xref: /titanic_50/usr/src/uts/common/os/dtrace_subr.c (revision a9fb0ae8cfc9d2ebdf5f7cded8945fbb649ba24e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/dtrace.h>
30 #include <sys/cmn_err.h>
31 #include <sys/tnf.h>
32 #include <sys/atomic.h>
33 #include <sys/prsystm.h>
34 #include <sys/modctl.h>
35 #include <sys/aio_impl.h>
36 
37 #ifdef __sparc
38 #include <sys/privregs.h>
39 #endif
40 
41 void (*dtrace_cpu_init)(processorid_t);
42 void (*dtrace_modload)(struct modctl *);
43 void (*dtrace_modunload)(struct modctl *);
44 void (*dtrace_helpers_cleanup)(void);
45 void (*dtrace_helpers_fork)(proc_t *, proc_t *);
46 void (*dtrace_cpustart_init)(void);
47 void (*dtrace_cpustart_fini)(void);
48 
49 void (*dtrace_kreloc_init)(void);
50 void (*dtrace_kreloc_fini)(void);
51 
52 void (*dtrace_debugger_init)(void);
53 void (*dtrace_debugger_fini)(void);
54 
55 dtrace_vtime_state_t dtrace_vtime_active = 0;
56 dtrace_cacheid_t dtrace_predcache_id = DTRACE_CACHEIDNONE + 1;
57 
58 typedef struct dtrace_hrestime {
59 	lock_t		dthr_lock;		/* lock for this element */
60 	timestruc_t	dthr_hrestime;		/* hrestime value */
61 	int64_t		dthr_adj;		/* hrestime_adj value */
62 	hrtime_t	dthr_hrtime;		/* hrtime value */
63 } dtrace_hrestime_t;
64 
65 static dtrace_hrestime_t dtrace_hrestime[2];
66 
67 /*
68  * Making available adjustable high-resolution time in DTrace is regrettably
69  * more complicated than one might think it should be.  The problem is that
70  * the variables related to adjusted high-resolution time (hrestime,
71  * hrestime_adj and friends) are adjusted under hres_lock -- and this lock may
72  * be held when we enter probe context.  One might think that we could address
73  * this by having a single snapshot copy that is stored under a different lock
74  * from hres_tick(), using the snapshot iff hres_lock is locked in probe
75  * context.  Unfortunately, this too won't work:  because hres_lock is grabbed
76  * in more than just hres_tick() context, we could enter probe context
77  * concurrently on two different CPUs with both locks (hres_lock and the
78  * snapshot lock) held.  As this implies, the fundamental problem is that we
79  * need to have access to a snapshot of these variables that we _know_ will
80  * not be locked in probe context.  To effect this, we have two snapshots
81  * protected by two different locks, and we mandate that these snapshots are
82  * recorded in succession by a single thread calling dtrace_hres_tick().  (We
83  * assure this by calling it out of the same CY_HIGH_LEVEL cyclic that calls
84  * hres_tick().)  A single thread can't be in two places at once:  one of the
85  * snapshot locks is guaranteed to be unheld at all times.  The
86  * dtrace_gethrestime() algorithm is thus to check first one snapshot and then
87  * the other to find the unlocked snapshot.
88  */
89 void
90 dtrace_hres_tick(void)
91 {
92 	int i;
93 	ushort_t spl;
94 
95 	for (i = 0; i < 2; i++) {
96 		dtrace_hrestime_t tmp;
97 
98 		spl = hr_clock_lock();
99 		tmp.dthr_hrestime = hrestime;
100 		tmp.dthr_adj = hrestime_adj;
101 		tmp.dthr_hrtime = dtrace_gethrtime();
102 		hr_clock_unlock(spl);
103 
104 		lock_set(&dtrace_hrestime[i].dthr_lock);
105 		dtrace_hrestime[i].dthr_hrestime = tmp.dthr_hrestime;
106 		dtrace_hrestime[i].dthr_adj = tmp.dthr_adj;
107 		dtrace_hrestime[i].dthr_hrtime = tmp.dthr_hrtime;
108 		dtrace_membar_producer();
109 
110 		/*
111 		 * To allow for lock-free examination of this lock, we use
112 		 * the same trick that is used hres_lock; for more details,
113 		 * see the description of this technique in sun4u/sys/clock.h.
114 		 */
115 		dtrace_hrestime[i].dthr_lock++;
116 	}
117 }
118 
119 hrtime_t
120 dtrace_gethrestime(void)
121 {
122 	dtrace_hrestime_t snap;
123 	hrtime_t now;
124 	int i = 0, adj, nslt;
125 
126 	for (;;) {
127 		snap.dthr_lock = dtrace_hrestime[i].dthr_lock;
128 		dtrace_membar_consumer();
129 		snap.dthr_hrestime = dtrace_hrestime[i].dthr_hrestime;
130 		snap.dthr_hrtime = dtrace_hrestime[i].dthr_hrtime;
131 		snap.dthr_adj = dtrace_hrestime[i].dthr_adj;
132 		dtrace_membar_consumer();
133 
134 		if ((snap.dthr_lock & ~1) == dtrace_hrestime[i].dthr_lock)
135 			break;
136 
137 		/*
138 		 * If we're here, the lock was either locked, or it
139 		 * transitioned while we were taking the snapshot.  Either
140 		 * way, we're going to try the other dtrace_hrestime element;
141 		 * we know that it isn't possible for both to be locked
142 		 * simultaneously, so we will ultimately get a good snapshot.
143 		 */
144 		i ^= 1;
145 	}
146 
147 	/*
148 	 * We have a good snapshot.  Now perform any necessary adjustments.
149 	 */
150 	nslt = dtrace_gethrtime() - snap.dthr_hrtime;
151 	ASSERT(nslt >= 0);
152 
153 	now = ((hrtime_t)snap.dthr_hrestime.tv_sec * (hrtime_t)NANOSEC) +
154 	    snap.dthr_hrestime.tv_nsec;
155 
156 	if (snap.dthr_adj != 0) {
157 		if (snap.dthr_adj > 0) {
158 			adj = (nslt >> adj_shift);
159 			if (adj > snap.dthr_adj)
160 				adj = (int)snap.dthr_adj;
161 		} else {
162 			adj = -(nslt >> adj_shift);
163 			if (adj < snap.dthr_adj)
164 				adj = (int)snap.dthr_adj;
165 		}
166 		now += adj;
167 	}
168 
169 	return (now);
170 }
171 
172 void
173 dtrace_vtime_enable(void)
174 {
175 	dtrace_vtime_state_t state, nstate;
176 
177 	do {
178 		state = dtrace_vtime_active;
179 
180 		switch (state) {
181 		case DTRACE_VTIME_INACTIVE:
182 			nstate = DTRACE_VTIME_ACTIVE;
183 			break;
184 
185 		case DTRACE_VTIME_INACTIVE_TNF:
186 			nstate = DTRACE_VTIME_ACTIVE_TNF;
187 			break;
188 
189 		case DTRACE_VTIME_ACTIVE:
190 		case DTRACE_VTIME_ACTIVE_TNF:
191 			panic("DTrace virtual time already enabled");
192 			/*NOTREACHED*/
193 		}
194 
195 	} while	(cas32((uint32_t *)&dtrace_vtime_active,
196 	    state, nstate) != state);
197 }
198 
199 void
200 dtrace_vtime_disable(void)
201 {
202 	dtrace_vtime_state_t state, nstate;
203 
204 	do {
205 		state = dtrace_vtime_active;
206 
207 		switch (state) {
208 		case DTRACE_VTIME_ACTIVE:
209 			nstate = DTRACE_VTIME_INACTIVE;
210 			break;
211 
212 		case DTRACE_VTIME_ACTIVE_TNF:
213 			nstate = DTRACE_VTIME_INACTIVE_TNF;
214 			break;
215 
216 		case DTRACE_VTIME_INACTIVE:
217 		case DTRACE_VTIME_INACTIVE_TNF:
218 			panic("DTrace virtual time already disabled");
219 			/*NOTREACHED*/
220 		}
221 
222 	} while	(cas32((uint32_t *)&dtrace_vtime_active,
223 	    state, nstate) != state);
224 }
225 
226 void
227 dtrace_vtime_enable_tnf(void)
228 {
229 	dtrace_vtime_state_t state, nstate;
230 
231 	do {
232 		state = dtrace_vtime_active;
233 
234 		switch (state) {
235 		case DTRACE_VTIME_ACTIVE:
236 			nstate = DTRACE_VTIME_ACTIVE_TNF;
237 			break;
238 
239 		case DTRACE_VTIME_INACTIVE:
240 			nstate = DTRACE_VTIME_INACTIVE_TNF;
241 			break;
242 
243 		case DTRACE_VTIME_ACTIVE_TNF:
244 		case DTRACE_VTIME_INACTIVE_TNF:
245 			panic("TNF already active");
246 			/*NOTREACHED*/
247 		}
248 
249 	} while	(cas32((uint32_t *)&dtrace_vtime_active,
250 	    state, nstate) != state);
251 }
252 
253 void
254 dtrace_vtime_disable_tnf(void)
255 {
256 	dtrace_vtime_state_t state, nstate;
257 
258 	do {
259 		state = dtrace_vtime_active;
260 
261 		switch (state) {
262 		case DTRACE_VTIME_ACTIVE_TNF:
263 			nstate = DTRACE_VTIME_ACTIVE;
264 			break;
265 
266 		case DTRACE_VTIME_INACTIVE_TNF:
267 			nstate = DTRACE_VTIME_INACTIVE;
268 			break;
269 
270 		case DTRACE_VTIME_ACTIVE:
271 		case DTRACE_VTIME_INACTIVE:
272 			panic("TNF already inactive");
273 			/*NOTREACHED*/
274 		}
275 
276 	} while	(cas32((uint32_t *)&dtrace_vtime_active,
277 	    state, nstate) != state);
278 }
279 
280 void
281 dtrace_vtime_switch(kthread_t *next)
282 {
283 	dtrace_icookie_t cookie;
284 	hrtime_t ts;
285 
286 	if (tnf_tracing_active) {
287 		tnf_thread_switch(next);
288 
289 		if (dtrace_vtime_active == DTRACE_VTIME_INACTIVE_TNF)
290 			return;
291 	}
292 
293 	cookie = dtrace_interrupt_disable();
294 	ts = dtrace_gethrtime();
295 
296 	if (curthread->t_dtrace_start != 0) {
297 		curthread->t_dtrace_vtime += ts - curthread->t_dtrace_start;
298 		curthread->t_dtrace_start = 0;
299 	}
300 
301 	next->t_dtrace_start = ts;
302 
303 	dtrace_interrupt_enable(cookie);
304 }
305 
306 void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
307 void (*dtrace_fasttrap_exec_ptr)(proc_t *);
308 void (*dtrace_fasttrap_exit_ptr)(proc_t *);
309 
310 /*
311  * This function is called by cfork() in the event that it appears that
312  * there may be dtrace tracepoints active in the parent process's address
313  * space. This first confirms the existence of dtrace tracepoints in the
314  * parent process and calls into the fasttrap module to remove the
315  * corresponding tracepoints from the child. By knowing that there are
316  * existing tracepoints, and ensuring they can't be removed, we can rely
317  * on the fasttrap module remaining loaded.
318  */
319 void
320 dtrace_fasttrap_fork(proc_t *p, proc_t *cp)
321 {
322 	ASSERT(p->p_proc_flag & P_PR_LOCK);
323 	ASSERT(p->p_dtrace_count > 0);
324 	ASSERT(dtrace_fasttrap_fork_ptr != NULL);
325 
326 	dtrace_fasttrap_fork_ptr(p, cp);
327 }
328