xref: /titanic_50/usr/src/uts/common/os/condvar.c (revision 23c352973f956f97f817e65150aad7e1cebeb228)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/thread.h>
29 #include <sys/proc.h>
30 #include <sys/debug.h>
31 #include <sys/cmn_err.h>
32 #include <sys/systm.h>
33 #include <sys/sobject.h>
34 #include <sys/sleepq.h>
35 #include <sys/cpuvar.h>
36 #include <sys/condvar.h>
37 #include <sys/condvar_impl.h>
38 #include <sys/schedctl.h>
39 #include <sys/procfs.h>
40 #include <sys/sdt.h>
41 
42 /*
43  * CV_MAX_WAITERS is the maximum number of waiters we track; once
44  * the number becomes higher than that, we look at the sleepq to
45  * see whether there are *really* any waiters.
46  */
47 #define	CV_MAX_WAITERS		1024		/* must be power of 2 */
48 #define	CV_WAITERS_MASK		(CV_MAX_WAITERS - 1)
49 
50 /*
51  * Threads don't "own" condition variables.
52  */
53 /* ARGSUSED */
54 static kthread_t *
55 cv_owner(void *cvp)
56 {
57 	return (NULL);
58 }
59 
60 /*
61  * Unsleep a thread that's blocked on a condition variable.
62  */
63 static void
64 cv_unsleep(kthread_t *t)
65 {
66 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
67 	sleepq_head_t *sqh = SQHASH(cvp);
68 
69 	ASSERT(THREAD_LOCK_HELD(t));
70 
71 	if (cvp == NULL)
72 		panic("cv_unsleep: thread %p not on sleepq %p", t, sqh);
73 	DTRACE_SCHED1(wakeup, kthread_t *, t);
74 	sleepq_unsleep(t);
75 	if (cvp->cv_waiters != CV_MAX_WAITERS)
76 		cvp->cv_waiters--;
77 	disp_lock_exit_high(&sqh->sq_lock);
78 	CL_SETRUN(t);
79 }
80 
81 /*
82  * Change the priority of a thread that's blocked on a condition variable.
83  */
84 static void
85 cv_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip)
86 {
87 	condvar_impl_t *cvp = (condvar_impl_t *)t->t_wchan;
88 	sleepq_t *sqp = t->t_sleepq;
89 
90 	ASSERT(THREAD_LOCK_HELD(t));
91 	ASSERT(&SQHASH(cvp)->sq_queue == sqp);
92 
93 	if (cvp == NULL)
94 		panic("cv_change_pri: %p not on sleep queue", t);
95 	sleepq_dequeue(t);
96 	*t_prip = pri;
97 	sleepq_insert(sqp, t);
98 }
99 
100 /*
101  * The sobj_ops vector exports a set of functions needed when a thread
102  * is asleep on a synchronization object of this type.
103  */
104 static sobj_ops_t cv_sobj_ops = {
105 	SOBJ_CV, cv_owner, cv_unsleep, cv_change_pri
106 };
107 
108 /* ARGSUSED */
109 void
110 cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void *arg)
111 {
112 	((condvar_impl_t *)cvp)->cv_waiters = 0;
113 }
114 
115 /*
116  * cv_destroy is not currently needed, but is part of the DDI.
117  * This is in case cv_init ever needs to allocate something for a cv.
118  */
119 /* ARGSUSED */
120 void
121 cv_destroy(kcondvar_t *cvp)
122 {
123 	ASSERT((((condvar_impl_t *)cvp)->cv_waiters & CV_WAITERS_MASK) == 0);
124 }
125 
126 /*
127  * The cv_block() function blocks a thread on a condition variable
128  * by putting it in a hashed sleep queue associated with the
129  * synchronization object.
130  *
131  * Threads are taken off the hashed sleep queues via calls to
132  * cv_signal(), cv_broadcast(), or cv_unsleep().
133  */
134 static void
135 cv_block(condvar_impl_t *cvp)
136 {
137 	kthread_t *t = curthread;
138 	klwp_t *lwp = ttolwp(t);
139 	sleepq_head_t *sqh;
140 
141 	ASSERT(THREAD_LOCK_HELD(t));
142 	ASSERT(t != CPU->cpu_idle_thread);
143 	ASSERT(CPU_ON_INTR(CPU) == 0);
144 	ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
145 	ASSERT(t->t_state == TS_ONPROC);
146 
147 	t->t_schedflag &= ~TS_SIGNALLED;
148 	CL_SLEEP(t);			/* assign kernel priority */
149 	t->t_wchan = (caddr_t)cvp;
150 	t->t_sobj_ops = &cv_sobj_ops;
151 	DTRACE_SCHED(sleep);
152 
153 	/*
154 	 * The check for t_intr is to avoid doing the
155 	 * account for an interrupt thread on the still-pinned
156 	 * lwp's statistics.
157 	 */
158 	if (lwp != NULL && t->t_intr == NULL) {
159 		lwp->lwp_ru.nvcsw++;
160 		(void) new_mstate(t, LMS_SLEEP);
161 	}
162 
163 	sqh = SQHASH(cvp);
164 	disp_lock_enter_high(&sqh->sq_lock);
165 	if (cvp->cv_waiters < CV_MAX_WAITERS)
166 		cvp->cv_waiters++;
167 	ASSERT(cvp->cv_waiters <= CV_MAX_WAITERS);
168 	THREAD_SLEEP(t, &sqh->sq_lock);
169 	sleepq_insert(&sqh->sq_queue, t);
170 	/*
171 	 * THREAD_SLEEP() moves curthread->t_lockp to point to the
172 	 * lock sqh->sq_lock. This lock is later released by the caller
173 	 * when it calls thread_unlock() on curthread.
174 	 */
175 }
176 
177 #define	cv_block_sig(t, cvp)	\
178 	{ (t)->t_flag |= T_WAKEABLE; cv_block(cvp); }
179 
180 /*
181  * Block on the indicated condition variable and release the
182  * associated kmutex while blocked.
183  */
184 void
185 cv_wait(kcondvar_t *cvp, kmutex_t *mp)
186 {
187 	if (panicstr)
188 		return;
189 
190 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
191 	thread_lock(curthread);			/* lock the thread */
192 	cv_block((condvar_impl_t *)cvp);
193 	thread_unlock_nopreempt(curthread);	/* unlock the waiters field */
194 	mutex_exit(mp);
195 	swtch();
196 	mutex_enter(mp);
197 }
198 
199 /*
200  * Same as cv_wait except the thread will unblock at 'tim'
201  * (an absolute time) if it hasn't already unblocked.
202  *
203  * Returns the amount of time left from the original 'tim' value
204  * when it was unblocked.
205  */
206 clock_t
207 cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
208 {
209 	kthread_t *t = curthread;
210 	timeout_id_t id;
211 	clock_t timeleft;
212 	int signalled;
213 
214 	if (panicstr)
215 		return (-1);
216 
217 	timeleft = tim - lbolt;
218 	if (timeleft <= 0)
219 		return (-1);
220 	id = realtime_timeout((void (*)(void *))setrun, t, timeleft);
221 	thread_lock(t);		/* lock the thread */
222 	cv_block((condvar_impl_t *)cvp);
223 	thread_unlock_nopreempt(t);
224 	mutex_exit(mp);
225 	if ((tim - lbolt) <= 0)		/* allow for wrap */
226 		setrun(t);
227 	swtch();
228 	signalled = (t->t_schedflag & TS_SIGNALLED);
229 	/*
230 	 * Get the time left. untimeout() returns -1 if the timeout has
231 	 * occured or the time remaining.  If the time remaining is zero,
232 	 * the timeout has occured between when we were awoken and
233 	 * we called untimeout.  We will treat this as if the timeout
234 	 * has occured and set timeleft to -1.
235 	 */
236 	timeleft = untimeout(id);
237 	mutex_enter(mp);
238 	if (timeleft <= 0) {
239 		timeleft = -1;
240 		if (signalled)	/* avoid consuming the cv_signal() */
241 			cv_signal(cvp);
242 	}
243 	return (timeleft);
244 }
245 
246 int
247 cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp)
248 {
249 	kthread_t *t = curthread;
250 	proc_t *p = ttoproc(t);
251 	klwp_t *lwp = ttolwp(t);
252 	int rval = 1;
253 	int signalled = 0;
254 
255 	if (panicstr)
256 		return (rval);
257 
258 	/*
259 	 * The check for t_intr is to catch an interrupt thread
260 	 * that has not yet unpinned the thread underneath.
261 	 */
262 	if (lwp == NULL || t->t_intr) {
263 		cv_wait(cvp, mp);
264 		return (rval);
265 	}
266 
267 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
268 	lwp->lwp_asleep = 1;
269 	lwp->lwp_sysabort = 0;
270 	thread_lock(t);
271 	cv_block_sig(t, (condvar_impl_t *)cvp);
272 	thread_unlock_nopreempt(t);
273 	mutex_exit(mp);
274 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t))
275 		setrun(t);
276 	/* ASSERT(no locks are held) */
277 	swtch();
278 	signalled = (t->t_schedflag & TS_SIGNALLED);
279 	t->t_flag &= ~T_WAKEABLE;
280 	mutex_enter(mp);
281 	if (ISSIG_PENDING(t, lwp, p)) {
282 		mutex_exit(mp);
283 		if (issig(FORREAL))
284 			rval = 0;
285 		mutex_enter(mp);
286 	}
287 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
288 		rval = 0;
289 	lwp->lwp_asleep = 0;
290 	lwp->lwp_sysabort = 0;
291 	if (rval == 0 && signalled)	/* avoid consuming the cv_signal() */
292 		cv_signal(cvp);
293 	return (rval);
294 }
295 
296 /*
297  * Returns:
298  * 	Function result in order of presidence:
299  *		 0 if a signal was received
300  *		-1 if timeout occured
301  *		>0 if awakened via cv_signal() or cv_broadcast().
302  *		   (returns time remaining)
303  *
304  * cv_timedwait_sig() is now part of the DDI.
305  */
306 clock_t
307 cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t tim)
308 {
309 	kthread_t *t = curthread;
310 	proc_t *p = ttoproc(t);
311 	klwp_t *lwp = ttolwp(t);
312 	timeout_id_t id;
313 	clock_t rval = 1;
314 	clock_t timeleft;
315 	int signalled = 0;
316 
317 	if (panicstr)
318 		return (rval);
319 
320 	/*
321 	 * If there is no lwp, then we don't need to wait for a signal.
322 	 * The check for t_intr is to catch an interrupt thread
323 	 * that has not yet unpinned the thread underneath.
324 	 */
325 	if (lwp == NULL || t->t_intr)
326 		return (cv_timedwait(cvp, mp, tim));
327 
328 	/*
329 	 * If tim is less than or equal to lbolt, then the timeout
330 	 * has already occured.  So just check to see if there is a signal
331 	 * pending.  If so return 0 indicating that there is a signal pending.
332 	 * Else return -1 indicating that the timeout occured. No need to
333 	 * wait on anything.
334 	 */
335 	timeleft = tim - lbolt;
336 	if (timeleft <= 0) {
337 		lwp->lwp_asleep = 1;
338 		lwp->lwp_sysabort = 0;
339 		rval = -1;
340 		goto out;
341 	}
342 
343 	/*
344 	 * Set the timeout and wait.
345 	 */
346 	id = realtime_timeout((void (*)(void *))setrun, t, timeleft);
347 	lwp->lwp_asleep = 1;
348 	lwp->lwp_sysabort = 0;
349 	thread_lock(t);
350 	cv_block_sig(t, (condvar_impl_t *)cvp);
351 	thread_unlock_nopreempt(t);
352 	mutex_exit(mp);
353 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || (tim - lbolt <= 0))
354 		setrun(t);
355 	/* ASSERT(no locks are held) */
356 	swtch();
357 	signalled = (t->t_schedflag & TS_SIGNALLED);
358 	t->t_flag &= ~T_WAKEABLE;
359 	mutex_enter(mp);
360 
361 	/*
362 	 * Untimeout the thread.  untimeout() returns -1 if the timeout has
363 	 * occured or the time remaining.  If the time remaining is zero,
364 	 * the timeout has occured between when we were awoken and
365 	 * we called untimeout.  We will treat this as if the timeout
366 	 * has occured and set rval to -1.
367 	 */
368 	rval = untimeout(id);
369 	if (rval <= 0)
370 		rval = -1;
371 
372 	/*
373 	 * Check to see if a signal is pending.  If so, regardless of whether
374 	 * or not we were awoken due to the signal, the signal is now pending
375 	 * and a return of 0 has the highest priority.
376 	 */
377 out:
378 	if (ISSIG_PENDING(t, lwp, p)) {
379 		mutex_exit(mp);
380 		if (issig(FORREAL))
381 			rval = 0;
382 		mutex_enter(mp);
383 	}
384 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
385 		rval = 0;
386 	lwp->lwp_asleep = 0;
387 	lwp->lwp_sysabort = 0;
388 	if (rval <= 0 && signalled)	/* avoid consuming the cv_signal() */
389 		cv_signal(cvp);
390 	return (rval);
391 }
392 
393 /*
394  * Like cv_wait_sig_swap but allows the caller to indicate (with a
395  * non-NULL sigret) that they will take care of signalling the cv
396  * after wakeup, if necessary.  This is a vile hack that should only
397  * be used when no other option is available; almost all callers
398  * should just use cv_wait_sig_swap (which takes care of the cv_signal
399  * stuff automatically) instead.
400  */
401 int
402 cv_wait_sig_swap_core(kcondvar_t *cvp, kmutex_t *mp, int *sigret)
403 {
404 	kthread_t *t = curthread;
405 	proc_t *p = ttoproc(t);
406 	klwp_t *lwp = ttolwp(t);
407 	int rval = 1;
408 	int signalled = 0;
409 
410 	if (panicstr)
411 		return (rval);
412 
413 	/*
414 	 * The check for t_intr is to catch an interrupt thread
415 	 * that has not yet unpinned the thread underneath.
416 	 */
417 	if (lwp == NULL || t->t_intr) {
418 		cv_wait(cvp, mp);
419 		return (rval);
420 	}
421 
422 	lwp->lwp_asleep = 1;
423 	lwp->lwp_sysabort = 0;
424 	thread_lock(t);
425 	t->t_kpri_req = 0;	/* don't need kernel priority */
426 	cv_block_sig(t, (condvar_impl_t *)cvp);
427 	/* I can be swapped now */
428 	curthread->t_schedflag &= ~TS_DONT_SWAP;
429 	thread_unlock_nopreempt(t);
430 	mutex_exit(mp);
431 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t))
432 		setrun(t);
433 	/* ASSERT(no locks are held) */
434 	swtch();
435 	signalled = (t->t_schedflag & TS_SIGNALLED);
436 	t->t_flag &= ~T_WAKEABLE;
437 	/* TS_DONT_SWAP set by disp() */
438 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
439 	mutex_enter(mp);
440 	if (ISSIG_PENDING(t, lwp, p)) {
441 		mutex_exit(mp);
442 		if (issig(FORREAL))
443 			rval = 0;
444 		mutex_enter(mp);
445 	}
446 	if (lwp->lwp_sysabort || MUSTRETURN(p, t))
447 		rval = 0;
448 	lwp->lwp_asleep = 0;
449 	lwp->lwp_sysabort = 0;
450 	if (rval == 0) {
451 		if (sigret != NULL)
452 			*sigret = signalled;	/* just tell the caller */
453 		else if (signalled)
454 			cv_signal(cvp);	/* avoid consuming the cv_signal() */
455 	}
456 	return (rval);
457 }
458 
459 /*
460  * Same as cv_wait_sig but the thread can be swapped out while waiting.
461  * This should only be used when we know we aren't holding any locks.
462  */
463 int
464 cv_wait_sig_swap(kcondvar_t *cvp, kmutex_t *mp)
465 {
466 	return (cv_wait_sig_swap_core(cvp, mp, NULL));
467 }
468 
469 void
470 cv_signal(kcondvar_t *cvp)
471 {
472 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
473 
474 	/* make sure the cv_waiters field looks sane */
475 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
476 	if (cp->cv_waiters > 0) {
477 		sleepq_head_t *sqh = SQHASH(cp);
478 		disp_lock_enter(&sqh->sq_lock);
479 		ASSERT(CPU_ON_INTR(CPU) == 0);
480 		if (cp->cv_waiters & CV_WAITERS_MASK) {
481 			kthread_t *t;
482 			cp->cv_waiters--;
483 			t = sleepq_wakeone_chan(&sqh->sq_queue, cp);
484 			/*
485 			 * If cv_waiters is non-zero (and less than
486 			 * CV_MAX_WAITERS) there should be a thread
487 			 * in the queue.
488 			 */
489 			ASSERT(t != NULL);
490 		} else if (sleepq_wakeone_chan(&sqh->sq_queue, cp) == NULL) {
491 			cp->cv_waiters = 0;
492 		}
493 		disp_lock_exit(&sqh->sq_lock);
494 	}
495 }
496 
497 void
498 cv_broadcast(kcondvar_t *cvp)
499 {
500 	condvar_impl_t *cp = (condvar_impl_t *)cvp;
501 
502 	/* make sure the cv_waiters field looks sane */
503 	ASSERT(cp->cv_waiters <= CV_MAX_WAITERS);
504 	if (cp->cv_waiters > 0) {
505 		sleepq_head_t *sqh = SQHASH(cp);
506 		disp_lock_enter(&sqh->sq_lock);
507 		ASSERT(CPU_ON_INTR(CPU) == 0);
508 		sleepq_wakeall_chan(&sqh->sq_queue, cp);
509 		cp->cv_waiters = 0;
510 		disp_lock_exit(&sqh->sq_lock);
511 	}
512 }
513 
514 /*
515  * Same as cv_wait(), but wakes up (after wakeup_time milliseconds) to check
516  * for requests to stop, like cv_wait_sig() but without dealing with signals.
517  * This is a horrible kludge.  It is evil.  It is vile.  It is swill.
518  * If your code has to call this function then your code is the same.
519  */
520 void
521 cv_wait_stop(kcondvar_t *cvp, kmutex_t *mp, int wakeup_time)
522 {
523 	kthread_t *t = curthread;
524 	klwp_t *lwp = ttolwp(t);
525 	proc_t *p = ttoproc(t);
526 	timeout_id_t id;
527 	clock_t tim;
528 
529 	if (panicstr)
530 		return;
531 
532 	/*
533 	 * If there is no lwp, then we don't need to eventually stop it
534 	 * The check for t_intr is to catch an interrupt thread
535 	 * that has not yet unpinned the thread underneath.
536 	 */
537 	if (lwp == NULL || t->t_intr) {
538 		cv_wait(cvp, mp);
539 		return;
540 	}
541 
542 	/*
543 	 * Wakeup in wakeup_time milliseconds, i.e., human time.
544 	 */
545 	tim = lbolt + MSEC_TO_TICK(wakeup_time);
546 	id = realtime_timeout((void (*)(void *))setrun, t, tim - lbolt);
547 	thread_lock(t);			/* lock the thread */
548 	cv_block((condvar_impl_t *)cvp);
549 	thread_unlock_nopreempt(t);
550 	mutex_exit(mp);
551 	/* ASSERT(no locks are held); */
552 	if ((tim - lbolt) <= 0)		/* allow for wrap */
553 		setrun(t);
554 	swtch();
555 	(void) untimeout(id);
556 
557 	/*
558 	 * Check for reasons to stop, and stop if lwp_nostop is zero.
559 	 * See issig_forreal() for explanations of the various stops.
560 	 * Like issig_forreal(), we allow a PR_SUSPENDED/SUSPEND_NORMAL
561 	 * to occur even if lwp_nostop is set.
562 	 */
563 	mutex_enter(&p->p_lock);
564 	while (!(p->p_flag & SEXITLWPS)) {
565 		/*
566 		 * Hold the lwp here for watchpoint manipulation.
567 		 */
568 		if ((t->t_proc_flag & TP_PAUSE) && !lwp->lwp_nostop) {
569 			stop(PR_SUSPENDED, SUSPEND_PAUSE);
570 			continue;
571 		}
572 		/*
573 		 * System checkpoint.
574 		 */
575 		if ((t->t_proc_flag & TP_CHKPT) && !lwp->lwp_nostop) {
576 			stop(PR_CHECKPOINT, 0);
577 			continue;
578 		}
579 		/*
580 		 * Honor fork1(), watchpoint activity (remapping a page),
581 		 * and lwp_suspend() regardless of whether lwp_nostop is
582 		 * set but not if lwp_nostop_r is set (to avoid a recursive
583 		 * call to prstop()).
584 		 */
585 		if (((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
586 		    (t->t_proc_flag & TP_HOLDLWP)) && !lwp->lwp_nostop_r) {
587 			stop(PR_SUSPENDED, SUSPEND_NORMAL);
588 			continue;
589 		}
590 		/*
591 		 * Honor /proc requested stop.
592 		 */
593 		if ((t->t_proc_flag & TP_PRSTOP) && !lwp->lwp_nostop) {
594 			stop(PR_REQUESTED, 0);
595 		}
596 		/*
597 		 * If some lwp in the process has already stopped
598 		 * showing PR_JOBCONTROL, stop in sympathy with it.
599 		 */
600 		if (p->p_stopsig && !lwp->lwp_nostop && (t != p->p_agenttp)) {
601 			stop(PR_JOBCONTROL, p->p_stopsig);
602 			continue;
603 		}
604 		break;
605 	}
606 	mutex_exit(&p->p_lock);
607 	mutex_enter(mp);
608 }
609 
610 /*
611  * Like cv_timedwait_sig(), but takes an absolute hires future time
612  * rather than a future time in clock ticks.  Will not return showing
613  * that a timeout occurred until the future time is passed.
614  * If 'when' is a NULL pointer, no timeout will occur.
615  * Returns:
616  * 	Function result in order of presidence:
617  *		 0 if a signal was received
618  *		-1 if timeout occured
619  *	        >0 if awakened via cv_signal() or cv_broadcast()
620  *		   or by a spurious wakeup.
621  *		   (might return time remaining)
622  * As a special test, if someone abruptly resets the system time
623  * (but not through adjtime(2); drifting of the clock is allowed and
624  * expected [see timespectohz_adj()]), then we force a return of -1
625  * so the caller can return a premature timeout to the calling process
626  * so it can reevaluate the situation in light of the new system time.
627  * (The system clock has been reset if timecheck != timechanged.)
628  */
629 int
630 cv_waituntil_sig(kcondvar_t *cvp, kmutex_t *mp,
631 	timestruc_t *when, int timecheck)
632 {
633 	timestruc_t now;
634 	timestruc_t delta;
635 	int rval;
636 
637 	if (when == NULL)
638 		return (cv_wait_sig_swap(cvp, mp));
639 
640 	gethrestime(&now);
641 	delta = *when;
642 	timespecsub(&delta, &now);
643 	if (delta.tv_sec < 0 || (delta.tv_sec == 0 && delta.tv_nsec == 0)) {
644 		/*
645 		 * We have already reached the absolute future time.
646 		 * Call cv_timedwait_sig() just to check for signals.
647 		 * We will return immediately with either 0 or -1.
648 		 */
649 		rval = cv_timedwait_sig(cvp, mp, lbolt);
650 	} else {
651 		if (timecheck == timechanged) {
652 			rval = cv_timedwait_sig(cvp, mp,
653 				lbolt + timespectohz_adj(when, now));
654 		} else {
655 			/*
656 			 * Someone reset the system time;
657 			 * just force an immediate timeout.
658 			 */
659 			rval = -1;
660 		}
661 		if (rval == -1 && timecheck == timechanged) {
662 			/*
663 			 * Even though cv_timedwait_sig() returned showing a
664 			 * timeout, the future time may not have passed yet.
665 			 * If not, change rval to indicate a normal wakeup.
666 			 */
667 			gethrestime(&now);
668 			delta = *when;
669 			timespecsub(&delta, &now);
670 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
671 			    delta.tv_nsec > 0))
672 				rval = 1;
673 		}
674 	}
675 	return (rval);
676 }
677