xref: /titanic_50/usr/src/uts/common/os/msacct.c (revision 508aff1a85ed04f187fd074799bcaefd630490f1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/user.h>
32 #include <sys/proc.h>
33 #include <sys/cpuvar.h>
34 #include <sys/thread.h>
35 #include <sys/debug.h>
36 #include <sys/msacct.h>
37 #include <sys/time.h>
38 
39 /*
40  * Mega-theory block comment:
41  *
42  * Microstate accounting uses finite states and the transitions between these
43  * states to measure timing and accounting information.  The state information
44  * is presently tracked for threads (via microstate accounting) and cpus (via
45  * cpu microstate accounting).  In each case, these accounting mechanisms use
46  * states and transitions to measure time spent in each state instead of
47  * clock-based sampling methodologies.
48  *
49  * For microstate accounting:
50  * state transitions are accomplished by calling new_mstate() to switch between
51  * states.  Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur
52  * by calling restore_mstate() which restores a thread to its previously running
53  * state.  This code is primarialy executed by the dispatcher in disp() before
54  * running a process that was put to sleep.  If the thread was not in a sleeping
55  * state, this call has little effect other than to update the count of time the
56  * thread has spent waiting on run-queues in its lifetime.
57  *
58  * For cpu microstate accounting:
59  * Cpu microstate accounting is similar to the microstate accounting for threads
60  * but it tracks user, system, and idle time for cpus.  Cpu microstate
61  * accounting does not track interrupt times as there is a pre-existing
62  * interrupt accounting mechanism for this purpose.  Cpu microstate accounting
63  * tracks time that user threads have spent active, idle, or in the system on a
64  * given cpu.  Cpu microstate accounting has fewer states which allows it to
65  * have better defined transitions.  The states transition in the following
66  * order:
67  *
68  *  CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE
69  *
70  * In order to get to the idle state, the cpu microstate must first go through
71  * the system state, and vice-versa for the user state from idle.  The switching
72  * of the microstates from user to system is done as part of the regular thread
73  * microstate accounting code, except for the idle state which is switched by
74  * the dispatcher before it runs the idle loop.
75  *
76  * Cpu percentages:
77  * Cpu percentages are now handled by and based upon microstate accounting
78  * information (the same is true for load averages).  The routines which handle
79  * the growing/shrinking and exponentiation of cpu percentages have been moved
80  * here as it now makes more sense for them to be generated from the microstate
81  * code.  Cpu percentages are generated similarly to the way they were before;
82  * however, now they are based upon high-resolution timestamps and the
83  * timestamps are modified at various state changes instead of during a clock()
84  * interrupt.  This allows us to generate more accurate cpu percentages which
85  * are also in-sync with microstate data.
86  */
87 
88 /*
89  * Initialize the microstate level and the
90  * associated accounting information for an LWP.
91  */
92 void
93 init_mstate(
94 	kthread_t	*t,
95 	int		init_state)
96 {
97 	struct mstate *ms;
98 	klwp_t *lwp;
99 	hrtime_t curtime;
100 
101 	ASSERT(init_state != LMS_WAIT_CPU);
102 	ASSERT((unsigned)init_state < NMSTATES);
103 
104 	if ((lwp = ttolwp(t)) != NULL) {
105 		ms = &lwp->lwp_mstate;
106 		curtime = gethrtime_unscaled();
107 		ms->ms_prev = LMS_SYSTEM;
108 		ms->ms_start = curtime;
109 		ms->ms_term = 0;
110 		ms->ms_state_start = curtime;
111 		t->t_mstate = init_state;
112 		t->t_waitrq = 0;
113 		t->t_hrtime = curtime;
114 		if ((t->t_proc_flag & TP_MSACCT) == 0)
115 			t->t_proc_flag |= TP_MSACCT;
116 		bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct));
117 	}
118 }
119 
120 /*
121  * Initialize the microstate level and associated accounting information
122  * for the specified cpu
123  */
124 
125 void
126 init_cpu_mstate(
127 	cpu_t *cpu,
128 	int init_state)
129 {
130 	ASSERT(init_state != CMS_DISABLED);
131 
132 	cpu->cpu_mstate = init_state;
133 	cpu->cpu_mstate_start = gethrtime_unscaled();
134 	cpu->cpu_waitrq = 0;
135 	bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct));
136 }
137 
138 /*
139  * sets cpu state to OFFLINE.  We don't actually track this time,
140  * but it serves as a useful placeholder state for when we're not
141  * doing anything.
142  */
143 
144 void
145 term_cpu_mstate(struct cpu *cpu)
146 {
147 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
148 	cpu->cpu_mstate = CMS_DISABLED;
149 	cpu->cpu_mstate_start = 0;
150 }
151 
152 /* NEW_CPU_MSTATE comments inline in new_cpu_mstate below. */
153 
154 #define	NEW_CPU_MSTATE(state)						\
155 	gen = cpu->cpu_mstate_gen;					\
156 	cpu->cpu_mstate_gen = 0;					\
157 	/* Need membar_producer() here if stores not ordered / TSO */	\
158 	cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start; \
159 	cpu->cpu_mstate = state;					\
160 	cpu->cpu_mstate_start = curtime;				\
161 	/* Need membar_producer() here if stores not ordered / TSO */	\
162 	cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen;
163 
164 void
165 new_cpu_mstate(int cmstate, hrtime_t curtime)
166 {
167 	cpu_t *cpu = CPU;
168 	uint16_t gen;
169 
170 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
171 	ASSERT(cmstate < NCMSTATES);
172 	ASSERT(cmstate != CMS_DISABLED);
173 
174 	/*
175 	 * This function cannot be re-entrant on a given CPU. As such,
176 	 * we ASSERT and panic if we are called on behalf of an interrupt.
177 	 * The one exception is for an interrupt which has previously
178 	 * blocked. Such an interrupt is being scheduled by the dispatcher
179 	 * just like a normal thread, and as such cannot arrive here
180 	 * in a re-entrant manner.
181 	 */
182 
183 	ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL);
184 	ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread);
185 
186 	/*
187 	 * LOCKING, or lack thereof:
188 	 *
189 	 * Updates to CPU mstate can only be made by the CPU
190 	 * itself, and the above check to ignore interrupts
191 	 * should prevent recursion into this function on a given
192 	 * processor. i.e. no possible write contention.
193 	 *
194 	 * However, reads of CPU mstate can occur at any time
195 	 * from any CPU. Any locking added to this code path
196 	 * would seriously impact syscall performance. So,
197 	 * instead we have a best-effort protection for readers.
198 	 * The reader will want to account for any time between
199 	 * cpu_mstate_start and the present time. This requires
200 	 * some guarantees that the reader is getting coherent
201 	 * information.
202 	 *
203 	 * We use a generation counter, which is set to 0 before
204 	 * we start making changes, and is set to a new value
205 	 * after we're done. Someone reading the CPU mstate
206 	 * should check for the same non-zero value of this
207 	 * counter both before and after reading all state. The
208 	 * important point is that the reader is not a
209 	 * performance-critical path, but this function is.
210 	 *
211 	 * The ordering of writes is critical. cpu_mstate_gen must
212 	 * be visibly zero on all CPUs before we change cpu_mstate
213 	 * and cpu_mstate_start. Additionally, cpu_mstate_gen must
214 	 * not be restored to oldgen+1 until after all of the other
215 	 * writes have become visible.
216 	 *
217 	 * Normally one puts membar_producer() calls to accomplish
218 	 * this. Unfortunately this routine is extremely performance
219 	 * critical (esp. in syscall_mstate below) and we cannot
220 	 * afford the additional time, particularly on some x86
221 	 * architectures with extremely slow sfence calls. On a
222 	 * CPU which guarantees write ordering (including sparc, x86,
223 	 * and amd64) this is not a problem. The compiler could still
224 	 * reorder the writes, so we make the four cpu fields
225 	 * volatile to prevent this.
226 	 *
227 	 * TSO warning: should we port to a non-TSO (or equivalent)
228 	 * CPU, this will break.
229 	 *
230 	 * The reader stills needs the membar_consumer() calls because,
231 	 * although the volatiles prevent the compiler from reordering
232 	 * loads, the CPU can still do so.
233 	 */
234 
235 	NEW_CPU_MSTATE(cmstate);
236 }
237 
238 /*
239  * Return an aggregation of user and system CPU time consumed by
240  * the specified thread in scaled nanoseconds.
241  */
242 hrtime_t
243 mstate_thread_onproc_time(kthread_t *t)
244 {
245 	hrtime_t aggr_time;
246 	hrtime_t now;
247 	hrtime_t state_start;
248 	struct mstate *ms;
249 	klwp_t *lwp;
250 	int	mstate;
251 
252 	ASSERT(THREAD_LOCK_HELD(t));
253 
254 	if ((lwp = ttolwp(t)) == NULL)
255 		return (0);
256 
257 	mstate = t->t_mstate;
258 	ms = &lwp->lwp_mstate;
259 	state_start = ms->ms_state_start;
260 
261 	aggr_time = ms->ms_acct[LMS_USER] +
262 	    ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
263 
264 	now = gethrtime_unscaled();
265 
266 	/*
267 	 * NOTE: gethrtime_unscaled on X86 taken on different CPUs is
268 	 * inconsistent, so it is possible that now < state_start.
269 	 */
270 	if ((mstate == LMS_USER || mstate == LMS_SYSTEM ||
271 		mstate == LMS_TRAP) && (now > state_start)) {
272 			aggr_time += now - state_start;
273 	}
274 
275 	scalehrtime(&aggr_time);
276 	return (aggr_time);
277 }
278 
279 /*
280  * Return an aggregation of microstate times in scaled nanoseconds (high-res
281  * time).  This keeps in mind that p_acct is already scaled, and ms_acct is
282  * not.
283  */
284 hrtime_t
285 mstate_aggr_state(proc_t *p, int a_state)
286 {
287 	struct mstate *ms;
288 	kthread_t *t;
289 	klwp_t *lwp;
290 	hrtime_t aggr_time;
291 	hrtime_t scaledtime;
292 
293 	ASSERT(MUTEX_HELD(&p->p_lock));
294 	ASSERT((unsigned)a_state < NMSTATES);
295 
296 	aggr_time = p->p_acct[a_state];
297 	if (a_state == LMS_SYSTEM)
298 		aggr_time += p->p_acct[LMS_TRAP];
299 
300 	t = p->p_tlist;
301 	if (t == NULL)
302 		return (aggr_time);
303 
304 	do {
305 		if (t->t_proc_flag & TP_LWPEXIT)
306 			continue;
307 
308 		lwp = ttolwp(t);
309 		ms = &lwp->lwp_mstate;
310 		scaledtime = ms->ms_acct[a_state];
311 		scalehrtime(&scaledtime);
312 		aggr_time += scaledtime;
313 		if (a_state == LMS_SYSTEM) {
314 			scaledtime = ms->ms_acct[LMS_TRAP];
315 			scalehrtime(&scaledtime);
316 			aggr_time += scaledtime;
317 		}
318 	} while ((t = t->t_forw) != p->p_tlist);
319 
320 	return (aggr_time);
321 }
322 
323 
324 void
325 syscall_mstate(int fromms, int toms)
326 {
327 	kthread_t *t = curthread;
328 	struct mstate *ms;
329 	hrtime_t *mstimep;
330 	hrtime_t curtime;
331 	klwp_t *lwp;
332 	hrtime_t newtime;
333 	cpu_t *cpu;
334 	uint16_t gen;
335 
336 	if ((lwp = ttolwp(t)) == NULL)
337 		return;
338 
339 	ASSERT(fromms < NMSTATES);
340 	ASSERT(toms < NMSTATES);
341 
342 	ms = &lwp->lwp_mstate;
343 	mstimep = &ms->ms_acct[fromms];
344 	curtime = gethrtime_unscaled();
345 	newtime = curtime - ms->ms_state_start;
346 	while (newtime < 0) {
347 		curtime = gethrtime_unscaled();
348 		newtime = curtime - ms->ms_state_start;
349 	}
350 	*mstimep += newtime;
351 	t->t_mstate = toms;
352 	ms->ms_state_start = curtime;
353 	ms->ms_prev = fromms;
354 	kpreempt_disable(); /* don't change CPU while changing CPU's state */
355 	cpu = CPU;
356 	ASSERT(cpu == t->t_cpu);
357 	if ((toms != LMS_USER) && (cpu->cpu_mstate != CMS_SYSTEM)) {
358 		NEW_CPU_MSTATE(CMS_SYSTEM);
359 	} else if ((toms == LMS_USER) && (cpu->cpu_mstate != CMS_USER)) {
360 		NEW_CPU_MSTATE(CMS_USER);
361 	}
362 	kpreempt_enable();
363 }
364 
365 #undef NEW_CPU_MSTATE
366 
367 /*
368  * The following is for computing the percentage of cpu time used recently
369  * by an lwp.  The function cpu_decay() is also called from /proc code.
370  *
371  * exp_x(x):
372  * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude,
373  * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1].
374  *
375  * Scaling for 64-bit scaled integer:
376  * The binary point is to the right of the high-order bit
377  * of the low-order 32-bit word.
378  */
379 
380 #define	LSHIFT	31
381 #define	LSI_ONE	((uint32_t)1 << LSHIFT)	/* 32-bit scaled integer 1 */
382 
383 #ifdef DEBUG
384 uint_t expx_cnt = 0;	/* number of calls to exp_x() */
385 uint_t expx_mul = 0;	/* number of long multiplies in exp_x() */
386 #endif
387 
388 static uint64_t
389 exp_x(uint64_t x)
390 {
391 	int i;
392 	uint64_t ull;
393 	uint32_t ui;
394 
395 #ifdef DEBUG
396 	expx_cnt++;
397 #endif
398 	/*
399 	 * By the formula:
400 	 *	exp(-x) = exp(-x/2) * exp(-x/2)
401 	 * we keep halving x until it becomes small enough for
402 	 * the following approximation to be accurate enough:
403 	 *	exp(-x) = 1 - x
404 	 * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below).
405 	 * Our final error will be smaller than 4% .
406 	 */
407 
408 	/*
409 	 * Use a uint64_t for the initial shift calculation.
410 	 */
411 	ull = x >> (LSHIFT-2);
412 
413 	/*
414 	 * Short circuit:
415 	 * A number this large produces effectively 0 (actually .005).
416 	 * This way, we will never do more than 5 multiplies.
417 	 */
418 	if (ull >= (1 << 5))
419 		return (0);
420 
421 	ui = ull;	/* OK.  Now we can use a uint_t. */
422 	for (i = 0; ui != 0; i++)
423 		ui >>= 1;
424 
425 	if (i != 0) {
426 #ifdef DEBUG
427 		expx_mul += i;	/* seldom happens */
428 #endif
429 		x >>= i;
430 	}
431 
432 	/*
433 	 * Now we compute 1 - x and square it the number of times
434 	 * that we halved x above to produce the final result:
435 	 */
436 	x = LSI_ONE - x;
437 	while (i--)
438 		x = (x * x) >> LSHIFT;
439 
440 	return (x);
441 }
442 
443 /*
444  * Given the old percent cpu and a time delta in nanoseconds,
445  * return the new decayed percent cpu:  pct * exp(-tau),
446  * where 'tau' is the time delta multiplied by a decay factor.
447  * We have chosen the decay factor (cpu_decay_factor in param.c)
448  * to make the decay over five seconds be approximately 20%.
449  *
450  * 'pct' is a 32-bit scaled integer <= 1
451  * The binary point is to the right of the high-order bit
452  * of the 32-bit word.
453  */
454 static uint32_t
455 cpu_decay(uint32_t pct, hrtime_t nsec)
456 {
457 	uint64_t delta = (uint64_t)nsec;
458 
459 	delta /= cpu_decay_factor;
460 	return ((pct * exp_x(delta)) >> LSHIFT);
461 }
462 
463 /*
464  * Given the old percent cpu and a time delta in nanoseconds,
465  * return the new grown percent cpu:  1 - ( 1 - pct ) * exp(-tau)
466  */
467 static uint32_t
468 cpu_grow(uint32_t pct, hrtime_t nsec)
469 {
470 	return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec));
471 }
472 
473 
474 /*
475  * Defined to determine whether a lwp is still on a processor.
476  */
477 
478 #define	T_ONPROC(kt)	\
479 	((kt)->t_mstate < LMS_SLEEP)
480 #define	T_OFFPROC(kt)	\
481 	((kt)->t_mstate >= LMS_SLEEP)
482 
483 uint_t
484 cpu_update_pct(kthread_t *t, hrtime_t newtime)
485 {
486 	hrtime_t delta;
487 	hrtime_t hrlb;
488 	uint_t pctcpu;
489 	uint_t npctcpu;
490 
491 	/*
492 	 * This routine can get called at PIL > 0, this *has* to be
493 	 * done atomically. Holding locks here causes bad things to happen.
494 	 * (read: deadlock).
495 	 */
496 
497 	do {
498 		if (T_ONPROC(t) && t->t_waitrq == 0) {
499 			hrlb = t->t_hrtime;
500 			delta = newtime - hrlb;
501 			if (delta < 0) {
502 				newtime = gethrtime_unscaled();
503 				delta = newtime - hrlb;
504 			}
505 			t->t_hrtime = newtime;
506 			scalehrtime(&delta);
507 			pctcpu = t->t_pctcpu;
508 			npctcpu = cpu_grow(pctcpu, delta);
509 		} else {
510 			hrlb = t->t_hrtime;
511 			delta = newtime - hrlb;
512 			if (delta < 0) {
513 				newtime = gethrtime_unscaled();
514 				delta = newtime - hrlb;
515 			}
516 			t->t_hrtime = newtime;
517 			scalehrtime(&delta);
518 			pctcpu = t->t_pctcpu;
519 			npctcpu = cpu_decay(pctcpu, delta);
520 		}
521 	} while (cas32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu);
522 
523 	return (npctcpu);
524 }
525 
526 /*
527  * Change the microstate level for the LWP and update the
528  * associated accounting information.  Return the previous
529  * LWP state.
530  */
531 int
532 new_mstate(kthread_t *t, int new_state)
533 {
534 	struct mstate *ms;
535 	unsigned state;
536 	hrtime_t *mstimep;
537 	hrtime_t curtime;
538 	hrtime_t newtime;
539 	hrtime_t oldtime;
540 	klwp_t *lwp;
541 
542 	ASSERT(new_state != LMS_WAIT_CPU);
543 	ASSERT((unsigned)new_state < NMSTATES);
544 	ASSERT(t == curthread || THREAD_LOCK_HELD(t));
545 
546 	/*
547 	 * Don't do microstate processing for threads without a lwp (kernel
548 	 * threads).  Also, if we're an interrupt thread that is pinning another
549 	 * thread, our t_mstate hasn't been initialized.  We'd be modifying the
550 	 * microstate of the underlying lwp which doesn't realize that it's
551 	 * pinned.  In this case, also don't change the microstate.
552 	 */
553 	if (((lwp = ttolwp(t)) == NULL) || t->t_intr)
554 		return (LMS_SYSTEM);
555 
556 	curtime = gethrtime_unscaled();
557 
558 	/* adjust cpu percentages before we go any further */
559 	(void) cpu_update_pct(t, curtime);
560 
561 	ms = &lwp->lwp_mstate;
562 	state = t->t_mstate;
563 	do {
564 		switch (state) {
565 		case LMS_TFAULT:
566 		case LMS_DFAULT:
567 		case LMS_KFAULT:
568 		case LMS_USER_LOCK:
569 			mstimep = &ms->ms_acct[LMS_SYSTEM];
570 			break;
571 		default:
572 			mstimep = &ms->ms_acct[state];
573 			break;
574 		}
575 		newtime = curtime - ms->ms_state_start;
576 		if (newtime < 0) {
577 			curtime = gethrtime_unscaled();
578 			oldtime = *mstimep - 1; /* force CAS to fail */
579 			continue;
580 		}
581 		oldtime = *mstimep;
582 		newtime += oldtime;
583 		t->t_mstate = new_state;
584 		ms->ms_state_start = curtime;
585 	} while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
586 	/*
587 	 * Remember the previous running microstate.
588 	 */
589 	if (state != LMS_SLEEP && state != LMS_STOPPED)
590 		ms->ms_prev = state;
591 
592 	/*
593 	 * Switch CPU microstate if appropriate
594 	 */
595 
596 	kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */
597 	ASSERT(t->t_cpu == CPU);
598 	if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) {
599 		if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER)
600 			new_cpu_mstate(CMS_USER, curtime);
601 		else if (new_state != LMS_USER &&
602 		    t->t_cpu->cpu_mstate != CMS_SYSTEM)
603 			new_cpu_mstate(CMS_SYSTEM, curtime);
604 	}
605 	kpreempt_enable();
606 
607 	return (ms->ms_prev);
608 }
609 
610 /*
611  * Restore the LWP microstate to the previous runnable state.
612  * Called from disp() with the newly selected lwp.
613  */
614 void
615 restore_mstate(kthread_t *t)
616 {
617 	struct mstate *ms;
618 	hrtime_t *mstimep;
619 	klwp_t *lwp;
620 	hrtime_t curtime;
621 	hrtime_t waitrq;
622 	hrtime_t newtime;
623 	hrtime_t oldtime;
624 
625 	/*
626 	 * Don't call restore mstate of threads without lwps.  (Kernel threads)
627 	 *
628 	 * threads with t_intr set shouldn't be in the dispatcher, so assert
629 	 * that nobody here has t_intr.
630 	 */
631 	ASSERT(t->t_intr == NULL);
632 
633 	if ((lwp = ttolwp(t)) == NULL)
634 		return;
635 
636 	curtime = gethrtime_unscaled();
637 	(void) cpu_update_pct(t, curtime);
638 	ms = &lwp->lwp_mstate;
639 	ASSERT((unsigned)t->t_mstate < NMSTATES);
640 	do {
641 		switch (t->t_mstate) {
642 		case LMS_SLEEP:
643 			/*
644 			 * Update the timer for the current sleep state.
645 			 */
646 			ASSERT((unsigned)ms->ms_prev < NMSTATES);
647 			switch (ms->ms_prev) {
648 			case LMS_TFAULT:
649 			case LMS_DFAULT:
650 			case LMS_KFAULT:
651 			case LMS_USER_LOCK:
652 				mstimep = &ms->ms_acct[ms->ms_prev];
653 				break;
654 			default:
655 				mstimep = &ms->ms_acct[LMS_SLEEP];
656 				break;
657 			}
658 			/*
659 			 * Return to the previous run state.
660 			 */
661 			t->t_mstate = ms->ms_prev;
662 			break;
663 		case LMS_STOPPED:
664 			mstimep = &ms->ms_acct[LMS_STOPPED];
665 			/*
666 			 * Return to the previous run state.
667 			 */
668 			t->t_mstate = ms->ms_prev;
669 			break;
670 		case LMS_TFAULT:
671 		case LMS_DFAULT:
672 		case LMS_KFAULT:
673 		case LMS_USER_LOCK:
674 			mstimep = &ms->ms_acct[LMS_SYSTEM];
675 			break;
676 		default:
677 			mstimep = &ms->ms_acct[t->t_mstate];
678 			break;
679 		}
680 		waitrq = t->t_waitrq;	/* hopefully atomic */
681 		if (waitrq == 0) {
682 			waitrq = curtime;
683 		}
684 		t->t_waitrq = 0;
685 		newtime = waitrq - ms->ms_state_start;
686 		if (newtime < 0) {
687 			curtime = gethrtime_unscaled();
688 			oldtime = *mstimep - 1; /* force CAS to fail */
689 			continue;
690 		}
691 		oldtime = *mstimep;
692 		newtime += oldtime;
693 	} while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
694 	/*
695 	 * Update the WAIT_CPU timer and per-cpu waitrq total.
696 	 */
697 	ms->ms_acct[LMS_WAIT_CPU] += (curtime - waitrq);
698 	CPU->cpu_waitrq += (curtime - waitrq);
699 	ms->ms_state_start = curtime;
700 }
701 
702 /*
703  * Copy lwp microstate accounting and resource usage information
704  * to the process.  (lwp is terminating)
705  */
706 void
707 term_mstate(kthread_t *t)
708 {
709 	struct mstate *ms;
710 	proc_t *p = ttoproc(t);
711 	klwp_t *lwp = ttolwp(t);
712 	int i;
713 	hrtime_t tmp;
714 
715 	ASSERT(MUTEX_HELD(&p->p_lock));
716 
717 	ms = &lwp->lwp_mstate;
718 	(void) new_mstate(t, LMS_STOPPED);
719 	ms->ms_term = ms->ms_state_start;
720 	tmp = ms->ms_term - ms->ms_start;
721 	scalehrtime(&tmp);
722 	p->p_mlreal += tmp;
723 	for (i = 0; i < NMSTATES; i++) {
724 		tmp = ms->ms_acct[i];
725 		scalehrtime(&tmp);
726 		p->p_acct[i] += tmp;
727 	}
728 	p->p_ru.minflt   += lwp->lwp_ru.minflt;
729 	p->p_ru.majflt   += lwp->lwp_ru.majflt;
730 	p->p_ru.nswap    += lwp->lwp_ru.nswap;
731 	p->p_ru.inblock  += lwp->lwp_ru.inblock;
732 	p->p_ru.oublock  += lwp->lwp_ru.oublock;
733 	p->p_ru.msgsnd   += lwp->lwp_ru.msgsnd;
734 	p->p_ru.msgrcv   += lwp->lwp_ru.msgrcv;
735 	p->p_ru.nsignals += lwp->lwp_ru.nsignals;
736 	p->p_ru.nvcsw    += lwp->lwp_ru.nvcsw;
737 	p->p_ru.nivcsw   += lwp->lwp_ru.nivcsw;
738 	p->p_ru.sysc	 += lwp->lwp_ru.sysc;
739 	p->p_ru.ioch	 += lwp->lwp_ru.ioch;
740 	p->p_defunct++;
741 }
742