xref: /titanic_50/usr/src/uts/common/os/sig.c (revision 6cd9e705a60bbefe49d1a9cfff2944eaf6312c8b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 #include <sys/param.h>
31 #include <sys/types.h>
32 #include <sys/bitmap.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/cred.h>
36 #include <sys/user.h>
37 #include <sys/errno.h>
38 #include <sys/proc.h>
39 #include <sys/poll_impl.h> /* only needed for kludge in sigwaiting_send() */
40 #include <sys/signal.h>
41 #include <sys/siginfo.h>
42 #include <sys/fault.h>
43 #include <sys/ucontext.h>
44 #include <sys/procfs.h>
45 #include <sys/wait.h>
46 #include <sys/class.h>
47 #include <sys/mman.h>
48 #include <sys/procset.h>
49 #include <sys/kmem.h>
50 #include <sys/cpuvar.h>
51 #include <sys/prsystm.h>
52 #include <sys/debug.h>
53 #include <vm/as.h>
54 #include <sys/bitmap.h>
55 #include <c2/audit.h>
56 #include <sys/core.h>
57 #include <sys/schedctl.h>
58 #include <sys/contract/process_impl.h>
59 #include <sys/dtrace.h>
60 #include <sys/sdt.h>
61 
62 				/* MUST be contiguous */
63 k_sigset_t nullsmask = {0, 0};
64 
65 k_sigset_t fillset = {FILLSET0, FILLSET1};
66 
67 k_sigset_t cantmask = {CANTMASK0, CANTMASK1};
68 
69 k_sigset_t cantreset = {(sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGPWR)), 0};
70 
71 k_sigset_t ignoredefault = {(sigmask(SIGCONT)|sigmask(SIGCLD)|sigmask(SIGPWR)
72 			|sigmask(SIGWINCH)|sigmask(SIGURG)|sigmask(SIGWAITING)),
73 			(sigmask(SIGLWP)|sigmask(SIGCANCEL)|sigmask(SIGFREEZE)
74 			|sigmask(SIGTHAW)|sigmask(SIGXRES)|sigmask(SIGJVM1)
75 			|sigmask(SIGJVM2))};
76 
77 k_sigset_t stopdefault = {(sigmask(SIGSTOP)|sigmask(SIGTSTP)
78 			|sigmask(SIGTTOU)|sigmask(SIGTTIN)), 0};
79 
80 k_sigset_t coredefault = {(sigmask(SIGQUIT)|sigmask(SIGILL)|sigmask(SIGTRAP)
81 			|sigmask(SIGIOT)|sigmask(SIGEMT)|sigmask(SIGFPE)
82 			|sigmask(SIGBUS)|sigmask(SIGSEGV)|sigmask(SIGSYS)
83 			|sigmask(SIGXCPU)|sigmask(SIGXFSZ)), 0};
84 
85 k_sigset_t holdvfork = {(sigmask(SIGTTOU)|sigmask(SIGTTIN)|sigmask(SIGTSTP)),
86 			0};
87 
88 static	int	isjobstop(int);
89 static	void	post_sigcld(proc_t *, sigqueue_t *);
90 
91 /*
92  * Internal variables for counting number of user thread stop requests posted.
93  * They may not be accurate at some special situation such as that a virtually
94  * stopped thread starts to run.
95  */
96 static int num_utstop;
97 /*
98  * Internal variables for broadcasting an event when all thread stop requests
99  * are processed.
100  */
101 static kcondvar_t utstop_cv;
102 
103 static kmutex_t thread_stop_lock;
104 void del_one_utstop(void);
105 
106 /*
107  * Send the specified signal to the specified process.
108  */
109 void
110 psignal(proc_t *p, int sig)
111 {
112 	mutex_enter(&p->p_lock);
113 	sigtoproc(p, NULL, sig);
114 	mutex_exit(&p->p_lock);
115 }
116 
117 /*
118  * Send the specified signal to the specified thread.
119  */
120 void
121 tsignal(kthread_t *t, int sig)
122 {
123 	proc_t *p = ttoproc(t);
124 
125 	mutex_enter(&p->p_lock);
126 	sigtoproc(p, t, sig);
127 	mutex_exit(&p->p_lock);
128 }
129 
130 int
131 signal_is_blocked(kthread_t *t, int sig)
132 {
133 	return (sigismember(&t->t_hold, sig) ||
134 	    (schedctl_sigblock(t) && !sigismember(&cantmask, sig)));
135 }
136 
137 /*
138  * Return true if the signal can safely be discarded on generation.
139  * That is, if there is no need for the signal on the receiving end.
140  * The answer is true if the process is a zombie or
141  * if all of these conditions are true:
142  *	the signal is being ignored
143  *	the process is single-threaded
144  *	the signal is not being traced by /proc
145  * 	the signal is not blocked by the process
146  *	the signal is not being accepted via sigwait()
147  */
148 static int
149 sig_discardable(proc_t *p, int sig)
150 {
151 	kthread_t *t = p->p_tlist;
152 
153 	return (t == NULL ||		/* if zombie or ... */
154 	    (sigismember(&p->p_ignore, sig) &&	/* signal is ignored */
155 	    t->t_forw == t &&			/* and single-threaded */
156 	    !tracing(p, sig) &&			/* and no /proc tracing */
157 	    !signal_is_blocked(t, sig) &&	/* and signal not blocked */
158 	    !sigismember(&t->t_sigwait, sig)));	/* and not being accepted */
159 }
160 
161 /*
162  * Return true if this thread is going to eat this signal soon.
163  * Note that, if the signal is SIGKILL, we force stopped threads to be
164  * set running (to make SIGKILL be a sure kill), but only if the process
165  * is not currently locked by /proc (the P_PR_LOCK flag).  Code in /proc
166  * relies on the fact that a process will not change shape while P_PR_LOCK
167  * is set (it drops and reacquires p->p_lock while leaving P_PR_LOCK set).
168  * We wish that we could simply call prbarrier() below, in sigtoproc(), to
169  * ensure that the process is not locked by /proc, but prbarrier() drops
170  * and reacquires p->p_lock and dropping p->p_lock here would be damaging.
171  */
172 int
173 eat_signal(kthread_t *t, int sig)
174 {
175 	int rval = 0;
176 	ASSERT(THREAD_LOCK_HELD(t));
177 
178 	/*
179 	 * Do not do anything if the target thread has the signal blocked.
180 	 */
181 	if (!signal_is_blocked(t, sig)) {
182 		t->t_sig_check = 1;	/* have thread do an issig */
183 		if (ISWAKEABLE(t) || ISWAITING(t)) {
184 			setrun_locked(t);
185 			rval = 1;
186 		} else if (t->t_state == TS_STOPPED && sig == SIGKILL &&
187 		    !(ttoproc(t)->p_proc_flag & P_PR_LOCK)) {
188 			ttoproc(t)->p_stopsig = 0;
189 			t->t_dtrace_stop = 0;
190 			t->t_schedflag |= TS_XSTART | TS_PSTART;
191 			setrun_locked(t);
192 		} else if (t != curthread && t->t_state == TS_ONPROC) {
193 			aston(t);	/* make it do issig promptly */
194 			if (t->t_cpu != CPU)
195 				poke_cpu(t->t_cpu->cpu_id);
196 			rval = 1;
197 		} else if (t->t_state == TS_RUN) {
198 			rval = 1;
199 		}
200 	}
201 
202 	return (rval);
203 }
204 
205 /*
206  * Post a signal.
207  * If a non-null thread pointer is passed, then post the signal
208  * to the thread/lwp, otherwise post the signal to the process.
209  */
210 void
211 sigtoproc(proc_t *p, kthread_t *t, int sig)
212 {
213 	kthread_t *tt;
214 	int ext = !(curproc->p_flag & SSYS) &&
215 	    (curproc->p_ct_process != p->p_ct_process);
216 
217 	ASSERT(MUTEX_HELD(&p->p_lock));
218 
219 	if (sig <= 0 || sig >= NSIG)
220 		return;
221 
222 	/*
223 	 * Regardless of origin or directedness,
224 	 * SIGKILL kills all lwps in the process immediately
225 	 * and jobcontrol signals affect all lwps in the process.
226 	 */
227 	if (sig == SIGKILL) {
228 		p->p_flag |= SKILLED | (ext ? SEXTKILLED : 0);
229 		t = NULL;
230 	} else if (sig == SIGCONT) {
231 		/*
232 		 * The SSCONT flag will remain set until a stopping
233 		 * signal comes in (below).  This is harmless.
234 		 */
235 		p->p_flag |= SSCONT;
236 		sigdelq(p, NULL, SIGSTOP);
237 		sigdelq(p, NULL, SIGTSTP);
238 		sigdelq(p, NULL, SIGTTOU);
239 		sigdelq(p, NULL, SIGTTIN);
240 		sigdiffset(&p->p_sig, &stopdefault);
241 		sigdiffset(&p->p_extsig, &stopdefault);
242 		p->p_stopsig = 0;
243 		if ((tt = p->p_tlist) != NULL) {
244 			do {
245 				sigdelq(p, tt, SIGSTOP);
246 				sigdelq(p, tt, SIGTSTP);
247 				sigdelq(p, tt, SIGTTOU);
248 				sigdelq(p, tt, SIGTTIN);
249 				sigdiffset(&tt->t_sig, &stopdefault);
250 				sigdiffset(&tt->t_extsig, &stopdefault);
251 			} while ((tt = tt->t_forw) != p->p_tlist);
252 		}
253 		if ((tt = p->p_tlist) != NULL) {
254 			do {
255 				thread_lock(tt);
256 				if (tt->t_state == TS_STOPPED &&
257 				    tt->t_whystop == PR_JOBCONTROL) {
258 					tt->t_schedflag |= TS_XSTART;
259 					setrun_locked(tt);
260 				}
261 				thread_unlock(tt);
262 			} while ((tt = tt->t_forw) != p->p_tlist);
263 		}
264 	} else if (sigismember(&stopdefault, sig)) {
265 		/*
266 		 * This test has a race condition which we can't fix:
267 		 * By the time the stopping signal is received by
268 		 * the target process/thread, the signal handler
269 		 * and/or the detached state might have changed.
270 		 */
271 		if (PTOU(p)->u_signal[sig-1] == SIG_DFL &&
272 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned))
273 			p->p_flag &= ~SSCONT;
274 		sigdelq(p, NULL, SIGCONT);
275 		sigdelset(&p->p_sig, SIGCONT);
276 		sigdelset(&p->p_extsig, SIGCONT);
277 		if ((tt = p->p_tlist) != NULL) {
278 			do {
279 				sigdelq(p, tt, SIGCONT);
280 				sigdelset(&tt->t_sig, SIGCONT);
281 				sigdelset(&tt->t_extsig, SIGCONT);
282 			} while ((tt = tt->t_forw) != p->p_tlist);
283 		}
284 	}
285 
286 	if (sig_discardable(p, sig)) {
287 		DTRACE_PROC3(signal__discard, kthread_t *, p->p_tlist,
288 		    proc_t *, p, int, sig);
289 		return;
290 	}
291 
292 	if (t != NULL) {
293 		/*
294 		 * This is a directed signal, wake up the lwp.
295 		 */
296 		sigaddset(&t->t_sig, sig);
297 		if (ext)
298 			sigaddset(&t->t_extsig, sig);
299 		thread_lock(t);
300 		(void) eat_signal(t, sig);
301 		thread_unlock(t);
302 		DTRACE_PROC2(signal__send, kthread_t *, t, int, sig);
303 	} else if ((tt = p->p_tlist) != NULL) {
304 		/*
305 		 * Make sure that some lwp that already exists
306 		 * in the process fields the signal soon.
307 		 * Wake up an interruptibly sleeping lwp if necessary.
308 		 * For SIGKILL make all of the lwps see the signal;
309 		 * This is needed to guarantee a sure kill for processes
310 		 * with a mix of realtime and non-realtime threads.
311 		 */
312 		int su = 0;
313 
314 		sigaddset(&p->p_sig, sig);
315 		if (ext)
316 			sigaddset(&p->p_extsig, sig);
317 		do {
318 			thread_lock(tt);
319 			if (eat_signal(tt, sig) && sig != SIGKILL) {
320 				thread_unlock(tt);
321 				break;
322 			}
323 			if (SUSPENDED(tt))
324 				su++;
325 			thread_unlock(tt);
326 		} while ((tt = tt->t_forw) != p->p_tlist);
327 		/*
328 		 * If the process is deadlocked, make somebody run and die.
329 		 */
330 		if (sig == SIGKILL && p->p_stat != SIDL &&
331 		    p->p_lwprcnt == 0 && p->p_lwpcnt == su &&
332 		    !(p->p_proc_flag & P_PR_LOCK)) {
333 			thread_lock(tt);
334 			p->p_lwprcnt++;
335 			tt->t_schedflag |= TS_CSTART;
336 			setrun_locked(tt);
337 			thread_unlock(tt);
338 		}
339 
340 		DTRACE_PROC2(signal__send, kthread_t *, tt, int, sig);
341 	}
342 }
343 
344 static int
345 isjobstop(int sig)
346 {
347 	proc_t *p = ttoproc(curthread);
348 
349 	ASSERT(MUTEX_HELD(&p->p_lock));
350 
351 	if (PTOU(curproc)->u_signal[sig-1] == SIG_DFL &&
352 	    sigismember(&stopdefault, sig)) {
353 		/*
354 		 * If SIGCONT has been posted since we promoted this signal
355 		 * from pending to current, then don't do a jobcontrol stop.
356 		 */
357 		if (!(p->p_flag & SSCONT) &&
358 		    (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned) &&
359 		    curthread != p->p_agenttp) {
360 			sigqueue_t *sqp;
361 
362 			stop(PR_JOBCONTROL, sig);
363 			mutex_exit(&p->p_lock);
364 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
365 			mutex_enter(&pidlock);
366 			/*
367 			 * Only the first lwp to continue notifies the parent.
368 			 */
369 			if (p->p_pidflag & CLDCONT)
370 				siginfofree(sqp);
371 			else {
372 				p->p_pidflag |= CLDCONT;
373 				p->p_wcode = CLD_CONTINUED;
374 				p->p_wdata = SIGCONT;
375 				sigcld(p, sqp);
376 			}
377 			mutex_exit(&pidlock);
378 			mutex_enter(&p->p_lock);
379 		}
380 		return (1);
381 	}
382 	return (0);
383 }
384 
385 /*
386  * Returns true if the current process has a signal to process, and
387  * the signal is not held.  The signal to process is put in p_cursig.
388  * This is asked at least once each time a process enters the system
389  * (though this can usually be done without actually calling issig by
390  * checking the pending signal masks).  A signal does not do anything
391  * directly to a process; it sets a flag that asks the process to do
392  * something to itself.
393  *
394  * The "why" argument indicates the allowable side-effects of the call:
395  *
396  * FORREAL:  Extract the next pending signal from p_sig into p_cursig;
397  * stop the process if a stop has been requested or if a traced signal
398  * is pending.
399  *
400  * JUSTLOOKING:  Don't stop the process, just indicate whether or not
401  * a signal might be pending (FORREAL is needed to tell for sure).
402  *
403  * XXX: Changes to the logic in these routines should be propagated
404  * to lm_sigispending().  See bug 1201594.
405  */
406 
407 static int issig_forreal(void);
408 static int issig_justlooking(void);
409 
410 int
411 issig(int why)
412 {
413 	ASSERT(why == FORREAL || why == JUSTLOOKING);
414 
415 	return ((why == FORREAL)? issig_forreal() : issig_justlooking());
416 }
417 
418 
419 static int
420 issig_justlooking(void)
421 {
422 	kthread_t *t = curthread;
423 	klwp_t *lwp = ttolwp(t);
424 	proc_t *p = ttoproc(t);
425 	k_sigset_t set;
426 
427 	/*
428 	 * This function answers the question:
429 	 * "Is there any reason to call issig_forreal()?"
430 	 *
431 	 * We have to answer the question w/o grabbing any locks
432 	 * because we are (most likely) being called after we
433 	 * put ourselves on the sleep queue.
434 	 */
435 
436 	if (t->t_dtrace_stop | t->t_dtrace_sig)
437 		return (1);
438 
439 	/*
440 	 * Another piece of complexity in this process.  When single-stepping a
441 	 * process, we don't want an intervening signal or TP_PAUSE request to
442 	 * suspend the current thread.  Otherwise, the controlling process will
443 	 * hang beacuse we will be stopped with TS_PSTART set in t_schedflag.
444 	 * We will trigger any remaining signals when we re-enter the kernel on
445 	 * the single step trap.
446 	 */
447 	if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP)
448 		return (0);
449 
450 	if ((lwp->lwp_asleep && MUSTRETURN(p, t)) ||
451 	    (p->p_flag & (SEXITLWPS|SKILLED)) ||
452 	    (lwp->lwp_nostop == 0 &&
453 	    (p->p_stopsig | (p->p_flag & (SHOLDFORK1|SHOLDWATCH)) |
454 	    (t->t_proc_flag &
455 	    (TP_PRSTOP|TP_HOLDLWP|TP_CHKPT|TP_PAUSE)))) ||
456 	    lwp->lwp_cursig)
457 		return (1);
458 
459 	if (p->p_flag & SVFWAIT)
460 		return (0);
461 	set = p->p_sig;
462 	sigorset(&set, &t->t_sig);
463 	if (schedctl_sigblock(t))	/* all blockable signals blocked */
464 		sigandset(&set, &cantmask);
465 	else
466 		sigdiffset(&set, &t->t_hold);
467 	if (p->p_flag & SVFORK)
468 		sigdiffset(&set, &holdvfork);
469 
470 	if (!sigisempty(&set)) {
471 		int sig;
472 
473 		for (sig = 1; sig < NSIG; sig++) {
474 			if (sigismember(&set, sig) &&
475 			    (tracing(p, sig) ||
476 			    sigismember(&t->t_sigwait, sig) ||
477 			    !sigismember(&p->p_ignore, sig))) {
478 				/*
479 				 * Don't promote a signal that will stop
480 				 * the process when lwp_nostop is set.
481 				 */
482 				if (!lwp->lwp_nostop ||
483 				    PTOU(curproc)->u_signal[sig-1] != SIG_DFL ||
484 				    !sigismember(&stopdefault, sig))
485 					return (1);
486 			}
487 		}
488 	}
489 
490 	return (0);
491 }
492 
493 static int
494 issig_forreal(void)
495 {
496 	int sig = 0, ext = 0;
497 	kthread_t *t = curthread;
498 	klwp_t *lwp = ttolwp(t);
499 	proc_t *p = ttoproc(t);
500 	int toproc = 0;
501 	int sigcld_found = 0;
502 	int nostop_break = 0;
503 
504 	ASSERT(t->t_state == TS_ONPROC);
505 
506 	mutex_enter(&p->p_lock);
507 	schedctl_finish_sigblock(t);
508 
509 	if (t->t_dtrace_stop | t->t_dtrace_sig) {
510 		if (t->t_dtrace_stop) {
511 			/*
512 			 * If DTrace's "stop" action has been invoked on us,
513 			 * set TP_PRSTOP.
514 			 */
515 			t->t_proc_flag |= TP_PRSTOP;
516 		}
517 
518 		if (t->t_dtrace_sig != 0) {
519 			k_siginfo_t info;
520 
521 			/*
522 			 * Post the signal generated as the result of
523 			 * DTrace's "raise" action as a normal signal before
524 			 * the full-fledged signal checking begins.
525 			 */
526 			bzero(&info, sizeof (info));
527 			info.si_signo = t->t_dtrace_sig;
528 			info.si_code = SI_DTRACE;
529 
530 			sigaddq(p, NULL, &info, KM_NOSLEEP);
531 
532 			t->t_dtrace_sig = 0;
533 		}
534 	}
535 
536 	for (;;) {
537 		if (p->p_flag & (SEXITLWPS|SKILLED)) {
538 			lwp->lwp_cursig = sig = SIGKILL;
539 			lwp->lwp_extsig = ext = (p->p_flag & SEXTKILLED) != 0;
540 			t->t_sig_check = 1;
541 			break;
542 		}
543 
544 		/*
545 		 * Another piece of complexity in this process.  When
546 		 * single-stepping a process, we don't want an intervening
547 		 * signal or TP_PAUSE request to suspend the current thread.
548 		 * Otherwise, the controlling process will hang beacuse we will
549 		 * be stopped with TS_PSTART set in t_schedflag.  We will
550 		 * trigger any remaining signals when we re-enter the kernel on
551 		 * the single step trap.
552 		 */
553 		if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP) {
554 			sig = 0;
555 			break;
556 		}
557 
558 		/*
559 		 * Hold the lwp here for watchpoint manipulation.
560 		 */
561 		if ((t->t_proc_flag & TP_PAUSE) && !lwp->lwp_nostop) {
562 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
563 			continue;
564 		}
565 
566 		if (lwp->lwp_asleep && MUSTRETURN(p, t)) {
567 			if ((sig = lwp->lwp_cursig) != 0) {
568 				/*
569 				 * Make sure we call ISSIG() in post_syscall()
570 				 * to re-validate this current signal.
571 				 */
572 				t->t_sig_check = 1;
573 			}
574 			break;
575 		}
576 
577 		/*
578 		 * If the request is PR_CHECKPOINT, ignore the rest of signals
579 		 * or requests.  Honor other stop requests or signals later.
580 		 * Go back to top of loop here to check if an exit or hold
581 		 * event has occurred while stopped.
582 		 */
583 		if ((t->t_proc_flag & TP_CHKPT) && !lwp->lwp_nostop) {
584 			stop(PR_CHECKPOINT, 0);
585 			continue;
586 		}
587 
588 		/*
589 		 * Honor SHOLDFORK1, SHOLDWATCH, and TP_HOLDLWP before dealing
590 		 * with signals or /proc.  Another lwp is executing fork1(),
591 		 * or is undergoing watchpoint activity (remapping a page),
592 		 * or is executing lwp_suspend() on this lwp.
593 		 * Again, go back to top of loop to check if an exit
594 		 * or hold event has occurred while stopped.
595 		 */
596 		if (((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
597 		    (t->t_proc_flag & TP_HOLDLWP)) && !lwp->lwp_nostop) {
598 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
599 			continue;
600 		}
601 
602 		/*
603 		 * Honor requested stop before dealing with the
604 		 * current signal; a debugger may change it.
605 		 * Do not want to go back to loop here since this is a special
606 		 * stop that means: make incremental progress before the next
607 		 * stop. The danger is that returning to top of loop would most
608 		 * likely drop the thread right back here to stop soon after it
609 		 * was continued, violating the incremental progress request.
610 		 */
611 		if ((t->t_proc_flag & TP_PRSTOP) && !lwp->lwp_nostop)
612 			stop(PR_REQUESTED, 0);
613 
614 		/*
615 		 * If a debugger wants us to take a signal it will have
616 		 * left it in lwp->lwp_cursig.  If lwp_cursig has been cleared
617 		 * or if it's being ignored, we continue on looking for another
618 		 * signal.  Otherwise we return the specified signal, provided
619 		 * it's not a signal that causes a job control stop.
620 		 *
621 		 * When stopped on PR_JOBCONTROL, there is no current
622 		 * signal; we cancel lwp->lwp_cursig temporarily before
623 		 * calling isjobstop().  The current signal may be reset
624 		 * by a debugger while we are stopped in isjobstop().
625 		 *
626 		 * If the current thread is accepting the signal
627 		 * (via sigwait(), sigwaitinfo(), or sigtimedwait()),
628 		 * we allow the signal to be accepted, even if it is
629 		 * being ignored, and without causing a job control stop.
630 		 */
631 		if ((sig = lwp->lwp_cursig) != 0) {
632 			ext = lwp->lwp_extsig;
633 			lwp->lwp_cursig = 0;
634 			lwp->lwp_extsig = 0;
635 			if (sigismember(&t->t_sigwait, sig) ||
636 			    (!sigismember(&p->p_ignore, sig) &&
637 			    !isjobstop(sig))) {
638 				if (p->p_flag & (SEXITLWPS|SKILLED)) {
639 					sig = SIGKILL;
640 					ext = (p->p_flag & SEXTKILLED) != 0;
641 				}
642 				lwp->lwp_cursig = (uchar_t)sig;
643 				lwp->lwp_extsig = (uchar_t)ext;
644 				break;
645 			}
646 			/*
647 			 * The signal is being ignored or it caused a
648 			 * job-control stop.  If another current signal
649 			 * has not been established, return the current
650 			 * siginfo, if any, to the memory manager.
651 			 */
652 			if (lwp->lwp_cursig == 0 && lwp->lwp_curinfo != NULL) {
653 				siginfofree(lwp->lwp_curinfo);
654 				lwp->lwp_curinfo = NULL;
655 			}
656 			/*
657 			 * Loop around again in case we were stopped
658 			 * on a job control signal and a /proc stop
659 			 * request was posted or another current signal
660 			 * was established while we were stopped.
661 			 */
662 			continue;
663 		}
664 
665 		if (p->p_stopsig && !lwp->lwp_nostop &&
666 		    curthread != p->p_agenttp) {
667 			/*
668 			 * Some lwp in the process has already stopped
669 			 * showing PR_JOBCONTROL.  This is a stop in
670 			 * sympathy with the other lwp, even if this
671 			 * lwp is blocking the stopping signal.
672 			 */
673 			stop(PR_JOBCONTROL, p->p_stopsig);
674 			continue;
675 		}
676 
677 		/*
678 		 * Loop on the pending signals until we find a
679 		 * non-held signal that is traced or not ignored.
680 		 * First check the signals pending for the lwp,
681 		 * then the signals pending for the process as a whole.
682 		 */
683 		for (;;) {
684 			if ((sig = fsig(&t->t_sig, t)) != 0) {
685 				if (sig == SIGCLD)
686 					sigcld_found = 1;
687 				toproc = 0;
688 				if (tracing(p, sig) ||
689 				    sigismember(&t->t_sigwait, sig) ||
690 				    !sigismember(&p->p_ignore, sig)) {
691 					if (sigismember(&t->t_extsig, sig))
692 						ext = 1;
693 					break;
694 				}
695 				sigdelset(&t->t_sig, sig);
696 				sigdelset(&t->t_extsig, sig);
697 				sigdelq(p, t, sig);
698 			} else if ((sig = fsig(&p->p_sig, t)) != 0) {
699 				if (sig == SIGCLD)
700 					sigcld_found = 1;
701 				toproc = 1;
702 				if (tracing(p, sig) ||
703 				    sigismember(&t->t_sigwait, sig) ||
704 				    !sigismember(&p->p_ignore, sig)) {
705 					if (sigismember(&p->p_extsig, sig))
706 						ext = 1;
707 					break;
708 				}
709 				sigdelset(&p->p_sig, sig);
710 				sigdelset(&p->p_extsig, sig);
711 				sigdelq(p, NULL, sig);
712 			} else {
713 				/* no signal was found */
714 				break;
715 			}
716 		}
717 
718 		if (sig == 0) {	/* no signal was found */
719 			if (p->p_flag & (SEXITLWPS|SKILLED)) {
720 				lwp->lwp_cursig = SIGKILL;
721 				sig = SIGKILL;
722 				ext = (p->p_flag & SEXTKILLED) != 0;
723 			}
724 			break;
725 		}
726 
727 		/*
728 		 * If we have been informed not to stop (i.e., we are being
729 		 * called from within a network operation), then don't promote
730 		 * the signal at this time, just return the signal number.
731 		 * We will call issig() again later when it is safe.
732 		 *
733 		 * fsig() does not return a jobcontrol stopping signal
734 		 * with a default action of stopping the process if
735 		 * lwp_nostop is set, so we won't be causing a bogus
736 		 * EINTR by this action.  (Such a signal is eaten by
737 		 * isjobstop() when we loop around to do final checks.)
738 		 */
739 		if (lwp->lwp_nostop) {
740 			nostop_break = 1;
741 			break;
742 		}
743 
744 		/*
745 		 * Promote the signal from pending to current.
746 		 *
747 		 * Note that sigdeq() will set lwp->lwp_curinfo to NULL
748 		 * if no siginfo_t exists for this signal.
749 		 */
750 		lwp->lwp_cursig = (uchar_t)sig;
751 		lwp->lwp_extsig = (uchar_t)ext;
752 		t->t_sig_check = 1;	/* so post_syscall will see signal */
753 		ASSERT(lwp->lwp_curinfo == NULL);
754 		sigdeq(p, toproc ? NULL : t, sig, &lwp->lwp_curinfo);
755 
756 		if (tracing(p, sig))
757 			stop(PR_SIGNALLED, sig);
758 
759 		/*
760 		 * Loop around to check for requested stop before
761 		 * performing the usual current-signal actions.
762 		 */
763 	}
764 
765 	mutex_exit(&p->p_lock);
766 
767 	/*
768 	 * If SIGCLD was dequeued, search for other pending SIGCLD's.
769 	 * Don't do it if we are returning SIGCLD and the signal
770 	 * handler will be reset by psig(); this enables reliable
771 	 * delivery of SIGCLD even when using the old, broken
772 	 * signal() interface for setting the signal handler.
773 	 */
774 	if (sigcld_found &&
775 	    (sig != SIGCLD || !sigismember(&PTOU(curproc)->u_sigresethand,
776 	    SIGCLD)))
777 		sigcld_repost();
778 
779 	if (sig != 0)
780 		(void) undo_watch_step(NULL);
781 
782 	/*
783 	 * If we have been blocked since the p_lock was dropped off
784 	 * above, then this promoted signal might have been handled
785 	 * already when we were on the way back from sleep queue, so
786 	 * just ignore it.
787 	 * If we have been informed not to stop, just return the signal
788 	 * number. Also see comments above.
789 	 */
790 	if (!nostop_break) {
791 		sig = lwp->lwp_cursig;
792 	}
793 
794 	return (sig != 0);
795 }
796 
797 /*
798  * Return true if the process is currently stopped showing PR_JOBCONTROL.
799  * This is true only if all of the process's lwp's are so stopped.
800  * If this is asked by one of the lwps in the process, exclude that lwp.
801  */
802 int
803 jobstopped(proc_t *p)
804 {
805 	kthread_t *t;
806 
807 	ASSERT(MUTEX_HELD(&p->p_lock));
808 
809 	if ((t = p->p_tlist) == NULL)
810 		return (0);
811 
812 	do {
813 		thread_lock(t);
814 		/* ignore current, zombie and suspended lwps in the test */
815 		if (!(t == curthread || t->t_state == TS_ZOMB ||
816 		    SUSPENDED(t)) &&
817 		    (t->t_state != TS_STOPPED ||
818 		    t->t_whystop != PR_JOBCONTROL)) {
819 			thread_unlock(t);
820 			return (0);
821 		}
822 		thread_unlock(t);
823 	} while ((t = t->t_forw) != p->p_tlist);
824 
825 	return (1);
826 }
827 
828 /*
829  * Put ourself (curthread) into the stopped state and notify tracers.
830  */
831 void
832 stop(int why, int what)
833 {
834 	kthread_t	*t = curthread;
835 	proc_t		*p = ttoproc(t);
836 	klwp_t		*lwp = ttolwp(t);
837 	kthread_t	*tx;
838 	lwpent_t	*lep;
839 	int		procstop;
840 	int		flags = TS_ALLSTART;
841 	hrtime_t	stoptime;
842 
843 	/*
844 	 * Can't stop a system process.
845 	 */
846 	if (p == NULL || lwp == NULL || (p->p_flag & SSYS) || p->p_as == &kas)
847 		return;
848 
849 	ASSERT(MUTEX_HELD(&p->p_lock));
850 
851 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
852 		/*
853 		 * Don't stop an lwp with SIGKILL pending.
854 		 * Don't stop if the process or lwp is exiting.
855 		 */
856 		if (lwp->lwp_cursig == SIGKILL ||
857 		    sigismember(&t->t_sig, SIGKILL) ||
858 		    sigismember(&p->p_sig, SIGKILL) ||
859 		    (t->t_proc_flag & TP_LWPEXIT) ||
860 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
861 			p->p_stopsig = 0;
862 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
863 			return;
864 		}
865 	}
866 
867 	/*
868 	 * Make sure we don't deadlock on a recursive call to prstop().
869 	 * prstop() sets the lwp_nostop flag.
870 	 */
871 	if (lwp->lwp_nostop)
872 		return;
873 
874 	/*
875 	 * Make sure the lwp is in an orderly state for inspection
876 	 * by a debugger through /proc or for dumping via core().
877 	 */
878 	schedctl_finish_sigblock(t);
879 	t->t_proc_flag |= TP_STOPPING;	/* must set before dropping p_lock */
880 	mutex_exit(&p->p_lock);
881 	stoptime = gethrtime();
882 	prstop(why, what);
883 	(void) undo_watch_step(NULL);
884 	mutex_enter(&p->p_lock);
885 	ASSERT(t->t_state == TS_ONPROC);
886 
887 	switch (why) {
888 	case PR_CHECKPOINT:
889 		/*
890 		 * The situation may have changed since we dropped
891 		 * and reacquired p->p_lock. Double-check now
892 		 * whether we should stop or not.
893 		 */
894 		if (!(t->t_proc_flag & TP_CHKPT)) {
895 			t->t_proc_flag &= ~TP_STOPPING;
896 			return;
897 		}
898 		t->t_proc_flag &= ~TP_CHKPT;
899 		flags &= ~TS_RESUME;
900 		break;
901 
902 	case PR_JOBCONTROL:
903 		ASSERT(what == SIGSTOP || what == SIGTSTP ||
904 		    what == SIGTTIN || what == SIGTTOU);
905 		flags &= ~TS_XSTART;
906 		break;
907 
908 	case PR_SUSPENDED:
909 		ASSERT(what == SUSPEND_NORMAL || what == SUSPEND_PAUSE);
910 		/*
911 		 * The situation may have changed since we dropped
912 		 * and reacquired p->p_lock.  Double-check now
913 		 * whether we should stop or not.
914 		 */
915 		if (what == SUSPEND_PAUSE) {
916 			if (!(t->t_proc_flag & TP_PAUSE)) {
917 				t->t_proc_flag &= ~TP_STOPPING;
918 				return;
919 			}
920 			flags &= ~TS_UNPAUSE;
921 		} else {
922 			if (!((t->t_proc_flag & TP_HOLDLWP) ||
923 			    (p->p_flag & (SHOLDFORK|SHOLDFORK1|SHOLDWATCH)))) {
924 				t->t_proc_flag &= ~TP_STOPPING;
925 				return;
926 			}
927 			/*
928 			 * If SHOLDFORK is in effect and we are stopping
929 			 * while asleep (not at the top of the stack),
930 			 * we return now to allow the hold to take effect
931 			 * when we reach the top of the kernel stack.
932 			 */
933 			if (lwp->lwp_asleep && (p->p_flag & SHOLDFORK)) {
934 				t->t_proc_flag &= ~TP_STOPPING;
935 				return;
936 			}
937 			flags &= ~TS_CSTART;
938 		}
939 		break;
940 
941 	default:	/* /proc stop */
942 		flags &= ~TS_PSTART;
943 		/*
944 		 * Do synchronous stop unless the async-stop flag is set.
945 		 * If why is PR_REQUESTED and t->t_dtrace_stop flag is set,
946 		 * then no debugger is present and we also do synchronous stop.
947 		 */
948 		if ((why != PR_REQUESTED || t->t_dtrace_stop) &&
949 		    !(p->p_proc_flag & P_PR_ASYNC)) {
950 			int notify;
951 
952 			for (tx = t->t_forw; tx != t; tx = tx->t_forw) {
953 				notify = 0;
954 				thread_lock(tx);
955 				if (ISTOPPED(tx) ||
956 				    (tx->t_proc_flag & TP_PRSTOP)) {
957 					thread_unlock(tx);
958 					continue;
959 				}
960 				tx->t_proc_flag |= TP_PRSTOP;
961 				tx->t_sig_check = 1;
962 				if (tx->t_state == TS_SLEEP &&
963 				    (tx->t_flag & T_WAKEABLE)) {
964 					/*
965 					 * Don't actually wake it up if it's
966 					 * in one of the lwp_*() syscalls.
967 					 * Mark it virtually stopped and
968 					 * notify /proc waiters (below).
969 					 */
970 					if (tx->t_wchan0 == NULL)
971 						setrun_locked(tx);
972 					else {
973 						tx->t_proc_flag |= TP_PRVSTOP;
974 						tx->t_stoptime = stoptime;
975 						notify = 1;
976 					}
977 				}
978 
979 				/* Move waiting thread to run queue */
980 				if (ISWAITING(tx))
981 					setrun_locked(tx);
982 
983 				/*
984 				 * force the thread into the kernel
985 				 * if it is not already there.
986 				 */
987 				if (tx->t_state == TS_ONPROC &&
988 				    tx->t_cpu != CPU)
989 					poke_cpu(tx->t_cpu->cpu_id);
990 				thread_unlock(tx);
991 				lep = p->p_lwpdir[tx->t_dslot].ld_entry;
992 				if (notify && lep->le_trace)
993 					prnotify(lep->le_trace);
994 			}
995 			/*
996 			 * We do this just in case one of the threads we asked
997 			 * to stop is in holdlwps() (called from cfork()) or
998 			 * lwp_suspend().
999 			 */
1000 			cv_broadcast(&p->p_holdlwps);
1001 		}
1002 		break;
1003 	}
1004 
1005 	t->t_stoptime = stoptime;
1006 
1007 	if (why == PR_JOBCONTROL || (why == PR_SUSPENDED && p->p_stopsig)) {
1008 		/*
1009 		 * Determine if the whole process is jobstopped.
1010 		 */
1011 		if (jobstopped(p)) {
1012 			sigqueue_t *sqp;
1013 			int sig;
1014 
1015 			if ((sig = p->p_stopsig) == 0)
1016 				p->p_stopsig = (uchar_t)(sig = what);
1017 			mutex_exit(&p->p_lock);
1018 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1019 			mutex_enter(&pidlock);
1020 			/*
1021 			 * The last lwp to stop notifies the parent.
1022 			 * Turn off the CLDCONT flag now so the first
1023 			 * lwp to continue knows what to do.
1024 			 */
1025 			p->p_pidflag &= ~CLDCONT;
1026 			p->p_wcode = CLD_STOPPED;
1027 			p->p_wdata = sig;
1028 			sigcld(p, sqp);
1029 			/*
1030 			 * Grab p->p_lock before releasing pidlock so the
1031 			 * parent and the child don't have a race condition.
1032 			 */
1033 			mutex_enter(&p->p_lock);
1034 			mutex_exit(&pidlock);
1035 			p->p_stopsig = 0;
1036 		} else if (why == PR_JOBCONTROL && p->p_stopsig == 0) {
1037 			/*
1038 			 * Set p->p_stopsig and wake up sleeping lwps
1039 			 * so they will stop in sympathy with this lwp.
1040 			 */
1041 			p->p_stopsig = (uchar_t)what;
1042 			pokelwps(p);
1043 			/*
1044 			 * We do this just in case one of the threads we asked
1045 			 * to stop is in holdlwps() (called from cfork()) or
1046 			 * lwp_suspend().
1047 			 */
1048 			cv_broadcast(&p->p_holdlwps);
1049 		}
1050 	}
1051 
1052 	if (why != PR_JOBCONTROL && why != PR_CHECKPOINT) {
1053 		/*
1054 		 * Do process-level notification when all lwps are
1055 		 * either stopped on events of interest to /proc
1056 		 * or are stopped showing PR_SUSPENDED or are zombies.
1057 		 */
1058 		procstop = 1;
1059 		for (tx = t->t_forw; procstop && tx != t; tx = tx->t_forw) {
1060 			if (VSTOPPED(tx))
1061 				continue;
1062 			thread_lock(tx);
1063 			switch (tx->t_state) {
1064 			case TS_ZOMB:
1065 				break;
1066 			case TS_STOPPED:
1067 				/* neither ISTOPPED nor SUSPENDED? */
1068 				if ((tx->t_schedflag &
1069 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART)) ==
1070 				    (TS_CSTART | TS_UNPAUSE | TS_PSTART))
1071 					procstop = 0;
1072 				break;
1073 			case TS_SLEEP:
1074 				/* not paused for watchpoints? */
1075 				if (!(tx->t_flag & T_WAKEABLE) ||
1076 				    tx->t_wchan0 == NULL ||
1077 				    !(tx->t_proc_flag & TP_PAUSE))
1078 					procstop = 0;
1079 				break;
1080 			default:
1081 				procstop = 0;
1082 				break;
1083 			}
1084 			thread_unlock(tx);
1085 		}
1086 		if (procstop) {
1087 			/* there must not be any remapped watched pages now */
1088 			ASSERT(p->p_mapcnt == 0);
1089 			if (p->p_proc_flag & P_PR_PTRACE) {
1090 				/* ptrace() compatibility */
1091 				mutex_exit(&p->p_lock);
1092 				mutex_enter(&pidlock);
1093 				p->p_wcode = CLD_TRAPPED;
1094 				p->p_wdata = (why == PR_SIGNALLED)?
1095 				    what : SIGTRAP;
1096 				cv_broadcast(&p->p_parent->p_cv);
1097 				/*
1098 				 * Grab p->p_lock before releasing pidlock so
1099 				 * parent and child don't have a race condition.
1100 				 */
1101 				mutex_enter(&p->p_lock);
1102 				mutex_exit(&pidlock);
1103 			}
1104 			if (p->p_trace)			/* /proc */
1105 				prnotify(p->p_trace);
1106 			cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */
1107 			cv_broadcast(&p->p_holdlwps);	/* holdwatch() */
1108 		}
1109 		if (why != PR_SUSPENDED) {
1110 			lep = p->p_lwpdir[t->t_dslot].ld_entry;
1111 			if (lep->le_trace)		/* /proc */
1112 				prnotify(lep->le_trace);
1113 			/*
1114 			 * Special notification for creation of the agent lwp.
1115 			 */
1116 			if (t == p->p_agenttp &&
1117 			    (t->t_proc_flag & TP_PRSTOP) &&
1118 			    p->p_trace)
1119 				prnotify(p->p_trace);
1120 			/*
1121 			 * The situation may have changed since we dropped
1122 			 * and reacquired p->p_lock. Double-check now
1123 			 * whether we should stop or not.
1124 			 */
1125 			if (!(t->t_proc_flag & TP_STOPPING)) {
1126 				if (t->t_proc_flag & TP_PRSTOP)
1127 					t->t_proc_flag |= TP_STOPPING;
1128 			}
1129 			t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
1130 			prnostep(lwp);
1131 		}
1132 	}
1133 
1134 	if (why == PR_SUSPENDED) {
1135 
1136 		/*
1137 		 * We always broadcast in the case of SUSPEND_PAUSE.  This is
1138 		 * because checks for TP_PAUSE take precedence over checks for
1139 		 * SHOLDWATCH.  If a thread is trying to stop because of
1140 		 * SUSPEND_PAUSE and tries to do a holdwatch(), it will be
1141 		 * waiting for the rest of the threads to enter a stopped state.
1142 		 * If we are stopping for a SUSPEND_PAUSE, we may be the last
1143 		 * lwp and not know it, so broadcast just in case.
1144 		 */
1145 		if (what == SUSPEND_PAUSE ||
1146 		    --p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP))
1147 			cv_broadcast(&p->p_holdlwps);
1148 
1149 	}
1150 
1151 	/*
1152 	 * Need to do this here (rather than after the thread is officially
1153 	 * stopped) because we can't call mutex_enter from a stopped thread.
1154 	 */
1155 	if (why == PR_CHECKPOINT)
1156 		del_one_utstop();
1157 
1158 	thread_lock(t);
1159 	ASSERT((t->t_schedflag & TS_ALLSTART) == 0);
1160 	t->t_schedflag |= flags;
1161 	t->t_whystop = (short)why;
1162 	t->t_whatstop = (short)what;
1163 	CL_STOP(t, why, what);
1164 	(void) new_mstate(t, LMS_STOPPED);
1165 	thread_stop(t);			/* set stop state and drop lock */
1166 
1167 	if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
1168 		/*
1169 		 * We may have gotten a SIGKILL or a SIGCONT when
1170 		 * we released p->p_lock; make one last check.
1171 		 * Also check for a /proc run-on-last-close.
1172 		 */
1173 		if (sigismember(&t->t_sig, SIGKILL) ||
1174 		    sigismember(&p->p_sig, SIGKILL) ||
1175 		    (t->t_proc_flag & TP_LWPEXIT) ||
1176 		    (p->p_flag & (SEXITLWPS|SKILLED))) {
1177 			p->p_stopsig = 0;
1178 			thread_lock(t);
1179 			t->t_schedflag |= TS_XSTART | TS_PSTART;
1180 			setrun_locked(t);
1181 			thread_unlock_nopreempt(t);
1182 		} else if (why == PR_JOBCONTROL) {
1183 			if (p->p_flag & SSCONT) {
1184 				/*
1185 				 * This resulted from a SIGCONT posted
1186 				 * while we were not holding p->p_lock.
1187 				 */
1188 				p->p_stopsig = 0;
1189 				thread_lock(t);
1190 				t->t_schedflag |= TS_XSTART;
1191 				setrun_locked(t);
1192 				thread_unlock_nopreempt(t);
1193 			}
1194 		} else if (!(t->t_proc_flag & TP_STOPPING)) {
1195 			/*
1196 			 * This resulted from a /proc run-on-last-close.
1197 			 */
1198 			thread_lock(t);
1199 			t->t_schedflag |= TS_PSTART;
1200 			setrun_locked(t);
1201 			thread_unlock_nopreempt(t);
1202 		}
1203 	}
1204 
1205 	t->t_proc_flag &= ~TP_STOPPING;
1206 	mutex_exit(&p->p_lock);
1207 
1208 	swtch();
1209 	setallwatch();	/* reestablish any watchpoints set while stopped */
1210 	mutex_enter(&p->p_lock);
1211 	prbarrier(p);	/* barrier against /proc locking */
1212 }
1213 
1214 /* Interface for resetting user thread stop count. */
1215 void
1216 utstop_init(void)
1217 {
1218 	mutex_enter(&thread_stop_lock);
1219 	num_utstop = 0;
1220 	mutex_exit(&thread_stop_lock);
1221 }
1222 
1223 /* Interface for registering a user thread stop request. */
1224 void
1225 add_one_utstop(void)
1226 {
1227 	mutex_enter(&thread_stop_lock);
1228 	num_utstop++;
1229 	mutex_exit(&thread_stop_lock);
1230 }
1231 
1232 /* Interface for cancelling a user thread stop request */
1233 void
1234 del_one_utstop(void)
1235 {
1236 	mutex_enter(&thread_stop_lock);
1237 	num_utstop--;
1238 	if (num_utstop == 0)
1239 		cv_broadcast(&utstop_cv);
1240 	mutex_exit(&thread_stop_lock);
1241 }
1242 
1243 /* Interface to wait for all user threads to be stopped */
1244 void
1245 utstop_timedwait(clock_t ticks)
1246 {
1247 	mutex_enter(&thread_stop_lock);
1248 	if (num_utstop > 0)
1249 		(void) cv_timedwait(&utstop_cv, &thread_stop_lock,
1250 		    ticks + lbolt);
1251 	mutex_exit(&thread_stop_lock);
1252 }
1253 
1254 /*
1255  * Perform the action specified by the current signal.
1256  * The usual sequence is:
1257  * 	if (issig())
1258  * 		psig();
1259  * The signal bit has already been cleared by issig(),
1260  * the current signal number has been stored in lwp_cursig,
1261  * and the current siginfo is now referenced by lwp_curinfo.
1262  */
1263 void
1264 psig(void)
1265 {
1266 	kthread_t *t = curthread;
1267 	proc_t *p = ttoproc(t);
1268 	klwp_t *lwp = ttolwp(t);
1269 	void (*func)();
1270 	int sig, rc, code, ext;
1271 	pid_t pid = -1;
1272 	id_t ctid = 0;
1273 	zoneid_t zoneid = -1;
1274 	sigqueue_t *sqp = NULL;
1275 
1276 	mutex_enter(&p->p_lock);
1277 	schedctl_finish_sigblock(t);
1278 	code = CLD_KILLED;
1279 
1280 	if (p->p_flag & SEXITLWPS) {
1281 		lwp_exit();
1282 		return;			/* not reached */
1283 	}
1284 	sig = lwp->lwp_cursig;
1285 	ext = lwp->lwp_extsig;
1286 
1287 	ASSERT(sig < NSIG);
1288 
1289 	/*
1290 	 * Re-check lwp_cursig after we acquire p_lock.  Since p_lock was
1291 	 * dropped between issig() and psig(), a debugger may have cleared
1292 	 * lwp_cursig via /proc in the intervening window.
1293 	 */
1294 	if (sig == 0) {
1295 		if (lwp->lwp_curinfo) {
1296 			siginfofree(lwp->lwp_curinfo);
1297 			lwp->lwp_curinfo = NULL;
1298 		}
1299 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1300 			t->t_flag &= ~T_TOMASK;
1301 			t->t_hold = lwp->lwp_sigoldmask;
1302 		}
1303 		mutex_exit(&p->p_lock);
1304 		return;
1305 	}
1306 	func = PTOU(curproc)->u_signal[sig-1];
1307 
1308 	/*
1309 	 * The signal disposition could have changed since we promoted
1310 	 * this signal from pending to current (we dropped p->p_lock).
1311 	 * This can happen only in a multi-threaded process.
1312 	 */
1313 	if (sigismember(&p->p_ignore, sig) ||
1314 	    (func == SIG_DFL && sigismember(&stopdefault, sig))) {
1315 		lwp->lwp_cursig = 0;
1316 		lwp->lwp_extsig = 0;
1317 		if (lwp->lwp_curinfo) {
1318 			siginfofree(lwp->lwp_curinfo);
1319 			lwp->lwp_curinfo = NULL;
1320 		}
1321 		if (t->t_flag & T_TOMASK) {	/* sigsuspend or pollsys */
1322 			t->t_flag &= ~T_TOMASK;
1323 			t->t_hold = lwp->lwp_sigoldmask;
1324 		}
1325 		mutex_exit(&p->p_lock);
1326 		return;
1327 	}
1328 
1329 	/*
1330 	 * We check lwp_curinfo first since pr_setsig can actually
1331 	 * stuff a sigqueue_t there for SIGKILL.
1332 	 */
1333 	if (lwp->lwp_curinfo) {
1334 		sqp = lwp->lwp_curinfo;
1335 	} else if (sig == SIGKILL && p->p_killsqp) {
1336 		sqp = p->p_killsqp;
1337 	}
1338 
1339 	if (sqp != NULL) {
1340 		if (SI_FROMUSER(&sqp->sq_info)) {
1341 			pid = sqp->sq_info.si_pid;
1342 			ctid = sqp->sq_info.si_ctid;
1343 			zoneid = sqp->sq_info.si_zoneid;
1344 		}
1345 		/*
1346 		 * If we have a sigqueue_t, its sq_external value
1347 		 * trumps the lwp_extsig value.  It is theoretically
1348 		 * possible to make lwp_extsig reflect reality, but it
1349 		 * would unnecessarily complicate things elsewhere.
1350 		 */
1351 		ext = sqp->sq_external;
1352 	}
1353 
1354 	if (func == SIG_DFL) {
1355 		mutex_exit(&p->p_lock);
1356 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1357 		    NULL, void (*)(void), func);
1358 	} else {
1359 		k_siginfo_t *sip = NULL;
1360 
1361 		/*
1362 		 * If DTrace user-land tracing is active, give DTrace a
1363 		 * chance to defer the signal until after tracing is
1364 		 * complete.
1365 		 */
1366 		if (t->t_dtrace_on && dtrace_safe_defer_signal()) {
1367 			mutex_exit(&p->p_lock);
1368 			return;
1369 		}
1370 
1371 		/*
1372 		 * save siginfo pointer here, in case the
1373 		 * the signal's reset bit is on
1374 		 *
1375 		 * The presence of a current signal prevents paging
1376 		 * from succeeding over a network.  We copy the current
1377 		 * signal information to the side and cancel the current
1378 		 * signal so that sendsig() will succeed.
1379 		 */
1380 		if (sigismember(&p->p_siginfo, sig)) {
1381 			sip = &lwp->lwp_siginfo;
1382 			if (sqp) {
1383 				bcopy(&sqp->sq_info, sip, sizeof (*sip));
1384 				/*
1385 				 * If we were interrupted out of a system call
1386 				 * due to pthread_cancel(), inform libc.
1387 				 */
1388 				if (sig == SIGCANCEL &&
1389 				    sip->si_code == SI_LWP &&
1390 				    t->t_sysnum != 0)
1391 					schedctl_cancel_eintr();
1392 			} else if (sig == SIGPROF && sip->si_signo == SIGPROF &&
1393 			    t->t_rprof != NULL && t->t_rprof->rp_anystate) {
1394 				/* EMPTY */;
1395 			} else {
1396 				bzero(sip, sizeof (*sip));
1397 				sip->si_signo = sig;
1398 				sip->si_code = SI_NOINFO;
1399 			}
1400 		}
1401 
1402 		if (t->t_flag & T_TOMASK)
1403 			t->t_flag &= ~T_TOMASK;
1404 		else
1405 			lwp->lwp_sigoldmask = t->t_hold;
1406 		sigorset(&t->t_hold, &PTOU(curproc)->u_sigmask[sig-1]);
1407 		if (!sigismember(&PTOU(curproc)->u_signodefer, sig))
1408 			sigaddset(&t->t_hold, sig);
1409 		if (sigismember(&PTOU(curproc)->u_sigresethand, sig))
1410 			setsigact(sig, SIG_DFL, nullsmask, 0);
1411 
1412 		DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1413 		    sip, void (*)(void), func);
1414 
1415 		lwp->lwp_cursig = 0;
1416 		lwp->lwp_extsig = 0;
1417 		if (lwp->lwp_curinfo) {
1418 			/* p->p_killsqp is freed by freeproc */
1419 			siginfofree(lwp->lwp_curinfo);
1420 			lwp->lwp_curinfo = NULL;
1421 		}
1422 		mutex_exit(&p->p_lock);
1423 		lwp->lwp_ru.nsignals++;
1424 
1425 		if (p->p_model == DATAMODEL_NATIVE)
1426 			rc = sendsig(sig, sip, func);
1427 #ifdef _SYSCALL32_IMPL
1428 		else
1429 			rc = sendsig32(sig, sip, func);
1430 #endif	/* _SYSCALL32_IMPL */
1431 		if (rc)
1432 			return;
1433 		sig = lwp->lwp_cursig = SIGSEGV;
1434 		ext = 0;	/* lwp_extsig was set above */
1435 		pid = -1;
1436 		ctid = 0;
1437 	}
1438 
1439 	if (sigismember(&coredefault, sig)) {
1440 		/*
1441 		 * Terminate all LWPs but don't discard them.
1442 		 * If another lwp beat us to the punch by calling exit(),
1443 		 * evaporate now.
1444 		 */
1445 		proc_is_exiting(p);
1446 		if (exitlwps(1) != 0) {
1447 			mutex_enter(&p->p_lock);
1448 			lwp_exit();
1449 		}
1450 		/* if we got a SIGKILL from anywhere, no core dump */
1451 		if (p->p_flag & SKILLED) {
1452 			sig = SIGKILL;
1453 			ext = (p->p_flag & SEXTKILLED) != 0;
1454 		} else {
1455 			if (audit_active)		/* audit core dump */
1456 				audit_core_start(sig);
1457 			if (core(sig, ext) == 0)
1458 				code = CLD_DUMPED;
1459 			if (audit_active)		/* audit core dump */
1460 				audit_core_finish(code);
1461 		}
1462 	}
1463 
1464 	/*
1465 	 * Generate a contract event once if the process is killed
1466 	 * by a signal.
1467 	 */
1468 	if (ext) {
1469 		proc_is_exiting(p);
1470 		if (exitlwps(0) != 0) {
1471 			mutex_enter(&p->p_lock);
1472 			lwp_exit();
1473 		}
1474 		contract_process_sig(p->p_ct_process, p, sig, pid, ctid,
1475 		    zoneid);
1476 	}
1477 
1478 	exit(code, sig);
1479 }
1480 
1481 /*
1482  * Find next unheld signal in ssp for thread t.
1483  */
1484 int
1485 fsig(k_sigset_t *ssp, kthread_t *t)
1486 {
1487 	proc_t *p = ttoproc(t);
1488 	user_t *up = PTOU(p);
1489 	int i;
1490 	k_sigset_t temp;
1491 
1492 	ASSERT(MUTEX_HELD(&p->p_lock));
1493 
1494 	/*
1495 	 * Don't promote any signals for the parent of a vfork()d
1496 	 * child that hasn't yet released the parent's memory.
1497 	 */
1498 	if (p->p_flag & SVFWAIT)
1499 		return (0);
1500 
1501 	temp = *ssp;
1502 	sigdiffset(&temp, &t->t_hold);
1503 
1504 	/*
1505 	 * Don't promote stopping signals (except SIGSTOP) for a child
1506 	 * of vfork() that hasn't yet released the parent's memory.
1507 	 */
1508 	if (p->p_flag & SVFORK)
1509 		sigdiffset(&temp, &holdvfork);
1510 
1511 	/*
1512 	 * Don't promote a signal that will stop
1513 	 * the process when lwp_nostop is set.
1514 	 */
1515 	if (ttolwp(t)->lwp_nostop) {
1516 		sigdelset(&temp, SIGSTOP);
1517 		if (!p->p_pgidp->pid_pgorphaned) {
1518 			if (up->u_signal[SIGTSTP-1] == SIG_DFL)
1519 				sigdelset(&temp, SIGTSTP);
1520 			if (up->u_signal[SIGTTIN-1] == SIG_DFL)
1521 				sigdelset(&temp, SIGTTIN);
1522 			if (up->u_signal[SIGTTOU-1] == SIG_DFL)
1523 				sigdelset(&temp, SIGTTOU);
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Choose SIGKILL and SIGPROF before all other pending signals.
1529 	 * The rest are promoted in signal number order.
1530 	 */
1531 	if (sigismember(&temp, SIGKILL))
1532 		return (SIGKILL);
1533 	if (sigismember(&temp, SIGPROF))
1534 		return (SIGPROF);
1535 
1536 	for (i = 0; i < sizeof (temp) / sizeof (temp.__sigbits[0]); i++) {
1537 		if (temp.__sigbits[i])
1538 			return ((i * NBBY * sizeof (temp.__sigbits[0])) +
1539 			    lowbit(temp.__sigbits[i]));
1540 	}
1541 
1542 	return (0);
1543 }
1544 
1545 void
1546 setsigact(int sig, void (*disp)(), k_sigset_t mask, int flags)
1547 {
1548 	proc_t *p = ttoproc(curthread);
1549 	kthread_t *t;
1550 
1551 	ASSERT(MUTEX_HELD(&p->p_lock));
1552 
1553 	PTOU(curproc)->u_signal[sig - 1] = disp;
1554 
1555 	/*
1556 	 * Honor the SA_SIGINFO flag if the signal is being caught.
1557 	 * Force the SA_SIGINFO flag if the signal is not being caught.
1558 	 * This is necessary to make sigqueue() and sigwaitinfo() work
1559 	 * properly together when the signal is set to default or is
1560 	 * being temporarily ignored.
1561 	 */
1562 	if ((flags & SA_SIGINFO) || disp == SIG_DFL || disp == SIG_IGN)
1563 		sigaddset(&p->p_siginfo, sig);
1564 	else
1565 		sigdelset(&p->p_siginfo, sig);
1566 
1567 	if (disp != SIG_DFL && disp != SIG_IGN) {
1568 		sigdelset(&p->p_ignore, sig);
1569 		PTOU(curproc)->u_sigmask[sig - 1] = mask;
1570 		if (!sigismember(&cantreset, sig)) {
1571 			if (flags & SA_RESETHAND)
1572 				sigaddset(&PTOU(curproc)->u_sigresethand, sig);
1573 			else
1574 				sigdelset(&PTOU(curproc)->u_sigresethand, sig);
1575 		}
1576 		if (flags & SA_NODEFER)
1577 			sigaddset(&PTOU(curproc)->u_signodefer, sig);
1578 		else
1579 			sigdelset(&PTOU(curproc)->u_signodefer, sig);
1580 		if (flags & SA_RESTART)
1581 			sigaddset(&PTOU(curproc)->u_sigrestart, sig);
1582 		else
1583 			sigdelset(&PTOU(curproc)->u_sigrestart, sig);
1584 		if (flags & SA_ONSTACK)
1585 			sigaddset(&PTOU(curproc)->u_sigonstack, sig);
1586 		else
1587 			sigdelset(&PTOU(curproc)->u_sigonstack, sig);
1588 
1589 	} else if (disp == SIG_IGN ||
1590 	    (disp == SIG_DFL && sigismember(&ignoredefault, sig))) {
1591 		/*
1592 		 * Setting the signal action to SIG_IGN results in the
1593 		 * discarding of all pending signals of that signal number.
1594 		 * Setting the signal action to SIG_DFL does the same *only*
1595 		 * if the signal's default behavior is to be ignored.
1596 		 */
1597 		sigaddset(&p->p_ignore, sig);
1598 		sigdelset(&p->p_sig, sig);
1599 		sigdelset(&p->p_extsig, sig);
1600 		sigdelq(p, NULL, sig);
1601 		t = p->p_tlist;
1602 		do {
1603 			sigdelset(&t->t_sig, sig);
1604 			sigdelset(&t->t_extsig, sig);
1605 			sigdelq(p, t, sig);
1606 		} while ((t = t->t_forw) != p->p_tlist);
1607 
1608 	} else {
1609 		/*
1610 		 * The signal action is being set to SIG_DFL and the default
1611 		 * behavior is to do something: make sure it is not ignored.
1612 		 */
1613 		sigdelset(&p->p_ignore, sig);
1614 	}
1615 
1616 	if (sig == SIGCLD) {
1617 		if (flags & SA_NOCLDWAIT)
1618 			p->p_flag |= SNOWAIT;
1619 		else
1620 			p->p_flag &= ~SNOWAIT;
1621 
1622 		if (flags & SA_NOCLDSTOP)
1623 			p->p_flag &= ~SJCTL;
1624 		else
1625 			p->p_flag |= SJCTL;
1626 
1627 		if ((p->p_flag & SNOWAIT) || disp == SIG_IGN) {
1628 			proc_t *cp, *tp;
1629 
1630 			mutex_exit(&p->p_lock);
1631 			mutex_enter(&pidlock);
1632 			for (cp = p->p_child; cp != NULL; cp = tp) {
1633 				tp = cp->p_sibling;
1634 				if (cp->p_stat == SZOMB &&
1635 				    !(cp->p_pidflag & CLDWAITPID))
1636 					freeproc(cp);
1637 			}
1638 			mutex_exit(&pidlock);
1639 			mutex_enter(&p->p_lock);
1640 		}
1641 	}
1642 }
1643 
1644 /*
1645  * Set all signal actions not already set to SIG_DFL or SIG_IGN to SIG_DFL.
1646  * Called from exec_common() for a process undergoing execve()
1647  * and from cfork() for a newly-created child of vfork().
1648  * In the vfork() case, 'p' is not the current process.
1649  * In both cases, there is only one thread in the process.
1650  */
1651 void
1652 sigdefault(proc_t *p)
1653 {
1654 	kthread_t *t = p->p_tlist;
1655 	struct user *up = PTOU(p);
1656 	int sig;
1657 
1658 	ASSERT(MUTEX_HELD(&p->p_lock));
1659 
1660 	for (sig = 1; sig < NSIG; sig++) {
1661 		if (up->u_signal[sig - 1] != SIG_DFL &&
1662 		    up->u_signal[sig - 1] != SIG_IGN) {
1663 			up->u_signal[sig - 1] = SIG_DFL;
1664 			sigemptyset(&up->u_sigmask[sig - 1]);
1665 			if (sigismember(&ignoredefault, sig)) {
1666 				sigdelq(p, NULL, sig);
1667 				sigdelq(p, t, sig);
1668 			}
1669 			if (sig == SIGCLD)
1670 				p->p_flag &= ~(SNOWAIT|SJCTL);
1671 		}
1672 	}
1673 	sigorset(&p->p_ignore, &ignoredefault);
1674 	sigfillset(&p->p_siginfo);
1675 	sigdiffset(&p->p_siginfo, &cantmask);
1676 	sigdiffset(&p->p_sig, &ignoredefault);
1677 	sigdiffset(&p->p_extsig, &ignoredefault);
1678 	sigdiffset(&t->t_sig, &ignoredefault);
1679 	sigdiffset(&t->t_extsig, &ignoredefault);
1680 }
1681 
1682 void
1683 sigcld(proc_t *cp, sigqueue_t *sqp)
1684 {
1685 	proc_t *pp = cp->p_parent;
1686 
1687 	ASSERT(MUTEX_HELD(&pidlock));
1688 
1689 	switch (cp->p_wcode) {
1690 	case CLD_EXITED:
1691 	case CLD_DUMPED:
1692 	case CLD_KILLED:
1693 		ASSERT(cp->p_stat == SZOMB);
1694 		/*
1695 		 * The broadcast on p_srwchan_cv is a kludge to
1696 		 * wakeup a possible thread in uadmin(A_SHUTDOWN).
1697 		 */
1698 		cv_broadcast(&cp->p_srwchan_cv);
1699 
1700 		/*
1701 		 * Add to newstate list of the parent
1702 		 */
1703 		add_ns(pp, cp);
1704 
1705 		cv_broadcast(&pp->p_cv);
1706 		if ((pp->p_flag & SNOWAIT) ||
1707 		    PTOU(pp)->u_signal[SIGCLD - 1] == SIG_IGN) {
1708 			if (!(cp->p_pidflag & CLDWAITPID))
1709 				freeproc(cp);
1710 		} else if (!(cp->p_pidflag & CLDNOSIGCHLD)) {
1711 			post_sigcld(cp, sqp);
1712 			sqp = NULL;
1713 		}
1714 		break;
1715 
1716 	case CLD_STOPPED:
1717 	case CLD_CONTINUED:
1718 		cv_broadcast(&pp->p_cv);
1719 		if (pp->p_flag & SJCTL) {
1720 			post_sigcld(cp, sqp);
1721 			sqp = NULL;
1722 		}
1723 		break;
1724 	}
1725 
1726 	if (sqp)
1727 		siginfofree(sqp);
1728 }
1729 
1730 /*
1731  * Common code called from sigcld() and issig_forreal()
1732  * Give the parent process a SIGCLD if it does not have one pending,
1733  * else mark the child process so a SIGCLD can be posted later.
1734  */
1735 static void
1736 post_sigcld(proc_t *cp, sigqueue_t *sqp)
1737 {
1738 	proc_t *pp = cp->p_parent;
1739 	void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1];
1740 	k_siginfo_t info;
1741 
1742 	ASSERT(MUTEX_HELD(&pidlock));
1743 	mutex_enter(&pp->p_lock);
1744 
1745 	/*
1746 	 * If a SIGCLD is pending, or if SIGCLD is not now being caught,
1747 	 * then just mark the child process so that its SIGCLD will
1748 	 * be posted later, when the first SIGCLD is taken off the
1749 	 * queue or when the parent is ready to receive it, if ever.
1750 	 */
1751 	if (handler == SIG_DFL || handler == SIG_IGN ||
1752 	    sigismember(&pp->p_sig, SIGCLD))
1753 		cp->p_pidflag |= CLDPEND;
1754 	else {
1755 		cp->p_pidflag &= ~CLDPEND;
1756 		if (sqp == NULL) {
1757 			/*
1758 			 * This can only happen when the parent is init.
1759 			 * (See call to sigcld(q, NULL) in exit().)
1760 			 * Use KM_NOSLEEP to avoid deadlock.
1761 			 */
1762 			ASSERT(pp == proc_init);
1763 			winfo(cp, &info, 0);
1764 			sigaddq(pp, NULL, &info, KM_NOSLEEP);
1765 		} else {
1766 			winfo(cp, &sqp->sq_info, 0);
1767 			sigaddqa(pp, NULL, sqp);
1768 			sqp = NULL;
1769 		}
1770 	}
1771 
1772 	mutex_exit(&pp->p_lock);
1773 
1774 	if (sqp)
1775 		siginfofree(sqp);
1776 }
1777 
1778 /*
1779  * Search for a child that has a pending SIGCLD for us, the parent.
1780  * The queue of SIGCLD signals is implied by the list of children.
1781  * We post the SIGCLD signals one at a time so they don't get lost.
1782  * When one is dequeued, another is enqueued, until there are no more.
1783  */
1784 void
1785 sigcld_repost()
1786 {
1787 	proc_t *pp = curproc;
1788 	proc_t *cp;
1789 	void (*handler)() = PTOU(pp)->u_signal[SIGCLD - 1];
1790 	sigqueue_t *sqp;
1791 
1792 	/*
1793 	 * Don't bother if SIGCLD is not now being caught.
1794 	 */
1795 	if (handler == SIG_DFL || handler == SIG_IGN)
1796 		return;
1797 
1798 	sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1799 	mutex_enter(&pidlock);
1800 	for (cp = pp->p_child; cp; cp = cp->p_sibling) {
1801 		if (cp->p_pidflag & CLDPEND) {
1802 			post_sigcld(cp, sqp);
1803 			mutex_exit(&pidlock);
1804 			return;
1805 		}
1806 	}
1807 	mutex_exit(&pidlock);
1808 	kmem_free(sqp, sizeof (sigqueue_t));
1809 }
1810 
1811 /*
1812  * count number of sigqueue send by sigaddqa()
1813  */
1814 void
1815 sigqsend(int cmd, proc_t *p, kthread_t *t, sigqueue_t *sigqp)
1816 {
1817 	sigqhdr_t *sqh;
1818 
1819 	sqh = (sigqhdr_t *)sigqp->sq_backptr;
1820 	ASSERT(sqh);
1821 
1822 	mutex_enter(&sqh->sqb_lock);
1823 	sqh->sqb_sent++;
1824 	mutex_exit(&sqh->sqb_lock);
1825 
1826 	if (cmd == SN_SEND)
1827 		sigaddqa(p, t, sigqp);
1828 	else
1829 		siginfofree(sigqp);
1830 }
1831 
1832 int
1833 sigsendproc(proc_t *p, sigsend_t *pv)
1834 {
1835 	struct cred *cr;
1836 	proc_t *myprocp = curproc;
1837 
1838 	ASSERT(MUTEX_HELD(&pidlock));
1839 
1840 	if (p->p_pid == 1 && pv->sig && sigismember(&cantmask, pv->sig))
1841 		return (EPERM);
1842 
1843 	cr = CRED();
1844 
1845 	if (pv->checkperm == 0 ||
1846 	    (pv->sig == SIGCONT && p->p_sessp == myprocp->p_sessp) ||
1847 	    prochasprocperm(p, myprocp, cr)) {
1848 		pv->perm++;
1849 		if (pv->sig) {
1850 			/* Make sure we should be setting si_pid and friends */
1851 			ASSERT(pv->sicode <= 0);
1852 			if (SI_CANQUEUE(pv->sicode)) {
1853 				sigqueue_t *sqp;
1854 
1855 				mutex_enter(&myprocp->p_lock);
1856 				sqp = sigqalloc(myprocp->p_sigqhdr);
1857 				mutex_exit(&myprocp->p_lock);
1858 				if (sqp == NULL)
1859 					return (EAGAIN);
1860 				sqp->sq_info.si_signo = pv->sig;
1861 				sqp->sq_info.si_code = pv->sicode;
1862 				sqp->sq_info.si_pid = myprocp->p_pid;
1863 				sqp->sq_info.si_ctid = PRCTID(myprocp);
1864 				sqp->sq_info.si_zoneid = getzoneid();
1865 				sqp->sq_info.si_uid = crgetruid(cr);
1866 				sqp->sq_info.si_value = pv->value;
1867 				mutex_enter(&p->p_lock);
1868 				sigqsend(SN_SEND, p, NULL, sqp);
1869 				mutex_exit(&p->p_lock);
1870 			} else {
1871 				k_siginfo_t info;
1872 				bzero(&info, sizeof (info));
1873 				info.si_signo = pv->sig;
1874 				info.si_code = pv->sicode;
1875 				info.si_pid = myprocp->p_pid;
1876 				info.si_ctid = PRCTID(myprocp);
1877 				info.si_zoneid = getzoneid();
1878 				info.si_uid = crgetruid(cr);
1879 				mutex_enter(&p->p_lock);
1880 				/*
1881 				 * XXX: Should be KM_SLEEP but
1882 				 * we have to avoid deadlock.
1883 				 */
1884 				sigaddq(p, NULL, &info, KM_NOSLEEP);
1885 				mutex_exit(&p->p_lock);
1886 			}
1887 		}
1888 	}
1889 
1890 	return (0);
1891 }
1892 
1893 int
1894 sigsendset(procset_t *psp, sigsend_t *pv)
1895 {
1896 	int error;
1897 
1898 	error = dotoprocs(psp, sigsendproc, (char *)pv);
1899 	if (error == 0 && pv->perm == 0)
1900 		return (EPERM);
1901 
1902 	return (error);
1903 }
1904 
1905 /*
1906  * Dequeue a queued siginfo structure.
1907  * If a non-null thread pointer is passed then dequeue from
1908  * the thread queue, otherwise dequeue from the process queue.
1909  */
1910 void
1911 sigdeq(proc_t *p, kthread_t *t, int sig, sigqueue_t **qpp)
1912 {
1913 	sigqueue_t **psqp, *sqp;
1914 
1915 	ASSERT(MUTEX_HELD(&p->p_lock));
1916 
1917 	*qpp = NULL;
1918 
1919 	if (t != NULL) {
1920 		sigdelset(&t->t_sig, sig);
1921 		sigdelset(&t->t_extsig, sig);
1922 		psqp = &t->t_sigqueue;
1923 	} else {
1924 		sigdelset(&p->p_sig, sig);
1925 		sigdelset(&p->p_extsig, sig);
1926 		psqp = &p->p_sigqueue;
1927 	}
1928 
1929 	for (;;) {
1930 		if ((sqp = *psqp) == NULL)
1931 			return;
1932 		if (sqp->sq_info.si_signo == sig)
1933 			break;
1934 		else
1935 			psqp = &sqp->sq_next;
1936 	}
1937 	*qpp = sqp;
1938 	*psqp = sqp->sq_next;
1939 	for (sqp = *psqp; sqp; sqp = sqp->sq_next) {
1940 		if (sqp->sq_info.si_signo == sig) {
1941 			if (t != (kthread_t *)NULL) {
1942 				sigaddset(&t->t_sig, sig);
1943 				t->t_sig_check = 1;
1944 			} else {
1945 				sigaddset(&p->p_sig, sig);
1946 				set_proc_ast(p);
1947 			}
1948 			break;
1949 		}
1950 	}
1951 }
1952 
1953 /*
1954  * Delete a queued SIGCLD siginfo structure matching the k_siginfo_t argument.
1955  */
1956 void
1957 sigcld_delete(k_siginfo_t *ip)
1958 {
1959 	proc_t *p = curproc;
1960 	int another_sigcld = 0;
1961 	sigqueue_t **psqp, *sqp;
1962 
1963 	ASSERT(ip->si_signo == SIGCLD);
1964 
1965 	mutex_enter(&p->p_lock);
1966 
1967 	if (!sigismember(&p->p_sig, SIGCLD)) {
1968 		mutex_exit(&p->p_lock);
1969 		return;
1970 	}
1971 
1972 	psqp = &p->p_sigqueue;
1973 	for (;;) {
1974 		if ((sqp = *psqp) == NULL) {
1975 			mutex_exit(&p->p_lock);
1976 			return;
1977 		}
1978 		if (sqp->sq_info.si_signo == SIGCLD) {
1979 			if (sqp->sq_info.si_pid == ip->si_pid &&
1980 			    sqp->sq_info.si_code == ip->si_code &&
1981 			    sqp->sq_info.si_status == ip->si_status)
1982 				break;
1983 			another_sigcld = 1;
1984 		}
1985 		psqp = &sqp->sq_next;
1986 	}
1987 	*psqp = sqp->sq_next;
1988 
1989 	siginfofree(sqp);
1990 
1991 	for (sqp = *psqp; !another_sigcld && sqp; sqp = sqp->sq_next) {
1992 		if (sqp->sq_info.si_signo == SIGCLD)
1993 			another_sigcld = 1;
1994 	}
1995 
1996 	if (!another_sigcld) {
1997 		sigdelset(&p->p_sig, SIGCLD);
1998 		sigdelset(&p->p_extsig, SIGCLD);
1999 	}
2000 
2001 	mutex_exit(&p->p_lock);
2002 }
2003 
2004 /*
2005  * Delete queued siginfo structures.
2006  * If a non-null thread pointer is passed then delete from
2007  * the thread queue, otherwise delete from the process queue.
2008  */
2009 void
2010 sigdelq(proc_t *p, kthread_t *t, int sig)
2011 {
2012 	sigqueue_t **psqp, *sqp;
2013 
2014 	/*
2015 	 * We must be holding p->p_lock unless the process is
2016 	 * being reaped or has failed to get started on fork.
2017 	 */
2018 	ASSERT(MUTEX_HELD(&p->p_lock) ||
2019 	    p->p_stat == SIDL || p->p_stat == SZOMB);
2020 
2021 	if (t != (kthread_t *)NULL)
2022 		psqp = &t->t_sigqueue;
2023 	else
2024 		psqp = &p->p_sigqueue;
2025 
2026 	while (*psqp) {
2027 		sqp = *psqp;
2028 		if (sig == 0 || sqp->sq_info.si_signo == sig) {
2029 			*psqp = sqp->sq_next;
2030 			siginfofree(sqp);
2031 		} else
2032 			psqp = &sqp->sq_next;
2033 	}
2034 }
2035 
2036 /*
2037  * Insert a siginfo structure into a queue.
2038  * If a non-null thread pointer is passed then add to the thread queue,
2039  * otherwise add to the process queue.
2040  *
2041  * The function sigaddqins() is called with sigqueue already allocated.
2042  * It is called from sigaddqa() and sigaddq() below.
2043  *
2044  * The value of si_code implicitly indicates whether sigp is to be
2045  * explicitly queued, or to be queued to depth one.
2046  */
2047 static void
2048 sigaddqins(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2049 {
2050 	sigqueue_t **psqp;
2051 	int sig = sigqp->sq_info.si_signo;
2052 
2053 	sigqp->sq_external = (curproc != &p0) &&
2054 	    (curproc->p_ct_process != p->p_ct_process);
2055 
2056 	/*
2057 	 * issig_forreal() doesn't bother dequeueing signals if SKILLED
2058 	 * is set, and even if it did, we would want to avoid situation
2059 	 * (which would be unique to SIGKILL) where one thread dequeued
2060 	 * the sigqueue_t and another executed psig().  So we create a
2061 	 * separate stash for SIGKILL's sigqueue_t.  Because a second
2062 	 * SIGKILL can set SEXTKILLED, we overwrite the existing entry
2063 	 * if (and only if) it was non-extracontractual.
2064 	 */
2065 	if (sig == SIGKILL) {
2066 		if (p->p_killsqp == NULL || !p->p_killsqp->sq_external) {
2067 			if (p->p_killsqp != NULL)
2068 				siginfofree(p->p_killsqp);
2069 			p->p_killsqp = sigqp;
2070 			sigqp->sq_next = NULL;
2071 		} else {
2072 			siginfofree(sigqp);
2073 		}
2074 		return;
2075 	}
2076 
2077 	ASSERT(sig >= 1 && sig < NSIG);
2078 	if (t != NULL)	/* directed to a thread */
2079 		psqp = &t->t_sigqueue;
2080 	else 		/* directed to a process */
2081 		psqp = &p->p_sigqueue;
2082 	if (SI_CANQUEUE(sigqp->sq_info.si_code) &&
2083 	    sigismember(&p->p_siginfo, sig)) {
2084 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next)
2085 				;
2086 	} else {
2087 		for (; *psqp != NULL; psqp = &(*psqp)->sq_next) {
2088 			if ((*psqp)->sq_info.si_signo == sig) {
2089 				siginfofree(sigqp);
2090 				return;
2091 			}
2092 		}
2093 	}
2094 	*psqp = sigqp;
2095 	sigqp->sq_next = NULL;
2096 }
2097 
2098 /*
2099  * The function sigaddqa() is called with sigqueue already allocated.
2100  * If signal is ignored, discard but guarantee KILL and generation semantics.
2101  * It is called from sigqueue() and other places.
2102  */
2103 void
2104 sigaddqa(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2105 {
2106 	int sig = sigqp->sq_info.si_signo;
2107 
2108 	ASSERT(MUTEX_HELD(&p->p_lock));
2109 	ASSERT(sig >= 1 && sig < NSIG);
2110 
2111 	if (sig_discardable(p, sig))
2112 		siginfofree(sigqp);
2113 	else
2114 		sigaddqins(p, t, sigqp);
2115 
2116 	sigtoproc(p, t, sig);
2117 }
2118 
2119 /*
2120  * Allocate the sigqueue_t structure and call sigaddqins().
2121  */
2122 void
2123 sigaddq(proc_t *p, kthread_t *t, k_siginfo_t *infop, int km_flags)
2124 {
2125 	sigqueue_t *sqp;
2126 	int sig = infop->si_signo;
2127 
2128 	ASSERT(MUTEX_HELD(&p->p_lock));
2129 	ASSERT(sig >= 1 && sig < NSIG);
2130 
2131 	/*
2132 	 * If the signal will be discarded by sigtoproc() or
2133 	 * if the process isn't requesting siginfo and it isn't
2134 	 * blocking the signal (it *could* change it's mind while
2135 	 * the signal is pending) then don't bother creating one.
2136 	 */
2137 	if (!sig_discardable(p, sig) &&
2138 	    (sigismember(&p->p_siginfo, sig) ||
2139 	    (curproc->p_ct_process != p->p_ct_process) ||
2140 	    (sig == SIGCLD && SI_FROMKERNEL(infop))) &&
2141 	    ((sqp = kmem_alloc(sizeof (sigqueue_t), km_flags)) != NULL)) {
2142 		bcopy(infop, &sqp->sq_info, sizeof (k_siginfo_t));
2143 		sqp->sq_func = NULL;
2144 		sqp->sq_next = NULL;
2145 		sigaddqins(p, t, sqp);
2146 	}
2147 	sigtoproc(p, t, sig);
2148 }
2149 
2150 /*
2151  * Handle stop-on-fault processing for the debugger.  Returns 0
2152  * if the fault is cleared during the stop, nonzero if it isn't.
2153  */
2154 int
2155 stop_on_fault(uint_t fault, k_siginfo_t *sip)
2156 {
2157 	proc_t *p = ttoproc(curthread);
2158 	klwp_t *lwp = ttolwp(curthread);
2159 
2160 	ASSERT(prismember(&p->p_fltmask, fault));
2161 
2162 	/*
2163 	 * Record current fault and siginfo structure so debugger can
2164 	 * find it.
2165 	 */
2166 	mutex_enter(&p->p_lock);
2167 	lwp->lwp_curflt = (uchar_t)fault;
2168 	lwp->lwp_siginfo = *sip;
2169 
2170 	stop(PR_FAULTED, fault);
2171 
2172 	fault = lwp->lwp_curflt;
2173 	lwp->lwp_curflt = 0;
2174 	mutex_exit(&p->p_lock);
2175 	return (fault);
2176 }
2177 
2178 void
2179 sigorset(k_sigset_t *s1, k_sigset_t *s2)
2180 {
2181 	s1->__sigbits[0] |= s2->__sigbits[0];
2182 	s1->__sigbits[1] |= s2->__sigbits[1];
2183 }
2184 
2185 void
2186 sigandset(k_sigset_t *s1, k_sigset_t *s2)
2187 {
2188 	s1->__sigbits[0] &= s2->__sigbits[0];
2189 	s1->__sigbits[1] &= s2->__sigbits[1];
2190 }
2191 
2192 void
2193 sigdiffset(k_sigset_t *s1, k_sigset_t *s2)
2194 {
2195 	s1->__sigbits[0] &= ~(s2->__sigbits[0]);
2196 	s1->__sigbits[1] &= ~(s2->__sigbits[1]);
2197 }
2198 
2199 /*
2200  * Return non-zero if curthread->t_sig_check should be set to 1, that is,
2201  * if there are any signals the thread might take on return from the kernel.
2202  * If ksigset_t's were a single word, we would do:
2203  *	return (((p->p_sig | t->t_sig) & ~t->t_hold) & fillset);
2204  */
2205 int
2206 sigcheck(proc_t *p, kthread_t *t)
2207 {
2208 	sc_shared_t *tdp = t->t_schedctl;
2209 
2210 	/*
2211 	 * If signals are blocked via the schedctl interface
2212 	 * then we only check for the unmaskable signals.
2213 	 */
2214 	if (tdp != NULL && tdp->sc_sigblock)
2215 		return ((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2216 		    CANTMASK0);
2217 
2218 	return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2219 	    ~t->t_hold.__sigbits[0]) |
2220 	    (((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) &
2221 	    ~t->t_hold.__sigbits[1]) & FILLSET1));
2222 }
2223 
2224 /* ONC_PLUS EXTRACT START */
2225 void
2226 sigintr(k_sigset_t *smask, int intable)
2227 {
2228 	proc_t *p;
2229 	int owned;
2230 	k_sigset_t lmask;		/* local copy of cantmask */
2231 	klwp_t *lwp = ttolwp(curthread);
2232 
2233 	/*
2234 	 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
2235 	 *    and SIGTERM. (Preserving the existing masks).
2236 	 *    This function supports the -intr nfs and ufs mount option.
2237 	 */
2238 
2239 	/*
2240 	 * don't do kernel threads
2241 	 */
2242 	if (lwp == NULL)
2243 		return;
2244 
2245 	/*
2246 	 * get access to signal mask
2247 	 */
2248 	p = ttoproc(curthread);
2249 	owned = mutex_owned(&p->p_lock);	/* this is filthy */
2250 	if (!owned)
2251 		mutex_enter(&p->p_lock);
2252 
2253 	/*
2254 	 * remember the current mask
2255 	 */
2256 	schedctl_finish_sigblock(curthread);
2257 	*smask = curthread->t_hold;
2258 
2259 	/*
2260 	 * mask out all signals
2261 	 */
2262 	sigfillset(&curthread->t_hold);
2263 
2264 	/*
2265 	 * Unmask the non-maskable signals (e.g., KILL), as long as
2266 	 * they aren't already masked (which could happen at exit).
2267 	 * The first sigdiffset sets lmask to (cantmask & ~curhold).  The
2268 	 * second sets the current hold mask to (~0 & ~lmask), which reduces
2269 	 * to (~cantmask | curhold).
2270 	 */
2271 	lmask = cantmask;
2272 	sigdiffset(&lmask, smask);
2273 	sigdiffset(&curthread->t_hold, &lmask);
2274 
2275 	/*
2276 	 * Re-enable HUP, QUIT, and TERM iff they were originally enabled
2277 	 * Re-enable INT if it's originally enabled and the NFS mount option
2278 	 * nointr is not set.
2279 	 */
2280 	if (!sigismember(smask, SIGHUP))
2281 		sigdelset(&curthread->t_hold, SIGHUP);
2282 	if (!sigismember(smask, SIGINT) && intable)
2283 		sigdelset(&curthread->t_hold, SIGINT);
2284 	if (!sigismember(smask, SIGQUIT))
2285 		sigdelset(&curthread->t_hold, SIGQUIT);
2286 	if (!sigismember(smask, SIGTERM))
2287 		sigdelset(&curthread->t_hold, SIGTERM);
2288 
2289 	/*
2290 	 * release access to signal mask
2291 	 */
2292 	if (!owned)
2293 		mutex_exit(&p->p_lock);
2294 
2295 	/*
2296 	 * Indicate that this lwp is not to be stopped.
2297 	 */
2298 	lwp->lwp_nostop++;
2299 
2300 }
2301 /* ONC_PLUS EXTRACT END */
2302 
2303 void
2304 sigunintr(k_sigset_t *smask)
2305 {
2306 	proc_t *p;
2307 	int owned;
2308 	klwp_t *lwp = ttolwp(curthread);
2309 
2310 	/*
2311 	 * Reset previous mask (See sigintr() above)
2312 	 */
2313 	if (lwp != NULL) {
2314 		lwp->lwp_nostop--;	/* restore lwp stoppability */
2315 		p = ttoproc(curthread);
2316 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2317 		if (!owned)
2318 			mutex_enter(&p->p_lock);
2319 		curthread->t_hold = *smask;
2320 		/* so unmasked signals will be seen */
2321 		curthread->t_sig_check = 1;
2322 		if (!owned)
2323 			mutex_exit(&p->p_lock);
2324 	}
2325 }
2326 
2327 void
2328 sigreplace(k_sigset_t *newmask, k_sigset_t *oldmask)
2329 {
2330 	proc_t	*p;
2331 	int owned;
2332 	/*
2333 	 * Save current signal mask in oldmask, then
2334 	 * set it to newmask.
2335 	 */
2336 	if (ttolwp(curthread) != NULL) {
2337 		p = ttoproc(curthread);
2338 		owned = mutex_owned(&p->p_lock);	/* this is filthy */
2339 		if (!owned)
2340 			mutex_enter(&p->p_lock);
2341 		schedctl_finish_sigblock(curthread);
2342 		if (oldmask != NULL)
2343 			*oldmask = curthread->t_hold;
2344 		curthread->t_hold = *newmask;
2345 		curthread->t_sig_check = 1;
2346 		if (!owned)
2347 			mutex_exit(&p->p_lock);
2348 	}
2349 }
2350 
2351 /*
2352  * Return true if the signal number is in range
2353  * and the signal code specifies signal queueing.
2354  */
2355 int
2356 sigwillqueue(int sig, int code)
2357 {
2358 	if (sig >= 0 && sig < NSIG) {
2359 		switch (code) {
2360 		case SI_QUEUE:
2361 		case SI_TIMER:
2362 		case SI_ASYNCIO:
2363 		case SI_MESGQ:
2364 			return (1);
2365 		}
2366 	}
2367 	return (0);
2368 }
2369 
2370 #ifndef	UCHAR_MAX
2371 #define	UCHAR_MAX	255
2372 #endif
2373 
2374 /*
2375  * The entire pool (with maxcount entries) is pre-allocated at
2376  * the first sigqueue/signotify call.
2377  */
2378 sigqhdr_t *
2379 sigqhdralloc(size_t size, uint_t maxcount)
2380 {
2381 	size_t i;
2382 	sigqueue_t *sq, *next;
2383 	sigqhdr_t *sqh;
2384 
2385 	i = (maxcount * size) + sizeof (sigqhdr_t);
2386 	ASSERT(maxcount <= UCHAR_MAX && i <= USHRT_MAX);
2387 	sqh = kmem_alloc(i, KM_SLEEP);
2388 	sqh->sqb_count = (uchar_t)maxcount;
2389 	sqh->sqb_maxcount = (uchar_t)maxcount;
2390 	sqh->sqb_size = (ushort_t)i;
2391 	sqh->sqb_pexited = 0;
2392 	sqh->sqb_sent = 0;
2393 	sqh->sqb_free = sq = (sigqueue_t *)(sqh + 1);
2394 	for (i = maxcount - 1; i != 0; i--) {
2395 		next = (sigqueue_t *)((uintptr_t)sq + size);
2396 		sq->sq_next = next;
2397 		sq = next;
2398 	}
2399 	sq->sq_next = NULL;
2400 	cv_init(&sqh->sqb_cv, NULL, CV_DEFAULT, NULL);
2401 	mutex_init(&sqh->sqb_lock, NULL, MUTEX_DEFAULT, NULL);
2402 	return (sqh);
2403 }
2404 
2405 static void sigqrel(sigqueue_t *);
2406 
2407 /*
2408  * allocate a sigqueue/signotify structure from the per process
2409  * pre-allocated pool.
2410  */
2411 sigqueue_t *
2412 sigqalloc(sigqhdr_t *sqh)
2413 {
2414 	sigqueue_t *sq = NULL;
2415 
2416 	ASSERT(MUTEX_HELD(&curproc->p_lock));
2417 
2418 	if (sqh != NULL) {
2419 		mutex_enter(&sqh->sqb_lock);
2420 		if (sqh->sqb_count > 0) {
2421 			sqh->sqb_count--;
2422 			sq = sqh->sqb_free;
2423 			sqh->sqb_free = sq->sq_next;
2424 			mutex_exit(&sqh->sqb_lock);
2425 			bzero(&sq->sq_info, sizeof (k_siginfo_t));
2426 			sq->sq_backptr = sqh;
2427 			sq->sq_func = sigqrel;
2428 			sq->sq_next = NULL;
2429 			sq->sq_external = 0;
2430 		} else {
2431 			mutex_exit(&sqh->sqb_lock);
2432 		}
2433 	}
2434 	return (sq);
2435 }
2436 
2437 /*
2438  * Return a sigqueue structure back to the pre-allocated pool.
2439  */
2440 static void
2441 sigqrel(sigqueue_t *sq)
2442 {
2443 	sigqhdr_t *sqh;
2444 
2445 	/* make sure that p_lock of the affected process is held */
2446 
2447 	sqh = (sigqhdr_t *)sq->sq_backptr;
2448 	mutex_enter(&sqh->sqb_lock);
2449 	if (sqh->sqb_pexited && sqh->sqb_sent == 1) {
2450 		mutex_exit(&sqh->sqb_lock);
2451 		cv_destroy(&sqh->sqb_cv);
2452 		mutex_destroy(&sqh->sqb_lock);
2453 		kmem_free(sqh, sqh->sqb_size);
2454 	} else {
2455 		sqh->sqb_count++;
2456 		sqh->sqb_sent--;
2457 		sq->sq_next = sqh->sqb_free;
2458 		sq->sq_backptr = NULL;
2459 		sqh->sqb_free = sq;
2460 		cv_signal(&sqh->sqb_cv);
2461 		mutex_exit(&sqh->sqb_lock);
2462 	}
2463 }
2464 
2465 /*
2466  * Free up the pre-allocated sigqueue headers of sigqueue pool
2467  * and signotify pool, if possible.
2468  * Called only by the owning process during exec() and exit().
2469  */
2470 void
2471 sigqfree(proc_t *p)
2472 {
2473 	ASSERT(MUTEX_HELD(&p->p_lock));
2474 
2475 	if (p->p_sigqhdr != NULL) {	/* sigqueue pool */
2476 		sigqhdrfree(p->p_sigqhdr);
2477 		p->p_sigqhdr = NULL;
2478 	}
2479 	if (p->p_signhdr != NULL) {	/* signotify pool */
2480 		sigqhdrfree(p->p_signhdr);
2481 		p->p_signhdr = NULL;
2482 	}
2483 }
2484 
2485 /*
2486  * Free up the pre-allocated header and sigq pool if possible.
2487  */
2488 void
2489 sigqhdrfree(sigqhdr_t *sqh)
2490 {
2491 	mutex_enter(&sqh->sqb_lock);
2492 	if (sqh->sqb_sent == 0) {
2493 		mutex_exit(&sqh->sqb_lock);
2494 		cv_destroy(&sqh->sqb_cv);
2495 		mutex_destroy(&sqh->sqb_lock);
2496 		kmem_free(sqh, sqh->sqb_size);
2497 	} else {
2498 		sqh->sqb_pexited = 1;
2499 		mutex_exit(&sqh->sqb_lock);
2500 	}
2501 }
2502 
2503 /*
2504  * Free up a single sigqueue structure.
2505  * No other code should free a sigqueue directly.
2506  */
2507 void
2508 siginfofree(sigqueue_t *sqp)
2509 {
2510 	if (sqp != NULL) {
2511 		if (sqp->sq_func != NULL)
2512 			(sqp->sq_func)(sqp);
2513 		else
2514 			kmem_free(sqp, sizeof (sigqueue_t));
2515 	}
2516 }
2517 
2518 /*
2519  * Generate a synchronous signal caused by a hardware
2520  * condition encountered by an lwp.  Called from trap().
2521  */
2522 void
2523 trapsig(k_siginfo_t *ip, int restartable)
2524 {
2525 	proc_t *p = ttoproc(curthread);
2526 	int sig = ip->si_signo;
2527 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
2528 
2529 	ASSERT(sig > 0 && sig < NSIG);
2530 
2531 	if (curthread->t_dtrace_on)
2532 		dtrace_safe_synchronous_signal();
2533 
2534 	mutex_enter(&p->p_lock);
2535 	schedctl_finish_sigblock(curthread);
2536 	/*
2537 	 * Avoid a possible infinite loop if the lwp is holding the
2538 	 * signal generated by a trap of a restartable instruction or
2539 	 * if the signal so generated is being ignored by the process.
2540 	 */
2541 	if (restartable &&
2542 	    (sigismember(&curthread->t_hold, sig) ||
2543 	    p->p_user.u_signal[sig-1] == SIG_IGN)) {
2544 		sigdelset(&curthread->t_hold, sig);
2545 		p->p_user.u_signal[sig-1] = SIG_DFL;
2546 		sigdelset(&p->p_ignore, sig);
2547 	}
2548 	bcopy(ip, &sqp->sq_info, sizeof (k_siginfo_t));
2549 	sigaddqa(p, curthread, sqp);
2550 	mutex_exit(&p->p_lock);
2551 }
2552 
2553 #ifdef _SYSCALL32_IMPL
2554 
2555 /*
2556  * It's tricky to transmit a sigval between 32-bit and 64-bit
2557  * process, since in the 64-bit world, a pointer and an integer
2558  * are different sizes.  Since we're constrained by the standards
2559  * world not to change the types, and it's unclear how useful it is
2560  * to send pointers between address spaces this way, we preserve
2561  * the 'int' interpretation for 32-bit processes interoperating
2562  * with 64-bit processes.  The full semantics (pointers or integers)
2563  * are available for N-bit processes interoperating with N-bit
2564  * processes.
2565  */
2566 void
2567 siginfo_kto32(const k_siginfo_t *src, siginfo32_t *dest)
2568 {
2569 	bzero(dest, sizeof (*dest));
2570 
2571 	/*
2572 	 * The absolute minimum content is si_signo and si_code.
2573 	 */
2574 	dest->si_signo = src->si_signo;
2575 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2576 		return;
2577 
2578 	/*
2579 	 * A siginfo generated by user level is structured
2580 	 * differently from one generated by the kernel.
2581 	 */
2582 	if (SI_FROMUSER(src)) {
2583 		dest->si_pid = src->si_pid;
2584 		dest->si_ctid = src->si_ctid;
2585 		dest->si_zoneid = src->si_zoneid;
2586 		dest->si_uid = src->si_uid;
2587 		if (SI_CANQUEUE(src->si_code))
2588 			dest->si_value.sival_int =
2589 			    (int32_t)src->si_value.sival_int;
2590 		return;
2591 	}
2592 
2593 	dest->si_errno = src->si_errno;
2594 
2595 	switch (src->si_signo) {
2596 	default:
2597 		dest->si_pid = src->si_pid;
2598 		dest->si_ctid = src->si_ctid;
2599 		dest->si_zoneid = src->si_zoneid;
2600 		dest->si_uid = src->si_uid;
2601 		dest->si_value.sival_int = (int32_t)src->si_value.sival_int;
2602 		break;
2603 	case SIGCLD:
2604 		dest->si_pid = src->si_pid;
2605 		dest->si_ctid = src->si_ctid;
2606 		dest->si_zoneid = src->si_zoneid;
2607 		dest->si_status = src->si_status;
2608 		dest->si_stime = src->si_stime;
2609 		dest->si_utime = src->si_utime;
2610 		break;
2611 	case SIGSEGV:
2612 	case SIGBUS:
2613 	case SIGILL:
2614 	case SIGTRAP:
2615 	case SIGFPE:
2616 	case SIGEMT:
2617 		dest->si_addr = (caddr32_t)(uintptr_t)src->si_addr;
2618 		dest->si_trapno = src->si_trapno;
2619 		dest->si_pc = (caddr32_t)(uintptr_t)src->si_pc;
2620 		break;
2621 	case SIGPOLL:
2622 	case SIGXFSZ:
2623 		dest->si_fd = src->si_fd;
2624 		dest->si_band = src->si_band;
2625 		break;
2626 	case SIGPROF:
2627 		dest->si_faddr = (caddr32_t)(uintptr_t)src->si_faddr;
2628 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2629 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2630 		dest->si_syscall = src->si_syscall;
2631 		dest->si_nsysarg = src->si_nsysarg;
2632 		dest->si_fault = src->si_fault;
2633 		break;
2634 	}
2635 }
2636 
2637 void
2638 siginfo_32tok(const siginfo32_t *src, k_siginfo_t *dest)
2639 {
2640 	bzero(dest, sizeof (*dest));
2641 
2642 	/*
2643 	 * The absolute minimum content is si_signo and si_code.
2644 	 */
2645 	dest->si_signo = src->si_signo;
2646 	if ((dest->si_code = src->si_code) == SI_NOINFO)
2647 		return;
2648 
2649 	/*
2650 	 * A siginfo generated by user level is structured
2651 	 * differently from one generated by the kernel.
2652 	 */
2653 	if (SI_FROMUSER(src)) {
2654 		dest->si_pid = src->si_pid;
2655 		dest->si_ctid = src->si_ctid;
2656 		dest->si_zoneid = src->si_zoneid;
2657 		dest->si_uid = src->si_uid;
2658 		if (SI_CANQUEUE(src->si_code))
2659 			dest->si_value.sival_int =
2660 			    (int)src->si_value.sival_int;
2661 		return;
2662 	}
2663 
2664 	dest->si_errno = src->si_errno;
2665 
2666 	switch (src->si_signo) {
2667 	default:
2668 		dest->si_pid = src->si_pid;
2669 		dest->si_ctid = src->si_ctid;
2670 		dest->si_zoneid = src->si_zoneid;
2671 		dest->si_uid = src->si_uid;
2672 		dest->si_value.sival_int = (int)src->si_value.sival_int;
2673 		break;
2674 	case SIGCLD:
2675 		dest->si_pid = src->si_pid;
2676 		dest->si_ctid = src->si_ctid;
2677 		dest->si_zoneid = src->si_zoneid;
2678 		dest->si_status = src->si_status;
2679 		dest->si_stime = src->si_stime;
2680 		dest->si_utime = src->si_utime;
2681 		break;
2682 	case SIGSEGV:
2683 	case SIGBUS:
2684 	case SIGILL:
2685 	case SIGTRAP:
2686 	case SIGFPE:
2687 	case SIGEMT:
2688 		dest->si_addr = (void *)(uintptr_t)src->si_addr;
2689 		dest->si_trapno = src->si_trapno;
2690 		dest->si_pc = (void *)(uintptr_t)src->si_pc;
2691 		break;
2692 	case SIGPOLL:
2693 	case SIGXFSZ:
2694 		dest->si_fd = src->si_fd;
2695 		dest->si_band = src->si_band;
2696 		break;
2697 	case SIGPROF:
2698 		dest->si_faddr = (void *)(uintptr_t)src->si_faddr;
2699 		dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2700 		dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2701 		dest->si_syscall = src->si_syscall;
2702 		dest->si_nsysarg = src->si_nsysarg;
2703 		dest->si_fault = src->si_fault;
2704 		break;
2705 	}
2706 }
2707 
2708 #endif /* _SYSCALL32_IMPL */
2709