xref: /titanic_50/usr/src/uts/common/os/fork.c (revision a2cedc52cb05701ca77d7e4b4f4aa95448b52ed5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/sysmacros.h>
36 #include <sys/signal.h>
37 #include <sys/cred.h>
38 #include <sys/policy.h>
39 #include <sys/user.h>
40 #include <sys/systm.h>
41 #include <sys/cpuvar.h>
42 #include <sys/vfs.h>
43 #include <sys/vnode.h>
44 #include <sys/file.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <sys/cmn_err.h>
49 #include <sys/acct.h>
50 #include <sys/tuneable.h>
51 #include <sys/class.h>
52 #include <sys/kmem.h>
53 #include <sys/session.h>
54 #include <sys/ucontext.h>
55 #include <sys/stack.h>
56 #include <sys/procfs.h>
57 #include <sys/prsystm.h>
58 #include <sys/vmsystm.h>
59 #include <sys/vtrace.h>
60 #include <sys/debug.h>
61 #include <sys/shm_impl.h>
62 #include <sys/door_data.h>
63 #include <vm/as.h>
64 #include <vm/rm.h>
65 #include <c2/audit.h>
66 #include <sys/var.h>
67 #include <sys/schedctl.h>
68 #include <sys/utrap.h>
69 #include <sys/task.h>
70 #include <sys/resource.h>
71 #include <sys/cyclic.h>
72 #include <sys/lgrp.h>
73 #include <sys/rctl.h>
74 #include <sys/contract_impl.h>
75 #include <sys/contract/process_impl.h>
76 #include <sys/list.h>
77 #include <sys/dtrace.h>
78 #include <sys/pool.h>
79 #include <sys/zone.h>
80 #include <sys/sdt.h>
81 #include <sys/class.h>
82 #include <sys/corectl.h>
83 
84 static int64_t cfork(int, int);
85 static int getproc(proc_t **, int);
86 static void fork_fail(proc_t *);
87 static void forklwp_fail(proc_t *);
88 
89 int fork_fail_pending;
90 
91 extern struct kmem_cache *process_cache;
92 
93 /*
94  * forkall system call.
95  */
96 int64_t
97 forkall(void)
98 {
99 	return (cfork(0, 0));
100 }
101 
102 /*
103  * The parent is stopped until the child invokes relvm().
104  */
105 int64_t
106 vfork(void)
107 {
108 	curthread->t_post_sys = 1;	/* so vfwait() will be called */
109 	return (cfork(1, 1));
110 }
111 
112 /*
113  * fork1 system call
114  */
115 int64_t
116 fork1(void)
117 {
118 	return (cfork(0, 1));
119 }
120 
121 /* ARGSUSED */
122 static int64_t
123 cfork(int isvfork, int isfork1)
124 {
125 	proc_t *p = ttoproc(curthread);
126 	struct as *as;
127 	proc_t *cp, **orphpp;
128 	klwp_t *clone;
129 	kthread_t *t;
130 	task_t *tk;
131 	rval_t	r;
132 	int error;
133 	int i;
134 	rctl_set_t *dup_set;
135 	rctl_alloc_gp_t *dup_gp;
136 	rctl_entity_p_t e;
137 	lwpdir_t *ldp;
138 	lwpent_t *lep;
139 	lwpent_t *clep;
140 
141 	/*
142 	 * fork is not supported for the /proc agent lwp.
143 	 */
144 	if (curthread == p->p_agenttp) {
145 		error = ENOTSUP;
146 		goto forkerr;
147 	}
148 
149 	if ((error = secpolicy_basic_fork(CRED())) != 0)
150 		goto forkerr;
151 
152 	/*
153 	 * If the calling lwp is doing a fork1() then the
154 	 * other lwps in this process are not duplicated and
155 	 * don't need to be held where their kernel stacks can be
156 	 * cloned.  If doing forkall(), the process is held with
157 	 * SHOLDFORK, so that the lwps are at a point where their
158 	 * stacks can be copied which is on entry or exit from
159 	 * the kernel.
160 	 */
161 	if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) {
162 		aston(curthread);
163 		error = EINTR;
164 		goto forkerr;
165 	}
166 
167 #if defined(__sparc)
168 	/*
169 	 * Ensure that the user stack is fully constructed
170 	 * before creating the child process structure.
171 	 */
172 	(void) flush_user_windows_to_stack(NULL);
173 #endif
174 
175 	mutex_enter(&p->p_lock);
176 	/*
177 	 * If this is vfork(), cancel any suspend request we might
178 	 * have gotten from some other thread via lwp_suspend().
179 	 * Otherwise we could end up with a deadlock on return
180 	 * from the vfork() in both the parent and the child.
181 	 */
182 	if (isvfork)
183 		curthread->t_proc_flag &= ~TP_HOLDLWP;
184 	/*
185 	 * Prevent our resource set associations from being changed during fork.
186 	 */
187 	pool_barrier_enter();
188 	mutex_exit(&p->p_lock);
189 
190 	/*
191 	 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes.
192 	 */
193 	if (getproc(&cp, 0) < 0) {
194 		mutex_enter(&p->p_lock);
195 		pool_barrier_exit();
196 		continuelwps(p);
197 		mutex_exit(&p->p_lock);
198 		error = EAGAIN;
199 		goto forkerr;
200 	}
201 
202 	TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p);
203 
204 	/*
205 	 * Assign an address space to child
206 	 */
207 	if (isvfork) {
208 		/*
209 		 * Clear any watched areas and remember the
210 		 * watched pages for restoring in vfwait().
211 		 */
212 		as = p->p_as;
213 		if (avl_numnodes(&as->a_wpage) != 0) {
214 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
215 			as_clearwatch(as);
216 			p->p_wpage = as->a_wpage;
217 			avl_create(&as->a_wpage, wp_compare,
218 			    sizeof (struct watched_page),
219 			    offsetof(struct watched_page, wp_link));
220 			AS_LOCK_EXIT(as, &as->a_lock);
221 		}
222 		cp->p_as = as;
223 		cp->p_flag |= SVFORK;
224 	} else {
225 		/*
226 		 * We need to hold P_PR_LOCK until the address space has
227 		 * been duplicated and we've had a chance to remove from the
228 		 * child any DTrace probes that were in the parent. Holding
229 		 * P_PR_LOCK prevents any new probes from being added and any
230 		 * extant probes from being removed.
231 		 */
232 		mutex_enter(&p->p_lock);
233 		sprlock_proc(p);
234 		p->p_flag |= SFORKING;
235 		mutex_exit(&p->p_lock);
236 
237 		error = as_dup(p->p_as, &cp->p_as);
238 		if (error != 0) {
239 			fork_fail(cp);
240 			mutex_enter(&pidlock);
241 			orphpp = &p->p_orphan;
242 			while (*orphpp != cp)
243 				orphpp = &(*orphpp)->p_nextorph;
244 			*orphpp = cp->p_nextorph;
245 			if (p->p_child == cp)
246 				p->p_child = cp->p_sibling;
247 			if (cp->p_sibling)
248 				cp->p_sibling->p_psibling = cp->p_psibling;
249 			if (cp->p_psibling)
250 				cp->p_psibling->p_sibling = cp->p_sibling;
251 			mutex_enter(&cp->p_lock);
252 			tk = cp->p_task;
253 			task_detach(cp);
254 			ASSERT(cp->p_pool->pool_ref > 0);
255 			atomic_add_32(&cp->p_pool->pool_ref, -1);
256 			mutex_exit(&cp->p_lock);
257 			pid_exit(cp);
258 			mutex_exit(&pidlock);
259 			task_rele(tk);
260 
261 			mutex_enter(&p->p_lock);
262 			p->p_flag &= ~SFORKING;
263 			pool_barrier_exit();
264 			continuelwps(p);
265 			sprunlock(p);
266 			/*
267 			 * Preserve ENOMEM error condition but
268 			 * map all others to EAGAIN.
269 			 */
270 			error = (error == ENOMEM) ? ENOMEM : EAGAIN;
271 			goto forkerr;
272 		}
273 		/* Duplicate parent's shared memory */
274 		if (p->p_segacct)
275 			shmfork(p, cp);
276 
277 		/*
278 		 * Remove all DTrace tracepoints from the child process. We
279 		 * need to do this _before_ duplicating USDT providers since
280 		 * any associated probes may be immediately enabled.
281 		 */
282 		if (p->p_dtrace_count > 0)
283 			dtrace_fasttrap_fork(p, cp);
284 
285 		/*
286 		 * Duplicate any helper actions and providers. The SFORKING
287 		 * we set above informs the code to enable USDT probes that
288 		 * sprlock() may fail because the child is being forked.
289 		 */
290 		if (p->p_dtrace_helpers != NULL) {
291 			ASSERT(dtrace_helpers_fork != NULL);
292 			(*dtrace_helpers_fork)(p, cp);
293 		}
294 
295 		mutex_enter(&p->p_lock);
296 		p->p_flag &= ~SFORKING;
297 		sprunlock(p);
298 	}
299 
300 	/*
301 	 * Duplicate parent's resource controls.
302 	 */
303 	dup_set = rctl_set_create();
304 	for (;;) {
305 		dup_gp = rctl_set_dup_prealloc(p->p_rctls);
306 		mutex_enter(&p->p_rctls->rcs_lock);
307 		if (rctl_set_dup_ready(p->p_rctls, dup_gp))
308 			break;
309 		mutex_exit(&p->p_rctls->rcs_lock);
310 		rctl_prealloc_destroy(dup_gp);
311 	}
312 	e.rcep_p.proc = cp;
313 	e.rcep_t = RCENTITY_PROCESS;
314 	cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp,
315 	    RCD_DUP | RCD_CALLBACK);
316 	mutex_exit(&p->p_rctls->rcs_lock);
317 
318 	rctl_prealloc_destroy(dup_gp);
319 
320 	/*
321 	 * Allocate the child's lwp directory and lwpid hash table.
322 	 */
323 	if (isfork1)
324 		cp->p_lwpdir_sz = 2;
325 	else
326 		cp->p_lwpdir_sz = p->p_lwpdir_sz;
327 	cp->p_lwpdir = cp->p_lwpfree = ldp =
328 		kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP);
329 	for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++)
330 		ldp->ld_next = ldp + 1;
331 	cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2;
332 	cp->p_tidhash =
333 		kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP);
334 
335 	/*
336 	 * Duplicate parent's lwps.
337 	 * Mutual exclusion is not needed because the process is
338 	 * in the hold state and only the current lwp is running.
339 	 */
340 	klgrpset_clear(cp->p_lgrpset);
341 	if (isfork1) {
342 		clone = forklwp(ttolwp(curthread), cp, curthread->t_tid);
343 		if (clone == NULL)
344 			goto forklwperr;
345 		/*
346 		 * Inherit only the lwp_wait()able flag,
347 		 * Daemon threads should not call fork1(), but oh well...
348 		 */
349 		lwptot(clone)->t_proc_flag |=
350 			(curthread->t_proc_flag & TP_TWAIT);
351 	} else {
352 		/* this is forkall(), no one can be in lwp_wait() */
353 		ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0);
354 		/* for each entry in the parent's lwp directory... */
355 		for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) {
356 			klwp_t *clwp;
357 			kthread_t *ct;
358 
359 			if ((lep = ldp->ld_entry) == NULL)
360 				continue;
361 
362 			if ((t = lep->le_thread) != NULL) {
363 				clwp = forklwp(ttolwp(t), cp, t->t_tid);
364 				if (clwp == NULL)
365 					goto forklwperr;
366 				ct = lwptot(clwp);
367 				/*
368 				 * Inherit lwp_wait()able and daemon flags.
369 				 */
370 				ct->t_proc_flag |=
371 				    (t->t_proc_flag & (TP_TWAIT|TP_DAEMON));
372 				/*
373 				 * Keep track of the clone of curthread to
374 				 * post return values through lwp_setrval().
375 				 * Mark other threads for special treatment
376 				 * by lwp_rtt() / post_syscall().
377 				 */
378 				if (t == curthread)
379 					clone = clwp;
380 				else
381 					ct->t_flag |= T_FORKALL;
382 			} else {
383 				/*
384 				 * Replicate zombie lwps in the child.
385 				 */
386 				clep = kmem_zalloc(sizeof (*clep), KM_SLEEP);
387 				clep->le_lwpid = lep->le_lwpid;
388 				clep->le_start = lep->le_start;
389 				lwp_hash_in(cp, clep);
390 			}
391 		}
392 	}
393 
394 	/*
395 	 * Put new process in the parent's process contract, or put it
396 	 * in a new one if there is an active process template.  Send a
397 	 * fork event (if requested) to whatever contract the child is
398 	 * a member of.  Fails if the parent has been SIGKILLed.
399 	 */
400 	if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL)
401 		goto forklwperr;
402 
403 	/*
404 	 * No fork failures occur beyond this point.
405 	 */
406 
407 	cp->p_lwpid = p->p_lwpid;
408 	if (!isfork1) {
409 		cp->p_lwpdaemon = p->p_lwpdaemon;
410 		cp->p_zombcnt = p->p_zombcnt;
411 		/*
412 		 * If the parent's lwp ids have wrapped around, so have the
413 		 * child's.
414 		 */
415 		cp->p_flag |= p->p_flag & SLWPWRAP;
416 	}
417 
418 	mutex_enter(&p->p_lock);
419 	corectl_path_hold(cp->p_corefile = p->p_corefile);
420 	corectl_content_hold(cp->p_content = p->p_content);
421 	mutex_exit(&p->p_lock);
422 
423 	/*
424 	 * Duplicate process context ops, if any.
425 	 */
426 	if (p->p_pctx)
427 		forkpctx(p, cp);
428 
429 #ifdef __sparc
430 	utrap_dup(p, cp);
431 #endif
432 	/*
433 	 * If the child process has been marked to stop on exit
434 	 * from this fork, arrange for all other lwps to stop in
435 	 * sympathy with the active lwp.
436 	 */
437 	if (PTOU(cp)->u_systrap &&
438 	    prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) {
439 		mutex_enter(&cp->p_lock);
440 		t = cp->p_tlist;
441 		do {
442 			t->t_proc_flag |= TP_PRSTOP;
443 			aston(t);	/* so TP_PRSTOP will be seen */
444 		} while ((t = t->t_forw) != cp->p_tlist);
445 		mutex_exit(&cp->p_lock);
446 	}
447 	/*
448 	 * If the parent process has been marked to stop on exit
449 	 * from this fork, and its asynchronous-stop flag has not
450 	 * been set, arrange for all other lwps to stop before
451 	 * they return back to user level.
452 	 */
453 	if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap &&
454 	    prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) {
455 		mutex_enter(&p->p_lock);
456 		t = p->p_tlist;
457 		do {
458 			t->t_proc_flag |= TP_PRSTOP;
459 			aston(t);	/* so TP_PRSTOP will be seen */
460 		} while ((t = t->t_forw) != p->p_tlist);
461 		mutex_exit(&p->p_lock);
462 	}
463 
464 	/* set return values for child */
465 	lwp_setrval(clone, p->p_pid, 1);
466 
467 	/* set return values for parent */
468 	r.r_val1 = (int)cp->p_pid;
469 	r.r_val2 = 0;
470 
471 	/*
472 	 * pool_barrier_exit() can now be called because the child process has:
473 	 * - all identifying features cloned or set (p_pid, p_task, p_pool)
474 	 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset)
475 	 * - any other fields set which are used in resource set binding.
476 	 */
477 	mutex_enter(&p->p_lock);
478 	pool_barrier_exit();
479 	mutex_exit(&p->p_lock);
480 
481 	mutex_enter(&pidlock);
482 	mutex_enter(&cp->p_lock);
483 
484 	/*
485 	 * Now that there are lwps and threads attached, add the new
486 	 * process to the process group.
487 	 */
488 	pgjoin(cp, p->p_pgidp);
489 	cp->p_stat = SRUN;
490 	/*
491 	 * We are now done with all the lwps in the child process.
492 	 */
493 	t = cp->p_tlist;
494 	do {
495 		/*
496 		 * Set the lwp_suspend()ed lwps running.
497 		 * They will suspend properly at syscall exit.
498 		 */
499 		if (t->t_proc_flag & TP_HOLDLWP)
500 			lwp_create_done(t);
501 		else {
502 			/* set TS_CREATE to allow continuelwps() to work */
503 			thread_lock(t);
504 			ASSERT(t->t_state == TS_STOPPED &&
505 			    !(t->t_schedflag & (TS_CREATE|TS_CSTART)));
506 			t->t_schedflag |= TS_CREATE;
507 			thread_unlock(t);
508 		}
509 	} while ((t = t->t_forw) != cp->p_tlist);
510 	mutex_exit(&cp->p_lock);
511 
512 	if (isvfork) {
513 		CPU_STATS_ADDQ(CPU, sys, sysvfork, 1);
514 		mutex_enter(&p->p_lock);
515 		p->p_flag |= SVFWAIT;
516 		DTRACE_PROC1(create, proc_t *, cp);
517 		cv_broadcast(&pr_pid_cv[p->p_slot]);	/* inform /proc */
518 		mutex_exit(&p->p_lock);
519 		/*
520 		 * Grab child's p_lock before dropping pidlock to ensure
521 		 * the process will not disappear before we set it running.
522 		 */
523 		mutex_enter(&cp->p_lock);
524 		mutex_exit(&pidlock);
525 		sigdefault(cp);
526 		continuelwps(cp);
527 		mutex_exit(&cp->p_lock);
528 	} else {
529 		CPU_STATS_ADDQ(CPU, sys, sysfork, 1);
530 		DTRACE_PROC1(create, proc_t *, cp);
531 		/*
532 		 * It is CL_FORKRET's job to drop pidlock.
533 		 * If we do it here, the process could be set running
534 		 * and disappear before CL_FORKRET() is called.
535 		 */
536 		CL_FORKRET(curthread, cp->p_tlist);
537 		ASSERT(MUTEX_NOT_HELD(&pidlock));
538 	}
539 
540 	return (r.r_vals);
541 
542 forklwperr:
543 	if (isvfork) {
544 		if (avl_numnodes(&p->p_wpage) != 0) {
545 			/* restore watchpoints to parent */
546 			as = p->p_as;
547 			AS_LOCK_ENTER(as, &as->a_lock,
548 				RW_WRITER);
549 			as->a_wpage = p->p_wpage;
550 			avl_create(&p->p_wpage, wp_compare,
551 			    sizeof (struct watched_page),
552 			    offsetof(struct watched_page, wp_link));
553 			as_setwatch(as);
554 			AS_LOCK_EXIT(as, &as->a_lock);
555 		}
556 	} else {
557 		if (cp->p_segacct)
558 			shmexit(cp);
559 		as = cp->p_as;
560 		cp->p_as = &kas;
561 		as_free(as);
562 	}
563 
564 	if (cp->p_lwpdir) {
565 		for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++)
566 			if ((lep = ldp->ld_entry) != NULL)
567 				kmem_free(lep, sizeof (*lep));
568 		kmem_free(cp->p_lwpdir,
569 		    cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir));
570 	}
571 	cp->p_lwpdir = NULL;
572 	cp->p_lwpfree = NULL;
573 	cp->p_lwpdir_sz = 0;
574 
575 	if (cp->p_tidhash)
576 		kmem_free(cp->p_tidhash,
577 		    cp->p_tidhash_sz * sizeof (*cp->p_tidhash));
578 	cp->p_tidhash = NULL;
579 	cp->p_tidhash_sz = 0;
580 
581 	forklwp_fail(cp);
582 	fork_fail(cp);
583 	rctl_set_free(cp->p_rctls);
584 	mutex_enter(&pidlock);
585 
586 	/*
587 	 * Detach failed child from task.
588 	 */
589 	mutex_enter(&cp->p_lock);
590 	tk = cp->p_task;
591 	task_detach(cp);
592 	ASSERT(cp->p_pool->pool_ref > 0);
593 	atomic_add_32(&cp->p_pool->pool_ref, -1);
594 	mutex_exit(&cp->p_lock);
595 
596 	orphpp = &p->p_orphan;
597 	while (*orphpp != cp)
598 		orphpp = &(*orphpp)->p_nextorph;
599 	*orphpp = cp->p_nextorph;
600 	if (p->p_child == cp)
601 		p->p_child = cp->p_sibling;
602 	if (cp->p_sibling)
603 		cp->p_sibling->p_psibling = cp->p_psibling;
604 	if (cp->p_psibling)
605 		cp->p_psibling->p_sibling = cp->p_sibling;
606 	pid_exit(cp);
607 	mutex_exit(&pidlock);
608 
609 	task_rele(tk);
610 
611 	mutex_enter(&p->p_lock);
612 	pool_barrier_exit();
613 	continuelwps(p);
614 	mutex_exit(&p->p_lock);
615 	error = EAGAIN;
616 forkerr:
617 	return ((int64_t)set_errno(error));
618 }
619 
620 /*
621  * Free allocated resources from getproc() if a fork failed.
622  */
623 static void
624 fork_fail(proc_t *cp)
625 {
626 	uf_info_t *fip = P_FINFO(cp);
627 
628 	fcnt_add(fip, -1);
629 	sigdelq(cp, NULL, 0);
630 
631 	mutex_enter(&pidlock);
632 	upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred));
633 	mutex_exit(&pidlock);
634 
635 	/*
636 	 * single threaded, so no locking needed here
637 	 */
638 	crfree(cp->p_cred);
639 
640 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
641 
642 	VN_RELE(u.u_cdir);
643 	if (u.u_rdir)
644 		VN_RELE(u.u_rdir);
645 	if (cp->p_exec)
646 		VN_RELE(cp->p_exec);
647 	if (cp->p_execdir)
648 		VN_RELE(cp->p_execdir);
649 	if (u.u_cwd)
650 		refstr_rele(u.u_cwd);
651 }
652 
653 /*
654  * Clean up the lwps already created for this child process.
655  * The fork failed while duplicating all the lwps of the parent
656  * and those lwps already created must be freed.
657  * This process is invisible to the rest of the system,
658  * so we don't need to hold p->p_lock to protect the list.
659  */
660 static void
661 forklwp_fail(proc_t *p)
662 {
663 	kthread_t *t;
664 	task_t *tk;
665 
666 	while ((t = p->p_tlist) != NULL) {
667 		/*
668 		 * First remove the lwp from the process's p_tlist.
669 		 */
670 		if (t != t->t_forw)
671 			p->p_tlist = t->t_forw;
672 		else
673 			p->p_tlist = NULL;
674 		p->p_lwpcnt--;
675 		t->t_forw->t_back = t->t_back;
676 		t->t_back->t_forw = t->t_forw;
677 
678 		tk = p->p_task;
679 		mutex_enter(&p->p_zone->zone_nlwps_lock);
680 		tk->tk_nlwps--;
681 		tk->tk_proj->kpj_nlwps--;
682 		p->p_zone->zone_nlwps--;
683 		mutex_exit(&p->p_zone->zone_nlwps_lock);
684 
685 		ASSERT(t->t_schedctl == NULL);
686 
687 		if (t->t_door != NULL) {
688 			kmem_free(t->t_door, sizeof (door_data_t));
689 			t->t_door = NULL;
690 		}
691 		lwp_ctmpl_clear(ttolwp(t));
692 
693 		/*
694 		 * Remove the thread from the all threads list.
695 		 * We need to hold pidlock for this.
696 		 */
697 		mutex_enter(&pidlock);
698 		t->t_next->t_prev = t->t_prev;
699 		t->t_prev->t_next = t->t_next;
700 		CL_EXIT(t);	/* tell the scheduler that we're exiting */
701 		cv_broadcast(&t->t_joincv);	/* tell anyone in thread_join */
702 		mutex_exit(&pidlock);
703 
704 		/*
705 		 * Let the lgroup load averages know that this thread isn't
706 		 * going to show up (i.e. un-do what was done on behalf of
707 		 * this thread by the earlier lgrp_move_thread()).
708 		 */
709 		kpreempt_disable();
710 		lgrp_move_thread(t, NULL, 1);
711 		kpreempt_enable();
712 
713 		/*
714 		 * The thread was created TS_STOPPED.
715 		 * We change it to TS_FREE to avoid an
716 		 * ASSERT() panic in thread_free().
717 		 */
718 		t->t_state = TS_FREE;
719 		thread_rele(t);
720 		thread_free(t);
721 	}
722 }
723 
724 extern struct as kas;
725 
726 /*
727  * fork a kernel process.
728  */
729 int
730 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct)
731 {
732 	proc_t *p;
733 	struct user *up;
734 	klwp_t *lwp;
735 	cont_process_t *ctp = NULL;
736 	rctl_entity_p_t e;
737 
738 	ASSERT(!(cid == syscid && ct != NULL));
739 	if (cid == syscid) {
740 		rctl_alloc_gp_t *init_gp;
741 		rctl_set_t *init_set;
742 
743 		if (getproc(&p, 1) < 0)
744 			return (EAGAIN);
745 
746 		p->p_flag |= SNOWAIT;
747 		p->p_exec = NULL;
748 		p->p_execdir = NULL;
749 
750 		init_set = rctl_set_create();
751 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
752 
753 		/*
754 		 * kernel processes do not inherit /proc tracing flags.
755 		 */
756 		sigemptyset(&p->p_sigmask);
757 		premptyset(&p->p_fltmask);
758 		up = PTOU(p);
759 		up->u_systrap = 0;
760 		premptyset(&(up->u_entrymask));
761 		premptyset(&(up->u_exitmask));
762 		mutex_enter(&p->p_lock);
763 		e.rcep_p.proc = p;
764 		e.rcep_t = RCENTITY_PROCESS;
765 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
766 		    init_gp);
767 		mutex_exit(&p->p_lock);
768 
769 		rctl_prealloc_destroy(init_gp);
770 	} else  {
771 		rctl_alloc_gp_t *init_gp, *default_gp;
772 		rctl_set_t *init_set;
773 		task_t *tk, *tk_old;
774 
775 		if (getproc(&p, 0) < 0)
776 			return (EAGAIN);
777 		/*
778 		 * init creates a new task, distinct from the task
779 		 * containing kernel "processes".
780 		 */
781 		tk = task_create(0, p->p_zone);
782 		mutex_enter(&tk->tk_zone->zone_nlwps_lock);
783 		tk->tk_proj->kpj_ntasks++;
784 		mutex_exit(&tk->tk_zone->zone_nlwps_lock);
785 
786 		default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS);
787 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
788 		init_set = rctl_set_create();
789 
790 		mutex_enter(&pidlock);
791 		mutex_enter(&p->p_lock);
792 		tk_old = p->p_task;	/* switch to new task */
793 
794 		task_detach(p);
795 		task_begin(tk, p);
796 		mutex_exit(&pidlock);
797 
798 		e.rcep_p.proc = p;
799 		e.rcep_t = RCENTITY_PROCESS;
800 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
801 		    init_gp);
802 		rctlproc_default_init(p, default_gp);
803 		mutex_exit(&p->p_lock);
804 
805 		task_rele(tk_old);
806 		rctl_prealloc_destroy(default_gp);
807 		rctl_prealloc_destroy(init_gp);
808 	}
809 
810 	p->p_as = &kas;
811 
812 	if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri,
813 	    &curthread->t_hold, cid, 1)) == NULL) {
814 		task_t *tk;
815 		fork_fail(p);
816 		mutex_enter(&pidlock);
817 		mutex_enter(&p->p_lock);
818 		tk = p->p_task;
819 		task_detach(p);
820 		ASSERT(p->p_pool->pool_ref > 0);
821 		atomic_add_32(&p->p_pool->pool_ref, -1);
822 		mutex_exit(&p->p_lock);
823 		pid_exit(p);
824 		mutex_exit(&pidlock);
825 		task_rele(tk);
826 
827 		return (EAGAIN);
828 	}
829 
830 	if (cid != syscid) {
831 		ctp = contract_process_fork(sys_process_tmpl, p, curproc,
832 		    B_FALSE);
833 		ASSERT(ctp != NULL);
834 		if (ct != NULL)
835 			*ct = &ctp->conp_contract;
836 	}
837 
838 	p->p_lwpid = 1;
839 	mutex_enter(&pidlock);
840 	pgjoin(p, curproc->p_pgidp);
841 	p->p_stat = SRUN;
842 	mutex_enter(&p->p_lock);
843 	lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP;
844 	lwp_create_done(lwptot(lwp));
845 	mutex_exit(&p->p_lock);
846 	mutex_exit(&pidlock);
847 	return (0);
848 }
849 
850 /*
851  * create a child proc struct.
852  */
853 static int
854 getproc(proc_t **cpp, int kernel)
855 {
856 	proc_t		*pp, *cp;
857 	pid_t		newpid;
858 	struct user	*uarea;
859 	extern uint_t	nproc;
860 	struct cred	*cr;
861 	uid_t		ruid;
862 	zoneid_t	zoneid;
863 
864 	if (!page_mem_avail(tune.t_minarmem))
865 		return (-1);
866 	if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)
867 		return (-1);	/* no point in starting new processes */
868 
869 	pp = curproc;
870 	cp = kmem_cache_alloc(process_cache, KM_SLEEP);
871 	bzero(cp, sizeof (proc_t));
872 
873 	/*
874 	 * Make proc entry for child process
875 	 */
876 	mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL);
877 	mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL);
878 #if defined(__x86)
879 	mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL);
880 #endif
881 	mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL);
882 	cp->p_stat = SIDL;
883 	cp->p_mstart = gethrtime();
884 
885 	if ((newpid = pid_assign(cp)) == -1) {
886 		if (nproc == v.v_proc) {
887 			CPU_STATS_ADDQ(CPU, sys, procovf, 1);
888 			cmn_err(CE_WARN, "out of processes");
889 		}
890 		goto bad;
891 	}
892 
893 	/*
894 	 * If not privileged make sure that this user hasn't exceeded
895 	 * v.v_maxup processes, and that users collectively haven't
896 	 * exceeded v.v_maxupttl processes.
897 	 */
898 	mutex_enter(&pidlock);
899 	ASSERT(nproc < v.v_proc);	/* otherwise how'd we get our pid? */
900 	cr = CRED();
901 	ruid = crgetruid(cr);
902 	zoneid = crgetzoneid(cr);
903 	if (nproc >= v.v_maxup && 	/* short-circuit; usually false */
904 	    (nproc >= v.v_maxupttl ||
905 	    upcount_get(ruid, zoneid) >= v.v_maxup) &&
906 	    secpolicy_newproc(cr) != 0) {
907 		mutex_exit(&pidlock);
908 		zcmn_err(zoneid, CE_NOTE,
909 		    "out of per-user processes for uid %d", ruid);
910 		goto bad;
911 	}
912 
913 	/*
914 	 * Everything is cool, put the new proc on the active process list.
915 	 * It is already on the pid list and in /proc.
916 	 * Increment the per uid process count (upcount).
917 	 */
918 	nproc++;
919 	upcount_inc(ruid, zoneid);
920 
921 	cp->p_next = practive;
922 	practive->p_prev = cp;
923 	practive = cp;
924 
925 	cp->p_ignore = pp->p_ignore;
926 	cp->p_siginfo = pp->p_siginfo;
927 	cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD);
928 	cp->p_sessp = pp->p_sessp;
929 	SESS_HOLD(pp->p_sessp);
930 	cp->p_exec = pp->p_exec;
931 	cp->p_execdir = pp->p_execdir;
932 	cp->p_zone = pp->p_zone;
933 
934 	cp->p_bssbase = pp->p_bssbase;
935 	cp->p_brkbase = pp->p_brkbase;
936 	cp->p_brksize = pp->p_brksize;
937 	cp->p_brkpageszc = pp->p_brkpageszc;
938 	cp->p_stksize = pp->p_stksize;
939 	cp->p_stkpageszc = pp->p_stkpageszc;
940 	cp->p_stkprot = pp->p_stkprot;
941 	cp->p_datprot = pp->p_datprot;
942 	cp->p_usrstack = pp->p_usrstack;
943 	cp->p_model = pp->p_model;
944 	cp->p_ppid = pp->p_pid;
945 	cp->p_ancpid = pp->p_pid;
946 	cp->p_portcnt = pp->p_portcnt;
947 
948 	/*
949 	 * Initialize watchpoint structures
950 	 */
951 	avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area),
952 	    offsetof(struct watched_area, wa_link));
953 
954 	/*
955 	 * Initialize immediate resource control values.
956 	 */
957 	cp->p_stk_ctl = pp->p_stk_ctl;
958 	cp->p_fsz_ctl = pp->p_fsz_ctl;
959 	cp->p_vmem_ctl = pp->p_vmem_ctl;
960 	cp->p_fno_ctl = pp->p_fno_ctl;
961 
962 	/*
963 	 * Link up to parent-child-sibling chain.  No need to lock
964 	 * in general since only a call to freeproc() (done by the
965 	 * same parent as newproc()) diddles with the child chain.
966 	 */
967 	cp->p_sibling = pp->p_child;
968 	if (pp->p_child)
969 		pp->p_child->p_psibling = cp;
970 
971 	cp->p_parent = pp;
972 	pp->p_child = cp;
973 
974 	cp->p_child_ns = NULL;
975 	cp->p_sibling_ns = NULL;
976 
977 	cp->p_nextorph = pp->p_orphan;
978 	cp->p_nextofkin = pp;
979 	pp->p_orphan = cp;
980 
981 	/*
982 	 * Inherit profiling state; do not inherit REALPROF profiling state.
983 	 */
984 	cp->p_prof = pp->p_prof;
985 	cp->p_rprof_cyclic = CYCLIC_NONE;
986 
987 	/*
988 	 * Inherit pool pointer from the parent.  Kernel processes are
989 	 * always bound to the default pool.
990 	 */
991 	mutex_enter(&pp->p_lock);
992 	if (kernel) {
993 		cp->p_pool = pool_default;
994 		cp->p_flag |= SSYS;
995 	} else {
996 		cp->p_pool = pp->p_pool;
997 	}
998 	atomic_add_32(&cp->p_pool->pool_ref, 1);
999 	mutex_exit(&pp->p_lock);
1000 
1001 	/*
1002 	 * Add the child process to the current task.  Kernel processes
1003 	 * are always attached to task0.
1004 	 */
1005 	mutex_enter(&cp->p_lock);
1006 	if (kernel)
1007 		task_attach(task0p, cp);
1008 	else
1009 		task_attach(pp->p_task, cp);
1010 	mutex_exit(&cp->p_lock);
1011 	mutex_exit(&pidlock);
1012 
1013 	avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t),
1014 	    offsetof(contract_t, ct_ctlist));
1015 
1016 	/*
1017 	 * Duplicate any audit information kept in the process table
1018 	 */
1019 #ifdef C2_AUDIT
1020 	if (audit_active)	/* copy audit data to cp */
1021 		audit_newproc(cp);
1022 #endif
1023 
1024 	crhold(cp->p_cred = cr);
1025 
1026 	/*
1027 	 * Bump up the counts on the file structures pointed at by the
1028 	 * parent's file table since the child will point at them too.
1029 	 */
1030 	fcnt_add(P_FINFO(pp), 1);
1031 
1032 	VN_HOLD(u.u_cdir);
1033 	if (u.u_rdir)
1034 		VN_HOLD(u.u_rdir);
1035 	if (u.u_cwd)
1036 		refstr_hold(u.u_cwd);
1037 
1038 	/*
1039 	 * copy the parent's uarea.
1040 	 */
1041 	uarea = PTOU(cp);
1042 	bcopy(PTOU(pp), uarea, sizeof (user_t));
1043 	flist_fork(P_FINFO(pp), P_FINFO(cp));
1044 
1045 	gethrestime(&uarea->u_start);
1046 	uarea->u_ticks = lbolt;
1047 	uarea->u_mem = rm_asrss(pp->p_as);
1048 	uarea->u_acflag = AFORK;
1049 
1050 	/*
1051 	 * If inherit-on-fork, copy /proc tracing flags to child.
1052 	 */
1053 	if ((pp->p_proc_flag & P_PR_FORK) != 0) {
1054 		cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK);
1055 		cp->p_sigmask = pp->p_sigmask;
1056 		cp->p_fltmask = pp->p_fltmask;
1057 	} else {
1058 		sigemptyset(&cp->p_sigmask);
1059 		premptyset(&cp->p_fltmask);
1060 		uarea->u_systrap = 0;
1061 		premptyset(&uarea->u_entrymask);
1062 		premptyset(&uarea->u_exitmask);
1063 	}
1064 	/*
1065 	 * If microstate accounting is being inherited, mark child
1066 	 */
1067 	if ((pp->p_flag & SMSFORK) != 0)
1068 		cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT);
1069 
1070 	/*
1071 	 * Inherit fixalignment flag from the parent
1072 	 */
1073 	cp->p_fixalignment = pp->p_fixalignment;
1074 
1075 	if (cp->p_exec)
1076 		VN_HOLD(cp->p_exec);
1077 	if (cp->p_execdir)
1078 		VN_HOLD(cp->p_execdir);
1079 	*cpp = cp;
1080 	return (0);
1081 
1082 bad:
1083 	ASSERT(MUTEX_NOT_HELD(&pidlock));
1084 
1085 	mutex_destroy(&cp->p_crlock);
1086 	mutex_destroy(&cp->p_pflock);
1087 #if defined(__x86)
1088 	mutex_destroy(&cp->p_ldtlock);
1089 #endif
1090 	if (newpid != -1) {
1091 		proc_entry_free(cp->p_pidp);
1092 		(void) pid_rele(cp->p_pidp);
1093 	}
1094 	kmem_cache_free(process_cache, cp);
1095 
1096 	/*
1097 	 * We most likely got into this situation because some process is
1098 	 * forking out of control.  As punishment, put it to sleep for a
1099 	 * bit so it can't eat the machine alive.  Sleep interval is chosen
1100 	 * to allow no more than one fork failure per cpu per clock tick
1101 	 * on average (yes, I just made this up).  This has two desirable
1102 	 * properties: (1) it sets a constant limit on the fork failure
1103 	 * rate, and (2) the busier the system is, the harsher the penalty
1104 	 * for abusing it becomes.
1105 	 */
1106 	INCR_COUNT(&fork_fail_pending, &pidlock);
1107 	delay(fork_fail_pending / ncpus + 1);
1108 	DECR_COUNT(&fork_fail_pending, &pidlock);
1109 
1110 	return (-1); /* out of memory or proc slots */
1111 }
1112 
1113 /*
1114  * Release virtual memory.
1115  * In the case of vfork(), the child was given exclusive access to its
1116  * parent's address space.  The parent is waiting in vfwait() for the
1117  * child to release its exclusive claim via relvm().
1118  */
1119 void
1120 relvm()
1121 {
1122 	proc_t *p = curproc;
1123 
1124 	ASSERT((unsigned)p->p_lwpcnt <= 1);
1125 
1126 	prrelvm();	/* inform /proc */
1127 
1128 	if (p->p_flag & SVFORK) {
1129 		proc_t *pp = p->p_parent;
1130 		/*
1131 		 * The child process is either exec'ing or exit'ing.
1132 		 * The child is now separated from the parent's address
1133 		 * space.  The parent process is made dispatchable.
1134 		 *
1135 		 * This is a delicate locking maneuver, involving
1136 		 * both the parent's p_lock and the child's p_lock.
1137 		 * As soon as the SVFORK flag is turned off, the
1138 		 * parent is free to run, but it must not run until
1139 		 * we wake it up using its p_cv because it might
1140 		 * exit and we would be referencing invalid memory.
1141 		 * Therefore, we hold the parent with its p_lock
1142 		 * while protecting our p_flags with our own p_lock.
1143 		 */
1144 try_again:
1145 		mutex_enter(&p->p_lock);	/* grab child's lock first */
1146 		prbarrier(p);		/* make sure /proc is blocked out */
1147 		mutex_enter(&pp->p_lock);
1148 
1149 		/*
1150 		 * Check if parent is locked by /proc.
1151 		 */
1152 		if (pp->p_proc_flag & P_PR_LOCK) {
1153 			/*
1154 			 * Delay until /proc is done with the parent.
1155 			 * We must drop our (the child's) p->p_lock, wait
1156 			 * via prbarrier() on the parent, then start over.
1157 			 */
1158 			mutex_exit(&p->p_lock);
1159 			prbarrier(pp);
1160 			mutex_exit(&pp->p_lock);
1161 			goto try_again;
1162 		}
1163 		p->p_flag &= ~SVFORK;
1164 		kpreempt_disable();
1165 		p->p_as = &kas;
1166 
1167 		/*
1168 		 * notify hat of change in thread's address space
1169 		 */
1170 		hat_thread_exit(curthread);
1171 		kpreempt_enable();
1172 
1173 		/*
1174 		 * child sizes are copied back to parent because
1175 		 * child may have grown.
1176 		 */
1177 		pp->p_brkbase = p->p_brkbase;
1178 		pp->p_brksize = p->p_brksize;
1179 		pp->p_stksize = p->p_stksize;
1180 		/*
1181 		 * The parent is no longer waiting for the vfork()d child.
1182 		 * Restore the parent's watched pages, if any.  This is
1183 		 * safe because we know the parent is not locked by /proc
1184 		 */
1185 		pp->p_flag &= ~SVFWAIT;
1186 		if (avl_numnodes(&pp->p_wpage) != 0) {
1187 			pp->p_as->a_wpage = pp->p_wpage;
1188 			avl_create(&pp->p_wpage, wp_compare,
1189 			    sizeof (struct watched_page),
1190 			    offsetof(struct watched_page, wp_link));
1191 		}
1192 		cv_signal(&pp->p_cv);
1193 		mutex_exit(&pp->p_lock);
1194 		mutex_exit(&p->p_lock);
1195 	} else {
1196 		if (p->p_as != &kas) {
1197 			struct as *as;
1198 
1199 			if (p->p_segacct)
1200 				shmexit(p);
1201 			/*
1202 			 * We grab p_lock for the benefit of /proc
1203 			 */
1204 			kpreempt_disable();
1205 			mutex_enter(&p->p_lock);
1206 			prbarrier(p);	/* make sure /proc is blocked out */
1207 			as = p->p_as;
1208 			p->p_as = &kas;
1209 			mutex_exit(&p->p_lock);
1210 
1211 			/*
1212 			 * notify hat of change in thread's address space
1213 			 */
1214 			hat_thread_exit(curthread);
1215 			kpreempt_enable();
1216 
1217 			as_free(as);
1218 		}
1219 	}
1220 }
1221 
1222 /*
1223  * Wait for child to exec or exit.
1224  * Called by parent of vfork'ed process.
1225  * See important comments in relvm(), above.
1226  */
1227 void
1228 vfwait(pid_t pid)
1229 {
1230 	int signalled = 0;
1231 	proc_t *pp = ttoproc(curthread);
1232 	proc_t *cp;
1233 
1234 	/*
1235 	 * Wait for child to exec or exit.
1236 	 */
1237 	for (;;) {
1238 		mutex_enter(&pidlock);
1239 		cp = prfind(pid);
1240 		if (cp == NULL || cp->p_parent != pp) {
1241 			/*
1242 			 * Child has exit()ed.
1243 			 */
1244 			mutex_exit(&pidlock);
1245 			break;
1246 		}
1247 		/*
1248 		 * Grab the child's p_lock before releasing pidlock.
1249 		 * Otherwise, the child could exit and we would be
1250 		 * referencing invalid memory.
1251 		 */
1252 		mutex_enter(&cp->p_lock);
1253 		mutex_exit(&pidlock);
1254 		if (!(cp->p_flag & SVFORK)) {
1255 			/*
1256 			 * Child has exec()ed or is exit()ing.
1257 			 */
1258 			mutex_exit(&cp->p_lock);
1259 			break;
1260 		}
1261 		mutex_enter(&pp->p_lock);
1262 		mutex_exit(&cp->p_lock);
1263 		/*
1264 		 * We might be waked up spuriously from the cv_wait().
1265 		 * We have to do the whole operation over again to be
1266 		 * sure the child's SVFORK flag really is turned off.
1267 		 * We cannot make reference to the child because it can
1268 		 * exit before we return and we would be referencing
1269 		 * invalid memory.
1270 		 *
1271 		 * Because this is potentially a very long-term wait,
1272 		 * we call cv_wait_sig() (for its jobcontrol and /proc
1273 		 * side-effects) unless there is a current signal, in
1274 		 * which case we use cv_wait() because we cannot return
1275 		 * from this function until the child has released the
1276 		 * address space.  Calling cv_wait_sig() with a current
1277 		 * signal would lead to an indefinite loop here because
1278 		 * cv_wait_sig() returns immediately in this case.
1279 		 */
1280 		if (signalled)
1281 			cv_wait(&pp->p_cv, &pp->p_lock);
1282 		else
1283 			signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock);
1284 		mutex_exit(&pp->p_lock);
1285 	}
1286 
1287 	/* restore watchpoints to parent */
1288 	if (pr_watch_active(pp)) {
1289 		struct as *as = pp->p_as;
1290 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1291 		as_setwatch(as);
1292 		AS_LOCK_EXIT(as, &as->a_lock);
1293 	}
1294 
1295 	mutex_enter(&pp->p_lock);
1296 	prbarrier(pp);	/* barrier against /proc locking */
1297 	continuelwps(pp);
1298 	mutex_exit(&pp->p_lock);
1299 }
1300