1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Architecture-independent CPU control functions. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/var.h> 35 #include <sys/thread.h> 36 #include <sys/cpuvar.h> 37 #include <sys/kstat.h> 38 #include <sys/uadmin.h> 39 #include <sys/systm.h> 40 #include <sys/errno.h> 41 #include <sys/cmn_err.h> 42 #include <sys/procset.h> 43 #include <sys/processor.h> 44 #include <sys/debug.h> 45 #include <sys/cpupart.h> 46 #include <sys/lgrp.h> 47 #include <sys/pset.h> 48 #include <sys/pghw.h> 49 #include <sys/kmem.h> 50 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */ 51 #include <sys/atomic.h> 52 #include <sys/callb.h> 53 #include <sys/vtrace.h> 54 #include <sys/cyclic.h> 55 #include <sys/bitmap.h> 56 #include <sys/nvpair.h> 57 #include <sys/pool_pset.h> 58 #include <sys/msacct.h> 59 #include <sys/time.h> 60 #include <sys/archsystm.h> 61 #if defined(__x86) 62 #include <sys/x86_archext.h> 63 #endif 64 65 extern int mp_cpu_start(cpu_t *); 66 extern int mp_cpu_stop(cpu_t *); 67 extern int mp_cpu_poweron(cpu_t *); 68 extern int mp_cpu_poweroff(cpu_t *); 69 extern int mp_cpu_configure(int); 70 extern int mp_cpu_unconfigure(int); 71 extern void mp_cpu_faulted_enter(cpu_t *); 72 extern void mp_cpu_faulted_exit(cpu_t *); 73 74 extern int cmp_cpu_to_chip(processorid_t cpuid); 75 #ifdef __sparcv9 76 extern char *cpu_fru_fmri(cpu_t *cp); 77 #endif 78 79 static void cpu_add_active_internal(cpu_t *cp); 80 static void cpu_remove_active(cpu_t *cp); 81 static void cpu_info_kstat_create(cpu_t *cp); 82 static void cpu_info_kstat_destroy(cpu_t *cp); 83 static void cpu_stats_kstat_create(cpu_t *cp); 84 static void cpu_stats_kstat_destroy(cpu_t *cp); 85 86 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw); 87 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw); 88 static int cpu_stat_ks_update(kstat_t *ksp, int rw); 89 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t); 90 91 /* 92 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active, 93 * and dispatch queue reallocations. The lock ordering with respect to 94 * related locks is: 95 * 96 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock() 97 * 98 * Warning: Certain sections of code do not use the cpu_lock when 99 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since 100 * all cpus are paused during modifications to this list, a solution 101 * to protect the list is too either disable kernel preemption while 102 * walking the list, *or* recheck the cpu_next pointer at each 103 * iteration in the loop. Note that in no cases can any cached 104 * copies of the cpu pointers be kept as they may become invalid. 105 */ 106 kmutex_t cpu_lock; 107 cpu_t *cpu_list; /* list of all CPUs */ 108 cpu_t *cpu_active; /* list of active CPUs */ 109 static cpuset_t cpu_available; /* set of available CPUs */ 110 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */ 111 112 /* 113 * max_ncpus keeps the max cpus the system can have. Initially 114 * it's NCPU, but since most archs scan the devtree for cpus 115 * fairly early on during boot, the real max can be known before 116 * ncpus is set (useful for early NCPU based allocations). 117 */ 118 int max_ncpus = NCPU; 119 /* 120 * platforms that set max_ncpus to maxiumum number of cpus that can be 121 * dynamically added will set boot_max_ncpus to the number of cpus found 122 * at device tree scan time during boot. 123 */ 124 int boot_max_ncpus = -1; 125 /* 126 * Maximum possible CPU id. This can never be >= NCPU since NCPU is 127 * used to size arrays that are indexed by CPU id. 128 */ 129 processorid_t max_cpuid = NCPU - 1; 130 131 int ncpus = 1; 132 int ncpus_online = 1; 133 134 /* 135 * CPU that we're trying to offline. Protected by cpu_lock. 136 */ 137 cpu_t *cpu_inmotion; 138 139 /* 140 * Can be raised to suppress further weakbinding, which are instead 141 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock, 142 * while individual thread weakbinding synchronisation is done under thread 143 * lock. 144 */ 145 int weakbindingbarrier; 146 147 /* 148 * Variables used in pause_cpus(). 149 */ 150 static volatile char safe_list[NCPU]; 151 152 static struct _cpu_pause_info { 153 int cp_spl; /* spl saved in pause_cpus() */ 154 volatile int cp_go; /* Go signal sent after all ready */ 155 int cp_count; /* # of CPUs to pause */ 156 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */ 157 kthread_id_t cp_paused; 158 } cpu_pause_info; 159 160 static kmutex_t pause_free_mutex; 161 static kcondvar_t pause_free_cv; 162 163 static struct cpu_sys_stats_ks_data { 164 kstat_named_t cpu_ticks_idle; 165 kstat_named_t cpu_ticks_user; 166 kstat_named_t cpu_ticks_kernel; 167 kstat_named_t cpu_ticks_wait; 168 kstat_named_t cpu_nsec_idle; 169 kstat_named_t cpu_nsec_user; 170 kstat_named_t cpu_nsec_kernel; 171 kstat_named_t wait_ticks_io; 172 kstat_named_t bread; 173 kstat_named_t bwrite; 174 kstat_named_t lread; 175 kstat_named_t lwrite; 176 kstat_named_t phread; 177 kstat_named_t phwrite; 178 kstat_named_t pswitch; 179 kstat_named_t trap; 180 kstat_named_t intr; 181 kstat_named_t syscall; 182 kstat_named_t sysread; 183 kstat_named_t syswrite; 184 kstat_named_t sysfork; 185 kstat_named_t sysvfork; 186 kstat_named_t sysexec; 187 kstat_named_t readch; 188 kstat_named_t writech; 189 kstat_named_t rcvint; 190 kstat_named_t xmtint; 191 kstat_named_t mdmint; 192 kstat_named_t rawch; 193 kstat_named_t canch; 194 kstat_named_t outch; 195 kstat_named_t msg; 196 kstat_named_t sema; 197 kstat_named_t namei; 198 kstat_named_t ufsiget; 199 kstat_named_t ufsdirblk; 200 kstat_named_t ufsipage; 201 kstat_named_t ufsinopage; 202 kstat_named_t procovf; 203 kstat_named_t intrthread; 204 kstat_named_t intrblk; 205 kstat_named_t intrunpin; 206 kstat_named_t idlethread; 207 kstat_named_t inv_swtch; 208 kstat_named_t nthreads; 209 kstat_named_t cpumigrate; 210 kstat_named_t xcalls; 211 kstat_named_t mutex_adenters; 212 kstat_named_t rw_rdfails; 213 kstat_named_t rw_wrfails; 214 kstat_named_t modload; 215 kstat_named_t modunload; 216 kstat_named_t bawrite; 217 kstat_named_t iowait; 218 } cpu_sys_stats_ks_data_template = { 219 { "cpu_ticks_idle", KSTAT_DATA_UINT64 }, 220 { "cpu_ticks_user", KSTAT_DATA_UINT64 }, 221 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 }, 222 { "cpu_ticks_wait", KSTAT_DATA_UINT64 }, 223 { "cpu_nsec_idle", KSTAT_DATA_UINT64 }, 224 { "cpu_nsec_user", KSTAT_DATA_UINT64 }, 225 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 }, 226 { "wait_ticks_io", KSTAT_DATA_UINT64 }, 227 { "bread", KSTAT_DATA_UINT64 }, 228 { "bwrite", KSTAT_DATA_UINT64 }, 229 { "lread", KSTAT_DATA_UINT64 }, 230 { "lwrite", KSTAT_DATA_UINT64 }, 231 { "phread", KSTAT_DATA_UINT64 }, 232 { "phwrite", KSTAT_DATA_UINT64 }, 233 { "pswitch", KSTAT_DATA_UINT64 }, 234 { "trap", KSTAT_DATA_UINT64 }, 235 { "intr", KSTAT_DATA_UINT64 }, 236 { "syscall", KSTAT_DATA_UINT64 }, 237 { "sysread", KSTAT_DATA_UINT64 }, 238 { "syswrite", KSTAT_DATA_UINT64 }, 239 { "sysfork", KSTAT_DATA_UINT64 }, 240 { "sysvfork", KSTAT_DATA_UINT64 }, 241 { "sysexec", KSTAT_DATA_UINT64 }, 242 { "readch", KSTAT_DATA_UINT64 }, 243 { "writech", KSTAT_DATA_UINT64 }, 244 { "rcvint", KSTAT_DATA_UINT64 }, 245 { "xmtint", KSTAT_DATA_UINT64 }, 246 { "mdmint", KSTAT_DATA_UINT64 }, 247 { "rawch", KSTAT_DATA_UINT64 }, 248 { "canch", KSTAT_DATA_UINT64 }, 249 { "outch", KSTAT_DATA_UINT64 }, 250 { "msg", KSTAT_DATA_UINT64 }, 251 { "sema", KSTAT_DATA_UINT64 }, 252 { "namei", KSTAT_DATA_UINT64 }, 253 { "ufsiget", KSTAT_DATA_UINT64 }, 254 { "ufsdirblk", KSTAT_DATA_UINT64 }, 255 { "ufsipage", KSTAT_DATA_UINT64 }, 256 { "ufsinopage", KSTAT_DATA_UINT64 }, 257 { "procovf", KSTAT_DATA_UINT64 }, 258 { "intrthread", KSTAT_DATA_UINT64 }, 259 { "intrblk", KSTAT_DATA_UINT64 }, 260 { "intrunpin", KSTAT_DATA_UINT64 }, 261 { "idlethread", KSTAT_DATA_UINT64 }, 262 { "inv_swtch", KSTAT_DATA_UINT64 }, 263 { "nthreads", KSTAT_DATA_UINT64 }, 264 { "cpumigrate", KSTAT_DATA_UINT64 }, 265 { "xcalls", KSTAT_DATA_UINT64 }, 266 { "mutex_adenters", KSTAT_DATA_UINT64 }, 267 { "rw_rdfails", KSTAT_DATA_UINT64 }, 268 { "rw_wrfails", KSTAT_DATA_UINT64 }, 269 { "modload", KSTAT_DATA_UINT64 }, 270 { "modunload", KSTAT_DATA_UINT64 }, 271 { "bawrite", KSTAT_DATA_UINT64 }, 272 { "iowait", KSTAT_DATA_UINT64 }, 273 }; 274 275 static struct cpu_vm_stats_ks_data { 276 kstat_named_t pgrec; 277 kstat_named_t pgfrec; 278 kstat_named_t pgin; 279 kstat_named_t pgpgin; 280 kstat_named_t pgout; 281 kstat_named_t pgpgout; 282 kstat_named_t swapin; 283 kstat_named_t pgswapin; 284 kstat_named_t swapout; 285 kstat_named_t pgswapout; 286 kstat_named_t zfod; 287 kstat_named_t dfree; 288 kstat_named_t scan; 289 kstat_named_t rev; 290 kstat_named_t hat_fault; 291 kstat_named_t as_fault; 292 kstat_named_t maj_fault; 293 kstat_named_t cow_fault; 294 kstat_named_t prot_fault; 295 kstat_named_t softlock; 296 kstat_named_t kernel_asflt; 297 kstat_named_t pgrrun; 298 kstat_named_t execpgin; 299 kstat_named_t execpgout; 300 kstat_named_t execfree; 301 kstat_named_t anonpgin; 302 kstat_named_t anonpgout; 303 kstat_named_t anonfree; 304 kstat_named_t fspgin; 305 kstat_named_t fspgout; 306 kstat_named_t fsfree; 307 } cpu_vm_stats_ks_data_template = { 308 { "pgrec", KSTAT_DATA_UINT64 }, 309 { "pgfrec", KSTAT_DATA_UINT64 }, 310 { "pgin", KSTAT_DATA_UINT64 }, 311 { "pgpgin", KSTAT_DATA_UINT64 }, 312 { "pgout", KSTAT_DATA_UINT64 }, 313 { "pgpgout", KSTAT_DATA_UINT64 }, 314 { "swapin", KSTAT_DATA_UINT64 }, 315 { "pgswapin", KSTAT_DATA_UINT64 }, 316 { "swapout", KSTAT_DATA_UINT64 }, 317 { "pgswapout", KSTAT_DATA_UINT64 }, 318 { "zfod", KSTAT_DATA_UINT64 }, 319 { "dfree", KSTAT_DATA_UINT64 }, 320 { "scan", KSTAT_DATA_UINT64 }, 321 { "rev", KSTAT_DATA_UINT64 }, 322 { "hat_fault", KSTAT_DATA_UINT64 }, 323 { "as_fault", KSTAT_DATA_UINT64 }, 324 { "maj_fault", KSTAT_DATA_UINT64 }, 325 { "cow_fault", KSTAT_DATA_UINT64 }, 326 { "prot_fault", KSTAT_DATA_UINT64 }, 327 { "softlock", KSTAT_DATA_UINT64 }, 328 { "kernel_asflt", KSTAT_DATA_UINT64 }, 329 { "pgrrun", KSTAT_DATA_UINT64 }, 330 { "execpgin", KSTAT_DATA_UINT64 }, 331 { "execpgout", KSTAT_DATA_UINT64 }, 332 { "execfree", KSTAT_DATA_UINT64 }, 333 { "anonpgin", KSTAT_DATA_UINT64 }, 334 { "anonpgout", KSTAT_DATA_UINT64 }, 335 { "anonfree", KSTAT_DATA_UINT64 }, 336 { "fspgin", KSTAT_DATA_UINT64 }, 337 { "fspgout", KSTAT_DATA_UINT64 }, 338 { "fsfree", KSTAT_DATA_UINT64 }, 339 }; 340 341 /* 342 * Force the specified thread to migrate to the appropriate processor. 343 * Called with thread lock held, returns with it dropped. 344 */ 345 static void 346 force_thread_migrate(kthread_id_t tp) 347 { 348 ASSERT(THREAD_LOCK_HELD(tp)); 349 if (tp == curthread) { 350 THREAD_TRANSITION(tp); 351 CL_SETRUN(tp); 352 thread_unlock_nopreempt(tp); 353 swtch(); 354 } else { 355 if (tp->t_state == TS_ONPROC) { 356 cpu_surrender(tp); 357 } else if (tp->t_state == TS_RUN) { 358 (void) dispdeq(tp); 359 setbackdq(tp); 360 } 361 thread_unlock(tp); 362 } 363 } 364 365 /* 366 * Set affinity for a specified CPU. 367 * A reference count is incremented and the affinity is held until the 368 * reference count is decremented to zero by thread_affinity_clear(). 369 * This is so regions of code requiring affinity can be nested. 370 * Caller needs to ensure that cpu_id remains valid, which can be 371 * done by holding cpu_lock across this call, unless the caller 372 * specifies CPU_CURRENT in which case the cpu_lock will be acquired 373 * by thread_affinity_set and CPU->cpu_id will be the target CPU. 374 */ 375 void 376 thread_affinity_set(kthread_id_t t, int cpu_id) 377 { 378 cpu_t *cp; 379 int c; 380 381 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL)); 382 383 if ((c = cpu_id) == CPU_CURRENT) { 384 mutex_enter(&cpu_lock); 385 cpu_id = CPU->cpu_id; 386 } 387 /* 388 * We should be asserting that cpu_lock is held here, but 389 * the NCA code doesn't acquire it. The following assert 390 * should be uncommented when the NCA code is fixed. 391 * 392 * ASSERT(MUTEX_HELD(&cpu_lock)); 393 */ 394 ASSERT((cpu_id >= 0) && (cpu_id < NCPU)); 395 cp = cpu[cpu_id]; 396 ASSERT(cp != NULL); /* user must provide a good cpu_id */ 397 /* 398 * If there is already a hard affinity requested, and this affinity 399 * conflicts with that, panic. 400 */ 401 thread_lock(t); 402 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) { 403 panic("affinity_set: setting %p but already bound to %p", 404 (void *)cp, (void *)t->t_bound_cpu); 405 } 406 t->t_affinitycnt++; 407 t->t_bound_cpu = cp; 408 409 /* 410 * Make sure we're running on the right CPU. 411 */ 412 if (cp != t->t_cpu || t != curthread) { 413 force_thread_migrate(t); /* drops thread lock */ 414 } else { 415 thread_unlock(t); 416 } 417 418 if (c == CPU_CURRENT) 419 mutex_exit(&cpu_lock); 420 } 421 422 /* 423 * Wrapper for backward compatibility. 424 */ 425 void 426 affinity_set(int cpu_id) 427 { 428 thread_affinity_set(curthread, cpu_id); 429 } 430 431 /* 432 * Decrement the affinity reservation count and if it becomes zero, 433 * clear the CPU affinity for the current thread, or set it to the user's 434 * software binding request. 435 */ 436 void 437 thread_affinity_clear(kthread_id_t t) 438 { 439 register processorid_t binding; 440 441 thread_lock(t); 442 if (--t->t_affinitycnt == 0) { 443 if ((binding = t->t_bind_cpu) == PBIND_NONE) { 444 /* 445 * Adjust disp_max_unbound_pri if necessary. 446 */ 447 disp_adjust_unbound_pri(t); 448 t->t_bound_cpu = NULL; 449 if (t->t_cpu->cpu_part != t->t_cpupart) { 450 force_thread_migrate(t); 451 return; 452 } 453 } else { 454 t->t_bound_cpu = cpu[binding]; 455 /* 456 * Make sure the thread is running on the bound CPU. 457 */ 458 if (t->t_cpu != t->t_bound_cpu) { 459 force_thread_migrate(t); 460 return; /* already dropped lock */ 461 } 462 } 463 } 464 thread_unlock(t); 465 } 466 467 /* 468 * Wrapper for backward compatibility. 469 */ 470 void 471 affinity_clear(void) 472 { 473 thread_affinity_clear(curthread); 474 } 475 476 /* 477 * Weak cpu affinity. Bind to the "current" cpu for short periods 478 * of time during which the thread must not block (but may be preempted). 479 * Use this instead of kpreempt_disable() when it is only "no migration" 480 * rather than "no preemption" semantics that are required - disabling 481 * preemption holds higher priority threads off of cpu and if the 482 * operation that is protected is more than momentary this is not good 483 * for realtime etc. 484 * 485 * Weakly bound threads will not prevent a cpu from being offlined - 486 * we'll only run them on the cpu to which they are weakly bound but 487 * (because they do not block) we'll always be able to move them on to 488 * another cpu at offline time if we give them just a short moment to 489 * run during which they will unbind. To give a cpu a chance of offlining, 490 * however, we require a barrier to weak bindings that may be raised for a 491 * given cpu (offline/move code may set this and then wait a short time for 492 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier. 493 * 494 * There are few restrictions on the calling context of thread_nomigrate. 495 * The caller must not hold the thread lock. Calls may be nested. 496 * 497 * After weakbinding a thread must not perform actions that may block. 498 * In particular it must not call thread_affinity_set; calling that when 499 * already weakbound is nonsensical anyway. 500 * 501 * If curthread is prevented from migrating for other reasons 502 * (kernel preemption disabled; high pil; strongly bound; interrupt thread) 503 * then the weak binding will succeed even if this cpu is the target of an 504 * offline/move request. 505 */ 506 void 507 thread_nomigrate(void) 508 { 509 cpu_t *cp; 510 kthread_id_t t = curthread; 511 512 again: 513 kpreempt_disable(); 514 cp = CPU; 515 516 /* 517 * A highlevel interrupt must not modify t_nomigrate or 518 * t_weakbound_cpu of the thread it has interrupted. A lowlevel 519 * interrupt thread cannot migrate and we can avoid the 520 * thread_lock call below by short-circuiting here. In either 521 * case we can just return since no migration is possible and 522 * the condition will persist (ie, when we test for these again 523 * in thread_allowmigrate they can't have changed). Migration 524 * is also impossible if we're at or above DISP_LEVEL pil. 525 */ 526 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD || 527 getpil() >= DISP_LEVEL) { 528 kpreempt_enable(); 529 return; 530 } 531 532 /* 533 * We must be consistent with existing weak bindings. Since we 534 * may be interrupted between the increment of t_nomigrate and 535 * the store to t_weakbound_cpu below we cannot assume that 536 * t_weakbound_cpu will be set if t_nomigrate is. Note that we 537 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not 538 * always the case. 539 */ 540 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) { 541 if (!panicstr) 542 panic("thread_nomigrate: binding to %p but already " 543 "bound to %p", (void *)cp, 544 (void *)t->t_weakbound_cpu); 545 } 546 547 /* 548 * At this point we have preemption disabled and we don't yet hold 549 * the thread lock. So it's possible that somebody else could 550 * set t_bind_cpu here and not be able to force us across to the 551 * new cpu (since we have preemption disabled). 552 */ 553 thread_lock(curthread); 554 555 /* 556 * If further weak bindings are being (temporarily) suppressed then 557 * we'll settle for disabling kernel preemption (which assures 558 * no migration provided the thread does not block which it is 559 * not allowed to if using thread_nomigrate). We must remember 560 * this disposition so we can take appropriate action in 561 * thread_allowmigrate. If this is a nested call and the 562 * thread is already weakbound then fall through as normal. 563 * We remember the decision to settle for kpreempt_disable through 564 * negative nesting counting in t_nomigrate. Once a thread has had one 565 * weakbinding request satisfied in this way any further (nested) 566 * requests will continue to be satisfied in the same way, 567 * even if weak bindings have recommenced. 568 */ 569 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) { 570 --t->t_nomigrate; 571 thread_unlock(curthread); 572 return; /* with kpreempt_disable still active */ 573 } 574 575 /* 576 * We hold thread_lock so t_bind_cpu cannot change. We could, 577 * however, be running on a different cpu to which we are t_bound_cpu 578 * to (as explained above). If we grant the weak binding request 579 * in that case then the dispatcher must favour our weak binding 580 * over our strong (in which case, just as when preemption is 581 * disabled, we can continue to run on a cpu other than the one to 582 * which we are strongbound; the difference in this case is that 583 * this thread can be preempted and so can appear on the dispatch 584 * queues of a cpu other than the one it is strongbound to). 585 * 586 * If the cpu we are running on does not appear to be a current 587 * offline target (we check cpu_inmotion to determine this - since 588 * we don't hold cpu_lock we may not see a recent store to that, 589 * so it's possible that we at times can grant a weak binding to a 590 * cpu that is an offline target, but that one request will not 591 * prevent the offline from succeeding) then we will always grant 592 * the weak binding request. This includes the case above where 593 * we grant a weakbinding not commensurate with our strong binding. 594 * 595 * If our cpu does appear to be an offline target then we're inclined 596 * not to grant the weakbinding request just yet - we'd prefer to 597 * migrate to another cpu and grant the request there. The 598 * exceptions are those cases where going through preemption code 599 * will not result in us changing cpu: 600 * 601 * . interrupts have already bypassed this case (see above) 602 * . we are already weakbound to this cpu (dispatcher code will 603 * always return us to the weakbound cpu) 604 * . preemption was disabled even before we disabled it above 605 * . we are strongbound to this cpu (if we're strongbound to 606 * another and not yet running there the trip through the 607 * dispatcher will move us to the strongbound cpu and we 608 * will grant the weak binding there) 609 */ 610 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 || 611 t->t_bound_cpu == cp) { 612 /* 613 * Don't be tempted to store to t_weakbound_cpu only on 614 * the first nested bind request - if we're interrupted 615 * after the increment of t_nomigrate and before the 616 * store to t_weakbound_cpu and the interrupt calls 617 * thread_nomigrate then the assertion in thread_allowmigrate 618 * would fail. 619 */ 620 t->t_nomigrate++; 621 t->t_weakbound_cpu = cp; 622 membar_producer(); 623 thread_unlock(curthread); 624 /* 625 * Now that we have dropped the thread_lock another thread 626 * can set our t_weakbound_cpu, and will try to migrate us 627 * to the strongbound cpu (which will not be prevented by 628 * preemption being disabled since we're about to enable 629 * preemption). We have granted the weakbinding to the current 630 * cpu, so again we are in the position that is is is possible 631 * that our weak and strong bindings differ. Again this 632 * is catered for by dispatcher code which will favour our 633 * weak binding. 634 */ 635 kpreempt_enable(); 636 } else { 637 /* 638 * Move to another cpu before granting the request by 639 * forcing this thread through preemption code. When we 640 * get to set{front,back}dq called from CL_PREEMPT() 641 * cpu_choose() will be used to select a cpu to queue 642 * us on - that will see cpu_inmotion and take 643 * steps to avoid returning us to this cpu. 644 */ 645 cp->cpu_kprunrun = 1; 646 thread_unlock(curthread); 647 kpreempt_enable(); /* will call preempt() */ 648 goto again; 649 } 650 } 651 652 void 653 thread_allowmigrate(void) 654 { 655 kthread_id_t t = curthread; 656 657 ASSERT(t->t_weakbound_cpu == CPU || 658 (t->t_nomigrate < 0 && t->t_preempt > 0) || 659 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD || 660 getpil() >= DISP_LEVEL); 661 662 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) || 663 getpil() >= DISP_LEVEL) 664 return; 665 666 if (t->t_nomigrate < 0) { 667 /* 668 * This thread was granted "weak binding" in the 669 * stronger form of kernel preemption disabling. 670 * Undo a level of nesting for both t_nomigrate 671 * and t_preempt. 672 */ 673 ++t->t_nomigrate; 674 kpreempt_enable(); 675 } else if (--t->t_nomigrate == 0) { 676 /* 677 * Time to drop the weak binding. We need to cater 678 * for the case where we're weakbound to a different 679 * cpu than that to which we're strongbound (a very 680 * temporary arrangement that must only persist until 681 * weak binding drops). We don't acquire thread_lock 682 * here so even as this code executes t_bound_cpu 683 * may be changing. So we disable preemption and 684 * a) in the case that t_bound_cpu changes while we 685 * have preemption disabled kprunrun will be set 686 * asynchronously, and b) if before disabling 687 * preemption we were already on a different cpu to 688 * our t_bound_cpu then we set kprunrun ourselves 689 * to force a trip through the dispatcher when 690 * preemption is enabled. 691 */ 692 kpreempt_disable(); 693 if (t->t_bound_cpu && 694 t->t_weakbound_cpu != t->t_bound_cpu) 695 CPU->cpu_kprunrun = 1; 696 t->t_weakbound_cpu = NULL; 697 membar_producer(); 698 kpreempt_enable(); 699 } 700 } 701 702 /* 703 * weakbinding_stop can be used to temporarily cause weakbindings made 704 * with thread_nomigrate to be satisfied through the stronger action of 705 * kpreempt_disable. weakbinding_start recommences normal weakbinding. 706 */ 707 708 void 709 weakbinding_stop(void) 710 { 711 ASSERT(MUTEX_HELD(&cpu_lock)); 712 weakbindingbarrier = 1; 713 membar_producer(); /* make visible before subsequent thread_lock */ 714 } 715 716 void 717 weakbinding_start(void) 718 { 719 ASSERT(MUTEX_HELD(&cpu_lock)); 720 weakbindingbarrier = 0; 721 } 722 723 /* 724 * This routine is called to place the CPUs in a safe place so that 725 * one of them can be taken off line or placed on line. What we are 726 * trying to do here is prevent a thread from traversing the list 727 * of active CPUs while we are changing it or from getting placed on 728 * the run queue of a CPU that has just gone off line. We do this by 729 * creating a thread with the highest possible prio for each CPU and 730 * having it call this routine. The advantage of this method is that 731 * we can eliminate all checks for CPU_ACTIVE in the disp routines. 732 * This makes disp faster at the expense of making p_online() slower 733 * which is a good trade off. 734 */ 735 static void 736 cpu_pause(volatile char *safe) 737 { 738 int s; 739 struct _cpu_pause_info *cpi = &cpu_pause_info; 740 741 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE)); 742 743 while (*safe != PAUSE_DIE) { 744 *safe = PAUSE_READY; 745 membar_enter(); /* make sure stores are flushed */ 746 sema_v(&cpi->cp_sem); /* signal requesting thread */ 747 748 /* 749 * Wait here until all pause threads are running. That 750 * indicates that it's safe to do the spl. Until 751 * cpu_pause_info.cp_go is set, we don't want to spl 752 * because that might block clock interrupts needed 753 * to preempt threads on other CPUs. 754 */ 755 while (cpi->cp_go == 0) 756 ; 757 /* 758 * Even though we are at the highest disp prio, we need 759 * to block out all interrupts below LOCK_LEVEL so that 760 * an intr doesn't come in, wake up a thread, and call 761 * setbackdq/setfrontdq. 762 */ 763 s = splhigh(); 764 765 mach_cpu_pause(safe); 766 767 splx(s); 768 /* 769 * Waiting is at an end. Switch out of cpu_pause 770 * loop and resume useful work. 771 */ 772 swtch(); 773 } 774 775 mutex_enter(&pause_free_mutex); 776 *safe = PAUSE_DEAD; 777 cv_broadcast(&pause_free_cv); 778 mutex_exit(&pause_free_mutex); 779 } 780 781 /* 782 * Allow the cpus to start running again. 783 */ 784 void 785 start_cpus() 786 { 787 int i; 788 789 ASSERT(MUTEX_HELD(&cpu_lock)); 790 ASSERT(cpu_pause_info.cp_paused); 791 cpu_pause_info.cp_paused = NULL; 792 for (i = 0; i < NCPU; i++) 793 safe_list[i] = PAUSE_IDLE; 794 membar_enter(); /* make sure stores are flushed */ 795 affinity_clear(); 796 splx(cpu_pause_info.cp_spl); 797 kpreempt_enable(); 798 } 799 800 /* 801 * Allocate a pause thread for a CPU. 802 */ 803 static void 804 cpu_pause_alloc(cpu_t *cp) 805 { 806 kthread_id_t t; 807 int cpun = cp->cpu_id; 808 809 /* 810 * Note, v.v_nglobpris will not change value as long as I hold 811 * cpu_lock. 812 */ 813 t = thread_create(NULL, 0, cpu_pause, (caddr_t)&safe_list[cpun], 814 0, &p0, TS_STOPPED, v.v_nglobpris - 1); 815 thread_lock(t); 816 t->t_bound_cpu = cp; 817 t->t_disp_queue = cp->cpu_disp; 818 t->t_affinitycnt = 1; 819 t->t_preempt = 1; 820 thread_unlock(t); 821 cp->cpu_pause_thread = t; 822 /* 823 * Registering a thread in the callback table is usually done 824 * in the initialization code of the thread. In this 825 * case, we do it right after thread creation because the 826 * thread itself may never run, and we need to register the 827 * fact that it is safe for cpr suspend. 828 */ 829 CALLB_CPR_INIT_SAFE(t, "cpu_pause"); 830 } 831 832 /* 833 * Free a pause thread for a CPU. 834 */ 835 static void 836 cpu_pause_free(cpu_t *cp) 837 { 838 kthread_id_t t; 839 int cpun = cp->cpu_id; 840 841 ASSERT(MUTEX_HELD(&cpu_lock)); 842 /* 843 * We have to get the thread and tell him to die. 844 */ 845 if ((t = cp->cpu_pause_thread) == NULL) { 846 ASSERT(safe_list[cpun] == PAUSE_IDLE); 847 return; 848 } 849 thread_lock(t); 850 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */ 851 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */ 852 t->t_pri = v.v_nglobpris - 1; 853 ASSERT(safe_list[cpun] == PAUSE_IDLE); 854 safe_list[cpun] = PAUSE_DIE; 855 THREAD_TRANSITION(t); 856 setbackdq(t); 857 thread_unlock_nopreempt(t); 858 859 /* 860 * If we don't wait for the thread to actually die, it may try to 861 * run on the wrong cpu as part of an actual call to pause_cpus(). 862 */ 863 mutex_enter(&pause_free_mutex); 864 while (safe_list[cpun] != PAUSE_DEAD) { 865 cv_wait(&pause_free_cv, &pause_free_mutex); 866 } 867 mutex_exit(&pause_free_mutex); 868 safe_list[cpun] = PAUSE_IDLE; 869 870 cp->cpu_pause_thread = NULL; 871 } 872 873 /* 874 * Initialize basic structures for pausing CPUs. 875 */ 876 void 877 cpu_pause_init() 878 { 879 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL); 880 /* 881 * Create initial CPU pause thread. 882 */ 883 cpu_pause_alloc(CPU); 884 } 885 886 /* 887 * Start the threads used to pause another CPU. 888 */ 889 static int 890 cpu_pause_start(processorid_t cpu_id) 891 { 892 int i; 893 int cpu_count = 0; 894 895 for (i = 0; i < NCPU; i++) { 896 cpu_t *cp; 897 kthread_id_t t; 898 899 cp = cpu[i]; 900 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) { 901 safe_list[i] = PAUSE_WAIT; 902 continue; 903 } 904 905 /* 906 * Skip CPU if it is quiesced or not yet started. 907 */ 908 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) { 909 safe_list[i] = PAUSE_WAIT; 910 continue; 911 } 912 913 /* 914 * Start this CPU's pause thread. 915 */ 916 t = cp->cpu_pause_thread; 917 thread_lock(t); 918 /* 919 * Reset the priority, since nglobpris may have 920 * changed since the thread was created, if someone 921 * has loaded the RT (or some other) scheduling 922 * class. 923 */ 924 t->t_pri = v.v_nglobpris - 1; 925 THREAD_TRANSITION(t); 926 setbackdq(t); 927 thread_unlock_nopreempt(t); 928 ++cpu_count; 929 } 930 return (cpu_count); 931 } 932 933 934 /* 935 * Pause all of the CPUs except the one we are on by creating a high 936 * priority thread bound to those CPUs. 937 * 938 * Note that one must be extremely careful regarding code 939 * executed while CPUs are paused. Since a CPU may be paused 940 * while a thread scheduling on that CPU is holding an adaptive 941 * lock, code executed with CPUs paused must not acquire adaptive 942 * (or low-level spin) locks. Also, such code must not block, 943 * since the thread that is supposed to initiate the wakeup may 944 * never run. 945 * 946 * With a few exceptions, the restrictions on code executed with CPUs 947 * paused match those for code executed at high-level interrupt 948 * context. 949 */ 950 void 951 pause_cpus(cpu_t *off_cp) 952 { 953 processorid_t cpu_id; 954 int i; 955 struct _cpu_pause_info *cpi = &cpu_pause_info; 956 957 ASSERT(MUTEX_HELD(&cpu_lock)); 958 ASSERT(cpi->cp_paused == NULL); 959 cpi->cp_count = 0; 960 cpi->cp_go = 0; 961 for (i = 0; i < NCPU; i++) 962 safe_list[i] = PAUSE_IDLE; 963 kpreempt_disable(); 964 965 /* 966 * If running on the cpu that is going offline, get off it. 967 * This is so that it won't be necessary to rechoose a CPU 968 * when done. 969 */ 970 if (CPU == off_cp) 971 cpu_id = off_cp->cpu_next_part->cpu_id; 972 else 973 cpu_id = CPU->cpu_id; 974 affinity_set(cpu_id); 975 976 /* 977 * Start the pause threads and record how many were started 978 */ 979 cpi->cp_count = cpu_pause_start(cpu_id); 980 981 /* 982 * Now wait for all CPUs to be running the pause thread. 983 */ 984 while (cpi->cp_count > 0) { 985 /* 986 * Spin reading the count without grabbing the disp 987 * lock to make sure we don't prevent the pause 988 * threads from getting the lock. 989 */ 990 while (sema_held(&cpi->cp_sem)) 991 ; 992 if (sema_tryp(&cpi->cp_sem)) 993 --cpi->cp_count; 994 } 995 cpi->cp_go = 1; /* all have reached cpu_pause */ 996 997 /* 998 * Now wait for all CPUs to spl. (Transition from PAUSE_READY 999 * to PAUSE_WAIT.) 1000 */ 1001 for (i = 0; i < NCPU; i++) { 1002 while (safe_list[i] != PAUSE_WAIT) 1003 ; 1004 } 1005 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */ 1006 cpi->cp_paused = curthread; 1007 } 1008 1009 /* 1010 * Check whether the current thread has CPUs paused 1011 */ 1012 int 1013 cpus_paused(void) 1014 { 1015 if (cpu_pause_info.cp_paused != NULL) { 1016 ASSERT(cpu_pause_info.cp_paused == curthread); 1017 return (1); 1018 } 1019 return (0); 1020 } 1021 1022 static cpu_t * 1023 cpu_get_all(processorid_t cpun) 1024 { 1025 ASSERT(MUTEX_HELD(&cpu_lock)); 1026 1027 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun)) 1028 return (NULL); 1029 return (cpu[cpun]); 1030 } 1031 1032 /* 1033 * Check whether cpun is a valid processor id and whether it should be 1034 * visible from the current zone. If it is, return a pointer to the 1035 * associated CPU structure. 1036 */ 1037 cpu_t * 1038 cpu_get(processorid_t cpun) 1039 { 1040 cpu_t *c; 1041 1042 ASSERT(MUTEX_HELD(&cpu_lock)); 1043 c = cpu_get_all(cpun); 1044 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() && 1045 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c)) 1046 return (NULL); 1047 return (c); 1048 } 1049 1050 /* 1051 * The following functions should be used to check CPU states in the kernel. 1052 * They should be invoked with cpu_lock held. Kernel subsystems interested 1053 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc 1054 * states. Those are for user-land (and system call) use only. 1055 */ 1056 1057 /* 1058 * Determine whether the CPU is online and handling interrupts. 1059 */ 1060 int 1061 cpu_is_online(cpu_t *cpu) 1062 { 1063 ASSERT(MUTEX_HELD(&cpu_lock)); 1064 return (cpu_flagged_online(cpu->cpu_flags)); 1065 } 1066 1067 /* 1068 * Determine whether the CPU is offline (this includes spare and faulted). 1069 */ 1070 int 1071 cpu_is_offline(cpu_t *cpu) 1072 { 1073 ASSERT(MUTEX_HELD(&cpu_lock)); 1074 return (cpu_flagged_offline(cpu->cpu_flags)); 1075 } 1076 1077 /* 1078 * Determine whether the CPU is powered off. 1079 */ 1080 int 1081 cpu_is_poweredoff(cpu_t *cpu) 1082 { 1083 ASSERT(MUTEX_HELD(&cpu_lock)); 1084 return (cpu_flagged_poweredoff(cpu->cpu_flags)); 1085 } 1086 1087 /* 1088 * Determine whether the CPU is handling interrupts. 1089 */ 1090 int 1091 cpu_is_nointr(cpu_t *cpu) 1092 { 1093 ASSERT(MUTEX_HELD(&cpu_lock)); 1094 return (cpu_flagged_nointr(cpu->cpu_flags)); 1095 } 1096 1097 /* 1098 * Determine whether the CPU is active (scheduling threads). 1099 */ 1100 int 1101 cpu_is_active(cpu_t *cpu) 1102 { 1103 ASSERT(MUTEX_HELD(&cpu_lock)); 1104 return (cpu_flagged_active(cpu->cpu_flags)); 1105 } 1106 1107 /* 1108 * Same as above, but these require cpu_flags instead of cpu_t pointers. 1109 */ 1110 int 1111 cpu_flagged_online(cpu_flag_t cpu_flags) 1112 { 1113 return (cpu_flagged_active(cpu_flags) && 1114 (cpu_flags & CPU_ENABLE)); 1115 } 1116 1117 int 1118 cpu_flagged_offline(cpu_flag_t cpu_flags) 1119 { 1120 return (((cpu_flags & CPU_POWEROFF) == 0) && 1121 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)); 1122 } 1123 1124 int 1125 cpu_flagged_poweredoff(cpu_flag_t cpu_flags) 1126 { 1127 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF); 1128 } 1129 1130 int 1131 cpu_flagged_nointr(cpu_flag_t cpu_flags) 1132 { 1133 return (cpu_flagged_active(cpu_flags) && 1134 (cpu_flags & CPU_ENABLE) == 0); 1135 } 1136 1137 int 1138 cpu_flagged_active(cpu_flag_t cpu_flags) 1139 { 1140 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) && 1141 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY)); 1142 } 1143 1144 /* 1145 * Bring the indicated CPU online. 1146 */ 1147 int 1148 cpu_online(cpu_t *cp) 1149 { 1150 int error = 0; 1151 1152 /* 1153 * Handle on-line request. 1154 * This code must put the new CPU on the active list before 1155 * starting it because it will not be paused, and will start 1156 * using the active list immediately. The real start occurs 1157 * when the CPU_QUIESCED flag is turned off. 1158 */ 1159 1160 ASSERT(MUTEX_HELD(&cpu_lock)); 1161 1162 /* 1163 * Put all the cpus into a known safe place. 1164 * No mutexes can be entered while CPUs are paused. 1165 */ 1166 error = mp_cpu_start(cp); /* arch-dep hook */ 1167 if (error == 0) { 1168 pg_cpupart_in(cp, cp->cpu_part); 1169 pause_cpus(NULL); 1170 cpu_add_active_internal(cp); 1171 if (cp->cpu_flags & CPU_FAULTED) { 1172 cp->cpu_flags &= ~CPU_FAULTED; 1173 mp_cpu_faulted_exit(cp); 1174 } 1175 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN | 1176 CPU_SPARE); 1177 start_cpus(); 1178 cpu_stats_kstat_create(cp); 1179 cpu_create_intrstat(cp); 1180 lgrp_kstat_create(cp); 1181 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1182 cpu_intr_enable(cp); /* arch-dep hook */ 1183 cpu_set_state(cp); 1184 cyclic_online(cp); 1185 poke_cpu(cp->cpu_id); 1186 } 1187 1188 return (error); 1189 } 1190 1191 /* 1192 * Take the indicated CPU offline. 1193 */ 1194 int 1195 cpu_offline(cpu_t *cp, int flags) 1196 { 1197 cpupart_t *pp; 1198 int error = 0; 1199 cpu_t *ncp; 1200 int intr_enable; 1201 int cyclic_off = 0; 1202 int loop_count; 1203 int no_quiesce = 0; 1204 int (*bound_func)(struct cpu *, int); 1205 kthread_t *t; 1206 lpl_t *cpu_lpl; 1207 proc_t *p; 1208 int lgrp_diff_lpl; 1209 1210 ASSERT(MUTEX_HELD(&cpu_lock)); 1211 1212 /* 1213 * If we're going from faulted or spare to offline, just 1214 * clear these flags and update CPU state. 1215 */ 1216 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) { 1217 if (cp->cpu_flags & CPU_FAULTED) { 1218 cp->cpu_flags &= ~CPU_FAULTED; 1219 mp_cpu_faulted_exit(cp); 1220 } 1221 cp->cpu_flags &= ~CPU_SPARE; 1222 cpu_set_state(cp); 1223 return (0); 1224 } 1225 1226 /* 1227 * Handle off-line request. 1228 */ 1229 pp = cp->cpu_part; 1230 /* 1231 * Don't offline last online CPU in partition 1232 */ 1233 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2) 1234 return (EBUSY); 1235 /* 1236 * Unbind all thread bound to our CPU if we were asked to. 1237 */ 1238 if (flags & CPU_FORCED && (error = cpu_unbind(cp->cpu_id)) != 0) 1239 return (error); 1240 /* 1241 * We shouldn't be bound to this CPU ourselves. 1242 */ 1243 if (curthread->t_bound_cpu == cp) 1244 return (EBUSY); 1245 1246 /* 1247 * Tell interested parties that this CPU is going offline. 1248 */ 1249 cpu_state_change_notify(cp->cpu_id, CPU_OFF); 1250 1251 /* 1252 * Tell the PG subsystem that the CPU is leaving the partition 1253 */ 1254 pg_cpupart_out(cp, pp); 1255 1256 /* 1257 * Take the CPU out of interrupt participation so we won't find 1258 * bound kernel threads. If the architecture cannot completely 1259 * shut off interrupts on the CPU, don't quiesce it, but don't 1260 * run anything but interrupt thread... this is indicated by 1261 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being 1262 * off. 1263 */ 1264 intr_enable = cp->cpu_flags & CPU_ENABLE; 1265 if (intr_enable) 1266 no_quiesce = cpu_intr_disable(cp); 1267 1268 /* 1269 * Record that we are aiming to offline this cpu. This acts as 1270 * a barrier to further weak binding requests in thread_nomigrate 1271 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to 1272 * lean away from this cpu. Further strong bindings are already 1273 * avoided since we hold cpu_lock. Since threads that are set 1274 * runnable around now and others coming off the target cpu are 1275 * directed away from the target, existing strong and weak bindings 1276 * (especially the latter) to the target cpu stand maximum chance of 1277 * being able to unbind during the short delay loop below (if other 1278 * unbound threads compete they may not see cpu in time to unbind 1279 * even if they would do so immediately. 1280 */ 1281 cpu_inmotion = cp; 1282 membar_enter(); 1283 1284 /* 1285 * Check for kernel threads (strong or weak) bound to that CPU. 1286 * Strongly bound threads may not unbind, and we'll have to return 1287 * EBUSY. Weakly bound threads should always disappear - we've 1288 * stopped more weak binding with cpu_inmotion and existing 1289 * bindings will drain imminently (they may not block). Nonetheless 1290 * we will wait for a fixed period for all bound threads to disappear. 1291 * Inactive interrupt threads are OK (they'll be in TS_FREE 1292 * state). If test finds some bound threads, wait a few ticks 1293 * to give short-lived threads (such as interrupts) chance to 1294 * complete. Note that if no_quiesce is set, i.e. this cpu 1295 * is required to service interrupts, then we take the route 1296 * that permits interrupt threads to be active (or bypassed). 1297 */ 1298 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads; 1299 1300 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) { 1301 if (loop_count >= 5) { 1302 error = EBUSY; /* some threads still bound */ 1303 break; 1304 } 1305 1306 /* 1307 * If some threads were assigned, give them 1308 * a chance to complete or move. 1309 * 1310 * This assumes that the clock_thread is not bound 1311 * to any CPU, because the clock_thread is needed to 1312 * do the delay(hz/100). 1313 * 1314 * Note: we still hold the cpu_lock while waiting for 1315 * the next clock tick. This is OK since it isn't 1316 * needed for anything else except processor_bind(2), 1317 * and system initialization. If we drop the lock, 1318 * we would risk another p_online disabling the last 1319 * processor. 1320 */ 1321 delay(hz/100); 1322 } 1323 1324 if (error == 0 && cyclic_off == 0) { 1325 if (!cyclic_offline(cp)) { 1326 /* 1327 * We must have bound cyclics... 1328 */ 1329 error = EBUSY; 1330 goto out; 1331 } 1332 cyclic_off = 1; 1333 } 1334 1335 /* 1336 * Call mp_cpu_stop() to perform any special operations 1337 * needed for this machine architecture to offline a CPU. 1338 */ 1339 if (error == 0) 1340 error = mp_cpu_stop(cp); /* arch-dep hook */ 1341 1342 /* 1343 * If that all worked, take the CPU offline and decrement 1344 * ncpus_online. 1345 */ 1346 if (error == 0) { 1347 /* 1348 * Put all the cpus into a known safe place. 1349 * No mutexes can be entered while CPUs are paused. 1350 */ 1351 pause_cpus(cp); 1352 /* 1353 * Repeat the operation, if necessary, to make sure that 1354 * all outstanding low-level interrupts run to completion 1355 * before we set the CPU_QUIESCED flag. It's also possible 1356 * that a thread has weak bound to the cpu despite our raising 1357 * cpu_inmotion above since it may have loaded that 1358 * value before the barrier became visible (this would have 1359 * to be the thread that was on the target cpu at the time 1360 * we raised the barrier). 1361 */ 1362 if ((!no_quiesce && cp->cpu_intr_actv != 0) || 1363 (*bound_func)(cp, 1)) { 1364 start_cpus(); 1365 (void) mp_cpu_start(cp); 1366 goto again; 1367 } 1368 ncp = cp->cpu_next_part; 1369 cpu_lpl = cp->cpu_lpl; 1370 ASSERT(cpu_lpl != NULL); 1371 1372 /* 1373 * Remove the CPU from the list of active CPUs. 1374 */ 1375 cpu_remove_active(cp); 1376 1377 /* 1378 * Walk the active process list and look for threads 1379 * whose home lgroup needs to be updated, or 1380 * the last CPU they run on is the one being offlined now. 1381 */ 1382 1383 ASSERT(curthread->t_cpu != cp); 1384 for (p = practive; p != NULL; p = p->p_next) { 1385 1386 t = p->p_tlist; 1387 1388 if (t == NULL) 1389 continue; 1390 1391 lgrp_diff_lpl = 0; 1392 1393 do { 1394 ASSERT(t->t_lpl != NULL); 1395 /* 1396 * Taking last CPU in lpl offline 1397 * Rehome thread if it is in this lpl 1398 * Otherwise, update the count of how many 1399 * threads are in this CPU's lgroup but have 1400 * a different lpl. 1401 */ 1402 1403 if (cpu_lpl->lpl_ncpu == 0) { 1404 if (t->t_lpl == cpu_lpl) 1405 lgrp_move_thread(t, 1406 lgrp_choose(t, 1407 t->t_cpupart), 0); 1408 else if (t->t_lpl->lpl_lgrpid == 1409 cpu_lpl->lpl_lgrpid) 1410 lgrp_diff_lpl++; 1411 } 1412 ASSERT(t->t_lpl->lpl_ncpu > 0); 1413 1414 /* 1415 * Update CPU last ran on if it was this CPU 1416 */ 1417 if (t->t_cpu == cp && t->t_bound_cpu != cp) 1418 t->t_cpu = disp_lowpri_cpu(ncp, t->t_lpl, 1419 t->t_pri, NULL); 1420 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1421 t->t_weakbound_cpu == cp); 1422 1423 t = t->t_forw; 1424 } while (t != p->p_tlist); 1425 1426 /* 1427 * Didn't find any threads in the same lgroup as this 1428 * CPU with a different lpl, so remove the lgroup from 1429 * the process lgroup bitmask. 1430 */ 1431 1432 if (lgrp_diff_lpl == 0) 1433 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid); 1434 } 1435 1436 /* 1437 * Walk thread list looking for threads that need to be 1438 * rehomed, since there are some threads that are not in 1439 * their process's p_tlist. 1440 */ 1441 1442 t = curthread; 1443 do { 1444 ASSERT(t != NULL && t->t_lpl != NULL); 1445 1446 /* 1447 * Rehome threads with same lpl as this CPU when this 1448 * is the last CPU in the lpl. 1449 */ 1450 1451 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl)) 1452 lgrp_move_thread(t, 1453 lgrp_choose(t, t->t_cpupart), 1); 1454 1455 ASSERT(t->t_lpl->lpl_ncpu > 0); 1456 1457 /* 1458 * Update CPU last ran on if it was this CPU 1459 */ 1460 1461 if (t->t_cpu == cp && t->t_bound_cpu != cp) { 1462 t->t_cpu = disp_lowpri_cpu(ncp, 1463 t->t_lpl, t->t_pri, NULL); 1464 } 1465 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp || 1466 t->t_weakbound_cpu == cp); 1467 t = t->t_next; 1468 1469 } while (t != curthread); 1470 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0); 1471 cp->cpu_flags |= CPU_OFFLINE; 1472 disp_cpu_inactive(cp); 1473 if (!no_quiesce) 1474 cp->cpu_flags |= CPU_QUIESCED; 1475 ncpus_online--; 1476 cpu_set_state(cp); 1477 cpu_inmotion = NULL; 1478 start_cpus(); 1479 cpu_stats_kstat_destroy(cp); 1480 cpu_delete_intrstat(cp); 1481 lgrp_kstat_destroy(cp); 1482 } 1483 1484 out: 1485 cpu_inmotion = NULL; 1486 1487 /* 1488 * If we failed, re-enable interrupts. 1489 * Do this even if cpu_intr_disable returned an error, because 1490 * it may have partially disabled interrupts. 1491 */ 1492 if (error && intr_enable) 1493 cpu_intr_enable(cp); 1494 1495 /* 1496 * If we failed, but managed to offline the cyclic subsystem on this 1497 * CPU, bring it back online. 1498 */ 1499 if (error && cyclic_off) 1500 cyclic_online(cp); 1501 1502 /* 1503 * If we failed, tell the PG subsystem that the CPU is back 1504 */ 1505 pg_cpupart_in(cp, pp); 1506 1507 /* 1508 * If we failed, we need to notify everyone that this CPU is back on. 1509 */ 1510 if (error != 0) 1511 cpu_state_change_notify(cp->cpu_id, CPU_ON); 1512 1513 return (error); 1514 } 1515 1516 /* 1517 * Mark the indicated CPU as faulted, taking it offline. 1518 */ 1519 int 1520 cpu_faulted(cpu_t *cp, int flags) 1521 { 1522 int error = 0; 1523 1524 ASSERT(MUTEX_HELD(&cpu_lock)); 1525 ASSERT(!cpu_is_poweredoff(cp)); 1526 1527 if (cpu_is_offline(cp)) { 1528 cp->cpu_flags &= ~CPU_SPARE; 1529 cp->cpu_flags |= CPU_FAULTED; 1530 mp_cpu_faulted_enter(cp); 1531 cpu_set_state(cp); 1532 return (0); 1533 } 1534 1535 if ((error = cpu_offline(cp, flags)) == 0) { 1536 cp->cpu_flags |= CPU_FAULTED; 1537 mp_cpu_faulted_enter(cp); 1538 cpu_set_state(cp); 1539 } 1540 1541 return (error); 1542 } 1543 1544 /* 1545 * Mark the indicated CPU as a spare, taking it offline. 1546 */ 1547 int 1548 cpu_spare(cpu_t *cp, int flags) 1549 { 1550 int error = 0; 1551 1552 ASSERT(MUTEX_HELD(&cpu_lock)); 1553 ASSERT(!cpu_is_poweredoff(cp)); 1554 1555 if (cpu_is_offline(cp)) { 1556 if (cp->cpu_flags & CPU_FAULTED) { 1557 cp->cpu_flags &= ~CPU_FAULTED; 1558 mp_cpu_faulted_exit(cp); 1559 } 1560 cp->cpu_flags |= CPU_SPARE; 1561 cpu_set_state(cp); 1562 return (0); 1563 } 1564 1565 if ((error = cpu_offline(cp, flags)) == 0) { 1566 cp->cpu_flags |= CPU_SPARE; 1567 cpu_set_state(cp); 1568 } 1569 1570 return (error); 1571 } 1572 1573 /* 1574 * Take the indicated CPU from poweroff to offline. 1575 */ 1576 int 1577 cpu_poweron(cpu_t *cp) 1578 { 1579 int error = ENOTSUP; 1580 1581 ASSERT(MUTEX_HELD(&cpu_lock)); 1582 ASSERT(cpu_is_poweredoff(cp)); 1583 1584 error = mp_cpu_poweron(cp); /* arch-dep hook */ 1585 if (error == 0) 1586 cpu_set_state(cp); 1587 1588 return (error); 1589 } 1590 1591 /* 1592 * Take the indicated CPU from any inactive state to powered off. 1593 */ 1594 int 1595 cpu_poweroff(cpu_t *cp) 1596 { 1597 int error = ENOTSUP; 1598 1599 ASSERT(MUTEX_HELD(&cpu_lock)); 1600 ASSERT(cpu_is_offline(cp)); 1601 1602 if (!(cp->cpu_flags & CPU_QUIESCED)) 1603 return (EBUSY); /* not completely idle */ 1604 1605 error = mp_cpu_poweroff(cp); /* arch-dep hook */ 1606 if (error == 0) 1607 cpu_set_state(cp); 1608 1609 return (error); 1610 } 1611 1612 /* 1613 * Initialize the CPU lists for the first CPU. 1614 */ 1615 void 1616 cpu_list_init(cpu_t *cp) 1617 { 1618 cp->cpu_next = cp; 1619 cp->cpu_prev = cp; 1620 cpu_list = cp; 1621 1622 cp->cpu_next_onln = cp; 1623 cp->cpu_prev_onln = cp; 1624 cpu_active = cp; 1625 1626 cp->cpu_seqid = 0; 1627 CPUSET_ADD(cpu_seqid_inuse, 0); 1628 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1629 cp_default.cp_mach = &cp_default_mach; 1630 cp_default.cp_cpulist = cp; 1631 cp_default.cp_ncpus = 1; 1632 cp->cpu_next_part = cp; 1633 cp->cpu_prev_part = cp; 1634 cp->cpu_part = &cp_default; 1635 1636 CPUSET_ADD(cpu_available, cp->cpu_id); 1637 } 1638 1639 /* 1640 * Insert a CPU into the list of available CPUs. 1641 */ 1642 void 1643 cpu_add_unit(cpu_t *cp) 1644 { 1645 int seqid; 1646 1647 ASSERT(MUTEX_HELD(&cpu_lock)); 1648 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1649 1650 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0); 1651 1652 /* 1653 * Note: most users of the cpu_list will grab the 1654 * cpu_lock to insure that it isn't modified. However, 1655 * certain users can't or won't do that. To allow this 1656 * we pause the other cpus. Users who walk the list 1657 * without cpu_lock, must disable kernel preemption 1658 * to insure that the list isn't modified underneath 1659 * them. Also, any cached pointers to cpu structures 1660 * must be revalidated by checking to see if the 1661 * cpu_next pointer points to itself. This check must 1662 * be done with the cpu_lock held or kernel preemption 1663 * disabled. This check relies upon the fact that 1664 * old cpu structures are not free'ed or cleared after 1665 * then are removed from the cpu_list. 1666 * 1667 * Note that the clock code walks the cpu list dereferencing 1668 * the cpu_part pointer, so we need to initialize it before 1669 * adding the cpu to the list. 1670 */ 1671 cp->cpu_part = &cp_default; 1672 (void) pause_cpus(NULL); 1673 cp->cpu_next = cpu_list; 1674 cp->cpu_prev = cpu_list->cpu_prev; 1675 cpu_list->cpu_prev->cpu_next = cp; 1676 cpu_list->cpu_prev = cp; 1677 start_cpus(); 1678 1679 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++) 1680 continue; 1681 CPUSET_ADD(cpu_seqid_inuse, seqid); 1682 cp->cpu_seqid = seqid; 1683 ASSERT(ncpus < max_ncpus); 1684 ncpus++; 1685 cp->cpu_cache_offset = KMEM_CACHE_SIZE(cp->cpu_seqid); 1686 cpu[cp->cpu_id] = cp; 1687 CPUSET_ADD(cpu_available, cp->cpu_id); 1688 1689 /* 1690 * allocate a pause thread for this CPU. 1691 */ 1692 cpu_pause_alloc(cp); 1693 1694 /* 1695 * So that new CPUs won't have NULL prev_onln and next_onln pointers, 1696 * link them into a list of just that CPU. 1697 * This is so that disp_lowpri_cpu will work for thread_create in 1698 * pause_cpus() when called from the startup thread in a new CPU. 1699 */ 1700 cp->cpu_next_onln = cp; 1701 cp->cpu_prev_onln = cp; 1702 cpu_info_kstat_create(cp); 1703 cp->cpu_next_part = cp; 1704 cp->cpu_prev_part = cp; 1705 1706 init_cpu_mstate(cp, CMS_SYSTEM); 1707 1708 pool_pset_mod = gethrtime(); 1709 } 1710 1711 /* 1712 * Do the opposite of cpu_add_unit(). 1713 */ 1714 void 1715 cpu_del_unit(int cpuid) 1716 { 1717 struct cpu *cp, *cpnext; 1718 1719 ASSERT(MUTEX_HELD(&cpu_lock)); 1720 cp = cpu[cpuid]; 1721 ASSERT(cp != NULL); 1722 1723 ASSERT(cp->cpu_next_onln == cp); 1724 ASSERT(cp->cpu_prev_onln == cp); 1725 ASSERT(cp->cpu_next_part == cp); 1726 ASSERT(cp->cpu_prev_part == cp); 1727 1728 /* 1729 * Tear down the CPU's physical ID cache, and update any 1730 * processor groups 1731 */ 1732 pg_cpu_fini(cp); 1733 pghw_physid_destroy(cp); 1734 1735 /* 1736 * Destroy kstat stuff. 1737 */ 1738 cpu_info_kstat_destroy(cp); 1739 term_cpu_mstate(cp); 1740 /* 1741 * Free up pause thread. 1742 */ 1743 cpu_pause_free(cp); 1744 CPUSET_DEL(cpu_available, cp->cpu_id); 1745 cpu[cp->cpu_id] = NULL; 1746 /* 1747 * The clock thread and mutex_vector_enter cannot hold the 1748 * cpu_lock while traversing the cpu list, therefore we pause 1749 * all other threads by pausing the other cpus. These, and any 1750 * other routines holding cpu pointers while possibly sleeping 1751 * must be sure to call kpreempt_disable before processing the 1752 * list and be sure to check that the cpu has not been deleted 1753 * after any sleeps (check cp->cpu_next != NULL). We guarantee 1754 * to keep the deleted cpu structure around. 1755 * 1756 * Note that this MUST be done AFTER cpu_available 1757 * has been updated so that we don't waste time 1758 * trying to pause the cpu we're trying to delete. 1759 */ 1760 (void) pause_cpus(NULL); 1761 1762 cpnext = cp->cpu_next; 1763 cp->cpu_prev->cpu_next = cp->cpu_next; 1764 cp->cpu_next->cpu_prev = cp->cpu_prev; 1765 if (cp == cpu_list) 1766 cpu_list = cpnext; 1767 1768 /* 1769 * Signals that the cpu has been deleted (see above). 1770 */ 1771 cp->cpu_next = NULL; 1772 cp->cpu_prev = NULL; 1773 1774 start_cpus(); 1775 1776 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid); 1777 ncpus--; 1778 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0); 1779 1780 pool_pset_mod = gethrtime(); 1781 } 1782 1783 /* 1784 * Add a CPU to the list of active CPUs. 1785 * This routine must not get any locks, because other CPUs are paused. 1786 */ 1787 static void 1788 cpu_add_active_internal(cpu_t *cp) 1789 { 1790 cpupart_t *pp = cp->cpu_part; 1791 1792 ASSERT(MUTEX_HELD(&cpu_lock)); 1793 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */ 1794 1795 ncpus_online++; 1796 cpu_set_state(cp); 1797 cp->cpu_next_onln = cpu_active; 1798 cp->cpu_prev_onln = cpu_active->cpu_prev_onln; 1799 cpu_active->cpu_prev_onln->cpu_next_onln = cp; 1800 cpu_active->cpu_prev_onln = cp; 1801 1802 if (pp->cp_cpulist) { 1803 cp->cpu_next_part = pp->cp_cpulist; 1804 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part; 1805 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp; 1806 pp->cp_cpulist->cpu_prev_part = cp; 1807 } else { 1808 ASSERT(pp->cp_ncpus == 0); 1809 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp; 1810 } 1811 pp->cp_ncpus++; 1812 if (pp->cp_ncpus == 1) { 1813 cp_numparts_nonempty++; 1814 ASSERT(cp_numparts_nonempty != 0); 1815 } 1816 1817 pg_cpu_active(cp); 1818 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0); 1819 1820 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg)); 1821 } 1822 1823 /* 1824 * Add a CPU to the list of active CPUs. 1825 * This is called from machine-dependent layers when a new CPU is started. 1826 */ 1827 void 1828 cpu_add_active(cpu_t *cp) 1829 { 1830 pg_cpupart_in(cp, cp->cpu_part); 1831 1832 pause_cpus(NULL); 1833 cpu_add_active_internal(cp); 1834 start_cpus(); 1835 1836 cpu_stats_kstat_create(cp); 1837 cpu_create_intrstat(cp); 1838 lgrp_kstat_create(cp); 1839 cpu_state_change_notify(cp->cpu_id, CPU_INIT); 1840 } 1841 1842 1843 /* 1844 * Remove a CPU from the list of active CPUs. 1845 * This routine must not get any locks, because other CPUs are paused. 1846 */ 1847 /* ARGSUSED */ 1848 static void 1849 cpu_remove_active(cpu_t *cp) 1850 { 1851 cpupart_t *pp = cp->cpu_part; 1852 1853 ASSERT(MUTEX_HELD(&cpu_lock)); 1854 ASSERT(cp->cpu_next_onln != cp); /* not the last one */ 1855 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */ 1856 1857 pg_cpu_inactive(cp); 1858 1859 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0); 1860 1861 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln; 1862 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln; 1863 if (cpu_active == cp) { 1864 cpu_active = cp->cpu_next_onln; 1865 } 1866 cp->cpu_next_onln = cp; 1867 cp->cpu_prev_onln = cp; 1868 1869 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part; 1870 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part; 1871 if (pp->cp_cpulist == cp) { 1872 pp->cp_cpulist = cp->cpu_next_part; 1873 ASSERT(pp->cp_cpulist != cp); 1874 } 1875 cp->cpu_next_part = cp; 1876 cp->cpu_prev_part = cp; 1877 pp->cp_ncpus--; 1878 if (pp->cp_ncpus == 0) { 1879 cp_numparts_nonempty--; 1880 ASSERT(cp_numparts_nonempty != 0); 1881 } 1882 } 1883 1884 /* 1885 * Routine used to setup a newly inserted CPU in preparation for starting 1886 * it running code. 1887 */ 1888 int 1889 cpu_configure(int cpuid) 1890 { 1891 int retval = 0; 1892 1893 ASSERT(MUTEX_HELD(&cpu_lock)); 1894 1895 /* 1896 * Some structures are statically allocated based upon 1897 * the maximum number of cpus the system supports. Do not 1898 * try to add anything beyond this limit. 1899 */ 1900 if (cpuid < 0 || cpuid >= NCPU) { 1901 return (EINVAL); 1902 } 1903 1904 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) { 1905 return (EALREADY); 1906 } 1907 1908 if ((retval = mp_cpu_configure(cpuid)) != 0) { 1909 return (retval); 1910 } 1911 1912 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF; 1913 cpu_set_state(cpu[cpuid]); 1914 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG); 1915 if (retval != 0) 1916 (void) mp_cpu_unconfigure(cpuid); 1917 1918 return (retval); 1919 } 1920 1921 /* 1922 * Routine used to cleanup a CPU that has been powered off. This will 1923 * destroy all per-cpu information related to this cpu. 1924 */ 1925 int 1926 cpu_unconfigure(int cpuid) 1927 { 1928 int error; 1929 1930 ASSERT(MUTEX_HELD(&cpu_lock)); 1931 1932 if (cpu[cpuid] == NULL) { 1933 return (ENODEV); 1934 } 1935 1936 if (cpu[cpuid]->cpu_flags == 0) { 1937 return (EALREADY); 1938 } 1939 1940 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) { 1941 return (EBUSY); 1942 } 1943 1944 if (cpu[cpuid]->cpu_props != NULL) { 1945 (void) nvlist_free(cpu[cpuid]->cpu_props); 1946 cpu[cpuid]->cpu_props = NULL; 1947 } 1948 1949 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG); 1950 1951 if (error != 0) 1952 return (error); 1953 1954 return (mp_cpu_unconfigure(cpuid)); 1955 } 1956 1957 /* 1958 * Routines for registering and de-registering cpu_setup callback functions. 1959 * 1960 * Caller's context 1961 * These routines must not be called from a driver's attach(9E) or 1962 * detach(9E) entry point. 1963 * 1964 * NOTE: CPU callbacks should not block. They are called with cpu_lock held. 1965 */ 1966 1967 /* 1968 * Ideally, these would be dynamically allocated and put into a linked 1969 * list; however that is not feasible because the registration routine 1970 * has to be available before the kmem allocator is working (in fact, 1971 * it is called by the kmem allocator init code). In any case, there 1972 * are quite a few extra entries for future users. 1973 */ 1974 #define NCPU_SETUPS 20 1975 1976 struct cpu_setup { 1977 cpu_setup_func_t *func; 1978 void *arg; 1979 } cpu_setups[NCPU_SETUPS]; 1980 1981 void 1982 register_cpu_setup_func(cpu_setup_func_t *func, void *arg) 1983 { 1984 int i; 1985 1986 ASSERT(MUTEX_HELD(&cpu_lock)); 1987 1988 for (i = 0; i < NCPU_SETUPS; i++) 1989 if (cpu_setups[i].func == NULL) 1990 break; 1991 if (i >= NCPU_SETUPS) 1992 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries"); 1993 1994 cpu_setups[i].func = func; 1995 cpu_setups[i].arg = arg; 1996 } 1997 1998 void 1999 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg) 2000 { 2001 int i; 2002 2003 ASSERT(MUTEX_HELD(&cpu_lock)); 2004 2005 for (i = 0; i < NCPU_SETUPS; i++) 2006 if ((cpu_setups[i].func == func) && 2007 (cpu_setups[i].arg == arg)) 2008 break; 2009 if (i >= NCPU_SETUPS) 2010 cmn_err(CE_PANIC, "Could not find cpu_setup callback to " 2011 "deregister"); 2012 2013 cpu_setups[i].func = NULL; 2014 cpu_setups[i].arg = 0; 2015 } 2016 2017 /* 2018 * Call any state change hooks for this CPU, ignore any errors. 2019 */ 2020 void 2021 cpu_state_change_notify(int id, cpu_setup_t what) 2022 { 2023 int i; 2024 2025 ASSERT(MUTEX_HELD(&cpu_lock)); 2026 2027 for (i = 0; i < NCPU_SETUPS; i++) { 2028 if (cpu_setups[i].func != NULL) { 2029 cpu_setups[i].func(what, id, cpu_setups[i].arg); 2030 } 2031 } 2032 } 2033 2034 /* 2035 * Call any state change hooks for this CPU, undo it if error found. 2036 */ 2037 static int 2038 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo) 2039 { 2040 int i; 2041 int retval = 0; 2042 2043 ASSERT(MUTEX_HELD(&cpu_lock)); 2044 2045 for (i = 0; i < NCPU_SETUPS; i++) { 2046 if (cpu_setups[i].func != NULL) { 2047 retval = cpu_setups[i].func(what, id, 2048 cpu_setups[i].arg); 2049 if (retval) { 2050 for (i--; i >= 0; i--) { 2051 if (cpu_setups[i].func != NULL) 2052 cpu_setups[i].func(undo, 2053 id, cpu_setups[i].arg); 2054 } 2055 break; 2056 } 2057 } 2058 } 2059 return (retval); 2060 } 2061 2062 /* 2063 * Export information about this CPU via the kstat mechanism. 2064 */ 2065 static struct { 2066 kstat_named_t ci_state; 2067 kstat_named_t ci_state_begin; 2068 kstat_named_t ci_cpu_type; 2069 kstat_named_t ci_fpu_type; 2070 kstat_named_t ci_clock_MHz; 2071 kstat_named_t ci_chip_id; 2072 kstat_named_t ci_implementation; 2073 kstat_named_t ci_brandstr; 2074 kstat_named_t ci_core_id; 2075 #if defined(__sparcv9) 2076 kstat_named_t ci_device_ID; 2077 kstat_named_t ci_cpu_fru; 2078 #endif 2079 #if defined(__x86) 2080 kstat_named_t ci_vendorstr; 2081 kstat_named_t ci_family; 2082 kstat_named_t ci_model; 2083 kstat_named_t ci_step; 2084 kstat_named_t ci_clogid; 2085 #endif 2086 } cpu_info_template = { 2087 { "state", KSTAT_DATA_CHAR }, 2088 { "state_begin", KSTAT_DATA_LONG }, 2089 { "cpu_type", KSTAT_DATA_CHAR }, 2090 { "fpu_type", KSTAT_DATA_CHAR }, 2091 { "clock_MHz", KSTAT_DATA_LONG }, 2092 { "chip_id", KSTAT_DATA_LONG }, 2093 { "implementation", KSTAT_DATA_STRING }, 2094 { "brand", KSTAT_DATA_STRING }, 2095 { "core_id", KSTAT_DATA_LONG }, 2096 #if defined(__sparcv9) 2097 { "device_ID", KSTAT_DATA_UINT64 }, 2098 { "cpu_fru", KSTAT_DATA_STRING }, 2099 #endif 2100 #if defined(__x86) 2101 { "vendor_id", KSTAT_DATA_STRING }, 2102 { "family", KSTAT_DATA_INT32 }, 2103 { "model", KSTAT_DATA_INT32 }, 2104 { "stepping", KSTAT_DATA_INT32 }, 2105 { "clog_id", KSTAT_DATA_INT32 }, 2106 #endif 2107 }; 2108 2109 static kmutex_t cpu_info_template_lock; 2110 2111 static int 2112 cpu_info_kstat_update(kstat_t *ksp, int rw) 2113 { 2114 cpu_t *cp = ksp->ks_private; 2115 const char *pi_state; 2116 2117 if (rw == KSTAT_WRITE) 2118 return (EACCES); 2119 2120 switch (cp->cpu_type_info.pi_state) { 2121 case P_ONLINE: 2122 pi_state = PS_ONLINE; 2123 break; 2124 case P_POWEROFF: 2125 pi_state = PS_POWEROFF; 2126 break; 2127 case P_NOINTR: 2128 pi_state = PS_NOINTR; 2129 break; 2130 case P_FAULTED: 2131 pi_state = PS_FAULTED; 2132 break; 2133 case P_SPARE: 2134 pi_state = PS_SPARE; 2135 break; 2136 case P_OFFLINE: 2137 pi_state = PS_OFFLINE; 2138 break; 2139 default: 2140 pi_state = "unknown"; 2141 } 2142 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state); 2143 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin; 2144 (void) strncpy(cpu_info_template.ci_cpu_type.value.c, 2145 cp->cpu_type_info.pi_processor_type, 15); 2146 (void) strncpy(cpu_info_template.ci_fpu_type.value.c, 2147 cp->cpu_type_info.pi_fputypes, 15); 2148 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock; 2149 cpu_info_template.ci_chip_id.value.l = 2150 pg_plat_hw_instance_id(cp, PGHW_CHIP); 2151 kstat_named_setstr(&cpu_info_template.ci_implementation, 2152 cp->cpu_idstr); 2153 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr); 2154 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp); 2155 2156 #if defined(__sparcv9) 2157 cpu_info_template.ci_device_ID.value.ui64 = 2158 cpunodes[cp->cpu_id].device_id; 2159 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp)); 2160 #endif 2161 #if defined(__x86) 2162 kstat_named_setstr(&cpu_info_template.ci_vendorstr, 2163 cpuid_getvendorstr(cp)); 2164 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp); 2165 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp); 2166 cpu_info_template.ci_step.value.l = cpuid_getstep(cp); 2167 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp); 2168 #endif 2169 2170 return (0); 2171 } 2172 2173 static void 2174 cpu_info_kstat_create(cpu_t *cp) 2175 { 2176 zoneid_t zoneid; 2177 2178 ASSERT(MUTEX_HELD(&cpu_lock)); 2179 2180 if (pool_pset_enabled()) 2181 zoneid = GLOBAL_ZONEID; 2182 else 2183 zoneid = ALL_ZONES; 2184 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id, 2185 NULL, "misc", KSTAT_TYPE_NAMED, 2186 sizeof (cpu_info_template) / sizeof (kstat_named_t), 2187 KSTAT_FLAG_VIRTUAL, zoneid)) != NULL) { 2188 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN; 2189 #if defined(__sparcv9) 2190 cp->cpu_info_kstat->ks_data_size += 2191 strlen(cpu_fru_fmri(cp)) + 1; 2192 #endif 2193 #if defined(__x86) 2194 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN; 2195 #endif 2196 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock; 2197 cp->cpu_info_kstat->ks_data = &cpu_info_template; 2198 cp->cpu_info_kstat->ks_private = cp; 2199 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update; 2200 kstat_install(cp->cpu_info_kstat); 2201 } 2202 } 2203 2204 static void 2205 cpu_info_kstat_destroy(cpu_t *cp) 2206 { 2207 ASSERT(MUTEX_HELD(&cpu_lock)); 2208 2209 kstat_delete(cp->cpu_info_kstat); 2210 cp->cpu_info_kstat = NULL; 2211 } 2212 2213 /* 2214 * Create and install kstats for the boot CPU. 2215 */ 2216 void 2217 cpu_kstat_init(cpu_t *cp) 2218 { 2219 mutex_enter(&cpu_lock); 2220 cpu_info_kstat_create(cp); 2221 cpu_stats_kstat_create(cp); 2222 cpu_create_intrstat(cp); 2223 cpu_set_state(cp); 2224 mutex_exit(&cpu_lock); 2225 } 2226 2227 /* 2228 * Make visible to the zone that subset of the cpu information that would be 2229 * initialized when a cpu is configured (but still offline). 2230 */ 2231 void 2232 cpu_visibility_configure(cpu_t *cp, zone_t *zone) 2233 { 2234 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2235 2236 ASSERT(MUTEX_HELD(&cpu_lock)); 2237 ASSERT(pool_pset_enabled()); 2238 ASSERT(cp != NULL); 2239 2240 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2241 zone->zone_ncpus++; 2242 ASSERT(zone->zone_ncpus <= ncpus); 2243 } 2244 if (cp->cpu_info_kstat != NULL) 2245 kstat_zone_add(cp->cpu_info_kstat, zoneid); 2246 } 2247 2248 /* 2249 * Make visible to the zone that subset of the cpu information that would be 2250 * initialized when a previously configured cpu is onlined. 2251 */ 2252 void 2253 cpu_visibility_online(cpu_t *cp, zone_t *zone) 2254 { 2255 kstat_t *ksp; 2256 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2257 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2258 processorid_t cpun; 2259 2260 ASSERT(MUTEX_HELD(&cpu_lock)); 2261 ASSERT(pool_pset_enabled()); 2262 ASSERT(cp != NULL); 2263 ASSERT(cpu_is_active(cp)); 2264 2265 cpun = cp->cpu_id; 2266 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2267 zone->zone_ncpus_online++; 2268 ASSERT(zone->zone_ncpus_online <= ncpus_online); 2269 } 2270 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2271 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2272 != NULL) { 2273 kstat_zone_add(ksp, zoneid); 2274 kstat_rele(ksp); 2275 } 2276 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2277 kstat_zone_add(ksp, zoneid); 2278 kstat_rele(ksp); 2279 } 2280 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2281 kstat_zone_add(ksp, zoneid); 2282 kstat_rele(ksp); 2283 } 2284 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2285 NULL) { 2286 kstat_zone_add(ksp, zoneid); 2287 kstat_rele(ksp); 2288 } 2289 } 2290 2291 /* 2292 * Update relevant kstats such that cpu is now visible to processes 2293 * executing in specified zone. 2294 */ 2295 void 2296 cpu_visibility_add(cpu_t *cp, zone_t *zone) 2297 { 2298 cpu_visibility_configure(cp, zone); 2299 if (cpu_is_active(cp)) 2300 cpu_visibility_online(cp, zone); 2301 } 2302 2303 /* 2304 * Make invisible to the zone that subset of the cpu information that would be 2305 * torn down when a previously offlined cpu is unconfigured. 2306 */ 2307 void 2308 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone) 2309 { 2310 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2311 2312 ASSERT(MUTEX_HELD(&cpu_lock)); 2313 ASSERT(pool_pset_enabled()); 2314 ASSERT(cp != NULL); 2315 2316 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2317 ASSERT(zone->zone_ncpus != 0); 2318 zone->zone_ncpus--; 2319 } 2320 if (cp->cpu_info_kstat) 2321 kstat_zone_remove(cp->cpu_info_kstat, zoneid); 2322 } 2323 2324 /* 2325 * Make invisible to the zone that subset of the cpu information that would be 2326 * torn down when a cpu is offlined (but still configured). 2327 */ 2328 void 2329 cpu_visibility_offline(cpu_t *cp, zone_t *zone) 2330 { 2331 kstat_t *ksp; 2332 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */ 2333 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES; 2334 processorid_t cpun; 2335 2336 ASSERT(MUTEX_HELD(&cpu_lock)); 2337 ASSERT(pool_pset_enabled()); 2338 ASSERT(cp != NULL); 2339 ASSERT(cpu_is_active(cp)); 2340 2341 cpun = cp->cpu_id; 2342 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) { 2343 ASSERT(zone->zone_ncpus_online != 0); 2344 zone->zone_ncpus_online--; 2345 } 2346 2347 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) != 2348 NULL) { 2349 kstat_zone_remove(ksp, zoneid); 2350 kstat_rele(ksp); 2351 } 2352 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) { 2353 kstat_zone_remove(ksp, zoneid); 2354 kstat_rele(ksp); 2355 } 2356 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) { 2357 kstat_zone_remove(ksp, zoneid); 2358 kstat_rele(ksp); 2359 } 2360 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun); 2361 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES)) 2362 != NULL) { 2363 kstat_zone_remove(ksp, zoneid); 2364 kstat_rele(ksp); 2365 } 2366 } 2367 2368 /* 2369 * Update relevant kstats such that cpu is no longer visible to processes 2370 * executing in specified zone. 2371 */ 2372 void 2373 cpu_visibility_remove(cpu_t *cp, zone_t *zone) 2374 { 2375 if (cpu_is_active(cp)) 2376 cpu_visibility_offline(cp, zone); 2377 cpu_visibility_unconfigure(cp, zone); 2378 } 2379 2380 /* 2381 * Bind a thread to a CPU as requested. 2382 */ 2383 int 2384 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind, 2385 int *error) 2386 { 2387 processorid_t binding; 2388 cpu_t *cp; 2389 2390 ASSERT(MUTEX_HELD(&cpu_lock)); 2391 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock)); 2392 2393 thread_lock(tp); 2394 2395 /* 2396 * Record old binding, but change the obind, which was initialized 2397 * to PBIND_NONE, only if this thread has a binding. This avoids 2398 * reporting PBIND_NONE for a process when some LWPs are bound. 2399 */ 2400 binding = tp->t_bind_cpu; 2401 if (binding != PBIND_NONE) 2402 *obind = binding; /* record old binding */ 2403 2404 if (bind == PBIND_QUERY) { 2405 thread_unlock(tp); 2406 return (0); 2407 } 2408 2409 /* 2410 * If this thread/LWP cannot be bound because of permission 2411 * problems, just note that and return success so that the 2412 * other threads/LWPs will be bound. This is the way 2413 * processor_bind() is defined to work. 2414 * 2415 * Binding will get EPERM if the thread is of system class 2416 * or hasprocperm() fails. 2417 */ 2418 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) { 2419 *error = EPERM; 2420 thread_unlock(tp); 2421 return (0); 2422 } 2423 2424 binding = bind; 2425 if (binding != PBIND_NONE) { 2426 cp = cpu[binding]; 2427 /* 2428 * Make sure binding is in right partition. 2429 */ 2430 if (tp->t_cpupart != cp->cpu_part) { 2431 *error = EINVAL; 2432 thread_unlock(tp); 2433 return (0); 2434 } 2435 } 2436 tp->t_bind_cpu = binding; /* set new binding */ 2437 2438 /* 2439 * If there is no system-set reason for affinity, set 2440 * the t_bound_cpu field to reflect the binding. 2441 */ 2442 if (tp->t_affinitycnt == 0) { 2443 if (binding == PBIND_NONE) { 2444 /* 2445 * We may need to adjust disp_max_unbound_pri 2446 * since we're becoming unbound. 2447 */ 2448 disp_adjust_unbound_pri(tp); 2449 2450 tp->t_bound_cpu = NULL; /* set new binding */ 2451 2452 /* 2453 * Move thread to lgroup with strongest affinity 2454 * after unbinding 2455 */ 2456 if (tp->t_lgrp_affinity) 2457 lgrp_move_thread(tp, 2458 lgrp_choose(tp, tp->t_cpupart), 1); 2459 2460 if (tp->t_state == TS_ONPROC && 2461 tp->t_cpu->cpu_part != tp->t_cpupart) 2462 cpu_surrender(tp); 2463 } else { 2464 lpl_t *lpl; 2465 2466 tp->t_bound_cpu = cp; 2467 ASSERT(cp->cpu_lpl != NULL); 2468 2469 /* 2470 * Set home to lgroup with most affinity containing CPU 2471 * that thread is being bound or minimum bounding 2472 * lgroup if no affinities set 2473 */ 2474 if (tp->t_lgrp_affinity) 2475 lpl = lgrp_affinity_best(tp, tp->t_cpupart, 2476 LGRP_NONE, B_FALSE); 2477 else 2478 lpl = cp->cpu_lpl; 2479 2480 if (tp->t_lpl != lpl) { 2481 /* can't grab cpu_lock */ 2482 lgrp_move_thread(tp, lpl, 1); 2483 } 2484 2485 /* 2486 * Make the thread switch to the bound CPU. 2487 * If the thread is runnable, we need to 2488 * requeue it even if t_cpu is already set 2489 * to the right CPU, since it may be on a 2490 * kpreempt queue and need to move to a local 2491 * queue. We could check t_disp_queue to 2492 * avoid unnecessary overhead if it's already 2493 * on the right queue, but since this isn't 2494 * a performance-critical operation it doesn't 2495 * seem worth the extra code and complexity. 2496 * 2497 * If the thread is weakbound to the cpu then it will 2498 * resist the new binding request until the weak 2499 * binding drops. The cpu_surrender or requeueing 2500 * below could be skipped in such cases (since it 2501 * will have no effect), but that would require 2502 * thread_allowmigrate to acquire thread_lock so 2503 * we'll take the very occasional hit here instead. 2504 */ 2505 if (tp->t_state == TS_ONPROC) { 2506 cpu_surrender(tp); 2507 } else if (tp->t_state == TS_RUN) { 2508 cpu_t *ocp = tp->t_cpu; 2509 2510 (void) dispdeq(tp); 2511 setbackdq(tp); 2512 /* 2513 * Either on the bound CPU's disp queue now, 2514 * or swapped out or on the swap queue. 2515 */ 2516 ASSERT(tp->t_disp_queue == cp->cpu_disp || 2517 tp->t_weakbound_cpu == ocp || 2518 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) 2519 != TS_LOAD); 2520 } 2521 } 2522 } 2523 2524 /* 2525 * Our binding has changed; set TP_CHANGEBIND. 2526 */ 2527 tp->t_proc_flag |= TP_CHANGEBIND; 2528 aston(tp); 2529 2530 thread_unlock(tp); 2531 2532 return (0); 2533 } 2534 2535 #if CPUSET_WORDS > 1 2536 2537 /* 2538 * Functions for implementing cpuset operations when a cpuset is more 2539 * than one word. On platforms where a cpuset is a single word these 2540 * are implemented as macros in cpuvar.h. 2541 */ 2542 2543 void 2544 cpuset_all(cpuset_t *s) 2545 { 2546 int i; 2547 2548 for (i = 0; i < CPUSET_WORDS; i++) 2549 s->cpub[i] = ~0UL; 2550 } 2551 2552 void 2553 cpuset_all_but(cpuset_t *s, uint_t cpu) 2554 { 2555 cpuset_all(s); 2556 CPUSET_DEL(*s, cpu); 2557 } 2558 2559 void 2560 cpuset_only(cpuset_t *s, uint_t cpu) 2561 { 2562 CPUSET_ZERO(*s); 2563 CPUSET_ADD(*s, cpu); 2564 } 2565 2566 int 2567 cpuset_isnull(cpuset_t *s) 2568 { 2569 int i; 2570 2571 for (i = 0; i < CPUSET_WORDS; i++) 2572 if (s->cpub[i] != 0) 2573 return (0); 2574 return (1); 2575 } 2576 2577 int 2578 cpuset_cmp(cpuset_t *s1, cpuset_t *s2) 2579 { 2580 int i; 2581 2582 for (i = 0; i < CPUSET_WORDS; i++) 2583 if (s1->cpub[i] != s2->cpub[i]) 2584 return (0); 2585 return (1); 2586 } 2587 2588 uint_t 2589 cpuset_find(cpuset_t *s) 2590 { 2591 2592 uint_t i; 2593 uint_t cpu = (uint_t)-1; 2594 2595 /* 2596 * Find a cpu in the cpuset 2597 */ 2598 for (i = 0; i < CPUSET_WORDS; i++) { 2599 cpu = (uint_t)(lowbit(s->cpub[i]) - 1); 2600 if (cpu != (uint_t)-1) { 2601 cpu += i * BT_NBIPUL; 2602 break; 2603 } 2604 } 2605 return (cpu); 2606 } 2607 2608 void 2609 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid) 2610 { 2611 int i, j; 2612 uint_t bit; 2613 2614 /* 2615 * First, find the smallest cpu id in the set. 2616 */ 2617 for (i = 0; i < CPUSET_WORDS; i++) { 2618 if (s->cpub[i] != 0) { 2619 bit = (uint_t)(lowbit(s->cpub[i]) - 1); 2620 ASSERT(bit != (uint_t)-1); 2621 *smallestid = bit + (i * BT_NBIPUL); 2622 2623 /* 2624 * Now find the largest cpu id in 2625 * the set and return immediately. 2626 * Done in an inner loop to avoid 2627 * having to break out of the first 2628 * loop. 2629 */ 2630 for (j = CPUSET_WORDS - 1; j >= i; j--) { 2631 if (s->cpub[j] != 0) { 2632 bit = (uint_t)(highbit(s->cpub[j]) - 1); 2633 ASSERT(bit != (uint_t)-1); 2634 *largestid = bit + (j * BT_NBIPUL); 2635 ASSERT(*largestid >= *smallestid); 2636 return; 2637 } 2638 } 2639 2640 /* 2641 * If this code is reached, a 2642 * smallestid was found, but not a 2643 * largestid. The cpuset must have 2644 * been changed during the course 2645 * of this function call. 2646 */ 2647 ASSERT(0); 2648 } 2649 } 2650 *smallestid = *largestid = CPUSET_NOTINSET; 2651 } 2652 2653 #endif /* CPUSET_WORDS */ 2654 2655 /* 2656 * Unbind all user threads bound to a given CPU. 2657 */ 2658 int 2659 cpu_unbind(processorid_t cpu) 2660 { 2661 processorid_t obind; 2662 kthread_t *tp; 2663 int ret = 0; 2664 proc_t *pp; 2665 int err, berr = 0; 2666 2667 ASSERT(MUTEX_HELD(&cpu_lock)); 2668 2669 mutex_enter(&pidlock); 2670 for (pp = practive; pp != NULL; pp = pp->p_next) { 2671 mutex_enter(&pp->p_lock); 2672 tp = pp->p_tlist; 2673 /* 2674 * Skip zombies, kernel processes, and processes in 2675 * other zones, if called from a non-global zone. 2676 */ 2677 if (tp == NULL || (pp->p_flag & SSYS) || 2678 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) { 2679 mutex_exit(&pp->p_lock); 2680 continue; 2681 } 2682 do { 2683 if (tp->t_bind_cpu != cpu) 2684 continue; 2685 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr); 2686 if (ret == 0) 2687 ret = err; 2688 } while ((tp = tp->t_forw) != pp->p_tlist); 2689 mutex_exit(&pp->p_lock); 2690 } 2691 mutex_exit(&pidlock); 2692 if (ret == 0) 2693 ret = berr; 2694 return (ret); 2695 } 2696 2697 2698 /* 2699 * Destroy all remaining bound threads on a cpu. 2700 */ 2701 void 2702 cpu_destroy_bound_threads(cpu_t *cp) 2703 { 2704 extern id_t syscid; 2705 register kthread_id_t t, tlist, tnext; 2706 2707 /* 2708 * Destroy all remaining bound threads on the cpu. This 2709 * should include both the interrupt threads and the idle thread. 2710 * This requires some care, since we need to traverse the 2711 * thread list with the pidlock mutex locked, but thread_free 2712 * also locks the pidlock mutex. So, we collect the threads 2713 * we're going to reap in a list headed by "tlist", then we 2714 * unlock the pidlock mutex and traverse the tlist list, 2715 * doing thread_free's on the thread's. Simple, n'est pas? 2716 * Also, this depends on thread_free not mucking with the 2717 * t_next and t_prev links of the thread. 2718 */ 2719 2720 if ((t = curthread) != NULL) { 2721 2722 tlist = NULL; 2723 mutex_enter(&pidlock); 2724 do { 2725 tnext = t->t_next; 2726 if (t->t_bound_cpu == cp) { 2727 2728 /* 2729 * We've found a bound thread, carefully unlink 2730 * it out of the thread list, and add it to 2731 * our "tlist". We "know" we don't have to 2732 * worry about unlinking curthread (the thread 2733 * that is executing this code). 2734 */ 2735 t->t_next->t_prev = t->t_prev; 2736 t->t_prev->t_next = t->t_next; 2737 t->t_next = tlist; 2738 tlist = t; 2739 ASSERT(t->t_cid == syscid); 2740 /* wake up anyone blocked in thread_join */ 2741 cv_broadcast(&t->t_joincv); 2742 /* 2743 * t_lwp set by interrupt threads and not 2744 * cleared. 2745 */ 2746 t->t_lwp = NULL; 2747 /* 2748 * Pause and idle threads always have 2749 * t_state set to TS_ONPROC. 2750 */ 2751 t->t_state = TS_FREE; 2752 t->t_prev = NULL; /* Just in case */ 2753 } 2754 2755 } while ((t = tnext) != curthread); 2756 2757 mutex_exit(&pidlock); 2758 2759 2760 for (t = tlist; t != NULL; t = tnext) { 2761 tnext = t->t_next; 2762 thread_free(t); 2763 } 2764 } 2765 } 2766 2767 /* 2768 * processor_info(2) and p_online(2) status support functions 2769 * The constants returned by the cpu_get_state() and cpu_get_state_str() are 2770 * for use in communicating processor state information to userland. Kernel 2771 * subsystems should only be using the cpu_flags value directly. Subsystems 2772 * modifying cpu_flags should record the state change via a call to the 2773 * cpu_set_state(). 2774 */ 2775 2776 /* 2777 * Update the pi_state of this CPU. This function provides the CPU status for 2778 * the information returned by processor_info(2). 2779 */ 2780 void 2781 cpu_set_state(cpu_t *cpu) 2782 { 2783 ASSERT(MUTEX_HELD(&cpu_lock)); 2784 cpu->cpu_type_info.pi_state = cpu_get_state(cpu); 2785 cpu->cpu_state_begin = gethrestime_sec(); 2786 pool_cpu_mod = gethrtime(); 2787 } 2788 2789 /* 2790 * Return offline/online/other status for the indicated CPU. Use only for 2791 * communication with user applications; cpu_flags provides the in-kernel 2792 * interface. 2793 */ 2794 int 2795 cpu_get_state(cpu_t *cpu) 2796 { 2797 ASSERT(MUTEX_HELD(&cpu_lock)); 2798 if (cpu->cpu_flags & CPU_POWEROFF) 2799 return (P_POWEROFF); 2800 else if (cpu->cpu_flags & CPU_FAULTED) 2801 return (P_FAULTED); 2802 else if (cpu->cpu_flags & CPU_SPARE) 2803 return (P_SPARE); 2804 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY) 2805 return (P_OFFLINE); 2806 else if (cpu->cpu_flags & CPU_ENABLE) 2807 return (P_ONLINE); 2808 else 2809 return (P_NOINTR); 2810 } 2811 2812 /* 2813 * Return processor_info(2) state as a string. 2814 */ 2815 const char * 2816 cpu_get_state_str(cpu_t *cpu) 2817 { 2818 const char *string; 2819 2820 switch (cpu_get_state(cpu)) { 2821 case P_ONLINE: 2822 string = PS_ONLINE; 2823 break; 2824 case P_POWEROFF: 2825 string = PS_POWEROFF; 2826 break; 2827 case P_NOINTR: 2828 string = PS_NOINTR; 2829 break; 2830 case P_SPARE: 2831 string = PS_SPARE; 2832 break; 2833 case P_FAULTED: 2834 string = PS_FAULTED; 2835 break; 2836 case P_OFFLINE: 2837 string = PS_OFFLINE; 2838 break; 2839 default: 2840 string = "unknown"; 2841 break; 2842 } 2843 return (string); 2844 } 2845 2846 /* 2847 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named 2848 * kstats, respectively. This is done when a CPU is initialized or placed 2849 * online via p_online(2). 2850 */ 2851 static void 2852 cpu_stats_kstat_create(cpu_t *cp) 2853 { 2854 int instance = cp->cpu_id; 2855 char *module = "cpu"; 2856 char *class = "misc"; 2857 kstat_t *ksp; 2858 zoneid_t zoneid; 2859 2860 ASSERT(MUTEX_HELD(&cpu_lock)); 2861 2862 if (pool_pset_enabled()) 2863 zoneid = GLOBAL_ZONEID; 2864 else 2865 zoneid = ALL_ZONES; 2866 /* 2867 * Create named kstats 2868 */ 2869 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \ 2870 ksp = kstat_create_zone(module, instance, (name), class, \ 2871 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \ 2872 zoneid); \ 2873 if (ksp != NULL) { \ 2874 ksp->ks_private = cp; \ 2875 ksp->ks_update = (update_func); \ 2876 kstat_install(ksp); \ 2877 } else \ 2878 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \ 2879 module, instance, (name)); 2880 2881 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template), 2882 cpu_sys_stats_ks_update); 2883 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template), 2884 cpu_vm_stats_ks_update); 2885 2886 /* 2887 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat. 2888 */ 2889 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL, 2890 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid); 2891 if (ksp != NULL) { 2892 ksp->ks_update = cpu_stat_ks_update; 2893 ksp->ks_private = cp; 2894 kstat_install(ksp); 2895 } 2896 } 2897 2898 static void 2899 cpu_stats_kstat_destroy(cpu_t *cp) 2900 { 2901 char ks_name[KSTAT_STRLEN]; 2902 2903 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id); 2904 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name); 2905 2906 kstat_delete_byname("cpu", cp->cpu_id, "sys"); 2907 kstat_delete_byname("cpu", cp->cpu_id, "vm"); 2908 } 2909 2910 static int 2911 cpu_sys_stats_ks_update(kstat_t *ksp, int rw) 2912 { 2913 cpu_t *cp = (cpu_t *)ksp->ks_private; 2914 struct cpu_sys_stats_ks_data *csskd; 2915 cpu_sys_stats_t *css; 2916 hrtime_t msnsecs[NCMSTATES]; 2917 int i; 2918 2919 if (rw == KSTAT_WRITE) 2920 return (EACCES); 2921 2922 csskd = ksp->ks_data; 2923 css = &cp->cpu_stats.sys; 2924 2925 /* 2926 * Read CPU mstate, but compare with the last values we 2927 * received to make sure that the returned kstats never 2928 * decrease. 2929 */ 2930 2931 get_cpu_mstate(cp, msnsecs); 2932 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE]) 2933 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64; 2934 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER]) 2935 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64; 2936 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM]) 2937 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64; 2938 2939 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data, 2940 sizeof (cpu_sys_stats_ks_data_template)); 2941 2942 csskd->cpu_ticks_wait.value.ui64 = 0; 2943 csskd->wait_ticks_io.value.ui64 = 0; 2944 2945 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE]; 2946 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER]; 2947 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM]; 2948 csskd->cpu_ticks_idle.value.ui64 = 2949 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64); 2950 csskd->cpu_ticks_user.value.ui64 = 2951 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64); 2952 csskd->cpu_ticks_kernel.value.ui64 = 2953 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64); 2954 csskd->bread.value.ui64 = css->bread; 2955 csskd->bwrite.value.ui64 = css->bwrite; 2956 csskd->lread.value.ui64 = css->lread; 2957 csskd->lwrite.value.ui64 = css->lwrite; 2958 csskd->phread.value.ui64 = css->phread; 2959 csskd->phwrite.value.ui64 = css->phwrite; 2960 csskd->pswitch.value.ui64 = css->pswitch; 2961 csskd->trap.value.ui64 = css->trap; 2962 csskd->intr.value.ui64 = 0; 2963 for (i = 0; i < PIL_MAX; i++) 2964 csskd->intr.value.ui64 += css->intr[i]; 2965 csskd->syscall.value.ui64 = css->syscall; 2966 csskd->sysread.value.ui64 = css->sysread; 2967 csskd->syswrite.value.ui64 = css->syswrite; 2968 csskd->sysfork.value.ui64 = css->sysfork; 2969 csskd->sysvfork.value.ui64 = css->sysvfork; 2970 csskd->sysexec.value.ui64 = css->sysexec; 2971 csskd->readch.value.ui64 = css->readch; 2972 csskd->writech.value.ui64 = css->writech; 2973 csskd->rcvint.value.ui64 = css->rcvint; 2974 csskd->xmtint.value.ui64 = css->xmtint; 2975 csskd->mdmint.value.ui64 = css->mdmint; 2976 csskd->rawch.value.ui64 = css->rawch; 2977 csskd->canch.value.ui64 = css->canch; 2978 csskd->outch.value.ui64 = css->outch; 2979 csskd->msg.value.ui64 = css->msg; 2980 csskd->sema.value.ui64 = css->sema; 2981 csskd->namei.value.ui64 = css->namei; 2982 csskd->ufsiget.value.ui64 = css->ufsiget; 2983 csskd->ufsdirblk.value.ui64 = css->ufsdirblk; 2984 csskd->ufsipage.value.ui64 = css->ufsipage; 2985 csskd->ufsinopage.value.ui64 = css->ufsinopage; 2986 csskd->procovf.value.ui64 = css->procovf; 2987 csskd->intrthread.value.ui64 = 0; 2988 for (i = 0; i < LOCK_LEVEL; i++) 2989 csskd->intrthread.value.ui64 += css->intr[i]; 2990 csskd->intrblk.value.ui64 = css->intrblk; 2991 csskd->intrunpin.value.ui64 = css->intrunpin; 2992 csskd->idlethread.value.ui64 = css->idlethread; 2993 csskd->inv_swtch.value.ui64 = css->inv_swtch; 2994 csskd->nthreads.value.ui64 = css->nthreads; 2995 csskd->cpumigrate.value.ui64 = css->cpumigrate; 2996 csskd->xcalls.value.ui64 = css->xcalls; 2997 csskd->mutex_adenters.value.ui64 = css->mutex_adenters; 2998 csskd->rw_rdfails.value.ui64 = css->rw_rdfails; 2999 csskd->rw_wrfails.value.ui64 = css->rw_wrfails; 3000 csskd->modload.value.ui64 = css->modload; 3001 csskd->modunload.value.ui64 = css->modunload; 3002 csskd->bawrite.value.ui64 = css->bawrite; 3003 csskd->iowait.value.ui64 = css->iowait; 3004 3005 return (0); 3006 } 3007 3008 static int 3009 cpu_vm_stats_ks_update(kstat_t *ksp, int rw) 3010 { 3011 cpu_t *cp = (cpu_t *)ksp->ks_private; 3012 struct cpu_vm_stats_ks_data *cvskd; 3013 cpu_vm_stats_t *cvs; 3014 3015 if (rw == KSTAT_WRITE) 3016 return (EACCES); 3017 3018 cvs = &cp->cpu_stats.vm; 3019 cvskd = ksp->ks_data; 3020 3021 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data, 3022 sizeof (cpu_vm_stats_ks_data_template)); 3023 cvskd->pgrec.value.ui64 = cvs->pgrec; 3024 cvskd->pgfrec.value.ui64 = cvs->pgfrec; 3025 cvskd->pgin.value.ui64 = cvs->pgin; 3026 cvskd->pgpgin.value.ui64 = cvs->pgpgin; 3027 cvskd->pgout.value.ui64 = cvs->pgout; 3028 cvskd->pgpgout.value.ui64 = cvs->pgpgout; 3029 cvskd->swapin.value.ui64 = cvs->swapin; 3030 cvskd->pgswapin.value.ui64 = cvs->pgswapin; 3031 cvskd->swapout.value.ui64 = cvs->swapout; 3032 cvskd->pgswapout.value.ui64 = cvs->pgswapout; 3033 cvskd->zfod.value.ui64 = cvs->zfod; 3034 cvskd->dfree.value.ui64 = cvs->dfree; 3035 cvskd->scan.value.ui64 = cvs->scan; 3036 cvskd->rev.value.ui64 = cvs->rev; 3037 cvskd->hat_fault.value.ui64 = cvs->hat_fault; 3038 cvskd->as_fault.value.ui64 = cvs->as_fault; 3039 cvskd->maj_fault.value.ui64 = cvs->maj_fault; 3040 cvskd->cow_fault.value.ui64 = cvs->cow_fault; 3041 cvskd->prot_fault.value.ui64 = cvs->prot_fault; 3042 cvskd->softlock.value.ui64 = cvs->softlock; 3043 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt; 3044 cvskd->pgrrun.value.ui64 = cvs->pgrrun; 3045 cvskd->execpgin.value.ui64 = cvs->execpgin; 3046 cvskd->execpgout.value.ui64 = cvs->execpgout; 3047 cvskd->execfree.value.ui64 = cvs->execfree; 3048 cvskd->anonpgin.value.ui64 = cvs->anonpgin; 3049 cvskd->anonpgout.value.ui64 = cvs->anonpgout; 3050 cvskd->anonfree.value.ui64 = cvs->anonfree; 3051 cvskd->fspgin.value.ui64 = cvs->fspgin; 3052 cvskd->fspgout.value.ui64 = cvs->fspgout; 3053 cvskd->fsfree.value.ui64 = cvs->fsfree; 3054 3055 return (0); 3056 } 3057 3058 static int 3059 cpu_stat_ks_update(kstat_t *ksp, int rw) 3060 { 3061 cpu_stat_t *cso; 3062 cpu_t *cp; 3063 int i; 3064 hrtime_t msnsecs[NCMSTATES]; 3065 3066 cso = (cpu_stat_t *)ksp->ks_data; 3067 cp = (cpu_t *)ksp->ks_private; 3068 3069 if (rw == KSTAT_WRITE) 3070 return (EACCES); 3071 3072 /* 3073 * Read CPU mstate, but compare with the last values we 3074 * received to make sure that the returned kstats never 3075 * decrease. 3076 */ 3077 3078 get_cpu_mstate(cp, msnsecs); 3079 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]); 3080 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]); 3081 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]); 3082 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE]) 3083 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE]; 3084 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER]) 3085 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER]; 3086 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM]) 3087 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM]; 3088 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0; 3089 cso->cpu_sysinfo.wait[W_IO] = 0; 3090 cso->cpu_sysinfo.wait[W_SWAP] = 0; 3091 cso->cpu_sysinfo.wait[W_PIO] = 0; 3092 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread); 3093 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite); 3094 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread); 3095 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite); 3096 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread); 3097 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite); 3098 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch); 3099 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap); 3100 cso->cpu_sysinfo.intr = 0; 3101 for (i = 0; i < PIL_MAX; i++) 3102 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]); 3103 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall); 3104 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread); 3105 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite); 3106 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork); 3107 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork); 3108 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec); 3109 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch); 3110 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech); 3111 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint); 3112 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint); 3113 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint); 3114 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch); 3115 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch); 3116 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch); 3117 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg); 3118 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema); 3119 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei); 3120 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget); 3121 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk); 3122 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage); 3123 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage); 3124 cso->cpu_sysinfo.inodeovf = 0; 3125 cso->cpu_sysinfo.fileovf = 0; 3126 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf); 3127 cso->cpu_sysinfo.intrthread = 0; 3128 for (i = 0; i < LOCK_LEVEL; i++) 3129 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]); 3130 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk); 3131 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread); 3132 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch); 3133 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads); 3134 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate); 3135 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls); 3136 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters); 3137 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails); 3138 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails); 3139 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload); 3140 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload); 3141 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite); 3142 cso->cpu_sysinfo.rw_enters = 0; 3143 cso->cpu_sysinfo.win_uo_cnt = 0; 3144 cso->cpu_sysinfo.win_uu_cnt = 0; 3145 cso->cpu_sysinfo.win_so_cnt = 0; 3146 cso->cpu_sysinfo.win_su_cnt = 0; 3147 cso->cpu_sysinfo.win_suo_cnt = 0; 3148 3149 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait); 3150 cso->cpu_syswait.swap = 0; 3151 cso->cpu_syswait.physio = 0; 3152 3153 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec); 3154 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec); 3155 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin); 3156 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin); 3157 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout); 3158 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout); 3159 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin); 3160 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin); 3161 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout); 3162 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout); 3163 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod); 3164 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree); 3165 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan); 3166 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev); 3167 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault); 3168 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault); 3169 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault); 3170 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault); 3171 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault); 3172 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock); 3173 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt); 3174 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun); 3175 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin); 3176 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout); 3177 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree); 3178 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin); 3179 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout); 3180 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree); 3181 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin); 3182 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout); 3183 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree); 3184 3185 return (0); 3186 } 3187