xref: /titanic_50/usr/src/uts/common/os/clock.c (revision c197cb9db36685d2808c057fdbe5700734483ab2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved	*/
23 
24 
25 /*
26  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/param.h>
33 #include <sys/t_lock.h>
34 #include <sys/types.h>
35 #include <sys/tuneable.h>
36 #include <sys/sysmacros.h>
37 #include <sys/systm.h>
38 #include <sys/cpuvar.h>
39 #include <sys/lgrp.h>
40 #include <sys/user.h>
41 #include <sys/proc.h>
42 #include <sys/callo.h>
43 #include <sys/kmem.h>
44 #include <sys/var.h>
45 #include <sys/cmn_err.h>
46 #include <sys/swap.h>
47 #include <sys/vmsystm.h>
48 #include <sys/class.h>
49 #include <sys/time.h>
50 #include <sys/debug.h>
51 #include <sys/vtrace.h>
52 #include <sys/spl.h>
53 #include <sys/atomic.h>
54 #include <sys/dumphdr.h>
55 #include <sys/archsystm.h>
56 #include <sys/fs/swapnode.h>
57 #include <sys/panic.h>
58 #include <sys/disp.h>
59 #include <sys/msacct.h>
60 #include <sys/mem_cage.h>
61 
62 #include <vm/page.h>
63 #include <vm/anon.h>
64 #include <vm/rm.h>
65 #include <sys/cyclic.h>
66 #include <sys/cpupart.h>
67 #include <sys/rctl.h>
68 #include <sys/task.h>
69 #include <sys/sdt.h>
70 
71 #ifdef __sparc
72 #include <sys/wdt.h>
73 #endif
74 
75 /*
76  * for NTP support
77  */
78 #include <sys/timex.h>
79 #include <sys/inttypes.h>
80 
81 /*
82  * clock() is called straight from the clock cyclic; see clock_init().
83  *
84  * Functions:
85  *	reprime clock
86  *	schedule callouts
87  *	maintain date
88  *	jab the scheduler
89  */
90 
91 extern kcondvar_t	fsflush_cv;
92 extern sysinfo_t	sysinfo;
93 extern vminfo_t	vminfo;
94 extern int	idleswtch;	/* flag set while idle in pswtch() */
95 
96 /*
97  * high-precision avenrun values.  These are needed to make the
98  * regular avenrun values accurate.
99  */
100 static uint64_t hp_avenrun[3];
101 int	avenrun[3];		/* FSCALED average run queue lengths */
102 time_t	time;	/* time in seconds since 1970 - for compatibility only */
103 
104 static struct loadavg_s loadavg;
105 /*
106  * Phase/frequency-lock loop (PLL/FLL) definitions
107  *
108  * The following variables are read and set by the ntp_adjtime() system
109  * call.
110  *
111  * time_state shows the state of the system clock, with values defined
112  * in the timex.h header file.
113  *
114  * time_status shows the status of the system clock, with bits defined
115  * in the timex.h header file.
116  *
117  * time_offset is used by the PLL/FLL to adjust the system time in small
118  * increments.
119  *
120  * time_constant determines the bandwidth or "stiffness" of the PLL.
121  *
122  * time_tolerance determines maximum frequency error or tolerance of the
123  * CPU clock oscillator and is a property of the architecture; however,
124  * in principle it could change as result of the presence of external
125  * discipline signals, for instance.
126  *
127  * time_precision is usually equal to the kernel tick variable; however,
128  * in cases where a precision clock counter or external clock is
129  * available, the resolution can be much less than this and depend on
130  * whether the external clock is working or not.
131  *
132  * time_maxerror is initialized by a ntp_adjtime() call and increased by
133  * the kernel once each second to reflect the maximum error bound
134  * growth.
135  *
136  * time_esterror is set and read by the ntp_adjtime() call, but
137  * otherwise not used by the kernel.
138  */
139 int32_t time_state = TIME_OK;	/* clock state */
140 int32_t time_status = STA_UNSYNC;	/* clock status bits */
141 int32_t time_offset = 0;		/* time offset (us) */
142 int32_t time_constant = 0;		/* pll time constant */
143 int32_t time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
144 int32_t time_precision = 1;	/* clock precision (us) */
145 int32_t time_maxerror = MAXPHASE;	/* maximum error (us) */
146 int32_t time_esterror = MAXPHASE;	/* estimated error (us) */
147 
148 /*
149  * The following variables establish the state of the PLL/FLL and the
150  * residual time and frequency offset of the local clock. The scale
151  * factors are defined in the timex.h header file.
152  *
153  * time_phase and time_freq are the phase increment and the frequency
154  * increment, respectively, of the kernel time variable.
155  *
156  * time_freq is set via ntp_adjtime() from a value stored in a file when
157  * the synchronization daemon is first started. Its value is retrieved
158  * via ntp_adjtime() and written to the file about once per hour by the
159  * daemon.
160  *
161  * time_adj is the adjustment added to the value of tick at each timer
162  * interrupt and is recomputed from time_phase and time_freq at each
163  * seconds rollover.
164  *
165  * time_reftime is the second's portion of the system time at the last
166  * call to ntp_adjtime(). It is used to adjust the time_freq variable
167  * and to increase the time_maxerror as the time since last update
168  * increases.
169  */
170 int32_t time_phase = 0;		/* phase offset (scaled us) */
171 int32_t time_freq = 0;		/* frequency offset (scaled ppm) */
172 int32_t time_adj = 0;		/* tick adjust (scaled 1 / hz) */
173 int32_t time_reftime = 0;		/* time at last adjustment (s) */
174 
175 /*
176  * The scale factors of the following variables are defined in the
177  * timex.h header file.
178  *
179  * pps_time contains the time at each calibration interval, as read by
180  * microtime(). pps_count counts the seconds of the calibration
181  * interval, the duration of which is nominally pps_shift in powers of
182  * two.
183  *
184  * pps_offset is the time offset produced by the time median filter
185  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
186  * this filter.
187  *
188  * pps_freq is the frequency offset produced by the frequency median
189  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
190  * by this filter.
191  *
192  * pps_usec is latched from a high resolution counter or external clock
193  * at pps_time. Here we want the hardware counter contents only, not the
194  * contents plus the time_tv.usec as usual.
195  *
196  * pps_valid counts the number of seconds since the last PPS update. It
197  * is used as a watchdog timer to disable the PPS discipline should the
198  * PPS signal be lost.
199  *
200  * pps_glitch counts the number of seconds since the beginning of an
201  * offset burst more than tick/2 from current nominal offset. It is used
202  * mainly to suppress error bursts due to priority conflicts between the
203  * PPS interrupt and timer interrupt.
204  *
205  * pps_intcnt counts the calibration intervals for use in the interval-
206  * adaptation algorithm. It's just too complicated for words.
207  */
208 struct timeval pps_time;	/* kernel time at last interval */
209 int32_t pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
210 int32_t pps_offset = 0;		/* pps time offset (us) */
211 int32_t pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
212 int32_t pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
213 int32_t pps_freq = 0;		/* frequency offset (scaled ppm) */
214 int32_t pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
215 int32_t pps_usec = 0;		/* microsec counter at last interval */
216 int32_t pps_valid = PPS_VALID;	/* pps signal watchdog counter */
217 int32_t pps_glitch = 0;		/* pps signal glitch counter */
218 int32_t pps_count = 0;		/* calibration interval counter (s) */
219 int32_t pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
220 int32_t pps_intcnt = 0;		/* intervals at current duration */
221 
222 /*
223  * PPS signal quality monitors
224  *
225  * pps_jitcnt counts the seconds that have been discarded because the
226  * jitter measured by the time median filter exceeds the limit MAXTIME
227  * (100 us).
228  *
229  * pps_calcnt counts the frequency calibration intervals, which are
230  * variable from 4 s to 256 s.
231  *
232  * pps_errcnt counts the calibration intervals which have been discarded
233  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
234  * calibration interval jitter exceeds two ticks.
235  *
236  * pps_stbcnt counts the calibration intervals that have been discarded
237  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
238  */
239 int32_t pps_jitcnt = 0;		/* jitter limit exceeded */
240 int32_t pps_calcnt = 0;		/* calibration intervals */
241 int32_t pps_errcnt = 0;		/* calibration errors */
242 int32_t pps_stbcnt = 0;		/* stability limit exceeded */
243 
244 /* The following variables require no explicit locking */
245 volatile clock_t lbolt;		/* time in Hz since last boot */
246 volatile int64_t lbolt64;	/* lbolt64 won't wrap for 2.9 billion yrs */
247 
248 kcondvar_t lbolt_cv;
249 int one_sec = 1; /* turned on once every second */
250 static int fsflushcnt;	/* counter for t_fsflushr */
251 int	dosynctodr = 1;	/* patchable; enable/disable sync to TOD chip */
252 int	tod_needsync = 0;	/* need to sync tod chip with software time */
253 static int tod_broken = 0;	/* clock chip doesn't work */
254 time_t	boot_time = 0;		/* Boot time in seconds since 1970 */
255 cyclic_id_t clock_cyclic;	/* clock()'s cyclic_id */
256 cyclic_id_t deadman_cyclic;	/* deadman()'s cyclic_id */
257 
258 static int lgrp_ticks;		/* counter to schedule lgrp load calcs */
259 
260 /*
261  * for tod fault detection
262  */
263 #define	TOD_REF_FREQ		((longlong_t)(NANOSEC))
264 #define	TOD_STALL_THRESHOLD	(TOD_REF_FREQ * 3 / 2)
265 #define	TOD_JUMP_THRESHOLD	(TOD_REF_FREQ / 2)
266 #define	TOD_FILTER_N		4
267 #define	TOD_FILTER_SETTLE	(4 * TOD_FILTER_N)
268 static int tod_faulted = TOD_NOFAULT;
269 static int tod_fault_reset_flag = 0;
270 
271 /* patchable via /etc/system */
272 int tod_validate_enable = 1;
273 
274 /*
275  * On non-SPARC systems, TOD validation must be deferred until gethrtime
276  * returns non-zero values (after mach_clkinit's execution).
277  * On SPARC systems, it must be deferred until after hrtime_base
278  * and hres_last_tick are set (in the first invocation of hres_tick).
279  * Since in both cases the prerequisites occur before the invocation of
280  * tod_get() in clock(), the deferment is lifted there.
281  */
282 static boolean_t tod_validate_deferred = B_TRUE;
283 
284 /*
285  * tod_fault_table[] must be aligned with
286  * enum tod_fault_type in systm.h
287  */
288 static char *tod_fault_table[] = {
289 	"Reversed",			/* TOD_REVERSED */
290 	"Stalled",			/* TOD_STALLED */
291 	"Jumped",			/* TOD_JUMPED */
292 	"Changed in Clock Rate"		/* TOD_RATECHANGED */
293 	/*
294 	 * no strings needed for TOD_NOFAULT
295 	 */
296 };
297 
298 /*
299  * test hook for tod broken detection in tod_validate
300  */
301 int tod_unit_test = 0;
302 time_t tod_test_injector;
303 
304 #define	CLOCK_ADJ_HIST_SIZE	4
305 
306 static int	adj_hist_entry;
307 
308 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
309 
310 static void clock_tick(kthread_t *);
311 static void calcloadavg(int, uint64_t *);
312 static int genloadavg(struct loadavg_s *);
313 static void loadavg_update();
314 
315 void (*cmm_clock_callout)() = NULL;
316 void (*cpucaps_clock_callout)() = NULL;
317 
318 static void
319 clock(void)
320 {
321 	kthread_t	*t;
322 	kmutex_t	*plockp;	/* pointer to thread's process lock */
323 	int	pinned_intr = 0;
324 	uint_t	nrunnable, nrunning;
325 	uint_t	w_io;
326 	cpu_t	*cp;
327 	cpupart_t *cpupart;
328 	int	exiting;
329 	extern void set_anoninfo();
330 	extern	void	set_freemem();
331 	void	(*funcp)();
332 	int32_t ltemp;
333 	int64_t lltemp;
334 	int s;
335 	int do_lgrp_load;
336 	int i;
337 
338 	if (panicstr)
339 		return;
340 
341 	set_anoninfo();
342 	/*
343 	 * Make sure that 'freemem' do not drift too far from the truth
344 	 */
345 	set_freemem();
346 
347 
348 	/*
349 	 * Before the section which is repeated is executed, we do
350 	 * the time delta processing which occurs every clock tick
351 	 *
352 	 * There is additional processing which happens every time
353 	 * the nanosecond counter rolls over which is described
354 	 * below - see the section which begins with : if (one_sec)
355 	 *
356 	 * This section marks the beginning of the precision-kernel
357 	 * code fragment.
358 	 *
359 	 * First, compute the phase adjustment. If the low-order bits
360 	 * (time_phase) of the update overflow, bump the higher order
361 	 * bits (time_update).
362 	 */
363 	time_phase += time_adj;
364 	if (time_phase <= -FINEUSEC) {
365 		ltemp = -time_phase / SCALE_PHASE;
366 		time_phase += ltemp * SCALE_PHASE;
367 		s = hr_clock_lock();
368 		timedelta -= ltemp * (NANOSEC/MICROSEC);
369 		hr_clock_unlock(s);
370 	} else if (time_phase >= FINEUSEC) {
371 		ltemp = time_phase / SCALE_PHASE;
372 		time_phase -= ltemp * SCALE_PHASE;
373 		s = hr_clock_lock();
374 		timedelta += ltemp * (NANOSEC/MICROSEC);
375 		hr_clock_unlock(s);
376 	}
377 
378 	/*
379 	 * End of precision-kernel code fragment which is processed
380 	 * every timer interrupt.
381 	 *
382 	 * Continue with the interrupt processing as scheduled.
383 	 *
384 	 * Did we pin another interrupt thread?  Need to check this before
385 	 * grabbing any adaptive locks, since if we block on a lock the
386 	 * pinned thread could escape.  Note that this is just a heuristic;
387 	 * if we take multiple laps though clock() without returning from
388 	 * the interrupt because we have another clock tick pending, then
389 	 * the pinned interrupt could be released by one of the previous
390 	 * laps.  The only consequence is that the CPU will be counted as
391 	 * in idle (or wait) state once the pinned interrupt is released.
392 	 * Since this accounting is inaccurate by nature, this isn't a big
393 	 * deal --- but we should try to get it right in the common case
394 	 * where we only call clock() once per interrupt.
395 	 */
396 	if (curthread->t_intr != NULL)
397 		pinned_intr = (curthread->t_intr->t_flag & T_INTR_THREAD);
398 
399 	/*
400 	 * Count the number of runnable threads and the number waiting
401 	 * for some form of I/O to complete -- gets added to
402 	 * sysinfo.waiting.  To know the state of the system, must add
403 	 * wait counts from all CPUs.  Also add up the per-partition
404 	 * statistics.
405 	 */
406 	w_io = 0;
407 	nrunnable = 0;
408 
409 	/*
410 	 * keep track of when to update lgrp/part loads
411 	 */
412 
413 	do_lgrp_load = 0;
414 	if (lgrp_ticks++ >= hz / 10) {
415 		lgrp_ticks = 0;
416 		do_lgrp_load = 1;
417 	}
418 
419 	if (one_sec)
420 		loadavg_update();
421 
422 	/*
423 	 * First count the threads waiting on kpreempt queues in each
424 	 * CPU partition.
425 	 */
426 
427 	cpupart = cp_list_head;
428 	do {
429 		uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
430 
431 		cpupart->cp_updates++;
432 		nrunnable += cpupart_nrunnable;
433 		cpupart->cp_nrunnable_cum += cpupart_nrunnable;
434 		if (one_sec) {
435 			cpupart->cp_nrunning = 0;
436 			cpupart->cp_nrunnable = cpupart_nrunnable;
437 		}
438 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
439 
440 
441 	/* Now count the per-CPU statistics. */
442 	cp = cpu_list;
443 	do {
444 		uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
445 
446 		nrunnable += cpu_nrunnable;
447 		cpupart = cp->cpu_part;
448 		cpupart->cp_nrunnable_cum += cpu_nrunnable;
449 		if (one_sec) {
450 			cpupart->cp_nrunnable += cpu_nrunnable;
451 			/*
452 			 * w_io is used to update sysinfo.waiting during
453 			 * one_second processing below.  Only gather w_io
454 			 * information when we walk the list of cpus if we're
455 			 * going to perform one_second processing.
456 			 */
457 			w_io += CPU_STATS(cp, sys.iowait);
458 
459 		}
460 		if (do_lgrp_load &&
461 		    (cp->cpu_flags & CPU_EXISTS)) {
462 			/*
463 			 * When updating the lgroup's load average,
464 			 * account for the thread running on the CPU.
465 			 * If the CPU is the current one, then we need
466 			 * to account for the underlying thread which
467 			 * got the clock interrupt not the thread that is
468 			 * handling the interrupt and caculating the load
469 			 * average
470 			 */
471 			t = cp->cpu_thread;
472 			if (CPU == cp)
473 				t = t->t_intr;
474 
475 			/*
476 			 * Account for the load average for this thread if
477 			 * it isn't the idle thread or it is on the interrupt
478 			 * stack and not the current CPU handling the clock
479 			 * interrupt
480 			 */
481 			if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
482 			    CPU_ON_INTR(cp))) {
483 				if (t->t_lpl == cp->cpu_lpl) {
484 					/* local thread */
485 					cpu_nrunnable++;
486 				} else {
487 					/*
488 					 * This is a remote thread, charge it
489 					 * against its home lgroup.  Note that
490 					 * we notice that a thread is remote
491 					 * only if it's currently executing.
492 					 * This is a reasonable approximation,
493 					 * since queued remote threads are rare.
494 					 * Note also that if we didn't charge
495 					 * it to its home lgroup, remote
496 					 * execution would often make a system
497 					 * appear balanced even though it was
498 					 * not, and thread placement/migration
499 					 * would often not be done correctly.
500 					 */
501 					lgrp_loadavg(t->t_lpl,
502 					    LGRP_LOADAVG_IN_THREAD_MAX, 0);
503 				}
504 			}
505 			lgrp_loadavg(cp->cpu_lpl,
506 			    cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
507 		}
508 	} while ((cp = cp->cpu_next) != cpu_list);
509 
510 	/*
511 	 * Do tick processing for all the active threads running in
512 	 * the system.  We're trying to be more fair by walking the
513 	 * list of CPUs starting from a different CPUs each time.
514 	 */
515 	cp = clock_cpu_list;
516 	nrunning = 0;
517 	do {
518 		klwp_id_t lwp;
519 		int intr;
520 		int thread_away;
521 
522 		/*
523 		 * Don't do any tick processing on CPUs that
524 		 * aren't even in the system or aren't up yet.
525 		 */
526 		if ((cp->cpu_flags & CPU_EXISTS) == 0) {
527 			continue;
528 		}
529 
530 		/*
531 		 * The locking here is rather tricky.  We use
532 		 * thread_free_lock to keep the currently running
533 		 * thread from being freed or recycled while we're
534 		 * looking at it.  We can then check if the thread
535 		 * is exiting and get the appropriate p_lock if it
536 		 * is not.  We have to be careful, though, because
537 		 * the _process_ can still be freed while we're
538 		 * holding thread_free_lock.  To avoid touching the
539 		 * proc structure we put a pointer to the p_lock in the
540 		 * thread structure.  The p_lock is persistent so we
541 		 * can acquire it even if the process is gone.  At that
542 		 * point we can check (again) if the thread is exiting
543 		 * and either drop the lock or do the tick processing.
544 		 */
545 		mutex_enter(&thread_free_lock);
546 		/*
547 		 * We cannot hold the cpu_lock to prevent the
548 		 * cpu_list from changing in the clock interrupt.
549 		 * As long as we don't block (or don't get pre-empted)
550 		 * the cpu_list will not change (all threads are paused
551 		 * before list modification). If the list does change
552 		 * any deleted cpu structures will remain with cpu_next
553 		 * set to NULL, hence the following test.
554 		 */
555 		if (cp->cpu_next == NULL) {
556 			mutex_exit(&thread_free_lock);
557 			break;
558 		}
559 		t = cp->cpu_thread;	/* Current running thread */
560 		if (CPU == cp) {
561 			/*
562 			 * 't' will be the clock interrupt thread on this
563 			 * CPU.  Use the pinned thread (if any) on this CPU
564 			 * as the target of the clock tick.  If we pinned
565 			 * an interrupt, though, just keep using the clock
566 			 * interrupt thread since the formerly pinned one
567 			 * may have gone away.  One interrupt thread is as
568 			 * good as another, and this means we don't have
569 			 * to continue to check pinned_intr in subsequent
570 			 * code.
571 			 */
572 			ASSERT(t == curthread);
573 			if (t->t_intr != NULL && !pinned_intr)
574 				t = t->t_intr;
575 		}
576 
577 		intr = t->t_flag & T_INTR_THREAD;
578 		lwp = ttolwp(t);
579 		if (lwp == NULL || (t->t_proc_flag & TP_LWPEXIT) || intr) {
580 			/*
581 			 * Thread is exiting (or uninteresting) so don't
582 			 * do tick processing or grab p_lock.  Once we
583 			 * drop thread_free_lock we can't look inside the
584 			 * thread or lwp structure, since the thread may
585 			 * have gone away.
586 			 */
587 			exiting = 1;
588 		} else {
589 			/*
590 			 * OK, try to grab the process lock.  See
591 			 * comments above for why we're not using
592 			 * ttoproc(t)->p_lockp here.
593 			 */
594 			plockp = t->t_plockp;
595 			mutex_enter(plockp);
596 			/* See above comment. */
597 			if (cp->cpu_next == NULL) {
598 				mutex_exit(plockp);
599 				mutex_exit(&thread_free_lock);
600 				break;
601 			}
602 			/*
603 			 * The thread may have exited between when we
604 			 * checked above, and when we got the p_lock.
605 			 */
606 			if (t->t_proc_flag & TP_LWPEXIT) {
607 				mutex_exit(plockp);
608 				exiting = 1;
609 			} else {
610 				exiting = 0;
611 			}
612 		}
613 		/*
614 		 * Either we have the p_lock for the thread's process,
615 		 * or we don't care about the thread structure any more.
616 		 * Either way we can drop thread_free_lock.
617 		 */
618 		mutex_exit(&thread_free_lock);
619 
620 		/*
621 		 * Update user, system, and idle cpu times.
622 		 */
623 		if (one_sec) {
624 			nrunning++;
625 			cp->cpu_part->cp_nrunning++;
626 		}
627 		/*
628 		 * If we haven't done tick processing for this
629 		 * lwp, then do it now. Since we don't hold the
630 		 * lwp down on a CPU it can migrate and show up
631 		 * more than once, hence the lbolt check.
632 		 *
633 		 * Also, make sure that it's okay to perform the
634 		 * tick processing before calling clock_tick.
635 		 * Setting thread_away to a TRUE value (ie. not 0)
636 		 * results in tick processing not being performed for
637 		 * that thread.  Or, in other words, keeps the thread
638 		 * away from clock_tick processing.
639 		 */
640 		thread_away = ((cp->cpu_flags & CPU_QUIESCED) ||
641 		    CPU_ON_INTR(cp) || intr ||
642 		    (cp->cpu_dispthread == cp->cpu_idle_thread) || exiting);
643 
644 		if ((!thread_away) && (lbolt - t->t_lbolt != 0)) {
645 			t->t_lbolt = lbolt;
646 			clock_tick(t);
647 		}
648 
649 		if (!exiting)
650 			mutex_exit(plockp);
651 	} while ((cp = cp->cpu_next) != clock_cpu_list);
652 
653 	clock_cpu_list = clock_cpu_list->cpu_next;
654 
655 	/*
656 	 * bump time in ticks
657 	 *
658 	 * We rely on there being only one clock thread and hence
659 	 * don't need a lock to protect lbolt.
660 	 */
661 	lbolt++;
662 	atomic_add_64((uint64_t *)&lbolt64, (int64_t)1);
663 
664 	/*
665 	 * Check for a callout that needs be called from the clock
666 	 * thread to support the membership protocol in a clustered
667 	 * system.  Copy the function pointer so that we can reset
668 	 * this to NULL if needed.
669 	 */
670 	if ((funcp = cmm_clock_callout) != NULL)
671 		(*funcp)();
672 
673 	if ((funcp = cpucaps_clock_callout) != NULL)
674 		(*funcp)();
675 
676 	/*
677 	 * Wakeup the cageout thread waiters once per second.
678 	 */
679 	if (one_sec)
680 		kcage_tick();
681 
682 	/*
683 	 * Schedule timeout() requests if any are due at this time.
684 	 */
685 	callout_schedule();
686 
687 	if (one_sec) {
688 
689 		int drift, absdrift;
690 		timestruc_t tod;
691 		int s;
692 
693 		/*
694 		 * Beginning of precision-kernel code fragment executed
695 		 * every second.
696 		 *
697 		 * On rollover of the second the phase adjustment to be
698 		 * used for the next second is calculated.  Also, the
699 		 * maximum error is increased by the tolerance.  If the
700 		 * PPS frequency discipline code is present, the phase is
701 		 * increased to compensate for the CPU clock oscillator
702 		 * frequency error.
703 		 *
704 		 * On a 32-bit machine and given parameters in the timex.h
705 		 * header file, the maximum phase adjustment is +-512 ms
706 		 * and maximum frequency offset is (a tad less than)
707 		 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
708 		 */
709 		time_maxerror += time_tolerance / SCALE_USEC;
710 
711 		/*
712 		 * Leap second processing. If in leap-insert state at
713 		 * the end of the day, the system clock is set back one
714 		 * second; if in leap-delete state, the system clock is
715 		 * set ahead one second. The microtime() routine or
716 		 * external clock driver will insure that reported time
717 		 * is always monotonic. The ugly divides should be
718 		 * replaced.
719 		 */
720 		switch (time_state) {
721 
722 		case TIME_OK:
723 			if (time_status & STA_INS)
724 				time_state = TIME_INS;
725 			else if (time_status & STA_DEL)
726 				time_state = TIME_DEL;
727 			break;
728 
729 		case TIME_INS:
730 			if (hrestime.tv_sec % 86400 == 0) {
731 				s = hr_clock_lock();
732 				hrestime.tv_sec--;
733 				hr_clock_unlock(s);
734 				time_state = TIME_OOP;
735 			}
736 			break;
737 
738 		case TIME_DEL:
739 			if ((hrestime.tv_sec + 1) % 86400 == 0) {
740 				s = hr_clock_lock();
741 				hrestime.tv_sec++;
742 				hr_clock_unlock(s);
743 				time_state = TIME_WAIT;
744 			}
745 			break;
746 
747 		case TIME_OOP:
748 			time_state = TIME_WAIT;
749 			break;
750 
751 		case TIME_WAIT:
752 			if (!(time_status & (STA_INS | STA_DEL)))
753 				time_state = TIME_OK;
754 		default:
755 			break;
756 		}
757 
758 		/*
759 		 * Compute the phase adjustment for the next second. In
760 		 * PLL mode, the offset is reduced by a fixed factor
761 		 * times the time constant. In FLL mode the offset is
762 		 * used directly. In either mode, the maximum phase
763 		 * adjustment for each second is clamped so as to spread
764 		 * the adjustment over not more than the number of
765 		 * seconds between updates.
766 		 */
767 		if (time_offset == 0)
768 			time_adj = 0;
769 		else if (time_offset < 0) {
770 			lltemp = -time_offset;
771 			if (!(time_status & STA_FLL)) {
772 				if ((1 << time_constant) >= SCALE_KG)
773 					lltemp *= (1 << time_constant) /
774 					    SCALE_KG;
775 				else
776 					lltemp = (lltemp / SCALE_KG) >>
777 					    time_constant;
778 			}
779 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
780 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
781 			time_offset += lltemp;
782 			time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
783 		} else {
784 			lltemp = time_offset;
785 			if (!(time_status & STA_FLL)) {
786 				if ((1 << time_constant) >= SCALE_KG)
787 					lltemp *= (1 << time_constant) /
788 					    SCALE_KG;
789 				else
790 					lltemp = (lltemp / SCALE_KG) >>
791 					    time_constant;
792 			}
793 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
794 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
795 			time_offset -= lltemp;
796 			time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
797 		}
798 
799 		/*
800 		 * Compute the frequency estimate and additional phase
801 		 * adjustment due to frequency error for the next
802 		 * second. When the PPS signal is engaged, gnaw on the
803 		 * watchdog counter and update the frequency computed by
804 		 * the pll and the PPS signal.
805 		 */
806 		pps_valid++;
807 		if (pps_valid == PPS_VALID) {
808 			pps_jitter = MAXTIME;
809 			pps_stabil = MAXFREQ;
810 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
811 			    STA_PPSWANDER | STA_PPSERROR);
812 		}
813 		lltemp = time_freq + pps_freq;
814 
815 		if (lltemp)
816 			time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
817 
818 		/*
819 		 * End of precision kernel-code fragment
820 		 *
821 		 * The section below should be modified if we are planning
822 		 * to use NTP for synchronization.
823 		 *
824 		 * Note: the clock synchronization code now assumes
825 		 * the following:
826 		 *   - if dosynctodr is 1, then compute the drift between
827 		 *	the tod chip and software time and adjust one or
828 		 *	the other depending on the circumstances
829 		 *
830 		 *   - if dosynctodr is 0, then the tod chip is independent
831 		 *	of the software clock and should not be adjusted,
832 		 *	but allowed to free run.  this allows NTP to sync.
833 		 *	hrestime without any interference from the tod chip.
834 		 */
835 
836 		tod_validate_deferred = B_FALSE;
837 		mutex_enter(&tod_lock);
838 		tod = tod_get();
839 		drift = tod.tv_sec - hrestime.tv_sec;
840 		absdrift = (drift >= 0) ? drift : -drift;
841 		if (tod_needsync || absdrift > 1) {
842 			int s;
843 			if (absdrift > 2) {
844 				if (!tod_broken && tod_faulted == TOD_NOFAULT) {
845 					s = hr_clock_lock();
846 					hrestime = tod;
847 					membar_enter();	/* hrestime visible */
848 					timedelta = 0;
849 					hrestime_isvalid = 1;
850 					tod_needsync = 0;
851 					hr_clock_unlock(s);
852 				}
853 			} else {
854 				if (tod_needsync || !dosynctodr) {
855 					gethrestime(&tod);
856 					tod_set(tod);
857 					s = hr_clock_lock();
858 					if (timedelta == 0)
859 						tod_needsync = 0;
860 					hr_clock_unlock(s);
861 				} else {
862 					/*
863 					 * If the drift is 2 seconds on the
864 					 * money, then the TOD is adjusting
865 					 * the clock;  record that.
866 					 */
867 					clock_adj_hist[adj_hist_entry++ %
868 					    CLOCK_ADJ_HIST_SIZE] = lbolt64;
869 					s = hr_clock_lock();
870 					timedelta = (int64_t)drift*NANOSEC;
871 					hr_clock_unlock(s);
872 				}
873 			}
874 		}
875 		one_sec = 0;
876 		time = gethrestime_sec();  /* for crusty old kmem readers */
877 		mutex_exit(&tod_lock);
878 
879 		/*
880 		 * Some drivers still depend on this... XXX
881 		 */
882 		cv_broadcast(&lbolt_cv);
883 
884 		sysinfo.updates++;
885 		vminfo.freemem += freemem;
886 		{
887 			pgcnt_t maxswap, resv, free;
888 			pgcnt_t avail =
889 			    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
890 
891 			maxswap = k_anoninfo.ani_mem_resv
892 					+ k_anoninfo.ani_max +avail;
893 			free = k_anoninfo.ani_free + avail;
894 			resv = k_anoninfo.ani_phys_resv +
895 			    k_anoninfo.ani_mem_resv;
896 
897 			vminfo.swap_resv += resv;
898 			/* number of reserved and allocated pages */
899 #ifdef	DEBUG
900 			if (maxswap < free)
901 				cmn_err(CE_WARN, "clock: maxswap < free");
902 			if (maxswap < resv)
903 				cmn_err(CE_WARN, "clock: maxswap < resv");
904 #endif
905 			vminfo.swap_alloc += maxswap - free;
906 			vminfo.swap_avail += maxswap - resv;
907 			vminfo.swap_free += free;
908 		}
909 		if (nrunnable) {
910 			sysinfo.runque += nrunnable;
911 			sysinfo.runocc++;
912 		}
913 		if (nswapped) {
914 			sysinfo.swpque += nswapped;
915 			sysinfo.swpocc++;
916 		}
917 		sysinfo.waiting += w_io;
918 
919 		/*
920 		 * Wake up fsflush to write out DELWRI
921 		 * buffers, dirty pages and other cached
922 		 * administrative data, e.g. inodes.
923 		 */
924 		if (--fsflushcnt <= 0) {
925 			fsflushcnt = tune.t_fsflushr;
926 			cv_signal(&fsflush_cv);
927 		}
928 
929 		vmmeter();
930 		calcloadavg(genloadavg(&loadavg), hp_avenrun);
931 		for (i = 0; i < 3; i++)
932 			/*
933 			 * At the moment avenrun[] can only hold 31
934 			 * bits of load average as it is a signed
935 			 * int in the API. We need to ensure that
936 			 * hp_avenrun[i] >> (16 - FSHIFT) will not be
937 			 * too large. If it is, we put the largest value
938 			 * that we can use into avenrun[i]. This is
939 			 * kludgey, but about all we can do until we
940 			 * avenrun[] is declared as an array of uint64[]
941 			 */
942 			if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
943 				avenrun[i] = (int32_t)(hp_avenrun[i] >>
944 				    (16 - FSHIFT));
945 			else
946 				avenrun[i] = 0x7fffffff;
947 
948 		cpupart = cp_list_head;
949 		do {
950 			calcloadavg(genloadavg(&cpupart->cp_loadavg),
951 			    cpupart->cp_hp_avenrun);
952 		} while ((cpupart = cpupart->cp_next) != cp_list_head);
953 
954 		/*
955 		 * Wake up the swapper thread if necessary.
956 		 */
957 		if (runin ||
958 		    (runout && (avefree < desfree || wake_sched_sec))) {
959 			t = &t0;
960 			thread_lock(t);
961 			if (t->t_state == TS_STOPPED) {
962 				runin = runout = 0;
963 				wake_sched_sec = 0;
964 				t->t_whystop = 0;
965 				t->t_whatstop = 0;
966 				t->t_schedflag &= ~TS_ALLSTART;
967 				THREAD_TRANSITION(t);
968 				setfrontdq(t);
969 			}
970 			thread_unlock(t);
971 		}
972 	}
973 
974 	/*
975 	 * Wake up the swapper if any high priority swapped-out threads
976 	 * became runable during the last tick.
977 	 */
978 	if (wake_sched) {
979 		t = &t0;
980 		thread_lock(t);
981 		if (t->t_state == TS_STOPPED) {
982 			runin = runout = 0;
983 			wake_sched = 0;
984 			t->t_whystop = 0;
985 			t->t_whatstop = 0;
986 			t->t_schedflag &= ~TS_ALLSTART;
987 			THREAD_TRANSITION(t);
988 			setfrontdq(t);
989 		}
990 		thread_unlock(t);
991 	}
992 }
993 
994 void
995 clock_init(void)
996 {
997 	cyc_handler_t hdlr;
998 	cyc_time_t when;
999 
1000 	hdlr.cyh_func = (cyc_func_t)clock;
1001 	hdlr.cyh_level = CY_LOCK_LEVEL;
1002 	hdlr.cyh_arg = NULL;
1003 
1004 	when.cyt_when = 0;
1005 	when.cyt_interval = nsec_per_tick;
1006 
1007 	mutex_enter(&cpu_lock);
1008 	clock_cyclic = cyclic_add(&hdlr, &when);
1009 	mutex_exit(&cpu_lock);
1010 }
1011 
1012 /*
1013  * Called before calcloadavg to get 10-sec moving loadavg together
1014  */
1015 
1016 static int
1017 genloadavg(struct loadavg_s *avgs)
1018 {
1019 	int avg;
1020 	int spos; /* starting position */
1021 	int cpos; /* moving current position */
1022 	int i;
1023 	int slen;
1024 	hrtime_t hr_avg;
1025 
1026 	/* 10-second snapshot, calculate first positon */
1027 	if (avgs->lg_len == 0) {
1028 		return (0);
1029 	}
1030 	slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1031 
1032 	spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1033 	    S_LOADAVG_SZ + (avgs->lg_cur - 1);
1034 	for (i = hr_avg = 0; i < slen; i++) {
1035 		cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1036 		hr_avg += avgs->lg_loads[cpos];
1037 	}
1038 
1039 	hr_avg = hr_avg / slen;
1040 	avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1041 
1042 	return (avg);
1043 }
1044 
1045 /*
1046  * Run every second from clock () to update the loadavg count available to the
1047  * system and cpu-partitions.
1048  *
1049  * This works by sampling the previous usr, sys, wait time elapsed,
1050  * computing a delta, and adding that delta to the elapsed usr, sys,
1051  * wait increase.
1052  */
1053 
1054 static void
1055 loadavg_update()
1056 {
1057 	cpu_t *cp;
1058 	cpupart_t *cpupart;
1059 	hrtime_t cpu_total;
1060 	int prev;
1061 
1062 	cp = cpu_list;
1063 	loadavg.lg_total = 0;
1064 
1065 	/*
1066 	 * first pass totals up per-cpu statistics for system and cpu
1067 	 * partitions
1068 	 */
1069 
1070 	do {
1071 		struct loadavg_s *lavg;
1072 
1073 		lavg = &cp->cpu_loadavg;
1074 
1075 		cpu_total = cp->cpu_acct[CMS_USER] +
1076 		    cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1077 		/* compute delta against last total */
1078 		scalehrtime(&cpu_total);
1079 		prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1080 		    S_LOADAVG_SZ + (lavg->lg_cur - 1);
1081 		if (lavg->lg_loads[prev] <= 0) {
1082 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1083 			cpu_total = 0;
1084 		} else {
1085 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1086 			cpu_total = cpu_total - lavg->lg_loads[prev];
1087 			if (cpu_total < 0)
1088 				cpu_total = 0;
1089 		}
1090 
1091 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1092 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1093 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1094 
1095 		loadavg.lg_total += cpu_total;
1096 		cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1097 
1098 	} while ((cp = cp->cpu_next) != cpu_list);
1099 
1100 	loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1101 	loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1102 	loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1103 	    loadavg.lg_len + 1 : S_LOADAVG_SZ;
1104 	/*
1105 	 * Second pass updates counts
1106 	 */
1107 	cpupart = cp_list_head;
1108 
1109 	do {
1110 		struct loadavg_s *lavg;
1111 
1112 		lavg = &cpupart->cp_loadavg;
1113 		lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1114 		lavg->lg_total = 0;
1115 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1116 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1117 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1118 
1119 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
1120 
1121 }
1122 
1123 /*
1124  * clock_update() - local clock update
1125  *
1126  * This routine is called by ntp_adjtime() to update the local clock
1127  * phase and frequency. The implementation is of an
1128  * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1129  * routine computes new time and frequency offset estimates for each
1130  * call.  The PPS signal itself determines the new time offset,
1131  * instead of the calling argument.  Presumably, calls to
1132  * ntp_adjtime() occur only when the caller believes the local clock
1133  * is valid within some bound (+-128 ms with NTP). If the caller's
1134  * time is far different than the PPS time, an argument will ensue,
1135  * and it's not clear who will lose.
1136  *
1137  * For uncompensated quartz crystal oscillatores and nominal update
1138  * intervals less than 1024 s, operation should be in phase-lock mode
1139  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1140  * intervals greater than this, operation should be in frequency-lock
1141  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1142  *
1143  * Note: mutex(&tod_lock) is in effect.
1144  */
1145 void
1146 clock_update(int offset)
1147 {
1148 	int ltemp, mtemp, s;
1149 
1150 	ASSERT(MUTEX_HELD(&tod_lock));
1151 
1152 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1153 		return;
1154 	ltemp = offset;
1155 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1156 		ltemp = pps_offset;
1157 
1158 	/*
1159 	 * Scale the phase adjustment and clamp to the operating range.
1160 	 */
1161 	if (ltemp > MAXPHASE)
1162 		time_offset = MAXPHASE * SCALE_UPDATE;
1163 	else if (ltemp < -MAXPHASE)
1164 		time_offset = -(MAXPHASE * SCALE_UPDATE);
1165 	else
1166 		time_offset = ltemp * SCALE_UPDATE;
1167 
1168 	/*
1169 	 * Select whether the frequency is to be controlled and in which
1170 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1171 	 * multiply/divide should be replaced someday.
1172 	 */
1173 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1174 		time_reftime = hrestime.tv_sec;
1175 
1176 	mtemp = hrestime.tv_sec - time_reftime;
1177 	time_reftime = hrestime.tv_sec;
1178 
1179 	if (time_status & STA_FLL) {
1180 		if (mtemp >= MINSEC) {
1181 			ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1182 			    SCALE_UPDATE));
1183 			if (ltemp)
1184 				time_freq += ltemp / SCALE_KH;
1185 		}
1186 	} else {
1187 		if (mtemp < MAXSEC) {
1188 			ltemp *= mtemp;
1189 			if (ltemp)
1190 				time_freq += (int)(((int64_t)ltemp *
1191 				    SCALE_USEC) / SCALE_KF)
1192 				    / (1 << (time_constant * 2));
1193 		}
1194 	}
1195 	if (time_freq > time_tolerance)
1196 		time_freq = time_tolerance;
1197 	else if (time_freq < -time_tolerance)
1198 		time_freq = -time_tolerance;
1199 
1200 	s = hr_clock_lock();
1201 	tod_needsync = 1;
1202 	hr_clock_unlock(s);
1203 }
1204 
1205 /*
1206  * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1207  *
1208  * This routine is called at each PPS interrupt in order to discipline
1209  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1210  * and leaves it in a handy spot for the clock() routine. It
1211  * integrates successive PPS phase differences and calculates the
1212  * frequency offset. This is used in clock() to discipline the CPU
1213  * clock oscillator so that intrinsic frequency error is cancelled out.
1214  * The code requires the caller to capture the time and hardware counter
1215  * value at the on-time PPS signal transition.
1216  *
1217  * Note that, on some Unix systems, this routine runs at an interrupt
1218  * priority level higher than the timer interrupt routine clock().
1219  * Therefore, the variables used are distinct from the clock()
1220  * variables, except for certain exceptions: The PPS frequency pps_freq
1221  * and phase pps_offset variables are determined by this routine and
1222  * updated atomically. The time_tolerance variable can be considered a
1223  * constant, since it is infrequently changed, and then only when the
1224  * PPS signal is disabled. The watchdog counter pps_valid is updated
1225  * once per second by clock() and is atomically cleared in this
1226  * routine.
1227  *
1228  * tvp is the time of the last tick; usec is a microsecond count since the
1229  * last tick.
1230  *
1231  * Note: In Solaris systems, the tick value is actually given by
1232  *       usec_per_tick.  This is called from the serial driver cdintr(),
1233  *	 or equivalent, at a high PIL.  Because the kernel keeps a
1234  *	 highresolution time, the following code can accept either
1235  *	 the traditional argument pair, or the current highres timestamp
1236  *       in tvp and zero in usec.
1237  */
1238 void
1239 ddi_hardpps(struct timeval *tvp, int usec)
1240 {
1241 	int u_usec, v_usec, bigtick;
1242 	time_t cal_sec;
1243 	int cal_usec;
1244 
1245 	/*
1246 	 * An occasional glitch can be produced when the PPS interrupt
1247 	 * occurs in the clock() routine before the time variable is
1248 	 * updated. Here the offset is discarded when the difference
1249 	 * between it and the last one is greater than tick/2, but not
1250 	 * if the interval since the first discard exceeds 30 s.
1251 	 */
1252 	time_status |= STA_PPSSIGNAL;
1253 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1254 	pps_valid = 0;
1255 	u_usec = -tvp->tv_usec;
1256 	if (u_usec < -(MICROSEC/2))
1257 		u_usec += MICROSEC;
1258 	v_usec = pps_offset - u_usec;
1259 	if (v_usec < 0)
1260 		v_usec = -v_usec;
1261 	if (v_usec > (usec_per_tick >> 1)) {
1262 		if (pps_glitch > MAXGLITCH) {
1263 			pps_glitch = 0;
1264 			pps_tf[2] = u_usec;
1265 			pps_tf[1] = u_usec;
1266 		} else {
1267 			pps_glitch++;
1268 			u_usec = pps_offset;
1269 		}
1270 	} else
1271 		pps_glitch = 0;
1272 
1273 	/*
1274 	 * A three-stage median filter is used to help deglitch the pps
1275 	 * time. The median sample becomes the time offset estimate; the
1276 	 * difference between the other two samples becomes the time
1277 	 * dispersion (jitter) estimate.
1278 	 */
1279 	pps_tf[2] = pps_tf[1];
1280 	pps_tf[1] = pps_tf[0];
1281 	pps_tf[0] = u_usec;
1282 	if (pps_tf[0] > pps_tf[1]) {
1283 		if (pps_tf[1] > pps_tf[2]) {
1284 			pps_offset = pps_tf[1];		/* 0 1 2 */
1285 			v_usec = pps_tf[0] - pps_tf[2];
1286 		} else if (pps_tf[2] > pps_tf[0]) {
1287 			pps_offset = pps_tf[0];		/* 2 0 1 */
1288 			v_usec = pps_tf[2] - pps_tf[1];
1289 		} else {
1290 			pps_offset = pps_tf[2];		/* 0 2 1 */
1291 			v_usec = pps_tf[0] - pps_tf[1];
1292 		}
1293 	} else {
1294 		if (pps_tf[1] < pps_tf[2]) {
1295 			pps_offset = pps_tf[1];		/* 2 1 0 */
1296 			v_usec = pps_tf[2] - pps_tf[0];
1297 		} else  if (pps_tf[2] < pps_tf[0]) {
1298 			pps_offset = pps_tf[0];		/* 1 0 2 */
1299 			v_usec = pps_tf[1] - pps_tf[2];
1300 		} else {
1301 			pps_offset = pps_tf[2];		/* 1 2 0 */
1302 			v_usec = pps_tf[1] - pps_tf[0];
1303 		}
1304 	}
1305 	if (v_usec > MAXTIME)
1306 		pps_jitcnt++;
1307 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1308 	pps_jitter += v_usec / (1 << PPS_AVG);
1309 	if (pps_jitter > (MAXTIME >> 1))
1310 		time_status |= STA_PPSJITTER;
1311 
1312 	/*
1313 	 * During the calibration interval adjust the starting time when
1314 	 * the tick overflows. At the end of the interval compute the
1315 	 * duration of the interval and the difference of the hardware
1316 	 * counters at the beginning and end of the interval. This code
1317 	 * is deliciously complicated by the fact valid differences may
1318 	 * exceed the value of tick when using long calibration
1319 	 * intervals and small ticks. Note that the counter can be
1320 	 * greater than tick if caught at just the wrong instant, but
1321 	 * the values returned and used here are correct.
1322 	 */
1323 	bigtick = (int)usec_per_tick * SCALE_USEC;
1324 	pps_usec -= pps_freq;
1325 	if (pps_usec >= bigtick)
1326 		pps_usec -= bigtick;
1327 	if (pps_usec < 0)
1328 		pps_usec += bigtick;
1329 	pps_time.tv_sec++;
1330 	pps_count++;
1331 	if (pps_count < (1 << pps_shift))
1332 		return;
1333 	pps_count = 0;
1334 	pps_calcnt++;
1335 	u_usec = usec * SCALE_USEC;
1336 	v_usec = pps_usec - u_usec;
1337 	if (v_usec >= bigtick >> 1)
1338 		v_usec -= bigtick;
1339 	if (v_usec < -(bigtick >> 1))
1340 		v_usec += bigtick;
1341 	if (v_usec < 0)
1342 		v_usec = -(-v_usec >> pps_shift);
1343 	else
1344 		v_usec = v_usec >> pps_shift;
1345 	pps_usec = u_usec;
1346 	cal_sec = tvp->tv_sec;
1347 	cal_usec = tvp->tv_usec;
1348 	cal_sec -= pps_time.tv_sec;
1349 	cal_usec -= pps_time.tv_usec;
1350 	if (cal_usec < 0) {
1351 		cal_usec += MICROSEC;
1352 		cal_sec--;
1353 	}
1354 	pps_time = *tvp;
1355 
1356 	/*
1357 	 * Check for lost interrupts, noise, excessive jitter and
1358 	 * excessive frequency error. The number of timer ticks during
1359 	 * the interval may vary +-1 tick. Add to this a margin of one
1360 	 * tick for the PPS signal jitter and maximum frequency
1361 	 * deviation. If the limits are exceeded, the calibration
1362 	 * interval is reset to the minimum and we start over.
1363 	 */
1364 	u_usec = (int)usec_per_tick << 1;
1365 	if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1366 	    (cal_sec == 0 && cal_usec < u_usec)) ||
1367 	    v_usec > time_tolerance || v_usec < -time_tolerance) {
1368 		pps_errcnt++;
1369 		pps_shift = PPS_SHIFT;
1370 		pps_intcnt = 0;
1371 		time_status |= STA_PPSERROR;
1372 		return;
1373 	}
1374 
1375 	/*
1376 	 * A three-stage median filter is used to help deglitch the pps
1377 	 * frequency. The median sample becomes the frequency offset
1378 	 * estimate; the difference between the other two samples
1379 	 * becomes the frequency dispersion (stability) estimate.
1380 	 */
1381 	pps_ff[2] = pps_ff[1];
1382 	pps_ff[1] = pps_ff[0];
1383 	pps_ff[0] = v_usec;
1384 	if (pps_ff[0] > pps_ff[1]) {
1385 		if (pps_ff[1] > pps_ff[2]) {
1386 			u_usec = pps_ff[1];		/* 0 1 2 */
1387 			v_usec = pps_ff[0] - pps_ff[2];
1388 		} else if (pps_ff[2] > pps_ff[0]) {
1389 			u_usec = pps_ff[0];		/* 2 0 1 */
1390 			v_usec = pps_ff[2] - pps_ff[1];
1391 		} else {
1392 			u_usec = pps_ff[2];		/* 0 2 1 */
1393 			v_usec = pps_ff[0] - pps_ff[1];
1394 		}
1395 	} else {
1396 		if (pps_ff[1] < pps_ff[2]) {
1397 			u_usec = pps_ff[1];		/* 2 1 0 */
1398 			v_usec = pps_ff[2] - pps_ff[0];
1399 		} else  if (pps_ff[2] < pps_ff[0]) {
1400 			u_usec = pps_ff[0];		/* 1 0 2 */
1401 			v_usec = pps_ff[1] - pps_ff[2];
1402 		} else {
1403 			u_usec = pps_ff[2];		/* 1 2 0 */
1404 			v_usec = pps_ff[1] - pps_ff[0];
1405 		}
1406 	}
1407 
1408 	/*
1409 	 * Here the frequency dispersion (stability) is updated. If it
1410 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1411 	 * offset is updated as well, but clamped to the tolerance. It
1412 	 * will be processed later by the clock() routine.
1413 	 */
1414 	v_usec = (v_usec >> 1) - pps_stabil;
1415 	if (v_usec < 0)
1416 		pps_stabil -= -v_usec >> PPS_AVG;
1417 	else
1418 		pps_stabil += v_usec >> PPS_AVG;
1419 	if (pps_stabil > MAXFREQ >> 2) {
1420 		pps_stbcnt++;
1421 		time_status |= STA_PPSWANDER;
1422 		return;
1423 	}
1424 	if (time_status & STA_PPSFREQ) {
1425 		if (u_usec < 0) {
1426 			pps_freq -= -u_usec >> PPS_AVG;
1427 			if (pps_freq < -time_tolerance)
1428 				pps_freq = -time_tolerance;
1429 			u_usec = -u_usec;
1430 		} else {
1431 			pps_freq += u_usec >> PPS_AVG;
1432 			if (pps_freq > time_tolerance)
1433 				pps_freq = time_tolerance;
1434 		}
1435 	}
1436 
1437 	/*
1438 	 * Here the calibration interval is adjusted. If the maximum
1439 	 * time difference is greater than tick / 4, reduce the interval
1440 	 * by half. If this is not the case for four consecutive
1441 	 * intervals, double the interval.
1442 	 */
1443 	if (u_usec << pps_shift > bigtick >> 2) {
1444 		pps_intcnt = 0;
1445 		if (pps_shift > PPS_SHIFT)
1446 			pps_shift--;
1447 	} else if (pps_intcnt >= 4) {
1448 		pps_intcnt = 0;
1449 		if (pps_shift < PPS_SHIFTMAX)
1450 			pps_shift++;
1451 	} else
1452 		pps_intcnt++;
1453 
1454 	/*
1455 	 * If recovering from kmdb, then make sure the tod chip gets resynced.
1456 	 * If we took an early exit above, then we don't yet have a stable
1457 	 * calibration signal to lock onto, so don't mark the tod for sync
1458 	 * until we get all the way here.
1459 	 */
1460 	{
1461 		int s = hr_clock_lock();
1462 
1463 		tod_needsync = 1;
1464 		hr_clock_unlock(s);
1465 	}
1466 }
1467 
1468 /*
1469  * Handle clock tick processing for a thread.
1470  * Check for timer action, enforce CPU rlimit, do profiling etc.
1471  */
1472 void
1473 clock_tick(kthread_t *t)
1474 {
1475 	struct proc *pp;
1476 	klwp_id_t    lwp;
1477 	struct as *as;
1478 	clock_t	utime;
1479 	clock_t	stime;
1480 	int	poke = 0;		/* notify another CPU */
1481 	int	user_mode;
1482 	size_t	 rss;
1483 
1484 	/* Must be operating on a lwp/thread */
1485 	if ((lwp = ttolwp(t)) == NULL) {
1486 		panic("clock_tick: no lwp");
1487 		/*NOTREACHED*/
1488 	}
1489 
1490 	CL_TICK(t);	/* Class specific tick processing */
1491 	DTRACE_SCHED1(tick, kthread_t *, t);
1492 
1493 	pp = ttoproc(t);
1494 
1495 	/* pp->p_lock makes sure that the thread does not exit */
1496 	ASSERT(MUTEX_HELD(&pp->p_lock));
1497 
1498 	user_mode = (lwp->lwp_state == LWP_USER);
1499 
1500 	/*
1501 	 * Update process times. Should use high res clock and state
1502 	 * changes instead of statistical sampling method. XXX
1503 	 */
1504 	if (user_mode) {
1505 		pp->p_utime++;
1506 		pp->p_task->tk_cpu_time++;
1507 	} else {
1508 		pp->p_stime++;
1509 		pp->p_task->tk_cpu_time++;
1510 	}
1511 	as = pp->p_as;
1512 
1513 	/*
1514 	 * Update user profiling statistics. Get the pc from the
1515 	 * lwp when the AST happens.
1516 	 */
1517 	if (pp->p_prof.pr_scale) {
1518 		atomic_add_32(&lwp->lwp_oweupc, 1);
1519 		if (user_mode) {
1520 			poke = 1;
1521 			aston(t);
1522 		}
1523 	}
1524 
1525 	utime = pp->p_utime;
1526 	stime = pp->p_stime;
1527 
1528 	/*
1529 	 * If CPU was in user state, process lwp-virtual time
1530 	 * interval timer.
1531 	 */
1532 	if (user_mode &&
1533 	    timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1534 	    itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec_per_tick) == 0) {
1535 		poke = 1;
1536 		sigtoproc(pp, t, SIGVTALRM);
1537 	}
1538 
1539 	if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1540 	    itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec_per_tick) == 0) {
1541 		poke = 1;
1542 		sigtoproc(pp, t, SIGPROF);
1543 	}
1544 
1545 	/*
1546 	 * Enforce CPU resource controls:
1547 	 *   (a) process.max-cpu-time resource control
1548 	 */
1549 	(void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1550 	    (utime + stime)/hz, RCA_UNSAFE_SIGINFO);
1551 
1552 	/*
1553 	 *   (b) task.max-cpu-time resource control
1554 	 */
1555 	(void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, pp, 1,
1556 	    RCA_UNSAFE_SIGINFO);
1557 
1558 	/*
1559 	 * Update memory usage for the currently running process.
1560 	 */
1561 	rss = rm_asrss(as);
1562 	PTOU(pp)->u_mem += rss;
1563 	if (rss > PTOU(pp)->u_mem_max)
1564 		PTOU(pp)->u_mem_max = rss;
1565 
1566 	/*
1567 	 * Notify the CPU the thread is running on.
1568 	 */
1569 	if (poke && t->t_cpu != CPU)
1570 		poke_cpu(t->t_cpu->cpu_id);
1571 }
1572 
1573 void
1574 profil_tick(uintptr_t upc)
1575 {
1576 	int ticks;
1577 	proc_t *p = ttoproc(curthread);
1578 	klwp_t *lwp = ttolwp(curthread);
1579 	struct prof *pr = &p->p_prof;
1580 
1581 	do {
1582 		ticks = lwp->lwp_oweupc;
1583 	} while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1584 
1585 	mutex_enter(&p->p_pflock);
1586 	if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1587 		/*
1588 		 * Old-style profiling
1589 		 */
1590 		uint16_t *slot = pr->pr_base;
1591 		uint16_t old, new;
1592 		if (pr->pr_scale != 2) {
1593 			uintptr_t delta = upc - pr->pr_off;
1594 			uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1595 			    (((delta & 0xffff) * pr->pr_scale) >> 16);
1596 			if (byteoff >= (uintptr_t)pr->pr_size) {
1597 				mutex_exit(&p->p_pflock);
1598 				return;
1599 			}
1600 			slot += byteoff / sizeof (uint16_t);
1601 		}
1602 		if (fuword16(slot, &old) < 0 ||
1603 		    (new = old + ticks) > SHRT_MAX ||
1604 		    suword16(slot, new) < 0) {
1605 			pr->pr_scale = 0;
1606 		}
1607 	} else if (pr->pr_scale == 1) {
1608 		/*
1609 		 * PC Sampling
1610 		 */
1611 		model_t model = lwp_getdatamodel(lwp);
1612 		int result;
1613 #ifdef __lint
1614 		model = model;
1615 #endif
1616 		while (ticks-- > 0) {
1617 			if (pr->pr_samples == pr->pr_size) {
1618 				/* buffer full, turn off sampling */
1619 				pr->pr_scale = 0;
1620 				break;
1621 			}
1622 			switch (SIZEOF_PTR(model)) {
1623 			case sizeof (uint32_t):
1624 				result = suword32(pr->pr_base, (uint32_t)upc);
1625 				break;
1626 #ifdef _LP64
1627 			case sizeof (uint64_t):
1628 				result = suword64(pr->pr_base, (uint64_t)upc);
1629 				break;
1630 #endif
1631 			default:
1632 				cmn_err(CE_WARN, "profil_tick: unexpected "
1633 				    "data model");
1634 				result = -1;
1635 				break;
1636 			}
1637 			if (result != 0) {
1638 				pr->pr_scale = 0;
1639 				break;
1640 			}
1641 			pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1642 			pr->pr_samples++;
1643 		}
1644 	}
1645 	mutex_exit(&p->p_pflock);
1646 }
1647 
1648 static void
1649 delay_wakeup(void *arg)
1650 {
1651 	kthread_t *t = arg;
1652 
1653 	mutex_enter(&t->t_delay_lock);
1654 	cv_signal(&t->t_delay_cv);
1655 	mutex_exit(&t->t_delay_lock);
1656 }
1657 
1658 void
1659 delay(clock_t ticks)
1660 {
1661 	kthread_t *t = curthread;
1662 	clock_t deadline = lbolt + ticks;
1663 	clock_t timeleft;
1664 	timeout_id_t id;
1665 
1666 	if (panicstr && ticks > 0) {
1667 		/*
1668 		 * Timeouts aren't running, so all we can do is spin.
1669 		 */
1670 		drv_usecwait(TICK_TO_USEC(ticks));
1671 		return;
1672 	}
1673 
1674 	while ((timeleft = deadline - lbolt) > 0) {
1675 		mutex_enter(&t->t_delay_lock);
1676 		id = timeout(delay_wakeup, t, timeleft);
1677 		cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1678 		mutex_exit(&t->t_delay_lock);
1679 		(void) untimeout(id);
1680 	}
1681 }
1682 
1683 /*
1684  * Like delay, but interruptible by a signal.
1685  */
1686 int
1687 delay_sig(clock_t ticks)
1688 {
1689 	clock_t deadline = lbolt + ticks;
1690 	clock_t rc;
1691 
1692 	mutex_enter(&curthread->t_delay_lock);
1693 	do {
1694 		rc = cv_timedwait_sig(&curthread->t_delay_cv,
1695 		    &curthread->t_delay_lock, deadline);
1696 	} while (rc > 0);
1697 	mutex_exit(&curthread->t_delay_lock);
1698 	if (rc == 0)
1699 		return (EINTR);
1700 	return (0);
1701 }
1702 
1703 #define	SECONDS_PER_DAY 86400
1704 
1705 /*
1706  * Initialize the system time based on the TOD chip.  approx is used as
1707  * an approximation of time (e.g. from the filesystem) in the event that
1708  * the TOD chip has been cleared or is unresponsive.  An approx of -1
1709  * means the filesystem doesn't keep time.
1710  */
1711 void
1712 clkset(time_t approx)
1713 {
1714 	timestruc_t ts;
1715 	int spl;
1716 	int set_clock = 0;
1717 
1718 	mutex_enter(&tod_lock);
1719 	ts = tod_get();
1720 
1721 	if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1722 		/*
1723 		 * If the TOD chip is reporting some time after 1971,
1724 		 * then it probably didn't lose power or become otherwise
1725 		 * cleared in the recent past;  check to assure that
1726 		 * the time coming from the filesystem isn't in the future
1727 		 * according to the TOD chip.
1728 		 */
1729 		if (approx != -1 && approx > ts.tv_sec) {
1730 			cmn_err(CE_WARN, "Last shutdown is later "
1731 			    "than time on time-of-day chip; check date.");
1732 		}
1733 	} else {
1734 		/*
1735 		 * If the TOD chip isn't giving correct time, then set it to
1736 		 * the time that was passed in as a rough estimate.  If we
1737 		 * don't have an estimate, then set the clock back to a time
1738 		 * when Oliver North, ALF and Dire Straits were all on the
1739 		 * collective brain:  1987.
1740 		 */
1741 		timestruc_t tmp;
1742 		if (approx == -1)
1743 			ts.tv_sec = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1744 		else
1745 			ts.tv_sec = approx;
1746 		ts.tv_nsec = 0;
1747 
1748 		/*
1749 		 * Attempt to write the new time to the TOD chip.  Set spl high
1750 		 * to avoid getting preempted between the tod_set and tod_get.
1751 		 */
1752 		spl = splhi();
1753 		tod_set(ts);
1754 		tmp = tod_get();
1755 		splx(spl);
1756 
1757 		if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1758 			tod_broken = 1;
1759 			dosynctodr = 0;
1760 			cmn_err(CE_WARN, "Time-of-day chip unresponsive;"
1761 			    " dead batteries?");
1762 		} else {
1763 			cmn_err(CE_WARN, "Time-of-day chip had "
1764 			    "incorrect date; check and reset.");
1765 		}
1766 		set_clock = 1;
1767 	}
1768 
1769 	if (!boot_time) {
1770 		boot_time = ts.tv_sec;
1771 		set_clock = 1;
1772 	}
1773 
1774 	if (set_clock)
1775 		set_hrestime(&ts);
1776 
1777 	mutex_exit(&tod_lock);
1778 }
1779 
1780 int	hrestime_isvalid = 0;
1781 
1782 void
1783 set_hrestime(timestruc_t *ts)
1784 {
1785 	int spl = hr_clock_lock();
1786 	hrestime = *ts;
1787 	/*
1788 	 * hrestime must be visible before hrestime_isvalid
1789 	 * is set to 1
1790 	 */
1791 	membar_enter();
1792 	timedelta = 0;
1793 	hrestime_isvalid = 1;
1794 	hr_clock_unlock(spl);
1795 }
1796 
1797 static uint_t deadman_seconds;
1798 static uint32_t deadman_panics;
1799 static int deadman_enabled = 0;
1800 static int deadman_panic_timers = 1;
1801 
1802 static void
1803 deadman(void)
1804 {
1805 	if (panicstr) {
1806 		/*
1807 		 * During panic, other CPUs besides the panic
1808 		 * master continue to handle cyclics and some other
1809 		 * interrupts.  The code below is intended to be
1810 		 * single threaded, so any CPU other than the master
1811 		 * must keep out.
1812 		 */
1813 		if (CPU->cpu_id != panic_cpu.cpu_id)
1814 			return;
1815 
1816 		/*
1817 		 * If we're panicking, the deadman cyclic continues to increase
1818 		 * lbolt in case the dump device driver relies on this for
1819 		 * timeouts.  Note that we rely on deadman() being invoked once
1820 		 * per second, and credit lbolt and lbolt64 with hz ticks each.
1821 		 */
1822 		lbolt += hz;
1823 		lbolt64 += hz;
1824 
1825 #ifdef __sparc
1826 		watchdog_pat();
1827 #endif
1828 
1829 		if (!deadman_panic_timers)
1830 			return; /* allow all timers to be manually disabled */
1831 
1832 		/*
1833 		 * If we are generating a crash dump or syncing filesystems and
1834 		 * the corresponding timer is set, decrement it and re-enter
1835 		 * the panic code to abort it and advance to the next state.
1836 		 * The panic states and triggers are explained in panic.c.
1837 		 */
1838 		if (panic_dump) {
1839 			if (dump_timeleft && (--dump_timeleft == 0)) {
1840 				panic("panic dump timeout");
1841 				/*NOTREACHED*/
1842 			}
1843 		} else if (panic_sync) {
1844 			if (sync_timeleft && (--sync_timeleft == 0)) {
1845 				panic("panic sync timeout");
1846 				/*NOTREACHED*/
1847 			}
1848 		}
1849 
1850 		return;
1851 	}
1852 
1853 	if (lbolt != CPU->cpu_deadman_lbolt) {
1854 		CPU->cpu_deadman_lbolt = lbolt;
1855 		CPU->cpu_deadman_countdown = deadman_seconds;
1856 		return;
1857 	}
1858 
1859 	if (CPU->cpu_deadman_countdown-- > 0)
1860 		return;
1861 
1862 	/*
1863 	 * Regardless of whether or not we actually bring the system down,
1864 	 * bump the deadman_panics variable.
1865 	 *
1866 	 * N.B. deadman_panics is incremented once for each CPU that
1867 	 * passes through here.  It's expected that all the CPUs will
1868 	 * detect this condition within one second of each other, so
1869 	 * when deadman_enabled is off, deadman_panics will
1870 	 * typically be a multiple of the total number of CPUs in
1871 	 * the system.
1872 	 */
1873 	atomic_add_32(&deadman_panics, 1);
1874 
1875 	if (!deadman_enabled) {
1876 		CPU->cpu_deadman_countdown = deadman_seconds;
1877 		return;
1878 	}
1879 
1880 	/*
1881 	 * If we're here, we want to bring the system down.
1882 	 */
1883 	panic("deadman: timed out after %d seconds of clock "
1884 	    "inactivity", deadman_seconds);
1885 	/*NOTREACHED*/
1886 }
1887 
1888 /*ARGSUSED*/
1889 static void
1890 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
1891 {
1892 	cpu->cpu_deadman_lbolt = 0;
1893 	cpu->cpu_deadman_countdown = deadman_seconds;
1894 
1895 	hdlr->cyh_func = (cyc_func_t)deadman;
1896 	hdlr->cyh_level = CY_HIGH_LEVEL;
1897 	hdlr->cyh_arg = NULL;
1898 
1899 	/*
1900 	 * Stagger the CPUs so that they don't all run deadman() at
1901 	 * the same time.  Simplest reason to do this is to make it
1902 	 * more likely that only one CPU will panic in case of a
1903 	 * timeout.  This is (strictly speaking) an aesthetic, not a
1904 	 * technical consideration.
1905 	 *
1906 	 * The interval must be one second in accordance with the
1907 	 * code in deadman() above to increase lbolt during panic.
1908 	 */
1909 	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
1910 	when->cyt_interval = NANOSEC;
1911 }
1912 
1913 
1914 void
1915 deadman_init(void)
1916 {
1917 	cyc_omni_handler_t hdlr;
1918 
1919 	if (deadman_seconds == 0)
1920 		deadman_seconds = snoop_interval / MICROSEC;
1921 
1922 	if (snooping)
1923 		deadman_enabled = 1;
1924 
1925 	hdlr.cyo_online = deadman_online;
1926 	hdlr.cyo_offline = NULL;
1927 	hdlr.cyo_arg = NULL;
1928 
1929 	mutex_enter(&cpu_lock);
1930 	deadman_cyclic = cyclic_add_omni(&hdlr);
1931 	mutex_exit(&cpu_lock);
1932 }
1933 
1934 /*
1935  * tod_fault() is for updating tod validate mechanism state:
1936  * (1) TOD_NOFAULT: for resetting the state to 'normal'.
1937  *     currently used for debugging only
1938  * (2) The following four cases detected by tod validate mechanism:
1939  *       TOD_REVERSED: current tod value is less than previous value.
1940  *       TOD_STALLED: current tod value hasn't advanced.
1941  *       TOD_JUMPED: current tod value advanced too far from previous value.
1942  *       TOD_RATECHANGED: the ratio between average tod delta and
1943  *       average tick delta has changed.
1944  */
1945 enum tod_fault_type
1946 tod_fault(enum tod_fault_type ftype, int off)
1947 {
1948 	ASSERT(MUTEX_HELD(&tod_lock));
1949 
1950 	if (tod_faulted != ftype) {
1951 		switch (ftype) {
1952 		case TOD_NOFAULT:
1953 			plat_tod_fault(TOD_NOFAULT);
1954 			cmn_err(CE_NOTE, "Restarted tracking "
1955 					"Time of Day clock.");
1956 			tod_faulted = ftype;
1957 			break;
1958 		case TOD_REVERSED:
1959 		case TOD_JUMPED:
1960 			if (tod_faulted == TOD_NOFAULT) {
1961 				plat_tod_fault(ftype);
1962 				cmn_err(CE_WARN, "Time of Day clock error: "
1963 				    "reason [%s by 0x%x]. -- "
1964 				    " Stopped tracking Time Of Day clock.",
1965 				    tod_fault_table[ftype], off);
1966 				tod_faulted = ftype;
1967 			}
1968 			break;
1969 		case TOD_STALLED:
1970 		case TOD_RATECHANGED:
1971 			if (tod_faulted == TOD_NOFAULT) {
1972 				plat_tod_fault(ftype);
1973 				cmn_err(CE_WARN, "Time of Day clock error: "
1974 				    "reason [%s]. -- "
1975 				    " Stopped tracking Time Of Day clock.",
1976 				    tod_fault_table[ftype]);
1977 				tod_faulted = ftype;
1978 			}
1979 			break;
1980 		default:
1981 			break;
1982 		}
1983 	}
1984 	return (tod_faulted);
1985 }
1986 
1987 void
1988 tod_fault_reset()
1989 {
1990 	tod_fault_reset_flag = 1;
1991 }
1992 
1993 
1994 /*
1995  * tod_validate() is used for checking values returned by tod_get().
1996  * Four error cases can be detected by this routine:
1997  *   TOD_REVERSED: current tod value is less than previous.
1998  *   TOD_STALLED: current tod value hasn't advanced.
1999  *   TOD_JUMPED: current tod value advanced too far from previous value.
2000  *   TOD_RATECHANGED: the ratio between average tod delta and
2001  *   average tick delta has changed.
2002  */
2003 time_t
2004 tod_validate(time_t tod)
2005 {
2006 	time_t diff_tod;
2007 	hrtime_t diff_tick;
2008 
2009 	long dtick;
2010 	int dtick_delta;
2011 
2012 	int off = 0;
2013 	enum tod_fault_type tod_bad = TOD_NOFAULT;
2014 
2015 	static int firsttime = 1;
2016 
2017 	static time_t prev_tod = 0;
2018 	static hrtime_t prev_tick = 0;
2019 	static long dtick_avg = TOD_REF_FREQ;
2020 
2021 	hrtime_t tick = gethrtime();
2022 
2023 	ASSERT(MUTEX_HELD(&tod_lock));
2024 
2025 	/*
2026 	 * tod_validate_enable is patchable via /etc/system.
2027 	 * If TOD is already faulted, or if TOD validation is deferred,
2028 	 * there is nothing to do.
2029 	 */
2030 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2031 	    tod_validate_deferred) {
2032 		return (tod);
2033 	}
2034 
2035 	/*
2036 	 * Update prev_tod and prev_tick values for first run
2037 	 */
2038 	if (firsttime) {
2039 		firsttime = 0;
2040 		prev_tod = tod;
2041 		prev_tick = tick;
2042 		return (tod);
2043 	}
2044 
2045 	/*
2046 	 * For either of these conditions, we need to reset ourself
2047 	 * and start validation from zero since each condition
2048 	 * indicates that the TOD will be updated with new value
2049 	 * Also, note that tod_needsync will be reset in clock()
2050 	 */
2051 	if (tod_needsync || tod_fault_reset_flag) {
2052 		firsttime = 1;
2053 		prev_tod = 0;
2054 		prev_tick = 0;
2055 		dtick_avg = TOD_REF_FREQ;
2056 
2057 		if (tod_fault_reset_flag)
2058 			tod_fault_reset_flag = 0;
2059 
2060 		return (tod);
2061 	}
2062 
2063 	/* test hook */
2064 	switch (tod_unit_test) {
2065 	case 1: /* for testing jumping tod */
2066 		tod += tod_test_injector;
2067 		tod_unit_test = 0;
2068 		break;
2069 	case 2:	/* for testing stuck tod bit */
2070 		tod |= 1 << tod_test_injector;
2071 		tod_unit_test = 0;
2072 		break;
2073 	case 3:	/* for testing stalled tod */
2074 		tod = prev_tod;
2075 		tod_unit_test = 0;
2076 		break;
2077 	case 4:	/* reset tod fault status */
2078 		(void) tod_fault(TOD_NOFAULT, 0);
2079 		tod_unit_test = 0;
2080 		break;
2081 	default:
2082 		break;
2083 	}
2084 
2085 	diff_tod = tod - prev_tod;
2086 	diff_tick = tick - prev_tick;
2087 
2088 	ASSERT(diff_tick >= 0);
2089 
2090 	if (diff_tod < 0) {
2091 		/* ERROR - tod reversed */
2092 		tod_bad = TOD_REVERSED;
2093 		off = (int)(prev_tod - tod);
2094 	} else if (diff_tod == 0) {
2095 		/* tod did not advance */
2096 		if (diff_tick > TOD_STALL_THRESHOLD) {
2097 			/* ERROR - tod stalled */
2098 			tod_bad = TOD_STALLED;
2099 		} else {
2100 			/*
2101 			 * Make sure we don't update prev_tick
2102 			 * so that diff_tick is calculated since
2103 			 * the first diff_tod == 0
2104 			 */
2105 			return (tod);
2106 		}
2107 	} else {
2108 		/* calculate dtick */
2109 		dtick = diff_tick / diff_tod;
2110 
2111 		/* update dtick averages */
2112 		dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2113 
2114 		/*
2115 		 * Calculate dtick_delta as
2116 		 * variation from reference freq in quartiles
2117 		 */
2118 		dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2119 			(TOD_REF_FREQ >> 2);
2120 
2121 		/*
2122 		 * Even with a perfectly functioning TOD device,
2123 		 * when the number of elapsed seconds is low the
2124 		 * algorithm can calculate a rate that is beyond
2125 		 * tolerance, causing an error.  The algorithm is
2126 		 * inaccurate when elapsed time is low (less than
2127 		 * 5 seconds).
2128 		 */
2129 		if (diff_tod > 4) {
2130 			if (dtick < TOD_JUMP_THRESHOLD) {
2131 				/* ERROR - tod jumped */
2132 				tod_bad = TOD_JUMPED;
2133 				off = (int)diff_tod;
2134 			} else if (dtick_delta) {
2135 				/* ERROR - change in clock rate */
2136 				tod_bad = TOD_RATECHANGED;
2137 			}
2138 		}
2139 	}
2140 
2141 	if (tod_bad != TOD_NOFAULT) {
2142 		(void) tod_fault(tod_bad, off);
2143 
2144 		/*
2145 		 * Disable dosynctodr since we are going to fault
2146 		 * the TOD chip anyway here
2147 		 */
2148 		dosynctodr = 0;
2149 
2150 		/*
2151 		 * Set tod to the correct value from hrestime
2152 		 */
2153 		tod = hrestime.tv_sec;
2154 	}
2155 
2156 	prev_tod = tod;
2157 	prev_tick = tick;
2158 	return (tod);
2159 }
2160 
2161 static void
2162 calcloadavg(int nrun, uint64_t *hp_ave)
2163 {
2164 	static int64_t f[3] = { 135, 27, 9 };
2165 	uint_t i;
2166 	int64_t q, r;
2167 
2168 	/*
2169 	 * Compute load average over the last 1, 5, and 15 minutes
2170 	 * (60, 300, and 900 seconds).  The constants in f[3] are for
2171 	 * exponential decay:
2172 	 * (1 - exp(-1/60)) << 13 = 135,
2173 	 * (1 - exp(-1/300)) << 13 = 27,
2174 	 * (1 - exp(-1/900)) << 13 = 9.
2175 	 */
2176 
2177 	/*
2178 	 * a little hoop-jumping to avoid integer overflow
2179 	 */
2180 	for (i = 0; i < 3; i++) {
2181 		q = (hp_ave[i]  >> 16) << 7;
2182 		r = (hp_ave[i]  & 0xffff) << 7;
2183 		hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2184 	}
2185 }
2186