xref: /titanic_50/usr/src/uts/common/os/fork.c (revision f841f6ad96ea6675d6c6b35c749eaac601799fdf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/sysmacros.h>
36 #include <sys/signal.h>
37 #include <sys/cred.h>
38 #include <sys/policy.h>
39 #include <sys/user.h>
40 #include <sys/systm.h>
41 #include <sys/cpuvar.h>
42 #include <sys/vfs.h>
43 #include <sys/vnode.h>
44 #include <sys/file.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <sys/cmn_err.h>
49 #include <sys/acct.h>
50 #include <sys/tuneable.h>
51 #include <sys/class.h>
52 #include <sys/kmem.h>
53 #include <sys/session.h>
54 #include <sys/ucontext.h>
55 #include <sys/stack.h>
56 #include <sys/procfs.h>
57 #include <sys/prsystm.h>
58 #include <sys/vmsystm.h>
59 #include <sys/vtrace.h>
60 #include <sys/debug.h>
61 #include <sys/shm_impl.h>
62 #include <sys/door_data.h>
63 #include <vm/as.h>
64 #include <vm/rm.h>
65 #include <c2/audit.h>
66 #include <sys/var.h>
67 #include <sys/schedctl.h>
68 #include <sys/utrap.h>
69 #include <sys/task.h>
70 #include <sys/resource.h>
71 #include <sys/cyclic.h>
72 #include <sys/lgrp.h>
73 #include <sys/rctl.h>
74 #include <sys/contract_impl.h>
75 #include <sys/contract/process_impl.h>
76 #include <sys/list.h>
77 #include <sys/dtrace.h>
78 #include <sys/pool.h>
79 #include <sys/zone.h>
80 #include <sys/sdt.h>
81 #include <sys/class.h>
82 #include <sys/corectl.h>
83 
84 static int64_t cfork(int, int);
85 static int getproc(proc_t **, int);
86 static void fork_fail(proc_t *);
87 static void forklwp_fail(proc_t *);
88 
89 int fork_fail_pending;
90 
91 extern struct kmem_cache *process_cache;
92 
93 /*
94  * forkall system call.
95  */
96 int64_t
97 forkall(void)
98 {
99 	return (cfork(0, 0));
100 }
101 
102 /*
103  * The parent is stopped until the child invokes relvm().
104  */
105 int64_t
106 vfork(void)
107 {
108 	curthread->t_post_sys = 1;	/* so vfwait() will be called */
109 	return (cfork(1, 1));
110 }
111 
112 /*
113  * fork1 system call
114  */
115 int64_t
116 fork1(void)
117 {
118 	return (cfork(0, 1));
119 }
120 
121 /* ARGSUSED */
122 static int64_t
123 cfork(int isvfork, int isfork1)
124 {
125 	proc_t *p = ttoproc(curthread);
126 	struct as *as;
127 	proc_t *cp, **orphpp;
128 	klwp_t *clone;
129 	kthread_t *t;
130 	task_t *tk;
131 	rval_t	r;
132 	int error;
133 	int i;
134 	rctl_set_t *dup_set;
135 	rctl_alloc_gp_t *dup_gp;
136 	rctl_entity_p_t e;
137 	lwpdir_t *ldp;
138 	lwpent_t *lep;
139 	lwpent_t *clep;
140 
141 	/*
142 	 * fork is not supported for the /proc agent lwp.
143 	 */
144 	if (curthread == p->p_agenttp) {
145 		error = ENOTSUP;
146 		goto forkerr;
147 	}
148 
149 	if ((error = secpolicy_basic_fork(CRED())) != 0)
150 		goto forkerr;
151 
152 	/*
153 	 * If the calling lwp is doing a fork1() then the
154 	 * other lwps in this process are not duplicated and
155 	 * don't need to be held where their kernel stacks can be
156 	 * cloned.  If doing forkall(), the process is held with
157 	 * SHOLDFORK, so that the lwps are at a point where their
158 	 * stacks can be copied which is on entry or exit from
159 	 * the kernel.
160 	 */
161 	if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) {
162 		aston(curthread);
163 		error = EINTR;
164 		goto forkerr;
165 	}
166 
167 #if defined(__sparc)
168 	/*
169 	 * Ensure that the user stack is fully constructed
170 	 * before creating the child process structure.
171 	 */
172 	(void) flush_user_windows_to_stack(NULL);
173 #endif
174 
175 	mutex_enter(&p->p_lock);
176 	/*
177 	 * If this is vfork(), cancel any suspend request we might
178 	 * have gotten from some other thread via lwp_suspend().
179 	 * Otherwise we could end up with a deadlock on return
180 	 * from the vfork() in both the parent and the child.
181 	 */
182 	if (isvfork)
183 		curthread->t_proc_flag &= ~TP_HOLDLWP;
184 	/*
185 	 * Prevent our resource set associations from being changed during fork.
186 	 */
187 	pool_barrier_enter();
188 	mutex_exit(&p->p_lock);
189 
190 	/*
191 	 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes.
192 	 */
193 	if (getproc(&cp, 0) < 0) {
194 		mutex_enter(&p->p_lock);
195 		pool_barrier_exit();
196 		continuelwps(p);
197 		mutex_exit(&p->p_lock);
198 		error = EAGAIN;
199 		goto forkerr;
200 	}
201 
202 	TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p);
203 
204 	/*
205 	 * Assign an address space to child
206 	 */
207 	if (isvfork) {
208 		/*
209 		 * Clear any watched areas and remember the
210 		 * watched pages for restoring in vfwait().
211 		 */
212 		as = p->p_as;
213 		if (avl_numnodes(&as->a_wpage) != 0) {
214 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
215 			as_clearwatch(as);
216 			p->p_wpage = as->a_wpage;
217 			avl_create(&as->a_wpage, wp_compare,
218 			    sizeof (struct watched_page),
219 			    offsetof(struct watched_page, wp_link));
220 			AS_LOCK_EXIT(as, &as->a_lock);
221 		}
222 		cp->p_as = as;
223 		cp->p_flag |= SVFORK;
224 	} else {
225 		/*
226 		 * We need to hold P_PR_LOCK until the address space has
227 		 * been duplicated and we've had a chance to remove from the
228 		 * child any DTrace probes that were in the parent. Holding
229 		 * P_PR_LOCK prevents any new probes from being added and any
230 		 * extant probes from being removed.
231 		 */
232 		mutex_enter(&p->p_lock);
233 		sprlock_proc(p);
234 		p->p_flag |= SFORKING;
235 		mutex_exit(&p->p_lock);
236 
237 		error = as_dup(p->p_as, &cp->p_as);
238 		if (error != 0) {
239 			fork_fail(cp);
240 			mutex_enter(&pidlock);
241 			orphpp = &p->p_orphan;
242 			while (*orphpp != cp)
243 				orphpp = &(*orphpp)->p_nextorph;
244 			*orphpp = cp->p_nextorph;
245 			if (p->p_child == cp)
246 				p->p_child = cp->p_sibling;
247 			if (cp->p_sibling)
248 				cp->p_sibling->p_psibling = cp->p_psibling;
249 			if (cp->p_psibling)
250 				cp->p_psibling->p_sibling = cp->p_sibling;
251 			mutex_enter(&cp->p_lock);
252 			tk = cp->p_task;
253 			task_detach(cp);
254 			ASSERT(cp->p_pool->pool_ref > 0);
255 			atomic_add_32(&cp->p_pool->pool_ref, -1);
256 			mutex_exit(&cp->p_lock);
257 			pid_exit(cp);
258 			mutex_exit(&pidlock);
259 			task_rele(tk);
260 
261 			mutex_enter(&p->p_lock);
262 			p->p_flag &= ~SFORKING;
263 			pool_barrier_exit();
264 			continuelwps(p);
265 			sprunlock(p);
266 			/*
267 			 * Preserve ENOMEM error condition but
268 			 * map all others to EAGAIN.
269 			 */
270 			error = (error == ENOMEM) ? ENOMEM : EAGAIN;
271 			goto forkerr;
272 		}
273 		/* Duplicate parent's shared memory */
274 		if (p->p_segacct)
275 			shmfork(p, cp);
276 
277 		/*
278 		 * Remove all DTrace tracepoints from the child process. We
279 		 * need to do this _before_ duplicating USDT providers since
280 		 * any associated probes may be immediately enabled.
281 		 */
282 		if (p->p_dtrace_count > 0)
283 			dtrace_fasttrap_fork(p, cp);
284 
285 		/*
286 		 * Duplicate any helper actions and providers. The SFORKING
287 		 * we set above informs the code to enable USDT probes that
288 		 * sprlock() may fail because the child is being forked.
289 		 */
290 		if (p->p_dtrace_helpers != NULL) {
291 			ASSERT(dtrace_helpers_fork != NULL);
292 			(*dtrace_helpers_fork)(p, cp);
293 		}
294 
295 		mutex_enter(&p->p_lock);
296 		p->p_flag &= ~SFORKING;
297 		sprunlock(p);
298 	}
299 
300 	/*
301 	 * Duplicate parent's resource controls.
302 	 */
303 	dup_set = rctl_set_create();
304 	for (;;) {
305 		dup_gp = rctl_set_dup_prealloc(p->p_rctls);
306 		mutex_enter(&p->p_rctls->rcs_lock);
307 		if (rctl_set_dup_ready(p->p_rctls, dup_gp))
308 			break;
309 		mutex_exit(&p->p_rctls->rcs_lock);
310 		rctl_prealloc_destroy(dup_gp);
311 	}
312 	e.rcep_p.proc = cp;
313 	e.rcep_t = RCENTITY_PROCESS;
314 	cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp,
315 	    RCD_DUP | RCD_CALLBACK);
316 	mutex_exit(&p->p_rctls->rcs_lock);
317 
318 	rctl_prealloc_destroy(dup_gp);
319 
320 	/*
321 	 * Allocate the child's lwp directory and lwpid hash table.
322 	 */
323 	if (isfork1)
324 		cp->p_lwpdir_sz = 2;
325 	else
326 		cp->p_lwpdir_sz = p->p_lwpdir_sz;
327 	cp->p_lwpdir = cp->p_lwpfree = ldp =
328 		kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP);
329 	for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++)
330 		ldp->ld_next = ldp + 1;
331 	cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2;
332 	cp->p_tidhash =
333 		kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP);
334 
335 	/*
336 	 * Duplicate parent's lwps.
337 	 * Mutual exclusion is not needed because the process is
338 	 * in the hold state and only the current lwp is running.
339 	 */
340 	klgrpset_clear(cp->p_lgrpset);
341 	if (isfork1) {
342 		clone = forklwp(ttolwp(curthread), cp, curthread->t_tid);
343 		if (clone == NULL)
344 			goto forklwperr;
345 		/*
346 		 * Inherit only the lwp_wait()able flag,
347 		 * Daemon threads should not call fork1(), but oh well...
348 		 */
349 		lwptot(clone)->t_proc_flag |=
350 			(curthread->t_proc_flag & TP_TWAIT);
351 	} else {
352 		/* this is forkall(), no one can be in lwp_wait() */
353 		ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0);
354 		/* for each entry in the parent's lwp directory... */
355 		for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) {
356 			klwp_t *clwp;
357 			kthread_t *ct;
358 
359 			if ((lep = ldp->ld_entry) == NULL)
360 				continue;
361 
362 			if ((t = lep->le_thread) != NULL) {
363 				clwp = forklwp(ttolwp(t), cp, t->t_tid);
364 				if (clwp == NULL)
365 					goto forklwperr;
366 				ct = lwptot(clwp);
367 				/*
368 				 * Inherit lwp_wait()able and daemon flags.
369 				 */
370 				ct->t_proc_flag |=
371 				    (t->t_proc_flag & (TP_TWAIT|TP_DAEMON));
372 				/*
373 				 * Keep track of the clone of curthread to
374 				 * post return values through lwp_setrval().
375 				 * Mark other threads for special treatment
376 				 * by lwp_rtt() / post_syscall().
377 				 */
378 				if (t == curthread)
379 					clone = clwp;
380 				else
381 					ct->t_flag |= T_FORKALL;
382 			} else {
383 				/*
384 				 * Replicate zombie lwps in the child.
385 				 */
386 				clep = kmem_zalloc(sizeof (*clep), KM_SLEEP);
387 				clep->le_lwpid = lep->le_lwpid;
388 				clep->le_start = lep->le_start;
389 				lwp_hash_in(cp, clep);
390 			}
391 		}
392 	}
393 
394 	/*
395 	 * Put new process in the parent's process contract, or put it
396 	 * in a new one if there is an active process template.  Send a
397 	 * fork event (if requested) to whatever contract the child is
398 	 * a member of.  Fails if the parent has been SIGKILLed.
399 	 */
400 	if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL)
401 		goto forklwperr;
402 
403 	/*
404 	 * No fork failures occur beyond this point.
405 	 */
406 
407 	cp->p_lwpid = p->p_lwpid;
408 	if (!isfork1) {
409 		cp->p_lwpdaemon = p->p_lwpdaemon;
410 		cp->p_zombcnt = p->p_zombcnt;
411 		/*
412 		 * If the parent's lwp ids have wrapped around, so have the
413 		 * child's.
414 		 */
415 		cp->p_flag |= p->p_flag & SLWPWRAP;
416 	}
417 
418 	corectl_path_hold(cp->p_corefile = p->p_corefile);
419 	corectl_content_hold(cp->p_content = p->p_content);
420 
421 	/*
422 	 * Duplicate process context ops, if any.
423 	 */
424 	if (p->p_pctx)
425 		forkpctx(p, cp);
426 
427 #ifdef __sparc
428 	utrap_dup(p, cp);
429 #endif
430 	/*
431 	 * If the child process has been marked to stop on exit
432 	 * from this fork, arrange for all other lwps to stop in
433 	 * sympathy with the active lwp.
434 	 */
435 	if (PTOU(cp)->u_systrap &&
436 	    prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) {
437 		mutex_enter(&cp->p_lock);
438 		t = cp->p_tlist;
439 		do {
440 			t->t_proc_flag |= TP_PRSTOP;
441 			aston(t);	/* so TP_PRSTOP will be seen */
442 		} while ((t = t->t_forw) != cp->p_tlist);
443 		mutex_exit(&cp->p_lock);
444 	}
445 	/*
446 	 * If the parent process has been marked to stop on exit
447 	 * from this fork, and its asynchronous-stop flag has not
448 	 * been set, arrange for all other lwps to stop before
449 	 * they return back to user level.
450 	 */
451 	if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap &&
452 	    prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) {
453 		mutex_enter(&p->p_lock);
454 		t = p->p_tlist;
455 		do {
456 			t->t_proc_flag |= TP_PRSTOP;
457 			aston(t);	/* so TP_PRSTOP will be seen */
458 		} while ((t = t->t_forw) != p->p_tlist);
459 		mutex_exit(&p->p_lock);
460 	}
461 
462 	/* set return values for child */
463 	lwp_setrval(clone, p->p_pid, 1);
464 
465 	/* set return values for parent */
466 	r.r_val1 = (int)cp->p_pid;
467 	r.r_val2 = 0;
468 
469 	/*
470 	 * pool_barrier_exit() can now be called because the child process has:
471 	 * - all identifying features cloned or set (p_pid, p_task, p_pool)
472 	 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset)
473 	 * - any other fields set which are used in resource set binding.
474 	 */
475 	mutex_enter(&p->p_lock);
476 	pool_barrier_exit();
477 	mutex_exit(&p->p_lock);
478 
479 	mutex_enter(&pidlock);
480 	mutex_enter(&cp->p_lock);
481 
482 	/*
483 	 * Now that there are lwps and threads attached, add the new
484 	 * process to the process group.
485 	 */
486 	pgjoin(cp, p->p_pgidp);
487 	cp->p_stat = SRUN;
488 	/*
489 	 * We are now done with all the lwps in the child process.
490 	 */
491 	t = cp->p_tlist;
492 	do {
493 		/*
494 		 * Set the lwp_suspend()ed lwps running.
495 		 * They will suspend properly at syscall exit.
496 		 */
497 		if (t->t_proc_flag & TP_HOLDLWP)
498 			lwp_create_done(t);
499 		else {
500 			/* set TS_CREATE to allow continuelwps() to work */
501 			thread_lock(t);
502 			ASSERT(t->t_state == TS_STOPPED &&
503 			    !(t->t_schedflag & (TS_CREATE|TS_CSTART)));
504 			t->t_schedflag |= TS_CREATE;
505 			thread_unlock(t);
506 		}
507 	} while ((t = t->t_forw) != cp->p_tlist);
508 	mutex_exit(&cp->p_lock);
509 
510 	if (isvfork) {
511 		CPU_STATS_ADDQ(CPU, sys, sysvfork, 1);
512 		mutex_enter(&p->p_lock);
513 		p->p_flag |= SVFWAIT;
514 		DTRACE_PROC1(create, proc_t *, cp);
515 		cv_broadcast(&pr_pid_cv[p->p_slot]);	/* inform /proc */
516 		mutex_exit(&p->p_lock);
517 		/*
518 		 * Grab child's p_lock before dropping pidlock to ensure
519 		 * the process will not disappear before we set it running.
520 		 */
521 		mutex_enter(&cp->p_lock);
522 		mutex_exit(&pidlock);
523 		sigdefault(cp);
524 		continuelwps(cp);
525 		mutex_exit(&cp->p_lock);
526 	} else {
527 		CPU_STATS_ADDQ(CPU, sys, sysfork, 1);
528 		DTRACE_PROC1(create, proc_t *, cp);
529 		/*
530 		 * It is CL_FORKRET's job to drop pidlock.
531 		 * If we do it here, the process could be set running
532 		 * and disappear before CL_FORKRET() is called.
533 		 */
534 		CL_FORKRET(curthread, cp->p_tlist);
535 		ASSERT(MUTEX_NOT_HELD(&pidlock));
536 	}
537 
538 	return (r.r_vals);
539 
540 forklwperr:
541 	if (isvfork) {
542 		if (avl_numnodes(&p->p_wpage) != 0) {
543 			/* restore watchpoints to parent */
544 			as = p->p_as;
545 			AS_LOCK_ENTER(as, &as->a_lock,
546 				RW_WRITER);
547 			as->a_wpage = p->p_wpage;
548 			avl_create(&p->p_wpage, wp_compare,
549 			    sizeof (struct watched_page),
550 			    offsetof(struct watched_page, wp_link));
551 			as_setwatch(as);
552 			AS_LOCK_EXIT(as, &as->a_lock);
553 		}
554 	} else {
555 		if (cp->p_segacct)
556 			shmexit(cp);
557 		as = cp->p_as;
558 		cp->p_as = &kas;
559 		as_free(as);
560 	}
561 
562 	if (cp->p_lwpdir) {
563 		for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++)
564 			if ((lep = ldp->ld_entry) != NULL)
565 				kmem_free(lep, sizeof (*lep));
566 		kmem_free(cp->p_lwpdir,
567 		    cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir));
568 	}
569 	cp->p_lwpdir = NULL;
570 	cp->p_lwpfree = NULL;
571 	cp->p_lwpdir_sz = 0;
572 
573 	if (cp->p_tidhash)
574 		kmem_free(cp->p_tidhash,
575 		    cp->p_tidhash_sz * sizeof (*cp->p_tidhash));
576 	cp->p_tidhash = NULL;
577 	cp->p_tidhash_sz = 0;
578 
579 	forklwp_fail(cp);
580 	fork_fail(cp);
581 	rctl_set_free(cp->p_rctls);
582 	mutex_enter(&pidlock);
583 
584 	/*
585 	 * Detach failed child from task.
586 	 */
587 	mutex_enter(&cp->p_lock);
588 	tk = cp->p_task;
589 	task_detach(cp);
590 	ASSERT(cp->p_pool->pool_ref > 0);
591 	atomic_add_32(&cp->p_pool->pool_ref, -1);
592 	mutex_exit(&cp->p_lock);
593 
594 	orphpp = &p->p_orphan;
595 	while (*orphpp != cp)
596 		orphpp = &(*orphpp)->p_nextorph;
597 	*orphpp = cp->p_nextorph;
598 	if (p->p_child == cp)
599 		p->p_child = cp->p_sibling;
600 	if (cp->p_sibling)
601 		cp->p_sibling->p_psibling = cp->p_psibling;
602 	if (cp->p_psibling)
603 		cp->p_psibling->p_sibling = cp->p_sibling;
604 	pid_exit(cp);
605 	mutex_exit(&pidlock);
606 
607 	task_rele(tk);
608 
609 	mutex_enter(&p->p_lock);
610 	pool_barrier_exit();
611 	continuelwps(p);
612 	mutex_exit(&p->p_lock);
613 	error = EAGAIN;
614 forkerr:
615 	return ((int64_t)set_errno(error));
616 }
617 
618 /*
619  * Free allocated resources from getproc() if a fork failed.
620  */
621 static void
622 fork_fail(proc_t *cp)
623 {
624 	uf_info_t *fip = P_FINFO(cp);
625 
626 	fcnt_add(fip, -1);
627 	sigdelq(cp, NULL, 0);
628 
629 	mutex_enter(&pidlock);
630 	upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred));
631 	mutex_exit(&pidlock);
632 
633 	/*
634 	 * single threaded, so no locking needed here
635 	 */
636 	crfree(cp->p_cred);
637 
638 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
639 
640 	VN_RELE(u.u_cdir);
641 	if (u.u_rdir)
642 		VN_RELE(u.u_rdir);
643 	if (cp->p_exec)
644 		VN_RELE(cp->p_exec);
645 	if (cp->p_execdir)
646 		VN_RELE(cp->p_execdir);
647 	if (u.u_cwd)
648 		refstr_rele(u.u_cwd);
649 }
650 
651 /*
652  * Clean up the lwps already created for this child process.
653  * The fork failed while duplicating all the lwps of the parent
654  * and those lwps already created must be freed.
655  * This process is invisible to the rest of the system,
656  * so we don't need to hold p->p_lock to protect the list.
657  */
658 static void
659 forklwp_fail(proc_t *p)
660 {
661 	kthread_t *t;
662 	task_t *tk;
663 
664 	while ((t = p->p_tlist) != NULL) {
665 		/*
666 		 * First remove the lwp from the process's p_tlist.
667 		 */
668 		if (t != t->t_forw)
669 			p->p_tlist = t->t_forw;
670 		else
671 			p->p_tlist = NULL;
672 		p->p_lwpcnt--;
673 		t->t_forw->t_back = t->t_back;
674 		t->t_back->t_forw = t->t_forw;
675 
676 		tk = p->p_task;
677 		mutex_enter(&p->p_zone->zone_nlwps_lock);
678 		tk->tk_nlwps--;
679 		tk->tk_proj->kpj_nlwps--;
680 		p->p_zone->zone_nlwps--;
681 		mutex_exit(&p->p_zone->zone_nlwps_lock);
682 
683 		ASSERT(t->t_schedctl == NULL);
684 
685 		if (t->t_door != NULL) {
686 			kmem_free(t->t_door, sizeof (door_data_t));
687 			t->t_door = NULL;
688 		}
689 		lwp_ctmpl_clear(ttolwp(t));
690 
691 		/*
692 		 * Remove the thread from the all threads list.
693 		 * We need to hold pidlock for this.
694 		 */
695 		mutex_enter(&pidlock);
696 		t->t_next->t_prev = t->t_prev;
697 		t->t_prev->t_next = t->t_next;
698 		CL_EXIT(t);	/* tell the scheduler that we're exiting */
699 		cv_broadcast(&t->t_joincv);	/* tell anyone in thread_join */
700 		mutex_exit(&pidlock);
701 
702 		/*
703 		 * Let the lgroup load averages know that this thread isn't
704 		 * going to show up (i.e. un-do what was done on behalf of
705 		 * this thread by the earlier lgrp_move_thread()).
706 		 */
707 		kpreempt_disable();
708 		lgrp_move_thread(t, NULL, 1);
709 		kpreempt_enable();
710 
711 		/*
712 		 * The thread was created TS_STOPPED.
713 		 * We change it to TS_FREE to avoid an
714 		 * ASSERT() panic in thread_free().
715 		 */
716 		t->t_state = TS_FREE;
717 		thread_rele(t);
718 		thread_free(t);
719 	}
720 }
721 
722 extern struct as kas;
723 
724 /*
725  * fork a kernel process.
726  */
727 int
728 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct)
729 {
730 	proc_t *p;
731 	struct user *up;
732 	klwp_t *lwp;
733 	cont_process_t *ctp = NULL;
734 	rctl_entity_p_t e;
735 
736 	ASSERT(!(cid == syscid && ct != NULL));
737 	if (cid == syscid) {
738 		rctl_alloc_gp_t *init_gp;
739 		rctl_set_t *init_set;
740 
741 		if (getproc(&p, 1) < 0)
742 			return (EAGAIN);
743 
744 		p->p_flag |= SNOWAIT;
745 		p->p_exec = NULL;
746 		p->p_execdir = NULL;
747 
748 		init_set = rctl_set_create();
749 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
750 
751 		/*
752 		 * kernel processes do not inherit /proc tracing flags.
753 		 */
754 		sigemptyset(&p->p_sigmask);
755 		premptyset(&p->p_fltmask);
756 		up = PTOU(p);
757 		up->u_systrap = 0;
758 		premptyset(&(up->u_entrymask));
759 		premptyset(&(up->u_exitmask));
760 		mutex_enter(&p->p_lock);
761 		e.rcep_p.proc = p;
762 		e.rcep_t = RCENTITY_PROCESS;
763 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
764 		    init_gp);
765 		mutex_exit(&p->p_lock);
766 
767 		rctl_prealloc_destroy(init_gp);
768 	} else  {
769 		rctl_alloc_gp_t *init_gp, *default_gp;
770 		rctl_set_t *init_set;
771 		task_t *tk, *tk_old;
772 
773 		if (getproc(&p, 0) < 0)
774 			return (EAGAIN);
775 		/*
776 		 * init creates a new task, distinct from the task
777 		 * containing kernel "processes".
778 		 */
779 		tk = task_create(0, p->p_zone);
780 		mutex_enter(&tk->tk_zone->zone_nlwps_lock);
781 		tk->tk_proj->kpj_ntasks++;
782 		mutex_exit(&tk->tk_zone->zone_nlwps_lock);
783 
784 		default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS);
785 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
786 		init_set = rctl_set_create();
787 
788 		mutex_enter(&pidlock);
789 		mutex_enter(&p->p_lock);
790 		tk_old = p->p_task;	/* switch to new task */
791 
792 		task_detach(p);
793 		task_begin(tk, p);
794 		mutex_exit(&pidlock);
795 
796 		e.rcep_p.proc = p;
797 		e.rcep_t = RCENTITY_PROCESS;
798 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
799 		    init_gp);
800 		rctlproc_default_init(p, default_gp);
801 		mutex_exit(&p->p_lock);
802 
803 		task_rele(tk_old);
804 		rctl_prealloc_destroy(default_gp);
805 		rctl_prealloc_destroy(init_gp);
806 	}
807 
808 	p->p_as = &kas;
809 
810 	if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri,
811 	    &curthread->t_hold, cid, 1)) == NULL) {
812 		task_t *tk;
813 		fork_fail(p);
814 		mutex_enter(&pidlock);
815 		mutex_enter(&p->p_lock);
816 		tk = p->p_task;
817 		task_detach(p);
818 		ASSERT(p->p_pool->pool_ref > 0);
819 		atomic_add_32(&p->p_pool->pool_ref, -1);
820 		mutex_exit(&p->p_lock);
821 		pid_exit(p);
822 		mutex_exit(&pidlock);
823 		task_rele(tk);
824 
825 		return (EAGAIN);
826 	}
827 
828 	if (cid != syscid) {
829 		ctp = contract_process_fork(sys_process_tmpl, p, curproc,
830 		    B_FALSE);
831 		ASSERT(ctp != NULL);
832 		if (ct != NULL)
833 			*ct = &ctp->conp_contract;
834 	}
835 
836 	p->p_lwpid = 1;
837 	mutex_enter(&pidlock);
838 	pgjoin(p, curproc->p_pgidp);
839 	p->p_stat = SRUN;
840 	mutex_enter(&p->p_lock);
841 	lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP;
842 	lwp_create_done(lwptot(lwp));
843 	mutex_exit(&p->p_lock);
844 	mutex_exit(&pidlock);
845 	return (0);
846 }
847 
848 /*
849  * create a child proc struct.
850  */
851 static int
852 getproc(proc_t **cpp, int kernel)
853 {
854 	proc_t		*pp, *cp;
855 	pid_t		newpid;
856 	struct user	*uarea;
857 	extern uint_t	nproc;
858 	struct cred	*cr;
859 	uid_t		ruid;
860 	zoneid_t	zoneid;
861 
862 	if (!page_mem_avail(tune.t_minarmem))
863 		return (-1);
864 	if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)
865 		return (-1);	/* no point in starting new processes */
866 
867 	pp = curproc;
868 	cp = kmem_cache_alloc(process_cache, KM_SLEEP);
869 	bzero(cp, sizeof (proc_t));
870 
871 	/*
872 	 * Make proc entry for child process
873 	 */
874 	mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL);
875 	mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL);
876 #if defined(__x86)
877 	mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL);
878 #endif
879 	mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL);
880 	cp->p_stat = SIDL;
881 	cp->p_mstart = gethrtime();
882 
883 	if ((newpid = pid_assign(cp)) == -1) {
884 		if (nproc == v.v_proc) {
885 			CPU_STATS_ADDQ(CPU, sys, procovf, 1);
886 			cmn_err(CE_WARN, "out of processes");
887 		}
888 		goto bad;
889 	}
890 
891 	/*
892 	 * If not privileged make sure that this user hasn't exceeded
893 	 * v.v_maxup processes, and that users collectively haven't
894 	 * exceeded v.v_maxupttl processes.
895 	 */
896 	mutex_enter(&pidlock);
897 	ASSERT(nproc < v.v_proc);	/* otherwise how'd we get our pid? */
898 	cr = CRED();
899 	ruid = crgetruid(cr);
900 	zoneid = crgetzoneid(cr);
901 	if (nproc >= v.v_maxup && 	/* short-circuit; usually false */
902 	    (nproc >= v.v_maxupttl ||
903 	    upcount_get(ruid, zoneid) >= v.v_maxup) &&
904 	    secpolicy_newproc(cr) != 0) {
905 		mutex_exit(&pidlock);
906 		zcmn_err(zoneid, CE_NOTE,
907 		    "out of per-user processes for uid %d", ruid);
908 		goto bad;
909 	}
910 
911 	/*
912 	 * Everything is cool, put the new proc on the active process list.
913 	 * It is already on the pid list and in /proc.
914 	 * Increment the per uid process count (upcount).
915 	 */
916 	nproc++;
917 	upcount_inc(ruid, zoneid);
918 
919 	cp->p_next = practive;
920 	practive->p_prev = cp;
921 	practive = cp;
922 
923 	cp->p_ignore = pp->p_ignore;
924 	cp->p_siginfo = pp->p_siginfo;
925 	cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD);
926 	cp->p_sessp = pp->p_sessp;
927 	SESS_HOLD(pp->p_sessp);
928 	cp->p_exec = pp->p_exec;
929 	cp->p_execdir = pp->p_execdir;
930 	cp->p_zone = pp->p_zone;
931 
932 	cp->p_bssbase = pp->p_bssbase;
933 	cp->p_brkbase = pp->p_brkbase;
934 	cp->p_brksize = pp->p_brksize;
935 	cp->p_brkpageszc = pp->p_brkpageszc;
936 	cp->p_stksize = pp->p_stksize;
937 	cp->p_stkpageszc = pp->p_stkpageszc;
938 	cp->p_stkprot = pp->p_stkprot;
939 	cp->p_datprot = pp->p_datprot;
940 	cp->p_usrstack = pp->p_usrstack;
941 	cp->p_model = pp->p_model;
942 	cp->p_ppid = pp->p_pid;
943 	cp->p_ancpid = pp->p_pid;
944 	cp->p_portcnt = pp->p_portcnt;
945 
946 	/*
947 	 * Initialize watchpoint structures
948 	 */
949 	avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area),
950 	    offsetof(struct watched_area, wa_link));
951 
952 	/*
953 	 * Initialize immediate resource control values.
954 	 */
955 	cp->p_stk_ctl = pp->p_stk_ctl;
956 	cp->p_fsz_ctl = pp->p_fsz_ctl;
957 	cp->p_vmem_ctl = pp->p_vmem_ctl;
958 	cp->p_fno_ctl = pp->p_fno_ctl;
959 
960 	/*
961 	 * Link up to parent-child-sibling chain.  No need to lock
962 	 * in general since only a call to freeproc() (done by the
963 	 * same parent as newproc()) diddles with the child chain.
964 	 */
965 	cp->p_sibling = pp->p_child;
966 	if (pp->p_child)
967 		pp->p_child->p_psibling = cp;
968 
969 	cp->p_parent = pp;
970 	pp->p_child = cp;
971 
972 	cp->p_child_ns = NULL;
973 	cp->p_sibling_ns = NULL;
974 
975 	cp->p_nextorph = pp->p_orphan;
976 	cp->p_nextofkin = pp;
977 	pp->p_orphan = cp;
978 
979 	/*
980 	 * Inherit profiling state; do not inherit REALPROF profiling state.
981 	 */
982 	cp->p_prof = pp->p_prof;
983 	cp->p_rprof_cyclic = CYCLIC_NONE;
984 
985 	/*
986 	 * Inherit pool pointer from the parent.  Kernel processes are
987 	 * always bound to the default pool.
988 	 */
989 	mutex_enter(&pp->p_lock);
990 	if (kernel) {
991 		cp->p_pool = pool_default;
992 		cp->p_flag |= SSYS;
993 	} else {
994 		cp->p_pool = pp->p_pool;
995 	}
996 	atomic_add_32(&cp->p_pool->pool_ref, 1);
997 	mutex_exit(&pp->p_lock);
998 
999 	/*
1000 	 * Add the child process to the current task.  Kernel processes
1001 	 * are always attached to task0.
1002 	 */
1003 	mutex_enter(&cp->p_lock);
1004 	if (kernel)
1005 		task_attach(task0p, cp);
1006 	else
1007 		task_attach(pp->p_task, cp);
1008 	mutex_exit(&cp->p_lock);
1009 	mutex_exit(&pidlock);
1010 
1011 	avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t),
1012 	    offsetof(contract_t, ct_ctlist));
1013 
1014 	/*
1015 	 * Duplicate any audit information kept in the process table
1016 	 */
1017 #ifdef C2_AUDIT
1018 	if (audit_active)	/* copy audit data to cp */
1019 		audit_newproc(cp);
1020 #endif
1021 
1022 	crhold(cp->p_cred = cr);
1023 
1024 	/*
1025 	 * Bump up the counts on the file structures pointed at by the
1026 	 * parent's file table since the child will point at them too.
1027 	 */
1028 	fcnt_add(P_FINFO(pp), 1);
1029 
1030 	VN_HOLD(u.u_cdir);
1031 	if (u.u_rdir)
1032 		VN_HOLD(u.u_rdir);
1033 	if (u.u_cwd)
1034 		refstr_hold(u.u_cwd);
1035 
1036 	/*
1037 	 * copy the parent's uarea.
1038 	 */
1039 	uarea = PTOU(cp);
1040 	bcopy(PTOU(pp), uarea, sizeof (user_t));
1041 	flist_fork(P_FINFO(pp), P_FINFO(cp));
1042 
1043 	gethrestime(&uarea->u_start);
1044 	uarea->u_ticks = lbolt;
1045 	uarea->u_mem = rm_asrss(pp->p_as);
1046 	uarea->u_acflag = AFORK;
1047 
1048 	/*
1049 	 * If inherit-on-fork, copy /proc tracing flags to child.
1050 	 */
1051 	if ((pp->p_proc_flag & P_PR_FORK) != 0) {
1052 		cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK);
1053 		cp->p_sigmask = pp->p_sigmask;
1054 		cp->p_fltmask = pp->p_fltmask;
1055 	} else {
1056 		sigemptyset(&cp->p_sigmask);
1057 		premptyset(&cp->p_fltmask);
1058 		uarea->u_systrap = 0;
1059 		premptyset(&uarea->u_entrymask);
1060 		premptyset(&uarea->u_exitmask);
1061 	}
1062 	/*
1063 	 * If microstate accounting is being inherited, mark child
1064 	 */
1065 	if ((pp->p_flag & SMSFORK) != 0)
1066 		cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT);
1067 
1068 	/*
1069 	 * Inherit fixalignment flag from the parent
1070 	 */
1071 	cp->p_fixalignment = pp->p_fixalignment;
1072 
1073 	if (cp->p_exec)
1074 		VN_HOLD(cp->p_exec);
1075 	if (cp->p_execdir)
1076 		VN_HOLD(cp->p_execdir);
1077 	*cpp = cp;
1078 	return (0);
1079 
1080 bad:
1081 	ASSERT(MUTEX_NOT_HELD(&pidlock));
1082 
1083 	mutex_destroy(&cp->p_crlock);
1084 	mutex_destroy(&cp->p_pflock);
1085 #if defined(__x86)
1086 	mutex_destroy(&cp->p_ldtlock);
1087 #endif
1088 	if (newpid != -1) {
1089 		proc_entry_free(cp->p_pidp);
1090 		(void) pid_rele(cp->p_pidp);
1091 	}
1092 	kmem_cache_free(process_cache, cp);
1093 
1094 	/*
1095 	 * We most likely got into this situation because some process is
1096 	 * forking out of control.  As punishment, put it to sleep for a
1097 	 * bit so it can't eat the machine alive.  Sleep interval is chosen
1098 	 * to allow no more than one fork failure per cpu per clock tick
1099 	 * on average (yes, I just made this up).  This has two desirable
1100 	 * properties: (1) it sets a constant limit on the fork failure
1101 	 * rate, and (2) the busier the system is, the harsher the penalty
1102 	 * for abusing it becomes.
1103 	 */
1104 	INCR_COUNT(&fork_fail_pending, &pidlock);
1105 	delay(fork_fail_pending / ncpus + 1);
1106 	DECR_COUNT(&fork_fail_pending, &pidlock);
1107 
1108 	return (-1); /* out of memory or proc slots */
1109 }
1110 
1111 /*
1112  * Release virtual memory.
1113  * In the case of vfork(), the child was given exclusive access to its
1114  * parent's address space.  The parent is waiting in vfwait() for the
1115  * child to release its exclusive claim via relvm().
1116  */
1117 void
1118 relvm()
1119 {
1120 	proc_t *p = curproc;
1121 
1122 	ASSERT((unsigned)p->p_lwpcnt <= 1);
1123 
1124 	prrelvm();	/* inform /proc */
1125 
1126 	if (p->p_flag & SVFORK) {
1127 		proc_t *pp = p->p_parent;
1128 		/*
1129 		 * The child process is either exec'ing or exit'ing.
1130 		 * The child is now separated from the parent's address
1131 		 * space.  The parent process is made dispatchable.
1132 		 *
1133 		 * This is a delicate locking maneuver, involving
1134 		 * both the parent's p_lock and the child's p_lock.
1135 		 * As soon as the SVFORK flag is turned off, the
1136 		 * parent is free to run, but it must not run until
1137 		 * we wake it up using its p_cv because it might
1138 		 * exit and we would be referencing invalid memory.
1139 		 * Therefore, we hold the parent with its p_lock
1140 		 * while protecting our p_flags with our own p_lock.
1141 		 */
1142 try_again:
1143 		mutex_enter(&p->p_lock);	/* grab child's lock first */
1144 		prbarrier(p);		/* make sure /proc is blocked out */
1145 		mutex_enter(&pp->p_lock);
1146 
1147 		/*
1148 		 * Check if parent is locked by /proc.
1149 		 */
1150 		if (pp->p_proc_flag & P_PR_LOCK) {
1151 			/*
1152 			 * Delay until /proc is done with the parent.
1153 			 * We must drop our (the child's) p->p_lock, wait
1154 			 * via prbarrier() on the parent, then start over.
1155 			 */
1156 			mutex_exit(&p->p_lock);
1157 			prbarrier(pp);
1158 			mutex_exit(&pp->p_lock);
1159 			goto try_again;
1160 		}
1161 		p->p_flag &= ~SVFORK;
1162 		kpreempt_disable();
1163 		p->p_as = &kas;
1164 
1165 		/*
1166 		 * notify hat of change in thread's address space
1167 		 */
1168 		hat_thread_exit(curthread);
1169 		kpreempt_enable();
1170 
1171 		/*
1172 		 * child sizes are copied back to parent because
1173 		 * child may have grown.
1174 		 */
1175 		pp->p_brkbase = p->p_brkbase;
1176 		pp->p_brksize = p->p_brksize;
1177 		pp->p_stksize = p->p_stksize;
1178 		/*
1179 		 * The parent is no longer waiting for the vfork()d child.
1180 		 * Restore the parent's watched pages, if any.  This is
1181 		 * safe because we know the parent is not locked by /proc
1182 		 */
1183 		pp->p_flag &= ~SVFWAIT;
1184 		if (avl_numnodes(&pp->p_wpage) != 0) {
1185 			pp->p_as->a_wpage = pp->p_wpage;
1186 			avl_create(&pp->p_wpage, wp_compare,
1187 			    sizeof (struct watched_page),
1188 			    offsetof(struct watched_page, wp_link));
1189 		}
1190 		cv_signal(&pp->p_cv);
1191 		mutex_exit(&pp->p_lock);
1192 		mutex_exit(&p->p_lock);
1193 	} else {
1194 		if (p->p_as != &kas) {
1195 			struct as *as;
1196 
1197 			if (p->p_segacct)
1198 				shmexit(p);
1199 			/*
1200 			 * We grab p_lock for the benefit of /proc
1201 			 */
1202 			kpreempt_disable();
1203 			mutex_enter(&p->p_lock);
1204 			prbarrier(p);	/* make sure /proc is blocked out */
1205 			as = p->p_as;
1206 			p->p_as = &kas;
1207 			mutex_exit(&p->p_lock);
1208 
1209 			/*
1210 			 * notify hat of change in thread's address space
1211 			 */
1212 			hat_thread_exit(curthread);
1213 			kpreempt_enable();
1214 
1215 			as_free(as);
1216 		}
1217 	}
1218 }
1219 
1220 /*
1221  * Wait for child to exec or exit.
1222  * Called by parent of vfork'ed process.
1223  * See important comments in relvm(), above.
1224  */
1225 void
1226 vfwait(pid_t pid)
1227 {
1228 	int signalled = 0;
1229 	proc_t *pp = ttoproc(curthread);
1230 	proc_t *cp;
1231 
1232 	/*
1233 	 * Wait for child to exec or exit.
1234 	 */
1235 	for (;;) {
1236 		mutex_enter(&pidlock);
1237 		cp = prfind(pid);
1238 		if (cp == NULL || cp->p_parent != pp) {
1239 			/*
1240 			 * Child has exit()ed.
1241 			 */
1242 			mutex_exit(&pidlock);
1243 			break;
1244 		}
1245 		/*
1246 		 * Grab the child's p_lock before releasing pidlock.
1247 		 * Otherwise, the child could exit and we would be
1248 		 * referencing invalid memory.
1249 		 */
1250 		mutex_enter(&cp->p_lock);
1251 		mutex_exit(&pidlock);
1252 		if (!(cp->p_flag & SVFORK)) {
1253 			/*
1254 			 * Child has exec()ed or is exit()ing.
1255 			 */
1256 			mutex_exit(&cp->p_lock);
1257 			break;
1258 		}
1259 		mutex_enter(&pp->p_lock);
1260 		mutex_exit(&cp->p_lock);
1261 		/*
1262 		 * We might be waked up spuriously from the cv_wait().
1263 		 * We have to do the whole operation over again to be
1264 		 * sure the child's SVFORK flag really is turned off.
1265 		 * We cannot make reference to the child because it can
1266 		 * exit before we return and we would be referencing
1267 		 * invalid memory.
1268 		 *
1269 		 * Because this is potentially a very long-term wait,
1270 		 * we call cv_wait_sig() (for its jobcontrol and /proc
1271 		 * side-effects) unless there is a current signal, in
1272 		 * which case we use cv_wait() because we cannot return
1273 		 * from this function until the child has released the
1274 		 * address space.  Calling cv_wait_sig() with a current
1275 		 * signal would lead to an indefinite loop here because
1276 		 * cv_wait_sig() returns immediately in this case.
1277 		 */
1278 		if (signalled)
1279 			cv_wait(&pp->p_cv, &pp->p_lock);
1280 		else
1281 			signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock);
1282 		mutex_exit(&pp->p_lock);
1283 	}
1284 
1285 	/* restore watchpoints to parent */
1286 	if (pr_watch_active(pp)) {
1287 		struct as *as = pp->p_as;
1288 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1289 		as_setwatch(as);
1290 		AS_LOCK_EXIT(as, &as->a_lock);
1291 	}
1292 
1293 	mutex_enter(&pp->p_lock);
1294 	prbarrier(pp);	/* barrier against /proc locking */
1295 	continuelwps(pp);
1296 	mutex_exit(&pp->p_lock);
1297 }
1298