xref: /titanic_50/usr/src/uts/common/os/group.c (revision 2a8164df8a5f42c8a00f10c67d7bc84f80ae9c41)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/systm.h>
27 #include <sys/param.h>
28 #include <sys/debug.h>
29 #include <sys/kmem.h>
30 #include <sys/group.h>
31 
32 
33 #define	GRP_SET_SIZE_DEFAULT 2
34 
35 static void group_grow_set(group_t *);
36 static void group_shrink_set(group_t *);
37 static void group_pack_set(void **, uint_t);
38 
39 /*
40  * Initialize a group_t
41  */
42 void
43 group_create(group_t *g)
44 {
45 	bzero(g, sizeof (group_t));
46 }
47 
48 /*
49  * Destroy a group_t
50  * The group must already be empty
51  */
52 void
53 group_destroy(group_t *g)
54 {
55 	ASSERT(g->grp_size == 0);
56 
57 	if (g->grp_capacity > 0) {
58 		kmem_free(g->grp_set, g->grp_capacity * sizeof (void *));
59 		g->grp_capacity = 0;
60 	}
61 	g->grp_set = NULL;
62 }
63 
64 /*
65  * Empty a group_t
66  * Capacity is preserved.
67  */
68 void
69 group_empty(group_t *g)
70 {
71 	int	i;
72 	int	sz = g->grp_size;
73 
74 	g->grp_size = 0;
75 	for (i = 0; i < sz; i++)
76 		g->grp_set[i] = NULL;
77 }
78 
79 /*
80  * Add element "e" to group "g"
81  *
82  * Returns -1 if addition would result in overcapacity, and
83  * resize operations aren't allowed, and 0 otherwise
84  */
85 int
86 group_add(group_t *g, void *e, int gflag)
87 {
88 	int	entry;
89 
90 	if ((gflag & GRP_NORESIZE) &&
91 	    g->grp_size == g->grp_capacity)
92 		return (-1);
93 
94 	ASSERT(g->grp_size != g->grp_capacity || (gflag & GRP_RESIZE));
95 
96 	entry = g->grp_size++;
97 	if (g->grp_size > g->grp_capacity)
98 		group_grow_set(g);
99 
100 	ASSERT(g->grp_set[entry] == NULL);
101 	g->grp_set[entry] = e;
102 
103 	return (0);
104 }
105 
106 /*
107  * Remove element "e" from group "g"
108  *
109  * Returns -1 if "e" was not present in "g" and 0 otherwise
110  */
111 int
112 group_remove(group_t *g, void *e, int gflag)
113 {
114 	int	i;
115 
116 	/*
117 	 * Find the element in the group's set
118 	 */
119 	for (i = 0; i < g->grp_size; i++)
120 		if (g->grp_set[i] == e)
121 			break;
122 	if (g->grp_set[i] != e)
123 		return (-1);
124 
125 	g->grp_set[i] = NULL;
126 	group_pack_set(g->grp_set, g->grp_size);
127 	g->grp_size--;
128 
129 	if ((gflag & GRP_RESIZE) &&
130 	    g->grp_size > GRP_SET_SIZE_DEFAULT &&
131 	    ((g->grp_size - 1) & g->grp_size) == 0)
132 		group_shrink_set(g);
133 
134 	return (0);
135 }
136 
137 /*
138  * Expand the capacity of group "g" so that it may
139  * contain at least "n" elements
140  */
141 void
142 group_expand(group_t *g, uint_t n)
143 {
144 	while (g->grp_capacity < n)
145 		group_grow_set(g);
146 }
147 
148 /*
149  * Upsize a group's holding capacity
150  */
151 static void
152 group_grow_set(group_t *g)
153 {
154 	uint_t		cap_old, cap_new;
155 	void		**set_old, **set_new;
156 
157 	cap_old = g->grp_capacity;
158 	set_old = g->grp_set;
159 
160 	/*
161 	 * The array size grows in powers of two
162 	 */
163 	if ((cap_new = (cap_old << 1)) == 0) {
164 		/*
165 		 * The set is unallocated.
166 		 * Allocate a default sized set.
167 		 */
168 		cap_new = GRP_SET_SIZE_DEFAULT;
169 		g->grp_set = kmem_zalloc(cap_new * sizeof (void *), KM_SLEEP);
170 		g->grp_capacity = cap_new;
171 	} else {
172 		/*
173 		 * Allocate a newly sized array,
174 		 * copy the data, and free the old array.
175 		 */
176 		set_new = kmem_zalloc(cap_new * sizeof (void *), KM_SLEEP);
177 		(void) kcopy(set_old, set_new, cap_old * sizeof (void *));
178 		g->grp_set = set_new;
179 		g->grp_capacity = cap_new;
180 		kmem_free(set_old, cap_old * sizeof (void *));
181 	}
182 	/*
183 	 * The new array size should be a power of two
184 	 */
185 	ASSERT(((cap_new - 1) & cap_new) == 0);
186 }
187 
188 /*
189  * Downsize a group's holding capacity
190  */
191 static void
192 group_shrink_set(group_t *g)
193 {
194 	uint_t		cap_old, cap_new;
195 	void		**set_old, **set_new;
196 
197 	cap_old = g->grp_capacity;
198 	set_old = g->grp_set;
199 
200 	/*
201 	 * The group's existing array size must already
202 	 * be a power of two
203 	 */
204 	ASSERT(((cap_old - 1) & cap_old) == 0);
205 	cap_new = cap_old >> 1;
206 
207 	/*
208 	 * GRP_SET_SIZE_DEFAULT is the minumum set size.
209 	 */
210 	if (cap_new < GRP_SET_SIZE_DEFAULT)
211 		return;
212 
213 	set_new = kmem_zalloc(cap_new * sizeof (void *), KM_SLEEP);
214 	(void) kcopy(set_old, set_new, cap_new * sizeof (void *));
215 	g->grp_capacity = cap_new;
216 	g->grp_set = set_new;
217 
218 	ASSERT(((cap_new - 1) & cap_new) == 0);
219 	kmem_free(set_old, cap_old * sizeof (void *));
220 }
221 
222 /*
223  * Pack a group's set
224  * Element order is not preserved
225  */
226 static void
227 group_pack_set(void **set, uint_t sz)
228 {
229 	uint_t	i, j, free;
230 
231 	free = (uint_t)-1;
232 
233 	for (i = 0; i < sz; i++) {
234 		if (set[i] == NULL && free == (uint_t)-1) {
235 			/*
236 			 * Found a new free slot.
237 			 * Start packing from here.
238 			 */
239 			free = i;
240 		} else if (set[i] != NULL && free != (uint_t)-1) {
241 			/*
242 			 * Found a slot to pack into
243 			 * an earlier free slot.
244 			 */
245 			ASSERT(set[free] == NULL);
246 			set[free] = set[i];
247 			set[i] = NULL;
248 
249 			/*
250 			 * Find the next free slot
251 			 */
252 			for (j = free + 1; set[j] != NULL; j++) {
253 				ASSERT(j <= i);
254 				if (j == i)
255 					break;
256 			}
257 			if (set[j] == NULL)
258 				free = j;
259 			else
260 				free = (uint_t)-1;
261 		}
262 	}
263 }
264 
265 /*
266  * Initialize a group iterator cookie
267  */
268 void
269 group_iter_init(group_iter_t *iter)
270 {
271 	*iter = 0;
272 }
273 
274 /*
275  * Iterate over the elements in a group
276  */
277 void *
278 group_iterate(group_t *g, group_iter_t *iter)
279 {
280 	uint_t	idx = *iter;
281 	void	*data = NULL;
282 
283 	while (idx < g->grp_size) {
284 		data = g->grp_set[idx++];
285 		if (data != NULL)
286 			break;
287 	}
288 	*iter = idx;
289 
290 	return (data);
291 }
292 
293 /*
294  * Indexed access to a group's elements
295  */
296 void *
297 group_access_at(group_t *g, uint_t idx)
298 {
299 	if (idx >= g->grp_capacity)
300 		return (NULL);
301 
302 	return (g->grp_set[idx]);
303 }
304 
305 /*
306  * Add a new ordered group element at specified
307  * index. The group must already be of sufficient
308  * capacity to hold an element at the specified index.
309  *
310  * Returns 0 if addition was sucessful, and -1 if the
311  * addition failed because the table was too small
312  */
313 int
314 group_add_at(group_t *g, void *e, uint_t idx)
315 {
316 	if (idx >= g->grp_capacity)
317 		return (-1);
318 
319 	if (idx >= g->grp_size)
320 		g->grp_size = idx + 1;
321 
322 	ASSERT(g->grp_set[idx] == NULL);
323 	g->grp_set[idx] = e;
324 	return (0);
325 }
326 
327 /*
328  * Remove the element at the specified index
329  */
330 void
331 group_remove_at(group_t *g, uint_t idx)
332 {
333 	ASSERT(idx < g->grp_capacity);
334 	g->grp_set[idx] = NULL;
335 }
336 
337 /*
338  * Find an element in the group, and return its index
339  * Returns -1 if the element could not be found.
340  */
341 uint_t
342 group_find(group_t *g, void *e)
343 {
344 	uint_t	idx;
345 
346 	for (idx = 0; idx < g->grp_capacity; idx++) {
347 		if (g->grp_set[idx] == e)
348 			return (idx);
349 	}
350 	return ((uint_t)-1);
351 }
352