xref: /titanic_50/usr/src/uts/common/os/clock.c (revision bb1fad37c75defa7a6ae25f00c1d4b356713b734)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved	*/
23 
24 /*
25  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/t_lock.h>
31 #include <sys/types.h>
32 #include <sys/tuneable.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/cpuvar.h>
36 #include <sys/lgrp.h>
37 #include <sys/user.h>
38 #include <sys/proc.h>
39 #include <sys/callo.h>
40 #include <sys/kmem.h>
41 #include <sys/var.h>
42 #include <sys/cmn_err.h>
43 #include <sys/swap.h>
44 #include <sys/vmsystm.h>
45 #include <sys/class.h>
46 #include <sys/time.h>
47 #include <sys/debug.h>
48 #include <sys/vtrace.h>
49 #include <sys/spl.h>
50 #include <sys/atomic.h>
51 #include <sys/dumphdr.h>
52 #include <sys/archsystm.h>
53 #include <sys/fs/swapnode.h>
54 #include <sys/panic.h>
55 #include <sys/disp.h>
56 #include <sys/msacct.h>
57 #include <sys/mem_cage.h>
58 
59 #include <vm/page.h>
60 #include <vm/anon.h>
61 #include <vm/rm.h>
62 #include <sys/cyclic.h>
63 #include <sys/cpupart.h>
64 #include <sys/rctl.h>
65 #include <sys/task.h>
66 #include <sys/sdt.h>
67 #include <sys/ddi_timer.h>
68 #include <sys/random.h>
69 #include <sys/modctl.h>
70 
71 /*
72  * for NTP support
73  */
74 #include <sys/timex.h>
75 #include <sys/inttypes.h>
76 
77 #include <sys/sunddi.h>
78 #include <sys/clock_impl.h>
79 
80 /*
81  * clock() is called straight from the clock cyclic; see clock_init().
82  *
83  * Functions:
84  *	reprime clock
85  *	maintain date
86  *	jab the scheduler
87  */
88 
89 extern kcondvar_t	fsflush_cv;
90 extern sysinfo_t	sysinfo;
91 extern vminfo_t	vminfo;
92 extern int	idleswtch;	/* flag set while idle in pswtch() */
93 extern hrtime_t volatile devinfo_freeze;
94 
95 /*
96  * high-precision avenrun values.  These are needed to make the
97  * regular avenrun values accurate.
98  */
99 static uint64_t hp_avenrun[3];
100 int	avenrun[3];		/* FSCALED average run queue lengths */
101 time_t	time;	/* time in seconds since 1970 - for compatibility only */
102 
103 static struct loadavg_s loadavg;
104 /*
105  * Phase/frequency-lock loop (PLL/FLL) definitions
106  *
107  * The following variables are read and set by the ntp_adjtime() system
108  * call.
109  *
110  * time_state shows the state of the system clock, with values defined
111  * in the timex.h header file.
112  *
113  * time_status shows the status of the system clock, with bits defined
114  * in the timex.h header file.
115  *
116  * time_offset is used by the PLL/FLL to adjust the system time in small
117  * increments.
118  *
119  * time_constant determines the bandwidth or "stiffness" of the PLL.
120  *
121  * time_tolerance determines maximum frequency error or tolerance of the
122  * CPU clock oscillator and is a property of the architecture; however,
123  * in principle it could change as result of the presence of external
124  * discipline signals, for instance.
125  *
126  * time_precision is usually equal to the kernel tick variable; however,
127  * in cases where a precision clock counter or external clock is
128  * available, the resolution can be much less than this and depend on
129  * whether the external clock is working or not.
130  *
131  * time_maxerror is initialized by a ntp_adjtime() call and increased by
132  * the kernel once each second to reflect the maximum error bound
133  * growth.
134  *
135  * time_esterror is set and read by the ntp_adjtime() call, but
136  * otherwise not used by the kernel.
137  */
138 int32_t time_state = TIME_OK;	/* clock state */
139 int32_t time_status = STA_UNSYNC;	/* clock status bits */
140 int32_t time_offset = 0;		/* time offset (us) */
141 int32_t time_constant = 0;		/* pll time constant */
142 int32_t time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
143 int32_t time_precision = 1;	/* clock precision (us) */
144 int32_t time_maxerror = MAXPHASE;	/* maximum error (us) */
145 int32_t time_esterror = MAXPHASE;	/* estimated error (us) */
146 
147 /*
148  * The following variables establish the state of the PLL/FLL and the
149  * residual time and frequency offset of the local clock. The scale
150  * factors are defined in the timex.h header file.
151  *
152  * time_phase and time_freq are the phase increment and the frequency
153  * increment, respectively, of the kernel time variable.
154  *
155  * time_freq is set via ntp_adjtime() from a value stored in a file when
156  * the synchronization daemon is first started. Its value is retrieved
157  * via ntp_adjtime() and written to the file about once per hour by the
158  * daemon.
159  *
160  * time_adj is the adjustment added to the value of tick at each timer
161  * interrupt and is recomputed from time_phase and time_freq at each
162  * seconds rollover.
163  *
164  * time_reftime is the second's portion of the system time at the last
165  * call to ntp_adjtime(). It is used to adjust the time_freq variable
166  * and to increase the time_maxerror as the time since last update
167  * increases.
168  */
169 int32_t time_phase = 0;		/* phase offset (scaled us) */
170 int32_t time_freq = 0;		/* frequency offset (scaled ppm) */
171 int32_t time_adj = 0;		/* tick adjust (scaled 1 / hz) */
172 int32_t time_reftime = 0;		/* time at last adjustment (s) */
173 
174 /*
175  * The scale factors of the following variables are defined in the
176  * timex.h header file.
177  *
178  * pps_time contains the time at each calibration interval, as read by
179  * microtime(). pps_count counts the seconds of the calibration
180  * interval, the duration of which is nominally pps_shift in powers of
181  * two.
182  *
183  * pps_offset is the time offset produced by the time median filter
184  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
185  * this filter.
186  *
187  * pps_freq is the frequency offset produced by the frequency median
188  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
189  * by this filter.
190  *
191  * pps_usec is latched from a high resolution counter or external clock
192  * at pps_time. Here we want the hardware counter contents only, not the
193  * contents plus the time_tv.usec as usual.
194  *
195  * pps_valid counts the number of seconds since the last PPS update. It
196  * is used as a watchdog timer to disable the PPS discipline should the
197  * PPS signal be lost.
198  *
199  * pps_glitch counts the number of seconds since the beginning of an
200  * offset burst more than tick/2 from current nominal offset. It is used
201  * mainly to suppress error bursts due to priority conflicts between the
202  * PPS interrupt and timer interrupt.
203  *
204  * pps_intcnt counts the calibration intervals for use in the interval-
205  * adaptation algorithm. It's just too complicated for words.
206  */
207 struct timeval pps_time;	/* kernel time at last interval */
208 int32_t pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
209 int32_t pps_offset = 0;		/* pps time offset (us) */
210 int32_t pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
211 int32_t pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
212 int32_t pps_freq = 0;		/* frequency offset (scaled ppm) */
213 int32_t pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
214 int32_t pps_usec = 0;		/* microsec counter at last interval */
215 int32_t pps_valid = PPS_VALID;	/* pps signal watchdog counter */
216 int32_t pps_glitch = 0;		/* pps signal glitch counter */
217 int32_t pps_count = 0;		/* calibration interval counter (s) */
218 int32_t pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
219 int32_t pps_intcnt = 0;		/* intervals at current duration */
220 
221 /*
222  * PPS signal quality monitors
223  *
224  * pps_jitcnt counts the seconds that have been discarded because the
225  * jitter measured by the time median filter exceeds the limit MAXTIME
226  * (100 us).
227  *
228  * pps_calcnt counts the frequency calibration intervals, which are
229  * variable from 4 s to 256 s.
230  *
231  * pps_errcnt counts the calibration intervals which have been discarded
232  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
233  * calibration interval jitter exceeds two ticks.
234  *
235  * pps_stbcnt counts the calibration intervals that have been discarded
236  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
237  */
238 int32_t pps_jitcnt = 0;		/* jitter limit exceeded */
239 int32_t pps_calcnt = 0;		/* calibration intervals */
240 int32_t pps_errcnt = 0;		/* calibration errors */
241 int32_t pps_stbcnt = 0;		/* stability limit exceeded */
242 
243 kcondvar_t lbolt_cv;
244 
245 /*
246  * Hybrid lbolt implementation:
247  *
248  * The service historically provided by the lbolt and lbolt64 variables has
249  * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the
250  * original symbols removed from the system. The once clock driven variables are
251  * now implemented in an event driven fashion, backed by gethrtime() coarsed to
252  * the appropriate clock resolution. The default event driven implementation is
253  * complemented by a cyclic driven one, active only during periods of intense
254  * activity around the DDI lbolt routines, when a lbolt specific cyclic is
255  * reprogramed to fire at a clock tick interval to serve consumers of lbolt who
256  * rely on the original low cost of consulting a memory position.
257  *
258  * The implementation uses the number of calls to these routines and the
259  * frequency of these to determine when to transition from event to cyclic
260  * driven and vice-versa. These values are kept on a per CPU basis for
261  * scalability reasons and to prevent CPUs from constantly invalidating a single
262  * cache line when modifying a global variable. The transition from event to
263  * cyclic mode happens once the thresholds are crossed, and activity on any CPU
264  * can cause such transition.
265  *
266  * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and
267  * ddi_get_lbolt64(), and will point to lbolt_event_driven() or
268  * lbolt_cyclic_driven() according to the current mode. When the thresholds
269  * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to
270  * fire at a nsec_per_tick interval and increment an internal variable at
271  * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which
272  * will simply return the value of such variable. lbolt_cyclic() will attempt
273  * to shut itself off at each threshold interval (sampling period for calls
274  * to the DDI lbolt routines), and return to the event driven mode, but will
275  * be prevented from doing so if lbolt_cyclic_driven() is being heavily used.
276  *
277  * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait
278  * for the cyclic subsystem to be intialized.
279  *
280  */
281 int64_t lbolt_bootstrap(void);
282 int64_t lbolt_event_driven(void);
283 int64_t lbolt_cyclic_driven(void);
284 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap;
285 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t);
286 
287 /*
288  * lbolt's cyclic, installed by clock_init().
289  */
290 static void lbolt_cyclic(void);
291 
292 /*
293  * Tunable to keep lbolt in cyclic driven mode. This will prevent the system
294  * from switching back to event driven, once it reaches cyclic mode.
295  */
296 static boolean_t lbolt_cyc_only = B_FALSE;
297 
298 /*
299  * Cache aligned, per CPU structure with lbolt usage statistics.
300  */
301 static lbolt_cpu_t *lb_cpu;
302 
303 /*
304  * Single, cache aligned, structure with all the information required by
305  * the lbolt implementation.
306  */
307 lbolt_info_t *lb_info;
308 
309 
310 int one_sec = 1; /* turned on once every second */
311 static int fsflushcnt;	/* counter for t_fsflushr */
312 int	dosynctodr = 1;	/* patchable; enable/disable sync to TOD chip */
313 int	tod_needsync = 0;	/* need to sync tod chip with software time */
314 static int tod_broken = 0;	/* clock chip doesn't work */
315 time_t	boot_time = 0;		/* Boot time in seconds since 1970 */
316 cyclic_id_t clock_cyclic;	/* clock()'s cyclic_id */
317 cyclic_id_t deadman_cyclic;	/* deadman()'s cyclic_id */
318 cyclic_id_t ddi_timer_cyclic;	/* cyclic_timer()'s cyclic_id */
319 
320 extern void	clock_tick_schedule(int);
321 
322 static int lgrp_ticks;		/* counter to schedule lgrp load calcs */
323 
324 /*
325  * for tod fault detection
326  */
327 #define	TOD_REF_FREQ		((longlong_t)(NANOSEC))
328 #define	TOD_STALL_THRESHOLD	(TOD_REF_FREQ * 3 / 2)
329 #define	TOD_JUMP_THRESHOLD	(TOD_REF_FREQ / 2)
330 #define	TOD_FILTER_N		4
331 #define	TOD_FILTER_SETTLE	(4 * TOD_FILTER_N)
332 static int tod_faulted = TOD_NOFAULT;
333 static int tod_fault_reset_flag = 0;
334 
335 /* patchable via /etc/system */
336 int tod_validate_enable = 1;
337 
338 /* Diagnose/Limit messages about delay(9F) called from interrupt context */
339 int			delay_from_interrupt_diagnose = 0;
340 volatile uint32_t	delay_from_interrupt_msg = 20;
341 
342 /*
343  * On non-SPARC systems, TOD validation must be deferred until gethrtime
344  * returns non-zero values (after mach_clkinit's execution).
345  * On SPARC systems, it must be deferred until after hrtime_base
346  * and hres_last_tick are set (in the first invocation of hres_tick).
347  * Since in both cases the prerequisites occur before the invocation of
348  * tod_get() in clock(), the deferment is lifted there.
349  */
350 static boolean_t tod_validate_deferred = B_TRUE;
351 
352 /*
353  * tod_fault_table[] must be aligned with
354  * enum tod_fault_type in systm.h
355  */
356 static char *tod_fault_table[] = {
357 	"Reversed",			/* TOD_REVERSED */
358 	"Stalled",			/* TOD_STALLED */
359 	"Jumped",			/* TOD_JUMPED */
360 	"Changed in Clock Rate",	/* TOD_RATECHANGED */
361 	"Is Read-Only"			/* TOD_RDONLY */
362 	/*
363 	 * no strings needed for TOD_NOFAULT
364 	 */
365 };
366 
367 /*
368  * test hook for tod broken detection in tod_validate
369  */
370 int tod_unit_test = 0;
371 time_t tod_test_injector;
372 
373 #define	CLOCK_ADJ_HIST_SIZE	4
374 
375 static int	adj_hist_entry;
376 
377 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
378 
379 static void calcloadavg(int, uint64_t *);
380 static int genloadavg(struct loadavg_s *);
381 static void loadavg_update();
382 
383 void (*cmm_clock_callout)() = NULL;
384 void (*cpucaps_clock_callout)() = NULL;
385 
386 extern clock_t clock_tick_proc_max;
387 
388 static int64_t deadman_counter = 0;
389 
390 static void
391 clock(void)
392 {
393 	kthread_t	*t;
394 	uint_t	nrunnable;
395 	uint_t	w_io;
396 	cpu_t	*cp;
397 	cpupart_t *cpupart;
398 	extern void set_anoninfo();
399 	extern	void	set_freemem();
400 	void	(*funcp)();
401 	int32_t ltemp;
402 	int64_t lltemp;
403 	int s;
404 	int do_lgrp_load;
405 	int i;
406 	clock_t now = LBOLT_NO_ACCOUNT;	/* current tick */
407 
408 	if (panicstr)
409 		return;
410 
411 	set_anoninfo();
412 	/*
413 	 * Make sure that 'freemem' do not drift too far from the truth
414 	 */
415 	set_freemem();
416 
417 
418 	/*
419 	 * Before the section which is repeated is executed, we do
420 	 * the time delta processing which occurs every clock tick
421 	 *
422 	 * There is additional processing which happens every time
423 	 * the nanosecond counter rolls over which is described
424 	 * below - see the section which begins with : if (one_sec)
425 	 *
426 	 * This section marks the beginning of the precision-kernel
427 	 * code fragment.
428 	 *
429 	 * First, compute the phase adjustment. If the low-order bits
430 	 * (time_phase) of the update overflow, bump the higher order
431 	 * bits (time_update).
432 	 */
433 	time_phase += time_adj;
434 	if (time_phase <= -FINEUSEC) {
435 		ltemp = -time_phase / SCALE_PHASE;
436 		time_phase += ltemp * SCALE_PHASE;
437 		s = hr_clock_lock();
438 		timedelta -= ltemp * (NANOSEC/MICROSEC);
439 		hr_clock_unlock(s);
440 	} else if (time_phase >= FINEUSEC) {
441 		ltemp = time_phase / SCALE_PHASE;
442 		time_phase -= ltemp * SCALE_PHASE;
443 		s = hr_clock_lock();
444 		timedelta += ltemp * (NANOSEC/MICROSEC);
445 		hr_clock_unlock(s);
446 	}
447 
448 	/*
449 	 * End of precision-kernel code fragment which is processed
450 	 * every timer interrupt.
451 	 *
452 	 * Continue with the interrupt processing as scheduled.
453 	 */
454 	/*
455 	 * Count the number of runnable threads and the number waiting
456 	 * for some form of I/O to complete -- gets added to
457 	 * sysinfo.waiting.  To know the state of the system, must add
458 	 * wait counts from all CPUs.  Also add up the per-partition
459 	 * statistics.
460 	 */
461 	w_io = 0;
462 	nrunnable = 0;
463 
464 	/*
465 	 * keep track of when to update lgrp/part loads
466 	 */
467 
468 	do_lgrp_load = 0;
469 	if (lgrp_ticks++ >= hz / 10) {
470 		lgrp_ticks = 0;
471 		do_lgrp_load = 1;
472 	}
473 
474 	if (one_sec) {
475 		loadavg_update();
476 		deadman_counter++;
477 	}
478 
479 	/*
480 	 * First count the threads waiting on kpreempt queues in each
481 	 * CPU partition.
482 	 */
483 
484 	cpupart = cp_list_head;
485 	do {
486 		uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
487 
488 		cpupart->cp_updates++;
489 		nrunnable += cpupart_nrunnable;
490 		cpupart->cp_nrunnable_cum += cpupart_nrunnable;
491 		if (one_sec) {
492 			cpupart->cp_nrunning = 0;
493 			cpupart->cp_nrunnable = cpupart_nrunnable;
494 		}
495 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
496 
497 
498 	/* Now count the per-CPU statistics. */
499 	cp = cpu_list;
500 	do {
501 		uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
502 
503 		nrunnable += cpu_nrunnable;
504 		cpupart = cp->cpu_part;
505 		cpupart->cp_nrunnable_cum += cpu_nrunnable;
506 		if (one_sec) {
507 			cpupart->cp_nrunnable += cpu_nrunnable;
508 			/*
509 			 * Update user, system, and idle cpu times.
510 			 */
511 			cpupart->cp_nrunning++;
512 			/*
513 			 * w_io is used to update sysinfo.waiting during
514 			 * one_second processing below.  Only gather w_io
515 			 * information when we walk the list of cpus if we're
516 			 * going to perform one_second processing.
517 			 */
518 			w_io += CPU_STATS(cp, sys.iowait);
519 		}
520 
521 		if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
522 			int i, load, change;
523 			hrtime_t intracct, intrused;
524 			const hrtime_t maxnsec = 1000000000;
525 			const int precision = 100;
526 
527 			/*
528 			 * Estimate interrupt load on this cpu each second.
529 			 * Computes cpu_intrload as %utilization (0-99).
530 			 */
531 
532 			/* add up interrupt time from all micro states */
533 			for (intracct = 0, i = 0; i < NCMSTATES; i++)
534 				intracct += cp->cpu_intracct[i];
535 			scalehrtime(&intracct);
536 
537 			/* compute nsec used in the past second */
538 			intrused = intracct - cp->cpu_intrlast;
539 			cp->cpu_intrlast = intracct;
540 
541 			/* limit the value for safety (and the first pass) */
542 			if (intrused >= maxnsec)
543 				intrused = maxnsec - 1;
544 
545 			/* calculate %time in interrupt */
546 			load = (precision * intrused) / maxnsec;
547 			ASSERT(load >= 0 && load < precision);
548 			change = cp->cpu_intrload - load;
549 
550 			/* jump to new max, or decay the old max */
551 			if (change < 0)
552 				cp->cpu_intrload = load;
553 			else if (change > 0)
554 				cp->cpu_intrload -= (change + 3) / 4;
555 
556 			DTRACE_PROBE3(cpu_intrload,
557 			    cpu_t *, cp,
558 			    hrtime_t, intracct,
559 			    hrtime_t, intrused);
560 		}
561 
562 		if (do_lgrp_load &&
563 		    (cp->cpu_flags & CPU_EXISTS)) {
564 			/*
565 			 * When updating the lgroup's load average,
566 			 * account for the thread running on the CPU.
567 			 * If the CPU is the current one, then we need
568 			 * to account for the underlying thread which
569 			 * got the clock interrupt not the thread that is
570 			 * handling the interrupt and caculating the load
571 			 * average
572 			 */
573 			t = cp->cpu_thread;
574 			if (CPU == cp)
575 				t = t->t_intr;
576 
577 			/*
578 			 * Account for the load average for this thread if
579 			 * it isn't the idle thread or it is on the interrupt
580 			 * stack and not the current CPU handling the clock
581 			 * interrupt
582 			 */
583 			if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
584 			    CPU_ON_INTR(cp))) {
585 				if (t->t_lpl == cp->cpu_lpl) {
586 					/* local thread */
587 					cpu_nrunnable++;
588 				} else {
589 					/*
590 					 * This is a remote thread, charge it
591 					 * against its home lgroup.  Note that
592 					 * we notice that a thread is remote
593 					 * only if it's currently executing.
594 					 * This is a reasonable approximation,
595 					 * since queued remote threads are rare.
596 					 * Note also that if we didn't charge
597 					 * it to its home lgroup, remote
598 					 * execution would often make a system
599 					 * appear balanced even though it was
600 					 * not, and thread placement/migration
601 					 * would often not be done correctly.
602 					 */
603 					lgrp_loadavg(t->t_lpl,
604 					    LGRP_LOADAVG_IN_THREAD_MAX, 0);
605 				}
606 			}
607 			lgrp_loadavg(cp->cpu_lpl,
608 			    cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
609 		}
610 	} while ((cp = cp->cpu_next) != cpu_list);
611 
612 	clock_tick_schedule(one_sec);
613 
614 	/*
615 	 * Check for a callout that needs be called from the clock
616 	 * thread to support the membership protocol in a clustered
617 	 * system.  Copy the function pointer so that we can reset
618 	 * this to NULL if needed.
619 	 */
620 	if ((funcp = cmm_clock_callout) != NULL)
621 		(*funcp)();
622 
623 	if ((funcp = cpucaps_clock_callout) != NULL)
624 		(*funcp)();
625 
626 	/*
627 	 * Wakeup the cageout thread waiters once per second.
628 	 */
629 	if (one_sec)
630 		kcage_tick();
631 
632 	if (one_sec) {
633 
634 		int drift, absdrift;
635 		timestruc_t tod;
636 		int s;
637 
638 		/*
639 		 * Beginning of precision-kernel code fragment executed
640 		 * every second.
641 		 *
642 		 * On rollover of the second the phase adjustment to be
643 		 * used for the next second is calculated.  Also, the
644 		 * maximum error is increased by the tolerance.  If the
645 		 * PPS frequency discipline code is present, the phase is
646 		 * increased to compensate for the CPU clock oscillator
647 		 * frequency error.
648 		 *
649 		 * On a 32-bit machine and given parameters in the timex.h
650 		 * header file, the maximum phase adjustment is +-512 ms
651 		 * and maximum frequency offset is (a tad less than)
652 		 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
653 		 */
654 		time_maxerror += time_tolerance / SCALE_USEC;
655 
656 		/*
657 		 * Leap second processing. If in leap-insert state at
658 		 * the end of the day, the system clock is set back one
659 		 * second; if in leap-delete state, the system clock is
660 		 * set ahead one second. The microtime() routine or
661 		 * external clock driver will insure that reported time
662 		 * is always monotonic. The ugly divides should be
663 		 * replaced.
664 		 */
665 		switch (time_state) {
666 
667 		case TIME_OK:
668 			if (time_status & STA_INS)
669 				time_state = TIME_INS;
670 			else if (time_status & STA_DEL)
671 				time_state = TIME_DEL;
672 			break;
673 
674 		case TIME_INS:
675 			if (hrestime.tv_sec % 86400 == 0) {
676 				s = hr_clock_lock();
677 				hrestime.tv_sec--;
678 				hr_clock_unlock(s);
679 				time_state = TIME_OOP;
680 			}
681 			break;
682 
683 		case TIME_DEL:
684 			if ((hrestime.tv_sec + 1) % 86400 == 0) {
685 				s = hr_clock_lock();
686 				hrestime.tv_sec++;
687 				hr_clock_unlock(s);
688 				time_state = TIME_WAIT;
689 			}
690 			break;
691 
692 		case TIME_OOP:
693 			time_state = TIME_WAIT;
694 			break;
695 
696 		case TIME_WAIT:
697 			if (!(time_status & (STA_INS | STA_DEL)))
698 				time_state = TIME_OK;
699 		default:
700 			break;
701 		}
702 
703 		/*
704 		 * Compute the phase adjustment for the next second. In
705 		 * PLL mode, the offset is reduced by a fixed factor
706 		 * times the time constant. In FLL mode the offset is
707 		 * used directly. In either mode, the maximum phase
708 		 * adjustment for each second is clamped so as to spread
709 		 * the adjustment over not more than the number of
710 		 * seconds between updates.
711 		 */
712 		if (time_offset == 0)
713 			time_adj = 0;
714 		else if (time_offset < 0) {
715 			lltemp = -time_offset;
716 			if (!(time_status & STA_FLL)) {
717 				if ((1 << time_constant) >= SCALE_KG)
718 					lltemp *= (1 << time_constant) /
719 					    SCALE_KG;
720 				else
721 					lltemp = (lltemp / SCALE_KG) >>
722 					    time_constant;
723 			}
724 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
725 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
726 			time_offset += lltemp;
727 			time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
728 		} else {
729 			lltemp = time_offset;
730 			if (!(time_status & STA_FLL)) {
731 				if ((1 << time_constant) >= SCALE_KG)
732 					lltemp *= (1 << time_constant) /
733 					    SCALE_KG;
734 				else
735 					lltemp = (lltemp / SCALE_KG) >>
736 					    time_constant;
737 			}
738 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
739 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
740 			time_offset -= lltemp;
741 			time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
742 		}
743 
744 		/*
745 		 * Compute the frequency estimate and additional phase
746 		 * adjustment due to frequency error for the next
747 		 * second. When the PPS signal is engaged, gnaw on the
748 		 * watchdog counter and update the frequency computed by
749 		 * the pll and the PPS signal.
750 		 */
751 		pps_valid++;
752 		if (pps_valid == PPS_VALID) {
753 			pps_jitter = MAXTIME;
754 			pps_stabil = MAXFREQ;
755 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
756 			    STA_PPSWANDER | STA_PPSERROR);
757 		}
758 		lltemp = time_freq + pps_freq;
759 
760 		if (lltemp)
761 			time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
762 
763 		/*
764 		 * End of precision kernel-code fragment
765 		 *
766 		 * The section below should be modified if we are planning
767 		 * to use NTP for synchronization.
768 		 *
769 		 * Note: the clock synchronization code now assumes
770 		 * the following:
771 		 *   - if dosynctodr is 1, then compute the drift between
772 		 *	the tod chip and software time and adjust one or
773 		 *	the other depending on the circumstances
774 		 *
775 		 *   - if dosynctodr is 0, then the tod chip is independent
776 		 *	of the software clock and should not be adjusted,
777 		 *	but allowed to free run.  this allows NTP to sync.
778 		 *	hrestime without any interference from the tod chip.
779 		 */
780 
781 		tod_validate_deferred = B_FALSE;
782 		mutex_enter(&tod_lock);
783 		tod = tod_get();
784 		drift = tod.tv_sec - hrestime.tv_sec;
785 		absdrift = (drift >= 0) ? drift : -drift;
786 		if (tod_needsync || absdrift > 1) {
787 			int s;
788 			if (absdrift > 2) {
789 				if (!tod_broken && tod_faulted == TOD_NOFAULT) {
790 					s = hr_clock_lock();
791 					hrestime = tod;
792 					membar_enter();	/* hrestime visible */
793 					timedelta = 0;
794 					timechanged++;
795 					tod_needsync = 0;
796 					hr_clock_unlock(s);
797 					callout_hrestime();
798 
799 				}
800 			} else {
801 				if (tod_needsync || !dosynctodr) {
802 					gethrestime(&tod);
803 					tod_set(tod);
804 					s = hr_clock_lock();
805 					if (timedelta == 0)
806 						tod_needsync = 0;
807 					hr_clock_unlock(s);
808 				} else {
809 					/*
810 					 * If the drift is 2 seconds on the
811 					 * money, then the TOD is adjusting
812 					 * the clock;  record that.
813 					 */
814 					clock_adj_hist[adj_hist_entry++ %
815 					    CLOCK_ADJ_HIST_SIZE] = now;
816 					s = hr_clock_lock();
817 					timedelta = (int64_t)drift*NANOSEC;
818 					hr_clock_unlock(s);
819 				}
820 			}
821 		}
822 		one_sec = 0;
823 		time = gethrestime_sec();  /* for crusty old kmem readers */
824 		mutex_exit(&tod_lock);
825 
826 		/*
827 		 * Some drivers still depend on this... XXX
828 		 */
829 		cv_broadcast(&lbolt_cv);
830 
831 		vminfo.freemem += freemem;
832 		{
833 			pgcnt_t maxswap, resv, free;
834 			pgcnt_t avail =
835 			    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
836 
837 			maxswap = k_anoninfo.ani_mem_resv +
838 			    k_anoninfo.ani_max +avail;
839 			free = k_anoninfo.ani_free + avail;
840 			resv = k_anoninfo.ani_phys_resv +
841 			    k_anoninfo.ani_mem_resv;
842 
843 			vminfo.swap_resv += resv;
844 			/* number of reserved and allocated pages */
845 #ifdef	DEBUG
846 			if (maxswap < free)
847 				cmn_err(CE_WARN, "clock: maxswap < free");
848 			if (maxswap < resv)
849 				cmn_err(CE_WARN, "clock: maxswap < resv");
850 #endif
851 			vminfo.swap_alloc += maxswap - free;
852 			vminfo.swap_avail += maxswap - resv;
853 			vminfo.swap_free += free;
854 		}
855 		vminfo.updates++;
856 		if (nrunnable) {
857 			sysinfo.runque += nrunnable;
858 			sysinfo.runocc++;
859 		}
860 		if (nswapped) {
861 			sysinfo.swpque += nswapped;
862 			sysinfo.swpocc++;
863 		}
864 		sysinfo.waiting += w_io;
865 		sysinfo.updates++;
866 
867 		/*
868 		 * Wake up fsflush to write out DELWRI
869 		 * buffers, dirty pages and other cached
870 		 * administrative data, e.g. inodes.
871 		 */
872 		if (--fsflushcnt <= 0) {
873 			fsflushcnt = tune.t_fsflushr;
874 			cv_signal(&fsflush_cv);
875 		}
876 
877 		vmmeter();
878 		calcloadavg(genloadavg(&loadavg), hp_avenrun);
879 		for (i = 0; i < 3; i++)
880 			/*
881 			 * At the moment avenrun[] can only hold 31
882 			 * bits of load average as it is a signed
883 			 * int in the API. We need to ensure that
884 			 * hp_avenrun[i] >> (16 - FSHIFT) will not be
885 			 * too large. If it is, we put the largest value
886 			 * that we can use into avenrun[i]. This is
887 			 * kludgey, but about all we can do until we
888 			 * avenrun[] is declared as an array of uint64[]
889 			 */
890 			if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
891 				avenrun[i] = (int32_t)(hp_avenrun[i] >>
892 				    (16 - FSHIFT));
893 			else
894 				avenrun[i] = 0x7fffffff;
895 
896 		cpupart = cp_list_head;
897 		do {
898 			calcloadavg(genloadavg(&cpupart->cp_loadavg),
899 			    cpupart->cp_hp_avenrun);
900 		} while ((cpupart = cpupart->cp_next) != cp_list_head);
901 
902 		/*
903 		 * Wake up the swapper thread if necessary.
904 		 */
905 		if (runin ||
906 		    (runout && (avefree < desfree || wake_sched_sec))) {
907 			t = &t0;
908 			thread_lock(t);
909 			if (t->t_state == TS_STOPPED) {
910 				runin = runout = 0;
911 				wake_sched_sec = 0;
912 				t->t_whystop = 0;
913 				t->t_whatstop = 0;
914 				t->t_schedflag &= ~TS_ALLSTART;
915 				THREAD_TRANSITION(t);
916 				setfrontdq(t);
917 			}
918 			thread_unlock(t);
919 		}
920 	}
921 
922 	/*
923 	 * Wake up the swapper if any high priority swapped-out threads
924 	 * became runable during the last tick.
925 	 */
926 	if (wake_sched) {
927 		t = &t0;
928 		thread_lock(t);
929 		if (t->t_state == TS_STOPPED) {
930 			runin = runout = 0;
931 			wake_sched = 0;
932 			t->t_whystop = 0;
933 			t->t_whatstop = 0;
934 			t->t_schedflag &= ~TS_ALLSTART;
935 			THREAD_TRANSITION(t);
936 			setfrontdq(t);
937 		}
938 		thread_unlock(t);
939 	}
940 }
941 
942 void
943 clock_init(void)
944 {
945 	cyc_handler_t clk_hdlr, timer_hdlr, lbolt_hdlr;
946 	cyc_time_t clk_when, lbolt_when;
947 	int i, sz;
948 	intptr_t buf;
949 
950 	/*
951 	 * Setup handler and timer for the clock cyclic.
952 	 */
953 	clk_hdlr.cyh_func = (cyc_func_t)clock;
954 	clk_hdlr.cyh_level = CY_LOCK_LEVEL;
955 	clk_hdlr.cyh_arg = NULL;
956 
957 	clk_when.cyt_when = 0;
958 	clk_when.cyt_interval = nsec_per_tick;
959 
960 	/*
961 	 * cyclic_timer is dedicated to the ddi interface, which
962 	 * uses the same clock resolution as the system one.
963 	 */
964 	timer_hdlr.cyh_func = (cyc_func_t)cyclic_timer;
965 	timer_hdlr.cyh_level = CY_LOCK_LEVEL;
966 	timer_hdlr.cyh_arg = NULL;
967 
968 	/*
969 	 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick
970 	 * interval to satisfy performance needs of the DDI lbolt consumers.
971 	 * It is off by default.
972 	 */
973 	lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic;
974 	lbolt_hdlr.cyh_level = CY_LOCK_LEVEL;
975 	lbolt_hdlr.cyh_arg = NULL;
976 
977 	lbolt_when.cyt_interval = nsec_per_tick;
978 
979 	/*
980 	 * Allocate cache line aligned space for the per CPU lbolt data and
981 	 * lbolt info structures, and initialize them with their default
982 	 * values. Note that these structures are also cache line sized.
983 	 */
984 	sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE;
985 	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
986 	lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
987 
988 	if (hz != HZ_DEFAULT)
989 		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL *
990 		    hz/HZ_DEFAULT;
991 	else
992 		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL;
993 
994 	lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS;
995 
996 	sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE;
997 	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
998 	lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
999 
1000 	for (i = 0; i < max_ncpus; i++)
1001 		lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls;
1002 
1003 	/*
1004 	 * Install the softint used to switch between event and cyclic driven
1005 	 * lbolt. We use a soft interrupt to make sure the context of the
1006 	 * cyclic reprogram call is safe.
1007 	 */
1008 	lbolt_softint_add();
1009 
1010 	/*
1011 	 * Since the hybrid lbolt implementation is based on a hardware counter
1012 	 * that is reset at every hardware reboot and that we'd like to have
1013 	 * the lbolt value starting at zero after both a hardware and a fast
1014 	 * reboot, we calculate the number of clock ticks the system's been up
1015 	 * and store it in the lbi_debug_time field of the lbolt info structure.
1016 	 * The value of this field will be subtracted from lbolt before
1017 	 * returning it.
1018 	 */
1019 	lb_info->lbi_internal = lb_info->lbi_debug_time =
1020 	    (gethrtime()/nsec_per_tick);
1021 
1022 	/*
1023 	 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros
1024 	 * and lbolt_debug_{enter,return} use this value as an indication that
1025 	 * the initializaion above hasn't been completed. Setting lbolt_hybrid
1026 	 * to either lbolt_{cyclic,event}_driven here signals those code paths
1027 	 * that the lbolt related structures can be used.
1028 	 */
1029 	if (lbolt_cyc_only) {
1030 		lbolt_when.cyt_when = 0;
1031 		lbolt_hybrid = lbolt_cyclic_driven;
1032 	} else {
1033 		lbolt_when.cyt_when = CY_INFINITY;
1034 		lbolt_hybrid = lbolt_event_driven;
1035 	}
1036 
1037 	/*
1038 	 * Grab cpu_lock and install all three cyclics.
1039 	 */
1040 	mutex_enter(&cpu_lock);
1041 
1042 	clock_cyclic = cyclic_add(&clk_hdlr, &clk_when);
1043 	ddi_timer_cyclic = cyclic_add(&timer_hdlr, &clk_when);
1044 	lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when);
1045 
1046 	mutex_exit(&cpu_lock);
1047 }
1048 
1049 /*
1050  * Called before calcloadavg to get 10-sec moving loadavg together
1051  */
1052 
1053 static int
1054 genloadavg(struct loadavg_s *avgs)
1055 {
1056 	int avg;
1057 	int spos; /* starting position */
1058 	int cpos; /* moving current position */
1059 	int i;
1060 	int slen;
1061 	hrtime_t hr_avg;
1062 
1063 	/* 10-second snapshot, calculate first positon */
1064 	if (avgs->lg_len == 0) {
1065 		return (0);
1066 	}
1067 	slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1068 
1069 	spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1070 	    S_LOADAVG_SZ + (avgs->lg_cur - 1);
1071 	for (i = hr_avg = 0; i < slen; i++) {
1072 		cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1073 		hr_avg += avgs->lg_loads[cpos];
1074 	}
1075 
1076 	hr_avg = hr_avg / slen;
1077 	avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1078 
1079 	return (avg);
1080 }
1081 
1082 /*
1083  * Run every second from clock () to update the loadavg count available to the
1084  * system and cpu-partitions.
1085  *
1086  * This works by sampling the previous usr, sys, wait time elapsed,
1087  * computing a delta, and adding that delta to the elapsed usr, sys,
1088  * wait increase.
1089  */
1090 
1091 static void
1092 loadavg_update()
1093 {
1094 	cpu_t *cp;
1095 	cpupart_t *cpupart;
1096 	hrtime_t cpu_total;
1097 	int prev;
1098 
1099 	cp = cpu_list;
1100 	loadavg.lg_total = 0;
1101 
1102 	/*
1103 	 * first pass totals up per-cpu statistics for system and cpu
1104 	 * partitions
1105 	 */
1106 
1107 	do {
1108 		struct loadavg_s *lavg;
1109 
1110 		lavg = &cp->cpu_loadavg;
1111 
1112 		cpu_total = cp->cpu_acct[CMS_USER] +
1113 		    cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1114 		/* compute delta against last total */
1115 		scalehrtime(&cpu_total);
1116 		prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1117 		    S_LOADAVG_SZ + (lavg->lg_cur - 1);
1118 		if (lavg->lg_loads[prev] <= 0) {
1119 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1120 			cpu_total = 0;
1121 		} else {
1122 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1123 			cpu_total = cpu_total - lavg->lg_loads[prev];
1124 			if (cpu_total < 0)
1125 				cpu_total = 0;
1126 		}
1127 
1128 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1129 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1130 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1131 
1132 		loadavg.lg_total += cpu_total;
1133 		cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1134 
1135 	} while ((cp = cp->cpu_next) != cpu_list);
1136 
1137 	loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1138 	loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1139 	loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1140 	    loadavg.lg_len + 1 : S_LOADAVG_SZ;
1141 	/*
1142 	 * Second pass updates counts
1143 	 */
1144 	cpupart = cp_list_head;
1145 
1146 	do {
1147 		struct loadavg_s *lavg;
1148 
1149 		lavg = &cpupart->cp_loadavg;
1150 		lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1151 		lavg->lg_total = 0;
1152 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1153 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1154 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1155 
1156 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
1157 
1158 }
1159 
1160 /*
1161  * clock_update() - local clock update
1162  *
1163  * This routine is called by ntp_adjtime() to update the local clock
1164  * phase and frequency. The implementation is of an
1165  * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1166  * routine computes new time and frequency offset estimates for each
1167  * call.  The PPS signal itself determines the new time offset,
1168  * instead of the calling argument.  Presumably, calls to
1169  * ntp_adjtime() occur only when the caller believes the local clock
1170  * is valid within some bound (+-128 ms with NTP). If the caller's
1171  * time is far different than the PPS time, an argument will ensue,
1172  * and it's not clear who will lose.
1173  *
1174  * For uncompensated quartz crystal oscillatores and nominal update
1175  * intervals less than 1024 s, operation should be in phase-lock mode
1176  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1177  * intervals greater than this, operation should be in frequency-lock
1178  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1179  *
1180  * Note: mutex(&tod_lock) is in effect.
1181  */
1182 void
1183 clock_update(int offset)
1184 {
1185 	int ltemp, mtemp, s;
1186 
1187 	ASSERT(MUTEX_HELD(&tod_lock));
1188 
1189 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1190 		return;
1191 	ltemp = offset;
1192 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1193 		ltemp = pps_offset;
1194 
1195 	/*
1196 	 * Scale the phase adjustment and clamp to the operating range.
1197 	 */
1198 	if (ltemp > MAXPHASE)
1199 		time_offset = MAXPHASE * SCALE_UPDATE;
1200 	else if (ltemp < -MAXPHASE)
1201 		time_offset = -(MAXPHASE * SCALE_UPDATE);
1202 	else
1203 		time_offset = ltemp * SCALE_UPDATE;
1204 
1205 	/*
1206 	 * Select whether the frequency is to be controlled and in which
1207 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1208 	 * multiply/divide should be replaced someday.
1209 	 */
1210 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1211 		time_reftime = hrestime.tv_sec;
1212 
1213 	mtemp = hrestime.tv_sec - time_reftime;
1214 	time_reftime = hrestime.tv_sec;
1215 
1216 	if (time_status & STA_FLL) {
1217 		if (mtemp >= MINSEC) {
1218 			ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1219 			    SCALE_UPDATE));
1220 			if (ltemp)
1221 				time_freq += ltemp / SCALE_KH;
1222 		}
1223 	} else {
1224 		if (mtemp < MAXSEC) {
1225 			ltemp *= mtemp;
1226 			if (ltemp)
1227 				time_freq += (int)(((int64_t)ltemp *
1228 				    SCALE_USEC) / SCALE_KF)
1229 				    / (1 << (time_constant * 2));
1230 		}
1231 	}
1232 	if (time_freq > time_tolerance)
1233 		time_freq = time_tolerance;
1234 	else if (time_freq < -time_tolerance)
1235 		time_freq = -time_tolerance;
1236 
1237 	s = hr_clock_lock();
1238 	tod_needsync = 1;
1239 	hr_clock_unlock(s);
1240 }
1241 
1242 /*
1243  * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1244  *
1245  * This routine is called at each PPS interrupt in order to discipline
1246  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1247  * and leaves it in a handy spot for the clock() routine. It
1248  * integrates successive PPS phase differences and calculates the
1249  * frequency offset. This is used in clock() to discipline the CPU
1250  * clock oscillator so that intrinsic frequency error is cancelled out.
1251  * The code requires the caller to capture the time and hardware counter
1252  * value at the on-time PPS signal transition.
1253  *
1254  * Note that, on some Unix systems, this routine runs at an interrupt
1255  * priority level higher than the timer interrupt routine clock().
1256  * Therefore, the variables used are distinct from the clock()
1257  * variables, except for certain exceptions: The PPS frequency pps_freq
1258  * and phase pps_offset variables are determined by this routine and
1259  * updated atomically. The time_tolerance variable can be considered a
1260  * constant, since it is infrequently changed, and then only when the
1261  * PPS signal is disabled. The watchdog counter pps_valid is updated
1262  * once per second by clock() and is atomically cleared in this
1263  * routine.
1264  *
1265  * tvp is the time of the last tick; usec is a microsecond count since the
1266  * last tick.
1267  *
1268  * Note: In Solaris systems, the tick value is actually given by
1269  *       usec_per_tick.  This is called from the serial driver cdintr(),
1270  *	 or equivalent, at a high PIL.  Because the kernel keeps a
1271  *	 highresolution time, the following code can accept either
1272  *	 the traditional argument pair, or the current highres timestamp
1273  *       in tvp and zero in usec.
1274  */
1275 void
1276 ddi_hardpps(struct timeval *tvp, int usec)
1277 {
1278 	int u_usec, v_usec, bigtick;
1279 	time_t cal_sec;
1280 	int cal_usec;
1281 
1282 	/*
1283 	 * An occasional glitch can be produced when the PPS interrupt
1284 	 * occurs in the clock() routine before the time variable is
1285 	 * updated. Here the offset is discarded when the difference
1286 	 * between it and the last one is greater than tick/2, but not
1287 	 * if the interval since the first discard exceeds 30 s.
1288 	 */
1289 	time_status |= STA_PPSSIGNAL;
1290 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1291 	pps_valid = 0;
1292 	u_usec = -tvp->tv_usec;
1293 	if (u_usec < -(MICROSEC/2))
1294 		u_usec += MICROSEC;
1295 	v_usec = pps_offset - u_usec;
1296 	if (v_usec < 0)
1297 		v_usec = -v_usec;
1298 	if (v_usec > (usec_per_tick >> 1)) {
1299 		if (pps_glitch > MAXGLITCH) {
1300 			pps_glitch = 0;
1301 			pps_tf[2] = u_usec;
1302 			pps_tf[1] = u_usec;
1303 		} else {
1304 			pps_glitch++;
1305 			u_usec = pps_offset;
1306 		}
1307 	} else
1308 		pps_glitch = 0;
1309 
1310 	/*
1311 	 * A three-stage median filter is used to help deglitch the pps
1312 	 * time. The median sample becomes the time offset estimate; the
1313 	 * difference between the other two samples becomes the time
1314 	 * dispersion (jitter) estimate.
1315 	 */
1316 	pps_tf[2] = pps_tf[1];
1317 	pps_tf[1] = pps_tf[0];
1318 	pps_tf[0] = u_usec;
1319 	if (pps_tf[0] > pps_tf[1]) {
1320 		if (pps_tf[1] > pps_tf[2]) {
1321 			pps_offset = pps_tf[1];		/* 0 1 2 */
1322 			v_usec = pps_tf[0] - pps_tf[2];
1323 		} else if (pps_tf[2] > pps_tf[0]) {
1324 			pps_offset = pps_tf[0];		/* 2 0 1 */
1325 			v_usec = pps_tf[2] - pps_tf[1];
1326 		} else {
1327 			pps_offset = pps_tf[2];		/* 0 2 1 */
1328 			v_usec = pps_tf[0] - pps_tf[1];
1329 		}
1330 	} else {
1331 		if (pps_tf[1] < pps_tf[2]) {
1332 			pps_offset = pps_tf[1];		/* 2 1 0 */
1333 			v_usec = pps_tf[2] - pps_tf[0];
1334 		} else  if (pps_tf[2] < pps_tf[0]) {
1335 			pps_offset = pps_tf[0];		/* 1 0 2 */
1336 			v_usec = pps_tf[1] - pps_tf[2];
1337 		} else {
1338 			pps_offset = pps_tf[2];		/* 1 2 0 */
1339 			v_usec = pps_tf[1] - pps_tf[0];
1340 		}
1341 	}
1342 	if (v_usec > MAXTIME)
1343 		pps_jitcnt++;
1344 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1345 	pps_jitter += v_usec / (1 << PPS_AVG);
1346 	if (pps_jitter > (MAXTIME >> 1))
1347 		time_status |= STA_PPSJITTER;
1348 
1349 	/*
1350 	 * During the calibration interval adjust the starting time when
1351 	 * the tick overflows. At the end of the interval compute the
1352 	 * duration of the interval and the difference of the hardware
1353 	 * counters at the beginning and end of the interval. This code
1354 	 * is deliciously complicated by the fact valid differences may
1355 	 * exceed the value of tick when using long calibration
1356 	 * intervals and small ticks. Note that the counter can be
1357 	 * greater than tick if caught at just the wrong instant, but
1358 	 * the values returned and used here are correct.
1359 	 */
1360 	bigtick = (int)usec_per_tick * SCALE_USEC;
1361 	pps_usec -= pps_freq;
1362 	if (pps_usec >= bigtick)
1363 		pps_usec -= bigtick;
1364 	if (pps_usec < 0)
1365 		pps_usec += bigtick;
1366 	pps_time.tv_sec++;
1367 	pps_count++;
1368 	if (pps_count < (1 << pps_shift))
1369 		return;
1370 	pps_count = 0;
1371 	pps_calcnt++;
1372 	u_usec = usec * SCALE_USEC;
1373 	v_usec = pps_usec - u_usec;
1374 	if (v_usec >= bigtick >> 1)
1375 		v_usec -= bigtick;
1376 	if (v_usec < -(bigtick >> 1))
1377 		v_usec += bigtick;
1378 	if (v_usec < 0)
1379 		v_usec = -(-v_usec >> pps_shift);
1380 	else
1381 		v_usec = v_usec >> pps_shift;
1382 	pps_usec = u_usec;
1383 	cal_sec = tvp->tv_sec;
1384 	cal_usec = tvp->tv_usec;
1385 	cal_sec -= pps_time.tv_sec;
1386 	cal_usec -= pps_time.tv_usec;
1387 	if (cal_usec < 0) {
1388 		cal_usec += MICROSEC;
1389 		cal_sec--;
1390 	}
1391 	pps_time = *tvp;
1392 
1393 	/*
1394 	 * Check for lost interrupts, noise, excessive jitter and
1395 	 * excessive frequency error. The number of timer ticks during
1396 	 * the interval may vary +-1 tick. Add to this a margin of one
1397 	 * tick for the PPS signal jitter and maximum frequency
1398 	 * deviation. If the limits are exceeded, the calibration
1399 	 * interval is reset to the minimum and we start over.
1400 	 */
1401 	u_usec = (int)usec_per_tick << 1;
1402 	if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1403 	    (cal_sec == 0 && cal_usec < u_usec)) ||
1404 	    v_usec > time_tolerance || v_usec < -time_tolerance) {
1405 		pps_errcnt++;
1406 		pps_shift = PPS_SHIFT;
1407 		pps_intcnt = 0;
1408 		time_status |= STA_PPSERROR;
1409 		return;
1410 	}
1411 
1412 	/*
1413 	 * A three-stage median filter is used to help deglitch the pps
1414 	 * frequency. The median sample becomes the frequency offset
1415 	 * estimate; the difference between the other two samples
1416 	 * becomes the frequency dispersion (stability) estimate.
1417 	 */
1418 	pps_ff[2] = pps_ff[1];
1419 	pps_ff[1] = pps_ff[0];
1420 	pps_ff[0] = v_usec;
1421 	if (pps_ff[0] > pps_ff[1]) {
1422 		if (pps_ff[1] > pps_ff[2]) {
1423 			u_usec = pps_ff[1];		/* 0 1 2 */
1424 			v_usec = pps_ff[0] - pps_ff[2];
1425 		} else if (pps_ff[2] > pps_ff[0]) {
1426 			u_usec = pps_ff[0];		/* 2 0 1 */
1427 			v_usec = pps_ff[2] - pps_ff[1];
1428 		} else {
1429 			u_usec = pps_ff[2];		/* 0 2 1 */
1430 			v_usec = pps_ff[0] - pps_ff[1];
1431 		}
1432 	} else {
1433 		if (pps_ff[1] < pps_ff[2]) {
1434 			u_usec = pps_ff[1];		/* 2 1 0 */
1435 			v_usec = pps_ff[2] - pps_ff[0];
1436 		} else  if (pps_ff[2] < pps_ff[0]) {
1437 			u_usec = pps_ff[0];		/* 1 0 2 */
1438 			v_usec = pps_ff[1] - pps_ff[2];
1439 		} else {
1440 			u_usec = pps_ff[2];		/* 1 2 0 */
1441 			v_usec = pps_ff[1] - pps_ff[0];
1442 		}
1443 	}
1444 
1445 	/*
1446 	 * Here the frequency dispersion (stability) is updated. If it
1447 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1448 	 * offset is updated as well, but clamped to the tolerance. It
1449 	 * will be processed later by the clock() routine.
1450 	 */
1451 	v_usec = (v_usec >> 1) - pps_stabil;
1452 	if (v_usec < 0)
1453 		pps_stabil -= -v_usec >> PPS_AVG;
1454 	else
1455 		pps_stabil += v_usec >> PPS_AVG;
1456 	if (pps_stabil > MAXFREQ >> 2) {
1457 		pps_stbcnt++;
1458 		time_status |= STA_PPSWANDER;
1459 		return;
1460 	}
1461 	if (time_status & STA_PPSFREQ) {
1462 		if (u_usec < 0) {
1463 			pps_freq -= -u_usec >> PPS_AVG;
1464 			if (pps_freq < -time_tolerance)
1465 				pps_freq = -time_tolerance;
1466 			u_usec = -u_usec;
1467 		} else {
1468 			pps_freq += u_usec >> PPS_AVG;
1469 			if (pps_freq > time_tolerance)
1470 				pps_freq = time_tolerance;
1471 		}
1472 	}
1473 
1474 	/*
1475 	 * Here the calibration interval is adjusted. If the maximum
1476 	 * time difference is greater than tick / 4, reduce the interval
1477 	 * by half. If this is not the case for four consecutive
1478 	 * intervals, double the interval.
1479 	 */
1480 	if (u_usec << pps_shift > bigtick >> 2) {
1481 		pps_intcnt = 0;
1482 		if (pps_shift > PPS_SHIFT)
1483 			pps_shift--;
1484 	} else if (pps_intcnt >= 4) {
1485 		pps_intcnt = 0;
1486 		if (pps_shift < PPS_SHIFTMAX)
1487 			pps_shift++;
1488 	} else
1489 		pps_intcnt++;
1490 
1491 	/*
1492 	 * If recovering from kmdb, then make sure the tod chip gets resynced.
1493 	 * If we took an early exit above, then we don't yet have a stable
1494 	 * calibration signal to lock onto, so don't mark the tod for sync
1495 	 * until we get all the way here.
1496 	 */
1497 	{
1498 		int s = hr_clock_lock();
1499 
1500 		tod_needsync = 1;
1501 		hr_clock_unlock(s);
1502 	}
1503 }
1504 
1505 /*
1506  * Handle clock tick processing for a thread.
1507  * Check for timer action, enforce CPU rlimit, do profiling etc.
1508  */
1509 void
1510 clock_tick(kthread_t *t, int pending)
1511 {
1512 	struct proc *pp;
1513 	klwp_id_t    lwp;
1514 	struct as *as;
1515 	clock_t	ticks;
1516 	int	poke = 0;		/* notify another CPU */
1517 	int	user_mode;
1518 	size_t	 rss;
1519 	int i, total_usec, usec;
1520 	rctl_qty_t secs;
1521 
1522 	ASSERT(pending > 0);
1523 
1524 	/* Must be operating on a lwp/thread */
1525 	if ((lwp = ttolwp(t)) == NULL) {
1526 		panic("clock_tick: no lwp");
1527 		/*NOTREACHED*/
1528 	}
1529 
1530 	for (i = 0; i < pending; i++) {
1531 		CL_TICK(t);	/* Class specific tick processing */
1532 		DTRACE_SCHED1(tick, kthread_t *, t);
1533 	}
1534 
1535 	pp = ttoproc(t);
1536 
1537 	/* pp->p_lock makes sure that the thread does not exit */
1538 	ASSERT(MUTEX_HELD(&pp->p_lock));
1539 
1540 	user_mode = (lwp->lwp_state == LWP_USER);
1541 
1542 	ticks = (pp->p_utime + pp->p_stime) % hz;
1543 	/*
1544 	 * Update process times. Should use high res clock and state
1545 	 * changes instead of statistical sampling method. XXX
1546 	 */
1547 	if (user_mode) {
1548 		pp->p_utime += pending;
1549 	} else {
1550 		pp->p_stime += pending;
1551 	}
1552 
1553 	pp->p_ttime += pending;
1554 	as = pp->p_as;
1555 
1556 	/*
1557 	 * Update user profiling statistics. Get the pc from the
1558 	 * lwp when the AST happens.
1559 	 */
1560 	if (pp->p_prof.pr_scale) {
1561 		atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending);
1562 		if (user_mode) {
1563 			poke = 1;
1564 			aston(t);
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * If CPU was in user state, process lwp-virtual time
1570 	 * interval timer. The value passed to itimerdecr() has to be
1571 	 * in microseconds and has to be less than one second. Hence
1572 	 * this loop.
1573 	 */
1574 	total_usec = usec_per_tick * pending;
1575 	while (total_usec > 0) {
1576 		usec = MIN(total_usec, (MICROSEC - 1));
1577 		if (user_mode &&
1578 		    timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1579 		    itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) {
1580 			poke = 1;
1581 			sigtoproc(pp, t, SIGVTALRM);
1582 		}
1583 		total_usec -= usec;
1584 	}
1585 
1586 	/*
1587 	 * If CPU was in user state, process lwp-profile
1588 	 * interval timer.
1589 	 */
1590 	total_usec = usec_per_tick * pending;
1591 	while (total_usec > 0) {
1592 		usec = MIN(total_usec, (MICROSEC - 1));
1593 		if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1594 		    itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) {
1595 			poke = 1;
1596 			sigtoproc(pp, t, SIGPROF);
1597 		}
1598 		total_usec -= usec;
1599 	}
1600 
1601 	/*
1602 	 * Enforce CPU resource controls:
1603 	 *   (a) process.max-cpu-time resource control
1604 	 *
1605 	 * Perform the check only if we have accumulated more a second.
1606 	 */
1607 	if ((ticks + pending) >= hz) {
1608 		(void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1609 		    (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO);
1610 	}
1611 
1612 	/*
1613 	 *   (b) task.max-cpu-time resource control
1614 	 *
1615 	 * If we have accumulated enough ticks, increment the task CPU
1616 	 * time usage and test for the resource limit. This minimizes the
1617 	 * number of calls to the rct_test(). The task CPU time mutex
1618 	 * is highly contentious as many processes can be sharing a task.
1619 	 */
1620 	if (pp->p_ttime >= clock_tick_proc_max) {
1621 		secs = task_cpu_time_incr(pp->p_task, pp->p_ttime);
1622 		pp->p_ttime = 0;
1623 		if (secs) {
1624 			(void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls,
1625 			    pp, secs, RCA_UNSAFE_SIGINFO);
1626 		}
1627 	}
1628 
1629 	/*
1630 	 * Update memory usage for the currently running process.
1631 	 */
1632 	rss = rm_asrss(as);
1633 	PTOU(pp)->u_mem += rss;
1634 	if (rss > PTOU(pp)->u_mem_max)
1635 		PTOU(pp)->u_mem_max = rss;
1636 
1637 	/*
1638 	 * Notify the CPU the thread is running on.
1639 	 */
1640 	if (poke && t->t_cpu != CPU)
1641 		poke_cpu(t->t_cpu->cpu_id);
1642 }
1643 
1644 void
1645 profil_tick(uintptr_t upc)
1646 {
1647 	int ticks;
1648 	proc_t *p = ttoproc(curthread);
1649 	klwp_t *lwp = ttolwp(curthread);
1650 	struct prof *pr = &p->p_prof;
1651 
1652 	do {
1653 		ticks = lwp->lwp_oweupc;
1654 	} while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1655 
1656 	mutex_enter(&p->p_pflock);
1657 	if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1658 		/*
1659 		 * Old-style profiling
1660 		 */
1661 		uint16_t *slot = pr->pr_base;
1662 		uint16_t old, new;
1663 		if (pr->pr_scale != 2) {
1664 			uintptr_t delta = upc - pr->pr_off;
1665 			uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1666 			    (((delta & 0xffff) * pr->pr_scale) >> 16);
1667 			if (byteoff >= (uintptr_t)pr->pr_size) {
1668 				mutex_exit(&p->p_pflock);
1669 				return;
1670 			}
1671 			slot += byteoff / sizeof (uint16_t);
1672 		}
1673 		if (fuword16(slot, &old) < 0 ||
1674 		    (new = old + ticks) > SHRT_MAX ||
1675 		    suword16(slot, new) < 0) {
1676 			pr->pr_scale = 0;
1677 		}
1678 	} else if (pr->pr_scale == 1) {
1679 		/*
1680 		 * PC Sampling
1681 		 */
1682 		model_t model = lwp_getdatamodel(lwp);
1683 		int result;
1684 #ifdef __lint
1685 		model = model;
1686 #endif
1687 		while (ticks-- > 0) {
1688 			if (pr->pr_samples == pr->pr_size) {
1689 				/* buffer full, turn off sampling */
1690 				pr->pr_scale = 0;
1691 				break;
1692 			}
1693 			switch (SIZEOF_PTR(model)) {
1694 			case sizeof (uint32_t):
1695 				result = suword32(pr->pr_base, (uint32_t)upc);
1696 				break;
1697 #ifdef _LP64
1698 			case sizeof (uint64_t):
1699 				result = suword64(pr->pr_base, (uint64_t)upc);
1700 				break;
1701 #endif
1702 			default:
1703 				cmn_err(CE_WARN, "profil_tick: unexpected "
1704 				    "data model");
1705 				result = -1;
1706 				break;
1707 			}
1708 			if (result != 0) {
1709 				pr->pr_scale = 0;
1710 				break;
1711 			}
1712 			pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1713 			pr->pr_samples++;
1714 		}
1715 	}
1716 	mutex_exit(&p->p_pflock);
1717 }
1718 
1719 static void
1720 delay_wakeup(void *arg)
1721 {
1722 	kthread_t	*t = arg;
1723 
1724 	mutex_enter(&t->t_delay_lock);
1725 	cv_signal(&t->t_delay_cv);
1726 	mutex_exit(&t->t_delay_lock);
1727 }
1728 
1729 /*
1730  * The delay(9F) man page indicates that it can only be called from user or
1731  * kernel context - detect and diagnose bad calls. The following macro will
1732  * produce a limited number of messages identifying bad callers.  This is done
1733  * in a macro so that caller() is meaningful. When a bad caller is identified,
1734  * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate.
1735  */
1736 #define	DELAY_CONTEXT_CHECK()	{					\
1737 	uint32_t	m;						\
1738 	char		*f;						\
1739 	ulong_t		off;						\
1740 									\
1741 	m = delay_from_interrupt_msg;					\
1742 	if (delay_from_interrupt_diagnose && servicing_interrupt() &&	\
1743 	    !panicstr && !devinfo_freeze &&				\
1744 	    atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) {	\
1745 		f = modgetsymname((uintptr_t)caller(), &off);		\
1746 		cmn_err(CE_WARN, "delay(9F) called from "		\
1747 		    "interrupt context: %s`%s",				\
1748 		    mod_containing_pc(caller()), f ? f : "...");	\
1749 	}								\
1750 }
1751 
1752 /*
1753  * delay_common: common delay code.
1754  */
1755 static void
1756 delay_common(clock_t ticks)
1757 {
1758 	kthread_t	*t = curthread;
1759 	clock_t		deadline;
1760 	clock_t		timeleft;
1761 	callout_id_t	id;
1762 
1763 	/* If timeouts aren't running all we can do is spin. */
1764 	if (panicstr || devinfo_freeze) {
1765 		/* Convert delay(9F) call into drv_usecwait(9F) call. */
1766 		if (ticks > 0)
1767 			drv_usecwait(TICK_TO_USEC(ticks));
1768 		return;
1769 	}
1770 
1771 	deadline = ddi_get_lbolt() + ticks;
1772 	while ((timeleft = deadline - ddi_get_lbolt()) > 0) {
1773 		mutex_enter(&t->t_delay_lock);
1774 		id = timeout_default(delay_wakeup, t, timeleft);
1775 		cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1776 		mutex_exit(&t->t_delay_lock);
1777 		(void) untimeout_default(id, 0);
1778 	}
1779 }
1780 
1781 /*
1782  * Delay specified number of clock ticks.
1783  */
1784 void
1785 delay(clock_t ticks)
1786 {
1787 	DELAY_CONTEXT_CHECK();
1788 
1789 	delay_common(ticks);
1790 }
1791 
1792 /*
1793  * Delay a random number of clock ticks between 1 and ticks.
1794  */
1795 void
1796 delay_random(clock_t ticks)
1797 {
1798 	int	r;
1799 
1800 	DELAY_CONTEXT_CHECK();
1801 
1802 	(void) random_get_pseudo_bytes((void *)&r, sizeof (r));
1803 	if (ticks == 0)
1804 		ticks = 1;
1805 	ticks = (r % ticks) + 1;
1806 	delay_common(ticks);
1807 }
1808 
1809 /*
1810  * Like delay, but interruptible by a signal.
1811  */
1812 int
1813 delay_sig(clock_t ticks)
1814 {
1815 	kthread_t	*t = curthread;
1816 	clock_t		deadline;
1817 	clock_t		rc;
1818 
1819 	/* If timeouts aren't running all we can do is spin. */
1820 	if (panicstr || devinfo_freeze) {
1821 		if (ticks > 0)
1822 			drv_usecwait(TICK_TO_USEC(ticks));
1823 		return (0);
1824 	}
1825 
1826 	deadline = ddi_get_lbolt() + ticks;
1827 	mutex_enter(&t->t_delay_lock);
1828 	do {
1829 		rc = cv_timedwait_sig(&t->t_delay_cv,
1830 		    &t->t_delay_lock, deadline);
1831 		/* loop until past deadline or signaled */
1832 	} while (rc > 0);
1833 	mutex_exit(&t->t_delay_lock);
1834 	if (rc == 0)
1835 		return (EINTR);
1836 	return (0);
1837 }
1838 
1839 
1840 #define	SECONDS_PER_DAY 86400
1841 
1842 /*
1843  * Initialize the system time based on the TOD chip.  approx is used as
1844  * an approximation of time (e.g. from the filesystem) in the event that
1845  * the TOD chip has been cleared or is unresponsive.  An approx of -1
1846  * means the filesystem doesn't keep time.
1847  */
1848 void
1849 clkset(time_t approx)
1850 {
1851 	timestruc_t ts;
1852 	int spl;
1853 	int set_clock = 0;
1854 
1855 	mutex_enter(&tod_lock);
1856 	ts = tod_get();
1857 
1858 	if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1859 		/*
1860 		 * If the TOD chip is reporting some time after 1971,
1861 		 * then it probably didn't lose power or become otherwise
1862 		 * cleared in the recent past;  check to assure that
1863 		 * the time coming from the filesystem isn't in the future
1864 		 * according to the TOD chip.
1865 		 */
1866 		if (approx != -1 && approx > ts.tv_sec) {
1867 			cmn_err(CE_WARN, "Last shutdown is later "
1868 			    "than time on time-of-day chip; check date.");
1869 		}
1870 	} else {
1871 		/*
1872 		 * If the TOD chip isn't giving correct time, set it to the
1873 		 * greater of i) approx and ii) 1987. That way if approx
1874 		 * is negative or is earlier than 1987, we set the clock
1875 		 * back to a time when Oliver North, ALF and Dire Straits
1876 		 * were all on the collective brain:  1987.
1877 		 */
1878 		timestruc_t tmp;
1879 		time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1880 		ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date);
1881 		ts.tv_nsec = 0;
1882 
1883 		/*
1884 		 * Attempt to write the new time to the TOD chip.  Set spl high
1885 		 * to avoid getting preempted between the tod_set and tod_get.
1886 		 */
1887 		spl = splhi();
1888 		tod_set(ts);
1889 		tmp = tod_get();
1890 		splx(spl);
1891 
1892 		if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1893 			tod_broken = 1;
1894 			dosynctodr = 0;
1895 			cmn_err(CE_WARN, "Time-of-day chip unresponsive.");
1896 		} else {
1897 			cmn_err(CE_WARN, "Time-of-day chip had "
1898 			    "incorrect date; check and reset.");
1899 		}
1900 		set_clock = 1;
1901 	}
1902 
1903 	if (!boot_time) {
1904 		boot_time = ts.tv_sec;
1905 		set_clock = 1;
1906 	}
1907 
1908 	if (set_clock)
1909 		set_hrestime(&ts);
1910 
1911 	mutex_exit(&tod_lock);
1912 }
1913 
1914 int	timechanged;	/* for testing if the system time has been reset */
1915 
1916 void
1917 set_hrestime(timestruc_t *ts)
1918 {
1919 	int spl = hr_clock_lock();
1920 	hrestime = *ts;
1921 	membar_enter();	/* hrestime must be visible before timechanged++ */
1922 	timedelta = 0;
1923 	timechanged++;
1924 	hr_clock_unlock(spl);
1925 	callout_hrestime();
1926 }
1927 
1928 static uint_t deadman_seconds;
1929 static uint32_t deadman_panics;
1930 static int deadman_enabled = 0;
1931 static int deadman_panic_timers = 1;
1932 
1933 static void
1934 deadman(void)
1935 {
1936 	if (panicstr) {
1937 		/*
1938 		 * During panic, other CPUs besides the panic
1939 		 * master continue to handle cyclics and some other
1940 		 * interrupts.  The code below is intended to be
1941 		 * single threaded, so any CPU other than the master
1942 		 * must keep out.
1943 		 */
1944 		if (CPU->cpu_id != panic_cpu.cpu_id)
1945 			return;
1946 
1947 		if (!deadman_panic_timers)
1948 			return; /* allow all timers to be manually disabled */
1949 
1950 		/*
1951 		 * If we are generating a crash dump or syncing filesystems and
1952 		 * the corresponding timer is set, decrement it and re-enter
1953 		 * the panic code to abort it and advance to the next state.
1954 		 * The panic states and triggers are explained in panic.c.
1955 		 */
1956 		if (panic_dump) {
1957 			if (dump_timeleft && (--dump_timeleft == 0)) {
1958 				panic("panic dump timeout");
1959 				/*NOTREACHED*/
1960 			}
1961 		} else if (panic_sync) {
1962 			if (sync_timeleft && (--sync_timeleft == 0)) {
1963 				panic("panic sync timeout");
1964 				/*NOTREACHED*/
1965 			}
1966 		}
1967 
1968 		return;
1969 	}
1970 
1971 	if (deadman_counter != CPU->cpu_deadman_counter) {
1972 		CPU->cpu_deadman_counter = deadman_counter;
1973 		CPU->cpu_deadman_countdown = deadman_seconds;
1974 		return;
1975 	}
1976 
1977 	if (--CPU->cpu_deadman_countdown > 0)
1978 		return;
1979 
1980 	/*
1981 	 * Regardless of whether or not we actually bring the system down,
1982 	 * bump the deadman_panics variable.
1983 	 *
1984 	 * N.B. deadman_panics is incremented once for each CPU that
1985 	 * passes through here.  It's expected that all the CPUs will
1986 	 * detect this condition within one second of each other, so
1987 	 * when deadman_enabled is off, deadman_panics will
1988 	 * typically be a multiple of the total number of CPUs in
1989 	 * the system.
1990 	 */
1991 	atomic_add_32(&deadman_panics, 1);
1992 
1993 	if (!deadman_enabled) {
1994 		CPU->cpu_deadman_countdown = deadman_seconds;
1995 		return;
1996 	}
1997 
1998 	/*
1999 	 * If we're here, we want to bring the system down.
2000 	 */
2001 	panic("deadman: timed out after %d seconds of clock "
2002 	    "inactivity", deadman_seconds);
2003 	/*NOTREACHED*/
2004 }
2005 
2006 /*ARGSUSED*/
2007 static void
2008 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
2009 {
2010 	cpu->cpu_deadman_counter = 0;
2011 	cpu->cpu_deadman_countdown = deadman_seconds;
2012 
2013 	hdlr->cyh_func = (cyc_func_t)deadman;
2014 	hdlr->cyh_level = CY_HIGH_LEVEL;
2015 	hdlr->cyh_arg = NULL;
2016 
2017 	/*
2018 	 * Stagger the CPUs so that they don't all run deadman() at
2019 	 * the same time.  Simplest reason to do this is to make it
2020 	 * more likely that only one CPU will panic in case of a
2021 	 * timeout.  This is (strictly speaking) an aesthetic, not a
2022 	 * technical consideration.
2023 	 */
2024 	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
2025 	when->cyt_interval = NANOSEC;
2026 }
2027 
2028 
2029 void
2030 deadman_init(void)
2031 {
2032 	cyc_omni_handler_t hdlr;
2033 
2034 	if (deadman_seconds == 0)
2035 		deadman_seconds = snoop_interval / MICROSEC;
2036 
2037 	if (snooping)
2038 		deadman_enabled = 1;
2039 
2040 	hdlr.cyo_online = deadman_online;
2041 	hdlr.cyo_offline = NULL;
2042 	hdlr.cyo_arg = NULL;
2043 
2044 	mutex_enter(&cpu_lock);
2045 	deadman_cyclic = cyclic_add_omni(&hdlr);
2046 	mutex_exit(&cpu_lock);
2047 }
2048 
2049 /*
2050  * tod_fault() is for updating tod validate mechanism state:
2051  * (1) TOD_NOFAULT: for resetting the state to 'normal'.
2052  *     currently used for debugging only
2053  * (2) The following four cases detected by tod validate mechanism:
2054  *       TOD_REVERSED: current tod value is less than previous value.
2055  *       TOD_STALLED: current tod value hasn't advanced.
2056  *       TOD_JUMPED: current tod value advanced too far from previous value.
2057  *       TOD_RATECHANGED: the ratio between average tod delta and
2058  *       average tick delta has changed.
2059  * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
2060  *     a virtual TOD provided by a hypervisor.
2061  */
2062 enum tod_fault_type
2063 tod_fault(enum tod_fault_type ftype, int off)
2064 {
2065 	ASSERT(MUTEX_HELD(&tod_lock));
2066 
2067 	if (tod_faulted != ftype) {
2068 		switch (ftype) {
2069 		case TOD_NOFAULT:
2070 			plat_tod_fault(TOD_NOFAULT);
2071 			cmn_err(CE_NOTE, "Restarted tracking "
2072 			    "Time of Day clock.");
2073 			tod_faulted = ftype;
2074 			break;
2075 		case TOD_REVERSED:
2076 		case TOD_JUMPED:
2077 			if (tod_faulted == TOD_NOFAULT) {
2078 				plat_tod_fault(ftype);
2079 				cmn_err(CE_WARN, "Time of Day clock error: "
2080 				    "reason [%s by 0x%x]. -- "
2081 				    " Stopped tracking Time Of Day clock.",
2082 				    tod_fault_table[ftype], off);
2083 				tod_faulted = ftype;
2084 			}
2085 			break;
2086 		case TOD_STALLED:
2087 		case TOD_RATECHANGED:
2088 			if (tod_faulted == TOD_NOFAULT) {
2089 				plat_tod_fault(ftype);
2090 				cmn_err(CE_WARN, "Time of Day clock error: "
2091 				    "reason [%s]. -- "
2092 				    " Stopped tracking Time Of Day clock.",
2093 				    tod_fault_table[ftype]);
2094 				tod_faulted = ftype;
2095 			}
2096 			break;
2097 		case TOD_RDONLY:
2098 			if (tod_faulted == TOD_NOFAULT) {
2099 				plat_tod_fault(ftype);
2100 				cmn_err(CE_NOTE, "!Time of Day clock is "
2101 				    "Read-Only; set of Date/Time will not "
2102 				    "persist across reboot.");
2103 				tod_faulted = ftype;
2104 			}
2105 			break;
2106 		default:
2107 			break;
2108 		}
2109 	}
2110 	return (tod_faulted);
2111 }
2112 
2113 void
2114 tod_fault_reset()
2115 {
2116 	tod_fault_reset_flag = 1;
2117 }
2118 
2119 
2120 /*
2121  * tod_validate() is used for checking values returned by tod_get().
2122  * Four error cases can be detected by this routine:
2123  *   TOD_REVERSED: current tod value is less than previous.
2124  *   TOD_STALLED: current tod value hasn't advanced.
2125  *   TOD_JUMPED: current tod value advanced too far from previous value.
2126  *   TOD_RATECHANGED: the ratio between average tod delta and
2127  *   average tick delta has changed.
2128  */
2129 time_t
2130 tod_validate(time_t tod)
2131 {
2132 	time_t diff_tod;
2133 	hrtime_t diff_tick;
2134 
2135 	long dtick;
2136 	int dtick_delta;
2137 
2138 	int off = 0;
2139 	enum tod_fault_type tod_bad = TOD_NOFAULT;
2140 
2141 	static int firsttime = 1;
2142 
2143 	static time_t prev_tod = 0;
2144 	static hrtime_t prev_tick = 0;
2145 	static long dtick_avg = TOD_REF_FREQ;
2146 
2147 	hrtime_t tick = gethrtime();
2148 
2149 	ASSERT(MUTEX_HELD(&tod_lock));
2150 
2151 	/*
2152 	 * tod_validate_enable is patchable via /etc/system.
2153 	 * If TOD is already faulted, or if TOD validation is deferred,
2154 	 * there is nothing to do.
2155 	 */
2156 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2157 	    tod_validate_deferred) {
2158 		return (tod);
2159 	}
2160 
2161 	/*
2162 	 * Update prev_tod and prev_tick values for first run
2163 	 */
2164 	if (firsttime) {
2165 		firsttime = 0;
2166 		prev_tod = tod;
2167 		prev_tick = tick;
2168 		return (tod);
2169 	}
2170 
2171 	/*
2172 	 * For either of these conditions, we need to reset ourself
2173 	 * and start validation from zero since each condition
2174 	 * indicates that the TOD will be updated with new value
2175 	 * Also, note that tod_needsync will be reset in clock()
2176 	 */
2177 	if (tod_needsync || tod_fault_reset_flag) {
2178 		firsttime = 1;
2179 		prev_tod = 0;
2180 		prev_tick = 0;
2181 		dtick_avg = TOD_REF_FREQ;
2182 
2183 		if (tod_fault_reset_flag)
2184 			tod_fault_reset_flag = 0;
2185 
2186 		return (tod);
2187 	}
2188 
2189 	/* test hook */
2190 	switch (tod_unit_test) {
2191 	case 1: /* for testing jumping tod */
2192 		tod += tod_test_injector;
2193 		tod_unit_test = 0;
2194 		break;
2195 	case 2:	/* for testing stuck tod bit */
2196 		tod |= 1 << tod_test_injector;
2197 		tod_unit_test = 0;
2198 		break;
2199 	case 3:	/* for testing stalled tod */
2200 		tod = prev_tod;
2201 		tod_unit_test = 0;
2202 		break;
2203 	case 4:	/* reset tod fault status */
2204 		(void) tod_fault(TOD_NOFAULT, 0);
2205 		tod_unit_test = 0;
2206 		break;
2207 	default:
2208 		break;
2209 	}
2210 
2211 	diff_tod = tod - prev_tod;
2212 	diff_tick = tick - prev_tick;
2213 
2214 	ASSERT(diff_tick >= 0);
2215 
2216 	if (diff_tod < 0) {
2217 		/* ERROR - tod reversed */
2218 		tod_bad = TOD_REVERSED;
2219 		off = (int)(prev_tod - tod);
2220 	} else if (diff_tod == 0) {
2221 		/* tod did not advance */
2222 		if (diff_tick > TOD_STALL_THRESHOLD) {
2223 			/* ERROR - tod stalled */
2224 			tod_bad = TOD_STALLED;
2225 		} else {
2226 			/*
2227 			 * Make sure we don't update prev_tick
2228 			 * so that diff_tick is calculated since
2229 			 * the first diff_tod == 0
2230 			 */
2231 			return (tod);
2232 		}
2233 	} else {
2234 		/* calculate dtick */
2235 		dtick = diff_tick / diff_tod;
2236 
2237 		/* update dtick averages */
2238 		dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2239 
2240 		/*
2241 		 * Calculate dtick_delta as
2242 		 * variation from reference freq in quartiles
2243 		 */
2244 		dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2245 		    (TOD_REF_FREQ >> 2);
2246 
2247 		/*
2248 		 * Even with a perfectly functioning TOD device,
2249 		 * when the number of elapsed seconds is low the
2250 		 * algorithm can calculate a rate that is beyond
2251 		 * tolerance, causing an error.  The algorithm is
2252 		 * inaccurate when elapsed time is low (less than
2253 		 * 5 seconds).
2254 		 */
2255 		if (diff_tod > 4) {
2256 			if (dtick < TOD_JUMP_THRESHOLD) {
2257 				/* ERROR - tod jumped */
2258 				tod_bad = TOD_JUMPED;
2259 				off = (int)diff_tod;
2260 			} else if (dtick_delta) {
2261 				/* ERROR - change in clock rate */
2262 				tod_bad = TOD_RATECHANGED;
2263 			}
2264 		}
2265 	}
2266 
2267 	if (tod_bad != TOD_NOFAULT) {
2268 		(void) tod_fault(tod_bad, off);
2269 
2270 		/*
2271 		 * Disable dosynctodr since we are going to fault
2272 		 * the TOD chip anyway here
2273 		 */
2274 		dosynctodr = 0;
2275 
2276 		/*
2277 		 * Set tod to the correct value from hrestime
2278 		 */
2279 		tod = hrestime.tv_sec;
2280 	}
2281 
2282 	prev_tod = tod;
2283 	prev_tick = tick;
2284 	return (tod);
2285 }
2286 
2287 static void
2288 calcloadavg(int nrun, uint64_t *hp_ave)
2289 {
2290 	static int64_t f[3] = { 135, 27, 9 };
2291 	uint_t i;
2292 	int64_t q, r;
2293 
2294 	/*
2295 	 * Compute load average over the last 1, 5, and 15 minutes
2296 	 * (60, 300, and 900 seconds).  The constants in f[3] are for
2297 	 * exponential decay:
2298 	 * (1 - exp(-1/60)) << 13 = 135,
2299 	 * (1 - exp(-1/300)) << 13 = 27,
2300 	 * (1 - exp(-1/900)) << 13 = 9.
2301 	 */
2302 
2303 	/*
2304 	 * a little hoop-jumping to avoid integer overflow
2305 	 */
2306 	for (i = 0; i < 3; i++) {
2307 		q = (hp_ave[i]  >> 16) << 7;
2308 		r = (hp_ave[i]  & 0xffff) << 7;
2309 		hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2310 	}
2311 }
2312 
2313 /*
2314  * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to
2315  * calculate the value of lbolt according to the current mode. In the event
2316  * driven mode (the default), lbolt is calculated by dividing the current hires
2317  * time by the number of nanoseconds per clock tick. In the cyclic driven mode
2318  * an internal variable is incremented at each firing of the lbolt cyclic
2319  * and returned by lbolt_cyclic_driven().
2320  *
2321  * The system will transition from event to cyclic driven mode when the number
2322  * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a
2323  * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to
2324  * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is
2325  * causing enough activity to cross the thresholds.
2326  */
2327 int64_t
2328 lbolt_bootstrap(void)
2329 {
2330 	return (0);
2331 }
2332 
2333 /* ARGSUSED */
2334 uint_t
2335 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2)
2336 {
2337 	hrtime_t ts, exp;
2338 	int ret;
2339 
2340 	ASSERT(lbolt_hybrid != lbolt_cyclic_driven);
2341 
2342 	kpreempt_disable();
2343 
2344 	ts = gethrtime();
2345 	lb_info->lbi_internal = (ts/nsec_per_tick);
2346 
2347 	/*
2348 	 * Align the next expiration to a clock tick boundary.
2349 	 */
2350 	exp = ts + nsec_per_tick - 1;
2351 	exp = (exp/nsec_per_tick) * nsec_per_tick;
2352 
2353 	ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp);
2354 	ASSERT(ret);
2355 
2356 	lbolt_hybrid = lbolt_cyclic_driven;
2357 	lb_info->lbi_cyc_deactivate = B_FALSE;
2358 	lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2359 
2360 	kpreempt_enable();
2361 
2362 	ret = atomic_dec_32_nv(&lb_info->lbi_token);
2363 	ASSERT(ret == 0);
2364 
2365 	return (1);
2366 }
2367 
2368 int64_t
2369 lbolt_event_driven(void)
2370 {
2371 	hrtime_t ts;
2372 	int64_t lb;
2373 	int ret, cpu = CPU->cpu_seqid;
2374 
2375 	ts = gethrtime();
2376 	ASSERT(ts > 0);
2377 
2378 	ASSERT(nsec_per_tick > 0);
2379 	lb = (ts/nsec_per_tick);
2380 
2381 	/*
2382 	 * Switch to cyclic mode if the number of calls to this routine
2383 	 * has reached the threshold within the interval.
2384 	 */
2385 	if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2386 
2387 		if (--lb_cpu[cpu].lbc_counter == 0) {
2388 			/*
2389 			 * Reached the threshold within the interval, reset
2390 			 * the usage statistics.
2391 			 */
2392 			lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2393 			lb_cpu[cpu].lbc_cnt_start = lb;
2394 
2395 			/*
2396 			 * Make sure only one thread reprograms the
2397 			 * lbolt cyclic and changes the mode.
2398 			 */
2399 			if (panicstr == NULL &&
2400 			    atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2401 
2402 				if (lbolt_hybrid == lbolt_cyclic_driven) {
2403 					ret = atomic_dec_32_nv(
2404 					    &lb_info->lbi_token);
2405 					ASSERT(ret == 0);
2406 				} else {
2407 					lbolt_softint_post();
2408 				}
2409 			}
2410 		}
2411 	} else {
2412 		/*
2413 		 * Exceeded the interval, reset the usage statistics.
2414 		 */
2415 		lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2416 		lb_cpu[cpu].lbc_cnt_start = lb;
2417 	}
2418 
2419 	ASSERT(lb >= lb_info->lbi_debug_time);
2420 
2421 	return (lb - lb_info->lbi_debug_time);
2422 }
2423 
2424 int64_t
2425 lbolt_cyclic_driven(void)
2426 {
2427 	int64_t lb = lb_info->lbi_internal;
2428 	int cpu = CPU->cpu_seqid;
2429 
2430 	if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2431 
2432 		if (lb_cpu[cpu].lbc_counter == 0)
2433 			/*
2434 			 * Reached the threshold within the interval,
2435 			 * prevent the lbolt cyclic from turning itself
2436 			 * off.
2437 			 */
2438 			lb_info->lbi_cyc_deactivate = B_FALSE;
2439 		else
2440 			lb_cpu[cpu].lbc_counter--;
2441 	} else {
2442 		/*
2443 		 * Only reset the usage statistics when the interval has
2444 		 * exceeded.
2445 		 */
2446 		lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2447 		lb_cpu[cpu].lbc_cnt_start = lb;
2448 	}
2449 
2450 	ASSERT(lb >= lb_info->lbi_debug_time);
2451 
2452 	return (lb - lb_info->lbi_debug_time);
2453 }
2454 
2455 /*
2456  * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy
2457  * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers.
2458  * It is inactive by default, and will be activated when switching from event
2459  * to cyclic driven lbolt. The cyclic will turn itself off unless signaled
2460  * by lbolt_cyclic_driven().
2461  */
2462 static void
2463 lbolt_cyclic(void)
2464 {
2465 	int ret;
2466 
2467 	lb_info->lbi_internal++;
2468 
2469 	if (!lbolt_cyc_only) {
2470 
2471 		if (lb_info->lbi_cyc_deactivate) {
2472 			/*
2473 			 * Switching from cyclic to event driven mode.
2474 			 */
2475 			if (atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2476 
2477 				if (lbolt_hybrid == lbolt_event_driven) {
2478 					ret = atomic_dec_32_nv(
2479 					    &lb_info->lbi_token);
2480 					ASSERT(ret == 0);
2481 					return;
2482 				}
2483 
2484 				kpreempt_disable();
2485 
2486 				lbolt_hybrid = lbolt_event_driven;
2487 				ret = cyclic_reprogram(
2488 				    lb_info->id.lbi_cyclic_id,
2489 				    CY_INFINITY);
2490 				ASSERT(ret);
2491 
2492 				kpreempt_enable();
2493 
2494 				ret = atomic_dec_32_nv(&lb_info->lbi_token);
2495 				ASSERT(ret == 0);
2496 			}
2497 		}
2498 
2499 		/*
2500 		 * The lbolt cyclic should not try to deactivate itself before
2501 		 * the sampling period has elapsed.
2502 		 */
2503 		if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >=
2504 		    lb_info->lbi_thresh_interval) {
2505 			lb_info->lbi_cyc_deactivate = B_TRUE;
2506 			lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2507 		}
2508 	}
2509 }
2510 
2511 /*
2512  * Since the lbolt service was historically cyclic driven, it must be 'stopped'
2513  * when the system drops into the kernel debugger. lbolt_debug_entry() is
2514  * called by the KDI system claim callbacks to record a hires timestamp at
2515  * debug enter time. lbolt_debug_return() is called by the sistem release
2516  * callbacks to account for the time spent in the debugger. The value is then
2517  * accumulated in the lb_info structure and used by lbolt_event_driven() and
2518  * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine.
2519  */
2520 void
2521 lbolt_debug_entry(void)
2522 {
2523 	if (lbolt_hybrid != lbolt_bootstrap) {
2524 		ASSERT(lb_info != NULL);
2525 		lb_info->lbi_debug_ts = gethrtime();
2526 	}
2527 }
2528 
2529 /*
2530  * Calculate the time spent in the debugger and add it to the lbolt info
2531  * structure. We also update the internal lbolt value in case we were in
2532  * cyclic driven mode going in.
2533  */
2534 void
2535 lbolt_debug_return(void)
2536 {
2537 	hrtime_t ts;
2538 
2539 	if (lbolt_hybrid != lbolt_bootstrap) {
2540 		ASSERT(lb_info != NULL);
2541 		ASSERT(nsec_per_tick > 0);
2542 
2543 		ts = gethrtime();
2544 		lb_info->lbi_internal = (ts/nsec_per_tick);
2545 		lb_info->lbi_debug_time +=
2546 		    ((ts - lb_info->lbi_debug_ts)/nsec_per_tick);
2547 
2548 		lb_info->lbi_debug_ts = 0;
2549 	}
2550 }
2551