xref: /titanic_50/usr/src/uts/common/os/sig.c (revision 8eea8e29cc4374d1ee24c25a07f45af132db3499)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/bitmap.h>
36 #include <sys/sysmacros.h>
37 #include <sys/systm.h>
38 #include <sys/cred.h>
39 #include <sys/user.h>
40 #include <sys/errno.h>
41 #include <sys/proc.h>
42 #include <sys/poll_impl.h> /* only needed for kludge in sigwaiting_send() */
43 #include <sys/signal.h>
44 #include <sys/siginfo.h>
45 #include <sys/fault.h>
46 #include <sys/ucontext.h>
47 #include <sys/procfs.h>
48 #include <sys/wait.h>
49 #include <sys/class.h>
50 #include <sys/mman.h>
51 #include <sys/procset.h>
52 #include <sys/kmem.h>
53 #include <sys/cpuvar.h>
54 #include <sys/prsystm.h>
55 #include <sys/debug.h>
56 #include <vm/as.h>
57 #include <sys/bitmap.h>
58 #include <c2/audit.h>
59 #include <sys/core.h>
60 #include <sys/schedctl.h>
61 #include <sys/contract/process_impl.h>
62 #include <sys/dtrace.h>
63 #include <sys/sdt.h>
64 
65 				/* MUST be contiguous */
66 k_sigset_t nullsmask = {0, 0};
67 
68 k_sigset_t fillset = {FILLSET0, FILLSET1};
69 
70 k_sigset_t cantmask = {CANTMASK0, CANTMASK1};
71 
72 k_sigset_t cantreset = {(sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGPWR)), 0};
73 
74 k_sigset_t ignoredefault = {(sigmask(SIGCONT)|sigmask(SIGCLD)|sigmask(SIGPWR)
75 			|sigmask(SIGWINCH)|sigmask(SIGURG)|sigmask(SIGWAITING)),
76 			(sigmask(SIGLWP)|sigmask(SIGCANCEL)|sigmask(SIGFREEZE)
77 			|sigmask(SIGTHAW)|sigmask(SIGXRES)|sigmask(SIGJVM1)
78 			|sigmask(SIGJVM2))};
79 
80 k_sigset_t stopdefault = {(sigmask(SIGSTOP)|sigmask(SIGTSTP)
81 			|sigmask(SIGTTOU)|sigmask(SIGTTIN)), 0};
82 
83 k_sigset_t coredefault = {(sigmask(SIGQUIT)|sigmask(SIGILL)|sigmask(SIGTRAP)
84 			|sigmask(SIGIOT)|sigmask(SIGEMT)|sigmask(SIGFPE)
85 			|sigmask(SIGBUS)|sigmask(SIGSEGV)|sigmask(SIGSYS)
86 			|sigmask(SIGXCPU)|sigmask(SIGXFSZ)), 0};
87 
88 k_sigset_t holdvfork = {(sigmask(SIGTTOU)|sigmask(SIGTTIN)|sigmask(SIGTSTP)),
89 			0};
90 
91 static	int	isjobstop(int);
92 static	void	post_sigcld(proc_t *, sigqueue_t *);
93 
94 /*
95  * Internal variables for counting number of user thread stop requests posted.
96  * They may not be accurate at some special situation such as that a virtually
97  * stopped thread starts to run.
98  */
99 static int num_utstop;
100 /*
101  * Internal variables for broadcasting an event when all thread stop requests
102  * are processed.
103  */
104 static kcondvar_t utstop_cv;
105 
106 static kmutex_t thread_stop_lock;
107 void del_one_utstop(void);
108 
109 /*
110  * Send the specified signal to the specified process.
111  */
112 void
113 psignal(proc_t *p, int sig)
114 {
115 	mutex_enter(&p->p_lock);
116 	sigtoproc(p, NULL, sig);
117 	mutex_exit(&p->p_lock);
118 }
119 
120 /*
121  * Send the specified signal to the specified thread.
122  */
123 void
124 tsignal(kthread_t *t, int sig)
125 {
126 	proc_t *p = ttoproc(t);
127 
128 	mutex_enter(&p->p_lock);
129 	sigtoproc(p, t, sig);
130 	mutex_exit(&p->p_lock);
131 }
132 
133 int
134 signal_is_blocked(kthread_t *t, int sig)
135 {
136 	return (sigismember(&t->t_hold, sig) ||
137 	    (schedctl_sigblock(t) && !sigismember(&cantmask, sig)));
138 }
139 
140 /*
141  * Return true if the signal can safely be discarded on generation.
142  * That is, if there is no need for the signal on the receiving end.
143  * The answer is true if the process is a zombie or
144  * if all of these conditions are true:
145  *	the signal is being ignored
146  *	the process is single-threaded
147  *	the signal is not being traced by /proc
148  * 	the signal is not blocked by the process
149  */
150 static int
151 sig_discardable(proc_t *p, int sig)
152 {
153 	kthread_t *t = p->p_tlist;
154 
155 	return (t == NULL ||		/* if zombie or ... */
156 	    (sigismember(&p->p_ignore, sig) &&	/* signal is ignored */
157 	    t->t_forw == t &&			/* and single-threaded */
158 	    !tracing(p, sig) &&			/* and no /proc tracing */
159 	    !signal_is_blocked(t, sig)));	/* and signal not blocked */
160 }
161 
162 /*
163  * Return true if this thread is going to eat this signal soon.
164  */
165 int
166 eat_signal(kthread_t *t, int sig)
167 {
168 	int rval = 0;
169 	ASSERT(THREAD_LOCK_HELD(t));
170 
171 	/*
172 	 * Do not do anything if the target thread has the signal blocked.
173 	 */
174 	if (!signal_is_blocked(t, sig)) {
175 		t->t_sig_check = 1;	/* have thread do an issig */
176 		if (t->t_state == TS_SLEEP && (t->t_flag & T_WAKEABLE)) {
177 			setrun_locked(t);
178 			rval = 1;
179 		} else if (t->t_state == TS_STOPPED && sig == SIGKILL) {
180 			ttoproc(t)->p_stopsig = 0;
181 			t->t_dtrace_stop = 0;
182 			t->t_schedflag |= TS_XSTART | TS_PSTART;
183 			setrun_locked(t);
184 		} else if (t != curthread && t->t_state == TS_ONPROC) {
185 			if ((t != curthread) && (t->t_cpu != CPU))
186 				poke_cpu(t->t_cpu->cpu_id);
187 			rval = 1;
188 		} else if (t->t_state == TS_RUN) {
189 			rval = 1;
190 		}
191 	}
192 
193 	return (rval);
194 }
195 
196 /*
197  * Post a signal.
198  * If a non-null thread pointer is passed, then post the signal
199  * to the thread/lwp, otherwise post the signal to the process.
200  */
201 void
202 sigtoproc(proc_t *p, kthread_t *t, int sig)
203 {
204 	kthread_t *tt;
205 	int ext = !(curproc->p_flag & SSYS) &&
206 	    (curproc->p_ct_process != p->p_ct_process);
207 
208 	ASSERT(MUTEX_HELD(&p->p_lock));
209 
210 	if (sig <= 0 || sig >= NSIG)
211 		return;
212 
213 	/*
214 	 * Regardless of origin or directedness,
215 	 * SIGKILL kills all lwps in the process immediately
216 	 * and jobcontrol signals affect all lwps in the process.
217 	 */
218 	if (sig == SIGKILL) {
219 		p->p_flag |= SKILLED | (ext ? SEXTKILLED : 0);
220 		t = NULL;
221 	} else if (sig == SIGCONT) {
222 		/*
223 		 * The SSCONT flag will remain set until a stopping
224 		 * signal comes in (below).  This is harmless.
225 		 */
226 		p->p_flag |= SSCONT;
227 		sigdelq(p, NULL, SIGSTOP);
228 		sigdelq(p, NULL, SIGTSTP);
229 		sigdelq(p, NULL, SIGTTOU);
230 		sigdelq(p, NULL, SIGTTIN);
231 		sigdiffset(&p->p_sig, &stopdefault);
232 		sigdiffset(&p->p_extsig, &stopdefault);
233 		p->p_stopsig = 0;
234 		if ((tt = p->p_tlist) != NULL) {
235 			do {
236 				sigdelq(p, tt, SIGSTOP);
237 				sigdelq(p, tt, SIGTSTP);
238 				sigdelq(p, tt, SIGTTOU);
239 				sigdelq(p, tt, SIGTTIN);
240 				sigdiffset(&tt->t_sig, &stopdefault);
241 				sigdiffset(&tt->t_extsig, &stopdefault);
242 			} while ((tt = tt->t_forw) != p->p_tlist);
243 		}
244 		if ((tt = p->p_tlist) != NULL) {
245 			do {
246 				thread_lock(tt);
247 				if (tt->t_state == TS_STOPPED &&
248 				    tt->t_whystop == PR_JOBCONTROL) {
249 					tt->t_schedflag |= TS_XSTART;
250 					setrun_locked(tt);
251 				}
252 				thread_unlock(tt);
253 			} while ((tt = tt->t_forw) != p->p_tlist);
254 		}
255 	} else if (sigismember(&stopdefault, sig)) {
256 		/*
257 		 * This test has a race condition which we can't fix:
258 		 * By the time the stopping signal is received by
259 		 * the target process/thread, the signal handler
260 		 * and/or the detached state might have changed.
261 		 */
262 		if (PTOU(p)->u_signal[sig-1] == SIG_DFL &&
263 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned))
264 			p->p_flag &= ~SSCONT;
265 		sigdelq(p, NULL, SIGCONT);
266 		sigdelset(&p->p_sig, SIGCONT);
267 		sigdelset(&p->p_extsig, SIGCONT);
268 		if ((tt = p->p_tlist) != NULL) {
269 			do {
270 				sigdelq(p, tt, SIGCONT);
271 				sigdelset(&tt->t_sig, SIGCONT);
272 				sigdelset(&tt->t_extsig, SIGCONT);
273 			} while ((tt = tt->t_forw) != p->p_tlist);
274 		}
275 	}
276 
277 	if (sig_discardable(p, sig)) {
278 		DTRACE_PROC3(signal__discard, kthread_t *, p->p_tlist,
279 		    proc_t *, p, int, sig);
280 		return;
281 	}
282 
283 	if (t != NULL) {
284 		/*
285 		 * This is a directed signal, wake up the lwp.
286 		 */
287 		sigaddset(&t->t_sig, sig);
288 		if (ext)
289 			sigaddset(&t->t_extsig, sig);
290 		thread_lock(t);
291 		(void) eat_signal(t, sig);
292 		thread_unlock(t);
293 		DTRACE_PROC2(signal__send, kthread_t *, t, int, sig);
294 	} else if ((tt = p->p_tlist) != NULL) {
295 		/*
296 		 * Make sure that some lwp that already exists
297 		 * in the process fields the signal soon.
298 		 * Wake up an interruptibly sleeping lwp if necessary.
299 		 */
300 		int su = 0;
301 
302 		sigaddset(&p->p_sig, sig);
303 		if (ext)
304 			sigaddset(&p->p_extsig, sig);
305 		do {
306 			thread_lock(tt);
307 			if (eat_signal(tt, sig)) {
308 				thread_unlock(tt);
309 				break;
310 			}
311 			if (sig == SIGKILL && SUSPENDED(tt))
312 				su++;
313 			thread_unlock(tt);
314 		} while ((tt = tt->t_forw) != p->p_tlist);
315 		/*
316 		 * If the process is deadlocked, make somebody run and die.
317 		 */
318 		if (sig == SIGKILL && p->p_stat != SIDL &&
319 		    p->p_lwprcnt == 0 && p->p_lwpcnt == su) {
320 			thread_lock(tt);
321 			p->p_lwprcnt++;
322 			tt->t_schedflag |= TS_CSTART;
323 			setrun_locked(tt);
324 			thread_unlock(tt);
325 		}
326 
327 		DTRACE_PROC2(signal__send, kthread_t *, tt, int, sig);
328 	}
329 }
330 
331 static int
332 isjobstop(int sig)
333 {
334 	proc_t *p = ttoproc(curthread);
335 
336 	ASSERT(MUTEX_HELD(&p->p_lock));
337 
338 	if (u.u_signal[sig-1] == SIG_DFL && sigismember(&stopdefault, sig)) {
339 		/*
340 		 * If SIGCONT has been posted since we promoted this signal
341 		 * from pending to current, then don't do a jobcontrol stop.
342 		 */
343 		if (!(p->p_flag & SSCONT) &&
344 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned) &&
345 		    curthread != p->p_agenttp) {
346 			sigqueue_t *sqp;
347 
348 			stop(PR_JOBCONTROL, sig);
349 			mutex_exit(&p->p_lock);
350 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
351 			mutex_enter(&pidlock);
352 			/*
353 			 * Only the first lwp to continue notifies the parent.
354 			 */
355 			if (p->p_pidflag & CLDCONT)
356 				siginfofree(sqp);
357 			else {
358 				p->p_pidflag |= CLDCONT;
359 				p->p_wcode = CLD_CONTINUED;
360 				p->p_wdata = SIGCONT;
361 				sigcld(p, sqp);
362 			}
363 			mutex_exit(&pidlock);
364 			mutex_enter(&p->p_lock);
365 		}
366 		return (1);
367 	}
368 	return (0);
369 }
370 
371 /*
372  * Returns true if the current process has a signal to process, and
373  * the signal is not held.  The signal to process is put in p_cursig.
374  * This is asked at least once each time a process enters the system
375  * (though this can usually be done without actually calling issig by
376  * checking the pending signal masks).  A signal does not do anything
377  * directly to a process; it sets a flag that asks the process to do
378  * something to itself.
379  *
380  * The "why" argument indicates the allowable side-effects of the call:
381  *
382  * FORREAL:  Extract the next pending signal from p_sig into p_cursig;
383  * stop the process if a stop has been requested or if a traced signal
384  * is pending.
385  *
386  * JUSTLOOKING:  Don't stop the process, just indicate whether or not
387  * a signal might be pending (FORREAL is needed to tell for sure).
388  *
389  * XXX: Changes to the logic in these routines should be propagated
390  * to lm_sigispending().  See bug 1201594.
391  */
392 
393 static int issig_forreal(void);
394 static int issig_justlooking(void);
395 
396 int
397 issig(int why)
398 {
399 	ASSERT(why == FORREAL || why == JUSTLOOKING);
400 
401 	return ((why == FORREAL)? issig_forreal() : issig_justlooking());
402 }
403 
404 
405 static int
406 issig_justlooking(void)
407 {
408 	kthread_t *t = curthread;
409 	klwp_t *lwp = ttolwp(t);
410 	proc_t *p = ttoproc(t);
411 	k_sigset_t set;
412 
413 	/*
414 	 * This function answers the question:
415 	 * "Is there any reason to call issig_forreal()?"
416 	 *
417 	 * We have to answer the question w/o grabbing any locks
418 	 * because we are (most likely) being called after we
419 	 * put ourselves on the sleep queue.
420 	 */
421 
422 	if (t->t_dtrace_stop | t->t_dtrace_sig)
423 		return (1);
424 
425 	/*
426 	 * Another piece of complexity in this process.  When single-stepping a
427 	 * process, we don't want an intervening signal or TP_PAUSE request to
428 	 * suspend the current thread.  Otherwise, the controlling process will
429 	 * hang beacuse we will be stopped with TS_PSTART set in t_schedflag.
430 	 * We will trigger any remaining signals when we re-enter the kernel on
431 	 * the single step trap.
432 	 */
433 	if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP)
434 		return (0);
435 
436 	if ((lwp->lwp_asleep && MUSTRETURN(p, t)) ||
437 	    (p->p_flag & (SEXITLWPS|SKILLED)) ||
438 	    (lwp->lwp_nostop == 0 &&
439 	    (p->p_stopsig | (p->p_flag & (SHOLDFORK1|SHOLDWATCH)) |
440 	    (t->t_proc_flag &
441 	    (TP_PRSTOP|TP_HOLDLWP|TP_CHKPT|TP_PAUSE)))) ||
442 	    lwp->lwp_cursig)
443 		return (1);
444 
445 	if (p->p_flag & SVFWAIT)
446 		return (0);
447 	set = p->p_sig;
448 	sigorset(&set, &t->t_sig);
449 	if (schedctl_sigblock(t))	/* all blockable signals blocked */
450 		sigandset(&set, &cantmask);
451 	else
452 		sigdiffset(&set, &t->t_hold);
453 	if (p->p_flag & SVFORK)
454 		sigdiffset(&set, &holdvfork);
455 
456 	if (!sigisempty(&set)) {
457 		int sig;
458 
459 		for (sig = 1; sig < NSIG; sig++) {
460 			if (sigismember(&set, sig) &&
461 			    (tracing(p, sig) ||
462 			    !sigismember(&p->p_ignore, sig))) {
463 				/*
464 				 * Don't promote a signal that will stop
465 				 * the process when lwp_nostop is set.
466 				 */
467 				if (!lwp->lwp_nostop ||
468 				    u.u_signal[sig-1] != SIG_DFL ||
469 				    !sigismember(&stopdefault, sig))
470 					return (1);
471 			}
472 		}
473 	}
474 
475 	return (0);
476 }
477 
478 static int
479 issig_forreal(void)
480 {
481 	int sig = 0, ext = 0;
482 	kthread_t *t = curthread;
483 	klwp_t *lwp = ttolwp(t);
484 	proc_t *p = ttoproc(t);
485 	int toproc = 0;
486 	int sigcld_found = 0;
487 	int nostop_break = 0;
488 
489 	ASSERT(t->t_state == TS_ONPROC);
490 
491 	mutex_enter(&p->p_lock);
492 	schedctl_finish_sigblock(t);
493 
494 	if (t->t_dtrace_stop | t->t_dtrace_sig) {
495 		if (t->t_dtrace_stop) {
496 			/*
497 			 * If DTrace's "stop" action has been invoked on us,
498 			 * set TP_PRSTOP.
499 			 */
500 			t->t_proc_flag |= TP_PRSTOP;
501 		}
502 
503 		if (t->t_dtrace_sig != 0) {
504 			k_siginfo_t info;
505 
506 			/*
507 			 * Post the signal generated as the result of
508 			 * DTrace's "raise" action as a normal signal before
509 			 * the full-fledged signal checking begins.
510 			 */
511 			bzero(&info, sizeof (info));
512 			info.si_signo = t->t_dtrace_sig;
513 			info.si_code = SI_DTRACE;
514 
515 			sigaddq(p, NULL, &info, KM_NOSLEEP);
516 
517 			t->t_dtrace_sig = 0;
518 		}
519 	}
520 
521 	for (;;) {
522 		if (p->p_flag & (SEXITLWPS|SKILLED)) {
523 			lwp->lwp_cursig = sig = SIGKILL;
524 			lwp->lwp_extsig = ext = (p->p_flag & SEXTKILLED) != 0;
525 			break;
526 		}
527 
528 		/*
529 		 * Another piece of complexity in this process.  When
530 		 * single-stepping a process, we don't want an intervening
531 		 * signal or TP_PAUSE request to suspend the current thread.
532 		 * Otherwise, the controlling process will hang beacuse we will
533 		 * be stopped with TS_PSTART set in t_schedflag.  We will
534 		 * trigger any remaining signals when we re-enter the kernel on
535 		 * the single step trap.
536 		 */
537 		if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP) {
538 			sig = 0;
539 			break;
540 		}
541 
542 		/*
543 		 * Hold the lwp here for watchpoint manipulation.
544 		 */
545 		if ((t->t_proc_flag & TP_PAUSE) && !lwp->lwp_nostop) {
546 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
547 			continue;
548 		}
549 
550 		if (lwp->lwp_asleep && MUSTRETURN(p, t)) {
551 			if ((sig = lwp->lwp_cursig) != 0) {
552 				/*
553 				 * Make sure we call ISSIG() in post_syscall()
554 				 * to re-validate this current signal.
555 				 */
556 				t->t_sig_check = 1;
557 			}
558 			break;
559 		}
560 
561 		/*
562 		 * If the request is PR_CHECKPOINT, ignore the rest of signals
563 		 * or requests.  Honor other stop requests or signals later.
564 		 * Go back to top of loop here to check if an exit or hold
565 		 * event has occurred while stopped.
566 		 */
567 		if ((t->t_proc_flag & TP_CHKPT) && !lwp->lwp_nostop) {
568 			stop(PR_CHECKPOINT, 0);
569 			continue;
570 		}
571 
572 		/*
573 		 * Honor SHOLDFORK1, SHOLDWATCH, and TP_HOLDLWP before dealing
574 		 * with signals or /proc.  Another lwp is executing fork1(),
575 		 * or is undergoing watchpoint activity (remapping a page),
576 		 * or is executing lwp_suspend() on this lwp.
577 		 * Again, go back to top of loop to check if an exit
578 		 * or hold event has occurred while stopped.
579 		 */
580 		if (((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
581 		    (t->t_proc_flag & TP_HOLDLWP)) && !lwp->lwp_nostop) {
582 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
583 			continue;
584 		}
585 
586 		/*
587 		 * Honor requested stop before dealing with the
588 		 * current signal; a debugger may change it.
589 		 * Do not want to go back to loop here since this is a special
590 		 * stop that means: make incremental progress before the next
591 		 * stop. The danger is that returning to top of loop would most
592 		 * likely drop the thread right back here to stop soon after it
593 		 * was continued, violating the incremental progress request.
594 		 */
595 		if ((t->t_proc_flag & TP_PRSTOP) && !lwp->lwp_nostop)
596 			stop(PR_REQUESTED, 0);
597 
598 		/*
599 		 * If a debugger wants us to take a signal it will have
600 		 * left it in lwp->lwp_cursig.  If lwp_cursig has been cleared
601 		 * or if it's being ignored, we continue on looking for another
602 		 * signal.  Otherwise we return the specified signal, provided
603 		 * it's not a signal that causes a job control stop.
604 		 *
605 		 * When stopped on PR_JOBCONTROL, there is no current
606 		 * signal; we cancel lwp->lwp_cursig temporarily before
607 		 * calling isjobstop().  The current signal may be reset
608 		 * by a debugger while we are stopped in isjobstop().
609 		 */
610 		if ((sig = lwp->lwp_cursig) != 0) {
611 			ext = lwp->lwp_extsig;
612 			lwp->lwp_cursig = 0;
613 			lwp->lwp_extsig = 0;
614 			if (!sigismember(&p->p_ignore, sig) &&
615 			    !isjobstop(sig)) {
616 				if (p->p_flag & (SEXITLWPS|SKILLED)) {
617 					sig = SIGKILL;
618 					ext = (p->p_flag & SEXTKILLED) != 0;
619 				}
620 				lwp->lwp_cursig = (uchar_t)sig;
621 				lwp->lwp_extsig = (uchar_t)ext;
622 				break;
623 			}
624 			/*
625 			 * The signal is being ignored or it caused a
626 			 * job-control stop.  If another current signal
627 			 * has not been established, return the current
628 			 * siginfo, if any, to the memory manager.
629 			 */
630 			if (lwp->lwp_cursig == 0 && lwp->lwp_curinfo != NULL) {
631 				siginfofree(lwp->lwp_curinfo);
632 				lwp->lwp_curinfo = NULL;
633 			}
634 			/*
635 			 * Loop around again in case we were stopped
636 			 * on a job control signal and a /proc stop
637 			 * request was posted or another current signal
638 			 * was established while we were stopped.
639 			 */
640 			continue;
641 		}
642 
643 		if (p->p_stopsig && !lwp->lwp_nostop &&
644 		    curthread != p->p_agenttp) {
645 			/*
646 			 * Some lwp in the process has already stopped
647 			 * showing PR_JOBCONTROL.  This is a stop in
648 			 * sympathy with the other lwp, even if this
649 			 * lwp is blocking the stopping signal.
650 			 */
651 			stop(PR_JOBCONTROL, p->p_stopsig);
652 			continue;
653 		}
654 
655 		/*
656 		 * Loop on the pending signals until we find a
657 		 * non-held signal that is traced or not ignored.
658 		 * First check the signals pending for the lwp,
659 		 * then the signals pending for the process as a whole.
660 		 */
661 		for (;;) {
662 			k_sigset_t tsig;
663 
664 			tsig = t->t_sig;
665 			if ((sig = fsig(&tsig, t)) != 0) {
666 				if (sig == SIGCLD)
667 					sigcld_found = 1;
668 				toproc = 0;
669 				if (tracing(p, sig) ||
670 				    !sigismember(&p->p_ignore, sig)) {
671 					if (sigismember(&t->t_extsig, sig))
672 						ext = 1;
673 					break;
674 				}
675 				sigdelset(&t->t_sig, sig);
676 				sigdelset(&t->t_extsig, sig);
677 				sigdelq(p, t, sig);
678 			} else if ((sig = fsig(&p->p_sig, t)) != 0) {
679 				if (sig == SIGCLD)
680 					sigcld_found = 1;
681 				toproc = 1;
682 				if (tracing(p, sig) ||
683 				    !sigismember(&p->p_ignore, sig)) {
684 					if (sigismember(&p->p_extsig, sig))
685 						ext = 1;
686 					break;
687 				}
688 				sigdelset(&p->p_sig, sig);
689 				sigdelset(&p->p_extsig, sig);
690 				sigdelq(p, NULL, sig);
691 			} else {
692 				/* no signal was found */
693 				break;
694 			}
695 		}
696 
697 		if (sig == 0) {	/* no signal was found */
698 			if (p->p_flag & (SEXITLWPS|SKILLED)) {
699 				lwp->lwp_cursig = SIGKILL;
700 				sig = SIGKILL;
701 				ext = (p->p_flag & SEXTKILLED) != 0;
702 			}
703 			break;
704 		}
705 
706 		/*
707 		 * If we have been informed not to stop (i.e., we are being
708 		 * called from within a network operation), then don't promote
709 		 * the signal at this time, just return the signal number.
710 		 * We will call issig() again later when it is safe.
711 		 *
712 		 * fsig() does not return a jobcontrol stopping signal
713 		 * with a default action of stopping the process if
714 		 * lwp_nostop is set, so we won't be causing a bogus
715 		 * EINTR by this action.  (Such a signal is eaten by
716 		 * isjobstop() when we loop around to do final checks.)
717 		 */
718 		if (lwp->lwp_nostop) {
719 			nostop_break = 1;
720 			break;
721 		}
722 
723 		/*
724 		 * Promote the signal from pending to current.
725 		 *
726 		 * Note that sigdeq() will set lwp->lwp_curinfo to NULL
727 		 * if no siginfo_t exists for this signal.
728 		 */
729 		lwp->lwp_cursig = (uchar_t)sig;
730 		lwp->lwp_extsig = (uchar_t)ext;
731 		t->t_sig_check = 1;	/* so post_syscall will see signal */
732 		ASSERT(lwp->lwp_curinfo == NULL);
733 		sigdeq(p, toproc ? NULL : t, sig, &lwp->lwp_curinfo);
734 
735 		if (tracing(p, sig))
736 			stop(PR_SIGNALLED, sig);
737 
738 		/*
739 		 * Loop around to check for requested stop before
740 		 * performing the usual current-signal actions.
741 		 */
742 	}
743 
744 	mutex_exit(&p->p_lock);
745 
746 	/*
747 	 * If SIGCLD was dequeued, search for other pending SIGCLD's.
748 	 * Don't do it if we are returning SIGCLD and the signal
749 	 * handler will be reset by psig(); this enables reliable
750 	 * delivery of SIGCLD even when using the old, broken
751 	 * signal() interface for setting the signal handler.
752 	 */
753 	if (sigcld_found &&
754 	    (sig != SIGCLD || !sigismember(&u.u_sigresethand, SIGCLD)))
755 		sigcld_repost();
756 
757 	if (sig != 0)
758 		(void) undo_watch_step(NULL);
759 
760 	/*
761 	 * If we have been blocked since the p_lock was dropped off
762 	 * above, then this promoted signal might have been handled
763 	 * already when we were on the way back from sleep queue, so
764 	 * just ignore it.
765 	 * If we have been informed not to stop, just return the signal
766 	 * number. Also see comments above.
767 	 */
768 	if (!nostop_break) {
769 		sig = lwp->lwp_cursig;
770 	}
771 
772 	return (sig != 0);
773 }
774 
775 /*
776  * Return true if the process is currently stopped showing PR_JOBCONTROL.
777  * This is true only if all of the process's lwp's are so stopped.
778  * If this is asked by one of the lwps in the process, exclude that lwp.
779  */
780 int
781 jobstopped(proc_t *p)
782 {
783 	kthread_t *t;
784 
785 	ASSERT(MUTEX_HELD(&p->p_lock));
786 
787 	if ((t = p->p_tlist) == NULL)
788 		return (0);
789 
790 	do {
791 		thread_lock(t);
792 		/* ignore current, zombie and suspended lwps in the test */
793 		if (!(t == curthread || t->t_state == TS_ZOMB ||
794 		    SUSPENDED(t)) &&
795 		    (t->t_state != TS_STOPPED ||
796 		    t->t_whystop != PR_JOBCONTROL)) {
797 			thread_unlock(t);
798 			return (0);
799 		}
800 		thread_unlock(t);
801 	} while ((t = t->t_forw) != p->p_tlist);
802 
803 	return (1);
804 }
805 
806 /*
807  * Put ourself (curthread) into the stopped state and notify tracers.
808  */
809 void
810 stop(int why, int what)
811 {
812 	kthread_t	*t = curthread;
813 	proc_t		*p = ttoproc(t);
814 	klwp_t		*lwp = ttolwp(t);
815 	kthread_t	*tx;
816 	lwpent_t	*lep;
817 	int		procstop;
818 	int		flags = TS_ALLSTART;
819 	hrtime_t	stoptime;
820 
821 	/*
822 	 * Can't stop a system process.
823 	 */
824 	if (p == NULL || lwp == NULL || (p->p_flag & SSYS) || p->p_as == &kas)
825 		return;
826 
827 	ASSERT(MUTEX_HELD(&p->p_lock));
828 
829 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
830 		/*
831 		 * Don't stop an lwp with SIGKILL pending.
832 		 * Don't stop if the process or lwp is exiting.
833 		 */
834 		if (lwp->lwp_cursig == SIGKILL ||
835 		    sigismember(&t->t_sig, SIGKILL) ||
836 		    sigismember(&p->p_sig, SIGKILL) ||
837 		    (t->t_proc_flag & TP_LWPEXIT) ||
838 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
839 			p->p_stopsig = 0;
840 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
841 			return;
842 		}
843 	}
844 
845 	/*
846 	 * Make sure we don't deadlock on a recursive call to prstop().
847 	 * prstop() sets the lwp_nostop flag.
848 	 */
849 	if (lwp->lwp_nostop)
850 		return;
851 
852 	/*
853 	 * Make sure the lwp is in an orderly state for inspection
854 	 * by a debugger through /proc or for dumping via core().
855 	 */
856 	schedctl_finish_sigblock(t);
857 	t->t_proc_flag |= TP_STOPPING;	/* must set before dropping p_lock */
858 	mutex_exit(&p->p_lock);
859 	stoptime = gethrtime();
860 	prstop(why, what);
861 	(void) undo_watch_step(NULL);
862 	mutex_enter(&p->p_lock);
863 	ASSERT(t->t_state == TS_ONPROC);
864 
865 	switch (why) {
866 	case PR_CHECKPOINT:
867 		/*
868 		 * The situation may have changed since we dropped
869 		 * and reacquired p->p_lock. Double-check now
870 		 * whether we should stop or not.
871 		 */
872 		if (!(t->t_proc_flag & TP_CHKPT)) {
873 			t->t_proc_flag &= ~TP_STOPPING;
874 			return;
875 		}
876 		t->t_proc_flag &= ~TP_CHKPT;
877 		flags &= ~TS_RESUME;
878 		break;
879 
880 	case PR_JOBCONTROL:
881 		ASSERT(what == SIGSTOP || what == SIGTSTP ||
882 			what == SIGTTIN || what == SIGTTOU);
883 		flags &= ~TS_XSTART;
884 		break;
885 
886 	case PR_SUSPENDED:
887 		ASSERT(what == SUSPEND_NORMAL || what == SUSPEND_PAUSE);
888 		/*
889 		 * The situation may have changed since we dropped
890 		 * and reacquired p->p_lock.  Double-check now
891 		 * whether we should stop or not.
892 		 */
893 		if (what == SUSPEND_PAUSE) {
894 			if (!(t->t_proc_flag & TP_PAUSE)) {
895 				t->t_proc_flag &= ~TP_STOPPING;
896 				return;
897 			}
898 			flags &= ~TS_UNPAUSE;
899 		} else {
900 			if (!((t->t_proc_flag & TP_HOLDLWP) ||
901 			    (p->p_flag & (SHOLDFORK|SHOLDFORK1|SHOLDWATCH)))) {
902 				t->t_proc_flag &= ~TP_STOPPING;
903 				return;
904 			}
905 			/*
906 			 * If SHOLDFORK is in effect and we are stopping
907 			 * while asleep (not at the top of the stack),
908 			 * we return now to allow the hold to take effect
909 			 * when we reach the top of the kernel stack.
910 			 */
911 			if (lwp->lwp_asleep && (p->p_flag & SHOLDFORK)) {
912 				t->t_proc_flag &= ~TP_STOPPING;
913 				return;
914 			}
915 			flags &= ~TS_CSTART;
916 		}
917 		break;
918 
919 	default:	/* /proc stop */
920 		flags &= ~TS_PSTART;
921 		/*
922 		 * Do synchronous stop unless the async-stop flag is set.
923 		 * If why is PR_REQUESTED and t->t_dtrace_stop flag is set,
924 		 * then no debugger is present and we also do synchronous stop.
925 		 */
926 		if ((why != PR_REQUESTED || t->t_dtrace_stop) &&
927 		    !(p->p_proc_flag & P_PR_ASYNC)) {
928 			int notify;
929 
930 			for (tx = t->t_forw; tx != t; tx = tx->t_forw) {
931 				notify = 0;
932 				thread_lock(tx);
933 				if (ISTOPPED(tx) ||
934 				    (tx->t_proc_flag & TP_PRSTOP)) {
935 					thread_unlock(tx);
936 					continue;
937 				}
938 				tx->t_proc_flag |= TP_PRSTOP;
939 				tx->t_sig_check = 1;
940 				if (tx->t_state == TS_SLEEP &&
941 				    (tx->t_flag & T_WAKEABLE)) {
942 					/*
943 					 * Don't actually wake it up if it's
944 					 * in one of the lwp_*() syscalls.
945 					 * Mark it virtually stopped and
946 					 * notify /proc waiters (below).
947 					 */
948 					if (tx->t_wchan0 == NULL)
949 						setrun_locked(tx);
950 					else {
951 						tx->t_proc_flag |= TP_PRVSTOP;
952 						tx->t_stoptime = stoptime;
953 						notify = 1;
954 					}
955 				}
956 				/*
957 				 * force the thread into the kernel
958 				 * if it is not already there.
959 				 */
960 				if (tx->t_state == TS_ONPROC &&
961 				    tx->t_cpu != CPU)
962 					poke_cpu(tx->t_cpu->cpu_id);
963 				thread_unlock(tx);
964 				lep = p->p_lwpdir[tx->t_dslot].ld_entry;
965 				if (notify && lep->le_trace)
966 					prnotify(lep->le_trace);
967 			}
968 			/*
969 			 * We do this just in case one of the threads we asked
970 			 * to stop is in holdlwps() (called from cfork()) or
971 			 * lwp_suspend().
972 			 */
973 			cv_broadcast(&p->p_holdlwps);
974 		}
975 		break;
976 	}
977 
978 	t->t_stoptime = stoptime;
979 
980 	if (why == PR_JOBCONTROL || (why == PR_SUSPENDED && p->p_stopsig)) {
981 		/*
982 		 * Determine if the whole process is jobstopped.
983 		 */
984 		if (jobstopped(p)) {
985 			sigqueue_t *sqp;
986 			int sig;
987 
988 			if ((sig = p->p_stopsig) == 0)
989 				p->p_stopsig = (uchar_t)(sig = what);
990 			mutex_exit(&p->p_lock);
991 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
992 			mutex_enter(&pidlock);
993 			/*
994 			 * The last lwp to stop notifies the parent.
995 			 * Turn off the CLDCONT flag now so the first
996 			 * lwp to continue knows what to do.
997 			 */
998 			p->p_pidflag &= ~CLDCONT;
999 			p->p_wcode = CLD_STOPPED;
1000 			p->p_wdata = sig;
1001 			sigcld(p, sqp);
1002 			/*
1003 			 * Grab p->p_lock before releasing pidlock so the
1004 			 * parent and the child don't have a race condition.
1005 			 */
1006 			mutex_enter(&p->p_lock);
1007 			mutex_exit(&pidlock);
1008 			p->p_stopsig = 0;
1009 		} else if (why == PR_JOBCONTROL && p->p_stopsig == 0) {
1010 			/*
1011 			 * Set p->p_stopsig and wake up sleeping lwps
1012 			 * so they will stop in sympathy with this lwp.
1013 			 */
1014 			p->p_stopsig = (uchar_t)what;
1015 			pokelwps(p);
1016 			/*
1017 			 * We do this just in case one of the threads we asked
1018 			 * to stop is in holdlwps() (called from cfork()) or
1019 			 * lwp_suspend().
1020 			 */
1021 			cv_broadcast(&p->p_holdlwps);
1022 		}
1023 	}
1024 
1025 	if (why != PR_JOBCONTROL && why != PR_CHECKPOINT) {
1026 		/*
1027 		 * Do process-level notification when all lwps are
1028 		 * either stopped on events of interest to /proc
1029 		 * or are stopped showing PR_SUSPENDED or are zombies.
1030 		 */
1031 		procstop = 1;
1032 		for (tx = t->t_forw; procstop && tx != t; tx = tx->t_forw) {
1033 			if (VSTOPPED(tx))
1034 				continue;
1035 			thread_lock(tx);
1036 			switch (tx->t_state) {
1037 			case TS_ZOMB:
1038 				break;
1039 			case TS_STOPPED:
1040 				/* neither ISTOPPED nor SUSPENDED? */
1041 				if ((tx->t_schedflag &
1042 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART)) ==
1043 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART))
1044 					procstop = 0;
1045 				break;
1046 			case TS_SLEEP:
1047 				/* not paused for watchpoints? */
1048 				if (!(tx->t_flag & T_WAKEABLE) ||
1049 				    tx->t_wchan0 == NULL ||
1050 				    !(tx->t_proc_flag & TP_PAUSE))
1051 					procstop = 0;
1052 				break;
1053 			default:
1054 				procstop = 0;
1055 				break;
1056 			}
1057 			thread_unlock(tx);
1058 		}
1059 		if (procstop) {
1060 			/* there must not be any remapped watched pages now */
1061 			ASSERT(p->p_mapcnt == 0);
1062 			if (p->p_proc_flag & P_PR_PTRACE) {
1063 				/* ptrace() compatibility */
1064 				mutex_exit(&p->p_lock);
1065 				mutex_enter(&pidlock);
1066 				p->p_wcode = CLD_TRAPPED;
1067 				p->p_wdata = (why == PR_SIGNALLED)?
1068 				    what : SIGTRAP;
1069 				cv_broadcast(&p->p_parent->p_cv);
1070 				/*
1071 				 * Grab p->p_lock before releasing pidlock so
1072 				 * parent and child don't have a race condition.
1073 				 */
1074 				mutex_enter(&p->p_lock);
1075 				mutex_exit(&pidlock);
1076 			}
1077 			if (p->p_trace)			/* /proc */
1078 				prnotify(p->p_trace);
1079 			cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */
1080 			cv_broadcast(&p->p_holdlwps);	/* holdwatch() */
1081 		}
1082 		if (why != PR_SUSPENDED) {
1083 			lep = p->p_lwpdir[t->t_dslot].ld_entry;
1084 			if (lep->le_trace)		/* /proc */
1085 				prnotify(lep->le_trace);
1086 			/*
1087 			 * Special notification for creation of the agent lwp.
1088 			 */
1089 			if (t == p->p_agenttp &&
1090 			    (t->t_proc_flag & TP_PRSTOP) &&
1091 			    p->p_trace)
1092 				prnotify(p->p_trace);
1093 			/*
1094 			 * The situation may have changed since we dropped
1095 			 * and reacquired p->p_lock. Double-check now
1096 			 * whether we should stop or not.
1097 			 */
1098 			if (!(t->t_proc_flag & TP_STOPPING)) {
1099 				if (t->t_proc_flag & TP_PRSTOP)
1100 					t->t_proc_flag |= TP_STOPPING;
1101 			}
1102 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
1103 			prnostep(lwp);
1104 		}
1105 	}
1106 
1107 	if (why == PR_SUSPENDED) {
1108 
1109 		/*
1110 		 * We always broadcast in the case of SUSPEND_PAUSE.  This is
1111 		 * because checks for TP_PAUSE take precedence over checks for
1112 		 * SHOLDWATCH.  If a thread is trying to stop because of
1113 		 * SUSPEND_PAUSE and tries to do a holdwatch(), it will be
1114 		 * waiting for the rest of the threads to enter a stopped state.
1115 		 * If we are stopping for a SUSPEND_PAUSE, we may be the last
1116 		 * lwp and not know it, so broadcast just in case.
1117 		 */
1118 		if (what == SUSPEND_PAUSE ||
1119 		    --p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP))
1120 			cv_broadcast(&p->p_holdlwps);
1121 
1122 	}
1123 
1124 	/*
1125 	 * Need to do this here (rather than after the thread is officially
1126 	 * stopped) because we can't call mutex_enter from a stopped thread.
1127 	 */
1128 	if (why == PR_CHECKPOINT)
1129 		del_one_utstop();
1130 
1131 	thread_lock(t);
1132 	ASSERT((t->t_schedflag & TS_ALLSTART) == 0);
1133 	t->t_schedflag |= flags;
1134 	t->t_whystop = (short)why;
1135 	t->t_whatstop = (short)what;
1136 	CL_STOP(t, why, what);
1137 	(void) new_mstate(t, LMS_STOPPED);
1138 	thread_stop(t);			/* set stop state and drop lock */
1139 
1140 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
1141 		/*
1142 		 * We may have gotten a SIGKILL or a SIGCONT when
1143 		 * we released p->p_lock; make one last check.
1144 		 * Also check for a /proc run-on-last-close.
1145 		 */
1146 		if (sigismember(&t->t_sig, SIGKILL) ||
1147 		    sigismember(&p->p_sig, SIGKILL) ||
1148 		    (t->t_proc_flag & TP_LWPEXIT) ||
1149 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
1150 			p->p_stopsig = 0;
1151 			thread_lock(t);
1152 			t->t_schedflag |= TS_XSTART | TS_PSTART;
1153 			setrun_locked(t);
1154 			thread_unlock_nopreempt(t);
1155 		} else if (why == PR_JOBCONTROL) {
1156 			if (p->p_flag & SSCONT) {
1157 				/*
1158 				 * This resulted from a SIGCONT posted
1159 				 * while we were not holding p->p_lock.
1160 				 */
1161 				p->p_stopsig = 0;
1162 				thread_lock(t);
1163 				t->t_schedflag |= TS_XSTART;
1164 				setrun_locked(t);
1165 				thread_unlock_nopreempt(t);
1166 			}
1167 		} else if (!(t->t_proc_flag & TP_STOPPING)) {
1168 			/*
1169 			 * This resulted from a /proc run-on-last-close.
1170 			 */
1171 			thread_lock(t);
1172 			t->t_schedflag |= TS_PSTART;
1173 			setrun_locked(t);
1174 			thread_unlock_nopreempt(t);
1175 		}
1176 	}
1177 
1178 	t->t_proc_flag &= ~TP_STOPPING;
1179 	mutex_exit(&p->p_lock);
1180 
1181 	swtch();
1182 	setallwatch();	/* reestablish any watchpoints set while stopped */
1183 	mutex_enter(&p->p_lock);
1184 	prbarrier(p);	/* barrier against /proc locking */
1185 }
1186 
1187 /* Interface for resetting user thread stop count. */
1188 void
1189 utstop_init(void)
1190 {
1191 	mutex_enter(&thread_stop_lock);
1192 	num_utstop = 0;
1193 	mutex_exit(&thread_stop_lock);
1194 }
1195 
1196 /* Interface for registering a user thread stop request. */
1197 void
1198 add_one_utstop(void)
1199 {
1200 	mutex_enter(&thread_stop_lock);
1201 	num_utstop++;
1202 	mutex_exit(&thread_stop_lock);
1203 }
1204 
1205 /* Interface for cancelling a user thread stop request */
1206 void
1207 del_one_utstop(void)
1208 {
1209 	mutex_enter(&thread_stop_lock);
1210 	num_utstop--;
1211 	if (num_utstop == 0)
1212 		cv_broadcast(&utstop_cv);
1213 	mutex_exit(&thread_stop_lock);
1214 }
1215 
1216 /* Interface to wait for all user threads to be stopped */
1217 void
1218 utstop_timedwait(clock_t ticks)
1219 {
1220 	mutex_enter(&thread_stop_lock);
1221 	if (num_utstop > 0)
1222 		(void) cv_timedwait(&utstop_cv, &thread_stop_lock,
1223 		    ticks + lbolt);
1224 	mutex_exit(&thread_stop_lock);
1225 }
1226 
1227 /*
1228  * Perform the action specified by the current signal.
1229  * The usual sequence is:
1230  * 	if (issig())
1231  * 		psig();
1232  * The signal bit has already been cleared by issig(),
1233  * the current signal number has been stored in lwp_cursig,
1234  * and the current siginfo is now referenced by lwp_curinfo.
1235  */
1236 void
1237 psig(void)
1238 {
1239 	kthread_t *t = curthread;
1240 	proc_t *p = ttoproc(t);
1241 	klwp_t *lwp = ttolwp(t);
1242 	void (*func)();
1243 	int sig, rc, code, ext;
1244 	pid_t pid = -1;
1245 	id_t ctid = 0;
1246 	zoneid_t zoneid = -1;
1247 	sigqueue_t *sqp = NULL;
1248 
1249 	mutex_enter(&p->p_lock);
1250 	schedctl_finish_sigblock(t);
1251 	code = CLD_KILLED;
1252 
1253 	if (p->p_flag & SEXITLWPS) {
1254 		lwp_exit();
1255 		return;			/* not reached */
1256 	}
1257 	sig = lwp->lwp_cursig;
1258 	ext = lwp->lwp_extsig;
1259 
1260 	ASSERT(sig < NSIG);
1261 
1262 	/*
1263 	 * Re-check lwp_cursig after we acquire p_lock.  Since p_lock was
1264 	 * dropped between issig() and psig(), a debugger may have cleared
1265 	 * lwp_cursig via /proc in the intervening window.
1266 	 */
1267 	if (sig == 0) {
1268 		if (lwp->lwp_curinfo) {
1269 			siginfofree(lwp->lwp_curinfo);
1270 			lwp->lwp_curinfo = NULL;
1271 		}
1272 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1273 			t->t_flag &= ~T_TOMASK;
1274 			t->t_hold = lwp->lwp_sigoldmask;
1275 		}
1276 		mutex_exit(&p->p_lock);
1277 		return;
1278 	}
1279 	func = u.u_signal[sig-1];
1280 
1281 	/*
1282 	 * The signal disposition could have changed since we promoted
1283 	 * this signal from pending to current (we dropped p->p_lock).
1284 	 * This can happen only in a multi-threaded process.
1285 	 */
1286 	if (sigismember(&p->p_ignore, sig) ||
1287 	    (func == SIG_DFL && sigismember(&stopdefault, sig))) {
1288 		lwp->lwp_cursig = 0;
1289 		lwp->lwp_extsig = 0;
1290 		if (lwp->lwp_curinfo) {
1291 			siginfofree(lwp->lwp_curinfo);
1292 			lwp->lwp_curinfo = NULL;
1293 		}
1294 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1295 			t->t_flag &= ~T_TOMASK;
1296 			t->t_hold = lwp->lwp_sigoldmask;
1297 		}
1298 		mutex_exit(&p->p_lock);
1299 		return;
1300 	}
1301 
1302 	/*
1303 	 * We check lwp_curinfo first since pr_setsig can actually
1304 	 * stuff a sigqueue_t there for SIGKILL.
1305 	 */
1306 	if (lwp->lwp_curinfo) {
1307 		sqp = lwp->lwp_curinfo;
1308 	} else if (sig == SIGKILL && p->p_killsqp) {
1309 		sqp = p->p_killsqp;
1310 	}
1311 
1312 	if (sqp != NULL) {
1313 		if (SI_FROMUSER(&sqp->sq_info)) {
1314 			pid = sqp->sq_info.si_pid;
1315 			ctid = sqp->sq_info.si_ctid;
1316 			zoneid = sqp->sq_info.si_zoneid;
1317 		}
1318 		/*
1319 		 * If we have a sigqueue_t, its sq_external value
1320 		 * trumps the lwp_extsig value.  It is theoretically
1321 		 * possible to make lwp_extsig reflect reality, but it
1322 		 * would unnecessarily complicate things elsewhere.
1323 		 */
1324 		ext = sqp->sq_external;
1325 	}
1326 
1327 	if (func == SIG_DFL) {
1328 		mutex_exit(&p->p_lock);
1329 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1330 		    NULL, void (*)(void), func);
1331 	} else {
1332 		k_siginfo_t *sip = NULL;
1333 
1334 		/*
1335 		 * If DTrace user-land tracing is active, give DTrace a
1336 		 * chance to defer the signal until after tracing is
1337 		 * complete.
1338 		 */
1339 		if (t->t_dtrace_on && dtrace_safe_defer_signal()) {
1340 			mutex_exit(&p->p_lock);
1341 			return;
1342 		}
1343 
1344 		/*
1345 		 * save siginfo pointer here, in case the
1346 		 * the signal's reset bit is on
1347 		 *
1348 		 * The presence of a current signal prevents paging
1349 		 * from succeeding over a network.  We copy the current
1350 		 * signal information to the side and cancel the current
1351 		 * signal so that sendsig() will succeed.
1352 		 */
1353 		if (sigismember(&p->p_siginfo, sig)) {
1354 			if (sqp) {
1355 				bcopy(&sqp->sq_info, &lwp->lwp_siginfo,
1356 				    sizeof (k_siginfo_t));
1357 				sip = &lwp->lwp_siginfo;
1358 			} else if (sig == SIGPROF &&
1359 			    t->t_rprof != NULL &&
1360 			    t->t_rprof->rp_anystate &&
1361 			    lwp->lwp_siginfo.si_signo == SIGPROF) {
1362 				sip = &lwp->lwp_siginfo;
1363 			}
1364 		}
1365 
1366 		if (t->t_flag & T_TOMASK)
1367 			t->t_flag &= ~T_TOMASK;
1368 		else
1369 			lwp->lwp_sigoldmask = t->t_hold;
1370 		sigorset(&t->t_hold, &u.u_sigmask[sig-1]);
1371 		if (!sigismember(&u.u_signodefer, sig))
1372 			sigaddset(&t->t_hold, sig);
1373 		if (sigismember(&u.u_sigresethand, sig))
1374 			setsigact(sig, SIG_DFL, nullsmask, 0);
1375 
1376 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1377 		    sip, void (*)(void), func);
1378 
1379 		lwp->lwp_cursig = 0;
1380 		lwp->lwp_extsig = 0;
1381 		if (lwp->lwp_curinfo) {
1382 			/* p->p_killsqp is freed by freeproc */
1383 			siginfofree(lwp->lwp_curinfo);
1384 			lwp->lwp_curinfo = NULL;
1385 		}
1386 		mutex_exit(&p->p_lock);
1387 		lwp->lwp_ru.nsignals++;
1388 
1389 		if (p->p_model == DATAMODEL_NATIVE)
1390 			rc = sendsig(sig, sip, func);
1391 #ifdef _SYSCALL32_IMPL
1392 		else
1393 			rc = sendsig32(sig, sip, func);
1394 #endif	/* _SYSCALL32_IMPL */
1395 		if (rc)
1396 			return;
1397 		sig = lwp->lwp_cursig = SIGSEGV;
1398 		ext = 0;	/* lwp_extsig was set above */
1399 		pid = -1;
1400 		ctid = 0;
1401 	}
1402 
1403 	if (sigismember(&coredefault, sig)) {
1404 		/*
1405 		 * Terminate all LWPs but don't discard them.
1406 		 * If another lwp beat us to the punch by calling exit(),
1407 		 * evaporate now.
1408 		 */
1409 		if (exitlwps(1) != 0) {
1410 			mutex_enter(&p->p_lock);
1411 			lwp_exit();
1412 		}
1413 		/* if we got a SIGKILL from anywhere, no core dump */
1414 		if (p->p_flag & SKILLED) {
1415 			sig = SIGKILL;
1416 			ext = (p->p_flag & SEXTKILLED) != 0;
1417 		} else {
1418 #ifdef C2_AUDIT
1419 			if (audit_active)		/* audit core dump */
1420 				audit_core_start(sig);
1421 #endif
1422 			if (core(sig, ext) == 0)
1423 				code = CLD_DUMPED;
1424 #ifdef C2_AUDIT
1425 			if (audit_active)		/* audit core dump */
1426 				audit_core_finish(code);
1427 #endif
1428 		}
1429 	}
1430 	if (ext)
1431 		contract_process_sig(p->p_ct_process, p, sig, pid, ctid,
1432 		    zoneid);
1433 
1434 	exit(code, sig);
1435 }
1436 
1437 /*
1438  * Find next unheld signal in ssp for thread t.
1439  */
1440 int
1441 fsig(k_sigset_t *ssp, kthread_t *t)
1442 {
1443 	proc_t *p = ttoproc(t);
1444 	user_t *up = PTOU(p);
1445 	int i;
1446 	k_sigset_t temp;
1447 
1448 	ASSERT(MUTEX_HELD(&p->p_lock));
1449 
1450 	/*
1451 	 * Don't promote any signals for the parent of a vfork()d
1452 	 * child that hasn't yet released the parent's memory.
1453 	 */
1454 	if (p->p_flag & SVFWAIT)
1455 		return (0);
1456 
1457 	temp = *ssp;
1458 	sigdiffset(&temp, &t->t_hold);
1459 
1460 	/*
1461 	 * Don't promote stopping signals (except SIGSTOP) for a child
1462 	 * of vfork() that hasn't yet released the parent's memory.
1463 	 */
1464 	if (p->p_flag & SVFORK)
1465 		sigdiffset(&temp, &holdvfork);
1466 
1467 	/*
1468 	 * Don't promote a signal that will stop
1469 	 * the process when lwp_nostop is set.
1470 	 */
1471 	if (ttolwp(t)->lwp_nostop) {
1472 		sigdelset(&temp, SIGSTOP);
1473 		if (!p->p_pgidp->pid_pgorphaned) {
1474 			if (up->u_signal[SIGTSTP-1] == SIG_DFL)
1475 				sigdelset(&temp, SIGTSTP);
1476 			if (up->u_signal[SIGTTIN-1] == SIG_DFL)
1477 				sigdelset(&temp, SIGTTIN);
1478 			if (up->u_signal[SIGTTOU-1] == SIG_DFL)
1479 				sigdelset(&temp, SIGTTOU);
1480 		}
1481 	}
1482 
1483 	/*
1484 	 * Choose SIGKILL and SIGPROF before all other pending signals.
1485 	 * The rest are promoted in signal number order.
1486 	 */
1487 	if (sigismember(&temp, SIGKILL))
1488 		return (SIGKILL);
1489 	if (sigismember(&temp, SIGPROF))
1490 		return (SIGPROF);
1491 
1492 	for (i = 0; i < sizeof (temp) / sizeof (temp.__sigbits[0]); i++) {
1493 		if (temp.__sigbits[i])
1494 			return ((i * NBBY * sizeof (temp.__sigbits[0])) +
1495 			    lowbit(temp.__sigbits[i]));
1496 	}
1497 
1498 	return (0);
1499 }
1500 
1501 void
1502 setsigact(int sig, void (*disp)(), k_sigset_t mask, int flags)
1503 {
1504 	proc_t *p = ttoproc(curthread);
1505 	kthread_t *t;
1506 
1507 	ASSERT(MUTEX_HELD(&p->p_lock));
1508 
1509 	u.u_signal[sig - 1] = disp;
1510 
1511 	/*
1512 	 * Honor the SA_SIGINFO flag if the signal is being caught.
1513 	 * Force the SA_SIGINFO flag if the signal is not being caught.
1514 	 * This is necessary to make sigqueue() and sigwaitinfo() work
1515 	 * properly together when the signal is set to default or is
1516 	 * being temporarily ignored.
1517 	 */
1518 	if ((flags & SA_SIGINFO) || disp == SIG_DFL || disp == SIG_IGN)
1519 		sigaddset(&p->p_siginfo, sig);
1520 	else
1521 		sigdelset(&p->p_siginfo, sig);
1522 
1523 	if (disp != SIG_DFL && disp != SIG_IGN) {
1524 		sigdelset(&p->p_ignore, sig);
1525 		u.u_sigmask[sig - 1] = mask;
1526 		if (!sigismember(&cantreset, sig)) {
1527 			if (flags & SA_RESETHAND)
1528 				sigaddset(&u.u_sigresethand, sig);
1529 			else
1530 				sigdelset(&u.u_sigresethand, sig);
1531 		}
1532 		if (flags & SA_NODEFER)
1533 			sigaddset(&u.u_signodefer, sig);
1534 		else
1535 			sigdelset(&u.u_signodefer, sig);
1536 		if (flags & SA_RESTART)
1537 			sigaddset(&u.u_sigrestart, sig);
1538 		else
1539 			sigdelset(&u.u_sigrestart, sig);
1540 		if (flags & SA_ONSTACK)
1541 			sigaddset(&u.u_sigonstack, sig);
1542 		else
1543 			sigdelset(&u.u_sigonstack, sig);
1544 
1545 	} else if (disp == SIG_IGN ||
1546 	    (disp == SIG_DFL && sigismember(&ignoredefault, sig))) {
1547 		/*
1548 		 * Setting the signal action to SIG_IGN results in the
1549 		 * discarding of all pending signals of that signal number.
1550 		 * Setting the signal action to SIG_DFL does the same *only*
1551 		 * if the signal's default behavior is to be ignored.
1552 		 */
1553 		sigaddset(&p->p_ignore, sig);
1554 		sigdelset(&p->p_sig, sig);
1555 		sigdelset(&p->p_extsig, sig);
1556 		sigdelq(p, NULL, sig);
1557 		t = p->p_tlist;
1558 		do {
1559 			sigdelset(&t->t_sig, sig);
1560 			sigdelset(&t->t_extsig, sig);
1561 			sigdelq(p, t, sig);
1562 		} while ((t = t->t_forw) != p->p_tlist);
1563 
1564 	} else {
1565 		/*
1566 		 * The signal action is being set to SIG_DFL and the default
1567 		 * behavior is to do something: make sure it is not ignored.
1568 		 */
1569 		sigdelset(&p->p_ignore, sig);
1570 	}
1571 
1572 	if (sig == SIGCLD) {
1573 		if (flags & SA_NOCLDWAIT)
1574 			p->p_flag |= SNOWAIT;
1575 		else
1576 			p->p_flag &= ~SNOWAIT;
1577 
1578 		if (flags & SA_NOCLDSTOP)
1579 			p->p_flag &= ~SJCTL;
1580 		else
1581 			p->p_flag |= SJCTL;
1582 
1583 		if (p->p_flag & SNOWAIT || disp == SIG_IGN) {
1584 			proc_t *cp, *tp;
1585 
1586 			mutex_exit(&p->p_lock);
1587 			mutex_enter(&pidlock);
1588 			for (cp = p->p_child; cp != NULL; cp = tp) {
1589 				tp = cp->p_sibling;
1590 				if (cp->p_stat == SZOMB)
1591 					freeproc(cp);
1592 			}
1593 			mutex_exit(&pidlock);
1594 			mutex_enter(&p->p_lock);
1595 		}
1596 	}
1597 }
1598 
1599 /*
1600  * Set all signal actions not already set to SIG_DFL or SIG_IGN to SIG_DFL.
1601  * Called from exec_common() for a process undergoing execve()
1602  * and from cfork() for a newly-created child of vfork().
1603  * In the vfork() case, 'p' is not the current process.
1604  * In both cases, there is only one thread in the process.
1605  */
1606 void
1607 sigdefault(proc_t *p)
1608 {
1609 	kthread_t *t = p->p_tlist;
1610 	struct user *up = PTOU(p);
1611 	int sig;
1612 
1613 	ASSERT(MUTEX_HELD(&p->p_lock));
1614 
1615 	for (sig = 1; sig < NSIG; sig++) {
1616 		if (up->u_signal[sig - 1] != SIG_DFL &&
1617 		    up->u_signal[sig - 1] != SIG_IGN) {
1618 			up->u_signal[sig - 1] = SIG_DFL;
1619 			sigemptyset(&up->u_sigmask[sig - 1]);
1620 			if (sigismember(&ignoredefault, sig)) {
1621 				sigdelq(p, NULL, sig);
1622 				sigdelq(p, t, sig);
1623 			}
1624 			if (sig == SIGCLD)
1625 				p->p_flag &= ~(SNOWAIT|SJCTL);
1626 		}
1627 	}
1628 	sigorset(&p->p_ignore, &ignoredefault);
1629 	sigfillset(&p->p_siginfo);
1630 	sigdiffset(&p->p_siginfo, &cantmask);
1631 	sigdiffset(&p->p_sig, &ignoredefault);
1632 	sigdiffset(&p->p_extsig, &ignoredefault);
1633 	sigdiffset(&t->t_sig, &ignoredefault);
1634 	sigdiffset(&t->t_extsig, &ignoredefault);
1635 }
1636 
1637 void
1638 sigcld(proc_t *cp, sigqueue_t *sqp)
1639 {
1640 	proc_t *pp = cp->p_parent;
1641 
1642 	ASSERT(MUTEX_HELD(&pidlock));
1643 
1644 	switch (cp->p_wcode) {
1645 	case CLD_EXITED:
1646 	case CLD_DUMPED:
1647 	case CLD_KILLED:
1648 		ASSERT(cp->p_stat == SZOMB);
1649 		/*
1650 		 * The broadcast on p_srwchan_cv is a kludge to
1651 		 * wakeup a possible thread in uadmin(A_SHUTDOWN).
1652 		 */
1653 		cv_broadcast(&cp->p_srwchan_cv);
1654 
1655 		/*
1656 		 * Add to newstate list of the parent
1657 		 */
1658 		add_ns(pp, cp);
1659 
1660 		cv_broadcast(&pp->p_cv);
1661 		if ((pp->p_flag & SNOWAIT) ||
1662 		    (PTOU(pp)->u_signal[SIGCLD - 1] == SIG_IGN))
1663 			freeproc(cp);
1664 		else {
1665 			post_sigcld(cp, sqp);
1666 			sqp = NULL;
1667 		}
1668 		break;
1669 
1670 	case CLD_STOPPED:
1671 	case CLD_CONTINUED:
1672 		cv_broadcast(&pp->p_cv);
1673 		if (pp->p_flag & SJCTL) {
1674 			post_sigcld(cp, sqp);
1675 			sqp = NULL;
1676 		}
1677 		break;
1678 	}
1679 
1680 	if (sqp)
1681 		siginfofree(sqp);
1682 }
1683 
1684 /*
1685  * Common code called from sigcld() and issig_forreal()
1686  * Give the parent process a SIGCLD if it does not have one pending,
1687  * else mark the child process so a SIGCLD can be posted later.
1688  */
1689 static void
1690 post_sigcld(proc_t *cp, sigqueue_t *sqp)
1691 {
1692 	proc_t *pp = cp->p_parent;
1693 	void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1];
1694 	k_siginfo_t info;
1695 
1696 	ASSERT(MUTEX_HELD(&pidlock));
1697 	mutex_enter(&pp->p_lock);
1698 
1699 	/*
1700 	 * If a SIGCLD is pending, or if SIGCLD is not now being caught,
1701 	 * then just mark the child process so that its SIGCLD will
1702 	 * be posted later, when the first SIGCLD is taken off the
1703 	 * queue or when the parent is ready to receive it, if ever.
1704 	 */
1705 	if (handler == SIG_DFL || handler == SIG_IGN ||
1706 	    sigismember(&pp->p_sig, SIGCLD))
1707 		cp->p_pidflag |= CLDPEND;
1708 	else {
1709 		cp->p_pidflag &= ~CLDPEND;
1710 		if (sqp == NULL) {
1711 			/*
1712 			 * This can only happen when the parent is init.
1713 			 * (See call to sigcld(q, NULL) in exit().)
1714 			 * Use KM_NOSLEEP to avoid deadlock.
1715 			 */
1716 			ASSERT(pp == proc_init);
1717 			winfo(cp, &info, 0);
1718 			sigaddq(pp, NULL, &info, KM_NOSLEEP);
1719 		} else {
1720 			winfo(cp, &sqp->sq_info, 0);
1721 			sigaddqa(pp, NULL, sqp);
1722 			sqp = NULL;
1723 		}
1724 	}
1725 
1726 	mutex_exit(&pp->p_lock);
1727 
1728 	if (sqp)
1729 		siginfofree(sqp);
1730 }
1731 
1732 /*
1733  * Search for a child that has a pending SIGCLD for us, the parent.
1734  * The queue of SIGCLD signals is implied by the list of children.
1735  * We post the SIGCLD signals one at a time so they don't get lost.
1736  * When one is dequeued, another is enqueued, until there are no more.
1737  */
1738 void
1739 sigcld_repost()
1740 {
1741 	proc_t *pp = curproc;
1742 	proc_t *cp;
1743 	void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1];
1744 	sigqueue_t *sqp;
1745 
1746 	/*
1747 	 * Don't bother if SIGCLD is not now being caught.
1748 	 */
1749 	if (handler == SIG_DFL || handler == SIG_IGN)
1750 		return;
1751 
1752 	sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1753 	mutex_enter(&pidlock);
1754 	for (cp = pp->p_child; cp; cp = cp->p_sibling) {
1755 		if (cp->p_pidflag & CLDPEND) {
1756 			post_sigcld(cp, sqp);
1757 			mutex_exit(&pidlock);
1758 			return;
1759 		}
1760 	}
1761 	mutex_exit(&pidlock);
1762 	kmem_free(sqp, sizeof (sigqueue_t));
1763 }
1764 
1765 /*
1766  * count number of sigqueue send by sigaddqa()
1767  */
1768 void
1769 sigqsend(int cmd, proc_t *p, kthread_t *t, sigqueue_t *sigqp)
1770 {
1771 	sigqhdr_t *sqh;
1772 
1773 	sqh = (sigqhdr_t *)sigqp->sq_backptr;
1774 	ASSERT(sqh);
1775 
1776 	mutex_enter(&sqh->sqb_lock);
1777 	sqh->sqb_sent++;
1778 	mutex_exit(&sqh->sqb_lock);
1779 
1780 	if (cmd == SN_SEND)
1781 		sigaddqa(p, t, sigqp);
1782 	else
1783 		siginfofree(sigqp);
1784 }
1785 
1786 int
1787 sigsendproc(proc_t *p, sigsend_t *pv)
1788 {
1789 	struct cred *cr;
1790 	proc_t *myprocp = curproc;
1791 
1792 	ASSERT(MUTEX_HELD(&pidlock));
1793 
1794 	if (p->p_pid == 1 && pv->sig && sigismember(&cantmask, pv->sig))
1795 		return (EPERM);
1796 
1797 	cr = CRED();
1798 
1799 	if (pv->checkperm == 0 ||
1800 	    (pv->sig == SIGCONT && p->p_sessp == myprocp->p_sessp) ||
1801 	    prochasprocperm(p, myprocp, cr)) {
1802 		pv->perm++;
1803 		if (pv->sig) {
1804 			/* Make sure we should be setting si_pid and friends */
1805 			ASSERT(pv->sicode <= 0);
1806 			if (SI_CANQUEUE(pv->sicode)) {
1807 				sigqueue_t *sqp;
1808 
1809 				mutex_enter(&myprocp->p_lock);
1810 				sqp = sigqalloc(myprocp->p_sigqhdr);
1811 				mutex_exit(&myprocp->p_lock);
1812 				if (sqp == NULL)
1813 					return (EAGAIN);
1814 				sqp->sq_info.si_signo = pv->sig;
1815 				sqp->sq_info.si_code = pv->sicode;
1816 				sqp->sq_info.si_pid = myprocp->p_pid;
1817 				sqp->sq_info.si_ctid = PRCTID(myprocp);
1818 				sqp->sq_info.si_zoneid = getzoneid();
1819 				sqp->sq_info.si_uid = crgetruid(cr);
1820 				sqp->sq_info.si_value = pv->value;
1821 				mutex_enter(&p->p_lock);
1822 				sigqsend(SN_SEND, p, NULL, sqp);
1823 				mutex_exit(&p->p_lock);
1824 			} else {
1825 				k_siginfo_t info;
1826 				bzero(&info, sizeof (info));
1827 				info.si_signo = pv->sig;
1828 				info.si_code = pv->sicode;
1829 				info.si_pid = myprocp->p_pid;
1830 				info.si_ctid = PRCTID(myprocp);
1831 				info.si_zoneid = getzoneid();
1832 				info.si_uid = crgetruid(cr);
1833 				mutex_enter(&p->p_lock);
1834 				/*
1835 				 * XXX: Should be KM_SLEEP but
1836 				 * we have to avoid deadlock.
1837 				 */
1838 				sigaddq(p, NULL, &info, KM_NOSLEEP);
1839 				mutex_exit(&p->p_lock);
1840 			}
1841 		}
1842 	}
1843 
1844 	return (0);
1845 }
1846 
1847 int
1848 sigsendset(procset_t *psp, sigsend_t *pv)
1849 {
1850 	int error;
1851 
1852 	error = dotoprocs(psp, sigsendproc, (char *)pv);
1853 	if (error == 0 && pv->perm == 0)
1854 		return (EPERM);
1855 
1856 	return (error);
1857 }
1858 
1859 /*
1860  * Dequeue a queued siginfo structure.
1861  * If a non-null thread pointer is passed then dequeue from
1862  * the thread queue, otherwise dequeue from the process queue.
1863  */
1864 void
1865 sigdeq(proc_t *p, kthread_t *t, int sig, sigqueue_t **qpp)
1866 {
1867 	sigqueue_t **psqp, *sqp;
1868 
1869 	ASSERT(MUTEX_HELD(&p->p_lock));
1870 
1871 	*qpp = NULL;
1872 
1873 	if (t != NULL) {
1874 		sigdelset(&t->t_sig, sig);
1875 		sigdelset(&t->t_extsig, sig);
1876 		psqp = &t->t_sigqueue;
1877 	} else {
1878 		sigdelset(&p->p_sig, sig);
1879 		sigdelset(&p->p_extsig, sig);
1880 		psqp = &p->p_sigqueue;
1881 	}
1882 
1883 	for (;;) {
1884 		if ((sqp = *psqp) == NULL)
1885 			return;
1886 		if (sqp->sq_info.si_signo == sig)
1887 			break;
1888 		else
1889 			psqp = &sqp->sq_next;
1890 	}
1891 	*qpp = sqp;
1892 	*psqp = sqp->sq_next;
1893 	for (sqp = *psqp; sqp; sqp = sqp->sq_next) {
1894 		if (sqp->sq_info.si_signo == sig) {
1895 			if (t != (kthread_t *)NULL) {
1896 				sigaddset(&t->t_sig, sig);
1897 				t->t_sig_check = 1;
1898 			} else {
1899 				sigaddset(&p->p_sig, sig);
1900 				set_proc_ast(p);
1901 			}
1902 			break;
1903 		}
1904 	}
1905 }
1906 
1907 /*
1908  * Delete a queued SIGCLD siginfo structure matching the k_siginfo_t argument.
1909  */
1910 void
1911 sigcld_delete(k_siginfo_t *ip)
1912 {
1913 	proc_t *p = curproc;
1914 	int another_sigcld = 0;
1915 	sigqueue_t **psqp, *sqp;
1916 
1917 	ASSERT(ip->si_signo == SIGCLD);
1918 
1919 	mutex_enter(&p->p_lock);
1920 
1921 	if (!sigismember(&p->p_sig, SIGCLD)) {
1922 		mutex_exit(&p->p_lock);
1923 		return;
1924 	}
1925 
1926 	psqp = &p->p_sigqueue;
1927 	for (;;) {
1928 		if ((sqp = *psqp) == NULL) {
1929 			mutex_exit(&p->p_lock);
1930 			return;
1931 		}
1932 		if (sqp->sq_info.si_signo == SIGCLD) {
1933 			if (sqp->sq_info.si_pid == ip->si_pid &&
1934 			    sqp->sq_info.si_code == ip->si_code &&
1935 			    sqp->sq_info.si_status == ip->si_status)
1936 				break;
1937 			another_sigcld = 1;
1938 		}
1939 		psqp = &sqp->sq_next;
1940 	}
1941 	*psqp = sqp->sq_next;
1942 
1943 	siginfofree(sqp);
1944 
1945 	for (sqp = *psqp; !another_sigcld && sqp; sqp = sqp->sq_next) {
1946 		if (sqp->sq_info.si_signo == SIGCLD)
1947 			another_sigcld = 1;
1948 	}
1949 
1950 	if (!another_sigcld) {
1951 		sigdelset(&p->p_sig, SIGCLD);
1952 		sigdelset(&p->p_extsig, SIGCLD);
1953 	}
1954 
1955 	mutex_exit(&p->p_lock);
1956 }
1957 
1958 /*
1959  * Delete queued siginfo structures.
1960  * If a non-null thread pointer is passed then delete from
1961  * the thread queue, otherwise delete from the process queue.
1962  */
1963 void
1964 sigdelq(proc_t *p, kthread_t *t, int sig)
1965 {
1966 	sigqueue_t **psqp, *sqp;
1967 
1968 	/*
1969 	 * We must be holding p->p_lock unless the process is
1970 	 * being reaped or has failed to get started on fork.
1971 	 */
1972 	ASSERT(MUTEX_HELD(&p->p_lock) ||
1973 	    p->p_stat == SIDL || p->p_stat == SZOMB);
1974 
1975 	if (t != (kthread_t *)NULL)
1976 		psqp = &t->t_sigqueue;
1977 	else
1978 		psqp = &p->p_sigqueue;
1979 
1980 	while (*psqp) {
1981 		sqp = *psqp;
1982 		if (sig == 0 || sqp->sq_info.si_signo == sig) {
1983 			*psqp = sqp->sq_next;
1984 			siginfofree(sqp);
1985 		} else
1986 			psqp = &sqp->sq_next;
1987 	}
1988 }
1989 
1990 /*
1991  * Insert a siginfo structure into a queue.
1992  * If a non-null thread pointer is passed then add to the thread queue,
1993  * otherwise add to the process queue.
1994  *
1995  * The function sigaddqins() is called with sigqueue already allocated.
1996  * It is called from sigaddqa() and sigaddq() below.
1997  *
1998  * The value of si_code implicitly indicates whether sigp is to be
1999  * explicitly queued, or to be queued to depth one.
2000  */
2001 static void
2002 sigaddqins(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2003 {
2004 	sigqueue_t **psqp;
2005 	int sig = sigqp->sq_info.si_signo;
2006 
2007 	sigqp->sq_external = (curproc != &p0) &&
2008 	    (curproc->p_ct_process != p->p_ct_process);
2009 
2010 	/*
2011 	 * issig_forreal() doesn't bother dequeueing signals if SKILLED
2012 	 * is set, and even if it did, we would want to avoid situation
2013 	 * (which would be unique to SIGKILL) where one thread dequeued
2014 	 * the sigqueue_t and another executed psig().  So we create a
2015 	 * separate stash for SIGKILL's sigqueue_t.  Because a second
2016 	 * SIGKILL can set SEXTKILLED, we overwrite the existing entry
2017 	 * if (and only if) it was non-extracontractual.
2018 	 */
2019 	if (sig == SIGKILL) {
2020 		if (p->p_killsqp == NULL || !p->p_killsqp->sq_external) {
2021 			if (p->p_killsqp != NULL)
2022 				siginfofree(p->p_killsqp);
2023 			p->p_killsqp = sigqp;
2024 			sigqp->sq_next = NULL;
2025 		} else {
2026 			siginfofree(sigqp);
2027 		}
2028 		return;
2029 	}
2030 
2031 	ASSERT(sig >= 1 && sig < NSIG);
2032 	if (t != NULL)	/* directed to a thread */
2033 		psqp = &t->t_sigqueue;
2034 	else 		/* directed to a process */
2035 		psqp = &p->p_sigqueue;
2036 	if (SI_CANQUEUE(sigqp->sq_info.si_code) &&
2037 	    sigismember(&p->p_siginfo, sig)) {
2038 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next)
2039 				;
2040 	} else {
2041 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next) {
2042 			if ((*psqp)->sq_info.si_signo == sig) {
2043 				siginfofree(sigqp);
2044 				return;
2045 			}
2046 		}
2047 	}
2048 	*psqp = sigqp;
2049 	sigqp->sq_next = NULL;
2050 }
2051 
2052 /*
2053  * The function sigaddqa() is called with sigqueue already allocated.
2054  * If signal is ignored, discard but guarantee KILL and generation semantics.
2055  * It is called from sigqueue() and other places.
2056  */
2057 void
2058 sigaddqa(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2059 {
2060 	int sig = sigqp->sq_info.si_signo;
2061 
2062 	ASSERT(MUTEX_HELD(&p->p_lock));
2063 	ASSERT(sig >= 1 && sig < NSIG);
2064 
2065 	if (sig_discardable(p, sig))
2066 		siginfofree(sigqp);
2067 	else
2068 		sigaddqins(p, t, sigqp);
2069 
2070 	sigtoproc(p, t, sig);
2071 }
2072 
2073 /*
2074  * Allocate the sigqueue_t structure and call sigaddqins().
2075  */
2076 void
2077 sigaddq(proc_t *p, kthread_t *t, k_siginfo_t *infop, int km_flags)
2078 {
2079 	sigqueue_t *sqp;
2080 	int sig = infop->si_signo;
2081 
2082 	ASSERT(MUTEX_HELD(&p->p_lock));
2083 	ASSERT(sig >= 1 && sig < NSIG);
2084 
2085 	/*
2086 	 * If the signal will be discarded by sigtoproc() or
2087 	 * if the process isn't requesting siginfo and it isn't
2088 	 * blocking the signal (it *could* change it's mind while
2089 	 * the signal is pending) then don't bother creating one.
2090 	 */
2091 	if (!sig_discardable(p, sig) &&
2092 	    (sigismember(&p->p_siginfo, sig) ||
2093 	    (curproc->p_ct_process != p->p_ct_process) ||
2094 	    (sig == SIGCLD && SI_FROMKERNEL(infop))) &&
2095 	    ((sqp = kmem_alloc(sizeof (sigqueue_t), km_flags)) != NULL)) {
2096 		bcopy(infop, &sqp->sq_info, sizeof (k_siginfo_t));
2097 		sqp->sq_func = NULL;
2098 		sqp->sq_next = NULL;
2099 		sigaddqins(p, t, sqp);
2100 	}
2101 	sigtoproc(p, t, sig);
2102 }
2103 
2104 /*
2105  * Handle stop-on-fault processing for the debugger.  Returns 0
2106  * if the fault is cleared during the stop, nonzero if it isn't.
2107  */
2108 int
2109 stop_on_fault(uint_t fault, k_siginfo_t *sip)
2110 {
2111 	proc_t *p = ttoproc(curthread);
2112 	klwp_t *lwp = ttolwp(curthread);
2113 
2114 	ASSERT(prismember(&p->p_fltmask, fault));
2115 
2116 	/*
2117 	 * Record current fault and siginfo structure so debugger can
2118 	 * find it.
2119 	 */
2120 	mutex_enter(&p->p_lock);
2121 	lwp->lwp_curflt = (uchar_t)fault;
2122 	lwp->lwp_siginfo = *sip;
2123 
2124 	stop(PR_FAULTED, fault);
2125 
2126 	fault = lwp->lwp_curflt;
2127 	lwp->lwp_curflt = 0;
2128 	mutex_exit(&p->p_lock);
2129 	return (fault);
2130 }
2131 
2132 void
2133 sigorset(k_sigset_t *s1, k_sigset_t *s2)
2134 {
2135 	s1->__sigbits[0] |= s2->__sigbits[0];
2136 	s1->__sigbits[1] |= s2->__sigbits[1];
2137 }
2138 
2139 void
2140 sigandset(k_sigset_t *s1, k_sigset_t *s2)
2141 {
2142 	s1->__sigbits[0] &= s2->__sigbits[0];
2143 	s1->__sigbits[1] &= s2->__sigbits[1];
2144 }
2145 
2146 void
2147 sigdiffset(k_sigset_t *s1, k_sigset_t *s2)
2148 {
2149 	s1->__sigbits[0] &= ~(s2->__sigbits[0]);
2150 	s1->__sigbits[1] &= ~(s2->__sigbits[1]);
2151 }
2152 
2153 /*
2154  * Return non-zero if curthread->t_sig_check should be set to 1, that is,
2155  * if there are any signals the thread might take on return from the kernel.
2156  * If ksigset_t's were a single word, we would do:
2157  *	return (((p->p_sig | t->t_sig) & ~t->t_hold) & fillset);
2158  */
2159 int
2160 sigcheck(proc_t *p, kthread_t *t)
2161 {
2162 	sc_shared_t *tdp = t->t_schedctl;
2163 
2164 	/*
2165 	 * If signals are blocked via the schedctl interface
2166 	 * then we only check for the unmaskable signals.
2167 	 */
2168 	if (tdp != NULL && tdp->sc_sigblock)
2169 		return ((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2170 		    CANTMASK0);
2171 
2172 	return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2173 		    ~t->t_hold.__sigbits[0]) |
2174 		(((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) &
2175 		    ~t->t_hold.__sigbits[1]) & FILLSET1));
2176 }
2177 
2178 /* ONC_PLUS EXTRACT START */
2179 void
2180 sigintr(k_sigset_t *smask, int intable)
2181 {
2182 	proc_t *p;
2183 	int owned;
2184 	k_sigset_t lmask;		/* local copy of cantmask */
2185 	klwp_t *lwp = ttolwp(curthread);
2186 
2187 	/*
2188 	 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
2189 	 *    and SIGTERM. (Preserving the existing masks).
2190 	 *    This function supports the -intr nfs and ufs mount option.
2191 	 */
2192 
2193 	/*
2194 	 * don't do kernel threads
2195 	 */
2196 	if (lwp == NULL)
2197 		return;
2198 
2199 	/*
2200 	 * get access to signal mask
2201 	 */
2202 	p = ttoproc(curthread);
2203 	owned = mutex_owned(&p->p_lock);	/* this is filthy */
2204 	if (!owned)
2205 		mutex_enter(&p->p_lock);
2206 
2207 	/*
2208 	 * remember the current mask
2209 	 */
2210 	schedctl_finish_sigblock(curthread);
2211 	*smask = curthread->t_hold;
2212 
2213 	/*
2214 	 * mask out all signals
2215 	 */
2216 	sigfillset(&curthread->t_hold);
2217 
2218 	/*
2219 	 * Unmask the non-maskable signals (e.g., KILL), as long as
2220 	 * they aren't already masked (which could happen at exit).
2221 	 * The first sigdiffset sets lmask to (cantmask & ~curhold).  The
2222 	 * second sets the current hold mask to (~0 & ~lmask), which reduces
2223 	 * to (~cantmask | curhold).
2224 	 */
2225 	lmask = cantmask;
2226 	sigdiffset(&lmask, smask);
2227 	sigdiffset(&curthread->t_hold, &lmask);
2228 
2229 	/*
2230 	 * Re-enable HUP, QUIT, and TERM iff they were originally enabled
2231 	 * Re-enable INT if it's originally enabled and the NFS mount option
2232 	 * nointr is not set.
2233 	 */
2234 	if (!sigismember(smask, SIGHUP))
2235 		sigdelset(&curthread->t_hold, SIGHUP);
2236 	if (!sigismember(smask, SIGINT) && intable)
2237 		sigdelset(&curthread->t_hold, SIGINT);
2238 	if (!sigismember(smask, SIGQUIT))
2239 		sigdelset(&curthread->t_hold, SIGQUIT);
2240 	if (!sigismember(smask, SIGTERM))
2241 		sigdelset(&curthread->t_hold, SIGTERM);
2242 
2243 	/*
2244 	 * release access to signal mask
2245 	 */
2246 	if (!owned)
2247 		mutex_exit(&p->p_lock);
2248 
2249 	/*
2250 	 * Indicate that this lwp is not to be stopped.
2251 	 */
2252 	lwp->lwp_nostop++;
2253 
2254 }
2255 /* ONC_PLUS EXTRACT END */
2256 
2257 void
2258 sigunintr(k_sigset_t *smask)
2259 {
2260 	proc_t *p;
2261 	int owned;
2262 	klwp_t *lwp = ttolwp(curthread);
2263 
2264 	/*
2265 	 * Reset previous mask (See sigintr() above)
2266 	 */
2267 	if (lwp != NULL) {
2268 		lwp->lwp_nostop--;	/* restore lwp stoppability */
2269 		p = ttoproc(curthread);
2270 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2271 		if (!owned)
2272 			mutex_enter(&p->p_lock);
2273 		curthread->t_hold = *smask;
2274 		/* so unmasked signals will be seen */
2275 		curthread->t_sig_check = 1;
2276 		if (!owned)
2277 			mutex_exit(&p->p_lock);
2278 	}
2279 }
2280 
2281 void
2282 sigreplace(k_sigset_t *newmask, k_sigset_t *oldmask)
2283 {
2284 	proc_t	*p;
2285 	int owned;
2286 	/*
2287 	 * Save current signal mask in oldmask, then
2288 	 * set it to newmask.
2289 	 */
2290 	if (ttolwp(curthread) != NULL) {
2291 		p = ttoproc(curthread);
2292 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2293 		if (!owned)
2294 			mutex_enter(&p->p_lock);
2295 		schedctl_finish_sigblock(curthread);
2296 		if (oldmask != NULL)
2297 			*oldmask = curthread->t_hold;
2298 		curthread->t_hold = *newmask;
2299 		curthread->t_sig_check = 1;
2300 		if (!owned)
2301 			mutex_exit(&p->p_lock);
2302 	}
2303 }
2304 
2305 /*
2306  * Return true if the signal number is in range
2307  * and the signal code specifies signal queueing.
2308  */
2309 int
2310 sigwillqueue(int sig, int code)
2311 {
2312 	if (sig >= 0 && sig < NSIG) {
2313 		switch (code) {
2314 		case SI_QUEUE:
2315 		case SI_TIMER:
2316 		case SI_ASYNCIO:
2317 		case SI_MESGQ:
2318 			return (1);
2319 		}
2320 	}
2321 	return (0);
2322 }
2323 
2324 #ifndef	UCHAR_MAX
2325 #define	UCHAR_MAX	255
2326 #endif
2327 
2328 /*
2329  * The entire pool (with maxcount entries) is pre-allocated at
2330  * the first sigqueue/signotify call.
2331  */
2332 sigqhdr_t *
2333 sigqhdralloc(size_t size, uint_t maxcount)
2334 {
2335 	size_t i;
2336 	sigqueue_t *sq, *next;
2337 	sigqhdr_t *sqh;
2338 
2339 	i = (maxcount * size) + sizeof (sigqhdr_t);
2340 	ASSERT(maxcount <= UCHAR_MAX && i <= USHRT_MAX);
2341 	sqh = kmem_alloc(i, KM_SLEEP);
2342 	sqh->sqb_count = (uchar_t)maxcount;
2343 	sqh->sqb_maxcount = (uchar_t)maxcount;
2344 	sqh->sqb_size = (ushort_t)i;
2345 	sqh->sqb_pexited = 0;
2346 	sqh->sqb_sent = 0;
2347 	sqh->sqb_free = sq = (sigqueue_t *)(sqh + 1);
2348 	for (i = maxcount - 1; i != 0; i--) {
2349 		next = (sigqueue_t *)((uintptr_t)sq + size);
2350 		sq->sq_next = next;
2351 		sq = next;
2352 	}
2353 	sq->sq_next = NULL;
2354 	mutex_init(&sqh->sqb_lock, NULL, MUTEX_DEFAULT, NULL);
2355 	return (sqh);
2356 }
2357 
2358 static void sigqrel(sigqueue_t *);
2359 
2360 /*
2361  * allocate a sigqueue/signotify structure from the per process
2362  * pre-allocated pool.
2363  */
2364 sigqueue_t *
2365 sigqalloc(sigqhdr_t *sqh)
2366 {
2367 	sigqueue_t *sq = NULL;
2368 
2369 	ASSERT(MUTEX_HELD(&curproc->p_lock));
2370 
2371 	if (sqh != NULL) {
2372 		mutex_enter(&sqh->sqb_lock);
2373 		if (sqh->sqb_count > 0) {
2374 			sqh->sqb_count--;
2375 			sq = sqh->sqb_free;
2376 			sqh->sqb_free = sq->sq_next;
2377 			mutex_exit(&sqh->sqb_lock);
2378 			bzero(&sq->sq_info, sizeof (k_siginfo_t));
2379 			sq->sq_backptr = sqh;
2380 			sq->sq_func = sigqrel;
2381 			sq->sq_next = NULL;
2382 			sq->sq_external = 0;
2383 		} else {
2384 			mutex_exit(&sqh->sqb_lock);
2385 		}
2386 	}
2387 	return (sq);
2388 }
2389 
2390 /*
2391  * Return a sigqueue structure back to the pre-allocated pool.
2392  */
2393 static void
2394 sigqrel(sigqueue_t *sq)
2395 {
2396 	sigqhdr_t *sqh;
2397 
2398 	/* make sure that p_lock of the affected process is held */
2399 
2400 	sqh = (sigqhdr_t *)sq->sq_backptr;
2401 	mutex_enter(&sqh->sqb_lock);
2402 	if (sqh->sqb_pexited && sqh->sqb_sent == 1) {
2403 		mutex_exit(&sqh->sqb_lock);
2404 		mutex_destroy(&sqh->sqb_lock);
2405 		kmem_free(sqh, sqh->sqb_size);
2406 	} else {
2407 		sqh->sqb_count++;
2408 		sqh->sqb_sent--;
2409 		sq->sq_next = sqh->sqb_free;
2410 		sq->sq_backptr = NULL;
2411 		sqh->sqb_free = sq;
2412 		mutex_exit(&sqh->sqb_lock);
2413 	}
2414 }
2415 
2416 /*
2417  * Free up the pre-allocated sigqueue headers of sigqueue pool
2418  * and signotify pool, if possible.
2419  * Called only by the owning process during exec() and exit().
2420  */
2421 void
2422 sigqfree(proc_t *p)
2423 {
2424 	ASSERT(MUTEX_HELD(&p->p_lock));
2425 
2426 	if (p->p_sigqhdr != NULL) {	/* sigqueue pool */
2427 		sigqhdrfree(p->p_sigqhdr);
2428 		p->p_sigqhdr = NULL;
2429 	}
2430 	if (p->p_signhdr != NULL) {	/* signotify pool */
2431 		sigqhdrfree(p->p_signhdr);
2432 		p->p_signhdr = NULL;
2433 	}
2434 }
2435 
2436 /*
2437  * Free up the pre-allocated header and sigq pool if possible.
2438  */
2439 void
2440 sigqhdrfree(sigqhdr_t *sqh)
2441 {
2442 	mutex_enter(&sqh->sqb_lock);
2443 	if (sqh->sqb_sent == 0) {
2444 		mutex_exit(&sqh->sqb_lock);
2445 		mutex_destroy(&sqh->sqb_lock);
2446 		kmem_free(sqh, sqh->sqb_size);
2447 	} else {
2448 		sqh->sqb_pexited = 1;
2449 		mutex_exit(&sqh->sqb_lock);
2450 	}
2451 }
2452 
2453 /*
2454  * Free up a single sigqueue structure.
2455  * No other code should free a sigqueue directly.
2456  */
2457 void
2458 siginfofree(sigqueue_t *sqp)
2459 {
2460 	if (sqp != NULL) {
2461 		if (sqp->sq_func != NULL)
2462 			(sqp->sq_func)(sqp);
2463 		else
2464 			kmem_free(sqp, sizeof (sigqueue_t));
2465 	}
2466 }
2467 
2468 /*
2469  * Generate a synchronous signal caused by a hardware
2470  * condition encountered by an lwp.  Called from trap().
2471  */
2472 void
2473 trapsig(k_siginfo_t *ip, int restartable)
2474 {
2475 	proc_t *p = ttoproc(curthread);
2476 	int sig = ip->si_signo;
2477 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
2478 
2479 	ASSERT(sig > 0 && sig < NSIG);
2480 
2481 	if (curthread->t_dtrace_on)
2482 		dtrace_safe_synchronous_signal();
2483 
2484 	mutex_enter(&p->p_lock);
2485 	schedctl_finish_sigblock(curthread);
2486 	/*
2487 	 * Avoid a possible infinite loop if the lwp is holding the
2488 	 * signal generated by a trap of a restartable instruction or
2489 	 * if the signal so generated is being ignored by the process.
2490 	 */
2491 	if (restartable &&
2492 	    (sigismember(&curthread->t_hold, sig) ||
2493 	    p->p_user.u_signal[sig-1] == SIG_IGN)) {
2494 		sigdelset(&curthread->t_hold, sig);
2495 		p->p_user.u_signal[sig-1] = SIG_DFL;
2496 		sigdelset(&p->p_ignore, sig);
2497 	}
2498 	bcopy(ip, &sqp->sq_info, sizeof (k_siginfo_t));
2499 	sigaddqa(p, curthread, sqp);
2500 	mutex_exit(&p->p_lock);
2501 }
2502 
2503 #ifdef _SYSCALL32_IMPL
2504 
2505 /*
2506  * It's tricky to transmit a sigval between 32-bit and 64-bit
2507  * process, since in the 64-bit world, a pointer and an integer
2508  * are different sizes.  Since we're constrained by the standards
2509  * world not to change the types, and it's unclear how useful it is
2510  * to send pointers between address spaces this way, we preserve
2511  * the 'int' interpretation for 32-bit processes interoperating
2512  * with 64-bit processes.  The full semantics (pointers or integers)
2513  * are available for N-bit processes interoperating with N-bit
2514  * processes.
2515  */
2516 void
2517 siginfo_kto32(const k_siginfo_t *src, siginfo32_t *dest)
2518 {
2519 	bzero(dest, sizeof (*dest));
2520 
2521 	/*
2522 	 * The absolute minimum content is si_signo and si_code.
2523 	 */
2524 	dest->si_signo = src->si_signo;
2525 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2526 		return;
2527 
2528 	/*
2529 	 * A siginfo generated by user level is structured
2530 	 * differently from one generated by the kernel.
2531 	 */
2532 	if (SI_FROMUSER(src)) {
2533 		dest->si_pid = src->si_pid;
2534 		dest->si_ctid = src->si_ctid;
2535 		dest->si_zoneid = src->si_zoneid;
2536 		dest->si_uid = src->si_uid;
2537 		if (SI_CANQUEUE(src->si_code))
2538 			dest->si_value.sival_int =
2539 				(int32_t)src->si_value.sival_int;
2540 		return;
2541 	}
2542 
2543 	dest->si_errno = src->si_errno;
2544 
2545 	switch (src->si_signo) {
2546 	default:
2547 		dest->si_pid = src->si_pid;
2548 		dest->si_ctid = src->si_ctid;
2549 		dest->si_zoneid = src->si_zoneid;
2550 		dest->si_uid = src->si_uid;
2551 		dest->si_value.sival_int = (int32_t)src->si_value.sival_int;
2552 		break;
2553 	case SIGCLD:
2554 		dest->si_pid = src->si_pid;
2555 		dest->si_ctid = src->si_ctid;
2556 		dest->si_zoneid = src->si_zoneid;
2557 		dest->si_status = src->si_status;
2558 		dest->si_stime = src->si_stime;
2559 		dest->si_utime = src->si_utime;
2560 		break;
2561 	case SIGSEGV:
2562 	case SIGBUS:
2563 	case SIGILL:
2564 	case SIGTRAP:
2565 	case SIGFPE:
2566 	case SIGEMT:
2567 		dest->si_addr = (caddr32_t)(uintptr_t)src->si_addr;
2568 		dest->si_trapno = src->si_trapno;
2569 		dest->si_pc = (caddr32_t)(uintptr_t)src->si_pc;
2570 		break;
2571 	case SIGPOLL:
2572 	case SIGXFSZ:
2573 		dest->si_fd = src->si_fd;
2574 		dest->si_band = src->si_band;
2575 		break;
2576 	case SIGPROF:
2577 		dest->si_faddr = (caddr32_t)(uintptr_t)src->si_faddr;
2578 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2579 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2580 		dest->si_syscall = src->si_syscall;
2581 		dest->si_nsysarg = src->si_nsysarg;
2582 		dest->si_fault = src->si_fault;
2583 		break;
2584 	}
2585 }
2586 
2587 void
2588 siginfo_32tok(const siginfo32_t *src, k_siginfo_t *dest)
2589 {
2590 	bzero(dest, sizeof (*dest));
2591 
2592 	/*
2593 	 * The absolute minimum content is si_signo and si_code.
2594 	 */
2595 	dest->si_signo = src->si_signo;
2596 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2597 		return;
2598 
2599 	/*
2600 	 * A siginfo generated by user level is structured
2601 	 * differently from one generated by the kernel.
2602 	 */
2603 	if (SI_FROMUSER(src)) {
2604 		dest->si_pid = src->si_pid;
2605 		dest->si_ctid = src->si_ctid;
2606 		dest->si_zoneid = src->si_zoneid;
2607 		dest->si_uid = src->si_uid;
2608 		if (SI_CANQUEUE(src->si_code))
2609 			dest->si_value.sival_int =
2610 				(int)src->si_value.sival_int;
2611 		return;
2612 	}
2613 
2614 	dest->si_errno = src->si_errno;
2615 
2616 	switch (src->si_signo) {
2617 	default:
2618 		dest->si_pid = src->si_pid;
2619 		dest->si_ctid = src->si_ctid;
2620 		dest->si_zoneid = src->si_zoneid;
2621 		dest->si_uid = src->si_uid;
2622 		dest->si_value.sival_int = (int)src->si_value.sival_int;
2623 		break;
2624 	case SIGCLD:
2625 		dest->si_pid = src->si_pid;
2626 		dest->si_ctid = src->si_ctid;
2627 		dest->si_zoneid = src->si_zoneid;
2628 		dest->si_status = src->si_status;
2629 		dest->si_stime = src->si_stime;
2630 		dest->si_utime = src->si_utime;
2631 		break;
2632 	case SIGSEGV:
2633 	case SIGBUS:
2634 	case SIGILL:
2635 	case SIGTRAP:
2636 	case SIGFPE:
2637 	case SIGEMT:
2638 		dest->si_addr = (void *)(uintptr_t)src->si_addr;
2639 		dest->si_trapno = src->si_trapno;
2640 		dest->si_pc = (void *)(uintptr_t)src->si_pc;
2641 		break;
2642 	case SIGPOLL:
2643 	case SIGXFSZ:
2644 		dest->si_fd = src->si_fd;
2645 		dest->si_band = src->si_band;
2646 		break;
2647 	case SIGPROF:
2648 		dest->si_faddr = (void *)(uintptr_t)src->si_faddr;
2649 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2650 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2651 		dest->si_syscall = src->si_syscall;
2652 		dest->si_nsysarg = src->si_nsysarg;
2653 		dest->si_fault = src->si_fault;
2654 		break;
2655 	}
2656 }
2657 
2658 #endif /* _SYSCALL32_IMPL */
2659