xref: /titanic_50/usr/src/uts/common/os/msacct.c (revision 01335b0d1c4e0c0f16325a830b24ea2a4076fd38)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/user.h>
30 #include <sys/proc.h>
31 #include <sys/cpuvar.h>
32 #include <sys/thread.h>
33 #include <sys/debug.h>
34 #include <sys/msacct.h>
35 #include <sys/time.h>
36 
37 /*
38  * Mega-theory block comment:
39  *
40  * Microstate accounting uses finite states and the transitions between these
41  * states to measure timing and accounting information.  The state information
42  * is presently tracked for threads (via microstate accounting) and cpus (via
43  * cpu microstate accounting).  In each case, these accounting mechanisms use
44  * states and transitions to measure time spent in each state instead of
45  * clock-based sampling methodologies.
46  *
47  * For microstate accounting:
48  * state transitions are accomplished by calling new_mstate() to switch between
49  * states.  Transitions from a sleeping state (LMS_SLEEP and LMS_STOPPED) occur
50  * by calling restore_mstate() which restores a thread to its previously running
51  * state.  This code is primarialy executed by the dispatcher in disp() before
52  * running a process that was put to sleep.  If the thread was not in a sleeping
53  * state, this call has little effect other than to update the count of time the
54  * thread has spent waiting on run-queues in its lifetime.
55  *
56  * For cpu microstate accounting:
57  * Cpu microstate accounting is similar to the microstate accounting for threads
58  * but it tracks user, system, and idle time for cpus.  Cpu microstate
59  * accounting does not track interrupt times as there is a pre-existing
60  * interrupt accounting mechanism for this purpose.  Cpu microstate accounting
61  * tracks time that user threads have spent active, idle, or in the system on a
62  * given cpu.  Cpu microstate accounting has fewer states which allows it to
63  * have better defined transitions.  The states transition in the following
64  * order:
65  *
66  *  CMS_USER <-> CMS_SYSTEM <-> CMS_IDLE
67  *
68  * In order to get to the idle state, the cpu microstate must first go through
69  * the system state, and vice-versa for the user state from idle.  The switching
70  * of the microstates from user to system is done as part of the regular thread
71  * microstate accounting code, except for the idle state which is switched by
72  * the dispatcher before it runs the idle loop.
73  *
74  * Cpu percentages:
75  * Cpu percentages are now handled by and based upon microstate accounting
76  * information (the same is true for load averages).  The routines which handle
77  * the growing/shrinking and exponentiation of cpu percentages have been moved
78  * here as it now makes more sense for them to be generated from the microstate
79  * code.  Cpu percentages are generated similarly to the way they were before;
80  * however, now they are based upon high-resolution timestamps and the
81  * timestamps are modified at various state changes instead of during a clock()
82  * interrupt.  This allows us to generate more accurate cpu percentages which
83  * are also in-sync with microstate data.
84  */
85 
86 /*
87  * Initialize the microstate level and the
88  * associated accounting information for an LWP.
89  */
90 void
91 init_mstate(
92 	kthread_t	*t,
93 	int		init_state)
94 {
95 	struct mstate *ms;
96 	klwp_t *lwp;
97 	hrtime_t curtime;
98 
99 	ASSERT(init_state != LMS_WAIT_CPU);
100 	ASSERT((unsigned)init_state < NMSTATES);
101 
102 	if ((lwp = ttolwp(t)) != NULL) {
103 		ms = &lwp->lwp_mstate;
104 		curtime = gethrtime_unscaled();
105 		ms->ms_prev = LMS_SYSTEM;
106 		ms->ms_start = curtime;
107 		ms->ms_term = 0;
108 		ms->ms_state_start = curtime;
109 		t->t_mstate = init_state;
110 		t->t_waitrq = 0;
111 		t->t_hrtime = curtime;
112 		if ((t->t_proc_flag & TP_MSACCT) == 0)
113 			t->t_proc_flag |= TP_MSACCT;
114 		bzero((caddr_t)&ms->ms_acct[0], sizeof (ms->ms_acct));
115 	}
116 }
117 
118 /*
119  * Initialize the microstate level and associated accounting information
120  * for the specified cpu
121  */
122 
123 void
124 init_cpu_mstate(
125 	cpu_t *cpu,
126 	int init_state)
127 {
128 	ASSERT(init_state != CMS_DISABLED);
129 
130 	cpu->cpu_mstate = init_state;
131 	cpu->cpu_mstate_start = gethrtime_unscaled();
132 	cpu->cpu_waitrq = 0;
133 	bzero((caddr_t)&cpu->cpu_acct[0], sizeof (cpu->cpu_acct));
134 }
135 
136 /*
137  * sets cpu state to OFFLINE.  We don't actually track this time,
138  * but it serves as a useful placeholder state for when we're not
139  * doing anything.
140  */
141 
142 void
143 term_cpu_mstate(struct cpu *cpu)
144 {
145 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
146 	cpu->cpu_mstate = CMS_DISABLED;
147 	cpu->cpu_mstate_start = 0;
148 }
149 
150 /* NEW_CPU_MSTATE comments inline in new_cpu_mstate below. */
151 
152 #define	NEW_CPU_MSTATE(state)						\
153 	gen = cpu->cpu_mstate_gen;					\
154 	cpu->cpu_mstate_gen = 0;					\
155 	/* Need membar_producer() here if stores not ordered / TSO */	\
156 	cpu->cpu_acct[cpu->cpu_mstate] += curtime - cpu->cpu_mstate_start; \
157 	cpu->cpu_mstate = state;					\
158 	cpu->cpu_mstate_start = curtime;				\
159 	/* Need membar_producer() here if stores not ordered / TSO */	\
160 	cpu->cpu_mstate_gen = (++gen == 0) ? 1 : gen;
161 
162 void
163 new_cpu_mstate(int cmstate, hrtime_t curtime)
164 {
165 	cpu_t *cpu = CPU;
166 	uint16_t gen;
167 
168 	ASSERT(cpu->cpu_mstate != CMS_DISABLED);
169 	ASSERT(cmstate < NCMSTATES);
170 	ASSERT(cmstate != CMS_DISABLED);
171 
172 	/*
173 	 * This function cannot be re-entrant on a given CPU. As such,
174 	 * we ASSERT and panic if we are called on behalf of an interrupt.
175 	 * The one exception is for an interrupt which has previously
176 	 * blocked. Such an interrupt is being scheduled by the dispatcher
177 	 * just like a normal thread, and as such cannot arrive here
178 	 * in a re-entrant manner.
179 	 */
180 
181 	ASSERT(!CPU_ON_INTR(cpu) && curthread->t_intr == NULL);
182 	ASSERT(curthread->t_preempt > 0 || curthread == cpu->cpu_idle_thread);
183 
184 	/*
185 	 * LOCKING, or lack thereof:
186 	 *
187 	 * Updates to CPU mstate can only be made by the CPU
188 	 * itself, and the above check to ignore interrupts
189 	 * should prevent recursion into this function on a given
190 	 * processor. i.e. no possible write contention.
191 	 *
192 	 * However, reads of CPU mstate can occur at any time
193 	 * from any CPU. Any locking added to this code path
194 	 * would seriously impact syscall performance. So,
195 	 * instead we have a best-effort protection for readers.
196 	 * The reader will want to account for any time between
197 	 * cpu_mstate_start and the present time. This requires
198 	 * some guarantees that the reader is getting coherent
199 	 * information.
200 	 *
201 	 * We use a generation counter, which is set to 0 before
202 	 * we start making changes, and is set to a new value
203 	 * after we're done. Someone reading the CPU mstate
204 	 * should check for the same non-zero value of this
205 	 * counter both before and after reading all state. The
206 	 * important point is that the reader is not a
207 	 * performance-critical path, but this function is.
208 	 *
209 	 * The ordering of writes is critical. cpu_mstate_gen must
210 	 * be visibly zero on all CPUs before we change cpu_mstate
211 	 * and cpu_mstate_start. Additionally, cpu_mstate_gen must
212 	 * not be restored to oldgen+1 until after all of the other
213 	 * writes have become visible.
214 	 *
215 	 * Normally one puts membar_producer() calls to accomplish
216 	 * this. Unfortunately this routine is extremely performance
217 	 * critical (esp. in syscall_mstate below) and we cannot
218 	 * afford the additional time, particularly on some x86
219 	 * architectures with extremely slow sfence calls. On a
220 	 * CPU which guarantees write ordering (including sparc, x86,
221 	 * and amd64) this is not a problem. The compiler could still
222 	 * reorder the writes, so we make the four cpu fields
223 	 * volatile to prevent this.
224 	 *
225 	 * TSO warning: should we port to a non-TSO (or equivalent)
226 	 * CPU, this will break.
227 	 *
228 	 * The reader stills needs the membar_consumer() calls because,
229 	 * although the volatiles prevent the compiler from reordering
230 	 * loads, the CPU can still do so.
231 	 */
232 
233 	NEW_CPU_MSTATE(cmstate);
234 }
235 
236 /*
237  * Return an aggregation of user and system CPU time consumed by
238  * the specified thread in scaled nanoseconds.
239  */
240 hrtime_t
241 mstate_thread_onproc_time(kthread_t *t)
242 {
243 	hrtime_t aggr_time;
244 	hrtime_t now;
245 	hrtime_t waitrq;
246 	hrtime_t state_start;
247 	struct mstate *ms;
248 	klwp_t *lwp;
249 	int	mstate;
250 
251 	ASSERT(THREAD_LOCK_HELD(t));
252 
253 	if ((lwp = ttolwp(t)) == NULL)
254 		return (0);
255 
256 	mstate = t->t_mstate;
257 	waitrq = t->t_waitrq;
258 	ms = &lwp->lwp_mstate;
259 	state_start = ms->ms_state_start;
260 
261 	aggr_time = ms->ms_acct[LMS_USER] +
262 	    ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
263 
264 	now = gethrtime_unscaled();
265 
266 	/*
267 	 * NOTE: gethrtime_unscaled on X86 taken on different CPUs is
268 	 * inconsistent, so it is possible that now < state_start.
269 	 */
270 	if (mstate == LMS_USER || mstate == LMS_SYSTEM || mstate == LMS_TRAP) {
271 		/* if waitrq is zero, count all of the time. */
272 		if (waitrq == 0) {
273 			waitrq = now;
274 		}
275 
276 		if (waitrq > state_start) {
277 			aggr_time += waitrq - state_start;
278 		}
279 	}
280 
281 	scalehrtime(&aggr_time);
282 	return (aggr_time);
283 }
284 
285 /*
286  * Return the amount of onproc and runnable time this thread has experienced.
287  *
288  * Because the fields we read are not protected by locks when updated
289  * by the thread itself, this is an inherently racey interface.  In
290  * particular, the ASSERT(THREAD_LOCK_HELD(t)) doesn't guarantee as much
291  * as it might appear to.
292  *
293  * The implication for users of this interface is that onproc and runnable
294  * are *NOT* monotonically increasing; they may temporarily be larger than
295  * they should be.
296  */
297 void
298 mstate_systhread_times(kthread_t *t, hrtime_t *onproc, hrtime_t *runnable)
299 {
300 	struct mstate	*const	ms = &ttolwp(t)->lwp_mstate;
301 
302 	int		mstate;
303 	hrtime_t	now;
304 	hrtime_t	state_start;
305 	hrtime_t	waitrq;
306 	hrtime_t	aggr_onp;
307 	hrtime_t	aggr_run;
308 
309 	ASSERT(THREAD_LOCK_HELD(t));
310 	ASSERT(t->t_procp->p_flag & SSYS);
311 	ASSERT(ttolwp(t) != NULL);
312 
313 	/* shouldn't be any non-SYSTEM on-CPU time */
314 	ASSERT(ms->ms_acct[LMS_USER] == 0);
315 	ASSERT(ms->ms_acct[LMS_TRAP] == 0);
316 
317 	mstate = t->t_mstate;
318 	waitrq = t->t_waitrq;
319 	state_start = ms->ms_state_start;
320 
321 	aggr_onp = ms->ms_acct[LMS_SYSTEM];
322 	aggr_run = ms->ms_acct[LMS_WAIT_CPU];
323 
324 	now = gethrtime_unscaled();
325 
326 	/* if waitrq == 0, then there is no time to account to TS_RUN */
327 	if (waitrq == 0)
328 		waitrq = now;
329 
330 	/* If there is system time to accumulate, do so */
331 	if (mstate == LMS_SYSTEM && state_start < waitrq)
332 		aggr_onp += waitrq - state_start;
333 
334 	if (waitrq < now)
335 		aggr_run += now - waitrq;
336 
337 	scalehrtime(&aggr_onp);
338 	scalehrtime(&aggr_run);
339 
340 	*onproc = aggr_onp;
341 	*runnable = aggr_run;
342 }
343 
344 /*
345  * Return an aggregation of microstate times in scaled nanoseconds (high-res
346  * time).  This keeps in mind that p_acct is already scaled, and ms_acct is
347  * not.
348  */
349 hrtime_t
350 mstate_aggr_state(proc_t *p, int a_state)
351 {
352 	struct mstate *ms;
353 	kthread_t *t;
354 	klwp_t *lwp;
355 	hrtime_t aggr_time;
356 	hrtime_t scaledtime;
357 
358 	ASSERT(MUTEX_HELD(&p->p_lock));
359 	ASSERT((unsigned)a_state < NMSTATES);
360 
361 	aggr_time = p->p_acct[a_state];
362 	if (a_state == LMS_SYSTEM)
363 		aggr_time += p->p_acct[LMS_TRAP];
364 
365 	t = p->p_tlist;
366 	if (t == NULL)
367 		return (aggr_time);
368 
369 	do {
370 		if (t->t_proc_flag & TP_LWPEXIT)
371 			continue;
372 
373 		lwp = ttolwp(t);
374 		ms = &lwp->lwp_mstate;
375 		scaledtime = ms->ms_acct[a_state];
376 		scalehrtime(&scaledtime);
377 		aggr_time += scaledtime;
378 		if (a_state == LMS_SYSTEM) {
379 			scaledtime = ms->ms_acct[LMS_TRAP];
380 			scalehrtime(&scaledtime);
381 			aggr_time += scaledtime;
382 		}
383 	} while ((t = t->t_forw) != p->p_tlist);
384 
385 	return (aggr_time);
386 }
387 
388 
389 void
390 syscall_mstate(int fromms, int toms)
391 {
392 	kthread_t *t = curthread;
393 	struct mstate *ms;
394 	hrtime_t *mstimep;
395 	hrtime_t curtime;
396 	klwp_t *lwp;
397 	hrtime_t newtime;
398 	cpu_t *cpu;
399 	uint16_t gen;
400 
401 	if ((lwp = ttolwp(t)) == NULL)
402 		return;
403 
404 	ASSERT(fromms < NMSTATES);
405 	ASSERT(toms < NMSTATES);
406 
407 	ms = &lwp->lwp_mstate;
408 	mstimep = &ms->ms_acct[fromms];
409 	curtime = gethrtime_unscaled();
410 	newtime = curtime - ms->ms_state_start;
411 	while (newtime < 0) {
412 		curtime = gethrtime_unscaled();
413 		newtime = curtime - ms->ms_state_start;
414 	}
415 	*mstimep += newtime;
416 	t->t_mstate = toms;
417 	ms->ms_state_start = curtime;
418 	ms->ms_prev = fromms;
419 	kpreempt_disable(); /* don't change CPU while changing CPU's state */
420 	cpu = CPU;
421 	ASSERT(cpu == t->t_cpu);
422 	if ((toms != LMS_USER) && (cpu->cpu_mstate != CMS_SYSTEM)) {
423 		NEW_CPU_MSTATE(CMS_SYSTEM);
424 	} else if ((toms == LMS_USER) && (cpu->cpu_mstate != CMS_USER)) {
425 		NEW_CPU_MSTATE(CMS_USER);
426 	}
427 	kpreempt_enable();
428 }
429 
430 #undef NEW_CPU_MSTATE
431 
432 /*
433  * The following is for computing the percentage of cpu time used recently
434  * by an lwp.  The function cpu_decay() is also called from /proc code.
435  *
436  * exp_x(x):
437  * Given x as a 64-bit non-negative scaled integer of arbitrary magnitude,
438  * Return exp(-x) as a 64-bit scaled integer in the range [0 .. 1].
439  *
440  * Scaling for 64-bit scaled integer:
441  * The binary point is to the right of the high-order bit
442  * of the low-order 32-bit word.
443  */
444 
445 #define	LSHIFT	31
446 #define	LSI_ONE	((uint32_t)1 << LSHIFT)	/* 32-bit scaled integer 1 */
447 
448 #ifdef DEBUG
449 uint_t expx_cnt = 0;	/* number of calls to exp_x() */
450 uint_t expx_mul = 0;	/* number of long multiplies in exp_x() */
451 #endif
452 
453 static uint64_t
454 exp_x(uint64_t x)
455 {
456 	int i;
457 	uint64_t ull;
458 	uint32_t ui;
459 
460 #ifdef DEBUG
461 	expx_cnt++;
462 #endif
463 	/*
464 	 * By the formula:
465 	 *	exp(-x) = exp(-x/2) * exp(-x/2)
466 	 * we keep halving x until it becomes small enough for
467 	 * the following approximation to be accurate enough:
468 	 *	exp(-x) = 1 - x
469 	 * We reduce x until it is less than 1/4 (the 2 in LSHIFT-2 below).
470 	 * Our final error will be smaller than 4% .
471 	 */
472 
473 	/*
474 	 * Use a uint64_t for the initial shift calculation.
475 	 */
476 	ull = x >> (LSHIFT-2);
477 
478 	/*
479 	 * Short circuit:
480 	 * A number this large produces effectively 0 (actually .005).
481 	 * This way, we will never do more than 5 multiplies.
482 	 */
483 	if (ull >= (1 << 5))
484 		return (0);
485 
486 	ui = ull;	/* OK.  Now we can use a uint_t. */
487 	for (i = 0; ui != 0; i++)
488 		ui >>= 1;
489 
490 	if (i != 0) {
491 #ifdef DEBUG
492 		expx_mul += i;	/* seldom happens */
493 #endif
494 		x >>= i;
495 	}
496 
497 	/*
498 	 * Now we compute 1 - x and square it the number of times
499 	 * that we halved x above to produce the final result:
500 	 */
501 	x = LSI_ONE - x;
502 	while (i--)
503 		x = (x * x) >> LSHIFT;
504 
505 	return (x);
506 }
507 
508 /*
509  * Given the old percent cpu and a time delta in nanoseconds,
510  * return the new decayed percent cpu:  pct * exp(-tau),
511  * where 'tau' is the time delta multiplied by a decay factor.
512  * We have chosen the decay factor (cpu_decay_factor in param.c)
513  * to make the decay over five seconds be approximately 20%.
514  *
515  * 'pct' is a 32-bit scaled integer <= 1
516  * The binary point is to the right of the high-order bit
517  * of the 32-bit word.
518  */
519 static uint32_t
520 cpu_decay(uint32_t pct, hrtime_t nsec)
521 {
522 	uint64_t delta = (uint64_t)nsec;
523 
524 	delta /= cpu_decay_factor;
525 	return ((pct * exp_x(delta)) >> LSHIFT);
526 }
527 
528 /*
529  * Given the old percent cpu and a time delta in nanoseconds,
530  * return the new grown percent cpu:  1 - ( 1 - pct ) * exp(-tau)
531  */
532 static uint32_t
533 cpu_grow(uint32_t pct, hrtime_t nsec)
534 {
535 	return (LSI_ONE - cpu_decay(LSI_ONE - pct, nsec));
536 }
537 
538 
539 /*
540  * Defined to determine whether a lwp is still on a processor.
541  */
542 
543 #define	T_ONPROC(kt)	\
544 	((kt)->t_mstate < LMS_SLEEP)
545 #define	T_OFFPROC(kt)	\
546 	((kt)->t_mstate >= LMS_SLEEP)
547 
548 uint_t
549 cpu_update_pct(kthread_t *t, hrtime_t newtime)
550 {
551 	hrtime_t delta;
552 	hrtime_t hrlb;
553 	uint_t pctcpu;
554 	uint_t npctcpu;
555 
556 	/*
557 	 * This routine can get called at PIL > 0, this *has* to be
558 	 * done atomically. Holding locks here causes bad things to happen.
559 	 * (read: deadlock).
560 	 */
561 
562 	do {
563 		if (T_ONPROC(t) && t->t_waitrq == 0) {
564 			hrlb = t->t_hrtime;
565 			delta = newtime - hrlb;
566 			if (delta < 0) {
567 				newtime = gethrtime_unscaled();
568 				delta = newtime - hrlb;
569 			}
570 			t->t_hrtime = newtime;
571 			scalehrtime(&delta);
572 			pctcpu = t->t_pctcpu;
573 			npctcpu = cpu_grow(pctcpu, delta);
574 		} else {
575 			hrlb = t->t_hrtime;
576 			delta = newtime - hrlb;
577 			if (delta < 0) {
578 				newtime = gethrtime_unscaled();
579 				delta = newtime - hrlb;
580 			}
581 			t->t_hrtime = newtime;
582 			scalehrtime(&delta);
583 			pctcpu = t->t_pctcpu;
584 			npctcpu = cpu_decay(pctcpu, delta);
585 		}
586 	} while (cas32(&t->t_pctcpu, pctcpu, npctcpu) != pctcpu);
587 
588 	return (npctcpu);
589 }
590 
591 /*
592  * Change the microstate level for the LWP and update the
593  * associated accounting information.  Return the previous
594  * LWP state.
595  */
596 int
597 new_mstate(kthread_t *t, int new_state)
598 {
599 	struct mstate *ms;
600 	unsigned state;
601 	hrtime_t *mstimep;
602 	hrtime_t curtime;
603 	hrtime_t newtime;
604 	hrtime_t oldtime;
605 	klwp_t *lwp;
606 
607 	ASSERT(new_state != LMS_WAIT_CPU);
608 	ASSERT((unsigned)new_state < NMSTATES);
609 	ASSERT(t == curthread || THREAD_LOCK_HELD(t));
610 
611 	/*
612 	 * Don't do microstate processing for threads without a lwp (kernel
613 	 * threads).  Also, if we're an interrupt thread that is pinning another
614 	 * thread, our t_mstate hasn't been initialized.  We'd be modifying the
615 	 * microstate of the underlying lwp which doesn't realize that it's
616 	 * pinned.  In this case, also don't change the microstate.
617 	 */
618 	if (((lwp = ttolwp(t)) == NULL) || t->t_intr)
619 		return (LMS_SYSTEM);
620 
621 	curtime = gethrtime_unscaled();
622 
623 	/* adjust cpu percentages before we go any further */
624 	(void) cpu_update_pct(t, curtime);
625 
626 	ms = &lwp->lwp_mstate;
627 	state = t->t_mstate;
628 	do {
629 		switch (state) {
630 		case LMS_TFAULT:
631 		case LMS_DFAULT:
632 		case LMS_KFAULT:
633 		case LMS_USER_LOCK:
634 			mstimep = &ms->ms_acct[LMS_SYSTEM];
635 			break;
636 		default:
637 			mstimep = &ms->ms_acct[state];
638 			break;
639 		}
640 		newtime = curtime - ms->ms_state_start;
641 		if (newtime < 0) {
642 			curtime = gethrtime_unscaled();
643 			oldtime = *mstimep - 1; /* force CAS to fail */
644 			continue;
645 		}
646 		oldtime = *mstimep;
647 		newtime += oldtime;
648 		t->t_mstate = new_state;
649 		ms->ms_state_start = curtime;
650 	} while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
651 	/*
652 	 * Remember the previous running microstate.
653 	 */
654 	if (state != LMS_SLEEP && state != LMS_STOPPED)
655 		ms->ms_prev = state;
656 
657 	/*
658 	 * Switch CPU microstate if appropriate
659 	 */
660 
661 	kpreempt_disable(); /* MUST disable kpreempt before touching t->cpu */
662 	ASSERT(t->t_cpu == CPU);
663 	if (!CPU_ON_INTR(t->t_cpu) && curthread->t_intr == NULL) {
664 		if (new_state == LMS_USER && t->t_cpu->cpu_mstate != CMS_USER)
665 			new_cpu_mstate(CMS_USER, curtime);
666 		else if (new_state != LMS_USER &&
667 		    t->t_cpu->cpu_mstate != CMS_SYSTEM)
668 			new_cpu_mstate(CMS_SYSTEM, curtime);
669 	}
670 	kpreempt_enable();
671 
672 	return (ms->ms_prev);
673 }
674 
675 /*
676  * Restore the LWP microstate to the previous runnable state.
677  * Called from disp() with the newly selected lwp.
678  */
679 void
680 restore_mstate(kthread_t *t)
681 {
682 	struct mstate *ms;
683 	hrtime_t *mstimep;
684 	klwp_t *lwp;
685 	hrtime_t curtime;
686 	hrtime_t waitrq;
687 	hrtime_t newtime;
688 	hrtime_t oldtime;
689 
690 	/*
691 	 * Don't call restore mstate of threads without lwps.  (Kernel threads)
692 	 *
693 	 * threads with t_intr set shouldn't be in the dispatcher, so assert
694 	 * that nobody here has t_intr.
695 	 */
696 	ASSERT(t->t_intr == NULL);
697 
698 	if ((lwp = ttolwp(t)) == NULL)
699 		return;
700 
701 	curtime = gethrtime_unscaled();
702 	(void) cpu_update_pct(t, curtime);
703 	ms = &lwp->lwp_mstate;
704 	ASSERT((unsigned)t->t_mstate < NMSTATES);
705 	do {
706 		switch (t->t_mstate) {
707 		case LMS_SLEEP:
708 			/*
709 			 * Update the timer for the current sleep state.
710 			 */
711 			ASSERT((unsigned)ms->ms_prev < NMSTATES);
712 			switch (ms->ms_prev) {
713 			case LMS_TFAULT:
714 			case LMS_DFAULT:
715 			case LMS_KFAULT:
716 			case LMS_USER_LOCK:
717 				mstimep = &ms->ms_acct[ms->ms_prev];
718 				break;
719 			default:
720 				mstimep = &ms->ms_acct[LMS_SLEEP];
721 				break;
722 			}
723 			/*
724 			 * Return to the previous run state.
725 			 */
726 			t->t_mstate = ms->ms_prev;
727 			break;
728 		case LMS_STOPPED:
729 			mstimep = &ms->ms_acct[LMS_STOPPED];
730 			/*
731 			 * Return to the previous run state.
732 			 */
733 			t->t_mstate = ms->ms_prev;
734 			break;
735 		case LMS_TFAULT:
736 		case LMS_DFAULT:
737 		case LMS_KFAULT:
738 		case LMS_USER_LOCK:
739 			mstimep = &ms->ms_acct[LMS_SYSTEM];
740 			break;
741 		default:
742 			mstimep = &ms->ms_acct[t->t_mstate];
743 			break;
744 		}
745 		waitrq = t->t_waitrq;	/* hopefully atomic */
746 		if (waitrq == 0) {
747 			waitrq = curtime;
748 		}
749 		t->t_waitrq = 0;
750 		newtime = waitrq - ms->ms_state_start;
751 		if (newtime < 0) {
752 			curtime = gethrtime_unscaled();
753 			oldtime = *mstimep - 1; /* force CAS to fail */
754 			continue;
755 		}
756 		oldtime = *mstimep;
757 		newtime += oldtime;
758 	} while (cas64((uint64_t *)mstimep, oldtime, newtime) != oldtime);
759 	/*
760 	 * Update the WAIT_CPU timer and per-cpu waitrq total.
761 	 */
762 	ms->ms_acct[LMS_WAIT_CPU] += (curtime - waitrq);
763 	CPU->cpu_waitrq += (curtime - waitrq);
764 	ms->ms_state_start = curtime;
765 }
766 
767 /*
768  * Copy lwp microstate accounting and resource usage information
769  * to the process.  (lwp is terminating)
770  */
771 void
772 term_mstate(kthread_t *t)
773 {
774 	struct mstate *ms;
775 	proc_t *p = ttoproc(t);
776 	klwp_t *lwp = ttolwp(t);
777 	int i;
778 	hrtime_t tmp;
779 
780 	ASSERT(MUTEX_HELD(&p->p_lock));
781 
782 	ms = &lwp->lwp_mstate;
783 	(void) new_mstate(t, LMS_STOPPED);
784 	ms->ms_term = ms->ms_state_start;
785 	tmp = ms->ms_term - ms->ms_start;
786 	scalehrtime(&tmp);
787 	p->p_mlreal += tmp;
788 	for (i = 0; i < NMSTATES; i++) {
789 		tmp = ms->ms_acct[i];
790 		scalehrtime(&tmp);
791 		p->p_acct[i] += tmp;
792 	}
793 	p->p_ru.minflt   += lwp->lwp_ru.minflt;
794 	p->p_ru.majflt   += lwp->lwp_ru.majflt;
795 	p->p_ru.nswap    += lwp->lwp_ru.nswap;
796 	p->p_ru.inblock  += lwp->lwp_ru.inblock;
797 	p->p_ru.oublock  += lwp->lwp_ru.oublock;
798 	p->p_ru.msgsnd   += lwp->lwp_ru.msgsnd;
799 	p->p_ru.msgrcv   += lwp->lwp_ru.msgrcv;
800 	p->p_ru.nsignals += lwp->lwp_ru.nsignals;
801 	p->p_ru.nvcsw    += lwp->lwp_ru.nvcsw;
802 	p->p_ru.nivcsw   += lwp->lwp_ru.nivcsw;
803 	p->p_ru.sysc	 += lwp->lwp_ru.sysc;
804 	p->p_ru.ioch	 += lwp->lwp_ru.ioch;
805 	p->p_defunct++;
806 }
807