1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/thread.h> 29 #include <sys/proc.h> 30 #include <sys/callb.h> 31 #include <sys/vnode.h> 32 #include <sys/debug.h> 33 #include <sys/systm.h> /* for bzero */ 34 #include <sys/memlist.h> 35 #include <sys/cmn_err.h> 36 #include <sys/sysmacros.h> 37 #include <sys/vmsystm.h> /* for NOMEMWAIT() */ 38 #include <sys/atomic.h> /* used to update kcage_freemem */ 39 #include <sys/kmem.h> /* for kmem_reap */ 40 #include <sys/errno.h> 41 #include <sys/mem_cage.h> 42 #include <vm/seg_kmem.h> 43 #include <vm/page.h> 44 #include <vm/hat.h> 45 #include <vm/vm_dep.h> 46 #include <sys/mem_config.h> 47 #include <sys/lgrp.h> 48 #include <sys/rwlock.h> 49 #include <sys/cpupart.h> 50 51 extern pri_t maxclsyspri; 52 53 #ifdef DEBUG 54 #define KCAGE_STATS 55 #endif 56 57 #ifdef KCAGE_STATS 58 59 #define KCAGE_STATS_VERSION 9 /* can help report generators */ 60 #define KCAGE_STATS_NSCANS 256 /* depth of scan statistics buffer */ 61 62 struct kcage_stats_scan { 63 /* managed by KCAGE_STAT_* macros */ 64 clock_t scan_lbolt; 65 uint_t scan_id; 66 67 /* set in kcage_cageout() */ 68 uint_t kt_passes; 69 clock_t kt_ticks; 70 pgcnt_t kt_kcage_freemem_start; 71 pgcnt_t kt_kcage_freemem_end; 72 pgcnt_t kt_freemem_start; 73 pgcnt_t kt_freemem_end; 74 uint_t kt_examined; 75 uint_t kt_cantlock; 76 uint_t kt_gotone; 77 uint_t kt_gotonefree; 78 uint_t kt_skiplevel; 79 uint_t kt_skipshared; 80 uint_t kt_skiprefd; 81 uint_t kt_destroy; 82 83 /* set in kcage_invalidate_page() */ 84 uint_t kip_reloclocked; 85 uint_t kip_relocmod; 86 uint_t kip_destroy; 87 uint_t kip_nomem; 88 uint_t kip_demotefailed; 89 90 /* set in kcage_expand() */ 91 uint_t ke_wanted; 92 uint_t ke_examined; 93 uint_t ke_lefthole; 94 uint_t ke_gotone; 95 uint_t ke_gotonefree; 96 }; 97 98 struct kcage_stats { 99 /* managed by KCAGE_STAT_* macros */ 100 uint_t version; 101 uint_t size; 102 103 /* set in kcage_cageout */ 104 uint_t kt_wakeups; 105 uint_t kt_scans; 106 uint_t kt_cageout_break; 107 108 /* set in kcage_expand */ 109 uint_t ke_calls; 110 uint_t ke_nopfn; 111 uint_t ke_nopaget; 112 uint_t ke_isnoreloc; 113 uint_t ke_deleting; 114 uint_t ke_lowfreemem; 115 uint_t ke_terminate; 116 117 /* set in kcage_freemem_add() */ 118 uint_t kfa_trottlewake; 119 120 /* set in kcage_freemem_sub() */ 121 uint_t kfs_cagewake; 122 123 /* set in kcage_create_throttle */ 124 uint_t kct_calls; 125 uint_t kct_cageout; 126 uint_t kct_critical; 127 uint_t kct_exempt; 128 uint_t kct_cagewake; 129 uint_t kct_wait; 130 uint_t kct_progress; 131 uint_t kct_noprogress; 132 uint_t kct_timeout; 133 134 /* set in kcage_cageout_wakeup */ 135 uint_t kcw_expandearly; 136 137 /* managed by KCAGE_STAT_* macros */ 138 uint_t scan_array_size; 139 uint_t scan_index; 140 struct kcage_stats_scan scans[KCAGE_STATS_NSCANS]; 141 }; 142 143 static struct kcage_stats kcage_stats; 144 static struct kcage_stats_scan kcage_stats_scan_zero; 145 146 /* 147 * No real need for atomics here. For the most part the incs and sets are 148 * done by the kernel cage thread. There are a few that are done by any 149 * number of other threads. Those cases are noted by comments. 150 */ 151 #define KCAGE_STAT_INCR(m) kcage_stats.m++ 152 153 #define KCAGE_STAT_NINCR(m, v) kcage_stats.m += (v) 154 155 #define KCAGE_STAT_INCR_SCAN(m) \ 156 KCAGE_STAT_INCR(scans[kcage_stats.scan_index].m) 157 158 #define KCAGE_STAT_NINCR_SCAN(m, v) \ 159 KCAGE_STAT_NINCR(scans[kcage_stats.scan_index].m, v) 160 161 #define KCAGE_STAT_SET(m, v) kcage_stats.m = (v) 162 163 #define KCAGE_STAT_SETZ(m, v) \ 164 if (kcage_stats.m == 0) kcage_stats.m = (v) 165 166 #define KCAGE_STAT_SET_SCAN(m, v) \ 167 KCAGE_STAT_SET(scans[kcage_stats.scan_index].m, v) 168 169 #define KCAGE_STAT_SETZ_SCAN(m, v) \ 170 KCAGE_STAT_SETZ(scans[kcage_stats.scan_index].m, v) 171 172 #define KCAGE_STAT_INC_SCAN_INDEX \ 173 KCAGE_STAT_SET_SCAN(scan_lbolt, ddi_get_lbolt()); \ 174 KCAGE_STAT_SET_SCAN(scan_id, kcage_stats.scan_index); \ 175 kcage_stats.scan_index = \ 176 (kcage_stats.scan_index + 1) % KCAGE_STATS_NSCANS; \ 177 kcage_stats.scans[kcage_stats.scan_index] = kcage_stats_scan_zero 178 179 #define KCAGE_STAT_INIT_SCAN_INDEX \ 180 kcage_stats.version = KCAGE_STATS_VERSION; \ 181 kcage_stats.size = sizeof (kcage_stats); \ 182 kcage_stats.scan_array_size = KCAGE_STATS_NSCANS; \ 183 kcage_stats.scan_index = 0 184 185 #else /* KCAGE_STATS */ 186 187 #define KCAGE_STAT_INCR(v) 188 #define KCAGE_STAT_NINCR(m, v) 189 #define KCAGE_STAT_INCR_SCAN(v) 190 #define KCAGE_STAT_NINCR_SCAN(m, v) 191 #define KCAGE_STAT_SET(m, v) 192 #define KCAGE_STAT_SETZ(m, v) 193 #define KCAGE_STAT_SET_SCAN(m, v) 194 #define KCAGE_STAT_SETZ_SCAN(m, v) 195 #define KCAGE_STAT_INC_SCAN_INDEX 196 #define KCAGE_STAT_INIT_SCAN_INDEX 197 198 #endif /* KCAGE_STATS */ 199 200 static kmutex_t kcage_throttle_mutex; /* protects kcage_throttle_cv */ 201 static kcondvar_t kcage_throttle_cv; 202 203 static kmutex_t kcage_cageout_mutex; /* protects cv and ready flag */ 204 static kcondvar_t kcage_cageout_cv; /* cageout thread naps here */ 205 static int kcage_cageout_ready; /* nonzero when cageout thread ready */ 206 kthread_id_t kcage_cageout_thread; /* to aid debugging */ 207 208 static krwlock_t kcage_range_rwlock; /* protects kcage_glist elements */ 209 210 /* 211 * Cage expansion happens within a range. 212 */ 213 struct kcage_glist { 214 struct kcage_glist *next; 215 pfn_t base; 216 pfn_t lim; 217 pfn_t curr; 218 int decr; 219 }; 220 221 static struct kcage_glist *kcage_glist; 222 static struct kcage_glist *kcage_current_glist; 223 224 /* 225 * The firstfree element is provided so that kmem_alloc can be avoided 226 * until that cage has somewhere to go. This is not currently a problem 227 * as early kmem_alloc's use BOP_ALLOC instead of page_create_va. 228 */ 229 static vmem_t *kcage_arena; 230 static struct kcage_glist kcage_glist_firstfree; 231 static struct kcage_glist *kcage_glist_freelist = &kcage_glist_firstfree; 232 233 /* 234 * Miscellaneous forward references 235 */ 236 static struct kcage_glist *kcage_glist_alloc(void); 237 static int kcage_glist_delete(pfn_t, pfn_t, struct kcage_glist **); 238 static void kcage_cageout(void); 239 static int kcage_invalidate_page(page_t *, pgcnt_t *); 240 static int kcage_setnoreloc_pages(page_t *, se_t); 241 static int kcage_range_add_internal(pfn_t base, pgcnt_t npgs, kcage_dir_t); 242 static void kcage_init(pgcnt_t preferred_size); 243 static int kcage_range_delete_internal(pfn_t base, pgcnt_t npgs); 244 245 /* 246 * Kernel Memory Cage counters and thresholds. 247 */ 248 int kcage_on = 0; 249 pgcnt_t kcage_freemem; 250 pgcnt_t kcage_needfree; 251 pgcnt_t kcage_lotsfree; 252 pgcnt_t kcage_desfree; 253 pgcnt_t kcage_minfree; 254 pgcnt_t kcage_throttlefree; 255 pgcnt_t kcage_reserve; 256 int kcage_maxwait = 10; /* in seconds */ 257 258 /* when we use lp for kmem we start the cage at a higher initial value */ 259 pgcnt_t kcage_kmemlp_mincage; 260 261 #ifdef DEBUG 262 pgcnt_t kcage_pagets; 263 #define KCAGEPAGETS_INC() kcage_pagets++ 264 #else 265 #define KCAGEPAGETS_INC() 266 #endif 267 268 /* kstats to export what pages are currently caged */ 269 kmutex_t kcage_kstat_lock; 270 static int kcage_kstat_update(kstat_t *ksp, int rw); 271 static int kcage_kstat_snapshot(kstat_t *ksp, void *buf, int rw); 272 273 /* 274 * Startup and Dynamic Reconfiguration interfaces. 275 * kcage_range_add() 276 * kcage_range_del() 277 * kcage_range_delete_post_mem_del() 278 * kcage_range_init() 279 * kcage_set_thresholds() 280 */ 281 282 /* 283 * Called from page_get_contig_pages to get the approximate kcage pfn range 284 * for exclusion from search for contiguous pages. This routine is called 285 * without kcage_range lock (kcage routines can call page_get_contig_pages 286 * through page_relocate) and with the assumption, based on kcage_range_add, 287 * that kcage_current_glist always contain a valid pointer. 288 */ 289 290 int 291 kcage_current_pfn(pfn_t *pfncur) 292 { 293 struct kcage_glist *lp = kcage_current_glist; 294 295 ASSERT(kcage_on); 296 297 ASSERT(lp != NULL); 298 299 *pfncur = lp->curr; 300 301 return (lp->decr); 302 } 303 304 /* 305 * Called from vm_pagelist.c during coalesce to find kernel cage regions 306 * within an mnode. Looks for the lowest range between lo and hi. 307 * 308 * Kernel cage memory is defined between kcage_glist and kcage_current_glist. 309 * Non-cage memory is defined between kcage_current_glist and list end. 310 * 311 * If incage is set, returns the lowest kcage range. Otherwise returns lowest 312 * non-cage range. 313 * 314 * Returns zero on success and nlo, nhi: 315 * lo <= nlo < nhi <= hi 316 * Returns non-zero if no overlapping range is found. 317 */ 318 int 319 kcage_next_range(int incage, pfn_t lo, pfn_t hi, 320 pfn_t *nlo, pfn_t *nhi) 321 { 322 struct kcage_glist *lp; 323 pfn_t tlo = hi; 324 pfn_t thi = hi; 325 326 ASSERT(lo <= hi); 327 328 /* 329 * Reader lock protects the list, but kcage_get_pfn 330 * running concurrently may advance kcage_current_glist 331 * and also update kcage_current_glist->curr. Page 332 * coalesce can handle this race condition. 333 */ 334 rw_enter(&kcage_range_rwlock, RW_READER); 335 336 for (lp = incage ? kcage_glist : kcage_current_glist; 337 lp != NULL; lp = lp->next) { 338 339 pfn_t klo, khi; 340 341 /* find the range limits in this element */ 342 if ((incage && lp->decr) || (!incage && !lp->decr)) { 343 klo = lp->curr; 344 khi = lp->lim; 345 } else { 346 klo = lp->base; 347 khi = lp->curr; 348 } 349 350 /* handle overlap */ 351 if (klo < tlo && klo < khi && lo < khi && klo < hi) { 352 tlo = MAX(lo, klo); 353 thi = MIN(hi, khi); 354 if (tlo == lo) 355 break; 356 } 357 358 /* check end of kcage */ 359 if (incage && lp == kcage_current_glist) { 360 break; 361 } 362 } 363 364 rw_exit(&kcage_range_rwlock); 365 366 /* return non-zero if no overlapping range found */ 367 if (tlo == thi) 368 return (1); 369 370 ASSERT(lo <= tlo && tlo < thi && thi <= hi); 371 372 /* return overlapping range */ 373 *nlo = tlo; 374 *nhi = thi; 375 return (0); 376 } 377 378 void 379 kcage_range_init(struct memlist *ml, kcage_dir_t d, pgcnt_t preferred_size) 380 { 381 int ret = 0; 382 383 ASSERT(kcage_arena == NULL); 384 kcage_arena = vmem_create("kcage_arena", NULL, 0, sizeof (uint64_t), 385 segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP); 386 ASSERT(kcage_arena != NULL); 387 388 if (d == KCAGE_DOWN) { 389 while (ml->next != NULL) 390 ml = ml->next; 391 } 392 393 rw_enter(&kcage_range_rwlock, RW_WRITER); 394 395 while (ml != NULL) { 396 ret = kcage_range_add_internal(btop(ml->address), 397 btop(ml->size), d); 398 if (ret) 399 panic("kcage_range_add_internal failed: " 400 "ml=%p, ret=0x%x\n", (void *)ml, ret); 401 402 ml = (d == KCAGE_DOWN ? ml->prev : ml->next); 403 } 404 405 rw_exit(&kcage_range_rwlock); 406 407 if (ret == 0) 408 kcage_init(preferred_size); 409 } 410 411 /* 412 * Third arg controls direction of growth: 0: increasing pfns, 413 * 1: decreasing. 414 */ 415 static int 416 kcage_range_add_internal(pfn_t base, pgcnt_t npgs, kcage_dir_t d) 417 { 418 struct kcage_glist *new, **lpp; 419 pfn_t lim; 420 421 ASSERT(rw_write_held(&kcage_range_rwlock)); 422 423 ASSERT(npgs != 0); 424 if (npgs == 0) 425 return (EINVAL); 426 427 lim = base + npgs; 428 429 ASSERT(lim > base); 430 if (lim <= base) 431 return (EINVAL); 432 433 new = kcage_glist_alloc(); 434 if (new == NULL) { 435 return (ENOMEM); 436 } 437 438 new->base = base; 439 new->lim = lim; 440 new->decr = (d == KCAGE_DOWN); 441 if (new->decr != 0) 442 new->curr = new->lim; 443 else 444 new->curr = new->base; 445 /* 446 * Any overlapping existing ranges are removed by deleting 447 * from the new list as we search for the tail. 448 */ 449 lpp = &kcage_glist; 450 while (*lpp != NULL) { 451 int ret; 452 ret = kcage_glist_delete((*lpp)->base, (*lpp)->lim, &new); 453 if (ret != 0) 454 return (ret); 455 lpp = &(*lpp)->next; 456 } 457 458 *lpp = new; 459 460 if (kcage_current_glist == NULL) { 461 kcage_current_glist = kcage_glist; 462 } 463 464 return (0); 465 } 466 467 int 468 kcage_range_add(pfn_t base, pgcnt_t npgs, kcage_dir_t d) 469 { 470 int ret; 471 472 rw_enter(&kcage_range_rwlock, RW_WRITER); 473 ret = kcage_range_add_internal(base, npgs, d); 474 rw_exit(&kcage_range_rwlock); 475 return (ret); 476 } 477 478 /* 479 * Calls to add and delete must be protected by kcage_range_rwlock 480 */ 481 static int 482 kcage_range_delete_internal(pfn_t base, pgcnt_t npgs) 483 { 484 struct kcage_glist *lp; 485 pfn_t lim; 486 487 ASSERT(rw_write_held(&kcage_range_rwlock)); 488 489 ASSERT(npgs != 0); 490 if (npgs == 0) 491 return (EINVAL); 492 493 lim = base + npgs; 494 495 ASSERT(lim > base); 496 if (lim <= base) 497 return (EINVAL); 498 499 /* 500 * Check if the delete is OK first as a number of elements 501 * might be involved and it will be difficult to go 502 * back and undo (can't just add the range back in). 503 */ 504 for (lp = kcage_glist; lp != NULL; lp = lp->next) { 505 /* 506 * If there have been no pages allocated from this 507 * element, we don't need to check it. 508 */ 509 if ((lp->decr == 0 && lp->curr == lp->base) || 510 (lp->decr != 0 && lp->curr == lp->lim)) 511 continue; 512 /* 513 * If the element does not overlap, its OK. 514 */ 515 if (base >= lp->lim || lim <= lp->base) 516 continue; 517 /* 518 * Overlapping element: Does the range to be deleted 519 * overlap the area already used? If so fail. 520 */ 521 if (lp->decr == 0 && base < lp->curr && lim >= lp->base) { 522 return (EBUSY); 523 } 524 if (lp->decr != 0 && base < lp->lim && lim >= lp->curr) { 525 return (EBUSY); 526 } 527 } 528 return (kcage_glist_delete(base, lim, &kcage_glist)); 529 } 530 531 int 532 kcage_range_delete(pfn_t base, pgcnt_t npgs) 533 { 534 int ret; 535 536 rw_enter(&kcage_range_rwlock, RW_WRITER); 537 ret = kcage_range_delete_internal(base, npgs); 538 rw_exit(&kcage_range_rwlock); 539 return (ret); 540 } 541 542 /* 543 * Calls to add and delete must be protected by kcage_range_rwlock. 544 * This routine gets called after successful Solaris memory 545 * delete operation from DR post memory delete routines. 546 */ 547 static int 548 kcage_range_delete_post_mem_del_internal(pfn_t base, pgcnt_t npgs) 549 { 550 pfn_t lim; 551 552 ASSERT(rw_write_held(&kcage_range_rwlock)); 553 554 ASSERT(npgs != 0); 555 if (npgs == 0) 556 return (EINVAL); 557 558 lim = base + npgs; 559 560 ASSERT(lim > base); 561 if (lim <= base) 562 return (EINVAL); 563 564 return (kcage_glist_delete(base, lim, &kcage_glist)); 565 } 566 567 int 568 kcage_range_delete_post_mem_del(pfn_t base, pgcnt_t npgs) 569 { 570 int ret; 571 572 rw_enter(&kcage_range_rwlock, RW_WRITER); 573 ret = kcage_range_delete_post_mem_del_internal(base, npgs); 574 rw_exit(&kcage_range_rwlock); 575 return (ret); 576 } 577 578 /* 579 * No locking is required here as the whole operation is covered 580 * by kcage_range_rwlock writer lock. 581 */ 582 static struct kcage_glist * 583 kcage_glist_alloc(void) 584 { 585 struct kcage_glist *new; 586 587 if ((new = kcage_glist_freelist) != NULL) { 588 kcage_glist_freelist = new->next; 589 } else if (kernel_cage_enable) { 590 new = vmem_alloc(kcage_arena, sizeof (*new), VM_NOSLEEP); 591 } else { 592 /* 593 * On DR supported platforms we allow memory add 594 * even when kernel cage is disabled. "kcage_arena" is 595 * created only when kernel cage is enabled. 596 */ 597 new = kmem_zalloc(sizeof (*new), KM_NOSLEEP); 598 } 599 600 if (new != NULL) 601 bzero(new, sizeof (*new)); 602 603 return (new); 604 } 605 606 static void 607 kcage_glist_free(struct kcage_glist *lp) 608 { 609 lp->next = kcage_glist_freelist; 610 kcage_glist_freelist = lp; 611 } 612 613 static int 614 kcage_glist_delete(pfn_t base, pfn_t lim, struct kcage_glist **lpp) 615 { 616 struct kcage_glist *lp, *prev = *lpp; 617 618 while ((lp = *lpp) != NULL) { 619 if (lim > lp->base && base < lp->lim) { 620 /* The delete range overlaps this element. */ 621 if (base <= lp->base && lim >= lp->lim) { 622 /* Delete whole element. */ 623 *lpp = lp->next; 624 if (lp == kcage_current_glist) { 625 /* This can never happen. */ 626 ASSERT(kcage_current_glist != prev); 627 kcage_current_glist = prev; 628 } 629 kcage_glist_free(lp); 630 continue; 631 } 632 633 /* Partial delete. */ 634 if (base > lp->base && lim < lp->lim) { 635 struct kcage_glist *new; 636 637 /* 638 * Remove a section from the middle, 639 * need to allocate a new element. 640 */ 641 new = kcage_glist_alloc(); 642 if (new == NULL) { 643 return (ENOMEM); 644 } 645 646 /* 647 * Tranfser unused range to new. 648 * Edit lp in place to preserve 649 * kcage_current_glist. 650 */ 651 new->decr = lp->decr; 652 if (new->decr != 0) { 653 new->base = lp->base; 654 new->lim = base; 655 new->curr = base; 656 657 lp->base = lim; 658 } else { 659 new->base = lim; 660 new->lim = lp->lim; 661 new->curr = new->base; 662 663 lp->lim = base; 664 } 665 666 /* Insert new. */ 667 new->next = lp->next; 668 lp->next = new; 669 lpp = &lp->next; 670 } else { 671 /* Delete part of current block. */ 672 if (base > lp->base) { 673 ASSERT(lim >= lp->lim); 674 ASSERT(base < lp->lim); 675 if (lp->decr != 0 && 676 lp->curr == lp->lim) 677 lp->curr = base; 678 lp->lim = base; 679 } else { 680 ASSERT(base <= lp->base); 681 ASSERT(lim > lp->base); 682 if (lp->decr == 0 && 683 lp->curr == lp->base) 684 lp->curr = lim; 685 lp->base = lim; 686 } 687 } 688 } 689 prev = *lpp; 690 lpp = &(*lpp)->next; 691 } 692 693 return (0); 694 } 695 696 /* 697 * If lockit is 1, kcage_get_pfn holds the 698 * reader lock for kcage_range_rwlock. 699 * Changes to lp->curr can cause race conditions, but 700 * they are handled by higher level code (see kcage_next_range.) 701 */ 702 static pfn_t 703 kcage_get_pfn(int lockit) 704 { 705 struct kcage_glist *lp; 706 pfn_t pfn = PFN_INVALID; 707 708 if (lockit && !rw_tryenter(&kcage_range_rwlock, RW_READER)) 709 return (pfn); 710 711 lp = kcage_current_glist; 712 while (lp != NULL) { 713 if (lp->decr != 0) { 714 if (lp->curr != lp->base) { 715 pfn = --lp->curr; 716 break; 717 } 718 } else { 719 if (lp->curr != lp->lim) { 720 pfn = lp->curr++; 721 break; 722 } 723 } 724 725 lp = lp->next; 726 if (lp) 727 kcage_current_glist = lp; 728 } 729 730 if (lockit) 731 rw_exit(&kcage_range_rwlock); 732 return (pfn); 733 } 734 735 /* 736 * Walk the physical address space of the cage. 737 * This routine does not guarantee to return PFNs in the order 738 * in which they were allocated to the cage. Instead, it walks 739 * each range as they appear on the growth list returning the PFNs 740 * range in ascending order. 741 * 742 * To begin scanning at lower edge of cage, reset should be nonzero. 743 * To step through cage, reset should be zero. 744 * 745 * PFN_INVALID will be returned when the upper end of the cage is 746 * reached -- indicating a full scan of the cage has been completed since 747 * previous reset. PFN_INVALID will continue to be returned until 748 * kcage_walk_cage is reset. 749 * 750 * It is possible to receive a PFN_INVALID result on reset if a growth 751 * list is not installed or if none of the PFNs in the installed list have 752 * been allocated to the cage. In otherwords, there is no cage. 753 * 754 * Caller need not hold kcage_range_rwlock while calling this function 755 * as the front part of the list is static - pages never come out of 756 * the cage. 757 * 758 * The caller is expected to only be kcage_cageout(). 759 */ 760 static pfn_t 761 kcage_walk_cage(int reset) 762 { 763 static struct kcage_glist *lp = NULL; 764 static pfn_t pfn; 765 766 if (reset) 767 lp = NULL; 768 if (lp == NULL) { 769 lp = kcage_glist; 770 pfn = PFN_INVALID; 771 } 772 again: 773 if (pfn == PFN_INVALID) { 774 if (lp == NULL) 775 return (PFN_INVALID); 776 777 if (lp->decr != 0) { 778 /* 779 * In this range the cage grows from the highest 780 * address towards the lowest. 781 * Arrange to return pfns from curr to lim-1, 782 * inclusive, in ascending order. 783 */ 784 785 pfn = lp->curr; 786 } else { 787 /* 788 * In this range the cage grows from the lowest 789 * address towards the highest. 790 * Arrange to return pfns from base to curr, 791 * inclusive, in ascending order. 792 */ 793 794 pfn = lp->base; 795 } 796 } 797 798 if (lp->decr != 0) { /* decrementing pfn */ 799 if (pfn == lp->lim) { 800 /* Don't go beyond the static part of the glist. */ 801 if (lp == kcage_current_glist) 802 lp = NULL; 803 else 804 lp = lp->next; 805 pfn = PFN_INVALID; 806 goto again; 807 } 808 809 ASSERT(pfn >= lp->curr && pfn < lp->lim); 810 } else { /* incrementing pfn */ 811 if (pfn == lp->curr) { 812 /* Don't go beyond the static part of the glist. */ 813 if (lp == kcage_current_glist) 814 lp = NULL; 815 else 816 lp = lp->next; 817 pfn = PFN_INVALID; 818 goto again; 819 } 820 821 ASSERT(pfn >= lp->base && pfn < lp->curr); 822 } 823 824 return (pfn++); 825 } 826 827 /* 828 * Callback functions for to recalc cage thresholds after 829 * Kphysm memory add/delete operations. 830 */ 831 /*ARGSUSED*/ 832 static void 833 kcage_kphysm_postadd_cb(void *arg, pgcnt_t delta_pages) 834 { 835 kcage_recalc_thresholds(); 836 } 837 838 /*ARGSUSED*/ 839 static int 840 kcage_kphysm_predel_cb(void *arg, pgcnt_t delta_pages) 841 { 842 /* TODO: when should cage refuse memory delete requests? */ 843 return (0); 844 } 845 846 /*ARGSUSED*/ 847 static void 848 kcage_kphysm_postdel_cb(void *arg, pgcnt_t delta_pages, int cancelled) 849 { 850 kcage_recalc_thresholds(); 851 } 852 853 static kphysm_setup_vector_t kcage_kphysm_vectors = { 854 KPHYSM_SETUP_VECTOR_VERSION, 855 kcage_kphysm_postadd_cb, 856 kcage_kphysm_predel_cb, 857 kcage_kphysm_postdel_cb 858 }; 859 860 /* 861 * This is called before a CPR suspend and after a CPR resume. We have to 862 * turn off kcage_cageout_ready before a suspend, and turn it back on after a 863 * restart. 864 */ 865 /*ARGSUSED*/ 866 static boolean_t 867 kcage_cageout_cpr(void *arg, int code) 868 { 869 if (code == CB_CODE_CPR_CHKPT) { 870 ASSERT(kcage_cageout_ready); 871 kcage_cageout_ready = 0; 872 return (B_TRUE); 873 } else if (code == CB_CODE_CPR_RESUME) { 874 ASSERT(kcage_cageout_ready == 0); 875 kcage_cageout_ready = 1; 876 return (B_TRUE); 877 } 878 return (B_FALSE); 879 } 880 881 /* 882 * kcage_recalc_preferred_size() increases initial cage size to improve large 883 * page availability when lp for kmem is enabled and kpr is disabled 884 */ 885 static pgcnt_t 886 kcage_recalc_preferred_size(pgcnt_t preferred_size) 887 { 888 if (SEGKMEM_USE_LARGEPAGES && segkmem_reloc == 0) { 889 pgcnt_t lpmincage = kcage_kmemlp_mincage; 890 if (lpmincage == 0) { 891 lpmincage = MIN(P2ROUNDUP(((physmem * PAGESIZE) / 8), 892 segkmem_heaplp_quantum), 0x40000000UL) / PAGESIZE; 893 } 894 kcage_kmemlp_mincage = MIN(lpmincage, 895 (segkmem_kmemlp_max / PAGESIZE)); 896 preferred_size = MAX(kcage_kmemlp_mincage, preferred_size); 897 } 898 return (preferred_size); 899 } 900 901 /* 902 * Kcage_init() builds the cage and initializes the cage thresholds. 903 * The size of the cage is determined by the argument preferred_size. 904 * or the actual amount of memory, whichever is smaller. 905 */ 906 static void 907 kcage_init(pgcnt_t preferred_size) 908 { 909 pgcnt_t wanted; 910 pfn_t pfn; 911 page_t *pp; 912 kstat_t *ksp; 913 914 extern void page_list_noreloc_startup(page_t *); 915 916 ASSERT(!kcage_on); 917 918 /* increase preferred cage size for lp for kmem */ 919 preferred_size = kcage_recalc_preferred_size(preferred_size); 920 921 /* Debug note: initialize this now so early expansions can stat */ 922 KCAGE_STAT_INIT_SCAN_INDEX; 923 924 /* 925 * Initialize cage thresholds and install kphysm callback. 926 * If we can't arrange to have the thresholds track with 927 * available physical memory, then the cage thresholds may 928 * end up over time at levels that adversly effect system 929 * performance; so, bail out. 930 */ 931 kcage_recalc_thresholds(); 932 if (kphysm_setup_func_register(&kcage_kphysm_vectors, NULL)) { 933 ASSERT(0); /* Catch this in DEBUG kernels. */ 934 return; 935 } 936 937 /* 938 * Limit startup cage size within the range of kcage_minfree 939 * and availrmem, inclusively. 940 */ 941 wanted = MIN(MAX(preferred_size, kcage_minfree), availrmem); 942 943 /* 944 * Construct the cage. PFNs are allocated from the glist. It 945 * is assumed that the list has been properly ordered for the 946 * platform by the platform code. Typically, this is as simple 947 * as calling kcage_range_init(phys_avail, decr), where decr is 948 * 1 if the kernel has been loaded into upper end of physical 949 * memory, or 0 if the kernel has been loaded at the low end. 950 * 951 * Note: it is assumed that we are in the startup flow, so there 952 * is no reason to grab the page lock. 953 */ 954 kcage_freemem = 0; 955 pfn = PFN_INVALID; /* prime for alignment test */ 956 while (wanted != 0) { 957 if ((pfn = kcage_get_pfn(0)) == PFN_INVALID) 958 break; 959 960 if ((pp = page_numtopp_nolock(pfn)) != NULL) { 961 KCAGEPAGETS_INC(); 962 /* 963 * Set the noreloc state on the page. 964 * If the page is free and not already 965 * on the noreloc list then move it. 966 */ 967 if (PP_ISFREE(pp)) { 968 if (PP_ISNORELOC(pp) == 0) 969 page_list_noreloc_startup(pp); 970 } else { 971 ASSERT(pp->p_szc == 0); 972 PP_SETNORELOC(pp); 973 } 974 } 975 PLCNT_XFER_NORELOC(pp); 976 wanted -= 1; 977 } 978 979 /* 980 * Need to go through and find kernel allocated pages 981 * and capture them into the Cage. These will primarily 982 * be pages gotten through boot_alloc(). 983 */ 984 if (kvp.v_pages) { 985 986 pp = kvp.v_pages; 987 do { 988 ASSERT(!PP_ISFREE(pp)); 989 ASSERT(pp->p_szc == 0); 990 if (PP_ISNORELOC(pp) == 0) { 991 PP_SETNORELOC(pp); 992 PLCNT_XFER_NORELOC(pp); 993 } 994 } while ((pp = pp->p_vpnext) != kvp.v_pages); 995 996 } 997 998 kcage_on = 1; 999 1000 /* 1001 * CB_CL_CPR_POST_KERNEL is the class that executes from cpr_suspend() 1002 * after the cageout thread is blocked, and executes from cpr_resume() 1003 * before the cageout thread is restarted. By executing in this class, 1004 * we are assured that the kernel cage thread won't miss wakeup calls 1005 * and also CPR's larger kmem_alloc requests will not fail after 1006 * CPR shuts down the cageout kernel thread. 1007 */ 1008 (void) callb_add(kcage_cageout_cpr, NULL, CB_CL_CPR_POST_KERNEL, 1009 "cageout"); 1010 1011 /* 1012 * Coalesce pages to improve large page availability. A better fix 1013 * would to coalesce pages as they are included in the cage 1014 */ 1015 if (SEGKMEM_USE_LARGEPAGES) { 1016 extern void page_freelist_coalesce_all(int mnode); 1017 page_freelist_coalesce_all(-1); /* do all mnodes */ 1018 } 1019 1020 ksp = kstat_create("kcage", 0, "kcage_page_list", "misc", 1021 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL); 1022 if (ksp != NULL) { 1023 ksp->ks_update = kcage_kstat_update; 1024 ksp->ks_snapshot = kcage_kstat_snapshot; 1025 ksp->ks_lock = &kcage_kstat_lock; /* XXX - not really needed */ 1026 kstat_install(ksp); 1027 } 1028 } 1029 1030 static int 1031 kcage_kstat_update(kstat_t *ksp, int rw) 1032 { 1033 struct kcage_glist *lp; 1034 uint_t count; 1035 1036 if (rw == KSTAT_WRITE) 1037 return (EACCES); 1038 1039 count = 0; 1040 rw_enter(&kcage_range_rwlock, RW_WRITER); 1041 for (lp = kcage_glist; lp != NULL; lp = lp->next) { 1042 if (lp->decr) { 1043 if (lp->curr != lp->lim) { 1044 count++; 1045 } 1046 } else { 1047 if (lp->curr != lp->base) { 1048 count++; 1049 } 1050 } 1051 } 1052 rw_exit(&kcage_range_rwlock); 1053 1054 ksp->ks_ndata = count; 1055 ksp->ks_data_size = count * 2 * sizeof (uint64_t); 1056 1057 return (0); 1058 } 1059 1060 static int 1061 kcage_kstat_snapshot(kstat_t *ksp, void *buf, int rw) 1062 { 1063 struct kcage_glist *lp; 1064 struct memunit { 1065 uint64_t address; 1066 uint64_t size; 1067 } *kspmem; 1068 1069 if (rw == KSTAT_WRITE) 1070 return (EACCES); 1071 1072 ksp->ks_snaptime = gethrtime(); 1073 1074 kspmem = (struct memunit *)buf; 1075 rw_enter(&kcage_range_rwlock, RW_WRITER); 1076 for (lp = kcage_glist; lp != NULL; lp = lp->next, kspmem++) { 1077 if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) 1078 break; 1079 1080 if (lp->decr) { 1081 if (lp->curr != lp->lim) { 1082 kspmem->address = ptob(lp->curr); 1083 kspmem->size = ptob(lp->lim - lp->curr); 1084 } 1085 } else { 1086 if (lp->curr != lp->base) { 1087 kspmem->address = ptob(lp->base); 1088 kspmem->size = ptob(lp->curr - lp->base); 1089 } 1090 } 1091 } 1092 rw_exit(&kcage_range_rwlock); 1093 1094 return (0); 1095 } 1096 1097 void 1098 kcage_recalc_thresholds() 1099 { 1100 static int first = 1; 1101 static pgcnt_t init_lotsfree; 1102 static pgcnt_t init_desfree; 1103 static pgcnt_t init_minfree; 1104 static pgcnt_t init_throttlefree; 1105 static pgcnt_t init_reserve; 1106 1107 /* TODO: any reason to take more care than this with live editing? */ 1108 mutex_enter(&kcage_cageout_mutex); 1109 mutex_enter(&freemem_lock); 1110 1111 if (first) { 1112 first = 0; 1113 init_lotsfree = kcage_lotsfree; 1114 init_desfree = kcage_desfree; 1115 init_minfree = kcage_minfree; 1116 init_throttlefree = kcage_throttlefree; 1117 init_reserve = kcage_reserve; 1118 } else { 1119 kcage_lotsfree = init_lotsfree; 1120 kcage_desfree = init_desfree; 1121 kcage_minfree = init_minfree; 1122 kcage_throttlefree = init_throttlefree; 1123 kcage_reserve = init_reserve; 1124 } 1125 1126 if (kcage_lotsfree == 0) 1127 kcage_lotsfree = MAX(32, total_pages / 256); 1128 1129 if (kcage_minfree == 0) 1130 kcage_minfree = MAX(32, kcage_lotsfree / 2); 1131 1132 if (kcage_desfree == 0) 1133 kcage_desfree = MAX(32, kcage_minfree); 1134 1135 if (kcage_throttlefree == 0) 1136 kcage_throttlefree = MAX(32, kcage_minfree / 2); 1137 1138 if (kcage_reserve == 0) 1139 kcage_reserve = MIN(32, kcage_throttlefree / 2); 1140 1141 mutex_exit(&freemem_lock); 1142 mutex_exit(&kcage_cageout_mutex); 1143 1144 if (kcage_cageout_ready) { 1145 if (kcage_freemem < kcage_desfree) 1146 kcage_cageout_wakeup(); 1147 1148 if (kcage_needfree) { 1149 mutex_enter(&kcage_throttle_mutex); 1150 cv_broadcast(&kcage_throttle_cv); 1151 mutex_exit(&kcage_throttle_mutex); 1152 } 1153 } 1154 } 1155 1156 /* 1157 * Pageout interface: 1158 * kcage_cageout_init() 1159 */ 1160 void 1161 kcage_cageout_init() 1162 { 1163 if (kcage_on) { 1164 (void) lwp_kernel_create(proc_pageout, kcage_cageout, NULL, 1165 TS_RUN, maxclsyspri - 1); 1166 } 1167 } 1168 1169 1170 /* 1171 * VM Interfaces: 1172 * kcage_create_throttle() 1173 * kcage_freemem_add() 1174 * kcage_freemem_sub() 1175 */ 1176 1177 /* 1178 * Wakeup cageout thread and throttle waiting for the number of pages 1179 * requested to become available. For non-critical requests, a 1180 * timeout is added, since freemem accounting is separate from cage 1181 * freemem accounting: it's possible for us to get stuck and not make 1182 * forward progress even though there was sufficient freemem before 1183 * arriving here. 1184 */ 1185 int 1186 kcage_create_throttle(pgcnt_t npages, int flags) 1187 { 1188 int niter = 0; 1189 pgcnt_t lastfree; 1190 int enough = kcage_freemem > kcage_throttlefree + npages; 1191 1192 KCAGE_STAT_INCR(kct_calls); /* unprotected incr. */ 1193 1194 kcage_cageout_wakeup(); /* just to be sure */ 1195 KCAGE_STAT_INCR(kct_cagewake); /* unprotected incr. */ 1196 1197 /* 1198 * Obviously, we can't throttle the cageout thread since 1199 * we depend on it. We also can't throttle the panic thread. 1200 */ 1201 if (curthread == kcage_cageout_thread || panicstr) { 1202 KCAGE_STAT_INCR(kct_cageout); /* unprotected incr. */ 1203 return (KCT_CRIT); 1204 } 1205 1206 /* 1207 * Don't throttle threads which are critical for proper 1208 * vm management if we're above kcage_throttlefree or 1209 * if freemem is very low. 1210 */ 1211 if (NOMEMWAIT()) { 1212 if (enough) { 1213 KCAGE_STAT_INCR(kct_exempt); /* unprotected incr. */ 1214 return (KCT_CRIT); 1215 } else if (freemem < minfree) { 1216 KCAGE_STAT_INCR(kct_critical); /* unprotected incr. */ 1217 return (KCT_CRIT); 1218 } 1219 } 1220 1221 /* 1222 * Don't throttle real-time threads if kcage_freemem > kcage_reserve. 1223 */ 1224 if (DISP_PRIO(curthread) > maxclsyspri && 1225 kcage_freemem > kcage_reserve) { 1226 KCAGE_STAT_INCR(kct_exempt); /* unprotected incr. */ 1227 return (KCT_CRIT); 1228 } 1229 1230 /* 1231 * Cause all other threads (which are assumed to not be 1232 * critical to cageout) to wait here until their request 1233 * can be satisfied. Be a little paranoid and wake the 1234 * kernel cage on each loop through this logic. 1235 */ 1236 while (kcage_freemem < kcage_throttlefree + npages) { 1237 ASSERT(kcage_on); 1238 1239 lastfree = kcage_freemem; 1240 1241 if (kcage_cageout_ready) { 1242 mutex_enter(&kcage_throttle_mutex); 1243 1244 kcage_needfree += npages; 1245 KCAGE_STAT_INCR(kct_wait); 1246 1247 kcage_cageout_wakeup(); 1248 KCAGE_STAT_INCR(kct_cagewake); 1249 1250 cv_wait(&kcage_throttle_cv, &kcage_throttle_mutex); 1251 1252 kcage_needfree -= npages; 1253 1254 mutex_exit(&kcage_throttle_mutex); 1255 } else { 1256 /* 1257 * NOTE: atomics are used just in case we enter 1258 * mp operation before the cageout thread is ready. 1259 */ 1260 atomic_add_long(&kcage_needfree, npages); 1261 1262 kcage_cageout_wakeup(); 1263 KCAGE_STAT_INCR(kct_cagewake); /* unprotected incr. */ 1264 1265 atomic_add_long(&kcage_needfree, -npages); 1266 } 1267 1268 if ((flags & PG_WAIT) == 0) { 1269 if (kcage_freemem > lastfree) { 1270 KCAGE_STAT_INCR(kct_progress); 1271 niter = 0; 1272 } else { 1273 KCAGE_STAT_INCR(kct_noprogress); 1274 if (++niter >= kcage_maxwait) { 1275 KCAGE_STAT_INCR(kct_timeout); 1276 return (KCT_FAILURE); 1277 } 1278 } 1279 } 1280 1281 if (NOMEMWAIT() && freemem < minfree) { 1282 return (KCT_CRIT); 1283 } 1284 1285 } 1286 return (KCT_NONCRIT); 1287 } 1288 1289 void 1290 kcage_freemem_add(pgcnt_t npages) 1291 { 1292 extern void wakeup_pcgs(void); 1293 1294 atomic_add_long(&kcage_freemem, npages); 1295 1296 wakeup_pcgs(); /* wakeup threads in pcgs() */ 1297 1298 if (kcage_needfree != 0 && 1299 kcage_freemem >= (kcage_throttlefree + kcage_needfree)) { 1300 1301 mutex_enter(&kcage_throttle_mutex); 1302 cv_broadcast(&kcage_throttle_cv); 1303 KCAGE_STAT_INCR(kfa_trottlewake); 1304 mutex_exit(&kcage_throttle_mutex); 1305 } 1306 } 1307 1308 void 1309 kcage_freemem_sub(pgcnt_t npages) 1310 { 1311 atomic_add_long(&kcage_freemem, -npages); 1312 1313 if (kcage_freemem < kcage_desfree) { 1314 kcage_cageout_wakeup(); 1315 KCAGE_STAT_INCR(kfs_cagewake); /* unprotected incr. */ 1316 } 1317 } 1318 1319 /* 1320 * return 0 on failure and 1 on success. 1321 */ 1322 static int 1323 kcage_setnoreloc_pages(page_t *rootpp, se_t se) 1324 { 1325 pgcnt_t npgs, i; 1326 page_t *pp; 1327 pfn_t rootpfn = page_pptonum(rootpp); 1328 uint_t szc; 1329 1330 ASSERT(!PP_ISFREE(rootpp)); 1331 ASSERT(PAGE_LOCKED_SE(rootpp, se)); 1332 if (!group_page_trylock(rootpp, se)) { 1333 return (0); 1334 } 1335 szc = rootpp->p_szc; 1336 if (szc == 0) { 1337 /* 1338 * The szc of a locked page can only change for pages that are 1339 * non-swapfs (i.e. anonymous memory) file system pages. 1340 */ 1341 ASSERT(rootpp->p_vnode != NULL && 1342 !PP_ISKAS(rootpp) && 1343 !IS_SWAPFSVP(rootpp->p_vnode)); 1344 PP_SETNORELOC(rootpp); 1345 return (1); 1346 } 1347 npgs = page_get_pagecnt(szc); 1348 ASSERT(IS_P2ALIGNED(rootpfn, npgs)); 1349 pp = rootpp; 1350 for (i = 0; i < npgs; i++, pp++) { 1351 ASSERT(PAGE_LOCKED_SE(pp, se)); 1352 ASSERT(!PP_ISFREE(pp)); 1353 ASSERT(pp->p_szc == szc); 1354 PP_SETNORELOC(pp); 1355 } 1356 group_page_unlock(rootpp); 1357 return (1); 1358 } 1359 1360 /* 1361 * Attempt to convert page to a caged page (set the P_NORELOC flag). 1362 * If successful and pages is free, move page to the tail of whichever 1363 * list it is on. 1364 * Returns: 1365 * EBUSY page already locked, assimilated but not free. 1366 * ENOMEM page assimilated, but memory too low to relocate. Page not free. 1367 * EAGAIN page not assimilated. Page not free. 1368 * ERANGE page assimilated. Page not root. 1369 * 0 page assimilated. Page free. 1370 * *nfreedp number of pages freed. 1371 * NOTE: With error codes ENOMEM, EBUSY, and 0 (zero), there is no way 1372 * to distinguish between a page that was already a NORELOC page from 1373 * those newly converted to NORELOC pages by this invocation of 1374 * kcage_assimilate_page. 1375 */ 1376 static int 1377 kcage_assimilate_page(page_t *pp, pgcnt_t *nfreedp) 1378 { 1379 if (page_trylock(pp, SE_EXCL)) { 1380 if (PP_ISNORELOC(pp)) { 1381 check_free_and_return: 1382 if (PP_ISFREE(pp)) { 1383 page_unlock(pp); 1384 *nfreedp = 0; 1385 return (0); 1386 } else { 1387 page_unlock(pp); 1388 return (EBUSY); 1389 } 1390 /*NOTREACHED*/ 1391 } 1392 } else { 1393 if (page_trylock(pp, SE_SHARED)) { 1394 if (PP_ISNORELOC(pp)) 1395 goto check_free_and_return; 1396 } else 1397 return (EAGAIN); 1398 1399 if (!PP_ISFREE(pp)) { 1400 page_unlock(pp); 1401 return (EAGAIN); 1402 } 1403 1404 /* 1405 * Need to upgrade the lock on it and set the NORELOC 1406 * bit. If it is free then remove it from the free 1407 * list so that the platform free list code can keep 1408 * NORELOC pages where they should be. 1409 */ 1410 /* 1411 * Before doing anything, get the exclusive lock. 1412 * This may fail (eg ISM pages are left shared locked). 1413 * If the page is free this will leave a hole in the 1414 * cage. There is no solution yet to this. 1415 */ 1416 if (!page_tryupgrade(pp)) { 1417 page_unlock(pp); 1418 return (EAGAIN); 1419 } 1420 } 1421 1422 ASSERT(PAGE_EXCL(pp)); 1423 1424 if (PP_ISFREE(pp)) { 1425 int which = PP_ISAGED(pp) ? PG_FREE_LIST : PG_CACHE_LIST; 1426 1427 page_list_sub(pp, which); 1428 ASSERT(pp->p_szc == 0); 1429 PP_SETNORELOC(pp); 1430 PLCNT_XFER_NORELOC(pp); 1431 page_list_add(pp, which | PG_LIST_TAIL); 1432 1433 page_unlock(pp); 1434 *nfreedp = 1; 1435 return (0); 1436 } else { 1437 if (pp->p_szc != 0) { 1438 if (!kcage_setnoreloc_pages(pp, SE_EXCL)) { 1439 page_unlock(pp); 1440 return (EAGAIN); 1441 } 1442 ASSERT(PP_ISNORELOC(pp)); 1443 } else { 1444 PP_SETNORELOC(pp); 1445 } 1446 PLCNT_XFER_NORELOC(pp); 1447 return (kcage_invalidate_page(pp, nfreedp)); 1448 } 1449 /*NOTREACHED*/ 1450 } 1451 1452 static int 1453 kcage_expand() 1454 { 1455 int did_something = 0; 1456 1457 spgcnt_t wanted; 1458 pfn_t pfn; 1459 page_t *pp; 1460 /* TODO: we don't really need n any more? */ 1461 pgcnt_t n; 1462 pgcnt_t nf, nfreed; 1463 1464 /* 1465 * Expand the cage if available cage memory is really low. Calculate 1466 * the amount required to return kcage_freemem to the level of 1467 * kcage_lotsfree, or to satisfy throttled requests, whichever is 1468 * more. It is rare for their sum to create an artificial threshold 1469 * above kcage_lotsfree, but it is possible. 1470 * 1471 * Exit early if expansion amount is equal to or less than zero. 1472 * (<0 is possible if kcage_freemem rises suddenly.) 1473 * 1474 * Exit early when the global page pool (apparently) does not 1475 * have enough free pages to page_relocate() even a single page. 1476 */ 1477 wanted = MAX(kcage_lotsfree, kcage_throttlefree + kcage_needfree) 1478 - kcage_freemem; 1479 if (wanted <= 0) 1480 return (0); 1481 else if (freemem < pageout_reserve + 1) { 1482 KCAGE_STAT_INCR(ke_lowfreemem); 1483 return (0); 1484 } 1485 1486 KCAGE_STAT_INCR(ke_calls); 1487 KCAGE_STAT_SET_SCAN(ke_wanted, (uint_t)wanted); 1488 1489 /* 1490 * Assimilate more pages from the global page pool into the cage. 1491 */ 1492 n = 0; /* number of pages PP_SETNORELOC'd */ 1493 nf = 0; /* number of those actually free */ 1494 while (kcage_on && nf < wanted) { 1495 pfn = kcage_get_pfn(1); 1496 if (pfn == PFN_INVALID) { /* eek! no where to grow */ 1497 KCAGE_STAT_INCR(ke_nopfn); 1498 goto terminate; 1499 } 1500 1501 KCAGE_STAT_INCR_SCAN(ke_examined); 1502 1503 if ((pp = page_numtopp_nolock(pfn)) == NULL) { 1504 KCAGE_STAT_INCR(ke_nopaget); 1505 continue; 1506 } 1507 KCAGEPAGETS_INC(); 1508 /* 1509 * Sanity check. Skip this pfn if it is 1510 * being deleted. 1511 */ 1512 if (pfn_is_being_deleted(pfn)) { 1513 KCAGE_STAT_INCR(ke_deleting); 1514 continue; 1515 } 1516 1517 if (PP_ISNORELOC(pp)) { 1518 KCAGE_STAT_INCR(ke_isnoreloc); 1519 continue; 1520 } 1521 1522 switch (kcage_assimilate_page(pp, &nfreed)) { 1523 case 0: /* assimilated, page is free */ 1524 KCAGE_STAT_NINCR_SCAN(ke_gotonefree, nfreed); 1525 did_something = 1; 1526 nf += nfreed; 1527 n++; 1528 break; 1529 1530 case EBUSY: /* assimilated, page not free */ 1531 case ERANGE: /* assimilated, page not root */ 1532 KCAGE_STAT_INCR_SCAN(ke_gotone); 1533 did_something = 1; 1534 n++; 1535 break; 1536 1537 case ENOMEM: /* assimilated, but no mem */ 1538 KCAGE_STAT_INCR(ke_terminate); 1539 did_something = 1; 1540 n++; 1541 goto terminate; 1542 1543 case EAGAIN: /* can't assimilate */ 1544 KCAGE_STAT_INCR_SCAN(ke_lefthole); 1545 break; 1546 1547 default: /* catch this with debug kernels */ 1548 ASSERT(0); 1549 break; 1550 } 1551 } 1552 1553 /* 1554 * Realign cage edge with the nearest physical address 1555 * boundry for big pages. This is done to give us a 1556 * better chance of actually getting usable big pages 1557 * in the cage. 1558 */ 1559 1560 terminate: 1561 1562 return (did_something); 1563 } 1564 1565 /* 1566 * Relocate page opp (Original Page Pointer) from cage pool to page rpp 1567 * (Replacement Page Pointer) in the global pool. Page opp will be freed 1568 * if relocation is successful, otherwise it is only unlocked. 1569 * On entry, page opp must be exclusively locked and not free. 1570 * *nfreedp: number of pages freed. 1571 */ 1572 static int 1573 kcage_relocate_page(page_t *pp, pgcnt_t *nfreedp) 1574 { 1575 page_t *opp = pp; 1576 page_t *rpp = NULL; 1577 spgcnt_t npgs; 1578 int result; 1579 1580 ASSERT(!PP_ISFREE(opp)); 1581 ASSERT(PAGE_EXCL(opp)); 1582 1583 result = page_relocate(&opp, &rpp, 1, 1, &npgs, NULL); 1584 *nfreedp = npgs; 1585 if (result == 0) { 1586 while (npgs-- > 0) { 1587 page_t *tpp; 1588 1589 ASSERT(rpp != NULL); 1590 tpp = rpp; 1591 page_sub(&rpp, tpp); 1592 page_unlock(tpp); 1593 } 1594 1595 ASSERT(rpp == NULL); 1596 1597 return (0); /* success */ 1598 } 1599 1600 page_unlock(opp); 1601 return (result); 1602 } 1603 1604 /* 1605 * Based on page_invalidate_pages() 1606 * 1607 * Kcage_invalidate_page() uses page_relocate() twice. Both instances 1608 * of use must be updated to match the new page_relocate() when it 1609 * becomes available. 1610 * 1611 * Return result of kcage_relocate_page or zero if page was directly freed. 1612 * *nfreedp: number of pages freed. 1613 */ 1614 static int 1615 kcage_invalidate_page(page_t *pp, pgcnt_t *nfreedp) 1616 { 1617 int result; 1618 1619 #if defined(__sparc) 1620 ASSERT(pp->p_vnode != &promvp); 1621 #endif /* __sparc */ 1622 ASSERT(!PP_ISFREE(pp)); 1623 ASSERT(PAGE_EXCL(pp)); 1624 1625 /* 1626 * Is this page involved in some I/O? shared? 1627 * The page_struct_lock need not be acquired to 1628 * examine these fields since the page has an 1629 * "exclusive" lock. 1630 */ 1631 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 1632 result = kcage_relocate_page(pp, nfreedp); 1633 #ifdef KCAGE_STATS 1634 if (result == 0) 1635 KCAGE_STAT_INCR_SCAN(kip_reloclocked); 1636 else if (result == ENOMEM) 1637 KCAGE_STAT_INCR_SCAN(kip_nomem); 1638 #endif 1639 return (result); 1640 } 1641 1642 ASSERT(pp->p_vnode->v_type != VCHR); 1643 1644 /* 1645 * Unload the mappings and check if mod bit is set. 1646 */ 1647 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1648 1649 if (hat_ismod(pp)) { 1650 result = kcage_relocate_page(pp, nfreedp); 1651 #ifdef KCAGE_STATS 1652 if (result == 0) 1653 KCAGE_STAT_INCR_SCAN(kip_relocmod); 1654 else if (result == ENOMEM) 1655 KCAGE_STAT_INCR_SCAN(kip_nomem); 1656 #endif 1657 return (result); 1658 } 1659 1660 if (!page_try_demote_pages(pp)) { 1661 KCAGE_STAT_INCR_SCAN(kip_demotefailed); 1662 page_unlock(pp); 1663 return (EAGAIN); 1664 } 1665 1666 /* LINTED: constant in conditional context */ 1667 VN_DISPOSE(pp, B_INVAL, 0, kcred); 1668 KCAGE_STAT_INCR_SCAN(kip_destroy); 1669 *nfreedp = 1; 1670 return (0); 1671 } 1672 1673 static void 1674 kcage_cageout() 1675 { 1676 pfn_t pfn; 1677 page_t *pp; 1678 callb_cpr_t cprinfo; 1679 int did_something; 1680 int scan_again; 1681 pfn_t start_pfn; 1682 int pass; 1683 int last_pass; 1684 int pages_skipped; 1685 int shared_skipped; 1686 ulong_t shared_level = 8; 1687 pgcnt_t nfreed; 1688 #ifdef KCAGE_STATS 1689 clock_t scan_start; 1690 #endif 1691 1692 CALLB_CPR_INIT(&cprinfo, &kcage_cageout_mutex, 1693 callb_generic_cpr, "cageout"); 1694 1695 mutex_enter(&kcage_cageout_mutex); 1696 kcage_cageout_thread = curthread; 1697 1698 pfn = PFN_INVALID; /* force scan reset */ 1699 start_pfn = PFN_INVALID; /* force init with 1st cage pfn */ 1700 kcage_cageout_ready = 1; /* switch kcage_cageout_wakeup mode */ 1701 1702 loop: 1703 /* 1704 * Wait here. Sooner or later, kcage_freemem_sub() will notice 1705 * that kcage_freemem is less than kcage_desfree. When it does 1706 * notice, kcage_freemem_sub() will wake us up via call to 1707 * kcage_cageout_wakeup(). 1708 */ 1709 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1710 cv_wait(&kcage_cageout_cv, &kcage_cageout_mutex); 1711 CALLB_CPR_SAFE_END(&cprinfo, &kcage_cageout_mutex); 1712 1713 KCAGE_STAT_INCR(kt_wakeups); 1714 KCAGE_STAT_SET_SCAN(kt_freemem_start, freemem); 1715 KCAGE_STAT_SET_SCAN(kt_kcage_freemem_start, kcage_freemem); 1716 pass = 0; 1717 last_pass = 0; 1718 1719 #ifdef KCAGE_STATS 1720 scan_start = ddi_get_lbolt(); 1721 #endif 1722 1723 again: 1724 if (!kcage_on) 1725 goto loop; 1726 1727 KCAGE_STAT_INCR(kt_scans); 1728 KCAGE_STAT_INCR_SCAN(kt_passes); 1729 1730 did_something = 0; 1731 pages_skipped = 0; 1732 shared_skipped = 0; 1733 while ((kcage_freemem < kcage_lotsfree || kcage_needfree) && 1734 (pfn = kcage_walk_cage(pfn == PFN_INVALID)) != PFN_INVALID) { 1735 1736 if (start_pfn == PFN_INVALID) 1737 start_pfn = pfn; 1738 else if (start_pfn == pfn) { 1739 last_pass = pass; 1740 pass += 1; 1741 /* 1742 * Did a complete walk of kernel cage, but didn't free 1743 * any pages. If only one cpu is active then 1744 * stop kernel cage walk and try expanding. 1745 */ 1746 if (cp_default.cp_ncpus == 1 && did_something == 0) { 1747 KCAGE_STAT_INCR(kt_cageout_break); 1748 break; 1749 } 1750 } 1751 1752 pp = page_numtopp_nolock(pfn); 1753 if (pp == NULL) { 1754 continue; 1755 } 1756 1757 KCAGE_STAT_INCR_SCAN(kt_examined); 1758 1759 /* 1760 * Do a quick PP_ISNORELOC() and PP_ISFREE test outside 1761 * of the lock. If one is missed it will be seen next 1762 * time through. 1763 * 1764 * Skip non-caged-pages. These pages can exist in the cage 1765 * because, if during cage expansion, a page is 1766 * encountered that is long-term locked the lock prevents the 1767 * expansion logic from setting the P_NORELOC flag. Hence, 1768 * non-caged-pages surrounded by caged-pages. 1769 */ 1770 if (!PP_ISNORELOC(pp)) { 1771 switch (kcage_assimilate_page(pp, &nfreed)) { 1772 case 0: 1773 did_something = 1; 1774 KCAGE_STAT_NINCR_SCAN(kt_gotonefree, 1775 nfreed); 1776 break; 1777 1778 case EBUSY: 1779 case ERANGE: 1780 did_something = 1; 1781 KCAGE_STAT_INCR_SCAN(kt_gotone); 1782 break; 1783 1784 case EAGAIN: 1785 case ENOMEM: 1786 break; 1787 1788 default: 1789 /* catch this with debug kernels */ 1790 ASSERT(0); 1791 break; 1792 } 1793 1794 continue; 1795 } else { 1796 int prm; 1797 1798 if (PP_ISFREE(pp)) { 1799 continue; 1800 } 1801 1802 if ((PP_ISKAS(pp) && pp->p_lckcnt > 0) || 1803 !page_trylock(pp, SE_EXCL)) { 1804 KCAGE_STAT_INCR_SCAN(kt_cantlock); 1805 continue; 1806 } 1807 1808 /* P_NORELOC bit should not have gone away. */ 1809 ASSERT(PP_ISNORELOC(pp)); 1810 if (PP_ISFREE(pp) || (PP_ISKAS(pp) && 1811 pp->p_lckcnt > 0)) { 1812 page_unlock(pp); 1813 continue; 1814 } 1815 1816 KCAGE_STAT_SET_SCAN(kt_skiplevel, shared_level); 1817 if (hat_page_checkshare(pp, shared_level)) { 1818 page_unlock(pp); 1819 pages_skipped = 1; 1820 shared_skipped = 1; 1821 KCAGE_STAT_INCR_SCAN(kt_skipshared); 1822 continue; 1823 } 1824 1825 /* 1826 * In pass {0, 1}, skip page if ref bit is set. 1827 * In pass {0, 1, 2}, skip page if mod bit is set. 1828 */ 1829 prm = hat_pagesync(pp, 1830 HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD); 1831 1832 /* On first pass ignore ref'd pages */ 1833 if (pass <= 1 && (prm & P_REF)) { 1834 KCAGE_STAT_INCR_SCAN(kt_skiprefd); 1835 pages_skipped = 1; 1836 page_unlock(pp); 1837 continue; 1838 } 1839 1840 /* On pass 2, VN_DISPOSE if mod bit is not set */ 1841 if (pass <= 2) { 1842 if (pp->p_szc != 0 || (prm & P_MOD) || 1843 pp->p_lckcnt || pp->p_cowcnt) { 1844 pages_skipped = 1; 1845 page_unlock(pp); 1846 } else { 1847 1848 /* 1849 * unload the mappings before 1850 * checking if mod bit is set 1851 */ 1852 (void) hat_pageunload(pp, 1853 HAT_FORCE_PGUNLOAD); 1854 1855 /* 1856 * skip this page if modified 1857 */ 1858 if (hat_ismod(pp)) { 1859 pages_skipped = 1; 1860 page_unlock(pp); 1861 continue; 1862 } 1863 1864 KCAGE_STAT_INCR_SCAN(kt_destroy); 1865 /* constant in conditional context */ 1866 /* LINTED */ 1867 VN_DISPOSE(pp, B_INVAL, 0, kcred); 1868 did_something = 1; 1869 } 1870 continue; 1871 } 1872 1873 if (kcage_invalidate_page(pp, &nfreed) == 0) { 1874 did_something = 1; 1875 KCAGE_STAT_NINCR_SCAN(kt_gotonefree, nfreed); 1876 } 1877 1878 /* 1879 * No need to drop the page lock here. 1880 * Kcage_invalidate_page has done that for us 1881 * either explicitly or through a page_free. 1882 */ 1883 } 1884 } 1885 1886 /* 1887 * Expand the cage only if available cage memory is really low. 1888 * This test is done only after a complete scan of the cage. 1889 * The reason for not checking and expanding more often is to 1890 * avoid rapid expansion of the cage. Naturally, scanning the 1891 * cage takes time. So by scanning first, we use that work as a 1892 * delay loop in between expand decisions. 1893 */ 1894 1895 scan_again = 0; 1896 if (kcage_freemem < kcage_minfree || kcage_needfree) { 1897 /* 1898 * Kcage_expand() will return a non-zero value if it was 1899 * able to expand the cage -- whether or not the new 1900 * pages are free and immediately usable. If non-zero, 1901 * we do another scan of the cage. The pages might be 1902 * freed during that scan or by time we get back here. 1903 * If not, we will attempt another expansion. 1904 * However, if kcage_expand() returns zero, then it was 1905 * unable to expand the cage. This is the case when the 1906 * the growth list is exausted, therefore no work was done 1907 * and there is no reason to scan the cage again. 1908 * Note: Kernel cage scan is not repeated when only one 1909 * cpu is active to avoid kernel cage thread hogging cpu. 1910 */ 1911 if (pass <= 3 && pages_skipped && cp_default.cp_ncpus > 1) 1912 scan_again = 1; 1913 else 1914 (void) kcage_expand(); /* don't scan again */ 1915 } else if (kcage_freemem < kcage_lotsfree) { 1916 /* 1917 * If available cage memory is less than abundant 1918 * and a full scan of the cage has not yet been completed, 1919 * or a scan has completed and some work was performed, 1920 * or pages were skipped because of sharing, 1921 * or we simply have not yet completed two passes, 1922 * then do another scan. 1923 */ 1924 if (pass <= 2 && pages_skipped) 1925 scan_again = 1; 1926 if (pass == last_pass || did_something) 1927 scan_again = 1; 1928 else if (shared_skipped && shared_level < (8<<24)) { 1929 shared_level <<= 1; 1930 scan_again = 1; 1931 } 1932 } 1933 1934 if (scan_again && cp_default.cp_ncpus > 1) 1935 goto again; 1936 else { 1937 if (shared_level > 8) 1938 shared_level >>= 1; 1939 1940 KCAGE_STAT_SET_SCAN(kt_freemem_end, freemem); 1941 KCAGE_STAT_SET_SCAN(kt_kcage_freemem_end, kcage_freemem); 1942 KCAGE_STAT_SET_SCAN(kt_ticks, ddi_get_lbolt() - scan_start); 1943 KCAGE_STAT_INC_SCAN_INDEX; 1944 goto loop; 1945 } 1946 1947 /*NOTREACHED*/ 1948 } 1949 1950 void 1951 kcage_cageout_wakeup() 1952 { 1953 if (mutex_tryenter(&kcage_cageout_mutex)) { 1954 if (kcage_cageout_ready) { 1955 cv_signal(&kcage_cageout_cv); 1956 } else if (kcage_freemem < kcage_minfree || kcage_needfree) { 1957 /* 1958 * Available cage memory is really low. Time to 1959 * start expanding the cage. However, the 1960 * kernel cage thread is not yet ready to 1961 * do the work. Use *this* thread, which is 1962 * most likely to be t0, to do the work. 1963 */ 1964 KCAGE_STAT_INCR(kcw_expandearly); 1965 (void) kcage_expand(); 1966 KCAGE_STAT_INC_SCAN_INDEX; 1967 } 1968 1969 mutex_exit(&kcage_cageout_mutex); 1970 } 1971 /* else, kernel cage thread is already running */ 1972 } 1973 1974 void 1975 kcage_tick() 1976 { 1977 /* 1978 * Once per second we wake up all the threads throttled 1979 * waiting for cage memory, in case we've become stuck 1980 * and haven't made forward progress expanding the cage. 1981 */ 1982 if (kcage_on && kcage_cageout_ready) 1983 cv_broadcast(&kcage_throttle_cv); 1984 } 1985