xref: /titanic_50/usr/src/uts/common/os/evchannels.c (revision 570de38f63910201fdd77246630b7aa8f9dc5661)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * This file contains the source of the general purpose event channel extension
28  * to the sysevent framework. This implementation is made up mainly of four
29  * layers of functionality: the event queues (evch_evq_*()), the handling of
30  * channels (evch_ch*()), the kernel interface (sysevent_evc_*()) and the
31  * interface for the sysevent pseudo driver (evch_usr*()).
32  * Libsysevent.so uses the pseudo driver sysevent's ioctl to access the event
33  * channel extensions. The driver in turn uses the evch_usr*() functions below.
34  *
35  * The interfaces for user land and kernel are declared in sys/sysevent.h
36  * Internal data structures for event channels are defined in
37  * sys/sysevent_impl.h.
38  *
39  * The basic data structure for an event channel is of type evch_chan_t.
40  * All channels are maintained by a list named evch_list. The list head
41  * is of type evch_dlist_t.
42  */
43 
44 #include <sys/types.h>
45 #include <sys/errno.h>
46 #include <sys/stropts.h>
47 #include <sys/debug.h>
48 #include <sys/ddi.h>
49 #include <sys/vmem.h>
50 #include <sys/cmn_err.h>
51 #include <sys/callb.h>
52 #include <sys/sysevent.h>
53 #include <sys/sysevent_impl.h>
54 #include <sys/sysmacros.h>
55 #include <sys/disp.h>
56 #include <sys/atomic.h>
57 #include <sys/door.h>
58 #include <sys/zone.h>
59 #include <sys/sdt.h>
60 
61 /* Back-off delay for door_ki_upcall */
62 #define	EVCH_MIN_PAUSE	8
63 #define	EVCH_MAX_PAUSE	128
64 
65 #define	GEVENT(ev)	((evch_gevent_t *)((char *)ev - \
66 			    offsetof(evch_gevent_t, ge_payload)))
67 
68 #define	EVCH_EVQ_EVCOUNT(x)	((&(x)->eq_eventq)->sq_count)
69 #define	EVCH_EVQ_HIGHWM(x)	((&(x)->eq_eventq)->sq_highwm)
70 
71 #define	CH_HOLD_PEND		1
72 #define	CH_HOLD_PEND_INDEF	2
73 
74 struct evch_globals {
75 	evch_dlist_t evch_list;
76 	kmutex_t evch_list_lock;
77 };
78 
79 /* Variables used by event channel routines */
80 static int		evq_initcomplete = 0;
81 static zone_key_t	evch_zone_key;
82 static uint32_t		evch_channels_max;
83 static uint32_t		evch_bindings_max = EVCH_MAX_BINDS_PER_CHANNEL;
84 static uint32_t		evch_events_max;
85 
86 static void evch_evq_unsub(evch_eventq_t *, evch_evqsub_t *);
87 static void evch_evq_destroy(evch_eventq_t *);
88 
89 /*
90  * List handling. These functions handle a doubly linked list. The list has
91  * to be protected by the calling functions. evch_dlist_t is the list head.
92  * Every node of the list has to put a evch_dlelem_t data type in its data
93  * structure as its first element.
94  *
95  * evch_dl_init		- Initialize list head
96  * evch_dl_fini		- Terminate list handling
97  * evch_dl_is_init	- Returns one if list is initialized
98  * evch_dl_add		- Add element to end of list
99  * evch_dl_del		- Remove given element from list
100  * evch_dl_search	- Lookup element in list
101  * evch_dl_getnum	- Get number of elements in list
102  * evch_dl_next		- Get next elements of list
103  */
104 
105 static void
106 evch_dl_init(evch_dlist_t *hp)
107 {
108 	hp->dh_head.dl_prev = hp->dh_head.dl_next = &hp->dh_head;
109 	hp->dh_count = 0;
110 }
111 
112 /*
113  * Assumes that list is empty.
114  */
115 static void
116 evch_dl_fini(evch_dlist_t *hp)
117 {
118 	hp->dh_head.dl_prev = hp->dh_head.dl_next = NULL;
119 }
120 
121 static int
122 evch_dl_is_init(evch_dlist_t *hp)
123 {
124 	return (hp->dh_head.dl_next != NULL ? 1 : 0);
125 }
126 
127 /*
128  * Add an element at the end of the list.
129  */
130 static void
131 evch_dl_add(evch_dlist_t *hp, evch_dlelem_t *el)
132 {
133 	evch_dlelem_t	*x = hp->dh_head.dl_prev;
134 	evch_dlelem_t	*y = &hp->dh_head;
135 
136 	x->dl_next = el;
137 	y->dl_prev = el;
138 	el->dl_next = y;
139 	el->dl_prev = x;
140 	hp->dh_count++;
141 }
142 
143 /*
144  * Remove arbitrary element out of dlist.
145  */
146 static void
147 evch_dl_del(evch_dlist_t *hp, evch_dlelem_t *p)
148 {
149 	ASSERT(hp->dh_count > 0 && p != &hp->dh_head);
150 	p->dl_prev->dl_next = p->dl_next;
151 	p->dl_next->dl_prev = p->dl_prev;
152 	p->dl_prev = NULL;
153 	p->dl_next = NULL;
154 	hp->dh_count--;
155 }
156 
157 /*
158  * Search an element in a list. Caller provides comparison callback function.
159  */
160 static evch_dlelem_t *
161 evch_dl_search(evch_dlist_t *hp, int (*cmp)(evch_dlelem_t *, char *), char *s)
162 {
163 	evch_dlelem_t *p;
164 
165 	for (p = hp->dh_head.dl_next; p != &hp->dh_head; p = p->dl_next) {
166 		if (cmp(p, s) == 0) {
167 			return (p);
168 		}
169 	}
170 	return (NULL);
171 }
172 
173 /*
174  * Return number of elements in the list.
175  */
176 static int
177 evch_dl_getnum(evch_dlist_t *hp)
178 {
179 	return (hp->dh_count);
180 }
181 
182 /*
183  * Find next element of a evch_dlist_t list. Find first element if el == NULL.
184  * Returns NULL if end of list is reached.
185  */
186 static void *
187 evch_dl_next(evch_dlist_t *hp, void *el)
188 {
189 	evch_dlelem_t *ep = (evch_dlelem_t *)el;
190 
191 	if (hp->dh_count == 0) {
192 		return (NULL);
193 	}
194 	if (ep == NULL) {
195 		return (hp->dh_head.dl_next);
196 	}
197 	if ((ep = ep->dl_next) == (evch_dlelem_t *)hp) {
198 		return (NULL);
199 	}
200 	return ((void *)ep);
201 }
202 
203 /*
204  * Queue handling routines. Mutexes have to be entered previously.
205  *
206  * evch_q_init	- Initialize queue head
207  * evch_q_in	- Put element into queue
208  * evch_q_out	- Get element out of queue
209  * evch_q_next	- Iterate over the elements of a queue
210  */
211 static void
212 evch_q_init(evch_squeue_t *q)
213 {
214 	q->sq_head = NULL;
215 	q->sq_tail = (evch_qelem_t *)q;
216 	q->sq_count = 0;
217 	q->sq_highwm = 0;
218 }
219 
220 /*
221  * Put element into the queue q
222  */
223 static void
224 evch_q_in(evch_squeue_t *q, evch_qelem_t *el)
225 {
226 	q->sq_tail->q_next = el;
227 	el->q_next = NULL;
228 	q->sq_tail = el;
229 	q->sq_count++;
230 	if (q->sq_count > q->sq_highwm) {
231 		q->sq_highwm = q->sq_count;
232 	}
233 }
234 
235 /*
236  * Returns NULL if queue is empty.
237  */
238 static evch_qelem_t *
239 evch_q_out(evch_squeue_t *q)
240 {
241 	evch_qelem_t *el;
242 
243 	if ((el = q->sq_head) != NULL) {
244 		q->sq_head = el->q_next;
245 		q->sq_count--;
246 		if (q->sq_head == NULL) {
247 			q->sq_tail = (evch_qelem_t *)q;
248 		}
249 	}
250 	return (el);
251 }
252 
253 /*
254  * Returns element after *el or first if el == NULL. NULL is returned
255  * if queue is empty or *el points to the last element in the queue.
256  */
257 static evch_qelem_t *
258 evch_q_next(evch_squeue_t *q, evch_qelem_t *el)
259 {
260 	if (el == NULL)
261 		return (q->sq_head);
262 	return (el->q_next);
263 }
264 
265 /*
266  * Event queue handling functions. An event queue is the basic building block
267  * of an event channel. One event queue makes up the publisher-side event queue.
268  * Further event queues build the per-subscriber queues of an event channel.
269  * Each queue is associated an event delivery thread.
270  * These functions support a two-step initialization. First step, when kernel
271  * memory is ready and second when threads are ready.
272  * Events consist of an administrating evch_gevent_t structure with the event
273  * data appended as variable length payload.
274  * The internal interface functions for the event queue handling are:
275  *
276  * evch_evq_create	- create an event queue
277  * evch_evq_thrcreate	- create thread for an event queue.
278  * evch_evq_destroy	- delete an event queue
279  * evch_evq_sub		- Subscribe to event delivery from an event queue
280  * evch_evq_unsub	- Unsubscribe
281  * evch_evq_pub		- Post an event into an event queue
282  * evch_evq_stop	- Put delivery thread on hold
283  * evch_evq_continue	- Resume event delivery thread
284  * evch_evq_status	- Return status of delivery thread, running or on hold
285  * evch_evq_evzalloc	- Allocate an event structure
286  * evch_evq_evfree	- Free an event structure
287  * evch_evq_evadd_dest	- Add a destructor function to an event structure
288  * evch_evq_evnext	- Iterate over events non-destructive
289  */
290 
291 /*ARGSUSED*/
292 static void *
293 evch_zoneinit(zoneid_t zoneid)
294 {
295 	struct evch_globals *eg;
296 
297 	eg = kmem_zalloc(sizeof (*eg), KM_SLEEP);
298 	evch_dl_init(&eg->evch_list);
299 	return (eg);
300 }
301 
302 /*ARGSUSED*/
303 static void
304 evch_zonefree(zoneid_t zoneid, void *arg)
305 {
306 	struct evch_globals *eg = arg;
307 	evch_chan_t *chp;
308 	evch_subd_t *sdp;
309 
310 	mutex_enter(&eg->evch_list_lock);
311 
312 	/*
313 	 * Keep picking the head element off the list until there are no
314 	 * more.
315 	 */
316 	while ((chp = evch_dl_next(&eg->evch_list, NULL)) != NULL) {
317 
318 		/*
319 		 * Since all processes are gone, all bindings should be gone,
320 		 * and only channels with SUB_KEEP subscribers should remain.
321 		 */
322 		mutex_enter(&chp->ch_mutex);
323 		ASSERT(chp->ch_bindings == 0);
324 		ASSERT(evch_dl_getnum(&chp->ch_subscr) != 0 ||
325 		    chp->ch_holdpend == CH_HOLD_PEND_INDEF);
326 
327 		/* Forcibly unsubscribe each remaining subscription */
328 		while ((sdp = evch_dl_next(&chp->ch_subscr, NULL)) != NULL) {
329 			/*
330 			 * We should only be tearing down persistent
331 			 * subscribers at this point, since all processes
332 			 * from this zone are gone.
333 			 */
334 			ASSERT(sdp->sd_active == 0);
335 			ASSERT((sdp->sd_persist & EVCH_SUB_KEEP) != 0);
336 			/*
337 			 * Disconnect subscriber queue from main event queue.
338 			 */
339 			evch_evq_unsub(chp->ch_queue, sdp->sd_msub);
340 
341 			/* Destruct per subscriber queue */
342 			evch_evq_unsub(sdp->sd_queue, sdp->sd_ssub);
343 			evch_evq_destroy(sdp->sd_queue);
344 			/*
345 			 * Eliminate the subscriber data from channel list.
346 			 */
347 			evch_dl_del(&chp->ch_subscr, &sdp->sd_link);
348 			kmem_free(sdp->sd_classname, sdp->sd_clnsize);
349 			kmem_free(sdp->sd_ident, strlen(sdp->sd_ident) + 1);
350 			kmem_free(sdp, sizeof (evch_subd_t));
351 		}
352 
353 		/* Channel must now have no subscribers */
354 		ASSERT(evch_dl_getnum(&chp->ch_subscr) == 0);
355 
356 		/* Just like unbind */
357 		mutex_exit(&chp->ch_mutex);
358 		evch_dl_del(&eg->evch_list, &chp->ch_link);
359 		evch_evq_destroy(chp->ch_queue);
360 		mutex_destroy(&chp->ch_mutex);
361 		mutex_destroy(&chp->ch_pubmx);
362 		cv_destroy(&chp->ch_pubcv);
363 		kmem_free(chp->ch_name, chp->ch_namelen);
364 		kmem_free(chp, sizeof (evch_chan_t));
365 	}
366 
367 	mutex_exit(&eg->evch_list_lock);
368 	/* all channels should now be gone */
369 	ASSERT(evch_dl_getnum(&eg->evch_list) == 0);
370 	kmem_free(eg, sizeof (*eg));
371 }
372 
373 /*
374  * Frees evch_gevent_t structure including the payload, if the reference count
375  * drops to or below zero. Below zero happens when the event is freed
376  * without beeing queued into a queue.
377  */
378 static void
379 evch_gevent_free(evch_gevent_t *evp)
380 {
381 	int32_t refcnt;
382 
383 	refcnt = (int32_t)atomic_add_32_nv(&evp->ge_refcount, -1);
384 	if (refcnt <= 0) {
385 		if (evp->ge_destruct != NULL) {
386 			evp->ge_destruct((void *)&(evp->ge_payload),
387 			    evp->ge_dstcookie);
388 		}
389 		kmem_free(evp, evp->ge_size);
390 	}
391 }
392 
393 /*
394  * Deliver is called for every subscription to the current event
395  * It calls the registered filter function and then the registered delivery
396  * callback routine. Returns 0 on success. The callback routine returns
397  * EVQ_AGAIN or EVQ_SLEEP in case the event could not be delivered.
398  */
399 static int
400 evch_deliver(evch_evqsub_t *sp, evch_gevent_t *ep)
401 {
402 	void		*uep = &ep->ge_payload;
403 	int		res = EVQ_DELIVER;
404 
405 	if (sp->su_filter != NULL) {
406 		res = sp->su_filter(uep, sp->su_fcookie);
407 	}
408 	if (res == EVQ_DELIVER) {
409 		return (sp->su_callb(uep, sp->su_cbcookie));
410 	}
411 	return (0);
412 }
413 
414 /*
415  * Holds event delivery in case of eq_holdmode set or in case the
416  * event queue is empty. Mutex must be held when called.
417  * Wakes up a thread waiting for the delivery thread reaching the hold mode.
418  */
419 static void
420 evch_delivery_hold(evch_eventq_t *eqp, callb_cpr_t *cpip)
421 {
422 	if (eqp->eq_tabortflag == 0) {
423 		do {
424 			if (eqp->eq_holdmode) {
425 				cv_signal(&eqp->eq_onholdcv);
426 			}
427 			CALLB_CPR_SAFE_BEGIN(cpip);
428 			cv_wait(&eqp->eq_thrsleepcv, &eqp->eq_queuemx);
429 			CALLB_CPR_SAFE_END(cpip, &eqp->eq_queuemx);
430 		} while (eqp->eq_holdmode);
431 	}
432 }
433 
434 /*
435  * Event delivery thread. Enumerates all subscribers and calls evch_deliver()
436  * for each one.
437  */
438 static void
439 evch_delivery_thr(evch_eventq_t *eqp)
440 {
441 	evch_qelem_t	*qep;
442 	callb_cpr_t	cprinfo;
443 	int		res;
444 	evch_evqsub_t	*sub;
445 	int		deltime;
446 	int		repeatcount;
447 	char		thnam[32];
448 
449 	(void) snprintf(thnam, sizeof (thnam), "sysevent_chan-%d",
450 	    (int)eqp->eq_thrid);
451 	CALLB_CPR_INIT(&cprinfo, &eqp->eq_queuemx, callb_generic_cpr, thnam);
452 	mutex_enter(&eqp->eq_queuemx);
453 	while (eqp->eq_tabortflag == 0) {
454 		while (eqp->eq_holdmode == 0 && eqp->eq_tabortflag == 0 &&
455 		    (qep = evch_q_out(&eqp->eq_eventq)) != NULL) {
456 
457 			/* Filter and deliver event to all subscribers */
458 			deltime = EVCH_MIN_PAUSE;
459 			repeatcount = EVCH_MAX_TRY_DELIVERY;
460 			eqp->eq_curevent = qep->q_objref;
461 			sub = evch_dl_next(&eqp->eq_subscr, NULL);
462 			while (sub != NULL) {
463 				eqp->eq_dactive = 1;
464 				mutex_exit(&eqp->eq_queuemx);
465 				res = evch_deliver(sub, qep->q_objref);
466 				mutex_enter(&eqp->eq_queuemx);
467 				eqp->eq_dactive = 0;
468 				cv_signal(&eqp->eq_dactivecv);
469 				switch (res) {
470 				case EVQ_SLEEP:
471 					/*
472 					 * Wait for subscriber to return.
473 					 */
474 					eqp->eq_holdmode = 1;
475 					evch_delivery_hold(eqp, &cprinfo);
476 					if (eqp->eq_tabortflag) {
477 						break;
478 					}
479 					continue;
480 				case EVQ_AGAIN:
481 					CALLB_CPR_SAFE_BEGIN(&cprinfo);
482 					mutex_exit(&eqp->eq_queuemx);
483 					delay(deltime);
484 					deltime =
485 					    deltime > EVCH_MAX_PAUSE ?
486 					    deltime : deltime << 1;
487 					mutex_enter(&eqp->eq_queuemx);
488 					CALLB_CPR_SAFE_END(&cprinfo,
489 					    &eqp->eq_queuemx);
490 					if (repeatcount-- > 0) {
491 						continue;
492 					}
493 					break;
494 				}
495 				if (eqp->eq_tabortflag) {
496 					break;
497 				}
498 				sub = evch_dl_next(&eqp->eq_subscr, sub);
499 				repeatcount = EVCH_MAX_TRY_DELIVERY;
500 			}
501 			eqp->eq_curevent = NULL;
502 
503 			/* Free event data and queue element */
504 			evch_gevent_free((evch_gevent_t *)qep->q_objref);
505 			kmem_free(qep, qep->q_objsize);
506 		}
507 
508 		/* Wait for next event or end of hold mode if set */
509 		evch_delivery_hold(eqp, &cprinfo);
510 	}
511 	CALLB_CPR_EXIT(&cprinfo);	/* Does mutex_exit of eqp->eq_queuemx */
512 	thread_exit();
513 }
514 
515 /*
516  * Create the event delivery thread for an existing event queue.
517  */
518 static void
519 evch_evq_thrcreate(evch_eventq_t *eqp)
520 {
521 	kthread_t *thp;
522 
523 	thp = thread_create(NULL, 0, evch_delivery_thr, (char *)eqp, 0, &p0,
524 	    TS_RUN, minclsyspri);
525 	eqp->eq_thrid = thp->t_did;
526 }
527 
528 /*
529  * Create event queue.
530  */
531 static evch_eventq_t *
532 evch_evq_create()
533 {
534 	evch_eventq_t *p;
535 
536 	/* Allocate and initialize event queue descriptor */
537 	p = kmem_zalloc(sizeof (evch_eventq_t), KM_SLEEP);
538 	mutex_init(&p->eq_queuemx, NULL, MUTEX_DEFAULT, NULL);
539 	cv_init(&p->eq_thrsleepcv, NULL, CV_DEFAULT, NULL);
540 	evch_q_init(&p->eq_eventq);
541 	evch_dl_init(&p->eq_subscr);
542 	cv_init(&p->eq_dactivecv, NULL, CV_DEFAULT, NULL);
543 	cv_init(&p->eq_onholdcv, NULL, CV_DEFAULT, NULL);
544 
545 	/* Create delivery thread */
546 	if (evq_initcomplete) {
547 		evch_evq_thrcreate(p);
548 	}
549 	return (p);
550 }
551 
552 /*
553  * Destroy an event queue. All subscribers have to be unsubscribed prior to
554  * this call.
555  */
556 static void
557 evch_evq_destroy(evch_eventq_t *eqp)
558 {
559 	evch_qelem_t *qep;
560 
561 	ASSERT(evch_dl_getnum(&eqp->eq_subscr) == 0);
562 	/* Kill delivery thread */
563 	if (eqp->eq_thrid != NULL) {
564 		mutex_enter(&eqp->eq_queuemx);
565 		eqp->eq_tabortflag = 1;
566 		eqp->eq_holdmode = 0;
567 		cv_signal(&eqp->eq_thrsleepcv);
568 		mutex_exit(&eqp->eq_queuemx);
569 		thread_join(eqp->eq_thrid);
570 	}
571 
572 	/* Get rid of stale events in the event queue */
573 	while ((qep = (evch_qelem_t *)evch_q_out(&eqp->eq_eventq)) != NULL) {
574 		evch_gevent_free((evch_gevent_t *)qep->q_objref);
575 		kmem_free(qep, qep->q_objsize);
576 	}
577 
578 	/* Wrap up event queue structure */
579 	cv_destroy(&eqp->eq_onholdcv);
580 	cv_destroy(&eqp->eq_dactivecv);
581 	cv_destroy(&eqp->eq_thrsleepcv);
582 	evch_dl_fini(&eqp->eq_subscr);
583 	mutex_destroy(&eqp->eq_queuemx);
584 
585 	/* Free descriptor structure */
586 	kmem_free(eqp, sizeof (evch_eventq_t));
587 }
588 
589 /*
590  * Subscribe to an event queue. Every subscriber provides a filter callback
591  * routine and an event delivery callback routine.
592  */
593 static evch_evqsub_t *
594 evch_evq_sub(evch_eventq_t *eqp, filter_f filter, void *fcookie,
595     deliver_f callb, void *cbcookie)
596 {
597 	evch_evqsub_t *sp = kmem_zalloc(sizeof (evch_evqsub_t), KM_SLEEP);
598 
599 	/* Initialize subscriber structure */
600 	sp->su_filter = filter;
601 	sp->su_fcookie = fcookie;
602 	sp->su_callb = callb;
603 	sp->su_cbcookie = cbcookie;
604 
605 	/* Add subscription to queue */
606 	mutex_enter(&eqp->eq_queuemx);
607 	evch_dl_add(&eqp->eq_subscr, &sp->su_link);
608 	mutex_exit(&eqp->eq_queuemx);
609 	return (sp);
610 }
611 
612 /*
613  * Unsubscribe from an event queue.
614  */
615 static void
616 evch_evq_unsub(evch_eventq_t *eqp, evch_evqsub_t *sp)
617 {
618 	mutex_enter(&eqp->eq_queuemx);
619 
620 	/* Wait if delivery is just in progress */
621 	if (eqp->eq_dactive) {
622 		cv_wait(&eqp->eq_dactivecv, &eqp->eq_queuemx);
623 	}
624 	evch_dl_del(&eqp->eq_subscr, &sp->su_link);
625 	mutex_exit(&eqp->eq_queuemx);
626 	kmem_free(sp, sizeof (evch_evqsub_t));
627 }
628 
629 /*
630  * Publish an event. Returns 0 on success and -1 if memory alloc failed.
631  */
632 static int
633 evch_evq_pub(evch_eventq_t *eqp, void *ev, int flags)
634 {
635 	size_t size;
636 	evch_qelem_t	*qep;
637 	evch_gevent_t	*evp = GEVENT(ev);
638 
639 	size = sizeof (evch_qelem_t);
640 	if (flags & EVCH_TRYHARD) {
641 		qep = kmem_alloc_tryhard(size, &size, KM_NOSLEEP);
642 	} else {
643 		qep = kmem_alloc(size, flags & EVCH_NOSLEEP ?
644 		    KM_NOSLEEP : KM_SLEEP);
645 	}
646 	if (qep == NULL) {
647 		return (-1);
648 	}
649 	qep->q_objref = (void *)evp;
650 	qep->q_objsize = size;
651 	atomic_add_32(&evp->ge_refcount, 1);
652 	mutex_enter(&eqp->eq_queuemx);
653 	evch_q_in(&eqp->eq_eventq, qep);
654 
655 	/* Wakeup delivery thread */
656 	cv_signal(&eqp->eq_thrsleepcv);
657 	mutex_exit(&eqp->eq_queuemx);
658 	return (0);
659 }
660 
661 /*
662  * Enter hold mode of an event queue. Event delivery thread stops event
663  * handling after delivery of current event (if any).
664  */
665 static void
666 evch_evq_stop(evch_eventq_t *eqp)
667 {
668 	mutex_enter(&eqp->eq_queuemx);
669 	eqp->eq_holdmode = 1;
670 	if (evq_initcomplete) {
671 		cv_signal(&eqp->eq_thrsleepcv);
672 		cv_wait(&eqp->eq_onholdcv, &eqp->eq_queuemx);
673 	}
674 	mutex_exit(&eqp->eq_queuemx);
675 }
676 
677 /*
678  * Continue event delivery.
679  */
680 static void
681 evch_evq_continue(evch_eventq_t *eqp)
682 {
683 	mutex_enter(&eqp->eq_queuemx);
684 	eqp->eq_holdmode = 0;
685 	cv_signal(&eqp->eq_thrsleepcv);
686 	mutex_exit(&eqp->eq_queuemx);
687 }
688 
689 /*
690  * Returns status of delivery thread. 0 if running and 1 if on hold.
691  */
692 static int
693 evch_evq_status(evch_eventq_t *eqp)
694 {
695 	return (eqp->eq_holdmode);
696 }
697 
698 /*
699  * Add a destructor function to an event structure.
700  */
701 static void
702 evch_evq_evadd_dest(void *ev, destr_f destructor, void *cookie)
703 {
704 	evch_gevent_t *evp = GEVENT(ev);
705 
706 	evp->ge_destruct = destructor;
707 	evp->ge_dstcookie = cookie;
708 }
709 
710 /*
711  * Allocate evch_gevent_t structure. Return address of payload offset of
712  * evch_gevent_t.  If EVCH_TRYHARD allocation is requested, we use
713  * kmem_alloc_tryhard to alloc memory of at least paylsize bytes.
714  *
715  * If either memory allocation is unsuccessful, we return NULL.
716  */
717 static void *
718 evch_evq_evzalloc(size_t paylsize, int flag)
719 {
720 	evch_gevent_t	*evp;
721 	size_t		rsize, evsize, ge_size;
722 
723 	rsize = offsetof(evch_gevent_t, ge_payload) + paylsize;
724 	if (flag & EVCH_TRYHARD) {
725 		evp = kmem_alloc_tryhard(rsize, &evsize, KM_NOSLEEP);
726 		ge_size = evsize;
727 	} else {
728 		evp = kmem_alloc(rsize, flag & EVCH_NOSLEEP ? KM_NOSLEEP :
729 		    KM_SLEEP);
730 		ge_size = rsize;
731 	}
732 
733 	if (evp) {
734 		bzero(evp, rsize);
735 		evp->ge_size = ge_size;
736 		return (&evp->ge_payload);
737 	}
738 	return (evp);
739 }
740 
741 /*
742  * Free event structure. Argument ev is address of payload offset.
743  */
744 static void
745 evch_evq_evfree(void *ev)
746 {
747 	evch_gevent_free(GEVENT(ev));
748 }
749 
750 /*
751  * Iterate over all events in the event queue. Begin with an event
752  * which is currently being delivered. No mutexes are grabbed and no
753  * resources allocated so that this function can be called in panic
754  * context too. This function has to be called with ev == NULL initially.
755  * Actually argument ev is only a flag. Internally the member eq_nextev
756  * is used to determine the next event. But ev allows for the convenient
757  * use like
758  *	ev = NULL;
759  *	while ((ev = evch_evq_evnext(evp, ev)) != NULL) ...
760  */
761 static void *
762 evch_evq_evnext(evch_eventq_t *evq, void *ev)
763 {
764 	if (ev == NULL) {
765 		evq->eq_nextev = NULL;
766 		if (evq->eq_curevent != NULL)
767 			return (&evq->eq_curevent->ge_payload);
768 	}
769 	evq->eq_nextev = evch_q_next(&evq->eq_eventq, evq->eq_nextev);
770 	if (evq->eq_nextev == NULL)
771 		return (NULL);
772 	return (&((evch_gevent_t *)evq->eq_nextev->q_objref)->ge_payload);
773 }
774 
775 /*
776  * Channel handling functions. First some support functions. Functions belonging
777  * to the channel handling interface start with evch_ch. The following functions
778  * make up the channel handling internal interfaces:
779  *
780  * evch_chinit		- Initialize channel handling
781  * evch_chinitthr	- Second step init: initialize threads
782  * evch_chbind		- Bind to a channel
783  * evch_chunbind	- Unbind from a channel
784  * evch_chsubscribe	- Subscribe to a sysevent class
785  * evch_chunsubscribe	- Unsubscribe
786  * evch_chpublish	- Publish an event
787  * evch_chgetnames	- Get names of all channels
788  * evch_chgetchdata	- Get data of a channel
789  * evch_chrdevent_init  - Init event q traversal
790  * evch_chgetnextev	- Read out events queued for a subscriber
791  * evch_chrdevent_fini  - Finish event q traversal
792  */
793 
794 /*
795  * Compare channel name. Used for evch_dl_search to find a channel with the
796  * name s.
797  */
798 static int
799 evch_namecmp(evch_dlelem_t *ep, char *s)
800 {
801 	return (strcmp(((evch_chan_t *)ep)->ch_name, s));
802 }
803 
804 /*
805  * Simple wildcarded match test of event class string 'class' to
806  * wildcarded subscription string 'pat'.  Recursive only if
807  * 'pat' includes a wildcard, otherwise essentially just strcmp.
808  */
809 static int
810 evch_clsmatch(char *class, const char *pat)
811 {
812 	char c;
813 
814 	do {
815 		if ((c = *pat++) == '\0')
816 			return (*class == '\0');
817 
818 		if (c == '*') {
819 			while (*pat == '*')
820 				pat++; /* consecutive *'s can be collapsed */
821 
822 			if (*pat == '\0')
823 				return (1);
824 
825 			while (*class != '\0') {
826 				if (evch_clsmatch(class++, pat) != 0)
827 					return (1);
828 			}
829 
830 			return (0);
831 		}
832 	} while (c == *class++);
833 
834 	return (0);
835 }
836 
837 /*
838  * Sysevent filter callback routine. Enables event delivery only if it matches
839  * the event class pattern string given by parameter cookie.
840  */
841 static int
842 evch_class_filter(void *ev, void *cookie)
843 {
844 	const char *pat = (const char *)cookie;
845 
846 	if (pat == NULL || evch_clsmatch(SE_CLASS_NAME(ev), pat))
847 		return (EVQ_DELIVER);
848 
849 	return (EVQ_IGNORE);
850 }
851 
852 /*
853  * Callback routine to propagate the event into a per subscriber queue.
854  */
855 static int
856 evch_subq_deliver(void *evp, void *cookie)
857 {
858 	evch_subd_t *p = (evch_subd_t *)cookie;
859 
860 	(void) evch_evq_pub(p->sd_queue, evp, EVCH_SLEEP);
861 	return (EVQ_CONT);
862 }
863 
864 /*
865  * Call kernel callback routine for sysevent kernel delivery.
866  */
867 static int
868 evch_kern_deliver(void *evp, void *cookie)
869 {
870 	sysevent_impl_t	*ev = (sysevent_impl_t *)evp;
871 	evch_subd_t	*sdp = (evch_subd_t *)cookie;
872 
873 	return (sdp->sd_callback(ev, sdp->sd_cbcookie));
874 }
875 
876 /*
877  * Door upcall for user land sysevent delivery.
878  */
879 static int
880 evch_door_deliver(void *evp, void *cookie)
881 {
882 	int		error;
883 	size_t		size;
884 	sysevent_impl_t	*ev = (sysevent_impl_t *)evp;
885 	door_arg_t	darg;
886 	evch_subd_t	*sdp = (evch_subd_t *)cookie;
887 	int		nticks = EVCH_MIN_PAUSE;
888 	uint32_t	retval;
889 	int		retry = 20;
890 
891 	/* Initialize door args */
892 	size = sizeof (sysevent_impl_t) + SE_PAYLOAD_SZ(ev);
893 
894 	darg.rbuf = (char *)&retval;
895 	darg.rsize = sizeof (retval);
896 	darg.data_ptr = (char *)ev;
897 	darg.data_size = size;
898 	darg.desc_ptr = NULL;
899 	darg.desc_num = 0;
900 
901 	for (;;) {
902 		if ((error = door_ki_upcall_limited(sdp->sd_door, &darg,
903 		    NULL, SIZE_MAX, 0)) == 0) {
904 			break;
905 		}
906 		switch (error) {
907 		case EAGAIN:
908 			/* Cannot deliver event - process may be forking */
909 			delay(nticks);
910 			nticks <<= 1;
911 			if (nticks > EVCH_MAX_PAUSE) {
912 				nticks = EVCH_MAX_PAUSE;
913 			}
914 			if (retry-- <= 0) {
915 				cmn_err(CE_CONT, "event delivery thread: "
916 				    "door_ki_upcall error EAGAIN\n");
917 				return (EVQ_CONT);
918 			}
919 			break;
920 		case EINTR:
921 		case EBADF:
922 			/* Process died */
923 			return (EVQ_SLEEP);
924 		default:
925 			cmn_err(CE_CONT,
926 			    "event delivery thread: door_ki_upcall error %d\n",
927 			    error);
928 			return (EVQ_CONT);
929 		}
930 	}
931 	if (retval == EAGAIN) {
932 		return (EVQ_AGAIN);
933 	}
934 	return (EVQ_CONT);
935 }
936 
937 /*
938  * Callback routine for evch_dl_search() to compare subscriber id's. Used by
939  * evch_subscribe() and evch_chrdevent_init().
940  */
941 static int
942 evch_subidcmp(evch_dlelem_t *ep, char *s)
943 {
944 	return (strcmp(((evch_subd_t *)ep)->sd_ident, s));
945 }
946 
947 /*
948  * Callback routine for evch_dl_search() to find a subscriber with EVCH_SUB_DUMP
949  * set (indicated by sub->sd_dump != 0). Used by evch_chrdevent_init() and
950  * evch_subscribe(). Needs to returns 0 if subscriber with sd_dump set is
951  * found.
952  */
953 /*ARGSUSED1*/
954 static int
955 evch_dumpflgcmp(evch_dlelem_t *ep, char *s)
956 {
957 	return (((evch_subd_t *)ep)->sd_dump ? 0 : 1);
958 }
959 
960 /*
961  * Event destructor function. Used to maintain the number of events per channel.
962  */
963 /*ARGSUSED*/
964 static void
965 evch_destr_event(void *ev, void *ch)
966 {
967 	evch_chan_t *chp = (evch_chan_t *)ch;
968 
969 	mutex_enter(&chp->ch_pubmx);
970 	chp->ch_nevents--;
971 	cv_signal(&chp->ch_pubcv);
972 	mutex_exit(&chp->ch_pubmx);
973 }
974 
975 /*
976  * Integer square root according to Newton's iteration.
977  */
978 static uint32_t
979 evch_isqrt(uint64_t n)
980 {
981 	uint64_t	x = n >> 1;
982 	uint64_t	xn = x - 1;
983 	static uint32_t	lowval[] = { 0, 1, 1, 2 };
984 
985 	if (n < 4) {
986 		return (lowval[n]);
987 	}
988 	while (xn < x) {
989 		x = xn;
990 		xn = (x + n / x) / 2;
991 	}
992 	return ((uint32_t)xn);
993 }
994 
995 /*
996  * First step sysevent channel initialization. Called when kernel memory
997  * allocator is initialized.
998  */
999 static void
1000 evch_chinit()
1001 {
1002 	size_t k;
1003 
1004 	/*
1005 	 * Calculate limits: max no of channels and max no of events per
1006 	 * channel. The smallest machine with 128 MByte will allow for
1007 	 * >= 8 channels and an upper limit of 2048 events per channel.
1008 	 * The event limit is the number of channels times 256 (hence
1009 	 * the shift factor of 8). These number where selected arbitrarily.
1010 	 */
1011 	k = kmem_maxavail() >> 20;
1012 	evch_channels_max = min(evch_isqrt(k), EVCH_MAX_CHANNELS);
1013 	evch_events_max = evch_channels_max << 8;
1014 
1015 	/*
1016 	 * Will trigger creation of the global zone's evch state.
1017 	 */
1018 	zone_key_create(&evch_zone_key, evch_zoneinit, NULL, evch_zonefree);
1019 }
1020 
1021 /*
1022  * Second step sysevent channel initialization. Called when threads are ready.
1023  */
1024 static void
1025 evch_chinitthr()
1026 {
1027 	struct evch_globals *eg;
1028 	evch_chan_t	*chp;
1029 	evch_subd_t	*sdp;
1030 
1031 	/*
1032 	 * We're early enough in boot that we know that only the global
1033 	 * zone exists; we only need to initialize its threads.
1034 	 */
1035 	eg = zone_getspecific(evch_zone_key, global_zone);
1036 	ASSERT(eg != NULL);
1037 
1038 	for (chp = evch_dl_next(&eg->evch_list, NULL); chp != NULL;
1039 	    chp = evch_dl_next(&eg->evch_list, chp)) {
1040 		for (sdp = evch_dl_next(&chp->ch_subscr, NULL); sdp;
1041 		    sdp = evch_dl_next(&chp->ch_subscr, sdp)) {
1042 			evch_evq_thrcreate(sdp->sd_queue);
1043 		}
1044 		evch_evq_thrcreate(chp->ch_queue);
1045 	}
1046 	evq_initcomplete = 1;
1047 }
1048 
1049 /*
1050  * Sysevent channel bind. Create channel and allocate binding structure.
1051  */
1052 static int
1053 evch_chbind(const char *chnam, evch_bind_t **scpp, uint32_t flags)
1054 {
1055 	struct evch_globals *eg;
1056 	evch_bind_t	*bp;
1057 	evch_chan_t	*p;
1058 	char		*chn;
1059 	size_t		namlen;
1060 	int		rv;
1061 
1062 	eg = zone_getspecific(evch_zone_key, curproc->p_zone);
1063 	ASSERT(eg != NULL);
1064 
1065 	/* Create channel if it does not exist */
1066 	ASSERT(evch_dl_is_init(&eg->evch_list));
1067 	if ((namlen = strlen(chnam) + 1) > MAX_CHNAME_LEN) {
1068 		return (EINVAL);
1069 	}
1070 	mutex_enter(&eg->evch_list_lock);
1071 	if ((p = (evch_chan_t *)evch_dl_search(&eg->evch_list, evch_namecmp,
1072 	    (char *)chnam)) == NULL) {
1073 		if (flags & EVCH_CREAT) {
1074 			if (evch_dl_getnum(&eg->evch_list) >=
1075 			    evch_channels_max) {
1076 				mutex_exit(&eg->evch_list_lock);
1077 				return (ENOMEM);
1078 			}
1079 			chn = kmem_alloc(namlen, KM_SLEEP);
1080 			bcopy(chnam, chn, namlen);
1081 
1082 			/* Allocate and initialize channel descriptor */
1083 			p = kmem_zalloc(sizeof (evch_chan_t), KM_SLEEP);
1084 			p->ch_name = chn;
1085 			p->ch_namelen = namlen;
1086 			mutex_init(&p->ch_mutex, NULL, MUTEX_DEFAULT, NULL);
1087 			p->ch_queue = evch_evq_create();
1088 			evch_dl_init(&p->ch_subscr);
1089 			if (evq_initcomplete) {
1090 				p->ch_uid = crgetuid(curthread->t_cred);
1091 				p->ch_gid = crgetgid(curthread->t_cred);
1092 			}
1093 			cv_init(&p->ch_pubcv, NULL, CV_DEFAULT, NULL);
1094 			mutex_init(&p->ch_pubmx, NULL, MUTEX_DEFAULT, NULL);
1095 			p->ch_maxev = min(EVCH_DEFAULT_EVENTS, evch_events_max);
1096 			p->ch_maxsubscr = EVCH_MAX_SUBSCRIPTIONS;
1097 			p->ch_maxbinds = evch_bindings_max;
1098 			p->ch_ctime = gethrestime_sec();
1099 
1100 			if (flags & (EVCH_HOLD_PEND | EVCH_HOLD_PEND_INDEF)) {
1101 				if (flags & EVCH_HOLD_PEND_INDEF)
1102 					p->ch_holdpend = CH_HOLD_PEND_INDEF;
1103 				else
1104 					p->ch_holdpend = CH_HOLD_PEND;
1105 
1106 				evch_evq_stop(p->ch_queue);
1107 			}
1108 
1109 			/* Put new descriptor into channel list */
1110 			evch_dl_add(&eg->evch_list, (evch_dlelem_t *)p);
1111 		} else {
1112 			mutex_exit(&eg->evch_list_lock);
1113 			return (ENOENT);
1114 		}
1115 	}
1116 
1117 	/* Check for max binds and create binding */
1118 	mutex_enter(&p->ch_mutex);
1119 	if (p->ch_bindings >= p->ch_maxbinds) {
1120 		rv = ENOMEM;
1121 		/*
1122 		 * No need to destroy the channel because this call did not
1123 		 * create it. Other bindings will be present if ch_maxbinds
1124 		 * is exceeded.
1125 		 */
1126 		goto errorexit;
1127 	}
1128 	bp = kmem_alloc(sizeof (evch_bind_t), KM_SLEEP);
1129 	bp->bd_channel = p;
1130 	bp->bd_sublst = NULL;
1131 	p->ch_bindings++;
1132 	rv = 0;
1133 	*scpp = bp;
1134 errorexit:
1135 	mutex_exit(&p->ch_mutex);
1136 	mutex_exit(&eg->evch_list_lock);
1137 	return (rv);
1138 }
1139 
1140 /*
1141  * Unbind: Free bind structure. Remove channel if last binding was freed.
1142  */
1143 static void
1144 evch_chunbind(evch_bind_t *bp)
1145 {
1146 	struct evch_globals *eg;
1147 	evch_chan_t *chp = bp->bd_channel;
1148 
1149 	eg = zone_getspecific(evch_zone_key, curproc->p_zone);
1150 	ASSERT(eg != NULL);
1151 
1152 	mutex_enter(&eg->evch_list_lock);
1153 	mutex_enter(&chp->ch_mutex);
1154 	ASSERT(chp->ch_bindings > 0);
1155 	chp->ch_bindings--;
1156 	kmem_free(bp, sizeof (evch_bind_t));
1157 	if (chp->ch_bindings == 0 && evch_dl_getnum(&chp->ch_subscr) == 0 &&
1158 	    (chp->ch_nevents == 0 || chp->ch_holdpend != CH_HOLD_PEND_INDEF)) {
1159 		/*
1160 		 * No more bindings and no persistent subscriber(s).  If there
1161 		 * are no events in the channel then destroy the channel;
1162 		 * otherwise destroy the channel only if we're not holding
1163 		 * pending events indefinitely.
1164 		 */
1165 		mutex_exit(&chp->ch_mutex);
1166 		evch_dl_del(&eg->evch_list, &chp->ch_link);
1167 		evch_evq_destroy(chp->ch_queue);
1168 		mutex_destroy(&chp->ch_mutex);
1169 		mutex_destroy(&chp->ch_pubmx);
1170 		cv_destroy(&chp->ch_pubcv);
1171 		kmem_free(chp->ch_name, chp->ch_namelen);
1172 		kmem_free(chp, sizeof (evch_chan_t));
1173 	} else
1174 		mutex_exit(&chp->ch_mutex);
1175 	mutex_exit(&eg->evch_list_lock);
1176 }
1177 
1178 static int
1179 wildcard_count(const char *class)
1180 {
1181 	int count = 0;
1182 	char c;
1183 
1184 	if (class == NULL)
1185 		return (0);
1186 
1187 	while ((c = *class++) != '\0') {
1188 		if (c == '*')
1189 			count++;
1190 	}
1191 
1192 	return (count);
1193 }
1194 
1195 /*
1196  * Subscribe to a channel. dtype is either EVCH_DELKERN for kernel callbacks
1197  * or EVCH_DELDOOR for door upcall delivery to user land. Depending on dtype
1198  * dinfo gives the call back routine address or the door handle.
1199  */
1200 static int
1201 evch_chsubscribe(evch_bind_t *bp, int dtype, const char *sid, const char *class,
1202     void *dinfo, void *cookie, int flags, pid_t pid)
1203 {
1204 	evch_chan_t	*chp = bp->bd_channel;
1205 	evch_eventq_t	*eqp = chp->ch_queue;
1206 	evch_subd_t	*sdp;
1207 	evch_subd_t	*esp;
1208 	int		(*delivfkt)();
1209 	char		*clb = NULL;
1210 	int		clblen = 0;
1211 	char		*subid;
1212 	int		subidblen;
1213 
1214 	/*
1215 	 * Check if only known flags are set.
1216 	 */
1217 	if (flags & ~(EVCH_SUB_KEEP | EVCH_SUB_DUMP))
1218 		return (EINVAL);
1219 
1220 	/*
1221 	 * Enforce a limit on the number of wildcards allowed in the class
1222 	 * subscription string (limits recursion in pattern matching).
1223 	 */
1224 	if (wildcard_count(class) > EVCH_WILDCARD_MAX)
1225 		return (EINVAL);
1226 
1227 	/*
1228 	 * Check if we have already a subscription with that name and if we
1229 	 * have to reconnect the subscriber to a persistent subscription.
1230 	 */
1231 	mutex_enter(&chp->ch_mutex);
1232 	if ((esp = (evch_subd_t *)evch_dl_search(&chp->ch_subscr,
1233 	    evch_subidcmp, (char *)sid)) != NULL) {
1234 		int error = 0;
1235 		if ((flags & EVCH_SUB_KEEP) && (esp->sd_active == 0)) {
1236 			/*
1237 			 * Subscription with the name on hold, reconnect to
1238 			 * existing queue.
1239 			 */
1240 			ASSERT(dtype == EVCH_DELDOOR);
1241 			esp->sd_subnxt = bp->bd_sublst;
1242 			bp->bd_sublst = esp;
1243 			esp->sd_pid = pid;
1244 			esp->sd_door = (door_handle_t)dinfo;
1245 			esp->sd_active++;
1246 			evch_evq_continue(esp->sd_queue);
1247 		} else {
1248 			/* Subscriber with given name already exists */
1249 			error = EEXIST;
1250 		}
1251 		mutex_exit(&chp->ch_mutex);
1252 		return (error);
1253 	}
1254 
1255 	if (evch_dl_getnum(&chp->ch_subscr) >= chp->ch_maxsubscr) {
1256 		mutex_exit(&chp->ch_mutex);
1257 		return (ENOMEM);
1258 	}
1259 
1260 	if (flags & EVCH_SUB_DUMP && evch_dl_search(&chp->ch_subscr,
1261 	    evch_dumpflgcmp, NULL) != NULL) {
1262 		/*
1263 		 * Subscription with EVCH_SUB_DUMP flagged already exists.
1264 		 * Only one subscription with EVCH_SUB_DUMP possible. Return
1265 		 * error.
1266 		 */
1267 		mutex_exit(&chp->ch_mutex);
1268 		return (EINVAL);
1269 	}
1270 
1271 	if (class != NULL) {
1272 		clblen = strlen(class) + 1;
1273 		clb = kmem_alloc(clblen, KM_SLEEP);
1274 		bcopy(class, clb, clblen);
1275 	}
1276 
1277 	subidblen = strlen(sid) + 1;
1278 	subid = kmem_alloc(subidblen, KM_SLEEP);
1279 	bcopy(sid, subid, subidblen);
1280 
1281 	/* Create per subscriber queue */
1282 	sdp = kmem_zalloc(sizeof (evch_subd_t), KM_SLEEP);
1283 	sdp->sd_queue = evch_evq_create();
1284 
1285 	/* Subscribe to subscriber queue */
1286 	sdp->sd_persist = flags & EVCH_SUB_KEEP ? 1 : 0;
1287 	sdp->sd_dump = flags & EVCH_SUB_DUMP ? 1 : 0;
1288 	sdp->sd_type = dtype;
1289 	sdp->sd_cbcookie = cookie;
1290 	sdp->sd_ident = subid;
1291 	if (dtype == EVCH_DELKERN) {
1292 		sdp->sd_callback = (kerndlv_f)dinfo;
1293 		delivfkt = evch_kern_deliver;
1294 	} else {
1295 		sdp->sd_door = (door_handle_t)dinfo;
1296 		delivfkt = evch_door_deliver;
1297 	}
1298 	sdp->sd_ssub =
1299 	    evch_evq_sub(sdp->sd_queue, NULL, NULL, delivfkt, (void *)sdp);
1300 
1301 	/* Connect per subscriber queue to main event queue */
1302 	sdp->sd_msub = evch_evq_sub(eqp, evch_class_filter, clb,
1303 	    evch_subq_deliver, (void *)sdp);
1304 	sdp->sd_classname = clb;
1305 	sdp->sd_clnsize = clblen;
1306 	sdp->sd_pid = pid;
1307 	sdp->sd_active++;
1308 
1309 	/* Add subscription to binding */
1310 	sdp->sd_subnxt = bp->bd_sublst;
1311 	bp->bd_sublst = sdp;
1312 
1313 	/* Add subscription to channel */
1314 	evch_dl_add(&chp->ch_subscr, &sdp->sd_link);
1315 	if (chp->ch_holdpend && evch_dl_getnum(&chp->ch_subscr) == 1) {
1316 
1317 		/* Let main event queue run in case of HOLDPEND */
1318 		evch_evq_continue(eqp);
1319 	}
1320 	mutex_exit(&chp->ch_mutex);
1321 
1322 	return (0);
1323 }
1324 
1325 /*
1326  * If flag == EVCH_SUB_KEEP only non-persistent subscriptions are deleted.
1327  * When sid == NULL all subscriptions except the ones with EVCH_SUB_KEEP set
1328  * are removed.
1329  */
1330 static void
1331 evch_chunsubscribe(evch_bind_t *bp, const char *sid, uint32_t flags)
1332 {
1333 	evch_subd_t	*sdp;
1334 	evch_subd_t	*next;
1335 	evch_subd_t	*prev;
1336 	evch_chan_t	*chp = bp->bd_channel;
1337 
1338 	mutex_enter(&chp->ch_mutex);
1339 	if (chp->ch_holdpend) {
1340 		evch_evq_stop(chp->ch_queue);	/* Hold main event queue */
1341 	}
1342 	prev = NULL;
1343 	for (sdp = bp->bd_sublst; sdp; sdp = next) {
1344 		if (sid == NULL || strcmp(sid, sdp->sd_ident) == 0) {
1345 			if (flags == 0 || sdp->sd_persist == 0) {
1346 				/*
1347 				 * Disconnect subscriber queue from main event
1348 				 * queue.
1349 				 */
1350 				evch_evq_unsub(chp->ch_queue, sdp->sd_msub);
1351 
1352 				/* Destruct per subscriber queue */
1353 				evch_evq_unsub(sdp->sd_queue, sdp->sd_ssub);
1354 				evch_evq_destroy(sdp->sd_queue);
1355 				/*
1356 				 * Eliminate the subscriber data from channel
1357 				 * list.
1358 				 */
1359 				evch_dl_del(&chp->ch_subscr, &sdp->sd_link);
1360 				kmem_free(sdp->sd_classname, sdp->sd_clnsize);
1361 				if (sdp->sd_type == EVCH_DELDOOR) {
1362 					door_ki_rele(sdp->sd_door);
1363 				}
1364 				next = sdp->sd_subnxt;
1365 				if (prev) {
1366 					prev->sd_subnxt = next;
1367 				} else {
1368 					bp->bd_sublst = next;
1369 				}
1370 				kmem_free(sdp->sd_ident,
1371 				    strlen(sdp->sd_ident) + 1);
1372 				kmem_free(sdp, sizeof (evch_subd_t));
1373 			} else {
1374 				/*
1375 				 * EVCH_SUB_KEEP case
1376 				 */
1377 				evch_evq_stop(sdp->sd_queue);
1378 				if (sdp->sd_type == EVCH_DELDOOR) {
1379 					door_ki_rele(sdp->sd_door);
1380 				}
1381 				sdp->sd_active--;
1382 				ASSERT(sdp->sd_active == 0);
1383 				next = sdp->sd_subnxt;
1384 				prev = sdp;
1385 			}
1386 			if (sid != NULL) {
1387 				break;
1388 			}
1389 		} else {
1390 			next = sdp->sd_subnxt;
1391 			prev = sdp;
1392 		}
1393 	}
1394 	if (!(chp->ch_holdpend && evch_dl_getnum(&chp->ch_subscr) == 0)) {
1395 		/*
1396 		 * Continue dispatch thread except if no subscribers are present
1397 		 * in HOLDPEND mode.
1398 		 */
1399 		evch_evq_continue(chp->ch_queue);
1400 	}
1401 	mutex_exit(&chp->ch_mutex);
1402 }
1403 
1404 /*
1405  * Publish an event. Returns zero on success and an error code else.
1406  */
1407 static int
1408 evch_chpublish(evch_bind_t *bp, sysevent_impl_t *ev, int flags)
1409 {
1410 	evch_chan_t *chp = bp->bd_channel;
1411 
1412 	DTRACE_SYSEVENT2(post, evch_bind_t *, bp, sysevent_impl_t *, ev);
1413 
1414 	mutex_enter(&chp->ch_pubmx);
1415 	if (chp->ch_nevents >= chp->ch_maxev) {
1416 		if (!(flags & EVCH_QWAIT)) {
1417 			evch_evq_evfree(ev);
1418 			mutex_exit(&chp->ch_pubmx);
1419 			return (EAGAIN);
1420 		} else {
1421 			while (chp->ch_nevents >= chp->ch_maxev) {
1422 				if (cv_wait_sig(&chp->ch_pubcv,
1423 				    &chp->ch_pubmx) == 0) {
1424 
1425 					/* Got Signal, return EINTR */
1426 					evch_evq_evfree(ev);
1427 					mutex_exit(&chp->ch_pubmx);
1428 					return (EINTR);
1429 				}
1430 			}
1431 		}
1432 	}
1433 	chp->ch_nevents++;
1434 	mutex_exit(&chp->ch_pubmx);
1435 	SE_TIME(ev) = gethrtime();
1436 	SE_SEQ(ev) = log_sysevent_new_id();
1437 	/*
1438 	 * Add the destructor function to the event structure, now that the
1439 	 * event is accounted for. The only task of the descructor is to
1440 	 * decrement the channel event count. The evq_*() routines (including
1441 	 * the event delivery thread) do not have knowledge of the channel
1442 	 * data. So the anonymous destructor handles the channel data for it.
1443 	 */
1444 	evch_evq_evadd_dest(ev, evch_destr_event, (void *)chp);
1445 	return (evch_evq_pub(chp->ch_queue, ev, flags) == 0 ? 0 : EAGAIN);
1446 }
1447 
1448 /*
1449  * Fills a buffer consecutive with the names of all available channels.
1450  * Returns the length of all name strings or -1 if buffer size was unsufficient.
1451  */
1452 static int
1453 evch_chgetnames(char *buf, size_t size)
1454 {
1455 	struct evch_globals *eg;
1456 	int		len = 0;
1457 	char		*addr = buf;
1458 	int		max = size;
1459 	evch_chan_t	*chp;
1460 
1461 	eg = zone_getspecific(evch_zone_key, curproc->p_zone);
1462 	ASSERT(eg != NULL);
1463 
1464 	mutex_enter(&eg->evch_list_lock);
1465 	for (chp = evch_dl_next(&eg->evch_list, NULL); chp != NULL;
1466 	    chp = evch_dl_next(&eg->evch_list, chp)) {
1467 		len += chp->ch_namelen;
1468 		if (len >= max) {
1469 			mutex_exit(&eg->evch_list_lock);
1470 			return (-1);
1471 		}
1472 		bcopy(chp->ch_name, addr, chp->ch_namelen);
1473 		addr += chp->ch_namelen;
1474 	}
1475 	mutex_exit(&eg->evch_list_lock);
1476 	addr[0] = 0;
1477 	return (len + 1);
1478 }
1479 
1480 /*
1481  * Fills the data of one channel and all subscribers of that channel into
1482  * a buffer. Returns -1 if the channel name is invalid and 0 on buffer overflow.
1483  */
1484 static int
1485 evch_chgetchdata(char *chname, void *buf, size_t size)
1486 {
1487 	struct evch_globals *eg;
1488 	char		*cpaddr;
1489 	int		bufmax;
1490 	int		buflen;
1491 	evch_chan_t	*chp;
1492 	sev_chinfo_t	*p = (sev_chinfo_t *)buf;
1493 	int		chdlen;
1494 	evch_subd_t	*sdp;
1495 	sev_subinfo_t	*subp;
1496 	int		idlen;
1497 	int		len;
1498 
1499 	eg = zone_getspecific(evch_zone_key, curproc->p_zone);
1500 	ASSERT(eg != NULL);
1501 
1502 	mutex_enter(&eg->evch_list_lock);
1503 	chp = (evch_chan_t *)evch_dl_search(&eg->evch_list, evch_namecmp,
1504 	    chname);
1505 	if (chp == NULL) {
1506 		mutex_exit(&eg->evch_list_lock);
1507 		return (-1);
1508 	}
1509 	chdlen = offsetof(sev_chinfo_t, cd_subinfo);
1510 	if (size < chdlen) {
1511 		mutex_exit(&eg->evch_list_lock);
1512 		return (0);
1513 	}
1514 	p->cd_version = 0;
1515 	p->cd_suboffs = chdlen;
1516 	p->cd_uid = chp->ch_uid;
1517 	p->cd_gid = chp->ch_gid;
1518 	p->cd_perms = 0;
1519 	p->cd_ctime = chp->ch_ctime;
1520 	p->cd_maxev = chp->ch_maxev;
1521 	p->cd_evhwm = EVCH_EVQ_HIGHWM(chp->ch_queue);
1522 	p->cd_nevents = EVCH_EVQ_EVCOUNT(chp->ch_queue);
1523 	p->cd_maxsub = chp->ch_maxsubscr;
1524 	p->cd_nsub = evch_dl_getnum(&chp->ch_subscr);
1525 	p->cd_maxbinds = chp->ch_maxbinds;
1526 	p->cd_nbinds = chp->ch_bindings;
1527 	p->cd_holdpend = chp->ch_holdpend;
1528 	p->cd_limev = evch_events_max;
1529 	cpaddr = (char *)p + chdlen;
1530 	bufmax = size - chdlen;
1531 	buflen = 0;
1532 
1533 	for (sdp = evch_dl_next(&chp->ch_subscr, NULL); sdp != NULL;
1534 	    sdp = evch_dl_next(&chp->ch_subscr, sdp)) {
1535 		idlen = strlen(sdp->sd_ident) + 1;
1536 		len = SE_ALIGN(offsetof(sev_subinfo_t, sb_strings) + idlen +
1537 		    sdp->sd_clnsize);
1538 		buflen += len;
1539 		if (buflen >= bufmax) {
1540 			mutex_exit(&eg->evch_list_lock);
1541 			return (0);
1542 		}
1543 		subp = (sev_subinfo_t *)cpaddr;
1544 		subp->sb_nextoff = len;
1545 		subp->sb_stroff = offsetof(sev_subinfo_t, sb_strings);
1546 		if (sdp->sd_classname) {
1547 			bcopy(sdp->sd_classname, subp->sb_strings + idlen,
1548 			    sdp->sd_clnsize);
1549 			subp->sb_clnamoff = idlen;
1550 		} else {
1551 			subp->sb_clnamoff = idlen - 1;
1552 		}
1553 		subp->sb_pid = sdp->sd_pid;
1554 		subp->sb_nevents = EVCH_EVQ_EVCOUNT(sdp->sd_queue);
1555 		subp->sb_evhwm = EVCH_EVQ_HIGHWM(sdp->sd_queue);
1556 		subp->sb_persist = sdp->sd_persist;
1557 		subp->sb_status = evch_evq_status(sdp->sd_queue);
1558 		subp->sb_active = sdp->sd_active;
1559 		subp->sb_dump = sdp->sd_dump;
1560 		bcopy(sdp->sd_ident, subp->sb_strings, idlen);
1561 		cpaddr += len;
1562 	}
1563 	mutex_exit(&eg->evch_list_lock);
1564 	return (chdlen + buflen);
1565 }
1566 
1567 /*
1568  * Init iteration of all events of a channel. This function creates a new
1569  * event queue and puts all events from the channel into that queue.
1570  * Subsequent calls to evch_chgetnextev will deliver the events from that
1571  * queue. Only one thread per channel is allowed to read through the events.
1572  * Returns 0 on success and 1 if there is already someone reading the
1573  * events.
1574  * If argument subid == NULL, we look for a subscriber which has
1575  * flag EVCH_SUB_DUMP set.
1576  */
1577 /*
1578  * Static variables that are used to traverse events of a channel in panic case.
1579  */
1580 static evch_chan_t	*evch_chan;
1581 static evch_eventq_t	*evch_subq;
1582 static sysevent_impl_t	*evch_curev;
1583 
1584 static evchanq_t *
1585 evch_chrdevent_init(evch_chan_t *chp, char *subid)
1586 {
1587 	evch_subd_t	*sdp;
1588 	void		*ev;
1589 	int		pmqstat;	/* Prev status of main queue */
1590 	int		psqstat;	/* Prev status of subscriber queue */
1591 	evchanq_t	*snp;		/* Pointer to q with snapshot of ev */
1592 	compare_f	compfunc;
1593 
1594 	compfunc = subid == NULL ? evch_dumpflgcmp : evch_subidcmp;
1595 	if (panicstr != NULL) {
1596 		evch_chan = chp;
1597 		evch_subq = NULL;
1598 		evch_curev = NULL;
1599 		if ((sdp = (evch_subd_t *)evch_dl_search(&chp->ch_subscr,
1600 		    compfunc, subid)) != NULL) {
1601 			evch_subq = sdp->sd_queue;
1602 		}
1603 		return (NULL);
1604 	}
1605 	mutex_enter(&chp->ch_mutex);
1606 	sdp = (evch_subd_t *)evch_dl_search(&chp->ch_subscr, compfunc, subid);
1607 	/*
1608 	 * Stop main event queue and subscriber queue if not already
1609 	 * in stop mode.
1610 	 */
1611 	pmqstat = evch_evq_status(chp->ch_queue);
1612 	if (pmqstat == 0)
1613 		evch_evq_stop(chp->ch_queue);
1614 	if (sdp != NULL) {
1615 		psqstat = evch_evq_status(sdp->sd_queue);
1616 		if (psqstat == 0)
1617 			evch_evq_stop(sdp->sd_queue);
1618 	}
1619 	/*
1620 	 * Create event queue to make a snapshot of all events in the
1621 	 * channel.
1622 	 */
1623 	snp = kmem_alloc(sizeof (evchanq_t), KM_SLEEP);
1624 	snp->sn_queue = evch_evq_create();
1625 	evch_evq_stop(snp->sn_queue);
1626 	/*
1627 	 * Make a snapshot of the subscriber queue and the main event queue.
1628 	 */
1629 	if (sdp != NULL) {
1630 		ev = NULL;
1631 		while ((ev = evch_evq_evnext(sdp->sd_queue, ev)) != NULL) {
1632 			(void) evch_evq_pub(snp->sn_queue, ev, EVCH_SLEEP);
1633 		}
1634 	}
1635 	ev = NULL;
1636 	while ((ev = evch_evq_evnext(chp->ch_queue, ev)) != NULL) {
1637 		(void) evch_evq_pub(snp->sn_queue, ev, EVCH_SLEEP);
1638 	}
1639 	snp->sn_nxtev = NULL;
1640 	/*
1641 	 * Restart main and subscriber queue if previously stopped
1642 	 */
1643 	if (sdp != NULL && psqstat == 0)
1644 		evch_evq_continue(sdp->sd_queue);
1645 	if (pmqstat == 0)
1646 		evch_evq_continue(chp->ch_queue);
1647 	mutex_exit(&chp->ch_mutex);
1648 	return (snp);
1649 }
1650 
1651 /*
1652  * Free all resources of the event queue snapshot. In case of panic
1653  * context snp must be NULL and no resources need to be free'ed.
1654  */
1655 static void
1656 evch_chrdevent_fini(evchanq_t *snp)
1657 {
1658 	if (snp != NULL) {
1659 		evch_evq_destroy(snp->sn_queue);
1660 		kmem_free(snp, sizeof (evchanq_t));
1661 	}
1662 }
1663 
1664 /*
1665  * Get address of next event from an event channel.
1666  * This function might be called in a panic context. In that case
1667  * no resources will be allocated and no locks grabbed.
1668  * In normal operation context a snapshot of the event queues of the
1669  * specified event channel will be taken.
1670  */
1671 static sysevent_impl_t *
1672 evch_chgetnextev(evchanq_t *snp)
1673 {
1674 	if (panicstr != NULL) {
1675 		if (evch_chan == NULL)
1676 			return (NULL);
1677 		if (evch_subq != NULL) {
1678 			/*
1679 			 * We have a subscriber queue. Traverse this queue
1680 			 * first.
1681 			 */
1682 			if ((evch_curev = (sysevent_impl_t *)
1683 			    evch_evq_evnext(evch_subq, evch_curev)) != NULL) {
1684 				return (evch_curev);
1685 			} else {
1686 				/*
1687 				 * All subscriber events traversed. evch_subq
1688 				 * == NULL indicates to take the main event
1689 				 * queue now.
1690 				 */
1691 				evch_subq = NULL;
1692 			}
1693 		}
1694 		/*
1695 		 * Traverse the main event queue.
1696 		 */
1697 		if ((evch_curev = (sysevent_impl_t *)
1698 		    evch_evq_evnext(evch_chan->ch_queue, evch_curev)) ==
1699 		    NULL) {
1700 			evch_chan = NULL;
1701 		}
1702 		return (evch_curev);
1703 	}
1704 	ASSERT(snp != NULL);
1705 	snp->sn_nxtev = (sysevent_impl_t *)evch_evq_evnext(snp->sn_queue,
1706 	    snp->sn_nxtev);
1707 	return (snp->sn_nxtev);
1708 }
1709 
1710 /*
1711  * The functions below build up the interface for the kernel to bind/unbind,
1712  * subscribe/unsubscribe and publish to event channels. It consists of the
1713  * following functions:
1714  *
1715  * sysevent_evc_bind	    - Bind to a channel. Create a channel if required
1716  * sysevent_evc_unbind	    - Unbind from a channel. Destroy ch. if last unbind
1717  * sysevent_evc_subscribe   - Subscribe to events from a channel
1718  * sysevent_evc_unsubscribe - Unsubscribe from an event class
1719  * sysevent_evc_publish	    - Publish an event to an event channel
1720  * sysevent_evc_control	    - Various control operation on event channel
1721  *
1722  * The function below are for evaluating a sysevent:
1723  *
1724  * sysevent_get_class_name  - Get pointer to event class string
1725  * sysevent_get_subclass_name - Get pointer to event subclass string
1726  * sysevent_get_seq	    - Get unique event sequence number
1727  * sysevent_get_time	    - Get hrestime of event publish
1728  * sysevent_get_size	    - Get size of event structure
1729  * sysevent_get_pub	    - Get publisher string
1730  * sysevent_get_attr_list   - Get copy of attribute list
1731  *
1732  * The following interfaces represent stability level project privat
1733  * and allow to save the events of an event channel even in a panic case.
1734  *
1735  * sysevent_evc_walk_init   - Take a snapshot of the events in a channel
1736  * sysevent_evc_walk_step   - Read next event from snapshot
1737  * sysevent_evc_walk_fini   - Free resources from event channel snapshot
1738  * sysevent_evc_event_attr  - Get event payload address and size
1739  */
1740 /*
1741  * allocate sysevent structure with optional space for attributes
1742  */
1743 static sysevent_impl_t *
1744 sysevent_evc_alloc(const char *class, const char *subclass, const char *pub,
1745     size_t pub_sz, size_t atsz, uint32_t flag)
1746 {
1747 	int		payload_sz;
1748 	int		class_sz, subclass_sz;
1749 	int 		aligned_class_sz, aligned_subclass_sz, aligned_pub_sz;
1750 	sysevent_impl_t	*ev;
1751 
1752 	/*
1753 	 * Calculate and reserve space for the class, subclass and
1754 	 * publisher strings in the event buffer
1755 	 */
1756 	class_sz = strlen(class) + 1;
1757 	subclass_sz = strlen(subclass) + 1;
1758 
1759 	ASSERT((class_sz <= MAX_CLASS_LEN) && (subclass_sz <=
1760 	    MAX_SUBCLASS_LEN) && (pub_sz <= MAX_PUB_LEN));
1761 
1762 	/* String sizes must be 64-bit aligned in the event buffer */
1763 	aligned_class_sz = SE_ALIGN(class_sz);
1764 	aligned_subclass_sz = SE_ALIGN(subclass_sz);
1765 	aligned_pub_sz = SE_ALIGN(pub_sz);
1766 
1767 	/*
1768 	 * Calculate payload size. Consider the space needed for alignment
1769 	 * and subtract the size of the uint64_t placeholder variables of
1770 	 * sysevent_impl_t.
1771 	 */
1772 	payload_sz = (aligned_class_sz - sizeof (uint64_t)) +
1773 	    (aligned_subclass_sz - sizeof (uint64_t)) +
1774 	    (aligned_pub_sz - sizeof (uint64_t)) - sizeof (uint64_t) +
1775 	    atsz;
1776 
1777 	/*
1778 	 * Allocate event buffer plus additional payload overhead
1779 	 */
1780 	if ((ev = evch_evq_evzalloc(sizeof (sysevent_impl_t) +
1781 	    payload_sz, flag)) == NULL) {
1782 		return (NULL);
1783 	}
1784 
1785 	/* Initialize the event buffer data */
1786 	SE_VERSION(ev) = SYS_EVENT_VERSION;
1787 	bcopy(class, SE_CLASS_NAME(ev), class_sz);
1788 
1789 	SE_SUBCLASS_OFF(ev) = SE_ALIGN(offsetof(sysevent_impl_t,
1790 	    se_class_name)) + aligned_class_sz;
1791 	bcopy(subclass, SE_SUBCLASS_NAME(ev), subclass_sz);
1792 
1793 	SE_PUB_OFF(ev) = SE_SUBCLASS_OFF(ev) + aligned_subclass_sz;
1794 	bcopy(pub, SE_PUB_NAME(ev), pub_sz);
1795 
1796 	SE_ATTR_PTR(ev) = (uint64_t)0;
1797 	SE_PAYLOAD_SZ(ev) = payload_sz;
1798 
1799 	return (ev);
1800 }
1801 
1802 /*
1803  * Initialize event channel handling queues.
1804  */
1805 void
1806 sysevent_evc_init()
1807 {
1808 	evch_chinit();
1809 }
1810 
1811 /*
1812  * Second initialization step: create threads, if event channels are already
1813  * created
1814  */
1815 void
1816 sysevent_evc_thrinit()
1817 {
1818 	evch_chinitthr();
1819 }
1820 
1821 int
1822 sysevent_evc_bind(const char *ch_name, evchan_t **scpp, uint32_t flags)
1823 {
1824 	ASSERT(ch_name != NULL && scpp != NULL);
1825 	ASSERT((flags & ~EVCH_B_FLAGS) == 0);
1826 	return (evch_chbind(ch_name, (evch_bind_t **)scpp, flags));
1827 }
1828 
1829 int
1830 sysevent_evc_unbind(evchan_t *scp)
1831 {
1832 	evch_bind_t *bp = (evch_bind_t *)scp;
1833 
1834 	ASSERT(scp != NULL);
1835 	evch_chunsubscribe(bp, NULL, 0);
1836 	evch_chunbind(bp);
1837 
1838 	return (0);
1839 }
1840 
1841 int
1842 sysevent_evc_subscribe(evchan_t *scp, const char *sid, const char *class,
1843     int (*callb)(sysevent_t *ev, void *cookie),
1844     void *cookie, uint32_t flags)
1845 {
1846 	ASSERT(scp != NULL && sid != NULL && class != NULL && callb != NULL);
1847 	ASSERT(flags == 0);
1848 	if (strlen(sid) > MAX_SUBID_LEN) {
1849 		return (EINVAL);
1850 	}
1851 	if (strcmp(class, EC_ALL) == 0) {
1852 		class = NULL;
1853 	}
1854 	return (evch_chsubscribe((evch_bind_t *)scp, EVCH_DELKERN, sid, class,
1855 	    (void *)callb, cookie, 0, 0));
1856 }
1857 
1858 int
1859 sysevent_evc_unsubscribe(evchan_t *scp, const char *sid)
1860 {
1861 	ASSERT(scp != NULL && sid != NULL);
1862 	if (strcmp(sid, EVCH_ALLSUB) == 0) {
1863 		sid = NULL;
1864 	}
1865 	evch_chunsubscribe((evch_bind_t *)scp, sid, 0);
1866 
1867 	return (0);
1868 }
1869 
1870 /*
1871  * Publish kernel event. Returns 0 on success, error code else.
1872  * Optional attribute data is packed into the event structure.
1873  */
1874 int
1875 sysevent_evc_publish(evchan_t *scp, const char *class, const char *subclass,
1876     const char *vendor, const char *pubs, nvlist_t *attr, uint32_t flags)
1877 {
1878 	sysevent_impl_t	*evp;
1879 	char		pub[MAX_PUB_LEN];
1880 	int		pub_sz;		/* includes terminating 0 */
1881 	int		km_flags;
1882 	size_t		asz = 0;
1883 	uint64_t	attr_offset;
1884 	caddr_t		patt;
1885 	int		err;
1886 
1887 	ASSERT(scp != NULL && class != NULL && subclass != NULL &&
1888 	    vendor != NULL && pubs != NULL);
1889 
1890 	ASSERT((flags & ~(EVCH_SLEEP | EVCH_NOSLEEP | EVCH_TRYHARD |
1891 	    EVCH_QWAIT)) == 0);
1892 
1893 	km_flags = flags & (EVCH_SLEEP | EVCH_NOSLEEP | EVCH_TRYHARD);
1894 	ASSERT(km_flags == EVCH_SLEEP || km_flags == EVCH_NOSLEEP ||
1895 	    km_flags == EVCH_TRYHARD);
1896 
1897 	pub_sz = snprintf(pub, MAX_PUB_LEN, "%s:kern:%s", vendor, pubs) + 1;
1898 	if (pub_sz > MAX_PUB_LEN)
1899 		return (EINVAL);
1900 
1901 	if (attr != NULL) {
1902 		if ((err = nvlist_size(attr, &asz, NV_ENCODE_NATIVE)) != 0) {
1903 			return (err);
1904 		}
1905 	}
1906 	evp = sysevent_evc_alloc(class, subclass, pub, pub_sz, asz, km_flags);
1907 	if (evp == NULL) {
1908 		return (ENOMEM);
1909 	}
1910 	if (attr != NULL) {
1911 		/*
1912 		 * Pack attributes into event buffer. Event buffer already
1913 		 * has enough room for the packed nvlist.
1914 		 */
1915 		attr_offset = SE_ATTR_OFF(evp);
1916 		patt = (caddr_t)evp + attr_offset;
1917 
1918 		err = nvlist_pack(attr, &patt, &asz, NV_ENCODE_NATIVE,
1919 		    km_flags & EVCH_SLEEP ? KM_SLEEP : KM_NOSLEEP);
1920 
1921 		ASSERT(err != ENOMEM);
1922 
1923 		if (err != 0) {
1924 			return (EINVAL);
1925 		}
1926 
1927 		evp->seh_attr_off = attr_offset;
1928 		SE_FLAG(evp) = SE_PACKED_BUF;
1929 	}
1930 	return (evch_chpublish((evch_bind_t *)scp, evp, flags));
1931 }
1932 
1933 int
1934 sysevent_evc_control(evchan_t *scp, int cmd, ...)
1935 {
1936 	va_list		ap;
1937 	evch_chan_t	*chp = ((evch_bind_t *)scp)->bd_channel;
1938 	uint32_t	*chlenp;
1939 	uint32_t	chlen;
1940 	uint32_t	ochlen;
1941 	int		rc = 0;
1942 
1943 	if (scp == NULL) {
1944 		return (EINVAL);
1945 	}
1946 
1947 	va_start(ap, cmd);
1948 	mutex_enter(&chp->ch_mutex);
1949 	switch (cmd) {
1950 	case EVCH_GET_CHAN_LEN:
1951 		chlenp = va_arg(ap, uint32_t *);
1952 		*chlenp = chp->ch_maxev;
1953 		break;
1954 	case EVCH_SET_CHAN_LEN:
1955 		chlen = va_arg(ap, uint32_t);
1956 		ochlen = chp->ch_maxev;
1957 		chp->ch_maxev = min(chlen, evch_events_max);
1958 		if (ochlen < chp->ch_maxev) {
1959 			cv_signal(&chp->ch_pubcv);
1960 		}
1961 		break;
1962 	case EVCH_GET_CHAN_LEN_MAX:
1963 		*va_arg(ap, uint32_t *) = evch_events_max;
1964 		break;
1965 	default:
1966 		rc = EINVAL;
1967 	}
1968 
1969 	mutex_exit(&chp->ch_mutex);
1970 	va_end(ap);
1971 	return (rc);
1972 }
1973 
1974 /*
1975  * Project private interface to take a snapshot of all events of the
1976  * specified event channel. Argument subscr may be a subscriber id, the empty
1977  * string "", or NULL. The empty string indicates that no subscriber is
1978  * selected, for example if a previous subscriber died. sysevent_evc_walk_next()
1979  * will deliver events from the main event queue in this case. If subscr is
1980  * NULL, the subscriber with the EVCH_SUB_DUMP flag set (subd->sd_dump != 0)
1981  * will be selected.
1982  *
1983  * In panic case this function returns NULL. This is legal. The NULL has
1984  * to be delivered to sysevent_evc_walk_step() and sysevent_evc_walk_fini().
1985  */
1986 evchanq_t *
1987 sysevent_evc_walk_init(evchan_t *scp, char *subscr)
1988 {
1989 	if (panicstr != NULL && scp == NULL)
1990 		return (NULL);
1991 	ASSERT(scp != NULL);
1992 	return (evch_chrdevent_init(((evch_bind_t *)scp)->bd_channel, subscr));
1993 }
1994 
1995 /*
1996  * Project private interface to read events from a previously taken
1997  * snapshot (with sysevent_evc_walk_init). In case of panic events
1998  * are retrieved directly from the channel data structures. No resources
1999  * are allocated and no mutexes are grabbed in panic context.
2000  */
2001 sysevent_t *
2002 sysevent_evc_walk_step(evchanq_t *evcq)
2003 {
2004 	return ((sysevent_t *)evch_chgetnextev(evcq));
2005 }
2006 
2007 /*
2008  * Project private interface to free a previously taken snapshot.
2009  */
2010 void
2011 sysevent_evc_walk_fini(evchanq_t *evcq)
2012 {
2013 	evch_chrdevent_fini(evcq);
2014 }
2015 
2016 /*
2017  * Get address and size of an event payload. Returns NULL when no
2018  * payload present.
2019  */
2020 char *
2021 sysevent_evc_event_attr(sysevent_t *ev, size_t *plsize)
2022 {
2023 	char	*attrp;
2024 	size_t	aoff;
2025 	size_t	asz;
2026 
2027 	aoff = SE_ATTR_OFF(ev);
2028 	attrp = (char *)ev + aoff;
2029 	asz = *plsize = SE_SIZE(ev) - aoff;
2030 	return (asz ? attrp : NULL);
2031 }
2032 
2033 /*
2034  * sysevent_get_class_name - Get class name string
2035  */
2036 char *
2037 sysevent_get_class_name(sysevent_t *ev)
2038 {
2039 	return (SE_CLASS_NAME(ev));
2040 }
2041 
2042 /*
2043  * sysevent_get_subclass_name - Get subclass name string
2044  */
2045 char *
2046 sysevent_get_subclass_name(sysevent_t *ev)
2047 {
2048 	return (SE_SUBCLASS_NAME(ev));
2049 }
2050 
2051 /*
2052  * sysevent_get_seq - Get event sequence id
2053  */
2054 uint64_t
2055 sysevent_get_seq(sysevent_t *ev)
2056 {
2057 	return (SE_SEQ(ev));
2058 }
2059 
2060 /*
2061  * sysevent_get_time - Get event timestamp
2062  */
2063 void
2064 sysevent_get_time(sysevent_t *ev, hrtime_t *etime)
2065 {
2066 	*etime = SE_TIME(ev);
2067 }
2068 
2069 /*
2070  * sysevent_get_size - Get event buffer size
2071  */
2072 size_t
2073 sysevent_get_size(sysevent_t *ev)
2074 {
2075 	return ((size_t)SE_SIZE(ev));
2076 }
2077 
2078 /*
2079  * sysevent_get_pub - Get publisher name string
2080  */
2081 char *
2082 sysevent_get_pub(sysevent_t *ev)
2083 {
2084 	return (SE_PUB_NAME(ev));
2085 }
2086 
2087 /*
2088  * sysevent_get_attr_list - stores address of a copy of the attribute list
2089  * associated with the given sysevent buffer. The list must be freed by the
2090  * caller.
2091  */
2092 int
2093 sysevent_get_attr_list(sysevent_t *ev, nvlist_t **nvlist)
2094 {
2095 	int		error;
2096 	caddr_t		attr;
2097 	size_t		attr_len;
2098 	uint64_t	attr_offset;
2099 
2100 	*nvlist = NULL;
2101 	if (SE_FLAG(ev) != SE_PACKED_BUF) {
2102 		return (EINVAL);
2103 	}
2104 	attr_offset = SE_ATTR_OFF(ev);
2105 	if (SE_SIZE(ev) == attr_offset) {
2106 		return (EINVAL);
2107 	}
2108 
2109 	/* unpack nvlist */
2110 	attr = (caddr_t)ev + attr_offset;
2111 	attr_len = SE_SIZE(ev) - attr_offset;
2112 	if ((error = nvlist_unpack(attr, attr_len, nvlist, 0)) != 0) {
2113 		error = error != ENOMEM ? EINVAL : error;
2114 		return (error);
2115 	}
2116 	return (0);
2117 }
2118 
2119 /*
2120  * Functions called by the sysevent driver for general purpose event channels
2121  *
2122  * evch_usrchanopen	- Create/Bind to an event channel
2123  * evch_usrchanclose	- Unbind/Destroy event channel
2124  * evch_usrallocev	- Allocate event data structure
2125  * evch_usrfreeev	- Free event data structure
2126  * evch_usrpostevent	- Publish event
2127  * evch_usrsubscribe	- Subscribe (register callback function)
2128  * evch_usrunsubscribe	- Unsubscribe
2129  * evch_usrcontrol_set	- Set channel properties
2130  * evch_usrcontrol_get	- Get channel properties
2131  * evch_usrgetchnames	- Get list of channel names
2132  * evch_usrgetchdata	- Get data of an event channel
2133  */
2134 evchan_t *
2135 evch_usrchanopen(const char *name, uint32_t flags, int *err)
2136 {
2137 	evch_bind_t *bp = NULL;
2138 
2139 	*err = evch_chbind(name, &bp, flags);
2140 	return ((evchan_t *)bp);
2141 }
2142 
2143 /*
2144  * Unbind from the channel.
2145  */
2146 void
2147 evch_usrchanclose(evchan_t *cbp)
2148 {
2149 	evch_chunbind((evch_bind_t *)cbp);
2150 }
2151 
2152 /*
2153  * Allocates log_evch_eventq_t structure but returns the pointer of the embedded
2154  * sysevent_impl_t structure as the opaque sysevent_t * data type
2155  */
2156 sysevent_impl_t *
2157 evch_usrallocev(size_t evsize, uint32_t flags)
2158 {
2159 	return ((sysevent_impl_t *)evch_evq_evzalloc(evsize, flags));
2160 }
2161 
2162 /*
2163  * Free evch_eventq_t structure
2164  */
2165 void
2166 evch_usrfreeev(sysevent_impl_t *ev)
2167 {
2168 	evch_evq_evfree((void *)ev);
2169 }
2170 
2171 /*
2172  * Posts an event to the given channel. The event structure has to be
2173  * allocated by evch_usrallocev(). Returns zero on success and an error
2174  * code else. Attributes have to be packed and included in the event structure.
2175  *
2176  */
2177 int
2178 evch_usrpostevent(evchan_t *bp, sysevent_impl_t *ev, uint32_t flags)
2179 {
2180 	return (evch_chpublish((evch_bind_t *)bp, ev, flags));
2181 }
2182 
2183 /*
2184  * Subscribe function for user land subscriptions
2185  */
2186 int
2187 evch_usrsubscribe(evchan_t *bp, const char *sid, const char *class,
2188     int d, uint32_t flags)
2189 {
2190 	door_handle_t	dh = door_ki_lookup(d);
2191 	int		rv;
2192 
2193 	if (dh == NULL) {
2194 		return (EINVAL);
2195 	}
2196 	if ((rv = evch_chsubscribe((evch_bind_t *)bp, EVCH_DELDOOR, sid, class,
2197 	    (void *)dh, NULL, flags, curproc->p_pid)) != 0) {
2198 		door_ki_rele(dh);
2199 	}
2200 	return (rv);
2201 }
2202 
2203 /*
2204  * Flag can be EVCH_SUB_KEEP or 0. EVCH_SUB_KEEP preserves persistent
2205  * subscribers
2206  */
2207 void
2208 evch_usrunsubscribe(evchan_t *bp, const char *subid, uint32_t flags)
2209 {
2210 	evch_chunsubscribe((evch_bind_t *)bp, subid, flags);
2211 }
2212 
2213 /*ARGSUSED*/
2214 int
2215 evch_usrcontrol_set(evchan_t *bp, int cmd, uint32_t value)
2216 {
2217 	evch_chan_t	*chp = ((evch_bind_t *)bp)->bd_channel;
2218 	uid_t		uid = crgetuid(curthread->t_cred);
2219 	int		rc = 0;
2220 
2221 	mutex_enter(&chp->ch_mutex);
2222 	switch (cmd) {
2223 	case EVCH_SET_CHAN_LEN:
2224 		if (uid && uid != chp->ch_uid) {
2225 			rc = EACCES;
2226 			break;
2227 		}
2228 		chp->ch_maxev = min(value, evch_events_max);
2229 		break;
2230 	default:
2231 		rc = EINVAL;
2232 	}
2233 	mutex_exit(&chp->ch_mutex);
2234 	return (rc);
2235 }
2236 
2237 /*ARGSUSED*/
2238 int
2239 evch_usrcontrol_get(evchan_t *bp, int cmd, uint32_t *value)
2240 {
2241 	evch_chan_t	*chp = ((evch_bind_t *)bp)->bd_channel;
2242 	int		rc = 0;
2243 
2244 	mutex_enter(&chp->ch_mutex);
2245 	switch (cmd) {
2246 	case EVCH_GET_CHAN_LEN:
2247 		*value = chp->ch_maxev;
2248 		break;
2249 	case EVCH_GET_CHAN_LEN_MAX:
2250 		*value = evch_events_max;
2251 		break;
2252 	default:
2253 		rc = EINVAL;
2254 	}
2255 	mutex_exit(&chp->ch_mutex);
2256 	return (rc);
2257 }
2258 
2259 int
2260 evch_usrgetchnames(char *buf, size_t size)
2261 {
2262 	return (evch_chgetnames(buf, size));
2263 }
2264 
2265 int
2266 evch_usrgetchdata(char *chname, void *buf, size_t size)
2267 {
2268 	return (evch_chgetchdata(chname, buf, size));
2269 }
2270