xref: /titanic_50/usr/src/uts/common/os/fio.c (revision 53089ab7c84db6fb76c16ca50076c147cda11757)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	All Rights Reserved */
28 
29 #include <sys/types.h>
30 #include <sys/sysmacros.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/errno.h>
34 #include <sys/signal.h>
35 #include <sys/cred.h>
36 #include <sys/user.h>
37 #include <sys/conf.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/pathname.h>
41 #include <sys/file.h>
42 #include <sys/proc.h>
43 #include <sys/var.h>
44 #include <sys/cpuvar.h>
45 #include <sys/open.h>
46 #include <sys/cmn_err.h>
47 #include <sys/priocntl.h>
48 #include <sys/procset.h>
49 #include <sys/prsystm.h>
50 #include <sys/debug.h>
51 #include <sys/kmem.h>
52 #include <sys/atomic.h>
53 #include <sys/fcntl.h>
54 #include <sys/poll.h>
55 #include <sys/rctl.h>
56 #include <sys/port_impl.h>
57 
58 #include <c2/audit.h>
59 #include <sys/nbmlock.h>
60 
61 #ifdef DEBUG
62 
63 static uint32_t afd_maxfd;	/* # of entries in maximum allocated array */
64 static uint32_t afd_alloc;	/* count of kmem_alloc()s */
65 static uint32_t afd_free;	/* count of kmem_free()s */
66 static uint32_t afd_wait;	/* count of waits on non-zero ref count */
67 #define	MAXFD(x)	(afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x)))
68 #define	COUNT(x)	atomic_add_32(&x, 1)
69 
70 #else	/* DEBUG */
71 
72 #define	MAXFD(x)
73 #define	COUNT(x)
74 
75 #endif	/* DEBUG */
76 
77 kmem_cache_t *file_cache;
78 
79 static void port_close_fd(portfd_t *);
80 
81 /*
82  * File descriptor allocation.
83  *
84  * fd_find(fip, minfd) finds the first available descriptor >= minfd.
85  * The most common case is open(2), in which minfd = 0, but we must also
86  * support fcntl(fd, F_DUPFD, minfd).
87  *
88  * The algorithm is as follows: we keep all file descriptors in an infix
89  * binary tree in which each node records the number of descriptors
90  * allocated in its right subtree, including itself.  Starting at minfd,
91  * we ascend the tree until we find a non-fully allocated right subtree.
92  * We then descend that subtree in a binary search for the smallest fd.
93  * Finally, we ascend the tree again to increment the allocation count
94  * of every subtree containing the newly-allocated fd.  Freeing an fd
95  * requires only the last step: we ascend the tree to decrement allocation
96  * counts.  Each of these three steps (ascent to find non-full subtree,
97  * descent to find lowest fd, ascent to update allocation counts) is
98  * O(log n), thus the algorithm as a whole is O(log n).
99  *
100  * We don't implement the fd tree using the customary left/right/parent
101  * pointers, but instead take advantage of the glorious mathematics of
102  * full infix binary trees.  For reference, here's an illustration of the
103  * logical structure of such a tree, rooted at 4 (binary 100), covering
104  * the range 1-7 (binary 001-111).  Our canonical trees do not include
105  * fd 0; we'll deal with that later.
106  *
107  *	      100
108  *	     /	 \
109  *	    /	  \
110  *	  010	  110
111  *	  / \	  / \
112  *	001 011 101 111
113  *
114  * We make the following observations, all of which are easily proven by
115  * induction on the depth of the tree:
116  *
117  * (T1) The least-significant bit (LSB) of any node is equal to its level
118  *      in the tree.  In our example, nodes 001, 011, 101 and 111 are at
119  *      level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2.
120  *
121  * (T2) The child size (CSIZE) of node N -- that is, the total number of
122  *	right-branch descendants in a child of node N, including itself -- is
123  *	given by clearing all but the least significant bit of N.  This
124  *	follows immediately from (T1).  Applying this rule to our example, we
125  *	see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1.
126  *
127  * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest
128  *	ancestor containing node N in its right child -- is given by clearing
129  *	the LSB of N.  For example, LPARENT(111) = 110 and LPARENT(110) = 100.
130  *	Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting
131  *	the fact that these are leftmost nodes.  Note that this algorithm
132  *	automatically skips generations as necessary.  For example, the parent
133  *      of node 101 is 110, which is a *right* ancestor (not what we want);
134  *      but its grandparent is 100, which is a left ancestor. Clearing the LSB
135  *      of 101 gets us to 100 directly, skipping right past the uninteresting
136  *      generation (110).
137  *
138  *      Note that since LPARENT clears the LSB, whereas CSIZE clears all *but*
139  *	the LSB, we can express LPARENT() nicely in terms of CSIZE():
140  *
141  *	LPARENT(N) = N - CSIZE(N)
142  *
143  * (T4) The nearest right ancestor (RPARENT) of node N is given by:
144  *
145  *	RPARENT(N) = N + CSIZE(N)
146  *
147  * (T5) For every interior node, the children differ from their parent by
148  *	CSIZE(parent) / 2.  In our example, CSIZE(100) / 2 = 2 = 10 binary,
149  *      and indeed, the children of 100 are 100 +/- 10 = 010 and 110.
150  *
151  * Next, we'll need a few two's-complement math tricks.  Suppose a number,
152  * N, has the following form:
153  *
154  *		N = xxxx10...0
155  *
156  * That is, the binary representation of N consists of some string of bits,
157  * then a 1, then all zeroes.  This amounts to nothing more than saying that
158  * N has a least-significant bit, which is true for any N != 0.  If we look
159  * at N and N - 1 together, we see that we can combine them in useful ways:
160  *
161  *		  N = xxxx10...0
162  *	      N - 1 = xxxx01...1
163  *	------------------------
164  *	N & (N - 1) = xxxx000000
165  *	N | (N - 1) = xxxx111111
166  *	N ^ (N - 1) =     111111
167  *
168  * In particular, this suggests several easy ways to clear all but the LSB,
169  * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0.
170  * We'll opt for this formulation:
171  *
172  *	(C1) CSIZE(N) = (N - 1) ^ (N | (N - 1))
173  *
174  * Similarly, we have an easy way to determine LPARENT(N), which requires
175  * that we clear the LSB of N:
176  *
177  *	(L1) LPARENT(N) = N & (N - 1)
178  *
179  * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1.
180  * When combined with (T4), this yields an easy way to compute RPARENT(N):
181  *
182  *	(R1) RPARENT(N) = (N | (N - 1)) + 1
183  *
184  * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to
185  * move the fd range from [1, 2^n) to [0, 2^n - 1).  This is straightforward,
186  * so there's no need to belabor the algebra; the revised relations become:
187  *
188  *	(C1a) CSIZE(N) = N ^ (N | (N + 1))
189  *
190  *	(L1a) LPARENT(N) = (N & (N + 1)) - 1
191  *
192  *	(R1a) RPARENT(N) = N | (N + 1)
193  *
194  * This completes the mathematical framework.  We now have all the tools
195  * we need to implement fd_find() and fd_reserve().
196  *
197  * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd.
198  * It does not actually allocate the descriptor; that's done by fd_reserve().
199  * fd_find() proceeds in two steps:
200  *
201  * (1) Find the leftmost subtree that contains a descriptor >= minfd.
202  *     We start at the right subtree rooted at minfd.  If this subtree is
203  *     not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then
204  *     step 1 is done.  Otherwise, we know that all fds in this subtree
205  *     are taken, so we ascend to RPARENT(minfd) using (R1a).  We repeat
206  *     this process until we either find a candidate subtree or exceed
207  *     fip->fi_nfiles.  We use (C1a) to compute CSIZE().
208  *
209  * (2) Find the smallest fd in the subtree discovered by step 1.
210  *     Starting at the root of this subtree, we descend to find the
211  *     smallest available fd.  Since the left children have the smaller
212  *     fds, we will descend rightward only when the left child is full.
213  *
214  *     We begin by comparing the number of allocated fds in the root
215  *     to the number of allocated fds in its right child; if they differ
216  *     by exactly CSIZE(child), we know the left subtree is full, so we
217  *     descend right; that is, the right child becomes the search root.
218  *     Otherwise we leave the root alone and start following the right
219  *     child's left children.  As fortune would have it, this is very
220  *     simple computationally: by (T5), the right child of fd is just
221  *     fd + size, where size = CSIZE(fd) / 2.  Applying (T5) again,
222  *     we find that the right child's left child is fd + size - (size / 2) =
223  *     fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) =
224  *     fd + (size / 4), and so on.  In general, fd's right child's
225  *     leftmost nth descendant is fd + (size >> n).  Thus, to follow
226  *     the right child's left descendants, we just halve the size in
227  *     each iteration of the search.
228  *
229  *     When we descend leftward, we must keep track of the number of fds
230  *     that were allocated in all the right subtrees we rejected, so we
231  *     know how many of the root fd's allocations are in the remaining
232  *     (as yet unexplored) leftmost part of its right subtree.  When we
233  *     encounter a fully-allocated left child -- that is, when we find
234  *     that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right
235  *     (as described earlier), resetting ralloc to zero.
236  *
237  * fd_reserve(fip, fd, incr) either allocates or frees fd, depending
238  * on whether incr is 1 or -1.  Starting at fd, fd_reserve() ascends
239  * the leftmost ancestors (see (T3)) and updates the allocation counts.
240  * At each step we use (L1a) to compute LPARENT(), the next left ancestor.
241  *
242  * flist_minsize() finds the minimal tree that still covers all
243  * used fds; as long as the allocation count of a root node is zero, we
244  * don't need that node or its right subtree.
245  *
246  * flist_nalloc() counts the number of allocated fds in the tree, by starting
247  * at the top of the tree and summing the right-subtree allocation counts as
248  * it descends leftwards.
249  *
250  * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form
251  * 2^n - 1.  This ensures that the fd trees are always full, which saves
252  * quite a bit of boundary checking.
253  */
254 static int
255 fd_find(uf_info_t *fip, int minfd)
256 {
257 	int size, ralloc, fd;
258 
259 	ASSERT(MUTEX_HELD(&fip->fi_lock));
260 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
261 
262 	for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) {
263 		size = fd ^ (fd | (fd + 1));
264 		if (fip->fi_list[fd].uf_alloc == size)
265 			continue;
266 		for (ralloc = 0, size >>= 1; size != 0; size >>= 1) {
267 			ralloc += fip->fi_list[fd + size].uf_alloc;
268 			if (fip->fi_list[fd].uf_alloc == ralloc + size) {
269 				fd += size;
270 				ralloc = 0;
271 			}
272 		}
273 		return (fd);
274 	}
275 	return (-1);
276 }
277 
278 static void
279 fd_reserve(uf_info_t *fip, int fd, int incr)
280 {
281 	int pfd;
282 	uf_entry_t *ufp = &fip->fi_list[fd];
283 
284 	ASSERT((uint_t)fd < fip->fi_nfiles);
285 	ASSERT((ufp->uf_busy == 0 && incr == 1) ||
286 	    (ufp->uf_busy == 1 && incr == -1));
287 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
288 	ASSERT(MUTEX_HELD(&fip->fi_lock));
289 
290 	for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1)
291 		fip->fi_list[pfd].uf_alloc += incr;
292 
293 	ufp->uf_busy += incr;
294 }
295 
296 static int
297 flist_minsize(uf_info_t *fip)
298 {
299 	int fd;
300 
301 	/*
302 	 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called
303 	 * by flist_fork(), which relies on other mechanisms for mutual
304 	 * exclusion.
305 	 */
306 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
307 
308 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
309 		if (fip->fi_list[fd >> 1].uf_alloc != 0)
310 			break;
311 
312 	return (fd);
313 }
314 
315 static int
316 flist_nalloc(uf_info_t *fip)
317 {
318 	int fd;
319 	int nalloc = 0;
320 
321 	ASSERT(MUTEX_HELD(&fip->fi_lock));
322 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
323 
324 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
325 		nalloc += fip->fi_list[fd >> 1].uf_alloc;
326 
327 	return (nalloc);
328 }
329 
330 /*
331  * Increase size of the fi_list array to accommodate at least maxfd.
332  * We keep the size of the form 2^n - 1 for benefit of fd_find().
333  */
334 static void
335 flist_grow(int maxfd)
336 {
337 	uf_info_t *fip = P_FINFO(curproc);
338 	int newcnt, oldcnt;
339 	uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend;
340 	uf_rlist_t *urp;
341 
342 	for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1)
343 		continue;
344 
345 	newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP);
346 
347 	mutex_enter(&fip->fi_lock);
348 	oldcnt = fip->fi_nfiles;
349 	if (newcnt <= oldcnt) {
350 		mutex_exit(&fip->fi_lock);
351 		kmem_free(newlist, newcnt * sizeof (uf_entry_t));
352 		return;
353 	}
354 	ASSERT((newcnt & (newcnt + 1)) == 0);
355 	oldlist = fip->fi_list;
356 	oldend = oldlist + oldcnt;
357 	newend = newlist + oldcnt;	/* no need to lock beyond old end */
358 
359 	/*
360 	 * fi_list and fi_nfiles cannot change while any uf_lock is held,
361 	 * so we must grab all the old locks *and* the new locks up to oldcnt.
362 	 * (Locks beyond the end of oldcnt aren't visible until we store
363 	 * the new fi_nfiles, which is the last thing we do before dropping
364 	 * all the locks, so there's no need to acquire these locks).
365 	 * Holding the new locks is necessary because when fi_list changes
366 	 * to point to the new list, fi_nfiles won't have been stored yet.
367 	 * If we *didn't* hold the new locks, someone doing a UF_ENTER()
368 	 * could see the new fi_list, grab the new uf_lock, and then see
369 	 * fi_nfiles change while the lock is held -- in violation of
370 	 * UF_ENTER() semantics.
371 	 */
372 	for (src = oldlist; src < oldend; src++)
373 		mutex_enter(&src->uf_lock);
374 
375 	for (dst = newlist; dst < newend; dst++)
376 		mutex_enter(&dst->uf_lock);
377 
378 	for (src = oldlist, dst = newlist; src < oldend; src++, dst++) {
379 		dst->uf_file = src->uf_file;
380 		dst->uf_fpollinfo = src->uf_fpollinfo;
381 		dst->uf_refcnt = src->uf_refcnt;
382 		dst->uf_alloc = src->uf_alloc;
383 		dst->uf_flag = src->uf_flag;
384 		dst->uf_busy = src->uf_busy;
385 		dst->uf_portfd = src->uf_portfd;
386 	}
387 
388 	/*
389 	 * As soon as we store the new flist, future locking operations
390 	 * will use it.  Therefore, we must ensure that all the state
391 	 * we've just established reaches global visibility before the
392 	 * new flist does.
393 	 */
394 	membar_producer();
395 	fip->fi_list = newlist;
396 
397 	/*
398 	 * Routines like getf() make an optimistic check on the validity
399 	 * of the supplied file descriptor: if it's less than the current
400 	 * value of fi_nfiles -- examined without any locks -- then it's
401 	 * safe to attempt a UF_ENTER() on that fd (which is a valid
402 	 * assumption because fi_nfiles only increases).  Therefore, it
403 	 * is critical that the new value of fi_nfiles not reach global
404 	 * visibility until after the new fi_list: if it happened the
405 	 * other way around, getf() could see the new fi_nfiles and attempt
406 	 * a UF_ENTER() on the old fi_list, which would write beyond its
407 	 * end if the fd exceeded the old fi_nfiles.
408 	 */
409 	membar_producer();
410 	fip->fi_nfiles = newcnt;
411 
412 	/*
413 	 * The new state is consistent now, so we can drop all the locks.
414 	 */
415 	for (dst = newlist; dst < newend; dst++)
416 		mutex_exit(&dst->uf_lock);
417 
418 	for (src = oldlist; src < oldend; src++) {
419 		/*
420 		 * If any threads are blocked on the old cvs, wake them.
421 		 * This will force them to wake up, discover that fi_list
422 		 * has changed, and go back to sleep on the new cvs.
423 		 */
424 		cv_broadcast(&src->uf_wanted_cv);
425 		cv_broadcast(&src->uf_closing_cv);
426 		mutex_exit(&src->uf_lock);
427 	}
428 
429 	mutex_exit(&fip->fi_lock);
430 
431 	/*
432 	 * Retire the old flist.  We can't actually kmem_free() it now
433 	 * because someone may still have a pointer to it.  Instead,
434 	 * we link it onto a list of retired flists.  The new flist
435 	 * is at least double the size of the previous flist, so the
436 	 * total size of all retired flists will be less than the size
437 	 * of the current one (to prove, consider the sum of a geometric
438 	 * series in powers of 2).  exit() frees the retired flists.
439 	 */
440 	urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP);
441 	urp->ur_list = oldlist;
442 	urp->ur_nfiles = oldcnt;
443 
444 	mutex_enter(&fip->fi_lock);
445 	urp->ur_next = fip->fi_rlist;
446 	fip->fi_rlist = urp;
447 	mutex_exit(&fip->fi_lock);
448 }
449 
450 /*
451  * Utility functions for keeping track of the active file descriptors.
452  */
453 void
454 clear_stale_fd()		/* called from post_syscall() */
455 {
456 	afd_t *afd = &curthread->t_activefd;
457 	int i;
458 
459 	/* uninitialized is ok here, a_nfd is then zero */
460 	for (i = 0; i < afd->a_nfd; i++) {
461 		/* assert that this should not be necessary */
462 		ASSERT(afd->a_fd[i] == -1);
463 		afd->a_fd[i] = -1;
464 	}
465 	afd->a_stale = 0;
466 }
467 
468 void
469 free_afd(afd_t *afd)		/* called below and from thread_free() */
470 {
471 	int i;
472 
473 	/* free the buffer if it was kmem_alloc()ed */
474 	if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
475 		COUNT(afd_free);
476 		kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0]));
477 	}
478 
479 	/* (re)initialize the structure */
480 	afd->a_fd = &afd->a_buf[0];
481 	afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]);
482 	afd->a_stale = 0;
483 	for (i = 0; i < afd->a_nfd; i++)
484 		afd->a_fd[i] = -1;
485 }
486 
487 static void
488 set_active_fd(int fd)
489 {
490 	afd_t *afd = &curthread->t_activefd;
491 	int i;
492 	int *old_fd;
493 	int old_nfd;
494 	int *new_fd;
495 	int new_nfd;
496 
497 	if (afd->a_nfd == 0) {	/* first time initialization */
498 		ASSERT(fd == -1);
499 		mutex_enter(&afd->a_fdlock);
500 		free_afd(afd);
501 		mutex_exit(&afd->a_fdlock);
502 	}
503 
504 	/* insert fd into vacant slot, if any */
505 	for (i = 0; i < afd->a_nfd; i++) {
506 		if (afd->a_fd[i] == -1) {
507 			afd->a_fd[i] = fd;
508 			return;
509 		}
510 	}
511 
512 	/*
513 	 * Reallocate the a_fd[] array to add one more slot.
514 	 */
515 	ASSERT(fd == -1);
516 	old_nfd = afd->a_nfd;
517 	old_fd = afd->a_fd;
518 	new_nfd = old_nfd + 1;
519 	new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP);
520 	MAXFD(new_nfd);
521 	COUNT(afd_alloc);
522 
523 	mutex_enter(&afd->a_fdlock);
524 	afd->a_fd = new_fd;
525 	afd->a_nfd = new_nfd;
526 	for (i = 0; i < old_nfd; i++)
527 		afd->a_fd[i] = old_fd[i];
528 	afd->a_fd[i] = fd;
529 	mutex_exit(&afd->a_fdlock);
530 
531 	if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
532 		COUNT(afd_free);
533 		kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0]));
534 	}
535 }
536 
537 void
538 clear_active_fd(int fd)		/* called below and from aio.c */
539 {
540 	afd_t *afd = &curthread->t_activefd;
541 	int i;
542 
543 	for (i = 0; i < afd->a_nfd; i++) {
544 		if (afd->a_fd[i] == fd) {
545 			afd->a_fd[i] = -1;
546 			break;
547 		}
548 	}
549 	ASSERT(i < afd->a_nfd);		/* not found is not ok */
550 }
551 
552 /*
553  * Does this thread have this fd active?
554  */
555 static int
556 is_active_fd(kthread_t *t, int fd)
557 {
558 	afd_t *afd = &t->t_activefd;
559 	int i;
560 
561 	ASSERT(t != curthread);
562 	mutex_enter(&afd->a_fdlock);
563 	/* uninitialized is ok here, a_nfd is then zero */
564 	for (i = 0; i < afd->a_nfd; i++) {
565 		if (afd->a_fd[i] == fd) {
566 			mutex_exit(&afd->a_fdlock);
567 			return (1);
568 		}
569 	}
570 	mutex_exit(&afd->a_fdlock);
571 	return (0);
572 }
573 
574 /*
575  * Convert a user supplied file descriptor into a pointer to a file
576  * structure.  Only task is to check range of the descriptor (soft
577  * resource limit was enforced at open time and shouldn't be checked
578  * here).
579  */
580 file_t *
581 getf(int fd)
582 {
583 	uf_info_t *fip = P_FINFO(curproc);
584 	uf_entry_t *ufp;
585 	file_t *fp;
586 
587 	if ((uint_t)fd >= fip->fi_nfiles)
588 		return (NULL);
589 
590 	/*
591 	 * Reserve a slot in the active fd array now so we can call
592 	 * set_active_fd(fd) for real below, while still inside UF_ENTER().
593 	 */
594 	set_active_fd(-1);
595 
596 	UF_ENTER(ufp, fip, fd);
597 
598 	if ((fp = ufp->uf_file) == NULL) {
599 		UF_EXIT(ufp);
600 
601 		if (fd == fip->fi_badfd && fip->fi_action > 0)
602 			tsignal(curthread, fip->fi_action);
603 
604 		return (NULL);
605 	}
606 	ufp->uf_refcnt++;
607 
608 	set_active_fd(fd);	/* record the active file descriptor */
609 
610 	UF_EXIT(ufp);
611 
612 	return (fp);
613 }
614 
615 /*
616  * Close whatever file currently occupies the file descriptor slot
617  * and install the new file, usually NULL, in the file descriptor slot.
618  * The close must complete before we release the file descriptor slot.
619  * If newfp != NULL we only return an error if we can't allocate the
620  * slot so the caller knows that it needs to free the filep;
621  * in the other cases we return the error number from closef().
622  */
623 int
624 closeandsetf(int fd, file_t *newfp)
625 {
626 	proc_t *p = curproc;
627 	uf_info_t *fip = P_FINFO(p);
628 	uf_entry_t *ufp;
629 	file_t *fp;
630 	fpollinfo_t *fpip;
631 	portfd_t *pfd;
632 	int error;
633 
634 	if ((uint_t)fd >= fip->fi_nfiles) {
635 		if (newfp == NULL)
636 			return (EBADF);
637 		flist_grow(fd);
638 	}
639 
640 	if (newfp != NULL) {
641 		/*
642 		 * If ufp is reserved but has no file pointer, it's in the
643 		 * transition between ufalloc() and setf().  We must wait
644 		 * for this transition to complete before assigning the
645 		 * new non-NULL file pointer.
646 		 */
647 		mutex_enter(&fip->fi_lock);
648 		if (fd == fip->fi_badfd) {
649 			mutex_exit(&fip->fi_lock);
650 			if (fip->fi_action > 0)
651 				tsignal(curthread, fip->fi_action);
652 			return (EBADF);
653 		}
654 		UF_ENTER(ufp, fip, fd);
655 		while (ufp->uf_busy && ufp->uf_file == NULL) {
656 			mutex_exit(&fip->fi_lock);
657 			cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250);
658 			UF_EXIT(ufp);
659 			mutex_enter(&fip->fi_lock);
660 			UF_ENTER(ufp, fip, fd);
661 		}
662 		if ((fp = ufp->uf_file) == NULL) {
663 			ASSERT(ufp->uf_fpollinfo == NULL);
664 			ASSERT(ufp->uf_flag == 0);
665 			fd_reserve(fip, fd, 1);
666 			ufp->uf_file = newfp;
667 			UF_EXIT(ufp);
668 			mutex_exit(&fip->fi_lock);
669 			return (0);
670 		}
671 		mutex_exit(&fip->fi_lock);
672 	} else {
673 		UF_ENTER(ufp, fip, fd);
674 		if ((fp = ufp->uf_file) == NULL) {
675 			UF_EXIT(ufp);
676 			return (EBADF);
677 		}
678 	}
679 
680 	ASSERT(ufp->uf_busy);
681 	ufp->uf_file = NULL;
682 	ufp->uf_flag = 0;
683 
684 	/*
685 	 * If the file descriptor reference count is non-zero, then
686 	 * some other lwp in the process is performing system call
687 	 * activity on the file.  To avoid blocking here for a long
688 	 * time (the other lwp might be in a long term sleep in its
689 	 * system call), we scan all other lwps in the process to
690 	 * find the ones with this fd as one of their active fds,
691 	 * set their a_stale flag, and set them running if they
692 	 * are in an interruptible sleep so they will emerge from
693 	 * their system calls immediately.  post_syscall() will
694 	 * test the a_stale flag and set errno to EBADF.
695 	 */
696 	ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1);
697 	if (ufp->uf_refcnt > 0) {
698 		kthread_t *t;
699 
700 		/*
701 		 * We call sprlock_proc(p) to ensure that the thread
702 		 * list will not change while we are scanning it.
703 		 * To do this, we must drop ufp->uf_lock and then
704 		 * reacquire it (so we are not holding both p->p_lock
705 		 * and ufp->uf_lock at the same time).  ufp->uf_lock
706 		 * must be held for is_active_fd() to be correct
707 		 * (set_active_fd() is called while holding ufp->uf_lock).
708 		 *
709 		 * This is a convoluted dance, but it is better than
710 		 * the old brute-force method of stopping every thread
711 		 * in the process by calling holdlwps(SHOLDFORK1).
712 		 */
713 
714 		UF_EXIT(ufp);
715 		COUNT(afd_wait);
716 
717 		mutex_enter(&p->p_lock);
718 		sprlock_proc(p);
719 		mutex_exit(&p->p_lock);
720 
721 		UF_ENTER(ufp, fip, fd);
722 		ASSERT(ufp->uf_file == NULL);
723 
724 		if (ufp->uf_refcnt > 0) {
725 			for (t = curthread->t_forw;
726 			    t != curthread;
727 			    t = t->t_forw) {
728 				if (is_active_fd(t, fd)) {
729 					thread_lock(t);
730 					t->t_activefd.a_stale = 1;
731 					t->t_post_sys = 1;
732 					if (ISWAKEABLE(t))
733 						setrun_locked(t);
734 					thread_unlock(t);
735 				}
736 			}
737 		}
738 
739 		UF_EXIT(ufp);
740 
741 		mutex_enter(&p->p_lock);
742 		sprunlock(p);
743 
744 		UF_ENTER(ufp, fip, fd);
745 		ASSERT(ufp->uf_file == NULL);
746 	}
747 
748 	/*
749 	 * Wait for other lwps to stop using this file descriptor.
750 	 */
751 	while (ufp->uf_refcnt > 0) {
752 		cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250);
753 		/*
754 		 * cv_wait_stop() drops ufp->uf_lock, so the file list
755 		 * can change.  Drop the lock on our (possibly) stale
756 		 * ufp and let UF_ENTER() find and lock the current ufp.
757 		 */
758 		UF_EXIT(ufp);
759 		UF_ENTER(ufp, fip, fd);
760 	}
761 
762 #ifdef DEBUG
763 	/*
764 	 * catch a watchfd on device's pollhead list but not on fpollinfo list
765 	 */
766 	if (ufp->uf_fpollinfo != NULL)
767 		checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo);
768 #endif	/* DEBUG */
769 
770 	/*
771 	 * We may need to cleanup some cached poll states in t_pollstate
772 	 * before the fd can be reused. It is important that we don't
773 	 * access a stale thread structure. We will do the cleanup in two
774 	 * phases to avoid deadlock and holding uf_lock for too long.
775 	 * In phase 1, hold the uf_lock and call pollblockexit() to set
776 	 * state in t_pollstate struct so that a thread does not exit on
777 	 * us. In phase 2, we drop the uf_lock and call pollcacheclean().
778 	 */
779 	pfd = ufp->uf_portfd;
780 	ufp->uf_portfd = NULL;
781 	fpip = ufp->uf_fpollinfo;
782 	ufp->uf_fpollinfo = NULL;
783 	if (fpip != NULL)
784 		pollblockexit(fpip);
785 	UF_EXIT(ufp);
786 	if (fpip != NULL)
787 		pollcacheclean(fpip, fd);
788 	if (pfd)
789 		port_close_fd(pfd);
790 
791 	/*
792 	 * Keep the file descriptor entry reserved across the closef().
793 	 */
794 	error = closef(fp);
795 
796 	setf(fd, newfp);
797 
798 	/* Only return closef() error when closing is all we do */
799 	return (newfp == NULL ? error : 0);
800 }
801 
802 /*
803  * Decrement uf_refcnt; wakeup anyone waiting to close the file.
804  */
805 void
806 releasef(int fd)
807 {
808 	uf_info_t *fip = P_FINFO(curproc);
809 	uf_entry_t *ufp;
810 
811 	UF_ENTER(ufp, fip, fd);
812 	ASSERT(ufp->uf_refcnt > 0);
813 	clear_active_fd(fd);	/* clear the active file descriptor */
814 	if (--ufp->uf_refcnt == 0)
815 		cv_broadcast(&ufp->uf_closing_cv);
816 	UF_EXIT(ufp);
817 }
818 
819 /*
820  * Identical to releasef() but can be called from another process.
821  */
822 void
823 areleasef(int fd, uf_info_t *fip)
824 {
825 	uf_entry_t *ufp;
826 
827 	UF_ENTER(ufp, fip, fd);
828 	ASSERT(ufp->uf_refcnt > 0);
829 	if (--ufp->uf_refcnt == 0)
830 		cv_broadcast(&ufp->uf_closing_cv);
831 	UF_EXIT(ufp);
832 }
833 
834 /*
835  * Duplicate all file descriptors across a fork.
836  */
837 void
838 flist_fork(uf_info_t *pfip, uf_info_t *cfip)
839 {
840 	int fd, nfiles;
841 	uf_entry_t *pufp, *cufp;
842 
843 	mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL);
844 	cfip->fi_rlist = NULL;
845 
846 	/*
847 	 * We don't need to hold fi_lock because all other lwp's in the
848 	 * parent have been held.
849 	 */
850 	cfip->fi_nfiles = nfiles = flist_minsize(pfip);
851 
852 	cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP);
853 
854 	for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles;
855 	    fd++, pufp++, cufp++) {
856 		cufp->uf_file = pufp->uf_file;
857 		cufp->uf_alloc = pufp->uf_alloc;
858 		cufp->uf_flag = pufp->uf_flag;
859 		cufp->uf_busy = pufp->uf_busy;
860 		if (pufp->uf_file == NULL) {
861 			ASSERT(pufp->uf_flag == 0);
862 			if (pufp->uf_busy) {
863 				/*
864 				 * Grab locks to appease ASSERTs in fd_reserve
865 				 */
866 				mutex_enter(&cfip->fi_lock);
867 				mutex_enter(&cufp->uf_lock);
868 				fd_reserve(cfip, fd, -1);
869 				mutex_exit(&cufp->uf_lock);
870 				mutex_exit(&cfip->fi_lock);
871 			}
872 		}
873 	}
874 }
875 
876 /*
877  * Close all open file descriptors for the current process.
878  * This is only called from exit(), which is single-threaded,
879  * so we don't need any locking.
880  */
881 void
882 closeall(uf_info_t *fip)
883 {
884 	int fd;
885 	file_t *fp;
886 	uf_entry_t *ufp;
887 
888 	ufp = fip->fi_list;
889 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
890 		if ((fp = ufp->uf_file) != NULL) {
891 			ufp->uf_file = NULL;
892 			if (ufp->uf_portfd != NULL) {
893 				portfd_t *pfd;
894 				/* remove event port association */
895 				pfd = ufp->uf_portfd;
896 				ufp->uf_portfd = NULL;
897 				port_close_fd(pfd);
898 			}
899 			ASSERT(ufp->uf_fpollinfo == NULL);
900 			(void) closef(fp);
901 		}
902 	}
903 
904 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
905 	fip->fi_list = NULL;
906 	fip->fi_nfiles = 0;
907 	while (fip->fi_rlist != NULL) {
908 		uf_rlist_t *urp = fip->fi_rlist;
909 		fip->fi_rlist = urp->ur_next;
910 		kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t));
911 		kmem_free(urp, sizeof (uf_rlist_t));
912 	}
913 }
914 
915 /*
916  * Internal form of close.  Decrement reference count on file
917  * structure.  Decrement reference count on the vnode following
918  * removal of the referencing file structure.
919  */
920 int
921 closef(file_t *fp)
922 {
923 	vnode_t *vp;
924 	int error;
925 	int count;
926 	int flag;
927 	offset_t offset;
928 
929 	/*
930 	 * audit close of file (may be exit)
931 	 */
932 	if (AU_AUDITING())
933 		audit_closef(fp);
934 	ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock));
935 
936 	mutex_enter(&fp->f_tlock);
937 
938 	ASSERT(fp->f_count > 0);
939 
940 	count = fp->f_count--;
941 	flag = fp->f_flag;
942 	offset = fp->f_offset;
943 
944 	vp = fp->f_vnode;
945 
946 	error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL);
947 
948 	if (count > 1) {
949 		mutex_exit(&fp->f_tlock);
950 		return (error);
951 	}
952 	ASSERT(fp->f_count == 0);
953 	mutex_exit(&fp->f_tlock);
954 
955 	VN_RELE(vp);
956 	/*
957 	 * deallocate resources to audit_data
958 	 */
959 	if (audit_active)
960 		audit_unfalloc(fp);
961 	crfree(fp->f_cred);
962 	kmem_cache_free(file_cache, fp);
963 	return (error);
964 }
965 
966 /*
967  * This is a combination of ufalloc() and setf().
968  */
969 int
970 ufalloc_file(int start, file_t *fp)
971 {
972 	proc_t *p = curproc;
973 	uf_info_t *fip = P_FINFO(p);
974 	int filelimit;
975 	uf_entry_t *ufp;
976 	int nfiles;
977 	int fd;
978 
979 	/*
980 	 * Assertion is to convince the correctness of the following
981 	 * assignment for filelimit after casting to int.
982 	 */
983 	ASSERT(p->p_fno_ctl <= INT_MAX);
984 	filelimit = (int)p->p_fno_ctl;
985 
986 	for (;;) {
987 		mutex_enter(&fip->fi_lock);
988 		fd = fd_find(fip, start);
989 		if (fd >= 0 && fd == fip->fi_badfd) {
990 			start = fd + 1;
991 			mutex_exit(&fip->fi_lock);
992 			continue;
993 		}
994 		if ((uint_t)fd < filelimit)
995 			break;
996 		if (fd >= filelimit) {
997 			mutex_exit(&fip->fi_lock);
998 			mutex_enter(&p->p_lock);
999 			(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1000 			    p->p_rctls, p, RCA_SAFE);
1001 			mutex_exit(&p->p_lock);
1002 			return (-1);
1003 		}
1004 		/* fd_find() returned -1 */
1005 		nfiles = fip->fi_nfiles;
1006 		mutex_exit(&fip->fi_lock);
1007 		flist_grow(MAX(start, nfiles));
1008 	}
1009 
1010 	UF_ENTER(ufp, fip, fd);
1011 	fd_reserve(fip, fd, 1);
1012 	ASSERT(ufp->uf_file == NULL);
1013 	ufp->uf_file = fp;
1014 	UF_EXIT(ufp);
1015 	mutex_exit(&fip->fi_lock);
1016 	return (fd);
1017 }
1018 
1019 /*
1020  * Allocate a user file descriptor greater than or equal to "start".
1021  */
1022 int
1023 ufalloc(int start)
1024 {
1025 	return (ufalloc_file(start, NULL));
1026 }
1027 
1028 /*
1029  * Check that a future allocation of count fds on proc p has a good
1030  * chance of succeeding.  If not, do rctl processing as if we'd failed
1031  * the allocation.
1032  *
1033  * Our caller must guarantee that p cannot disappear underneath us.
1034  */
1035 int
1036 ufcanalloc(proc_t *p, uint_t count)
1037 {
1038 	uf_info_t *fip = P_FINFO(p);
1039 	int filelimit;
1040 	int current;
1041 
1042 	if (count == 0)
1043 		return (1);
1044 
1045 	ASSERT(p->p_fno_ctl <= INT_MAX);
1046 	filelimit = (int)p->p_fno_ctl;
1047 
1048 	mutex_enter(&fip->fi_lock);
1049 	current = flist_nalloc(fip);		/* # of in-use descriptors */
1050 	mutex_exit(&fip->fi_lock);
1051 
1052 	/*
1053 	 * If count is a positive integer, the worst that can happen is
1054 	 * an overflow to a negative value, which is caught by the >= 0 check.
1055 	 */
1056 	current += count;
1057 	if (count <= INT_MAX && current >= 0 && current <= filelimit)
1058 		return (1);
1059 
1060 	mutex_enter(&p->p_lock);
1061 	(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1062 	    p->p_rctls, p, RCA_SAFE);
1063 	mutex_exit(&p->p_lock);
1064 	return (0);
1065 }
1066 
1067 /*
1068  * Allocate a user file descriptor and a file structure.
1069  * Initialize the descriptor to point at the file structure.
1070  * If fdp is NULL, the user file descriptor will not be allocated.
1071  */
1072 int
1073 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp)
1074 {
1075 	file_t *fp;
1076 	int fd;
1077 
1078 	if (fdp) {
1079 		if ((fd = ufalloc(0)) == -1)
1080 			return (EMFILE);
1081 	}
1082 	fp = kmem_cache_alloc(file_cache, KM_SLEEP);
1083 	/*
1084 	 * Note: falloc returns the fp locked
1085 	 */
1086 	mutex_enter(&fp->f_tlock);
1087 	fp->f_count = 1;
1088 	fp->f_flag = (ushort_t)flag;
1089 	fp->f_flag2 = (flag & (FSEARCH|FEXEC)) >> 16;
1090 	fp->f_vnode = vp;
1091 	fp->f_offset = 0;
1092 	fp->f_audit_data = 0;
1093 	crhold(fp->f_cred = CRED());
1094 	/*
1095 	 * allocate resources to audit_data
1096 	 */
1097 	if (audit_active)
1098 		audit_falloc(fp);
1099 	*fpp = fp;
1100 	if (fdp)
1101 		*fdp = fd;
1102 	return (0);
1103 }
1104 
1105 /*ARGSUSED*/
1106 static int
1107 file_cache_constructor(void *buf, void *cdrarg, int kmflags)
1108 {
1109 	file_t *fp = buf;
1110 
1111 	mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL);
1112 	return (0);
1113 }
1114 
1115 /*ARGSUSED*/
1116 static void
1117 file_cache_destructor(void *buf, void *cdrarg)
1118 {
1119 	file_t *fp = buf;
1120 
1121 	mutex_destroy(&fp->f_tlock);
1122 }
1123 
1124 void
1125 finit()
1126 {
1127 	file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0,
1128 	    file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0);
1129 }
1130 
1131 void
1132 unfalloc(file_t *fp)
1133 {
1134 	ASSERT(MUTEX_HELD(&fp->f_tlock));
1135 	if (--fp->f_count <= 0) {
1136 		/*
1137 		 * deallocate resources to audit_data
1138 		 */
1139 		if (audit_active)
1140 			audit_unfalloc(fp);
1141 		crfree(fp->f_cred);
1142 		mutex_exit(&fp->f_tlock);
1143 		kmem_cache_free(file_cache, fp);
1144 	} else
1145 		mutex_exit(&fp->f_tlock);
1146 }
1147 
1148 /*
1149  * Given a file descriptor, set the user's
1150  * file pointer to the given parameter.
1151  */
1152 void
1153 setf(int fd, file_t *fp)
1154 {
1155 	uf_info_t *fip = P_FINFO(curproc);
1156 	uf_entry_t *ufp;
1157 
1158 	if (AU_AUDITING())
1159 		audit_setf(fp, fd);
1160 
1161 	if (fp == NULL) {
1162 		mutex_enter(&fip->fi_lock);
1163 		UF_ENTER(ufp, fip, fd);
1164 		fd_reserve(fip, fd, -1);
1165 		mutex_exit(&fip->fi_lock);
1166 	} else {
1167 		UF_ENTER(ufp, fip, fd);
1168 		ASSERT(ufp->uf_busy);
1169 	}
1170 	ASSERT(ufp->uf_fpollinfo == NULL);
1171 	ASSERT(ufp->uf_flag == 0);
1172 	ufp->uf_file = fp;
1173 	cv_broadcast(&ufp->uf_wanted_cv);
1174 	UF_EXIT(ufp);
1175 }
1176 
1177 /*
1178  * Given a file descriptor, return the file table flags, plus,
1179  * if this is a socket in asynchronous mode, the FASYNC flag.
1180  * getf() may or may not have been called before calling f_getfl().
1181  */
1182 int
1183 f_getfl(int fd, int *flagp)
1184 {
1185 	uf_info_t *fip = P_FINFO(curproc);
1186 	uf_entry_t *ufp;
1187 	file_t *fp;
1188 	int error;
1189 
1190 	if ((uint_t)fd >= fip->fi_nfiles)
1191 		error = EBADF;
1192 	else {
1193 		UF_ENTER(ufp, fip, fd);
1194 		if ((fp = ufp->uf_file) == NULL)
1195 			error = EBADF;
1196 		else {
1197 			vnode_t *vp = fp->f_vnode;
1198 			int flag = fp->f_flag | (fp->f_flag2 << 16);
1199 
1200 			/*
1201 			 * BSD fcntl() FASYNC compatibility.
1202 			 */
1203 			if (vp->v_type == VSOCK)
1204 				flag |= sock_getfasync(vp);
1205 			*flagp = flag;
1206 			error = 0;
1207 		}
1208 		UF_EXIT(ufp);
1209 	}
1210 
1211 	return (error);
1212 }
1213 
1214 /*
1215  * Given a file descriptor, return the user's file flags.
1216  * Force the FD_CLOEXEC flag for writable self-open /proc files.
1217  * getf() may or may not have been called before calling f_getfd_error().
1218  */
1219 int
1220 f_getfd_error(int fd, int *flagp)
1221 {
1222 	uf_info_t *fip = P_FINFO(curproc);
1223 	uf_entry_t *ufp;
1224 	file_t *fp;
1225 	int flag;
1226 	int error;
1227 
1228 	if ((uint_t)fd >= fip->fi_nfiles)
1229 		error = EBADF;
1230 	else {
1231 		UF_ENTER(ufp, fip, fd);
1232 		if ((fp = ufp->uf_file) == NULL)
1233 			error = EBADF;
1234 		else {
1235 			flag = ufp->uf_flag;
1236 			if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode))
1237 				flag |= FD_CLOEXEC;
1238 			*flagp = flag;
1239 			error = 0;
1240 		}
1241 		UF_EXIT(ufp);
1242 	}
1243 
1244 	return (error);
1245 }
1246 
1247 /*
1248  * getf() must have been called before calling f_getfd().
1249  */
1250 char
1251 f_getfd(int fd)
1252 {
1253 	int flag = 0;
1254 	(void) f_getfd_error(fd, &flag);
1255 	return ((char)flag);
1256 }
1257 
1258 /*
1259  * Given a file descriptor and file flags, set the user's file flags.
1260  * At present, the only valid flag is FD_CLOEXEC.
1261  * getf() may or may not have been called before calling f_setfd_error().
1262  */
1263 int
1264 f_setfd_error(int fd, int flags)
1265 {
1266 	uf_info_t *fip = P_FINFO(curproc);
1267 	uf_entry_t *ufp;
1268 	int error;
1269 
1270 	if ((uint_t)fd >= fip->fi_nfiles)
1271 		error = EBADF;
1272 	else {
1273 		UF_ENTER(ufp, fip, fd);
1274 		if (ufp->uf_file == NULL)
1275 			error = EBADF;
1276 		else {
1277 			ufp->uf_flag = flags & FD_CLOEXEC;
1278 			error = 0;
1279 		}
1280 		UF_EXIT(ufp);
1281 	}
1282 	return (error);
1283 }
1284 
1285 void
1286 f_setfd(int fd, char flags)
1287 {
1288 	(void) f_setfd_error(fd, flags);
1289 }
1290 
1291 #define	BADFD_MIN	3
1292 #define	BADFD_MAX	255
1293 
1294 /*
1295  * Attempt to allocate a file descriptor which is bad and which
1296  * is "poison" to the application.  It cannot be closed (except
1297  * on exec), allocated for a different use, etc.
1298  */
1299 int
1300 f_badfd(int start, int *fdp, int action)
1301 {
1302 	int fdr;
1303 	int badfd;
1304 	uf_info_t *fip = P_FINFO(curproc);
1305 
1306 #ifdef _LP64
1307 	/* No restrictions on 64 bit _file */
1308 	if (get_udatamodel() != DATAMODEL_ILP32)
1309 		return (EINVAL);
1310 #endif
1311 
1312 	if (start > BADFD_MAX || start < BADFD_MIN)
1313 		return (EINVAL);
1314 
1315 	if (action >= NSIG || action < 0)
1316 		return (EINVAL);
1317 
1318 	mutex_enter(&fip->fi_lock);
1319 	badfd = fip->fi_badfd;
1320 	mutex_exit(&fip->fi_lock);
1321 
1322 	if (badfd != -1)
1323 		return (EAGAIN);
1324 
1325 	fdr = ufalloc(start);
1326 
1327 	if (fdr > BADFD_MAX) {
1328 		setf(fdr, NULL);
1329 		return (EMFILE);
1330 	}
1331 	if (fdr < 0)
1332 		return (EMFILE);
1333 
1334 	mutex_enter(&fip->fi_lock);
1335 	if (fip->fi_badfd != -1) {
1336 		/* Lost race */
1337 		mutex_exit(&fip->fi_lock);
1338 		setf(fdr, NULL);
1339 		return (EAGAIN);
1340 	}
1341 	fip->fi_action = action;
1342 	fip->fi_badfd = fdr;
1343 	mutex_exit(&fip->fi_lock);
1344 	setf(fdr, NULL);
1345 
1346 	*fdp = fdr;
1347 
1348 	return (0);
1349 }
1350 
1351 /*
1352  * Allocate a file descriptor and assign it to the vnode "*vpp",
1353  * performing the usual open protocol upon it and returning the
1354  * file descriptor allocated.  It is the responsibility of the
1355  * caller to dispose of "*vpp" if any error occurs.
1356  */
1357 int
1358 fassign(vnode_t **vpp, int mode, int *fdp)
1359 {
1360 	file_t *fp;
1361 	int error;
1362 	int fd;
1363 
1364 	if (error = falloc((vnode_t *)NULL, mode, &fp, &fd))
1365 		return (error);
1366 	if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) {
1367 		setf(fd, NULL);
1368 		unfalloc(fp);
1369 		return (error);
1370 	}
1371 	fp->f_vnode = *vpp;
1372 	mutex_exit(&fp->f_tlock);
1373 	/*
1374 	 * Fill in the slot falloc reserved.
1375 	 */
1376 	setf(fd, fp);
1377 	*fdp = fd;
1378 	return (0);
1379 }
1380 
1381 /*
1382  * When a process forks it must increment the f_count of all file pointers
1383  * since there is a new process pointing at them.  fcnt_add(fip, 1) does this.
1384  * Since we are called when there is only 1 active lwp we don't need to
1385  * hold fi_lock or any uf_lock.  If the fork fails, fork_fail() calls
1386  * fcnt_add(fip, -1) to restore the counts.
1387  */
1388 void
1389 fcnt_add(uf_info_t *fip, int incr)
1390 {
1391 	int i;
1392 	uf_entry_t *ufp;
1393 	file_t *fp;
1394 
1395 	ufp = fip->fi_list;
1396 	for (i = 0; i < fip->fi_nfiles; i++, ufp++) {
1397 		if ((fp = ufp->uf_file) != NULL) {
1398 			mutex_enter(&fp->f_tlock);
1399 			ASSERT((incr == 1 && fp->f_count >= 1) ||
1400 			    (incr == -1 && fp->f_count >= 2));
1401 			fp->f_count += incr;
1402 			mutex_exit(&fp->f_tlock);
1403 		}
1404 	}
1405 }
1406 
1407 /*
1408  * This is called from exec to close all fd's that have the FD_CLOEXEC flag
1409  * set and also to close all self-open for write /proc file descriptors.
1410  */
1411 void
1412 close_exec(uf_info_t *fip)
1413 {
1414 	int fd;
1415 	file_t *fp;
1416 	fpollinfo_t *fpip;
1417 	uf_entry_t *ufp;
1418 	portfd_t *pfd;
1419 
1420 	ufp = fip->fi_list;
1421 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
1422 		if ((fp = ufp->uf_file) != NULL &&
1423 		    ((ufp->uf_flag & FD_CLOEXEC) ||
1424 		    ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) {
1425 			fpip = ufp->uf_fpollinfo;
1426 			mutex_enter(&fip->fi_lock);
1427 			mutex_enter(&ufp->uf_lock);
1428 			fd_reserve(fip, fd, -1);
1429 			mutex_exit(&fip->fi_lock);
1430 			ufp->uf_file = NULL;
1431 			ufp->uf_fpollinfo = NULL;
1432 			ufp->uf_flag = 0;
1433 			/*
1434 			 * We may need to cleanup some cached poll states
1435 			 * in t_pollstate before the fd can be reused. It
1436 			 * is important that we don't access a stale thread
1437 			 * structure. We will do the cleanup in two
1438 			 * phases to avoid deadlock and holding uf_lock for
1439 			 * too long. In phase 1, hold the uf_lock and call
1440 			 * pollblockexit() to set state in t_pollstate struct
1441 			 * so that a thread does not exit on us. In phase 2,
1442 			 * we drop the uf_lock and call pollcacheclean().
1443 			 */
1444 			pfd = ufp->uf_portfd;
1445 			ufp->uf_portfd = NULL;
1446 			if (fpip != NULL)
1447 				pollblockexit(fpip);
1448 			mutex_exit(&ufp->uf_lock);
1449 			if (fpip != NULL)
1450 				pollcacheclean(fpip, fd);
1451 			if (pfd)
1452 				port_close_fd(pfd);
1453 			(void) closef(fp);
1454 		}
1455 	}
1456 
1457 	/* Reset bad fd */
1458 	fip->fi_badfd = -1;
1459 	fip->fi_action = -1;
1460 }
1461 
1462 /*
1463  * Utility function called by most of the *at() system call interfaces.
1464  *
1465  * Generate a starting vnode pointer for an (fd, path) pair where 'fd'
1466  * is an open file descriptor for a directory to be used as the starting
1467  * point for the lookup of the relative pathname 'path' (or, if path is
1468  * NULL, generate a vnode pointer for the direct target of the operation).
1469  *
1470  * If we successfully return a non-NULL startvp, it has been the target
1471  * of VN_HOLD() and the caller must call VN_RELE() on it.
1472  */
1473 int
1474 fgetstartvp(int fd, char *path, vnode_t **startvpp)
1475 {
1476 	vnode_t		*startvp;
1477 	file_t 		*startfp;
1478 	char 		startchar;
1479 
1480 	if (fd == AT_FDCWD && path == NULL)
1481 		return (EFAULT);
1482 
1483 	if (fd == AT_FDCWD) {
1484 		/*
1485 		 * Start from the current working directory.
1486 		 */
1487 		startvp = NULL;
1488 	} else {
1489 		if (path == NULL)
1490 			startchar = '\0';
1491 		else if (copyin(path, &startchar, sizeof (char)))
1492 			return (EFAULT);
1493 
1494 		if (startchar == '/') {
1495 			/*
1496 			 * 'path' is an absolute pathname.
1497 			 */
1498 			startvp = NULL;
1499 		} else {
1500 			/*
1501 			 * 'path' is a relative pathname or we will
1502 			 * be applying the operation to 'fd' itself.
1503 			 */
1504 			if ((startfp = getf(fd)) == NULL)
1505 				return (EBADF);
1506 			startvp = startfp->f_vnode;
1507 			VN_HOLD(startvp);
1508 			releasef(fd);
1509 		}
1510 	}
1511 	*startvpp = startvp;
1512 	return (0);
1513 }
1514 
1515 /*
1516  * Called from fchownat() and fchmodat() to set ownership and mode.
1517  * The contents of *vap must be set before calling here.
1518  */
1519 int
1520 fsetattrat(int fd, char *path, int flags, struct vattr *vap)
1521 {
1522 	vnode_t		*startvp;
1523 	vnode_t		*vp;
1524 	int 		error;
1525 
1526 	/*
1527 	 * Since we are never called to set the size of a file, we don't
1528 	 * need to check for non-blocking locks (via nbl_need_check(vp)).
1529 	 */
1530 	ASSERT(!(vap->va_mask & AT_SIZE));
1531 
1532 	if ((error = fgetstartvp(fd, path, &startvp)) != 0)
1533 		return (error);
1534 	if (AU_AUDITING() && startvp != NULL)
1535 		audit_setfsat_path(1);
1536 
1537 	/*
1538 	 * Do lookup for fchownat/fchmodat when path not NULL
1539 	 */
1540 	if (path != NULL) {
1541 		if (error = lookupnameat(path, UIO_USERSPACE,
1542 		    (flags == AT_SYMLINK_NOFOLLOW) ?
1543 		    NO_FOLLOW : FOLLOW,
1544 		    NULLVPP, &vp, startvp)) {
1545 			if (startvp != NULL)
1546 				VN_RELE(startvp);
1547 			return (error);
1548 		}
1549 	} else {
1550 		vp = startvp;
1551 		ASSERT(vp);
1552 		VN_HOLD(vp);
1553 	}
1554 
1555 	if (vn_is_readonly(vp)) {
1556 		error = EROFS;
1557 	} else {
1558 		error = VOP_SETATTR(vp, vap, 0, CRED(), NULL);
1559 	}
1560 
1561 	if (startvp != NULL)
1562 		VN_RELE(startvp);
1563 	VN_RELE(vp);
1564 
1565 	return (error);
1566 }
1567 
1568 /*
1569  * Return true if the given vnode is referenced by any
1570  * entry in the current process's file descriptor table.
1571  */
1572 int
1573 fisopen(vnode_t *vp)
1574 {
1575 	int fd;
1576 	file_t *fp;
1577 	vnode_t *ovp;
1578 	uf_info_t *fip = P_FINFO(curproc);
1579 	uf_entry_t *ufp;
1580 
1581 	mutex_enter(&fip->fi_lock);
1582 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1583 		UF_ENTER(ufp, fip, fd);
1584 		if ((fp = ufp->uf_file) != NULL &&
1585 		    (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) {
1586 			UF_EXIT(ufp);
1587 			mutex_exit(&fip->fi_lock);
1588 			return (1);
1589 		}
1590 		UF_EXIT(ufp);
1591 	}
1592 	mutex_exit(&fip->fi_lock);
1593 	return (0);
1594 }
1595 
1596 /*
1597  * Return zero if at least one file currently open (by curproc) shouldn't be
1598  * allowed to change zones.
1599  */
1600 int
1601 files_can_change_zones(void)
1602 {
1603 	int fd;
1604 	file_t *fp;
1605 	uf_info_t *fip = P_FINFO(curproc);
1606 	uf_entry_t *ufp;
1607 
1608 	mutex_enter(&fip->fi_lock);
1609 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1610 		UF_ENTER(ufp, fip, fd);
1611 		if ((fp = ufp->uf_file) != NULL &&
1612 		    !vn_can_change_zones(fp->f_vnode)) {
1613 			UF_EXIT(ufp);
1614 			mutex_exit(&fip->fi_lock);
1615 			return (0);
1616 		}
1617 		UF_EXIT(ufp);
1618 	}
1619 	mutex_exit(&fip->fi_lock);
1620 	return (1);
1621 }
1622 
1623 #ifdef DEBUG
1624 
1625 /*
1626  * The following functions are only used in ASSERT()s elsewhere.
1627  * They do not modify the state of the system.
1628  */
1629 
1630 /*
1631  * Return true (1) if the current thread is in the fpollinfo
1632  * list for this file descriptor, else false (0).
1633  */
1634 static int
1635 curthread_in_plist(uf_entry_t *ufp)
1636 {
1637 	fpollinfo_t *fpip;
1638 
1639 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
1640 	for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next)
1641 		if (fpip->fp_thread == curthread)
1642 			return (1);
1643 	return (0);
1644 }
1645 
1646 /*
1647  * Sanity check to make sure that after lwp_exit(),
1648  * curthread does not appear on any fd's fpollinfo list.
1649  */
1650 void
1651 checkfpollinfo(void)
1652 {
1653 	int fd;
1654 	uf_info_t *fip = P_FINFO(curproc);
1655 	uf_entry_t *ufp;
1656 
1657 	mutex_enter(&fip->fi_lock);
1658 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1659 		UF_ENTER(ufp, fip, fd);
1660 		ASSERT(!curthread_in_plist(ufp));
1661 		UF_EXIT(ufp);
1662 	}
1663 	mutex_exit(&fip->fi_lock);
1664 }
1665 
1666 /*
1667  * Return true (1) if the current thread is in the fpollinfo
1668  * list for this file descriptor, else false (0).
1669  * This is the same as curthread_in_plist(),
1670  * but is called w/o holding uf_lock.
1671  */
1672 int
1673 infpollinfo(int fd)
1674 {
1675 	uf_info_t *fip = P_FINFO(curproc);
1676 	uf_entry_t *ufp;
1677 	int rc;
1678 
1679 	UF_ENTER(ufp, fip, fd);
1680 	rc = curthread_in_plist(ufp);
1681 	UF_EXIT(ufp);
1682 	return (rc);
1683 }
1684 
1685 #endif	/* DEBUG */
1686 
1687 /*
1688  * Add the curthread to fpollinfo list, meaning this fd is currently in the
1689  * thread's poll cache. Each lwp polling this file descriptor should call
1690  * this routine once.
1691  */
1692 void
1693 addfpollinfo(int fd)
1694 {
1695 	struct uf_entry *ufp;
1696 	fpollinfo_t *fpip;
1697 	uf_info_t *fip = P_FINFO(curproc);
1698 
1699 	fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP);
1700 	fpip->fp_thread = curthread;
1701 	UF_ENTER(ufp, fip, fd);
1702 	/*
1703 	 * Assert we are not already on the list, that is, that
1704 	 * this lwp did not call addfpollinfo twice for the same fd.
1705 	 */
1706 	ASSERT(!curthread_in_plist(ufp));
1707 	/*
1708 	 * addfpollinfo is always done inside the getf/releasef pair.
1709 	 */
1710 	ASSERT(ufp->uf_refcnt >= 1);
1711 	fpip->fp_next = ufp->uf_fpollinfo;
1712 	ufp->uf_fpollinfo = fpip;
1713 	UF_EXIT(ufp);
1714 }
1715 
1716 /*
1717  * Delete curthread from fpollinfo list if it is there.
1718  */
1719 void
1720 delfpollinfo(int fd)
1721 {
1722 	struct uf_entry *ufp;
1723 	struct fpollinfo *fpip;
1724 	struct fpollinfo **fpipp;
1725 	uf_info_t *fip = P_FINFO(curproc);
1726 
1727 	UF_ENTER(ufp, fip, fd);
1728 	for (fpipp = &ufp->uf_fpollinfo;
1729 	    (fpip = *fpipp) != NULL;
1730 	    fpipp = &fpip->fp_next) {
1731 		if (fpip->fp_thread == curthread) {
1732 			*fpipp = fpip->fp_next;
1733 			kmem_free(fpip, sizeof (fpollinfo_t));
1734 			break;
1735 		}
1736 	}
1737 	/*
1738 	 * Assert that we are not still on the list, that is, that
1739 	 * this lwp did not call addfpollinfo twice for the same fd.
1740 	 */
1741 	ASSERT(!curthread_in_plist(ufp));
1742 	UF_EXIT(ufp);
1743 }
1744 
1745 /*
1746  * fd is associated with a port. pfd is a pointer to the fd entry in the
1747  * cache of the port.
1748  */
1749 
1750 void
1751 addfd_port(int fd, portfd_t *pfd)
1752 {
1753 	struct uf_entry *ufp;
1754 	uf_info_t *fip = P_FINFO(curproc);
1755 
1756 	UF_ENTER(ufp, fip, fd);
1757 	/*
1758 	 * addfd_port is always done inside the getf/releasef pair.
1759 	 */
1760 	ASSERT(ufp->uf_refcnt >= 1);
1761 	if (ufp->uf_portfd == NULL) {
1762 		/* first entry */
1763 		ufp->uf_portfd = pfd;
1764 		pfd->pfd_next = NULL;
1765 	} else {
1766 		pfd->pfd_next = ufp->uf_portfd;
1767 		ufp->uf_portfd = pfd;
1768 		pfd->pfd_next->pfd_prev = pfd;
1769 	}
1770 	UF_EXIT(ufp);
1771 }
1772 
1773 void
1774 delfd_port(int fd, portfd_t *pfd)
1775 {
1776 	struct uf_entry *ufp;
1777 	uf_info_t *fip = P_FINFO(curproc);
1778 
1779 	UF_ENTER(ufp, fip, fd);
1780 	/*
1781 	 * delfd_port is always done inside the getf/releasef pair.
1782 	 */
1783 	ASSERT(ufp->uf_refcnt >= 1);
1784 	if (ufp->uf_portfd == pfd) {
1785 		/* remove first entry */
1786 		ufp->uf_portfd = pfd->pfd_next;
1787 	} else {
1788 		pfd->pfd_prev->pfd_next = pfd->pfd_next;
1789 		if (pfd->pfd_next != NULL)
1790 			pfd->pfd_next->pfd_prev = pfd->pfd_prev;
1791 	}
1792 	UF_EXIT(ufp);
1793 }
1794 
1795 static void
1796 port_close_fd(portfd_t *pfd)
1797 {
1798 	portfd_t	*pfdn;
1799 
1800 	/*
1801 	 * At this point, no other thread should access
1802 	 * the portfd_t list for this fd. The uf_file, uf_portfd
1803 	 * pointers in the uf_entry_t struct for this fd would
1804 	 * be set to NULL.
1805 	 */
1806 	for (; pfd != NULL; pfd = pfdn) {
1807 		pfdn = pfd->pfd_next;
1808 		port_close_pfd(pfd);
1809 	}
1810 }
1811