xref: /titanic_50/usr/src/uts/common/os/fm.c (revision 1022fd2a9aa2c967697116c2ca51a238a3c550ac)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Fault Management Architecture (FMA) Resource and Protocol Support
27  *
28  * The routines contained herein provide services to support kernel subsystems
29  * in publishing fault management telemetry (see PSARC 2002/412 and 2003/089).
30  *
31  * Name-Value Pair Lists
32  *
33  * The embodiment of an FMA protocol element (event, fmri or authority) is a
34  * name-value pair list (nvlist_t).  FMA-specific nvlist construtor and
35  * destructor functions, fm_nvlist_create() and fm_nvlist_destroy(), are used
36  * to create an nvpair list using custom allocators.  Callers may choose to
37  * allocate either from the kernel memory allocator, or from a preallocated
38  * buffer, useful in constrained contexts like high-level interrupt routines.
39  *
40  * Protocol Event and FMRI Construction
41  *
42  * Convenience routines are provided to construct nvlist events according to
43  * the FMA Event Protocol and Naming Schema specification for ereports and
44  * FMRIs for the dev, cpu, hc, mem, legacy hc and de schemes.
45  *
46  * ENA Manipulation
47  *
48  * Routines to generate ENA formats 0, 1 and 2 are available as well as
49  * routines to increment formats 1 and 2.  Individual fields within the
50  * ENA are extractable via fm_ena_time_get(), fm_ena_id_get(),
51  * fm_ena_format_get() and fm_ena_gen_get().
52  */
53 
54 #include <sys/types.h>
55 #include <sys/time.h>
56 #include <sys/sysevent.h>
57 #include <sys/sysevent_impl.h>
58 #include <sys/nvpair.h>
59 #include <sys/cmn_err.h>
60 #include <sys/cpuvar.h>
61 #include <sys/sysmacros.h>
62 #include <sys/systm.h>
63 #include <sys/ddifm.h>
64 #include <sys/ddifm_impl.h>
65 #include <sys/spl.h>
66 #include <sys/dumphdr.h>
67 #include <sys/compress.h>
68 #include <sys/cpuvar.h>
69 #include <sys/console.h>
70 #include <sys/panic.h>
71 #include <sys/kobj.h>
72 #include <sys/sunddi.h>
73 #include <sys/systeminfo.h>
74 #include <sys/sysevent/eventdefs.h>
75 #include <sys/fm/util.h>
76 #include <sys/fm/protocol.h>
77 
78 /*
79  * URL and SUNW-MSG-ID value to display for fm_panic(), defined below.  These
80  * values must be kept in sync with the FMA source code in usr/src/cmd/fm.
81  */
82 static const char *fm_url = "http://www.sun.com/msg";
83 static const char *fm_msgid = "SUNOS-8000-0G";
84 static char *volatile fm_panicstr = NULL;
85 
86 errorq_t *ereport_errorq;
87 void *ereport_dumpbuf;
88 size_t ereport_dumplen;
89 
90 static uint_t ereport_chanlen = ERPT_EVCH_MAX;
91 static evchan_t *ereport_chan = NULL;
92 static ulong_t ereport_qlen = 0;
93 static size_t ereport_size = 0;
94 static int ereport_cols = 80;
95 
96 extern void fastreboot_disable_highpil(void);
97 
98 /*
99  * Common fault management kstats to record ereport generation
100  * failures
101  */
102 
103 struct erpt_kstat {
104 	kstat_named_t	erpt_dropped;		/* num erpts dropped on post */
105 	kstat_named_t	erpt_set_failed;	/* num erpt set failures */
106 	kstat_named_t	fmri_set_failed;	/* num fmri set failures */
107 	kstat_named_t	payload_set_failed;	/* num payload set failures */
108 };
109 
110 static struct erpt_kstat erpt_kstat_data = {
111 	{ "erpt-dropped", KSTAT_DATA_UINT64 },
112 	{ "erpt-set-failed", KSTAT_DATA_UINT64 },
113 	{ "fmri-set-failed", KSTAT_DATA_UINT64 },
114 	{ "payload-set-failed", KSTAT_DATA_UINT64 }
115 };
116 
117 /*ARGSUSED*/
118 static void
119 fm_drain(void *private, void *data, errorq_elem_t *eep)
120 {
121 	nvlist_t *nvl = errorq_elem_nvl(ereport_errorq, eep);
122 
123 	if (!panicstr)
124 		(void) fm_ereport_post(nvl, EVCH_TRYHARD);
125 	else
126 		fm_nvprint(nvl);
127 }
128 
129 void
130 fm_init(void)
131 {
132 	kstat_t *ksp;
133 
134 	(void) sysevent_evc_bind(FM_ERROR_CHAN,
135 	    &ereport_chan, EVCH_CREAT | EVCH_HOLD_PEND);
136 
137 	(void) sysevent_evc_control(ereport_chan,
138 	    EVCH_SET_CHAN_LEN, &ereport_chanlen);
139 
140 	if (ereport_qlen == 0)
141 		ereport_qlen = ERPT_MAX_ERRS * MAX(max_ncpus, 4);
142 
143 	if (ereport_size == 0)
144 		ereport_size = ERPT_DATA_SZ;
145 
146 	ereport_errorq = errorq_nvcreate("fm_ereport_queue",
147 	    (errorq_func_t)fm_drain, NULL, ereport_qlen, ereport_size,
148 	    FM_ERR_PIL, ERRORQ_VITAL);
149 	if (ereport_errorq == NULL)
150 		panic("failed to create required ereport error queue");
151 
152 	ereport_dumpbuf = kmem_alloc(ereport_size, KM_SLEEP);
153 	ereport_dumplen = ereport_size;
154 
155 	/* Initialize ereport allocation and generation kstats */
156 	ksp = kstat_create("unix", 0, "fm", "misc", KSTAT_TYPE_NAMED,
157 	    sizeof (struct erpt_kstat) / sizeof (kstat_named_t),
158 	    KSTAT_FLAG_VIRTUAL);
159 
160 	if (ksp != NULL) {
161 		ksp->ks_data = &erpt_kstat_data;
162 		kstat_install(ksp);
163 	} else {
164 		cmn_err(CE_NOTE, "failed to create fm/misc kstat\n");
165 
166 	}
167 }
168 
169 /*
170  * Formatting utility function for fm_nvprintr.  We attempt to wrap chunks of
171  * output so they aren't split across console lines, and return the end column.
172  */
173 /*PRINTFLIKE4*/
174 static int
175 fm_printf(int depth, int c, int cols, const char *format, ...)
176 {
177 	va_list ap;
178 	int width;
179 	char c1;
180 
181 	va_start(ap, format);
182 	width = vsnprintf(&c1, sizeof (c1), format, ap);
183 	va_end(ap);
184 
185 	if (c + width >= cols) {
186 		console_printf("\n\r");
187 		c = 0;
188 		if (format[0] != ' ' && depth > 0) {
189 			console_printf(" ");
190 			c++;
191 		}
192 	}
193 
194 	va_start(ap, format);
195 	console_vprintf(format, ap);
196 	va_end(ap);
197 
198 	return ((c + width) % cols);
199 }
200 
201 /*
202  * Recursively print a nvlist in the specified column width and return the
203  * column we end up in.  This function is called recursively by fm_nvprint(),
204  * below.  We generically format the entire nvpair using hexadecimal
205  * integers and strings, and elide any integer arrays.  Arrays are basically
206  * used for cache dumps right now, so we suppress them so as not to overwhelm
207  * the amount of console output we produce at panic time.  This can be further
208  * enhanced as FMA technology grows based upon the needs of consumers.  All
209  * FMA telemetry is logged using the dump device transport, so the console
210  * output serves only as a fallback in case this procedure is unsuccessful.
211  */
212 static int
213 fm_nvprintr(nvlist_t *nvl, int d, int c, int cols)
214 {
215 	nvpair_t *nvp;
216 
217 	for (nvp = nvlist_next_nvpair(nvl, NULL);
218 	    nvp != NULL; nvp = nvlist_next_nvpair(nvl, nvp)) {
219 
220 		data_type_t type = nvpair_type(nvp);
221 		const char *name = nvpair_name(nvp);
222 
223 		boolean_t b;
224 		uint8_t i8;
225 		uint16_t i16;
226 		uint32_t i32;
227 		uint64_t i64;
228 		char *str;
229 		nvlist_t *cnv;
230 
231 		if (strcmp(name, FM_CLASS) == 0)
232 			continue; /* already printed by caller */
233 
234 		c = fm_printf(d, c, cols, " %s=", name);
235 
236 		switch (type) {
237 		case DATA_TYPE_BOOLEAN:
238 			c = fm_printf(d + 1, c, cols, " 1");
239 			break;
240 
241 		case DATA_TYPE_BOOLEAN_VALUE:
242 			(void) nvpair_value_boolean_value(nvp, &b);
243 			c = fm_printf(d + 1, c, cols, b ? "1" : "0");
244 			break;
245 
246 		case DATA_TYPE_BYTE:
247 			(void) nvpair_value_byte(nvp, &i8);
248 			c = fm_printf(d + 1, c, cols, "%x", i8);
249 			break;
250 
251 		case DATA_TYPE_INT8:
252 			(void) nvpair_value_int8(nvp, (void *)&i8);
253 			c = fm_printf(d + 1, c, cols, "%x", i8);
254 			break;
255 
256 		case DATA_TYPE_UINT8:
257 			(void) nvpair_value_uint8(nvp, &i8);
258 			c = fm_printf(d + 1, c, cols, "%x", i8);
259 			break;
260 
261 		case DATA_TYPE_INT16:
262 			(void) nvpair_value_int16(nvp, (void *)&i16);
263 			c = fm_printf(d + 1, c, cols, "%x", i16);
264 			break;
265 
266 		case DATA_TYPE_UINT16:
267 			(void) nvpair_value_uint16(nvp, &i16);
268 			c = fm_printf(d + 1, c, cols, "%x", i16);
269 			break;
270 
271 		case DATA_TYPE_INT32:
272 			(void) nvpair_value_int32(nvp, (void *)&i32);
273 			c = fm_printf(d + 1, c, cols, "%x", i32);
274 			break;
275 
276 		case DATA_TYPE_UINT32:
277 			(void) nvpair_value_uint32(nvp, &i32);
278 			c = fm_printf(d + 1, c, cols, "%x", i32);
279 			break;
280 
281 		case DATA_TYPE_INT64:
282 			(void) nvpair_value_int64(nvp, (void *)&i64);
283 			c = fm_printf(d + 1, c, cols, "%llx",
284 			    (u_longlong_t)i64);
285 			break;
286 
287 		case DATA_TYPE_UINT64:
288 			(void) nvpair_value_uint64(nvp, &i64);
289 			c = fm_printf(d + 1, c, cols, "%llx",
290 			    (u_longlong_t)i64);
291 			break;
292 
293 		case DATA_TYPE_HRTIME:
294 			(void) nvpair_value_hrtime(nvp, (void *)&i64);
295 			c = fm_printf(d + 1, c, cols, "%llx",
296 			    (u_longlong_t)i64);
297 			break;
298 
299 		case DATA_TYPE_STRING:
300 			(void) nvpair_value_string(nvp, &str);
301 			c = fm_printf(d + 1, c, cols, "\"%s\"",
302 			    str ? str : "<NULL>");
303 			break;
304 
305 		case DATA_TYPE_NVLIST:
306 			c = fm_printf(d + 1, c, cols, "[");
307 			(void) nvpair_value_nvlist(nvp, &cnv);
308 			c = fm_nvprintr(cnv, d + 1, c, cols);
309 			c = fm_printf(d + 1, c, cols, " ]");
310 			break;
311 
312 		case DATA_TYPE_NVLIST_ARRAY: {
313 			nvlist_t **val;
314 			uint_t i, nelem;
315 
316 			c = fm_printf(d + 1, c, cols, "[");
317 			(void) nvpair_value_nvlist_array(nvp, &val, &nelem);
318 			for (i = 0; i < nelem; i++) {
319 				c = fm_nvprintr(val[i], d + 1, c, cols);
320 			}
321 			c = fm_printf(d + 1, c, cols, " ]");
322 			}
323 			break;
324 
325 		case DATA_TYPE_BOOLEAN_ARRAY:
326 		case DATA_TYPE_BYTE_ARRAY:
327 		case DATA_TYPE_INT8_ARRAY:
328 		case DATA_TYPE_UINT8_ARRAY:
329 		case DATA_TYPE_INT16_ARRAY:
330 		case DATA_TYPE_UINT16_ARRAY:
331 		case DATA_TYPE_INT32_ARRAY:
332 		case DATA_TYPE_UINT32_ARRAY:
333 		case DATA_TYPE_INT64_ARRAY:
334 		case DATA_TYPE_UINT64_ARRAY:
335 		case DATA_TYPE_STRING_ARRAY:
336 			c = fm_printf(d + 1, c, cols, "[...]");
337 			break;
338 		case DATA_TYPE_UNKNOWN:
339 			c = fm_printf(d + 1, c, cols, "<unknown>");
340 			break;
341 		}
342 	}
343 
344 	return (c);
345 }
346 
347 void
348 fm_nvprint(nvlist_t *nvl)
349 {
350 	char *class;
351 	int c = 0;
352 
353 	console_printf("\r");
354 
355 	if (nvlist_lookup_string(nvl, FM_CLASS, &class) == 0)
356 		c = fm_printf(0, c, ereport_cols, "%s", class);
357 
358 	if (fm_nvprintr(nvl, 0, c, ereport_cols) != 0)
359 		console_printf("\n");
360 
361 	console_printf("\n");
362 }
363 
364 /*
365  * Wrapper for panic() that first produces an FMA-style message for admins.
366  * Normally such messages are generated by fmd(1M)'s syslog-msgs agent: this
367  * is the one exception to that rule and the only error that gets messaged.
368  * This function is intended for use by subsystems that have detected a fatal
369  * error and enqueued appropriate ereports and wish to then force a panic.
370  */
371 /*PRINTFLIKE1*/
372 void
373 fm_panic(const char *format, ...)
374 {
375 	va_list ap;
376 
377 	(void) casptr((void *)&fm_panicstr, NULL, (void *)format);
378 #if defined(__i386) || defined(__amd64)
379 	fastreboot_disable_highpil();
380 #endif /* __i386 || __amd64 */
381 	va_start(ap, format);
382 	vpanic(format, ap);
383 	va_end(ap);
384 }
385 
386 /*
387  * Print any appropriate FMA banner message before the panic message.  This
388  * function is called by panicsys() and prints the message for fm_panic().
389  * We print the message here so that it comes after the system is quiesced.
390  * A one-line summary is recorded in the log only (cmn_err(9F) with "!" prefix).
391  * The rest of the message is for the console only and not needed in the log,
392  * so it is printed using console_printf().  We break it up into multiple
393  * chunks so as to avoid overflowing any small legacy prom_printf() buffers.
394  */
395 void
396 fm_banner(void)
397 {
398 	timespec_t tod;
399 	hrtime_t now;
400 
401 	if (!fm_panicstr)
402 		return; /* panic was not initiated by fm_panic(); do nothing */
403 
404 	if (panicstr) {
405 		tod = panic_hrestime;
406 		now = panic_hrtime;
407 	} else {
408 		gethrestime(&tod);
409 		now = gethrtime_waitfree();
410 	}
411 
412 	cmn_err(CE_NOTE, "!SUNW-MSG-ID: %s, "
413 	    "TYPE: Error, VER: 1, SEVERITY: Major\n", fm_msgid);
414 
415 	console_printf(
416 "\n\rSUNW-MSG-ID: %s, TYPE: Error, VER: 1, SEVERITY: Major\n"
417 "EVENT-TIME: 0x%lx.0x%lx (0x%llx)\n",
418 	    fm_msgid, tod.tv_sec, tod.tv_nsec, (u_longlong_t)now);
419 
420 	console_printf(
421 "PLATFORM: %s, CSN: -, HOSTNAME: %s\n"
422 "SOURCE: %s, REV: %s %s\n",
423 	    platform, utsname.nodename, utsname.sysname,
424 	    utsname.release, utsname.version);
425 
426 	console_printf(
427 "DESC: Errors have been detected that require a reboot to ensure system\n"
428 "integrity.  See %s/%s for more information.\n",
429 	    fm_url, fm_msgid);
430 
431 	console_printf(
432 "AUTO-RESPONSE: Solaris will attempt to save and diagnose the error telemetry\n"
433 "IMPACT: The system will sync files, save a crash dump if needed, and reboot\n"
434 "REC-ACTION: Save the error summary below in case telemetry cannot be saved\n");
435 
436 	console_printf("\n");
437 }
438 
439 /*
440  * Utility function to write all of the pending ereports to the dump device.
441  * This function is called at either normal reboot or panic time, and simply
442  * iterates over the in-transit messages in the ereport sysevent channel.
443  */
444 void
445 fm_ereport_dump(void)
446 {
447 	evchanq_t *chq;
448 	sysevent_t *sep;
449 	erpt_dump_t ed;
450 
451 	timespec_t tod;
452 	hrtime_t now;
453 	char *buf;
454 	size_t len;
455 
456 	if (panicstr) {
457 		tod = panic_hrestime;
458 		now = panic_hrtime;
459 	} else {
460 		if (ereport_errorq != NULL)
461 			errorq_drain(ereport_errorq);
462 		gethrestime(&tod);
463 		now = gethrtime_waitfree();
464 	}
465 
466 	/*
467 	 * In the panic case, sysevent_evc_walk_init() will return NULL.
468 	 */
469 	if ((chq = sysevent_evc_walk_init(ereport_chan, NULL)) == NULL &&
470 	    !panicstr)
471 		return; /* event channel isn't initialized yet */
472 
473 	while ((sep = sysevent_evc_walk_step(chq)) != NULL) {
474 		if ((buf = sysevent_evc_event_attr(sep, &len)) == NULL)
475 			break;
476 
477 		ed.ed_magic = ERPT_MAGIC;
478 		ed.ed_chksum = checksum32(buf, len);
479 		ed.ed_size = (uint32_t)len;
480 		ed.ed_pad = 0;
481 		ed.ed_hrt_nsec = SE_TIME(sep);
482 		ed.ed_hrt_base = now;
483 		ed.ed_tod_base.sec = tod.tv_sec;
484 		ed.ed_tod_base.nsec = tod.tv_nsec;
485 
486 		dumpvp_write(&ed, sizeof (ed));
487 		dumpvp_write(buf, len);
488 	}
489 
490 	sysevent_evc_walk_fini(chq);
491 }
492 
493 /*
494  * Post an error report (ereport) to the sysevent error channel.  The error
495  * channel must be established with a prior call to sysevent_evc_create()
496  * before publication may occur.
497  */
498 void
499 fm_ereport_post(nvlist_t *ereport, int evc_flag)
500 {
501 	size_t nvl_size = 0;
502 	evchan_t *error_chan;
503 
504 	(void) nvlist_size(ereport, &nvl_size, NV_ENCODE_NATIVE);
505 	if (nvl_size > ERPT_DATA_SZ || nvl_size == 0) {
506 		atomic_add_64(&erpt_kstat_data.erpt_dropped.value.ui64, 1);
507 		return;
508 	}
509 
510 	if (sysevent_evc_bind(FM_ERROR_CHAN, &error_chan,
511 	    EVCH_CREAT|EVCH_HOLD_PEND) != 0) {
512 		atomic_add_64(&erpt_kstat_data.erpt_dropped.value.ui64, 1);
513 		return;
514 	}
515 
516 	if (sysevent_evc_publish(error_chan, EC_FM, ESC_FM_ERROR,
517 	    SUNW_VENDOR, FM_PUB, ereport, evc_flag) != 0) {
518 		atomic_add_64(&erpt_kstat_data.erpt_dropped.value.ui64, 1);
519 		(void) sysevent_evc_unbind(error_chan);
520 		return;
521 	}
522 	(void) sysevent_evc_unbind(error_chan);
523 }
524 
525 /*
526  * Wrapppers for FM nvlist allocators
527  */
528 /* ARGSUSED */
529 static void *
530 i_fm_alloc(nv_alloc_t *nva, size_t size)
531 {
532 	return (kmem_zalloc(size, KM_SLEEP));
533 }
534 
535 /* ARGSUSED */
536 static void
537 i_fm_free(nv_alloc_t *nva, void *buf, size_t size)
538 {
539 	kmem_free(buf, size);
540 }
541 
542 const nv_alloc_ops_t fm_mem_alloc_ops = {
543 	NULL,
544 	NULL,
545 	i_fm_alloc,
546 	i_fm_free,
547 	NULL
548 };
549 
550 /*
551  * Create and initialize a new nv_alloc_t for a fixed buffer, buf.  A pointer
552  * to the newly allocated nv_alloc_t structure is returned upon success or NULL
553  * is returned to indicate that the nv_alloc structure could not be created.
554  */
555 nv_alloc_t *
556 fm_nva_xcreate(char *buf, size_t bufsz)
557 {
558 	nv_alloc_t *nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP);
559 
560 	if (bufsz == 0 || nv_alloc_init(nvhdl, nv_fixed_ops, buf, bufsz) != 0) {
561 		kmem_free(nvhdl, sizeof (nv_alloc_t));
562 		return (NULL);
563 	}
564 
565 	return (nvhdl);
566 }
567 
568 /*
569  * Destroy a previously allocated nv_alloc structure.  The fixed buffer
570  * associated with nva must be freed by the caller.
571  */
572 void
573 fm_nva_xdestroy(nv_alloc_t *nva)
574 {
575 	nv_alloc_fini(nva);
576 	kmem_free(nva, sizeof (nv_alloc_t));
577 }
578 
579 /*
580  * Create a new nv list.  A pointer to a new nv list structure is returned
581  * upon success or NULL is returned to indicate that the structure could
582  * not be created.  The newly created nv list is created and managed by the
583  * operations installed in nva.   If nva is NULL, the default FMA nva
584  * operations are installed and used.
585  *
586  * When called from the kernel and nva == NULL, this function must be called
587  * from passive kernel context with no locks held that can prevent a
588  * sleeping memory allocation from occurring.  Otherwise, this function may
589  * be called from other kernel contexts as long a valid nva created via
590  * fm_nva_create() is supplied.
591  */
592 nvlist_t *
593 fm_nvlist_create(nv_alloc_t *nva)
594 {
595 	int hdl_alloced = 0;
596 	nvlist_t *nvl;
597 	nv_alloc_t *nvhdl;
598 
599 	if (nva == NULL) {
600 		nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP);
601 
602 		if (nv_alloc_init(nvhdl, &fm_mem_alloc_ops, NULL, 0) != 0) {
603 			kmem_free(nvhdl, sizeof (nv_alloc_t));
604 			return (NULL);
605 		}
606 		hdl_alloced = 1;
607 	} else {
608 		nvhdl = nva;
609 	}
610 
611 	if (nvlist_xalloc(&nvl, NV_UNIQUE_NAME, nvhdl) != 0) {
612 		if (hdl_alloced) {
613 			kmem_free(nvhdl, sizeof (nv_alloc_t));
614 			nv_alloc_fini(nvhdl);
615 		}
616 		return (NULL);
617 	}
618 
619 	return (nvl);
620 }
621 
622 /*
623  * Destroy a previously allocated nvlist structure.  flag indicates whether
624  * or not the associated nva structure should be freed (FM_NVA_FREE) or
625  * retained (FM_NVA_RETAIN).  Retaining the nv alloc structure allows
626  * it to be re-used for future nvlist creation operations.
627  */
628 void
629 fm_nvlist_destroy(nvlist_t *nvl, int flag)
630 {
631 	nv_alloc_t *nva = nvlist_lookup_nv_alloc(nvl);
632 
633 	nvlist_free(nvl);
634 
635 	if (nva != NULL) {
636 		if (flag == FM_NVA_FREE)
637 			fm_nva_xdestroy(nva);
638 	}
639 }
640 
641 int
642 i_fm_payload_set(nvlist_t *payload, const char *name, va_list ap)
643 {
644 	int nelem, ret = 0;
645 	data_type_t type;
646 
647 	while (ret == 0 && name != NULL) {
648 		type = va_arg(ap, data_type_t);
649 		switch (type) {
650 		case DATA_TYPE_BYTE:
651 			ret = nvlist_add_byte(payload, name,
652 			    va_arg(ap, uint_t));
653 			break;
654 		case DATA_TYPE_BYTE_ARRAY:
655 			nelem = va_arg(ap, int);
656 			ret = nvlist_add_byte_array(payload, name,
657 			    va_arg(ap, uchar_t *), nelem);
658 			break;
659 		case DATA_TYPE_BOOLEAN_VALUE:
660 			ret = nvlist_add_boolean_value(payload, name,
661 			    va_arg(ap, boolean_t));
662 			break;
663 		case DATA_TYPE_BOOLEAN_ARRAY:
664 			nelem = va_arg(ap, int);
665 			ret = nvlist_add_boolean_array(payload, name,
666 			    va_arg(ap, boolean_t *), nelem);
667 			break;
668 		case DATA_TYPE_INT8:
669 			ret = nvlist_add_int8(payload, name,
670 			    va_arg(ap, int));
671 			break;
672 		case DATA_TYPE_INT8_ARRAY:
673 			nelem = va_arg(ap, int);
674 			ret = nvlist_add_int8_array(payload, name,
675 			    va_arg(ap, int8_t *), nelem);
676 			break;
677 		case DATA_TYPE_UINT8:
678 			ret = nvlist_add_uint8(payload, name,
679 			    va_arg(ap, uint_t));
680 			break;
681 		case DATA_TYPE_UINT8_ARRAY:
682 			nelem = va_arg(ap, int);
683 			ret = nvlist_add_uint8_array(payload, name,
684 			    va_arg(ap, uint8_t *), nelem);
685 			break;
686 		case DATA_TYPE_INT16:
687 			ret = nvlist_add_int16(payload, name,
688 			    va_arg(ap, int));
689 			break;
690 		case DATA_TYPE_INT16_ARRAY:
691 			nelem = va_arg(ap, int);
692 			ret = nvlist_add_int16_array(payload, name,
693 			    va_arg(ap, int16_t *), nelem);
694 			break;
695 		case DATA_TYPE_UINT16:
696 			ret = nvlist_add_uint16(payload, name,
697 			    va_arg(ap, uint_t));
698 			break;
699 		case DATA_TYPE_UINT16_ARRAY:
700 			nelem = va_arg(ap, int);
701 			ret = nvlist_add_uint16_array(payload, name,
702 			    va_arg(ap, uint16_t *), nelem);
703 			break;
704 		case DATA_TYPE_INT32:
705 			ret = nvlist_add_int32(payload, name,
706 			    va_arg(ap, int32_t));
707 			break;
708 		case DATA_TYPE_INT32_ARRAY:
709 			nelem = va_arg(ap, int);
710 			ret = nvlist_add_int32_array(payload, name,
711 			    va_arg(ap, int32_t *), nelem);
712 			break;
713 		case DATA_TYPE_UINT32:
714 			ret = nvlist_add_uint32(payload, name,
715 			    va_arg(ap, uint32_t));
716 			break;
717 		case DATA_TYPE_UINT32_ARRAY:
718 			nelem = va_arg(ap, int);
719 			ret = nvlist_add_uint32_array(payload, name,
720 			    va_arg(ap, uint32_t *), nelem);
721 			break;
722 		case DATA_TYPE_INT64:
723 			ret = nvlist_add_int64(payload, name,
724 			    va_arg(ap, int64_t));
725 			break;
726 		case DATA_TYPE_INT64_ARRAY:
727 			nelem = va_arg(ap, int);
728 			ret = nvlist_add_int64_array(payload, name,
729 			    va_arg(ap, int64_t *), nelem);
730 			break;
731 		case DATA_TYPE_UINT64:
732 			ret = nvlist_add_uint64(payload, name,
733 			    va_arg(ap, uint64_t));
734 			break;
735 		case DATA_TYPE_UINT64_ARRAY:
736 			nelem = va_arg(ap, int);
737 			ret = nvlist_add_uint64_array(payload, name,
738 			    va_arg(ap, uint64_t *), nelem);
739 			break;
740 		case DATA_TYPE_STRING:
741 			ret = nvlist_add_string(payload, name,
742 			    va_arg(ap, char *));
743 			break;
744 		case DATA_TYPE_STRING_ARRAY:
745 			nelem = va_arg(ap, int);
746 			ret = nvlist_add_string_array(payload, name,
747 			    va_arg(ap, char **), nelem);
748 			break;
749 		case DATA_TYPE_NVLIST:
750 			ret = nvlist_add_nvlist(payload, name,
751 			    va_arg(ap, nvlist_t *));
752 			break;
753 		case DATA_TYPE_NVLIST_ARRAY:
754 			nelem = va_arg(ap, int);
755 			ret = nvlist_add_nvlist_array(payload, name,
756 			    va_arg(ap, nvlist_t **), nelem);
757 			break;
758 		default:
759 			ret = EINVAL;
760 		}
761 
762 		name = va_arg(ap, char *);
763 	}
764 	return (ret);
765 }
766 
767 void
768 fm_payload_set(nvlist_t *payload, ...)
769 {
770 	int ret;
771 	const char *name;
772 	va_list ap;
773 
774 	va_start(ap, payload);
775 	name = va_arg(ap, char *);
776 	ret = i_fm_payload_set(payload, name, ap);
777 	va_end(ap);
778 
779 	if (ret)
780 		atomic_add_64(
781 		    &erpt_kstat_data.payload_set_failed.value.ui64, 1);
782 }
783 
784 /*
785  * Set-up and validate the members of an ereport event according to:
786  *
787  *	Member name		Type		Value
788  *	====================================================
789  *	class			string		ereport
790  *	version			uint8_t		0
791  *	ena			uint64_t	<ena>
792  *	detector		nvlist_t	<detector>
793  *	ereport-payload		nvlist_t	<var args>
794  *
795  * We don't actually add a 'version' member to the payload.  Really,
796  * the version quoted to us by our caller is that of the category 1
797  * "ereport" event class (and we require FM_EREPORT_VERS0) but
798  * the payload version of the actual leaf class event under construction
799  * may be something else.  Callers should supply a version in the varargs,
800  * or (better) we could take two version arguments - one for the
801  * ereport category 1 classification (expect FM_EREPORT_VERS0) and one
802  * for the leaf class.
803  */
804 void
805 fm_ereport_set(nvlist_t *ereport, int version, const char *erpt_class,
806     uint64_t ena, const nvlist_t *detector, ...)
807 {
808 	char ereport_class[FM_MAX_CLASS];
809 	const char *name;
810 	va_list ap;
811 	int ret;
812 
813 	if (version != FM_EREPORT_VERS0) {
814 		atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1);
815 		return;
816 	}
817 
818 	(void) snprintf(ereport_class, FM_MAX_CLASS, "%s.%s",
819 	    FM_EREPORT_CLASS, erpt_class);
820 	if (nvlist_add_string(ereport, FM_CLASS, ereport_class) != 0) {
821 		atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1);
822 		return;
823 	}
824 
825 	if (nvlist_add_uint64(ereport, FM_EREPORT_ENA, ena)) {
826 		atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1);
827 	}
828 
829 	if (nvlist_add_nvlist(ereport, FM_EREPORT_DETECTOR,
830 	    (nvlist_t *)detector) != 0) {
831 		atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1);
832 	}
833 
834 	va_start(ap, detector);
835 	name = va_arg(ap, const char *);
836 	ret = i_fm_payload_set(ereport, name, ap);
837 	va_end(ap);
838 
839 	if (ret)
840 		atomic_add_64(&erpt_kstat_data.erpt_set_failed.value.ui64, 1);
841 }
842 
843 /*
844  * Set-up and validate the members of an hc fmri according to;
845  *
846  *	Member name		Type		Value
847  *	===================================================
848  *	version			uint8_t		0
849  *	auth			nvlist_t	<auth>
850  *	hc-name			string		<name>
851  *	hc-id			string		<id>
852  *
853  * Note that auth and hc-id are optional members.
854  */
855 
856 #define	HC_MAXPAIRS	20
857 #define	HC_MAXNAMELEN	50
858 
859 static int
860 fm_fmri_hc_set_common(nvlist_t *fmri, int version, const nvlist_t *auth)
861 {
862 	if (version != FM_HC_SCHEME_VERSION) {
863 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
864 		return (0);
865 	}
866 
867 	if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0 ||
868 	    nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_HC) != 0) {
869 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
870 		return (0);
871 	}
872 
873 	if (auth != NULL && nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY,
874 	    (nvlist_t *)auth) != 0) {
875 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
876 		return (0);
877 	}
878 
879 	return (1);
880 }
881 
882 void
883 fm_fmri_hc_set(nvlist_t *fmri, int version, const nvlist_t *auth,
884     nvlist_t *snvl, int npairs, ...)
885 {
886 	nv_alloc_t *nva = nvlist_lookup_nv_alloc(fmri);
887 	nvlist_t *pairs[HC_MAXPAIRS];
888 	va_list ap;
889 	int i;
890 
891 	if (!fm_fmri_hc_set_common(fmri, version, auth))
892 		return;
893 
894 	npairs = MIN(npairs, HC_MAXPAIRS);
895 
896 	va_start(ap, npairs);
897 	for (i = 0; i < npairs; i++) {
898 		const char *name = va_arg(ap, const char *);
899 		uint32_t id = va_arg(ap, uint32_t);
900 		char idstr[11];
901 
902 		(void) snprintf(idstr, sizeof (idstr), "%u", id);
903 
904 		pairs[i] = fm_nvlist_create(nva);
905 		if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, name) != 0 ||
906 		    nvlist_add_string(pairs[i], FM_FMRI_HC_ID, idstr) != 0) {
907 			atomic_add_64(
908 			    &erpt_kstat_data.fmri_set_failed.value.ui64, 1);
909 		}
910 	}
911 	va_end(ap);
912 
913 	if (nvlist_add_nvlist_array(fmri, FM_FMRI_HC_LIST, pairs, npairs) != 0)
914 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
915 
916 	for (i = 0; i < npairs; i++)
917 		fm_nvlist_destroy(pairs[i], FM_NVA_RETAIN);
918 
919 	if (snvl != NULL) {
920 		if (nvlist_add_nvlist(fmri, FM_FMRI_HC_SPECIFIC, snvl) != 0) {
921 			atomic_add_64(
922 			    &erpt_kstat_data.fmri_set_failed.value.ui64, 1);
923 		}
924 	}
925 }
926 
927 /*
928  * Set-up and validate the members of an dev fmri according to:
929  *
930  *	Member name		Type		Value
931  *	====================================================
932  *	version			uint8_t		0
933  *	auth			nvlist_t	<auth>
934  *	devpath			string		<devpath>
935  *	[devid]			string		<devid>
936  *	[target-port-l0id]	string		<target-port-lun0-id>
937  *
938  * Note that auth and devid are optional members.
939  */
940 void
941 fm_fmri_dev_set(nvlist_t *fmri_dev, int version, const nvlist_t *auth,
942     const char *devpath, const char *devid, const char *tpl0)
943 {
944 	int err = 0;
945 
946 	if (version != DEV_SCHEME_VERSION0) {
947 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
948 		return;
949 	}
950 
951 	err |= nvlist_add_uint8(fmri_dev, FM_VERSION, version);
952 	err |= nvlist_add_string(fmri_dev, FM_FMRI_SCHEME, FM_FMRI_SCHEME_DEV);
953 
954 	if (auth != NULL) {
955 		err |= nvlist_add_nvlist(fmri_dev, FM_FMRI_AUTHORITY,
956 		    (nvlist_t *)auth);
957 	}
958 
959 	err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_PATH, devpath);
960 
961 	if (devid != NULL)
962 		err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_ID, devid);
963 
964 	if (tpl0 != NULL)
965 		err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_TGTPTLUN0, tpl0);
966 
967 	if (err)
968 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
969 
970 }
971 
972 /*
973  * Set-up and validate the members of an cpu fmri according to:
974  *
975  *	Member name		Type		Value
976  *	====================================================
977  *	version			uint8_t		0
978  *	auth			nvlist_t	<auth>
979  *	cpuid			uint32_t	<cpu_id>
980  *	cpumask			uint8_t		<cpu_mask>
981  *	serial			uint64_t	<serial_id>
982  *
983  * Note that auth, cpumask, serial are optional members.
984  *
985  */
986 void
987 fm_fmri_cpu_set(nvlist_t *fmri_cpu, int version, const nvlist_t *auth,
988     uint32_t cpu_id, uint8_t *cpu_maskp, const char *serial_idp)
989 {
990 	uint64_t *failedp = &erpt_kstat_data.fmri_set_failed.value.ui64;
991 
992 	if (version < CPU_SCHEME_VERSION1) {
993 		atomic_add_64(failedp, 1);
994 		return;
995 	}
996 
997 	if (nvlist_add_uint8(fmri_cpu, FM_VERSION, version) != 0) {
998 		atomic_add_64(failedp, 1);
999 		return;
1000 	}
1001 
1002 	if (nvlist_add_string(fmri_cpu, FM_FMRI_SCHEME,
1003 	    FM_FMRI_SCHEME_CPU) != 0) {
1004 		atomic_add_64(failedp, 1);
1005 		return;
1006 	}
1007 
1008 	if (auth != NULL && nvlist_add_nvlist(fmri_cpu, FM_FMRI_AUTHORITY,
1009 	    (nvlist_t *)auth) != 0)
1010 		atomic_add_64(failedp, 1);
1011 
1012 	if (nvlist_add_uint32(fmri_cpu, FM_FMRI_CPU_ID, cpu_id) != 0)
1013 		atomic_add_64(failedp, 1);
1014 
1015 	if (cpu_maskp != NULL && nvlist_add_uint8(fmri_cpu, FM_FMRI_CPU_MASK,
1016 	    *cpu_maskp) != 0)
1017 		atomic_add_64(failedp, 1);
1018 
1019 	if (serial_idp == NULL || nvlist_add_string(fmri_cpu,
1020 	    FM_FMRI_CPU_SERIAL_ID, (char *)serial_idp) != 0)
1021 			atomic_add_64(failedp, 1);
1022 }
1023 
1024 /*
1025  * Set-up and validate the members of a mem according to:
1026  *
1027  *	Member name		Type		Value
1028  *	====================================================
1029  *	version			uint8_t		0
1030  *	auth			nvlist_t	<auth>		[optional]
1031  *	unum			string		<unum>
1032  *	serial			string		<serial>	[optional*]
1033  *	offset			uint64_t	<offset>	[optional]
1034  *
1035  *	* serial is required if offset is present
1036  */
1037 void
1038 fm_fmri_mem_set(nvlist_t *fmri, int version, const nvlist_t *auth,
1039     const char *unum, const char *serial, uint64_t offset)
1040 {
1041 	if (version != MEM_SCHEME_VERSION0) {
1042 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1043 		return;
1044 	}
1045 
1046 	if (!serial && (offset != (uint64_t)-1)) {
1047 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1048 		return;
1049 	}
1050 
1051 	if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) {
1052 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1053 		return;
1054 	}
1055 
1056 	if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_MEM) != 0) {
1057 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1058 		return;
1059 	}
1060 
1061 	if (auth != NULL) {
1062 		if (nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY,
1063 		    (nvlist_t *)auth) != 0) {
1064 			atomic_add_64(
1065 			    &erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1066 		}
1067 	}
1068 
1069 	if (nvlist_add_string(fmri, FM_FMRI_MEM_UNUM, unum) != 0) {
1070 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1071 	}
1072 
1073 	if (serial != NULL) {
1074 		if (nvlist_add_string_array(fmri, FM_FMRI_MEM_SERIAL_ID,
1075 		    (char **)&serial, 1) != 0) {
1076 			atomic_add_64(
1077 			    &erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1078 		}
1079 		if (offset != (uint64_t)-1) {
1080 			if (nvlist_add_uint64(fmri, FM_FMRI_MEM_OFFSET,
1081 			    offset) != 0) {
1082 				atomic_add_64(&erpt_kstat_data.
1083 				    fmri_set_failed.value.ui64, 1);
1084 			}
1085 		}
1086 	}
1087 }
1088 
1089 void
1090 fm_fmri_zfs_set(nvlist_t *fmri, int version, uint64_t pool_guid,
1091     uint64_t vdev_guid)
1092 {
1093 	if (version != ZFS_SCHEME_VERSION0) {
1094 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1095 		return;
1096 	}
1097 
1098 	if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) {
1099 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1100 		return;
1101 	}
1102 
1103 	if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS) != 0) {
1104 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1105 		return;
1106 	}
1107 
1108 	if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_POOL, pool_guid) != 0) {
1109 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1110 	}
1111 
1112 	if (vdev_guid != 0) {
1113 		if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_VDEV, vdev_guid) != 0) {
1114 			atomic_add_64(
1115 			    &erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1116 		}
1117 	}
1118 }
1119 
1120 uint64_t
1121 fm_ena_increment(uint64_t ena)
1122 {
1123 	uint64_t new_ena;
1124 
1125 	switch (ENA_FORMAT(ena)) {
1126 	case FM_ENA_FMT1:
1127 		new_ena = ena + (1 << ENA_FMT1_GEN_SHFT);
1128 		break;
1129 	case FM_ENA_FMT2:
1130 		new_ena = ena + (1 << ENA_FMT2_GEN_SHFT);
1131 		break;
1132 	default:
1133 		new_ena = 0;
1134 	}
1135 
1136 	return (new_ena);
1137 }
1138 
1139 uint64_t
1140 fm_ena_generate_cpu(uint64_t timestamp, processorid_t cpuid, uchar_t format)
1141 {
1142 	uint64_t ena = 0;
1143 
1144 	switch (format) {
1145 	case FM_ENA_FMT1:
1146 		if (timestamp) {
1147 			ena = (uint64_t)((format & ENA_FORMAT_MASK) |
1148 			    ((cpuid << ENA_FMT1_CPUID_SHFT) &
1149 			    ENA_FMT1_CPUID_MASK) |
1150 			    ((timestamp << ENA_FMT1_TIME_SHFT) &
1151 			    ENA_FMT1_TIME_MASK));
1152 		} else {
1153 			ena = (uint64_t)((format & ENA_FORMAT_MASK) |
1154 			    ((cpuid << ENA_FMT1_CPUID_SHFT) &
1155 			    ENA_FMT1_CPUID_MASK) |
1156 			    ((gethrtime_waitfree() << ENA_FMT1_TIME_SHFT) &
1157 			    ENA_FMT1_TIME_MASK));
1158 		}
1159 		break;
1160 	case FM_ENA_FMT2:
1161 		ena = (uint64_t)((format & ENA_FORMAT_MASK) |
1162 		    ((timestamp << ENA_FMT2_TIME_SHFT) & ENA_FMT2_TIME_MASK));
1163 		break;
1164 	default:
1165 		break;
1166 	}
1167 
1168 	return (ena);
1169 }
1170 
1171 uint64_t
1172 fm_ena_generate(uint64_t timestamp, uchar_t format)
1173 {
1174 	return (fm_ena_generate_cpu(timestamp, CPU->cpu_id, format));
1175 }
1176 
1177 uint64_t
1178 fm_ena_generation_get(uint64_t ena)
1179 {
1180 	uint64_t gen;
1181 
1182 	switch (ENA_FORMAT(ena)) {
1183 	case FM_ENA_FMT1:
1184 		gen = (ena & ENA_FMT1_GEN_MASK) >> ENA_FMT1_GEN_SHFT;
1185 		break;
1186 	case FM_ENA_FMT2:
1187 		gen = (ena & ENA_FMT2_GEN_MASK) >> ENA_FMT2_GEN_SHFT;
1188 		break;
1189 	default:
1190 		gen = 0;
1191 		break;
1192 	}
1193 
1194 	return (gen);
1195 }
1196 
1197 uchar_t
1198 fm_ena_format_get(uint64_t ena)
1199 {
1200 
1201 	return (ENA_FORMAT(ena));
1202 }
1203 
1204 uint64_t
1205 fm_ena_id_get(uint64_t ena)
1206 {
1207 	uint64_t id;
1208 
1209 	switch (ENA_FORMAT(ena)) {
1210 	case FM_ENA_FMT1:
1211 		id = (ena & ENA_FMT1_ID_MASK) >> ENA_FMT1_ID_SHFT;
1212 		break;
1213 	case FM_ENA_FMT2:
1214 		id = (ena & ENA_FMT2_ID_MASK) >> ENA_FMT2_ID_SHFT;
1215 		break;
1216 	default:
1217 		id = 0;
1218 	}
1219 
1220 	return (id);
1221 }
1222 
1223 uint64_t
1224 fm_ena_time_get(uint64_t ena)
1225 {
1226 	uint64_t time;
1227 
1228 	switch (ENA_FORMAT(ena)) {
1229 	case FM_ENA_FMT1:
1230 		time = (ena & ENA_FMT1_TIME_MASK) >> ENA_FMT1_TIME_SHFT;
1231 		break;
1232 	case FM_ENA_FMT2:
1233 		time = (ena & ENA_FMT2_TIME_MASK) >> ENA_FMT2_TIME_SHFT;
1234 		break;
1235 	default:
1236 		time = 0;
1237 	}
1238 
1239 	return (time);
1240 }
1241 
1242 /*
1243  * Convert a getpcstack() trace to symbolic name+offset, and add the resulting
1244  * string array to a Fault Management ereport as FM_EREPORT_PAYLOAD_NAME_STACK.
1245  */
1246 void
1247 fm_payload_stack_add(nvlist_t *payload, const pc_t *stack, int depth)
1248 {
1249 	int i;
1250 	char *sym;
1251 	ulong_t off;
1252 	char *stkpp[FM_STK_DEPTH];
1253 	char buf[FM_STK_DEPTH * FM_SYM_SZ];
1254 	char *stkp = buf;
1255 
1256 	for (i = 0; i < depth && i != FM_STK_DEPTH; i++, stkp += FM_SYM_SZ) {
1257 		if ((sym = kobj_getsymname(stack[i], &off)) != NULL)
1258 			(void) snprintf(stkp, FM_SYM_SZ, "%s+%lx", sym, off);
1259 		else
1260 			(void) snprintf(stkp, FM_SYM_SZ, "%lx", (long)stack[i]);
1261 		stkpp[i] = stkp;
1262 	}
1263 
1264 	fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_STACK,
1265 	    DATA_TYPE_STRING_ARRAY, depth, stkpp, NULL);
1266 }
1267 
1268 void
1269 print_msg_hwerr(ctid_t ct_id, proc_t *p)
1270 {
1271 	uprintf("Killed process %d (%s) in contract id %d "
1272 	    "due to hardware error\n", p->p_pid, p->p_user.u_comm, ct_id);
1273 }
1274 
1275 void
1276 fm_fmri_hc_create(nvlist_t *fmri, int version, const nvlist_t *auth,
1277     nvlist_t *snvl, nvlist_t *bboard, int npairs, ...)
1278 {
1279 	nv_alloc_t *nva = nvlist_lookup_nv_alloc(fmri);
1280 	nvlist_t *pairs[HC_MAXPAIRS];
1281 	nvlist_t **hcl;
1282 	uint_t n;
1283 	int i, j;
1284 	va_list ap;
1285 	char *hcname, *hcid;
1286 
1287 	if (!fm_fmri_hc_set_common(fmri, version, auth))
1288 		return;
1289 
1290 	/*
1291 	 * copy the bboard nvpairs to the pairs array
1292 	 */
1293 	if (nvlist_lookup_nvlist_array(bboard, FM_FMRI_HC_LIST, &hcl, &n)
1294 	    != 0) {
1295 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1296 		return;
1297 	}
1298 
1299 	for (i = 0; i < n; i++) {
1300 		if (nvlist_lookup_string(hcl[i], FM_FMRI_HC_NAME,
1301 		    &hcname) != 0) {
1302 			atomic_add_64(
1303 			    &erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1304 			return;
1305 		}
1306 		if (nvlist_lookup_string(hcl[i], FM_FMRI_HC_ID, &hcid) != 0) {
1307 			atomic_add_64(
1308 			    &erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1309 			return;
1310 		}
1311 
1312 		pairs[i] = fm_nvlist_create(nva);
1313 		if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, hcname) != 0 ||
1314 		    nvlist_add_string(pairs[i], FM_FMRI_HC_ID, hcid) != 0) {
1315 			for (j = 0; j <= i; j++) {
1316 				if (pairs[j] != NULL)
1317 					fm_nvlist_destroy(pairs[j],
1318 					    FM_NVA_RETAIN);
1319 			}
1320 			atomic_add_64(
1321 			    &erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1322 			return;
1323 		}
1324 	}
1325 
1326 	/*
1327 	 * create the pairs from passed in pairs
1328 	 */
1329 	npairs = MIN(npairs, HC_MAXPAIRS);
1330 
1331 	va_start(ap, npairs);
1332 	for (i = n; i < npairs + n; i++) {
1333 		const char *name = va_arg(ap, const char *);
1334 		uint32_t id = va_arg(ap, uint32_t);
1335 		char idstr[11];
1336 		(void) snprintf(idstr, sizeof (idstr), "%u", id);
1337 		pairs[i] = fm_nvlist_create(nva);
1338 		if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, name) != 0 ||
1339 		    nvlist_add_string(pairs[i], FM_FMRI_HC_ID, idstr) != 0) {
1340 			for (j = 0; j <= i; j++) {
1341 				if (pairs[j] != NULL)
1342 					fm_nvlist_destroy(pairs[j],
1343 					    FM_NVA_RETAIN);
1344 			}
1345 			atomic_add_64(
1346 			    &erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1347 			return;
1348 		}
1349 	}
1350 	va_end(ap);
1351 
1352 	/*
1353 	 * Create the fmri hc list
1354 	 */
1355 	if (nvlist_add_nvlist_array(fmri, FM_FMRI_HC_LIST, pairs,
1356 	    npairs + n) != 0) {
1357 		atomic_add_64(&erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1358 		return;
1359 	}
1360 
1361 	for (i = 0; i < npairs + n; i++) {
1362 			fm_nvlist_destroy(pairs[i], FM_NVA_RETAIN);
1363 	}
1364 
1365 	if (snvl != NULL) {
1366 		if (nvlist_add_nvlist(fmri, FM_FMRI_HC_SPECIFIC, snvl) != 0) {
1367 			atomic_add_64(
1368 			    &erpt_kstat_data.fmri_set_failed.value.ui64, 1);
1369 			return;
1370 		}
1371 	}
1372 }
1373