xref: /titanic_50/usr/src/uts/common/os/fork.c (revision 8eea8e29cc4374d1ee24c25a07f45af132db3499)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/sysmacros.h>
36 #include <sys/signal.h>
37 #include <sys/cred.h>
38 #include <sys/policy.h>
39 #include <sys/user.h>
40 #include <sys/systm.h>
41 #include <sys/cpuvar.h>
42 #include <sys/vfs.h>
43 #include <sys/vnode.h>
44 #include <sys/file.h>
45 #include <sys/errno.h>
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <sys/cmn_err.h>
49 #include <sys/acct.h>
50 #include <sys/tuneable.h>
51 #include <sys/class.h>
52 #include <sys/kmem.h>
53 #include <sys/session.h>
54 #include <sys/ucontext.h>
55 #include <sys/stack.h>
56 #include <sys/procfs.h>
57 #include <sys/prsystm.h>
58 #include <sys/vmsystm.h>
59 #include <sys/vtrace.h>
60 #include <sys/debug.h>
61 #include <sys/shm_impl.h>
62 #include <sys/door_data.h>
63 #include <vm/as.h>
64 #include <vm/rm.h>
65 #include <c2/audit.h>
66 #include <sys/var.h>
67 #include <sys/schedctl.h>
68 #include <sys/utrap.h>
69 #include <sys/task.h>
70 #include <sys/resource.h>
71 #include <sys/cyclic.h>
72 #include <sys/lgrp.h>
73 #include <sys/rctl.h>
74 #include <sys/contract_impl.h>
75 #include <sys/contract/process_impl.h>
76 #include <sys/list.h>
77 #include <sys/dtrace.h>
78 #include <sys/pool.h>
79 #include <sys/zone.h>
80 #include <sys/sdt.h>
81 #include <sys/class.h>
82 #include <sys/corectl.h>
83 
84 static int64_t cfork(int, int);
85 static int getproc(proc_t **, int);
86 static void fork_fail(proc_t *);
87 static void forklwp_fail(proc_t *);
88 
89 int fork_fail_pending;
90 
91 extern struct kmem_cache *process_cache;
92 
93 /*
94  * forkall system call.
95  */
96 int64_t
97 forkall(void)
98 {
99 	return (cfork(0, 0));
100 }
101 
102 /*
103  * The parent is stopped until the child invokes relvm().
104  */
105 int64_t
106 vfork(void)
107 {
108 	curthread->t_post_sys = 1;	/* so vfwait() will be called */
109 	return (cfork(1, 1));
110 }
111 
112 /*
113  * fork1 system call
114  */
115 int64_t
116 fork1(void)
117 {
118 	return (cfork(0, 1));
119 }
120 
121 /* ARGSUSED */
122 static int64_t
123 cfork(int isvfork, int isfork1)
124 {
125 	proc_t *p = ttoproc(curthread);
126 	struct as *as;
127 	proc_t *cp, **orphpp;
128 	klwp_t *clone;
129 	kthread_t *t;
130 	task_t *tk;
131 	rval_t	r;
132 	int error;
133 	int i;
134 	rctl_set_t *dup_set;
135 	rctl_alloc_gp_t *dup_gp;
136 	rctl_entity_p_t e;
137 	lwpdir_t *ldp;
138 	lwpent_t *lep;
139 	lwpent_t *clep;
140 
141 	/*
142 	 * fork is not supported for the /proc agent lwp.
143 	 */
144 	if (curthread == p->p_agenttp) {
145 		error = ENOTSUP;
146 		goto forkerr;
147 	}
148 
149 	if ((error = secpolicy_basic_fork(CRED())) != 0)
150 		goto forkerr;
151 
152 	/*
153 	 * If the calling lwp is doing a fork1() then the
154 	 * other lwps in this process are not duplicated and
155 	 * don't need to be held where their kernel stacks can be
156 	 * cloned.  If doing forkall(), the process is held with
157 	 * SHOLDFORK, so that the lwps are at a point where their
158 	 * stacks can be copied which is on entry or exit from
159 	 * the kernel.
160 	 */
161 	if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) {
162 		aston(curthread);
163 		error = EINTR;
164 		goto forkerr;
165 	}
166 
167 #if defined(__sparc)
168 	/*
169 	 * Ensure that the user stack is fully constructed
170 	 * before creating the child process structure.
171 	 */
172 	(void) flush_user_windows_to_stack(NULL);
173 #endif
174 
175 	/*
176 	 * Prevent our resource set associations from being changed during fork.
177 	 */
178 	mutex_enter(&p->p_lock);
179 	pool_barrier_enter();
180 	mutex_exit(&p->p_lock);
181 
182 	/*
183 	 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes.
184 	 */
185 	if (getproc(&cp, 0) < 0) {
186 		mutex_enter(&p->p_lock);
187 		pool_barrier_exit();
188 		continuelwps(p);
189 		mutex_exit(&p->p_lock);
190 		error = EAGAIN;
191 		goto forkerr;
192 	}
193 
194 	TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p);
195 
196 	/*
197 	 * Assign an address space to child
198 	 */
199 	if (isvfork) {
200 		/*
201 		 * Clear any watched areas and remember the
202 		 * watched pages for restoring in vfwait().
203 		 */
204 		as = p->p_as;
205 		if (avl_numnodes(&as->a_wpage) != 0) {
206 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
207 			as_clearwatch(as);
208 			p->p_wpage = as->a_wpage;
209 			avl_create(&as->a_wpage, wp_compare,
210 			    sizeof (struct watched_page),
211 			    offsetof(struct watched_page, wp_link));
212 			AS_LOCK_EXIT(as, &as->a_lock);
213 		}
214 		cp->p_as = as;
215 		cp->p_flag |= SVFORK;
216 	} else {
217 		/*
218 		 * We need to hold P_PR_LOCK until the address space has
219 		 * been duplicated and we've had a chance to remove from the
220 		 * child any DTrace probes that were in the parent. Holding
221 		 * P_PR_LOCK prevents any new probes from being added and any
222 		 * extant probes from being removed.
223 		 */
224 		mutex_enter(&p->p_lock);
225 		sprlock_proc(p);
226 		mutex_exit(&p->p_lock);
227 
228 		error = as_dup(p->p_as, &cp->p_as);
229 		if (error != 0) {
230 			fork_fail(cp);
231 			mutex_enter(&pidlock);
232 			orphpp = &p->p_orphan;
233 			while (*orphpp != cp)
234 				orphpp = &(*orphpp)->p_nextorph;
235 			*orphpp = cp->p_nextorph;
236 			ASSERT(p->p_child == cp);
237 			p->p_child = cp->p_sibling;
238 			if (p->p_child) {
239 				p->p_child->p_psibling = NULL;
240 			}
241 			mutex_enter(&cp->p_lock);
242 			tk = cp->p_task;
243 			task_detach(cp);
244 			ASSERT(cp->p_pool->pool_ref > 0);
245 			atomic_add_32(&cp->p_pool->pool_ref, -1);
246 			mutex_exit(&cp->p_lock);
247 			pid_exit(cp);
248 			mutex_exit(&pidlock);
249 			task_rele(tk);
250 
251 			mutex_enter(&p->p_lock);
252 			pool_barrier_exit();
253 			continuelwps(p);
254 			sprunlock(p);
255 			/*
256 			 * Preserve ENOMEM error condition but
257 			 * map all others to EAGAIN.
258 			 */
259 			error = (error == ENOMEM) ? ENOMEM : EAGAIN;
260 			goto forkerr;
261 		}
262 		/* Duplicate parent's shared memory */
263 		if (p->p_segacct)
264 			shmfork(p, cp);
265 
266 		if (p->p_dtrace_helpers != NULL) {
267 			ASSERT(dtrace_helpers_fork != NULL);
268 			(*dtrace_helpers_fork)(p, cp);
269 		}
270 
271 		/*
272 		 * Remove all DTrace tracepoints from the child process.
273 		 */
274 		mutex_enter(&p->p_lock);
275 		if (p->p_dtrace_count > 0)
276 			dtrace_fasttrap_fork(p, cp);
277 		sprunlock(p);
278 	}
279 
280 	/*
281 	 * Duplicate parent's resource controls.
282 	 */
283 	dup_set = rctl_set_create();
284 	for (;;) {
285 		dup_gp = rctl_set_dup_prealloc(p->p_rctls);
286 		mutex_enter(&p->p_rctls->rcs_lock);
287 		if (rctl_set_dup_ready(p->p_rctls, dup_gp))
288 			break;
289 		mutex_exit(&p->p_rctls->rcs_lock);
290 		rctl_prealloc_destroy(dup_gp);
291 	}
292 	e.rcep_p.proc = cp;
293 	e.rcep_t = RCENTITY_PROCESS;
294 	cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp,
295 	    RCD_DUP | RCD_CALLBACK);
296 	mutex_exit(&p->p_rctls->rcs_lock);
297 
298 	rctl_prealloc_destroy(dup_gp);
299 
300 	/*
301 	 * Allocate the child's lwp directory and lwpid hash table.
302 	 */
303 	if (isfork1)
304 		cp->p_lwpdir_sz = 2;
305 	else
306 		cp->p_lwpdir_sz = p->p_lwpdir_sz;
307 	cp->p_lwpdir = cp->p_lwpfree = ldp =
308 		kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP);
309 	for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++)
310 		ldp->ld_next = ldp + 1;
311 	cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2;
312 	cp->p_tidhash =
313 		kmem_zalloc(cp->p_tidhash_sz * sizeof (lwpdir_t *), KM_SLEEP);
314 
315 	/*
316 	 * Duplicate parent's lwps.
317 	 * Mutual exclusion is not needed because the process is
318 	 * in the hold state and only the current lwp is running.
319 	 */
320 	klgrpset_clear(cp->p_lgrpset);
321 	if (isfork1) {
322 		clone = forklwp(ttolwp(curthread), cp, curthread->t_tid);
323 		if (clone == NULL)
324 			goto forklwperr;
325 		/*
326 		 * Inherit only the lwp_wait()able flag,
327 		 * Daemon threads should not call fork1(), but oh well...
328 		 */
329 		lwptot(clone)->t_proc_flag |=
330 			(curthread->t_proc_flag & TP_TWAIT);
331 	} else {
332 		/* this is forkall(), no one can be in lwp_wait() */
333 		ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0);
334 		/* for each entry in the parent's lwp directory... */
335 		for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) {
336 			klwp_t *clwp;
337 
338 			if ((lep = ldp->ld_entry) == NULL)
339 				continue;
340 
341 			if ((t = lep->le_thread) != NULL) {
342 				clwp = forklwp(ttolwp(t), cp, t->t_tid);
343 				if (clwp == NULL)
344 					goto forklwperr;
345 				/*
346 				 * Inherit lwp_wait()able and daemon flags.
347 				 */
348 				lwptot(clwp)->t_proc_flag |=
349 				    (t->t_proc_flag & (TP_TWAIT|TP_DAEMON));
350 				/*
351 				 * Keep track of the clone of curthread to
352 				 * post return values through lwp_setrval().
353 				 */
354 				if (t == curthread)
355 					clone = clwp;
356 			} else {
357 				/*
358 				 * Replicate zombie lwps in the child.
359 				 */
360 				clep = kmem_zalloc(sizeof (*clep), KM_SLEEP);
361 				clep->le_lwpid = lep->le_lwpid;
362 				clep->le_start = lep->le_start;
363 				lwp_hash_in(cp, clep);
364 			}
365 		}
366 	}
367 
368 	/*
369 	 * Put new process in the parent's process contract, or put it
370 	 * in a new one if there is an active process template.  Send a
371 	 * fork event (if requested) to whatever contract the child is
372 	 * a member of.  Fails if the parent has been SIGKILLed.
373 	 */
374 	if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL)
375 		goto forklwperr;
376 
377 	/*
378 	 * No fork failures occur beyond this point.
379 	 */
380 
381 	cp->p_lwpid = p->p_lwpid;
382 	if (!isfork1) {
383 		cp->p_lwpdaemon = p->p_lwpdaemon;
384 		cp->p_zombcnt = p->p_zombcnt;
385 		/*
386 		 * If the parent's lwp ids have wrapped around, so have the
387 		 * child's.
388 		 */
389 		cp->p_flag |= p->p_flag & SLWPWRAP;
390 	}
391 
392 	corectl_path_hold(cp->p_corefile = p->p_corefile);
393 	corectl_content_hold(cp->p_content = p->p_content);
394 
395 #if defined(__x86)
396 	/*
397 	 * Get the right ldt descr for the child.
398 	 */
399 	(void) ldt_dup(p, cp);
400 #endif
401 
402 #ifdef __sparc
403 	utrap_dup(p, cp);
404 #endif
405 	/*
406 	 * If the child process has been marked to stop on exit
407 	 * from this fork, arrange for all other lwps to stop in
408 	 * sympathy with the active lwp.
409 	 */
410 	if (PTOU(cp)->u_systrap &&
411 	    prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) {
412 		mutex_enter(&cp->p_lock);
413 		t = cp->p_tlist;
414 		do {
415 			t->t_proc_flag |= TP_PRSTOP;
416 			aston(t);	/* so TP_PRSTOP will be seen */
417 		} while ((t = t->t_forw) != cp->p_tlist);
418 		mutex_exit(&cp->p_lock);
419 	}
420 	/*
421 	 * If the parent process has been marked to stop on exit
422 	 * from this fork, and its asynchronous-stop flag has not
423 	 * been set, arrange for all other lwps to stop before
424 	 * they return back to user level.
425 	 */
426 	if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap &&
427 	    prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) {
428 		mutex_enter(&p->p_lock);
429 		t = p->p_tlist;
430 		do {
431 			t->t_proc_flag |= TP_PRSTOP;
432 			aston(t);	/* so TP_PRSTOP will be seen */
433 		} while ((t = t->t_forw) != p->p_tlist);
434 		mutex_exit(&p->p_lock);
435 	}
436 
437 	/* set return values for child */
438 	lwp_setrval(clone, p->p_pid, 1);
439 
440 	/* set return values for parent */
441 	r.r_val1 = (int)cp->p_pid;
442 	r.r_val2 = 0;
443 
444 	/*
445 	 * pool_barrier_exit() can now be called because the child process has:
446 	 * - all identifying features cloned or set (p_pid, p_task, p_pool)
447 	 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset)
448 	 * - any other fields set which are used in resource set binding.
449 	 */
450 	mutex_enter(&p->p_lock);
451 	pool_barrier_exit();
452 	mutex_exit(&p->p_lock);
453 
454 	mutex_enter(&pidlock);
455 	mutex_enter(&cp->p_lock);
456 
457 	/*
458 	 * Now that there are lwps and threads attached, add the new
459 	 * process to the process group.
460 	 */
461 	pgjoin(cp, p->p_pgidp);
462 	cp->p_stat = SRUN;
463 	/*
464 	 * We are now done with all the lwps in the child process.
465 	 */
466 	t = cp->p_tlist;
467 	do {
468 		/*
469 		 * Set the lwp_suspend()ed lwps running.
470 		 * They will suspend properly at syscall exit.
471 		 */
472 		if (t->t_proc_flag & TP_HOLDLWP)
473 			lwp_create_done(t);
474 		else {
475 			/* set TS_CREATE to allow continuelwps() to work */
476 			thread_lock(t);
477 			ASSERT(t->t_state == TS_STOPPED &&
478 			    !(t->t_schedflag & (TS_CREATE|TS_CSTART)));
479 			t->t_schedflag |= TS_CREATE;
480 			thread_unlock(t);
481 		}
482 	} while ((t = t->t_forw) != cp->p_tlist);
483 	mutex_exit(&cp->p_lock);
484 
485 	if (isvfork) {
486 		CPU_STATS_ADDQ(CPU, sys, sysvfork, 1);
487 		mutex_enter(&p->p_lock);
488 		p->p_flag |= SVFWAIT;
489 		DTRACE_PROC1(create, proc_t *, cp);
490 		cv_broadcast(&pr_pid_cv[p->p_slot]);	/* inform /proc */
491 		mutex_exit(&p->p_lock);
492 		/*
493 		 * Grab child's p_lock before dropping pidlock to ensure
494 		 * the process will not disappear before we set it running.
495 		 */
496 		mutex_enter(&cp->p_lock);
497 		mutex_exit(&pidlock);
498 		sigdefault(cp);
499 		continuelwps(cp);
500 		mutex_exit(&cp->p_lock);
501 	} else {
502 		CPU_STATS_ADDQ(CPU, sys, sysfork, 1);
503 		DTRACE_PROC1(create, proc_t *, cp);
504 		/*
505 		 * It is CL_FORKRET's job to drop pidlock.
506 		 * If we do it here, the process could be set running
507 		 * and disappear before CL_FORKRET() is called.
508 		 */
509 		CL_FORKRET(curthread, cp->p_tlist);
510 		ASSERT(MUTEX_NOT_HELD(&pidlock));
511 	}
512 
513 	return (r.r_vals);
514 
515 forklwperr:
516 	if (isvfork) {
517 		if (avl_numnodes(&p->p_wpage) != 0) {
518 			/* restore watchpoints to parent */
519 			as = p->p_as;
520 			AS_LOCK_ENTER(as, &as->a_lock,
521 				RW_WRITER);
522 			as->a_wpage = p->p_wpage;
523 			avl_create(&p->p_wpage, wp_compare,
524 			    sizeof (struct watched_page),
525 			    offsetof(struct watched_page, wp_link));
526 			as_setwatch(as);
527 			AS_LOCK_EXIT(as, &as->a_lock);
528 		}
529 	} else {
530 		if (cp->p_segacct)
531 			shmexit(cp);
532 		as = cp->p_as;
533 		cp->p_as = &kas;
534 		as_free(as);
535 	}
536 
537 	if (cp->p_lwpdir) {
538 		for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++)
539 			if ((lep = ldp->ld_entry) != NULL)
540 				kmem_free(lep, sizeof (*lep));
541 		kmem_free(cp->p_lwpdir,
542 		    cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir));
543 	}
544 	cp->p_lwpdir = NULL;
545 	cp->p_lwpfree = NULL;
546 	cp->p_lwpdir_sz = 0;
547 
548 	if (cp->p_tidhash)
549 		kmem_free(cp->p_tidhash,
550 		    cp->p_tidhash_sz * sizeof (*cp->p_tidhash));
551 	cp->p_tidhash = NULL;
552 	cp->p_tidhash_sz = 0;
553 
554 	forklwp_fail(cp);
555 	fork_fail(cp);
556 	rctl_set_free(cp->p_rctls);
557 	mutex_enter(&pidlock);
558 
559 	/*
560 	 * Detach failed child from task.
561 	 */
562 	mutex_enter(&cp->p_lock);
563 	tk = cp->p_task;
564 	task_detach(cp);
565 	ASSERT(cp->p_pool->pool_ref > 0);
566 	atomic_add_32(&cp->p_pool->pool_ref, -1);
567 	mutex_exit(&cp->p_lock);
568 
569 	orphpp = &p->p_orphan;
570 	while (*orphpp != cp)
571 		orphpp = &(*orphpp)->p_nextorph;
572 	*orphpp = cp->p_nextorph;
573 	ASSERT(p->p_child == cp);
574 	p->p_child = cp->p_sibling;
575 	if (p->p_child) {
576 		p->p_child->p_psibling = NULL;
577 	}
578 	pid_exit(cp);
579 	mutex_exit(&pidlock);
580 
581 	task_rele(tk);
582 
583 	mutex_enter(&p->p_lock);
584 	pool_barrier_exit();
585 	continuelwps(p);
586 	mutex_exit(&p->p_lock);
587 	error = EAGAIN;
588 forkerr:
589 	return ((int64_t)set_errno(error));
590 }
591 
592 /*
593  * Free allocated resources from getproc() if a fork failed.
594  */
595 static void
596 fork_fail(proc_t *cp)
597 {
598 	uf_info_t *fip = P_FINFO(cp);
599 
600 	fcnt_add(fip, -1);
601 	sigdelq(cp, NULL, 0);
602 
603 	mutex_enter(&pidlock);
604 	upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred));
605 	mutex_exit(&pidlock);
606 
607 	/*
608 	 * single threaded, so no locking needed here
609 	 */
610 	crfree(cp->p_cred);
611 
612 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
613 
614 	VN_RELE(u.u_cdir);
615 	if (u.u_rdir)
616 		VN_RELE(u.u_rdir);
617 	if (cp->p_exec)
618 		VN_RELE(cp->p_exec);
619 	if (cp->p_execdir)
620 		VN_RELE(cp->p_execdir);
621 	if (u.u_cwd)
622 		refstr_rele(u.u_cwd);
623 }
624 
625 /*
626  * Clean up the lwps already created for this child process.
627  * The fork failed while duplicating all the lwps of the parent
628  * and those lwps already created must be freed.
629  * This process is invisible to the rest of the system,
630  * so we don't need to hold p->p_lock to protect the list.
631  */
632 static void
633 forklwp_fail(proc_t *p)
634 {
635 	kthread_t *t;
636 	task_t *tk;
637 
638 	while ((t = p->p_tlist) != NULL) {
639 		/*
640 		 * First remove the lwp from the process's p_tlist.
641 		 */
642 		if (t != t->t_forw)
643 			p->p_tlist = t->t_forw;
644 		else
645 			p->p_tlist = NULL;
646 		p->p_lwpcnt--;
647 		t->t_forw->t_back = t->t_back;
648 		t->t_back->t_forw = t->t_forw;
649 
650 		tk = p->p_task;
651 		mutex_enter(&p->p_zone->zone_nlwps_lock);
652 		tk->tk_nlwps--;
653 		tk->tk_proj->kpj_nlwps--;
654 		p->p_zone->zone_nlwps--;
655 		mutex_exit(&p->p_zone->zone_nlwps_lock);
656 
657 		ASSERT(t->t_schedctl == NULL);
658 
659 		if (t->t_door != NULL) {
660 			kmem_free(t->t_door, sizeof (door_data_t));
661 			t->t_door = NULL;
662 		}
663 		lwp_ctmpl_clear(ttolwp(t));
664 
665 		/*
666 		 * Remove the thread from the all threads list.
667 		 * We need to hold pidlock for this.
668 		 */
669 		mutex_enter(&pidlock);
670 		t->t_next->t_prev = t->t_prev;
671 		t->t_prev->t_next = t->t_next;
672 		CL_EXIT(t);	/* tell the scheduler that we're exiting */
673 		cv_broadcast(&t->t_joincv);	/* tell anyone in thread_join */
674 		mutex_exit(&pidlock);
675 
676 		/*
677 		 * Let the lgroup load averages know that this thread isn't
678 		 * going to show up (i.e. un-do what was done on behalf of
679 		 * this thread by the earlier lgrp_move_thread()).
680 		 */
681 		kpreempt_disable();
682 		lgrp_move_thread(t, NULL, 1);
683 		kpreempt_enable();
684 
685 		/*
686 		 * The thread was created TS_STOPPED.
687 		 * We change it to TS_FREE to avoid an
688 		 * ASSERT() panic in thread_free().
689 		 */
690 		t->t_state = TS_FREE;
691 		thread_rele(t);
692 		thread_free(t);
693 	}
694 }
695 
696 extern struct as kas;
697 
698 /*
699  * fork a kernel process.
700  */
701 int
702 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct)
703 {
704 	proc_t *p;
705 	struct user *up;
706 	klwp_t *lwp;
707 	cont_process_t *ctp = NULL;
708 	rctl_entity_p_t e;
709 
710 	ASSERT(!(cid == syscid && ct != NULL));
711 	if (cid == syscid) {
712 		rctl_alloc_gp_t *init_gp;
713 		rctl_set_t *init_set;
714 
715 		if (getproc(&p, 1) < 0)
716 			return (EAGAIN);
717 
718 		p->p_flag |= SNOWAIT;
719 		p->p_exec = NULL;
720 		p->p_execdir = NULL;
721 
722 		init_set = rctl_set_create();
723 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
724 
725 		/*
726 		 * kernel processes do not inherit /proc tracing flags.
727 		 */
728 		sigemptyset(&p->p_sigmask);
729 		premptyset(&p->p_fltmask);
730 		up = PTOU(p);
731 		up->u_systrap = 0;
732 		premptyset(&(up->u_entrymask));
733 		premptyset(&(up->u_exitmask));
734 		mutex_enter(&p->p_lock);
735 		e.rcep_p.proc = p;
736 		e.rcep_t = RCENTITY_PROCESS;
737 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
738 		    init_gp);
739 		mutex_exit(&p->p_lock);
740 
741 		rctl_prealloc_destroy(init_gp);
742 	} else  {
743 		rctl_alloc_gp_t *init_gp, *default_gp;
744 		rctl_set_t *init_set;
745 		task_t *tk, *tk_old;
746 
747 		if (getproc(&p, 0) < 0)
748 			return (EAGAIN);
749 		/*
750 		 * init creates a new task, distinct from the task
751 		 * containing kernel "processes".
752 		 */
753 		tk = task_create(0, p->p_zone);
754 		mutex_enter(&tk->tk_zone->zone_nlwps_lock);
755 		tk->tk_proj->kpj_ntasks++;
756 		mutex_exit(&tk->tk_zone->zone_nlwps_lock);
757 
758 		default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS);
759 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
760 		init_set = rctl_set_create();
761 
762 		mutex_enter(&pidlock);
763 		mutex_enter(&p->p_lock);
764 		tk_old = p->p_task;	/* switch to new task */
765 
766 		task_detach(p);
767 		task_begin(tk, p);
768 		mutex_exit(&pidlock);
769 
770 		e.rcep_p.proc = p;
771 		e.rcep_t = RCENTITY_PROCESS;
772 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
773 		    init_gp);
774 		rctlproc_default_init(p, default_gp);
775 		mutex_exit(&p->p_lock);
776 
777 		task_rele(tk_old);
778 		rctl_prealloc_destroy(default_gp);
779 		rctl_prealloc_destroy(init_gp);
780 	}
781 
782 	p->p_as = &kas;
783 
784 #if defined(__x86)
785 	(void) ldt_dup(&p0, p);		/* Get the default ldt descr */
786 #endif
787 
788 	if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri,
789 	    &curthread->t_hold, cid, 1)) == NULL) {
790 		task_t *tk;
791 		fork_fail(p);
792 		mutex_enter(&pidlock);
793 		mutex_enter(&p->p_lock);
794 		tk = p->p_task;
795 		task_detach(p);
796 		ASSERT(p->p_pool->pool_ref > 0);
797 		atomic_add_32(&p->p_pool->pool_ref, -1);
798 		mutex_exit(&p->p_lock);
799 		pid_exit(p);
800 		mutex_exit(&pidlock);
801 		task_rele(tk);
802 
803 		return (EAGAIN);
804 	}
805 
806 	if (cid != syscid) {
807 		ctp = contract_process_fork(sys_process_tmpl, p, curproc,
808 		    B_FALSE);
809 		ASSERT(ctp != NULL);
810 		if (ct != NULL)
811 			*ct = &ctp->conp_contract;
812 	}
813 
814 	p->p_lwpid = 1;
815 	mutex_enter(&pidlock);
816 	pgjoin(p, curproc->p_pgidp);
817 	p->p_stat = SRUN;
818 	mutex_enter(&p->p_lock);
819 	lwptot(lwp)->t_proc_flag &= ~TP_HOLDLWP;
820 	lwp_create_done(lwptot(lwp));
821 	mutex_exit(&p->p_lock);
822 	mutex_exit(&pidlock);
823 	return (0);
824 }
825 
826 /*
827  * create a child proc struct.
828  */
829 static int
830 getproc(proc_t **cpp, int kernel)
831 {
832 	proc_t		*pp, *cp;
833 	pid_t		newpid;
834 	struct user	*uarea;
835 	extern uint_t	nproc;
836 	struct cred	*cr;
837 	uid_t		ruid;
838 	zoneid_t	zoneid;
839 
840 	if (!page_mem_avail(tune.t_minarmem))
841 		return (-1);
842 	if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)
843 		return (-1);	/* no point in starting new processes */
844 
845 	pp = curproc;
846 	cp = kmem_cache_alloc(process_cache, KM_SLEEP);
847 	bzero(cp, sizeof (proc_t));
848 
849 	/*
850 	 * Make proc entry for child process
851 	 */
852 	mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL);
853 	mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL);
854 #if defined(__x86)
855 	mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL);
856 #endif
857 	mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL);
858 	cp->p_stat = SIDL;
859 	cp->p_mstart = gethrtime();
860 
861 	if ((newpid = pid_assign(cp)) == -1) {
862 		if (nproc == v.v_proc) {
863 			CPU_STATS_ADDQ(CPU, sys, procovf, 1);
864 			cmn_err(CE_WARN, "out of processes");
865 		}
866 		goto bad;
867 	}
868 
869 	/*
870 	 * If not privileged make sure that this user hasn't exceeded
871 	 * v.v_maxup processes, and that users collectively haven't
872 	 * exceeded v.v_maxupttl processes.
873 	 */
874 	mutex_enter(&pidlock);
875 	ASSERT(nproc < v.v_proc);	/* otherwise how'd we get our pid? */
876 	cr = CRED();
877 	ruid = crgetruid(cr);
878 	zoneid = crgetzoneid(cr);
879 	if (nproc >= v.v_maxup && 	/* short-circuit; usually false */
880 	    (nproc >= v.v_maxupttl ||
881 	    upcount_get(ruid, zoneid) >= v.v_maxup) &&
882 	    secpolicy_newproc(cr) != 0) {
883 		mutex_exit(&pidlock);
884 		zcmn_err(zoneid, CE_NOTE,
885 		    "out of per-user processes for uid %d", ruid);
886 		goto bad;
887 	}
888 
889 	/*
890 	 * Everything is cool, put the new proc on the active process list.
891 	 * It is already on the pid list and in /proc.
892 	 * Increment the per uid process count (upcount).
893 	 */
894 	nproc++;
895 	upcount_inc(ruid, zoneid);
896 
897 	cp->p_next = practive;
898 	practive->p_prev = cp;
899 	practive = cp;
900 
901 	cp->p_ignore = pp->p_ignore;
902 	cp->p_siginfo = pp->p_siginfo;
903 	cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD);
904 	cp->p_sessp = pp->p_sessp;
905 	SESS_HOLD(pp->p_sessp);
906 	cp->p_exec = pp->p_exec;
907 	cp->p_execdir = pp->p_execdir;
908 	cp->p_zone = pp->p_zone;
909 
910 	cp->p_bssbase = pp->p_bssbase;
911 	cp->p_brkbase = pp->p_brkbase;
912 	cp->p_brksize = pp->p_brksize;
913 	cp->p_brkpageszc = pp->p_brkpageszc;
914 	cp->p_stksize = pp->p_stksize;
915 	cp->p_stkpageszc = pp->p_stkpageszc;
916 	cp->p_stkprot = pp->p_stkprot;
917 	cp->p_datprot = pp->p_datprot;
918 	cp->p_usrstack = pp->p_usrstack;
919 	cp->p_model = pp->p_model;
920 	cp->p_ppid = pp->p_pid;
921 	cp->p_ancpid = pp->p_pid;
922 	cp->p_portcnt = pp->p_portcnt;
923 
924 	/*
925 	 * Initialize watchpoint structures
926 	 */
927 	avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area),
928 	    offsetof(struct watched_area, wa_link));
929 
930 	/*
931 	 * Initialize immediate resource control values.
932 	 */
933 	cp->p_stk_ctl = pp->p_stk_ctl;
934 	cp->p_fsz_ctl = pp->p_fsz_ctl;
935 	cp->p_vmem_ctl = pp->p_vmem_ctl;
936 	cp->p_fno_ctl = pp->p_fno_ctl;
937 
938 	/*
939 	 * Link up to parent-child-sibling chain.  No need to lock
940 	 * in general since only a call to freeproc() (done by the
941 	 * same parent as newproc()) diddles with the child chain.
942 	 */
943 	cp->p_sibling = pp->p_child;
944 	if (pp->p_child)
945 		pp->p_child->p_psibling = cp;
946 
947 	cp->p_parent = pp;
948 	pp->p_child = cp;
949 
950 	cp->p_child_ns = NULL;
951 	cp->p_sibling_ns = NULL;
952 
953 	cp->p_nextorph = pp->p_orphan;
954 	cp->p_nextofkin = pp;
955 	pp->p_orphan = cp;
956 
957 	/*
958 	 * Inherit profiling state; do not inherit REALPROF profiling state.
959 	 */
960 	cp->p_prof = pp->p_prof;
961 	cp->p_rprof_cyclic = CYCLIC_NONE;
962 
963 	/*
964 	 * Inherit pool pointer from the parent.  Kernel processes are
965 	 * always bound to the default pool.
966 	 */
967 	mutex_enter(&pp->p_lock);
968 	if (kernel) {
969 		cp->p_pool = pool_default;
970 		cp->p_flag |= SSYS;
971 	} else {
972 		cp->p_pool = pp->p_pool;
973 	}
974 	atomic_add_32(&cp->p_pool->pool_ref, 1);
975 	mutex_exit(&pp->p_lock);
976 
977 	/*
978 	 * Add the child process to the current task.  Kernel processes
979 	 * are always attached to task0.
980 	 */
981 	mutex_enter(&cp->p_lock);
982 	if (kernel)
983 		task_attach(task0p, cp);
984 	else
985 		task_attach(pp->p_task, cp);
986 	mutex_exit(&cp->p_lock);
987 	mutex_exit(&pidlock);
988 
989 	avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t),
990 	    offsetof(contract_t, ct_ctlist));
991 
992 	/*
993 	 * Duplicate any audit information kept in the process table
994 	 */
995 #ifdef C2_AUDIT
996 	if (audit_active)	/* copy audit data to cp */
997 		audit_newproc(cp);
998 #endif
999 
1000 	crhold(cp->p_cred = cr);
1001 
1002 	/*
1003 	 * Bump up the counts on the file structures pointed at by the
1004 	 * parent's file table since the child will point at them too.
1005 	 */
1006 	fcnt_add(P_FINFO(pp), 1);
1007 
1008 	VN_HOLD(u.u_cdir);
1009 	if (u.u_rdir)
1010 		VN_HOLD(u.u_rdir);
1011 	if (u.u_cwd)
1012 		refstr_hold(u.u_cwd);
1013 
1014 	/*
1015 	 * copy the parent's uarea.
1016 	 */
1017 	uarea = PTOU(cp);
1018 	bcopy(PTOU(pp), uarea, sizeof (user_t));
1019 	flist_fork(P_FINFO(pp), P_FINFO(cp));
1020 
1021 	gethrestime(&uarea->u_start);
1022 	uarea->u_ticks = lbolt;
1023 	uarea->u_mem = rm_asrss(pp->p_as);
1024 	uarea->u_acflag = AFORK;
1025 
1026 	/*
1027 	 * If inherit-on-fork, copy /proc tracing flags to child.
1028 	 */
1029 	if ((pp->p_proc_flag & P_PR_FORK) != 0) {
1030 		cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK);
1031 		cp->p_sigmask = pp->p_sigmask;
1032 		cp->p_fltmask = pp->p_fltmask;
1033 	} else {
1034 		sigemptyset(&cp->p_sigmask);
1035 		premptyset(&cp->p_fltmask);
1036 		uarea->u_systrap = 0;
1037 		premptyset(&uarea->u_entrymask);
1038 		premptyset(&uarea->u_exitmask);
1039 	}
1040 	/*
1041 	 * If microstate accounting is being inherited, mark child
1042 	 */
1043 	if ((pp->p_flag & SMSFORK) != 0)
1044 		cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT);
1045 
1046 	/*
1047 	 * Inherit fixalignment flag from the parent
1048 	 */
1049 	cp->p_fixalignment = pp->p_fixalignment;
1050 
1051 	if (cp->p_exec)
1052 		VN_HOLD(cp->p_exec);
1053 	if (cp->p_execdir)
1054 		VN_HOLD(cp->p_execdir);
1055 	*cpp = cp;
1056 	return (0);
1057 
1058 bad:
1059 	ASSERT(MUTEX_NOT_HELD(&pidlock));
1060 
1061 	mutex_destroy(&cp->p_crlock);
1062 	mutex_destroy(&cp->p_pflock);
1063 #if defined(__x86)
1064 	mutex_destroy(&cp->p_ldtlock);
1065 #endif
1066 	if (newpid != -1) {
1067 		proc_entry_free(cp->p_pidp);
1068 		(void) pid_rele(cp->p_pidp);
1069 	}
1070 	kmem_cache_free(process_cache, cp);
1071 
1072 	/*
1073 	 * We most likely got into this situation because some process is
1074 	 * forking out of control.  As punishment, put it to sleep for a
1075 	 * bit so it can't eat the machine alive.  Sleep interval is chosen
1076 	 * to allow no more than one fork failure per cpu per clock tick
1077 	 * on average (yes, I just made this up).  This has two desirable
1078 	 * properties: (1) it sets a constant limit on the fork failure
1079 	 * rate, and (2) the busier the system is, the harsher the penalty
1080 	 * for abusing it becomes.
1081 	 */
1082 	INCR_COUNT(&fork_fail_pending, &pidlock);
1083 	delay(fork_fail_pending / ncpus + 1);
1084 	DECR_COUNT(&fork_fail_pending, &pidlock);
1085 
1086 	return (-1); /* out of memory or proc slots */
1087 }
1088 
1089 /*
1090  * Release virtual memory.
1091  * In the case of vfork(), the child was given exclusive access to its
1092  * parent's address space.  The parent is waiting in vfwait() for the
1093  * child to release its exclusive claim via relvm().
1094  */
1095 void
1096 relvm()
1097 {
1098 	proc_t *p = curproc;
1099 
1100 	ASSERT((unsigned)p->p_lwpcnt <= 1);
1101 
1102 	prrelvm();	/* inform /proc */
1103 
1104 	if (p->p_flag & SVFORK) {
1105 		proc_t *pp = p->p_parent;
1106 		/*
1107 		 * The child process is either exec'ing or exit'ing.
1108 		 * The child is now separated from the parent's address
1109 		 * space.  The parent process is made dispatchable.
1110 		 *
1111 		 * This is a delicate locking maneuver, involving
1112 		 * both the parent's p_lock and the child's p_lock.
1113 		 * As soon as the SVFORK flag is turned off, the
1114 		 * parent is free to run, but it must not run until
1115 		 * we wake it up using its p_cv because it might
1116 		 * exit and we would be referencing invalid memory.
1117 		 * Therefore, we hold the parent with its p_lock
1118 		 * while protecting our p_flags with our own p_lock.
1119 		 */
1120 try_again:
1121 		mutex_enter(&p->p_lock);	/* grab child's lock first */
1122 		prbarrier(p);		/* make sure /proc is blocked out */
1123 		mutex_enter(&pp->p_lock);
1124 
1125 		/*
1126 		 * Check if parent is locked by /proc.
1127 		 */
1128 		if (pp->p_proc_flag & P_PR_LOCK) {
1129 			/*
1130 			 * Delay until /proc is done with the parent.
1131 			 * We must drop our (the child's) p->p_lock, wait
1132 			 * via prbarrier() on the parent, then start over.
1133 			 */
1134 			mutex_exit(&p->p_lock);
1135 			prbarrier(pp);
1136 			mutex_exit(&pp->p_lock);
1137 			goto try_again;
1138 		}
1139 		p->p_flag &= ~SVFORK;
1140 		kpreempt_disable();
1141 		p->p_as = &kas;
1142 
1143 		/*
1144 		 * notify hat of change in thread's address space
1145 		 */
1146 		hat_thread_exit(curthread);
1147 		kpreempt_enable();
1148 
1149 		/*
1150 		 * child sizes are copied back to parent because
1151 		 * child may have grown.
1152 		 */
1153 		pp->p_brkbase = p->p_brkbase;
1154 		pp->p_brksize = p->p_brksize;
1155 		pp->p_stksize = p->p_stksize;
1156 		/*
1157 		 * The parent is no longer waiting for the vfork()d child.
1158 		 * Restore the parent's watched pages, if any.  This is
1159 		 * safe because we know the parent is not locked by /proc
1160 		 */
1161 		pp->p_flag &= ~SVFWAIT;
1162 		if (avl_numnodes(&pp->p_wpage) != 0) {
1163 			pp->p_as->a_wpage = pp->p_wpage;
1164 			avl_create(&pp->p_wpage, wp_compare,
1165 			    sizeof (struct watched_page),
1166 			    offsetof(struct watched_page, wp_link));
1167 		}
1168 		cv_signal(&pp->p_cv);
1169 		mutex_exit(&pp->p_lock);
1170 		mutex_exit(&p->p_lock);
1171 	} else {
1172 		if (p->p_as != &kas) {
1173 			struct as *as;
1174 
1175 			if (p->p_segacct)
1176 				shmexit(p);
1177 			/*
1178 			 * We grab p_lock for the benefit of /proc
1179 			 */
1180 			kpreempt_disable();
1181 			mutex_enter(&p->p_lock);
1182 			prbarrier(p);	/* make sure /proc is blocked out */
1183 			as = p->p_as;
1184 			p->p_as = &kas;
1185 			mutex_exit(&p->p_lock);
1186 
1187 			/*
1188 			 * notify hat of change in thread's address space
1189 			 */
1190 			hat_thread_exit(curthread);
1191 			kpreempt_enable();
1192 
1193 			as_free(as);
1194 		}
1195 	}
1196 }
1197 
1198 /*
1199  * Wait for child to exec or exit.
1200  * Called by parent of vfork'ed process.
1201  * See important comments in relvm(), above.
1202  */
1203 void
1204 vfwait(pid_t pid)
1205 {
1206 	int signalled = 0;
1207 	proc_t *pp = ttoproc(curthread);
1208 	proc_t *cp;
1209 
1210 	/*
1211 	 * Wait for child to exec or exit.
1212 	 */
1213 	for (;;) {
1214 		mutex_enter(&pidlock);
1215 		cp = prfind(pid);
1216 		if (cp == NULL || cp->p_parent != pp) {
1217 			/*
1218 			 * Child has exit()ed.
1219 			 */
1220 			mutex_exit(&pidlock);
1221 			break;
1222 		}
1223 		/*
1224 		 * Grab the child's p_lock before releasing pidlock.
1225 		 * Otherwise, the child could exit and we would be
1226 		 * referencing invalid memory.
1227 		 */
1228 		mutex_enter(&cp->p_lock);
1229 		mutex_exit(&pidlock);
1230 		if (!(cp->p_flag & SVFORK)) {
1231 			/*
1232 			 * Child has exec()ed or is exit()ing.
1233 			 */
1234 			mutex_exit(&cp->p_lock);
1235 			break;
1236 		}
1237 		mutex_enter(&pp->p_lock);
1238 		mutex_exit(&cp->p_lock);
1239 		/*
1240 		 * We might be waked up spuriously from the cv_wait().
1241 		 * We have to do the whole operation over again to be
1242 		 * sure the child's SVFORK flag really is turned off.
1243 		 * We cannot make reference to the child because it can
1244 		 * exit before we return and we would be referencing
1245 		 * invalid memory.
1246 		 *
1247 		 * Because this is potentially a very long-term wait,
1248 		 * we call cv_wait_sig() (for its jobcontrol and /proc
1249 		 * side-effects) unless there is a current signal, in
1250 		 * which case we use cv_wait() because we cannot return
1251 		 * from this function until the child has released the
1252 		 * address space.  Calling cv_wait_sig() with a current
1253 		 * signal would lead to an indefinite loop here because
1254 		 * cv_wait_sig() returns immediately in this case.
1255 		 */
1256 		if (signalled)
1257 			cv_wait(&pp->p_cv, &pp->p_lock);
1258 		else
1259 			signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock);
1260 		mutex_exit(&pp->p_lock);
1261 	}
1262 
1263 	/* restore watchpoints to parent */
1264 	if (pr_watch_active(pp)) {
1265 		struct as *as = pp->p_as;
1266 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1267 		as_setwatch(as);
1268 		AS_LOCK_EXIT(as, &as->a_lock);
1269 	}
1270 
1271 	mutex_enter(&pp->p_lock);
1272 	prbarrier(pp);	/* barrier against /proc locking */
1273 	continuelwps(pp);
1274 	mutex_exit(&pp->p_lock);
1275 }
1276