadcast(&pp->p_cv);
1697 		if (pp->p_flag & SJCTL) {
1698 			post_sigcld(cp, sqp);
1699 			sqp = NULL;
1700 		}
1701 		break;
1702 	}
1703 
1704 	if (sqp)
1705 		siginfofree(sqp);
1706 }
1707 
1708 /*
1709  * Common code called from sigcld() and issig_forreal()
1710  * Give the parent process a SIGCLD if it does not have one pending,
1711  * else mark the child process so a SIGCLD can be posted later.
1712  */
1713 static void
1714 post_sigcld(proc_t *cp, sigqueue_t *sqp)
1715 {
1716 	proc_t *pp = cp->p_parent;
1717 	void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1];
1718 	k_siginfo_t info;
1719 
1720 	ASSERT(MUTEX_HELD(&pidlock));
1721 	mutex_enter(&pp->p_lock);
1722 
1723 	/*
1724 	 * If a SIGCLD is pending, or if SIGCLD is not now being caught,
1725 	 * then just mark the child process so that its SIGCLD will
1726 	 * be posted later, when the first SIGCLD is taken off the
1727 	 * queue or when the parent is ready to receive it, if ever.
1728 	 */
1729 	if (handler == SIG_DFL || handler == SIG_IGN ||
1730 	    sigismember(&pp->p_sig, SIGCLD))
1731 		cp->p_pidflag |= CLDPEND;
1732 	else {
1733 		cp->p_pidflag &= ~CLDPEND;
1734 		if (sqp == NULL) {
1735 			/*
1736 			 * This can only happen when the parent is init.
1737 			 * (See call to sigcld(q, NULL) in exit().)
1738 			 * Use KM_NOSLEEP to avoid deadlock.
1739 			 */
1740 			ASSERT(pp == proc_init);
1741 			winfo(cp, &info, 0);
1742 			sigaddq(pp, NULL, &info, KM_NOSLEEP);
1743 		} else {
1744 			winfo(cp, &sqp->sq_info, 0);
1745 			sigaddqa(pp, NULL, sqp);
1746 			sqp = NULL;
1747 		}
1748 	}
1749 
1750 	mutex_exit(&pp->p_lock);
1751 
1752 	if (sqp)
1753 		siginfofree(sqp);
1754 }
1755 
1756 /*
1757  * Search for a child that has a pending SIGCLD for us, the parent.
1758  * The queue of SIGCLD signals is implied by the list of children.
1759  * We post the SIGCLD signals one at a time so they don't get lost.
1760  * When one is dequeued, another is enqueued, until there are no more.
1761  */
1762 void
1763 sigcld_repost()
1764 {
1765 	proc_t *pp = curproc;
1766 	proc_t *cp;
1767 	void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1];
1768 	sigqueue_t *sqp;
1769 
1770 	/*
1771 	 * Don't bother if SIGCLD is not now being caught.
1772 	 */
1773 	if (handler == SIG_DFL || handler == SIG_IGN)
1774 		return;
1775 
1776 	sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1777 	mutex_enter(&pidlock);
1778 	for (cp = pp->p_child; cp; cp = cp->p_sibling) {
1779 		if (cp->p_pidflag & CLDPEND) {
1780 			post_sigcld(cp, sqp);
1781 			mutex_exit(&pidlock);
1782 			return;
1783 		}
1784 	}
1785 	mutex_exit(&pidlock);
1786 	kmem_free(sqp, sizeof (sigqueue_t));
1787 }
1788 
1789 /*
1790  * count number of sigqueue send by sigaddqa()
1791  */
1792 void
1793 sigqsend(int cmd, proc_t *p, kthread_t *t, sigqueue_t *sigqp)
1794 {
1795 	sigqhdr_t *sqh;
1796 
1797 	sqh = (sigqhdr_t *)sigqp->sq_backptr;
1798 	ASSERT(sqh);
1799 
1800 	mutex_enter(&sqh->sqb_lock);
1801 	sqh->sqb_sent++;
1802 	mutex_exit(&sqh->sqb_lock);
1803 
1804 	if (cmd == SN_SEND)
1805 		sigaddqa(p, t, sigqp);
1806 	else
1807 		siginfofree(sigqp);
1808 }
1809 
1810 int
1811 sigsendproc(proc_t *p, sigsend_t *pv)
1812 {
1813 	struct cred *cr;
1814 	proc_t *myprocp = curproc;
1815 
1816 	ASSERT(MUTEX_HELD(&pidlock));
1817 
1818 	if (p->p_pid == 1 && pv->sig && sigismember(&cantmask, pv->sig))
1819 		return (EPERM);
1820 
1821 	cr = CRED();
1822 
1823 	if (pv->checkperm == 0 ||
1824 	    (pv->sig == SIGCONT && p->p_sessp == myprocp->p_sessp) ||
1825 	    prochasprocperm(p, myprocp, cr)) {
1826 		pv->perm++;
1827 		if (pv->sig) {
1828 			/* Make sure we should be setting si_pid and friends */
1829 			ASSERT(pv->sicode <= 0);
1830 			if (SI_CANQUEUE(pv->sicode)) {
1831 				sigqueue_t *sqp;
1832 
1833 				mutex_enter(&myprocp->p_lock);
1834 				sqp = sigqalloc(myprocp->p_sigqhdr);
1835 				mutex_exit(&myprocp->p_lock);
1836 				if (sqp == NULL)
1837 					return (EAGAIN);
1838 				sqp->sq_info.si_signo = pv->sig;
1839 				sqp->sq_info.si_code = pv->sicode;
1840 				sqp->sq_info.si_pid = myprocp->p_pid;
1841 				sqp->sq_info.si_ctid = PRCTID(myprocp);
1842 				sqp->sq_info.si_zoneid = getzoneid();
1843 				sqp->sq_info.si_uid = crgetruid(cr);
1844 				sqp->sq_info.si_value = pv->value;
1845 				mutex_enter(&p->p_lock);
1846 				sigqsend(SN_SEND, p, NULL, sqp);
1847 				mutex_exit(&p->p_lock);
1848 			} else {
1849 				k_siginfo_t info;
1850 				bzero(&info, sizeof (info));
1851 				info.si_signo = pv->sig;
1852 				info.si_code = pv->sicode;
1853 				info.si_pid = myprocp->p_pid;
1854 				info.si_ctid = PRCTID(myprocp);
1855 				info.si_zoneid = getzoneid();
1856 				info.si_uid = crgetruid(cr);
1857 				mutex_enter(&p->p_lock);
1858 				/*
1859 				 * XXX: Should be KM_SLEEP but
1860 				 * we have to avoid deadlock.
1861 				 */
1862 				sigaddq(p, NULL, &info, KM_NOSLEEP);
1863 				mutex_exit(&p->p_lock);
1864 			}
1865 		}
1866 	}
1867 
1868 	return (0);
1869 }
1870 
1871 int
1872 sigsendset(procset_t *psp, sigsend_t *pv)
1873 {
1874 	int error;
1875 
1876 	error = dotoprocs(psp, sigsendproc, (char *)pv);
1877 	if (error == 0 && pv->perm == 0)
1878 		return (EPERM);
1879 
1880 	return (error);
1881 }
1882 
1883 /*
1884  * Dequeue a queued siginfo structure.
1885  * If a non-null thread pointer is passed then dequeue from
1886  * the thread queue, otherwise dequeue from the process queue.
1887  */
1888 void
1889 sigdeq(proc_t *p, kthread_t *t, int sig, sigqueue_t **qpp)
1890 {
1891 	sigqueue_t **psqp, *sqp;
1892 
1893 	ASSERT(MUTEX_HELD(&p->p_lock));
1894 
1895 	*qpp = NULL;
1896 
1897 	if (t != NULL) {
1898 		sigdelset(&t->t_sig, sig);
1899 		sigdelset(&t->t_extsig, sig);
1900 		psqp = &t->t_sigqueue;
1901 	} else {
1902 		sigdelset(&p->p_sig, sig);
1903 		sigdelset(&p->p_extsig, sig);
1904 		psqp = &p->p_sigqueue;
1905 	}
1906 
1907 	for (;;) {
1908 		if ((sqp = *psqp) == NULL)
1909 			return;
1910 		if (sqp->sq_info.si_signo == sig)
1911 			break;
1912 		else
1913 			psqp = &sqp->sq_next;
1914 	}
1915 	*qpp = sqp;
1916 	*psqp = sqp->sq_next;
1917 	for (sqp = *psqp; sqp; sqp = sqp->sq_next) {
1918 		if (sqp->sq_info.si_signo == sig) {
1919 			if (t != (kthread_t *)NULL) {
1920 				sigaddset(&t->t_sig, sig);
1921 				t->t_sig_check = 1;
1922 			} else {
1923 				sigaddset(&p->p_sig, sig);
1924 				set_proc_ast(p);
1925 			}
1926 			break;
1927 		}
1928 	}
1929 }
1930 
1931 /*
1932  * Delete a queued SIGCLD siginfo structure matching the k_siginfo_t argument.
1933  */
1934 void
1935 sigcld_delete(k_siginfo_t *ip)
1936 {
1937 	proc_t *p = curproc;
1938 	int another_sigcld = 0;
1939 	sigqueue_t **psqp, *sqp;
1940 
1941 	ASSERT(ip->si_signo == SIGCLD);
1942 
1943 	mutex_enter(&p->p_lock);
1944 
1945 	if (!sigismember(&p->p_sig, SIGCLD)) {
1946 		mutex_exit(&p->p_lock);
1947 		return;
1948 	}
1949 
1950 	psqp = &p->p_sigqueue;
1951 	for (;;) {
1952 		if ((sqp = *psqp) == NULL) {
1953 			mutex_exit(&p->p_lock);
1954 			return;
1955 		}
1956 		if (sqp->sq_info.si_signo == SIGCLD) {
1957 			if (sqp->sq_info.si_pid == ip->si_pid &&
1958 			    sqp->sq_info.si_code == ip->si_code &&
1959 			    sqp->sq_info.si_status == ip->si_status)
1960 				break;
1961 			another_sigcld = 1;
1962 		}
1963 		psqp = &sqp->sq_next;
1964 	}
1965 	*psqp = sqp->sq_next;
1966 
1967 	siginfofree(sqp);
1968 
1969 	for (sqp = *psqp; !another_sigcld && sqp; sqp = sqp->sq_next) {
1970 		if (sqp->sq_info.si_signo == SIGCLD)
1971 			another_sigcld = 1;
1972 	}
1973 
1974 	if (!another_sigcld) {
1975 		sigdelset(&p->p_sig, SIGCLD);
1976 		sigdelset(&p->p_extsig, SIGCLD);
1977 	}
1978 
1979 	mutex_exit(&p->p_lock);
1980 }
1981 
1982 /*
1983  * Delete queued siginfo structures.
1984  * If a non-null thread pointer is passed then delete from
1985  * the thread queue, otherwise delete from the process queue.
1986  */
1987 void
1988 sigdelq(proc_t *p, kthread_t *t, int sig)
1989 {
1990 	sigqueue_t **psqp, *sqp;
1991 
1992 	/*
1993 	 * We must be holding p->p_lock unless the process is
1994 	 * being reaped or has failed to get started on fork.
1995 	 */
1996 	ASSERT(MUTEX_HELD(&p->p_lock) ||
1997 	    p->p_stat == SIDL || p->p_stat == SZOMB);
1998 
1999 	if (t != (kthread_t *)NULL)
2000 		psqp = &t->t_sigqueue;
2001 	else
2002 		psqp = &p->p_sigqueue;
2003 
2004 	while (*psqp) {
2005 		sqp = *psqp;
2006 		if (sig == 0 || sqp->sq_info.si_signo == sig) {
2007 			*psqp = sqp->sq_next;
2008 			siginfofree(sqp);
2009 		} else
2010 			psqp = &sqp->sq_next;
2011 	}
2012 }
2013 
2014 /*
2015  * Insert a siginfo structure into a queue.
2016  * If a non-null thread pointer is passed then add to the thread queue,
2017  * otherwise add to the process queue.
2018  *
2019  * The function sigaddqins() is called with sigqueue already allocated.
2020  * It is called from sigaddqa() and sigaddq() below.
2021  *
2022  * The value of si_code implicitly indicates whether sigp is to be
2023  * explicitly queued, or to be queued to depth one.
2024  */
2025 static void
2026 sigaddqins(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2027 {
2028 	sigqueue_t **psqp;
2029 	int sig = sigqp->sq_info.si_signo;
2030 
2031 	sigqp->sq_external = (curproc != &p0) &&
2032 	    (curproc->p_ct_process != p->p_ct_process);
2033 
2034 	/*
2035 	 * issig_forreal() doesn't bother dequeueing signals if SKILLED
2036 	 * is set, and even if it did, we would want to avoid situation
2037 	 * (which would be unique to SIGKILL) where one thread dequeued
2038 	 * the sigqueue_t and another executed psig().  So we create a
2039 	 * separate stash for SIGKILL's sigqueue_t.  Because a second
2040 	 * SIGKILL can set SEXTKILLED, we overwrite the existing entry
2041 	 * if (and only if) it was non-extracontractual.
2042 	 */
2043 	if (sig == SIGKILL) {
2044 		if (p->p_killsqp == NULL || !p->p_killsqp->sq_external) {
2045 			if (p->p_killsqp != NULL)
2046 				siginfofree(p->p_killsqp);
2047 			p->p_killsqp = sigqp;
2048 			sigqp->sq_next = NULL;
2049 		} else {
2050 			siginfofree(sigqp);
2051 		}
2052 		return;
2053 	}
2054 
2055 	ASSERT(sig >= 1 && sig < NSIG);
2056 	if (t != NULL)	/* directed to a thread */
2057 		psqp = &t->t_sigqueue;
2058 	else 		/* directed to a process */
2059 		psqp = &p->p_sigqueue;
2060 	if (SI_CANQUEUE(sigqp->sq_info.si_code) &&
2061 	    sigismember(&p->p_siginfo, sig)) {
2062 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next)
2063 				;
2064 	} else {
2065 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next) {
2066 			if ((*psqp)->sq_info.si_signo == sig) {
2067 				siginfofree(sigqp);
2068 				return;
2069 			}
2070 		}
2071 	}
2072 	*psqp = sigqp;
2073 	sigqp->sq_next = NULL;
2074 }
2075 
2076 /*
2077  * The function sigaddqa() is called with sigqueue already allocated.
2078  * If signal is ignored, discard but guarantee KILL and generation semantics.
2079  * It is called from sigqueue() and other places.
2080  */
2081 void
2082 sigaddqa(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2083 {
2084 	int sig = sigqp->sq_info.si_signo;
2085 
2086 	ASSERT(MUTEX_HELD(&p->p_lock));
2087 	ASSERT(sig >= 1 && sig < NSIG);
2088 
2089 	if (sig_discardable(p, sig))
2090 		siginfofree(sigqp);
2091 	else
2092 		sigaddqins(p, t, sigqp);
2093 
2094 	sigtoproc(p, t, sig);
2095 }
2096 
2097 /*
2098  * Allocate the sigqueue_t structure and call sigaddqins().
2099  */
2100 void
2101 sigaddq(proc_t *p, kthread_t *t, k_siginfo_t *infop, int km_flags)
2102 {
2103 	sigqueue_t *sqp;
2104 	int sig = infop->si_signo;
2105 
2106 	ASSERT(MUTEX_HELD(&p->p_lock));
2107 	ASSERT(sig >= 1 && sig < NSIG);
2108 
2109 	/*
2110 	 * If the signal will be discarded by sigtoproc() or
2111 	 * if the process isn't requesting siginfo and it isn't
2112 	 * blocking the signal (it *could* change it's mind while
2113 	 * the signal is pending) then don't bother creating one.
2114 	 */
2115 	if (!sig_discardable(p, sig) &&
2116 	    (sigismember(&p->p_siginfo, sig) ||
2117 	    (curproc->p_ct_process != p->p_ct_process) ||
2118 	    (sig == SIGCLD && SI_FROMKERNEL(infop))) &&
2119 	    ((sqp = kmem_alloc(sizeof (sigqueue_t), km_flags)) != NULL)) {
2120 		bcopy(infop, &sqp->sq_info, sizeof (k_siginfo_t));
2121 		sqp->sq_func = NULL;
2122 		sqp->sq_next = NULL;
2123 		sigaddqins(p, t, sqp);
2124 	}
2125 	sigtoproc(p, t, sig);
2126 }
2127 
2128 /*
2129  * Handle stop-on-fault processing for the debugger.  Returns 0
2130  * if the fault is cleared during the stop, nonzero if it isn't.
2131  */
2132 int
2133 stop_on_fault(uint_t fault, k_siginfo_t *sip)
2134 {
2135 	proc_t *p = ttoproc(curthread);
2136 	klwp_t *lwp = ttolwp(curthread);
2137 
2138 	ASSERT(prismember(&p->p_fltmask, fault));
2139 
2140 	/*
2141 	 * Record current fault and siginfo structure so debugger can
2142 	 * find it.
2143 	 */
2144 	mutex_enter(&p->p_lock);
2145 	lwp->lwp_curflt = (uchar_t)fault;
2146 	lwp->lwp_siginfo = *sip;
2147 
2148 	stop(PR_FAULTED, fault);
2149 
2150 	fault = lwp->lwp_curflt;
2151 	lwp->lwp_curflt = 0;
2152 	mutex_exit(&p->p_lock);
2153 	return (fault);
2154 }
2155 
2156 void
2157 sigorset(k_sigset_t *s1, k_sigset_t *s2)
2158 {
2159 	s1->__sigbits[0] |= s2->__sigbits[0];
2160 	s1->__sigbits[1] |= s2->__sigbits[1];
2161 }
2162 
2163 void
2164 sigandset(k_sigset_t *s1, k_sigset_t *s2)
2165 {
2166 	s1->__sigbits[0] &= s2->__sigbits[0];
2167 	s1->__sigbits[1] &= s2->__sigbits[1];
2168 }
2169 
2170 void
2171 sigdiffset(k_sigset_t *s1, k_sigset_t *s2)
2172 {
2173 	s1->__sigbits[0] &= ~(s2->__sigbits[0]);
2174 	s1->__sigbits[1] &= ~(s2->__sigbits[1]);
2175 }
2176 
2177 /*
2178  * Return non-zero if curthread->t_sig_check should be set to 1, that is,
2179  * if there are any signals the thread might take on return from the kernel.
2180  * If ksigset_t's were a single word, we would do:
2181  *	return (((p->p_sig | t->t_sig) & ~t->t_hold) & fillset);
2182  */
2183 int
2184 sigcheck(proc_t *p, kthread_t *t)
2185 {
2186 	sc_shared_t *tdp = t->t_schedctl;
2187 
2188 	/*
2189 	 * If signals are blocked via the schedctl interface
2190 	 * then we only check for the unmaskable signals.
2191 	 */
2192 	if (tdp != NULL && tdp->sc_sigblock)
2193 		return ((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2194 		    CANTMASK0);
2195 
2196 	return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2197 		    ~t->t_hold.__sigbits[0]) |
2198 		(((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) &
2199 		    ~t->t_hold.__sigbits[1]) & FILLSET1));
2200 }
2201 
2202 /* ONC_PLUS EXTRACT START */
2203 void
2204 sigintr(k_sigset_t *smask, int intable)
2205 {
2206 	proc_t *p;
2207 	int owned;
2208 	k_sigset_t lmask;		/* local copy of cantmask */
2209 	klwp_t *lwp = ttolwp(curthread);
2210 
2211 	/*
2212 	 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
2213 	 *    and SIGTERM. (Preserving the existing masks).
2214 	 *    This function supports the -intr nfs and ufs mount option.
2215 	 */
2216 
2217 	/*
2218 	 * don't do kernel threads
2219 	 */
2220 	if (lwp == NULL)
2221 		return;
2222 
2223 	/*
2224 	 * get access to signal mask
2225 	 */
2226 	p = ttoproc(curthread);
2227 	owned = mutex_owned(&p->p_lock);	/* this is filthy */
2228 	if (!owned)
2229 		mutex_enter(&p->p_lock);
2230 
2231 	/*
2232 	 * remember the current mask
2233 	 */
2234 	schedctl_finish_sigblock(curthread);
2235 	*smask = curthread->t_hold;
2236 
2237 	/*
2238 	 * mask out all signals
2239 	 */
2240 	sigfillset(&curthread->t_hold);
2241 
2242 	/*
2243 	 * Unmask the non-maskable signals (e.g., KILL), as long as
2244 	 * they aren't already masked (which could happen at exit).
2245 	 * The first sigdiffset sets lmask to (cantmask & ~curhold).  The
2246 	 * second sets the current hold mask to (~0 & ~lmask), which reduces
2247 	 * to (~cantmask | curhold).
2248 	 */
2249 	lmask = cantmask;
2250 	sigdiffset(&lmask, smask);
2251 	sigdiffset(&curthread->t_hold, &lmask);
2252 
2253 	/*
2254 	 * Re-enable HUP, QUIT, and TERM iff they were originally enabled
2255 	 * Re-enable INT if it's originally enabled and the NFS mount option
2256 	 * nointr is not set.
2257 	 */
2258 	if (!sigismember(smask, SIGHUP))
2259 		sigdelset(&curthread->t_hold, SIGHUP);
2260 	if (!sigismember(smask, SIGINT) && intable)
2261 		sigdelset(&curthread->t_hold, SIGINT);
2262 	if (!sigismember(smask, SIGQUIT))
2263 		sigdelset(&curthread->t_hold, SIGQUIT);
2264 	if (!sigismember(smask, SIGTERM))
2265 		sigdelset(&curthread->t_hold, SIGTERM);
2266 
2267 	/*
2268 	 * release access to signal mask
2269 	 */
2270 	if (!owned)
2271 		mutex_exit(&p->p_lock);
2272 
2273 	/*
2274 	 * Indicate that this lwp is not to be stopped.
2275 	 */
2276 	lwp->lwp_nostop++;
2277 
2278 }
2279 /* ONC_PLUS EXTRACT END */
2280 
2281 void
2282 sigunintr(k_sigset_t *smask)
2283 {
2284 	proc_t *p;
2285 	int owned;
2286 	klwp_t *lwp = ttolwp(curthread);
2287 
2288 	/*
2289 	 * Reset previous mask (See sigintr() above)
2290 	 */
2291 	if (lwp != NULL) {
2292 		lwp->lwp_nostop--;	/* restore lwp stoppability */
2293 		p = ttoproc(curthread);
2294 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2295 		if (!owned)
2296 			mutex_enter(&p->p_lock);
2297 		curthread->t_hold = *smask;
2298 		/* so unmasked signals will be seen */
2299 		curthread->t_sig_check = 1;
2300 		if (!owned)
2301 			mutex_exit(&p->p_lock);
2302 	}
2303 }
2304 
2305 void
2306 sigreplace(k_sigset_t *newmask, k_sigset_t *oldmask)
2307 {
2308 	proc_t	*p;
2309 	int owned;
2310 	/*
2311 	 * Save current signal mask in oldmask, then
2312 	 * set it to newmask.
2313 	 */
2314 	if (ttolwp(curthread) != NULL) {
2315 		p = ttoproc(curthread);
2316 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2317 		if (!owned)
2318 			mutex_enter(&p->p_lock);
2319 		schedctl_finish_sigblock(curthread);
2320 		if (oldmask != NULL)
2321 			*oldmask = curthread->t_hold;
2322 		curthread->t_hold = *newmask;
2323 		curthread->t_sig_check = 1;
2324 		if (!owned)
2325 			mutex_exit(&p->p_lock);
2326 	}
2327 }
2328 
2329 /*
2330  * Return true if the signal number is in range
2331  * and the signal code specifies signal queueing.
2332  */
2333 int
2334 sigwillqueue(int sig, int code)
2335 {
2336 	if (sig >= 0 && sig < NSIG) {
2337 		switch (code) {
2338 		case SI_QUEUE:
2339 		case SI_TIMER:
2340 		case SI_ASYNCIO:
2341 		case SI_MESGQ:
2342 			return (1);
2343 		}
2344 	}
2345 	return (0);
2346 }
2347 
2348 #ifndef	UCHAR_MAX
2349 #define	UCHAR_MAX	255
2350 #endif
2351 
2352 /*
2353  * The entire pool (with maxcount entries) is pre-allocated at
2354  * the first sigqueue/signotify call.
2355  */
2356 sigqhdr_t *
2357 sigqhdralloc(size_t size, uint_t maxcount)
2358 {
2359 	size_t i;
2360 	sigqueue_t *sq, *next;
2361 	sigqhdr_t *sqh;
2362 
2363 	i = (maxcount * size) + sizeof (sigqhdr_t);
2364 	ASSERT(maxcount <= UCHAR_MAX && i <= USHRT_MAX);
2365 	sqh = kmem_alloc(i, KM_SLEEP);
2366 	sqh->sqb_count = (uchar_t)maxcount;
2367 	sqh->sqb_maxcount = (uchar_t)maxcount;
2368 	sqh->sqb_size = (ushort_t)i;
2369 	sqh->sqb_pexited = 0;
2370 	sqh->sqb_sent = 0;
2371 	sqh->sqb_free = sq = (sigqueue_t *)(sqh + 1);
2372 	for (i = maxcount - 1; i != 0; i--) {
2373 		next = (sigqueue_t *)((uintptr_t)sq + size);
2374 		sq->sq_next = next;
2375 		sq = next;
2376 	}
2377 	sq->sq_next = NULL;
2378 	cv_init(&sqh->sqb_cv, NULL, CV_DEFAULT, NULL);
2379 	mutex_init(&sqh->sqb_lock, NULL, MUTEX_DEFAULT, NULL);
2380 	return (sqh);
2381 }
2382 
2383 static void sigqrel(sigqueue_t *);
2384 
2385 /*
2386  * allocate a sigqueue/signotify structure from the per process
2387  * pre-allocated pool.
2388  */
2389 sigqueue_t *
2390 sigqalloc(sigqhdr_t *sqh)
2391 {
2392 	sigqueue_t *sq = NULL;
2393 
2394 	ASSERT(MUTEX_HELD(&curproc->p_lock));
2395 
2396 	if (sqh != NULL) {
2397 		mutex_enter(&sqh->sqb_lock);
2398 		if (sqh->sqb_count > 0) {
2399 			sqh->sqb_count--;
2400 			sq = sqh->sqb_free;
2401 			sqh->sqb_free = sq->sq_next;
2402 			mutex_exit(&sqh->sqb_lock);
2403 			bzero(&sq->sq_info, sizeof (k_siginfo_t));
2404 			sq->sq_backptr = sqh;
2405 			sq->sq_func = sigqrel;
2406 			sq->sq_next = NULL;
2407 			sq->sq_external = 0;
2408 		} else {
2409 			mutex_exit(&sqh->sqb_lock);
2410 		}
2411 	}
2412 	return (sq);
2413 }
2414 
2415 /*
2416  * Return a sigqueue structure back to the pre-allocated pool.
2417  */
2418 static void
2419 sigqrel(sigqueue_t *sq)
2420 {
2421 	sigqhdr_t *sqh;
2422 
2423 	/* make sure that p_lock of the affected process is held */
2424 
2425 	sqh = (sigqhdr_t *)sq->sq_backptr;
2426 	mutex_enter(&sqh->sqb_lock);
2427 	if (sqh->sqb_pexited && sqh->sqb_sent == 1) {
2428 		mutex_exit(&sqh->sqb_lock);
2429 		cv_destroy(&sqh->sqb_cv);
2430 		mutex_destroy(&sqh->sqb_lock);
2431 		kmem_free(sqh, sqh->sqb_size);
2432 	} else {
2433 		sqh->sqb_count++;
2434 		sqh->sqb_sent--;
2435 		sq->sq_next = sqh->sqb_free;
2436 		sq->sq_backptr = NULL;
2437 		sqh->sqb_free = sq;
2438 		cv_signal(&sqh->sqb_cv);
2439 		mutex_exit(&sqh->sqb_lock);
2440 	}
2441 }
2442 
2443 /*
2444  * Free up the pre-allocated sigqueue headers of sigqueue pool
2445  * and signotify pool, if possible.
2446  * Called only by the owning process during exec() and exit().
2447  */
2448 void
2449 sigqfree(proc_t *p)
2450 {
2451 	ASSERT(MUTEX_HELD(&p->p_lock));
2452 
2453 	if (p->p_sigqhdr != NULL) {	/* sigqueue pool */
2454 		sigqhdrfree(p->p_sigqhdr);
2455 		p->p_sigqhdr = NULL;
2456 	}
2457 	if (p->p_signhdr != NULL) {	/* signotify pool */
2458 		sigqhdrfree(p->p_signhdr);
2459 		p->p_signhdr = NULL;
2460 	}
2461 }
2462 
2463 /*
2464  * Free up the pre-allocated header and sigq pool if possible.
2465  */
2466 void
2467 sigqhdrfree(sigqhdr_t *sqh)
2468 {
2469 	mutex_enter(&sqh->sqb_lock);
2470 	if (sqh->sqb_sent == 0) {
2471 		mutex_exit(&sqh->sqb_lock);
2472 		cv_destroy(&sqh->sqb_cv);
2473 		mutex_destroy(&sqh->sqb_lock);
2474 		kmem_free(sqh, sqh->sqb_size);
2475 	} else {
2476 		sqh->sqb_pexited = 1;
2477 		mutex_exit(&sqh->sqb_lock);
2478 	}
2479 }
2480 
2481 /*
2482  * Free up a single sigqueue structure.
2483  * No other code should free a sigqueue directly.
2484  */
2485 void
2486 siginfofree(sigqueue_t *sqp)
2487 {
2488 	if (sqp != NULL) {
2489 		if (sqp->sq_func != NULL)
2490 			(sqp->sq_func)(sqp);
2491 		else
2492 			kmem_free(sqp, sizeof (sigqueue_t));
2493 	}
2494 }
2495 
2496 /*
2497  * Generate a synchronous signal caused by a hardware
2498  * condition encountered by an lwp.  Called from trap().
2499  */
2500 void
2501 trapsig(k_siginfo_t *ip, int restartable)
2502 {
2503 	proc_t *p = ttoproc(curthread);
2504 	int sig = ip->si_signo;
2505 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
2506 
2507 	ASSERT(sig > 0 && sig < NSIG);
2508 
2509 	if (curthread->t_dtrace_on)
2510 		dtrace_safe_synchronous_signal();
2511 
2512 	mutex_enter(&p->p_lock);
2513 	schedctl_finish_sigblock(curthread);
2514 	/*
2515 	 * Avoid a possible infinite loop if the lwp is holding the
2516 	 * signal generated by a trap of a restartable instruction or
2517 	 * if the signal so generated is being ignored by the process.
2518 	 */
2519 	if (restartable &&
2520 	    (sigismember(&curthread->t_hold, sig) ||
2521 	    p->p_user.u_signal[sig-1] == SIG_IGN)) {
2522 		sigdelset(&curthread->t_hold, sig);
2523 		p->p_user.u_signal[sig-1] = SIG_DFL;
2524 		sigdelset(&p->p_ignore, sig);
2525 	}
2526 	bcopy(ip, &sqp->sq_info, sizeof (k_siginfo_t));
2527 	sigaddqa(p, curthread, sqp);
2528 	mutex_exit(&p->p_lock);
2529 }
2530 
2531 #ifdef _SYSCALL32_IMPL
2532 
2533 /*
2534  * It's tricky to transmit a sigval between 32-bit and 64-bit
2535  * process, since in the 64-bit world, a pointer and an integer
2536  * are different sizes.  Since we're constrained by the standards
2537  * world not to change the types, and it's unclear how useful it is
2538  * to send pointers between address spaces this way, we preserve
2539  * the 'int' interpretation for 32-bit processes interoperating
2540  * with 64-bit processes.  The full semantics (pointers or integers)
2541  * are available for N-bit processes interoperating with N-bit
2542  * processes.
2543  */
2544 void
2545 siginfo_kto32(const k_siginfo_t *src, siginfo32_t *dest)
2546 {
2547 	bzero(dest, sizeof (*dest));
2548 
2549 	/*
2550 	 * The absolute minimum content is si_signo and si_code.
2551 	 */
2552 	dest->si_signo = src->si_signo;
2553 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2554 		return;
2555 
2556 	/*
2557 	 * A siginfo generated by user level is structured
2558 	 * differently from one generated by the kernel.
2559 	 */
2560 	if (SI_FROMUSER(src)) {
2561 		dest->si_pid = src->si_pid;
2562 		dest->si_ctid = src->si_ctid;
2563 		dest->si_zoneid = src->si_zoneid;
2564 		dest->si_uid = src->si_uid;
2565 		if (SI_CANQUEUE(src->si_code))
2566 			dest->si_value.sival_int =
2567 				(int32_t)src->si_value.sival_int;
2568 		return;
2569 	}
2570 
2571 	dest->si_errno = src->si_errno;
2572 
2573 	switch (src->si_signo) {
2574 	default:
2575 		dest->si_pid = src->si_pid;
2576 		dest->si_ctid = src->si_ctid;
2577 		dest->si_zoneid = src->si_zoneid;
2578 		dest->si_uid = src->si_uid;
2579 		dest->si_value.sival_int = (int32_t)src->si_value.sival_int;
2580 		break;
2581 	case SIGCLD:
2582 		dest->si_pid = src->si_pid;
2583 		dest->si_ctid = src->si_ctid;
2584 		dest->si_zoneid = src->si_zoneid;
2585 		dest->si_status = src->si_status;
2586 		dest->si_stime = src->si_stime;
2587 		dest->si_utime = src->si_utime;
2588 		break;
2589 	case SIGSEGV:
2590 	case SIGBUS:
2591 	case SIGILL:
2592 	case SIGTRAP:
2593 	case SIGFPE:
2594 	case SIGEMT:
2595 		dest->si_addr = (caddr32_t)(uintptr_t)src->si_addr;
2596 		dest->si_trapno = src->si_trapno;
2597 		dest->si_pc = (caddr32_t)(uintptr_t)src->si_pc;
2598 		break;
2599 	case SIGPOLL:
2600 	case SIGXFSZ:
2601 		dest->si_fd = src->si_fd;
2602 		dest->si_band = src->si_band;
2603 		break;
2604 	case SIGPROF:
2605 		dest->si_faddr = (caddr32_t)(uintptr_t)src->si_faddr;
2606 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2607 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2608 		dest->si_syscall = src->si_syscall;
2609 		dest->si_nsysarg = src->si_nsysarg;
2610 		dest->si_fault = src->si_fault;
2611 		break;
2612 	}
2613 }
2614 
2615 void
2616 siginfo_32tok(const siginfo32_t *src, k_siginfo_t *dest)
2617 {
2618 	bzero(dest, sizeof (*dest));
2619 
2620 	/*
2621 	 * The absolute minimum content is si_signo and si_code.
2622 	 */
2623 	dest->si_signo = src->si_signo;
2624 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2625 		return;
2626 
2627 	/*
2628 	 * A siginfo generated by user level is structured
2629 	 * differently from one generated by the kernel.
2630 	 */
2631 	if (SI_FROMUSER(src)) {
2632 		dest->si_pid = src->si_pid;
2633 		dest->si_ctid = src->si_ctid;
2634 		dest->si_zoneid = src->si_zoneid;
2635 		dest->si_uid = src->si_uid;
2636 		if (SI_CANQUEUE(src->si_code))
2637 			dest->si_value.sival_int =
2638 				(int)src->si_value.sival_int;
2639 		return;
2640 	}
2641 
2642 	dest->si_errno = src->si_errno;
2643 
2644 	switch (src->si_signo) {
2645 	default:
2646 		dest->si_pid = src->si_pid;
2647 		dest->si_ctid = src->si_ctid;
2648 		dest->si_zoneid = src->si_zoneid;
2649 		dest->si_uid = src->si_uid;
2650 		dest->si_value.sival_int = (int)src->si_value.sival_int;
2651 		break;
2652 	case SIGCLD:
2653 		dest->si_pid = src->si_pid;
2654 		dest->si_ctid = src->si_ctid;
2655 		dest->si_zoneid = src->si_zoneid;
2656 		dest->si_status = src->si_status;
2657 		dest->si_stime = src->si_stime;
2658 		dest->si_utime = src->si_utime;
2659 		break;
2660 	case SIGSEGV:
2661 	case SIGBUS:
2662 	case SIGILL:
2663 	case SIGTRAP:
2664 	case SIGFPE:
2665 	case SIGEMT:
2666 		dest->si_addr = (void *)(uintptr_t)src->si_addr;
2667 		dest->si_trapno = src->si_trapno;
2668 		dest->si_pc = (void *)(uintptr_t)src->si_pc;
2669 		break;
2670 	case SIGPOLL:
2671 	case SIGXFSZ:
2672 		dest->si_fd = src->si_fd;
2673 		dest->si_band = src->si_band;
2674 		break;
2675 	case SIGPROF:
2676 		dest->si_faddr = (void *)(uintptr_t)src->si_faddr;
2677 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2678 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2679 		dest->si_syscall = src->si_syscall;
2680 		dest->si_nsysarg = src->si_nsysarg;
2681 		dest->si_fault = src->si_fault;
2682 		break;
2683 	}
2684 }
2685 
2686 #endif /* _SYSCALL32_IMPL */
2687