xref: /titanic_50/usr/src/uts/common/os/modctl.c (revision c8e880c1386b032ac975c61826ba3bc0d8dce5ac)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * modctl system call for loadable module support.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/user.h>
35 #include <sys/systm.h>
36 #include <sys/exec.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/conf.h>
40 #include <sys/time.h>
41 #include <sys/reboot.h>
42 #include <sys/fs/ufs_fsdir.h>
43 #include <sys/kmem.h>
44 #include <sys/sysconf.h>
45 #include <sys/cmn_err.h>
46 #include <sys/ddi.h>
47 #include <sys/sunddi.h>
48 #include <sys/sunndi.h>
49 #include <sys/ndi_impldefs.h>
50 #include <sys/ddi_impldefs.h>
51 #include <sys/ddi_implfuncs.h>
52 #include <sys/bootconf.h>
53 #include <sys/dc_ki.h>
54 #include <sys/cladm.h>
55 #include <sys/dtrace.h>
56 #include <sys/kdi.h>
57 
58 #include <sys/devpolicy.h>
59 #include <sys/modctl.h>
60 #include <sys/kobj.h>
61 #include <sys/devops.h>
62 #include <sys/autoconf.h>
63 #include <sys/hwconf.h>
64 #include <sys/callb.h>
65 #include <sys/debug.h>
66 #include <sys/cpuvar.h>
67 #include <sys/sysmacros.h>
68 #include <sys/sysevent.h>
69 #include <sys/sysevent_impl.h>
70 #include <sys/instance.h>
71 #include <sys/modhash.h>
72 #include <sys/modhash_impl.h>
73 #include <sys/dacf_impl.h>
74 #include <sys/vfs.h>
75 #include <sys/pathname.h>
76 #include <sys/console.h>
77 #include <sys/policy.h>
78 #include <ipp/ipp_impl.h>
79 #include <sys/fs/dv_node.h>
80 #include <sys/strsubr.h>
81 #include <sys/fs/sdev_node.h>
82 
83 static int		mod_circdep(struct modctl *);
84 static int		modinfo(modid_t, struct modinfo *);
85 
86 static void		mod_uninstall_all(void);
87 static int		mod_getinfo(struct modctl *, struct modinfo *);
88 static struct modctl	*allocate_modp(const char *, const char *);
89 
90 static int		mod_load(struct modctl *, int);
91 static void		mod_unload(struct modctl *);
92 static int		modinstall(struct modctl *);
93 static int		moduninstall(struct modctl *);
94 
95 static struct modctl	*mod_hold_by_name_common(struct modctl *, const char *);
96 static struct modctl	*mod_hold_next_by_id(modid_t);
97 static struct modctl	*mod_hold_loaded_mod(struct modctl *, char *, int *);
98 static struct modctl	*mod_hold_installed_mod(char *, int, int *);
99 
100 static void		mod_release(struct modctl *);
101 static void		mod_make_requisite(struct modctl *, struct modctl *);
102 static int		mod_install_requisites(struct modctl *);
103 static void		check_esc_sequences(char *, char *);
104 static struct modctl	*mod_hold_by_name_requisite(struct modctl *, char *);
105 
106 /*
107  * module loading thread control structure. Calls to kobj_load_module()() are
108  * handled off to a separate thead using this structure.
109  */
110 struct loadmt {
111 	ksema_t		sema;
112 	struct modctl	*mp;
113 	int		usepath;
114 	kthread_t	*owner;
115 	int		retval;
116 };
117 
118 static void	modload_thread(struct loadmt *);
119 
120 kcondvar_t	mod_cv;
121 kcondvar_t	mod_uninstall_cv;	/* Communication between swapper */
122 					/* and the uninstall daemon. */
123 kmutex_t	mod_lock;		/* protects &modules insert linkage, */
124 					/* mod_busy, mod_want, and mod_ref. */
125 					/* blocking operations while holding */
126 					/* mod_lock should be avoided */
127 kmutex_t	mod_uninstall_lock;	/* protects mod_uninstall_cv */
128 kthread_id_t	mod_aul_thread;
129 
130 int		modunload_wait;
131 kmutex_t	modunload_wait_mutex;
132 kcondvar_t	modunload_wait_cv;
133 int		modunload_active_count;
134 int		modunload_disable_count;
135 
136 int	isminiroot;		/* set if running as miniroot */
137 int	modrootloaded;		/* set after root driver and fs are loaded */
138 int	moddebug = 0x0;		/* debug flags for module writers */
139 int	swaploaded;		/* set after swap driver and fs are loaded */
140 int	bop_io_quiesced = 0;	/* set when BOP I/O can no longer be used */
141 int	last_module_id;
142 clock_t	mod_uninstall_interval = 0;
143 int	ddi_modclose_unload = 1;	/* 0 -> just decrement reference */
144 
145 struct devnames *devnamesp;
146 struct devnames orphanlist;
147 
148 krwlock_t	devinfo_tree_lock;	/* obsolete, to be removed */
149 
150 #define	MAJBINDFILE "/etc/name_to_major"
151 #define	SYSBINDFILE "/etc/name_to_sysnum"
152 
153 static char	majbind[] = MAJBINDFILE;
154 static char	sysbind[] = SYSBINDFILE;
155 static uint_t	mod_autounload_key;	/* for module autounload detection */
156 
157 extern int obpdebug;
158 extern int make_mbind(char *, int, char *, struct bind **);
159 
160 #define	DEBUGGER_PRESENT	((boothowto & RB_DEBUG) || (obpdebug != 0))
161 
162 static int minorperm_loaded = 0;
163 
164 void
165 mod_setup(void)
166 {
167 	struct sysent *callp;
168 	int callnum, exectype;
169 	int	num_devs;
170 	int	i;
171 
172 	/*
173 	 * Initialize the list of loaded driver dev_ops.
174 	 * XXX - This must be done before reading the system file so that
175 	 * forceloads of drivers will work.
176 	 */
177 	num_devs = read_binding_file(majbind, mb_hashtab, make_mbind);
178 	/*
179 	 * Since read_binding_file is common code, it doesn't enforce that all
180 	 * of the binding file entries have major numbers <= MAXMAJ32.  Thus,
181 	 * ensure that we don't allocate some massive amount of space due to a
182 	 * bad entry.  We can't have major numbers bigger than MAXMAJ32
183 	 * until file system support for larger major numbers exists.
184 	 */
185 
186 	/*
187 	 * Leave space for expansion, but not more than L_MAXMAJ32
188 	 */
189 	devcnt = MIN(num_devs + 30, L_MAXMAJ32);
190 	devopsp = kmem_alloc(devcnt * sizeof (struct dev_ops *), KM_SLEEP);
191 	for (i = 0; i < devcnt; i++)
192 		devopsp[i] = &mod_nodev_ops;
193 
194 	init_devnamesp(devcnt);
195 
196 	/*
197 	 * Sync up with the work that the stand-alone linker has already done.
198 	 */
199 	(void) kobj_sync();
200 
201 	if (boothowto & RB_DEBUG)
202 		kdi_dvec_modavail();
203 
204 	make_aliases(mb_hashtab);
205 
206 	/*
207 	 * Initialize streams device implementation structures.
208 	 */
209 	devimpl = kmem_zalloc(devcnt * sizeof (cdevsw_impl_t), KM_SLEEP);
210 
211 	/*
212 	 * If the cl_bootstrap module is present,
213 	 * we should be configured as a cluster. Loading this module
214 	 * will set "cluster_bootflags" to non-zero.
215 	 */
216 	(void) modload("misc", "cl_bootstrap");
217 
218 	(void) read_binding_file(sysbind, sb_hashtab, make_mbind);
219 	init_syscallnames(NSYSCALL);
220 
221 	/*
222 	 * Start up dynamic autoconfiguration framework (dacf).
223 	 */
224 	mod_hash_init();
225 	dacf_init();
226 
227 	/*
228 	 * Start up IP policy framework (ipp).
229 	 */
230 	ipp_init();
231 
232 	/*
233 	 * Allocate loadable native system call locks.
234 	 */
235 	for (callnum = 0, callp = sysent; callnum < NSYSCALL;
236 	    callnum++, callp++) {
237 		if (LOADABLE_SYSCALL(callp)) {
238 			if (mod_getsysname(callnum) != NULL) {
239 				callp->sy_lock =
240 				    kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
241 				rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL);
242 			} else {
243 				callp->sy_flags &= ~SE_LOADABLE;
244 				callp->sy_callc = nosys;
245 			}
246 #ifdef DEBUG
247 		} else {
248 			/*
249 			 * Do some sanity checks on the sysent table
250 			 */
251 			switch (callp->sy_flags & SE_RVAL_MASK) {
252 			case SE_32RVAL1:
253 				/* only r_val1 returned */
254 			case SE_32RVAL1 | SE_32RVAL2:
255 				/* r_val1 and r_val2 returned */
256 			case SE_64RVAL:
257 				/* 64-bit rval returned */
258 				break;
259 			default:
260 				cmn_err(CE_WARN, "sysent[%d]: bad flags %x",
261 				    callnum, callp->sy_flags);
262 			}
263 #endif
264 		}
265 	}
266 
267 #ifdef _SYSCALL32_IMPL
268 	/*
269 	 * Allocate loadable system call locks for 32-bit compat syscalls
270 	 */
271 	for (callnum = 0, callp = sysent32; callnum < NSYSCALL;
272 	    callnum++, callp++) {
273 		if (LOADABLE_SYSCALL(callp)) {
274 			if (mod_getsysname(callnum) != NULL) {
275 				callp->sy_lock =
276 				    kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
277 				rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL);
278 			} else {
279 				callp->sy_flags &= ~SE_LOADABLE;
280 				callp->sy_callc = nosys;
281 			}
282 #ifdef DEBUG
283 		} else {
284 			/*
285 			 * Do some sanity checks on the sysent table
286 			 */
287 			switch (callp->sy_flags & SE_RVAL_MASK) {
288 			case SE_32RVAL1:
289 				/* only r_val1 returned */
290 			case SE_32RVAL1 | SE_32RVAL2:
291 				/* r_val1 and r_val2 returned */
292 			case SE_64RVAL:
293 				/* 64-bit rval returned */
294 				break;
295 			default:
296 				cmn_err(CE_WARN, "sysent32[%d]: bad flags %x",
297 				    callnum, callp->sy_flags);
298 				goto skip;
299 			}
300 
301 			/*
302 			 * Cross-check the native and compatibility tables.
303 			 */
304 			if (callp->sy_callc == nosys ||
305 			    sysent[callnum].sy_callc == nosys)
306 				continue;
307 			/*
308 			 * If only one or the other slot is loadable, then
309 			 * there's an error -- they should match!
310 			 */
311 			if ((callp->sy_callc == loadable_syscall) ^
312 			    (sysent[callnum].sy_callc == loadable_syscall)) {
313 				cmn_err(CE_WARN, "sysent[%d] loadable?",
314 				    callnum);
315 			}
316 			/*
317 			 * This is more of a heuristic test -- if the
318 			 * system call returns two values in the 32-bit
319 			 * world, it should probably return two 32-bit
320 			 * values in the 64-bit world too.
321 			 */
322 			if (((callp->sy_flags & SE_32RVAL2) == 0) ^
323 			    ((sysent[callnum].sy_flags & SE_32RVAL2) == 0)) {
324 				cmn_err(CE_WARN, "sysent[%d] rval2 mismatch!",
325 				    callnum);
326 			}
327 skip:;
328 #endif	/* DEBUG */
329 		}
330 	}
331 #endif	/* _SYSCALL32_IMPL */
332 
333 	/*
334 	 * Allocate loadable exec locks.  (Assumes all execs are loadable)
335 	 */
336 	for (exectype = 0; exectype < nexectype; exectype++) {
337 		execsw[exectype].exec_lock =
338 		    kobj_zalloc(sizeof (krwlock_t), KM_SLEEP);
339 		rw_init(execsw[exectype].exec_lock, NULL, RW_DEFAULT, NULL);
340 	}
341 
342 	read_class_file();
343 
344 	/* init thread specific structure for mod_uninstall_all */
345 	tsd_create(&mod_autounload_key, NULL);
346 }
347 
348 static int
349 modctl_modload(int use_path, char *filename, int *rvp)
350 {
351 	struct modctl *modp;
352 	int retval = 0;
353 	char *filenamep;
354 	int modid;
355 
356 	filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP);
357 
358 	if (copyinstr(filename, filenamep, MOD_MAXPATH, 0)) {
359 		retval = EFAULT;
360 		goto out;
361 	}
362 
363 	filenamep[MOD_MAXPATH - 1] = 0;
364 	modp = mod_hold_installed_mod(filenamep, use_path, &retval);
365 
366 	if (modp == NULL)
367 		goto out;
368 
369 	modp->mod_loadflags |= MOD_NOAUTOUNLOAD;
370 	modid = modp->mod_id;
371 	mod_release_mod(modp);
372 	CPU_STATS_ADDQ(CPU, sys, modload, 1);
373 	if (rvp != NULL && copyout(&modid, rvp, sizeof (modid)) != 0)
374 		retval = EFAULT;
375 out:
376 	kmem_free(filenamep, MOD_MAXPATH);
377 
378 	return (retval);
379 }
380 
381 static int
382 modctl_modunload(modid_t id)
383 {
384 	int rval = 0;
385 
386 	if (id == 0) {
387 #ifdef DEBUG
388 		/*
389 		 * Turn on mod_uninstall_daemon
390 		 */
391 		if (mod_uninstall_interval == 0) {
392 			mod_uninstall_interval = 60;
393 			modreap();
394 			return (rval);
395 		}
396 #endif
397 		mod_uninstall_all();
398 	} else {
399 		rval = modunload(id);
400 	}
401 	return (rval);
402 }
403 
404 static int
405 modctl_modinfo(modid_t id, struct modinfo *umodi)
406 {
407 	int retval;
408 	struct modinfo modi;
409 #if defined(_SYSCALL32_IMPL)
410 	int nobase;
411 	struct modinfo32 modi32;
412 #endif
413 
414 	if (get_udatamodel() == DATAMODEL_NATIVE) {
415 		if (copyin(umodi, &modi, sizeof (struct modinfo)) != 0)
416 			return (EFAULT);
417 	}
418 #ifdef _SYSCALL32_IMPL
419 	else {
420 		bzero(&modi, sizeof (modi));
421 		if (copyin(umodi, &modi32, sizeof (struct modinfo32)) != 0)
422 			return (EFAULT);
423 		modi.mi_info = modi32.mi_info;
424 		modi.mi_id = modi32.mi_id;
425 		modi.mi_nextid = modi32.mi_nextid;
426 		nobase = modi.mi_info & MI_INFO_NOBASE;
427 	}
428 #endif
429 	/*
430 	 * This flag is -only- for the kernels use.
431 	 */
432 	modi.mi_info &= ~MI_INFO_LINKAGE;
433 
434 	retval = modinfo(id, &modi);
435 	if (retval)
436 		return (retval);
437 
438 	if (get_udatamodel() == DATAMODEL_NATIVE) {
439 		if (copyout(&modi, umodi, sizeof (struct modinfo)) != 0)
440 			retval = EFAULT;
441 #ifdef _SYSCALL32_IMPL
442 	} else {
443 		int i;
444 
445 		if (!nobase && (uintptr_t)modi.mi_base > UINT32_MAX)
446 			return (EOVERFLOW);
447 
448 		modi32.mi_info = modi.mi_info;
449 		modi32.mi_state = modi.mi_state;
450 		modi32.mi_id = modi.mi_id;
451 		modi32.mi_nextid = modi.mi_nextid;
452 		modi32.mi_base = (caddr32_t)(uintptr_t)modi.mi_base;
453 		modi32.mi_size = modi.mi_size;
454 		modi32.mi_rev = modi.mi_rev;
455 		modi32.mi_loadcnt = modi.mi_loadcnt;
456 		bcopy(modi.mi_name, modi32.mi_name, sizeof (modi32.mi_name));
457 		for (i = 0; i < MODMAXLINK32; i++) {
458 			modi32.mi_msinfo[i].msi_p0 = modi.mi_msinfo[i].msi_p0;
459 			bcopy(modi.mi_msinfo[i].msi_linkinfo,
460 			    modi32.mi_msinfo[i].msi_linkinfo,
461 			    sizeof (modi32.mi_msinfo[0].msi_linkinfo));
462 		}
463 		if (copyout(&modi32, umodi, sizeof (struct modinfo32)) != 0)
464 			retval = EFAULT;
465 #endif
466 	}
467 
468 	return (retval);
469 }
470 
471 /*
472  * Return the last major number in the range of permissible major numbers.
473  */
474 /*ARGSUSED*/
475 static int
476 modctl_modreserve(modid_t id, int *data)
477 {
478 	if (copyout(&devcnt, data, sizeof (devcnt)) != 0)
479 		return (EFAULT);
480 	return (0);
481 }
482 
483 static int
484 modctl_add_major(int *data)
485 {
486 	struct modconfig mc;
487 	int i, rv;
488 	struct aliases alias;
489 	struct aliases *ap;
490 	char name[MAXMODCONFNAME];
491 	char cname[MAXMODCONFNAME];
492 	char *drvname;
493 
494 	bzero(&mc, sizeof (struct modconfig));
495 	if (get_udatamodel() == DATAMODEL_NATIVE) {
496 		if (copyin(data, &mc, sizeof (struct modconfig)) != 0)
497 			return (EFAULT);
498 	}
499 #ifdef _SYSCALL32_IMPL
500 	else {
501 		struct modconfig32 modc32;
502 
503 		if (copyin(data, &modc32, sizeof (struct modconfig32)) != 0)
504 			return (EFAULT);
505 		else {
506 			bcopy(modc32.drvname, mc.drvname,
507 			    sizeof (modc32.drvname));
508 			bcopy(modc32.drvclass, mc.drvclass,
509 			    sizeof (modc32.drvclass));
510 			mc.major = modc32.major;
511 			mc.num_aliases = modc32.num_aliases;
512 			mc.ap = (struct aliases *)(uintptr_t)modc32.ap;
513 		}
514 	}
515 #endif
516 
517 	/*
518 	 * If the driver is already in the mb_hashtab, and the name given
519 	 * doesn't match that driver's name, fail.  Otherwise, pass, since
520 	 * we may be adding aliases.
521 	 */
522 	if ((drvname = mod_major_to_name(mc.major)) != NULL &&
523 	    strcmp(drvname, mc.drvname) != 0)
524 		return (EINVAL);
525 
526 	/*
527 	 * Add each supplied driver alias to mb_hashtab
528 	 */
529 	ap = mc.ap;
530 	for (i = 0; i < mc.num_aliases; i++) {
531 		bzero(&alias, sizeof (struct aliases));
532 
533 		if (get_udatamodel() == DATAMODEL_NATIVE) {
534 			if (copyin(ap, &alias, sizeof (struct aliases)) != 0)
535 				return (EFAULT);
536 
537 			if (alias.a_len > MAXMODCONFNAME)
538 				return (EINVAL);
539 
540 			if (copyin(alias.a_name, name, alias.a_len) != 0)
541 				return (EFAULT);
542 
543 			if (name[alias.a_len - 1] != '\0')
544 				return (EINVAL);
545 		}
546 #ifdef _SYSCALL32_IMPL
547 		else {
548 			struct aliases32 al32;
549 
550 			bzero(&al32, sizeof (struct aliases32));
551 			if (copyin(ap, &al32, sizeof (struct aliases32)) != 0)
552 				return (EFAULT);
553 
554 			if (al32.a_len > MAXMODCONFNAME)
555 				return (EINVAL);
556 
557 			if (copyin((void *)(uintptr_t)al32.a_name,
558 			    name, al32.a_len) != 0)
559 				return (EFAULT);
560 
561 			if (name[al32.a_len - 1] != '\0')
562 				return (EINVAL);
563 
564 			alias.a_next = (void *)(uintptr_t)al32.a_next;
565 		}
566 #endif
567 		check_esc_sequences(name, cname);
568 		(void) make_mbind(cname, mc.major, NULL, mb_hashtab);
569 		ap = alias.a_next;
570 	}
571 
572 	/*
573 	 * Try to establish an mbinding for mc.drvname, and add it to devnames.
574 	 * Add class if any after establishing the major number
575 	 */
576 	(void) make_mbind(mc.drvname, mc.major, NULL, mb_hashtab);
577 	rv = make_devname(mc.drvname, mc.major);
578 
579 	if (rv == 0) {
580 		if (mc.drvclass[0] != '\0')
581 			add_class(mc.drvname, mc.drvclass);
582 		(void) i_ddi_load_drvconf(mc.major);
583 		i_ddi_bind_devs();
584 		i_ddi_di_cache_invalidate(KM_SLEEP);
585 	}
586 	return (rv);
587 }
588 
589 static int
590 modctl_rem_major(major_t major)
591 {
592 	struct devnames *dnp;
593 
594 	if (major >= devcnt)
595 		return (EINVAL);
596 
597 	/* mark devnames as removed */
598 	dnp = &devnamesp[major];
599 	LOCK_DEV_OPS(&dnp->dn_lock);
600 	if (dnp->dn_name == NULL ||
601 	    (dnp->dn_flags & (DN_DRIVER_REMOVED | DN_TAKEN_GETUDEV))) {
602 		UNLOCK_DEV_OPS(&dnp->dn_lock);
603 		return (EINVAL);
604 	}
605 	dnp->dn_flags |= DN_DRIVER_REMOVED;
606 	pm_driver_removed(major);
607 	UNLOCK_DEV_OPS(&dnp->dn_lock);
608 
609 	(void) i_ddi_unload_drvconf(major);
610 	i_ddi_unbind_devs(major);
611 	i_ddi_di_cache_invalidate(KM_SLEEP);
612 	return (0);
613 }
614 
615 static struct vfs *
616 path_to_vfs(char *name)
617 {
618 	vnode_t *vp;
619 	struct vfs *vfsp;
620 
621 	if (lookupname(name, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp))
622 		return (NULL);
623 
624 	vfsp = vp->v_vfsp;
625 	VN_RELE(vp);
626 	return (vfsp);
627 }
628 
629 static int
630 new_vfs_in_modpath()
631 {
632 	static int n_modpath = 0;
633 	static char *modpath_copy;
634 	static struct pathvfs {
635 		char *path;
636 		struct vfs *vfsp;
637 	} *pathvfs;
638 
639 	int i, new_vfs = 0;
640 	char *tmp, *tmp1;
641 	struct vfs *vfsp;
642 
643 	if (n_modpath != 0) {
644 		for (i = 0; i < n_modpath; i++) {
645 			vfsp = path_to_vfs(pathvfs[i].path);
646 			if (vfsp != pathvfs[i].vfsp) {
647 				pathvfs[i].vfsp = vfsp;
648 				if (vfsp)
649 					new_vfs = 1;
650 			}
651 		}
652 		return (new_vfs);
653 	}
654 
655 	/*
656 	 * First call, initialize the pathvfs structure
657 	 */
658 	modpath_copy = i_ddi_strdup(default_path, KM_SLEEP);
659 	tmp = modpath_copy;
660 	n_modpath = 1;
661 	tmp1 = strchr(tmp, ' ');
662 	while (tmp1) {
663 		*tmp1 = '\0';
664 		n_modpath++;
665 		tmp = tmp1 + 1;
666 		tmp1 = strchr(tmp, ' ');
667 	}
668 
669 	pathvfs = kmem_zalloc(n_modpath * sizeof (struct pathvfs), KM_SLEEP);
670 	tmp = modpath_copy;
671 	for (i = 0; i < n_modpath; i++) {
672 		pathvfs[i].path = tmp;
673 		vfsp = path_to_vfs(tmp);
674 		pathvfs[i].vfsp = vfsp;
675 		tmp += strlen(tmp) + 1;
676 	}
677 	return (1);	/* always reread driver.conf the first time */
678 }
679 
680 static int
681 modctl_load_drvconf(major_t major)
682 {
683 	int ret;
684 
685 	if (major != (major_t)-1) {
686 		ret = i_ddi_load_drvconf(major);
687 		if (ret == 0)
688 			i_ddi_bind_devs();
689 		return (ret);
690 	}
691 
692 	/*
693 	 * We are invoked to rescan new driver.conf files. It is
694 	 * only necessary if a new file system was mounted in the
695 	 * module_path. Because rescanning driver.conf files can
696 	 * take some time on older platforms (sun4m), the following
697 	 * code skips unnecessary driver.conf rescans to optimize
698 	 * boot performance.
699 	 */
700 	if (new_vfs_in_modpath()) {
701 		(void) i_ddi_load_drvconf((major_t)-1);
702 		/*
703 		 * If we are still initializing io subsystem,
704 		 * load drivers with ddi-forceattach property
705 		 */
706 		if (!i_ddi_io_initialized())
707 			i_ddi_forceattach_drivers();
708 	}
709 	return (0);
710 }
711 
712 static int
713 modctl_unload_drvconf(major_t major)
714 {
715 	int ret;
716 
717 	if (major >= devcnt)
718 		return (EINVAL);
719 
720 	ret = i_ddi_unload_drvconf(major);
721 	if (ret != 0)
722 		return (ret);
723 	(void) i_ddi_unbind_devs(major);
724 
725 	return (0);
726 }
727 
728 static void
729 check_esc_sequences(char *str, char *cstr)
730 {
731 	int i;
732 	size_t len;
733 	char *p;
734 
735 	len = strlen(str);
736 	for (i = 0; i < len; i++, str++, cstr++) {
737 		if (*str != '\\') {
738 			*cstr = *str;
739 		} else {
740 			p = str + 1;
741 			/*
742 			 * we only handle octal escape sequences for SPACE
743 			 */
744 			if (*p++ == '0' && *p++ == '4' && *p == '0') {
745 				*cstr = ' ';
746 				str += 3;
747 			} else {
748 				*cstr = *str;
749 			}
750 		}
751 	}
752 	*cstr = 0;
753 }
754 
755 static int
756 modctl_getmodpathlen(int *data)
757 {
758 	int len;
759 	len = strlen(default_path);
760 	if (copyout(&len, data, sizeof (len)) != 0)
761 		return (EFAULT);
762 	return (0);
763 }
764 
765 static int
766 modctl_getmodpath(char *data)
767 {
768 	if (copyout(default_path, data, strlen(default_path) + 1) != 0)
769 		return (EFAULT);
770 	return (0);
771 }
772 
773 static int
774 modctl_read_sysbinding_file(void)
775 {
776 	(void) read_binding_file(sysbind, sb_hashtab, make_mbind);
777 	return (0);
778 }
779 
780 static int
781 modctl_getmaj(char *uname, uint_t ulen, int *umajorp)
782 {
783 	char name[256];
784 	int retval;
785 	major_t major;
786 
787 	if (ulen == 0)
788 		return (EINVAL);
789 	if ((retval = copyinstr(uname, name,
790 	    (ulen < 256) ? ulen : 256, 0)) != 0)
791 		return (retval);
792 	if ((major = mod_name_to_major(name)) == (major_t)-1)
793 		return (ENODEV);
794 	if (copyout(&major, umajorp, sizeof (major_t)) != 0)
795 		return (EFAULT);
796 	return (0);
797 }
798 
799 static char **
800 convert_constraint_string(char *constraints, size_t len)
801 {
802 	int	i;
803 	int	n;
804 	char	*p;
805 	char	**array;
806 
807 	ASSERT(constraints != NULL);
808 	ASSERT(len > 0);
809 
810 	for (i = 0, p = constraints; strlen(p) > 0; i++, p += strlen(p) + 1);
811 
812 	n = i;
813 
814 	if (n == 0) {
815 		kmem_free(constraints, len);
816 		return (NULL);
817 	}
818 
819 	array = kmem_alloc((n + 1) * sizeof (char *), KM_SLEEP);
820 
821 	for (i = 0, p = constraints; i < n; i++, p += strlen(p) + 1) {
822 		array[i] = i_ddi_strdup(p, KM_SLEEP);
823 	}
824 	array[n] = NULL;
825 
826 	kmem_free(constraints, len);
827 
828 	return (array);
829 }
830 /*ARGSUSED*/
831 static int
832 modctl_retire(char *path, char *uconstraints, size_t ulen)
833 {
834 	char	*pathbuf;
835 	char	*devpath;
836 	size_t	pathsz;
837 	int	retval;
838 	char	*constraints;
839 	char	**cons_array;
840 
841 	if (path == NULL)
842 		return (EINVAL);
843 
844 	if ((uconstraints == NULL) ^ (ulen == 0))
845 		return (EINVAL);
846 
847 	pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
848 	retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz);
849 	if (retval != 0) {
850 		kmem_free(pathbuf, MAXPATHLEN);
851 		return (retval);
852 	}
853 	devpath = i_ddi_strdup(pathbuf, KM_SLEEP);
854 	kmem_free(pathbuf, MAXPATHLEN);
855 
856 	/*
857 	 * First check if the device is already retired.
858 	 * If it is, this becomes a NOP
859 	 */
860 	if (e_ddi_device_retired(devpath)) {
861 		cmn_err(CE_NOTE, "Device: already retired: %s", devpath);
862 		kmem_free(devpath, strlen(devpath) + 1);
863 		return (0);
864 	}
865 
866 	cons_array = NULL;
867 	if (uconstraints) {
868 		constraints = kmem_alloc(ulen, KM_SLEEP);
869 		if (copyin(uconstraints, constraints, ulen)) {
870 			kmem_free(constraints, ulen);
871 			kmem_free(devpath, strlen(devpath) + 1);
872 			return (EFAULT);
873 		}
874 		cons_array = convert_constraint_string(constraints, ulen);
875 	}
876 
877 	/*
878 	 * Try to retire the device first. The following
879 	 * routine will return an error only if the device
880 	 * is not retireable i.e. retire constraints forbid
881 	 * a retire. A return of success from this routine
882 	 * indicates that device is retireable.
883 	 */
884 	retval = e_ddi_retire_device(devpath, cons_array);
885 	if (retval != DDI_SUCCESS) {
886 		cmn_err(CE_WARN, "constraints forbid retire: %s", devpath);
887 		kmem_free(devpath, strlen(devpath) + 1);
888 		return (ENOTSUP);
889 	}
890 
891 	/*
892 	 * Ok, the retire succeeded. Persist the retire.
893 	 * If retiring a nexus, we need to only persist the
894 	 * nexus retire. Any children of a retired nexus
895 	 * are automatically covered by the retire store
896 	 * code.
897 	 */
898 	retval = e_ddi_retire_persist(devpath);
899 	if (retval != 0) {
900 		cmn_err(CE_WARN, "Failed to persist device retire: error %d: "
901 		    "%s", retval, devpath);
902 		kmem_free(devpath, strlen(devpath) + 1);
903 		return (retval);
904 	}
905 	if (moddebug & MODDEBUG_RETIRE)
906 		cmn_err(CE_NOTE, "Persisted retire of device: %s", devpath);
907 
908 	kmem_free(devpath, strlen(devpath) + 1);
909 	return (0);
910 }
911 
912 static int
913 modctl_is_retired(char *path, int *statep)
914 {
915 	char	*pathbuf;
916 	char	*devpath;
917 	size_t	pathsz;
918 	int	error;
919 	int	status;
920 
921 	if (path == NULL || statep == NULL)
922 		return (EINVAL);
923 
924 	pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
925 	error = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz);
926 	if (error != 0) {
927 		kmem_free(pathbuf, MAXPATHLEN);
928 		return (error);
929 	}
930 	devpath = i_ddi_strdup(pathbuf, KM_SLEEP);
931 	kmem_free(pathbuf, MAXPATHLEN);
932 
933 	if (e_ddi_device_retired(devpath))
934 		status = 1;
935 	else
936 		status = 0;
937 	kmem_free(devpath, strlen(devpath) + 1);
938 
939 	return (copyout(&status, statep, sizeof (status)) ? EFAULT : 0);
940 }
941 
942 static int
943 modctl_unretire(char *path)
944 {
945 	char	*pathbuf;
946 	char	*devpath;
947 	size_t	pathsz;
948 	int	retired;
949 	int	retval;
950 
951 	if (path == NULL)
952 		return (EINVAL);
953 
954 	pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
955 	retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz);
956 	if (retval != 0) {
957 		kmem_free(pathbuf, MAXPATHLEN);
958 		return (retval);
959 	}
960 	devpath = i_ddi_strdup(pathbuf, KM_SLEEP);
961 	kmem_free(pathbuf, MAXPATHLEN);
962 
963 	/*
964 	 * We check if a device is retired (first) before
965 	 * unpersisting the retire, because we use the
966 	 * retire store to determine if a device is retired.
967 	 * If we unpersist first, the device will always appear
968 	 * to be unretired. For the rationale behind unpersisting
969 	 * a device that is not retired, see the next comment.
970 	 */
971 	retired = e_ddi_device_retired(devpath);
972 
973 	/*
974 	 * We call unpersist unconditionally because the lookup
975 	 * for retired devices (e_ddi_device_retired()), skips "bypassed"
976 	 * devices. We still want to be able remove "bypassed" entries
977 	 * from the persistent store, so we unpersist unconditionally
978 	 * i.e. whether or not the entry is found on a lookup.
979 	 *
980 	 * e_ddi_retire_unpersist() returns 1 if it found and cleared
981 	 * an entry from the retire store or 0 otherwise.
982 	 */
983 	if (e_ddi_retire_unpersist(devpath))
984 		if (moddebug & MODDEBUG_RETIRE) {
985 			cmn_err(CE_NOTE, "Unpersisted retire of device: %s",
986 			    devpath);
987 		}
988 
989 	/*
990 	 * Check if the device is already unretired. If so,
991 	 * the unretire becomes a NOP
992 	 */
993 	if (!retired) {
994 		cmn_err(CE_NOTE, "Not retired: %s", devpath);
995 		kmem_free(devpath, strlen(devpath) + 1);
996 		return (0);
997 	}
998 
999 	retval = e_ddi_unretire_device(devpath);
1000 	if (retval != 0) {
1001 		cmn_err(CE_WARN, "cannot unretire device: error %d, path %s\n",
1002 		    retval, devpath);
1003 	}
1004 
1005 	kmem_free(devpath, strlen(devpath) + 1);
1006 
1007 	return (retval);
1008 }
1009 
1010 static int
1011 modctl_getname(char *uname, uint_t ulen, int *umajorp)
1012 {
1013 	char *name;
1014 	major_t major;
1015 
1016 	if (copyin(umajorp, &major, sizeof (major)) != 0)
1017 		return (EFAULT);
1018 	if ((name = mod_major_to_name(major)) == NULL)
1019 		return (ENODEV);
1020 	if ((strlen(name) + 1) > ulen)
1021 		return (ENOSPC);
1022 	return (copyoutstr(name, uname, ulen, NULL));
1023 }
1024 
1025 static int
1026 modctl_devt2instance(dev_t dev, int *uinstancep)
1027 {
1028 	int	instance;
1029 
1030 	if ((instance = dev_to_instance(dev)) == -1)
1031 		return (EINVAL);
1032 
1033 	return (copyout(&instance, uinstancep, sizeof (int)));
1034 }
1035 
1036 /*
1037  * Return the sizeof of the device id.
1038  */
1039 static int
1040 modctl_sizeof_devid(dev_t dev, uint_t *len)
1041 {
1042 	uint_t		sz;
1043 	ddi_devid_t	devid;
1044 
1045 	/* get device id */
1046 	if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE)
1047 		return (EINVAL);
1048 
1049 	sz = ddi_devid_sizeof(devid);
1050 	ddi_devid_free(devid);
1051 
1052 	/* copyout device id size */
1053 	if (copyout(&sz, len, sizeof (sz)) != 0)
1054 		return (EFAULT);
1055 
1056 	return (0);
1057 }
1058 
1059 /*
1060  * Return a copy of the device id.
1061  */
1062 static int
1063 modctl_get_devid(dev_t dev, uint_t len, ddi_devid_t udevid)
1064 {
1065 	uint_t		sz;
1066 	ddi_devid_t	devid;
1067 	int		err = 0;
1068 
1069 	/* get device id */
1070 	if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE)
1071 		return (EINVAL);
1072 
1073 	sz = ddi_devid_sizeof(devid);
1074 
1075 	/* Error if device id is larger than space allocated */
1076 	if (sz > len) {
1077 		ddi_devid_free(devid);
1078 		return (ENOSPC);
1079 	}
1080 
1081 	/* copy out device id */
1082 	if (copyout(devid, udevid, sz) != 0)
1083 		err = EFAULT;
1084 	ddi_devid_free(devid);
1085 	return (err);
1086 }
1087 
1088 /*
1089  * return the /devices paths associated with the specified devid and
1090  * minor name.
1091  */
1092 /*ARGSUSED*/
1093 static int
1094 modctl_devid2paths(ddi_devid_t udevid, char *uminor_name, uint_t flag,
1095 	size_t *ulensp, char *upaths)
1096 {
1097 	ddi_devid_t	devid = NULL;
1098 	int		devid_len;
1099 	char		*minor_name = NULL;
1100 	dev_info_t	*dip = NULL;
1101 	struct ddi_minor_data   *dmdp;
1102 	char		*path = NULL;
1103 	int		ulens;
1104 	int		lens;
1105 	int		len;
1106 	dev_t		*devlist = NULL;
1107 	int		ndevs;
1108 	int		i;
1109 	int		ret = 0;
1110 
1111 	/*
1112 	 * If upaths is NULL then we are only computing the amount of space
1113 	 * needed to hold the paths and returning the value in *ulensp. If we
1114 	 * are copying out paths then we get the amount of space allocated by
1115 	 * the caller. If the actual space needed for paths is larger, or
1116 	 * things are changing out from under us, then we return EAGAIN.
1117 	 */
1118 	if (upaths) {
1119 		if (ulensp == NULL)
1120 			return (EINVAL);
1121 		if (copyin(ulensp, &ulens, sizeof (ulens)) != 0)
1122 			return (EFAULT);
1123 	}
1124 
1125 	/*
1126 	 * copyin enough of the devid to determine the length then
1127 	 * reallocate and copy in the entire devid.
1128 	 */
1129 	devid_len = ddi_devid_sizeof(NULL);
1130 	devid = kmem_alloc(devid_len, KM_SLEEP);
1131 	if (copyin(udevid, devid, devid_len)) {
1132 		ret = EFAULT;
1133 		goto out;
1134 	}
1135 	len = devid_len;
1136 	devid_len = ddi_devid_sizeof(devid);
1137 	kmem_free(devid, len);
1138 	devid = kmem_alloc(devid_len, KM_SLEEP);
1139 	if (copyin(udevid, devid, devid_len)) {
1140 		ret = EFAULT;
1141 		goto out;
1142 	}
1143 
1144 	/* copyin the minor name if specified. */
1145 	minor_name = uminor_name;
1146 	if ((minor_name != DEVID_MINOR_NAME_ALL) &&
1147 	    (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1148 	    (minor_name != DEVID_MINOR_NAME_ALL_BLK)) {
1149 		minor_name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1150 		if (copyinstr(uminor_name, minor_name, MAXPATHLEN, 0)) {
1151 			ret = EFAULT;
1152 			goto out;
1153 		}
1154 	}
1155 
1156 	/*
1157 	 * Use existing function to resolve the devid into a devlist.
1158 	 *
1159 	 * NOTE: there is a loss of spectype information in the current
1160 	 * ddi_lyr_devid_to_devlist implementation. We work around this by not
1161 	 * passing down DEVID_MINOR_NAME_ALL here, but reproducing all minor
1162 	 * node forms in the loop processing the devlist below. It would be
1163 	 * best if at some point the use of this interface here was replaced
1164 	 * with a path oriented call.
1165 	 */
1166 	if (ddi_lyr_devid_to_devlist(devid,
1167 	    (minor_name == DEVID_MINOR_NAME_ALL) ?
1168 	    DEVID_MINOR_NAME_ALL_CHR : minor_name,
1169 	    &ndevs, &devlist) != DDI_SUCCESS) {
1170 		ret = EINVAL;
1171 		goto out;
1172 	}
1173 
1174 	/*
1175 	 * loop over the devlist, converting each devt to a path and doing
1176 	 * a copyout of the path and computation of the amount of space
1177 	 * needed to hold all the paths
1178 	 */
1179 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1180 	for (i = 0, lens = 0; i < ndevs; i++) {
1181 
1182 		/* find the dip associated with the dev_t */
1183 		if ((dip = e_ddi_hold_devi_by_dev(devlist[i], 0)) == NULL)
1184 			continue;
1185 
1186 		/* loop over all the minor nodes, skipping ones we don't want */
1187 		for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) {
1188 			if ((dmdp->ddm_dev != devlist[i]) ||
1189 			    (dmdp->type != DDM_MINOR))
1190 				continue;
1191 
1192 			if ((minor_name != DEVID_MINOR_NAME_ALL) &&
1193 			    (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1194 			    (minor_name != DEVID_MINOR_NAME_ALL_BLK) &&
1195 			    strcmp(minor_name, dmdp->ddm_name))
1196 				continue;
1197 			else {
1198 				if ((minor_name == DEVID_MINOR_NAME_ALL_CHR) &&
1199 				    (dmdp->ddm_spec_type != S_IFCHR))
1200 					continue;
1201 				if ((minor_name == DEVID_MINOR_NAME_ALL_BLK) &&
1202 				    (dmdp->ddm_spec_type != S_IFBLK))
1203 					continue;
1204 			}
1205 
1206 			/* XXX need ddi_pathname_minor(dmdp, path); interface */
1207 			if (ddi_dev_pathname(dmdp->ddm_dev, dmdp->ddm_spec_type,
1208 			    path) != DDI_SUCCESS) {
1209 				ret = EAGAIN;
1210 				goto out;
1211 			}
1212 			len = strlen(path) + 1;
1213 			*(path + len) = '\0';	/* set double termination */
1214 			lens += len;
1215 
1216 			/* copyout the path with double terminations */
1217 			if (upaths) {
1218 				if (lens > ulens) {
1219 					ret = EAGAIN;
1220 					goto out;
1221 				}
1222 				if (copyout(path, upaths, len + 1)) {
1223 					ret = EFAULT;
1224 					goto out;
1225 				}
1226 				upaths += len;
1227 			}
1228 		}
1229 		ddi_release_devi(dip);
1230 		dip = NULL;
1231 	}
1232 	lens++;		/* add one for double termination */
1233 
1234 	/* copy out the amount of space needed to hold the paths */
1235 	if (ulensp && copyout(&lens, ulensp, sizeof (lens))) {
1236 		ret = EFAULT;
1237 		goto out;
1238 	}
1239 	ret = 0;
1240 
1241 out:	if (dip)
1242 		ddi_release_devi(dip);
1243 	if (path)
1244 		kmem_free(path, MAXPATHLEN);
1245 	if (devlist)
1246 		ddi_lyr_free_devlist(devlist, ndevs);
1247 	if (minor_name &&
1248 	    (minor_name != DEVID_MINOR_NAME_ALL) &&
1249 	    (minor_name != DEVID_MINOR_NAME_ALL_CHR) &&
1250 	    (minor_name != DEVID_MINOR_NAME_ALL_BLK))
1251 		kmem_free(minor_name, MAXPATHLEN);
1252 	if (devid)
1253 		kmem_free(devid, devid_len);
1254 	return (ret);
1255 }
1256 
1257 /*
1258  * Return the size of the minor name.
1259  */
1260 static int
1261 modctl_sizeof_minorname(dev_t dev, int spectype, uint_t *len)
1262 {
1263 	uint_t	sz;
1264 	char	*name;
1265 
1266 	/* get the minor name */
1267 	if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE)
1268 		return (EINVAL);
1269 
1270 	sz = strlen(name) + 1;
1271 	kmem_free(name, sz);
1272 
1273 	/* copy out the size of the minor name */
1274 	if (copyout(&sz, len, sizeof (sz)) != 0)
1275 		return (EFAULT);
1276 
1277 	return (0);
1278 }
1279 
1280 /*
1281  * Return the minor name.
1282  */
1283 static int
1284 modctl_get_minorname(dev_t dev, int spectype, uint_t len, char *uname)
1285 {
1286 	uint_t	sz;
1287 	char	*name;
1288 	int	err = 0;
1289 
1290 	/* get the minor name */
1291 	if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE)
1292 		return (EINVAL);
1293 
1294 	sz = strlen(name) + 1;
1295 
1296 	/* Error if the minor name is larger than the space allocated */
1297 	if (sz > len) {
1298 		kmem_free(name, sz);
1299 		return (ENOSPC);
1300 	}
1301 
1302 	/* copy out the minor name */
1303 	if (copyout(name, uname, sz) != 0)
1304 		err = EFAULT;
1305 	kmem_free(name, sz);
1306 	return (err);
1307 }
1308 
1309 /*
1310  * Return the size of the (dev_t,spectype) devfspath name.
1311  */
1312 static int
1313 modctl_devfspath_len(dev_t dev, int spectype, uint_t *len)
1314 {
1315 	uint_t	sz;
1316 	char	*name;
1317 
1318 	/* get the path name */
1319 	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1320 	if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) {
1321 		kmem_free(name, MAXPATHLEN);
1322 		return (EINVAL);
1323 	}
1324 
1325 	sz = strlen(name) + 1;
1326 	kmem_free(name, MAXPATHLEN);
1327 
1328 	/* copy out the size of the path name */
1329 	if (copyout(&sz, len, sizeof (sz)) != 0)
1330 		return (EFAULT);
1331 
1332 	return (0);
1333 }
1334 
1335 /*
1336  * Return the (dev_t,spectype) devfspath name.
1337  */
1338 static int
1339 modctl_devfspath(dev_t dev, int spectype, uint_t len, char *uname)
1340 {
1341 	uint_t	sz;
1342 	char	*name;
1343 	int	err = 0;
1344 
1345 	/* get the path name */
1346 	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1347 	if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) {
1348 		kmem_free(name, MAXPATHLEN);
1349 		return (EINVAL);
1350 	}
1351 
1352 	sz = strlen(name) + 1;
1353 
1354 	/* Error if the path name is larger than the space allocated */
1355 	if (sz > len) {
1356 		kmem_free(name, MAXPATHLEN);
1357 		return (ENOSPC);
1358 	}
1359 
1360 	/* copy out the path name */
1361 	if (copyout(name, uname, sz) != 0)
1362 		err = EFAULT;
1363 	kmem_free(name, MAXPATHLEN);
1364 	return (err);
1365 }
1366 
1367 /*
1368  * Return the size of the (major,instance) devfspath name.
1369  */
1370 static int
1371 modctl_devfspath_mi_len(major_t major, int instance, uint_t *len)
1372 {
1373 	uint_t	sz;
1374 	char	*name;
1375 
1376 	/* get the path name */
1377 	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1378 	if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) {
1379 		kmem_free(name, MAXPATHLEN);
1380 		return (EINVAL);
1381 	}
1382 
1383 	sz = strlen(name) + 1;
1384 	kmem_free(name, MAXPATHLEN);
1385 
1386 	/* copy out the size of the path name */
1387 	if (copyout(&sz, len, sizeof (sz)) != 0)
1388 		return (EFAULT);
1389 
1390 	return (0);
1391 }
1392 
1393 /*
1394  * Return the (major_instance) devfspath name.
1395  * NOTE: e_ddi_majorinstance_to_path does not require the device to attach to
1396  * return a path - it uses the instance tree.
1397  */
1398 static int
1399 modctl_devfspath_mi(major_t major, int instance, uint_t len, char *uname)
1400 {
1401 	uint_t	sz;
1402 	char	*name;
1403 	int	err = 0;
1404 
1405 	/* get the path name */
1406 	name = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1407 	if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) {
1408 		kmem_free(name, MAXPATHLEN);
1409 		return (EINVAL);
1410 	}
1411 
1412 	sz = strlen(name) + 1;
1413 
1414 	/* Error if the path name is larger than the space allocated */
1415 	if (sz > len) {
1416 		kmem_free(name, MAXPATHLEN);
1417 		return (ENOSPC);
1418 	}
1419 
1420 	/* copy out the path name */
1421 	if (copyout(name, uname, sz) != 0)
1422 		err = EFAULT;
1423 	kmem_free(name, MAXPATHLEN);
1424 	return (err);
1425 }
1426 
1427 static int
1428 modctl_get_fbname(char *path)
1429 {
1430 	extern dev_t fbdev;
1431 	char *pathname = NULL;
1432 	int rval = 0;
1433 
1434 	/* make sure fbdev is set before we plunge in */
1435 	if (fbdev == NODEV)
1436 		return (ENODEV);
1437 
1438 	pathname = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1439 	if ((rval = ddi_dev_pathname(fbdev, S_IFCHR,
1440 	    pathname)) == DDI_SUCCESS) {
1441 		if (copyout(pathname, path, strlen(pathname)+1) != 0) {
1442 			rval = EFAULT;
1443 		}
1444 	}
1445 	kmem_free(pathname, MAXPATHLEN);
1446 	return (rval);
1447 }
1448 
1449 /*
1450  * modctl_reread_dacf()
1451  *	Reread the dacf rules database from the named binding file.
1452  *	If NULL is specified, pass along the NULL, it means 'use the default'.
1453  */
1454 static int
1455 modctl_reread_dacf(char *path)
1456 {
1457 	int rval = 0;
1458 	char *filename, *filenamep;
1459 
1460 	filename = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1461 
1462 	if (path == NULL) {
1463 		filenamep = NULL;
1464 	} else {
1465 		if (copyinstr(path, filename, MAXPATHLEN, 0) != 0) {
1466 			rval = EFAULT;
1467 			goto out;
1468 		}
1469 		filenamep = filename;
1470 		filenamep[MAXPATHLEN - 1] = '\0';
1471 	}
1472 
1473 	rval = read_dacf_binding_file(filenamep);
1474 out:
1475 	kmem_free(filename, MAXPATHLEN);
1476 	return (rval);
1477 }
1478 
1479 /*ARGSUSED*/
1480 static int
1481 modctl_modevents(int subcmd, uintptr_t a2, uintptr_t a3, uintptr_t a4,
1482     uint_t flag)
1483 {
1484 	int error = 0;
1485 	char *filenamep;
1486 
1487 	switch (subcmd) {
1488 
1489 	case MODEVENTS_FLUSH:
1490 		/* flush all currently queued events */
1491 		log_sysevent_flushq(subcmd, flag);
1492 		break;
1493 
1494 	case MODEVENTS_SET_DOOR_UPCALL_FILENAME:
1495 		/*
1496 		 * bind door_upcall to filename
1497 		 * this should only be done once per invocation
1498 		 * of the event daemon.
1499 		 */
1500 
1501 		filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP);
1502 
1503 		if (copyinstr((char *)a2, filenamep, MOD_MAXPATH, 0)) {
1504 			error = EFAULT;
1505 		} else {
1506 			error = log_sysevent_filename(filenamep);
1507 		}
1508 		kmem_free(filenamep, MOD_MAXPATH);
1509 		break;
1510 
1511 	case MODEVENTS_GETDATA:
1512 		error = log_sysevent_copyout_data((sysevent_id_t *)a2,
1513 		    (size_t)a3, (caddr_t)a4);
1514 		break;
1515 
1516 	case MODEVENTS_FREEDATA:
1517 		error = log_sysevent_free_data((sysevent_id_t *)a2);
1518 		break;
1519 	case MODEVENTS_POST_EVENT:
1520 		error = log_usr_sysevent((sysevent_t *)a2, (uint32_t)a3,
1521 			(sysevent_id_t *)a4);
1522 		break;
1523 	case MODEVENTS_REGISTER_EVENT:
1524 		error = log_sysevent_register((char *)a2, (char *)a3,
1525 		    (se_pubsub_t *)a4);
1526 		break;
1527 	default:
1528 		error = EINVAL;
1529 	}
1530 
1531 	return (error);
1532 }
1533 
1534 static void
1535 free_mperm(mperm_t *mp)
1536 {
1537 	int len;
1538 
1539 	if (mp->mp_minorname) {
1540 		len = strlen(mp->mp_minorname) + 1;
1541 		kmem_free(mp->mp_minorname, len);
1542 	}
1543 	kmem_free(mp, sizeof (mperm_t));
1544 }
1545 
1546 #define	MP_NO_DRV_ERR	\
1547 	"/etc/minor_perm: no driver for %s\n"
1548 
1549 #define	MP_EMPTY_MINOR	\
1550 	"/etc/minor_perm: empty minor name for driver %s\n"
1551 
1552 #define	MP_NO_MINOR	\
1553 	"/etc/minor_perm: no minor matching %s for driver %s\n"
1554 
1555 /*
1556  * Remove mperm entry with matching minorname
1557  */
1558 static void
1559 rem_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone)
1560 {
1561 	mperm_t **mp_head;
1562 	mperm_t *freemp = NULL;
1563 	struct devnames *dnp = &devnamesp[major];
1564 	mperm_t **wildmp;
1565 
1566 	ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0);
1567 
1568 	LOCK_DEV_OPS(&dnp->dn_lock);
1569 	if (strcmp(mp->mp_minorname, "*") == 0) {
1570 		wildmp = ((is_clone == 0) ?
1571 			&dnp->dn_mperm_wild : &dnp->dn_mperm_clone);
1572 		if (*wildmp)
1573 			freemp = *wildmp;
1574 		*wildmp = NULL;
1575 	} else {
1576 		mp_head = &dnp->dn_mperm;
1577 		while (*mp_head) {
1578 			if (strcmp((*mp_head)->mp_minorname,
1579 			    mp->mp_minorname) != 0) {
1580 				mp_head = &(*mp_head)->mp_next;
1581 				continue;
1582 			}
1583 			/* remove the entry */
1584 			freemp = *mp_head;
1585 			*mp_head = freemp->mp_next;
1586 			break;
1587 		}
1588 	}
1589 	if (freemp) {
1590 		if (moddebug & MODDEBUG_MINORPERM) {
1591 			cmn_err(CE_CONT, "< %s %s 0%o %d %d\n",
1592 			    drvname, freemp->mp_minorname,
1593 			    freemp->mp_mode & 0777,
1594 			    freemp->mp_uid, freemp->mp_gid);
1595 		}
1596 		free_mperm(freemp);
1597 	} else {
1598 		if (moddebug & MODDEBUG_MINORPERM) {
1599 			cmn_err(CE_CONT, MP_NO_MINOR,
1600 				drvname, mp->mp_minorname);
1601 		}
1602 	}
1603 
1604 	UNLOCK_DEV_OPS(&dnp->dn_lock);
1605 }
1606 
1607 /*
1608  * Add minor perm entry
1609  */
1610 static void
1611 add_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone)
1612 {
1613 	mperm_t **mp_head;
1614 	mperm_t *freemp = NULL;
1615 	struct devnames *dnp = &devnamesp[major];
1616 	mperm_t **wildmp;
1617 
1618 	ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0);
1619 
1620 	/*
1621 	 * Note that update_drv replace semantics require
1622 	 * replacing matching entries with the new permissions.
1623 	 */
1624 	LOCK_DEV_OPS(&dnp->dn_lock);
1625 	if (strcmp(mp->mp_minorname, "*") == 0) {
1626 		wildmp = ((is_clone == 0) ?
1627 			&dnp->dn_mperm_wild : &dnp->dn_mperm_clone);
1628 		if (*wildmp)
1629 			freemp = *wildmp;
1630 		*wildmp = mp;
1631 	} else {
1632 		mperm_t *p, *v = NULL;
1633 		for (p = dnp->dn_mperm; p; v = p, p = p->mp_next) {
1634 			if (strcmp(p->mp_minorname, mp->mp_minorname) == 0) {
1635 				if (v == NULL)
1636 					dnp->dn_mperm = mp;
1637 				else
1638 					v->mp_next = mp;
1639 				mp->mp_next = p->mp_next;
1640 				freemp = p;
1641 				goto replaced;
1642 			}
1643 		}
1644 		if (p == NULL) {
1645 			mp_head = &dnp->dn_mperm;
1646 			if (*mp_head == NULL) {
1647 				*mp_head = mp;
1648 			} else {
1649 				mp->mp_next = *mp_head;
1650 				*mp_head = mp;
1651 			}
1652 		}
1653 	}
1654 replaced:
1655 	if (freemp) {
1656 		if (moddebug & MODDEBUG_MINORPERM) {
1657 			cmn_err(CE_CONT, "< %s %s 0%o %d %d\n",
1658 			    drvname, freemp->mp_minorname,
1659 			    freemp->mp_mode & 0777,
1660 			    freemp->mp_uid, freemp->mp_gid);
1661 		}
1662 		free_mperm(freemp);
1663 	}
1664 	if (moddebug & MODDEBUG_MINORPERM) {
1665 		cmn_err(CE_CONT, "> %s %s 0%o %d %d\n",
1666 		    drvname, mp->mp_minorname, mp->mp_mode & 0777,
1667 		    mp->mp_uid, mp->mp_gid);
1668 	}
1669 	UNLOCK_DEV_OPS(&dnp->dn_lock);
1670 }
1671 
1672 
1673 static int
1674 process_minorperm(int cmd, nvlist_t *nvl)
1675 {
1676 	char *minor;
1677 	major_t major;
1678 	mperm_t *mp;
1679 	nvpair_t *nvp;
1680 	char *name;
1681 	int is_clone;
1682 	major_t minmaj;
1683 
1684 	ASSERT(cmd == MODLOADMINORPERM ||
1685 	    cmd == MODADDMINORPERM || cmd == MODREMMINORPERM);
1686 
1687 	nvp = NULL;
1688 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
1689 		name = nvpair_name(nvp);
1690 
1691 		is_clone = 0;
1692 		(void) nvpair_value_string(nvp, &minor);
1693 		major = ddi_name_to_major(name);
1694 		if (major != (major_t)-1) {
1695 			mp = kmem_zalloc(sizeof (*mp), KM_SLEEP);
1696 			if (minor == NULL || strlen(minor) == 0) {
1697 				if (moddebug & MODDEBUG_MINORPERM) {
1698 					cmn_err(CE_CONT, MP_EMPTY_MINOR, name);
1699 				}
1700 				minor = "*";
1701 			}
1702 
1703 			/*
1704 			 * The minor name of a node using the clone
1705 			 * driver must be the driver name.  To avoid
1706 			 * multiple searches, we map entries in the form
1707 			 * clone:<driver> to <driver>:*.  This also allows us
1708 			 * to filter out some of the litter in /etc/minor_perm.
1709 			 * Minor perm alias entries where the name is not
1710 			 * the driver kept on the clone list itself.
1711 			 * This all seems very fragile as a driver could
1712 			 * be introduced with an existing alias name.
1713 			 */
1714 			if (strcmp(name, "clone") == 0) {
1715 				minmaj = ddi_name_to_major(minor);
1716 				if (minmaj != (major_t)-1) {
1717 					if (moddebug & MODDEBUG_MINORPERM) {
1718 						cmn_err(CE_CONT,
1719 						    "mapping %s:%s to %s:*\n",
1720 						    name, minor, minor);
1721 					}
1722 					major = minmaj;
1723 					name = minor;
1724 					minor = "*";
1725 					is_clone = 1;
1726 				}
1727 			}
1728 
1729 			if (mp) {
1730 				mp->mp_minorname =
1731 				    i_ddi_strdup(minor, KM_SLEEP);
1732 			}
1733 		} else {
1734 			mp = NULL;
1735 			if (moddebug & MODDEBUG_MINORPERM) {
1736 				cmn_err(CE_CONT, MP_NO_DRV_ERR, name);
1737 			}
1738 		}
1739 
1740 		/* mode */
1741 		nvp = nvlist_next_nvpair(nvl, nvp);
1742 		ASSERT(strcmp(nvpair_name(nvp), "mode") == 0);
1743 		if (mp)
1744 			(void) nvpair_value_int32(nvp, (int *)&mp->mp_mode);
1745 		/* uid */
1746 		nvp = nvlist_next_nvpair(nvl, nvp);
1747 		ASSERT(strcmp(nvpair_name(nvp), "uid") == 0);
1748 		if (mp)
1749 			(void) nvpair_value_uint32(nvp, &mp->mp_uid);
1750 		/* gid */
1751 		nvp = nvlist_next_nvpair(nvl, nvp);
1752 		ASSERT(strcmp(nvpair_name(nvp), "gid") == 0);
1753 		if (mp) {
1754 			(void) nvpair_value_uint32(nvp, &mp->mp_gid);
1755 
1756 			if (cmd == MODREMMINORPERM) {
1757 				rem_minorperm(major, name, mp, is_clone);
1758 				free_mperm(mp);
1759 			} else {
1760 				add_minorperm(major, name, mp, is_clone);
1761 			}
1762 		}
1763 	}
1764 
1765 	if (cmd == MODLOADMINORPERM)
1766 		minorperm_loaded = 1;
1767 
1768 	/*
1769 	 * Reset permissions of cached dv_nodes
1770 	 */
1771 	(void) devfs_reset_perm(DV_RESET_PERM);
1772 
1773 	return (0);
1774 }
1775 
1776 static int
1777 modctl_minorperm(int cmd, char *usrbuf, size_t buflen)
1778 {
1779 	int error;
1780 	nvlist_t *nvl;
1781 	char *buf = kmem_alloc(buflen, KM_SLEEP);
1782 
1783 	if ((error = ddi_copyin(usrbuf, buf, buflen, 0)) != 0) {
1784 		kmem_free(buf, buflen);
1785 		return (error);
1786 	}
1787 
1788 	error = nvlist_unpack(buf, buflen, &nvl, KM_SLEEP);
1789 	kmem_free(buf, buflen);
1790 	if (error)
1791 		return (error);
1792 
1793 	error = process_minorperm(cmd, nvl);
1794 	nvlist_free(nvl);
1795 	return (error);
1796 }
1797 
1798 struct walk_args {
1799 	char		*wa_drvname;
1800 	list_t		wa_pathlist;
1801 };
1802 
1803 struct path_elem {
1804 	char		*pe_dir;
1805 	char		*pe_nodename;
1806 	list_node_t	pe_node;
1807 	int		pe_dirlen;
1808 };
1809 
1810 /*ARGSUSED*/
1811 static int
1812 modctl_inst_walker(const char *path, in_node_t *np, in_drv_t *dp, void *arg)
1813 {
1814 	struct walk_args *wargs = (struct walk_args *)arg;
1815 	struct path_elem *pe;
1816 	char *nodename;
1817 
1818 	if (strcmp(dp->ind_driver_name, wargs->wa_drvname) != 0)
1819 		return (INST_WALK_CONTINUE);
1820 
1821 	pe = kmem_zalloc(sizeof (*pe), KM_SLEEP);
1822 	pe->pe_dir = i_ddi_strdup((char *)path, KM_SLEEP);
1823 	pe->pe_dirlen = strlen(pe->pe_dir) + 1;
1824 	ASSERT(strrchr(pe->pe_dir, '/') != NULL);
1825 	nodename = strrchr(pe->pe_dir, '/');
1826 	*nodename++ = 0;
1827 	pe->pe_nodename = nodename;
1828 	list_insert_tail(&wargs->wa_pathlist, pe);
1829 
1830 	return (INST_WALK_CONTINUE);
1831 }
1832 
1833 static int
1834 modctl_remdrv_cleanup(const char *u_drvname)
1835 {
1836 	struct walk_args *wargs;
1837 	struct path_elem *pe;
1838 	char *drvname;
1839 	int err, rval = 0;
1840 
1841 	drvname = kmem_alloc(MAXMODCONFNAME, KM_SLEEP);
1842 	if ((err = copyinstr(u_drvname, drvname, MAXMODCONFNAME, 0))) {
1843 		kmem_free(drvname, MAXMODCONFNAME);
1844 		return (err);
1845 	}
1846 
1847 	/*
1848 	 * First go through the instance database.  For each
1849 	 * instance of a device bound to the driver being
1850 	 * removed, remove any underlying devfs attribute nodes.
1851 	 *
1852 	 * This is a two-step process.  First we go through
1853 	 * the instance data itself, constructing a list of
1854 	 * the nodes discovered.  The second step is then
1855 	 * to find and remove any devfs attribute nodes
1856 	 * for the instances discovered in the first step.
1857 	 * The two-step process avoids any difficulties
1858 	 * which could arise by holding the instance data
1859 	 * lock with simultaneous devfs operations.
1860 	 */
1861 	wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP);
1862 
1863 	wargs->wa_drvname = drvname;
1864 	list_create(&wargs->wa_pathlist,
1865 	    sizeof (struct path_elem), offsetof(struct path_elem, pe_node));
1866 
1867 	(void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs);
1868 
1869 	for (pe = list_head(&wargs->wa_pathlist); pe != NULL;
1870 	    pe = list_next(&wargs->wa_pathlist, pe)) {
1871 		err = devfs_remdrv_cleanup((const char *)pe->pe_dir,
1872 			(const char *)pe->pe_nodename);
1873 		if (rval == 0)
1874 			rval = err;
1875 	}
1876 
1877 	while ((pe = list_head(&wargs->wa_pathlist)) != NULL) {
1878 		list_remove(&wargs->wa_pathlist, pe);
1879 		kmem_free(pe->pe_dir, pe->pe_dirlen);
1880 		kmem_free(pe, sizeof (*pe));
1881 	}
1882 	kmem_free(wargs, sizeof (*wargs));
1883 
1884 	/*
1885 	 * Pseudo nodes aren't recorded in the instance database
1886 	 * so any such nodes need to be handled separately.
1887 	 */
1888 	err = devfs_remdrv_cleanup("pseudo", (const char *)drvname);
1889 	if (rval == 0)
1890 		rval = err;
1891 
1892 	kmem_free(drvname, MAXMODCONFNAME);
1893 	return (rval);
1894 }
1895 
1896 static int
1897 modctl_allocpriv(const char *name)
1898 {
1899 	char *pstr = kmem_alloc(PRIVNAME_MAX, KM_SLEEP);
1900 	int error;
1901 
1902 	if ((error = copyinstr(name, pstr, PRIVNAME_MAX, 0))) {
1903 		kmem_free(pstr, PRIVNAME_MAX);
1904 		return (error);
1905 	}
1906 	error = priv_getbyname(pstr, PRIV_ALLOC);
1907 	if (error < 0)
1908 		error = -error;
1909 	else
1910 		error = 0;
1911 	kmem_free(pstr, PRIVNAME_MAX);
1912 	return (error);
1913 }
1914 
1915 static int
1916 modctl_devexists(const char *upath, int pathlen)
1917 {
1918 	char	*path;
1919 	int	ret;
1920 
1921 	/*
1922 	 * copy in the path, including the terminating null
1923 	 */
1924 	pathlen++;
1925 	if (pathlen <= 1 || pathlen > MAXPATHLEN)
1926 		return (EINVAL);
1927 	path = kmem_zalloc(pathlen + 1, KM_SLEEP);
1928 	if ((ret = copyinstr(upath, path, pathlen, NULL)) == 0) {
1929 		ret = sdev_modctl_devexists(path);
1930 	}
1931 
1932 	kmem_free(path, pathlen + 1);
1933 	return (ret);
1934 }
1935 
1936 static int
1937 modctl_devreaddir(const char *udir, int udirlen,
1938     char *upaths, int64_t *ulensp)
1939 {
1940 	char	*paths = NULL;
1941 	char	**dirlist = NULL;
1942 	char	*dir;
1943 	int64_t	ulens;
1944 	int64_t	lens;
1945 	int	i, n;
1946 	int	ret = 0;
1947 	char	*p;
1948 	int	npaths;
1949 	int	npaths_alloc;
1950 
1951 	/*
1952 	 * If upaths is NULL then we are only computing the amount of space
1953 	 * needed to return the paths, with the value returned in *ulensp. If we
1954 	 * are copying out paths then we get the amount of space allocated by
1955 	 * the caller. If the actual space needed for paths is larger, or
1956 	 * things are changing out from under us, then we return EAGAIN.
1957 	 */
1958 	if (upaths) {
1959 		if (ulensp == NULL)
1960 			return (EINVAL);
1961 		if (copyin(ulensp, &ulens, sizeof (ulens)) != 0)
1962 			return (EFAULT);
1963 	}
1964 
1965 	/*
1966 	 * copyin the /dev path including terminating null
1967 	 */
1968 	udirlen++;
1969 	if (udirlen <= 1 || udirlen > MAXPATHLEN)
1970 		return (EINVAL);
1971 	dir = kmem_zalloc(udirlen + 1, KM_SLEEP);
1972 	if ((ret = copyinstr(udir, dir, udirlen, NULL)) != 0)
1973 		goto err;
1974 
1975 	if ((ret = sdev_modctl_readdir(dir, &dirlist,
1976 	    &npaths, &npaths_alloc)) != 0) {
1977 		ASSERT(dirlist == NULL);
1978 		goto err;
1979 	}
1980 
1981 	lens = 0;
1982 	for (i = 0; i < npaths; i++) {
1983 		lens += strlen(dirlist[i]) + 1;
1984 	}
1985 	lens++;		/* add one for double termination */
1986 
1987 	if (upaths) {
1988 		if (lens > ulens) {
1989 			ret = EAGAIN;
1990 			goto out;
1991 		}
1992 
1993 		paths = kmem_alloc(lens, KM_SLEEP);
1994 
1995 		p = paths;
1996 		for (i = 0; i < npaths; i++) {
1997 			n = strlen(dirlist[i]) + 1;
1998 			bcopy(dirlist[i], p, n);
1999 			p += n;
2000 		}
2001 		*p = 0;
2002 
2003 		if (copyout(paths, upaths, lens)) {
2004 			ret = EFAULT;
2005 			goto err;
2006 		}
2007 	}
2008 
2009 out:
2010 	/* copy out the amount of space needed to hold the paths */
2011 	if (copyout(&lens, ulensp, sizeof (lens)))
2012 		ret = EFAULT;
2013 
2014 err:
2015 	if (dirlist)
2016 		sdev_modctl_readdir_free(dirlist, npaths, npaths_alloc);
2017 	if (paths)
2018 		kmem_free(paths, lens);
2019 	kmem_free(dir, udirlen + 1);
2020 	return (ret);
2021 }
2022 
2023 int
2024 modctl_moddevname(int subcmd, uintptr_t a1, uintptr_t a2)
2025 {
2026 	int error = 0;
2027 
2028 	switch (subcmd) {
2029 	case MODDEVNAME_LOOKUPDOOR:
2030 	case MODDEVNAME_DEVFSADMNODE:
2031 		error = devname_filename_register(subcmd, (char *)a1);
2032 		break;
2033 	case MODDEVNAME_NSMAPS:
2034 		error = devname_nsmaps_register((char *)a1, (size_t)a2);
2035 		break;
2036 	case MODDEVNAME_PROFILE:
2037 		error = devname_profile_update((char *)a1, (size_t)a2);
2038 		break;
2039 	case MODDEVNAME_RECONFIG:
2040 		i_ddi_set_reconfig();
2041 		break;
2042 	case MODDEVNAME_SYSAVAIL:
2043 		i_ddi_set_sysavail();
2044 		break;
2045 	default:
2046 		error = EINVAL;
2047 		break;
2048 	}
2049 
2050 	return (error);
2051 }
2052 
2053 /*ARGSUSED5*/
2054 int
2055 modctl(int cmd, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4,
2056     uintptr_t a5)
2057 {
2058 	int	error = EINVAL;
2059 	dev_t	dev;
2060 
2061 	if (secpolicy_modctl(CRED(), cmd) != 0)
2062 		return (set_errno(EPERM));
2063 
2064 	switch (cmd) {
2065 	case MODLOAD:		/* load a module */
2066 		error = modctl_modload((int)a1, (char *)a2, (int *)a3);
2067 		break;
2068 
2069 	case MODUNLOAD:		/* unload a module */
2070 		error = modctl_modunload((modid_t)a1);
2071 		break;
2072 
2073 	case MODINFO:		/* get module status */
2074 		error = modctl_modinfo((modid_t)a1, (struct modinfo *)a2);
2075 		break;
2076 
2077 	case MODRESERVED:	/* get last major number in range */
2078 		error = modctl_modreserve((modid_t)a1, (int *)a2);
2079 		break;
2080 
2081 	case MODSETMINIROOT:	/* we are running in miniroot */
2082 		isminiroot = 1;
2083 		error = 0;
2084 		break;
2085 
2086 	case MODADDMAJBIND:	/* read major binding file */
2087 		error = modctl_add_major((int *)a2);
2088 		break;
2089 
2090 	case MODGETPATHLEN:	/* get modpath length */
2091 		error = modctl_getmodpathlen((int *)a2);
2092 		break;
2093 
2094 	case MODGETPATH:	/* get modpath */
2095 		error = modctl_getmodpath((char *)a2);
2096 		break;
2097 
2098 	case MODREADSYSBIND:	/* read system call binding file */
2099 		error = modctl_read_sysbinding_file();
2100 		break;
2101 
2102 	case MODGETMAJBIND:	/* get major number for named device */
2103 		error = modctl_getmaj((char *)a1, (uint_t)a2, (int *)a3);
2104 		break;
2105 
2106 	case MODGETNAME:	/* get name of device given major number */
2107 		error = modctl_getname((char *)a1, (uint_t)a2, (int *)a3);
2108 		break;
2109 
2110 	case MODDEVT2INSTANCE:
2111 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2112 			dev = (dev_t)a1;
2113 		}
2114 #ifdef _SYSCALL32_IMPL
2115 		else {
2116 			dev = expldev(a1);
2117 		}
2118 #endif
2119 		error = modctl_devt2instance(dev, (int *)a2);
2120 		break;
2121 
2122 	case MODSIZEOF_DEVID:	/* sizeof device id of device given dev_t */
2123 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2124 			dev = (dev_t)a1;
2125 		}
2126 #ifdef _SYSCALL32_IMPL
2127 		else {
2128 			dev = expldev(a1);
2129 		}
2130 #endif
2131 		error = modctl_sizeof_devid(dev, (uint_t *)a2);
2132 		break;
2133 
2134 	case MODGETDEVID:	/* get device id of device given dev_t */
2135 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2136 			dev = (dev_t)a1;
2137 		}
2138 #ifdef _SYSCALL32_IMPL
2139 		else {
2140 			dev = expldev(a1);
2141 		}
2142 #endif
2143 		error = modctl_get_devid(dev, (uint_t)a2, (ddi_devid_t)a3);
2144 		break;
2145 
2146 	case MODSIZEOF_MINORNAME:	/* sizeof minor nm (dev_t,spectype) */
2147 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2148 			error = modctl_sizeof_minorname((dev_t)a1, (int)a2,
2149 			    (uint_t *)a3);
2150 		}
2151 #ifdef _SYSCALL32_IMPL
2152 		else {
2153 			error = modctl_sizeof_minorname(expldev(a1), (int)a2,
2154 			    (uint_t *)a3);
2155 		}
2156 
2157 #endif
2158 		break;
2159 
2160 	case MODGETMINORNAME:		/* get minor name of (dev_t,spectype) */
2161 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2162 			error = modctl_get_minorname((dev_t)a1, (int)a2,
2163 			    (uint_t)a3, (char *)a4);
2164 		}
2165 #ifdef _SYSCALL32_IMPL
2166 		else {
2167 			error = modctl_get_minorname(expldev(a1), (int)a2,
2168 			    (uint_t)a3, (char *)a4);
2169 		}
2170 #endif
2171 		break;
2172 
2173 	case MODGETDEVFSPATH_LEN:	/* sizeof path nm of (dev_t,spectype) */
2174 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2175 			error = modctl_devfspath_len((dev_t)a1, (int)a2,
2176 			    (uint_t *)a3);
2177 		}
2178 #ifdef _SYSCALL32_IMPL
2179 		else {
2180 			error = modctl_devfspath_len(expldev(a1), (int)a2,
2181 			    (uint_t *)a3);
2182 		}
2183 
2184 #endif
2185 		break;
2186 
2187 	case MODGETDEVFSPATH:   	/* get path name of (dev_t,spec) type */
2188 		if (get_udatamodel() == DATAMODEL_NATIVE) {
2189 			error = modctl_devfspath((dev_t)a1, (int)a2,
2190 			    (uint_t)a3, (char *)a4);
2191 		}
2192 #ifdef _SYSCALL32_IMPL
2193 		else {
2194 			error = modctl_devfspath(expldev(a1), (int)a2,
2195 			    (uint_t)a3, (char *)a4);
2196 		}
2197 #endif
2198 		break;
2199 
2200 	case MODGETDEVFSPATH_MI_LEN:	/* sizeof path nm of (major,instance) */
2201 		error = modctl_devfspath_mi_len((major_t)a1, (int)a2,
2202 			    (uint_t *)a3);
2203 		break;
2204 
2205 	case MODGETDEVFSPATH_MI:   	/* get path name of (major,instance) */
2206 		error = modctl_devfspath_mi((major_t)a1, (int)a2,
2207 			    (uint_t)a3, (char *)a4);
2208 		break;
2209 
2210 
2211 	case MODEVENTS:
2212 		error = modctl_modevents((int)a1, a2, a3, a4, (uint_t)a5);
2213 		break;
2214 
2215 	case MODGETFBNAME:	/* get the framebuffer name */
2216 		error = modctl_get_fbname((char *)a1);
2217 		break;
2218 
2219 	case MODREREADDACF:	/* reread dacf rule database from given file */
2220 		error = modctl_reread_dacf((char *)a1);
2221 		break;
2222 
2223 	case MODLOADDRVCONF:	/* load driver.conf file for major */
2224 		error = modctl_load_drvconf((major_t)a1);
2225 		break;
2226 
2227 	case MODUNLOADDRVCONF:	/* unload driver.conf file for major */
2228 		error = modctl_unload_drvconf((major_t)a1);
2229 		break;
2230 
2231 	case MODREMMAJBIND:	/* remove a major binding */
2232 		error = modctl_rem_major((major_t)a1);
2233 		break;
2234 
2235 	case MODDEVID2PATHS:	/* get paths given devid */
2236 		error = modctl_devid2paths((ddi_devid_t)a1, (char *)a2,
2237 		    (uint_t)a3, (size_t *)a4, (char *)a5);
2238 		break;
2239 
2240 	case MODSETDEVPOLICY:	/* establish device policy */
2241 		error = devpolicy_load((int)a1, (size_t)a2, (devplcysys_t *)a3);
2242 		break;
2243 
2244 	case MODGETDEVPOLICY:	/* get device policy */
2245 		error = devpolicy_get((int *)a1, (size_t)a2,
2246 				(devplcysys_t *)a3);
2247 		break;
2248 
2249 	case MODALLOCPRIV:
2250 		error = modctl_allocpriv((const char *)a1);
2251 		break;
2252 
2253 	case MODGETDEVPOLICYBYNAME:
2254 		error = devpolicy_getbyname((size_t)a1,
2255 		    (devplcysys_t *)a2, (char *)a3);
2256 		break;
2257 
2258 	case MODLOADMINORPERM:
2259 	case MODADDMINORPERM:
2260 	case MODREMMINORPERM:
2261 		error = modctl_minorperm(cmd, (char *)a1, (size_t)a2);
2262 		break;
2263 
2264 	case MODREMDRVCLEANUP:
2265 		error = modctl_remdrv_cleanup((const char *)a1);
2266 		break;
2267 
2268 	case MODDEVEXISTS:	/* non-reconfiguring /dev lookup */
2269 		error = modctl_devexists((const char *)a1, (size_t)a2);
2270 		break;
2271 
2272 	case MODDEVREADDIR:	/* non-reconfiguring /dev readdir */
2273 		error = modctl_devreaddir((const char *)a1, (size_t)a2,
2274 		    (char *)a3, (int64_t *)a4);
2275 		break;
2276 
2277 	case MODDEVNAME:
2278 		error = modctl_moddevname((int)a1, a2, a3);
2279 		break;
2280 
2281 	case MODRETIRE:	/* retire device named by physpath a1 */
2282 		error = modctl_retire((char *)a1, (char *)a2, (size_t)a3);
2283 		break;
2284 
2285 	case MODISRETIRED:  /* check if a device is retired. */
2286 		error = modctl_is_retired((char *)a1, (int *)a2);
2287 		break;
2288 
2289 	case MODUNRETIRE:	/* unretire device named by physpath a1 */
2290 		error = modctl_unretire((char *)a1);
2291 		break;
2292 
2293 	default:
2294 		error = EINVAL;
2295 		break;
2296 	}
2297 
2298 	return (error ? set_errno(error) : 0);
2299 }
2300 
2301 /*
2302  * Calls to kobj_load_module()() are handled off to this routine in a
2303  * separate thread.
2304  */
2305 static void
2306 modload_thread(struct loadmt *ltp)
2307 {
2308 	/* load the module and signal the creator of this thread */
2309 	kmutex_t	cpr_lk;
2310 	callb_cpr_t	cpr_i;
2311 
2312 	mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
2313 	CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "modload");
2314 	/* borrow the devi lock from thread which invoked us */
2315 	pm_borrow_lock(ltp->owner);
2316 	ltp->retval = kobj_load_module(ltp->mp, ltp->usepath);
2317 	pm_return_lock();
2318 	sema_v(&ltp->sema);
2319 	mutex_enter(&cpr_lk);
2320 	CALLB_CPR_EXIT(&cpr_i);
2321 	mutex_destroy(&cpr_lk);
2322 	thread_exit();
2323 }
2324 
2325 /*
2326  * load a module, adding a reference if caller specifies rmodp.  If rmodp
2327  * is specified then an errno is returned, otherwise a module index is
2328  * returned (-1 on error).
2329  */
2330 static int
2331 modrload(char *subdir, char *filename, struct modctl **rmodp)
2332 {
2333 	struct modctl *modp;
2334 	size_t size;
2335 	char *fullname;
2336 	int retval = EINVAL;
2337 	int id = -1;
2338 
2339 	if (rmodp)
2340 		*rmodp = NULL;			/* avoid garbage */
2341 
2342 	if (subdir != NULL) {
2343 		/*
2344 		 * refuse / in filename to prevent "../" escapes.
2345 		 */
2346 		if (strchr(filename, '/') != NULL)
2347 			return (rmodp ? retval : id);
2348 
2349 		/*
2350 		 * allocate enough space for <subdir>/<filename><NULL>
2351 		 */
2352 		size = strlen(subdir) + strlen(filename) + 2;
2353 		fullname = kmem_zalloc(size, KM_SLEEP);
2354 		(void) sprintf(fullname, "%s/%s", subdir, filename);
2355 	} else {
2356 		fullname = filename;
2357 	}
2358 
2359 	modp = mod_hold_installed_mod(fullname, 1, &retval);
2360 	if (modp != NULL) {
2361 		id = modp->mod_id;
2362 		if (rmodp) {
2363 			/* add mod_ref and return *rmodp */
2364 			mutex_enter(&mod_lock);
2365 			modp->mod_ref++;
2366 			mutex_exit(&mod_lock);
2367 			*rmodp = modp;
2368 		}
2369 		mod_release_mod(modp);
2370 		CPU_STATS_ADDQ(CPU, sys, modload, 1);
2371 	}
2372 
2373 done:	if (subdir != NULL)
2374 		kmem_free(fullname, size);
2375 	return (rmodp ? retval : id);
2376 }
2377 
2378 /*
2379  * This is the primary kernel interface to load a module. It loads and
2380  * installs the named module.  It does not hold mod_ref of the module, so
2381  * a module unload attempt can occur at any time - it is up to the
2382  * _fini/mod_remove implementation to determine if unload will succeed.
2383  */
2384 int
2385 modload(char *subdir, char *filename)
2386 {
2387 	return (modrload(subdir, filename, NULL));
2388 }
2389 
2390 /*
2391  * Load a module using a series of qualified names from most specific to least
2392  * specific, e.g. for subdir "foo", p1 "bar", p2 "baz", we might try:
2393  *
2394  * foo/bar.baz.1.2.3
2395  * foo/bar.baz.1.2
2396  * foo/bar.baz.1
2397  *
2398  * Return the module ID on success; -1 if no module was loaded.
2399  */
2400 int
2401 modload_qualified(const char *subdir, const char *p1,
2402     const char *p2, const char *delim, uint_t suffv[], int suffc)
2403 {
2404 	char path[MOD_MAXPATH];
2405 	size_t n, resid = sizeof (path);
2406 	char *p = path;
2407 
2408 	char **dotv;
2409 	int i, rc, id;
2410 	modctl_t *mp;
2411 
2412 	if (p2 != NULL)
2413 		n = snprintf(p, resid, "%s/%s%s%s", subdir, p1, delim, p2);
2414 	else
2415 		n = snprintf(p, resid, "%s/%s", subdir, p1);
2416 
2417 	if (n >= resid)
2418 		return (-1);
2419 
2420 	p += n;
2421 	resid -= n;
2422 	dotv = kmem_alloc(sizeof (char *) * (suffc + 1), KM_SLEEP);
2423 
2424 	for (i = 0; i < suffc; i++) {
2425 		dotv[i] = p;
2426 		n = snprintf(p, resid, "%s%u", delim, suffv[i]);
2427 
2428 		if (n >= resid) {
2429 			kmem_free(dotv, sizeof (char *) * (suffc + 1));
2430 			return (-1);
2431 		}
2432 
2433 		p += n;
2434 		resid -= n;
2435 	}
2436 
2437 	dotv[suffc] = p;
2438 
2439 	for (i = suffc; i >= 0; i--) {
2440 		dotv[i][0] = '\0';
2441 		mp = mod_hold_installed_mod(path, 1, &rc);
2442 
2443 		if (mp != NULL) {
2444 			kmem_free(dotv, sizeof (char *) * (suffc + 1));
2445 			id = mp->mod_id;
2446 			mod_release_mod(mp);
2447 			return (id);
2448 		}
2449 	}
2450 
2451 	kmem_free(dotv, sizeof (char *) * (suffc + 1));
2452 	return (-1);
2453 }
2454 
2455 /*
2456  * Load a module.
2457  */
2458 int
2459 modloadonly(char *subdir, char *filename)
2460 {
2461 	struct modctl *modp;
2462 	char *fullname;
2463 	size_t size;
2464 	int id, retval;
2465 
2466 	if (subdir != NULL) {
2467 		/*
2468 		 * allocate enough space for <subdir>/<filename><NULL>
2469 		 */
2470 		size = strlen(subdir) + strlen(filename) + 2;
2471 		fullname = kmem_zalloc(size, KM_SLEEP);
2472 		(void) sprintf(fullname, "%s/%s", subdir, filename);
2473 	} else {
2474 		fullname = filename;
2475 	}
2476 
2477 	modp = mod_hold_loaded_mod(NULL, fullname, &retval);
2478 	if (modp) {
2479 		id = modp->mod_id;
2480 		mod_release_mod(modp);
2481 	}
2482 
2483 	if (subdir != NULL)
2484 		kmem_free(fullname, size);
2485 
2486 	if (retval == 0)
2487 		return (id);
2488 	return (-1);
2489 }
2490 
2491 /*
2492  * Try to uninstall and unload a module, removing a reference if caller
2493  * specifies rmodp.
2494  */
2495 static int
2496 modunrload(modid_t id, struct modctl **rmodp, int unload)
2497 {
2498 	struct modctl	*modp;
2499 	int		retval;
2500 
2501 	if (rmodp)
2502 		*rmodp = NULL;			/* avoid garbage */
2503 
2504 	if ((modp = mod_hold_by_id((modid_t)id)) == NULL)
2505 		return (EINVAL);
2506 
2507 	if (rmodp) {
2508 		mutex_enter(&mod_lock);
2509 		modp->mod_ref--;
2510 		mutex_exit(&mod_lock);
2511 		*rmodp = modp;
2512 	}
2513 
2514 	if (unload) {
2515 		retval = moduninstall(modp);
2516 		if (retval == 0) {
2517 			mod_unload(modp);
2518 			CPU_STATS_ADDQ(CPU, sys, modunload, 1);
2519 		} else if (retval == EALREADY)
2520 			retval = 0;	/* already unloaded, not an error */
2521 	} else
2522 		retval = 0;
2523 
2524 	mod_release_mod(modp);
2525 	return (retval);
2526 }
2527 
2528 /*
2529  * Uninstall and unload a module.
2530  */
2531 int
2532 modunload(modid_t id)
2533 {
2534 	int		retval;
2535 
2536 	/* synchronize with any active modunload_disable() */
2537 	modunload_begin();
2538 	if (ddi_root_node())
2539 		(void) devfs_clean(ddi_root_node(), NULL, 0);
2540 	retval = modunrload(id, NULL, 1);
2541 	modunload_end();
2542 	return (retval);
2543 }
2544 
2545 /*
2546  * Return status of a loaded module.
2547  */
2548 static int
2549 modinfo(modid_t id, struct modinfo *modinfop)
2550 {
2551 	struct modctl	*modp;
2552 	modid_t		mid;
2553 	int		i;
2554 
2555 	mid = modinfop->mi_id;
2556 	if (modinfop->mi_info & MI_INFO_ALL) {
2557 		while ((modp = mod_hold_next_by_id(mid++)) != NULL) {
2558 			if ((modinfop->mi_info & MI_INFO_CNT) ||
2559 			    modp->mod_installed)
2560 				break;
2561 			mod_release_mod(modp);
2562 		}
2563 		if (modp == NULL)
2564 			return (EINVAL);
2565 	} else {
2566 		modp = mod_hold_by_id(id);
2567 		if (modp == NULL)
2568 			return (EINVAL);
2569 		if (!(modinfop->mi_info & MI_INFO_CNT) &&
2570 		    (modp->mod_installed == 0)) {
2571 			mod_release_mod(modp);
2572 			return (EINVAL);
2573 		}
2574 	}
2575 
2576 	modinfop->mi_rev = 0;
2577 	modinfop->mi_state = 0;
2578 	for (i = 0; i < MODMAXLINK; i++) {
2579 		modinfop->mi_msinfo[i].msi_p0 = -1;
2580 		modinfop->mi_msinfo[i].msi_linkinfo[0] = 0;
2581 	}
2582 	if (modp->mod_loaded) {
2583 		modinfop->mi_state = MI_LOADED;
2584 		kobj_getmodinfo(modp->mod_mp, modinfop);
2585 	}
2586 	if (modp->mod_installed) {
2587 		modinfop->mi_state |= MI_INSTALLED;
2588 
2589 		(void) mod_getinfo(modp, modinfop);
2590 	}
2591 
2592 	modinfop->mi_id = modp->mod_id;
2593 	modinfop->mi_loadcnt = modp->mod_loadcnt;
2594 	(void) strcpy(modinfop->mi_name, modp->mod_modname);
2595 
2596 	mod_release_mod(modp);
2597 	return (0);
2598 }
2599 
2600 static char mod_stub_err[] = "mod_hold_stub: Couldn't load stub module %s";
2601 static char no_err[] = "No error function for weak stub %s";
2602 
2603 /*
2604  * used by the stubs themselves to load and hold a module.
2605  * Returns  0 if the module is successfully held;
2606  *	    the stub needs to call mod_release_stub().
2607  *	    -1 if the stub should just call the err_fcn.
2608  * Note that this code is stretched out so that we avoid subroutine calls
2609  * and optimize for the most likely case.  That is, the case where the
2610  * module is loaded and installed and not held.  In that case we just inc
2611  * the mod_ref count and continue.
2612  */
2613 int
2614 mod_hold_stub(struct mod_stub_info *stub)
2615 {
2616 	struct modctl *mp;
2617 	struct mod_modinfo *mip;
2618 
2619 	mip = stub->mods_modinfo;
2620 
2621 	mutex_enter(&mod_lock);
2622 
2623 	/* we do mod_hold_by_modctl inline for speed */
2624 
2625 mod_check_again:
2626 	if ((mp = mip->mp) != NULL) {
2627 		if (mp->mod_busy == 0) {
2628 			if (mp->mod_installed) {
2629 				/* increment the reference count */
2630 				mp->mod_ref++;
2631 				ASSERT(mp->mod_ref && mp->mod_installed);
2632 				mutex_exit(&mod_lock);
2633 				return (0);
2634 			} else {
2635 				mp->mod_busy = 1;
2636 				mp->mod_inprogress_thread =
2637 				    (curthread == NULL ?
2638 				    (kthread_id_t)-1 : curthread);
2639 			}
2640 		} else {
2641 			/*
2642 			 * wait one time and then go see if someone
2643 			 * else has resolved the stub (set mip->mp).
2644 			 */
2645 			if (mod_hold_by_modctl(mp,
2646 			    MOD_WAIT_ONCE | MOD_LOCK_HELD))
2647 				goto mod_check_again;
2648 
2649 			/*
2650 			 * what we have now may have been unloaded!, in
2651 			 * that case, mip->mp will be NULL, we'll hit this
2652 			 * module and load again..
2653 			 */
2654 			cmn_err(CE_PANIC, "mod_hold_stub should have blocked");
2655 		}
2656 		mutex_exit(&mod_lock);
2657 	} else {
2658 		/* first time we've hit this module */
2659 		mutex_exit(&mod_lock);
2660 		mp = mod_hold_by_name(mip->modm_module_name);
2661 		mip->mp = mp;
2662 	}
2663 
2664 	/*
2665 	 * If we are here, it means that the following conditions
2666 	 * are satisfied.
2667 	 *
2668 	 * mip->mp != NULL
2669 	 * this thread has set the mp->mod_busy = 1
2670 	 * mp->mod_installed = 0
2671 	 *
2672 	 */
2673 	ASSERT(mp != NULL);
2674 	ASSERT(mp->mod_busy == 1);
2675 
2676 	if (mp->mod_installed == 0) {
2677 		/* Module not loaded, if weak stub don't load it */
2678 		if (stub->mods_flag & MODS_WEAK) {
2679 			if (stub->mods_errfcn == NULL) {
2680 				mod_release_mod(mp);
2681 				cmn_err(CE_PANIC, no_err,
2682 				    mip->modm_module_name);
2683 			}
2684 		} else {
2685 			/* Not a weak stub so load the module */
2686 
2687 			if (mod_load(mp, 1) != 0 || modinstall(mp) != 0) {
2688 				/*
2689 				 * If mod_load() was successful
2690 				 * and modinstall() failed, then
2691 				 * unload the module.
2692 				 */
2693 				if (mp->mod_loaded)
2694 					mod_unload(mp);
2695 
2696 				mod_release_mod(mp);
2697 				if (stub->mods_errfcn == NULL) {
2698 					cmn_err(CE_PANIC, mod_stub_err,
2699 					    mip->modm_module_name);
2700 				} else {
2701 					return (-1);
2702 				}
2703 			}
2704 		}
2705 	}
2706 
2707 	/*
2708 	 * At this point module is held and loaded. Release
2709 	 * the mod_busy and mod_inprogress_thread before
2710 	 * returning. We actually call mod_release() here so
2711 	 * that if another stub wants to access this module,
2712 	 * it can do so. mod_ref is incremented before mod_release()
2713 	 * is called to prevent someone else from snatching the
2714 	 * module from this thread.
2715 	 */
2716 	mutex_enter(&mod_lock);
2717 	mp->mod_ref++;
2718 	ASSERT(mp->mod_ref &&
2719 	    (mp->mod_loaded || (stub->mods_flag & MODS_WEAK)));
2720 	mod_release(mp);
2721 	mutex_exit(&mod_lock);
2722 	return (0);
2723 }
2724 
2725 void
2726 mod_release_stub(struct mod_stub_info *stub)
2727 {
2728 	struct modctl *mp = stub->mods_modinfo->mp;
2729 
2730 	/* inline mod_release_mod */
2731 	mutex_enter(&mod_lock);
2732 	ASSERT(mp->mod_ref &&
2733 	    (mp->mod_loaded || (stub->mods_flag & MODS_WEAK)));
2734 	mp->mod_ref--;
2735 	if (mp->mod_want) {
2736 		mp->mod_want = 0;
2737 		cv_broadcast(&mod_cv);
2738 	}
2739 	mutex_exit(&mod_lock);
2740 }
2741 
2742 static struct modctl *
2743 mod_hold_loaded_mod(struct modctl *dep, char *filename, int *status)
2744 {
2745 	struct modctl *modp;
2746 	int retval;
2747 
2748 	/*
2749 	 * Hold the module.
2750 	 */
2751 	modp = mod_hold_by_name_requisite(dep, filename);
2752 	if (modp) {
2753 		retval = mod_load(modp, 1);
2754 		if (retval != 0) {
2755 			mod_release_mod(modp);
2756 			modp = NULL;
2757 		}
2758 		*status = retval;
2759 	} else {
2760 		*status = ENOSPC;
2761 	}
2762 
2763 	/*
2764 	 * if dep is not NULL, clear the module dependency information.
2765 	 * This information is set in mod_hold_by_name_common().
2766 	 */
2767 	if (dep != NULL && dep->mod_requisite_loading != NULL) {
2768 		ASSERT(dep->mod_busy);
2769 		dep->mod_requisite_loading = NULL;
2770 	}
2771 
2772 	return (modp);
2773 }
2774 
2775 /*
2776  * hold, load, and install the named module
2777  */
2778 static struct modctl *
2779 mod_hold_installed_mod(char *name, int usepath, int *r)
2780 {
2781 	struct modctl *modp;
2782 	int retval;
2783 
2784 	/*
2785 	 * Verify that that module in question actually exists on disk
2786 	 * before allocation of module structure by mod_hold_by_name.
2787 	 */
2788 	if (modrootloaded && swaploaded) {
2789 		if (!kobj_path_exists(name, usepath)) {
2790 			*r = ENOENT;
2791 			return (NULL);
2792 		}
2793 	}
2794 
2795 	/*
2796 	 * Hold the module.
2797 	 */
2798 	modp = mod_hold_by_name(name);
2799 	if (modp) {
2800 		retval = mod_load(modp, usepath);
2801 		if (retval != 0) {
2802 			mod_release_mod(modp);
2803 			modp = NULL;
2804 			*r = retval;
2805 		} else {
2806 			if ((*r = modinstall(modp)) != 0) {
2807 				/*
2808 				 * We loaded it, but failed to _init() it.
2809 				 * Be kind to developers -- force it
2810 				 * out of memory now so that the next
2811 				 * attempt to use the module will cause
2812 				 * a reload.  See 1093793.
2813 				 */
2814 				mod_unload(modp);
2815 				mod_release_mod(modp);
2816 				modp = NULL;
2817 			}
2818 		}
2819 	} else {
2820 		*r = ENOSPC;
2821 	}
2822 	return (modp);
2823 }
2824 
2825 static char mod_excl_msg[] =
2826 	"module %s(%s) is EXCLUDED and will not be loaded\n";
2827 static char mod_init_msg[] = "loadmodule:%s(%s): _init() error %d\n";
2828 
2829 /*
2830  * This routine is needed for dependencies.  Users specify dependencies
2831  * by declaring a character array initialized to filenames of dependents.
2832  * So the code that handles dependents deals with filenames (and not
2833  * module names) because that's all it has.  We load by filename and once
2834  * we've loaded a file we can get the module name.
2835  * Unfortunately there isn't a single unified filename/modulename namespace.
2836  * C'est la vie.
2837  *
2838  * We allow the name being looked up to be prepended by an optional
2839  * subdirectory e.g. we can lookup (NULL, "fs/ufs") or ("fs", "ufs")
2840  */
2841 struct modctl *
2842 mod_find_by_filename(char *subdir, char *filename)
2843 {
2844 	struct modctl	*mp;
2845 	size_t		sublen;
2846 
2847 	ASSERT(!MUTEX_HELD(&mod_lock));
2848 	if (subdir != NULL)
2849 		sublen = strlen(subdir);
2850 	else
2851 		sublen = 0;
2852 
2853 	mutex_enter(&mod_lock);
2854 	mp = &modules;
2855 	do {
2856 		if (sublen) {
2857 			char *mod_filename = mp->mod_filename;
2858 
2859 			if (strncmp(subdir, mod_filename, sublen) == 0 &&
2860 			    mod_filename[sublen] == '/' &&
2861 			    strcmp(filename, &mod_filename[sublen + 1]) == 0) {
2862 				mutex_exit(&mod_lock);
2863 				return (mp);
2864 			}
2865 		} else if (strcmp(filename, mp->mod_filename) == 0) {
2866 			mutex_exit(&mod_lock);
2867 			return (mp);
2868 		}
2869 	} while ((mp = mp->mod_next) != &modules);
2870 	mutex_exit(&mod_lock);
2871 	return (NULL);
2872 }
2873 
2874 /*
2875  * Check for circular dependencies.  This is called from do_dependents()
2876  * in kobj.c.  If we are the thread already loading this module, then
2877  * we're trying to load a dependent that we're already loading which
2878  * means the user specified circular dependencies.
2879  */
2880 static int
2881 mod_circdep(struct modctl *modp)
2882 {
2883 	struct modctl	*rmod;
2884 
2885 	ASSERT(MUTEX_HELD(&mod_lock));
2886 
2887 	/*
2888 	 * Check the mod_inprogress_thread first.
2889 	 * mod_inprogress_thread is used in mod_hold_stub()
2890 	 * directly to improve performance.
2891 	 */
2892 	if (modp->mod_inprogress_thread == curthread)
2893 		return (1);
2894 
2895 	/*
2896 	 * Check the module circular dependencies.
2897 	 */
2898 	for (rmod = modp; rmod != NULL; rmod = rmod->mod_requisite_loading) {
2899 		/*
2900 		 * Check if there is a module circular dependency.
2901 		 */
2902 		if (rmod->mod_requisite_loading == modp)
2903 			return (1);
2904 	}
2905 	return (0);
2906 }
2907 
2908 static int
2909 mod_getinfo(struct modctl *modp, struct modinfo *modinfop)
2910 {
2911 	int (*func)(struct modinfo *);
2912 	int retval;
2913 
2914 	ASSERT(modp->mod_busy);
2915 
2916 	/* primary modules don't do getinfo */
2917 	if (modp->mod_prim)
2918 		return (0);
2919 
2920 	func = (int (*)(struct modinfo *))kobj_lookup(modp->mod_mp, "_info");
2921 
2922 	if (kobj_addrcheck(modp->mod_mp, (caddr_t)func)) {
2923 		cmn_err(CE_WARN, "_info() not defined properly in %s",
2924 		    modp->mod_filename);
2925 		/*
2926 		 * The semantics of mod_info(9F) are that 0 is failure
2927 		 * and non-zero is success.
2928 		 */
2929 		retval = 0;
2930 	} else
2931 		retval = (*func)(modinfop);	/* call _info() function */
2932 
2933 	if (moddebug & MODDEBUG_USERDEBUG)
2934 		printf("Returned from _info, retval = %x\n", retval);
2935 
2936 	return (retval);
2937 }
2938 
2939 static void
2940 modadd(struct modctl *mp)
2941 {
2942 	ASSERT(MUTEX_HELD(&mod_lock));
2943 
2944 	mp->mod_id = last_module_id++;
2945 	mp->mod_next = &modules;
2946 	mp->mod_prev = modules.mod_prev;
2947 	modules.mod_prev->mod_next = mp;
2948 	modules.mod_prev = mp;
2949 }
2950 
2951 /*ARGSUSED*/
2952 static struct modctl *
2953 allocate_modp(const char *filename, const char *modname)
2954 {
2955 	struct modctl *mp;
2956 
2957 	mp = kobj_zalloc(sizeof (*mp), KM_SLEEP);
2958 	mp->mod_modname = kobj_zalloc(strlen(modname) + 1, KM_SLEEP);
2959 	(void) strcpy(mp->mod_modname, modname);
2960 	return (mp);
2961 }
2962 
2963 /*
2964  * Get the value of a symbol.  This is a wrapper routine that
2965  * calls kobj_getsymvalue().  kobj_getsymvalue() may go away but this
2966  * wrapper will prevent callers from noticing.
2967  */
2968 uintptr_t
2969 modgetsymvalue(char *name, int kernelonly)
2970 {
2971 	return (kobj_getsymvalue(name, kernelonly));
2972 }
2973 
2974 /*
2975  * Get the symbol nearest an address.  This is a wrapper routine that
2976  * calls kobj_getsymname().  kobj_getsymname() may go away but this
2977  * wrapper will prevent callers from noticing.
2978  */
2979 char *
2980 modgetsymname(uintptr_t value, ulong_t *offset)
2981 {
2982 	return (kobj_getsymname(value, offset));
2983 }
2984 
2985 /*
2986  * Lookup a symbol in a specified module.  These are wrapper routines that
2987  * call kobj_lookup().  kobj_lookup() may go away but these wrappers will
2988  * prevent callers from noticing.
2989  */
2990 uintptr_t
2991 modlookup(const char *modname, const char *symname)
2992 {
2993 	struct modctl *modp;
2994 	uintptr_t val;
2995 
2996 	if ((modp = mod_hold_by_name(modname)) == NULL)
2997 		return (0);
2998 	val = kobj_lookup(modp->mod_mp, symname);
2999 	mod_release_mod(modp);
3000 	return (val);
3001 }
3002 
3003 uintptr_t
3004 modlookup_by_modctl(modctl_t *modp, const char *symname)
3005 {
3006 	ASSERT(modp->mod_ref > 0 || modp->mod_busy);
3007 
3008 	return (kobj_lookup(modp->mod_mp, symname));
3009 }
3010 
3011 /*
3012  * Ask the user for the name of the system file and the default path
3013  * for modules.
3014  */
3015 void
3016 mod_askparams()
3017 {
3018 	static char s0[64];
3019 	intptr_t fd;
3020 
3021 	if ((fd = kobj_open(systemfile)) != -1L)
3022 		kobj_close(fd);
3023 	else
3024 		systemfile = NULL;
3025 
3026 	/*CONSTANTCONDITION*/
3027 	while (1) {
3028 		printf("Name of system file [%s]:  ",
3029 			systemfile ? systemfile : "/dev/null");
3030 
3031 		console_gets(s0, sizeof (s0));
3032 
3033 		if (s0[0] == '\0')
3034 			break;
3035 		else if (strcmp(s0, "/dev/null") == 0) {
3036 			systemfile = NULL;
3037 			break;
3038 		} else {
3039 			if ((fd = kobj_open(s0)) != -1L) {
3040 				kobj_close(fd);
3041 				systemfile = s0;
3042 				break;
3043 			}
3044 		}
3045 		printf("can't find file %s\n", s0);
3046 	}
3047 }
3048 
3049 static char loading_msg[] = "loading '%s' id %d\n";
3050 static char load_msg[] = "load '%s' id %d loaded @ 0x%p/0x%p size %d/%d\n";
3051 
3052 /*
3053  * Common code for loading a module (but not installing it).
3054  * Handoff the task of module loading to a seperate thread
3055  * with a large stack if possible, since this code may recurse a few times.
3056  * Return zero if there are no errors or an errno value.
3057  */
3058 static int
3059 mod_load(struct modctl *mp, int usepath)
3060 {
3061 	int		retval;
3062 	struct modinfo	*modinfop = NULL;
3063 	struct loadmt	lt;
3064 
3065 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3066 	ASSERT(mp->mod_busy);
3067 
3068 	if (mp->mod_loaded)
3069 		return (0);
3070 
3071 	if (mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_modname) != 0 ||
3072 	    mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_filename) != 0) {
3073 		if (moddebug & MODDEBUG_LOADMSG) {
3074 			printf(mod_excl_msg, mp->mod_filename,
3075 				mp->mod_modname);
3076 		}
3077 		return (ENXIO);
3078 	}
3079 	if (moddebug & MODDEBUG_LOADMSG2)
3080 		printf(loading_msg, mp->mod_filename, mp->mod_id);
3081 
3082 	if (curthread != &t0) {
3083 		lt.mp = mp;
3084 		lt.usepath = usepath;
3085 		lt.owner = curthread;
3086 		sema_init(&lt.sema, 0, NULL, SEMA_DEFAULT, NULL);
3087 
3088 		/* create thread to hand of call to */
3089 		(void) thread_create(NULL, DEFAULTSTKSZ * 2,
3090 		    modload_thread, &lt, 0, &p0, TS_RUN, maxclsyspri);
3091 
3092 		/* wait for thread to complete kobj_load_module */
3093 		sema_p(&lt.sema);
3094 
3095 		sema_destroy(&lt.sema);
3096 		retval = lt.retval;
3097 	} else
3098 		retval = kobj_load_module(mp, usepath);
3099 
3100 	if (mp->mod_mp) {
3101 		ASSERT(retval == 0);
3102 		mp->mod_loaded = 1;
3103 		mp->mod_loadcnt++;
3104 		if (moddebug & MODDEBUG_LOADMSG) {
3105 			printf(load_msg, mp->mod_filename, mp->mod_id,
3106 				(void *)((struct module *)mp->mod_mp)->text,
3107 				(void *)((struct module *)mp->mod_mp)->data,
3108 				((struct module *)mp->mod_mp)->text_size,
3109 				((struct module *)mp->mod_mp)->data_size);
3110 		}
3111 
3112 		/*
3113 		 * XXX - There should be a better way to get this.
3114 		 */
3115 		modinfop = kmem_zalloc(sizeof (struct modinfo), KM_SLEEP);
3116 		modinfop->mi_info = MI_INFO_LINKAGE;
3117 		if (mod_getinfo(mp, modinfop) == 0)
3118 			mp->mod_linkage = NULL;
3119 		else {
3120 			mp->mod_linkage = (void *)modinfop->mi_base;
3121 			ASSERT(mp->mod_linkage->ml_rev == MODREV_1);
3122 		}
3123 
3124 		/*
3125 		 * DCS: bootstrapping code. If the driver is loaded
3126 		 * before root mount, it is assumed that the driver
3127 		 * may be used before mounting root. In order to
3128 		 * access mappings of global to local minor no.'s
3129 		 * during installation/open of the driver, we load
3130 		 * them into memory here while the BOP_interfaces
3131 		 * are still up.
3132 		 */
3133 		if ((cluster_bootflags & CLUSTER_BOOTED) && !modrootloaded) {
3134 			retval = clboot_modload(mp);
3135 		}
3136 
3137 		kmem_free(modinfop, sizeof (struct modinfo));
3138 		(void) mod_sysctl(SYS_SET_MVAR, (void *)mp);
3139 		retval = install_stubs_by_name(mp, mp->mod_modname);
3140 
3141 		/*
3142 		 * Now that the module is loaded, we need to give DTrace
3143 		 * a chance to notify its providers.  This is done via
3144 		 * the dtrace_modload function pointer.
3145 		 */
3146 		if (strcmp(mp->mod_modname, "dtrace") != 0) {
3147 			struct modctl *dmp = mod_hold_by_name("dtrace");
3148 
3149 			if (dmp != NULL && dtrace_modload != NULL)
3150 				(*dtrace_modload)(mp);
3151 
3152 			mod_release_mod(dmp);
3153 		}
3154 
3155 	} else {
3156 		/*
3157 		 * If load failed then we need to release any requisites
3158 		 * that we had established.
3159 		 */
3160 		ASSERT(retval);
3161 		mod_release_requisites(mp);
3162 
3163 		if (moddebug & MODDEBUG_ERRMSG)
3164 			printf("error loading '%s', error %d\n",
3165 			    mp->mod_filename, retval);
3166 	}
3167 	return (retval);
3168 }
3169 
3170 static char unload_msg[] = "unloading %s, module id %d, loadcnt %d.\n";
3171 
3172 static void
3173 mod_unload(struct modctl *mp)
3174 {
3175 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3176 	ASSERT(mp->mod_busy);
3177 	ASSERT((mp->mod_loaded && (mp->mod_installed == 0)) &&
3178 	    ((mp->mod_prim == 0) && (mp->mod_ref >= 0)));
3179 
3180 	if (moddebug & MODDEBUG_LOADMSG)
3181 		printf(unload_msg, mp->mod_modname,
3182 			mp->mod_id, mp->mod_loadcnt);
3183 
3184 	/*
3185 	 * If mod_ref is not zero, it means some modules might still refer
3186 	 * to this module. Then you can't unload this module right now.
3187 	 * Instead, set 1 to mod_delay_unload to notify the system of
3188 	 * unloading this module later when it's not required any more.
3189 	 */
3190 	if (mp->mod_ref > 0) {
3191 		mp->mod_delay_unload = 1;
3192 		if (moddebug & MODDEBUG_LOADMSG2) {
3193 			printf("module %s not unloaded,"
3194 			    " non-zero reference count (%d)",
3195 			    mp->mod_modname, mp->mod_ref);
3196 		}
3197 		return;
3198 	}
3199 
3200 	if (((mp->mod_loaded == 0) || mp->mod_installed) ||
3201 	    (mp->mod_ref || mp->mod_prim)) {
3202 		/*
3203 		 * A DEBUG kernel would ASSERT panic above, the code is broken
3204 		 * if we get this warning.
3205 		 */
3206 		cmn_err(CE_WARN, "mod_unload: %s in incorrect state: %d %d %d",
3207 		    mp->mod_filename, mp->mod_installed, mp->mod_loaded,
3208 		    mp->mod_ref);
3209 		return;
3210 	}
3211 
3212 	/* reset stub functions to call the binder again */
3213 	reset_stubs(mp);
3214 
3215 	/*
3216 	 * mark module as unloaded before the modctl structure is freed.
3217 	 * This is required not to reuse the modctl structure before
3218 	 * the module is marked as unloaded.
3219 	 */
3220 	mp->mod_loaded = 0;
3221 	mp->mod_linkage = NULL;
3222 
3223 	/* free the memory */
3224 	kobj_unload_module(mp);
3225 
3226 	if (mp->mod_delay_unload) {
3227 		mp->mod_delay_unload = 0;
3228 		if (moddebug & MODDEBUG_LOADMSG2) {
3229 			printf("deferred unload of module %s"
3230 			    " (id %d) successful",
3231 			    mp->mod_modname, mp->mod_id);
3232 		}
3233 	}
3234 
3235 	/* release hold on requisites */
3236 	mod_release_requisites(mp);
3237 
3238 	/*
3239 	 * Now that the module is gone, we need to give DTrace a chance to
3240 	 * remove any probes that it may have had in the module.  This is
3241 	 * done via the dtrace_modunload function pointer.
3242 	 */
3243 	if (strcmp(mp->mod_modname, "dtrace") != 0) {
3244 		struct modctl *dmp = mod_hold_by_name("dtrace");
3245 
3246 		if (dmp != NULL && dtrace_modunload != NULL)
3247 			(*dtrace_modunload)(mp);
3248 
3249 		mod_release_mod(dmp);
3250 	}
3251 }
3252 
3253 static int
3254 modinstall(struct modctl *mp)
3255 {
3256 	int val;
3257 	int (*func)(void);
3258 
3259 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3260 	ASSERT(mp->mod_busy && mp->mod_loaded);
3261 
3262 	if (mp->mod_installed)
3263 		return (0);
3264 	/*
3265 	 * If mod_delay_unload is on, it means the system chose the deferred
3266 	 * unload for this module. Then you can't install this module until
3267 	 * it's unloaded from the system.
3268 	 */
3269 	if (mp->mod_delay_unload)
3270 		return (ENXIO);
3271 
3272 	if (moddebug & MODDEBUG_LOADMSG)
3273 		printf("installing %s, module id %d.\n",
3274 			mp->mod_modname, mp->mod_id);
3275 
3276 	ASSERT(mp->mod_mp != NULL);
3277 	if (mod_install_requisites(mp) != 0) {
3278 		/*
3279 		 * Note that we can't call mod_unload(mp) here since
3280 		 * if modinstall() was called by mod_install_requisites(),
3281 		 * we won't be able to hold the dependent modules
3282 		 * (otherwise there would be a deadlock).
3283 		 */
3284 		return (ENXIO);
3285 	}
3286 
3287 	if (moddebug & MODDEBUG_ERRMSG) {
3288 		printf("init '%s' id %d loaded @ 0x%p/0x%p size %lu/%lu\n",
3289 			mp->mod_filename, mp->mod_id,
3290 			(void *)((struct module *)mp->mod_mp)->text,
3291 			(void *)((struct module *)mp->mod_mp)->data,
3292 			((struct module *)mp->mod_mp)->text_size,
3293 			((struct module *)mp->mod_mp)->data_size);
3294 	}
3295 
3296 	func = (int (*)())kobj_lookup(mp->mod_mp, "_init");
3297 
3298 	if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) {
3299 		cmn_err(CE_WARN, "_init() not defined properly in %s",
3300 		    mp->mod_filename);
3301 		return (EFAULT);
3302 	}
3303 
3304 	if (moddebug & MODDEBUG_USERDEBUG) {
3305 		printf("breakpoint before calling %s:_init()\n",
3306 		    mp->mod_modname);
3307 		if (DEBUGGER_PRESENT)
3308 			debug_enter("_init");
3309 	}
3310 
3311 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3312 	ASSERT(mp->mod_busy && mp->mod_loaded);
3313 	val = (*func)();		/* call _init */
3314 
3315 	if (moddebug & MODDEBUG_USERDEBUG)
3316 		printf("Returned from _init, val = %x\n", val);
3317 
3318 	if (val == 0) {
3319 		/*
3320 		 * Set the MODS_INSTALLED flag to enable this module
3321 		 * being called now.
3322 		 */
3323 		install_stubs(mp);
3324 		mp->mod_installed = 1;
3325 	} else if (moddebug & MODDEBUG_ERRMSG)
3326 		printf(mod_init_msg, mp->mod_filename, mp->mod_modname, val);
3327 
3328 	return (val);
3329 }
3330 
3331 int	detach_driver_unconfig = 0;
3332 
3333 static int
3334 detach_driver(char *name)
3335 {
3336 	major_t major;
3337 	int error;
3338 
3339 	/*
3340 	 * If being called from mod_uninstall_all() then the appropriate
3341 	 * driver detaches (leaf only) have already been done.
3342 	 */
3343 	if (mod_in_autounload())
3344 		return (0);
3345 
3346 	major = ddi_name_to_major(name);
3347 	if (major == (major_t)-1)
3348 		return (0);
3349 
3350 	error = ndi_devi_unconfig_driver(ddi_root_node(),
3351 	    NDI_DETACH_DRIVER | detach_driver_unconfig, major);
3352 	return (error == NDI_SUCCESS ? 0 : -1);
3353 }
3354 
3355 static char finiret_msg[] = "Returned from _fini for %s, status = %x\n";
3356 
3357 static int
3358 moduninstall(struct modctl *mp)
3359 {
3360 	int status = 0;
3361 	int (*func)(void);
3362 
3363 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3364 	ASSERT(mp->mod_busy);
3365 
3366 	/*
3367 	 * Verify that we need to do something and can uninstall the module.
3368 	 *
3369 	 * If we should not uninstall the module or if the module is not in
3370 	 * the correct state to start an uninstall we return EBUSY to prevent
3371 	 * us from progressing to mod_unload.  If the module has already been
3372 	 * uninstalled and unloaded we return EALREADY.
3373 	 */
3374 	if (mp->mod_prim || mp->mod_ref || mp->mod_nenabled != 0)
3375 		return (EBUSY);
3376 	if ((mp->mod_installed == 0) || (mp->mod_loaded == 0))
3377 		return (EALREADY);
3378 
3379 	/*
3380 	 * To avoid devinfo / module deadlock we must release this module
3381 	 * prior to initiating the detach_driver, otherwise the detach_driver
3382 	 * might deadlock on a devinfo node held by another thread
3383 	 * coming top down and involving the module we have locked.
3384 	 *
3385 	 * When we regrab the module we must reverify that it is OK
3386 	 * to proceed with the uninstall operation.
3387 	 */
3388 	mod_release_mod(mp);
3389 	status = detach_driver(mp->mod_modname);
3390 	(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
3391 
3392 	/* check detach status and reverify state with lock */
3393 	mutex_enter(&mod_lock);
3394 	if ((status != 0) || mp->mod_prim || mp->mod_ref) {
3395 		mutex_exit(&mod_lock);
3396 		return (EBUSY);
3397 	}
3398 	if ((mp->mod_installed == 0) || (mp->mod_loaded == 0)) {
3399 		mutex_exit(&mod_lock);
3400 		return (EALREADY);
3401 	}
3402 	mutex_exit(&mod_lock);
3403 
3404 	if (moddebug & MODDEBUG_LOADMSG2)
3405 		printf("uninstalling %s\n", mp->mod_modname);
3406 
3407 	/*
3408 	 * lookup _fini, return EBUSY if not defined.
3409 	 *
3410 	 * The MODDEBUG_FINI_EBUSY is usefull in resolving leaks in
3411 	 * detach(9E) - it allows bufctl addresses to be resolved.
3412 	 */
3413 	func = (int (*)())kobj_lookup(mp->mod_mp, "_fini");
3414 	if ((func == NULL) || (mp->mod_loadflags & MOD_NOUNLOAD) ||
3415 	    (moddebug & MODDEBUG_FINI_EBUSY))
3416 		return (EBUSY);
3417 
3418 	/* verify that _fini is in this module */
3419 	if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) {
3420 		cmn_err(CE_WARN, "_fini() not defined properly in %s",
3421 		    mp->mod_filename);
3422 		return (EFAULT);
3423 	}
3424 
3425 	/* call _fini() */
3426 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
3427 	ASSERT(mp->mod_busy && mp->mod_loaded && mp->mod_installed);
3428 
3429 	status = (*func)();
3430 
3431 	if (status == 0) {
3432 		/* _fini returned success, the module is no longer installed */
3433 		if (moddebug & MODDEBUG_LOADMSG)
3434 			printf("uninstalled %s\n", mp->mod_modname);
3435 
3436 		/*
3437 		 * Even though we only set mod_installed to zero here, a zero
3438 		 * return value means we are commited to a code path were
3439 		 * mod_loaded will also end up as zero - we have no other
3440 		 * way to get the module data and bss back to the pre _init
3441 		 * state except a reload. To ensure this, after return,
3442 		 * mod_busy must stay set until mod_loaded is cleared.
3443 		 */
3444 		mp->mod_installed = 0;
3445 
3446 		/*
3447 		 * Clear the MODS_INSTALLED flag not to call functions
3448 		 * in the module directly from now on.
3449 		 */
3450 		uninstall_stubs(mp);
3451 	} else {
3452 		if (moddebug & MODDEBUG_USERDEBUG)
3453 			printf(finiret_msg, mp->mod_filename, status);
3454 		/*
3455 		 * By definition _fini is only allowed to return EBUSY or the
3456 		 * result of mod_remove (EBUSY or EINVAL).  In the off chance
3457 		 * that a driver returns EALREADY we convert this to EINVAL
3458 		 * since to our caller EALREADY means module was already
3459 		 * removed.
3460 		 */
3461 		if (status == EALREADY)
3462 			status = EINVAL;
3463 	}
3464 
3465 	return (status);
3466 }
3467 
3468 /*
3469  * Uninstall all modules.
3470  */
3471 static void
3472 mod_uninstall_all(void)
3473 {
3474 	struct modctl	*mp;
3475 	modid_t		modid = 0;
3476 
3477 	/* synchronize with any active modunload_disable() */
3478 	modunload_begin();
3479 
3480 	/* mark this thread as doing autounloading */
3481 	(void) tsd_set(mod_autounload_key, (void *)1);
3482 
3483 	(void) devfs_clean(ddi_root_node(), NULL, 0);
3484 	(void) ndi_devi_unconfig(ddi_root_node(), NDI_AUTODETACH);
3485 
3486 	while ((mp = mod_hold_next_by_id(modid)) != NULL) {
3487 		modid = mp->mod_id;
3488 		/*
3489 		 * Skip modules with the MOD_NOAUTOUNLOAD flag set
3490 		 */
3491 		if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) {
3492 			mod_release_mod(mp);
3493 			continue;
3494 		}
3495 
3496 		if (moduninstall(mp) == 0) {
3497 			mod_unload(mp);
3498 			CPU_STATS_ADDQ(CPU, sys, modunload, 1);
3499 		}
3500 		mod_release_mod(mp);
3501 	}
3502 
3503 	(void) tsd_set(mod_autounload_key, NULL);
3504 	modunload_end();
3505 }
3506 
3507 /* wait for unloads that have begun before registering disable */
3508 void
3509 modunload_disable(void)
3510 {
3511 	mutex_enter(&modunload_wait_mutex);
3512 	while (modunload_active_count) {
3513 		modunload_wait++;
3514 		cv_wait(&modunload_wait_cv, &modunload_wait_mutex);
3515 		modunload_wait--;
3516 	}
3517 	modunload_disable_count++;
3518 	mutex_exit(&modunload_wait_mutex);
3519 }
3520 
3521 /* mark end of disable and signal waiters */
3522 void
3523 modunload_enable(void)
3524 {
3525 	mutex_enter(&modunload_wait_mutex);
3526 	modunload_disable_count--;
3527 	if ((modunload_disable_count == 0) && modunload_wait)
3528 		cv_broadcast(&modunload_wait_cv);
3529 	mutex_exit(&modunload_wait_mutex);
3530 }
3531 
3532 /* wait for disables to complete before begining unload */
3533 void
3534 modunload_begin()
3535 {
3536 	mutex_enter(&modunload_wait_mutex);
3537 	while (modunload_disable_count) {
3538 		modunload_wait++;
3539 		cv_wait(&modunload_wait_cv, &modunload_wait_mutex);
3540 		modunload_wait--;
3541 	}
3542 	modunload_active_count++;
3543 	mutex_exit(&modunload_wait_mutex);
3544 }
3545 
3546 /* mark end of unload and signal waiters */
3547 void
3548 modunload_end()
3549 {
3550 	mutex_enter(&modunload_wait_mutex);
3551 	modunload_active_count--;
3552 	if ((modunload_active_count == 0) && modunload_wait)
3553 		cv_broadcast(&modunload_wait_cv);
3554 	mutex_exit(&modunload_wait_mutex);
3555 }
3556 
3557 void
3558 mod_uninstall_daemon(void)
3559 {
3560 	callb_cpr_t	cprinfo;
3561 	clock_t		ticks = 0;
3562 
3563 	mod_aul_thread = curthread;
3564 
3565 	CALLB_CPR_INIT(&cprinfo, &mod_uninstall_lock, callb_generic_cpr, "mud");
3566 	for (;;) {
3567 		mutex_enter(&mod_uninstall_lock);
3568 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3569 		/*
3570 		 * In DEBUG kernels, unheld drivers are uninstalled periodically
3571 		 * every mod_uninstall_interval seconds.  Periodic uninstall can
3572 		 * be disabled by setting mod_uninstall_interval to 0 which is
3573 		 * the default for a non-DEBUG kernel.
3574 		 */
3575 		if (mod_uninstall_interval) {
3576 			ticks = ddi_get_lbolt() +
3577 				drv_usectohz(mod_uninstall_interval * 1000000);
3578 			(void) cv_timedwait(&mod_uninstall_cv,
3579 				&mod_uninstall_lock, ticks);
3580 		} else {
3581 			cv_wait(&mod_uninstall_cv, &mod_uninstall_lock);
3582 		}
3583 		/*
3584 		 * The whole daemon is safe for CPR except we don't want
3585 		 * the daemon to run if FREEZE is issued and this daemon
3586 		 * wakes up from the cv_wait above. In this case, it'll be
3587 		 * blocked in CALLB_CPR_SAFE_END until THAW is issued.
3588 		 *
3589 		 * The reason of calling CALLB_CPR_SAFE_BEGIN twice is that
3590 		 * mod_uninstall_lock is used to protect cprinfo and
3591 		 * CALLB_CPR_SAFE_BEGIN assumes that this lock is held when
3592 		 * called.
3593 		 */
3594 		CALLB_CPR_SAFE_END(&cprinfo, &mod_uninstall_lock);
3595 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3596 		mutex_exit(&mod_uninstall_lock);
3597 		if ((modunload_disable_count == 0) &&
3598 		    ((moddebug & MODDEBUG_NOAUTOUNLOAD) == 0)) {
3599 			mod_uninstall_all();
3600 		}
3601 	}
3602 }
3603 
3604 /*
3605  * Unload all uninstalled modules.
3606  */
3607 void
3608 modreap(void)
3609 {
3610 	mutex_enter(&mod_uninstall_lock);
3611 	cv_broadcast(&mod_uninstall_cv);
3612 	mutex_exit(&mod_uninstall_lock);
3613 }
3614 
3615 /*
3616  * Hold the specified module. This is the module holding primitive.
3617  *
3618  * If MOD_LOCK_HELD then the caller already holds the mod_lock.
3619  *
3620  * Return values:
3621  *	 0 ==> the module is held
3622  *	 1 ==> the module is not held and the MOD_WAIT_ONCE caller needs
3623  *		to determine how to retry.
3624  */
3625 int
3626 mod_hold_by_modctl(struct modctl *mp, int f)
3627 {
3628 	ASSERT((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) &&
3629 	    ((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) !=
3630 	    (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)));
3631 	ASSERT((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) &&
3632 	    ((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) !=
3633 	    (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)));
3634 	ASSERT((f & MOD_LOCK_NOT_HELD) || MUTEX_HELD(&mod_lock));
3635 
3636 	if (f & MOD_LOCK_NOT_HELD)
3637 		mutex_enter(&mod_lock);
3638 
3639 	while (mp->mod_busy) {
3640 		mp->mod_want = 1;
3641 		cv_wait(&mod_cv, &mod_lock);
3642 		/*
3643 		 * Module may be unloaded by daemon.
3644 		 * Nevertheless, modctl structure is still in linked list
3645 		 * (i.e., off &modules), not freed!
3646 		 * Caller is not supposed to assume "mp" is valid, but there
3647 		 * is no reasonable way to detect this but using
3648 		 * mp->mod_modinfo->mp == NULL check (follow the back pointer)
3649 		 *   (or similar check depending on calling context)
3650 		 * DON'T free modctl structure, it will be very very
3651 		 * problematic.
3652 		 */
3653 		if (f & MOD_WAIT_ONCE) {
3654 			if (f & MOD_LOCK_NOT_HELD)
3655 				mutex_exit(&mod_lock);
3656 			return (1);	/* caller decides how to retry */
3657 		}
3658 	}
3659 
3660 	mp->mod_busy = 1;
3661 	mp->mod_inprogress_thread =
3662 	    (curthread == NULL ? (kthread_id_t)-1 : curthread);
3663 
3664 	if (f & MOD_LOCK_NOT_HELD)
3665 		mutex_exit(&mod_lock);
3666 	return (0);
3667 }
3668 
3669 static struct modctl *
3670 mod_hold_by_name_common(struct modctl *dep, const char *filename)
3671 {
3672 	const char	*modname;
3673 	struct modctl	*mp;
3674 	char		*curname, *newname;
3675 	int		found = 0;
3676 
3677 	mutex_enter(&mod_lock);
3678 
3679 	if ((modname = strrchr(filename, '/')) == NULL)
3680 		modname = filename;
3681 	else
3682 		modname++;
3683 
3684 	mp = &modules;
3685 	do {
3686 		if (strcmp(modname, mp->mod_modname) == 0) {
3687 			found = 1;
3688 			break;
3689 		}
3690 	} while ((mp = mp->mod_next) != &modules);
3691 
3692 	if (found == 0) {
3693 		mp = allocate_modp(filename, modname);
3694 		modadd(mp);
3695 	}
3696 
3697 	/*
3698 	 * if dep is not NULL, set the mp in mod_requisite_loading for
3699 	 * the module circular dependency check. This field is used in
3700 	 * mod_circdep(), but it's cleard in mod_hold_loaded_mod().
3701 	 */
3702 	if (dep != NULL) {
3703 		ASSERT(dep->mod_busy && dep->mod_requisite_loading == NULL);
3704 		dep->mod_requisite_loading = mp;
3705 	}
3706 
3707 	/*
3708 	 * If the module was held, then it must be us who has it held.
3709 	 */
3710 	if (mod_circdep(mp))
3711 		mp = NULL;
3712 	else {
3713 		(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
3714 
3715 		/*
3716 		 * If the name hadn't been set or has changed, allocate
3717 		 * space and set it.  Free space used by previous name.
3718 		 *
3719 		 * Do not change the name of primary modules, for primary
3720 		 * modules the mod_filename was allocated in standalone mode:
3721 		 * it is illegal to kobj_alloc in standalone mode and kobj_free
3722 		 * in non-standalone mode.
3723 		 */
3724 		curname = mp->mod_filename;
3725 		if (curname == NULL ||
3726 		    ((mp->mod_prim == 0) &&
3727 		    (curname != filename) &&
3728 		    (modname != filename) &&
3729 		    (strcmp(curname, filename) != 0))) {
3730 			newname = kobj_zalloc(strlen(filename) + 1, KM_SLEEP);
3731 			(void) strcpy(newname, filename);
3732 			mp->mod_filename = newname;
3733 			if (curname != NULL)
3734 				kobj_free(curname, strlen(curname) + 1);
3735 		}
3736 	}
3737 
3738 	mutex_exit(&mod_lock);
3739 	if (mp && moddebug & MODDEBUG_LOADMSG2)
3740 		printf("Holding %s\n", mp->mod_filename);
3741 	if (mp == NULL && moddebug & MODDEBUG_LOADMSG2)
3742 		printf("circular dependency loading %s\n", filename);
3743 	return (mp);
3744 }
3745 
3746 static struct modctl *
3747 mod_hold_by_name_requisite(struct modctl *dep, char *filename)
3748 {
3749 	return (mod_hold_by_name_common(dep, filename));
3750 }
3751 
3752 struct modctl *
3753 mod_hold_by_name(const char *filename)
3754 {
3755 	return (mod_hold_by_name_common(NULL, filename));
3756 }
3757 
3758 struct modctl *
3759 mod_hold_by_id(modid_t modid)
3760 {
3761 	struct modctl	*mp;
3762 	int		found = 0;
3763 
3764 	mutex_enter(&mod_lock);
3765 	mp = &modules;
3766 	do {
3767 		if (mp->mod_id == modid) {
3768 			found = 1;
3769 			break;
3770 		}
3771 	} while ((mp = mp->mod_next) != &modules);
3772 
3773 	if ((found == 0) || mod_circdep(mp))
3774 		mp = NULL;
3775 	else
3776 		(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
3777 
3778 	mutex_exit(&mod_lock);
3779 	return (mp);
3780 }
3781 
3782 static struct modctl *
3783 mod_hold_next_by_id(modid_t modid)
3784 {
3785 	struct modctl	*mp;
3786 	int		found = 0;
3787 
3788 	if (modid < -1)
3789 		return (NULL);
3790 
3791 	mutex_enter(&mod_lock);
3792 
3793 	mp = &modules;
3794 	do {
3795 		if (mp->mod_id > modid) {
3796 			found = 1;
3797 			break;
3798 		}
3799 	} while ((mp = mp->mod_next) != &modules);
3800 
3801 	if ((found == 0) || mod_circdep(mp))
3802 		mp = NULL;
3803 	else
3804 		(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD);
3805 
3806 	mutex_exit(&mod_lock);
3807 	return (mp);
3808 }
3809 
3810 static void
3811 mod_release(struct modctl *mp)
3812 {
3813 	ASSERT(MUTEX_HELD(&mod_lock));
3814 	ASSERT(mp->mod_busy);
3815 
3816 	mp->mod_busy = 0;
3817 	mp->mod_inprogress_thread = NULL;
3818 	if (mp->mod_want) {
3819 		mp->mod_want = 0;
3820 		cv_broadcast(&mod_cv);
3821 	}
3822 }
3823 
3824 void
3825 mod_release_mod(struct modctl *mp)
3826 {
3827 	if (moddebug & MODDEBUG_LOADMSG2)
3828 		printf("Releasing %s\n", mp->mod_filename);
3829 	mutex_enter(&mod_lock);
3830 	mod_release(mp);
3831 	mutex_exit(&mod_lock);
3832 }
3833 
3834 modid_t
3835 mod_name_to_modid(char *filename)
3836 {
3837 	char		*modname;
3838 	struct modctl	*mp;
3839 
3840 	mutex_enter(&mod_lock);
3841 
3842 	if ((modname = strrchr(filename, '/')) == NULL)
3843 		modname = filename;
3844 	else
3845 		modname++;
3846 
3847 	mp = &modules;
3848 	do {
3849 		if (strcmp(modname, mp->mod_modname) == 0) {
3850 			mutex_exit(&mod_lock);
3851 			return (mp->mod_id);
3852 		}
3853 	} while ((mp = mp->mod_next) != &modules);
3854 
3855 	mutex_exit(&mod_lock);
3856 	return (-1);
3857 }
3858 
3859 
3860 int
3861 mod_remove_by_name(char *name)
3862 {
3863 	struct modctl *mp;
3864 	int retval;
3865 
3866 	mp = mod_hold_by_name(name);
3867 
3868 	if (mp == NULL)
3869 		return (EINVAL);
3870 
3871 	if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) {
3872 		/*
3873 		 * Do not unload forceloaded modules
3874 		 */
3875 		mod_release_mod(mp);
3876 		return (0);
3877 	}
3878 
3879 	if ((retval = moduninstall(mp)) == 0) {
3880 		mod_unload(mp);
3881 		CPU_STATS_ADDQ(CPU, sys, modunload, 1);
3882 	} else if (retval == EALREADY)
3883 		retval = 0;		/* already unloaded, not an error */
3884 	mod_release_mod(mp);
3885 	return (retval);
3886 }
3887 
3888 /*
3889  * Record that module "dep" is dependent on module "on_mod."
3890  */
3891 static void
3892 mod_make_requisite(struct modctl *dependent, struct modctl *on_mod)
3893 {
3894 	struct modctl_list **pmlnp;	/* previous next pointer */
3895 	struct modctl_list *mlp;
3896 	struct modctl_list *new;
3897 
3898 	ASSERT(dependent->mod_busy && on_mod->mod_busy);
3899 	mutex_enter(&mod_lock);
3900 
3901 	/*
3902 	 * Search dependent's requisite list to see if on_mod is recorded.
3903 	 * List is ordered by id.
3904 	 */
3905 	for (pmlnp = &dependent->mod_requisites, mlp = *pmlnp;
3906 	    mlp; pmlnp = &mlp->modl_next, mlp = *pmlnp)
3907 		if (mlp->modl_modp->mod_id >= on_mod->mod_id)
3908 			break;
3909 
3910 	/* Create and insert if not already recorded */
3911 	if ((mlp == NULL) || (mlp->modl_modp->mod_id != on_mod->mod_id)) {
3912 		new = kobj_zalloc(sizeof (*new), KM_SLEEP);
3913 		new->modl_modp = on_mod;
3914 		new->modl_next = mlp;
3915 		*pmlnp = new;
3916 
3917 		/*
3918 		 * Increment the mod_ref count in our new requisite module.
3919 		 * This is what keeps a module that has other modules
3920 		 * which are dependent on it from being uninstalled and
3921 		 * unloaded. "on_mod"'s mod_ref count decremented in
3922 		 * mod_release_requisites when the "dependent" module
3923 		 * unload is complete.  "on_mod" must be loaded, but may not
3924 		 * yet be installed.
3925 		 */
3926 		on_mod->mod_ref++;
3927 		ASSERT(on_mod->mod_ref && on_mod->mod_loaded);
3928 	}
3929 
3930 	mutex_exit(&mod_lock);
3931 }
3932 
3933 /*
3934  * release the hold associated with mod_make_requisite mod_ref++
3935  * as part of unload.
3936  */
3937 void
3938 mod_release_requisites(struct modctl *modp)
3939 {
3940 	struct modctl_list *modl;
3941 	struct modctl_list *next;
3942 	struct modctl *req;
3943 	struct modctl_list *start = NULL, *mod_garbage;
3944 
3945 	ASSERT(modp->mod_busy);
3946 	ASSERT(!MUTEX_HELD(&mod_lock));
3947 
3948 	mutex_enter(&mod_lock);		/* needed for manipulation of req */
3949 	for (modl = modp->mod_requisites; modl; modl = next) {
3950 		next = modl->modl_next;
3951 		req = modl->modl_modp;
3952 		ASSERT(req->mod_ref >= 1 && req->mod_loaded);
3953 		req->mod_ref--;
3954 
3955 		/*
3956 		 * Check if the module has to be unloaded or not.
3957 		 */
3958 		if (req->mod_ref == 0 && req->mod_delay_unload) {
3959 			struct modctl_list *new;
3960 			/*
3961 			 * Allocate the modclt_list holding the garbage
3962 			 * module which should be unloaded later.
3963 			 */
3964 			new = kobj_zalloc(sizeof (struct modctl_list),
3965 			    KM_SLEEP);
3966 			new->modl_modp = req;
3967 
3968 			if (start == NULL)
3969 				mod_garbage = start = new;
3970 			else {
3971 				mod_garbage->modl_next = new;
3972 				mod_garbage = new;
3973 			}
3974 		}
3975 
3976 		/* free the list as we go */
3977 		kobj_free(modl, sizeof (*modl));
3978 	}
3979 	modp->mod_requisites = NULL;
3980 	mutex_exit(&mod_lock);
3981 
3982 	/*
3983 	 * Unload the garbage modules.
3984 	 */
3985 	for (mod_garbage = start; mod_garbage != NULL; /* nothing */) {
3986 		struct modctl_list *old = mod_garbage;
3987 		struct modctl *mp = mod_garbage->modl_modp;
3988 		ASSERT(mp != NULL);
3989 
3990 		/*
3991 		 * Hold this module until it's unloaded completely.
3992 		 */
3993 		(void) mod_hold_by_modctl(mp,
3994 		    MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
3995 		/*
3996 		 * Check if the module is not unloaded yet and nobody requires
3997 		 * the module. If it's unloaded already or somebody still
3998 		 * requires the module, don't unload it now.
3999 		 */
4000 		if (mp->mod_loaded && mp->mod_ref == 0)
4001 			mod_unload(mp);
4002 		ASSERT((mp->mod_loaded == 0 && mp->mod_delay_unload == 0) ||
4003 		    (mp->mod_ref > 0));
4004 		mod_release_mod(mp);
4005 
4006 		mod_garbage = mod_garbage->modl_next;
4007 		kobj_free(old, sizeof (struct modctl_list));
4008 	}
4009 }
4010 
4011 /*
4012  * Process dependency of the module represented by "dep" on the
4013  * module named by "on."
4014  *
4015  * Called from kobj_do_dependents() to load a module "on" on which
4016  * "dep" depends.
4017  */
4018 struct modctl *
4019 mod_load_requisite(struct modctl *dep, char *on)
4020 {
4021 	struct modctl *on_mod;
4022 	int retval;
4023 
4024 	if ((on_mod = mod_hold_loaded_mod(dep, on, &retval)) != NULL) {
4025 		mod_make_requisite(dep, on_mod);
4026 	} else if (moddebug & MODDEBUG_ERRMSG) {
4027 		printf("error processing %s on which module %s depends\n",
4028 			on, dep->mod_modname);
4029 	}
4030 	return (on_mod);
4031 }
4032 
4033 static int
4034 mod_install_requisites(struct modctl *modp)
4035 {
4036 	struct modctl_list *modl;
4037 	struct modctl *req;
4038 	int status = 0;
4039 
4040 	ASSERT(MUTEX_NOT_HELD(&mod_lock));
4041 	ASSERT(modp->mod_busy);
4042 
4043 	for (modl = modp->mod_requisites; modl; modl = modl->modl_next) {
4044 		req = modl->modl_modp;
4045 		(void) mod_hold_by_modctl(req,
4046 		    MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
4047 		status = modinstall(req);
4048 		mod_release_mod(req);
4049 
4050 		if (status != 0)
4051 			break;
4052 	}
4053 	return (status);
4054 }
4055 
4056 /*
4057  * returns 1 if this thread is doing autounload, 0 otherwise.
4058  * see mod_uninstall_all.
4059  */
4060 int
4061 mod_in_autounload()
4062 {
4063 	return ((int)(uintptr_t)tsd_get(mod_autounload_key));
4064 }
4065 
4066 /*
4067  * gmatch adapted from libc, stripping the wchar stuff
4068  */
4069 #define	popchar(p, c) \
4070 	c = *p++; \
4071 	if (c == 0) \
4072 		return (0);
4073 
4074 int
4075 gmatch(const char *s, const char *p)
4076 {
4077 	int c, sc;
4078 	int ok, lc, notflag;
4079 
4080 	sc = *s++;
4081 	c = *p++;
4082 	if (c == 0)
4083 		return (sc == c);	/* nothing matches nothing */
4084 
4085 	switch (c) {
4086 	case '\\':
4087 		/* skip to quoted character */
4088 		popchar(p, c)
4089 		/*FALLTHRU*/
4090 
4091 	default:
4092 		/* straight comparison */
4093 		if (c != sc)
4094 			return (0);
4095 		/*FALLTHRU*/
4096 
4097 	case '?':
4098 		/* first char matches, move to remainder */
4099 		return (sc != '\0' ? gmatch(s, p) : 0);
4100 
4101 
4102 	case '*':
4103 		while (*p == '*')
4104 			p++;
4105 
4106 		/* * matches everything */
4107 		if (*p == 0)
4108 			return (1);
4109 
4110 		/* undo skip at the beginning & iterate over substrings */
4111 		--s;
4112 		while (*s) {
4113 			if (gmatch(s, p))
4114 				return (1);
4115 			s++;
4116 		}
4117 		return (0);
4118 
4119 	case '[':
4120 		/* match any char within [] */
4121 		if (sc == 0)
4122 			return (0);
4123 
4124 		ok = lc = notflag = 0;
4125 
4126 		if (*p == '!') {
4127 			notflag = 1;
4128 			p++;
4129 		}
4130 		popchar(p, c)
4131 
4132 		do {
4133 			if (c == '-' && lc && *p != ']') {
4134 				/* test sc against range [c1-c2] */
4135 				popchar(p, c)
4136 				if (c == '\\') {
4137 					popchar(p, c)
4138 				}
4139 
4140 				if (notflag) {
4141 					/* return 0 on mismatch */
4142 					if (lc <= sc && sc <= c)
4143 						return (0);
4144 					ok++;
4145 				} else if (lc <= sc && sc <= c) {
4146 					ok++;
4147 				}
4148 				/* keep going, may get a match next */
4149 			} else if (c == '\\') {
4150 				/* skip to quoted character */
4151 				popchar(p, c)
4152 			}
4153 			lc = c;
4154 			if (notflag) {
4155 				if (sc == lc)
4156 					return (0);
4157 				ok++;
4158 			} else if (sc == lc) {
4159 				ok++;
4160 			}
4161 			popchar(p, c)
4162 		} while (c != ']');
4163 
4164 		/* recurse on remainder of string */
4165 		return (ok ? gmatch(s, p) : 0);
4166 	}
4167 	/*NOTREACHED*/
4168 }
4169 
4170 
4171 /*
4172  * Get default perm for device from /etc/minor_perm. Return 0 if match found.
4173  *
4174  * Pure wild-carded patterns are handled separately so the ordering of
4175  * these patterns doesn't matter.  We're still dependent on ordering
4176  * however as the first matching entry is the one returned.
4177  * Not ideal but all existing examples and usage do imply this
4178  * ordering implicitly.
4179  *
4180  * Drivers using the clone driver are always good for some entertainment.
4181  * Clone nodes under pseudo have the form clone@0:<driver>.  Some minor
4182  * perm entries have the form clone:<driver>, others use <driver>:*
4183  * Examples are clone:llc1 vs. llc2:*, for example.
4184  *
4185  * Minor perms in the clone:<driver> form are mapped to the drivers's
4186  * mperm list, not the clone driver, as wildcard entries for clone
4187  * reference only.  In other words, a clone wildcard will match
4188  * references for clone@0:<driver> but never <driver>@<minor>.
4189  *
4190  * Additional minor perms in the standard form are also supported,
4191  * for mixed usage, ie a node with an entry clone:<driver> could
4192  * provide further entries <driver>:<minor>.
4193  *
4194  * Finally, some uses of clone use an alias as the minor name rather
4195  * than the driver name, with the alias as the minor perm entry.
4196  * This case is handled by attaching the driver to bring its
4197  * minor list into existence, then discover the alias via DDI_ALIAS.
4198  * The clone device's minor perm list can then be searched for
4199  * that alias.
4200  */
4201 
4202 static int
4203 dev_alias_minorperm(dev_info_t *dip, char *minor_name, mperm_t *rmp)
4204 {
4205 	major_t major;
4206 	struct devnames *dnp;
4207 	mperm_t *mp;
4208 	char *alias = NULL;
4209 	dev_info_t *cdevi;
4210 	struct ddi_minor_data *dmd;
4211 
4212 	major = ddi_name_to_major(minor_name);
4213 
4214 	ASSERT(dip == clone_dip);
4215 	ASSERT(major != (major_t)-1);
4216 
4217 	/*
4218 	 * Attach the driver named by the minor node, then
4219 	 * search its first instance's minor list for an
4220 	 * alias node.
4221 	 */
4222 	if (ddi_hold_installed_driver(major) == NULL)
4223 		return (1);
4224 
4225 	dnp = &devnamesp[major];
4226 	LOCK_DEV_OPS(&dnp->dn_lock);
4227 
4228 	if ((cdevi = dnp->dn_head) != NULL) {
4229 		mutex_enter(&DEVI(cdevi)->devi_lock);
4230 		for (dmd = DEVI(cdevi)->devi_minor; dmd; dmd = dmd->next) {
4231 			if (dmd->type == DDM_ALIAS) {
4232 				alias = i_ddi_strdup(dmd->ddm_name, KM_SLEEP);
4233 				break;
4234 			}
4235 		}
4236 		mutex_exit(&DEVI(cdevi)->devi_lock);
4237 	}
4238 
4239 	UNLOCK_DEV_OPS(&dnp->dn_lock);
4240 	ddi_rele_driver(major);
4241 
4242 	if (alias == NULL) {
4243 		if (moddebug & MODDEBUG_MINORPERM)
4244 			cmn_err(CE_CONT, "dev_minorperm: "
4245 			    "no alias for %s\n", minor_name);
4246 		return (1);
4247 	}
4248 
4249 	major = ddi_driver_major(clone_dip);
4250 	dnp = &devnamesp[major];
4251 	LOCK_DEV_OPS(&dnp->dn_lock);
4252 
4253 	/*
4254 	 * Go through the clone driver's mperm list looking
4255 	 * for a match for the specified alias.
4256 	 */
4257 	for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) {
4258 		if (strcmp(alias, mp->mp_minorname) == 0) {
4259 			break;
4260 		}
4261 	}
4262 
4263 	if (mp) {
4264 		if (moddebug & MODDEBUG_MP_MATCH) {
4265 			cmn_err(CE_CONT,
4266 			    "minor perm defaults: %s %s 0%o %d %d (aliased)\n",
4267 			    minor_name, alias, mp->mp_mode,
4268 			    mp->mp_uid, mp->mp_gid);
4269 		}
4270 		rmp->mp_uid = mp->mp_uid;
4271 		rmp->mp_gid = mp->mp_gid;
4272 		rmp->mp_mode = mp->mp_mode;
4273 	}
4274 	UNLOCK_DEV_OPS(&dnp->dn_lock);
4275 
4276 	kmem_free(alias, strlen(alias)+1);
4277 
4278 	return (mp == NULL);
4279 }
4280 
4281 int
4282 dev_minorperm(dev_info_t *dip, char *name, mperm_t *rmp)
4283 {
4284 	major_t major;
4285 	char *minor_name;
4286 	struct devnames *dnp;
4287 	mperm_t *mp;
4288 	int is_clone = 0;
4289 
4290 	if (!minorperm_loaded) {
4291 		if (moddebug & MODDEBUG_MINORPERM)
4292 			cmn_err(CE_CONT,
4293 			    "%s: minor perm not yet loaded\n", name);
4294 		return (1);
4295 	}
4296 
4297 	minor_name = strchr(name, ':');
4298 	if (minor_name == NULL)
4299 		return (1);
4300 	minor_name++;
4301 
4302 	/*
4303 	 * If it's the clone driver, search the driver as named
4304 	 * by the minor.  All clone minor perm entries other than
4305 	 * alias nodes are actually installed on the real driver's list.
4306 	 */
4307 	if (dip == clone_dip) {
4308 		major = ddi_name_to_major(minor_name);
4309 		if (major == (major_t)-1) {
4310 			if (moddebug & MODDEBUG_MINORPERM)
4311 				cmn_err(CE_CONT, "dev_minorperm: "
4312 				    "%s: no such driver\n", minor_name);
4313 			return (1);
4314 		}
4315 		is_clone = 1;
4316 	} else {
4317 		major = ddi_driver_major(dip);
4318 		ASSERT(major != (major_t)-1);
4319 	}
4320 
4321 	dnp = &devnamesp[major];
4322 	LOCK_DEV_OPS(&dnp->dn_lock);
4323 
4324 	/*
4325 	 * Go through the driver's mperm list looking for
4326 	 * a match for the specified minor.  If there's
4327 	 * no matching pattern, use the wild card.
4328 	 * Defer to the clone wild for clone if specified,
4329 	 * otherwise fall back to the normal form.
4330 	 */
4331 	for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) {
4332 		if (gmatch(minor_name, mp->mp_minorname) != 0) {
4333 			break;
4334 		}
4335 	}
4336 	if (mp == NULL) {
4337 		if (is_clone)
4338 			mp = dnp->dn_mperm_clone;
4339 		if (mp == NULL)
4340 			mp = dnp->dn_mperm_wild;
4341 	}
4342 
4343 	if (mp) {
4344 		if (moddebug & MODDEBUG_MP_MATCH) {
4345 			cmn_err(CE_CONT,
4346 			    "minor perm defaults: %s %s 0%o %d %d\n",
4347 			    name, mp->mp_minorname, mp->mp_mode,
4348 			    mp->mp_uid, mp->mp_gid);
4349 		}
4350 		rmp->mp_uid = mp->mp_uid;
4351 		rmp->mp_gid = mp->mp_gid;
4352 		rmp->mp_mode = mp->mp_mode;
4353 	}
4354 	UNLOCK_DEV_OPS(&dnp->dn_lock);
4355 
4356 	/*
4357 	 * If no match can be found for a clone node,
4358 	 * search for a possible match for an alias.
4359 	 * One such example is /dev/ptmx -> /devices/pseudo/clone@0:ptm,
4360 	 * with minor perm entry clone:ptmx.
4361 	 */
4362 	if (mp == NULL && is_clone) {
4363 		return (dev_alias_minorperm(dip, minor_name, rmp));
4364 	}
4365 
4366 	return (mp == NULL);
4367 }
4368 
4369 /*
4370  * dynamicaly reference load a dl module/library, returning handle
4371  */
4372 /*ARGSUSED*/
4373 ddi_modhandle_t
4374 ddi_modopen(const char *modname, int mode, int *errnop)
4375 {
4376 	char		*subdir;
4377 	char		*mod;
4378 	int		subdirlen;
4379 	struct modctl	*hmodp = NULL;
4380 	int		retval = EINVAL;
4381 
4382 	ASSERT(modname && (mode == KRTLD_MODE_FIRST));
4383 	if ((modname == NULL) || (mode != KRTLD_MODE_FIRST))
4384 		goto out;
4385 
4386 	/* find optional first '/' in modname */
4387 	mod = strchr(modname, '/');
4388 	if (mod != strrchr(modname, '/'))
4389 		goto out;		/* only one '/' is legal */
4390 
4391 	if (mod) {
4392 		/* for subdir string without modification to argument */
4393 		mod++;
4394 		subdirlen = mod - modname;
4395 		subdir = kmem_alloc(subdirlen, KM_SLEEP);
4396 		(void) strlcpy(subdir, modname, subdirlen);
4397 	} else {
4398 		subdirlen = 0;
4399 		subdir = "misc";
4400 		mod = (char *)modname;
4401 	}
4402 
4403 	/* reference load with errno return value */
4404 	retval = modrload(subdir, mod, &hmodp);
4405 
4406 	if (subdirlen)
4407 		kmem_free(subdir, subdirlen);
4408 
4409 out:	if (errnop)
4410 		*errnop = retval;
4411 
4412 	if (moddebug & MODDEBUG_DDI_MOD)
4413 		printf("ddi_modopen %s mode %x: %s %p %d\n",
4414 		    modname ? modname : "<unknown>", mode,
4415 		    hmodp ? hmodp->mod_filename : "<unknown>",
4416 		    (void *)hmodp, retval);
4417 
4418 	return ((ddi_modhandle_t)hmodp);
4419 }
4420 
4421 /* lookup "name" in open dl module/library */
4422 void *
4423 ddi_modsym(ddi_modhandle_t h, const char *name, int *errnop)
4424 {
4425 	struct modctl	*hmodp = (struct modctl *)h;
4426 	void		*f;
4427 	int		retval;
4428 
4429 	ASSERT(hmodp && name && hmodp->mod_installed && (hmodp->mod_ref >= 1));
4430 	if ((hmodp == NULL) || (name == NULL) ||
4431 	    (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) {
4432 		f = NULL;
4433 		retval = EINVAL;
4434 	} else {
4435 		f = (void *)kobj_lookup(hmodp->mod_mp, (char *)name);
4436 		if (f)
4437 			retval = 0;
4438 		else
4439 			retval = ENOTSUP;
4440 	}
4441 
4442 	if (moddebug & MODDEBUG_DDI_MOD)
4443 		printf("ddi_modsym in %s of %s: %d %p\n",
4444 		    hmodp ? hmodp->mod_modname : "<unknown>",
4445 		    name ? name : "<unknown>", retval, f);
4446 
4447 	if (errnop)
4448 		*errnop = retval;
4449 	return (f);
4450 }
4451 
4452 /* dynamic (un)reference unload of an open dl module/library */
4453 int
4454 ddi_modclose(ddi_modhandle_t h)
4455 {
4456 	struct modctl	*hmodp = (struct modctl *)h;
4457 	struct modctl	*modp = NULL;
4458 	int		retval;
4459 
4460 	ASSERT(hmodp && hmodp->mod_installed && (hmodp->mod_ref >= 1));
4461 	if ((hmodp == NULL) ||
4462 	    (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) {
4463 		retval = EINVAL;
4464 		goto out;
4465 	}
4466 
4467 	retval = modunrload(hmodp->mod_id, &modp, ddi_modclose_unload);
4468 	if (retval == EBUSY)
4469 		retval = 0;	/* EBUSY is not an error */
4470 
4471 	if (retval == 0) {
4472 		ASSERT(hmodp == modp);
4473 		if (hmodp != modp)
4474 			retval = EINVAL;
4475 	}
4476 
4477 out:	if (moddebug & MODDEBUG_DDI_MOD)
4478 		printf("ddi_modclose %s: %d\n",
4479 		    hmodp ? hmodp->mod_modname : "<unknown>", retval);
4480 
4481 	return (retval);
4482 }
4483