xref: /titanic_50/usr/src/uts/common/os/flock.c (revision 4b3b7fc6e1f62f5e2bee41aafc52e9234c484bc0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /*	All Rights Reserved */
29 
30 /*
31  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
32  * Copyright 2015 Joyent, Inc.
33  */
34 
35 #include <sys/flock_impl.h>
36 #include <sys/vfs.h>
37 #include <sys/t_lock.h>		/* for <sys/callb.h> */
38 #include <sys/callb.h>
39 #include <sys/clconf.h>
40 #include <sys/cladm.h>
41 #include <sys/nbmlock.h>
42 #include <sys/cred.h>
43 #include <sys/policy.h>
44 
45 /*
46  * The following four variables are for statistics purposes and they are
47  * not protected by locks. They may not be accurate but will at least be
48  * close to the actual value.
49  */
50 
51 int	flk_lock_allocs;
52 int	flk_lock_frees;
53 int 	edge_allocs;
54 int	edge_frees;
55 int 	flk_proc_vertex_allocs;
56 int 	flk_proc_edge_allocs;
57 int	flk_proc_vertex_frees;
58 int	flk_proc_edge_frees;
59 
60 static kmutex_t flock_lock;
61 
62 #ifdef DEBUG
63 int check_debug = 0;
64 #define	CHECK_ACTIVE_LOCKS(gp)	if (check_debug) \
65 					check_active_locks(gp);
66 #define	CHECK_SLEEPING_LOCKS(gp)	if (check_debug) \
67 						check_sleeping_locks(gp);
68 #define	CHECK_OWNER_LOCKS(gp, pid, sysid, vp) 	\
69 		if (check_debug)	\
70 			check_owner_locks(gp, pid, sysid, vp);
71 #define	CHECK_LOCK_TRANSITION(old_state, new_state) \
72 	{ \
73 		if (check_lock_transition(old_state, new_state)) { \
74 			cmn_err(CE_PANIC, "Illegal lock transition \
75 			    from %d to %d", old_state, new_state); \
76 		} \
77 	}
78 #else
79 
80 #define	CHECK_ACTIVE_LOCKS(gp)
81 #define	CHECK_SLEEPING_LOCKS(gp)
82 #define	CHECK_OWNER_LOCKS(gp, pid, sysid, vp)
83 #define	CHECK_LOCK_TRANSITION(old_state, new_state)
84 
85 #endif /* DEBUG */
86 
87 struct kmem_cache	*flk_edge_cache;
88 
89 graph_t		*lock_graph[HASH_SIZE];
90 proc_graph_t	pgraph;
91 
92 /*
93  * Clustering.
94  *
95  * NLM REGISTRY TYPE IMPLEMENTATION
96  *
97  * Assumptions:
98  *  1.  Nodes in a cluster are numbered starting at 1; always non-negative
99  *	integers; maximum node id is returned by clconf_maximum_nodeid().
100  *  2.  We use this node id to identify the node an NLM server runs on.
101  */
102 
103 /*
104  * NLM registry object keeps track of NLM servers via their
105  * nlmids (which are the node ids of the node in the cluster they run on)
106  * that have requested locks at this LLM with which this registry is
107  * associated.
108  *
109  * Representation of abstraction:
110  *    rep = record[	states: array[nlm_state],
111  *			lock: mutex]
112  *
113  *    Representation invariants:
114  *	1. index i of rep.states is between 0 and n - 1 where n is number
115  *	   of elements in the array, which happen to be the maximum number
116  *	   of nodes in the cluster configuration + 1.
117  *	2. map nlmid to index i of rep.states
118  *		0   -> 0
119  *		1   -> 1
120  *		2   -> 2
121  *		n-1 -> clconf_maximum_nodeid()+1
122  *	3.  This 1-1 mapping is quite convenient and it avoids errors resulting
123  *	    from forgetting to subtract 1 from the index.
124  *	4.  The reason we keep the 0th index is the following.  A legitimate
125  *	    cluster configuration includes making a UFS file system NFS
126  *	    exportable.  The code is structured so that if you're in a cluster
127  *	    you do one thing; otherwise, you do something else.  The problem
128  *	    is what to do if you think you're in a cluster with PXFS loaded,
129  *	    but you're using UFS not PXFS?  The upper two bytes of the sysid
130  *	    encode the node id of the node where NLM server runs; these bytes
131  *	    are zero for UFS.  Since the nodeid is used to index into the
132  *	    registry, we can record the NLM server state information at index
133  *	    0 using the same mechanism used for PXFS file locks!
134  */
135 static flk_nlm_status_t *nlm_reg_status = NULL;	/* state array 0..N-1 */
136 static kmutex_t nlm_reg_lock;			/* lock to protect arrary */
137 static uint_t nlm_status_size;			/* size of state array */
138 
139 /*
140  * Although we need a global lock dependency graph (and associated data
141  * structures), we also need a per-zone notion of whether the lock manager is
142  * running, and so whether to allow lock manager requests or not.
143  *
144  * Thus, on a per-zone basis we maintain a ``global'' variable
145  * (flk_lockmgr_status), protected by flock_lock, and set when the lock
146  * manager is determined to be changing state (starting or stopping).
147  *
148  * Each graph/zone pair also has a copy of this variable, which is protected by
149  * the graph's mutex.
150  *
151  * The per-graph copies are used to synchronize lock requests with shutdown
152  * requests.  The global copy is used to initialize the per-graph field when a
153  * new graph is created.
154  */
155 struct flock_globals {
156 	flk_lockmgr_status_t flk_lockmgr_status;
157 	flk_lockmgr_status_t lockmgr_status[HASH_SIZE];
158 };
159 
160 zone_key_t flock_zone_key;
161 
162 static void create_flock(lock_descriptor_t *, flock64_t *);
163 static lock_descriptor_t	*flk_get_lock(void);
164 static void	flk_free_lock(lock_descriptor_t	*lock);
165 static void	flk_get_first_blocking_lock(lock_descriptor_t *request);
166 static int flk_process_request(lock_descriptor_t *);
167 static int flk_add_edge(lock_descriptor_t *, lock_descriptor_t *, int, int);
168 static edge_t *flk_get_edge(void);
169 static int flk_wait_execute_request(lock_descriptor_t *);
170 static int flk_relation(lock_descriptor_t *, lock_descriptor_t *);
171 static void flk_insert_active_lock(lock_descriptor_t *);
172 static void flk_delete_active_lock(lock_descriptor_t *, int);
173 static void flk_insert_sleeping_lock(lock_descriptor_t *);
174 static void flk_graph_uncolor(graph_t *);
175 static void flk_wakeup(lock_descriptor_t *, int);
176 static void flk_free_edge(edge_t *);
177 static void flk_recompute_dependencies(lock_descriptor_t *,
178 			lock_descriptor_t **,  int, int);
179 static int flk_find_barriers(lock_descriptor_t *);
180 static void flk_update_barriers(lock_descriptor_t *);
181 static int flk_color_reachables(lock_descriptor_t *);
182 static int flk_canceled(lock_descriptor_t *);
183 static void flk_delete_locks_by_sysid(lock_descriptor_t *);
184 static void report_blocker(lock_descriptor_t *, lock_descriptor_t *);
185 static void wait_for_lock(lock_descriptor_t *);
186 static void unlock_lockmgr_granted(struct flock_globals *);
187 static void wakeup_sleeping_lockmgr_locks(struct flock_globals *);
188 
189 /* Clustering hooks */
190 static void cl_flk_change_nlm_state_all_locks(int, flk_nlm_status_t);
191 static void cl_flk_wakeup_sleeping_nlm_locks(int);
192 static void cl_flk_unlock_nlm_granted(int);
193 
194 #ifdef DEBUG
195 static int check_lock_transition(int, int);
196 static void check_sleeping_locks(graph_t *);
197 static void check_active_locks(graph_t *);
198 static int no_path(lock_descriptor_t *, lock_descriptor_t *);
199 static void path(lock_descriptor_t *, lock_descriptor_t *);
200 static void check_owner_locks(graph_t *, pid_t, int, vnode_t *);
201 static int level_one_path(lock_descriptor_t *, lock_descriptor_t *);
202 static int level_two_path(lock_descriptor_t *, lock_descriptor_t *, int);
203 #endif
204 
205 /*	proc_graph function definitions */
206 static int flk_check_deadlock(lock_descriptor_t *);
207 static void flk_proc_graph_uncolor(void);
208 static proc_vertex_t *flk_get_proc_vertex(lock_descriptor_t *);
209 static proc_edge_t *flk_get_proc_edge(void);
210 static void flk_proc_release(proc_vertex_t *);
211 static void flk_free_proc_edge(proc_edge_t *);
212 static void flk_update_proc_graph(edge_t *, int);
213 
214 /* Non-blocking mandatory locking */
215 static int lock_blocks_io(nbl_op_t, u_offset_t, ssize_t, int, u_offset_t,
216 			u_offset_t);
217 
218 static struct flock_globals *
219 flk_get_globals(void)
220 {
221 	/*
222 	 * The KLM module had better be loaded if we're attempting to handle
223 	 * lockmgr requests.
224 	 */
225 	ASSERT(flock_zone_key != ZONE_KEY_UNINITIALIZED);
226 	return (zone_getspecific(flock_zone_key, curproc->p_zone));
227 }
228 
229 static flk_lockmgr_status_t
230 flk_get_lockmgr_status(void)
231 {
232 	struct flock_globals *fg;
233 
234 	ASSERT(MUTEX_HELD(&flock_lock));
235 
236 	if (flock_zone_key == ZONE_KEY_UNINITIALIZED) {
237 		/*
238 		 * KLM module not loaded; lock manager definitely not running.
239 		 */
240 		return (FLK_LOCKMGR_DOWN);
241 	}
242 	fg = flk_get_globals();
243 	return (fg->flk_lockmgr_status);
244 }
245 
246 /*
247  * This implements Open File Description (not descriptor) style record locking.
248  * These locks can also be thought of as pid-less since they are not tied to a
249  * specific process, thus they're preserved across fork.
250  *
251  * Called directly from fcntl.
252  *
253  * See reclock() for the implementation of the traditional POSIX style record
254  * locking scheme (pid-ful). This function is derived from reclock() but
255  * simplified and modified to work for OFD style locking.
256  *
257  * The two primary advantages of OFD style of locking are:
258  * 1) It is per-file description, so closing a file descriptor that refers to a
259  *    different file description for the same file will not drop the lock (i.e.
260  *    two open's of the same file get different descriptions but a dup or fork
261  *    will refer to the same description).
262  * 2) Locks are preserved across fork(2).
263  *
264  * Because these locks are per-description a lock ptr lives at the f_filocks
265  * member of the file_t and the lock_descriptor includes a file_t pointer
266  * to enable unique lock identification and management.
267  *
268  * Since these locks are pid-less we cannot do deadlock detection with the
269  * current process-oriented implementation. This is consistent with OFD locking
270  * behavior on other operating systems such as Linux. Since we don't do
271  * deadlock detection we never interact with the process graph that is
272  * maintained for deadlock detection on the traditional POSIX-style locks.
273  *
274  * Future Work:
275  *
276  * The current implementation does not support record locks. That is,
277  * currently the single lock must cover the entire file. This is validated in
278  * fcntl. To support record locks the f_filock pointer in the file_t needs to
279  * be changed to a list of pointers to the locks. That list needs to be
280  * managed independently of the lock list on the vnode itself and it needs to
281  * be maintained as record locks are created, split, coalesced and deleted.
282  *
283  * The current implementation does not support remote file systems (e.g.
284  * NFS or CIFS). This is handled in fs_frlock(). The design of how OFD locks
285  * interact with the NLM is not clear since the NLM protocol/implementation
286  * appears to be oriented around locks associated with a process. A further
287  * problem is that a design is needed for what nlm_send_siglost() should do and
288  * where it will send SIGLOST. More recent versions of Linux apparently try to
289  * emulate OFD locks on NFS by converting them to traditional POSIX style locks
290  * that work with the NLM. It is not clear that this provides the correct
291  * semantics in all cases.
292  */
293 int
294 ofdlock(file_t *fp, int fcmd, flock64_t *lckdat, int flag, u_offset_t offset)
295 {
296 	int cmd = 0;
297 	vnode_t *vp;
298 	lock_descriptor_t	stack_lock_request;
299 	lock_descriptor_t	*lock_request;
300 	int error = 0;
301 	graph_t	*gp;
302 	int serialize = 0;
303 
304 	if (fcmd != F_OFD_GETLK)
305 		cmd = SETFLCK;
306 
307 	if (fcmd == F_OFD_SETLKW || fcmd == F_FLOCKW)
308 		cmd |= SLPFLCK;
309 
310 	/* see block comment */
311 	VERIFY(lckdat->l_whence == 0);
312 	VERIFY(lckdat->l_start == 0);
313 	VERIFY(lckdat->l_len == 0);
314 
315 	vp = fp->f_vnode;
316 
317 	/*
318 	 * For reclock fs_frlock() would normally have set these in a few
319 	 * places but for us it's cleaner to centralize it here. Note that
320 	 * IGN_PID is -1. We use 0 for our pid-less locks.
321 	 */
322 	lckdat->l_pid = 0;
323 	lckdat->l_sysid = 0;
324 
325 	/*
326 	 * Check access permissions
327 	 */
328 	if ((fcmd == F_OFD_SETLK || fcmd == F_OFD_SETLKW) &&
329 	    ((lckdat->l_type == F_RDLCK && (flag & FREAD) == 0) ||
330 	    (lckdat->l_type == F_WRLCK && (flag & FWRITE) == 0)))
331 		return (EBADF);
332 
333 	/*
334 	 * for query and unlock we use the stack_lock_request
335 	 */
336 	if (lckdat->l_type == F_UNLCK || !(cmd & SETFLCK)) {
337 		lock_request = &stack_lock_request;
338 		(void) bzero((caddr_t)lock_request,
339 		    sizeof (lock_descriptor_t));
340 
341 		/*
342 		 * following is added to make the assertions in
343 		 * flk_execute_request() pass
344 		 */
345 		lock_request->l_edge.edge_in_next = &lock_request->l_edge;
346 		lock_request->l_edge.edge_in_prev = &lock_request->l_edge;
347 		lock_request->l_edge.edge_adj_next = &lock_request->l_edge;
348 		lock_request->l_edge.edge_adj_prev = &lock_request->l_edge;
349 		lock_request->l_status = FLK_INITIAL_STATE;
350 	} else {
351 		lock_request = flk_get_lock();
352 		fp->f_filock = (struct filock *)lock_request;
353 	}
354 	lock_request->l_state = 0;
355 	lock_request->l_vnode = vp;
356 	lock_request->l_zoneid = getzoneid();
357 	lock_request->l_ofd = fp;
358 
359 	/*
360 	 * Convert the request range into the canonical start and end
361 	 * values then check the validity of the lock range.
362 	 */
363 	error = flk_convert_lock_data(vp, lckdat, &lock_request->l_start,
364 	    &lock_request->l_end, offset);
365 	if (error)
366 		goto done;
367 
368 	error = flk_check_lock_data(lock_request->l_start, lock_request->l_end,
369 	    MAXEND);
370 	if (error)
371 		goto done;
372 
373 	ASSERT(lock_request->l_end >= lock_request->l_start);
374 
375 	lock_request->l_type = lckdat->l_type;
376 	if (cmd & SLPFLCK)
377 		lock_request->l_state |= WILLING_TO_SLEEP_LOCK;
378 
379 	if (!(cmd & SETFLCK)) {
380 		if (lock_request->l_type == F_RDLCK ||
381 		    lock_request->l_type == F_WRLCK)
382 			lock_request->l_state |= QUERY_LOCK;
383 	}
384 	lock_request->l_flock = (*lckdat);
385 
386 	/*
387 	 * We are ready for processing the request
388 	 */
389 
390 	if (fcmd != F_OFD_GETLK && lock_request->l_type != F_UNLCK &&
391 	    nbl_need_check(vp)) {
392 		nbl_start_crit(vp, RW_WRITER);
393 		serialize = 1;
394 	}
395 
396 	/* Get the lock graph for a particular vnode */
397 	gp = flk_get_lock_graph(vp, FLK_INIT_GRAPH);
398 
399 	mutex_enter(&gp->gp_mutex);
400 
401 	lock_request->l_state |= REFERENCED_LOCK;
402 	lock_request->l_graph = gp;
403 
404 	switch (lock_request->l_type) {
405 	case F_RDLCK:
406 	case F_WRLCK:
407 		if (IS_QUERY_LOCK(lock_request)) {
408 			flk_get_first_blocking_lock(lock_request);
409 			if (lock_request->l_ofd != NULL)
410 				lock_request->l_flock.l_pid = -1;
411 			(*lckdat) = lock_request->l_flock;
412 		} else {
413 			/* process the request now */
414 			error = flk_process_request(lock_request);
415 		}
416 		break;
417 
418 	case F_UNLCK:
419 		/* unlock request will not block so execute it immediately */
420 		error = flk_execute_request(lock_request);
421 		break;
422 
423 	default:
424 		error = EINVAL;
425 		break;
426 	}
427 
428 	if (lock_request == &stack_lock_request) {
429 		flk_set_state(lock_request, FLK_DEAD_STATE);
430 	} else {
431 		lock_request->l_state &= ~REFERENCED_LOCK;
432 		if ((error != 0) || IS_DELETED(lock_request)) {
433 			flk_set_state(lock_request, FLK_DEAD_STATE);
434 			flk_free_lock(lock_request);
435 		}
436 	}
437 
438 	mutex_exit(&gp->gp_mutex);
439 	if (serialize)
440 		nbl_end_crit(vp);
441 
442 	return (error);
443 
444 done:
445 	flk_set_state(lock_request, FLK_DEAD_STATE);
446 	if (lock_request != &stack_lock_request)
447 		flk_free_lock(lock_request);
448 	return (error);
449 }
450 
451 /*
452  * Remove any lock on the vnode belonging to the given file_t.
453  * Called from closef on last close, file_t is locked.
454  *
455  * This is modeled on the cleanlocks() function but only removes the single
456  * lock associated with fp.
457  */
458 void
459 ofdcleanlock(file_t *fp)
460 {
461 	lock_descriptor_t *fplock, *lock, *nlock;
462 	vnode_t *vp;
463 	graph_t	*gp;
464 
465 	ASSERT(MUTEX_HELD(&fp->f_tlock));
466 
467 	if ((fplock = (lock_descriptor_t *)fp->f_filock) == NULL)
468 		return;
469 
470 	fp->f_filock = NULL;
471 	vp = fp->f_vnode;
472 
473 	gp = flk_get_lock_graph(vp, FLK_USE_GRAPH);
474 
475 	if (gp == NULL)
476 		return;
477 	mutex_enter(&gp->gp_mutex);
478 
479 	CHECK_SLEEPING_LOCKS(gp);
480 	CHECK_ACTIVE_LOCKS(gp);
481 
482 	SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
483 
484 	if (lock) {
485 		do {
486 			nlock = lock->l_next;
487 			if (fplock == lock) {
488 				CANCEL_WAKEUP(lock);
489 				break;
490 			}
491 			lock = nlock;
492 		} while (lock->l_vnode == vp);
493 	}
494 
495 	SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
496 
497 	if (lock) {
498 		do {
499 			nlock = lock->l_next;
500 			if (fplock == lock) {
501 				flk_delete_active_lock(lock, 0);
502 				flk_wakeup(lock, 1);
503 				flk_free_lock(lock);
504 				break;
505 			}
506 			lock = nlock;
507 		} while (lock->l_vnode == vp);
508 	}
509 
510 	CHECK_SLEEPING_LOCKS(gp);
511 	CHECK_ACTIVE_LOCKS(gp);
512 	mutex_exit(&gp->gp_mutex);
513 }
514 
515 /*
516  * Routine called from fs_frlock in fs/fs_subr.c
517  *
518  * This implements traditional POSIX style record locking. The two primary
519  * drawbacks to this style of locking are:
520  * 1) It is per-process, so any close of a file descriptor that refers to the
521  *    file will drop the lock (e.g. lock /etc/passwd, call a library function
522  *    which opens /etc/passwd to read the file, when the library closes it's
523  *    file descriptor the application loses its lock and does not know).
524  * 2) Locks are not preserved across fork(2).
525  *
526  * Because these locks are only assoiciated with a pid they are per-process.
527  * This is why any close will drop the lock and is also why once the process
528  * forks then the lock is no longer related to the new process. These locks can
529  * be considered as pid-ful.
530  *
531  * See ofdlock() for the implementation of a similar but improved locking
532  * scheme.
533  */
534 int
535 reclock(vnode_t *vp, flock64_t *lckdat, int cmd, int flag, u_offset_t offset,
536     flk_callback_t *flk_cbp)
537 {
538 	lock_descriptor_t	stack_lock_request;
539 	lock_descriptor_t	*lock_request;
540 	int error = 0;
541 	graph_t	*gp;
542 	int			nlmid;
543 
544 	/*
545 	 * Check access permissions
546 	 */
547 	if ((cmd & SETFLCK) &&
548 	    ((lckdat->l_type == F_RDLCK && (flag & FREAD) == 0) ||
549 	    (lckdat->l_type == F_WRLCK && (flag & FWRITE) == 0)))
550 			return (EBADF);
551 
552 	/*
553 	 * for query and unlock we use the stack_lock_request
554 	 */
555 
556 	if ((lckdat->l_type == F_UNLCK) ||
557 	    !((cmd & INOFLCK) || (cmd & SETFLCK))) {
558 		lock_request = &stack_lock_request;
559 		(void) bzero((caddr_t)lock_request,
560 		    sizeof (lock_descriptor_t));
561 
562 		/*
563 		 * following is added to make the assertions in
564 		 * flk_execute_request() to pass through
565 		 */
566 
567 		lock_request->l_edge.edge_in_next = &lock_request->l_edge;
568 		lock_request->l_edge.edge_in_prev = &lock_request->l_edge;
569 		lock_request->l_edge.edge_adj_next = &lock_request->l_edge;
570 		lock_request->l_edge.edge_adj_prev = &lock_request->l_edge;
571 		lock_request->l_status = FLK_INITIAL_STATE;
572 	} else {
573 		lock_request = flk_get_lock();
574 	}
575 	lock_request->l_state = 0;
576 	lock_request->l_vnode = vp;
577 	lock_request->l_zoneid = getzoneid();
578 
579 	/*
580 	 * Convert the request range into the canonical start and end
581 	 * values.  The NLM protocol supports locking over the entire
582 	 * 32-bit range, so there's no range checking for remote requests,
583 	 * but we still need to verify that local requests obey the rules.
584 	 */
585 	/* Clustering */
586 	if ((cmd & (RCMDLCK | PCMDLCK)) != 0) {
587 		ASSERT(lckdat->l_whence == 0);
588 		lock_request->l_start = lckdat->l_start;
589 		lock_request->l_end = (lckdat->l_len == 0) ? MAX_U_OFFSET_T :
590 		    lckdat->l_start + (lckdat->l_len - 1);
591 	} else {
592 		/* check the validity of the lock range */
593 		error = flk_convert_lock_data(vp, lckdat,
594 		    &lock_request->l_start, &lock_request->l_end,
595 		    offset);
596 		if (error) {
597 			goto done;
598 		}
599 		error = flk_check_lock_data(lock_request->l_start,
600 		    lock_request->l_end, MAXEND);
601 		if (error) {
602 			goto done;
603 		}
604 	}
605 
606 	ASSERT(lock_request->l_end >= lock_request->l_start);
607 
608 	lock_request->l_type = lckdat->l_type;
609 	if (cmd & INOFLCK)
610 		lock_request->l_state |= IO_LOCK;
611 	if (cmd & SLPFLCK)
612 		lock_request->l_state |= WILLING_TO_SLEEP_LOCK;
613 	if (cmd & RCMDLCK)
614 		lock_request->l_state |= LOCKMGR_LOCK;
615 	if (cmd & NBMLCK)
616 		lock_request->l_state |= NBMAND_LOCK;
617 	/*
618 	 * Clustering: set flag for PXFS locks
619 	 * We do not _only_ check for the PCMDLCK flag because PXFS locks could
620 	 * also be of type 'RCMDLCK'.
621 	 * We do not _only_ check the GETPXFSID() macro because local PXFS
622 	 * clients use a pxfsid of zero to permit deadlock detection in the LLM.
623 	 */
624 
625 	if ((cmd & PCMDLCK) || (GETPXFSID(lckdat->l_sysid) != 0)) {
626 		lock_request->l_state |= PXFS_LOCK;
627 	}
628 	if (!((cmd & SETFLCK) || (cmd & INOFLCK))) {
629 		if (lock_request->l_type == F_RDLCK ||
630 		    lock_request->l_type == F_WRLCK)
631 			lock_request->l_state |= QUERY_LOCK;
632 	}
633 	lock_request->l_flock = (*lckdat);
634 	lock_request->l_callbacks = flk_cbp;
635 
636 	/*
637 	 * We are ready for processing the request
638 	 */
639 	if (IS_LOCKMGR(lock_request)) {
640 		/*
641 		 * If the lock request is an NLM server request ....
642 		 */
643 		if (nlm_status_size == 0) { /* not booted as cluster */
644 			mutex_enter(&flock_lock);
645 			/*
646 			 * Bail out if this is a lock manager request and the
647 			 * lock manager is not supposed to be running.
648 			 */
649 			if (flk_get_lockmgr_status() != FLK_LOCKMGR_UP) {
650 				mutex_exit(&flock_lock);
651 				error = ENOLCK;
652 				goto done;
653 			}
654 			mutex_exit(&flock_lock);
655 		} else {			/* booted as a cluster */
656 			nlmid = GETNLMID(lock_request->l_flock.l_sysid);
657 			ASSERT(nlmid <= nlm_status_size && nlmid >= 0);
658 
659 			mutex_enter(&nlm_reg_lock);
660 			/*
661 			 * If the NLM registry does not know about this
662 			 * NLM server making the request, add its nlmid
663 			 * to the registry.
664 			 */
665 			if (FLK_REGISTRY_IS_NLM_UNKNOWN(nlm_reg_status,
666 			    nlmid)) {
667 				FLK_REGISTRY_ADD_NLMID(nlm_reg_status, nlmid);
668 			} else if (!FLK_REGISTRY_IS_NLM_UP(nlm_reg_status,
669 			    nlmid)) {
670 				/*
671 				 * If the NLM server is already known (has made
672 				 * previous lock requests) and its state is
673 				 * not NLM_UP (means that NLM server is
674 				 * shutting down), then bail out with an
675 				 * error to deny the lock request.
676 				 */
677 				mutex_exit(&nlm_reg_lock);
678 				error = ENOLCK;
679 				goto done;
680 			}
681 			mutex_exit(&nlm_reg_lock);
682 		}
683 	}
684 
685 	/* Now get the lock graph for a particular vnode */
686 	gp = flk_get_lock_graph(vp, FLK_INIT_GRAPH);
687 
688 	/*
689 	 * We drop rwlock here otherwise this might end up causing a
690 	 * deadlock if this IOLOCK sleeps. (bugid # 1183392).
691 	 */
692 
693 	if (IS_IO_LOCK(lock_request)) {
694 		VOP_RWUNLOCK(vp,
695 		    (lock_request->l_type == F_RDLCK) ?
696 		    V_WRITELOCK_FALSE : V_WRITELOCK_TRUE, NULL);
697 	}
698 	mutex_enter(&gp->gp_mutex);
699 
700 	lock_request->l_state |= REFERENCED_LOCK;
701 	lock_request->l_graph = gp;
702 
703 	switch (lock_request->l_type) {
704 	case F_RDLCK:
705 	case F_WRLCK:
706 		if (IS_QUERY_LOCK(lock_request)) {
707 			flk_get_first_blocking_lock(lock_request);
708 			if (lock_request->l_ofd != NULL)
709 				lock_request->l_flock.l_pid = -1;
710 			(*lckdat) = lock_request->l_flock;
711 			break;
712 		}
713 
714 		/* process the request now */
715 
716 		error = flk_process_request(lock_request);
717 		break;
718 
719 	case F_UNLCK:
720 		/* unlock request will not block so execute it immediately */
721 
722 		if (IS_LOCKMGR(lock_request) &&
723 		    flk_canceled(lock_request)) {
724 			error = 0;
725 		} else {
726 			error = flk_execute_request(lock_request);
727 		}
728 		break;
729 
730 	case F_UNLKSYS:
731 		/*
732 		 * Recovery mechanism to release lock manager locks when
733 		 * NFS client crashes and restart. NFS server will clear
734 		 * old locks and grant new locks.
735 		 */
736 
737 		if (lock_request->l_flock.l_sysid == 0) {
738 			mutex_exit(&gp->gp_mutex);
739 			return (EINVAL);
740 		}
741 		if (secpolicy_nfs(CRED()) != 0) {
742 			mutex_exit(&gp->gp_mutex);
743 			return (EPERM);
744 		}
745 		flk_delete_locks_by_sysid(lock_request);
746 		lock_request->l_state &= ~REFERENCED_LOCK;
747 		flk_set_state(lock_request, FLK_DEAD_STATE);
748 		flk_free_lock(lock_request);
749 		mutex_exit(&gp->gp_mutex);
750 		return (0);
751 
752 	default:
753 		error = EINVAL;
754 		break;
755 	}
756 
757 	/* Clustering: For blocked PXFS locks, return */
758 	if (error == PXFS_LOCK_BLOCKED) {
759 		lock_request->l_state &= ~REFERENCED_LOCK;
760 		mutex_exit(&gp->gp_mutex);
761 		return (error);
762 	}
763 
764 	/*
765 	 * Now that we have seen the status of locks in the system for
766 	 * this vnode we acquire the rwlock if it is an IO_LOCK.
767 	 */
768 
769 	if (IS_IO_LOCK(lock_request)) {
770 		(void) VOP_RWLOCK(vp,
771 		    (lock_request->l_type == F_RDLCK) ?
772 		    V_WRITELOCK_FALSE : V_WRITELOCK_TRUE, NULL);
773 		if (!error) {
774 			lckdat->l_type = F_UNLCK;
775 
776 			/*
777 			 * This wake up is needed otherwise
778 			 * if IO_LOCK has slept the dependents on this
779 			 * will not be woken up at all. (bugid # 1185482).
780 			 */
781 
782 			flk_wakeup(lock_request, 1);
783 			flk_set_state(lock_request, FLK_DEAD_STATE);
784 			flk_free_lock(lock_request);
785 		}
786 		/*
787 		 * else if error had occurred either flk_process_request()
788 		 * has returned EDEADLK in which case there will be no
789 		 * dependents for this lock or EINTR from flk_wait_execute_
790 		 * request() in which case flk_cancel_sleeping_lock()
791 		 * would have been done. same is true with EBADF.
792 		 */
793 	}
794 
795 	if (lock_request == &stack_lock_request) {
796 		flk_set_state(lock_request, FLK_DEAD_STATE);
797 	} else {
798 		lock_request->l_state &= ~REFERENCED_LOCK;
799 		if ((error != 0) || IS_DELETED(lock_request)) {
800 			flk_set_state(lock_request, FLK_DEAD_STATE);
801 			flk_free_lock(lock_request);
802 		}
803 	}
804 
805 	mutex_exit(&gp->gp_mutex);
806 	return (error);
807 
808 done:
809 	flk_set_state(lock_request, FLK_DEAD_STATE);
810 	if (lock_request != &stack_lock_request)
811 		flk_free_lock(lock_request);
812 	return (error);
813 }
814 
815 /*
816  * Invoke the callbacks in the given list.  If before sleeping, invoke in
817  * list order.  If after sleeping, invoke in reverse order.
818  *
819  * CPR (suspend/resume) support: if one of the callbacks returns a
820  * callb_cpr_t, return it.   This will be used to make the thread CPR-safe
821  * while it is sleeping.  There should be at most one callb_cpr_t for the
822  * thread.
823  * XXX This is unnecessarily complicated.  The CPR information should just
824  * get passed in directly through VOP_FRLOCK and reclock, rather than
825  * sneaking it in via a callback.
826  */
827 
828 callb_cpr_t *
829 flk_invoke_callbacks(flk_callback_t *cblist, flk_cb_when_t when)
830 {
831 	callb_cpr_t *cpr_callbackp = NULL;
832 	callb_cpr_t *one_result;
833 	flk_callback_t *cb;
834 
835 	if (cblist == NULL)
836 		return (NULL);
837 
838 	if (when == FLK_BEFORE_SLEEP) {
839 		cb = cblist;
840 		do {
841 			one_result = (*cb->cb_callback)(when, cb->cb_data);
842 			if (one_result != NULL) {
843 				ASSERT(cpr_callbackp == NULL);
844 				cpr_callbackp = one_result;
845 			}
846 			cb = cb->cb_next;
847 		} while (cb != cblist);
848 	} else {
849 		cb = cblist->cb_prev;
850 		do {
851 			one_result = (*cb->cb_callback)(when, cb->cb_data);
852 			if (one_result != NULL) {
853 				cpr_callbackp = one_result;
854 			}
855 			cb = cb->cb_prev;
856 		} while (cb != cblist->cb_prev);
857 	}
858 
859 	return (cpr_callbackp);
860 }
861 
862 /*
863  * Initialize a flk_callback_t to hold the given callback.
864  */
865 
866 void
867 flk_init_callback(flk_callback_t *flk_cb,
868     callb_cpr_t *(*cb_fcn)(flk_cb_when_t, void *), void *cbdata)
869 {
870 	flk_cb->cb_next = flk_cb;
871 	flk_cb->cb_prev = flk_cb;
872 	flk_cb->cb_callback = cb_fcn;
873 	flk_cb->cb_data = cbdata;
874 }
875 
876 /*
877  * Initialize an flk_callback_t and then link it into the head of an
878  * existing list (which may be NULL).
879  */
880 
881 void
882 flk_add_callback(flk_callback_t *newcb,
883     callb_cpr_t *(*cb_fcn)(flk_cb_when_t, void *),
884     void *cbdata, flk_callback_t *cblist)
885 {
886 	flk_init_callback(newcb, cb_fcn, cbdata);
887 
888 	if (cblist == NULL)
889 		return;
890 
891 	newcb->cb_prev = cblist->cb_prev;
892 	newcb->cb_next = cblist;
893 	cblist->cb_prev->cb_next = newcb;
894 	cblist->cb_prev = newcb;
895 }
896 
897 /*
898  * Remove the callback from a list.
899  */
900 
901 void
902 flk_del_callback(flk_callback_t *flk_cb)
903 {
904 	flk_cb->cb_next->cb_prev = flk_cb->cb_prev;
905 	flk_cb->cb_prev->cb_next = flk_cb->cb_next;
906 
907 	flk_cb->cb_prev = flk_cb;
908 	flk_cb->cb_next = flk_cb;
909 }
910 
911 /*
912  * Initialize the flk_edge_cache data structure and create the
913  * nlm_reg_status array.
914  */
915 
916 void
917 flk_init(void)
918 {
919 	uint_t	i;
920 
921 	flk_edge_cache = kmem_cache_create("flk_edges",
922 	    sizeof (struct edge), 0, NULL, NULL, NULL, NULL, NULL, 0);
923 	if (flk_edge_cache == NULL) {
924 		cmn_err(CE_PANIC, "Couldn't create flk_edge_cache\n");
925 	}
926 	/*
927 	 * Create the NLM registry object.
928 	 */
929 
930 	if (cluster_bootflags & CLUSTER_BOOTED) {
931 		/*
932 		 * This routine tells you the maximum node id that will be used
933 		 * in the cluster.  This number will be the size of the nlm
934 		 * registry status array.  We add 1 because we will be using
935 		 * all entries indexed from 0 to maxnodeid; e.g., from 0
936 		 * to 64, for a total of 65 entries.
937 		 */
938 		nlm_status_size = clconf_maximum_nodeid() + 1;
939 	} else {
940 		nlm_status_size = 0;
941 	}
942 
943 	if (nlm_status_size != 0) {	/* booted as a cluster */
944 		nlm_reg_status = (flk_nlm_status_t *)
945 		    kmem_alloc(sizeof (flk_nlm_status_t) * nlm_status_size,
946 		    KM_SLEEP);
947 
948 		/* initialize all NLM states in array to NLM_UNKNOWN */
949 		for (i = 0; i < nlm_status_size; i++) {
950 			nlm_reg_status[i] = FLK_NLM_UNKNOWN;
951 		}
952 	}
953 }
954 
955 /*
956  * Zone constructor/destructor callbacks to be executed when a zone is
957  * created/destroyed.
958  */
959 /* ARGSUSED */
960 void *
961 flk_zone_init(zoneid_t zoneid)
962 {
963 	struct flock_globals *fg;
964 	uint_t i;
965 
966 	fg = kmem_alloc(sizeof (*fg), KM_SLEEP);
967 	fg->flk_lockmgr_status = FLK_LOCKMGR_UP;
968 	for (i = 0; i < HASH_SIZE; i++)
969 		fg->lockmgr_status[i] = FLK_LOCKMGR_UP;
970 	return (fg);
971 }
972 
973 /* ARGSUSED */
974 void
975 flk_zone_fini(zoneid_t zoneid, void *data)
976 {
977 	struct flock_globals *fg = data;
978 
979 	kmem_free(fg, sizeof (*fg));
980 }
981 
982 /*
983  * Get a lock_descriptor structure with initialization of edge lists.
984  */
985 
986 static lock_descriptor_t *
987 flk_get_lock(void)
988 {
989 	lock_descriptor_t	*l;
990 
991 	l = kmem_zalloc(sizeof (lock_descriptor_t), KM_SLEEP);
992 
993 	cv_init(&l->l_cv, NULL, CV_DRIVER, NULL);
994 	l->l_edge.edge_in_next = &l->l_edge;
995 	l->l_edge.edge_in_prev = &l->l_edge;
996 	l->l_edge.edge_adj_next = &l->l_edge;
997 	l->l_edge.edge_adj_prev = &l->l_edge;
998 	l->pvertex = -1;
999 	l->l_status = FLK_INITIAL_STATE;
1000 	flk_lock_allocs++;
1001 	return (l);
1002 }
1003 
1004 /*
1005  * Free a lock_descriptor structure. Just sets the DELETED_LOCK flag
1006  * when some thread has a reference to it as in reclock().
1007  */
1008 
1009 void
1010 flk_free_lock(lock_descriptor_t	*lock)
1011 {
1012 	file_t *fp;
1013 
1014 	ASSERT(IS_DEAD(lock));
1015 
1016 	if ((fp = lock->l_ofd) != NULL)
1017 		fp->f_filock = NULL;
1018 
1019 	if (IS_REFERENCED(lock)) {
1020 		lock->l_state |= DELETED_LOCK;
1021 		return;
1022 	}
1023 	flk_lock_frees++;
1024 	kmem_free((void *)lock, sizeof (lock_descriptor_t));
1025 }
1026 
1027 void
1028 flk_set_state(lock_descriptor_t *lock, int new_state)
1029 {
1030 	/*
1031 	 * Locks in the sleeping list may be woken up in a number of ways,
1032 	 * and more than once.  If a sleeping lock is signaled awake more
1033 	 * than once, then it may or may not change state depending on its
1034 	 * current state.
1035 	 * Also note that NLM locks that are sleeping could be moved to an
1036 	 * interrupted state more than once if the unlock request is
1037 	 * retransmitted by the NLM client - the second time around, this is
1038 	 * just a nop.
1039 	 * The ordering of being signaled awake is:
1040 	 * INTERRUPTED_STATE > CANCELLED_STATE > GRANTED_STATE.
1041 	 * The checks below implement this ordering.
1042 	 */
1043 	if (IS_INTERRUPTED(lock)) {
1044 		if ((new_state == FLK_CANCELLED_STATE) ||
1045 		    (new_state == FLK_GRANTED_STATE) ||
1046 		    (new_state == FLK_INTERRUPTED_STATE)) {
1047 			return;
1048 		}
1049 	}
1050 	if (IS_CANCELLED(lock)) {
1051 		if ((new_state == FLK_GRANTED_STATE) ||
1052 		    (new_state == FLK_CANCELLED_STATE)) {
1053 			return;
1054 		}
1055 	}
1056 	CHECK_LOCK_TRANSITION(lock->l_status, new_state);
1057 	if (IS_PXFS(lock)) {
1058 		cl_flk_state_transition_notify(lock, lock->l_status, new_state);
1059 	}
1060 	lock->l_status = new_state;
1061 }
1062 
1063 /*
1064  * Routine that checks whether there are any blocking locks in the system.
1065  *
1066  * The policy followed is if a write lock is sleeping we don't allow read
1067  * locks before this write lock even though there may not be any active
1068  * locks corresponding to the read locks' region.
1069  *
1070  * flk_add_edge() function adds an edge between l1 and l2 iff there
1071  * is no path between l1 and l2. This is done to have a "minimum
1072  * storage representation" of the dependency graph.
1073  *
1074  * Another property of the graph is since only the new request throws
1075  * edges to the existing locks in the graph, the graph is always topologically
1076  * ordered.
1077  */
1078 
1079 static int
1080 flk_process_request(lock_descriptor_t *request)
1081 {
1082 	graph_t	*gp = request->l_graph;
1083 	lock_descriptor_t *lock;
1084 	int request_blocked_by_active = 0;
1085 	int request_blocked_by_granted = 0;
1086 	int request_blocked_by_sleeping = 0;
1087 	vnode_t	*vp = request->l_vnode;
1088 	int	error = 0;
1089 	int request_will_wait = 0;
1090 	int found_covering_lock = 0;
1091 	lock_descriptor_t *covered_by = NULL;
1092 
1093 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
1094 	request_will_wait = IS_WILLING_TO_SLEEP(request);
1095 
1096 	/*
1097 	 * check active locks
1098 	 */
1099 
1100 	SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
1101 
1102 
1103 	if (lock) {
1104 		do {
1105 			if (BLOCKS(lock, request)) {
1106 				if (!request_will_wait)
1107 					return (EAGAIN);
1108 				request_blocked_by_active = 1;
1109 				break;
1110 			}
1111 			/*
1112 			 * Grant lock if it is for the same owner holding active
1113 			 * lock that covers the request.
1114 			 */
1115 
1116 			if (SAME_OWNER(lock, request) &&
1117 			    COVERS(lock, request) &&
1118 			    (request->l_type == F_RDLCK))
1119 				return (flk_execute_request(request));
1120 			lock = lock->l_next;
1121 		} while (lock->l_vnode == vp);
1122 	}
1123 
1124 	if (!request_blocked_by_active) {
1125 			lock_descriptor_t *lk[1];
1126 			lock_descriptor_t *first_glock = NULL;
1127 		/*
1128 		 * Shall we grant this?! NO!!
1129 		 * What about those locks that were just granted and still
1130 		 * in sleep queue. Those threads are woken up and so locks
1131 		 * are almost active.
1132 		 */
1133 		SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
1134 		if (lock) {
1135 			do {
1136 				if (BLOCKS(lock, request)) {
1137 					if (IS_GRANTED(lock)) {
1138 						request_blocked_by_granted = 1;
1139 					} else {
1140 						request_blocked_by_sleeping = 1;
1141 					}
1142 				}
1143 
1144 				lock = lock->l_next;
1145 			} while ((lock->l_vnode == vp));
1146 			first_glock = lock->l_prev;
1147 			ASSERT(first_glock->l_vnode == vp);
1148 		}
1149 
1150 		if (request_blocked_by_granted)
1151 			goto block;
1152 
1153 		if (!request_blocked_by_sleeping) {
1154 			/*
1155 			 * If the request isn't going to be blocked by a
1156 			 * sleeping request, we know that it isn't going to
1157 			 * be blocked; we can just execute the request --
1158 			 * without performing costly deadlock detection.
1159 			 */
1160 			ASSERT(!request_blocked_by_active);
1161 			return (flk_execute_request(request));
1162 		} else if (request->l_type == F_RDLCK) {
1163 			/*
1164 			 * If we have a sleeping writer in the requested
1165 			 * lock's range, block.
1166 			 */
1167 			goto block;
1168 		}
1169 
1170 		lk[0] = request;
1171 		request->l_state |= RECOMPUTE_LOCK;
1172 		SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
1173 		if (lock) {
1174 			do {
1175 				flk_recompute_dependencies(lock, lk, 1, 0);
1176 				lock = lock->l_next;
1177 			} while (lock->l_vnode == vp);
1178 		}
1179 		lock = first_glock;
1180 		if (lock) {
1181 			do {
1182 				if (IS_GRANTED(lock)) {
1183 				flk_recompute_dependencies(lock, lk, 1, 0);
1184 				}
1185 				lock = lock->l_prev;
1186 			} while ((lock->l_vnode == vp));
1187 		}
1188 		request->l_state &= ~RECOMPUTE_LOCK;
1189 		if (!NO_DEPENDENTS(request) && flk_check_deadlock(request))
1190 			return (EDEADLK);
1191 		return (flk_execute_request(request));
1192 	}
1193 
1194 block:
1195 	if (request_will_wait)
1196 		flk_graph_uncolor(gp);
1197 
1198 	/* check sleeping locks */
1199 
1200 	SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
1201 
1202 	/*
1203 	 * If we find a sleeping write lock that is a superset of the
1204 	 * region wanted by request we can be assured that by adding an
1205 	 * edge to this write lock we have paths to all locks in the
1206 	 * graph that blocks the request except in one case and that is why
1207 	 * another check for SAME_OWNER in the loop below. The exception
1208 	 * case is when this process that owns the sleeping write lock 'l1'
1209 	 * has other locks l2, l3, l4 that are in the system and arrived
1210 	 * before l1. l1 does not have path to these locks as they are from
1211 	 * same process. We break when we find a second covering sleeping
1212 	 * lock l5 owned by a process different from that owning l1, because
1213 	 * there cannot be any of l2, l3, l4, etc., arrived before l5, and if
1214 	 * it has l1 would have produced a deadlock already.
1215 	 */
1216 
1217 	if (lock) {
1218 		do {
1219 			if (BLOCKS(lock, request)) {
1220 				if (!request_will_wait)
1221 					return (EAGAIN);
1222 				if (COVERS(lock, request) &&
1223 				    lock->l_type == F_WRLCK) {
1224 					if (found_covering_lock &&
1225 					    !SAME_OWNER(lock, covered_by)) {
1226 						found_covering_lock++;
1227 						break;
1228 					}
1229 					found_covering_lock = 1;
1230 					covered_by = lock;
1231 				}
1232 				if (found_covering_lock &&
1233 				    !SAME_OWNER(lock, covered_by)) {
1234 					lock = lock->l_next;
1235 					continue;
1236 				}
1237 				if ((error = flk_add_edge(request, lock,
1238 				    !found_covering_lock, 0)))
1239 					return (error);
1240 			}
1241 			lock = lock->l_next;
1242 		} while (lock->l_vnode == vp);
1243 	}
1244 
1245 /*
1246  * found_covering_lock == 2 iff at this point 'request' has paths
1247  * to all locks that blocks 'request'. found_covering_lock == 1 iff at this
1248  * point 'request' has paths to all locks that blocks 'request' whose owners
1249  * are not same as the one that covers 'request' (covered_by above) and
1250  * we can have locks whose owner is same as covered_by in the active list.
1251  */
1252 
1253 	if (request_blocked_by_active && found_covering_lock != 2) {
1254 		SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
1255 		ASSERT(lock != NULL);
1256 		do {
1257 			if (BLOCKS(lock, request)) {
1258 				if (found_covering_lock &&
1259 				    !SAME_OWNER(lock, covered_by)) {
1260 					lock = lock->l_next;
1261 					continue;
1262 				}
1263 				if ((error = flk_add_edge(request, lock,
1264 				    CHECK_CYCLE, 0)))
1265 					return (error);
1266 			}
1267 			lock = lock->l_next;
1268 		} while (lock->l_vnode == vp);
1269 	}
1270 
1271 	if (NOT_BLOCKED(request)) {
1272 		/*
1273 		 * request not dependent on any other locks
1274 		 * so execute this request
1275 		 */
1276 		return (flk_execute_request(request));
1277 	} else {
1278 		/*
1279 		 * check for deadlock
1280 		 */
1281 		if (flk_check_deadlock(request))
1282 			return (EDEADLK);
1283 		/*
1284 		 * this thread has to sleep
1285 		 */
1286 		return (flk_wait_execute_request(request));
1287 	}
1288 }
1289 
1290 /*
1291  * The actual execution of the request in the simple case is only to
1292  * insert the 'request' in the list of active locks if it is not an
1293  * UNLOCK.
1294  * We have to consider the existing active locks' relation to
1295  * this 'request' if they are owned by same process. flk_relation() does
1296  * this job and sees to that the dependency graph information is maintained
1297  * properly.
1298  */
1299 
1300 int
1301 flk_execute_request(lock_descriptor_t *request)
1302 {
1303 	graph_t	*gp = request->l_graph;
1304 	vnode_t	*vp = request->l_vnode;
1305 	lock_descriptor_t	*lock, *lock1;
1306 	int done_searching = 0;
1307 
1308 	CHECK_SLEEPING_LOCKS(gp);
1309 	CHECK_ACTIVE_LOCKS(gp);
1310 
1311 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
1312 
1313 	flk_set_state(request, FLK_START_STATE);
1314 
1315 	ASSERT(NOT_BLOCKED(request));
1316 
1317 	/* IO_LOCK requests are only to check status */
1318 
1319 	if (IS_IO_LOCK(request))
1320 		return (0);
1321 
1322 	SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
1323 
1324 	if (lock == NULL && request->l_type == F_UNLCK)
1325 		return (0);
1326 	if (lock == NULL) {
1327 		flk_insert_active_lock(request);
1328 		return (0);
1329 	}
1330 
1331 	do {
1332 		lock1 = lock->l_next;
1333 		if (SAME_OWNER(request, lock)) {
1334 			done_searching = flk_relation(lock, request);
1335 		}
1336 		lock = lock1;
1337 	} while (lock->l_vnode == vp && !done_searching);
1338 
1339 	/*
1340 	 * insert in active queue
1341 	 */
1342 
1343 	if (request->l_type != F_UNLCK)
1344 		flk_insert_active_lock(request);
1345 
1346 	return (0);
1347 }
1348 
1349 /*
1350  * 'request' is blocked by some one therefore we put it into sleep queue.
1351  */
1352 static int
1353 flk_wait_execute_request(lock_descriptor_t *request)
1354 {
1355 	graph_t	*gp = request->l_graph;
1356 	callb_cpr_t 	*cprp;		/* CPR info from callback */
1357 	struct flock_globals *fg;
1358 	int index;
1359 
1360 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
1361 	ASSERT(IS_WILLING_TO_SLEEP(request));
1362 
1363 	flk_insert_sleeping_lock(request);
1364 
1365 	if (IS_LOCKMGR(request)) {
1366 		index = HASH_INDEX(request->l_vnode);
1367 		fg = flk_get_globals();
1368 
1369 		if (nlm_status_size == 0) {	/* not booted as a cluster */
1370 			if (fg->lockmgr_status[index] != FLK_LOCKMGR_UP) {
1371 				flk_cancel_sleeping_lock(request, 1);
1372 				return (ENOLCK);
1373 			}
1374 		} else {			/* booted as a cluster */
1375 			/*
1376 			 * If the request is an NLM server lock request,
1377 			 * and the NLM state of the lock request is not
1378 			 * NLM_UP (because the NLM server is shutting
1379 			 * down), then cancel the sleeping lock and
1380 			 * return error ENOLCK that will encourage the
1381 			 * client to retransmit.
1382 			 */
1383 			if (!IS_NLM_UP(request)) {
1384 				flk_cancel_sleeping_lock(request, 1);
1385 				return (ENOLCK);
1386 			}
1387 		}
1388 	}
1389 
1390 	/* Clustering: For blocking PXFS locks, return */
1391 	if (IS_PXFS(request)) {
1392 		/*
1393 		 * PXFS locks sleep on the client side.
1394 		 * The callback argument is used to wake up the sleeper
1395 		 * when the lock is granted.
1396 		 * We return -1 (rather than an errno value) to indicate
1397 		 * the client side should sleep
1398 		 */
1399 		return (PXFS_LOCK_BLOCKED);
1400 	}
1401 
1402 	if (request->l_callbacks != NULL) {
1403 		/*
1404 		 * To make sure the shutdown code works correctly, either
1405 		 * the callback must happen after putting the lock on the
1406 		 * sleep list, or we must check the shutdown status after
1407 		 * returning from the callback (and before sleeping).  At
1408 		 * least for now, we'll use the first option.  If a
1409 		 * shutdown or signal or whatever happened while the graph
1410 		 * mutex was dropped, that will be detected by
1411 		 * wait_for_lock().
1412 		 */
1413 		mutex_exit(&gp->gp_mutex);
1414 
1415 		cprp = flk_invoke_callbacks(request->l_callbacks,
1416 		    FLK_BEFORE_SLEEP);
1417 
1418 		mutex_enter(&gp->gp_mutex);
1419 
1420 		if (cprp == NULL) {
1421 			wait_for_lock(request);
1422 		} else {
1423 			mutex_enter(cprp->cc_lockp);
1424 			CALLB_CPR_SAFE_BEGIN(cprp);
1425 			mutex_exit(cprp->cc_lockp);
1426 			wait_for_lock(request);
1427 			mutex_enter(cprp->cc_lockp);
1428 			CALLB_CPR_SAFE_END(cprp, cprp->cc_lockp);
1429 			mutex_exit(cprp->cc_lockp);
1430 		}
1431 
1432 		mutex_exit(&gp->gp_mutex);
1433 		(void) flk_invoke_callbacks(request->l_callbacks,
1434 		    FLK_AFTER_SLEEP);
1435 		mutex_enter(&gp->gp_mutex);
1436 	} else {
1437 		wait_for_lock(request);
1438 	}
1439 
1440 	if (IS_LOCKMGR(request)) {
1441 		/*
1442 		 * If the lock manager is shutting down, return an
1443 		 * error that will encourage the client to retransmit.
1444 		 */
1445 		if (fg->lockmgr_status[index] != FLK_LOCKMGR_UP &&
1446 		    !IS_GRANTED(request)) {
1447 			flk_cancel_sleeping_lock(request, 1);
1448 			return (ENOLCK);
1449 		}
1450 	}
1451 
1452 	if (IS_INTERRUPTED(request)) {
1453 		/* we got a signal, or act like we did */
1454 		flk_cancel_sleeping_lock(request, 1);
1455 		return (EINTR);
1456 	}
1457 
1458 	/* Cancelled if some other thread has closed the file */
1459 
1460 	if (IS_CANCELLED(request)) {
1461 		flk_cancel_sleeping_lock(request, 1);
1462 		return (EBADF);
1463 	}
1464 
1465 	request->l_state &= ~GRANTED_LOCK;
1466 	REMOVE_SLEEP_QUEUE(request);
1467 	return (flk_execute_request(request));
1468 }
1469 
1470 /*
1471  * This routine adds an edge between from and to because from depends
1472  * to. If asked to check for deadlock it checks whether there are any
1473  * reachable locks from "from_lock" that is owned by the same process
1474  * as "from_lock".
1475  * NOTE: It is the caller's responsibility to make sure that the color
1476  * of the graph is consistent between the calls to flk_add_edge as done
1477  * in flk_process_request. This routine does not color and check for
1478  * deadlock explicitly.
1479  */
1480 
1481 static int
1482 flk_add_edge(lock_descriptor_t *from_lock, lock_descriptor_t *to_lock,
1483     int check_cycle, int update_graph)
1484 {
1485 	edge_t	*edge;
1486 	edge_t	*ep;
1487 	lock_descriptor_t	*vertex;
1488 	lock_descriptor_t *vertex_stack;
1489 
1490 	STACK_INIT(vertex_stack);
1491 
1492 	/*
1493 	 * if to vertex already has mark_color just return
1494 	 * don't add an edge as it is reachable from from vertex
1495 	 * before itself.
1496 	 */
1497 
1498 	if (COLORED(to_lock))
1499 		return (0);
1500 
1501 	edge = flk_get_edge();
1502 
1503 	/*
1504 	 * set the from and to vertex
1505 	 */
1506 
1507 	edge->from_vertex = from_lock;
1508 	edge->to_vertex = to_lock;
1509 
1510 	/*
1511 	 * put in adjacency list of from vertex
1512 	 */
1513 
1514 	from_lock->l_edge.edge_adj_next->edge_adj_prev = edge;
1515 	edge->edge_adj_next = from_lock->l_edge.edge_adj_next;
1516 	edge->edge_adj_prev = &from_lock->l_edge;
1517 	from_lock->l_edge.edge_adj_next = edge;
1518 
1519 	/*
1520 	 * put in list of to vertex
1521 	 */
1522 
1523 	to_lock->l_edge.edge_in_next->edge_in_prev = edge;
1524 	edge->edge_in_next = to_lock->l_edge.edge_in_next;
1525 	to_lock->l_edge.edge_in_next = edge;
1526 	edge->edge_in_prev = &to_lock->l_edge;
1527 
1528 
1529 	if (update_graph) {
1530 		flk_update_proc_graph(edge, 0);
1531 		return (0);
1532 	}
1533 	if (!check_cycle) {
1534 		return (0);
1535 	}
1536 
1537 	STACK_PUSH(vertex_stack, from_lock, l_stack);
1538 
1539 	while ((vertex = STACK_TOP(vertex_stack)) != NULL) {
1540 
1541 		STACK_POP(vertex_stack, l_stack);
1542 
1543 		for (ep = FIRST_ADJ(vertex);
1544 		    ep != HEAD(vertex);
1545 		    ep = NEXT_ADJ(ep)) {
1546 			if (COLORED(ep->to_vertex))
1547 				continue;
1548 			COLOR(ep->to_vertex);
1549 			if (SAME_OWNER(ep->to_vertex, from_lock))
1550 				goto dead_lock;
1551 			STACK_PUSH(vertex_stack, ep->to_vertex, l_stack);
1552 		}
1553 	}
1554 	return (0);
1555 
1556 dead_lock:
1557 
1558 	/*
1559 	 * remove all edges
1560 	 */
1561 
1562 	ep = FIRST_ADJ(from_lock);
1563 
1564 	while (ep != HEAD(from_lock)) {
1565 		IN_LIST_REMOVE(ep);
1566 		from_lock->l_sedge = NEXT_ADJ(ep);
1567 		ADJ_LIST_REMOVE(ep);
1568 		flk_free_edge(ep);
1569 		ep = from_lock->l_sedge;
1570 	}
1571 	return (EDEADLK);
1572 }
1573 
1574 /*
1575  * Get an edge structure for representing the dependency between two locks.
1576  */
1577 
1578 static edge_t *
1579 flk_get_edge()
1580 {
1581 	edge_t	*ep;
1582 
1583 	ASSERT(flk_edge_cache != NULL);
1584 
1585 	ep = kmem_cache_alloc(flk_edge_cache, KM_SLEEP);
1586 	edge_allocs++;
1587 	return (ep);
1588 }
1589 
1590 /*
1591  * Free the edge structure.
1592  */
1593 
1594 static void
1595 flk_free_edge(edge_t *ep)
1596 {
1597 	edge_frees++;
1598 	kmem_cache_free(flk_edge_cache, (void *)ep);
1599 }
1600 
1601 /*
1602  * Check the relationship of request with lock and perform the
1603  * recomputation of dependencies, break lock if required, and return
1604  * 1 if request cannot have any more relationship with the next
1605  * active locks.
1606  * The 'lock' and 'request' are compared and in case of overlap we
1607  * delete the 'lock' and form new locks to represent the non-overlapped
1608  * portion of original 'lock'. This function has side effects such as
1609  * 'lock' will be freed, new locks will be added to the active list.
1610  */
1611 
1612 static int
1613 flk_relation(lock_descriptor_t *lock, lock_descriptor_t *request)
1614 {
1615 	int lock_effect;
1616 	lock_descriptor_t *lock1, *lock2;
1617 	lock_descriptor_t *topology[3];
1618 	int nvertex = 0;
1619 	int i;
1620 	edge_t	*ep;
1621 	graph_t	*gp = (lock->l_graph);
1622 
1623 
1624 	CHECK_SLEEPING_LOCKS(gp);
1625 	CHECK_ACTIVE_LOCKS(gp);
1626 
1627 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
1628 
1629 	topology[0] = topology[1] = topology[2] = NULL;
1630 
1631 	if (request->l_type == F_UNLCK)
1632 		lock_effect = FLK_UNLOCK;
1633 	else if (request->l_type == F_RDLCK &&
1634 	    lock->l_type == F_WRLCK)
1635 		lock_effect = FLK_DOWNGRADE;
1636 	else if (request->l_type == F_WRLCK &&
1637 	    lock->l_type == F_RDLCK)
1638 		lock_effect = FLK_UPGRADE;
1639 	else
1640 		lock_effect = FLK_STAY_SAME;
1641 
1642 	if (lock->l_end < request->l_start) {
1643 		if (lock->l_end == request->l_start - 1 &&
1644 		    lock_effect == FLK_STAY_SAME) {
1645 			topology[0] = request;
1646 			request->l_start = lock->l_start;
1647 			nvertex = 1;
1648 			goto recompute;
1649 		} else {
1650 			return (0);
1651 		}
1652 	}
1653 
1654 	if (lock->l_start > request->l_end) {
1655 		if (request->l_end == lock->l_start - 1 &&
1656 		    lock_effect == FLK_STAY_SAME) {
1657 			topology[0] = request;
1658 			request->l_end = lock->l_end;
1659 			nvertex = 1;
1660 			goto recompute;
1661 		} else {
1662 			return (1);
1663 		}
1664 	}
1665 
1666 	if (request->l_end < lock->l_end) {
1667 		if (request->l_start > lock->l_start) {
1668 			if (lock_effect == FLK_STAY_SAME) {
1669 				request->l_start = lock->l_start;
1670 				request->l_end = lock->l_end;
1671 				topology[0] = request;
1672 				nvertex = 1;
1673 			} else {
1674 				lock1 = flk_get_lock();
1675 				lock2 = flk_get_lock();
1676 				COPY(lock1, lock);
1677 				COPY(lock2, lock);
1678 				lock1->l_start = lock->l_start;
1679 				lock1->l_end = request->l_start - 1;
1680 				lock2->l_start = request->l_end + 1;
1681 				lock2->l_end = lock->l_end;
1682 				topology[0] = lock1;
1683 				topology[1] = lock2;
1684 				topology[2] = request;
1685 				nvertex = 3;
1686 			}
1687 		} else if (request->l_start < lock->l_start) {
1688 			if (lock_effect == FLK_STAY_SAME) {
1689 				request->l_end = lock->l_end;
1690 				topology[0] = request;
1691 				nvertex = 1;
1692 			} else {
1693 				lock1 = flk_get_lock();
1694 				COPY(lock1, lock);
1695 				lock1->l_start = request->l_end + 1;
1696 				topology[0] = lock1;
1697 				topology[1] = request;
1698 				nvertex = 2;
1699 			}
1700 		} else  {
1701 			if (lock_effect == FLK_STAY_SAME) {
1702 				request->l_start = lock->l_start;
1703 				request->l_end = lock->l_end;
1704 				topology[0] = request;
1705 				nvertex = 1;
1706 			} else {
1707 				lock1 = flk_get_lock();
1708 				COPY(lock1, lock);
1709 				lock1->l_start = request->l_end + 1;
1710 				topology[0] = lock1;
1711 				topology[1] = request;
1712 				nvertex = 2;
1713 			}
1714 		}
1715 	} else if (request->l_end > lock->l_end) {
1716 		if (request->l_start > lock->l_start)  {
1717 			if (lock_effect == FLK_STAY_SAME) {
1718 				request->l_start = lock->l_start;
1719 				topology[0] = request;
1720 				nvertex = 1;
1721 			} else {
1722 				lock1 = flk_get_lock();
1723 				COPY(lock1, lock);
1724 				lock1->l_end = request->l_start - 1;
1725 				topology[0] = lock1;
1726 				topology[1] = request;
1727 				nvertex = 2;
1728 			}
1729 		} else if (request->l_start < lock->l_start)  {
1730 			topology[0] = request;
1731 			nvertex = 1;
1732 		} else {
1733 			topology[0] = request;
1734 			nvertex = 1;
1735 		}
1736 	} else {
1737 		if (request->l_start > lock->l_start) {
1738 			if (lock_effect == FLK_STAY_SAME) {
1739 				request->l_start = lock->l_start;
1740 				topology[0] = request;
1741 				nvertex = 1;
1742 			} else {
1743 				lock1 = flk_get_lock();
1744 				COPY(lock1, lock);
1745 				lock1->l_end = request->l_start - 1;
1746 				topology[0] = lock1;
1747 				topology[1] = request;
1748 				nvertex = 2;
1749 			}
1750 		} else if (request->l_start < lock->l_start) {
1751 			topology[0] = request;
1752 			nvertex = 1;
1753 		} else {
1754 			if (lock_effect !=  FLK_UNLOCK) {
1755 				topology[0] = request;
1756 				nvertex = 1;
1757 			} else {
1758 				flk_delete_active_lock(lock, 0);
1759 				flk_wakeup(lock, 1);
1760 				flk_free_lock(lock);
1761 				CHECK_SLEEPING_LOCKS(gp);
1762 				CHECK_ACTIVE_LOCKS(gp);
1763 				return (1);
1764 			}
1765 		}
1766 	}
1767 
1768 recompute:
1769 
1770 	/*
1771 	 * For unlock we don't send the 'request' to for recomputing
1772 	 * dependencies because no lock will add an edge to this.
1773 	 */
1774 
1775 	if (lock_effect == FLK_UNLOCK) {
1776 		topology[nvertex-1] = NULL;
1777 		nvertex--;
1778 	}
1779 	for (i = 0; i < nvertex; i++) {
1780 		topology[i]->l_state |= RECOMPUTE_LOCK;
1781 		topology[i]->l_color = NO_COLOR;
1782 	}
1783 
1784 	ASSERT(FIRST_ADJ(lock) == HEAD(lock));
1785 
1786 	/*
1787 	 * we remove the adjacent edges for all vertices' to this vertex
1788 	 * 'lock'.
1789 	 */
1790 
1791 	ep = FIRST_IN(lock);
1792 	while (ep != HEAD(lock)) {
1793 		ADJ_LIST_REMOVE(ep);
1794 		ep = NEXT_IN(ep);
1795 	}
1796 
1797 	flk_delete_active_lock(lock, 0);
1798 
1799 	/* We are ready for recomputing the dependencies now */
1800 
1801 	flk_recompute_dependencies(lock, topology, nvertex, 1);
1802 
1803 	for (i = 0; i < nvertex; i++) {
1804 		topology[i]->l_state &= ~RECOMPUTE_LOCK;
1805 		topology[i]->l_color = NO_COLOR;
1806 	}
1807 
1808 
1809 	if (lock_effect == FLK_UNLOCK) {
1810 		nvertex++;
1811 	}
1812 	for (i = 0; i < nvertex - 1; i++) {
1813 		flk_insert_active_lock(topology[i]);
1814 	}
1815 
1816 
1817 	if (lock_effect == FLK_DOWNGRADE || lock_effect == FLK_UNLOCK) {
1818 		flk_wakeup(lock, 0);
1819 	} else {
1820 		ep = FIRST_IN(lock);
1821 		while (ep != HEAD(lock)) {
1822 			lock->l_sedge = NEXT_IN(ep);
1823 			IN_LIST_REMOVE(ep);
1824 			flk_update_proc_graph(ep, 1);
1825 			flk_free_edge(ep);
1826 			ep = lock->l_sedge;
1827 		}
1828 	}
1829 	flk_free_lock(lock);
1830 
1831 	CHECK_SLEEPING_LOCKS(gp);
1832 	CHECK_ACTIVE_LOCKS(gp);
1833 	return (0);
1834 }
1835 
1836 /*
1837  * Insert a lock into the active queue.
1838  */
1839 
1840 static void
1841 flk_insert_active_lock(lock_descriptor_t *new_lock)
1842 {
1843 	graph_t	*gp = new_lock->l_graph;
1844 	vnode_t	*vp = new_lock->l_vnode;
1845 	lock_descriptor_t *first_lock, *lock;
1846 
1847 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
1848 
1849 	SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
1850 	first_lock = lock;
1851 
1852 	if (first_lock != NULL) {
1853 		for (; (lock->l_vnode == vp &&
1854 		    lock->l_start < new_lock->l_start); lock = lock->l_next)
1855 			;
1856 	} else {
1857 		lock = ACTIVE_HEAD(gp);
1858 	}
1859 
1860 	lock->l_prev->l_next = new_lock;
1861 	new_lock->l_next = lock;
1862 	new_lock->l_prev = lock->l_prev;
1863 	lock->l_prev = new_lock;
1864 
1865 	if (first_lock == NULL || (new_lock->l_start <= first_lock->l_start)) {
1866 		vp->v_filocks = (struct filock *)new_lock;
1867 	}
1868 	flk_set_state(new_lock, FLK_ACTIVE_STATE);
1869 	new_lock->l_state |= ACTIVE_LOCK;
1870 
1871 	CHECK_ACTIVE_LOCKS(gp);
1872 	CHECK_SLEEPING_LOCKS(gp);
1873 }
1874 
1875 /*
1876  * Delete the active lock : Performs two functions depending on the
1877  * value of second parameter. One is to remove from the active lists
1878  * only and other is to both remove and free the lock.
1879  */
1880 
1881 static void
1882 flk_delete_active_lock(lock_descriptor_t *lock, int free_lock)
1883 {
1884 	vnode_t *vp = lock->l_vnode;
1885 	graph_t	*gp = lock->l_graph;
1886 
1887 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
1888 	if (free_lock)
1889 		ASSERT(NO_DEPENDENTS(lock));
1890 	ASSERT(NOT_BLOCKED(lock));
1891 	ASSERT(IS_ACTIVE(lock));
1892 
1893 	ASSERT((vp->v_filocks != NULL));
1894 
1895 	if (vp->v_filocks == (struct filock *)lock) {
1896 		vp->v_filocks = (struct filock *)
1897 		    ((lock->l_next->l_vnode == vp) ? lock->l_next :
1898 		    NULL);
1899 	}
1900 	lock->l_next->l_prev = lock->l_prev;
1901 	lock->l_prev->l_next = lock->l_next;
1902 	lock->l_next = lock->l_prev = NULL;
1903 	flk_set_state(lock, FLK_DEAD_STATE);
1904 	lock->l_state &= ~ACTIVE_LOCK;
1905 
1906 	if (free_lock)
1907 		flk_free_lock(lock);
1908 	CHECK_ACTIVE_LOCKS(gp);
1909 	CHECK_SLEEPING_LOCKS(gp);
1910 }
1911 
1912 /*
1913  * Insert into the sleep queue.
1914  */
1915 
1916 static void
1917 flk_insert_sleeping_lock(lock_descriptor_t *request)
1918 {
1919 	graph_t *gp = request->l_graph;
1920 	vnode_t	*vp = request->l_vnode;
1921 	lock_descriptor_t	*lock;
1922 
1923 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
1924 	ASSERT(IS_INITIAL(request));
1925 
1926 	for (lock = gp->sleeping_locks.l_next; (lock != &gp->sleeping_locks &&
1927 	    lock->l_vnode < vp); lock = lock->l_next)
1928 		;
1929 
1930 	lock->l_prev->l_next = request;
1931 	request->l_prev = lock->l_prev;
1932 	lock->l_prev = request;
1933 	request->l_next = lock;
1934 	flk_set_state(request, FLK_SLEEPING_STATE);
1935 	request->l_state |= SLEEPING_LOCK;
1936 }
1937 
1938 /*
1939  * Cancelling a sleeping lock implies removing a vertex from the
1940  * dependency graph and therefore we should recompute the dependencies
1941  * of all vertices that have a path  to this vertex, w.r.t. all
1942  * vertices reachable from this vertex.
1943  */
1944 
1945 void
1946 flk_cancel_sleeping_lock(lock_descriptor_t *request, int remove_from_queue)
1947 {
1948 	graph_t	*gp = request->l_graph;
1949 	vnode_t *vp = request->l_vnode;
1950 	lock_descriptor_t **topology = NULL;
1951 	edge_t	*ep;
1952 	lock_descriptor_t *vertex, *lock;
1953 	int nvertex = 0;
1954 	int i;
1955 	lock_descriptor_t *vertex_stack;
1956 
1957 	STACK_INIT(vertex_stack);
1958 
1959 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
1960 	/*
1961 	 * count number of vertex pointers that has to be allocated
1962 	 * All vertices that are reachable from request.
1963 	 */
1964 
1965 	STACK_PUSH(vertex_stack, request, l_stack);
1966 
1967 	while ((vertex = STACK_TOP(vertex_stack)) != NULL) {
1968 		STACK_POP(vertex_stack, l_stack);
1969 		for (ep = FIRST_ADJ(vertex); ep != HEAD(vertex);
1970 		    ep = NEXT_ADJ(ep)) {
1971 			if (IS_RECOMPUTE(ep->to_vertex))
1972 				continue;
1973 			ep->to_vertex->l_state |= RECOMPUTE_LOCK;
1974 			STACK_PUSH(vertex_stack, ep->to_vertex, l_stack);
1975 			nvertex++;
1976 		}
1977 	}
1978 
1979 	/*
1980 	 * allocate memory for holding the vertex pointers
1981 	 */
1982 
1983 	if (nvertex) {
1984 		topology = kmem_zalloc(nvertex * sizeof (lock_descriptor_t *),
1985 		    KM_SLEEP);
1986 	}
1987 
1988 	/*
1989 	 * one more pass to actually store the vertices in the
1990 	 * allocated array.
1991 	 * We first check sleeping locks and then active locks
1992 	 * so that topology array will be in a topological
1993 	 * order.
1994 	 */
1995 
1996 	nvertex = 0;
1997 	SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
1998 
1999 	if (lock) {
2000 		do {
2001 			if (IS_RECOMPUTE(lock)) {
2002 				lock->l_index = nvertex;
2003 				topology[nvertex++] = lock;
2004 			}
2005 			lock->l_color = NO_COLOR;
2006 			lock = lock->l_next;
2007 		} while (lock->l_vnode == vp);
2008 	}
2009 
2010 	SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
2011 
2012 	if (lock) {
2013 		do {
2014 			if (IS_RECOMPUTE(lock)) {
2015 				lock->l_index = nvertex;
2016 				topology[nvertex++] = lock;
2017 			}
2018 			lock->l_color = NO_COLOR;
2019 			lock = lock->l_next;
2020 		} while (lock->l_vnode == vp);
2021 	}
2022 
2023 	/*
2024 	 * remove in and out edges of request
2025 	 * They are freed after updating proc_graph below.
2026 	 */
2027 
2028 	for (ep = FIRST_IN(request); ep != HEAD(request); ep = NEXT_IN(ep)) {
2029 		ADJ_LIST_REMOVE(ep);
2030 	}
2031 
2032 
2033 	if (remove_from_queue)
2034 		REMOVE_SLEEP_QUEUE(request);
2035 
2036 	/* we are ready to recompute */
2037 
2038 	flk_recompute_dependencies(request, topology, nvertex, 1);
2039 
2040 	ep = FIRST_ADJ(request);
2041 	while (ep != HEAD(request)) {
2042 		IN_LIST_REMOVE(ep);
2043 		request->l_sedge = NEXT_ADJ(ep);
2044 		ADJ_LIST_REMOVE(ep);
2045 		flk_update_proc_graph(ep, 1);
2046 		flk_free_edge(ep);
2047 		ep = request->l_sedge;
2048 	}
2049 
2050 
2051 	/*
2052 	 * unset the RECOMPUTE flag in those vertices
2053 	 */
2054 
2055 	for (i = 0; i < nvertex; i++) {
2056 		topology[i]->l_state &= ~RECOMPUTE_LOCK;
2057 	}
2058 
2059 	/*
2060 	 * free the topology
2061 	 */
2062 	if (nvertex)
2063 		kmem_free((void *)topology,
2064 		    (nvertex * sizeof (lock_descriptor_t *)));
2065 	/*
2066 	 * Possibility of some locks unblocked now
2067 	 */
2068 
2069 	flk_wakeup(request, 0);
2070 
2071 	/*
2072 	 * we expect to have a correctly recomputed graph  now.
2073 	 */
2074 	flk_set_state(request, FLK_DEAD_STATE);
2075 	flk_free_lock(request);
2076 	CHECK_SLEEPING_LOCKS(gp);
2077 	CHECK_ACTIVE_LOCKS(gp);
2078 
2079 }
2080 
2081 /*
2082  * Uncoloring the graph is simply to increment the mark value of the graph
2083  * And only when wrap round takes place will we color all vertices in
2084  * the graph explicitly.
2085  */
2086 
2087 static void
2088 flk_graph_uncolor(graph_t *gp)
2089 {
2090 	lock_descriptor_t *lock;
2091 
2092 	if (gp->mark == UINT_MAX) {
2093 		gp->mark = 1;
2094 	for (lock = ACTIVE_HEAD(gp)->l_next; lock != ACTIVE_HEAD(gp);
2095 	    lock = lock->l_next)
2096 			lock->l_color  = 0;
2097 
2098 	for (lock = SLEEPING_HEAD(gp)->l_next; lock != SLEEPING_HEAD(gp);
2099 	    lock = lock->l_next)
2100 			lock->l_color  = 0;
2101 	} else {
2102 		gp->mark++;
2103 	}
2104 }
2105 
2106 /*
2107  * Wake up locks that are blocked on the given lock.
2108  */
2109 
2110 static void
2111 flk_wakeup(lock_descriptor_t *lock, int adj_list_remove)
2112 {
2113 	edge_t	*ep;
2114 	graph_t	*gp = lock->l_graph;
2115 	lock_descriptor_t	*lck;
2116 
2117 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
2118 	if (NO_DEPENDENTS(lock))
2119 		return;
2120 	ep = FIRST_IN(lock);
2121 	do {
2122 		/*
2123 		 * delete the edge from the adjacency list
2124 		 * of from vertex. if no more adjacent edges
2125 		 * for this vertex wake this process.
2126 		 */
2127 		lck = ep->from_vertex;
2128 		if (adj_list_remove)
2129 			ADJ_LIST_REMOVE(ep);
2130 		flk_update_proc_graph(ep, 1);
2131 		if (NOT_BLOCKED(lck)) {
2132 			GRANT_WAKEUP(lck);
2133 		}
2134 		lock->l_sedge = NEXT_IN(ep);
2135 		IN_LIST_REMOVE(ep);
2136 		flk_free_edge(ep);
2137 		ep = lock->l_sedge;
2138 	} while (ep != HEAD(lock));
2139 	ASSERT(NO_DEPENDENTS(lock));
2140 }
2141 
2142 /*
2143  * The dependents of request, is checked for its dependency against the
2144  * locks in topology (called topology because the array is and should be in
2145  * topological order for this algorithm, if not in topological order the
2146  * inner loop below might add more edges than necessary. Topological ordering
2147  * of vertices satisfies the property that all edges will be from left to
2148  * right i.e., topology[i] can have an edge to  topology[j], iff i<j)
2149  * If lock l1 in the dependent set of request is dependent (blocked by)
2150  * on lock l2 in topology but does not have a path to it, we add an edge
2151  * in the inner loop below.
2152  *
2153  * We don't want to add an edge between l1 and l2 if there exists
2154  * already a path from l1 to l2, so care has to be taken for those vertices
2155  * that  have two paths to 'request'. These vertices are referred to here
2156  * as barrier locks.
2157  *
2158  * The barriers has to be found (those vertex that originally had two paths
2159  * to request) because otherwise we may end up adding edges unnecessarily
2160  * to vertices in topology, and thus barrier vertices can have an edge
2161  * to a vertex in topology as well a path to it.
2162  */
2163 
2164 static void
2165 flk_recompute_dependencies(lock_descriptor_t *request,
2166     lock_descriptor_t **topology, int nvertex, int update_graph)
2167 {
2168 	lock_descriptor_t *vertex, *lock;
2169 	graph_t	*gp = request->l_graph;
2170 	int i, count;
2171 	int barrier_found = 0;
2172 	edge_t	*ep;
2173 	lock_descriptor_t *vertex_stack;
2174 
2175 	STACK_INIT(vertex_stack);
2176 
2177 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
2178 	if (nvertex == 0)
2179 		return;
2180 	flk_graph_uncolor(request->l_graph);
2181 	barrier_found = flk_find_barriers(request);
2182 	request->l_state |= RECOMPUTE_DONE;
2183 
2184 	STACK_PUSH(vertex_stack, request, l_stack);
2185 	request->l_sedge = FIRST_IN(request);
2186 
2187 
2188 	while ((vertex = STACK_TOP(vertex_stack)) != NULL) {
2189 		if (vertex->l_state & RECOMPUTE_DONE) {
2190 			count = 0;
2191 			goto next_in_edge;
2192 		}
2193 		if (IS_BARRIER(vertex)) {
2194 			/* decrement the barrier count */
2195 			if (vertex->l_index) {
2196 				vertex->l_index--;
2197 				/* this guy will be pushed again anyway ? */
2198 				STACK_POP(vertex_stack, l_stack);
2199 				if (vertex->l_index == 0)  {
2200 				/*
2201 				 * barrier is over we can recompute
2202 				 * dependencies for this lock in the
2203 				 * next stack pop
2204 				 */
2205 					vertex->l_state &= ~BARRIER_LOCK;
2206 				}
2207 				continue;
2208 			}
2209 		}
2210 		vertex->l_state |= RECOMPUTE_DONE;
2211 		flk_graph_uncolor(gp);
2212 		count = flk_color_reachables(vertex);
2213 		for (i = 0; i < nvertex; i++) {
2214 			lock = topology[i];
2215 			if (COLORED(lock))
2216 				continue;
2217 			if (BLOCKS(lock, vertex)) {
2218 				(void) flk_add_edge(vertex, lock,
2219 				    NO_CHECK_CYCLE, update_graph);
2220 				COLOR(lock);
2221 				count++;
2222 				count += flk_color_reachables(lock);
2223 			}
2224 
2225 		}
2226 
2227 next_in_edge:
2228 		if (count == nvertex ||
2229 		    vertex->l_sedge == HEAD(vertex)) {
2230 			/* prune the tree below this */
2231 			STACK_POP(vertex_stack, l_stack);
2232 			vertex->l_state &= ~RECOMPUTE_DONE;
2233 			/* update the barrier locks below this! */
2234 			if (vertex->l_sedge != HEAD(vertex) && barrier_found) {
2235 				flk_graph_uncolor(gp);
2236 				flk_update_barriers(vertex);
2237 			}
2238 			continue;
2239 		}
2240 
2241 		ep = vertex->l_sedge;
2242 		lock = ep->from_vertex;
2243 		STACK_PUSH(vertex_stack, lock, l_stack);
2244 		lock->l_sedge = FIRST_IN(lock);
2245 		vertex->l_sedge = NEXT_IN(ep);
2246 	}
2247 
2248 }
2249 
2250 /*
2251  * Color all reachable vertices from vertex that belongs to topology (here
2252  * those that have RECOMPUTE_LOCK set in their state) and yet uncolored.
2253  *
2254  * Note: we need to use a different stack_link l_stack1 because this is
2255  * called from flk_recompute_dependencies() that already uses a stack with
2256  * l_stack as stack_link.
2257  */
2258 
2259 static int
2260 flk_color_reachables(lock_descriptor_t *vertex)
2261 {
2262 	lock_descriptor_t *ver, *lock;
2263 	int count;
2264 	edge_t	*ep;
2265 	lock_descriptor_t *vertex_stack;
2266 
2267 	STACK_INIT(vertex_stack);
2268 
2269 	STACK_PUSH(vertex_stack, vertex, l_stack1);
2270 	count = 0;
2271 	while ((ver = STACK_TOP(vertex_stack)) != NULL) {
2272 
2273 		STACK_POP(vertex_stack, l_stack1);
2274 		for (ep = FIRST_ADJ(ver); ep != HEAD(ver);
2275 		    ep = NEXT_ADJ(ep)) {
2276 			lock = ep->to_vertex;
2277 			if (COLORED(lock))
2278 				continue;
2279 			COLOR(lock);
2280 			if (IS_RECOMPUTE(lock))
2281 				count++;
2282 			STACK_PUSH(vertex_stack, lock, l_stack1);
2283 		}
2284 
2285 	}
2286 	return (count);
2287 }
2288 
2289 /*
2290  * Called from flk_recompute_dependencies() this routine decrements
2291  * the barrier count of barrier vertices that are reachable from lock.
2292  */
2293 
2294 static void
2295 flk_update_barriers(lock_descriptor_t *lock)
2296 {
2297 	lock_descriptor_t *vertex, *lck;
2298 	edge_t	*ep;
2299 	lock_descriptor_t *vertex_stack;
2300 
2301 	STACK_INIT(vertex_stack);
2302 
2303 	STACK_PUSH(vertex_stack, lock, l_stack1);
2304 
2305 	while ((vertex = STACK_TOP(vertex_stack)) != NULL) {
2306 		STACK_POP(vertex_stack, l_stack1);
2307 		for (ep = FIRST_IN(vertex); ep != HEAD(vertex);
2308 		    ep = NEXT_IN(ep)) {
2309 			lck = ep->from_vertex;
2310 			if (COLORED(lck)) {
2311 				if (IS_BARRIER(lck)) {
2312 					ASSERT(lck->l_index > 0);
2313 					lck->l_index--;
2314 					if (lck->l_index == 0)
2315 						lck->l_state &= ~BARRIER_LOCK;
2316 				}
2317 				continue;
2318 			}
2319 			COLOR(lck);
2320 			if (IS_BARRIER(lck)) {
2321 				ASSERT(lck->l_index > 0);
2322 				lck->l_index--;
2323 				if (lck->l_index == 0)
2324 					lck->l_state &= ~BARRIER_LOCK;
2325 			}
2326 			STACK_PUSH(vertex_stack, lck, l_stack1);
2327 		}
2328 	}
2329 }
2330 
2331 /*
2332  * Finds all vertices that are reachable from 'lock' more than once and
2333  * mark them as barrier vertices and increment their barrier count.
2334  * The barrier count is one minus the total number of paths from lock
2335  * to that vertex.
2336  */
2337 
2338 static int
2339 flk_find_barriers(lock_descriptor_t *lock)
2340 {
2341 	lock_descriptor_t *vertex, *lck;
2342 	int found = 0;
2343 	edge_t	*ep;
2344 	lock_descriptor_t *vertex_stack;
2345 
2346 	STACK_INIT(vertex_stack);
2347 
2348 	STACK_PUSH(vertex_stack, lock, l_stack1);
2349 
2350 	while ((vertex = STACK_TOP(vertex_stack)) != NULL) {
2351 		STACK_POP(vertex_stack, l_stack1);
2352 		for (ep = FIRST_IN(vertex); ep != HEAD(vertex);
2353 		    ep = NEXT_IN(ep)) {
2354 			lck = ep->from_vertex;
2355 			if (COLORED(lck)) {
2356 				/* this is a barrier */
2357 				lck->l_state |= BARRIER_LOCK;
2358 				/* index will have barrier count */
2359 				lck->l_index++;
2360 				if (!found)
2361 					found = 1;
2362 				continue;
2363 			}
2364 			COLOR(lck);
2365 			lck->l_index = 0;
2366 			STACK_PUSH(vertex_stack, lck, l_stack1);
2367 		}
2368 	}
2369 	return (found);
2370 }
2371 
2372 /*
2373  * Finds the first lock that is mainly responsible for blocking this
2374  * request.  If there is no such lock, request->l_flock.l_type is set to
2375  * F_UNLCK.  Otherwise, request->l_flock is filled in with the particulars
2376  * of the blocking lock.
2377  *
2378  * Note: It is possible a request is blocked by a sleeping lock because
2379  * of the fairness policy used in flk_process_request() to construct the
2380  * dependencies. (see comments before flk_process_request()).
2381  */
2382 
2383 static void
2384 flk_get_first_blocking_lock(lock_descriptor_t *request)
2385 {
2386 	graph_t	*gp = request->l_graph;
2387 	vnode_t *vp = request->l_vnode;
2388 	lock_descriptor_t *lock, *blocker;
2389 
2390 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
2391 	blocker = NULL;
2392 	SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
2393 
2394 	if (lock) {
2395 		do {
2396 			if (BLOCKS(lock, request)) {
2397 				blocker = lock;
2398 				break;
2399 			}
2400 			lock = lock->l_next;
2401 		} while (lock->l_vnode == vp);
2402 	}
2403 
2404 	if (blocker == NULL && request->l_flock.l_type == F_RDLCK) {
2405 		/*
2406 		 * No active lock is blocking this request, but if a read
2407 		 * lock is requested, it may also get blocked by a waiting
2408 		 * writer. So search all sleeping locks and see if there is
2409 		 * a writer waiting.
2410 		 */
2411 		SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
2412 		if (lock) {
2413 			do {
2414 				if (BLOCKS(lock, request)) {
2415 					blocker = lock;
2416 					break;
2417 				}
2418 				lock = lock->l_next;
2419 			} while (lock->l_vnode == vp);
2420 		}
2421 	}
2422 
2423 	if (blocker) {
2424 		report_blocker(blocker, request);
2425 	} else
2426 		request->l_flock.l_type = F_UNLCK;
2427 }
2428 
2429 /*
2430  * Get the graph_t structure associated with a vnode.
2431  * If 'initialize' is non-zero, and the graph_t structure for this vnode has
2432  * not yet been initialized, then a new element is allocated and returned.
2433  */
2434 graph_t *
2435 flk_get_lock_graph(vnode_t *vp, int initialize)
2436 {
2437 	graph_t *gp;
2438 	graph_t *gp_alloc = NULL;
2439 	int index = HASH_INDEX(vp);
2440 
2441 	if (initialize == FLK_USE_GRAPH) {
2442 		mutex_enter(&flock_lock);
2443 		gp = lock_graph[index];
2444 		mutex_exit(&flock_lock);
2445 		return (gp);
2446 	}
2447 
2448 	ASSERT(initialize == FLK_INIT_GRAPH);
2449 
2450 	if (lock_graph[index] == NULL) {
2451 
2452 		gp_alloc = kmem_zalloc(sizeof (graph_t), KM_SLEEP);
2453 
2454 		/* Initialize the graph */
2455 
2456 		gp_alloc->active_locks.l_next =
2457 		    gp_alloc->active_locks.l_prev =
2458 		    (lock_descriptor_t *)ACTIVE_HEAD(gp_alloc);
2459 		gp_alloc->sleeping_locks.l_next =
2460 		    gp_alloc->sleeping_locks.l_prev =
2461 		    (lock_descriptor_t *)SLEEPING_HEAD(gp_alloc);
2462 		gp_alloc->index = index;
2463 		mutex_init(&gp_alloc->gp_mutex, NULL, MUTEX_DEFAULT, NULL);
2464 	}
2465 
2466 	mutex_enter(&flock_lock);
2467 
2468 	gp = lock_graph[index];
2469 
2470 	/* Recheck the value within flock_lock */
2471 	if (gp == NULL) {
2472 		struct flock_globals *fg;
2473 
2474 		/* We must have previously allocated the graph_t structure */
2475 		ASSERT(gp_alloc != NULL);
2476 		lock_graph[index] = gp = gp_alloc;
2477 		/*
2478 		 * The lockmgr status is only needed if KLM is loaded.
2479 		 */
2480 		if (flock_zone_key != ZONE_KEY_UNINITIALIZED) {
2481 			fg = flk_get_globals();
2482 			fg->lockmgr_status[index] = fg->flk_lockmgr_status;
2483 		}
2484 	}
2485 
2486 	mutex_exit(&flock_lock);
2487 
2488 	if ((gp_alloc != NULL) && (gp != gp_alloc)) {
2489 		/* There was a race to allocate the graph_t and we lost */
2490 		mutex_destroy(&gp_alloc->gp_mutex);
2491 		kmem_free(gp_alloc, sizeof (graph_t));
2492 	}
2493 
2494 	return (gp);
2495 }
2496 
2497 /*
2498  * PSARC case 1997/292
2499  */
2500 int
2501 cl_flk_has_remote_locks_for_nlmid(vnode_t *vp, int nlmid)
2502 {
2503 	lock_descriptor_t *lock;
2504 	int result = 0;
2505 	graph_t *gp;
2506 	int			lock_nlmid;
2507 
2508 	/*
2509 	 * Check to see if node is booted as a cluster. If not, return.
2510 	 */
2511 	if ((cluster_bootflags & CLUSTER_BOOTED) == 0) {
2512 		return (0);
2513 	}
2514 
2515 	gp = flk_get_lock_graph(vp, FLK_USE_GRAPH);
2516 	if (gp == NULL) {
2517 		return (0);
2518 	}
2519 
2520 	mutex_enter(&gp->gp_mutex);
2521 
2522 	SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
2523 
2524 	if (lock) {
2525 		while (lock->l_vnode == vp) {
2526 			/* get NLM id from sysid */
2527 			lock_nlmid = GETNLMID(lock->l_flock.l_sysid);
2528 
2529 			/*
2530 			 * If NLM server request _and_ nlmid of lock matches
2531 			 * nlmid of argument, then we've found a remote lock.
2532 			 */
2533 			if (IS_LOCKMGR(lock) && nlmid == lock_nlmid) {
2534 				result = 1;
2535 				goto done;
2536 			}
2537 			lock = lock->l_next;
2538 		}
2539 	}
2540 
2541 	SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
2542 
2543 	if (lock) {
2544 		while (lock->l_vnode == vp) {
2545 			/* get NLM id from sysid */
2546 			lock_nlmid = GETNLMID(lock->l_flock.l_sysid);
2547 
2548 			/*
2549 			 * If NLM server request _and_ nlmid of lock matches
2550 			 * nlmid of argument, then we've found a remote lock.
2551 			 */
2552 			if (IS_LOCKMGR(lock) && nlmid == lock_nlmid) {
2553 				result = 1;
2554 				goto done;
2555 			}
2556 			lock = lock->l_next;
2557 		}
2558 	}
2559 
2560 done:
2561 	mutex_exit(&gp->gp_mutex);
2562 	return (result);
2563 }
2564 
2565 /*
2566  * Determine whether there are any locks for the given vnode with a remote
2567  * sysid.  Returns zero if not, non-zero if there are.
2568  *
2569  * Note that the return value from this function is potentially invalid
2570  * once it has been returned.  The caller is responsible for providing its
2571  * own synchronization mechanism to ensure that the return value is useful
2572  * (e.g., see nfs_lockcompletion()).
2573  */
2574 int
2575 flk_has_remote_locks(vnode_t *vp)
2576 {
2577 	lock_descriptor_t *lock;
2578 	int result = 0;
2579 	graph_t *gp;
2580 
2581 	gp = flk_get_lock_graph(vp, FLK_USE_GRAPH);
2582 	if (gp == NULL) {
2583 		return (0);
2584 	}
2585 
2586 	mutex_enter(&gp->gp_mutex);
2587 
2588 	SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
2589 
2590 	if (lock) {
2591 		while (lock->l_vnode == vp) {
2592 			if (IS_REMOTE(lock)) {
2593 				result = 1;
2594 				goto done;
2595 			}
2596 			lock = lock->l_next;
2597 		}
2598 	}
2599 
2600 	SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
2601 
2602 	if (lock) {
2603 		while (lock->l_vnode == vp) {
2604 			if (IS_REMOTE(lock)) {
2605 				result = 1;
2606 				goto done;
2607 			}
2608 			lock = lock->l_next;
2609 		}
2610 	}
2611 
2612 done:
2613 	mutex_exit(&gp->gp_mutex);
2614 	return (result);
2615 }
2616 
2617 /*
2618  * Determine whether there are any locks for the given vnode with a remote
2619  * sysid matching given sysid.
2620  * Used by the new (open source) NFS Lock Manager (NLM)
2621  */
2622 int
2623 flk_has_remote_locks_for_sysid(vnode_t *vp, int sysid)
2624 {
2625 	lock_descriptor_t *lock;
2626 	int result = 0;
2627 	graph_t *gp;
2628 
2629 	if (sysid == 0)
2630 		return (0);
2631 
2632 	gp = flk_get_lock_graph(vp, FLK_USE_GRAPH);
2633 	if (gp == NULL) {
2634 		return (0);
2635 	}
2636 
2637 	mutex_enter(&gp->gp_mutex);
2638 
2639 	SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
2640 
2641 	if (lock) {
2642 		while (lock->l_vnode == vp) {
2643 			if (lock->l_flock.l_sysid == sysid) {
2644 				result = 1;
2645 				goto done;
2646 			}
2647 			lock = lock->l_next;
2648 		}
2649 	}
2650 
2651 	SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
2652 
2653 	if (lock) {
2654 		while (lock->l_vnode == vp) {
2655 			if (lock->l_flock.l_sysid == sysid) {
2656 				result = 1;
2657 				goto done;
2658 			}
2659 			lock = lock->l_next;
2660 		}
2661 	}
2662 
2663 done:
2664 	mutex_exit(&gp->gp_mutex);
2665 	return (result);
2666 }
2667 
2668 /*
2669  * Determine if there are any locks owned by the given sysid.
2670  * Returns zero if not, non-zero if there are.  Note that this return code
2671  * could be derived from flk_get_{sleeping,active}_locks, but this routine
2672  * avoids all the memory allocations of those routines.
2673  *
2674  * This routine has the same synchronization issues as
2675  * flk_has_remote_locks.
2676  */
2677 
2678 int
2679 flk_sysid_has_locks(int sysid, int lck_type)
2680 {
2681 	int		has_locks = 0;
2682 	lock_descriptor_t	*lock;
2683 	graph_t 	*gp;
2684 	int		i;
2685 
2686 	for (i = 0; i < HASH_SIZE && !has_locks; i++) {
2687 		mutex_enter(&flock_lock);
2688 		gp = lock_graph[i];
2689 		mutex_exit(&flock_lock);
2690 		if (gp == NULL) {
2691 			continue;
2692 		}
2693 
2694 		mutex_enter(&gp->gp_mutex);
2695 
2696 		if (lck_type & FLK_QUERY_ACTIVE) {
2697 			for (lock = ACTIVE_HEAD(gp)->l_next;
2698 			    lock != ACTIVE_HEAD(gp) && !has_locks;
2699 			    lock = lock->l_next) {
2700 				if (lock->l_flock.l_sysid == sysid)
2701 					has_locks = 1;
2702 			}
2703 		}
2704 
2705 		if (lck_type & FLK_QUERY_SLEEPING) {
2706 			for (lock = SLEEPING_HEAD(gp)->l_next;
2707 			    lock != SLEEPING_HEAD(gp) && !has_locks;
2708 			    lock = lock->l_next) {
2709 				if (lock->l_flock.l_sysid == sysid)
2710 					has_locks = 1;
2711 			}
2712 		}
2713 		mutex_exit(&gp->gp_mutex);
2714 	}
2715 
2716 	return (has_locks);
2717 }
2718 
2719 
2720 /*
2721  * PSARC case 1997/292
2722  *
2723  * Requires: "sysid" is a pair [nlmid, sysid].  The lower half is 16-bit
2724  *  quantity, the real sysid generated by the NLM server; the upper half
2725  *  identifies the node of the cluster where the NLM server ran.
2726  *  This routine is only called by an NLM server running in a cluster.
2727  * Effects: Remove all locks held on behalf of the client identified
2728  *  by "sysid."
2729  */
2730 void
2731 cl_flk_remove_locks_by_sysid(int sysid)
2732 {
2733 	graph_t	*gp;
2734 	int i;
2735 	lock_descriptor_t *lock, *nlock;
2736 
2737 	/*
2738 	 * Check to see if node is booted as a cluster. If not, return.
2739 	 */
2740 	if ((cluster_bootflags & CLUSTER_BOOTED) == 0) {
2741 		return;
2742 	}
2743 
2744 	ASSERT(sysid != 0);
2745 	for (i = 0; i < HASH_SIZE; i++) {
2746 		mutex_enter(&flock_lock);
2747 		gp = lock_graph[i];
2748 		mutex_exit(&flock_lock);
2749 
2750 		if (gp == NULL)
2751 			continue;
2752 
2753 		mutex_enter(&gp->gp_mutex);	/*  get mutex on lock graph */
2754 
2755 		/* signal sleeping requests so that they bail out */
2756 		lock = SLEEPING_HEAD(gp)->l_next;
2757 		while (lock != SLEEPING_HEAD(gp)) {
2758 			nlock = lock->l_next;
2759 			if (lock->l_flock.l_sysid == sysid) {
2760 				INTERRUPT_WAKEUP(lock);
2761 			}
2762 			lock = nlock;
2763 		}
2764 
2765 		/* delete active locks */
2766 		lock = ACTIVE_HEAD(gp)->l_next;
2767 		while (lock != ACTIVE_HEAD(gp)) {
2768 			nlock = lock->l_next;
2769 			if (lock->l_flock.l_sysid == sysid) {
2770 				flk_delete_active_lock(lock, 0);
2771 				flk_wakeup(lock, 1);
2772 				flk_free_lock(lock);
2773 			}
2774 			lock = nlock;
2775 		}
2776 		mutex_exit(&gp->gp_mutex);    /* release mutex on lock graph */
2777 	}
2778 }
2779 
2780 /*
2781  * Delete all locks in the system that belongs to the sysid of the request.
2782  */
2783 
2784 static void
2785 flk_delete_locks_by_sysid(lock_descriptor_t *request)
2786 {
2787 	int	sysid  = request->l_flock.l_sysid;
2788 	lock_descriptor_t *lock, *nlock;
2789 	graph_t	*gp;
2790 	int i;
2791 
2792 	ASSERT(MUTEX_HELD(&request->l_graph->gp_mutex));
2793 	ASSERT(sysid != 0);
2794 
2795 	mutex_exit(&request->l_graph->gp_mutex);
2796 
2797 	for (i = 0; i < HASH_SIZE; i++) {
2798 		mutex_enter(&flock_lock);
2799 		gp = lock_graph[i];
2800 		mutex_exit(&flock_lock);
2801 
2802 		if (gp == NULL)
2803 			continue;
2804 
2805 		mutex_enter(&gp->gp_mutex);
2806 
2807 		/* signal sleeping requests so that they bail out */
2808 		lock = SLEEPING_HEAD(gp)->l_next;
2809 		while (lock != SLEEPING_HEAD(gp)) {
2810 			nlock = lock->l_next;
2811 			if (lock->l_flock.l_sysid == sysid) {
2812 				INTERRUPT_WAKEUP(lock);
2813 			}
2814 			lock = nlock;
2815 		}
2816 
2817 		/* delete active locks */
2818 		lock = ACTIVE_HEAD(gp)->l_next;
2819 		while (lock != ACTIVE_HEAD(gp)) {
2820 			nlock = lock->l_next;
2821 			if (lock->l_flock.l_sysid == sysid) {
2822 				flk_delete_active_lock(lock, 0);
2823 				flk_wakeup(lock, 1);
2824 				flk_free_lock(lock);
2825 			}
2826 			lock = nlock;
2827 		}
2828 		mutex_exit(&gp->gp_mutex);
2829 	}
2830 
2831 	mutex_enter(&request->l_graph->gp_mutex);
2832 }
2833 
2834 /*
2835  * Clustering: Deletes PXFS locks
2836  * Effects: Delete all locks on files in the given file system and with the
2837  *  given PXFS id.
2838  */
2839 void
2840 cl_flk_delete_pxfs_locks(struct vfs *vfsp, int pxfsid)
2841 {
2842 	lock_descriptor_t *lock, *nlock;
2843 	graph_t	*gp;
2844 	int i;
2845 
2846 	for (i = 0; i < HASH_SIZE; i++) {
2847 		mutex_enter(&flock_lock);
2848 		gp = lock_graph[i];
2849 		mutex_exit(&flock_lock);
2850 
2851 		if (gp == NULL)
2852 			continue;
2853 
2854 		mutex_enter(&gp->gp_mutex);
2855 
2856 		/* signal sleeping requests so that they bail out */
2857 		lock = SLEEPING_HEAD(gp)->l_next;
2858 		while (lock != SLEEPING_HEAD(gp)) {
2859 			nlock = lock->l_next;
2860 			if (lock->l_vnode->v_vfsp == vfsp) {
2861 				ASSERT(IS_PXFS(lock));
2862 				if (GETPXFSID(lock->l_flock.l_sysid) ==
2863 				    pxfsid) {
2864 					flk_set_state(lock,
2865 					    FLK_CANCELLED_STATE);
2866 					flk_cancel_sleeping_lock(lock, 1);
2867 				}
2868 			}
2869 			lock = nlock;
2870 		}
2871 
2872 		/* delete active locks */
2873 		lock = ACTIVE_HEAD(gp)->l_next;
2874 		while (lock != ACTIVE_HEAD(gp)) {
2875 			nlock = lock->l_next;
2876 			if (lock->l_vnode->v_vfsp == vfsp) {
2877 				ASSERT(IS_PXFS(lock));
2878 				if (GETPXFSID(lock->l_flock.l_sysid) ==
2879 				    pxfsid) {
2880 					flk_delete_active_lock(lock, 0);
2881 					flk_wakeup(lock, 1);
2882 					flk_free_lock(lock);
2883 				}
2884 			}
2885 			lock = nlock;
2886 		}
2887 		mutex_exit(&gp->gp_mutex);
2888 	}
2889 }
2890 
2891 /*
2892  * Search for a sleeping lock manager lock which matches exactly this lock
2893  * request; if one is found, fake a signal to cancel it.
2894  *
2895  * Return 1 if a matching lock was found, 0 otherwise.
2896  */
2897 
2898 static int
2899 flk_canceled(lock_descriptor_t *request)
2900 {
2901 	lock_descriptor_t *lock, *nlock;
2902 	graph_t *gp = request->l_graph;
2903 	vnode_t *vp = request->l_vnode;
2904 
2905 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
2906 	ASSERT(IS_LOCKMGR(request));
2907 	SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
2908 
2909 	if (lock) {
2910 		while (lock->l_vnode == vp) {
2911 			nlock = lock->l_next;
2912 			if (SAME_OWNER(lock, request) &&
2913 			    lock->l_start == request->l_start &&
2914 			    lock->l_end == request->l_end) {
2915 				INTERRUPT_WAKEUP(lock);
2916 				return (1);
2917 			}
2918 			lock = nlock;
2919 		}
2920 	}
2921 	return (0);
2922 }
2923 
2924 /*
2925  * Remove all non-OFD locks for the vnode belonging to the given pid and sysid.
2926  * That is, since OFD locks are pid-less we'll never match on the incoming
2927  * pid. OFD locks are removed earlier in the close() path via closef() and
2928  * ofdcleanlock().
2929  */
2930 void
2931 cleanlocks(vnode_t *vp, pid_t pid, int sysid)
2932 {
2933 	graph_t	*gp;
2934 	lock_descriptor_t *lock, *nlock;
2935 	lock_descriptor_t *link_stack;
2936 
2937 	STACK_INIT(link_stack);
2938 
2939 	gp = flk_get_lock_graph(vp, FLK_USE_GRAPH);
2940 
2941 	if (gp == NULL)
2942 		return;
2943 	mutex_enter(&gp->gp_mutex);
2944 
2945 	CHECK_SLEEPING_LOCKS(gp);
2946 	CHECK_ACTIVE_LOCKS(gp);
2947 
2948 	SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
2949 
2950 	if (lock) {
2951 		do {
2952 			nlock = lock->l_next;
2953 			if ((lock->l_flock.l_pid == pid ||
2954 			    pid == IGN_PID) &&
2955 			    lock->l_flock.l_sysid == sysid) {
2956 				CANCEL_WAKEUP(lock);
2957 			}
2958 			lock = nlock;
2959 		} while (lock->l_vnode == vp);
2960 	}
2961 
2962 	SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
2963 
2964 	if (lock) {
2965 		do {
2966 			nlock = lock->l_next;
2967 			if ((lock->l_flock.l_pid == pid ||
2968 			    pid == IGN_PID) &&
2969 			    lock->l_flock.l_sysid == sysid) {
2970 				flk_delete_active_lock(lock, 0);
2971 				STACK_PUSH(link_stack, lock, l_stack);
2972 			}
2973 			lock = nlock;
2974 		} while (lock->l_vnode == vp);
2975 	}
2976 
2977 	while ((lock = STACK_TOP(link_stack)) != NULL) {
2978 		STACK_POP(link_stack, l_stack);
2979 		flk_wakeup(lock, 1);
2980 		flk_free_lock(lock);
2981 	}
2982 
2983 	CHECK_SLEEPING_LOCKS(gp);
2984 	CHECK_ACTIVE_LOCKS(gp);
2985 	CHECK_OWNER_LOCKS(gp, pid, sysid, vp);
2986 	mutex_exit(&gp->gp_mutex);
2987 }
2988 
2989 
2990 /*
2991  * Called from 'fs' read and write routines for files that have mandatory
2992  * locking enabled.
2993  */
2994 
2995 int
2996 chklock(struct vnode *vp, int iomode, u_offset_t offset, ssize_t len, int fmode,
2997     caller_context_t *ct)
2998 {
2999 	register int	i;
3000 	struct flock64 	bf;
3001 	int 		error = 0;
3002 
3003 	bf.l_type = (iomode & FWRITE) ? F_WRLCK : F_RDLCK;
3004 	bf.l_whence = 0;
3005 	bf.l_start = offset;
3006 	bf.l_len = len;
3007 	if (ct == NULL) {
3008 		bf.l_pid = curproc->p_pid;
3009 		bf.l_sysid = 0;
3010 	} else {
3011 		bf.l_pid = ct->cc_pid;
3012 		bf.l_sysid = ct->cc_sysid;
3013 	}
3014 	i = (fmode & (FNDELAY|FNONBLOCK)) ? INOFLCK : INOFLCK|SLPFLCK;
3015 	if ((i = reclock(vp, &bf, i, 0, offset, NULL)) != 0 ||
3016 	    bf.l_type != F_UNLCK)
3017 		error = i ? i : EAGAIN;
3018 	return (error);
3019 }
3020 
3021 /*
3022  * convoff - converts the given data (start, whence) to the
3023  * given whence.
3024  */
3025 int
3026 convoff(struct vnode *vp, struct flock64 *lckdat, int whence, offset_t offset)
3027 {
3028 	int 		error;
3029 	struct vattr 	vattr;
3030 
3031 	if ((lckdat->l_whence == 2) || (whence == 2)) {
3032 		vattr.va_mask = AT_SIZE;
3033 		if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))
3034 			return (error);
3035 	}
3036 
3037 	switch (lckdat->l_whence) {
3038 	case 1:
3039 		lckdat->l_start += offset;
3040 		break;
3041 	case 2:
3042 		lckdat->l_start += vattr.va_size;
3043 		/* FALLTHRU */
3044 	case 0:
3045 		break;
3046 	default:
3047 		return (EINVAL);
3048 	}
3049 
3050 	if (lckdat->l_start < 0)
3051 		return (EINVAL);
3052 
3053 	switch (whence) {
3054 	case 1:
3055 		lckdat->l_start -= offset;
3056 		break;
3057 	case 2:
3058 		lckdat->l_start -= vattr.va_size;
3059 		/* FALLTHRU */
3060 	case 0:
3061 		break;
3062 	default:
3063 		return (EINVAL);
3064 	}
3065 
3066 	lckdat->l_whence = (short)whence;
3067 	return (0);
3068 }
3069 
3070 
3071 /* 	proc_graph function definitions */
3072 
3073 /*
3074  * Function checks for deadlock due to the new 'lock'. If deadlock found
3075  * edges of this lock are freed and returned.
3076  */
3077 
3078 static int
3079 flk_check_deadlock(lock_descriptor_t *lock)
3080 {
3081 	proc_vertex_t	*start_vertex, *pvertex;
3082 	proc_vertex_t *dvertex;
3083 	proc_edge_t *pep, *ppep;
3084 	edge_t	*ep, *nep;
3085 	proc_vertex_t *process_stack;
3086 
3087 	/*
3088 	 * OFD style locks are not associated with any process so there is
3089 	 * no proc graph for these. Thus we cannot, and do not, do deadlock
3090 	 * detection.
3091 	 */
3092 	if (lock->l_ofd != NULL)
3093 		return (0);
3094 
3095 	STACK_INIT(process_stack);
3096 
3097 	mutex_enter(&flock_lock);
3098 	start_vertex = flk_get_proc_vertex(lock);
3099 	ASSERT(start_vertex != NULL);
3100 
3101 	/* construct the edges from this process to other processes */
3102 
3103 	ep = FIRST_ADJ(lock);
3104 	while (ep != HEAD(lock)) {
3105 		proc_vertex_t *adj_proc;
3106 
3107 		adj_proc = flk_get_proc_vertex(ep->to_vertex);
3108 		for (pep = start_vertex->edge; pep != NULL; pep = pep->next) {
3109 			if (pep->to_proc == adj_proc) {
3110 				ASSERT(pep->refcount);
3111 				pep->refcount++;
3112 				break;
3113 			}
3114 		}
3115 		if (pep == NULL) {
3116 			pep = flk_get_proc_edge();
3117 			pep->to_proc = adj_proc;
3118 			pep->refcount = 1;
3119 			adj_proc->incount++;
3120 			pep->next = start_vertex->edge;
3121 			start_vertex->edge = pep;
3122 		}
3123 		ep = NEXT_ADJ(ep);
3124 	}
3125 
3126 	ep = FIRST_IN(lock);
3127 
3128 	while (ep != HEAD(lock)) {
3129 		proc_vertex_t *in_proc;
3130 
3131 		in_proc = flk_get_proc_vertex(ep->from_vertex);
3132 
3133 		for (pep = in_proc->edge; pep != NULL; pep = pep->next) {
3134 			if (pep->to_proc == start_vertex) {
3135 				ASSERT(pep->refcount);
3136 				pep->refcount++;
3137 				break;
3138 			}
3139 		}
3140 		if (pep == NULL) {
3141 			pep = flk_get_proc_edge();
3142 			pep->to_proc = start_vertex;
3143 			pep->refcount = 1;
3144 			start_vertex->incount++;
3145 			pep->next = in_proc->edge;
3146 			in_proc->edge = pep;
3147 		}
3148 		ep = NEXT_IN(ep);
3149 	}
3150 
3151 	if (start_vertex->incount == 0) {
3152 		mutex_exit(&flock_lock);
3153 		return (0);
3154 	}
3155 
3156 	flk_proc_graph_uncolor();
3157 
3158 	start_vertex->p_sedge = start_vertex->edge;
3159 
3160 	STACK_PUSH(process_stack, start_vertex, p_stack);
3161 
3162 	while ((pvertex = STACK_TOP(process_stack)) != NULL) {
3163 		for (pep = pvertex->p_sedge; pep != NULL; pep = pep->next) {
3164 			dvertex = pep->to_proc;
3165 			if (!PROC_ARRIVED(dvertex)) {
3166 				STACK_PUSH(process_stack, dvertex, p_stack);
3167 				dvertex->p_sedge = dvertex->edge;
3168 				PROC_ARRIVE(pvertex);
3169 				pvertex->p_sedge = pep->next;
3170 				break;
3171 			}
3172 			if (!PROC_DEPARTED(dvertex))
3173 				goto deadlock;
3174 		}
3175 		if (pep == NULL) {
3176 			PROC_DEPART(pvertex);
3177 			STACK_POP(process_stack, p_stack);
3178 		}
3179 	}
3180 	mutex_exit(&flock_lock);
3181 	return (0);
3182 
3183 deadlock:
3184 
3185 	/* we remove all lock edges and proc edges */
3186 
3187 	ep = FIRST_ADJ(lock);
3188 	while (ep != HEAD(lock)) {
3189 		proc_vertex_t *adj_proc;
3190 		adj_proc = flk_get_proc_vertex(ep->to_vertex);
3191 		nep = NEXT_ADJ(ep);
3192 		IN_LIST_REMOVE(ep);
3193 		ADJ_LIST_REMOVE(ep);
3194 		flk_free_edge(ep);
3195 		ppep = start_vertex->edge;
3196 		for (pep = start_vertex->edge; pep != NULL; ppep = pep,
3197 		    pep = ppep->next) {
3198 			if (pep->to_proc == adj_proc) {
3199 				pep->refcount--;
3200 				if (pep->refcount == 0) {
3201 					if (pep == ppep) {
3202 						start_vertex->edge = pep->next;
3203 					} else {
3204 						ppep->next = pep->next;
3205 					}
3206 					adj_proc->incount--;
3207 					flk_proc_release(adj_proc);
3208 					flk_free_proc_edge(pep);
3209 				}
3210 				break;
3211 			}
3212 		}
3213 		ep = nep;
3214 	}
3215 	ep = FIRST_IN(lock);
3216 	while (ep != HEAD(lock)) {
3217 		proc_vertex_t *in_proc;
3218 		in_proc = flk_get_proc_vertex(ep->from_vertex);
3219 		nep = NEXT_IN(ep);
3220 		IN_LIST_REMOVE(ep);
3221 		ADJ_LIST_REMOVE(ep);
3222 		flk_free_edge(ep);
3223 		ppep = in_proc->edge;
3224 		for (pep = in_proc->edge; pep != NULL; ppep = pep,
3225 		    pep = ppep->next) {
3226 			if (pep->to_proc == start_vertex) {
3227 				pep->refcount--;
3228 				if (pep->refcount == 0) {
3229 					if (pep == ppep) {
3230 						in_proc->edge = pep->next;
3231 					} else {
3232 						ppep->next = pep->next;
3233 					}
3234 					start_vertex->incount--;
3235 					flk_proc_release(in_proc);
3236 					flk_free_proc_edge(pep);
3237 				}
3238 				break;
3239 			}
3240 		}
3241 		ep = nep;
3242 	}
3243 	flk_proc_release(start_vertex);
3244 	mutex_exit(&flock_lock);
3245 	return (1);
3246 }
3247 
3248 /*
3249  * Get a proc vertex. If lock's pvertex value gets a correct proc vertex
3250  * from the list we return that, otherwise we allocate one. If necessary,
3251  * we grow the list of vertices also.
3252  */
3253 
3254 static proc_vertex_t *
3255 flk_get_proc_vertex(lock_descriptor_t *lock)
3256 {
3257 	int i;
3258 	proc_vertex_t	*pv;
3259 	proc_vertex_t	**palloc;
3260 
3261 	ASSERT(MUTEX_HELD(&flock_lock));
3262 	if (lock->pvertex != -1) {
3263 		ASSERT(lock->pvertex >= 0);
3264 		pv = pgraph.proc[lock->pvertex];
3265 		if (pv != NULL && PROC_SAME_OWNER(lock, pv)) {
3266 			return (pv);
3267 		}
3268 	}
3269 	for (i = 0; i < pgraph.gcount; i++) {
3270 		pv = pgraph.proc[i];
3271 		if (pv != NULL && PROC_SAME_OWNER(lock, pv)) {
3272 			lock->pvertex = pv->index = i;
3273 			return (pv);
3274 		}
3275 	}
3276 	pv = kmem_zalloc(sizeof (struct proc_vertex), KM_SLEEP);
3277 	pv->pid = lock->l_flock.l_pid;
3278 	pv->sysid = lock->l_flock.l_sysid;
3279 	flk_proc_vertex_allocs++;
3280 	if (pgraph.free != 0) {
3281 		for (i = 0; i < pgraph.gcount; i++) {
3282 			if (pgraph.proc[i] == NULL) {
3283 				pgraph.proc[i] = pv;
3284 				lock->pvertex = pv->index = i;
3285 				pgraph.free--;
3286 				return (pv);
3287 			}
3288 		}
3289 	}
3290 	palloc = kmem_zalloc((pgraph.gcount + PROC_CHUNK) *
3291 	    sizeof (proc_vertex_t *), KM_SLEEP);
3292 
3293 	if (pgraph.proc) {
3294 		bcopy(pgraph.proc, palloc,
3295 		    pgraph.gcount * sizeof (proc_vertex_t *));
3296 
3297 		kmem_free(pgraph.proc,
3298 		    pgraph.gcount * sizeof (proc_vertex_t *));
3299 	}
3300 	pgraph.proc = palloc;
3301 	pgraph.free += (PROC_CHUNK - 1);
3302 	pv->index = lock->pvertex = pgraph.gcount;
3303 	pgraph.gcount += PROC_CHUNK;
3304 	pgraph.proc[pv->index] = pv;
3305 	return (pv);
3306 }
3307 
3308 /*
3309  * Allocate a proc edge.
3310  */
3311 
3312 static proc_edge_t *
3313 flk_get_proc_edge()
3314 {
3315 	proc_edge_t *pep;
3316 
3317 	pep = kmem_zalloc(sizeof (proc_edge_t), KM_SLEEP);
3318 	flk_proc_edge_allocs++;
3319 	return (pep);
3320 }
3321 
3322 /*
3323  * Free the proc edge. Called whenever its reference count goes to zero.
3324  */
3325 
3326 static void
3327 flk_free_proc_edge(proc_edge_t *pep)
3328 {
3329 	ASSERT(pep->refcount == 0);
3330 	kmem_free((void *)pep, sizeof (proc_edge_t));
3331 	flk_proc_edge_frees++;
3332 }
3333 
3334 /*
3335  * Color the graph explicitly done only when the mark value hits max value.
3336  */
3337 
3338 static void
3339 flk_proc_graph_uncolor()
3340 {
3341 	int i;
3342 
3343 	if (pgraph.mark == UINT_MAX) {
3344 		for (i = 0; i < pgraph.gcount; i++)
3345 			if (pgraph.proc[i] != NULL) {
3346 				pgraph.proc[i]->atime = 0;
3347 				pgraph.proc[i]->dtime = 0;
3348 			}
3349 		pgraph.mark = 1;
3350 	} else {
3351 		pgraph.mark++;
3352 	}
3353 }
3354 
3355 /*
3356  * Release the proc vertex iff both there are no in edges and out edges
3357  */
3358 
3359 static void
3360 flk_proc_release(proc_vertex_t *proc)
3361 {
3362 	ASSERT(MUTEX_HELD(&flock_lock));
3363 	if (proc->edge == NULL && proc->incount == 0) {
3364 		pgraph.proc[proc->index] = NULL;
3365 		pgraph.free++;
3366 		kmem_free(proc, sizeof (proc_vertex_t));
3367 		flk_proc_vertex_frees++;
3368 	}
3369 }
3370 
3371 /*
3372  * Updates process graph to reflect change in a lock_graph.
3373  * Note: We should call this function only after we have a correctly
3374  * recomputed lock graph. Otherwise we might miss a deadlock detection.
3375  * eg: in function flk_relation() we call this function after flk_recompute_
3376  * dependencies() otherwise if a process tries to lock a vnode hashed
3377  * into another graph it might sleep for ever.
3378  */
3379 
3380 static void
3381 flk_update_proc_graph(edge_t *ep, int delete)
3382 {
3383 	proc_vertex_t *toproc, *fromproc;
3384 	proc_edge_t *pep, *prevpep;
3385 
3386 	mutex_enter(&flock_lock);
3387 
3388 	/*
3389 	 * OFD style locks are not associated with any process so there is
3390 	 * no proc graph for these.
3391 	 */
3392 	if (ep->from_vertex->l_ofd != NULL) {
3393 		mutex_exit(&flock_lock);
3394 		return;
3395 	}
3396 
3397 	toproc = flk_get_proc_vertex(ep->to_vertex);
3398 	fromproc = flk_get_proc_vertex(ep->from_vertex);
3399 
3400 	if (!delete)
3401 		goto add;
3402 	pep = prevpep = fromproc->edge;
3403 
3404 	ASSERT(pep != NULL);
3405 	while (pep != NULL) {
3406 		if (pep->to_proc == toproc) {
3407 			ASSERT(pep->refcount > 0);
3408 			pep->refcount--;
3409 			if (pep->refcount == 0) {
3410 				if (pep == prevpep) {
3411 					fromproc->edge = pep->next;
3412 				} else {
3413 					prevpep->next = pep->next;
3414 				}
3415 				toproc->incount--;
3416 				flk_proc_release(toproc);
3417 				flk_free_proc_edge(pep);
3418 			}
3419 			break;
3420 		}
3421 		prevpep = pep;
3422 		pep = pep->next;
3423 	}
3424 	flk_proc_release(fromproc);
3425 	mutex_exit(&flock_lock);
3426 	return;
3427 add:
3428 
3429 	pep = fromproc->edge;
3430 
3431 	while (pep != NULL) {
3432 		if (pep->to_proc == toproc) {
3433 			ASSERT(pep->refcount > 0);
3434 			pep->refcount++;
3435 			break;
3436 		}
3437 		pep = pep->next;
3438 	}
3439 	if (pep == NULL) {
3440 		pep = flk_get_proc_edge();
3441 		pep->to_proc = toproc;
3442 		pep->refcount = 1;
3443 		toproc->incount++;
3444 		pep->next = fromproc->edge;
3445 		fromproc->edge = pep;
3446 	}
3447 	mutex_exit(&flock_lock);
3448 }
3449 
3450 /*
3451  * Set the control status for lock manager requests.
3452  *
3453  */
3454 
3455 /*
3456  * PSARC case 1997/292
3457  *
3458  * Requires: "nlmid" must be >= 1 and <= clconf_maximum_nodeid().
3459  * Effects: Set the state of the NLM server identified by "nlmid"
3460  *   in the NLM registry to state "nlm_state."
3461  *   Raises exception no_such_nlm if "nlmid" doesn't identify a known
3462  *   NLM server to this LLM.
3463  *   Note that when this routine is called with NLM_SHUTTING_DOWN there
3464  *   may be locks requests that have gotten started but not finished.  In
3465  *   particular, there may be blocking requests that are in the callback code
3466  *   before sleeping (so they're not holding the lock for the graph).  If
3467  *   such a thread reacquires the graph's lock (to go to sleep) after
3468  *   NLM state in the NLM registry  is set to a non-up value,
3469  *   it will notice the status and bail out.  If the request gets
3470  *   granted before the thread can check the NLM registry, let it
3471  *   continue normally.  It will get flushed when we are called with NLM_DOWN.
3472  *
3473  * Modifies: nlm_reg_obj (global)
3474  * Arguments:
3475  *    nlmid	(IN):    id uniquely identifying an NLM server
3476  *    nlm_state (IN):    NLM server state to change "nlmid" to
3477  */
3478 void
3479 cl_flk_set_nlm_status(int nlmid, flk_nlm_status_t nlm_state)
3480 {
3481 	/*
3482 	 * Check to see if node is booted as a cluster. If not, return.
3483 	 */
3484 	if ((cluster_bootflags & CLUSTER_BOOTED) == 0) {
3485 		return;
3486 	}
3487 
3488 	/*
3489 	 * Check for development/debugging.  It is possible to boot a node
3490 	 * in non-cluster mode, and then run a special script, currently
3491 	 * available only to developers, to bring up the node as part of a
3492 	 * cluster.  The problem is that running such a script does not
3493 	 * result in the routine flk_init() being called and hence global array
3494 	 * nlm_reg_status is NULL.  The NLM thinks it's in cluster mode,
3495 	 * but the LLM needs to do an additional check to see if the global
3496 	 * array has been created or not. If nlm_reg_status is NULL, then
3497 	 * return, else continue.
3498 	 */
3499 	if (nlm_reg_status == NULL) {
3500 		return;
3501 	}
3502 
3503 	ASSERT(nlmid <= nlm_status_size && nlmid >= 0);
3504 	mutex_enter(&nlm_reg_lock);
3505 
3506 	if (FLK_REGISTRY_IS_NLM_UNKNOWN(nlm_reg_status, nlmid)) {
3507 		/*
3508 		 * If the NLM server "nlmid" is unknown in the NLM registry,
3509 		 * add it to the registry in the nlm shutting down state.
3510 		 */
3511 		FLK_REGISTRY_CHANGE_NLM_STATE(nlm_reg_status, nlmid,
3512 		    FLK_NLM_SHUTTING_DOWN);
3513 	} else {
3514 		/*
3515 		 * Change the state of the NLM server identified by "nlmid"
3516 		 * in the NLM registry to the argument "nlm_state."
3517 		 */
3518 		FLK_REGISTRY_CHANGE_NLM_STATE(nlm_reg_status, nlmid,
3519 		    nlm_state);
3520 	}
3521 
3522 	/*
3523 	 *  The reason we must register the NLM server that is shutting down
3524 	 *  with an LLM that doesn't already know about it (never sent a lock
3525 	 *  request) is to handle correctly a race between shutdown and a new
3526 	 *  lock request.  Suppose that a shutdown request from the NLM server
3527 	 *  invokes this routine at the LLM, and a thread is spawned to
3528 	 *  service the request. Now suppose a new lock request is in
3529 	 *  progress and has already passed the first line of defense in
3530 	 *  reclock(), which denies new locks requests from NLM servers
3531 	 *  that are not in the NLM_UP state.  After the current routine
3532 	 *  is invoked for both phases of shutdown, the routine will return,
3533 	 *  having done nothing, and the lock request will proceed and
3534 	 *  probably be granted.  The problem is that the shutdown was ignored
3535 	 *  by the lock request because there was no record of that NLM server
3536 	 *  shutting down.   We will be in the peculiar position of thinking
3537 	 *  that we've shutdown the NLM server and all locks at all LLMs have
3538 	 *  been discarded, but in fact there's still one lock held.
3539 	 *  The solution is to record the existence of NLM server and change
3540 	 *  its state immediately to NLM_SHUTTING_DOWN.  The lock request in
3541 	 *  progress may proceed because the next phase NLM_DOWN will catch
3542 	 *  this lock and discard it.
3543 	 */
3544 	mutex_exit(&nlm_reg_lock);
3545 
3546 	switch (nlm_state) {
3547 	case FLK_NLM_UP:
3548 		/*
3549 		 * Change the NLM state of all locks still held on behalf of
3550 		 * the NLM server identified by "nlmid" to NLM_UP.
3551 		 */
3552 		cl_flk_change_nlm_state_all_locks(nlmid, FLK_NLM_UP);
3553 		break;
3554 
3555 	case FLK_NLM_SHUTTING_DOWN:
3556 		/*
3557 		 * Wake up all sleeping locks for the NLM server identified
3558 		 * by "nlmid." Note that eventually all woken threads will
3559 		 * have their lock requests cancelled and descriptors
3560 		 * removed from the sleeping lock list.  Note that the NLM
3561 		 * server state associated with each lock descriptor is
3562 		 * changed to FLK_NLM_SHUTTING_DOWN.
3563 		 */
3564 		cl_flk_wakeup_sleeping_nlm_locks(nlmid);
3565 		break;
3566 
3567 	case FLK_NLM_DOWN:
3568 		/*
3569 		 * Discard all active, granted locks for this NLM server
3570 		 * identified by "nlmid."
3571 		 */
3572 		cl_flk_unlock_nlm_granted(nlmid);
3573 		break;
3574 
3575 	default:
3576 		panic("cl_set_nlm_status: bad status (%d)", nlm_state);
3577 	}
3578 }
3579 
3580 /*
3581  * Set the control status for lock manager requests.
3582  *
3583  * Note that when this routine is called with FLK_WAKEUP_SLEEPERS, there
3584  * may be locks requests that have gotten started but not finished.  In
3585  * particular, there may be blocking requests that are in the callback code
3586  * before sleeping (so they're not holding the lock for the graph).  If
3587  * such a thread reacquires the graph's lock (to go to sleep) after
3588  * flk_lockmgr_status is set to a non-up value, it will notice the status
3589  * and bail out.  If the request gets granted before the thread can check
3590  * flk_lockmgr_status, let it continue normally.  It will get flushed when
3591  * we are called with FLK_LOCKMGR_DOWN.
3592  */
3593 
3594 void
3595 flk_set_lockmgr_status(flk_lockmgr_status_t status)
3596 {
3597 	int i;
3598 	graph_t *gp;
3599 	struct flock_globals *fg;
3600 
3601 	fg = flk_get_globals();
3602 	ASSERT(fg != NULL);
3603 
3604 	mutex_enter(&flock_lock);
3605 	fg->flk_lockmgr_status = status;
3606 	mutex_exit(&flock_lock);
3607 
3608 	/*
3609 	 * If the lock manager is coming back up, all that's needed is to
3610 	 * propagate this information to the graphs.  If the lock manager
3611 	 * is going down, additional action is required, and each graph's
3612 	 * copy of the state is updated atomically with this other action.
3613 	 */
3614 	switch (status) {
3615 	case FLK_LOCKMGR_UP:
3616 		for (i = 0; i < HASH_SIZE; i++) {
3617 			mutex_enter(&flock_lock);
3618 			gp = lock_graph[i];
3619 			mutex_exit(&flock_lock);
3620 			if (gp == NULL)
3621 				continue;
3622 			mutex_enter(&gp->gp_mutex);
3623 			fg->lockmgr_status[i] = status;
3624 			mutex_exit(&gp->gp_mutex);
3625 		}
3626 		break;
3627 	case FLK_WAKEUP_SLEEPERS:
3628 		wakeup_sleeping_lockmgr_locks(fg);
3629 		break;
3630 	case FLK_LOCKMGR_DOWN:
3631 		unlock_lockmgr_granted(fg);
3632 		break;
3633 	default:
3634 		panic("flk_set_lockmgr_status: bad status (%d)", status);
3635 		break;
3636 	}
3637 }
3638 
3639 /*
3640  * This routine returns all the locks that are active or sleeping and are
3641  * associated with a particular set of identifiers.  If lock_state != 0, then
3642  * only locks that match the lock_state are returned. If lock_state == 0, then
3643  * all locks are returned. If pid == NOPID, the pid is ignored.  If
3644  * use_sysid is FALSE, then the sysid is ignored.  If vp is NULL, then the
3645  * vnode pointer is ignored.
3646  *
3647  * A list containing the vnode pointer and an flock structure
3648  * describing the lock is returned.  Each element in the list is
3649  * dynamically allocated and must be freed by the caller.  The
3650  * last item in the list is denoted by a NULL value in the ll_next
3651  * field.
3652  *
3653  * The vnode pointers returned are held.  The caller is responsible
3654  * for releasing these.  Note that the returned list is only a snapshot of
3655  * the current lock information, and that it is a snapshot of a moving
3656  * target (only one graph is locked at a time).
3657  */
3658 
3659 locklist_t *
3660 get_lock_list(int list_type, int lock_state, int sysid, boolean_t use_sysid,
3661     pid_t pid, const vnode_t *vp, zoneid_t zoneid)
3662 {
3663 	lock_descriptor_t	*lock;
3664 	lock_descriptor_t	*graph_head;
3665 	locklist_t		listhead;
3666 	locklist_t		*llheadp;
3667 	locklist_t		*llp;
3668 	locklist_t		*lltp;
3669 	graph_t			*gp;
3670 	int			i;
3671 	int			first_index; /* graph index */
3672 	int			num_indexes; /* graph index */
3673 
3674 	ASSERT((list_type == FLK_ACTIVE_STATE) ||
3675 	    (list_type == FLK_SLEEPING_STATE));
3676 
3677 	/*
3678 	 * Get a pointer to something to use as a list head while building
3679 	 * the rest of the list.
3680 	 */
3681 	llheadp = &listhead;
3682 	lltp = llheadp;
3683 	llheadp->ll_next = (locklist_t *)NULL;
3684 
3685 	/* Figure out which graphs we want to look at. */
3686 	if (vp == NULL) {
3687 		first_index = 0;
3688 		num_indexes = HASH_SIZE;
3689 	} else {
3690 		first_index = HASH_INDEX(vp);
3691 		num_indexes = 1;
3692 	}
3693 
3694 	for (i = first_index; i < first_index + num_indexes; i++) {
3695 		mutex_enter(&flock_lock);
3696 		gp = lock_graph[i];
3697 		mutex_exit(&flock_lock);
3698 		if (gp == NULL) {
3699 			continue;
3700 		}
3701 
3702 		mutex_enter(&gp->gp_mutex);
3703 		graph_head = (list_type == FLK_ACTIVE_STATE) ?
3704 		    ACTIVE_HEAD(gp) : SLEEPING_HEAD(gp);
3705 		for (lock = graph_head->l_next;
3706 		    lock != graph_head;
3707 		    lock = lock->l_next) {
3708 			if (use_sysid && lock->l_flock.l_sysid != sysid)
3709 				continue;
3710 			if (pid != NOPID && lock->l_flock.l_pid != pid)
3711 				continue;
3712 			if (vp != NULL && lock->l_vnode != vp)
3713 				continue;
3714 			if (lock_state && !(lock_state & lock->l_state))
3715 				continue;
3716 			if (zoneid != lock->l_zoneid && zoneid != ALL_ZONES)
3717 				continue;
3718 			/*
3719 			 * A matching lock was found.  Allocate
3720 			 * space for a new locklist entry and fill
3721 			 * it in.
3722 			 */
3723 			llp = kmem_alloc(sizeof (locklist_t), KM_SLEEP);
3724 			lltp->ll_next = llp;
3725 			VN_HOLD(lock->l_vnode);
3726 			llp->ll_vp = lock->l_vnode;
3727 			create_flock(lock, &(llp->ll_flock));
3728 			llp->ll_next = (locklist_t *)NULL;
3729 			lltp = llp;
3730 		}
3731 		mutex_exit(&gp->gp_mutex);
3732 	}
3733 
3734 	llp = llheadp->ll_next;
3735 	return (llp);
3736 }
3737 
3738 /*
3739  * These two functions are simply interfaces to get_lock_list.  They return
3740  * a list of sleeping or active locks for the given sysid and pid.  See
3741  * get_lock_list for details.
3742  *
3743  * In either case we don't particularly care to specify the zone of interest;
3744  * the sysid-space is global across zones, so the sysid will map to exactly one
3745  * zone, and we'll return information for that zone.
3746  */
3747 
3748 locklist_t *
3749 flk_get_sleeping_locks(int sysid, pid_t pid)
3750 {
3751 	return (get_lock_list(FLK_SLEEPING_STATE, 0, sysid, B_TRUE, pid, NULL,
3752 	    ALL_ZONES));
3753 }
3754 
3755 locklist_t *
3756 flk_get_active_locks(int sysid, pid_t pid)
3757 {
3758 	return (get_lock_list(FLK_ACTIVE_STATE, 0, sysid, B_TRUE, pid, NULL,
3759 	    ALL_ZONES));
3760 }
3761 
3762 /*
3763  * Another interface to get_lock_list.  This one returns all the active
3764  * locks for a given vnode.  Again, see get_lock_list for details.
3765  *
3766  * We don't need to specify which zone's locks we're interested in.  The matter
3767  * would only be interesting if the vnode belonged to NFS, and NFS vnodes can't
3768  * be used by multiple zones, so the list of locks will all be from the right
3769  * zone.
3770  */
3771 
3772 locklist_t *
3773 flk_active_locks_for_vp(const vnode_t *vp)
3774 {
3775 	return (get_lock_list(FLK_ACTIVE_STATE, 0, 0, B_FALSE, NOPID, vp,
3776 	    ALL_ZONES));
3777 }
3778 
3779 /*
3780  * Another interface to get_lock_list.  This one returns all the active
3781  * nbmand locks for a given vnode.  Again, see get_lock_list for details.
3782  *
3783  * See the comment for flk_active_locks_for_vp() for why we don't care to
3784  * specify the particular zone of interest.
3785  */
3786 locklist_t *
3787 flk_active_nbmand_locks_for_vp(const vnode_t *vp)
3788 {
3789 	return (get_lock_list(FLK_ACTIVE_STATE, NBMAND_LOCK, 0, B_FALSE,
3790 	    NOPID, vp, ALL_ZONES));
3791 }
3792 
3793 /*
3794  * Another interface to get_lock_list.  This one returns all the active
3795  * nbmand locks for a given pid.  Again, see get_lock_list for details.
3796  *
3797  * The zone doesn't need to be specified here; the locks held by a
3798  * particular process will either be local (ie, non-NFS) or from the zone
3799  * the process is executing in.  This is because other parts of the system
3800  * ensure that an NFS vnode can't be used in a zone other than that in
3801  * which it was opened.
3802  */
3803 locklist_t *
3804 flk_active_nbmand_locks(pid_t pid)
3805 {
3806 	return (get_lock_list(FLK_ACTIVE_STATE, NBMAND_LOCK, 0, B_FALSE,
3807 	    pid, NULL, ALL_ZONES));
3808 }
3809 
3810 /*
3811  * Free up all entries in the locklist.
3812  */
3813 void
3814 flk_free_locklist(locklist_t *llp)
3815 {
3816 	locklist_t *next_llp;
3817 
3818 	while (llp) {
3819 		next_llp = llp->ll_next;
3820 		VN_RELE(llp->ll_vp);
3821 		kmem_free(llp, sizeof (*llp));
3822 		llp = next_llp;
3823 	}
3824 }
3825 
3826 static void
3827 cl_flk_change_nlm_state_all_locks(int nlmid, flk_nlm_status_t nlm_state)
3828 {
3829 	/*
3830 	 * For each graph "lg" in the hash table lock_graph do
3831 	 * a.  Get the list of sleeping locks
3832 	 * b.  For each lock descriptor in the list do
3833 	 *	i.   If the requested lock is an NLM server request AND
3834 	 *		the nlmid is the same as the routine argument then
3835 	 *		change the lock descriptor's state field to
3836 	 *		"nlm_state."
3837 	 * c.  Get the list of active locks
3838 	 * d.  For each lock descriptor in the list do
3839 	 *	i.   If the requested lock is an NLM server request AND
3840 	 *		the nlmid is the same as the routine argument then
3841 	 *		change the lock descriptor's state field to
3842 	 *		"nlm_state."
3843 	 */
3844 
3845 	int			i;
3846 	graph_t			*gp;			/* lock graph */
3847 	lock_descriptor_t	*lock;			/* lock */
3848 	lock_descriptor_t	*nlock = NULL;		/* next lock */
3849 	int			lock_nlmid;
3850 
3851 	for (i = 0; i < HASH_SIZE; i++) {
3852 		mutex_enter(&flock_lock);
3853 		gp = lock_graph[i];
3854 		mutex_exit(&flock_lock);
3855 		if (gp == NULL) {
3856 			continue;
3857 		}
3858 
3859 		/* Get list of sleeping locks in current lock graph. */
3860 		mutex_enter(&gp->gp_mutex);
3861 		for (lock = SLEEPING_HEAD(gp)->l_next;
3862 		    lock != SLEEPING_HEAD(gp);
3863 		    lock = nlock) {
3864 			nlock = lock->l_next;
3865 			/* get NLM id */
3866 			lock_nlmid = GETNLMID(lock->l_flock.l_sysid);
3867 
3868 			/*
3869 			 * If NLM server request AND nlmid of lock matches
3870 			 * nlmid of argument, then set the NLM state of the
3871 			 * lock to "nlm_state."
3872 			 */
3873 			if (IS_LOCKMGR(lock) && nlmid == lock_nlmid) {
3874 				SET_NLM_STATE(lock, nlm_state);
3875 			}
3876 		}
3877 
3878 		/* Get list of active locks in current lock graph. */
3879 		for (lock = ACTIVE_HEAD(gp)->l_next;
3880 		    lock != ACTIVE_HEAD(gp);
3881 		    lock = nlock) {
3882 			nlock = lock->l_next;
3883 			/* get NLM id */
3884 			lock_nlmid = GETNLMID(lock->l_flock.l_sysid);
3885 
3886 			/*
3887 			 * If NLM server request AND nlmid of lock matches
3888 			 * nlmid of argument, then set the NLM state of the
3889 			 * lock to "nlm_state."
3890 			 */
3891 			if (IS_LOCKMGR(lock) && nlmid == lock_nlmid) {
3892 				ASSERT(IS_ACTIVE(lock));
3893 				SET_NLM_STATE(lock, nlm_state);
3894 			}
3895 		}
3896 		mutex_exit(&gp->gp_mutex);
3897 	}
3898 }
3899 
3900 /*
3901  * Requires: "nlmid" >= 1 and <= clconf_maximum_nodeid().
3902  * Effects: Find all sleeping lock manager requests _only_ for the NLM server
3903  *   identified by "nlmid." Poke those lock requests.
3904  */
3905 static void
3906 cl_flk_wakeup_sleeping_nlm_locks(int nlmid)
3907 {
3908 	lock_descriptor_t *lock;
3909 	lock_descriptor_t *nlock = NULL; /* next lock */
3910 	int i;
3911 	graph_t *gp;
3912 	int	lock_nlmid;
3913 
3914 	for (i = 0; i < HASH_SIZE; i++) {
3915 		mutex_enter(&flock_lock);
3916 		gp = lock_graph[i];
3917 		mutex_exit(&flock_lock);
3918 		if (gp == NULL) {
3919 			continue;
3920 		}
3921 
3922 		mutex_enter(&gp->gp_mutex);
3923 		for (lock = SLEEPING_HEAD(gp)->l_next;
3924 		    lock != SLEEPING_HEAD(gp);
3925 		    lock = nlock) {
3926 			nlock = lock->l_next;
3927 			/*
3928 			 * If NLM server request _and_ nlmid of lock matches
3929 			 * nlmid of argument, then set the NLM state of the
3930 			 * lock to NLM_SHUTTING_DOWN, and wake up sleeping
3931 			 * request.
3932 			 */
3933 			if (IS_LOCKMGR(lock)) {
3934 				/* get NLM id */
3935 				lock_nlmid =
3936 				    GETNLMID(lock->l_flock.l_sysid);
3937 				if (nlmid == lock_nlmid) {
3938 					SET_NLM_STATE(lock,
3939 					    FLK_NLM_SHUTTING_DOWN);
3940 					INTERRUPT_WAKEUP(lock);
3941 				}
3942 			}
3943 		}
3944 		mutex_exit(&gp->gp_mutex);
3945 	}
3946 }
3947 
3948 /*
3949  * Requires: "nlmid" >= 1 and <= clconf_maximum_nodeid()
3950  * Effects:  Find all active (granted) lock manager locks _only_ for the
3951  *   NLM server identified by "nlmid" and release them.
3952  */
3953 static void
3954 cl_flk_unlock_nlm_granted(int nlmid)
3955 {
3956 	lock_descriptor_t *lock;
3957 	lock_descriptor_t *nlock = NULL; /* next lock */
3958 	int i;
3959 	graph_t *gp;
3960 	int	lock_nlmid;
3961 
3962 	for (i = 0; i < HASH_SIZE; i++) {
3963 		mutex_enter(&flock_lock);
3964 		gp = lock_graph[i];
3965 		mutex_exit(&flock_lock);
3966 		if (gp == NULL) {
3967 			continue;
3968 		}
3969 
3970 		mutex_enter(&gp->gp_mutex);
3971 		for (lock = ACTIVE_HEAD(gp)->l_next;
3972 		    lock != ACTIVE_HEAD(gp);
3973 		    lock = nlock) {
3974 			nlock = lock->l_next;
3975 			ASSERT(IS_ACTIVE(lock));
3976 
3977 			/*
3978 			 * If it's an  NLM server request _and_ nlmid of
3979 			 * the lock matches nlmid of argument, then
3980 			 * remove the active lock the list, wakup blocked
3981 			 * threads, and free the storage for the lock.
3982 			 * Note that there's no need to mark the NLM state
3983 			 * of this lock to NLM_DOWN because the lock will
3984 			 * be deleted anyway and its storage freed.
3985 			 */
3986 			if (IS_LOCKMGR(lock)) {
3987 				/* get NLM id */
3988 				lock_nlmid = GETNLMID(lock->l_flock.l_sysid);
3989 				if (nlmid == lock_nlmid) {
3990 					flk_delete_active_lock(lock, 0);
3991 					flk_wakeup(lock, 1);
3992 					flk_free_lock(lock);
3993 				}
3994 			}
3995 		}
3996 		mutex_exit(&gp->gp_mutex);
3997 	}
3998 }
3999 
4000 /*
4001  * Find all sleeping lock manager requests and poke them.
4002  */
4003 static void
4004 wakeup_sleeping_lockmgr_locks(struct flock_globals *fg)
4005 {
4006 	lock_descriptor_t *lock;
4007 	lock_descriptor_t *nlock = NULL; /* next lock */
4008 	int i;
4009 	graph_t *gp;
4010 	zoneid_t zoneid = getzoneid();
4011 
4012 	for (i = 0; i < HASH_SIZE; i++) {
4013 		mutex_enter(&flock_lock);
4014 		gp = lock_graph[i];
4015 		mutex_exit(&flock_lock);
4016 		if (gp == NULL) {
4017 			continue;
4018 		}
4019 
4020 		mutex_enter(&gp->gp_mutex);
4021 		fg->lockmgr_status[i] = FLK_WAKEUP_SLEEPERS;
4022 		for (lock = SLEEPING_HEAD(gp)->l_next;
4023 		    lock != SLEEPING_HEAD(gp);
4024 		    lock = nlock) {
4025 			nlock = lock->l_next;
4026 			if (IS_LOCKMGR(lock) && lock->l_zoneid == zoneid) {
4027 				INTERRUPT_WAKEUP(lock);
4028 			}
4029 		}
4030 		mutex_exit(&gp->gp_mutex);
4031 	}
4032 }
4033 
4034 
4035 /*
4036  * Find all active (granted) lock manager locks and release them.
4037  */
4038 static void
4039 unlock_lockmgr_granted(struct flock_globals *fg)
4040 {
4041 	lock_descriptor_t *lock;
4042 	lock_descriptor_t *nlock = NULL; /* next lock */
4043 	int i;
4044 	graph_t *gp;
4045 	zoneid_t zoneid = getzoneid();
4046 
4047 	for (i = 0; i < HASH_SIZE; i++) {
4048 		mutex_enter(&flock_lock);
4049 		gp = lock_graph[i];
4050 		mutex_exit(&flock_lock);
4051 		if (gp == NULL) {
4052 			continue;
4053 		}
4054 
4055 		mutex_enter(&gp->gp_mutex);
4056 		fg->lockmgr_status[i] = FLK_LOCKMGR_DOWN;
4057 		for (lock = ACTIVE_HEAD(gp)->l_next;
4058 		    lock != ACTIVE_HEAD(gp);
4059 		    lock = nlock) {
4060 			nlock = lock->l_next;
4061 			if (IS_LOCKMGR(lock) && lock->l_zoneid == zoneid) {
4062 				ASSERT(IS_ACTIVE(lock));
4063 				flk_delete_active_lock(lock, 0);
4064 				flk_wakeup(lock, 1);
4065 				flk_free_lock(lock);
4066 			}
4067 		}
4068 		mutex_exit(&gp->gp_mutex);
4069 	}
4070 }
4071 
4072 
4073 /*
4074  * Wait until a lock is granted, cancelled, or interrupted.
4075  */
4076 
4077 static void
4078 wait_for_lock(lock_descriptor_t *request)
4079 {
4080 	graph_t *gp = request->l_graph;
4081 
4082 	ASSERT(MUTEX_HELD(&gp->gp_mutex));
4083 
4084 	while (!(IS_GRANTED(request)) && !(IS_CANCELLED(request)) &&
4085 	    !(IS_INTERRUPTED(request))) {
4086 		if (!cv_wait_sig(&request->l_cv, &gp->gp_mutex)) {
4087 			flk_set_state(request, FLK_INTERRUPTED_STATE);
4088 			request->l_state |= INTERRUPTED_LOCK;
4089 		}
4090 	}
4091 }
4092 
4093 /*
4094  * Create an flock structure from the existing lock information
4095  *
4096  * This routine is used to create flock structures for the lock manager
4097  * to use in a reclaim request.  Since the lock was originated on this
4098  * host, it must be conforming to UNIX semantics, so no checking is
4099  * done to make sure it falls within the lower half of the 32-bit range.
4100  */
4101 
4102 static void
4103 create_flock(lock_descriptor_t *lp, flock64_t *flp)
4104 {
4105 	ASSERT(lp->l_end == MAX_U_OFFSET_T || lp->l_end <= MAXEND);
4106 	ASSERT(lp->l_end >= lp->l_start);
4107 
4108 	flp->l_type = lp->l_type;
4109 	flp->l_whence = 0;
4110 	flp->l_start = lp->l_start;
4111 	flp->l_len = (lp->l_end == MAX_U_OFFSET_T) ? 0 :
4112 	    (lp->l_end - lp->l_start + 1);
4113 	flp->l_sysid = lp->l_flock.l_sysid;
4114 	flp->l_pid = lp->l_flock.l_pid;
4115 }
4116 
4117 /*
4118  * Convert flock_t data describing a lock range into unsigned long starting
4119  * and ending points, which are put into lock_request.  Returns 0 or an
4120  * errno value.
4121  */
4122 
4123 int
4124 flk_convert_lock_data(vnode_t *vp, flock64_t *flp,
4125     u_offset_t *start, u_offset_t *end, offset_t offset)
4126 {
4127 	struct vattr	vattr;
4128 	int	error;
4129 
4130 	/*
4131 	 * Determine the starting point of the request
4132 	 */
4133 	switch (flp->l_whence) {
4134 	case 0:		/* SEEK_SET */
4135 		*start = (u_offset_t)flp->l_start;
4136 		break;
4137 	case 1:		/* SEEK_CUR */
4138 		*start = (u_offset_t)(flp->l_start + offset);
4139 		break;
4140 	case 2:		/* SEEK_END */
4141 		vattr.va_mask = AT_SIZE;
4142 		if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))
4143 			return (error);
4144 		*start = (u_offset_t)(flp->l_start + vattr.va_size);
4145 		break;
4146 	default:
4147 		return (EINVAL);
4148 	}
4149 
4150 	/*
4151 	 * Determine the range covered by the request.
4152 	 */
4153 	if (flp->l_len == 0)
4154 		*end = MAX_U_OFFSET_T;
4155 	else if ((offset_t)flp->l_len > 0) {
4156 		*end = (u_offset_t)(*start + (flp->l_len - 1));
4157 	} else {
4158 		/*
4159 		 * Negative length; why do we even allow this ?
4160 		 * Because this allows easy specification of
4161 		 * the last n bytes of the file.
4162 		 */
4163 		*end = *start;
4164 		*start += (u_offset_t)flp->l_len;
4165 		(*start)++;
4166 	}
4167 	return (0);
4168 }
4169 
4170 /*
4171  * Check the validity of lock data.  This can used by the NFS
4172  * frlock routines to check data before contacting the server.  The
4173  * server must support semantics that aren't as restrictive as
4174  * the UNIX API, so the NFS client is required to check.
4175  * The maximum is now passed in by the caller.
4176  */
4177 
4178 int
4179 flk_check_lock_data(u_offset_t start, u_offset_t end, offset_t max)
4180 {
4181 	/*
4182 	 * The end (length) for local locking should never be greater
4183 	 * than MAXEND. However, the representation for
4184 	 * the entire file is MAX_U_OFFSET_T.
4185 	 */
4186 	if ((start > max) ||
4187 	    ((end > max) && (end != MAX_U_OFFSET_T))) {
4188 		return (EINVAL);
4189 	}
4190 	if (start > end) {
4191 		return (EINVAL);
4192 	}
4193 	return (0);
4194 }
4195 
4196 /*
4197  * Fill in request->l_flock with information about the lock blocking the
4198  * request.  The complexity here is that lock manager requests are allowed
4199  * to see into the upper part of the 32-bit address range, whereas local
4200  * requests are only allowed to see signed values.
4201  *
4202  * What should be done when "blocker" is a lock manager lock that uses the
4203  * upper portion of the 32-bit range, but "request" is local?  Since the
4204  * request has already been determined to have been blocked by the blocker,
4205  * at least some portion of "blocker" must be in the range of the request,
4206  * or the request extends to the end of file.  For the first case, the
4207  * portion in the lower range is returned with the indication that it goes
4208  * "to EOF."  For the second case, the last byte of the lower range is
4209  * returned with the indication that it goes "to EOF."
4210  */
4211 
4212 static void
4213 report_blocker(lock_descriptor_t *blocker, lock_descriptor_t *request)
4214 {
4215 	flock64_t *flrp;			/* l_flock portion of request */
4216 
4217 	ASSERT(blocker != NULL);
4218 
4219 	flrp = &request->l_flock;
4220 	flrp->l_whence = 0;
4221 	flrp->l_type = blocker->l_type;
4222 	flrp->l_pid = blocker->l_flock.l_pid;
4223 	flrp->l_sysid = blocker->l_flock.l_sysid;
4224 	request->l_ofd = blocker->l_ofd;
4225 
4226 	if (IS_LOCKMGR(request)) {
4227 		flrp->l_start = blocker->l_start;
4228 		if (blocker->l_end == MAX_U_OFFSET_T)
4229 			flrp->l_len = 0;
4230 		else
4231 			flrp->l_len = blocker->l_end - blocker->l_start + 1;
4232 	} else {
4233 		if (blocker->l_start > MAXEND) {
4234 			flrp->l_start = MAXEND;
4235 			flrp->l_len = 0;
4236 		} else {
4237 			flrp->l_start = blocker->l_start;
4238 			if (blocker->l_end == MAX_U_OFFSET_T)
4239 				flrp->l_len = 0;
4240 			else
4241 				flrp->l_len = blocker->l_end -
4242 				    blocker->l_start + 1;
4243 		}
4244 	}
4245 }
4246 
4247 /*
4248  * PSARC case 1997/292
4249  */
4250 /*
4251  * This is the public routine exported by flock.h.
4252  */
4253 void
4254 cl_flk_change_nlm_state_to_unknown(int nlmid)
4255 {
4256 	/*
4257 	 * Check to see if node is booted as a cluster. If not, return.
4258 	 */
4259 	if ((cluster_bootflags & CLUSTER_BOOTED) == 0) {
4260 		return;
4261 	}
4262 
4263 	/*
4264 	 * See comment in cl_flk_set_nlm_status().
4265 	 */
4266 	if (nlm_reg_status == NULL) {
4267 		return;
4268 	}
4269 
4270 	/*
4271 	 * protect NLM registry state with a mutex.
4272 	 */
4273 	ASSERT(nlmid <= nlm_status_size && nlmid >= 0);
4274 	mutex_enter(&nlm_reg_lock);
4275 	FLK_REGISTRY_CHANGE_NLM_STATE(nlm_reg_status, nlmid, FLK_NLM_UNKNOWN);
4276 	mutex_exit(&nlm_reg_lock);
4277 }
4278 
4279 /*
4280  * Return non-zero if the given I/O request conflicts with an active NBMAND
4281  * lock.
4282  * If svmand is non-zero, it means look at all active locks, not just NBMAND
4283  * locks.
4284  */
4285 
4286 int
4287 nbl_lock_conflict(vnode_t *vp, nbl_op_t op, u_offset_t offset,
4288     ssize_t length, int svmand, caller_context_t *ct)
4289 {
4290 	int conflict = 0;
4291 	graph_t			*gp;
4292 	lock_descriptor_t	*lock;
4293 	pid_t pid;
4294 	int sysid;
4295 
4296 	if (ct == NULL) {
4297 		pid = curproc->p_pid;
4298 		sysid = 0;
4299 	} else {
4300 		pid = ct->cc_pid;
4301 		sysid = ct->cc_sysid;
4302 	}
4303 
4304 	mutex_enter(&flock_lock);
4305 	gp = lock_graph[HASH_INDEX(vp)];
4306 	mutex_exit(&flock_lock);
4307 	if (gp == NULL)
4308 		return (0);
4309 
4310 	mutex_enter(&gp->gp_mutex);
4311 	SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
4312 
4313 	for (; lock && lock->l_vnode == vp; lock = lock->l_next) {
4314 		if ((svmand || (lock->l_state & NBMAND_LOCK)) &&
4315 		    (lock->l_flock.l_sysid != sysid ||
4316 		    lock->l_flock.l_pid != pid) &&
4317 		    lock_blocks_io(op, offset, length,
4318 		    lock->l_type, lock->l_start, lock->l_end)) {
4319 			conflict = 1;
4320 			break;
4321 		}
4322 	}
4323 	mutex_exit(&gp->gp_mutex);
4324 
4325 	return (conflict);
4326 }
4327 
4328 /*
4329  * Return non-zero if the given I/O request conflicts with the given lock.
4330  */
4331 
4332 static int
4333 lock_blocks_io(nbl_op_t op, u_offset_t offset, ssize_t length,
4334     int lock_type, u_offset_t lock_start, u_offset_t lock_end)
4335 {
4336 	ASSERT(op == NBL_READ || op == NBL_WRITE || op == NBL_READWRITE);
4337 	ASSERT(lock_type == F_RDLCK || lock_type == F_WRLCK);
4338 
4339 	if (op == NBL_READ && lock_type == F_RDLCK)
4340 		return (0);
4341 
4342 	if (offset <= lock_start && lock_start < offset + length)
4343 		return (1);
4344 	if (lock_start <= offset && offset <= lock_end)
4345 		return (1);
4346 
4347 	return (0);
4348 }
4349 
4350 #ifdef DEBUG
4351 static void
4352 check_active_locks(graph_t *gp)
4353 {
4354 	lock_descriptor_t *lock, *lock1;
4355 	edge_t	*ep;
4356 
4357 	for (lock = ACTIVE_HEAD(gp)->l_next; lock != ACTIVE_HEAD(gp);
4358 	    lock = lock->l_next) {
4359 		ASSERT(IS_ACTIVE(lock));
4360 		ASSERT(NOT_BLOCKED(lock));
4361 		ASSERT(!IS_BARRIER(lock));
4362 
4363 		ep = FIRST_IN(lock);
4364 
4365 		while (ep != HEAD(lock)) {
4366 			ASSERT(IS_SLEEPING(ep->from_vertex));
4367 			ASSERT(!NOT_BLOCKED(ep->from_vertex));
4368 			ep = NEXT_IN(ep);
4369 		}
4370 
4371 		for (lock1 = lock->l_next; lock1 != ACTIVE_HEAD(gp);
4372 		    lock1 = lock1->l_next) {
4373 			if (lock1->l_vnode == lock->l_vnode) {
4374 			if (BLOCKS(lock1, lock)) {
4375 				cmn_err(CE_PANIC,
4376 				    "active lock %p blocks %p",
4377 				    (void *)lock1, (void *)lock);
4378 			} else if (BLOCKS(lock, lock1)) {
4379 				cmn_err(CE_PANIC,
4380 				    "active lock %p blocks %p",
4381 				    (void *)lock, (void *)lock1);
4382 			}
4383 			}
4384 		}
4385 	}
4386 }
4387 
4388 /*
4389  * Effect: This functions checks to see if the transition from 'old_state' to
4390  *	'new_state' is a valid one.  It returns 0 if the transition is valid
4391  *	and 1 if it is not.
4392  *	For a map of valid transitions, see sys/flock_impl.h
4393  */
4394 static int
4395 check_lock_transition(int old_state, int new_state)
4396 {
4397 	switch (old_state) {
4398 	case FLK_INITIAL_STATE:
4399 		if ((new_state == FLK_START_STATE) ||
4400 		    (new_state == FLK_SLEEPING_STATE) ||
4401 		    (new_state == FLK_ACTIVE_STATE) ||
4402 		    (new_state == FLK_DEAD_STATE)) {
4403 			return (0);
4404 		} else {
4405 			return (1);
4406 		}
4407 	case FLK_START_STATE:
4408 		if ((new_state == FLK_ACTIVE_STATE) ||
4409 		    (new_state == FLK_DEAD_STATE)) {
4410 			return (0);
4411 		} else {
4412 			return (1);
4413 		}
4414 	case FLK_ACTIVE_STATE:
4415 		if (new_state == FLK_DEAD_STATE) {
4416 			return (0);
4417 		} else {
4418 			return (1);
4419 		}
4420 	case FLK_SLEEPING_STATE:
4421 		if ((new_state == FLK_GRANTED_STATE) ||
4422 		    (new_state == FLK_INTERRUPTED_STATE) ||
4423 		    (new_state == FLK_CANCELLED_STATE)) {
4424 			return (0);
4425 		} else {
4426 			return (1);
4427 		}
4428 	case FLK_GRANTED_STATE:
4429 		if ((new_state == FLK_START_STATE) ||
4430 		    (new_state == FLK_INTERRUPTED_STATE) ||
4431 		    (new_state == FLK_CANCELLED_STATE)) {
4432 			return (0);
4433 		} else {
4434 			return (1);
4435 		}
4436 	case FLK_CANCELLED_STATE:
4437 		if ((new_state == FLK_INTERRUPTED_STATE) ||
4438 		    (new_state == FLK_DEAD_STATE)) {
4439 			return (0);
4440 		} else {
4441 			return (1);
4442 		}
4443 	case FLK_INTERRUPTED_STATE:
4444 		if (new_state == FLK_DEAD_STATE) {
4445 			return (0);
4446 		} else {
4447 			return (1);
4448 		}
4449 	case FLK_DEAD_STATE:
4450 		/* May be set more than once */
4451 		if (new_state == FLK_DEAD_STATE) {
4452 			return (0);
4453 		} else {
4454 			return (1);
4455 		}
4456 	default:
4457 		return (1);
4458 	}
4459 }
4460 
4461 static void
4462 check_sleeping_locks(graph_t *gp)
4463 {
4464 	lock_descriptor_t *lock1, *lock2;
4465 	edge_t *ep;
4466 	for (lock1 = SLEEPING_HEAD(gp)->l_next; lock1 != SLEEPING_HEAD(gp);
4467 	    lock1 = lock1->l_next) {
4468 				ASSERT(!IS_BARRIER(lock1));
4469 	for (lock2 = lock1->l_next; lock2 != SLEEPING_HEAD(gp);
4470 	    lock2 = lock2->l_next) {
4471 		if (lock1->l_vnode == lock2->l_vnode) {
4472 			if (BLOCKS(lock2, lock1)) {
4473 				ASSERT(!IS_GRANTED(lock1));
4474 				ASSERT(!NOT_BLOCKED(lock1));
4475 				path(lock1, lock2);
4476 			}
4477 		}
4478 	}
4479 
4480 	for (lock2 = ACTIVE_HEAD(gp)->l_next; lock2 != ACTIVE_HEAD(gp);
4481 	    lock2 = lock2->l_next) {
4482 				ASSERT(!IS_BARRIER(lock1));
4483 		if (lock1->l_vnode == lock2->l_vnode) {
4484 			if (BLOCKS(lock2, lock1)) {
4485 				ASSERT(!IS_GRANTED(lock1));
4486 				ASSERT(!NOT_BLOCKED(lock1));
4487 				path(lock1, lock2);
4488 			}
4489 		}
4490 	}
4491 	ep = FIRST_ADJ(lock1);
4492 	while (ep != HEAD(lock1)) {
4493 		ASSERT(BLOCKS(ep->to_vertex, lock1));
4494 		ep = NEXT_ADJ(ep);
4495 	}
4496 	}
4497 }
4498 
4499 static int
4500 level_two_path(lock_descriptor_t *lock1, lock_descriptor_t *lock2, int no_path)
4501 {
4502 	edge_t	*ep;
4503 	lock_descriptor_t	*vertex;
4504 	lock_descriptor_t *vertex_stack;
4505 
4506 	STACK_INIT(vertex_stack);
4507 
4508 	flk_graph_uncolor(lock1->l_graph);
4509 	ep = FIRST_ADJ(lock1);
4510 	ASSERT(ep != HEAD(lock1));
4511 	while (ep != HEAD(lock1)) {
4512 		if (no_path)
4513 			ASSERT(ep->to_vertex != lock2);
4514 		STACK_PUSH(vertex_stack, ep->to_vertex, l_dstack);
4515 		COLOR(ep->to_vertex);
4516 		ep = NEXT_ADJ(ep);
4517 	}
4518 
4519 	while ((vertex = STACK_TOP(vertex_stack)) != NULL) {
4520 		STACK_POP(vertex_stack, l_dstack);
4521 		for (ep = FIRST_ADJ(vertex); ep != HEAD(vertex);
4522 		    ep = NEXT_ADJ(ep)) {
4523 			if (COLORED(ep->to_vertex))
4524 				continue;
4525 			COLOR(ep->to_vertex);
4526 			if (ep->to_vertex == lock2)
4527 				return (1);
4528 
4529 			STACK_PUSH(vertex_stack, ep->to_vertex, l_dstack);
4530 		}
4531 	}
4532 	return (0);
4533 }
4534 
4535 static void
4536 check_owner_locks(graph_t *gp, pid_t pid, int sysid, vnode_t *vp)
4537 {
4538 	lock_descriptor_t *lock;
4539 
4540 	/* Ignore OFD style locks since they're not process-wide. */
4541 	if (pid == 0)
4542 		return;
4543 
4544 	SET_LOCK_TO_FIRST_ACTIVE_VP(gp, lock, vp);
4545 
4546 	if (lock) {
4547 		while (lock != ACTIVE_HEAD(gp) && (lock->l_vnode == vp)) {
4548 			if (lock->l_flock.l_pid == pid &&
4549 			    lock->l_flock.l_sysid == sysid)
4550 				cmn_err(CE_PANIC,
4551 				    "owner pid %d's lock %p in active queue",
4552 				    pid, (void *)lock);
4553 			lock = lock->l_next;
4554 		}
4555 	}
4556 	SET_LOCK_TO_FIRST_SLEEP_VP(gp, lock, vp);
4557 
4558 	if (lock) {
4559 		while (lock != SLEEPING_HEAD(gp) && (lock->l_vnode == vp)) {
4560 			if (lock->l_flock.l_pid == pid &&
4561 			    lock->l_flock.l_sysid == sysid)
4562 				cmn_err(CE_PANIC,
4563 				    "owner pid %d's lock %p in sleep queue",
4564 				    pid, (void *)lock);
4565 			lock = lock->l_next;
4566 		}
4567 	}
4568 }
4569 
4570 static int
4571 level_one_path(lock_descriptor_t *lock1, lock_descriptor_t *lock2)
4572 {
4573 	edge_t *ep = FIRST_ADJ(lock1);
4574 
4575 	while (ep != HEAD(lock1)) {
4576 		if (ep->to_vertex == lock2)
4577 			return (1);
4578 		else
4579 			ep = NEXT_ADJ(ep);
4580 	}
4581 	return (0);
4582 }
4583 
4584 static int
4585 no_path(lock_descriptor_t *lock1, lock_descriptor_t *lock2)
4586 {
4587 	return (!level_two_path(lock1, lock2, 1));
4588 }
4589 
4590 static void
4591 path(lock_descriptor_t *lock1, lock_descriptor_t *lock2)
4592 {
4593 	if (level_one_path(lock1, lock2)) {
4594 		if (level_two_path(lock1, lock2, 0) != 0) {
4595 			cmn_err(CE_WARN,
4596 			    "one edge one path from lock1 %p lock2 %p",
4597 			    (void *)lock1, (void *)lock2);
4598 		}
4599 	} else if (no_path(lock1, lock2)) {
4600 		cmn_err(CE_PANIC,
4601 		    "No path from  lock1 %p to lock2 %p",
4602 		    (void *)lock1, (void *)lock2);
4603 	}
4604 }
4605 #endif /* DEBUG */
4606