xref: /titanic_50/usr/src/uts/common/os/msacct.c (revision 14839a76b454c7de413fbc7c57842b674873ee79)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/user.h>
33 #include <sys/proc.h>
34 #include <sys/cpuvar.h>
35 #include <sys/thread.h>
36 #include <sys/debug.h>
37 #include <sys/msacct.h>
38 #include <sys/time.h>
39 
40 /*
41  * Mega-theory block comment:
42  *
43  * Microstate accounting uses finite states and the transitions between these
44  * states to measure timing and accounting information.  The state information
45  * is presently tracked for threads (via microstate accounting) and cpus (via
46  * cpu microstate accounting).  In each case, these accounting mechanisms use
47  * states and transitions to measure time spent in each state instead of
48  * clock-based sampling methodologies.
49  *
50  * For microstate accounting:
51  * state transitions are accomplished by calling new_mstate() to switch between
52  * states.  Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur
53  * by calling restore_mstate() which restores a thread to its previously running
54  * state.  This code is primarialy executed by the dispatcher in disp() before
55  * running a process that was put to sleep.  If the thread was not in a sleeping
56  * state, this call has little effect other than to update the count of time the
57  * thread has spent waiting on run-queues in its lifetime.
58  *
59  * For cpu microstate accounting:
60  * Cpu microstate accounting is similar to the microstate accounting for threads
61  * but it tracks user, system, and idle time for cpus.  Cpu microstate
62  * accounting does not track interrupt times as there is a pre-existing
63  * interrupt accounting mechanism for this purpose.  Cpu microstate accounting
64  * tracks time that user threads have spent active, idle, or in the system on a
65  * given cpu.  Cpu microstate accounting has fewer states which allows it to
66  * have better defined transitions.  The states transition in the following
67  * order:
68  *
69  *  CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE
70  *
71  * In order to get to the idle state, the cpu microstate must first go through
72  * the system state, and vice-versa for the user state from idle.  The switching
73  * of the microstates from user to system is done as part of the regular thread
74  * microstate accounting code, except for the idle state which is switched by
75  * the dispatcher before it runs the idle loop.
76  *
77  * Cpu percentages:
78  * Cpu percentages are now handled by and based upon microstate accounting
79  * information (the same is true for load averages).  The routines which handle
80  * the growing/shrinking and exponentiation of cpu percentages have been moved
81  * here as it now makes more sense for them to be generated from the microstate
82  * code.  Cpu percentages are generated similarly to the way they were before;
83  * however, now they are based upon high-resolution timestamps and the
84  * timestamps are modified at various state changes instead of during a clock()
85  * interrupt.  This allows us to generate more accurate cpu percentages which
86  * are also in-sync with microstate data.
87  */
88 
89 /*
90  * Initialize the microstate level and the
91  * associated accounting information for an LWP.
92  */
93 void
94 init_mstate(
95 	kthread_t	*t,
96 	int		init_state)
97 {
98 	struct mstate *ms;
99 	klwp_t *lwp;
100 	hrtime_t curtime;
101 
102 	ASSERT(init_state != LMS_WAIT_CPU);
103 	ASSERT((unsigned)init_state < NMSTATES);
104 
105 	if ((lwp = ttolwp(t)) != NULL) {
106 		ms = &lwp->lwp_mstate;
107 		curtime = gethrtime_unscaled();
108 		ms->ms_prev = LMS_SYSTEM;
109 		ms->ms_start = curtime;
110 		ms->ms_term = 0;
111 		ms->ms_state_start = curtime;
112 		t->t_mstate = init_state;
113 		t->t_waitrq = 0;
114 		t->t_hrtime = curtime;
115 		if ((t->t_proc_flag & TP_MSACCT) == 0)
116 			t->t_proc_flag |= TP_MSACCT;
117 		bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct));
118 	}
119 }
120 
121 /*
122  * Initialize the microstate level and associated accounting information
123  * for the specified cpu
124  */
125 
126 void
127 init_cpu_mstate(
128 	cpu_t *cpu,
129 	int init_state)
130 {
131 	ASSERT(init_state != CMS_DISABLED);
132 
133 	cpu->cpu_mstate = init_state;
134 	cpu->cpu_mstate_start = gethrtime_unscaled();
135 	cpu->cpu_waitrq = 0;
136 	bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct));
137 }
138 
139 /*
140  * sets cpu state to OFFLINE.  We don't actually track this time,
141  * but it serves as a useful placeholder state for when we're not
142  * doing anything.
143  */
144 
145 void
146 term_cpu_mstate(struct cpu *cpu)
147 {
148 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
149 	cpu->cpu_mstate = CMS_DISABLED;
150 	cpu->cpu_mstate_start = 0;
151 }
152 
153 /* NEW_CPU_MSTATE comments inline in new_cpu_mstate below. */
154 
155 #define	NEW_CPU_MSTATE(state)						\
156 	gen = cpu->cpu_mstate_gen;					\
157 	cpu->cpu_mstate_gen = 0;					\
158 	/* Need membar_producer() here if stores not ordered / TSO */	\
159 	cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start; \
160 	cpu->cpu_mstate = state;					\
161 	cpu->cpu_mstate_start = curtime;				\
162 	/* Need membar_producer() here if stores not ordered / TSO */	\
163 	cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen;
164 
165 void
166 new_cpu_mstate(int cmstate, hrtime_t curtime)
167 {
168 	cpu_t *cpu = CPU;
169 	uint16_t gen;
170 
171 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
172 	ASSERT(cmstate < NCMSTATES);
173 	ASSERT(cmstate != CMS_DISABLED);
174 
175 	/*
176 	 * This function cannot be re-entrant on a given CPU. As such,
177 	 * we ASSERT and panic if we are called on behalf of an interrupt.
178 	 * The one exception is for an interrupt which has previously
179 	 * blocked. Such an interrupt is being scheduled by the dispatcher
180 	 * just like a normal thread, and as such cannot arrive here
181 	 * in a re-entrant manner.
182 	 */
183 
184 	ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL);
185 	ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread);
186 
187 	/*
188 	 * LOCKING, or lack thereof:
189 	 *
190 	 * Updates to CPU mstate can only be made by the CPU
191 	 * itself, and the above check to ignore interrupts
192 	 * should prevent recursion into this function on a given
193 	 * processor. i.e. no possible write contention.
194 	 *
195 	 * However, reads of CPU mstate can occur at any time
196 	 * from any CPU. Any locking added to this code path
197 	 * would seriously impact syscall performance. So,
198 	 * instead we have a best-effort protection for readers.
199 	 * The reader will want to account for any time between
200 	 * cpu_mstate_start and the present time. This requires
201 	 * some guarantees that the reader is getting coherent
202 	 * information.
203 	 *
204 	 * We use a generation counter, which is set to 0 before
205 	 * we start making changes, and is set to a new value
206 	 * after we're done. Someone reading the CPU mstate
207 	 * should check for the same non-zero value of this
208 	 * counter both before and after reading all state. The
209 	 * important point is that the reader is not a
210 	 * performance-critical path, but this function is.
211 	 *
212 	 * The ordering of writes is critical. cpu_mstate_gen must
213 	 * be visibly zero on all CPUs before we change cpu_mstate
214 	 * and cpu_mstate_start. Additionally, cpu_mstate_gen must
215 	 * not be restored to oldgen+1 until after all of the other
216 	 * writes have become visible.
217 	 *
218 	 * Normally one puts membar_producer() calls to accomplish
219 	 * this. Unfortunately this routine is extremely performance
220 	 * critical (esp. in syscall_mstate below) and we cannot
221 	 * afford the additional time, particularly on some x86
222 	 * architectures with extremely slow sfence calls. On a
223 	 * CPU which guarantees write ordering (including sparc, x86,
224 	 * and amd64) this is not a problem. The compiler could still
225 	 * reorder the writes, so we make the four cpu fields
226 	 * volatile to prevent this.
227 	 *
228 	 * TSO warning: should we port to a non-TSO (or equivalent)
229 	 * CPU, this will break.
230 	 *
231 	 * The reader stills needs the membar_consumer() calls because,
232 	 * although the volatiles prevent the compiler from reordering
233 	 * loads, the CPU can still do so.
234 	 */
235 
236 	NEW_CPU_MSTATE(cmstate);
237 }
238 
239 /*
240  * Return an aggregation of microstate times in scaled nanoseconds (high-res
241  * time).  This keeps in mind that p_acct is already scaled, and ms_acct is
242  * not.
243  */
244 hrtime_t
245 mstate_aggr_state(proc_t *p, int a_state)
246 {
247 	struct mstate *ms;
248 	kthread_t *t;
249 	klwp_t *lwp;
250 	hrtime_t aggr_time;
251 	hrtime_t scaledtime;
252 
253 	ASSERT(MUTEX_HELD(&p->p_lock));
254 	ASSERT((unsigned)a_state < NMSTATES);
255 
256 	aggr_time = p->p_acct[a_state];
257 	if (a_state == LMS_SYSTEM)
258 		aggr_time += p->p_acct[LMS_TRAP];
259 
260 	t = p->p_tlist;
261 	if (t == NULL)
262 		return (aggr_time);
263 
264 	do {
265 		if (t->t_proc_flag & TP_LWPEXIT)
266 			continue;
267 
268 		lwp = ttolwp(t);
269 		ms = &lwp->lwp_mstate;
270 		scaledtime = ms->ms_acct[a_state];
271 		scalehrtime(&scaledtime);
272 		aggr_time += scaledtime;
273 		if (a_state == LMS_SYSTEM) {
274 			scaledtime = ms->ms_acct[LMS_TRAP];
275 			scalehrtime(&scaledtime);
276 			aggr_time += scaledtime;
277 		}
278 	} while ((t = t->t_forw) != p->p_tlist);
279 
280 	return (aggr_time);
281 }
282 
283 
284 void
285 syscall_mstate(int fromms, int toms)
286 {
287 	kthread_t *t = curthread;
288 	struct mstate *ms;
289 	hrtime_t *mstimep;
290 	hrtime_t curtime;
291 	klwp_t *lwp;
292 	hrtime_t newtime;
293 	cpu_t *cpu;
294 	uint16_t gen;
295 
296 	if ((lwp = ttolwp(t)) == NULL)
297 		return;
298 
299 	ASSERT(fromms < NMSTATES);
300 	ASSERT(toms < NMSTATES);
301 
302 	ms = &lwp->lwp_mstate;
303 	mstimep = &ms->ms_acct[fromms];
304 	curtime = gethrtime_unscaled();
305 	newtime = curtime - ms->ms_state_start;
306 	while (newtime < 0) {
307 		curtime = gethrtime_unscaled();
308 		newtime = curtime - ms->ms_state_start;
309 	}
310 	*mstimep += newtime;
311 	t->t_mstate = toms;
312 	ms->ms_state_start = curtime;
313 	ms->ms_prev = fromms;
314 	kpreempt_disable(); /* don't change CPU while changing CPU's state */
315 	cpu = CPU;
316 	ASSERT(cpu == t->t_cpu);
317 	if ((toms != LMS_USER) && (cpu->cpu_mstate != CMS_SYSTEM)) {
318 		NEW_CPU_MSTATE(CMS_SYSTEM);
319 	} else if ((toms == LMS_USER) && (cpu->cpu_mstate != CMS_USER)) {
320 		NEW_CPU_MSTATE(CMS_USER);
321 	}
322 	kpreempt_enable();
323 }
324 
325 #undef NEW_CPU_MSTATE
326 
327 /*
328  * The following is for computing the percentage of cpu time used recently
329  * by an lwp.  The function cpu_decay() is also called from /proc code.
330  *
331  * exp_x(x):
332  * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude,
333  * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1].
334  *
335  * Scaling for 64-bit scaled integer:
336  * The binary point is to the right of the high-order bit
337  * of the low-order 32-bit word.
338  */
339 
340 #define	LSHIFT	31
341 #define	LSI_ONE	((uint32_t)1 << LSHIFT)	/* 32-bit scaled integer 1 */
342 
343 #ifdef DEBUG
344 uint_t expx_cnt = 0;	/* number of calls to exp_x() */
345 uint_t expx_mul = 0;	/* number of long multiplies in exp_x() */
346 #endif
347 
348 static uint64_t
349 exp_x(uint64_t x)
350 {
351 	int i;
352 	uint64_t ull;
353 	uint32_t ui;
354 
355 #ifdef DEBUG
356 	expx_cnt++;
357 #endif
358 	/*
359 	 * By the formula:
360 	 *	exp(-x) = exp(-x/2) * exp(-x/2)
361 	 * we keep halving x until it becomes small enough for
362 	 * the following approximation to be accurate enough:
363 	 *	exp(-x) = 1 - x
364 	 * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below).
365 	 * Our final error will be smaller than 4% .
366 	 */
367 
368 	/*
369 	 * Use a uint64_t for the initial shift calculation.
370 	 */
371 	ull = x >> (LSHIFT-2);
372 
373 	/*
374 	 * Short circuit:
375 	 * A number this large produces effectively 0 (actually .005).
376 	 * This way, we will never do more than 5 multiplies.
377 	 */
378 	if (ull >= (1 << 5))
379 		return (0);
380 
381 	ui = ull;	/* OK.  Now we can use a uint_t. */
382 	for (i = 0; ui != 0; i++)
383 		ui >>= 1;
384 
385 	if (i != 0) {
386 #ifdef DEBUG
387 		expx_mul += i;	/* seldom happens */
388 #endif
389 		x >>= i;
390 	}
391 
392 	/*
393 	 * Now we compute 1 - x and square it the number of times
394 	 * that we halved x above to produce the final result:
395 	 */
396 	x = LSI_ONE - x;
397 	while (i--)
398 		x = (x * x) >> LSHIFT;
399 
400 	return (x);
401 }
402 
403 /*
404  * Given the old percent cpu and a time delta in nanoseconds,
405  * return the new decayed percent cpu:  pct * exp(-tau),
406  * where 'tau' is the time delta multiplied by a decay factor.
407  * We have chosen the decay factor (cpu_decay_factor in param.c)
408  * to make the decay over five seconds be approximately 20%.
409  *
410  * 'pct' is a 32-bit scaled integer <= 1
411  * The binary point is to the right of the high-order bit
412  * of the 32-bit word.
413  */
414 static uint32_t
415 cpu_decay(uint32_t pct, hrtime_t nsec)
416 {
417 	uint64_t delta = (uint64_t)nsec;
418 
419 	delta /= cpu_decay_factor;
420 	return ((pct * exp_x(delta)) >> LSHIFT);
421 }
422 
423 /*
424  * Given the old percent cpu and a time delta in nanoseconds,
425  * return the new grown percent cpu:  1 - ( 1 - pct ) * exp(-tau)
426  */
427 static uint32_t
428 cpu_grow(uint32_t pct, hrtime_t nsec)
429 {
430 	return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec));
431 }
432 
433 
434 /*
435  * Defined to determine whether a lwp is still on a processor.
436  */
437 
438 #define	T_ONPROC(kt)	\
439 	((kt)->t_mstate < LMS_SLEEP)
440 #define	T_OFFPROC(kt)	\
441 	((kt)->t_mstate >= LMS_SLEEP)
442 
443 uint_t
444 cpu_update_pct(kthread_t *t, hrtime_t newtime)
445 {
446 	hrtime_t delta;
447 	hrtime_t hrlb;
448 	uint_t pctcpu;
449 	uint_t npctcpu;
450 
451 	/*
452 	 * This routine can get called at PIL > 0, this *has* to be
453 	 * done atomically. Holding locks here causes bad things to happen.
454 	 * (read: deadlock).
455 	 */
456 
457 	do {
458 		if (T_ONPROC(t) && t->t_waitrq == 0) {
459 			hrlb = t->t_hrtime;
460 			delta = newtime - hrlb;
461 			if (delta < 0) {
462 				newtime = gethrtime_unscaled();
463 				delta = newtime - hrlb;
464 			}
465 			t->t_hrtime = newtime;
466 			scalehrtime(&delta);
467 			pctcpu = t->t_pctcpu;
468 			npctcpu = cpu_grow(pctcpu, delta);
469 		} else {
470 			hrlb = t->t_hrtime;
471 			delta = newtime - hrlb;
472 			if (delta < 0) {
473 				newtime = gethrtime_unscaled();
474 				delta = newtime - hrlb;
475 			}
476 			t->t_hrtime = newtime;
477 			scalehrtime(&delta);
478 			pctcpu = t->t_pctcpu;
479 			npctcpu = cpu_decay(pctcpu, delta);
480 		}
481 	} while (cas32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu);
482 
483 	return (npctcpu);
484 }
485 
486 /*
487  * Change the microstate level for the LWP and update the
488  * associated accounting information.  Return the previous
489  * LWP state.
490  */
491 int
492 new_mstate(kthread_t *t, int new_state)
493 {
494 	struct mstate *ms;
495 	unsigned state;
496 	hrtime_t *mstimep;
497 	hrtime_t curtime;
498 	hrtime_t newtime;
499 	hrtime_t oldtime;
500 	klwp_t *lwp;
501 
502 	ASSERT(new_state != LMS_WAIT_CPU);
503 	ASSERT((unsigned)new_state < NMSTATES);
504 	ASSERT(t == curthread || THREAD_LOCK_HELD(t));
505 
506 	if ((lwp = ttolwp(t)) == NULL)
507 		return (LMS_SYSTEM);
508 
509 	curtime = gethrtime_unscaled();
510 
511 	/* adjust cpu percentages before we go any further */
512 	(void) cpu_update_pct(t, curtime);
513 
514 	ms = &lwp->lwp_mstate;
515 	state = t->t_mstate;
516 	do {
517 		switch (state) {
518 		case LMS_TFAULT:
519 		case LMS_DFAULT:
520 		case LMS_KFAULT:
521 		case LMS_USER_LOCK:
522 			mstimep = &ms->ms_acct[LMS_SYSTEM];
523 			break;
524 		default:
525 			mstimep = &ms->ms_acct[state];
526 			break;
527 		}
528 		newtime = curtime - ms->ms_state_start;
529 		if (newtime < 0) {
530 			curtime = gethrtime_unscaled();
531 			oldtime = *mstimep - 1; /* force CAS to fail */
532 			continue;
533 		}
534 		oldtime = *mstimep;
535 		newtime += oldtime;
536 		t->t_mstate = new_state;
537 		ms->ms_state_start = curtime;
538 	} while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
539 	/*
540 	 * Remember the previous running microstate.
541 	 */
542 	if (state != LMS_SLEEP && state != LMS_STOPPED)
543 		ms->ms_prev = state;
544 
545 	/*
546 	 * Switch CPU microstate if appropriate
547 	 */
548 
549 	kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */
550 	ASSERT(t->t_cpu == CPU);
551 	if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) {
552 		if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER)
553 			new_cpu_mstate(CMS_USER, curtime);
554 		else if (new_state != LMS_USER &&
555 		    t->t_cpu->cpu_mstate != CMS_SYSTEM)
556 			new_cpu_mstate(CMS_SYSTEM, curtime);
557 	}
558 	kpreempt_enable();
559 
560 	return (ms->ms_prev);
561 }
562 
563 static long waitrqis0 = 0;
564 
565 /*
566  * Restore the LWP microstate to the previous runnable state.
567  * Called from disp() with the newly selected lwp.
568  */
569 void
570 restore_mstate(kthread_t *t)
571 {
572 	struct mstate *ms;
573 	hrtime_t *mstimep;
574 	klwp_t *lwp;
575 	hrtime_t curtime;
576 	hrtime_t waitrq;
577 	hrtime_t newtime;
578 	hrtime_t oldtime;
579 
580 	if ((lwp = ttolwp(t)) == NULL)
581 		return;
582 
583 	curtime = gethrtime_unscaled();
584 	(void) cpu_update_pct(t, curtime);
585 	ms = &lwp->lwp_mstate;
586 	ASSERT((unsigned)t->t_mstate < NMSTATES);
587 	do {
588 		switch (t->t_mstate) {
589 		case LMS_SLEEP:
590 			/*
591 			 * Update the timer for the current sleep state.
592 			 */
593 			ASSERT((unsigned)ms->ms_prev < NMSTATES);
594 			switch (ms->ms_prev) {
595 			case LMS_TFAULT:
596 			case LMS_DFAULT:
597 			case LMS_KFAULT:
598 			case LMS_USER_LOCK:
599 				mstimep = &ms->ms_acct[ms->ms_prev];
600 				break;
601 			default:
602 				mstimep = &ms->ms_acct[LMS_SLEEP];
603 				break;
604 			}
605 			/*
606 			 * Return to the previous run state.
607 			 */
608 			t->t_mstate = ms->ms_prev;
609 			break;
610 		case LMS_STOPPED:
611 			mstimep = &ms->ms_acct[LMS_STOPPED];
612 			/*
613 			 * Return to the previous run state.
614 			 */
615 			t->t_mstate = ms->ms_prev;
616 			break;
617 		case LMS_TFAULT:
618 		case LMS_DFAULT:
619 		case LMS_KFAULT:
620 		case LMS_USER_LOCK:
621 			mstimep = &ms->ms_acct[LMS_SYSTEM];
622 			break;
623 		default:
624 			mstimep = &ms->ms_acct[t->t_mstate];
625 			break;
626 		}
627 		waitrq = t->t_waitrq;	/* hopefully atomic */
628 		t->t_waitrq = 0;
629 		if (waitrq == 0) {	/* should only happen during boot */
630 			waitrq = curtime;
631 			waitrqis0++;
632 		}
633 		newtime = waitrq - ms->ms_state_start;
634 		if (newtime < 0) {
635 			curtime = gethrtime_unscaled();
636 			oldtime = *mstimep - 1; /* force CAS to fail */
637 			continue;
638 		}
639 		oldtime = *mstimep;
640 		newtime += oldtime;
641 	} while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
642 	/*
643 	 * Update the WAIT_CPU timer and per-cpu waitrq total.
644 	 */
645 	ms->ms_acct[LMS_WAIT_CPU] += (curtime - waitrq);
646 	CPU->cpu_waitrq += (curtime - waitrq);
647 	ms->ms_state_start = curtime;
648 }
649 
650 /*
651  * Copy lwp microstate accounting and resource usage information
652  * to the process.  (lwp is terminating)
653  */
654 void
655 term_mstate(kthread_t *t)
656 {
657 	struct mstate *ms;
658 	proc_t *p = ttoproc(t);
659 	klwp_t *lwp = ttolwp(t);
660 	int i;
661 	hrtime_t tmp;
662 
663 	ASSERT(MUTEX_HELD(&p->p_lock));
664 
665 	ms = &lwp->lwp_mstate;
666 	(void) new_mstate(t, LMS_STOPPED);
667 	ms->ms_term = ms->ms_state_start;
668 	tmp = ms->ms_term - ms->ms_start;
669 	scalehrtime(&tmp);
670 	p->p_mlreal += tmp;
671 	for (i = 0; i < NMSTATES; i++) {
672 		tmp = ms->ms_acct[i];
673 		scalehrtime(&tmp);
674 		p->p_acct[i] += tmp;
675 	}
676 	p->p_ru.minflt   += lwp->lwp_ru.minflt;
677 	p->p_ru.majflt   += lwp->lwp_ru.majflt;
678 	p->p_ru.nswap    += lwp->lwp_ru.nswap;
679 	p->p_ru.inblock  += lwp->lwp_ru.inblock;
680 	p->p_ru.oublock  += lwp->lwp_ru.oublock;
681 	p->p_ru.msgsnd   += lwp->lwp_ru.msgsnd;
682 	p->p_ru.msgrcv   += lwp->lwp_ru.msgrcv;
683 	p->p_ru.nsignals += lwp->lwp_ru.nsignals;
684 	p->p_ru.nvcsw    += lwp->lwp_ru.nvcsw;
685 	p->p_ru.nivcsw   += lwp->lwp_ru.nivcsw;
686 	p->p_ru.sysc	 += lwp->lwp_ru.sysc;
687 	p->p_ru.ioch	 += lwp->lwp_ru.ioch;
688 	p->p_defunct++;
689 }
690