xref: /titanic_50/usr/src/uts/common/os/mem_cage.c (revision e099bf07784b9aadc4cc8655e69d462397e99860)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/thread.h>
31 #include <sys/proc.h>
32 #include <sys/callb.h>
33 #include <sys/vnode.h>
34 #include <sys/debug.h>
35 #include <sys/systm.h>		/* for bzero */
36 #include <sys/memlist.h>
37 #include <sys/cmn_err.h>
38 #include <sys/sysmacros.h>
39 #include <sys/vmsystm.h>	/* for NOMEMWAIT() */
40 #include <sys/atomic.h>		/* used to update kcage_freemem */
41 #include <sys/kmem.h>		/* for kmem_reap */
42 #include <sys/errno.h>
43 #include <sys/mem_cage.h>
44 #include <vm/seg_kmem.h>
45 #include <vm/page.h>
46 #include <vm/hat.h>
47 #include <vm/vm_dep.h>
48 #include <sys/mem_config.h>
49 #include <sys/lgrp.h>
50 #include <sys/rwlock.h>
51 
52 extern pri_t maxclsyspri;
53 
54 #ifdef DEBUG
55 #define	KCAGE_STATS
56 #endif
57 
58 #ifdef KCAGE_STATS
59 
60 #define	KCAGE_STATS_VERSION 9	/* can help report generators */
61 #define	KCAGE_STATS_NSCANS 256	/* depth of scan statistics buffer */
62 
63 struct kcage_stats_scan {
64 	/* managed by KCAGE_STAT_* macros */
65 	clock_t	scan_lbolt;
66 	uint_t	scan_id;
67 
68 	/* set in kcage_cageout() */
69 	uint_t	kt_passes;
70 	clock_t	kt_ticks;
71 	pgcnt_t	kt_kcage_freemem_start;
72 	pgcnt_t	kt_kcage_freemem_end;
73 	pgcnt_t kt_freemem_start;
74 	pgcnt_t kt_freemem_end;
75 	uint_t	kt_examined;
76 	uint_t	kt_cantlock;
77 	uint_t	kt_gotone;
78 	uint_t	kt_gotonefree;
79 	uint_t	kt_skiplevel;
80 	uint_t	kt_skipshared;
81 	uint_t	kt_skiprefd;
82 	uint_t	kt_destroy;
83 
84 	/* set in kcage_invalidate_page() */
85 	uint_t	kip_reloclocked;
86 	uint_t	kip_relocmod;
87 	uint_t	kip_destroy;
88 	uint_t	kip_nomem;
89 	uint_t	kip_demotefailed;
90 
91 	/* set in kcage_expand() */
92 	uint_t	ke_wanted;
93 	uint_t	ke_examined;
94 	uint_t	ke_lefthole;
95 	uint_t	ke_gotone;
96 	uint_t	ke_gotonefree;
97 };
98 
99 struct kcage_stats {
100 	/* managed by KCAGE_STAT_* macros */
101 	uint_t	version;
102 	uint_t	size;
103 
104 	/* set in kcage_cageout */
105 	uint_t	kt_wakeups;
106 	uint_t	kt_scans;
107 	uint_t	kt_cageout_break;
108 
109 	/* set in kcage_expand */
110 	uint_t	ke_calls;
111 	uint_t	ke_nopfn;
112 	uint_t	ke_nopaget;
113 	uint_t	ke_isnoreloc;
114 	uint_t	ke_deleting;
115 	uint_t	ke_lowfreemem;
116 	uint_t	ke_terminate;
117 
118 	/* set in kcage_freemem_add() */
119 	uint_t	kfa_trottlewake;
120 
121 	/* set in kcage_freemem_sub() */
122 	uint_t	kfs_cagewake;
123 
124 	/* set in kcage_create_throttle */
125 	uint_t	kct_calls;
126 	uint_t	kct_cageout;
127 	uint_t	kct_critical;
128 	uint_t	kct_exempt;
129 	uint_t	kct_cagewake;
130 	uint_t	kct_wait;
131 	uint_t	kct_progress;
132 	uint_t	kct_noprogress;
133 	uint_t	kct_timeout;
134 
135 	/* set in kcage_cageout_wakeup */
136 	uint_t	kcw_expandearly;
137 
138 	/* managed by KCAGE_STAT_* macros */
139 	uint_t	scan_array_size;
140 	uint_t	scan_index;
141 	struct kcage_stats_scan scans[KCAGE_STATS_NSCANS];
142 };
143 
144 static struct kcage_stats kcage_stats;
145 static struct kcage_stats_scan kcage_stats_scan_zero;
146 
147 /*
148  * No real need for atomics here. For the most part the incs and sets are
149  * done by the kernel cage thread. There are a few that are done by any
150  * number of other threads. Those cases are noted by comments.
151  */
152 #define	KCAGE_STAT_INCR(m)	kcage_stats.m++
153 
154 #define	KCAGE_STAT_NINCR(m, v) kcage_stats.m += (v)
155 
156 #define	KCAGE_STAT_INCR_SCAN(m)	\
157 	KCAGE_STAT_INCR(scans[kcage_stats.scan_index].m)
158 
159 #define	KCAGE_STAT_NINCR_SCAN(m, v) \
160 	KCAGE_STAT_NINCR(scans[kcage_stats.scan_index].m, v)
161 
162 #define	KCAGE_STAT_SET(m, v)	kcage_stats.m = (v)
163 
164 #define	KCAGE_STAT_SETZ(m, v)	\
165 	if (kcage_stats.m == 0) kcage_stats.m = (v)
166 
167 #define	KCAGE_STAT_SET_SCAN(m, v)	\
168 	KCAGE_STAT_SET(scans[kcage_stats.scan_index].m, v)
169 
170 #define	KCAGE_STAT_SETZ_SCAN(m, v)	\
171 	KCAGE_STAT_SETZ(scans[kcage_stats.scan_index].m, v)
172 
173 #define	KCAGE_STAT_INC_SCAN_INDEX \
174 	KCAGE_STAT_SET_SCAN(scan_lbolt, lbolt); \
175 	KCAGE_STAT_SET_SCAN(scan_id, kcage_stats.scan_index); \
176 	kcage_stats.scan_index = \
177 	(kcage_stats.scan_index + 1) % KCAGE_STATS_NSCANS; \
178 	kcage_stats.scans[kcage_stats.scan_index] = kcage_stats_scan_zero
179 
180 #define	KCAGE_STAT_INIT_SCAN_INDEX \
181 	kcage_stats.version = KCAGE_STATS_VERSION; \
182 	kcage_stats.size = sizeof (kcage_stats); \
183 	kcage_stats.scan_array_size = KCAGE_STATS_NSCANS; \
184 	kcage_stats.scan_index = 0
185 
186 #else /* KCAGE_STATS */
187 
188 #define	KCAGE_STAT_INCR(v)
189 #define	KCAGE_STAT_NINCR(m, v)
190 #define	KCAGE_STAT_INCR_SCAN(v)
191 #define	KCAGE_STAT_NINCR_SCAN(m, v)
192 #define	KCAGE_STAT_SET(m, v)
193 #define	KCAGE_STAT_SETZ(m, v)
194 #define	KCAGE_STAT_SET_SCAN(m, v)
195 #define	KCAGE_STAT_SETZ_SCAN(m, v)
196 #define	KCAGE_STAT_INC_SCAN_INDEX
197 #define	KCAGE_STAT_INIT_SCAN_INDEX
198 
199 #endif /* KCAGE_STATS */
200 
201 static kmutex_t kcage_throttle_mutex;	/* protects kcage_throttle_cv */
202 static kcondvar_t kcage_throttle_cv;
203 
204 static kmutex_t kcage_cageout_mutex;	/* protects cv and ready flag */
205 static kcondvar_t kcage_cageout_cv;	/* cageout thread naps here */
206 static int kcage_cageout_ready;		/* nonzero when cageout thread ready */
207 kthread_id_t kcage_cageout_thread;	/* to aid debugging */
208 
209 static krwlock_t kcage_range_rwlock;	/* protects kcage_glist elements */
210 
211 /*
212  * Cage expansion happens within a range.
213  */
214 struct kcage_glist {
215 	struct kcage_glist	*next;
216 	pfn_t			base;
217 	pfn_t			lim;
218 	pfn_t			curr;
219 	int			decr;
220 };
221 
222 static struct kcage_glist *kcage_glist;
223 static struct kcage_glist *kcage_current_glist;
224 
225 /*
226  * The firstfree element is provided so that kmem_alloc can be avoided
227  * until that cage has somewhere to go. This is not currently a problem
228  * as early kmem_alloc's use BOP_ALLOC instead of page_create_va.
229  */
230 static vmem_t *kcage_arena;
231 static struct kcage_glist kcage_glist_firstfree;
232 static struct kcage_glist *kcage_glist_freelist = &kcage_glist_firstfree;
233 
234 /*
235  * Miscellaneous forward references
236  */
237 static struct kcage_glist *kcage_glist_alloc(void);
238 static int kcage_glist_delete(pfn_t, pfn_t, struct kcage_glist **);
239 static void kcage_cageout(void);
240 static int kcage_invalidate_page(page_t *, pgcnt_t *);
241 static int kcage_setnoreloc_pages(page_t *, se_t);
242 static int kcage_range_add_internal(pfn_t base, pgcnt_t npgs, kcage_dir_t);
243 static void kcage_init(pgcnt_t preferred_size);
244 static int kcage_range_delete_internal(pfn_t base, pgcnt_t npgs);
245 
246 /*
247  * Kernel Memory Cage counters and thresholds.
248  */
249 int kcage_on = 0;
250 pgcnt_t kcage_freemem;
251 pgcnt_t kcage_needfree;
252 pgcnt_t kcage_lotsfree;
253 pgcnt_t kcage_desfree;
254 pgcnt_t kcage_minfree;
255 pgcnt_t kcage_throttlefree;
256 pgcnt_t	kcage_reserve;
257 int kcage_maxwait = 10;	/* in seconds */
258 
259 /* when we use lp for kmem we start the cage at a higher initial value */
260 pgcnt_t kcage_kmemlp_mincage;
261 
262 #ifdef DEBUG
263 pgcnt_t	kcage_pagets;
264 #define	KCAGEPAGETS_INC()	kcage_pagets++
265 #else
266 #define	KCAGEPAGETS_INC()
267 #endif
268 
269 /* kstats to export what pages are currently caged */
270 kmutex_t kcage_kstat_lock;
271 static int kcage_kstat_update(kstat_t *ksp, int rw);
272 static int kcage_kstat_snapshot(kstat_t *ksp, void *buf, int rw);
273 
274 /*
275  * Startup and Dynamic Reconfiguration interfaces.
276  * kcage_range_add()
277  * kcage_range_del()
278  * kcage_range_delete_post_mem_del()
279  * kcage_range_init()
280  * kcage_set_thresholds()
281  */
282 
283 /*
284  * Called from page_get_contig_pages to get the approximate kcage pfn range
285  * for exclusion from search for contiguous pages. This routine is called
286  * without kcage_range lock (kcage routines can call page_get_contig_pages
287  * through page_relocate) and with the assumption, based on kcage_range_add,
288  * that kcage_current_glist always contain a valid pointer.
289  */
290 
291 int
292 kcage_current_pfn(pfn_t *pfncur)
293 {
294 	struct kcage_glist *lp = kcage_current_glist;
295 
296 	ASSERT(kcage_on);
297 
298 	ASSERT(lp != NULL);
299 
300 	*pfncur = lp->curr;
301 
302 	return (lp->decr);
303 }
304 
305 /*
306  * Called from vm_pagelist.c during coalesce to find kernel cage regions
307  * within an mnode. Looks for the lowest range between lo and hi.
308  *
309  * Kernel cage memory is defined between kcage_glist and kcage_current_glist.
310  * Non-cage memory is defined between kcage_current_glist and list end.
311  *
312  * If incage is set, returns the lowest kcage range. Otherwise returns lowest
313  * non-cage range.
314  *
315  * Returns zero on success and nlo, nhi:
316  * 	lo <= nlo < nhi <= hi
317  * Returns non-zero if no overlapping range is found.
318  */
319 int
320 kcage_next_range(int incage, pfn_t lo, pfn_t hi,
321     pfn_t *nlo, pfn_t *nhi)
322 {
323 	struct kcage_glist *lp;
324 	pfn_t tlo = hi;
325 	pfn_t thi = hi;
326 
327 	ASSERT(lo <= hi);
328 
329 	/*
330 	 * Reader lock protects the list, but kcage_get_pfn
331 	 * running concurrently may advance kcage_current_glist
332 	 * and also update kcage_current_glist->curr. Page
333 	 * coalesce can handle this race condition.
334 	 */
335 	rw_enter(&kcage_range_rwlock, RW_READER);
336 
337 	for (lp = incage ? kcage_glist : kcage_current_glist;
338 		lp != NULL; lp = lp->next) {
339 
340 		pfn_t klo, khi;
341 
342 		/* find the range limits in this element */
343 		if ((incage && lp->decr) || (!incage && !lp->decr)) {
344 			klo = lp->curr;
345 			khi = lp->lim;
346 		} else {
347 			klo = lp->base;
348 			khi = lp->curr;
349 		}
350 
351 		/* handle overlap */
352 		if (klo < tlo && klo < khi && lo < khi && klo < hi) {
353 			tlo = MAX(lo, klo);
354 			thi = MIN(hi, khi);
355 			if (tlo == lo)
356 				break;
357 		}
358 
359 		/* check end of kcage */
360 		if (incage && lp == kcage_current_glist) {
361 			break;
362 		}
363 	}
364 
365 	rw_exit(&kcage_range_rwlock);
366 
367 	/* return non-zero if no overlapping range found */
368 	if (tlo == thi)
369 		return (1);
370 
371 	ASSERT(lo <= tlo && tlo < thi && thi <= hi);
372 
373 	/* return overlapping range */
374 	*nlo = tlo;
375 	*nhi = thi;
376 	return (0);
377 }
378 
379 void
380 kcage_range_init(struct memlist *ml, kcage_dir_t d, pgcnt_t preferred_size)
381 {
382 	int ret = 0;
383 
384 	ASSERT(kcage_arena == NULL);
385 	kcage_arena = vmem_create("kcage_arena", NULL, 0, sizeof (uint64_t),
386 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
387 	ASSERT(kcage_arena != NULL);
388 
389 	if (d == KCAGE_DOWN) {
390 		while (ml->next != NULL)
391 			ml = ml->next;
392 	}
393 
394 	rw_enter(&kcage_range_rwlock, RW_WRITER);
395 
396 	while (ml != NULL) {
397 		ret = kcage_range_add_internal(btop(ml->address),
398 		    btop(ml->size), d);
399 		if (ret)
400 			panic("kcage_range_add_internal failed: "
401 			    "ml=%p, ret=0x%x\n", ml, ret);
402 
403 		ml = (d == KCAGE_DOWN ? ml->prev : ml->next);
404 	}
405 
406 	rw_exit(&kcage_range_rwlock);
407 
408 	if (ret == 0)
409 		kcage_init(preferred_size);
410 }
411 
412 /*
413  * Third arg controls direction of growth: 0: increasing pfns,
414  * 1: decreasing.
415  */
416 static int
417 kcage_range_add_internal(pfn_t base, pgcnt_t npgs, kcage_dir_t d)
418 {
419 	struct kcage_glist *new, **lpp;
420 	pfn_t lim;
421 
422 	ASSERT(rw_write_held(&kcage_range_rwlock));
423 
424 	ASSERT(npgs != 0);
425 	if (npgs == 0)
426 		return (EINVAL);
427 
428 	lim = base + npgs;
429 
430 	ASSERT(lim > base);
431 	if (lim <= base)
432 		return (EINVAL);
433 
434 	new = kcage_glist_alloc();
435 	if (new == NULL) {
436 		return (ENOMEM);
437 	}
438 
439 	new->base = base;
440 	new->lim = lim;
441 	new->decr = (d == KCAGE_DOWN);
442 	if (new->decr != 0)
443 		new->curr = new->lim;
444 	else
445 		new->curr = new->base;
446 	/*
447 	 * Any overlapping existing ranges are removed by deleting
448 	 * from the new list as we search for the tail.
449 	 */
450 	lpp = &kcage_glist;
451 	while (*lpp != NULL) {
452 		int ret;
453 		ret = kcage_glist_delete((*lpp)->base, (*lpp)->lim, &new);
454 		if (ret != 0)
455 			return (ret);
456 		lpp = &(*lpp)->next;
457 	}
458 
459 	*lpp = new;
460 
461 	if (kcage_current_glist == NULL) {
462 		kcage_current_glist = kcage_glist;
463 	}
464 
465 	return (0);
466 }
467 
468 int
469 kcage_range_add(pfn_t base, pgcnt_t npgs, kcage_dir_t d)
470 {
471 	int ret;
472 
473 	rw_enter(&kcage_range_rwlock, RW_WRITER);
474 	ret = kcage_range_add_internal(base, npgs, d);
475 	rw_exit(&kcage_range_rwlock);
476 	return (ret);
477 }
478 
479 /*
480  * Calls to add and delete must be protected by kcage_range_rwlock
481  */
482 static int
483 kcage_range_delete_internal(pfn_t base, pgcnt_t npgs)
484 {
485 	struct kcage_glist *lp;
486 	pfn_t lim;
487 
488 	ASSERT(rw_write_held(&kcage_range_rwlock));
489 
490 	ASSERT(npgs != 0);
491 	if (npgs == 0)
492 		return (EINVAL);
493 
494 	lim = base + npgs;
495 
496 	ASSERT(lim > base);
497 	if (lim <= base)
498 		return (EINVAL);
499 
500 	/*
501 	 * Check if the delete is OK first as a number of elements
502 	 * might be involved and it will be difficult to go
503 	 * back and undo (can't just add the range back in).
504 	 */
505 	for (lp = kcage_glist; lp != NULL; lp = lp->next) {
506 		/*
507 		 * If there have been no pages allocated from this
508 		 * element, we don't need to check it.
509 		 */
510 		if ((lp->decr == 0 && lp->curr == lp->base) ||
511 		    (lp->decr != 0 && lp->curr == lp->lim))
512 			continue;
513 		/*
514 		 * If the element does not overlap, its OK.
515 		 */
516 		if (base >= lp->lim || lim <= lp->base)
517 			continue;
518 		/*
519 		 * Overlapping element: Does the range to be deleted
520 		 * overlap the area already used? If so fail.
521 		 */
522 		if (lp->decr == 0 && base < lp->curr && lim >= lp->base) {
523 			return (EBUSY);
524 		}
525 		if (lp->decr != 0 && base < lp->lim && lim >= lp->curr) {
526 			return (EBUSY);
527 		}
528 	}
529 	return (kcage_glist_delete(base, lim, &kcage_glist));
530 }
531 
532 int
533 kcage_range_delete(pfn_t base, pgcnt_t npgs)
534 {
535 	int ret;
536 
537 	rw_enter(&kcage_range_rwlock, RW_WRITER);
538 	ret = kcage_range_delete_internal(base, npgs);
539 	rw_exit(&kcage_range_rwlock);
540 	return (ret);
541 }
542 
543 /*
544  * Calls to add and delete must be protected by kcage_range_rwlock.
545  * This routine gets called after successful Solaris memory
546  * delete operation from DR post memory delete routines.
547  */
548 static int
549 kcage_range_delete_post_mem_del_internal(pfn_t base, pgcnt_t npgs)
550 {
551 	pfn_t lim;
552 
553 	ASSERT(rw_write_held(&kcage_range_rwlock));
554 
555 	ASSERT(npgs != 0);
556 	if (npgs == 0)
557 		return (EINVAL);
558 
559 	lim = base + npgs;
560 
561 	ASSERT(lim > base);
562 	if (lim <= base)
563 		return (EINVAL);
564 
565 	return (kcage_glist_delete(base, lim, &kcage_glist));
566 }
567 
568 int
569 kcage_range_delete_post_mem_del(pfn_t base, pgcnt_t npgs)
570 {
571 	int ret;
572 
573 	rw_enter(&kcage_range_rwlock, RW_WRITER);
574 	ret = kcage_range_delete_post_mem_del_internal(base, npgs);
575 	rw_exit(&kcage_range_rwlock);
576 	return (ret);
577 }
578 
579 /*
580  * No locking is required here as the whole operation is covered
581  * by kcage_range_rwlock writer lock.
582  */
583 static struct kcage_glist *
584 kcage_glist_alloc(void)
585 {
586 	struct kcage_glist *new;
587 
588 	if ((new = kcage_glist_freelist) != NULL) {
589 		kcage_glist_freelist = new->next;
590 	} else {
591 		new = vmem_alloc(kcage_arena, sizeof (*new), VM_NOSLEEP);
592 	}
593 
594 	if (new != NULL)
595 		bzero(new, sizeof (*new));
596 
597 	return (new);
598 }
599 
600 static void
601 kcage_glist_free(struct kcage_glist *lp)
602 {
603 	lp->next = kcage_glist_freelist;
604 	kcage_glist_freelist = lp;
605 }
606 
607 static int
608 kcage_glist_delete(pfn_t base, pfn_t lim, struct kcage_glist **lpp)
609 {
610 	struct kcage_glist *lp, *prev = *lpp;
611 
612 	while ((lp = *lpp) != NULL) {
613 		if (lim > lp->base && base < lp->lim) {
614 			/* The delete range overlaps this element. */
615 			if (base <= lp->base && lim >= lp->lim) {
616 				/* Delete whole element. */
617 				*lpp = lp->next;
618 				if (lp == kcage_current_glist) {
619 					/* This can never happen. */
620 					ASSERT(kcage_current_glist != prev);
621 					kcage_current_glist = prev;
622 				}
623 				kcage_glist_free(lp);
624 				continue;
625 			}
626 
627 			/* Partial delete. */
628 			if (base > lp->base && lim < lp->lim) {
629 				struct kcage_glist *new;
630 
631 				/*
632 				 * Remove a section from the middle,
633 				 * need to allocate a new element.
634 				 */
635 				new = kcage_glist_alloc();
636 				if (new == NULL) {
637 					return (ENOMEM);
638 				}
639 
640 				/*
641 				 * Tranfser unused range to new.
642 				 * Edit lp in place to preserve
643 				 * kcage_current_glist.
644 				 */
645 				new->decr = lp->decr;
646 				if (new->decr != 0) {
647 					new->base = lp->base;
648 					new->lim = base;
649 					new->curr = base;
650 
651 					lp->base = lim;
652 				} else {
653 					new->base = lim;
654 					new->lim = lp->lim;
655 					new->curr = new->base;
656 
657 					lp->lim = base;
658 				}
659 
660 				/* Insert new. */
661 				new->next = lp->next;
662 				lp->next = new;
663 				lpp = &lp->next;
664 			} else {
665 				/* Delete part of current block. */
666 				if (base > lp->base) {
667 					ASSERT(lim >= lp->lim);
668 					ASSERT(base < lp->lim);
669 					if (lp->decr != 0 &&
670 					    lp->curr == lp->lim)
671 						lp->curr = base;
672 					lp->lim = base;
673 				} else {
674 					ASSERT(base <= lp->base);
675 					ASSERT(lim > lp->base);
676 					if (lp->decr == 0 &&
677 					    lp->curr == lp->base)
678 						lp->curr = lim;
679 					lp->base = lim;
680 				}
681 			}
682 		}
683 		prev = *lpp;
684 		lpp = &(*lpp)->next;
685 	}
686 
687 	return (0);
688 }
689 
690 /*
691  * If lockit is 1, kcage_get_pfn holds the
692  * reader lock for kcage_range_rwlock.
693  * Changes to lp->curr can cause race conditions, but
694  * they are handled by higher level code (see kcage_next_range.)
695  */
696 static pfn_t
697 kcage_get_pfn(int lockit)
698 {
699 	struct kcage_glist *lp;
700 	pfn_t pfn = PFN_INVALID;
701 
702 	if (lockit && !rw_tryenter(&kcage_range_rwlock, RW_READER))
703 		return (pfn);
704 
705 	lp = kcage_current_glist;
706 	while (lp != NULL) {
707 		if (lp->decr != 0) {
708 			if (lp->curr != lp->base) {
709 				pfn = --lp->curr;
710 				break;
711 			}
712 		} else {
713 			if (lp->curr != lp->lim) {
714 				pfn = lp->curr++;
715 				break;
716 			}
717 		}
718 
719 		lp = lp->next;
720 		if (lp)
721 			kcage_current_glist = lp;
722 	}
723 
724 	if (lockit)
725 		rw_exit(&kcage_range_rwlock);
726 	return (pfn);
727 }
728 
729 /*
730  * Walk the physical address space of the cage.
731  * This routine does not guarantee to return PFNs in the order
732  * in which they were allocated to the cage. Instead, it walks
733  * each range as they appear on the growth list returning the PFNs
734  * range in ascending order.
735  *
736  * To begin scanning at lower edge of cage, reset should be nonzero.
737  * To step through cage, reset should be zero.
738  *
739  * PFN_INVALID will be returned when the upper end of the cage is
740  * reached -- indicating a full scan of the cage has been completed since
741  * previous reset. PFN_INVALID will continue to be returned until
742  * kcage_walk_cage is reset.
743  *
744  * It is possible to receive a PFN_INVALID result on reset if a growth
745  * list is not installed or if none of the PFNs in the installed list have
746  * been allocated to the cage. In otherwords, there is no cage.
747  *
748  * Caller need not hold kcage_range_rwlock while calling this function
749  * as the front part of the list is static - pages never come out of
750  * the cage.
751  *
752  * The caller is expected to only be kcage_cageout().
753  */
754 static pfn_t
755 kcage_walk_cage(int reset)
756 {
757 	static struct kcage_glist *lp = NULL;
758 	static pfn_t pfn;
759 
760 	if (reset)
761 		lp = NULL;
762 	if (lp == NULL) {
763 		lp = kcage_glist;
764 		pfn = PFN_INVALID;
765 	}
766 again:
767 	if (pfn == PFN_INVALID) {
768 		if (lp == NULL)
769 			return (PFN_INVALID);
770 
771 		if (lp->decr != 0) {
772 			/*
773 			 * In this range the cage grows from the highest
774 			 * address towards the lowest.
775 			 * Arrange to return pfns from curr to lim-1,
776 			 * inclusive, in ascending order.
777 			 */
778 
779 			pfn = lp->curr;
780 		} else {
781 			/*
782 			 * In this range the cage grows from the lowest
783 			 * address towards the highest.
784 			 * Arrange to return pfns from base to curr,
785 			 * inclusive, in ascending order.
786 			 */
787 
788 			pfn = lp->base;
789 		}
790 	}
791 
792 	if (lp->decr != 0) {		/* decrementing pfn */
793 		if (pfn == lp->lim) {
794 			/* Don't go beyond the static part of the glist. */
795 			if (lp == kcage_current_glist)
796 				lp = NULL;
797 			else
798 				lp = lp->next;
799 			pfn = PFN_INVALID;
800 			goto again;
801 		}
802 
803 		ASSERT(pfn >= lp->curr && pfn < lp->lim);
804 	} else {			/* incrementing pfn */
805 		if (pfn == lp->curr) {
806 			/* Don't go beyond the static part of the glist. */
807 			if (lp == kcage_current_glist)
808 				lp = NULL;
809 			else
810 				lp = lp->next;
811 			pfn = PFN_INVALID;
812 			goto again;
813 		}
814 
815 		ASSERT(pfn >= lp->base && pfn < lp->curr);
816 	}
817 
818 	return (pfn++);
819 }
820 
821 /*
822  * Callback functions for to recalc cage thresholds after
823  * Kphysm memory add/delete operations.
824  */
825 /*ARGSUSED*/
826 static void
827 kcage_kphysm_postadd_cb(void *arg, pgcnt_t delta_pages)
828 {
829 	kcage_recalc_thresholds();
830 }
831 
832 /*ARGSUSED*/
833 static int
834 kcage_kphysm_predel_cb(void *arg, pgcnt_t delta_pages)
835 {
836 	/* TODO: when should cage refuse memory delete requests? */
837 	return (0);
838 }
839 
840 /*ARGSUSED*/
841 static  void
842 kcage_kphysm_postdel_cb(void *arg, pgcnt_t delta_pages, int cancelled)
843 {
844 	kcage_recalc_thresholds();
845 }
846 
847 static kphysm_setup_vector_t kcage_kphysm_vectors = {
848 	KPHYSM_SETUP_VECTOR_VERSION,
849 	kcage_kphysm_postadd_cb,
850 	kcage_kphysm_predel_cb,
851 	kcage_kphysm_postdel_cb
852 };
853 
854 /*
855  * This is called before a CPR suspend and after a CPR resume.  We have to
856  * turn off kcage_cageout_ready before a suspend, and turn it back on after a
857  * restart.
858  */
859 /*ARGSUSED*/
860 static boolean_t
861 kcage_cageout_cpr(void *arg, int code)
862 {
863 	if (code == CB_CODE_CPR_CHKPT) {
864 		ASSERT(kcage_cageout_ready);
865 		kcage_cageout_ready = 0;
866 		return (B_TRUE);
867 	} else if (code == CB_CODE_CPR_RESUME) {
868 		ASSERT(kcage_cageout_ready == 0);
869 		kcage_cageout_ready = 1;
870 		return (B_TRUE);
871 	}
872 	return (B_FALSE);
873 }
874 
875 /*
876  * kcage_recalc_preferred_size() increases initial cage size to improve large
877  * page availability when lp for kmem is enabled and kpr is disabled
878  */
879 static pgcnt_t
880 kcage_recalc_preferred_size(pgcnt_t preferred_size)
881 {
882 	if (SEGKMEM_USE_LARGEPAGES && segkmem_reloc == 0) {
883 		pgcnt_t lpmincage = kcage_kmemlp_mincage;
884 		if (lpmincage == 0) {
885 			lpmincage = MIN(P2ROUNDUP(((physmem * PAGESIZE) / 8),
886 			    segkmem_heaplp_quantum), 0x40000000UL) / PAGESIZE;
887 		}
888 		kcage_kmemlp_mincage = MIN(lpmincage,
889 			    (segkmem_kmemlp_max / PAGESIZE));
890 		preferred_size = MAX(kcage_kmemlp_mincage, preferred_size);
891 	}
892 	return (preferred_size);
893 }
894 
895 /*
896  * Kcage_init() builds the cage and initializes the cage thresholds.
897  * The size of the cage is determined by the argument preferred_size.
898  * or the actual amount of memory, whichever is smaller.
899  */
900 static void
901 kcage_init(pgcnt_t preferred_size)
902 {
903 	pgcnt_t wanted;
904 	pfn_t pfn;
905 	page_t *pp;
906 	kstat_t *ksp;
907 
908 	extern struct vnode kvp;
909 	extern void page_list_noreloc_startup(page_t *);
910 
911 	ASSERT(!kcage_on);
912 
913 	/* increase preferred cage size for lp for kmem */
914 	preferred_size = kcage_recalc_preferred_size(preferred_size);
915 
916 	/* Debug note: initialize this now so early expansions can stat */
917 	KCAGE_STAT_INIT_SCAN_INDEX;
918 
919 	/*
920 	 * Initialize cage thresholds and install kphysm callback.
921 	 * If we can't arrange to have the thresholds track with
922 	 * available physical memory, then the cage thresholds may
923 	 * end up over time at levels that adversly effect system
924 	 * performance; so, bail out.
925 	 */
926 	kcage_recalc_thresholds();
927 	if (kphysm_setup_func_register(&kcage_kphysm_vectors, NULL)) {
928 		ASSERT(0);		/* Catch this in DEBUG kernels. */
929 		return;
930 	}
931 
932 	/*
933 	 * Limit startup cage size within the range of kcage_minfree
934 	 * and availrmem, inclusively.
935 	 */
936 	wanted = MIN(MAX(preferred_size, kcage_minfree), availrmem);
937 
938 	/*
939 	 * Construct the cage. PFNs are allocated from the glist. It
940 	 * is assumed that the list has been properly ordered for the
941 	 * platform by the platform code. Typically, this is as simple
942 	 * as calling kcage_range_init(phys_avail, decr), where decr is
943 	 * 1 if the kernel has been loaded into upper end of physical
944 	 * memory, or 0 if the kernel has been loaded at the low end.
945 	 *
946 	 * Note: it is assumed that we are in the startup flow, so there
947 	 * is no reason to grab the page lock.
948 	 */
949 	kcage_freemem = 0;
950 	pfn = PFN_INVALID;			/* prime for alignment test */
951 	while (wanted != 0) {
952 		if ((pfn = kcage_get_pfn(0)) == PFN_INVALID)
953 			break;
954 
955 		if ((pp = page_numtopp_nolock(pfn)) != NULL) {
956 			KCAGEPAGETS_INC();
957 			/*
958 			 * Set the noreloc state on the page.
959 			 * If the page is free and not already
960 			 * on the noreloc list then move it.
961 			 */
962 			if (PP_ISFREE(pp)) {
963 				if (PP_ISNORELOC(pp) == 0)
964 					page_list_noreloc_startup(pp);
965 			} else {
966 				ASSERT(pp->p_szc == 0);
967 				PP_SETNORELOC(pp);
968 			}
969 		}
970 		PLCNT_XFER_NORELOC(pp);
971 		wanted -= 1;
972 	}
973 
974 	/*
975 	 * Need to go through and find kernel allocated pages
976 	 * and capture them into the Cage.  These will primarily
977 	 * be pages gotten through boot_alloc().
978 	 */
979 	if (kvp.v_pages) {
980 
981 		pp = kvp.v_pages;
982 		do {
983 			ASSERT(!PP_ISFREE(pp));
984 			ASSERT(pp->p_szc == 0);
985 			PP_SETNORELOC(pp);
986 		} while ((pp = pp->p_vpnext) != kvp.v_pages);
987 
988 	}
989 
990 	kcage_on = 1;
991 
992 	/*
993 	 * CB_CL_CPR_POST_KERNEL is the class that executes from cpr_suspend()
994 	 * after the cageout thread is blocked, and executes from cpr_resume()
995 	 * before the cageout thread is restarted.  By executing in this class,
996 	 * we are assured that the kernel cage thread won't miss wakeup calls
997 	 * and also CPR's larger kmem_alloc requests will not fail after
998 	 * CPR shuts down the cageout kernel thread.
999 	 */
1000 	(void) callb_add(kcage_cageout_cpr, NULL, CB_CL_CPR_POST_KERNEL,
1001 	    "cageout");
1002 
1003 	/*
1004 	 * Coalesce pages to improve large page availability. A better fix
1005 	 * would to coalesce pages as they are included in the cage
1006 	 */
1007 	if (SEGKMEM_USE_LARGEPAGES) {
1008 		extern void page_freelist_coalesce_all(int mnode);
1009 		extern int max_mem_nodes;
1010 		int mnode, max_mnodes = max_mem_nodes;
1011 		for (mnode = 0; mnode < max_mnodes; mnode++) {
1012 			page_freelist_coalesce_all(mnode);
1013 		}
1014 	}
1015 
1016 	ksp = kstat_create("kcage", 0, "kcage_page_list", "misc",
1017 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL);
1018 	if (ksp != NULL) {
1019 		ksp->ks_update = kcage_kstat_update;
1020 		ksp->ks_snapshot = kcage_kstat_snapshot;
1021 		ksp->ks_lock = &kcage_kstat_lock; /* XXX - not really needed */
1022 		kstat_install(ksp);
1023 	}
1024 }
1025 
1026 static int
1027 kcage_kstat_update(kstat_t *ksp, int rw)
1028 {
1029 	struct kcage_glist *lp;
1030 	uint_t count;
1031 
1032 	if (rw == KSTAT_WRITE)
1033 		return (EACCES);
1034 
1035 	count = 0;
1036 	rw_enter(&kcage_range_rwlock, RW_WRITER);
1037 	for (lp = kcage_glist; lp != NULL; lp = lp->next) {
1038 		if (lp->decr) {
1039 			if (lp->curr != lp->lim) {
1040 				count++;
1041 			}
1042 		} else {
1043 			if (lp->curr != lp->base) {
1044 				count++;
1045 			}
1046 		}
1047 	}
1048 	rw_exit(&kcage_range_rwlock);
1049 
1050 	ksp->ks_ndata = count;
1051 	ksp->ks_data_size = count * 2 * sizeof (uint64_t);
1052 
1053 	return (0);
1054 }
1055 
1056 static int
1057 kcage_kstat_snapshot(kstat_t *ksp, void *buf, int rw)
1058 {
1059 	struct kcage_glist *lp;
1060 	struct memunit {
1061 		uint64_t address;
1062 		uint64_t size;
1063 	} *kspmem;
1064 
1065 	if (rw == KSTAT_WRITE)
1066 		return (EACCES);
1067 
1068 	ksp->ks_snaptime = gethrtime();
1069 
1070 	kspmem = (struct memunit *)buf;
1071 	rw_enter(&kcage_range_rwlock, RW_WRITER);
1072 	for (lp = kcage_glist; lp != NULL; lp = lp->next, kspmem++) {
1073 		if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size)
1074 			break;
1075 
1076 		if (lp->decr) {
1077 			if (lp->curr != lp->lim) {
1078 				kspmem->address = ptob(lp->curr);
1079 				kspmem->size = ptob(lp->lim - lp->curr);
1080 			}
1081 		} else {
1082 			if (lp->curr != lp->base) {
1083 				kspmem->address = ptob(lp->base);
1084 				kspmem->size = ptob(lp->curr - lp->base);
1085 			}
1086 		}
1087 	}
1088 	rw_exit(&kcage_range_rwlock);
1089 
1090 	return (0);
1091 }
1092 
1093 void
1094 kcage_recalc_thresholds()
1095 {
1096 	static int first = 1;
1097 	static pgcnt_t init_lotsfree;
1098 	static pgcnt_t init_desfree;
1099 	static pgcnt_t init_minfree;
1100 	static pgcnt_t init_throttlefree;
1101 	static pgcnt_t init_reserve;
1102 
1103 	/* TODO: any reason to take more care than this with live editing? */
1104 	mutex_enter(&kcage_cageout_mutex);
1105 	mutex_enter(&freemem_lock);
1106 
1107 	if (first) {
1108 		first = 0;
1109 		init_lotsfree = kcage_lotsfree;
1110 		init_desfree = kcage_desfree;
1111 		init_minfree = kcage_minfree;
1112 		init_throttlefree = kcage_throttlefree;
1113 		init_reserve = kcage_reserve;
1114 	} else {
1115 		kcage_lotsfree = init_lotsfree;
1116 		kcage_desfree = init_desfree;
1117 		kcage_minfree = init_minfree;
1118 		kcage_throttlefree = init_throttlefree;
1119 		kcage_reserve = init_reserve;
1120 	}
1121 
1122 	if (kcage_lotsfree == 0)
1123 		kcage_lotsfree = MAX(32, total_pages / 256);
1124 
1125 	if (kcage_minfree == 0)
1126 		kcage_minfree = MAX(32, kcage_lotsfree / 2);
1127 
1128 	if (kcage_desfree == 0)
1129 		kcage_desfree = MAX(32, kcage_minfree);
1130 
1131 	if (kcage_throttlefree == 0)
1132 		kcage_throttlefree = MAX(32, kcage_minfree / 2);
1133 
1134 	if (kcage_reserve == 0)
1135 		kcage_reserve = MIN(32, kcage_throttlefree / 2);
1136 
1137 	mutex_exit(&freemem_lock);
1138 	mutex_exit(&kcage_cageout_mutex);
1139 
1140 	if (kcage_cageout_ready) {
1141 		if (kcage_freemem < kcage_desfree)
1142 			kcage_cageout_wakeup();
1143 
1144 		if (kcage_needfree) {
1145 			mutex_enter(&kcage_throttle_mutex);
1146 			cv_broadcast(&kcage_throttle_cv);
1147 			mutex_exit(&kcage_throttle_mutex);
1148 		}
1149 	}
1150 }
1151 
1152 /*
1153  * Pageout interface:
1154  * kcage_cageout_init()
1155  */
1156 void
1157 kcage_cageout_init()
1158 {
1159 	if (kcage_on) {
1160 
1161 		(void) thread_create(NULL, 0, kcage_cageout,
1162 		    NULL, 0, proc_pageout, TS_RUN, maxclsyspri - 1);
1163 	}
1164 }
1165 
1166 
1167 /*
1168  * VM Interfaces:
1169  * kcage_create_throttle()
1170  * kcage_freemem_add()
1171  * kcage_freemem_sub()
1172  */
1173 
1174 /*
1175  * Wakeup cageout thread and throttle waiting for the number of pages
1176  * requested to become available.  For non-critical requests, a
1177  * timeout is added, since freemem accounting is separate from cage
1178  * freemem accounting: it's possible for us to get stuck and not make
1179  * forward progress even though there was sufficient freemem before
1180  * arriving here.
1181  */
1182 int
1183 kcage_create_throttle(pgcnt_t npages, int flags)
1184 {
1185 	int niter = 0;
1186 	pgcnt_t lastfree;
1187 	int enough = kcage_freemem > kcage_throttlefree + npages;
1188 
1189 	KCAGE_STAT_INCR(kct_calls);		/* unprotected incr. */
1190 
1191 	kcage_cageout_wakeup();			/* just to be sure */
1192 	KCAGE_STAT_INCR(kct_cagewake);		/* unprotected incr. */
1193 
1194 	/*
1195 	 * Obviously, we can't throttle the cageout thread since
1196 	 * we depend on it.  We also can't throttle the panic thread.
1197 	 */
1198 	if (curthread == kcage_cageout_thread || panicstr) {
1199 		KCAGE_STAT_INCR(kct_cageout);	/* unprotected incr. */
1200 		return (KCT_CRIT);
1201 	}
1202 
1203 	/*
1204 	 * Don't throttle threads which are critical for proper
1205 	 * vm management if we're above kcage_throttlefree or
1206 	 * if freemem is very low.
1207 	 */
1208 	if (NOMEMWAIT()) {
1209 		if (enough) {
1210 			KCAGE_STAT_INCR(kct_exempt);	/* unprotected incr. */
1211 			return (KCT_CRIT);
1212 		} else if (freemem < minfree) {
1213 			KCAGE_STAT_INCR(kct_critical);  /* unprotected incr. */
1214 			return (KCT_CRIT);
1215 		}
1216 	}
1217 
1218 	/*
1219 	 * Don't throttle real-time threads if kcage_freemem > kcage_reserve.
1220 	 */
1221 	if (DISP_PRIO(curthread) > maxclsyspri &&
1222 	    kcage_freemem > kcage_reserve) {
1223 		KCAGE_STAT_INCR(kct_exempt);	/* unprotected incr. */
1224 		return (KCT_CRIT);
1225 	}
1226 
1227 	/*
1228 	 * Cause all other threads (which are assumed to not be
1229 	 * critical to cageout) to wait here until their request
1230 	 * can be satisfied. Be a little paranoid and wake the
1231 	 * kernel cage on each loop through this logic.
1232 	 */
1233 	while (kcage_freemem < kcage_throttlefree + npages) {
1234 		ASSERT(kcage_on);
1235 
1236 		lastfree = kcage_freemem;
1237 
1238 		if (kcage_cageout_ready) {
1239 			mutex_enter(&kcage_throttle_mutex);
1240 
1241 			kcage_needfree += npages;
1242 			KCAGE_STAT_INCR(kct_wait);
1243 
1244 			kcage_cageout_wakeup();
1245 			KCAGE_STAT_INCR(kct_cagewake);
1246 
1247 			cv_wait(&kcage_throttle_cv, &kcage_throttle_mutex);
1248 
1249 			kcage_needfree -= npages;
1250 
1251 			mutex_exit(&kcage_throttle_mutex);
1252 		} else {
1253 			/*
1254 			 * NOTE: atomics are used just in case we enter
1255 			 * mp operation before the cageout thread is ready.
1256 			 */
1257 			atomic_add_long(&kcage_needfree, npages);
1258 
1259 			kcage_cageout_wakeup();
1260 			KCAGE_STAT_INCR(kct_cagewake);	/* unprotected incr. */
1261 
1262 			atomic_add_long(&kcage_needfree, -npages);
1263 		}
1264 
1265 		if ((flags & PG_WAIT) == 0) {
1266 			if (kcage_freemem > lastfree) {
1267 				KCAGE_STAT_INCR(kct_progress);
1268 				niter = 0;
1269 			} else {
1270 				KCAGE_STAT_INCR(kct_noprogress);
1271 				if (++niter >= kcage_maxwait) {
1272 					KCAGE_STAT_INCR(kct_timeout);
1273 					return (KCT_FAILURE);
1274 				}
1275 			}
1276 		}
1277 	}
1278 	return (KCT_NONCRIT);
1279 }
1280 
1281 void
1282 kcage_freemem_add(pgcnt_t npages)
1283 {
1284 	extern void wakeup_pcgs(void);
1285 
1286 	atomic_add_long(&kcage_freemem, npages);
1287 
1288 	wakeup_pcgs();  /* wakeup threads in pcgs() */
1289 
1290 	if (kcage_needfree != 0 &&
1291 		kcage_freemem >= (kcage_throttlefree + kcage_needfree)) {
1292 
1293 		mutex_enter(&kcage_throttle_mutex);
1294 		cv_broadcast(&kcage_throttle_cv);
1295 		KCAGE_STAT_INCR(kfa_trottlewake);
1296 		mutex_exit(&kcage_throttle_mutex);
1297 	}
1298 }
1299 
1300 void
1301 kcage_freemem_sub(pgcnt_t npages)
1302 {
1303 	atomic_add_long(&kcage_freemem, -npages);
1304 
1305 	if (kcage_freemem < kcage_desfree) {
1306 		kcage_cageout_wakeup();
1307 		KCAGE_STAT_INCR(kfs_cagewake); /* unprotected incr. */
1308 	}
1309 }
1310 
1311 /*
1312  * return 0 on failure and 1 on success.
1313  */
1314 static int
1315 kcage_setnoreloc_pages(page_t *rootpp, se_t se)
1316 {
1317 	pgcnt_t npgs, i;
1318 	page_t *pp;
1319 	pfn_t rootpfn = page_pptonum(rootpp);
1320 	uint_t szc;
1321 
1322 	ASSERT(!PP_ISFREE(rootpp));
1323 	ASSERT(PAGE_LOCKED_SE(rootpp, se));
1324 	if (!group_page_trylock(rootpp, se)) {
1325 		return (0);
1326 	}
1327 	szc = rootpp->p_szc;
1328 	if (szc == 0) {
1329 		/*
1330 		 * The szc of a locked page can only change for pages that are
1331 		 * non-swapfs (i.e. anonymous memory) file system pages.
1332 		 */
1333 		ASSERT(rootpp->p_vnode != NULL &&
1334 		    !PP_ISKAS(rootpp) &&
1335 		    !IS_SWAPFSVP(rootpp->p_vnode));
1336 		PP_SETNORELOC(rootpp);
1337 		return (1);
1338 	}
1339 	npgs = page_get_pagecnt(szc);
1340 	ASSERT(IS_P2ALIGNED(rootpfn, npgs));
1341 	pp = rootpp;
1342 	for (i = 0; i < npgs; i++, pp++) {
1343 		ASSERT(PAGE_LOCKED_SE(pp, se));
1344 		ASSERT(!PP_ISFREE(pp));
1345 		ASSERT(pp->p_szc == szc);
1346 		PP_SETNORELOC(pp);
1347 	}
1348 	group_page_unlock(rootpp);
1349 	return (1);
1350 }
1351 
1352 /*
1353  * Attempt to convert page to a caged page (set the P_NORELOC flag).
1354  * If successful and pages is free, move page to the tail of whichever
1355  * list it is on.
1356  * Returns:
1357  *   EBUSY  page already locked, assimilated but not free.
1358  *   ENOMEM page assimilated, but memory too low to relocate. Page not free.
1359  *   EAGAIN page not assimilated. Page not free.
1360  *   ERANGE page assimilated. Page not root.
1361  *   0      page assimilated. Page free.
1362  *   *nfreedp number of pages freed.
1363  * NOTE: With error codes ENOMEM, EBUSY, and 0 (zero), there is no way
1364  * to distinguish between a page that was already a NORELOC page from
1365  * those newly converted to NORELOC pages by this invocation of
1366  * kcage_assimilate_page.
1367  */
1368 static int
1369 kcage_assimilate_page(page_t *pp, pgcnt_t *nfreedp)
1370 {
1371 	if (page_trylock(pp, SE_EXCL)) {
1372 		if (PP_ISNORELOC(pp)) {
1373 check_free_and_return:
1374 			if (PP_ISFREE(pp)) {
1375 				page_unlock(pp);
1376 				*nfreedp = 0;
1377 				return (0);
1378 			} else {
1379 				page_unlock(pp);
1380 				return (EBUSY);
1381 			}
1382 			/*NOTREACHED*/
1383 		}
1384 	} else {
1385 		if (page_trylock(pp, SE_SHARED)) {
1386 			if (PP_ISNORELOC(pp))
1387 				goto check_free_and_return;
1388 		} else
1389 			return (EAGAIN);
1390 
1391 		if (!PP_ISFREE(pp)) {
1392 			page_unlock(pp);
1393 			return (EAGAIN);
1394 		}
1395 
1396 		/*
1397 		 * Need to upgrade the lock on it and set the NORELOC
1398 		 * bit. If it is free then remove it from the free
1399 		 * list so that the platform free list code can keep
1400 		 * NORELOC pages where they should be.
1401 		 */
1402 		/*
1403 		 * Before doing anything, get the exclusive lock.
1404 		 * This may fail (eg ISM pages are left shared locked).
1405 		 * If the page is free this will leave a hole in the
1406 		 * cage. There is no solution yet to this.
1407 		 */
1408 		if (!page_tryupgrade(pp)) {
1409 			page_unlock(pp);
1410 			return (EAGAIN);
1411 		}
1412 	}
1413 
1414 	ASSERT(PAGE_EXCL(pp));
1415 
1416 	if (PP_ISFREE(pp)) {
1417 		int which = PP_ISAGED(pp) ? PG_FREE_LIST : PG_CACHE_LIST;
1418 
1419 		page_list_sub(pp, which);
1420 		ASSERT(pp->p_szc == 0);
1421 		PP_SETNORELOC(pp);
1422 		PLCNT_XFER_NORELOC(pp);
1423 		page_list_add(pp, which | PG_LIST_TAIL);
1424 
1425 		page_unlock(pp);
1426 		*nfreedp = 1;
1427 		return (0);
1428 	} else {
1429 		if (pp->p_szc != 0) {
1430 			if (!kcage_setnoreloc_pages(pp, SE_EXCL)) {
1431 				page_unlock(pp);
1432 				return (EAGAIN);
1433 			}
1434 			ASSERT(PP_ISNORELOC(pp));
1435 		} else {
1436 			PP_SETNORELOC(pp);
1437 		}
1438 		PLCNT_XFER_NORELOC(pp);
1439 		return (kcage_invalidate_page(pp, nfreedp));
1440 	}
1441 	/*NOTREACHED*/
1442 }
1443 
1444 static int
1445 kcage_expand()
1446 {
1447 	int did_something = 0;
1448 
1449 	spgcnt_t wanted;
1450 	pfn_t pfn;
1451 	page_t *pp;
1452 	/* TODO: we don't really need n any more? */
1453 	pgcnt_t n;
1454 	pgcnt_t nf, nfreed;
1455 
1456 	/*
1457 	 * Expand the cage if available cage memory is really low. Calculate
1458 	 * the amount required to return kcage_freemem to the level of
1459 	 * kcage_lotsfree, or to satisfy throttled requests, whichever is
1460 	 * more.  It is rare for their sum to create an artificial threshold
1461 	 * above kcage_lotsfree, but it is possible.
1462 	 *
1463 	 * Exit early if expansion amount is equal to or less than zero.
1464 	 * (<0 is possible if kcage_freemem rises suddenly.)
1465 	 *
1466 	 * Exit early when the global page pool (apparently) does not
1467 	 * have enough free pages to page_relocate() even a single page.
1468 	 */
1469 	wanted = MAX(kcage_lotsfree, kcage_throttlefree + kcage_needfree)
1470 		- kcage_freemem;
1471 	if (wanted <= 0)
1472 		return (0);
1473 	else if (freemem < pageout_reserve + 1) {
1474 		KCAGE_STAT_INCR(ke_lowfreemem);
1475 		return (0);
1476 	}
1477 
1478 	KCAGE_STAT_INCR(ke_calls);
1479 	KCAGE_STAT_SET_SCAN(ke_wanted, (uint_t)wanted);
1480 
1481 	/*
1482 	 * Assimilate more pages from the global page pool into the cage.
1483 	 */
1484 	n = 0;				/* number of pages PP_SETNORELOC'd */
1485 	nf = 0;				/* number of those actually free */
1486 	while (kcage_on && nf < wanted) {
1487 		pfn = kcage_get_pfn(1);
1488 		if (pfn == PFN_INVALID) {	/* eek! no where to grow */
1489 			KCAGE_STAT_INCR(ke_nopfn);
1490 			goto terminate;
1491 		}
1492 
1493 		KCAGE_STAT_INCR_SCAN(ke_examined);
1494 
1495 		if ((pp = page_numtopp_nolock(pfn)) == NULL) {
1496 			KCAGE_STAT_INCR(ke_nopaget);
1497 			continue;
1498 		}
1499 		KCAGEPAGETS_INC();
1500 		/*
1501 		 * Sanity check. Skip this pfn if it is
1502 		 * being deleted.
1503 		 */
1504 		if (pfn_is_being_deleted(pfn)) {
1505 			KCAGE_STAT_INCR(ke_deleting);
1506 			continue;
1507 		}
1508 
1509 		if (PP_ISNORELOC(pp)) {
1510 			KCAGE_STAT_INCR(ke_isnoreloc);
1511 			continue;
1512 		}
1513 
1514 		switch (kcage_assimilate_page(pp, &nfreed)) {
1515 			case 0:		/* assimilated, page is free */
1516 				KCAGE_STAT_NINCR_SCAN(ke_gotonefree, nfreed);
1517 				did_something = 1;
1518 				nf += nfreed;
1519 				n++;
1520 				break;
1521 
1522 			case EBUSY:	/* assimilated, page not free */
1523 			case ERANGE:	/* assimilated, page not root */
1524 				KCAGE_STAT_INCR_SCAN(ke_gotone);
1525 				did_something = 1;
1526 				n++;
1527 				break;
1528 
1529 			case ENOMEM:	/* assimilated, but no mem */
1530 				KCAGE_STAT_INCR(ke_terminate);
1531 				did_something = 1;
1532 				n++;
1533 				goto terminate;
1534 
1535 			case EAGAIN:	/* can't assimilate */
1536 				KCAGE_STAT_INCR_SCAN(ke_lefthole);
1537 				break;
1538 
1539 			default:	/* catch this with debug kernels */
1540 				ASSERT(0);
1541 				break;
1542 		}
1543 	}
1544 
1545 	/*
1546 	 * Realign cage edge with the nearest physical address
1547 	 * boundry for big pages. This is done to give us a
1548 	 * better chance of actually getting usable big pages
1549 	 * in the cage.
1550 	 */
1551 
1552 terminate:
1553 
1554 	return (did_something);
1555 }
1556 
1557 /*
1558  * Relocate page opp (Original Page Pointer) from cage pool to page rpp
1559  * (Replacement Page Pointer) in the global pool. Page opp will be freed
1560  * if relocation is successful, otherwise it is only unlocked.
1561  * On entry, page opp must be exclusively locked and not free.
1562  * *nfreedp: number of pages freed.
1563  */
1564 static int
1565 kcage_relocate_page(page_t *pp, pgcnt_t *nfreedp)
1566 {
1567 	page_t *opp = pp;
1568 	page_t *rpp = NULL;
1569 	spgcnt_t npgs;
1570 	int result;
1571 
1572 	ASSERT(!PP_ISFREE(opp));
1573 	ASSERT(PAGE_EXCL(opp));
1574 
1575 	result = page_relocate(&opp, &rpp, 1, 1, &npgs, NULL);
1576 	*nfreedp = npgs;
1577 	if (result == 0) {
1578 		while (npgs-- > 0) {
1579 			page_t *tpp;
1580 
1581 			ASSERT(rpp != NULL);
1582 			tpp = rpp;
1583 			page_sub(&rpp, tpp);
1584 			page_unlock(tpp);
1585 		}
1586 
1587 		ASSERT(rpp == NULL);
1588 
1589 		return (0);		/* success */
1590 	}
1591 
1592 	page_unlock(opp);
1593 	return (result);
1594 }
1595 
1596 /*
1597  * Based on page_invalidate_pages()
1598  *
1599  * Kcage_invalidate_page() uses page_relocate() twice. Both instances
1600  * of use must be updated to match the new page_relocate() when it
1601  * becomes available.
1602  *
1603  * Return result of kcage_relocate_page or zero if page was directly freed.
1604  * *nfreedp: number of pages freed.
1605  */
1606 static int
1607 kcage_invalidate_page(page_t *pp, pgcnt_t *nfreedp)
1608 {
1609 	int result;
1610 
1611 #if defined(__sparc)
1612 	extern struct vnode prom_ppages;
1613 	ASSERT(pp->p_vnode != &prom_ppages);
1614 #endif /* __sparc */
1615 
1616 	ASSERT(!PP_ISFREE(pp));
1617 	ASSERT(PAGE_EXCL(pp));
1618 
1619 	/*
1620 	 * Is this page involved in some I/O? shared?
1621 	 * The page_struct_lock need not be acquired to
1622 	 * examine these fields since the page has an
1623 	 * "exclusive" lock.
1624 	 */
1625 	if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1626 		result = kcage_relocate_page(pp, nfreedp);
1627 #ifdef KCAGE_STATS
1628 		if (result == 0)
1629 			KCAGE_STAT_INCR_SCAN(kip_reloclocked);
1630 		else if (result == ENOMEM)
1631 			KCAGE_STAT_INCR_SCAN(kip_nomem);
1632 #endif
1633 		return (result);
1634 	}
1635 
1636 	ASSERT(pp->p_vnode->v_type != VCHR);
1637 
1638 	/*
1639 	 * Unload the mappings and check if mod bit is set.
1640 	 */
1641 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1642 
1643 	if (hat_ismod(pp)) {
1644 		result = kcage_relocate_page(pp, nfreedp);
1645 #ifdef KCAGE_STATS
1646 		if (result == 0)
1647 			KCAGE_STAT_INCR_SCAN(kip_relocmod);
1648 		else if (result == ENOMEM)
1649 			KCAGE_STAT_INCR_SCAN(kip_nomem);
1650 #endif
1651 		return (result);
1652 	}
1653 
1654 	if (!page_try_demote_pages(pp)) {
1655 		KCAGE_STAT_INCR_SCAN(kip_demotefailed);
1656 		page_unlock(pp);
1657 		return (EAGAIN);
1658 	}
1659 
1660 	page_destroy(pp, 0);
1661 	KCAGE_STAT_INCR_SCAN(kip_destroy);
1662 	*nfreedp = 1;
1663 	return (0);
1664 }
1665 
1666 static void
1667 kcage_cageout()
1668 {
1669 	pfn_t pfn;
1670 	page_t *pp;
1671 	callb_cpr_t cprinfo;
1672 	int did_something;
1673 	int scan_again;
1674 	pfn_t start_pfn;
1675 	int pass;
1676 	int last_pass;
1677 	int pages_skipped;
1678 	int shared_skipped;
1679 	uint_t shared_level = 8;
1680 	pgcnt_t nfreed;
1681 #ifdef KCAGE_STATS
1682 	clock_t scan_start;
1683 #endif
1684 
1685 	CALLB_CPR_INIT(&cprinfo, &kcage_cageout_mutex,
1686 		callb_generic_cpr, "cageout");
1687 
1688 	mutex_enter(&kcage_cageout_mutex);
1689 	kcage_cageout_thread = curthread;
1690 
1691 	pfn = PFN_INVALID;		/* force scan reset */
1692 	start_pfn = PFN_INVALID;	/* force init with 1st cage pfn */
1693 	kcage_cageout_ready = 1;	/* switch kcage_cageout_wakeup mode */
1694 
1695 loop:
1696 	/*
1697 	 * Wait here. Sooner or later, kcage_freemem_sub() will notice
1698 	 * that kcage_freemem is less than kcage_desfree. When it does
1699 	 * notice, kcage_freemem_sub() will wake us up via call to
1700 	 * kcage_cageout_wakeup().
1701 	 */
1702 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1703 	cv_wait(&kcage_cageout_cv, &kcage_cageout_mutex);
1704 	CALLB_CPR_SAFE_END(&cprinfo, &kcage_cageout_mutex);
1705 
1706 	KCAGE_STAT_INCR(kt_wakeups);
1707 	KCAGE_STAT_SET_SCAN(kt_freemem_start, freemem);
1708 	KCAGE_STAT_SET_SCAN(kt_kcage_freemem_start, kcage_freemem);
1709 	pass = 0;
1710 	last_pass = 0;
1711 
1712 #ifdef KCAGE_STATS
1713 	scan_start = lbolt;
1714 #endif
1715 
1716 again:
1717 	if (!kcage_on)
1718 		goto loop;
1719 
1720 	KCAGE_STAT_INCR(kt_scans);
1721 	KCAGE_STAT_INCR_SCAN(kt_passes);
1722 
1723 	did_something = 0;
1724 	pages_skipped = 0;
1725 	shared_skipped = 0;
1726 	while ((kcage_freemem < kcage_lotsfree || kcage_needfree) &&
1727 		(pfn = kcage_walk_cage(pfn == PFN_INVALID)) != PFN_INVALID) {
1728 
1729 		if (start_pfn == PFN_INVALID)
1730 			start_pfn = pfn;
1731 		else if (start_pfn == pfn) {
1732 			last_pass = pass;
1733 			pass += 1;
1734 			/*
1735 			 * Did a complete walk of kernel cage, but didn't free
1736 			 * any pages.  If only one cpu is online then
1737 			 * stop kernel cage walk and try expanding.
1738 			 */
1739 			if (ncpus_online == 1 && did_something == 0) {
1740 				KCAGE_STAT_INCR(kt_cageout_break);
1741 				break;
1742 			}
1743 		}
1744 
1745 		pp = page_numtopp_nolock(pfn);
1746 		if (pp == NULL) {
1747 			continue;
1748 		}
1749 
1750 		KCAGE_STAT_INCR_SCAN(kt_examined);
1751 
1752 		/*
1753 		 * Do a quick PP_ISNORELOC() and PP_ISFREE test outside
1754 		 * of the lock. If one is missed it will be seen next
1755 		 * time through.
1756 		 *
1757 		 * Skip non-caged-pages. These pages can exist in the cage
1758 		 * because, if during cage expansion, a page is
1759 		 * encountered that is long-term locked the lock prevents the
1760 		 * expansion logic from setting the P_NORELOC flag. Hence,
1761 		 * non-caged-pages surrounded by caged-pages.
1762 		 */
1763 		if (!PP_ISNORELOC(pp)) {
1764 			switch (kcage_assimilate_page(pp, &nfreed)) {
1765 				case 0:
1766 					did_something = 1;
1767 					KCAGE_STAT_NINCR_SCAN(kt_gotonefree,
1768 					    nfreed);
1769 					break;
1770 
1771 				case EBUSY:
1772 				case ERANGE:
1773 					did_something = 1;
1774 					KCAGE_STAT_INCR_SCAN(kt_gotone);
1775 					break;
1776 
1777 				case EAGAIN:
1778 				case ENOMEM:
1779 					break;
1780 
1781 				default:
1782 					/* catch this with debug kernels */
1783 					ASSERT(0);
1784 					break;
1785 			}
1786 
1787 			continue;
1788 		} else {
1789 			int prm;
1790 
1791 			if (PP_ISFREE(pp)) {
1792 				continue;
1793 			}
1794 
1795 			if ((PP_ISKAS(pp) && pp->p_lckcnt > 0) ||
1796 			    !page_trylock(pp, SE_EXCL)) {
1797 				KCAGE_STAT_INCR_SCAN(kt_cantlock);
1798 				continue;
1799 			}
1800 
1801 			/* P_NORELOC bit should not have gone away. */
1802 			ASSERT(PP_ISNORELOC(pp));
1803 			if (PP_ISFREE(pp) || (PP_ISKAS(pp) &&
1804 			    pp->p_lckcnt > 0)) {
1805 				page_unlock(pp);
1806 				continue;
1807 			}
1808 
1809 			KCAGE_STAT_SET_SCAN(kt_skiplevel, shared_level);
1810 			if (hat_page_getshare(pp) > shared_level) {
1811 				page_unlock(pp);
1812 				pages_skipped = 1;
1813 				shared_skipped = 1;
1814 				KCAGE_STAT_INCR_SCAN(kt_skipshared);
1815 				continue;
1816 			}
1817 
1818 			/*
1819 			 * In pass {0, 1}, skip page if ref bit is set.
1820 			 * In pass {0, 1, 2}, skip page if mod bit is set.
1821 			 */
1822 			prm = hat_pagesync(pp,
1823 				HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
1824 
1825 			/* On first pass ignore ref'd pages */
1826 			if (pass <= 1 && (prm & P_REF)) {
1827 				KCAGE_STAT_INCR_SCAN(kt_skiprefd);
1828 				pages_skipped = 1;
1829 				page_unlock(pp);
1830 				continue;
1831 			}
1832 
1833 			/* On pass 2, page_destroy if mod bit is not set */
1834 			if (pass <= 2) {
1835 				if (pp->p_szc != 0 || (prm & P_MOD) ||
1836 					pp->p_lckcnt || pp->p_cowcnt) {
1837 					pages_skipped = 1;
1838 					page_unlock(pp);
1839 				} else {
1840 
1841 					/*
1842 					 * unload the mappings before
1843 					 * checking if mod bit is set
1844 					 */
1845 					(void) hat_pageunload(pp,
1846 						HAT_FORCE_PGUNLOAD);
1847 
1848 					/*
1849 					 * skip this page if modified
1850 					 */
1851 					if (hat_ismod(pp)) {
1852 						pages_skipped = 1;
1853 						page_unlock(pp);
1854 						continue;
1855 					}
1856 
1857 					KCAGE_STAT_INCR_SCAN(kt_destroy);
1858 					page_destroy(pp, 0);
1859 					did_something = 1;
1860 				}
1861 				continue;
1862 			}
1863 
1864 			if (kcage_invalidate_page(pp, &nfreed) == 0) {
1865 				did_something = 1;
1866 				KCAGE_STAT_NINCR_SCAN(kt_gotonefree, nfreed);
1867 			}
1868 
1869 			/*
1870 			 * No need to drop the page lock here.
1871 			 * Kcage_invalidate_page has done that for us
1872 			 * either explicitly or through a page_free.
1873 			 */
1874 		}
1875 	}
1876 
1877 	/*
1878 	 * Expand the cage only if available cage memory is really low.
1879 	 * This test is done only after a complete scan of the cage.
1880 	 * The reason for not checking and expanding more often is to
1881 	 * avoid rapid expansion of the cage. Naturally, scanning the
1882 	 * cage takes time. So by scanning first, we use that work as a
1883 	 * delay loop in between expand decisions.
1884 	 */
1885 
1886 	scan_again = 0;
1887 	if (kcage_freemem < kcage_minfree || kcage_needfree) {
1888 		/*
1889 		 * Kcage_expand() will return a non-zero value if it was
1890 		 * able to expand the cage -- whether or not the new
1891 		 * pages are free and immediately usable. If non-zero,
1892 		 * we do another scan of the cage. The pages might be
1893 		 * freed during that scan or by time we get back here.
1894 		 * If not, we will attempt another expansion.
1895 		 * However, if kcage_expand() returns zero, then it was
1896 		 * unable to expand the cage. This is the case when the
1897 		 * the growth list is exausted, therefore no work was done
1898 		 * and there is no reason to scan the cage again.
1899 		 * Note: Kernel cage scan is not repeated on single-cpu
1900 		 * system to avoid kernel cage thread hogging cpu.
1901 		 */
1902 		if (pass <= 3 && pages_skipped && ncpus_online > 1)
1903 			scan_again = 1;
1904 		else
1905 			(void) kcage_expand(); /* don't scan again */
1906 	} else if (kcage_freemem < kcage_lotsfree) {
1907 		/*
1908 		 * If available cage memory is less than abundant
1909 		 * and a full scan of the cage has not yet been completed,
1910 		 * or a scan has completed and some work was performed,
1911 		 * or pages were skipped because of sharing,
1912 		 * or we simply have not yet completed two passes,
1913 		 * then do another scan.
1914 		 */
1915 		if (pass <= 2 && pages_skipped)
1916 			scan_again = 1;
1917 		if (pass == last_pass || did_something)
1918 			scan_again = 1;
1919 		else if (shared_skipped && shared_level < (8<<24)) {
1920 			shared_level <<= 1;
1921 			scan_again = 1;
1922 		}
1923 	}
1924 
1925 	if (scan_again && ncpus_online > 1)
1926 		goto again;
1927 	else {
1928 		if (shared_level > 8)
1929 			shared_level >>= 1;
1930 
1931 		KCAGE_STAT_SET_SCAN(kt_freemem_end, freemem);
1932 		KCAGE_STAT_SET_SCAN(kt_kcage_freemem_end, kcage_freemem);
1933 		KCAGE_STAT_SET_SCAN(kt_ticks, lbolt - scan_start);
1934 		KCAGE_STAT_INC_SCAN_INDEX;
1935 		goto loop;
1936 	}
1937 
1938 	/*NOTREACHED*/
1939 }
1940 
1941 void
1942 kcage_cageout_wakeup()
1943 {
1944 	if (mutex_tryenter(&kcage_cageout_mutex)) {
1945 		if (kcage_cageout_ready) {
1946 			cv_signal(&kcage_cageout_cv);
1947 		} else if (kcage_freemem < kcage_minfree || kcage_needfree) {
1948 			/*
1949 			 * Available cage memory is really low. Time to
1950 			 * start expanding the cage. However, the
1951 			 * kernel cage thread is not yet ready to
1952 			 * do the work. Use *this* thread, which is
1953 			 * most likely to be t0, to do the work.
1954 			 */
1955 			KCAGE_STAT_INCR(kcw_expandearly);
1956 			(void) kcage_expand();
1957 			KCAGE_STAT_INC_SCAN_INDEX;
1958 		}
1959 
1960 		mutex_exit(&kcage_cageout_mutex);
1961 	}
1962 	/* else, kernel cage thread is already running */
1963 }
1964 
1965 void
1966 kcage_tick()
1967 {
1968 	/*
1969 	 * Once per second we wake up all the threads throttled
1970 	 * waiting for cage memory, in case we've become stuck
1971 	 * and haven't made forward progress expanding the cage.
1972 	 */
1973 	if (kcage_on && kcage_cageout_ready)
1974 		cv_broadcast(&kcage_throttle_cv);
1975 }
1976