xref: /titanic_50/usr/src/uts/common/os/condvar.c (revision 9f758caf94c37c3ad28c48cfe503f9fc830a66d5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/thread.h>
28 #include <sys/proc.h>
29 #include <sys/debug.h>
30 #include <sys/cmn_err.h>
31 #include <sys/systm.h>
32 #include <sys/sobject.h>
33 #include <sys/sleepq.h>
34 #include <sys/cpuvar.h>
35 #include <sys/condvar.h>
36 #include <sys/condvar_impl.h>
37 #include <sys/schedctl.h>
38 #include <sys/procfs.h>
39 #include <sys/sdt.h>
40 #include <sys/callo.h>
41 
42 /*
43  * CV_MAX_WAITERS is the maximum number of waiters we track; once
44  * the number becomes higher than that, we look at the sleepq to
45  * see whether there are *really* any waiters.
46  */
47 #define	CV_MAX_WAITERS		1024		/* must be power of 2 */
48 #define	CV_WAITERS_MASK		(CV_MAX_WAITERS - 1)
49 
50 /*
51  * Threads don't "own" condition variables.
52  */
53 /* ARGSUSED */
54 static kthread_t *
55 cv_owner(void *cvp)
56 {
57 	return (NULL);
58 }
59 
60 /*
61  * Unsleep a thread that's blocked on a condition variable.
62  */
63 static void
64 cv_unsleep(kthread_t *t)
65 {
66 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
67 	sleepq_head_t *sqh = SQHASH(cvp);
68 
69 	ASSERT(THREAD_LOCK_HELD(t));
70 
71 	if (cvp == NULL)
72 		panic("cv_unsleep: thread %p not on sleepq %p",
73 		    (void *)t, (void *)sqh);
74 	DTRACE_SCHED1(wakeup, kthread_t *, t);
75 	sleepq_unsleep(t);
76 	if (cvp->cv_waiters != CV_MAX_WAITERS)
77 		cvp->cv_waiters--;
78 	disp_lock_exit_high(&sqh->sq_lock);
79 	CL_SETRUN(t);
80 }
81 
82 /*
83  * Change the priority of a thread that's blocked on a condition variable.
84  */
85 static void
86 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip)
87 {
88 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
89 	sleepq_t *sqp = t->t_sleepq;
90 
91 	ASSERT(THREAD_LOCK_HELD(t));
92 	ASSERT(&SQHASH(cvp)->sq_queue == sqp);
93 
94 	if (cvp == NULL)
95 		panic("cv_change_pri: %p not on sleep queue", (void *)t);
96 	sleepq_dequeue(t);
97 	*t_prip = pri;
98 	sleepq_insert(sqp, t);
99 }
100 
101 /*
102  * The sobj_ops vector exports a set of functions needed when a thread
103  * is asleep on a synchronization object of this type.
104  */
105 static sobj_ops_t cv_sobj_ops = {
106 	SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri
107 };
108 
109 /* ARGSUSED */
110 void
111 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg)
112 {
113 	((condvar_impl_t *)cvp)->cv_waiters = 0;
114 }
115 
116 /*
117  * cv_destroy is not currently needed, but is part of the DDI.
118  * This is in case cv_init ever needs to allocate something for a cv.
119  */
120 /* ARGSUSED */
121 void
122 cv_destroy(kcondvar_t *cvp)
123 {
124 	ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0);
125 }
126 
127 /*
128  * The cv_block() function blocks a thread on a condition variable
129  * by putting it in a hashed sleep queue associated with the
130  * synchronization object.
131  *
132  * Threads are taken off the hashed sleep queues via calls to
133  * cv_signal(), cv_broadcast(), or cv_unsleep().
134  */
135 static void
136 cv_block(condvar_impl_t *cvp)
137 {
138 	kthread_t *t = curthread;
139 	klwp_t *lwp = ttolwp(t);
140 	sleepq_head_t *sqh;
141 
142 	ASSERT(THREAD_LOCK_HELD(t));
143 	ASSERT(t != CPU->cpu_idle_thread);
144 	ASSERT(CPU_ON_INTR(CPU) == 0);
145 	ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
146 	ASSERT(t->t_state == TS_ONPROC);
147 
148 	t->t_schedflag &= ~TS_SIGNALLED;
149 	CL_SLEEP(t);			/* assign kernel priority */
150 	t->t_wchan = (caddr_t)cvp;
151 	t->t_sobj_ops = &cv_sobj_ops;
152 	DTRACE_SCHED(sleep);
153 
154 	/*
155 	 * The check for t_intr is to avoid doing the
156 	 * account for an interrupt thread on the still-pinned
157 	 * lwp's statistics.
158 	 */
159 	if (lwp != NULL && t->t_intr == NULL) {
160 		lwp->lwp_ru.nvcsw++;
161 		(void) new_mstate(t, LMS_SLEEP);
162 	}
163 
164 	sqh = SQHASH(cvp);
165 	disp_lock_enter_high(&sqh->sq_lock);
166 	if (cvp->cv_waiters < CV_MAX_WAITERS)
167 		cvp->cv_waiters++;
168 	ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS);
169 	THREAD_SLEEP(t, &sqh->sq_lock);
170 	sleepq_insert(&sqh->sq_queue, t);
171 	/*
172 	 * THREAD_SLEEP() moves curthread->t_lockp to point to the
173 	 * lock sqh->sq_lock. This lock is later released by the caller
174 	 * when it calls thread_unlock() on curthread.
175 	 */
176 }
177 
178 #define	cv_block_sig(t, cvp)	\
179 	{ (t)->t_flag |= T_WAKEABLE; cv_block(cvp); }
180 
181 /*
182  * Block on the indicated condition variable and release the
183  * associated kmutex while blocked.
184  */
185 void
186 cv_wait(kcondvar_t *cvp, kmutex_t *mp)
187 {
188 	if (panicstr)
189 		return;
190 
191 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
192 	thread_lock(curthread);			/* lock the thread */
193 	cv_block((condvar_impl_t *)cvp);
194 	thread_unlock_nopreempt(curthread);	/* unlock the waiters field */
195 	mutex_exit(mp);
196 	swtch();
197 	mutex_enter(mp);
198 }
199 
200 static void
201 cv_wakeup(void *arg)
202 {
203 	kthread_t *t = arg;
204 
205 	/*
206 	 * This mutex is acquired and released in order to make sure that
207 	 * the wakeup does not happen before the block itself happens.
208 	 */
209 	mutex_enter(&t->t_wait_mutex);
210 	mutex_exit(&t->t_wait_mutex);
211 	setrun(t);
212 }
213 
214 /*
215  * Same as cv_wait except the thread will unblock at 'tim'
216  * (an absolute time) if it hasn't already unblocked.
217  *
218  * Returns the amount of time left from the original 'tim' value
219  * when it was unblocked.
220  */
221 clock_t
222 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
223 {
224 	kthread_t *t = curthread;
225 	callout_id_t id;
226 	clock_t timeleft;
227 	int signalled;
228 
229 	if (panicstr)
230 		return (-1);
231 
232 	timeleft = tim - lbolt;
233 	if (timeleft <= 0)
234 		return (-1);
235 	mutex_enter(&t->t_wait_mutex);
236 	id = realtime_timeout_default((void (*)(void *))cv_wakeup, t, timeleft);
237 	thread_lock(t);		/* lock the thread */
238 	cv_block((condvar_impl_t *)cvp);
239 	thread_unlock_nopreempt(t);
240 	mutex_exit(&t->t_wait_mutex);
241 	mutex_exit(mp);
242 	swtch();
243 	signalled = (t->t_schedflag & TS_SIGNALLED);
244 	/*
245 	 * Get the time left. untimeout() returns -1 if the timeout has
246 	 * occured or the time remaining.  If the time remaining is zero,
247 	 * the timeout has occured between when we were awoken and
248 	 * we called untimeout.  We will treat this as if the timeout
249 	 * has occured and set timeleft to -1.
250 	 */
251 	timeleft = untimeout_default(id, 0);
252 	mutex_enter(mp);
253 	if (timeleft <= 0) {
254 		timeleft = -1;
255 		if (signalled)	/* avoid consuming the cv_signal() */
256 			cv_signal(cvp);
257 	}
258 	return (timeleft);
259 }
260 
261 int
262 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp)
263 {
264 	kthread_t *t = curthread;
265 	proc_t *p = ttoproc(t);
266 	klwp_t *lwp = ttolwp(t);
267 	int cancel_pending;
268 	int rval = 1;
269 	int signalled = 0;
270 
271 	if (panicstr)
272 		return (rval);
273 
274 	/*
275 	 * The check for t_intr is to catch an interrupt thread
276 	 * that has not yet unpinned the thread underneath.
277 	 */
278 	if (lwp == NULL || t->t_intr) {
279 		cv_wait(cvp, mp);
280 		return (rval);
281 	}
282 
283 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
284 	cancel_pending = schedctl_cancel_pending();
285 	lwp->lwp_asleep = 1;
286 	lwp->lwp_sysabort = 0;
287 	thread_lock(t);
288 	cv_block_sig(t, (condvar_impl_t *)cvp);
289 	thread_unlock_nopreempt(t);
290 	mutex_exit(mp);
291 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
292 		setrun(t);
293 	/* ASSERT(no locks are held) */
294 	swtch();
295 	signalled = (t->t_schedflag & TS_SIGNALLED);
296 	t->t_flag &= ~T_WAKEABLE;
297 	mutex_enter(mp);
298 	if (ISSIG_PENDING(t, lwp, p)) {
299 		mutex_exit(mp);
300 		if (issig(FORREAL))
301 			rval = 0;
302 		mutex_enter(mp);
303 	}
304 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
305 		rval = 0;
306 	if (rval != 0 && cancel_pending) {
307 		schedctl_cancel_eintr();
308 		rval = 0;
309 	}
310 	lwp->lwp_asleep = 0;
311 	lwp->lwp_sysabort = 0;
312 	if (rval == 0 && signalled)	/* avoid consuming the cv_signal() */
313 		cv_signal(cvp);
314 	return (rval);
315 }
316 
317 static clock_t
318 cv_timedwait_sig_internal(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int flag)
319 {
320 	kthread_t *t = curthread;
321 	proc_t *p = ttoproc(t);
322 	klwp_t *lwp = ttolwp(t);
323 	int cancel_pending = 0;
324 	callout_id_t id;
325 	clock_t rval = 1;
326 	clock_t timeleft;
327 	int signalled = 0;
328 
329 	/*
330 	 * If the flag is 0, then realtime_timeout() below creates a
331 	 * regular realtime timeout. If the flag is CALLOUT_FLAG_HRESTIME,
332 	 * then, it creates a special realtime timeout which is affected by
333 	 * changes to hrestime. See callo.h for details.
334 	 */
335 	ASSERT((flag == 0) || (flag == CALLOUT_FLAG_HRESTIME));
336 	if (panicstr)
337 		return (rval);
338 
339 	/*
340 	 * If there is no lwp, then we don't need to wait for a signal.
341 	 * The check for t_intr is to catch an interrupt thread
342 	 * that has not yet unpinned the thread underneath.
343 	 */
344 	if (lwp == NULL || t->t_intr)
345 		return (cv_timedwait(cvp, mp, tim));
346 
347 	/*
348 	 * If tim is less than or equal to lbolt, then the timeout
349 	 * has already occured.  So just check to see if there is a signal
350 	 * pending.  If so return 0 indicating that there is a signal pending.
351 	 * Else return -1 indicating that the timeout occured. No need to
352 	 * wait on anything.
353 	 */
354 	timeleft = tim - lbolt;
355 	if (timeleft <= 0) {
356 		lwp->lwp_asleep = 1;
357 		lwp->lwp_sysabort = 0;
358 		rval = -1;
359 		goto out;
360 	}
361 
362 	/*
363 	 * Set the timeout and wait.
364 	 */
365 	cancel_pending = schedctl_cancel_pending();
366 	mutex_enter(&t->t_wait_mutex);
367 	id = timeout_generic(CALLOUT_REALTIME, (void (*)(void *))cv_wakeup, t,
368 	    TICK_TO_NSEC(timeleft), nsec_per_tick, flag);
369 	lwp->lwp_asleep = 1;
370 	lwp->lwp_sysabort = 0;
371 	thread_lock(t);
372 	cv_block_sig(t, (condvar_impl_t *)cvp);
373 	thread_unlock_nopreempt(t);
374 	mutex_exit(&t->t_wait_mutex);
375 	mutex_exit(mp);
376 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
377 		setrun(t);
378 	/* ASSERT(no locks are held) */
379 	swtch();
380 	signalled = (t->t_schedflag & TS_SIGNALLED);
381 	t->t_flag &= ~T_WAKEABLE;
382 
383 	/*
384 	 * Untimeout the thread.  untimeout() returns -1 if the timeout has
385 	 * occured or the time remaining.  If the time remaining is zero,
386 	 * the timeout has occured between when we were awoken and
387 	 * we called untimeout.  We will treat this as if the timeout
388 	 * has occured and set rval to -1.
389 	 */
390 	rval = untimeout_default(id, 0);
391 	mutex_enter(mp);
392 	if (rval <= 0)
393 		rval = -1;
394 
395 	/*
396 	 * Check to see if a signal is pending.  If so, regardless of whether
397 	 * or not we were awoken due to the signal, the signal is now pending
398 	 * and a return of 0 has the highest priority.
399 	 */
400 out:
401 	if (ISSIG_PENDING(t, lwp, p)) {
402 		mutex_exit(mp);
403 		if (issig(FORREAL))
404 			rval = 0;
405 		mutex_enter(mp);
406 	}
407 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
408 		rval = 0;
409 	if (rval != 0 && cancel_pending) {
410 		schedctl_cancel_eintr();
411 		rval = 0;
412 	}
413 	lwp->lwp_asleep = 0;
414 	lwp->lwp_sysabort = 0;
415 	if (rval <= 0 && signalled)	/* avoid consuming the cv_signal() */
416 		cv_signal(cvp);
417 	return (rval);
418 }
419 
420 /*
421  * Returns:
422  * 	Function result in order of precedence:
423  *		 0 if a signal was received
424  *		-1 if timeout occured
425  *		>0 if awakened via cv_signal() or cv_broadcast().
426  *		   (returns time remaining)
427  *
428  * cv_timedwait_sig() is now part of the DDI.
429  *
430  * This function is now just a wrapper for cv_timedwait_sig_internal().
431  */
432 clock_t
433 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
434 {
435 	return (cv_timedwait_sig_internal(cvp, mp, tim, 0));
436 }
437 
438 /*
439  * Like cv_wait_sig_swap but allows the caller to indicate (with a
440  * non-NULL sigret) that they will take care of signalling the cv
441  * after wakeup, if necessary.  This is a vile hack that should only
442  * be used when no other option is available; almost all callers
443  * should just use cv_wait_sig_swap (which takes care of the cv_signal
444  * stuff automatically) instead.
445  */
446 int
447 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret)
448 {
449 	kthread_t *t = curthread;
450 	proc_t *p = ttoproc(t);
451 	klwp_t *lwp = ttolwp(t);
452 	int cancel_pending;
453 	int rval = 1;
454 	int signalled = 0;
455 
456 	if (panicstr)
457 		return (rval);
458 
459 	/*
460 	 * The check for t_intr is to catch an interrupt thread
461 	 * that has not yet unpinned the thread underneath.
462 	 */
463 	if (lwp == NULL || t->t_intr) {
464 		cv_wait(cvp, mp);
465 		return (rval);
466 	}
467 
468 	cancel_pending = schedctl_cancel_pending();
469 	lwp->lwp_asleep = 1;
470 	lwp->lwp_sysabort = 0;
471 	thread_lock(t);
472 	t->t_kpri_req = 0;	/* don't need kernel priority */
473 	cv_block_sig(t, (condvar_impl_t *)cvp);
474 	/* I can be swapped now */
475 	curthread->t_schedflag &= ~TS_DONT_SWAP;
476 	thread_unlock_nopreempt(t);
477 	mutex_exit(mp);
478 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || cancel_pending)
479 		setrun(t);
480 	/* ASSERT(no locks are held) */
481 	swtch();
482 	signalled = (t->t_schedflag & TS_SIGNALLED);
483 	t->t_flag &= ~T_WAKEABLE;
484 	/* TS_DONT_SWAP set by disp() */
485 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
486 	mutex_enter(mp);
487 	if (ISSIG_PENDING(t, lwp, p)) {
488 		mutex_exit(mp);
489 		if (issig(FORREAL))
490 			rval = 0;
491 		mutex_enter(mp);
492 	}
493 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
494 		rval = 0;
495 	if (rval != 0 && cancel_pending) {
496 		schedctl_cancel_eintr();
497 		rval = 0;
498 	}
499 	lwp->lwp_asleep = 0;
500 	lwp->lwp_sysabort = 0;
501 	if (rval == 0) {
502 		if (sigret != NULL)
503 			*sigret = signalled;	/* just tell the caller */
504 		else if (signalled)
505 			cv_signal(cvp);	/* avoid consuming the cv_signal() */
506 	}
507 	return (rval);
508 }
509 
510 /*
511  * Same as cv_wait_sig but the thread can be swapped out while waiting.
512  * This should only be used when we know we aren't holding any locks.
513  */
514 int
515 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp)
516 {
517 	return (cv_wait_sig_swap_core(cvp, mp, NULL));
518 }
519 
520 void
521 cv_signal(kcondvar_t *cvp)
522 {
523 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
524 
525 	/* make sure the cv_waiters field looks sane */
526 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
527 	if (cp->cv_waiters > 0) {
528 		sleepq_head_t *sqh = SQHASH(cp);
529 		disp_lock_enter(&sqh->sq_lock);
530 		ASSERT(CPU_ON_INTR(CPU) == 0);
531 		if (cp->cv_waiters & CV_WAITERS_MASK) {
532 			kthread_t *t;
533 			cp->cv_waiters--;
534 			t = sleepq_wakeone_chan(&sqh->sq_queue, cp);
535 			/*
536 			 * If cv_waiters is non-zero (and less than
537 			 * CV_MAX_WAITERS) there should be a thread
538 			 * in the queue.
539 			 */
540 			ASSERT(t != NULL);
541 		} else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) {
542 			cp->cv_waiters = 0;
543 		}
544 		disp_lock_exit(&sqh->sq_lock);
545 	}
546 }
547 
548 void
549 cv_broadcast(kcondvar_t *cvp)
550 {
551 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
552 
553 	/* make sure the cv_waiters field looks sane */
554 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
555 	if (cp->cv_waiters > 0) {
556 		sleepq_head_t *sqh = SQHASH(cp);
557 		disp_lock_enter(&sqh->sq_lock);
558 		ASSERT(CPU_ON_INTR(CPU) == 0);
559 		sleepq_wakeall_chan(&sqh->sq_queue, cp);
560 		cp->cv_waiters = 0;
561 		disp_lock_exit(&sqh->sq_lock);
562 	}
563 }
564 
565 /*
566  * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check
567  * for requests to stop, like cv_wait_sig() but without dealing with signals.
568  * This is a horrible kludge.  It is evil.  It is vile.  It is swill.
569  * If your code has to call this function then your code is the same.
570  */
571 void
572 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time)
573 {
574 	kthread_t *t = curthread;
575 	klwp_t *lwp = ttolwp(t);
576 	proc_t *p = ttoproc(t);
577 	callout_id_t id;
578 	clock_t tim;
579 
580 	if (panicstr)
581 		return;
582 
583 	/*
584 	 * If there is no lwp, then we don't need to eventually stop it
585 	 * The check for t_intr is to catch an interrupt thread
586 	 * that has not yet unpinned the thread underneath.
587 	 */
588 	if (lwp == NULL || t->t_intr) {
589 		cv_wait(cvp, mp);
590 		return;
591 	}
592 
593 	/*
594 	 * Wakeup in wakeup_time milliseconds, i.e., human time.
595 	 */
596 	tim = lbolt + MSEC_TO_TICK(wakeup_time);
597 	mutex_enter(&t->t_wait_mutex);
598 	id = realtime_timeout_default((void (*)(void *))cv_wakeup, t,
599 	    tim - lbolt);
600 	thread_lock(t);			/* lock the thread */
601 	cv_block((condvar_impl_t *)cvp);
602 	thread_unlock_nopreempt(t);
603 	mutex_exit(&t->t_wait_mutex);
604 	mutex_exit(mp);
605 	/* ASSERT(no locks are held); */
606 	swtch();
607 	(void) untimeout_default(id, 0);
608 
609 	/*
610 	 * Check for reasons to stop, if lwp_nostop is not true.
611 	 * See issig_forreal() for explanations of the various stops.
612 	 */
613 	mutex_enter(&p->p_lock);
614 	while (lwp->lwp_nostop == 0 && !(p->p_flag & SEXITLWPS)) {
615 		/*
616 		 * Hold the lwp here for watchpoint manipulation.
617 		 */
618 		if (t->t_proc_flag & TP_PAUSE) {
619 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
620 			continue;
621 		}
622 		/*
623 		 * System checkpoint.
624 		 */
625 		if (t->t_proc_flag & TP_CHKPT) {
626 			stop(PR_CHECKPOINT, 0);
627 			continue;
628 		}
629 		/*
630 		 * Honor fork1(), watchpoint activity (remapping a page),
631 		 * and lwp_suspend() requests.
632 		 */
633 		if ((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
634 		    (t->t_proc_flag & TP_HOLDLWP)) {
635 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
636 			continue;
637 		}
638 		/*
639 		 * Honor /proc requested stop.
640 		 */
641 		if (t->t_proc_flag & TP_PRSTOP) {
642 			stop(PR_REQUESTED, 0);
643 		}
644 		/*
645 		 * If some lwp in the process has already stopped
646 		 * showing PR_JOBCONTROL, stop in sympathy with it.
647 		 */
648 		if (p->p_stopsig && t != p->p_agenttp) {
649 			stop(PR_JOBCONTROL, p->p_stopsig);
650 			continue;
651 		}
652 		break;
653 	}
654 	mutex_exit(&p->p_lock);
655 	mutex_enter(mp);
656 }
657 
658 /*
659  * Like cv_timedwait_sig(), but takes an absolute hires future time
660  * rather than a future time in clock ticks.  Will not return showing
661  * that a timeout occurred until the future time is passed.
662  * If 'when' is a NULL pointer, no timeout will occur.
663  * Returns:
664  * 	Function result in order of precedence:
665  *		 0 if a signal was received
666  *		-1 if timeout occured
667  *	        >0 if awakened via cv_signal() or cv_broadcast()
668  *		   or by a spurious wakeup.
669  *		   (might return time remaining)
670  * As a special test, if someone abruptly resets the system time
671  * (but not through adjtime(2); drifting of the clock is allowed and
672  * expected [see timespectohz_adj()]), then we force a return of -1
673  * so the caller can return a premature timeout to the calling process
674  * so it can reevaluate the situation in light of the new system time.
675  * (The system clock has been reset if timecheck != timechanged.)
676  */
677 int
678 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp,
679 	timestruc_t *when, int timecheck)
680 {
681 	timestruc_t now;
682 	timestruc_t delta;
683 	int rval;
684 
685 	if (when == NULL)
686 		return (cv_wait_sig_swap(cvp, mp));
687 
688 	gethrestime(&now);
689 	delta = *when;
690 	timespecsub(&delta, &now);
691 	if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) {
692 		/*
693 		 * We have already reached the absolute future time.
694 		 * Call cv_timedwait_sig() just to check for signals.
695 		 * We will return immediately with either 0 or -1.
696 		 */
697 		rval = cv_timedwait_sig(cvp, mp, lbolt);
698 	} else {
699 		gethrestime_lasttick(&now);
700 		if (timecheck == timechanged) {
701 			rval = cv_timedwait_sig_internal(cvp, mp,
702 			    lbolt + timespectohz(when, now),
703 			    CALLOUT_FLAG_HRESTIME);
704 
705 		} else {
706 			/*
707 			 * Someone reset the system time;
708 			 * just force an immediate timeout.
709 			 */
710 			rval = -1;
711 		}
712 		if (rval == -1 && timecheck == timechanged) {
713 			/*
714 			 * Even though cv_timedwait_sig() returned showing a
715 			 * timeout, the future time may not have passed yet.
716 			 * If not, change rval to indicate a normal wakeup.
717 			 */
718 			gethrestime(&now);
719 			delta = *when;
720 			timespecsub(&delta, &now);
721 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
722 			    delta.tv_nsec > 0))
723 				rval = 1;
724 		}
725 	}
726 	return (rval);
727 }
728