1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * modctl system call for loadable module support. 31 */ 32 33 #include <sys/param.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/exec.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/conf.h> 40 #include <sys/time.h> 41 #include <sys/reboot.h> 42 #include <sys/fs/ufs_fsdir.h> 43 #include <sys/kmem.h> 44 #include <sys/sysconf.h> 45 #include <sys/cmn_err.h> 46 #include <sys/ddi.h> 47 #include <sys/sunddi.h> 48 #include <sys/sunndi.h> 49 #include <sys/ndi_impldefs.h> 50 #include <sys/ddi_impldefs.h> 51 #include <sys/ddi_implfuncs.h> 52 #include <sys/bootconf.h> 53 #include <sys/dc_ki.h> 54 #include <sys/cladm.h> 55 #include <sys/dtrace.h> 56 #include <sys/kdi.h> 57 58 #include <sys/devpolicy.h> 59 #include <sys/modctl.h> 60 #include <sys/kobj.h> 61 #include <sys/devops.h> 62 #include <sys/autoconf.h> 63 #include <sys/hwconf.h> 64 #include <sys/callb.h> 65 #include <sys/debug.h> 66 #include <sys/cpuvar.h> 67 #include <sys/sysmacros.h> 68 #include <sys/sysevent.h> 69 #include <sys/sysevent_impl.h> 70 #include <sys/instance.h> 71 #include <sys/modhash.h> 72 #include <sys/modhash_impl.h> 73 #include <sys/dacf_impl.h> 74 #include <sys/vfs.h> 75 #include <sys/pathname.h> 76 #include <sys/console.h> 77 #include <sys/policy.h> 78 #include <ipp/ipp_impl.h> 79 #include <sys/fs/dv_node.h> 80 #include <sys/strsubr.h> 81 #include <sys/fs/sdev_node.h> 82 83 static int mod_circdep(struct modctl *); 84 static int modinfo(modid_t, struct modinfo *); 85 86 static void mod_uninstall_all(void); 87 static int mod_getinfo(struct modctl *, struct modinfo *); 88 static struct modctl *allocate_modp(const char *, const char *); 89 90 static int mod_load(struct modctl *, int); 91 static void mod_unload(struct modctl *); 92 static int modinstall(struct modctl *); 93 static int moduninstall(struct modctl *); 94 95 static struct modctl *mod_hold_by_name_common(struct modctl *, const char *); 96 static struct modctl *mod_hold_next_by_id(modid_t); 97 static struct modctl *mod_hold_loaded_mod(struct modctl *, char *, int *); 98 static struct modctl *mod_hold_installed_mod(char *, int, int *); 99 100 static void mod_release(struct modctl *); 101 static void mod_make_requisite(struct modctl *, struct modctl *); 102 static int mod_install_requisites(struct modctl *); 103 static void check_esc_sequences(char *, char *); 104 static struct modctl *mod_hold_by_name_requisite(struct modctl *, char *); 105 106 /* 107 * module loading thread control structure. Calls to kobj_load_module()() are 108 * handled off to a separate thead using this structure. 109 */ 110 struct loadmt { 111 ksema_t sema; 112 struct modctl *mp; 113 int usepath; 114 kthread_t *owner; 115 int retval; 116 }; 117 118 static void modload_thread(struct loadmt *); 119 120 kcondvar_t mod_cv; 121 kcondvar_t mod_uninstall_cv; /* Communication between swapper */ 122 /* and the uninstall daemon. */ 123 kmutex_t mod_lock; /* protects &modules insert linkage, */ 124 /* mod_busy, mod_want, and mod_ref. */ 125 /* blocking operations while holding */ 126 /* mod_lock should be avoided */ 127 kmutex_t mod_uninstall_lock; /* protects mod_uninstall_cv */ 128 kthread_id_t mod_aul_thread; 129 130 int modunload_wait; 131 kmutex_t modunload_wait_mutex; 132 kcondvar_t modunload_wait_cv; 133 int modunload_active_count; 134 int modunload_disable_count; 135 136 int isminiroot; /* set if running as miniroot */ 137 int modrootloaded; /* set after root driver and fs are loaded */ 138 int moddebug = 0x0; /* debug flags for module writers */ 139 int swaploaded; /* set after swap driver and fs are loaded */ 140 int bop_io_quiesced = 0; /* set when BOP I/O can no longer be used */ 141 int last_module_id; 142 clock_t mod_uninstall_interval = 0; 143 int ddi_modclose_unload = 1; /* 0 -> just decrement reference */ 144 145 struct devnames *devnamesp; 146 struct devnames orphanlist; 147 148 krwlock_t devinfo_tree_lock; /* obsolete, to be removed */ 149 150 #define MAJBINDFILE "/etc/name_to_major" 151 #define SYSBINDFILE "/etc/name_to_sysnum" 152 153 static char majbind[] = MAJBINDFILE; 154 static char sysbind[] = SYSBINDFILE; 155 static uint_t mod_autounload_key; /* for module autounload detection */ 156 157 extern int obpdebug; 158 extern int make_mbind(char *, int, char *, struct bind **); 159 160 #define DEBUGGER_PRESENT ((boothowto & RB_DEBUG) || (obpdebug != 0)) 161 162 static int minorperm_loaded = 0; 163 164 void 165 mod_setup(void) 166 { 167 struct sysent *callp; 168 int callnum, exectype; 169 int num_devs; 170 int i; 171 172 /* 173 * Initialize the list of loaded driver dev_ops. 174 * XXX - This must be done before reading the system file so that 175 * forceloads of drivers will work. 176 */ 177 num_devs = read_binding_file(majbind, mb_hashtab, make_mbind); 178 /* 179 * Since read_binding_file is common code, it doesn't enforce that all 180 * of the binding file entries have major numbers <= MAXMAJ32. Thus, 181 * ensure that we don't allocate some massive amount of space due to a 182 * bad entry. We can't have major numbers bigger than MAXMAJ32 183 * until file system support for larger major numbers exists. 184 */ 185 186 /* 187 * Leave space for expansion, but not more than L_MAXMAJ32 188 */ 189 devcnt = MIN(num_devs + 30, L_MAXMAJ32); 190 devopsp = kmem_alloc(devcnt * sizeof (struct dev_ops *), KM_SLEEP); 191 for (i = 0; i < devcnt; i++) 192 devopsp[i] = &mod_nodev_ops; 193 194 init_devnamesp(devcnt); 195 196 /* 197 * Sync up with the work that the stand-alone linker has already done. 198 */ 199 (void) kobj_sync(); 200 201 if (boothowto & RB_DEBUG) 202 kdi_dvec_modavail(); 203 204 make_aliases(mb_hashtab); 205 206 /* 207 * Initialize streams device implementation structures. 208 */ 209 devimpl = kmem_zalloc(devcnt * sizeof (cdevsw_impl_t), KM_SLEEP); 210 211 /* 212 * If the cl_bootstrap module is present, 213 * we should be configured as a cluster. Loading this module 214 * will set "cluster_bootflags" to non-zero. 215 */ 216 (void) modload("misc", "cl_bootstrap"); 217 218 (void) read_binding_file(sysbind, sb_hashtab, make_mbind); 219 init_syscallnames(NSYSCALL); 220 221 /* 222 * Start up dynamic autoconfiguration framework (dacf). 223 */ 224 mod_hash_init(); 225 dacf_init(); 226 227 /* 228 * Start up IP policy framework (ipp). 229 */ 230 ipp_init(); 231 232 /* 233 * Allocate loadable native system call locks. 234 */ 235 for (callnum = 0, callp = sysent; callnum < NSYSCALL; 236 callnum++, callp++) { 237 if (LOADABLE_SYSCALL(callp)) { 238 if (mod_getsysname(callnum) != NULL) { 239 callp->sy_lock = 240 kobj_zalloc(sizeof (krwlock_t), KM_SLEEP); 241 rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL); 242 } else { 243 callp->sy_flags &= ~SE_LOADABLE; 244 callp->sy_callc = nosys; 245 } 246 #ifdef DEBUG 247 } else { 248 /* 249 * Do some sanity checks on the sysent table 250 */ 251 switch (callp->sy_flags & SE_RVAL_MASK) { 252 case SE_32RVAL1: 253 /* only r_val1 returned */ 254 case SE_32RVAL1 | SE_32RVAL2: 255 /* r_val1 and r_val2 returned */ 256 case SE_64RVAL: 257 /* 64-bit rval returned */ 258 break; 259 default: 260 cmn_err(CE_WARN, "sysent[%d]: bad flags %x", 261 callnum, callp->sy_flags); 262 } 263 #endif 264 } 265 } 266 267 #ifdef _SYSCALL32_IMPL 268 /* 269 * Allocate loadable system call locks for 32-bit compat syscalls 270 */ 271 for (callnum = 0, callp = sysent32; callnum < NSYSCALL; 272 callnum++, callp++) { 273 if (LOADABLE_SYSCALL(callp)) { 274 if (mod_getsysname(callnum) != NULL) { 275 callp->sy_lock = 276 kobj_zalloc(sizeof (krwlock_t), KM_SLEEP); 277 rw_init(callp->sy_lock, NULL, RW_DEFAULT, NULL); 278 } else { 279 callp->sy_flags &= ~SE_LOADABLE; 280 callp->sy_callc = nosys; 281 } 282 #ifdef DEBUG 283 } else { 284 /* 285 * Do some sanity checks on the sysent table 286 */ 287 switch (callp->sy_flags & SE_RVAL_MASK) { 288 case SE_32RVAL1: 289 /* only r_val1 returned */ 290 case SE_32RVAL1 | SE_32RVAL2: 291 /* r_val1 and r_val2 returned */ 292 case SE_64RVAL: 293 /* 64-bit rval returned */ 294 break; 295 default: 296 cmn_err(CE_WARN, "sysent32[%d]: bad flags %x", 297 callnum, callp->sy_flags); 298 goto skip; 299 } 300 301 /* 302 * Cross-check the native and compatibility tables. 303 */ 304 if (callp->sy_callc == nosys || 305 sysent[callnum].sy_callc == nosys) 306 continue; 307 /* 308 * If only one or the other slot is loadable, then 309 * there's an error -- they should match! 310 */ 311 if ((callp->sy_callc == loadable_syscall) ^ 312 (sysent[callnum].sy_callc == loadable_syscall)) { 313 cmn_err(CE_WARN, "sysent[%d] loadable?", 314 callnum); 315 } 316 /* 317 * This is more of a heuristic test -- if the 318 * system call returns two values in the 32-bit 319 * world, it should probably return two 32-bit 320 * values in the 64-bit world too. 321 */ 322 if (((callp->sy_flags & SE_32RVAL2) == 0) ^ 323 ((sysent[callnum].sy_flags & SE_32RVAL2) == 0)) { 324 cmn_err(CE_WARN, "sysent[%d] rval2 mismatch!", 325 callnum); 326 } 327 skip:; 328 #endif /* DEBUG */ 329 } 330 } 331 #endif /* _SYSCALL32_IMPL */ 332 333 /* 334 * Allocate loadable exec locks. (Assumes all execs are loadable) 335 */ 336 for (exectype = 0; exectype < nexectype; exectype++) { 337 execsw[exectype].exec_lock = 338 kobj_zalloc(sizeof (krwlock_t), KM_SLEEP); 339 rw_init(execsw[exectype].exec_lock, NULL, RW_DEFAULT, NULL); 340 } 341 342 read_class_file(); 343 344 /* init thread specific structure for mod_uninstall_all */ 345 tsd_create(&mod_autounload_key, NULL); 346 } 347 348 static int 349 modctl_modload(int use_path, char *filename, int *rvp) 350 { 351 struct modctl *modp; 352 int retval = 0; 353 char *filenamep; 354 int modid; 355 356 filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP); 357 358 if (copyinstr(filename, filenamep, MOD_MAXPATH, 0)) { 359 retval = EFAULT; 360 goto out; 361 } 362 363 filenamep[MOD_MAXPATH - 1] = 0; 364 modp = mod_hold_installed_mod(filenamep, use_path, &retval); 365 366 if (modp == NULL) 367 goto out; 368 369 modp->mod_loadflags |= MOD_NOAUTOUNLOAD; 370 modid = modp->mod_id; 371 mod_release_mod(modp); 372 CPU_STATS_ADDQ(CPU, sys, modload, 1); 373 if (rvp != NULL && copyout(&modid, rvp, sizeof (modid)) != 0) 374 retval = EFAULT; 375 out: 376 kmem_free(filenamep, MOD_MAXPATH); 377 378 return (retval); 379 } 380 381 static int 382 modctl_modunload(modid_t id) 383 { 384 int rval = 0; 385 386 if (id == 0) { 387 #ifdef DEBUG 388 /* 389 * Turn on mod_uninstall_daemon 390 */ 391 if (mod_uninstall_interval == 0) { 392 mod_uninstall_interval = 60; 393 modreap(); 394 return (rval); 395 } 396 #endif 397 mod_uninstall_all(); 398 } else { 399 rval = modunload(id); 400 } 401 return (rval); 402 } 403 404 static int 405 modctl_modinfo(modid_t id, struct modinfo *umodi) 406 { 407 int retval; 408 struct modinfo modi; 409 #if defined(_SYSCALL32_IMPL) 410 int nobase; 411 struct modinfo32 modi32; 412 #endif 413 414 if (get_udatamodel() == DATAMODEL_NATIVE) { 415 if (copyin(umodi, &modi, sizeof (struct modinfo)) != 0) 416 return (EFAULT); 417 } 418 #ifdef _SYSCALL32_IMPL 419 else { 420 bzero(&modi, sizeof (modi)); 421 if (copyin(umodi, &modi32, sizeof (struct modinfo32)) != 0) 422 return (EFAULT); 423 modi.mi_info = modi32.mi_info; 424 modi.mi_id = modi32.mi_id; 425 modi.mi_nextid = modi32.mi_nextid; 426 nobase = modi.mi_info & MI_INFO_NOBASE; 427 } 428 #endif 429 /* 430 * This flag is -only- for the kernels use. 431 */ 432 modi.mi_info &= ~MI_INFO_LINKAGE; 433 434 retval = modinfo(id, &modi); 435 if (retval) 436 return (retval); 437 438 if (get_udatamodel() == DATAMODEL_NATIVE) { 439 if (copyout(&modi, umodi, sizeof (struct modinfo)) != 0) 440 retval = EFAULT; 441 #ifdef _SYSCALL32_IMPL 442 } else { 443 int i; 444 445 if (!nobase && (uintptr_t)modi.mi_base > UINT32_MAX) 446 return (EOVERFLOW); 447 448 modi32.mi_info = modi.mi_info; 449 modi32.mi_state = modi.mi_state; 450 modi32.mi_id = modi.mi_id; 451 modi32.mi_nextid = modi.mi_nextid; 452 modi32.mi_base = (caddr32_t)(uintptr_t)modi.mi_base; 453 modi32.mi_size = modi.mi_size; 454 modi32.mi_rev = modi.mi_rev; 455 modi32.mi_loadcnt = modi.mi_loadcnt; 456 bcopy(modi.mi_name, modi32.mi_name, sizeof (modi32.mi_name)); 457 for (i = 0; i < MODMAXLINK32; i++) { 458 modi32.mi_msinfo[i].msi_p0 = modi.mi_msinfo[i].msi_p0; 459 bcopy(modi.mi_msinfo[i].msi_linkinfo, 460 modi32.mi_msinfo[i].msi_linkinfo, 461 sizeof (modi32.mi_msinfo[0].msi_linkinfo)); 462 } 463 if (copyout(&modi32, umodi, sizeof (struct modinfo32)) != 0) 464 retval = EFAULT; 465 #endif 466 } 467 468 return (retval); 469 } 470 471 /* 472 * Return the last major number in the range of permissible major numbers. 473 */ 474 /*ARGSUSED*/ 475 static int 476 modctl_modreserve(modid_t id, int *data) 477 { 478 if (copyout(&devcnt, data, sizeof (devcnt)) != 0) 479 return (EFAULT); 480 return (0); 481 } 482 483 static int 484 modctl_add_major(int *data) 485 { 486 struct modconfig mc; 487 int i, rv; 488 struct aliases alias; 489 struct aliases *ap; 490 char name[MAXMODCONFNAME]; 491 char cname[MAXMODCONFNAME]; 492 char *drvname; 493 494 bzero(&mc, sizeof (struct modconfig)); 495 if (get_udatamodel() == DATAMODEL_NATIVE) { 496 if (copyin(data, &mc, sizeof (struct modconfig)) != 0) 497 return (EFAULT); 498 } 499 #ifdef _SYSCALL32_IMPL 500 else { 501 struct modconfig32 modc32; 502 503 if (copyin(data, &modc32, sizeof (struct modconfig32)) != 0) 504 return (EFAULT); 505 else { 506 bcopy(modc32.drvname, mc.drvname, 507 sizeof (modc32.drvname)); 508 bcopy(modc32.drvclass, mc.drvclass, 509 sizeof (modc32.drvclass)); 510 mc.major = modc32.major; 511 mc.num_aliases = modc32.num_aliases; 512 mc.ap = (struct aliases *)(uintptr_t)modc32.ap; 513 } 514 } 515 #endif 516 517 /* 518 * If the driver is already in the mb_hashtab, and the name given 519 * doesn't match that driver's name, fail. Otherwise, pass, since 520 * we may be adding aliases. 521 */ 522 if ((drvname = mod_major_to_name(mc.major)) != NULL && 523 strcmp(drvname, mc.drvname) != 0) 524 return (EINVAL); 525 526 /* 527 * Add each supplied driver alias to mb_hashtab 528 */ 529 ap = mc.ap; 530 for (i = 0; i < mc.num_aliases; i++) { 531 bzero(&alias, sizeof (struct aliases)); 532 533 if (get_udatamodel() == DATAMODEL_NATIVE) { 534 if (copyin(ap, &alias, sizeof (struct aliases)) != 0) 535 return (EFAULT); 536 537 if (alias.a_len > MAXMODCONFNAME) 538 return (EINVAL); 539 540 if (copyin(alias.a_name, name, alias.a_len) != 0) 541 return (EFAULT); 542 543 if (name[alias.a_len - 1] != '\0') 544 return (EINVAL); 545 } 546 #ifdef _SYSCALL32_IMPL 547 else { 548 struct aliases32 al32; 549 550 bzero(&al32, sizeof (struct aliases32)); 551 if (copyin(ap, &al32, sizeof (struct aliases32)) != 0) 552 return (EFAULT); 553 554 if (al32.a_len > MAXMODCONFNAME) 555 return (EINVAL); 556 557 if (copyin((void *)(uintptr_t)al32.a_name, 558 name, al32.a_len) != 0) 559 return (EFAULT); 560 561 if (name[al32.a_len - 1] != '\0') 562 return (EINVAL); 563 564 alias.a_next = (void *)(uintptr_t)al32.a_next; 565 } 566 #endif 567 check_esc_sequences(name, cname); 568 (void) make_mbind(cname, mc.major, NULL, mb_hashtab); 569 ap = alias.a_next; 570 } 571 572 /* 573 * Try to establish an mbinding for mc.drvname, and add it to devnames. 574 * Add class if any after establishing the major number 575 */ 576 (void) make_mbind(mc.drvname, mc.major, NULL, mb_hashtab); 577 rv = make_devname(mc.drvname, mc.major); 578 579 if (rv == 0) { 580 if (mc.drvclass[0] != '\0') 581 add_class(mc.drvname, mc.drvclass); 582 (void) i_ddi_load_drvconf(mc.major); 583 i_ddi_bind_devs(); 584 i_ddi_di_cache_invalidate(KM_SLEEP); 585 } 586 return (rv); 587 } 588 589 static int 590 modctl_rem_major(major_t major) 591 { 592 struct devnames *dnp; 593 594 if (major >= devcnt) 595 return (EINVAL); 596 597 /* mark devnames as removed */ 598 dnp = &devnamesp[major]; 599 LOCK_DEV_OPS(&dnp->dn_lock); 600 if (dnp->dn_name == NULL || 601 (dnp->dn_flags & (DN_DRIVER_REMOVED | DN_TAKEN_GETUDEV))) { 602 UNLOCK_DEV_OPS(&dnp->dn_lock); 603 return (EINVAL); 604 } 605 dnp->dn_flags |= DN_DRIVER_REMOVED; 606 pm_driver_removed(major); 607 UNLOCK_DEV_OPS(&dnp->dn_lock); 608 609 (void) i_ddi_unload_drvconf(major); 610 i_ddi_unbind_devs(major); 611 i_ddi_di_cache_invalidate(KM_SLEEP); 612 return (0); 613 } 614 615 static struct vfs * 616 path_to_vfs(char *name) 617 { 618 vnode_t *vp; 619 struct vfs *vfsp; 620 621 if (lookupname(name, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp)) 622 return (NULL); 623 624 vfsp = vp->v_vfsp; 625 VN_RELE(vp); 626 return (vfsp); 627 } 628 629 static int 630 new_vfs_in_modpath() 631 { 632 static int n_modpath = 0; 633 static char *modpath_copy; 634 static struct pathvfs { 635 char *path; 636 struct vfs *vfsp; 637 } *pathvfs; 638 639 int i, new_vfs = 0; 640 char *tmp, *tmp1; 641 struct vfs *vfsp; 642 643 if (n_modpath != 0) { 644 for (i = 0; i < n_modpath; i++) { 645 vfsp = path_to_vfs(pathvfs[i].path); 646 if (vfsp != pathvfs[i].vfsp) { 647 pathvfs[i].vfsp = vfsp; 648 if (vfsp) 649 new_vfs = 1; 650 } 651 } 652 return (new_vfs); 653 } 654 655 /* 656 * First call, initialize the pathvfs structure 657 */ 658 modpath_copy = i_ddi_strdup(default_path, KM_SLEEP); 659 tmp = modpath_copy; 660 n_modpath = 1; 661 tmp1 = strchr(tmp, ' '); 662 while (tmp1) { 663 *tmp1 = '\0'; 664 n_modpath++; 665 tmp = tmp1 + 1; 666 tmp1 = strchr(tmp, ' '); 667 } 668 669 pathvfs = kmem_zalloc(n_modpath * sizeof (struct pathvfs), KM_SLEEP); 670 tmp = modpath_copy; 671 for (i = 0; i < n_modpath; i++) { 672 pathvfs[i].path = tmp; 673 vfsp = path_to_vfs(tmp); 674 pathvfs[i].vfsp = vfsp; 675 tmp += strlen(tmp) + 1; 676 } 677 return (1); /* always reread driver.conf the first time */ 678 } 679 680 static int 681 modctl_load_drvconf(major_t major) 682 { 683 int ret; 684 685 if (major != (major_t)-1) { 686 ret = i_ddi_load_drvconf(major); 687 if (ret == 0) 688 i_ddi_bind_devs(); 689 return (ret); 690 } 691 692 /* 693 * We are invoked to rescan new driver.conf files. It is 694 * only necessary if a new file system was mounted in the 695 * module_path. Because rescanning driver.conf files can 696 * take some time on older platforms (sun4m), the following 697 * code skips unnecessary driver.conf rescans to optimize 698 * boot performance. 699 */ 700 if (new_vfs_in_modpath()) { 701 (void) i_ddi_load_drvconf((major_t)-1); 702 /* 703 * If we are still initializing io subsystem, 704 * load drivers with ddi-forceattach property 705 */ 706 if (!i_ddi_io_initialized()) 707 i_ddi_forceattach_drivers(); 708 } 709 return (0); 710 } 711 712 static int 713 modctl_unload_drvconf(major_t major) 714 { 715 int ret; 716 717 if (major >= devcnt) 718 return (EINVAL); 719 720 ret = i_ddi_unload_drvconf(major); 721 if (ret != 0) 722 return (ret); 723 (void) i_ddi_unbind_devs(major); 724 725 return (0); 726 } 727 728 static void 729 check_esc_sequences(char *str, char *cstr) 730 { 731 int i; 732 size_t len; 733 char *p; 734 735 len = strlen(str); 736 for (i = 0; i < len; i++, str++, cstr++) { 737 if (*str != '\\') { 738 *cstr = *str; 739 } else { 740 p = str + 1; 741 /* 742 * we only handle octal escape sequences for SPACE 743 */ 744 if (*p++ == '0' && *p++ == '4' && *p == '0') { 745 *cstr = ' '; 746 str += 3; 747 } else { 748 *cstr = *str; 749 } 750 } 751 } 752 *cstr = 0; 753 } 754 755 static int 756 modctl_getmodpathlen(int *data) 757 { 758 int len; 759 len = strlen(default_path); 760 if (copyout(&len, data, sizeof (len)) != 0) 761 return (EFAULT); 762 return (0); 763 } 764 765 static int 766 modctl_getmodpath(char *data) 767 { 768 if (copyout(default_path, data, strlen(default_path) + 1) != 0) 769 return (EFAULT); 770 return (0); 771 } 772 773 static int 774 modctl_read_sysbinding_file(void) 775 { 776 (void) read_binding_file(sysbind, sb_hashtab, make_mbind); 777 return (0); 778 } 779 780 static int 781 modctl_getmaj(char *uname, uint_t ulen, int *umajorp) 782 { 783 char name[256]; 784 int retval; 785 major_t major; 786 787 if (ulen == 0) 788 return (EINVAL); 789 if ((retval = copyinstr(uname, name, 790 (ulen < 256) ? ulen : 256, 0)) != 0) 791 return (retval); 792 if ((major = mod_name_to_major(name)) == (major_t)-1) 793 return (ENODEV); 794 if (copyout(&major, umajorp, sizeof (major_t)) != 0) 795 return (EFAULT); 796 return (0); 797 } 798 799 static char ** 800 convert_constraint_string(char *constraints, size_t len) 801 { 802 int i; 803 int n; 804 char *p; 805 char **array; 806 807 ASSERT(constraints != NULL); 808 ASSERT(len > 0); 809 810 for (i = 0, p = constraints; strlen(p) > 0; i++, p += strlen(p) + 1) 811 ; 812 813 n = i; 814 815 if (n == 0) { 816 kmem_free(constraints, len); 817 return (NULL); 818 } 819 820 array = kmem_alloc((n + 1) * sizeof (char *), KM_SLEEP); 821 822 for (i = 0, p = constraints; i < n; i++, p += strlen(p) + 1) { 823 array[i] = i_ddi_strdup(p, KM_SLEEP); 824 } 825 array[n] = NULL; 826 827 kmem_free(constraints, len); 828 829 return (array); 830 } 831 /*ARGSUSED*/ 832 static int 833 modctl_retire(char *path, char *uconstraints, size_t ulen) 834 { 835 char *pathbuf; 836 char *devpath; 837 size_t pathsz; 838 int retval; 839 char *constraints; 840 char **cons_array; 841 842 if (path == NULL) 843 return (EINVAL); 844 845 if ((uconstraints == NULL) ^ (ulen == 0)) 846 return (EINVAL); 847 848 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 849 retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz); 850 if (retval != 0) { 851 kmem_free(pathbuf, MAXPATHLEN); 852 return (retval); 853 } 854 devpath = i_ddi_strdup(pathbuf, KM_SLEEP); 855 kmem_free(pathbuf, MAXPATHLEN); 856 857 /* 858 * First check if the device is already retired. 859 * If it is, this becomes a NOP 860 */ 861 if (e_ddi_device_retired(devpath)) { 862 cmn_err(CE_NOTE, "Device: already retired: %s", devpath); 863 kmem_free(devpath, strlen(devpath) + 1); 864 return (0); 865 } 866 867 cons_array = NULL; 868 if (uconstraints) { 869 constraints = kmem_alloc(ulen, KM_SLEEP); 870 if (copyin(uconstraints, constraints, ulen)) { 871 kmem_free(constraints, ulen); 872 kmem_free(devpath, strlen(devpath) + 1); 873 return (EFAULT); 874 } 875 cons_array = convert_constraint_string(constraints, ulen); 876 } 877 878 /* 879 * Try to retire the device first. The following 880 * routine will return an error only if the device 881 * is not retireable i.e. retire constraints forbid 882 * a retire. A return of success from this routine 883 * indicates that device is retireable. 884 */ 885 retval = e_ddi_retire_device(devpath, cons_array); 886 if (retval != DDI_SUCCESS) { 887 cmn_err(CE_WARN, "constraints forbid retire: %s", devpath); 888 kmem_free(devpath, strlen(devpath) + 1); 889 return (ENOTSUP); 890 } 891 892 /* 893 * Ok, the retire succeeded. Persist the retire. 894 * If retiring a nexus, we need to only persist the 895 * nexus retire. Any children of a retired nexus 896 * are automatically covered by the retire store 897 * code. 898 */ 899 retval = e_ddi_retire_persist(devpath); 900 if (retval != 0) { 901 cmn_err(CE_WARN, "Failed to persist device retire: error %d: " 902 "%s", retval, devpath); 903 kmem_free(devpath, strlen(devpath) + 1); 904 return (retval); 905 } 906 if (moddebug & MODDEBUG_RETIRE) 907 cmn_err(CE_NOTE, "Persisted retire of device: %s", devpath); 908 909 kmem_free(devpath, strlen(devpath) + 1); 910 return (0); 911 } 912 913 static int 914 modctl_is_retired(char *path, int *statep) 915 { 916 char *pathbuf; 917 char *devpath; 918 size_t pathsz; 919 int error; 920 int status; 921 922 if (path == NULL || statep == NULL) 923 return (EINVAL); 924 925 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 926 error = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz); 927 if (error != 0) { 928 kmem_free(pathbuf, MAXPATHLEN); 929 return (error); 930 } 931 devpath = i_ddi_strdup(pathbuf, KM_SLEEP); 932 kmem_free(pathbuf, MAXPATHLEN); 933 934 if (e_ddi_device_retired(devpath)) 935 status = 1; 936 else 937 status = 0; 938 kmem_free(devpath, strlen(devpath) + 1); 939 940 return (copyout(&status, statep, sizeof (status)) ? EFAULT : 0); 941 } 942 943 static int 944 modctl_unretire(char *path) 945 { 946 char *pathbuf; 947 char *devpath; 948 size_t pathsz; 949 int retired; 950 int retval; 951 952 if (path == NULL) 953 return (EINVAL); 954 955 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 956 retval = copyinstr(path, pathbuf, MAXPATHLEN, &pathsz); 957 if (retval != 0) { 958 kmem_free(pathbuf, MAXPATHLEN); 959 return (retval); 960 } 961 devpath = i_ddi_strdup(pathbuf, KM_SLEEP); 962 kmem_free(pathbuf, MAXPATHLEN); 963 964 /* 965 * We check if a device is retired (first) before 966 * unpersisting the retire, because we use the 967 * retire store to determine if a device is retired. 968 * If we unpersist first, the device will always appear 969 * to be unretired. For the rationale behind unpersisting 970 * a device that is not retired, see the next comment. 971 */ 972 retired = e_ddi_device_retired(devpath); 973 974 /* 975 * We call unpersist unconditionally because the lookup 976 * for retired devices (e_ddi_device_retired()), skips "bypassed" 977 * devices. We still want to be able remove "bypassed" entries 978 * from the persistent store, so we unpersist unconditionally 979 * i.e. whether or not the entry is found on a lookup. 980 * 981 * e_ddi_retire_unpersist() returns 1 if it found and cleared 982 * an entry from the retire store or 0 otherwise. 983 */ 984 if (e_ddi_retire_unpersist(devpath)) 985 if (moddebug & MODDEBUG_RETIRE) { 986 cmn_err(CE_NOTE, "Unpersisted retire of device: %s", 987 devpath); 988 } 989 990 /* 991 * Check if the device is already unretired. If so, 992 * the unretire becomes a NOP 993 */ 994 if (!retired) { 995 cmn_err(CE_NOTE, "Not retired: %s", devpath); 996 kmem_free(devpath, strlen(devpath) + 1); 997 return (0); 998 } 999 1000 retval = e_ddi_unretire_device(devpath); 1001 if (retval != 0) { 1002 cmn_err(CE_WARN, "cannot unretire device: error %d, path %s\n", 1003 retval, devpath); 1004 } 1005 1006 kmem_free(devpath, strlen(devpath) + 1); 1007 1008 return (retval); 1009 } 1010 1011 static int 1012 modctl_getname(char *uname, uint_t ulen, int *umajorp) 1013 { 1014 char *name; 1015 major_t major; 1016 1017 if (copyin(umajorp, &major, sizeof (major)) != 0) 1018 return (EFAULT); 1019 if ((name = mod_major_to_name(major)) == NULL) 1020 return (ENODEV); 1021 if ((strlen(name) + 1) > ulen) 1022 return (ENOSPC); 1023 return (copyoutstr(name, uname, ulen, NULL)); 1024 } 1025 1026 static int 1027 modctl_devt2instance(dev_t dev, int *uinstancep) 1028 { 1029 int instance; 1030 1031 if ((instance = dev_to_instance(dev)) == -1) 1032 return (EINVAL); 1033 1034 return (copyout(&instance, uinstancep, sizeof (int))); 1035 } 1036 1037 /* 1038 * Return the sizeof of the device id. 1039 */ 1040 static int 1041 modctl_sizeof_devid(dev_t dev, uint_t *len) 1042 { 1043 uint_t sz; 1044 ddi_devid_t devid; 1045 1046 /* get device id */ 1047 if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE) 1048 return (EINVAL); 1049 1050 sz = ddi_devid_sizeof(devid); 1051 ddi_devid_free(devid); 1052 1053 /* copyout device id size */ 1054 if (copyout(&sz, len, sizeof (sz)) != 0) 1055 return (EFAULT); 1056 1057 return (0); 1058 } 1059 1060 /* 1061 * Return a copy of the device id. 1062 */ 1063 static int 1064 modctl_get_devid(dev_t dev, uint_t len, ddi_devid_t udevid) 1065 { 1066 uint_t sz; 1067 ddi_devid_t devid; 1068 int err = 0; 1069 1070 /* get device id */ 1071 if (ddi_lyr_get_devid(dev, &devid) == DDI_FAILURE) 1072 return (EINVAL); 1073 1074 sz = ddi_devid_sizeof(devid); 1075 1076 /* Error if device id is larger than space allocated */ 1077 if (sz > len) { 1078 ddi_devid_free(devid); 1079 return (ENOSPC); 1080 } 1081 1082 /* copy out device id */ 1083 if (copyout(devid, udevid, sz) != 0) 1084 err = EFAULT; 1085 ddi_devid_free(devid); 1086 return (err); 1087 } 1088 1089 /* 1090 * return the /devices paths associated with the specified devid and 1091 * minor name. 1092 */ 1093 /*ARGSUSED*/ 1094 static int 1095 modctl_devid2paths(ddi_devid_t udevid, char *uminor_name, uint_t flag, 1096 size_t *ulensp, char *upaths) 1097 { 1098 ddi_devid_t devid = NULL; 1099 int devid_len; 1100 char *minor_name = NULL; 1101 dev_info_t *dip = NULL; 1102 struct ddi_minor_data *dmdp; 1103 char *path = NULL; 1104 int ulens; 1105 int lens; 1106 int len; 1107 dev_t *devlist = NULL; 1108 int ndevs; 1109 int i; 1110 int ret = 0; 1111 1112 /* 1113 * If upaths is NULL then we are only computing the amount of space 1114 * needed to hold the paths and returning the value in *ulensp. If we 1115 * are copying out paths then we get the amount of space allocated by 1116 * the caller. If the actual space needed for paths is larger, or 1117 * things are changing out from under us, then we return EAGAIN. 1118 */ 1119 if (upaths) { 1120 if (ulensp == NULL) 1121 return (EINVAL); 1122 if (copyin(ulensp, &ulens, sizeof (ulens)) != 0) 1123 return (EFAULT); 1124 } 1125 1126 /* 1127 * copyin enough of the devid to determine the length then 1128 * reallocate and copy in the entire devid. 1129 */ 1130 devid_len = ddi_devid_sizeof(NULL); 1131 devid = kmem_alloc(devid_len, KM_SLEEP); 1132 if (copyin(udevid, devid, devid_len)) { 1133 ret = EFAULT; 1134 goto out; 1135 } 1136 len = devid_len; 1137 devid_len = ddi_devid_sizeof(devid); 1138 kmem_free(devid, len); 1139 devid = kmem_alloc(devid_len, KM_SLEEP); 1140 if (copyin(udevid, devid, devid_len)) { 1141 ret = EFAULT; 1142 goto out; 1143 } 1144 1145 /* copyin the minor name if specified. */ 1146 minor_name = uminor_name; 1147 if ((minor_name != DEVID_MINOR_NAME_ALL) && 1148 (minor_name != DEVID_MINOR_NAME_ALL_CHR) && 1149 (minor_name != DEVID_MINOR_NAME_ALL_BLK)) { 1150 minor_name = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1151 if (copyinstr(uminor_name, minor_name, MAXPATHLEN, 0)) { 1152 ret = EFAULT; 1153 goto out; 1154 } 1155 } 1156 1157 /* 1158 * Use existing function to resolve the devid into a devlist. 1159 * 1160 * NOTE: there is a loss of spectype information in the current 1161 * ddi_lyr_devid_to_devlist implementation. We work around this by not 1162 * passing down DEVID_MINOR_NAME_ALL here, but reproducing all minor 1163 * node forms in the loop processing the devlist below. It would be 1164 * best if at some point the use of this interface here was replaced 1165 * with a path oriented call. 1166 */ 1167 if (ddi_lyr_devid_to_devlist(devid, 1168 (minor_name == DEVID_MINOR_NAME_ALL) ? 1169 DEVID_MINOR_NAME_ALL_CHR : minor_name, 1170 &ndevs, &devlist) != DDI_SUCCESS) { 1171 ret = EINVAL; 1172 goto out; 1173 } 1174 1175 /* 1176 * loop over the devlist, converting each devt to a path and doing 1177 * a copyout of the path and computation of the amount of space 1178 * needed to hold all the paths 1179 */ 1180 path = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1181 for (i = 0, lens = 0; i < ndevs; i++) { 1182 1183 /* find the dip associated with the dev_t */ 1184 if ((dip = e_ddi_hold_devi_by_dev(devlist[i], 0)) == NULL) 1185 continue; 1186 1187 /* loop over all the minor nodes, skipping ones we don't want */ 1188 for (dmdp = DEVI(dip)->devi_minor; dmdp; dmdp = dmdp->next) { 1189 if ((dmdp->ddm_dev != devlist[i]) || 1190 (dmdp->type != DDM_MINOR)) 1191 continue; 1192 1193 if ((minor_name != DEVID_MINOR_NAME_ALL) && 1194 (minor_name != DEVID_MINOR_NAME_ALL_CHR) && 1195 (minor_name != DEVID_MINOR_NAME_ALL_BLK) && 1196 strcmp(minor_name, dmdp->ddm_name)) 1197 continue; 1198 else { 1199 if ((minor_name == DEVID_MINOR_NAME_ALL_CHR) && 1200 (dmdp->ddm_spec_type != S_IFCHR)) 1201 continue; 1202 if ((minor_name == DEVID_MINOR_NAME_ALL_BLK) && 1203 (dmdp->ddm_spec_type != S_IFBLK)) 1204 continue; 1205 } 1206 1207 /* XXX need ddi_pathname_minor(dmdp, path); interface */ 1208 if (ddi_dev_pathname(dmdp->ddm_dev, dmdp->ddm_spec_type, 1209 path) != DDI_SUCCESS) { 1210 ret = EAGAIN; 1211 goto out; 1212 } 1213 len = strlen(path) + 1; 1214 *(path + len) = '\0'; /* set double termination */ 1215 lens += len; 1216 1217 /* copyout the path with double terminations */ 1218 if (upaths) { 1219 if (lens > ulens) { 1220 ret = EAGAIN; 1221 goto out; 1222 } 1223 if (copyout(path, upaths, len + 1)) { 1224 ret = EFAULT; 1225 goto out; 1226 } 1227 upaths += len; 1228 } 1229 } 1230 ddi_release_devi(dip); 1231 dip = NULL; 1232 } 1233 lens++; /* add one for double termination */ 1234 1235 /* copy out the amount of space needed to hold the paths */ 1236 if (ulensp && copyout(&lens, ulensp, sizeof (lens))) { 1237 ret = EFAULT; 1238 goto out; 1239 } 1240 ret = 0; 1241 1242 out: if (dip) 1243 ddi_release_devi(dip); 1244 if (path) 1245 kmem_free(path, MAXPATHLEN); 1246 if (devlist) 1247 ddi_lyr_free_devlist(devlist, ndevs); 1248 if (minor_name && 1249 (minor_name != DEVID_MINOR_NAME_ALL) && 1250 (minor_name != DEVID_MINOR_NAME_ALL_CHR) && 1251 (minor_name != DEVID_MINOR_NAME_ALL_BLK)) 1252 kmem_free(minor_name, MAXPATHLEN); 1253 if (devid) 1254 kmem_free(devid, devid_len); 1255 return (ret); 1256 } 1257 1258 /* 1259 * Return the size of the minor name. 1260 */ 1261 static int 1262 modctl_sizeof_minorname(dev_t dev, int spectype, uint_t *len) 1263 { 1264 uint_t sz; 1265 char *name; 1266 1267 /* get the minor name */ 1268 if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE) 1269 return (EINVAL); 1270 1271 sz = strlen(name) + 1; 1272 kmem_free(name, sz); 1273 1274 /* copy out the size of the minor name */ 1275 if (copyout(&sz, len, sizeof (sz)) != 0) 1276 return (EFAULT); 1277 1278 return (0); 1279 } 1280 1281 /* 1282 * Return the minor name. 1283 */ 1284 static int 1285 modctl_get_minorname(dev_t dev, int spectype, uint_t len, char *uname) 1286 { 1287 uint_t sz; 1288 char *name; 1289 int err = 0; 1290 1291 /* get the minor name */ 1292 if (ddi_lyr_get_minor_name(dev, spectype, &name) == DDI_FAILURE) 1293 return (EINVAL); 1294 1295 sz = strlen(name) + 1; 1296 1297 /* Error if the minor name is larger than the space allocated */ 1298 if (sz > len) { 1299 kmem_free(name, sz); 1300 return (ENOSPC); 1301 } 1302 1303 /* copy out the minor name */ 1304 if (copyout(name, uname, sz) != 0) 1305 err = EFAULT; 1306 kmem_free(name, sz); 1307 return (err); 1308 } 1309 1310 /* 1311 * Return the size of the (dev_t,spectype) devfspath name. 1312 */ 1313 static int 1314 modctl_devfspath_len(dev_t dev, int spectype, uint_t *len) 1315 { 1316 uint_t sz; 1317 char *name; 1318 1319 /* get the path name */ 1320 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1321 if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) { 1322 kmem_free(name, MAXPATHLEN); 1323 return (EINVAL); 1324 } 1325 1326 sz = strlen(name) + 1; 1327 kmem_free(name, MAXPATHLEN); 1328 1329 /* copy out the size of the path name */ 1330 if (copyout(&sz, len, sizeof (sz)) != 0) 1331 return (EFAULT); 1332 1333 return (0); 1334 } 1335 1336 /* 1337 * Return the (dev_t,spectype) devfspath name. 1338 */ 1339 static int 1340 modctl_devfspath(dev_t dev, int spectype, uint_t len, char *uname) 1341 { 1342 uint_t sz; 1343 char *name; 1344 int err = 0; 1345 1346 /* get the path name */ 1347 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1348 if (ddi_dev_pathname(dev, spectype, name) == DDI_FAILURE) { 1349 kmem_free(name, MAXPATHLEN); 1350 return (EINVAL); 1351 } 1352 1353 sz = strlen(name) + 1; 1354 1355 /* Error if the path name is larger than the space allocated */ 1356 if (sz > len) { 1357 kmem_free(name, MAXPATHLEN); 1358 return (ENOSPC); 1359 } 1360 1361 /* copy out the path name */ 1362 if (copyout(name, uname, sz) != 0) 1363 err = EFAULT; 1364 kmem_free(name, MAXPATHLEN); 1365 return (err); 1366 } 1367 1368 /* 1369 * Return the size of the (major,instance) devfspath name. 1370 */ 1371 static int 1372 modctl_devfspath_mi_len(major_t major, int instance, uint_t *len) 1373 { 1374 uint_t sz; 1375 char *name; 1376 1377 /* get the path name */ 1378 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1379 if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) { 1380 kmem_free(name, MAXPATHLEN); 1381 return (EINVAL); 1382 } 1383 1384 sz = strlen(name) + 1; 1385 kmem_free(name, MAXPATHLEN); 1386 1387 /* copy out the size of the path name */ 1388 if (copyout(&sz, len, sizeof (sz)) != 0) 1389 return (EFAULT); 1390 1391 return (0); 1392 } 1393 1394 /* 1395 * Return the (major_instance) devfspath name. 1396 * NOTE: e_ddi_majorinstance_to_path does not require the device to attach to 1397 * return a path - it uses the instance tree. 1398 */ 1399 static int 1400 modctl_devfspath_mi(major_t major, int instance, uint_t len, char *uname) 1401 { 1402 uint_t sz; 1403 char *name; 1404 int err = 0; 1405 1406 /* get the path name */ 1407 name = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1408 if (e_ddi_majorinstance_to_path(major, instance, name) != DDI_SUCCESS) { 1409 kmem_free(name, MAXPATHLEN); 1410 return (EINVAL); 1411 } 1412 1413 sz = strlen(name) + 1; 1414 1415 /* Error if the path name is larger than the space allocated */ 1416 if (sz > len) { 1417 kmem_free(name, MAXPATHLEN); 1418 return (ENOSPC); 1419 } 1420 1421 /* copy out the path name */ 1422 if (copyout(name, uname, sz) != 0) 1423 err = EFAULT; 1424 kmem_free(name, MAXPATHLEN); 1425 return (err); 1426 } 1427 1428 static int 1429 modctl_get_fbname(char *path) 1430 { 1431 extern dev_t fbdev; 1432 char *pathname = NULL; 1433 int rval = 0; 1434 1435 /* make sure fbdev is set before we plunge in */ 1436 if (fbdev == NODEV) 1437 return (ENODEV); 1438 1439 pathname = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1440 if ((rval = ddi_dev_pathname(fbdev, S_IFCHR, 1441 pathname)) == DDI_SUCCESS) { 1442 if (copyout(pathname, path, strlen(pathname)+1) != 0) { 1443 rval = EFAULT; 1444 } 1445 } 1446 kmem_free(pathname, MAXPATHLEN); 1447 return (rval); 1448 } 1449 1450 /* 1451 * modctl_reread_dacf() 1452 * Reread the dacf rules database from the named binding file. 1453 * If NULL is specified, pass along the NULL, it means 'use the default'. 1454 */ 1455 static int 1456 modctl_reread_dacf(char *path) 1457 { 1458 int rval = 0; 1459 char *filename, *filenamep; 1460 1461 filename = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1462 1463 if (path == NULL) { 1464 filenamep = NULL; 1465 } else { 1466 if (copyinstr(path, filename, MAXPATHLEN, 0) != 0) { 1467 rval = EFAULT; 1468 goto out; 1469 } 1470 filenamep = filename; 1471 filenamep[MAXPATHLEN - 1] = '\0'; 1472 } 1473 1474 rval = read_dacf_binding_file(filenamep); 1475 out: 1476 kmem_free(filename, MAXPATHLEN); 1477 return (rval); 1478 } 1479 1480 /*ARGSUSED*/ 1481 static int 1482 modctl_modevents(int subcmd, uintptr_t a2, uintptr_t a3, uintptr_t a4, 1483 uint_t flag) 1484 { 1485 int error = 0; 1486 char *filenamep; 1487 1488 switch (subcmd) { 1489 1490 case MODEVENTS_FLUSH: 1491 /* flush all currently queued events */ 1492 log_sysevent_flushq(subcmd, flag); 1493 break; 1494 1495 case MODEVENTS_SET_DOOR_UPCALL_FILENAME: 1496 /* 1497 * bind door_upcall to filename 1498 * this should only be done once per invocation 1499 * of the event daemon. 1500 */ 1501 1502 filenamep = kmem_zalloc(MOD_MAXPATH, KM_SLEEP); 1503 1504 if (copyinstr((char *)a2, filenamep, MOD_MAXPATH, 0)) { 1505 error = EFAULT; 1506 } else { 1507 error = log_sysevent_filename(filenamep); 1508 } 1509 kmem_free(filenamep, MOD_MAXPATH); 1510 break; 1511 1512 case MODEVENTS_GETDATA: 1513 error = log_sysevent_copyout_data((sysevent_id_t *)a2, 1514 (size_t)a3, (caddr_t)a4); 1515 break; 1516 1517 case MODEVENTS_FREEDATA: 1518 error = log_sysevent_free_data((sysevent_id_t *)a2); 1519 break; 1520 case MODEVENTS_POST_EVENT: 1521 error = log_usr_sysevent((sysevent_t *)a2, (uint32_t)a3, 1522 (sysevent_id_t *)a4); 1523 break; 1524 case MODEVENTS_REGISTER_EVENT: 1525 error = log_sysevent_register((char *)a2, (char *)a3, 1526 (se_pubsub_t *)a4); 1527 break; 1528 default: 1529 error = EINVAL; 1530 } 1531 1532 return (error); 1533 } 1534 1535 static void 1536 free_mperm(mperm_t *mp) 1537 { 1538 int len; 1539 1540 if (mp->mp_minorname) { 1541 len = strlen(mp->mp_minorname) + 1; 1542 kmem_free(mp->mp_minorname, len); 1543 } 1544 kmem_free(mp, sizeof (mperm_t)); 1545 } 1546 1547 #define MP_NO_DRV_ERR \ 1548 "/etc/minor_perm: no driver for %s\n" 1549 1550 #define MP_EMPTY_MINOR \ 1551 "/etc/minor_perm: empty minor name for driver %s\n" 1552 1553 #define MP_NO_MINOR \ 1554 "/etc/minor_perm: no minor matching %s for driver %s\n" 1555 1556 /* 1557 * Remove mperm entry with matching minorname 1558 */ 1559 static void 1560 rem_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone) 1561 { 1562 mperm_t **mp_head; 1563 mperm_t *freemp = NULL; 1564 struct devnames *dnp = &devnamesp[major]; 1565 mperm_t **wildmp; 1566 1567 ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0); 1568 1569 LOCK_DEV_OPS(&dnp->dn_lock); 1570 if (strcmp(mp->mp_minorname, "*") == 0) { 1571 wildmp = ((is_clone == 0) ? 1572 &dnp->dn_mperm_wild : &dnp->dn_mperm_clone); 1573 if (*wildmp) 1574 freemp = *wildmp; 1575 *wildmp = NULL; 1576 } else { 1577 mp_head = &dnp->dn_mperm; 1578 while (*mp_head) { 1579 if (strcmp((*mp_head)->mp_minorname, 1580 mp->mp_minorname) != 0) { 1581 mp_head = &(*mp_head)->mp_next; 1582 continue; 1583 } 1584 /* remove the entry */ 1585 freemp = *mp_head; 1586 *mp_head = freemp->mp_next; 1587 break; 1588 } 1589 } 1590 if (freemp) { 1591 if (moddebug & MODDEBUG_MINORPERM) { 1592 cmn_err(CE_CONT, "< %s %s 0%o %d %d\n", 1593 drvname, freemp->mp_minorname, 1594 freemp->mp_mode & 0777, 1595 freemp->mp_uid, freemp->mp_gid); 1596 } 1597 free_mperm(freemp); 1598 } else { 1599 if (moddebug & MODDEBUG_MINORPERM) { 1600 cmn_err(CE_CONT, MP_NO_MINOR, 1601 drvname, mp->mp_minorname); 1602 } 1603 } 1604 1605 UNLOCK_DEV_OPS(&dnp->dn_lock); 1606 } 1607 1608 /* 1609 * Add minor perm entry 1610 */ 1611 static void 1612 add_minorperm(major_t major, char *drvname, mperm_t *mp, int is_clone) 1613 { 1614 mperm_t **mp_head; 1615 mperm_t *freemp = NULL; 1616 struct devnames *dnp = &devnamesp[major]; 1617 mperm_t **wildmp; 1618 1619 ASSERT(mp->mp_minorname && strlen(mp->mp_minorname) > 0); 1620 1621 /* 1622 * Note that update_drv replace semantics require 1623 * replacing matching entries with the new permissions. 1624 */ 1625 LOCK_DEV_OPS(&dnp->dn_lock); 1626 if (strcmp(mp->mp_minorname, "*") == 0) { 1627 wildmp = ((is_clone == 0) ? 1628 &dnp->dn_mperm_wild : &dnp->dn_mperm_clone); 1629 if (*wildmp) 1630 freemp = *wildmp; 1631 *wildmp = mp; 1632 } else { 1633 mperm_t *p, *v = NULL; 1634 for (p = dnp->dn_mperm; p; v = p, p = p->mp_next) { 1635 if (strcmp(p->mp_minorname, mp->mp_minorname) == 0) { 1636 if (v == NULL) 1637 dnp->dn_mperm = mp; 1638 else 1639 v->mp_next = mp; 1640 mp->mp_next = p->mp_next; 1641 freemp = p; 1642 goto replaced; 1643 } 1644 } 1645 if (p == NULL) { 1646 mp_head = &dnp->dn_mperm; 1647 if (*mp_head == NULL) { 1648 *mp_head = mp; 1649 } else { 1650 mp->mp_next = *mp_head; 1651 *mp_head = mp; 1652 } 1653 } 1654 } 1655 replaced: 1656 if (freemp) { 1657 if (moddebug & MODDEBUG_MINORPERM) { 1658 cmn_err(CE_CONT, "< %s %s 0%o %d %d\n", 1659 drvname, freemp->mp_minorname, 1660 freemp->mp_mode & 0777, 1661 freemp->mp_uid, freemp->mp_gid); 1662 } 1663 free_mperm(freemp); 1664 } 1665 if (moddebug & MODDEBUG_MINORPERM) { 1666 cmn_err(CE_CONT, "> %s %s 0%o %d %d\n", 1667 drvname, mp->mp_minorname, mp->mp_mode & 0777, 1668 mp->mp_uid, mp->mp_gid); 1669 } 1670 UNLOCK_DEV_OPS(&dnp->dn_lock); 1671 } 1672 1673 1674 static int 1675 process_minorperm(int cmd, nvlist_t *nvl) 1676 { 1677 char *minor; 1678 major_t major; 1679 mperm_t *mp; 1680 nvpair_t *nvp; 1681 char *name; 1682 int is_clone; 1683 major_t minmaj; 1684 1685 ASSERT(cmd == MODLOADMINORPERM || 1686 cmd == MODADDMINORPERM || cmd == MODREMMINORPERM); 1687 1688 nvp = NULL; 1689 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 1690 name = nvpair_name(nvp); 1691 1692 is_clone = 0; 1693 (void) nvpair_value_string(nvp, &minor); 1694 major = ddi_name_to_major(name); 1695 if (major != (major_t)-1) { 1696 mp = kmem_zalloc(sizeof (*mp), KM_SLEEP); 1697 if (minor == NULL || strlen(minor) == 0) { 1698 if (moddebug & MODDEBUG_MINORPERM) { 1699 cmn_err(CE_CONT, MP_EMPTY_MINOR, name); 1700 } 1701 minor = "*"; 1702 } 1703 1704 /* 1705 * The minor name of a node using the clone 1706 * driver must be the driver name. To avoid 1707 * multiple searches, we map entries in the form 1708 * clone:<driver> to <driver>:*. This also allows us 1709 * to filter out some of the litter in /etc/minor_perm. 1710 * Minor perm alias entries where the name is not 1711 * the driver kept on the clone list itself. 1712 * This all seems very fragile as a driver could 1713 * be introduced with an existing alias name. 1714 */ 1715 if (strcmp(name, "clone") == 0) { 1716 minmaj = ddi_name_to_major(minor); 1717 if (minmaj != (major_t)-1) { 1718 if (moddebug & MODDEBUG_MINORPERM) { 1719 cmn_err(CE_CONT, 1720 "mapping %s:%s to %s:*\n", 1721 name, minor, minor); 1722 } 1723 major = minmaj; 1724 name = minor; 1725 minor = "*"; 1726 is_clone = 1; 1727 } 1728 } 1729 1730 if (mp) { 1731 mp->mp_minorname = 1732 i_ddi_strdup(minor, KM_SLEEP); 1733 } 1734 } else { 1735 mp = NULL; 1736 if (moddebug & MODDEBUG_MINORPERM) { 1737 cmn_err(CE_CONT, MP_NO_DRV_ERR, name); 1738 } 1739 } 1740 1741 /* mode */ 1742 nvp = nvlist_next_nvpair(nvl, nvp); 1743 ASSERT(strcmp(nvpair_name(nvp), "mode") == 0); 1744 if (mp) 1745 (void) nvpair_value_int32(nvp, (int *)&mp->mp_mode); 1746 /* uid */ 1747 nvp = nvlist_next_nvpair(nvl, nvp); 1748 ASSERT(strcmp(nvpair_name(nvp), "uid") == 0); 1749 if (mp) 1750 (void) nvpair_value_uint32(nvp, &mp->mp_uid); 1751 /* gid */ 1752 nvp = nvlist_next_nvpair(nvl, nvp); 1753 ASSERT(strcmp(nvpair_name(nvp), "gid") == 0); 1754 if (mp) { 1755 (void) nvpair_value_uint32(nvp, &mp->mp_gid); 1756 1757 if (cmd == MODREMMINORPERM) { 1758 rem_minorperm(major, name, mp, is_clone); 1759 free_mperm(mp); 1760 } else { 1761 add_minorperm(major, name, mp, is_clone); 1762 } 1763 } 1764 } 1765 1766 if (cmd == MODLOADMINORPERM) 1767 minorperm_loaded = 1; 1768 1769 /* 1770 * Reset permissions of cached dv_nodes 1771 */ 1772 (void) devfs_reset_perm(DV_RESET_PERM); 1773 1774 return (0); 1775 } 1776 1777 static int 1778 modctl_minorperm(int cmd, char *usrbuf, size_t buflen) 1779 { 1780 int error; 1781 nvlist_t *nvl; 1782 char *buf = kmem_alloc(buflen, KM_SLEEP); 1783 1784 if ((error = ddi_copyin(usrbuf, buf, buflen, 0)) != 0) { 1785 kmem_free(buf, buflen); 1786 return (error); 1787 } 1788 1789 error = nvlist_unpack(buf, buflen, &nvl, KM_SLEEP); 1790 kmem_free(buf, buflen); 1791 if (error) 1792 return (error); 1793 1794 error = process_minorperm(cmd, nvl); 1795 nvlist_free(nvl); 1796 return (error); 1797 } 1798 1799 struct walk_args { 1800 char *wa_drvname; 1801 list_t wa_pathlist; 1802 }; 1803 1804 struct path_elem { 1805 char *pe_dir; 1806 char *pe_nodename; 1807 list_node_t pe_node; 1808 int pe_dirlen; 1809 }; 1810 1811 /*ARGSUSED*/ 1812 static int 1813 modctl_inst_walker(const char *path, in_node_t *np, in_drv_t *dp, void *arg) 1814 { 1815 struct walk_args *wargs = (struct walk_args *)arg; 1816 struct path_elem *pe; 1817 char *nodename; 1818 1819 if (strcmp(dp->ind_driver_name, wargs->wa_drvname) != 0) 1820 return (INST_WALK_CONTINUE); 1821 1822 pe = kmem_zalloc(sizeof (*pe), KM_SLEEP); 1823 pe->pe_dir = i_ddi_strdup((char *)path, KM_SLEEP); 1824 pe->pe_dirlen = strlen(pe->pe_dir) + 1; 1825 ASSERT(strrchr(pe->pe_dir, '/') != NULL); 1826 nodename = strrchr(pe->pe_dir, '/'); 1827 *nodename++ = 0; 1828 pe->pe_nodename = nodename; 1829 list_insert_tail(&wargs->wa_pathlist, pe); 1830 1831 return (INST_WALK_CONTINUE); 1832 } 1833 1834 static int 1835 modctl_remdrv_cleanup(const char *u_drvname) 1836 { 1837 struct walk_args *wargs; 1838 struct path_elem *pe; 1839 char *drvname; 1840 int err, rval = 0; 1841 1842 drvname = kmem_alloc(MAXMODCONFNAME, KM_SLEEP); 1843 if ((err = copyinstr(u_drvname, drvname, MAXMODCONFNAME, 0))) { 1844 kmem_free(drvname, MAXMODCONFNAME); 1845 return (err); 1846 } 1847 1848 /* 1849 * First go through the instance database. For each 1850 * instance of a device bound to the driver being 1851 * removed, remove any underlying devfs attribute nodes. 1852 * 1853 * This is a two-step process. First we go through 1854 * the instance data itself, constructing a list of 1855 * the nodes discovered. The second step is then 1856 * to find and remove any devfs attribute nodes 1857 * for the instances discovered in the first step. 1858 * The two-step process avoids any difficulties 1859 * which could arise by holding the instance data 1860 * lock with simultaneous devfs operations. 1861 */ 1862 wargs = kmem_zalloc(sizeof (*wargs), KM_SLEEP); 1863 1864 wargs->wa_drvname = drvname; 1865 list_create(&wargs->wa_pathlist, 1866 sizeof (struct path_elem), offsetof(struct path_elem, pe_node)); 1867 1868 (void) e_ddi_walk_instances(modctl_inst_walker, (void *)wargs); 1869 1870 for (pe = list_head(&wargs->wa_pathlist); pe != NULL; 1871 pe = list_next(&wargs->wa_pathlist, pe)) { 1872 err = devfs_remdrv_cleanup((const char *)pe->pe_dir, 1873 (const char *)pe->pe_nodename); 1874 if (rval == 0) 1875 rval = err; 1876 } 1877 1878 while ((pe = list_head(&wargs->wa_pathlist)) != NULL) { 1879 list_remove(&wargs->wa_pathlist, pe); 1880 kmem_free(pe->pe_dir, pe->pe_dirlen); 1881 kmem_free(pe, sizeof (*pe)); 1882 } 1883 kmem_free(wargs, sizeof (*wargs)); 1884 1885 /* 1886 * Pseudo nodes aren't recorded in the instance database 1887 * so any such nodes need to be handled separately. 1888 */ 1889 err = devfs_remdrv_cleanup("pseudo", (const char *)drvname); 1890 if (rval == 0) 1891 rval = err; 1892 1893 kmem_free(drvname, MAXMODCONFNAME); 1894 return (rval); 1895 } 1896 1897 static int 1898 modctl_allocpriv(const char *name) 1899 { 1900 char *pstr = kmem_alloc(PRIVNAME_MAX, KM_SLEEP); 1901 int error; 1902 1903 if ((error = copyinstr(name, pstr, PRIVNAME_MAX, 0))) { 1904 kmem_free(pstr, PRIVNAME_MAX); 1905 return (error); 1906 } 1907 error = priv_getbyname(pstr, PRIV_ALLOC); 1908 if (error < 0) 1909 error = -error; 1910 else 1911 error = 0; 1912 kmem_free(pstr, PRIVNAME_MAX); 1913 return (error); 1914 } 1915 1916 static int 1917 modctl_devexists(const char *upath, int pathlen) 1918 { 1919 char *path; 1920 int ret; 1921 1922 /* 1923 * copy in the path, including the terminating null 1924 */ 1925 pathlen++; 1926 if (pathlen <= 1 || pathlen > MAXPATHLEN) 1927 return (EINVAL); 1928 path = kmem_zalloc(pathlen + 1, KM_SLEEP); 1929 if ((ret = copyinstr(upath, path, pathlen, NULL)) == 0) { 1930 ret = sdev_modctl_devexists(path); 1931 } 1932 1933 kmem_free(path, pathlen + 1); 1934 return (ret); 1935 } 1936 1937 static int 1938 modctl_devreaddir(const char *udir, int udirlen, 1939 char *upaths, int64_t *ulensp) 1940 { 1941 char *paths = NULL; 1942 char **dirlist = NULL; 1943 char *dir; 1944 int64_t ulens; 1945 int64_t lens; 1946 int i, n; 1947 int ret = 0; 1948 char *p; 1949 int npaths; 1950 int npaths_alloc; 1951 1952 /* 1953 * If upaths is NULL then we are only computing the amount of space 1954 * needed to return the paths, with the value returned in *ulensp. If we 1955 * are copying out paths then we get the amount of space allocated by 1956 * the caller. If the actual space needed for paths is larger, or 1957 * things are changing out from under us, then we return EAGAIN. 1958 */ 1959 if (upaths) { 1960 if (ulensp == NULL) 1961 return (EINVAL); 1962 if (copyin(ulensp, &ulens, sizeof (ulens)) != 0) 1963 return (EFAULT); 1964 } 1965 1966 /* 1967 * copyin the /dev path including terminating null 1968 */ 1969 udirlen++; 1970 if (udirlen <= 1 || udirlen > MAXPATHLEN) 1971 return (EINVAL); 1972 dir = kmem_zalloc(udirlen + 1, KM_SLEEP); 1973 if ((ret = copyinstr(udir, dir, udirlen, NULL)) != 0) 1974 goto err; 1975 1976 if ((ret = sdev_modctl_readdir(dir, &dirlist, 1977 &npaths, &npaths_alloc)) != 0) { 1978 ASSERT(dirlist == NULL); 1979 goto err; 1980 } 1981 1982 lens = 0; 1983 for (i = 0; i < npaths; i++) { 1984 lens += strlen(dirlist[i]) + 1; 1985 } 1986 lens++; /* add one for double termination */ 1987 1988 if (upaths) { 1989 if (lens > ulens) { 1990 ret = EAGAIN; 1991 goto out; 1992 } 1993 1994 paths = kmem_alloc(lens, KM_SLEEP); 1995 1996 p = paths; 1997 for (i = 0; i < npaths; i++) { 1998 n = strlen(dirlist[i]) + 1; 1999 bcopy(dirlist[i], p, n); 2000 p += n; 2001 } 2002 *p = 0; 2003 2004 if (copyout(paths, upaths, lens)) { 2005 ret = EFAULT; 2006 goto err; 2007 } 2008 } 2009 2010 out: 2011 /* copy out the amount of space needed to hold the paths */ 2012 if (copyout(&lens, ulensp, sizeof (lens))) 2013 ret = EFAULT; 2014 2015 err: 2016 if (dirlist) 2017 sdev_modctl_readdir_free(dirlist, npaths, npaths_alloc); 2018 if (paths) 2019 kmem_free(paths, lens); 2020 kmem_free(dir, udirlen + 1); 2021 return (ret); 2022 } 2023 2024 int 2025 modctl_moddevname(int subcmd, uintptr_t a1, uintptr_t a2) 2026 { 2027 int error = 0; 2028 2029 switch (subcmd) { 2030 case MODDEVNAME_LOOKUPDOOR: 2031 case MODDEVNAME_DEVFSADMNODE: 2032 error = devname_filename_register(subcmd, (char *)a1); 2033 break; 2034 case MODDEVNAME_NSMAPS: 2035 error = devname_nsmaps_register((char *)a1, (size_t)a2); 2036 break; 2037 case MODDEVNAME_PROFILE: 2038 error = devname_profile_update((char *)a1, (size_t)a2); 2039 break; 2040 case MODDEVNAME_RECONFIG: 2041 i_ddi_set_reconfig(); 2042 break; 2043 case MODDEVNAME_SYSAVAIL: 2044 i_ddi_set_sysavail(); 2045 break; 2046 default: 2047 error = EINVAL; 2048 break; 2049 } 2050 2051 return (error); 2052 } 2053 2054 /*ARGSUSED5*/ 2055 int 2056 modctl(int cmd, uintptr_t a1, uintptr_t a2, uintptr_t a3, uintptr_t a4, 2057 uintptr_t a5) 2058 { 2059 int error = EINVAL; 2060 dev_t dev; 2061 2062 if (secpolicy_modctl(CRED(), cmd) != 0) 2063 return (set_errno(EPERM)); 2064 2065 switch (cmd) { 2066 case MODLOAD: /* load a module */ 2067 error = modctl_modload((int)a1, (char *)a2, (int *)a3); 2068 break; 2069 2070 case MODUNLOAD: /* unload a module */ 2071 error = modctl_modunload((modid_t)a1); 2072 break; 2073 2074 case MODINFO: /* get module status */ 2075 error = modctl_modinfo((modid_t)a1, (struct modinfo *)a2); 2076 break; 2077 2078 case MODRESERVED: /* get last major number in range */ 2079 error = modctl_modreserve((modid_t)a1, (int *)a2); 2080 break; 2081 2082 case MODSETMINIROOT: /* we are running in miniroot */ 2083 isminiroot = 1; 2084 error = 0; 2085 break; 2086 2087 case MODADDMAJBIND: /* read major binding file */ 2088 error = modctl_add_major((int *)a2); 2089 break; 2090 2091 case MODGETPATHLEN: /* get modpath length */ 2092 error = modctl_getmodpathlen((int *)a2); 2093 break; 2094 2095 case MODGETPATH: /* get modpath */ 2096 error = modctl_getmodpath((char *)a2); 2097 break; 2098 2099 case MODREADSYSBIND: /* read system call binding file */ 2100 error = modctl_read_sysbinding_file(); 2101 break; 2102 2103 case MODGETMAJBIND: /* get major number for named device */ 2104 error = modctl_getmaj((char *)a1, (uint_t)a2, (int *)a3); 2105 break; 2106 2107 case MODGETNAME: /* get name of device given major number */ 2108 error = modctl_getname((char *)a1, (uint_t)a2, (int *)a3); 2109 break; 2110 2111 case MODDEVT2INSTANCE: 2112 if (get_udatamodel() == DATAMODEL_NATIVE) { 2113 dev = (dev_t)a1; 2114 } 2115 #ifdef _SYSCALL32_IMPL 2116 else { 2117 dev = expldev(a1); 2118 } 2119 #endif 2120 error = modctl_devt2instance(dev, (int *)a2); 2121 break; 2122 2123 case MODSIZEOF_DEVID: /* sizeof device id of device given dev_t */ 2124 if (get_udatamodel() == DATAMODEL_NATIVE) { 2125 dev = (dev_t)a1; 2126 } 2127 #ifdef _SYSCALL32_IMPL 2128 else { 2129 dev = expldev(a1); 2130 } 2131 #endif 2132 error = modctl_sizeof_devid(dev, (uint_t *)a2); 2133 break; 2134 2135 case MODGETDEVID: /* get device id of device given dev_t */ 2136 if (get_udatamodel() == DATAMODEL_NATIVE) { 2137 dev = (dev_t)a1; 2138 } 2139 #ifdef _SYSCALL32_IMPL 2140 else { 2141 dev = expldev(a1); 2142 } 2143 #endif 2144 error = modctl_get_devid(dev, (uint_t)a2, (ddi_devid_t)a3); 2145 break; 2146 2147 case MODSIZEOF_MINORNAME: /* sizeof minor nm (dev_t,spectype) */ 2148 if (get_udatamodel() == DATAMODEL_NATIVE) { 2149 error = modctl_sizeof_minorname((dev_t)a1, (int)a2, 2150 (uint_t *)a3); 2151 } 2152 #ifdef _SYSCALL32_IMPL 2153 else { 2154 error = modctl_sizeof_minorname(expldev(a1), (int)a2, 2155 (uint_t *)a3); 2156 } 2157 2158 #endif 2159 break; 2160 2161 case MODGETMINORNAME: /* get minor name of (dev_t,spectype) */ 2162 if (get_udatamodel() == DATAMODEL_NATIVE) { 2163 error = modctl_get_minorname((dev_t)a1, (int)a2, 2164 (uint_t)a3, (char *)a4); 2165 } 2166 #ifdef _SYSCALL32_IMPL 2167 else { 2168 error = modctl_get_minorname(expldev(a1), (int)a2, 2169 (uint_t)a3, (char *)a4); 2170 } 2171 #endif 2172 break; 2173 2174 case MODGETDEVFSPATH_LEN: /* sizeof path nm of (dev_t,spectype) */ 2175 if (get_udatamodel() == DATAMODEL_NATIVE) { 2176 error = modctl_devfspath_len((dev_t)a1, (int)a2, 2177 (uint_t *)a3); 2178 } 2179 #ifdef _SYSCALL32_IMPL 2180 else { 2181 error = modctl_devfspath_len(expldev(a1), (int)a2, 2182 (uint_t *)a3); 2183 } 2184 2185 #endif 2186 break; 2187 2188 case MODGETDEVFSPATH: /* get path name of (dev_t,spec) type */ 2189 if (get_udatamodel() == DATAMODEL_NATIVE) { 2190 error = modctl_devfspath((dev_t)a1, (int)a2, 2191 (uint_t)a3, (char *)a4); 2192 } 2193 #ifdef _SYSCALL32_IMPL 2194 else { 2195 error = modctl_devfspath(expldev(a1), (int)a2, 2196 (uint_t)a3, (char *)a4); 2197 } 2198 #endif 2199 break; 2200 2201 case MODGETDEVFSPATH_MI_LEN: /* sizeof path nm of (major,instance) */ 2202 error = modctl_devfspath_mi_len((major_t)a1, (int)a2, 2203 (uint_t *)a3); 2204 break; 2205 2206 case MODGETDEVFSPATH_MI: /* get path name of (major,instance) */ 2207 error = modctl_devfspath_mi((major_t)a1, (int)a2, 2208 (uint_t)a3, (char *)a4); 2209 break; 2210 2211 2212 case MODEVENTS: 2213 error = modctl_modevents((int)a1, a2, a3, a4, (uint_t)a5); 2214 break; 2215 2216 case MODGETFBNAME: /* get the framebuffer name */ 2217 error = modctl_get_fbname((char *)a1); 2218 break; 2219 2220 case MODREREADDACF: /* reread dacf rule database from given file */ 2221 error = modctl_reread_dacf((char *)a1); 2222 break; 2223 2224 case MODLOADDRVCONF: /* load driver.conf file for major */ 2225 error = modctl_load_drvconf((major_t)a1); 2226 break; 2227 2228 case MODUNLOADDRVCONF: /* unload driver.conf file for major */ 2229 error = modctl_unload_drvconf((major_t)a1); 2230 break; 2231 2232 case MODREMMAJBIND: /* remove a major binding */ 2233 error = modctl_rem_major((major_t)a1); 2234 break; 2235 2236 case MODDEVID2PATHS: /* get paths given devid */ 2237 error = modctl_devid2paths((ddi_devid_t)a1, (char *)a2, 2238 (uint_t)a3, (size_t *)a4, (char *)a5); 2239 break; 2240 2241 case MODSETDEVPOLICY: /* establish device policy */ 2242 error = devpolicy_load((int)a1, (size_t)a2, (devplcysys_t *)a3); 2243 break; 2244 2245 case MODGETDEVPOLICY: /* get device policy */ 2246 error = devpolicy_get((int *)a1, (size_t)a2, 2247 (devplcysys_t *)a3); 2248 break; 2249 2250 case MODALLOCPRIV: 2251 error = modctl_allocpriv((const char *)a1); 2252 break; 2253 2254 case MODGETDEVPOLICYBYNAME: 2255 error = devpolicy_getbyname((size_t)a1, 2256 (devplcysys_t *)a2, (char *)a3); 2257 break; 2258 2259 case MODLOADMINORPERM: 2260 case MODADDMINORPERM: 2261 case MODREMMINORPERM: 2262 error = modctl_minorperm(cmd, (char *)a1, (size_t)a2); 2263 break; 2264 2265 case MODREMDRVCLEANUP: 2266 error = modctl_remdrv_cleanup((const char *)a1); 2267 break; 2268 2269 case MODDEVEXISTS: /* non-reconfiguring /dev lookup */ 2270 error = modctl_devexists((const char *)a1, (size_t)a2); 2271 break; 2272 2273 case MODDEVREADDIR: /* non-reconfiguring /dev readdir */ 2274 error = modctl_devreaddir((const char *)a1, (size_t)a2, 2275 (char *)a3, (int64_t *)a4); 2276 break; 2277 2278 case MODDEVNAME: 2279 error = modctl_moddevname((int)a1, a2, a3); 2280 break; 2281 2282 case MODRETIRE: /* retire device named by physpath a1 */ 2283 error = modctl_retire((char *)a1, (char *)a2, (size_t)a3); 2284 break; 2285 2286 case MODISRETIRED: /* check if a device is retired. */ 2287 error = modctl_is_retired((char *)a1, (int *)a2); 2288 break; 2289 2290 case MODUNRETIRE: /* unretire device named by physpath a1 */ 2291 error = modctl_unretire((char *)a1); 2292 break; 2293 2294 default: 2295 error = EINVAL; 2296 break; 2297 } 2298 2299 return (error ? set_errno(error) : 0); 2300 } 2301 2302 /* 2303 * Calls to kobj_load_module()() are handled off to this routine in a 2304 * separate thread. 2305 */ 2306 static void 2307 modload_thread(struct loadmt *ltp) 2308 { 2309 /* load the module and signal the creator of this thread */ 2310 kmutex_t cpr_lk; 2311 callb_cpr_t cpr_i; 2312 2313 mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL); 2314 CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "modload"); 2315 /* borrow the devi lock from thread which invoked us */ 2316 pm_borrow_lock(ltp->owner); 2317 ltp->retval = kobj_load_module(ltp->mp, ltp->usepath); 2318 pm_return_lock(); 2319 sema_v(<p->sema); 2320 mutex_enter(&cpr_lk); 2321 CALLB_CPR_EXIT(&cpr_i); 2322 mutex_destroy(&cpr_lk); 2323 thread_exit(); 2324 } 2325 2326 /* 2327 * load a module, adding a reference if caller specifies rmodp. If rmodp 2328 * is specified then an errno is returned, otherwise a module index is 2329 * returned (-1 on error). 2330 */ 2331 static int 2332 modrload(char *subdir, char *filename, struct modctl **rmodp) 2333 { 2334 struct modctl *modp; 2335 size_t size; 2336 char *fullname; 2337 int retval = EINVAL; 2338 int id = -1; 2339 2340 if (rmodp) 2341 *rmodp = NULL; /* avoid garbage */ 2342 2343 if (subdir != NULL) { 2344 /* 2345 * refuse / in filename to prevent "../" escapes. 2346 */ 2347 if (strchr(filename, '/') != NULL) 2348 return (rmodp ? retval : id); 2349 2350 /* 2351 * allocate enough space for <subdir>/<filename><NULL> 2352 */ 2353 size = strlen(subdir) + strlen(filename) + 2; 2354 fullname = kmem_zalloc(size, KM_SLEEP); 2355 (void) sprintf(fullname, "%s/%s", subdir, filename); 2356 } else { 2357 fullname = filename; 2358 } 2359 2360 modp = mod_hold_installed_mod(fullname, 1, &retval); 2361 if (modp != NULL) { 2362 id = modp->mod_id; 2363 if (rmodp) { 2364 /* add mod_ref and return *rmodp */ 2365 mutex_enter(&mod_lock); 2366 modp->mod_ref++; 2367 mutex_exit(&mod_lock); 2368 *rmodp = modp; 2369 } 2370 mod_release_mod(modp); 2371 CPU_STATS_ADDQ(CPU, sys, modload, 1); 2372 } 2373 2374 done: if (subdir != NULL) 2375 kmem_free(fullname, size); 2376 return (rmodp ? retval : id); 2377 } 2378 2379 /* 2380 * This is the primary kernel interface to load a module. It loads and 2381 * installs the named module. It does not hold mod_ref of the module, so 2382 * a module unload attempt can occur at any time - it is up to the 2383 * _fini/mod_remove implementation to determine if unload will succeed. 2384 */ 2385 int 2386 modload(char *subdir, char *filename) 2387 { 2388 return (modrload(subdir, filename, NULL)); 2389 } 2390 2391 /* 2392 * Load a module using a series of qualified names from most specific to least 2393 * specific, e.g. for subdir "foo", p1 "bar", p2 "baz", we might try: 2394 * 2395 * foo/bar.baz.1.2.3 2396 * foo/bar.baz.1.2 2397 * foo/bar.baz.1 2398 * 2399 * Return the module ID on success; -1 if no module was loaded. 2400 */ 2401 int 2402 modload_qualified(const char *subdir, const char *p1, 2403 const char *p2, const char *delim, uint_t suffv[], int suffc) 2404 { 2405 char path[MOD_MAXPATH]; 2406 size_t n, resid = sizeof (path); 2407 char *p = path; 2408 2409 char **dotv; 2410 int i, rc, id; 2411 modctl_t *mp; 2412 2413 if (p2 != NULL) 2414 n = snprintf(p, resid, "%s/%s%s%s", subdir, p1, delim, p2); 2415 else 2416 n = snprintf(p, resid, "%s/%s", subdir, p1); 2417 2418 if (n >= resid) 2419 return (-1); 2420 2421 p += n; 2422 resid -= n; 2423 dotv = kmem_alloc(sizeof (char *) * (suffc + 1), KM_SLEEP); 2424 2425 for (i = 0; i < suffc; i++) { 2426 dotv[i] = p; 2427 n = snprintf(p, resid, "%s%u", delim, suffv[i]); 2428 2429 if (n >= resid) { 2430 kmem_free(dotv, sizeof (char *) * (suffc + 1)); 2431 return (-1); 2432 } 2433 2434 p += n; 2435 resid -= n; 2436 } 2437 2438 dotv[suffc] = p; 2439 2440 for (i = suffc; i >= 0; i--) { 2441 dotv[i][0] = '\0'; 2442 mp = mod_hold_installed_mod(path, 1, &rc); 2443 2444 if (mp != NULL) { 2445 kmem_free(dotv, sizeof (char *) * (suffc + 1)); 2446 id = mp->mod_id; 2447 mod_release_mod(mp); 2448 return (id); 2449 } 2450 } 2451 2452 kmem_free(dotv, sizeof (char *) * (suffc + 1)); 2453 return (-1); 2454 } 2455 2456 /* 2457 * Load a module. 2458 */ 2459 int 2460 modloadonly(char *subdir, char *filename) 2461 { 2462 struct modctl *modp; 2463 char *fullname; 2464 size_t size; 2465 int id, retval; 2466 2467 if (subdir != NULL) { 2468 /* 2469 * allocate enough space for <subdir>/<filename><NULL> 2470 */ 2471 size = strlen(subdir) + strlen(filename) + 2; 2472 fullname = kmem_zalloc(size, KM_SLEEP); 2473 (void) sprintf(fullname, "%s/%s", subdir, filename); 2474 } else { 2475 fullname = filename; 2476 } 2477 2478 modp = mod_hold_loaded_mod(NULL, fullname, &retval); 2479 if (modp) { 2480 id = modp->mod_id; 2481 mod_release_mod(modp); 2482 } 2483 2484 if (subdir != NULL) 2485 kmem_free(fullname, size); 2486 2487 if (retval == 0) 2488 return (id); 2489 return (-1); 2490 } 2491 2492 /* 2493 * Try to uninstall and unload a module, removing a reference if caller 2494 * specifies rmodp. 2495 */ 2496 static int 2497 modunrload(modid_t id, struct modctl **rmodp, int unload) 2498 { 2499 struct modctl *modp; 2500 int retval; 2501 2502 if (rmodp) 2503 *rmodp = NULL; /* avoid garbage */ 2504 2505 if ((modp = mod_hold_by_id((modid_t)id)) == NULL) 2506 return (EINVAL); 2507 2508 if (rmodp) { 2509 mutex_enter(&mod_lock); 2510 modp->mod_ref--; 2511 mutex_exit(&mod_lock); 2512 *rmodp = modp; 2513 } 2514 2515 if (unload) { 2516 retval = moduninstall(modp); 2517 if (retval == 0) { 2518 mod_unload(modp); 2519 CPU_STATS_ADDQ(CPU, sys, modunload, 1); 2520 } else if (retval == EALREADY) 2521 retval = 0; /* already unloaded, not an error */ 2522 } else 2523 retval = 0; 2524 2525 mod_release_mod(modp); 2526 return (retval); 2527 } 2528 2529 /* 2530 * Uninstall and unload a module. 2531 */ 2532 int 2533 modunload(modid_t id) 2534 { 2535 int retval; 2536 2537 /* synchronize with any active modunload_disable() */ 2538 modunload_begin(); 2539 if (ddi_root_node()) 2540 (void) devfs_clean(ddi_root_node(), NULL, 0); 2541 retval = modunrload(id, NULL, 1); 2542 modunload_end(); 2543 return (retval); 2544 } 2545 2546 /* 2547 * Return status of a loaded module. 2548 */ 2549 static int 2550 modinfo(modid_t id, struct modinfo *modinfop) 2551 { 2552 struct modctl *modp; 2553 modid_t mid; 2554 int i; 2555 2556 mid = modinfop->mi_id; 2557 if (modinfop->mi_info & MI_INFO_ALL) { 2558 while ((modp = mod_hold_next_by_id(mid++)) != NULL) { 2559 if ((modinfop->mi_info & MI_INFO_CNT) || 2560 modp->mod_installed) 2561 break; 2562 mod_release_mod(modp); 2563 } 2564 if (modp == NULL) 2565 return (EINVAL); 2566 } else { 2567 modp = mod_hold_by_id(id); 2568 if (modp == NULL) 2569 return (EINVAL); 2570 if (!(modinfop->mi_info & MI_INFO_CNT) && 2571 (modp->mod_installed == 0)) { 2572 mod_release_mod(modp); 2573 return (EINVAL); 2574 } 2575 } 2576 2577 modinfop->mi_rev = 0; 2578 modinfop->mi_state = 0; 2579 for (i = 0; i < MODMAXLINK; i++) { 2580 modinfop->mi_msinfo[i].msi_p0 = -1; 2581 modinfop->mi_msinfo[i].msi_linkinfo[0] = 0; 2582 } 2583 if (modp->mod_loaded) { 2584 modinfop->mi_state = MI_LOADED; 2585 kobj_getmodinfo(modp->mod_mp, modinfop); 2586 } 2587 if (modp->mod_installed) { 2588 modinfop->mi_state |= MI_INSTALLED; 2589 2590 (void) mod_getinfo(modp, modinfop); 2591 } 2592 2593 modinfop->mi_id = modp->mod_id; 2594 modinfop->mi_loadcnt = modp->mod_loadcnt; 2595 (void) strcpy(modinfop->mi_name, modp->mod_modname); 2596 2597 mod_release_mod(modp); 2598 return (0); 2599 } 2600 2601 static char mod_stub_err[] = "mod_hold_stub: Couldn't load stub module %s"; 2602 static char no_err[] = "No error function for weak stub %s"; 2603 2604 /* 2605 * used by the stubs themselves to load and hold a module. 2606 * Returns 0 if the module is successfully held; 2607 * the stub needs to call mod_release_stub(). 2608 * -1 if the stub should just call the err_fcn. 2609 * Note that this code is stretched out so that we avoid subroutine calls 2610 * and optimize for the most likely case. That is, the case where the 2611 * module is loaded and installed and not held. In that case we just inc 2612 * the mod_ref count and continue. 2613 */ 2614 int 2615 mod_hold_stub(struct mod_stub_info *stub) 2616 { 2617 struct modctl *mp; 2618 struct mod_modinfo *mip; 2619 2620 mip = stub->mods_modinfo; 2621 2622 mutex_enter(&mod_lock); 2623 2624 /* we do mod_hold_by_modctl inline for speed */ 2625 2626 mod_check_again: 2627 if ((mp = mip->mp) != NULL) { 2628 if (mp->mod_busy == 0) { 2629 if (mp->mod_installed) { 2630 /* increment the reference count */ 2631 mp->mod_ref++; 2632 ASSERT(mp->mod_ref && mp->mod_installed); 2633 mutex_exit(&mod_lock); 2634 return (0); 2635 } else { 2636 mp->mod_busy = 1; 2637 mp->mod_inprogress_thread = 2638 (curthread == NULL ? 2639 (kthread_id_t)-1 : curthread); 2640 } 2641 } else { 2642 /* 2643 * wait one time and then go see if someone 2644 * else has resolved the stub (set mip->mp). 2645 */ 2646 if (mod_hold_by_modctl(mp, 2647 MOD_WAIT_ONCE | MOD_LOCK_HELD)) 2648 goto mod_check_again; 2649 2650 /* 2651 * what we have now may have been unloaded!, in 2652 * that case, mip->mp will be NULL, we'll hit this 2653 * module and load again.. 2654 */ 2655 cmn_err(CE_PANIC, "mod_hold_stub should have blocked"); 2656 } 2657 mutex_exit(&mod_lock); 2658 } else { 2659 /* first time we've hit this module */ 2660 mutex_exit(&mod_lock); 2661 mp = mod_hold_by_name(mip->modm_module_name); 2662 mip->mp = mp; 2663 } 2664 2665 /* 2666 * If we are here, it means that the following conditions 2667 * are satisfied. 2668 * 2669 * mip->mp != NULL 2670 * this thread has set the mp->mod_busy = 1 2671 * mp->mod_installed = 0 2672 * 2673 */ 2674 ASSERT(mp != NULL); 2675 ASSERT(mp->mod_busy == 1); 2676 2677 if (mp->mod_installed == 0) { 2678 /* Module not loaded, if weak stub don't load it */ 2679 if (stub->mods_flag & MODS_WEAK) { 2680 if (stub->mods_errfcn == NULL) { 2681 mod_release_mod(mp); 2682 cmn_err(CE_PANIC, no_err, 2683 mip->modm_module_name); 2684 } 2685 } else { 2686 /* Not a weak stub so load the module */ 2687 2688 if (mod_load(mp, 1) != 0 || modinstall(mp) != 0) { 2689 /* 2690 * If mod_load() was successful 2691 * and modinstall() failed, then 2692 * unload the module. 2693 */ 2694 if (mp->mod_loaded) 2695 mod_unload(mp); 2696 2697 mod_release_mod(mp); 2698 if (stub->mods_errfcn == NULL) { 2699 cmn_err(CE_PANIC, mod_stub_err, 2700 mip->modm_module_name); 2701 } else { 2702 return (-1); 2703 } 2704 } 2705 } 2706 } 2707 2708 /* 2709 * At this point module is held and loaded. Release 2710 * the mod_busy and mod_inprogress_thread before 2711 * returning. We actually call mod_release() here so 2712 * that if another stub wants to access this module, 2713 * it can do so. mod_ref is incremented before mod_release() 2714 * is called to prevent someone else from snatching the 2715 * module from this thread. 2716 */ 2717 mutex_enter(&mod_lock); 2718 mp->mod_ref++; 2719 ASSERT(mp->mod_ref && 2720 (mp->mod_loaded || (stub->mods_flag & MODS_WEAK))); 2721 mod_release(mp); 2722 mutex_exit(&mod_lock); 2723 return (0); 2724 } 2725 2726 void 2727 mod_release_stub(struct mod_stub_info *stub) 2728 { 2729 struct modctl *mp = stub->mods_modinfo->mp; 2730 2731 /* inline mod_release_mod */ 2732 mutex_enter(&mod_lock); 2733 ASSERT(mp->mod_ref && 2734 (mp->mod_loaded || (stub->mods_flag & MODS_WEAK))); 2735 mp->mod_ref--; 2736 if (mp->mod_want) { 2737 mp->mod_want = 0; 2738 cv_broadcast(&mod_cv); 2739 } 2740 mutex_exit(&mod_lock); 2741 } 2742 2743 static struct modctl * 2744 mod_hold_loaded_mod(struct modctl *dep, char *filename, int *status) 2745 { 2746 struct modctl *modp; 2747 int retval; 2748 2749 /* 2750 * Hold the module. 2751 */ 2752 modp = mod_hold_by_name_requisite(dep, filename); 2753 if (modp) { 2754 retval = mod_load(modp, 1); 2755 if (retval != 0) { 2756 mod_release_mod(modp); 2757 modp = NULL; 2758 } 2759 *status = retval; 2760 } else { 2761 *status = ENOSPC; 2762 } 2763 2764 /* 2765 * if dep is not NULL, clear the module dependency information. 2766 * This information is set in mod_hold_by_name_common(). 2767 */ 2768 if (dep != NULL && dep->mod_requisite_loading != NULL) { 2769 ASSERT(dep->mod_busy); 2770 dep->mod_requisite_loading = NULL; 2771 } 2772 2773 return (modp); 2774 } 2775 2776 /* 2777 * hold, load, and install the named module 2778 */ 2779 static struct modctl * 2780 mod_hold_installed_mod(char *name, int usepath, int *r) 2781 { 2782 struct modctl *modp; 2783 int retval; 2784 2785 /* 2786 * Verify that that module in question actually exists on disk 2787 * before allocation of module structure by mod_hold_by_name. 2788 */ 2789 if (modrootloaded && swaploaded) { 2790 if (!kobj_path_exists(name, usepath)) { 2791 *r = ENOENT; 2792 return (NULL); 2793 } 2794 } 2795 2796 /* 2797 * Hold the module. 2798 */ 2799 modp = mod_hold_by_name(name); 2800 if (modp) { 2801 retval = mod_load(modp, usepath); 2802 if (retval != 0) { 2803 mod_release_mod(modp); 2804 modp = NULL; 2805 *r = retval; 2806 } else { 2807 if ((*r = modinstall(modp)) != 0) { 2808 /* 2809 * We loaded it, but failed to _init() it. 2810 * Be kind to developers -- force it 2811 * out of memory now so that the next 2812 * attempt to use the module will cause 2813 * a reload. See 1093793. 2814 */ 2815 mod_unload(modp); 2816 mod_release_mod(modp); 2817 modp = NULL; 2818 } 2819 } 2820 } else { 2821 *r = ENOSPC; 2822 } 2823 return (modp); 2824 } 2825 2826 static char mod_excl_msg[] = 2827 "module %s(%s) is EXCLUDED and will not be loaded\n"; 2828 static char mod_init_msg[] = "loadmodule:%s(%s): _init() error %d\n"; 2829 2830 /* 2831 * This routine is needed for dependencies. Users specify dependencies 2832 * by declaring a character array initialized to filenames of dependents. 2833 * So the code that handles dependents deals with filenames (and not 2834 * module names) because that's all it has. We load by filename and once 2835 * we've loaded a file we can get the module name. 2836 * Unfortunately there isn't a single unified filename/modulename namespace. 2837 * C'est la vie. 2838 * 2839 * We allow the name being looked up to be prepended by an optional 2840 * subdirectory e.g. we can lookup (NULL, "fs/ufs") or ("fs", "ufs") 2841 */ 2842 struct modctl * 2843 mod_find_by_filename(char *subdir, char *filename) 2844 { 2845 struct modctl *mp; 2846 size_t sublen; 2847 2848 ASSERT(!MUTEX_HELD(&mod_lock)); 2849 if (subdir != NULL) 2850 sublen = strlen(subdir); 2851 else 2852 sublen = 0; 2853 2854 mutex_enter(&mod_lock); 2855 mp = &modules; 2856 do { 2857 if (sublen) { 2858 char *mod_filename = mp->mod_filename; 2859 2860 if (strncmp(subdir, mod_filename, sublen) == 0 && 2861 mod_filename[sublen] == '/' && 2862 strcmp(filename, &mod_filename[sublen + 1]) == 0) { 2863 mutex_exit(&mod_lock); 2864 return (mp); 2865 } 2866 } else if (strcmp(filename, mp->mod_filename) == 0) { 2867 mutex_exit(&mod_lock); 2868 return (mp); 2869 } 2870 } while ((mp = mp->mod_next) != &modules); 2871 mutex_exit(&mod_lock); 2872 return (NULL); 2873 } 2874 2875 /* 2876 * Check for circular dependencies. This is called from do_dependents() 2877 * in kobj.c. If we are the thread already loading this module, then 2878 * we're trying to load a dependent that we're already loading which 2879 * means the user specified circular dependencies. 2880 */ 2881 static int 2882 mod_circdep(struct modctl *modp) 2883 { 2884 struct modctl *rmod; 2885 2886 ASSERT(MUTEX_HELD(&mod_lock)); 2887 2888 /* 2889 * Check the mod_inprogress_thread first. 2890 * mod_inprogress_thread is used in mod_hold_stub() 2891 * directly to improve performance. 2892 */ 2893 if (modp->mod_inprogress_thread == curthread) 2894 return (1); 2895 2896 /* 2897 * Check the module circular dependencies. 2898 */ 2899 for (rmod = modp; rmod != NULL; rmod = rmod->mod_requisite_loading) { 2900 /* 2901 * Check if there is a module circular dependency. 2902 */ 2903 if (rmod->mod_requisite_loading == modp) 2904 return (1); 2905 } 2906 return (0); 2907 } 2908 2909 static int 2910 mod_getinfo(struct modctl *modp, struct modinfo *modinfop) 2911 { 2912 int (*func)(struct modinfo *); 2913 int retval; 2914 2915 ASSERT(modp->mod_busy); 2916 2917 /* primary modules don't do getinfo */ 2918 if (modp->mod_prim) 2919 return (0); 2920 2921 func = (int (*)(struct modinfo *))kobj_lookup(modp->mod_mp, "_info"); 2922 2923 if (kobj_addrcheck(modp->mod_mp, (caddr_t)func)) { 2924 cmn_err(CE_WARN, "_info() not defined properly in %s", 2925 modp->mod_filename); 2926 /* 2927 * The semantics of mod_info(9F) are that 0 is failure 2928 * and non-zero is success. 2929 */ 2930 retval = 0; 2931 } else 2932 retval = (*func)(modinfop); /* call _info() function */ 2933 2934 if (moddebug & MODDEBUG_USERDEBUG) 2935 printf("Returned from _info, retval = %x\n", retval); 2936 2937 return (retval); 2938 } 2939 2940 static void 2941 modadd(struct modctl *mp) 2942 { 2943 ASSERT(MUTEX_HELD(&mod_lock)); 2944 2945 mp->mod_id = last_module_id++; 2946 mp->mod_next = &modules; 2947 mp->mod_prev = modules.mod_prev; 2948 modules.mod_prev->mod_next = mp; 2949 modules.mod_prev = mp; 2950 } 2951 2952 /*ARGSUSED*/ 2953 static struct modctl * 2954 allocate_modp(const char *filename, const char *modname) 2955 { 2956 struct modctl *mp; 2957 2958 mp = kobj_zalloc(sizeof (*mp), KM_SLEEP); 2959 mp->mod_modname = kobj_zalloc(strlen(modname) + 1, KM_SLEEP); 2960 (void) strcpy(mp->mod_modname, modname); 2961 return (mp); 2962 } 2963 2964 /* 2965 * Get the value of a symbol. This is a wrapper routine that 2966 * calls kobj_getsymvalue(). kobj_getsymvalue() may go away but this 2967 * wrapper will prevent callers from noticing. 2968 */ 2969 uintptr_t 2970 modgetsymvalue(char *name, int kernelonly) 2971 { 2972 return (kobj_getsymvalue(name, kernelonly)); 2973 } 2974 2975 /* 2976 * Get the symbol nearest an address. This is a wrapper routine that 2977 * calls kobj_getsymname(). kobj_getsymname() may go away but this 2978 * wrapper will prevent callers from noticing. 2979 */ 2980 char * 2981 modgetsymname(uintptr_t value, ulong_t *offset) 2982 { 2983 return (kobj_getsymname(value, offset)); 2984 } 2985 2986 /* 2987 * Lookup a symbol in a specified module. These are wrapper routines that 2988 * call kobj_lookup(). kobj_lookup() may go away but these wrappers will 2989 * prevent callers from noticing. 2990 */ 2991 uintptr_t 2992 modlookup(const char *modname, const char *symname) 2993 { 2994 struct modctl *modp; 2995 uintptr_t val; 2996 2997 if ((modp = mod_hold_by_name(modname)) == NULL) 2998 return (0); 2999 val = kobj_lookup(modp->mod_mp, symname); 3000 mod_release_mod(modp); 3001 return (val); 3002 } 3003 3004 uintptr_t 3005 modlookup_by_modctl(modctl_t *modp, const char *symname) 3006 { 3007 ASSERT(modp->mod_ref > 0 || modp->mod_busy); 3008 3009 return (kobj_lookup(modp->mod_mp, symname)); 3010 } 3011 3012 /* 3013 * Ask the user for the name of the system file and the default path 3014 * for modules. 3015 */ 3016 void 3017 mod_askparams() 3018 { 3019 static char s0[64]; 3020 intptr_t fd; 3021 3022 if ((fd = kobj_open(systemfile)) != -1L) 3023 kobj_close(fd); 3024 else 3025 systemfile = NULL; 3026 3027 /*CONSTANTCONDITION*/ 3028 while (1) { 3029 printf("Name of system file [%s]: ", 3030 systemfile ? systemfile : "/dev/null"); 3031 3032 console_gets(s0, sizeof (s0)); 3033 3034 if (s0[0] == '\0') 3035 break; 3036 else if (strcmp(s0, "/dev/null") == 0) { 3037 systemfile = NULL; 3038 break; 3039 } else { 3040 if ((fd = kobj_open(s0)) != -1L) { 3041 kobj_close(fd); 3042 systemfile = s0; 3043 break; 3044 } 3045 } 3046 printf("can't find file %s\n", s0); 3047 } 3048 } 3049 3050 static char loading_msg[] = "loading '%s' id %d\n"; 3051 static char load_msg[] = "load '%s' id %d loaded @ 0x%p/0x%p size %d/%d\n"; 3052 3053 /* 3054 * Common code for loading a module (but not installing it). 3055 * Handoff the task of module loading to a seperate thread 3056 * with a large stack if possible, since this code may recurse a few times. 3057 * Return zero if there are no errors or an errno value. 3058 */ 3059 static int 3060 mod_load(struct modctl *mp, int usepath) 3061 { 3062 int retval; 3063 struct modinfo *modinfop = NULL; 3064 struct loadmt lt; 3065 3066 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3067 ASSERT(mp->mod_busy); 3068 3069 if (mp->mod_loaded) 3070 return (0); 3071 3072 if (mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_modname) != 0 || 3073 mod_sysctl(SYS_CHECK_EXCLUDE, mp->mod_filename) != 0) { 3074 if (moddebug & MODDEBUG_LOADMSG) { 3075 printf(mod_excl_msg, mp->mod_filename, 3076 mp->mod_modname); 3077 } 3078 return (ENXIO); 3079 } 3080 if (moddebug & MODDEBUG_LOADMSG2) 3081 printf(loading_msg, mp->mod_filename, mp->mod_id); 3082 3083 if (curthread != &t0) { 3084 lt.mp = mp; 3085 lt.usepath = usepath; 3086 lt.owner = curthread; 3087 sema_init(<.sema, 0, NULL, SEMA_DEFAULT, NULL); 3088 3089 /* create thread to hand of call to */ 3090 (void) thread_create(NULL, DEFAULTSTKSZ * 2, 3091 modload_thread, <, 0, &p0, TS_RUN, maxclsyspri); 3092 3093 /* wait for thread to complete kobj_load_module */ 3094 sema_p(<.sema); 3095 3096 sema_destroy(<.sema); 3097 retval = lt.retval; 3098 } else 3099 retval = kobj_load_module(mp, usepath); 3100 3101 if (mp->mod_mp) { 3102 ASSERT(retval == 0); 3103 mp->mod_loaded = 1; 3104 mp->mod_loadcnt++; 3105 if (moddebug & MODDEBUG_LOADMSG) { 3106 printf(load_msg, mp->mod_filename, mp->mod_id, 3107 (void *)((struct module *)mp->mod_mp)->text, 3108 (void *)((struct module *)mp->mod_mp)->data, 3109 ((struct module *)mp->mod_mp)->text_size, 3110 ((struct module *)mp->mod_mp)->data_size); 3111 } 3112 3113 /* 3114 * XXX - There should be a better way to get this. 3115 */ 3116 modinfop = kmem_zalloc(sizeof (struct modinfo), KM_SLEEP); 3117 modinfop->mi_info = MI_INFO_LINKAGE; 3118 if (mod_getinfo(mp, modinfop) == 0) 3119 mp->mod_linkage = NULL; 3120 else { 3121 mp->mod_linkage = (void *)modinfop->mi_base; 3122 ASSERT(mp->mod_linkage->ml_rev == MODREV_1); 3123 } 3124 3125 /* 3126 * DCS: bootstrapping code. If the driver is loaded 3127 * before root mount, it is assumed that the driver 3128 * may be used before mounting root. In order to 3129 * access mappings of global to local minor no.'s 3130 * during installation/open of the driver, we load 3131 * them into memory here while the BOP_interfaces 3132 * are still up. 3133 */ 3134 if ((cluster_bootflags & CLUSTER_BOOTED) && !modrootloaded) { 3135 retval = clboot_modload(mp); 3136 } 3137 3138 kmem_free(modinfop, sizeof (struct modinfo)); 3139 (void) mod_sysctl(SYS_SET_MVAR, (void *)mp); 3140 retval = install_stubs_by_name(mp, mp->mod_modname); 3141 3142 /* 3143 * Now that the module is loaded, we need to give DTrace 3144 * a chance to notify its providers. This is done via 3145 * the dtrace_modload function pointer. 3146 */ 3147 if (strcmp(mp->mod_modname, "dtrace") != 0) { 3148 struct modctl *dmp = mod_hold_by_name("dtrace"); 3149 3150 if (dmp != NULL && dtrace_modload != NULL) 3151 (*dtrace_modload)(mp); 3152 3153 mod_release_mod(dmp); 3154 } 3155 3156 } else { 3157 /* 3158 * If load failed then we need to release any requisites 3159 * that we had established. 3160 */ 3161 ASSERT(retval); 3162 mod_release_requisites(mp); 3163 3164 if (moddebug & MODDEBUG_ERRMSG) 3165 printf("error loading '%s', error %d\n", 3166 mp->mod_filename, retval); 3167 } 3168 return (retval); 3169 } 3170 3171 static char unload_msg[] = "unloading %s, module id %d, loadcnt %d.\n"; 3172 3173 static void 3174 mod_unload(struct modctl *mp) 3175 { 3176 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3177 ASSERT(mp->mod_busy); 3178 ASSERT((mp->mod_loaded && (mp->mod_installed == 0)) && 3179 ((mp->mod_prim == 0) && (mp->mod_ref >= 0))); 3180 3181 if (moddebug & MODDEBUG_LOADMSG) 3182 printf(unload_msg, mp->mod_modname, 3183 mp->mod_id, mp->mod_loadcnt); 3184 3185 /* 3186 * If mod_ref is not zero, it means some modules might still refer 3187 * to this module. Then you can't unload this module right now. 3188 * Instead, set 1 to mod_delay_unload to notify the system of 3189 * unloading this module later when it's not required any more. 3190 */ 3191 if (mp->mod_ref > 0) { 3192 mp->mod_delay_unload = 1; 3193 if (moddebug & MODDEBUG_LOADMSG2) { 3194 printf("module %s not unloaded," 3195 " non-zero reference count (%d)", 3196 mp->mod_modname, mp->mod_ref); 3197 } 3198 return; 3199 } 3200 3201 if (((mp->mod_loaded == 0) || mp->mod_installed) || 3202 (mp->mod_ref || mp->mod_prim)) { 3203 /* 3204 * A DEBUG kernel would ASSERT panic above, the code is broken 3205 * if we get this warning. 3206 */ 3207 cmn_err(CE_WARN, "mod_unload: %s in incorrect state: %d %d %d", 3208 mp->mod_filename, mp->mod_installed, mp->mod_loaded, 3209 mp->mod_ref); 3210 return; 3211 } 3212 3213 /* reset stub functions to call the binder again */ 3214 reset_stubs(mp); 3215 3216 /* 3217 * mark module as unloaded before the modctl structure is freed. 3218 * This is required not to reuse the modctl structure before 3219 * the module is marked as unloaded. 3220 */ 3221 mp->mod_loaded = 0; 3222 mp->mod_linkage = NULL; 3223 3224 /* free the memory */ 3225 kobj_unload_module(mp); 3226 3227 if (mp->mod_delay_unload) { 3228 mp->mod_delay_unload = 0; 3229 if (moddebug & MODDEBUG_LOADMSG2) { 3230 printf("deferred unload of module %s" 3231 " (id %d) successful", 3232 mp->mod_modname, mp->mod_id); 3233 } 3234 } 3235 3236 /* release hold on requisites */ 3237 mod_release_requisites(mp); 3238 3239 /* 3240 * Now that the module is gone, we need to give DTrace a chance to 3241 * remove any probes that it may have had in the module. This is 3242 * done via the dtrace_modunload function pointer. 3243 */ 3244 if (strcmp(mp->mod_modname, "dtrace") != 0) { 3245 struct modctl *dmp = mod_hold_by_name("dtrace"); 3246 3247 if (dmp != NULL && dtrace_modunload != NULL) 3248 (*dtrace_modunload)(mp); 3249 3250 mod_release_mod(dmp); 3251 } 3252 } 3253 3254 static int 3255 modinstall(struct modctl *mp) 3256 { 3257 int val; 3258 int (*func)(void); 3259 3260 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3261 ASSERT(mp->mod_busy && mp->mod_loaded); 3262 3263 if (mp->mod_installed) 3264 return (0); 3265 /* 3266 * If mod_delay_unload is on, it means the system chose the deferred 3267 * unload for this module. Then you can't install this module until 3268 * it's unloaded from the system. 3269 */ 3270 if (mp->mod_delay_unload) 3271 return (ENXIO); 3272 3273 if (moddebug & MODDEBUG_LOADMSG) 3274 printf("installing %s, module id %d.\n", 3275 mp->mod_modname, mp->mod_id); 3276 3277 ASSERT(mp->mod_mp != NULL); 3278 if (mod_install_requisites(mp) != 0) { 3279 /* 3280 * Note that we can't call mod_unload(mp) here since 3281 * if modinstall() was called by mod_install_requisites(), 3282 * we won't be able to hold the dependent modules 3283 * (otherwise there would be a deadlock). 3284 */ 3285 return (ENXIO); 3286 } 3287 3288 if (moddebug & MODDEBUG_ERRMSG) { 3289 printf("init '%s' id %d loaded @ 0x%p/0x%p size %lu/%lu\n", 3290 mp->mod_filename, mp->mod_id, 3291 (void *)((struct module *)mp->mod_mp)->text, 3292 (void *)((struct module *)mp->mod_mp)->data, 3293 ((struct module *)mp->mod_mp)->text_size, 3294 ((struct module *)mp->mod_mp)->data_size); 3295 } 3296 3297 func = (int (*)())kobj_lookup(mp->mod_mp, "_init"); 3298 3299 if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) { 3300 cmn_err(CE_WARN, "_init() not defined properly in %s", 3301 mp->mod_filename); 3302 return (EFAULT); 3303 } 3304 3305 if (moddebug & MODDEBUG_USERDEBUG) { 3306 printf("breakpoint before calling %s:_init()\n", 3307 mp->mod_modname); 3308 if (DEBUGGER_PRESENT) 3309 debug_enter("_init"); 3310 } 3311 3312 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3313 ASSERT(mp->mod_busy && mp->mod_loaded); 3314 val = (*func)(); /* call _init */ 3315 3316 if (moddebug & MODDEBUG_USERDEBUG) 3317 printf("Returned from _init, val = %x\n", val); 3318 3319 if (val == 0) { 3320 /* 3321 * Set the MODS_INSTALLED flag to enable this module 3322 * being called now. 3323 */ 3324 install_stubs(mp); 3325 mp->mod_installed = 1; 3326 } else if (moddebug & MODDEBUG_ERRMSG) 3327 printf(mod_init_msg, mp->mod_filename, mp->mod_modname, val); 3328 3329 return (val); 3330 } 3331 3332 int detach_driver_unconfig = 0; 3333 3334 static int 3335 detach_driver(char *name) 3336 { 3337 major_t major; 3338 int error; 3339 3340 /* 3341 * If being called from mod_uninstall_all() then the appropriate 3342 * driver detaches (leaf only) have already been done. 3343 */ 3344 if (mod_in_autounload()) 3345 return (0); 3346 3347 major = ddi_name_to_major(name); 3348 if (major == (major_t)-1) 3349 return (0); 3350 3351 error = ndi_devi_unconfig_driver(ddi_root_node(), 3352 NDI_DETACH_DRIVER | detach_driver_unconfig, major); 3353 return (error == NDI_SUCCESS ? 0 : -1); 3354 } 3355 3356 static char finiret_msg[] = "Returned from _fini for %s, status = %x\n"; 3357 3358 static int 3359 moduninstall(struct modctl *mp) 3360 { 3361 int status = 0; 3362 int (*func)(void); 3363 3364 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3365 ASSERT(mp->mod_busy); 3366 3367 /* 3368 * Verify that we need to do something and can uninstall the module. 3369 * 3370 * If we should not uninstall the module or if the module is not in 3371 * the correct state to start an uninstall we return EBUSY to prevent 3372 * us from progressing to mod_unload. If the module has already been 3373 * uninstalled and unloaded we return EALREADY. 3374 */ 3375 if (mp->mod_prim || mp->mod_ref || mp->mod_nenabled != 0) 3376 return (EBUSY); 3377 if ((mp->mod_installed == 0) || (mp->mod_loaded == 0)) 3378 return (EALREADY); 3379 3380 /* 3381 * To avoid devinfo / module deadlock we must release this module 3382 * prior to initiating the detach_driver, otherwise the detach_driver 3383 * might deadlock on a devinfo node held by another thread 3384 * coming top down and involving the module we have locked. 3385 * 3386 * When we regrab the module we must reverify that it is OK 3387 * to proceed with the uninstall operation. 3388 */ 3389 mod_release_mod(mp); 3390 status = detach_driver(mp->mod_modname); 3391 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD); 3392 3393 /* check detach status and reverify state with lock */ 3394 mutex_enter(&mod_lock); 3395 if ((status != 0) || mp->mod_prim || mp->mod_ref) { 3396 mutex_exit(&mod_lock); 3397 return (EBUSY); 3398 } 3399 if ((mp->mod_installed == 0) || (mp->mod_loaded == 0)) { 3400 mutex_exit(&mod_lock); 3401 return (EALREADY); 3402 } 3403 mutex_exit(&mod_lock); 3404 3405 if (moddebug & MODDEBUG_LOADMSG2) 3406 printf("uninstalling %s\n", mp->mod_modname); 3407 3408 /* 3409 * lookup _fini, return EBUSY if not defined. 3410 * 3411 * The MODDEBUG_FINI_EBUSY is usefull in resolving leaks in 3412 * detach(9E) - it allows bufctl addresses to be resolved. 3413 */ 3414 func = (int (*)())kobj_lookup(mp->mod_mp, "_fini"); 3415 if ((func == NULL) || (mp->mod_loadflags & MOD_NOUNLOAD) || 3416 (moddebug & MODDEBUG_FINI_EBUSY)) 3417 return (EBUSY); 3418 3419 /* verify that _fini is in this module */ 3420 if (kobj_addrcheck(mp->mod_mp, (caddr_t)func)) { 3421 cmn_err(CE_WARN, "_fini() not defined properly in %s", 3422 mp->mod_filename); 3423 return (EFAULT); 3424 } 3425 3426 /* call _fini() */ 3427 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 3428 ASSERT(mp->mod_busy && mp->mod_loaded && mp->mod_installed); 3429 3430 status = (*func)(); 3431 3432 if (status == 0) { 3433 /* _fini returned success, the module is no longer installed */ 3434 if (moddebug & MODDEBUG_LOADMSG) 3435 printf("uninstalled %s\n", mp->mod_modname); 3436 3437 /* 3438 * Even though we only set mod_installed to zero here, a zero 3439 * return value means we are commited to a code path were 3440 * mod_loaded will also end up as zero - we have no other 3441 * way to get the module data and bss back to the pre _init 3442 * state except a reload. To ensure this, after return, 3443 * mod_busy must stay set until mod_loaded is cleared. 3444 */ 3445 mp->mod_installed = 0; 3446 3447 /* 3448 * Clear the MODS_INSTALLED flag not to call functions 3449 * in the module directly from now on. 3450 */ 3451 uninstall_stubs(mp); 3452 } else { 3453 if (moddebug & MODDEBUG_USERDEBUG) 3454 printf(finiret_msg, mp->mod_filename, status); 3455 /* 3456 * By definition _fini is only allowed to return EBUSY or the 3457 * result of mod_remove (EBUSY or EINVAL). In the off chance 3458 * that a driver returns EALREADY we convert this to EINVAL 3459 * since to our caller EALREADY means module was already 3460 * removed. 3461 */ 3462 if (status == EALREADY) 3463 status = EINVAL; 3464 } 3465 3466 return (status); 3467 } 3468 3469 /* 3470 * Uninstall all modules. 3471 */ 3472 static void 3473 mod_uninstall_all(void) 3474 { 3475 struct modctl *mp; 3476 modid_t modid = 0; 3477 3478 /* synchronize with any active modunload_disable() */ 3479 modunload_begin(); 3480 3481 /* mark this thread as doing autounloading */ 3482 (void) tsd_set(mod_autounload_key, (void *)1); 3483 3484 (void) devfs_clean(ddi_root_node(), NULL, 0); 3485 (void) ndi_devi_unconfig(ddi_root_node(), NDI_AUTODETACH); 3486 3487 while ((mp = mod_hold_next_by_id(modid)) != NULL) { 3488 modid = mp->mod_id; 3489 /* 3490 * Skip modules with the MOD_NOAUTOUNLOAD flag set 3491 */ 3492 if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) { 3493 mod_release_mod(mp); 3494 continue; 3495 } 3496 3497 if (moduninstall(mp) == 0) { 3498 mod_unload(mp); 3499 CPU_STATS_ADDQ(CPU, sys, modunload, 1); 3500 } 3501 mod_release_mod(mp); 3502 } 3503 3504 (void) tsd_set(mod_autounload_key, NULL); 3505 modunload_end(); 3506 } 3507 3508 /* wait for unloads that have begun before registering disable */ 3509 void 3510 modunload_disable(void) 3511 { 3512 mutex_enter(&modunload_wait_mutex); 3513 while (modunload_active_count) { 3514 modunload_wait++; 3515 cv_wait(&modunload_wait_cv, &modunload_wait_mutex); 3516 modunload_wait--; 3517 } 3518 modunload_disable_count++; 3519 mutex_exit(&modunload_wait_mutex); 3520 } 3521 3522 /* mark end of disable and signal waiters */ 3523 void 3524 modunload_enable(void) 3525 { 3526 mutex_enter(&modunload_wait_mutex); 3527 modunload_disable_count--; 3528 if ((modunload_disable_count == 0) && modunload_wait) 3529 cv_broadcast(&modunload_wait_cv); 3530 mutex_exit(&modunload_wait_mutex); 3531 } 3532 3533 /* wait for disables to complete before begining unload */ 3534 void 3535 modunload_begin() 3536 { 3537 mutex_enter(&modunload_wait_mutex); 3538 while (modunload_disable_count) { 3539 modunload_wait++; 3540 cv_wait(&modunload_wait_cv, &modunload_wait_mutex); 3541 modunload_wait--; 3542 } 3543 modunload_active_count++; 3544 mutex_exit(&modunload_wait_mutex); 3545 } 3546 3547 /* mark end of unload and signal waiters */ 3548 void 3549 modunload_end() 3550 { 3551 mutex_enter(&modunload_wait_mutex); 3552 modunload_active_count--; 3553 if ((modunload_active_count == 0) && modunload_wait) 3554 cv_broadcast(&modunload_wait_cv); 3555 mutex_exit(&modunload_wait_mutex); 3556 } 3557 3558 void 3559 mod_uninstall_daemon(void) 3560 { 3561 callb_cpr_t cprinfo; 3562 clock_t ticks = 0; 3563 3564 mod_aul_thread = curthread; 3565 3566 CALLB_CPR_INIT(&cprinfo, &mod_uninstall_lock, callb_generic_cpr, "mud"); 3567 for (;;) { 3568 mutex_enter(&mod_uninstall_lock); 3569 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3570 /* 3571 * In DEBUG kernels, unheld drivers are uninstalled periodically 3572 * every mod_uninstall_interval seconds. Periodic uninstall can 3573 * be disabled by setting mod_uninstall_interval to 0 which is 3574 * the default for a non-DEBUG kernel. 3575 */ 3576 if (mod_uninstall_interval) { 3577 ticks = ddi_get_lbolt() + 3578 drv_usectohz(mod_uninstall_interval * 1000000); 3579 (void) cv_timedwait(&mod_uninstall_cv, 3580 &mod_uninstall_lock, ticks); 3581 } else { 3582 cv_wait(&mod_uninstall_cv, &mod_uninstall_lock); 3583 } 3584 /* 3585 * The whole daemon is safe for CPR except we don't want 3586 * the daemon to run if FREEZE is issued and this daemon 3587 * wakes up from the cv_wait above. In this case, it'll be 3588 * blocked in CALLB_CPR_SAFE_END until THAW is issued. 3589 * 3590 * The reason of calling CALLB_CPR_SAFE_BEGIN twice is that 3591 * mod_uninstall_lock is used to protect cprinfo and 3592 * CALLB_CPR_SAFE_BEGIN assumes that this lock is held when 3593 * called. 3594 */ 3595 CALLB_CPR_SAFE_END(&cprinfo, &mod_uninstall_lock); 3596 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3597 mutex_exit(&mod_uninstall_lock); 3598 if ((modunload_disable_count == 0) && 3599 ((moddebug & MODDEBUG_NOAUTOUNLOAD) == 0)) { 3600 mod_uninstall_all(); 3601 } 3602 } 3603 } 3604 3605 /* 3606 * Unload all uninstalled modules. 3607 */ 3608 void 3609 modreap(void) 3610 { 3611 mutex_enter(&mod_uninstall_lock); 3612 cv_broadcast(&mod_uninstall_cv); 3613 mutex_exit(&mod_uninstall_lock); 3614 } 3615 3616 /* 3617 * Hold the specified module. This is the module holding primitive. 3618 * 3619 * If MOD_LOCK_HELD then the caller already holds the mod_lock. 3620 * 3621 * Return values: 3622 * 0 ==> the module is held 3623 * 1 ==> the module is not held and the MOD_WAIT_ONCE caller needs 3624 * to determine how to retry. 3625 */ 3626 int 3627 mod_hold_by_modctl(struct modctl *mp, int f) 3628 { 3629 ASSERT((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) && 3630 ((f & (MOD_WAIT_ONCE | MOD_WAIT_FOREVER)) != 3631 (MOD_WAIT_ONCE | MOD_WAIT_FOREVER))); 3632 ASSERT((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) && 3633 ((f & (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD)) != 3634 (MOD_LOCK_HELD | MOD_LOCK_NOT_HELD))); 3635 ASSERT((f & MOD_LOCK_NOT_HELD) || MUTEX_HELD(&mod_lock)); 3636 3637 if (f & MOD_LOCK_NOT_HELD) 3638 mutex_enter(&mod_lock); 3639 3640 while (mp->mod_busy) { 3641 mp->mod_want = 1; 3642 cv_wait(&mod_cv, &mod_lock); 3643 /* 3644 * Module may be unloaded by daemon. 3645 * Nevertheless, modctl structure is still in linked list 3646 * (i.e., off &modules), not freed! 3647 * Caller is not supposed to assume "mp" is valid, but there 3648 * is no reasonable way to detect this but using 3649 * mp->mod_modinfo->mp == NULL check (follow the back pointer) 3650 * (or similar check depending on calling context) 3651 * DON'T free modctl structure, it will be very very 3652 * problematic. 3653 */ 3654 if (f & MOD_WAIT_ONCE) { 3655 if (f & MOD_LOCK_NOT_HELD) 3656 mutex_exit(&mod_lock); 3657 return (1); /* caller decides how to retry */ 3658 } 3659 } 3660 3661 mp->mod_busy = 1; 3662 mp->mod_inprogress_thread = 3663 (curthread == NULL ? (kthread_id_t)-1 : curthread); 3664 3665 if (f & MOD_LOCK_NOT_HELD) 3666 mutex_exit(&mod_lock); 3667 return (0); 3668 } 3669 3670 static struct modctl * 3671 mod_hold_by_name_common(struct modctl *dep, const char *filename) 3672 { 3673 const char *modname; 3674 struct modctl *mp; 3675 char *curname, *newname; 3676 int found = 0; 3677 3678 mutex_enter(&mod_lock); 3679 3680 if ((modname = strrchr(filename, '/')) == NULL) 3681 modname = filename; 3682 else 3683 modname++; 3684 3685 mp = &modules; 3686 do { 3687 if (strcmp(modname, mp->mod_modname) == 0) { 3688 found = 1; 3689 break; 3690 } 3691 } while ((mp = mp->mod_next) != &modules); 3692 3693 if (found == 0) { 3694 mp = allocate_modp(filename, modname); 3695 modadd(mp); 3696 } 3697 3698 /* 3699 * if dep is not NULL, set the mp in mod_requisite_loading for 3700 * the module circular dependency check. This field is used in 3701 * mod_circdep(), but it's cleard in mod_hold_loaded_mod(). 3702 */ 3703 if (dep != NULL) { 3704 ASSERT(dep->mod_busy && dep->mod_requisite_loading == NULL); 3705 dep->mod_requisite_loading = mp; 3706 } 3707 3708 /* 3709 * If the module was held, then it must be us who has it held. 3710 */ 3711 if (mod_circdep(mp)) 3712 mp = NULL; 3713 else { 3714 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD); 3715 3716 /* 3717 * If the name hadn't been set or has changed, allocate 3718 * space and set it. Free space used by previous name. 3719 * 3720 * Do not change the name of primary modules, for primary 3721 * modules the mod_filename was allocated in standalone mode: 3722 * it is illegal to kobj_alloc in standalone mode and kobj_free 3723 * in non-standalone mode. 3724 */ 3725 curname = mp->mod_filename; 3726 if (curname == NULL || 3727 ((mp->mod_prim == 0) && 3728 (curname != filename) && 3729 (modname != filename) && 3730 (strcmp(curname, filename) != 0))) { 3731 newname = kobj_zalloc(strlen(filename) + 1, KM_SLEEP); 3732 (void) strcpy(newname, filename); 3733 mp->mod_filename = newname; 3734 if (curname != NULL) 3735 kobj_free(curname, strlen(curname) + 1); 3736 } 3737 } 3738 3739 mutex_exit(&mod_lock); 3740 if (mp && moddebug & MODDEBUG_LOADMSG2) 3741 printf("Holding %s\n", mp->mod_filename); 3742 if (mp == NULL && moddebug & MODDEBUG_LOADMSG2) 3743 printf("circular dependency loading %s\n", filename); 3744 return (mp); 3745 } 3746 3747 static struct modctl * 3748 mod_hold_by_name_requisite(struct modctl *dep, char *filename) 3749 { 3750 return (mod_hold_by_name_common(dep, filename)); 3751 } 3752 3753 struct modctl * 3754 mod_hold_by_name(const char *filename) 3755 { 3756 return (mod_hold_by_name_common(NULL, filename)); 3757 } 3758 3759 struct modctl * 3760 mod_hold_by_id(modid_t modid) 3761 { 3762 struct modctl *mp; 3763 int found = 0; 3764 3765 mutex_enter(&mod_lock); 3766 mp = &modules; 3767 do { 3768 if (mp->mod_id == modid) { 3769 found = 1; 3770 break; 3771 } 3772 } while ((mp = mp->mod_next) != &modules); 3773 3774 if ((found == 0) || mod_circdep(mp)) 3775 mp = NULL; 3776 else 3777 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD); 3778 3779 mutex_exit(&mod_lock); 3780 return (mp); 3781 } 3782 3783 static struct modctl * 3784 mod_hold_next_by_id(modid_t modid) 3785 { 3786 struct modctl *mp; 3787 int found = 0; 3788 3789 if (modid < -1) 3790 return (NULL); 3791 3792 mutex_enter(&mod_lock); 3793 3794 mp = &modules; 3795 do { 3796 if (mp->mod_id > modid) { 3797 found = 1; 3798 break; 3799 } 3800 } while ((mp = mp->mod_next) != &modules); 3801 3802 if ((found == 0) || mod_circdep(mp)) 3803 mp = NULL; 3804 else 3805 (void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_HELD); 3806 3807 mutex_exit(&mod_lock); 3808 return (mp); 3809 } 3810 3811 static void 3812 mod_release(struct modctl *mp) 3813 { 3814 ASSERT(MUTEX_HELD(&mod_lock)); 3815 ASSERT(mp->mod_busy); 3816 3817 mp->mod_busy = 0; 3818 mp->mod_inprogress_thread = NULL; 3819 if (mp->mod_want) { 3820 mp->mod_want = 0; 3821 cv_broadcast(&mod_cv); 3822 } 3823 } 3824 3825 void 3826 mod_release_mod(struct modctl *mp) 3827 { 3828 if (moddebug & MODDEBUG_LOADMSG2) 3829 printf("Releasing %s\n", mp->mod_filename); 3830 mutex_enter(&mod_lock); 3831 mod_release(mp); 3832 mutex_exit(&mod_lock); 3833 } 3834 3835 modid_t 3836 mod_name_to_modid(char *filename) 3837 { 3838 char *modname; 3839 struct modctl *mp; 3840 3841 mutex_enter(&mod_lock); 3842 3843 if ((modname = strrchr(filename, '/')) == NULL) 3844 modname = filename; 3845 else 3846 modname++; 3847 3848 mp = &modules; 3849 do { 3850 if (strcmp(modname, mp->mod_modname) == 0) { 3851 mutex_exit(&mod_lock); 3852 return (mp->mod_id); 3853 } 3854 } while ((mp = mp->mod_next) != &modules); 3855 3856 mutex_exit(&mod_lock); 3857 return (-1); 3858 } 3859 3860 3861 int 3862 mod_remove_by_name(char *name) 3863 { 3864 struct modctl *mp; 3865 int retval; 3866 3867 mp = mod_hold_by_name(name); 3868 3869 if (mp == NULL) 3870 return (EINVAL); 3871 3872 if (mp->mod_loadflags & MOD_NOAUTOUNLOAD) { 3873 /* 3874 * Do not unload forceloaded modules 3875 */ 3876 mod_release_mod(mp); 3877 return (0); 3878 } 3879 3880 if ((retval = moduninstall(mp)) == 0) { 3881 mod_unload(mp); 3882 CPU_STATS_ADDQ(CPU, sys, modunload, 1); 3883 } else if (retval == EALREADY) 3884 retval = 0; /* already unloaded, not an error */ 3885 mod_release_mod(mp); 3886 return (retval); 3887 } 3888 3889 /* 3890 * Record that module "dep" is dependent on module "on_mod." 3891 */ 3892 static void 3893 mod_make_requisite(struct modctl *dependent, struct modctl *on_mod) 3894 { 3895 struct modctl_list **pmlnp; /* previous next pointer */ 3896 struct modctl_list *mlp; 3897 struct modctl_list *new; 3898 3899 ASSERT(dependent->mod_busy && on_mod->mod_busy); 3900 mutex_enter(&mod_lock); 3901 3902 /* 3903 * Search dependent's requisite list to see if on_mod is recorded. 3904 * List is ordered by id. 3905 */ 3906 for (pmlnp = &dependent->mod_requisites, mlp = *pmlnp; 3907 mlp; pmlnp = &mlp->modl_next, mlp = *pmlnp) 3908 if (mlp->modl_modp->mod_id >= on_mod->mod_id) 3909 break; 3910 3911 /* Create and insert if not already recorded */ 3912 if ((mlp == NULL) || (mlp->modl_modp->mod_id != on_mod->mod_id)) { 3913 new = kobj_zalloc(sizeof (*new), KM_SLEEP); 3914 new->modl_modp = on_mod; 3915 new->modl_next = mlp; 3916 *pmlnp = new; 3917 3918 /* 3919 * Increment the mod_ref count in our new requisite module. 3920 * This is what keeps a module that has other modules 3921 * which are dependent on it from being uninstalled and 3922 * unloaded. "on_mod"'s mod_ref count decremented in 3923 * mod_release_requisites when the "dependent" module 3924 * unload is complete. "on_mod" must be loaded, but may not 3925 * yet be installed. 3926 */ 3927 on_mod->mod_ref++; 3928 ASSERT(on_mod->mod_ref && on_mod->mod_loaded); 3929 } 3930 3931 mutex_exit(&mod_lock); 3932 } 3933 3934 /* 3935 * release the hold associated with mod_make_requisite mod_ref++ 3936 * as part of unload. 3937 */ 3938 void 3939 mod_release_requisites(struct modctl *modp) 3940 { 3941 struct modctl_list *modl; 3942 struct modctl_list *next; 3943 struct modctl *req; 3944 struct modctl_list *start = NULL, *mod_garbage; 3945 3946 ASSERT(modp->mod_busy); 3947 ASSERT(!MUTEX_HELD(&mod_lock)); 3948 3949 mutex_enter(&mod_lock); /* needed for manipulation of req */ 3950 for (modl = modp->mod_requisites; modl; modl = next) { 3951 next = modl->modl_next; 3952 req = modl->modl_modp; 3953 ASSERT(req->mod_ref >= 1 && req->mod_loaded); 3954 req->mod_ref--; 3955 3956 /* 3957 * Check if the module has to be unloaded or not. 3958 */ 3959 if (req->mod_ref == 0 && req->mod_delay_unload) { 3960 struct modctl_list *new; 3961 /* 3962 * Allocate the modclt_list holding the garbage 3963 * module which should be unloaded later. 3964 */ 3965 new = kobj_zalloc(sizeof (struct modctl_list), 3966 KM_SLEEP); 3967 new->modl_modp = req; 3968 3969 if (start == NULL) 3970 mod_garbage = start = new; 3971 else { 3972 mod_garbage->modl_next = new; 3973 mod_garbage = new; 3974 } 3975 } 3976 3977 /* free the list as we go */ 3978 kobj_free(modl, sizeof (*modl)); 3979 } 3980 modp->mod_requisites = NULL; 3981 mutex_exit(&mod_lock); 3982 3983 /* 3984 * Unload the garbage modules. 3985 */ 3986 for (mod_garbage = start; mod_garbage != NULL; /* nothing */) { 3987 struct modctl_list *old = mod_garbage; 3988 struct modctl *mp = mod_garbage->modl_modp; 3989 ASSERT(mp != NULL); 3990 3991 /* 3992 * Hold this module until it's unloaded completely. 3993 */ 3994 (void) mod_hold_by_modctl(mp, 3995 MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD); 3996 /* 3997 * Check if the module is not unloaded yet and nobody requires 3998 * the module. If it's unloaded already or somebody still 3999 * requires the module, don't unload it now. 4000 */ 4001 if (mp->mod_loaded && mp->mod_ref == 0) 4002 mod_unload(mp); 4003 ASSERT((mp->mod_loaded == 0 && mp->mod_delay_unload == 0) || 4004 (mp->mod_ref > 0)); 4005 mod_release_mod(mp); 4006 4007 mod_garbage = mod_garbage->modl_next; 4008 kobj_free(old, sizeof (struct modctl_list)); 4009 } 4010 } 4011 4012 /* 4013 * Process dependency of the module represented by "dep" on the 4014 * module named by "on." 4015 * 4016 * Called from kobj_do_dependents() to load a module "on" on which 4017 * "dep" depends. 4018 */ 4019 struct modctl * 4020 mod_load_requisite(struct modctl *dep, char *on) 4021 { 4022 struct modctl *on_mod; 4023 int retval; 4024 4025 if ((on_mod = mod_hold_loaded_mod(dep, on, &retval)) != NULL) { 4026 mod_make_requisite(dep, on_mod); 4027 } else if (moddebug & MODDEBUG_ERRMSG) { 4028 printf("error processing %s on which module %s depends\n", 4029 on, dep->mod_modname); 4030 } 4031 return (on_mod); 4032 } 4033 4034 static int 4035 mod_install_requisites(struct modctl *modp) 4036 { 4037 struct modctl_list *modl; 4038 struct modctl *req; 4039 int status = 0; 4040 4041 ASSERT(MUTEX_NOT_HELD(&mod_lock)); 4042 ASSERT(modp->mod_busy); 4043 4044 for (modl = modp->mod_requisites; modl; modl = modl->modl_next) { 4045 req = modl->modl_modp; 4046 (void) mod_hold_by_modctl(req, 4047 MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD); 4048 status = modinstall(req); 4049 mod_release_mod(req); 4050 4051 if (status != 0) 4052 break; 4053 } 4054 return (status); 4055 } 4056 4057 /* 4058 * returns 1 if this thread is doing autounload, 0 otherwise. 4059 * see mod_uninstall_all. 4060 */ 4061 int 4062 mod_in_autounload() 4063 { 4064 return ((int)(uintptr_t)tsd_get(mod_autounload_key)); 4065 } 4066 4067 /* 4068 * gmatch adapted from libc, stripping the wchar stuff 4069 */ 4070 #define popchar(p, c) \ 4071 c = *p++; \ 4072 if (c == 0) \ 4073 return (0) 4074 4075 int 4076 gmatch(const char *s, const char *p) 4077 { 4078 int c, sc; 4079 int ok, lc, notflag; 4080 4081 sc = *s++; 4082 c = *p++; 4083 if (c == 0) 4084 return (sc == c); /* nothing matches nothing */ 4085 4086 switch (c) { 4087 case '\\': 4088 /* skip to quoted character */ 4089 popchar(p, c); 4090 /*FALLTHRU*/ 4091 4092 default: 4093 /* straight comparison */ 4094 if (c != sc) 4095 return (0); 4096 /*FALLTHRU*/ 4097 4098 case '?': 4099 /* first char matches, move to remainder */ 4100 return (sc != '\0' ? gmatch(s, p) : 0); 4101 4102 4103 case '*': 4104 while (*p == '*') 4105 p++; 4106 4107 /* * matches everything */ 4108 if (*p == 0) 4109 return (1); 4110 4111 /* undo skip at the beginning & iterate over substrings */ 4112 --s; 4113 while (*s) { 4114 if (gmatch(s, p)) 4115 return (1); 4116 s++; 4117 } 4118 return (0); 4119 4120 case '[': 4121 /* match any char within [] */ 4122 if (sc == 0) 4123 return (0); 4124 4125 ok = lc = notflag = 0; 4126 4127 if (*p == '!') { 4128 notflag = 1; 4129 p++; 4130 } 4131 popchar(p, c); 4132 4133 do { 4134 if (c == '-' && lc && *p != ']') { 4135 /* test sc against range [c1-c2] */ 4136 popchar(p, c); 4137 if (c == '\\') { 4138 popchar(p, c); 4139 } 4140 4141 if (notflag) { 4142 /* return 0 on mismatch */ 4143 if (lc <= sc && sc <= c) 4144 return (0); 4145 ok++; 4146 } else if (lc <= sc && sc <= c) { 4147 ok++; 4148 } 4149 /* keep going, may get a match next */ 4150 } else if (c == '\\') { 4151 /* skip to quoted character */ 4152 popchar(p, c); 4153 } 4154 lc = c; 4155 if (notflag) { 4156 if (sc == lc) 4157 return (0); 4158 ok++; 4159 } else if (sc == lc) { 4160 ok++; 4161 } 4162 popchar(p, c); 4163 } while (c != ']'); 4164 4165 /* recurse on remainder of string */ 4166 return (ok ? gmatch(s, p) : 0); 4167 } 4168 /*NOTREACHED*/ 4169 } 4170 4171 4172 /* 4173 * Get default perm for device from /etc/minor_perm. Return 0 if match found. 4174 * 4175 * Pure wild-carded patterns are handled separately so the ordering of 4176 * these patterns doesn't matter. We're still dependent on ordering 4177 * however as the first matching entry is the one returned. 4178 * Not ideal but all existing examples and usage do imply this 4179 * ordering implicitly. 4180 * 4181 * Drivers using the clone driver are always good for some entertainment. 4182 * Clone nodes under pseudo have the form clone@0:<driver>. Some minor 4183 * perm entries have the form clone:<driver>, others use <driver>:* 4184 * Examples are clone:llc1 vs. llc2:*, for example. 4185 * 4186 * Minor perms in the clone:<driver> form are mapped to the drivers's 4187 * mperm list, not the clone driver, as wildcard entries for clone 4188 * reference only. In other words, a clone wildcard will match 4189 * references for clone@0:<driver> but never <driver>@<minor>. 4190 * 4191 * Additional minor perms in the standard form are also supported, 4192 * for mixed usage, ie a node with an entry clone:<driver> could 4193 * provide further entries <driver>:<minor>. 4194 * 4195 * Finally, some uses of clone use an alias as the minor name rather 4196 * than the driver name, with the alias as the minor perm entry. 4197 * This case is handled by attaching the driver to bring its 4198 * minor list into existence, then discover the alias via DDI_ALIAS. 4199 * The clone device's minor perm list can then be searched for 4200 * that alias. 4201 */ 4202 4203 static int 4204 dev_alias_minorperm(dev_info_t *dip, char *minor_name, mperm_t *rmp) 4205 { 4206 major_t major; 4207 struct devnames *dnp; 4208 mperm_t *mp; 4209 char *alias = NULL; 4210 dev_info_t *cdevi; 4211 struct ddi_minor_data *dmd; 4212 4213 major = ddi_name_to_major(minor_name); 4214 4215 ASSERT(dip == clone_dip); 4216 ASSERT(major != (major_t)-1); 4217 4218 /* 4219 * Attach the driver named by the minor node, then 4220 * search its first instance's minor list for an 4221 * alias node. 4222 */ 4223 if (ddi_hold_installed_driver(major) == NULL) 4224 return (1); 4225 4226 dnp = &devnamesp[major]; 4227 LOCK_DEV_OPS(&dnp->dn_lock); 4228 4229 if ((cdevi = dnp->dn_head) != NULL) { 4230 mutex_enter(&DEVI(cdevi)->devi_lock); 4231 for (dmd = DEVI(cdevi)->devi_minor; dmd; dmd = dmd->next) { 4232 if (dmd->type == DDM_ALIAS) { 4233 alias = i_ddi_strdup(dmd->ddm_name, KM_SLEEP); 4234 break; 4235 } 4236 } 4237 mutex_exit(&DEVI(cdevi)->devi_lock); 4238 } 4239 4240 UNLOCK_DEV_OPS(&dnp->dn_lock); 4241 ddi_rele_driver(major); 4242 4243 if (alias == NULL) { 4244 if (moddebug & MODDEBUG_MINORPERM) 4245 cmn_err(CE_CONT, "dev_minorperm: " 4246 "no alias for %s\n", minor_name); 4247 return (1); 4248 } 4249 4250 major = ddi_driver_major(clone_dip); 4251 dnp = &devnamesp[major]; 4252 LOCK_DEV_OPS(&dnp->dn_lock); 4253 4254 /* 4255 * Go through the clone driver's mperm list looking 4256 * for a match for the specified alias. 4257 */ 4258 for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) { 4259 if (strcmp(alias, mp->mp_minorname) == 0) { 4260 break; 4261 } 4262 } 4263 4264 if (mp) { 4265 if (moddebug & MODDEBUG_MP_MATCH) { 4266 cmn_err(CE_CONT, 4267 "minor perm defaults: %s %s 0%o %d %d (aliased)\n", 4268 minor_name, alias, mp->mp_mode, 4269 mp->mp_uid, mp->mp_gid); 4270 } 4271 rmp->mp_uid = mp->mp_uid; 4272 rmp->mp_gid = mp->mp_gid; 4273 rmp->mp_mode = mp->mp_mode; 4274 } 4275 UNLOCK_DEV_OPS(&dnp->dn_lock); 4276 4277 kmem_free(alias, strlen(alias)+1); 4278 4279 return (mp == NULL); 4280 } 4281 4282 int 4283 dev_minorperm(dev_info_t *dip, char *name, mperm_t *rmp) 4284 { 4285 major_t major; 4286 char *minor_name; 4287 struct devnames *dnp; 4288 mperm_t *mp; 4289 int is_clone = 0; 4290 4291 if (!minorperm_loaded) { 4292 if (moddebug & MODDEBUG_MINORPERM) 4293 cmn_err(CE_CONT, 4294 "%s: minor perm not yet loaded\n", name); 4295 return (1); 4296 } 4297 4298 minor_name = strchr(name, ':'); 4299 if (minor_name == NULL) 4300 return (1); 4301 minor_name++; 4302 4303 /* 4304 * If it's the clone driver, search the driver as named 4305 * by the minor. All clone minor perm entries other than 4306 * alias nodes are actually installed on the real driver's list. 4307 */ 4308 if (dip == clone_dip) { 4309 major = ddi_name_to_major(minor_name); 4310 if (major == (major_t)-1) { 4311 if (moddebug & MODDEBUG_MINORPERM) 4312 cmn_err(CE_CONT, "dev_minorperm: " 4313 "%s: no such driver\n", minor_name); 4314 return (1); 4315 } 4316 is_clone = 1; 4317 } else { 4318 major = ddi_driver_major(dip); 4319 ASSERT(major != (major_t)-1); 4320 } 4321 4322 dnp = &devnamesp[major]; 4323 LOCK_DEV_OPS(&dnp->dn_lock); 4324 4325 /* 4326 * Go through the driver's mperm list looking for 4327 * a match for the specified minor. If there's 4328 * no matching pattern, use the wild card. 4329 * Defer to the clone wild for clone if specified, 4330 * otherwise fall back to the normal form. 4331 */ 4332 for (mp = dnp->dn_mperm; mp; mp = mp->mp_next) { 4333 if (gmatch(minor_name, mp->mp_minorname) != 0) { 4334 break; 4335 } 4336 } 4337 if (mp == NULL) { 4338 if (is_clone) 4339 mp = dnp->dn_mperm_clone; 4340 if (mp == NULL) 4341 mp = dnp->dn_mperm_wild; 4342 } 4343 4344 if (mp) { 4345 if (moddebug & MODDEBUG_MP_MATCH) { 4346 cmn_err(CE_CONT, 4347 "minor perm defaults: %s %s 0%o %d %d\n", 4348 name, mp->mp_minorname, mp->mp_mode, 4349 mp->mp_uid, mp->mp_gid); 4350 } 4351 rmp->mp_uid = mp->mp_uid; 4352 rmp->mp_gid = mp->mp_gid; 4353 rmp->mp_mode = mp->mp_mode; 4354 } 4355 UNLOCK_DEV_OPS(&dnp->dn_lock); 4356 4357 /* 4358 * If no match can be found for a clone node, 4359 * search for a possible match for an alias. 4360 * One such example is /dev/ptmx -> /devices/pseudo/clone@0:ptm, 4361 * with minor perm entry clone:ptmx. 4362 */ 4363 if (mp == NULL && is_clone) { 4364 return (dev_alias_minorperm(dip, minor_name, rmp)); 4365 } 4366 4367 return (mp == NULL); 4368 } 4369 4370 /* 4371 * dynamicaly reference load a dl module/library, returning handle 4372 */ 4373 /*ARGSUSED*/ 4374 ddi_modhandle_t 4375 ddi_modopen(const char *modname, int mode, int *errnop) 4376 { 4377 char *subdir; 4378 char *mod; 4379 int subdirlen; 4380 struct modctl *hmodp = NULL; 4381 int retval = EINVAL; 4382 4383 ASSERT(modname && (mode == KRTLD_MODE_FIRST)); 4384 if ((modname == NULL) || (mode != KRTLD_MODE_FIRST)) 4385 goto out; 4386 4387 /* find last '/' in modname */ 4388 mod = strrchr(modname, '/'); 4389 4390 if (mod) { 4391 /* for subdir string without modification to argument */ 4392 mod++; 4393 subdirlen = mod - modname; 4394 subdir = kmem_alloc(subdirlen, KM_SLEEP); 4395 (void) strlcpy(subdir, modname, subdirlen); 4396 } else { 4397 subdirlen = 0; 4398 subdir = "misc"; 4399 mod = (char *)modname; 4400 } 4401 4402 /* reference load with errno return value */ 4403 retval = modrload(subdir, mod, &hmodp); 4404 4405 if (subdirlen) 4406 kmem_free(subdir, subdirlen); 4407 4408 out: if (errnop) 4409 *errnop = retval; 4410 4411 if (moddebug & MODDEBUG_DDI_MOD) 4412 printf("ddi_modopen %s mode %x: %s %p %d\n", 4413 modname ? modname : "<unknown>", mode, 4414 hmodp ? hmodp->mod_filename : "<unknown>", 4415 (void *)hmodp, retval); 4416 4417 return ((ddi_modhandle_t)hmodp); 4418 } 4419 4420 /* lookup "name" in open dl module/library */ 4421 void * 4422 ddi_modsym(ddi_modhandle_t h, const char *name, int *errnop) 4423 { 4424 struct modctl *hmodp = (struct modctl *)h; 4425 void *f; 4426 int retval; 4427 4428 ASSERT(hmodp && name && hmodp->mod_installed && (hmodp->mod_ref >= 1)); 4429 if ((hmodp == NULL) || (name == NULL) || 4430 (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) { 4431 f = NULL; 4432 retval = EINVAL; 4433 } else { 4434 f = (void *)kobj_lookup(hmodp->mod_mp, (char *)name); 4435 if (f) 4436 retval = 0; 4437 else 4438 retval = ENOTSUP; 4439 } 4440 4441 if (moddebug & MODDEBUG_DDI_MOD) 4442 printf("ddi_modsym in %s of %s: %d %p\n", 4443 hmodp ? hmodp->mod_modname : "<unknown>", 4444 name ? name : "<unknown>", retval, f); 4445 4446 if (errnop) 4447 *errnop = retval; 4448 return (f); 4449 } 4450 4451 /* dynamic (un)reference unload of an open dl module/library */ 4452 int 4453 ddi_modclose(ddi_modhandle_t h) 4454 { 4455 struct modctl *hmodp = (struct modctl *)h; 4456 struct modctl *modp = NULL; 4457 int retval; 4458 4459 ASSERT(hmodp && hmodp->mod_installed && (hmodp->mod_ref >= 1)); 4460 if ((hmodp == NULL) || 4461 (hmodp->mod_installed == 0) || (hmodp->mod_ref < 1)) { 4462 retval = EINVAL; 4463 goto out; 4464 } 4465 4466 retval = modunrload(hmodp->mod_id, &modp, ddi_modclose_unload); 4467 if (retval == EBUSY) 4468 retval = 0; /* EBUSY is not an error */ 4469 4470 if (retval == 0) { 4471 ASSERT(hmodp == modp); 4472 if (hmodp != modp) 4473 retval = EINVAL; 4474 } 4475 4476 out: if (moddebug & MODDEBUG_DDI_MOD) 4477 printf("ddi_modclose %s: %d\n", 4478 hmodp ? hmodp->mod_modname : "<unknown>", retval); 4479 4480 return (retval); 4481 } 4482