xref: /titanic_50/usr/src/uts/common/os/clock.c (revision 5cb0d67909d9970a3e7adbea9422ca3fc88000bf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved	*/
23 
24 /*
25  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
26  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/t_lock.h>
31 #include <sys/types.h>
32 #include <sys/tuneable.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/cpuvar.h>
36 #include <sys/lgrp.h>
37 #include <sys/user.h>
38 #include <sys/proc.h>
39 #include <sys/callo.h>
40 #include <sys/kmem.h>
41 #include <sys/var.h>
42 #include <sys/cmn_err.h>
43 #include <sys/swap.h>
44 #include <sys/vmsystm.h>
45 #include <sys/class.h>
46 #include <sys/time.h>
47 #include <sys/debug.h>
48 #include <sys/vtrace.h>
49 #include <sys/spl.h>
50 #include <sys/atomic.h>
51 #include <sys/dumphdr.h>
52 #include <sys/archsystm.h>
53 #include <sys/fs/swapnode.h>
54 #include <sys/panic.h>
55 #include <sys/disp.h>
56 #include <sys/msacct.h>
57 #include <sys/mem_cage.h>
58 
59 #include <vm/page.h>
60 #include <vm/anon.h>
61 #include <vm/rm.h>
62 #include <sys/cyclic.h>
63 #include <sys/cpupart.h>
64 #include <sys/rctl.h>
65 #include <sys/task.h>
66 #include <sys/sdt.h>
67 #include <sys/ddi_periodic.h>
68 #include <sys/random.h>
69 #include <sys/modctl.h>
70 
71 /*
72  * for NTP support
73  */
74 #include <sys/timex.h>
75 #include <sys/inttypes.h>
76 
77 #include <sys/sunddi.h>
78 #include <sys/clock_impl.h>
79 
80 /*
81  * clock() is called straight from the clock cyclic; see clock_init().
82  *
83  * Functions:
84  *	reprime clock
85  *	maintain date
86  *	jab the scheduler
87  */
88 
89 extern kcondvar_t	fsflush_cv;
90 extern sysinfo_t	sysinfo;
91 extern vminfo_t	vminfo;
92 extern int	idleswtch;	/* flag set while idle in pswtch() */
93 extern hrtime_t volatile devinfo_freeze;
94 
95 /*
96  * high-precision avenrun values.  These are needed to make the
97  * regular avenrun values accurate.
98  */
99 static uint64_t hp_avenrun[3];
100 int	avenrun[3];		/* FSCALED average run queue lengths */
101 time_t	time;	/* time in seconds since 1970 - for compatibility only */
102 
103 static struct loadavg_s loadavg;
104 /*
105  * Phase/frequency-lock loop (PLL/FLL) definitions
106  *
107  * The following variables are read and set by the ntp_adjtime() system
108  * call.
109  *
110  * time_state shows the state of the system clock, with values defined
111  * in the timex.h header file.
112  *
113  * time_status shows the status of the system clock, with bits defined
114  * in the timex.h header file.
115  *
116  * time_offset is used by the PLL/FLL to adjust the system time in small
117  * increments.
118  *
119  * time_constant determines the bandwidth or "stiffness" of the PLL.
120  *
121  * time_tolerance determines maximum frequency error or tolerance of the
122  * CPU clock oscillator and is a property of the architecture; however,
123  * in principle it could change as result of the presence of external
124  * discipline signals, for instance.
125  *
126  * time_precision is usually equal to the kernel tick variable; however,
127  * in cases where a precision clock counter or external clock is
128  * available, the resolution can be much less than this and depend on
129  * whether the external clock is working or not.
130  *
131  * time_maxerror is initialized by a ntp_adjtime() call and increased by
132  * the kernel once each second to reflect the maximum error bound
133  * growth.
134  *
135  * time_esterror is set and read by the ntp_adjtime() call, but
136  * otherwise not used by the kernel.
137  */
138 int32_t time_state = TIME_OK;	/* clock state */
139 int32_t time_status = STA_UNSYNC;	/* clock status bits */
140 int32_t time_offset = 0;		/* time offset (us) */
141 int32_t time_constant = 0;		/* pll time constant */
142 int32_t time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
143 int32_t time_precision = 1;	/* clock precision (us) */
144 int32_t time_maxerror = MAXPHASE;	/* maximum error (us) */
145 int32_t time_esterror = MAXPHASE;	/* estimated error (us) */
146 
147 /*
148  * The following variables establish the state of the PLL/FLL and the
149  * residual time and frequency offset of the local clock. The scale
150  * factors are defined in the timex.h header file.
151  *
152  * time_phase and time_freq are the phase increment and the frequency
153  * increment, respectively, of the kernel time variable.
154  *
155  * time_freq is set via ntp_adjtime() from a value stored in a file when
156  * the synchronization daemon is first started. Its value is retrieved
157  * via ntp_adjtime() and written to the file about once per hour by the
158  * daemon.
159  *
160  * time_adj is the adjustment added to the value of tick at each timer
161  * interrupt and is recomputed from time_phase and time_freq at each
162  * seconds rollover.
163  *
164  * time_reftime is the second's portion of the system time at the last
165  * call to ntp_adjtime(). It is used to adjust the time_freq variable
166  * and to increase the time_maxerror as the time since last update
167  * increases.
168  */
169 int32_t time_phase = 0;		/* phase offset (scaled us) */
170 int32_t time_freq = 0;		/* frequency offset (scaled ppm) */
171 int32_t time_adj = 0;		/* tick adjust (scaled 1 / hz) */
172 int32_t time_reftime = 0;		/* time at last adjustment (s) */
173 
174 /*
175  * The scale factors of the following variables are defined in the
176  * timex.h header file.
177  *
178  * pps_time contains the time at each calibration interval, as read by
179  * microtime(). pps_count counts the seconds of the calibration
180  * interval, the duration of which is nominally pps_shift in powers of
181  * two.
182  *
183  * pps_offset is the time offset produced by the time median filter
184  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
185  * this filter.
186  *
187  * pps_freq is the frequency offset produced by the frequency median
188  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
189  * by this filter.
190  *
191  * pps_usec is latched from a high resolution counter or external clock
192  * at pps_time. Here we want the hardware counter contents only, not the
193  * contents plus the time_tv.usec as usual.
194  *
195  * pps_valid counts the number of seconds since the last PPS update. It
196  * is used as a watchdog timer to disable the PPS discipline should the
197  * PPS signal be lost.
198  *
199  * pps_glitch counts the number of seconds since the beginning of an
200  * offset burst more than tick/2 from current nominal offset. It is used
201  * mainly to suppress error bursts due to priority conflicts between the
202  * PPS interrupt and timer interrupt.
203  *
204  * pps_intcnt counts the calibration intervals for use in the interval-
205  * adaptation algorithm. It's just too complicated for words.
206  */
207 struct timeval pps_time;	/* kernel time at last interval */
208 int32_t pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
209 int32_t pps_offset = 0;		/* pps time offset (us) */
210 int32_t pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
211 int32_t pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
212 int32_t pps_freq = 0;		/* frequency offset (scaled ppm) */
213 int32_t pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
214 int32_t pps_usec = 0;		/* microsec counter at last interval */
215 int32_t pps_valid = PPS_VALID;	/* pps signal watchdog counter */
216 int32_t pps_glitch = 0;		/* pps signal glitch counter */
217 int32_t pps_count = 0;		/* calibration interval counter (s) */
218 int32_t pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
219 int32_t pps_intcnt = 0;		/* intervals at current duration */
220 
221 /*
222  * PPS signal quality monitors
223  *
224  * pps_jitcnt counts the seconds that have been discarded because the
225  * jitter measured by the time median filter exceeds the limit MAXTIME
226  * (100 us).
227  *
228  * pps_calcnt counts the frequency calibration intervals, which are
229  * variable from 4 s to 256 s.
230  *
231  * pps_errcnt counts the calibration intervals which have been discarded
232  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
233  * calibration interval jitter exceeds two ticks.
234  *
235  * pps_stbcnt counts the calibration intervals that have been discarded
236  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
237  */
238 int32_t pps_jitcnt = 0;		/* jitter limit exceeded */
239 int32_t pps_calcnt = 0;		/* calibration intervals */
240 int32_t pps_errcnt = 0;		/* calibration errors */
241 int32_t pps_stbcnt = 0;		/* stability limit exceeded */
242 
243 kcondvar_t lbolt_cv;
244 
245 /*
246  * Hybrid lbolt implementation:
247  *
248  * The service historically provided by the lbolt and lbolt64 variables has
249  * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the
250  * original symbols removed from the system. The once clock driven variables are
251  * now implemented in an event driven fashion, backed by gethrtime() coarsed to
252  * the appropriate clock resolution. The default event driven implementation is
253  * complemented by a cyclic driven one, active only during periods of intense
254  * activity around the DDI lbolt routines, when a lbolt specific cyclic is
255  * reprogramed to fire at a clock tick interval to serve consumers of lbolt who
256  * rely on the original low cost of consulting a memory position.
257  *
258  * The implementation uses the number of calls to these routines and the
259  * frequency of these to determine when to transition from event to cyclic
260  * driven and vice-versa. These values are kept on a per CPU basis for
261  * scalability reasons and to prevent CPUs from constantly invalidating a single
262  * cache line when modifying a global variable. The transition from event to
263  * cyclic mode happens once the thresholds are crossed, and activity on any CPU
264  * can cause such transition.
265  *
266  * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and
267  * ddi_get_lbolt64(), and will point to lbolt_event_driven() or
268  * lbolt_cyclic_driven() according to the current mode. When the thresholds
269  * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to
270  * fire at a nsec_per_tick interval and increment an internal variable at
271  * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which
272  * will simply return the value of such variable. lbolt_cyclic() will attempt
273  * to shut itself off at each threshold interval (sampling period for calls
274  * to the DDI lbolt routines), and return to the event driven mode, but will
275  * be prevented from doing so if lbolt_cyclic_driven() is being heavily used.
276  *
277  * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait
278  * for the cyclic subsystem to be intialized.
279  *
280  */
281 int64_t lbolt_bootstrap(void);
282 int64_t lbolt_event_driven(void);
283 int64_t lbolt_cyclic_driven(void);
284 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap;
285 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t);
286 
287 /*
288  * lbolt's cyclic, installed by clock_init().
289  */
290 static void lbolt_cyclic(void);
291 
292 /*
293  * Tunable to keep lbolt in cyclic driven mode. This will prevent the system
294  * from switching back to event driven, once it reaches cyclic mode.
295  */
296 static boolean_t lbolt_cyc_only = B_FALSE;
297 
298 /*
299  * Cache aligned, per CPU structure with lbolt usage statistics.
300  */
301 static lbolt_cpu_t *lb_cpu;
302 
303 /*
304  * Single, cache aligned, structure with all the information required by
305  * the lbolt implementation.
306  */
307 lbolt_info_t *lb_info;
308 
309 
310 int one_sec = 1; /* turned on once every second */
311 static int fsflushcnt;	/* counter for t_fsflushr */
312 int	dosynctodr = 1;	/* patchable; enable/disable sync to TOD chip */
313 int	tod_needsync = 0;	/* need to sync tod chip with software time */
314 static int tod_broken = 0;	/* clock chip doesn't work */
315 time_t	boot_time = 0;		/* Boot time in seconds since 1970 */
316 cyclic_id_t clock_cyclic;	/* clock()'s cyclic_id */
317 cyclic_id_t deadman_cyclic;	/* deadman()'s cyclic_id */
318 
319 extern void	clock_tick_schedule(int);
320 
321 static int lgrp_ticks;		/* counter to schedule lgrp load calcs */
322 
323 /*
324  * for tod fault detection
325  */
326 #define	TOD_REF_FREQ		((longlong_t)(NANOSEC))
327 #define	TOD_STALL_THRESHOLD	(TOD_REF_FREQ * 3 / 2)
328 #define	TOD_JUMP_THRESHOLD	(TOD_REF_FREQ / 2)
329 #define	TOD_FILTER_N		4
330 #define	TOD_FILTER_SETTLE	(4 * TOD_FILTER_N)
331 static enum tod_fault_type tod_faulted = TOD_NOFAULT;
332 
333 static int tod_status_flag = 0;		/* used by tod_validate() */
334 
335 static hrtime_t prev_set_tick = 0;	/* gethrtime() prior to tod_set() */
336 static time_t prev_set_tod = 0;		/* tv_sec value passed to tod_set() */
337 
338 /* patchable via /etc/system */
339 int tod_validate_enable = 1;
340 
341 /* Diagnose/Limit messages about delay(9F) called from interrupt context */
342 int			delay_from_interrupt_diagnose = 0;
343 volatile uint32_t	delay_from_interrupt_msg = 20;
344 
345 /*
346  * On non-SPARC systems, TOD validation must be deferred until gethrtime
347  * returns non-zero values (after mach_clkinit's execution).
348  * On SPARC systems, it must be deferred until after hrtime_base
349  * and hres_last_tick are set (in the first invocation of hres_tick).
350  * Since in both cases the prerequisites occur before the invocation of
351  * tod_get() in clock(), the deferment is lifted there.
352  */
353 static boolean_t tod_validate_deferred = B_TRUE;
354 
355 /*
356  * tod_fault_table[] must be aligned with
357  * enum tod_fault_type in systm.h
358  */
359 static char *tod_fault_table[] = {
360 	"Reversed",			/* TOD_REVERSED */
361 	"Stalled",			/* TOD_STALLED */
362 	"Jumped",			/* TOD_JUMPED */
363 	"Changed in Clock Rate",	/* TOD_RATECHANGED */
364 	"Is Read-Only"			/* TOD_RDONLY */
365 	/*
366 	 * no strings needed for TOD_NOFAULT
367 	 */
368 };
369 
370 /*
371  * test hook for tod broken detection in tod_validate
372  */
373 int tod_unit_test = 0;
374 time_t tod_test_injector;
375 
376 #define	CLOCK_ADJ_HIST_SIZE	4
377 
378 static int	adj_hist_entry;
379 
380 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE];
381 
382 static void calcloadavg(int, uint64_t *);
383 static int genloadavg(struct loadavg_s *);
384 static void loadavg_update();
385 
386 void (*cmm_clock_callout)() = NULL;
387 void (*cpucaps_clock_callout)() = NULL;
388 
389 extern clock_t clock_tick_proc_max;
390 
391 static int64_t deadman_counter = 0;
392 
393 static void
394 clock(void)
395 {
396 	kthread_t	*t;
397 	uint_t	nrunnable;
398 	uint_t	w_io;
399 	cpu_t	*cp;
400 	cpupart_t *cpupart;
401 	extern	void	set_freemem();
402 	void	(*funcp)();
403 	int32_t ltemp;
404 	int64_t lltemp;
405 	int s;
406 	int do_lgrp_load;
407 	int i;
408 	clock_t now = LBOLT_NO_ACCOUNT;	/* current tick */
409 
410 	if (panicstr)
411 		return;
412 
413 	/*
414 	 * Make sure that 'freemem' do not drift too far from the truth
415 	 */
416 	set_freemem();
417 
418 
419 	/*
420 	 * Before the section which is repeated is executed, we do
421 	 * the time delta processing which occurs every clock tick
422 	 *
423 	 * There is additional processing which happens every time
424 	 * the nanosecond counter rolls over which is described
425 	 * below - see the section which begins with : if (one_sec)
426 	 *
427 	 * This section marks the beginning of the precision-kernel
428 	 * code fragment.
429 	 *
430 	 * First, compute the phase adjustment. If the low-order bits
431 	 * (time_phase) of the update overflow, bump the higher order
432 	 * bits (time_update).
433 	 */
434 	time_phase += time_adj;
435 	if (time_phase <= -FINEUSEC) {
436 		ltemp = -time_phase / SCALE_PHASE;
437 		time_phase += ltemp * SCALE_PHASE;
438 		s = hr_clock_lock();
439 		timedelta -= ltemp * (NANOSEC/MICROSEC);
440 		hr_clock_unlock(s);
441 	} else if (time_phase >= FINEUSEC) {
442 		ltemp = time_phase / SCALE_PHASE;
443 		time_phase -= ltemp * SCALE_PHASE;
444 		s = hr_clock_lock();
445 		timedelta += ltemp * (NANOSEC/MICROSEC);
446 		hr_clock_unlock(s);
447 	}
448 
449 	/*
450 	 * End of precision-kernel code fragment which is processed
451 	 * every timer interrupt.
452 	 *
453 	 * Continue with the interrupt processing as scheduled.
454 	 */
455 	/*
456 	 * Count the number of runnable threads and the number waiting
457 	 * for some form of I/O to complete -- gets added to
458 	 * sysinfo.waiting.  To know the state of the system, must add
459 	 * wait counts from all CPUs.  Also add up the per-partition
460 	 * statistics.
461 	 */
462 	w_io = 0;
463 	nrunnable = 0;
464 
465 	/*
466 	 * keep track of when to update lgrp/part loads
467 	 */
468 
469 	do_lgrp_load = 0;
470 	if (lgrp_ticks++ >= hz / 10) {
471 		lgrp_ticks = 0;
472 		do_lgrp_load = 1;
473 	}
474 
475 	if (one_sec) {
476 		loadavg_update();
477 		deadman_counter++;
478 	}
479 
480 	/*
481 	 * First count the threads waiting on kpreempt queues in each
482 	 * CPU partition.
483 	 */
484 
485 	cpupart = cp_list_head;
486 	do {
487 		uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable;
488 
489 		cpupart->cp_updates++;
490 		nrunnable += cpupart_nrunnable;
491 		cpupart->cp_nrunnable_cum += cpupart_nrunnable;
492 		if (one_sec) {
493 			cpupart->cp_nrunning = 0;
494 			cpupart->cp_nrunnable = cpupart_nrunnable;
495 		}
496 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
497 
498 
499 	/* Now count the per-CPU statistics. */
500 	cp = cpu_list;
501 	do {
502 		uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable;
503 
504 		nrunnable += cpu_nrunnable;
505 		cpupart = cp->cpu_part;
506 		cpupart->cp_nrunnable_cum += cpu_nrunnable;
507 		if (one_sec) {
508 			cpupart->cp_nrunnable += cpu_nrunnable;
509 			/*
510 			 * Update user, system, and idle cpu times.
511 			 */
512 			cpupart->cp_nrunning++;
513 			/*
514 			 * w_io is used to update sysinfo.waiting during
515 			 * one_second processing below.  Only gather w_io
516 			 * information when we walk the list of cpus if we're
517 			 * going to perform one_second processing.
518 			 */
519 			w_io += CPU_STATS(cp, sys.iowait);
520 		}
521 
522 		if (one_sec && (cp->cpu_flags & CPU_EXISTS)) {
523 			int i, load, change;
524 			hrtime_t intracct, intrused;
525 			const hrtime_t maxnsec = 1000000000;
526 			const int precision = 100;
527 
528 			/*
529 			 * Estimate interrupt load on this cpu each second.
530 			 * Computes cpu_intrload as %utilization (0-99).
531 			 */
532 
533 			/* add up interrupt time from all micro states */
534 			for (intracct = 0, i = 0; i < NCMSTATES; i++)
535 				intracct += cp->cpu_intracct[i];
536 			scalehrtime(&intracct);
537 
538 			/* compute nsec used in the past second */
539 			intrused = intracct - cp->cpu_intrlast;
540 			cp->cpu_intrlast = intracct;
541 
542 			/* limit the value for safety (and the first pass) */
543 			if (intrused >= maxnsec)
544 				intrused = maxnsec - 1;
545 
546 			/* calculate %time in interrupt */
547 			load = (precision * intrused) / maxnsec;
548 			ASSERT(load >= 0 && load < precision);
549 			change = cp->cpu_intrload - load;
550 
551 			/* jump to new max, or decay the old max */
552 			if (change < 0)
553 				cp->cpu_intrload = load;
554 			else if (change > 0)
555 				cp->cpu_intrload -= (change + 3) / 4;
556 
557 			DTRACE_PROBE3(cpu_intrload,
558 			    cpu_t *, cp,
559 			    hrtime_t, intracct,
560 			    hrtime_t, intrused);
561 		}
562 
563 		if (do_lgrp_load &&
564 		    (cp->cpu_flags & CPU_EXISTS)) {
565 			/*
566 			 * When updating the lgroup's load average,
567 			 * account for the thread running on the CPU.
568 			 * If the CPU is the current one, then we need
569 			 * to account for the underlying thread which
570 			 * got the clock interrupt not the thread that is
571 			 * handling the interrupt and caculating the load
572 			 * average
573 			 */
574 			t = cp->cpu_thread;
575 			if (CPU == cp)
576 				t = t->t_intr;
577 
578 			/*
579 			 * Account for the load average for this thread if
580 			 * it isn't the idle thread or it is on the interrupt
581 			 * stack and not the current CPU handling the clock
582 			 * interrupt
583 			 */
584 			if ((t && t != cp->cpu_idle_thread) || (CPU != cp &&
585 			    CPU_ON_INTR(cp))) {
586 				if (t->t_lpl == cp->cpu_lpl) {
587 					/* local thread */
588 					cpu_nrunnable++;
589 				} else {
590 					/*
591 					 * This is a remote thread, charge it
592 					 * against its home lgroup.  Note that
593 					 * we notice that a thread is remote
594 					 * only if it's currently executing.
595 					 * This is a reasonable approximation,
596 					 * since queued remote threads are rare.
597 					 * Note also that if we didn't charge
598 					 * it to its home lgroup, remote
599 					 * execution would often make a system
600 					 * appear balanced even though it was
601 					 * not, and thread placement/migration
602 					 * would often not be done correctly.
603 					 */
604 					lgrp_loadavg(t->t_lpl,
605 					    LGRP_LOADAVG_IN_THREAD_MAX, 0);
606 				}
607 			}
608 			lgrp_loadavg(cp->cpu_lpl,
609 			    cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1);
610 		}
611 	} while ((cp = cp->cpu_next) != cpu_list);
612 
613 	clock_tick_schedule(one_sec);
614 
615 	/*
616 	 * Check for a callout that needs be called from the clock
617 	 * thread to support the membership protocol in a clustered
618 	 * system.  Copy the function pointer so that we can reset
619 	 * this to NULL if needed.
620 	 */
621 	if ((funcp = cmm_clock_callout) != NULL)
622 		(*funcp)();
623 
624 	if ((funcp = cpucaps_clock_callout) != NULL)
625 		(*funcp)();
626 
627 	/*
628 	 * Wakeup the cageout thread waiters once per second.
629 	 */
630 	if (one_sec)
631 		kcage_tick();
632 
633 	if (one_sec) {
634 
635 		int drift, absdrift;
636 		timestruc_t tod;
637 		int s;
638 
639 		/*
640 		 * Beginning of precision-kernel code fragment executed
641 		 * every second.
642 		 *
643 		 * On rollover of the second the phase adjustment to be
644 		 * used for the next second is calculated.  Also, the
645 		 * maximum error is increased by the tolerance.  If the
646 		 * PPS frequency discipline code is present, the phase is
647 		 * increased to compensate for the CPU clock oscillator
648 		 * frequency error.
649 		 *
650 		 * On a 32-bit machine and given parameters in the timex.h
651 		 * header file, the maximum phase adjustment is +-512 ms
652 		 * and maximum frequency offset is (a tad less than)
653 		 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask.
654 		 */
655 		time_maxerror += time_tolerance / SCALE_USEC;
656 
657 		/*
658 		 * Leap second processing. If in leap-insert state at
659 		 * the end of the day, the system clock is set back one
660 		 * second; if in leap-delete state, the system clock is
661 		 * set ahead one second. The microtime() routine or
662 		 * external clock driver will insure that reported time
663 		 * is always monotonic. The ugly divides should be
664 		 * replaced.
665 		 */
666 		switch (time_state) {
667 
668 		case TIME_OK:
669 			if (time_status & STA_INS)
670 				time_state = TIME_INS;
671 			else if (time_status & STA_DEL)
672 				time_state = TIME_DEL;
673 			break;
674 
675 		case TIME_INS:
676 			if (hrestime.tv_sec % 86400 == 0) {
677 				s = hr_clock_lock();
678 				hrestime.tv_sec--;
679 				hr_clock_unlock(s);
680 				time_state = TIME_OOP;
681 			}
682 			break;
683 
684 		case TIME_DEL:
685 			if ((hrestime.tv_sec + 1) % 86400 == 0) {
686 				s = hr_clock_lock();
687 				hrestime.tv_sec++;
688 				hr_clock_unlock(s);
689 				time_state = TIME_WAIT;
690 			}
691 			break;
692 
693 		case TIME_OOP:
694 			time_state = TIME_WAIT;
695 			break;
696 
697 		case TIME_WAIT:
698 			if (!(time_status & (STA_INS | STA_DEL)))
699 				time_state = TIME_OK;
700 		default:
701 			break;
702 		}
703 
704 		/*
705 		 * Compute the phase adjustment for the next second. In
706 		 * PLL mode, the offset is reduced by a fixed factor
707 		 * times the time constant. In FLL mode the offset is
708 		 * used directly. In either mode, the maximum phase
709 		 * adjustment for each second is clamped so as to spread
710 		 * the adjustment over not more than the number of
711 		 * seconds between updates.
712 		 */
713 		if (time_offset == 0)
714 			time_adj = 0;
715 		else if (time_offset < 0) {
716 			lltemp = -time_offset;
717 			if (!(time_status & STA_FLL)) {
718 				if ((1 << time_constant) >= SCALE_KG)
719 					lltemp *= (1 << time_constant) /
720 					    SCALE_KG;
721 				else
722 					lltemp = (lltemp / SCALE_KG) >>
723 					    time_constant;
724 			}
725 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
726 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
727 			time_offset += lltemp;
728 			time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
729 		} else {
730 			lltemp = time_offset;
731 			if (!(time_status & STA_FLL)) {
732 				if ((1 << time_constant) >= SCALE_KG)
733 					lltemp *= (1 << time_constant) /
734 					    SCALE_KG;
735 				else
736 					lltemp = (lltemp / SCALE_KG) >>
737 					    time_constant;
738 			}
739 			if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE)
740 				lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE;
741 			time_offset -= lltemp;
742 			time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE;
743 		}
744 
745 		/*
746 		 * Compute the frequency estimate and additional phase
747 		 * adjustment due to frequency error for the next
748 		 * second. When the PPS signal is engaged, gnaw on the
749 		 * watchdog counter and update the frequency computed by
750 		 * the pll and the PPS signal.
751 		 */
752 		pps_valid++;
753 		if (pps_valid == PPS_VALID) {
754 			pps_jitter = MAXTIME;
755 			pps_stabil = MAXFREQ;
756 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
757 			    STA_PPSWANDER | STA_PPSERROR);
758 		}
759 		lltemp = time_freq + pps_freq;
760 
761 		if (lltemp)
762 			time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz);
763 
764 		/*
765 		 * End of precision kernel-code fragment
766 		 *
767 		 * The section below should be modified if we are planning
768 		 * to use NTP for synchronization.
769 		 *
770 		 * Note: the clock synchronization code now assumes
771 		 * the following:
772 		 *   - if dosynctodr is 1, then compute the drift between
773 		 *	the tod chip and software time and adjust one or
774 		 *	the other depending on the circumstances
775 		 *
776 		 *   - if dosynctodr is 0, then the tod chip is independent
777 		 *	of the software clock and should not be adjusted,
778 		 *	but allowed to free run.  this allows NTP to sync.
779 		 *	hrestime without any interference from the tod chip.
780 		 */
781 
782 		tod_validate_deferred = B_FALSE;
783 		mutex_enter(&tod_lock);
784 		tod = tod_get();
785 		drift = tod.tv_sec - hrestime.tv_sec;
786 		absdrift = (drift >= 0) ? drift : -drift;
787 		if (tod_needsync || absdrift > 1) {
788 			int s;
789 			if (absdrift > 2) {
790 				if (!tod_broken && tod_faulted == TOD_NOFAULT) {
791 					s = hr_clock_lock();
792 					hrestime = tod;
793 					membar_enter();	/* hrestime visible */
794 					timedelta = 0;
795 					timechanged++;
796 					tod_needsync = 0;
797 					hr_clock_unlock(s);
798 					callout_hrestime();
799 
800 				}
801 			} else {
802 				if (tod_needsync || !dosynctodr) {
803 					gethrestime(&tod);
804 					tod_set(tod);
805 					s = hr_clock_lock();
806 					if (timedelta == 0)
807 						tod_needsync = 0;
808 					hr_clock_unlock(s);
809 				} else {
810 					/*
811 					 * If the drift is 2 seconds on the
812 					 * money, then the TOD is adjusting
813 					 * the clock;  record that.
814 					 */
815 					clock_adj_hist[adj_hist_entry++ %
816 					    CLOCK_ADJ_HIST_SIZE] = now;
817 					s = hr_clock_lock();
818 					timedelta = (int64_t)drift*NANOSEC;
819 					hr_clock_unlock(s);
820 				}
821 			}
822 		}
823 		one_sec = 0;
824 		time = gethrestime_sec();  /* for crusty old kmem readers */
825 		mutex_exit(&tod_lock);
826 
827 		/*
828 		 * Some drivers still depend on this... XXX
829 		 */
830 		cv_broadcast(&lbolt_cv);
831 
832 		vminfo.freemem += freemem;
833 		{
834 			pgcnt_t maxswap, resv, free;
835 			pgcnt_t avail =
836 			    MAX((spgcnt_t)(availrmem - swapfs_minfree), 0);
837 
838 			maxswap = k_anoninfo.ani_mem_resv +
839 			    k_anoninfo.ani_max +avail;
840 			/* Update ani_free */
841 			set_anoninfo();
842 			free = k_anoninfo.ani_free + avail;
843 			resv = k_anoninfo.ani_phys_resv +
844 			    k_anoninfo.ani_mem_resv;
845 
846 			vminfo.swap_resv += resv;
847 			/* number of reserved and allocated pages */
848 #ifdef	DEBUG
849 			if (maxswap < free)
850 				cmn_err(CE_WARN, "clock: maxswap < free");
851 			if (maxswap < resv)
852 				cmn_err(CE_WARN, "clock: maxswap < resv");
853 #endif
854 			vminfo.swap_alloc += maxswap - free;
855 			vminfo.swap_avail += maxswap - resv;
856 			vminfo.swap_free += free;
857 		}
858 		vminfo.updates++;
859 		if (nrunnable) {
860 			sysinfo.runque += nrunnable;
861 			sysinfo.runocc++;
862 		}
863 		if (nswapped) {
864 			sysinfo.swpque += nswapped;
865 			sysinfo.swpocc++;
866 		}
867 		sysinfo.waiting += w_io;
868 		sysinfo.updates++;
869 
870 		/*
871 		 * Wake up fsflush to write out DELWRI
872 		 * buffers, dirty pages and other cached
873 		 * administrative data, e.g. inodes.
874 		 */
875 		if (--fsflushcnt <= 0) {
876 			fsflushcnt = tune.t_fsflushr;
877 			cv_signal(&fsflush_cv);
878 		}
879 
880 		vmmeter();
881 		calcloadavg(genloadavg(&loadavg), hp_avenrun);
882 		for (i = 0; i < 3; i++)
883 			/*
884 			 * At the moment avenrun[] can only hold 31
885 			 * bits of load average as it is a signed
886 			 * int in the API. We need to ensure that
887 			 * hp_avenrun[i] >> (16 - FSHIFT) will not be
888 			 * too large. If it is, we put the largest value
889 			 * that we can use into avenrun[i]. This is
890 			 * kludgey, but about all we can do until we
891 			 * avenrun[] is declared as an array of uint64[]
892 			 */
893 			if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT)))
894 				avenrun[i] = (int32_t)(hp_avenrun[i] >>
895 				    (16 - FSHIFT));
896 			else
897 				avenrun[i] = 0x7fffffff;
898 
899 		cpupart = cp_list_head;
900 		do {
901 			calcloadavg(genloadavg(&cpupart->cp_loadavg),
902 			    cpupart->cp_hp_avenrun);
903 		} while ((cpupart = cpupart->cp_next) != cp_list_head);
904 
905 		/*
906 		 * Wake up the swapper thread if necessary.
907 		 */
908 		if (runin ||
909 		    (runout && (avefree < desfree || wake_sched_sec))) {
910 			t = &t0;
911 			thread_lock(t);
912 			if (t->t_state == TS_STOPPED) {
913 				runin = runout = 0;
914 				wake_sched_sec = 0;
915 				t->t_whystop = 0;
916 				t->t_whatstop = 0;
917 				t->t_schedflag &= ~TS_ALLSTART;
918 				THREAD_TRANSITION(t);
919 				setfrontdq(t);
920 			}
921 			thread_unlock(t);
922 		}
923 	}
924 
925 	/*
926 	 * Wake up the swapper if any high priority swapped-out threads
927 	 * became runable during the last tick.
928 	 */
929 	if (wake_sched) {
930 		t = &t0;
931 		thread_lock(t);
932 		if (t->t_state == TS_STOPPED) {
933 			runin = runout = 0;
934 			wake_sched = 0;
935 			t->t_whystop = 0;
936 			t->t_whatstop = 0;
937 			t->t_schedflag &= ~TS_ALLSTART;
938 			THREAD_TRANSITION(t);
939 			setfrontdq(t);
940 		}
941 		thread_unlock(t);
942 	}
943 }
944 
945 void
946 clock_init(void)
947 {
948 	cyc_handler_t clk_hdlr, lbolt_hdlr;
949 	cyc_time_t clk_when, lbolt_when;
950 	int i, sz;
951 	intptr_t buf;
952 
953 	/*
954 	 * Setup handler and timer for the clock cyclic.
955 	 */
956 	clk_hdlr.cyh_func = (cyc_func_t)clock;
957 	clk_hdlr.cyh_level = CY_LOCK_LEVEL;
958 	clk_hdlr.cyh_arg = NULL;
959 
960 	clk_when.cyt_when = 0;
961 	clk_when.cyt_interval = nsec_per_tick;
962 
963 	/*
964 	 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick
965 	 * interval to satisfy performance needs of the DDI lbolt consumers.
966 	 * It is off by default.
967 	 */
968 	lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic;
969 	lbolt_hdlr.cyh_level = CY_LOCK_LEVEL;
970 	lbolt_hdlr.cyh_arg = NULL;
971 
972 	lbolt_when.cyt_interval = nsec_per_tick;
973 
974 	/*
975 	 * Allocate cache line aligned space for the per CPU lbolt data and
976 	 * lbolt info structures, and initialize them with their default
977 	 * values. Note that these structures are also cache line sized.
978 	 */
979 	sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE;
980 	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
981 	lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
982 
983 	if (hz != HZ_DEFAULT)
984 		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL *
985 		    hz/HZ_DEFAULT;
986 	else
987 		lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL;
988 
989 	lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS;
990 
991 	sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE;
992 	buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
993 	lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE);
994 
995 	for (i = 0; i < max_ncpus; i++)
996 		lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls;
997 
998 	/*
999 	 * Install the softint used to switch between event and cyclic driven
1000 	 * lbolt. We use a soft interrupt to make sure the context of the
1001 	 * cyclic reprogram call is safe.
1002 	 */
1003 	lbolt_softint_add();
1004 
1005 	/*
1006 	 * Since the hybrid lbolt implementation is based on a hardware counter
1007 	 * that is reset at every hardware reboot and that we'd like to have
1008 	 * the lbolt value starting at zero after both a hardware and a fast
1009 	 * reboot, we calculate the number of clock ticks the system's been up
1010 	 * and store it in the lbi_debug_time field of the lbolt info structure.
1011 	 * The value of this field will be subtracted from lbolt before
1012 	 * returning it.
1013 	 */
1014 	lb_info->lbi_internal = lb_info->lbi_debug_time =
1015 	    (gethrtime()/nsec_per_tick);
1016 
1017 	/*
1018 	 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros
1019 	 * and lbolt_debug_{enter,return} use this value as an indication that
1020 	 * the initializaion above hasn't been completed. Setting lbolt_hybrid
1021 	 * to either lbolt_{cyclic,event}_driven here signals those code paths
1022 	 * that the lbolt related structures can be used.
1023 	 */
1024 	if (lbolt_cyc_only) {
1025 		lbolt_when.cyt_when = 0;
1026 		lbolt_hybrid = lbolt_cyclic_driven;
1027 	} else {
1028 		lbolt_when.cyt_when = CY_INFINITY;
1029 		lbolt_hybrid = lbolt_event_driven;
1030 	}
1031 
1032 	/*
1033 	 * Grab cpu_lock and install all three cyclics.
1034 	 */
1035 	mutex_enter(&cpu_lock);
1036 
1037 	clock_cyclic = cyclic_add(&clk_hdlr, &clk_when);
1038 	lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when);
1039 
1040 	mutex_exit(&cpu_lock);
1041 }
1042 
1043 /*
1044  * Called before calcloadavg to get 10-sec moving loadavg together
1045  */
1046 
1047 static int
1048 genloadavg(struct loadavg_s *avgs)
1049 {
1050 	int avg;
1051 	int spos; /* starting position */
1052 	int cpos; /* moving current position */
1053 	int i;
1054 	int slen;
1055 	hrtime_t hr_avg;
1056 
1057 	/* 10-second snapshot, calculate first positon */
1058 	if (avgs->lg_len == 0) {
1059 		return (0);
1060 	}
1061 	slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ;
1062 
1063 	spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 :
1064 	    S_LOADAVG_SZ + (avgs->lg_cur - 1);
1065 	for (i = hr_avg = 0; i < slen; i++) {
1066 		cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i);
1067 		hr_avg += avgs->lg_loads[cpos];
1068 	}
1069 
1070 	hr_avg = hr_avg / slen;
1071 	avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
1072 
1073 	return (avg);
1074 }
1075 
1076 /*
1077  * Run every second from clock () to update the loadavg count available to the
1078  * system and cpu-partitions.
1079  *
1080  * This works by sampling the previous usr, sys, wait time elapsed,
1081  * computing a delta, and adding that delta to the elapsed usr, sys,
1082  * wait increase.
1083  */
1084 
1085 static void
1086 loadavg_update()
1087 {
1088 	cpu_t *cp;
1089 	cpupart_t *cpupart;
1090 	hrtime_t cpu_total;
1091 	int prev;
1092 
1093 	cp = cpu_list;
1094 	loadavg.lg_total = 0;
1095 
1096 	/*
1097 	 * first pass totals up per-cpu statistics for system and cpu
1098 	 * partitions
1099 	 */
1100 
1101 	do {
1102 		struct loadavg_s *lavg;
1103 
1104 		lavg = &cp->cpu_loadavg;
1105 
1106 		cpu_total = cp->cpu_acct[CMS_USER] +
1107 		    cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq;
1108 		/* compute delta against last total */
1109 		scalehrtime(&cpu_total);
1110 		prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 :
1111 		    S_LOADAVG_SZ + (lavg->lg_cur - 1);
1112 		if (lavg->lg_loads[prev] <= 0) {
1113 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1114 			cpu_total = 0;
1115 		} else {
1116 			lavg->lg_loads[lavg->lg_cur] = cpu_total;
1117 			cpu_total = cpu_total - lavg->lg_loads[prev];
1118 			if (cpu_total < 0)
1119 				cpu_total = 0;
1120 		}
1121 
1122 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1123 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1124 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1125 
1126 		loadavg.lg_total += cpu_total;
1127 		cp->cpu_part->cp_loadavg.lg_total += cpu_total;
1128 
1129 	} while ((cp = cp->cpu_next) != cpu_list);
1130 
1131 	loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total;
1132 	loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ;
1133 	loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ?
1134 	    loadavg.lg_len + 1 : S_LOADAVG_SZ;
1135 	/*
1136 	 * Second pass updates counts
1137 	 */
1138 	cpupart = cp_list_head;
1139 
1140 	do {
1141 		struct loadavg_s *lavg;
1142 
1143 		lavg = &cpupart->cp_loadavg;
1144 		lavg->lg_loads[lavg->lg_cur] = lavg->lg_total;
1145 		lavg->lg_total = 0;
1146 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
1147 		lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ?
1148 		    lavg->lg_len + 1 : S_LOADAVG_SZ;
1149 
1150 	} while ((cpupart = cpupart->cp_next) != cp_list_head);
1151 
1152 }
1153 
1154 /*
1155  * clock_update() - local clock update
1156  *
1157  * This routine is called by ntp_adjtime() to update the local clock
1158  * phase and frequency. The implementation is of an
1159  * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The
1160  * routine computes new time and frequency offset estimates for each
1161  * call.  The PPS signal itself determines the new time offset,
1162  * instead of the calling argument.  Presumably, calls to
1163  * ntp_adjtime() occur only when the caller believes the local clock
1164  * is valid within some bound (+-128 ms with NTP). If the caller's
1165  * time is far different than the PPS time, an argument will ensue,
1166  * and it's not clear who will lose.
1167  *
1168  * For uncompensated quartz crystal oscillatores and nominal update
1169  * intervals less than 1024 s, operation should be in phase-lock mode
1170  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1171  * intervals greater than this, operation should be in frequency-lock
1172  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1173  *
1174  * Note: mutex(&tod_lock) is in effect.
1175  */
1176 void
1177 clock_update(int offset)
1178 {
1179 	int ltemp, mtemp, s;
1180 
1181 	ASSERT(MUTEX_HELD(&tod_lock));
1182 
1183 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1184 		return;
1185 	ltemp = offset;
1186 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1187 		ltemp = pps_offset;
1188 
1189 	/*
1190 	 * Scale the phase adjustment and clamp to the operating range.
1191 	 */
1192 	if (ltemp > MAXPHASE)
1193 		time_offset = MAXPHASE * SCALE_UPDATE;
1194 	else if (ltemp < -MAXPHASE)
1195 		time_offset = -(MAXPHASE * SCALE_UPDATE);
1196 	else
1197 		time_offset = ltemp * SCALE_UPDATE;
1198 
1199 	/*
1200 	 * Select whether the frequency is to be controlled and in which
1201 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1202 	 * multiply/divide should be replaced someday.
1203 	 */
1204 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1205 		time_reftime = hrestime.tv_sec;
1206 
1207 	mtemp = hrestime.tv_sec - time_reftime;
1208 	time_reftime = hrestime.tv_sec;
1209 
1210 	if (time_status & STA_FLL) {
1211 		if (mtemp >= MINSEC) {
1212 			ltemp = ((time_offset / mtemp) * (SCALE_USEC /
1213 			    SCALE_UPDATE));
1214 			if (ltemp)
1215 				time_freq += ltemp / SCALE_KH;
1216 		}
1217 	} else {
1218 		if (mtemp < MAXSEC) {
1219 			ltemp *= mtemp;
1220 			if (ltemp)
1221 				time_freq += (int)(((int64_t)ltemp *
1222 				    SCALE_USEC) / SCALE_KF)
1223 				    / (1 << (time_constant * 2));
1224 		}
1225 	}
1226 	if (time_freq > time_tolerance)
1227 		time_freq = time_tolerance;
1228 	else if (time_freq < -time_tolerance)
1229 		time_freq = -time_tolerance;
1230 
1231 	s = hr_clock_lock();
1232 	tod_needsync = 1;
1233 	hr_clock_unlock(s);
1234 }
1235 
1236 /*
1237  * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal
1238  *
1239  * This routine is called at each PPS interrupt in order to discipline
1240  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1241  * and leaves it in a handy spot for the clock() routine. It
1242  * integrates successive PPS phase differences and calculates the
1243  * frequency offset. This is used in clock() to discipline the CPU
1244  * clock oscillator so that intrinsic frequency error is cancelled out.
1245  * The code requires the caller to capture the time and hardware counter
1246  * value at the on-time PPS signal transition.
1247  *
1248  * Note that, on some Unix systems, this routine runs at an interrupt
1249  * priority level higher than the timer interrupt routine clock().
1250  * Therefore, the variables used are distinct from the clock()
1251  * variables, except for certain exceptions: The PPS frequency pps_freq
1252  * and phase pps_offset variables are determined by this routine and
1253  * updated atomically. The time_tolerance variable can be considered a
1254  * constant, since it is infrequently changed, and then only when the
1255  * PPS signal is disabled. The watchdog counter pps_valid is updated
1256  * once per second by clock() and is atomically cleared in this
1257  * routine.
1258  *
1259  * tvp is the time of the last tick; usec is a microsecond count since the
1260  * last tick.
1261  *
1262  * Note: In Solaris systems, the tick value is actually given by
1263  *       usec_per_tick.  This is called from the serial driver cdintr(),
1264  *	 or equivalent, at a high PIL.  Because the kernel keeps a
1265  *	 highresolution time, the following code can accept either
1266  *	 the traditional argument pair, or the current highres timestamp
1267  *       in tvp and zero in usec.
1268  */
1269 void
1270 ddi_hardpps(struct timeval *tvp, int usec)
1271 {
1272 	int u_usec, v_usec, bigtick;
1273 	time_t cal_sec;
1274 	int cal_usec;
1275 
1276 	/*
1277 	 * An occasional glitch can be produced when the PPS interrupt
1278 	 * occurs in the clock() routine before the time variable is
1279 	 * updated. Here the offset is discarded when the difference
1280 	 * between it and the last one is greater than tick/2, but not
1281 	 * if the interval since the first discard exceeds 30 s.
1282 	 */
1283 	time_status |= STA_PPSSIGNAL;
1284 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1285 	pps_valid = 0;
1286 	u_usec = -tvp->tv_usec;
1287 	if (u_usec < -(MICROSEC/2))
1288 		u_usec += MICROSEC;
1289 	v_usec = pps_offset - u_usec;
1290 	if (v_usec < 0)
1291 		v_usec = -v_usec;
1292 	if (v_usec > (usec_per_tick >> 1)) {
1293 		if (pps_glitch > MAXGLITCH) {
1294 			pps_glitch = 0;
1295 			pps_tf[2] = u_usec;
1296 			pps_tf[1] = u_usec;
1297 		} else {
1298 			pps_glitch++;
1299 			u_usec = pps_offset;
1300 		}
1301 	} else
1302 		pps_glitch = 0;
1303 
1304 	/*
1305 	 * A three-stage median filter is used to help deglitch the pps
1306 	 * time. The median sample becomes the time offset estimate; the
1307 	 * difference between the other two samples becomes the time
1308 	 * dispersion (jitter) estimate.
1309 	 */
1310 	pps_tf[2] = pps_tf[1];
1311 	pps_tf[1] = pps_tf[0];
1312 	pps_tf[0] = u_usec;
1313 	if (pps_tf[0] > pps_tf[1]) {
1314 		if (pps_tf[1] > pps_tf[2]) {
1315 			pps_offset = pps_tf[1];		/* 0 1 2 */
1316 			v_usec = pps_tf[0] - pps_tf[2];
1317 		} else if (pps_tf[2] > pps_tf[0]) {
1318 			pps_offset = pps_tf[0];		/* 2 0 1 */
1319 			v_usec = pps_tf[2] - pps_tf[1];
1320 		} else {
1321 			pps_offset = pps_tf[2];		/* 0 2 1 */
1322 			v_usec = pps_tf[0] - pps_tf[1];
1323 		}
1324 	} else {
1325 		if (pps_tf[1] < pps_tf[2]) {
1326 			pps_offset = pps_tf[1];		/* 2 1 0 */
1327 			v_usec = pps_tf[2] - pps_tf[0];
1328 		} else  if (pps_tf[2] < pps_tf[0]) {
1329 			pps_offset = pps_tf[0];		/* 1 0 2 */
1330 			v_usec = pps_tf[1] - pps_tf[2];
1331 		} else {
1332 			pps_offset = pps_tf[2];		/* 1 2 0 */
1333 			v_usec = pps_tf[1] - pps_tf[0];
1334 		}
1335 	}
1336 	if (v_usec > MAXTIME)
1337 		pps_jitcnt++;
1338 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1339 	pps_jitter += v_usec / (1 << PPS_AVG);
1340 	if (pps_jitter > (MAXTIME >> 1))
1341 		time_status |= STA_PPSJITTER;
1342 
1343 	/*
1344 	 * During the calibration interval adjust the starting time when
1345 	 * the tick overflows. At the end of the interval compute the
1346 	 * duration of the interval and the difference of the hardware
1347 	 * counters at the beginning and end of the interval. This code
1348 	 * is deliciously complicated by the fact valid differences may
1349 	 * exceed the value of tick when using long calibration
1350 	 * intervals and small ticks. Note that the counter can be
1351 	 * greater than tick if caught at just the wrong instant, but
1352 	 * the values returned and used here are correct.
1353 	 */
1354 	bigtick = (int)usec_per_tick * SCALE_USEC;
1355 	pps_usec -= pps_freq;
1356 	if (pps_usec >= bigtick)
1357 		pps_usec -= bigtick;
1358 	if (pps_usec < 0)
1359 		pps_usec += bigtick;
1360 	pps_time.tv_sec++;
1361 	pps_count++;
1362 	if (pps_count < (1 << pps_shift))
1363 		return;
1364 	pps_count = 0;
1365 	pps_calcnt++;
1366 	u_usec = usec * SCALE_USEC;
1367 	v_usec = pps_usec - u_usec;
1368 	if (v_usec >= bigtick >> 1)
1369 		v_usec -= bigtick;
1370 	if (v_usec < -(bigtick >> 1))
1371 		v_usec += bigtick;
1372 	if (v_usec < 0)
1373 		v_usec = -(-v_usec >> pps_shift);
1374 	else
1375 		v_usec = v_usec >> pps_shift;
1376 	pps_usec = u_usec;
1377 	cal_sec = tvp->tv_sec;
1378 	cal_usec = tvp->tv_usec;
1379 	cal_sec -= pps_time.tv_sec;
1380 	cal_usec -= pps_time.tv_usec;
1381 	if (cal_usec < 0) {
1382 		cal_usec += MICROSEC;
1383 		cal_sec--;
1384 	}
1385 	pps_time = *tvp;
1386 
1387 	/*
1388 	 * Check for lost interrupts, noise, excessive jitter and
1389 	 * excessive frequency error. The number of timer ticks during
1390 	 * the interval may vary +-1 tick. Add to this a margin of one
1391 	 * tick for the PPS signal jitter and maximum frequency
1392 	 * deviation. If the limits are exceeded, the calibration
1393 	 * interval is reset to the minimum and we start over.
1394 	 */
1395 	u_usec = (int)usec_per_tick << 1;
1396 	if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) ||
1397 	    (cal_sec == 0 && cal_usec < u_usec)) ||
1398 	    v_usec > time_tolerance || v_usec < -time_tolerance) {
1399 		pps_errcnt++;
1400 		pps_shift = PPS_SHIFT;
1401 		pps_intcnt = 0;
1402 		time_status |= STA_PPSERROR;
1403 		return;
1404 	}
1405 
1406 	/*
1407 	 * A three-stage median filter is used to help deglitch the pps
1408 	 * frequency. The median sample becomes the frequency offset
1409 	 * estimate; the difference between the other two samples
1410 	 * becomes the frequency dispersion (stability) estimate.
1411 	 */
1412 	pps_ff[2] = pps_ff[1];
1413 	pps_ff[1] = pps_ff[0];
1414 	pps_ff[0] = v_usec;
1415 	if (pps_ff[0] > pps_ff[1]) {
1416 		if (pps_ff[1] > pps_ff[2]) {
1417 			u_usec = pps_ff[1];		/* 0 1 2 */
1418 			v_usec = pps_ff[0] - pps_ff[2];
1419 		} else if (pps_ff[2] > pps_ff[0]) {
1420 			u_usec = pps_ff[0];		/* 2 0 1 */
1421 			v_usec = pps_ff[2] - pps_ff[1];
1422 		} else {
1423 			u_usec = pps_ff[2];		/* 0 2 1 */
1424 			v_usec = pps_ff[0] - pps_ff[1];
1425 		}
1426 	} else {
1427 		if (pps_ff[1] < pps_ff[2]) {
1428 			u_usec = pps_ff[1];		/* 2 1 0 */
1429 			v_usec = pps_ff[2] - pps_ff[0];
1430 		} else  if (pps_ff[2] < pps_ff[0]) {
1431 			u_usec = pps_ff[0];		/* 1 0 2 */
1432 			v_usec = pps_ff[1] - pps_ff[2];
1433 		} else {
1434 			u_usec = pps_ff[2];		/* 1 2 0 */
1435 			v_usec = pps_ff[1] - pps_ff[0];
1436 		}
1437 	}
1438 
1439 	/*
1440 	 * Here the frequency dispersion (stability) is updated. If it
1441 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1442 	 * offset is updated as well, but clamped to the tolerance. It
1443 	 * will be processed later by the clock() routine.
1444 	 */
1445 	v_usec = (v_usec >> 1) - pps_stabil;
1446 	if (v_usec < 0)
1447 		pps_stabil -= -v_usec >> PPS_AVG;
1448 	else
1449 		pps_stabil += v_usec >> PPS_AVG;
1450 	if (pps_stabil > MAXFREQ >> 2) {
1451 		pps_stbcnt++;
1452 		time_status |= STA_PPSWANDER;
1453 		return;
1454 	}
1455 	if (time_status & STA_PPSFREQ) {
1456 		if (u_usec < 0) {
1457 			pps_freq -= -u_usec >> PPS_AVG;
1458 			if (pps_freq < -time_tolerance)
1459 				pps_freq = -time_tolerance;
1460 			u_usec = -u_usec;
1461 		} else {
1462 			pps_freq += u_usec >> PPS_AVG;
1463 			if (pps_freq > time_tolerance)
1464 				pps_freq = time_tolerance;
1465 		}
1466 	}
1467 
1468 	/*
1469 	 * Here the calibration interval is adjusted. If the maximum
1470 	 * time difference is greater than tick / 4, reduce the interval
1471 	 * by half. If this is not the case for four consecutive
1472 	 * intervals, double the interval.
1473 	 */
1474 	if (u_usec << pps_shift > bigtick >> 2) {
1475 		pps_intcnt = 0;
1476 		if (pps_shift > PPS_SHIFT)
1477 			pps_shift--;
1478 	} else if (pps_intcnt >= 4) {
1479 		pps_intcnt = 0;
1480 		if (pps_shift < PPS_SHIFTMAX)
1481 			pps_shift++;
1482 	} else
1483 		pps_intcnt++;
1484 
1485 	/*
1486 	 * If recovering from kmdb, then make sure the tod chip gets resynced.
1487 	 * If we took an early exit above, then we don't yet have a stable
1488 	 * calibration signal to lock onto, so don't mark the tod for sync
1489 	 * until we get all the way here.
1490 	 */
1491 	{
1492 		int s = hr_clock_lock();
1493 
1494 		tod_needsync = 1;
1495 		hr_clock_unlock(s);
1496 	}
1497 }
1498 
1499 /*
1500  * Handle clock tick processing for a thread.
1501  * Check for timer action, enforce CPU rlimit, do profiling etc.
1502  */
1503 void
1504 clock_tick(kthread_t *t, int pending)
1505 {
1506 	struct proc *pp;
1507 	klwp_id_t    lwp;
1508 	struct as *as;
1509 	clock_t	ticks;
1510 	int	poke = 0;		/* notify another CPU */
1511 	int	user_mode;
1512 	size_t	 rss;
1513 	int i, total_usec, usec;
1514 	rctl_qty_t secs;
1515 
1516 	ASSERT(pending > 0);
1517 
1518 	/* Must be operating on a lwp/thread */
1519 	if ((lwp = ttolwp(t)) == NULL) {
1520 		panic("clock_tick: no lwp");
1521 		/*NOTREACHED*/
1522 	}
1523 
1524 	for (i = 0; i < pending; i++) {
1525 		CL_TICK(t);	/* Class specific tick processing */
1526 		DTRACE_SCHED1(tick, kthread_t *, t);
1527 	}
1528 
1529 	pp = ttoproc(t);
1530 
1531 	/* pp->p_lock makes sure that the thread does not exit */
1532 	ASSERT(MUTEX_HELD(&pp->p_lock));
1533 
1534 	user_mode = (lwp->lwp_state == LWP_USER);
1535 
1536 	ticks = (pp->p_utime + pp->p_stime) % hz;
1537 	/*
1538 	 * Update process times. Should use high res clock and state
1539 	 * changes instead of statistical sampling method. XXX
1540 	 */
1541 	if (user_mode) {
1542 		pp->p_utime += pending;
1543 	} else {
1544 		pp->p_stime += pending;
1545 	}
1546 
1547 	pp->p_ttime += pending;
1548 	as = pp->p_as;
1549 
1550 	/*
1551 	 * Update user profiling statistics. Get the pc from the
1552 	 * lwp when the AST happens.
1553 	 */
1554 	if (pp->p_prof.pr_scale) {
1555 		atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending);
1556 		if (user_mode) {
1557 			poke = 1;
1558 			aston(t);
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * If CPU was in user state, process lwp-virtual time
1564 	 * interval timer. The value passed to itimerdecr() has to be
1565 	 * in microseconds and has to be less than one second. Hence
1566 	 * this loop.
1567 	 */
1568 	total_usec = usec_per_tick * pending;
1569 	while (total_usec > 0) {
1570 		usec = MIN(total_usec, (MICROSEC - 1));
1571 		if (user_mode &&
1572 		    timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) &&
1573 		    itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) {
1574 			poke = 1;
1575 			sigtoproc(pp, t, SIGVTALRM);
1576 		}
1577 		total_usec -= usec;
1578 	}
1579 
1580 	/*
1581 	 * If CPU was in user state, process lwp-profile
1582 	 * interval timer.
1583 	 */
1584 	total_usec = usec_per_tick * pending;
1585 	while (total_usec > 0) {
1586 		usec = MIN(total_usec, (MICROSEC - 1));
1587 		if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) &&
1588 		    itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) {
1589 			poke = 1;
1590 			sigtoproc(pp, t, SIGPROF);
1591 		}
1592 		total_usec -= usec;
1593 	}
1594 
1595 	/*
1596 	 * Enforce CPU resource controls:
1597 	 *   (a) process.max-cpu-time resource control
1598 	 *
1599 	 * Perform the check only if we have accumulated more a second.
1600 	 */
1601 	if ((ticks + pending) >= hz) {
1602 		(void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp,
1603 		    (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO);
1604 	}
1605 
1606 	/*
1607 	 *   (b) task.max-cpu-time resource control
1608 	 *
1609 	 * If we have accumulated enough ticks, increment the task CPU
1610 	 * time usage and test for the resource limit. This minimizes the
1611 	 * number of calls to the rct_test(). The task CPU time mutex
1612 	 * is highly contentious as many processes can be sharing a task.
1613 	 */
1614 	if (pp->p_ttime >= clock_tick_proc_max) {
1615 		secs = task_cpu_time_incr(pp->p_task, pp->p_ttime);
1616 		pp->p_ttime = 0;
1617 		if (secs) {
1618 			(void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls,
1619 			    pp, secs, RCA_UNSAFE_SIGINFO);
1620 		}
1621 	}
1622 
1623 	/*
1624 	 * Update memory usage for the currently running process.
1625 	 */
1626 	rss = rm_asrss(as);
1627 	PTOU(pp)->u_mem += rss;
1628 	if (rss > PTOU(pp)->u_mem_max)
1629 		PTOU(pp)->u_mem_max = rss;
1630 
1631 	/*
1632 	 * Notify the CPU the thread is running on.
1633 	 */
1634 	if (poke && t->t_cpu != CPU)
1635 		poke_cpu(t->t_cpu->cpu_id);
1636 }
1637 
1638 void
1639 profil_tick(uintptr_t upc)
1640 {
1641 	int ticks;
1642 	proc_t *p = ttoproc(curthread);
1643 	klwp_t *lwp = ttolwp(curthread);
1644 	struct prof *pr = &p->p_prof;
1645 
1646 	do {
1647 		ticks = lwp->lwp_oweupc;
1648 	} while (cas32(&lwp->lwp_oweupc, ticks, 0) != ticks);
1649 
1650 	mutex_enter(&p->p_pflock);
1651 	if (pr->pr_scale >= 2 && upc >= pr->pr_off) {
1652 		/*
1653 		 * Old-style profiling
1654 		 */
1655 		uint16_t *slot = pr->pr_base;
1656 		uint16_t old, new;
1657 		if (pr->pr_scale != 2) {
1658 			uintptr_t delta = upc - pr->pr_off;
1659 			uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) +
1660 			    (((delta & 0xffff) * pr->pr_scale) >> 16);
1661 			if (byteoff >= (uintptr_t)pr->pr_size) {
1662 				mutex_exit(&p->p_pflock);
1663 				return;
1664 			}
1665 			slot += byteoff / sizeof (uint16_t);
1666 		}
1667 		if (fuword16(slot, &old) < 0 ||
1668 		    (new = old + ticks) > SHRT_MAX ||
1669 		    suword16(slot, new) < 0) {
1670 			pr->pr_scale = 0;
1671 		}
1672 	} else if (pr->pr_scale == 1) {
1673 		/*
1674 		 * PC Sampling
1675 		 */
1676 		model_t model = lwp_getdatamodel(lwp);
1677 		int result;
1678 #ifdef __lint
1679 		model = model;
1680 #endif
1681 		while (ticks-- > 0) {
1682 			if (pr->pr_samples == pr->pr_size) {
1683 				/* buffer full, turn off sampling */
1684 				pr->pr_scale = 0;
1685 				break;
1686 			}
1687 			switch (SIZEOF_PTR(model)) {
1688 			case sizeof (uint32_t):
1689 				result = suword32(pr->pr_base, (uint32_t)upc);
1690 				break;
1691 #ifdef _LP64
1692 			case sizeof (uint64_t):
1693 				result = suword64(pr->pr_base, (uint64_t)upc);
1694 				break;
1695 #endif
1696 			default:
1697 				cmn_err(CE_WARN, "profil_tick: unexpected "
1698 				    "data model");
1699 				result = -1;
1700 				break;
1701 			}
1702 			if (result != 0) {
1703 				pr->pr_scale = 0;
1704 				break;
1705 			}
1706 			pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model);
1707 			pr->pr_samples++;
1708 		}
1709 	}
1710 	mutex_exit(&p->p_pflock);
1711 }
1712 
1713 static void
1714 delay_wakeup(void *arg)
1715 {
1716 	kthread_t	*t = arg;
1717 
1718 	mutex_enter(&t->t_delay_lock);
1719 	cv_signal(&t->t_delay_cv);
1720 	mutex_exit(&t->t_delay_lock);
1721 }
1722 
1723 /*
1724  * The delay(9F) man page indicates that it can only be called from user or
1725  * kernel context - detect and diagnose bad calls. The following macro will
1726  * produce a limited number of messages identifying bad callers.  This is done
1727  * in a macro so that caller() is meaningful. When a bad caller is identified,
1728  * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate.
1729  */
1730 #define	DELAY_CONTEXT_CHECK()	{					\
1731 	uint32_t	m;						\
1732 	char		*f;						\
1733 	ulong_t		off;						\
1734 									\
1735 	m = delay_from_interrupt_msg;					\
1736 	if (delay_from_interrupt_diagnose && servicing_interrupt() &&	\
1737 	    !panicstr && !devinfo_freeze &&				\
1738 	    atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) {	\
1739 		f = modgetsymname((uintptr_t)caller(), &off);		\
1740 		cmn_err(CE_WARN, "delay(9F) called from "		\
1741 		    "interrupt context: %s`%s",				\
1742 		    mod_containing_pc(caller()), f ? f : "...");	\
1743 	}								\
1744 }
1745 
1746 /*
1747  * delay_common: common delay code.
1748  */
1749 static void
1750 delay_common(clock_t ticks)
1751 {
1752 	kthread_t	*t = curthread;
1753 	clock_t		deadline;
1754 	clock_t		timeleft;
1755 	callout_id_t	id;
1756 
1757 	/* If timeouts aren't running all we can do is spin. */
1758 	if (panicstr || devinfo_freeze) {
1759 		/* Convert delay(9F) call into drv_usecwait(9F) call. */
1760 		if (ticks > 0)
1761 			drv_usecwait(TICK_TO_USEC(ticks));
1762 		return;
1763 	}
1764 
1765 	deadline = ddi_get_lbolt() + ticks;
1766 	while ((timeleft = deadline - ddi_get_lbolt()) > 0) {
1767 		mutex_enter(&t->t_delay_lock);
1768 		id = timeout_default(delay_wakeup, t, timeleft);
1769 		cv_wait(&t->t_delay_cv, &t->t_delay_lock);
1770 		mutex_exit(&t->t_delay_lock);
1771 		(void) untimeout_default(id, 0);
1772 	}
1773 }
1774 
1775 /*
1776  * Delay specified number of clock ticks.
1777  */
1778 void
1779 delay(clock_t ticks)
1780 {
1781 	DELAY_CONTEXT_CHECK();
1782 
1783 	delay_common(ticks);
1784 }
1785 
1786 /*
1787  * Delay a random number of clock ticks between 1 and ticks.
1788  */
1789 void
1790 delay_random(clock_t ticks)
1791 {
1792 	int	r;
1793 
1794 	DELAY_CONTEXT_CHECK();
1795 
1796 	(void) random_get_pseudo_bytes((void *)&r, sizeof (r));
1797 	if (ticks == 0)
1798 		ticks = 1;
1799 	ticks = (r % ticks) + 1;
1800 	delay_common(ticks);
1801 }
1802 
1803 /*
1804  * Like delay, but interruptible by a signal.
1805  */
1806 int
1807 delay_sig(clock_t ticks)
1808 {
1809 	kthread_t	*t = curthread;
1810 	clock_t		deadline;
1811 	clock_t		rc;
1812 
1813 	/* If timeouts aren't running all we can do is spin. */
1814 	if (panicstr || devinfo_freeze) {
1815 		if (ticks > 0)
1816 			drv_usecwait(TICK_TO_USEC(ticks));
1817 		return (0);
1818 	}
1819 
1820 	deadline = ddi_get_lbolt() + ticks;
1821 	mutex_enter(&t->t_delay_lock);
1822 	do {
1823 		rc = cv_timedwait_sig(&t->t_delay_cv,
1824 		    &t->t_delay_lock, deadline);
1825 		/* loop until past deadline or signaled */
1826 	} while (rc > 0);
1827 	mutex_exit(&t->t_delay_lock);
1828 	if (rc == 0)
1829 		return (EINTR);
1830 	return (0);
1831 }
1832 
1833 
1834 #define	SECONDS_PER_DAY 86400
1835 
1836 /*
1837  * Initialize the system time based on the TOD chip.  approx is used as
1838  * an approximation of time (e.g. from the filesystem) in the event that
1839  * the TOD chip has been cleared or is unresponsive.  An approx of -1
1840  * means the filesystem doesn't keep time.
1841  */
1842 void
1843 clkset(time_t approx)
1844 {
1845 	timestruc_t ts;
1846 	int spl;
1847 	int set_clock = 0;
1848 
1849 	mutex_enter(&tod_lock);
1850 	ts = tod_get();
1851 
1852 	if (ts.tv_sec > 365 * SECONDS_PER_DAY) {
1853 		/*
1854 		 * If the TOD chip is reporting some time after 1971,
1855 		 * then it probably didn't lose power or become otherwise
1856 		 * cleared in the recent past;  check to assure that
1857 		 * the time coming from the filesystem isn't in the future
1858 		 * according to the TOD chip.
1859 		 */
1860 		if (approx != -1 && approx > ts.tv_sec) {
1861 			cmn_err(CE_WARN, "Last shutdown is later "
1862 			    "than time on time-of-day chip; check date.");
1863 		}
1864 	} else {
1865 		/*
1866 		 * If the TOD chip isn't giving correct time, set it to the
1867 		 * greater of i) approx and ii) 1987. That way if approx
1868 		 * is negative or is earlier than 1987, we set the clock
1869 		 * back to a time when Oliver North, ALF and Dire Straits
1870 		 * were all on the collective brain:  1987.
1871 		 */
1872 		timestruc_t tmp;
1873 		time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY;
1874 		ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date);
1875 		ts.tv_nsec = 0;
1876 
1877 		/*
1878 		 * Attempt to write the new time to the TOD chip.  Set spl high
1879 		 * to avoid getting preempted between the tod_set and tod_get.
1880 		 */
1881 		spl = splhi();
1882 		tod_set(ts);
1883 		tmp = tod_get();
1884 		splx(spl);
1885 
1886 		if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) {
1887 			tod_broken = 1;
1888 			dosynctodr = 0;
1889 			cmn_err(CE_WARN, "Time-of-day chip unresponsive.");
1890 		} else {
1891 			cmn_err(CE_WARN, "Time-of-day chip had "
1892 			    "incorrect date; check and reset.");
1893 		}
1894 		set_clock = 1;
1895 	}
1896 
1897 	if (!boot_time) {
1898 		boot_time = ts.tv_sec;
1899 		set_clock = 1;
1900 	}
1901 
1902 	if (set_clock)
1903 		set_hrestime(&ts);
1904 
1905 	mutex_exit(&tod_lock);
1906 }
1907 
1908 int	timechanged;	/* for testing if the system time has been reset */
1909 
1910 void
1911 set_hrestime(timestruc_t *ts)
1912 {
1913 	int spl = hr_clock_lock();
1914 	hrestime = *ts;
1915 	membar_enter();	/* hrestime must be visible before timechanged++ */
1916 	timedelta = 0;
1917 	timechanged++;
1918 	hr_clock_unlock(spl);
1919 	callout_hrestime();
1920 }
1921 
1922 static uint_t deadman_seconds;
1923 static uint32_t deadman_panics;
1924 static int deadman_enabled = 0;
1925 static int deadman_panic_timers = 1;
1926 
1927 static void
1928 deadman(void)
1929 {
1930 	if (panicstr) {
1931 		/*
1932 		 * During panic, other CPUs besides the panic
1933 		 * master continue to handle cyclics and some other
1934 		 * interrupts.  The code below is intended to be
1935 		 * single threaded, so any CPU other than the master
1936 		 * must keep out.
1937 		 */
1938 		if (CPU->cpu_id != panic_cpu.cpu_id)
1939 			return;
1940 
1941 		if (!deadman_panic_timers)
1942 			return; /* allow all timers to be manually disabled */
1943 
1944 		/*
1945 		 * If we are generating a crash dump or syncing filesystems and
1946 		 * the corresponding timer is set, decrement it and re-enter
1947 		 * the panic code to abort it and advance to the next state.
1948 		 * The panic states and triggers are explained in panic.c.
1949 		 */
1950 		if (panic_dump) {
1951 			if (dump_timeleft && (--dump_timeleft == 0)) {
1952 				panic("panic dump timeout");
1953 				/*NOTREACHED*/
1954 			}
1955 		} else if (panic_sync) {
1956 			if (sync_timeleft && (--sync_timeleft == 0)) {
1957 				panic("panic sync timeout");
1958 				/*NOTREACHED*/
1959 			}
1960 		}
1961 
1962 		return;
1963 	}
1964 
1965 	if (deadman_counter != CPU->cpu_deadman_counter) {
1966 		CPU->cpu_deadman_counter = deadman_counter;
1967 		CPU->cpu_deadman_countdown = deadman_seconds;
1968 		return;
1969 	}
1970 
1971 	if (--CPU->cpu_deadman_countdown > 0)
1972 		return;
1973 
1974 	/*
1975 	 * Regardless of whether or not we actually bring the system down,
1976 	 * bump the deadman_panics variable.
1977 	 *
1978 	 * N.B. deadman_panics is incremented once for each CPU that
1979 	 * passes through here.  It's expected that all the CPUs will
1980 	 * detect this condition within one second of each other, so
1981 	 * when deadman_enabled is off, deadman_panics will
1982 	 * typically be a multiple of the total number of CPUs in
1983 	 * the system.
1984 	 */
1985 	atomic_add_32(&deadman_panics, 1);
1986 
1987 	if (!deadman_enabled) {
1988 		CPU->cpu_deadman_countdown = deadman_seconds;
1989 		return;
1990 	}
1991 
1992 	/*
1993 	 * If we're here, we want to bring the system down.
1994 	 */
1995 	panic("deadman: timed out after %d seconds of clock "
1996 	    "inactivity", deadman_seconds);
1997 	/*NOTREACHED*/
1998 }
1999 
2000 /*ARGSUSED*/
2001 static void
2002 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when)
2003 {
2004 	cpu->cpu_deadman_counter = 0;
2005 	cpu->cpu_deadman_countdown = deadman_seconds;
2006 
2007 	hdlr->cyh_func = (cyc_func_t)deadman;
2008 	hdlr->cyh_level = CY_HIGH_LEVEL;
2009 	hdlr->cyh_arg = NULL;
2010 
2011 	/*
2012 	 * Stagger the CPUs so that they don't all run deadman() at
2013 	 * the same time.  Simplest reason to do this is to make it
2014 	 * more likely that only one CPU will panic in case of a
2015 	 * timeout.  This is (strictly speaking) an aesthetic, not a
2016 	 * technical consideration.
2017 	 */
2018 	when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU);
2019 	when->cyt_interval = NANOSEC;
2020 }
2021 
2022 
2023 void
2024 deadman_init(void)
2025 {
2026 	cyc_omni_handler_t hdlr;
2027 
2028 	if (deadman_seconds == 0)
2029 		deadman_seconds = snoop_interval / MICROSEC;
2030 
2031 	if (snooping)
2032 		deadman_enabled = 1;
2033 
2034 	hdlr.cyo_online = deadman_online;
2035 	hdlr.cyo_offline = NULL;
2036 	hdlr.cyo_arg = NULL;
2037 
2038 	mutex_enter(&cpu_lock);
2039 	deadman_cyclic = cyclic_add_omni(&hdlr);
2040 	mutex_exit(&cpu_lock);
2041 }
2042 
2043 /*
2044  * tod_fault() is for updating tod validate mechanism state:
2045  * (1) TOD_NOFAULT: for resetting the state to 'normal'.
2046  *     currently used for debugging only
2047  * (2) The following four cases detected by tod validate mechanism:
2048  *       TOD_REVERSED: current tod value is less than previous value.
2049  *       TOD_STALLED: current tod value hasn't advanced.
2050  *       TOD_JUMPED: current tod value advanced too far from previous value.
2051  *       TOD_RATECHANGED: the ratio between average tod delta and
2052  *       average tick delta has changed.
2053  * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is
2054  *     a virtual TOD provided by a hypervisor.
2055  */
2056 enum tod_fault_type
2057 tod_fault(enum tod_fault_type ftype, int off)
2058 {
2059 	ASSERT(MUTEX_HELD(&tod_lock));
2060 
2061 	if (tod_faulted != ftype) {
2062 		switch (ftype) {
2063 		case TOD_NOFAULT:
2064 			plat_tod_fault(TOD_NOFAULT);
2065 			cmn_err(CE_NOTE, "Restarted tracking "
2066 			    "Time of Day clock.");
2067 			tod_faulted = ftype;
2068 			break;
2069 		case TOD_REVERSED:
2070 		case TOD_JUMPED:
2071 			if (tod_faulted == TOD_NOFAULT) {
2072 				plat_tod_fault(ftype);
2073 				cmn_err(CE_WARN, "Time of Day clock error: "
2074 				    "reason [%s by 0x%x]. -- "
2075 				    " Stopped tracking Time Of Day clock.",
2076 				    tod_fault_table[ftype], off);
2077 				tod_faulted = ftype;
2078 			}
2079 			break;
2080 		case TOD_STALLED:
2081 		case TOD_RATECHANGED:
2082 			if (tod_faulted == TOD_NOFAULT) {
2083 				plat_tod_fault(ftype);
2084 				cmn_err(CE_WARN, "Time of Day clock error: "
2085 				    "reason [%s]. -- "
2086 				    " Stopped tracking Time Of Day clock.",
2087 				    tod_fault_table[ftype]);
2088 				tod_faulted = ftype;
2089 			}
2090 			break;
2091 		case TOD_RDONLY:
2092 			if (tod_faulted == TOD_NOFAULT) {
2093 				plat_tod_fault(ftype);
2094 				cmn_err(CE_NOTE, "!Time of Day clock is "
2095 				    "Read-Only; set of Date/Time will not "
2096 				    "persist across reboot.");
2097 				tod_faulted = ftype;
2098 			}
2099 			break;
2100 		default:
2101 			break;
2102 		}
2103 	}
2104 	return (tod_faulted);
2105 }
2106 
2107 /*
2108  * Two functions that allow tod_status_flag to be manipulated by functions
2109  * external to this file.
2110  */
2111 
2112 void
2113 tod_status_set(int tod_flag)
2114 {
2115 	tod_status_flag |= tod_flag;
2116 }
2117 
2118 void
2119 tod_status_clear(int tod_flag)
2120 {
2121 	tod_status_flag &= ~tod_flag;
2122 }
2123 
2124 /*
2125  * Record a timestamp and the value passed to tod_set().  The next call to
2126  * tod_validate() can use these values, prev_set_tick and prev_set_tod,
2127  * when checking the timestruc_t returned by tod_get().  Ordinarily,
2128  * tod_validate() will use prev_tick and prev_tod for this task but these
2129  * become obsolete, and will be re-assigned with the prev_set_* values,
2130  * in the case when the TOD is re-written.
2131  */
2132 void
2133 tod_set_prev(timestruc_t ts)
2134 {
2135 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2136 	    tod_validate_deferred) {
2137 		return;
2138 	}
2139 	prev_set_tick = gethrtime();
2140 	/*
2141 	 * A negative value will be set to zero in utc_to_tod() so we fake
2142 	 * a zero here in such a case.  This would need to change if the
2143 	 * behavior of utc_to_tod() changes.
2144 	 */
2145 	prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec;
2146 }
2147 
2148 /*
2149  * tod_validate() is used for checking values returned by tod_get().
2150  * Four error cases can be detected by this routine:
2151  *   TOD_REVERSED: current tod value is less than previous.
2152  *   TOD_STALLED: current tod value hasn't advanced.
2153  *   TOD_JUMPED: current tod value advanced too far from previous value.
2154  *   TOD_RATECHANGED: the ratio between average tod delta and
2155  *   average tick delta has changed.
2156  */
2157 time_t
2158 tod_validate(time_t tod)
2159 {
2160 	time_t diff_tod;
2161 	hrtime_t diff_tick;
2162 
2163 	long dtick;
2164 	int dtick_delta;
2165 
2166 	int off = 0;
2167 	enum tod_fault_type tod_bad = TOD_NOFAULT;
2168 
2169 	static int firsttime = 1;
2170 
2171 	static time_t prev_tod = 0;
2172 	static hrtime_t prev_tick = 0;
2173 	static long dtick_avg = TOD_REF_FREQ;
2174 
2175 	int cpr_resume_done = 0;
2176 	int dr_resume_done = 0;
2177 
2178 	hrtime_t tick = gethrtime();
2179 
2180 	ASSERT(MUTEX_HELD(&tod_lock));
2181 
2182 	/*
2183 	 * tod_validate_enable is patchable via /etc/system.
2184 	 * If TOD is already faulted, or if TOD validation is deferred,
2185 	 * there is nothing to do.
2186 	 */
2187 	if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) ||
2188 	    tod_validate_deferred) {
2189 		return (tod);
2190 	}
2191 
2192 	/*
2193 	 * If this is the first time through, we just need to save the tod
2194 	 * we were called with and hrtime so we can use them next time to
2195 	 * validate tod_get().
2196 	 */
2197 	if (firsttime) {
2198 		firsttime = 0;
2199 		prev_tod = tod;
2200 		prev_tick = tick;
2201 		return (tod);
2202 	}
2203 
2204 	/*
2205 	 * Handle any flags that have been turned on by tod_status_set().
2206 	 * In the case where a tod_set() is done and then a subsequent
2207 	 * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are
2208 	 * true), we treat the TOD_GET_FAILED with precedence by switching
2209 	 * off the flag, returning tod and leaving TOD_SET_DONE asserted
2210 	 * until such time as tod_get() completes successfully.
2211 	 */
2212 	if (tod_status_flag & TOD_GET_FAILED) {
2213 		/*
2214 		 * tod_get() has encountered an issue, possibly transitory,
2215 		 * when reading TOD.  We'll just return the incoming tod
2216 		 * value (which is actually hrestime.tv_sec in this case)
2217 		 * and when we get a genuine tod, following a successful
2218 		 * tod_get(), we can validate using prev_tod and prev_tick.
2219 		 */
2220 		tod_status_flag &= ~TOD_GET_FAILED;
2221 		return (tod);
2222 	} else if (tod_status_flag & TOD_SET_DONE) {
2223 		/*
2224 		 * TOD has been modified.  Just before the TOD was written,
2225 		 * tod_set_prev() saved tod and hrtime; we can now use
2226 		 * those values, prev_set_tod and prev_set_tick, to validate
2227 		 * the incoming tod that's just been read.
2228 		 */
2229 		prev_tod = prev_set_tod;
2230 		prev_tick = prev_set_tick;
2231 		dtick_avg = TOD_REF_FREQ;
2232 		tod_status_flag &= ~TOD_SET_DONE;
2233 		/*
2234 		 * If a tod_set() preceded a cpr_suspend() without an
2235 		 * intervening tod_validate(), we need to ensure that a
2236 		 * TOD_JUMPED condition is ignored.
2237 		 * Note this isn't a concern in the case of DR as we've
2238 		 * just reassigned dtick_avg, above.
2239 		 */
2240 		if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2241 			cpr_resume_done = 1;
2242 			tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2243 		}
2244 	} else if (tod_status_flag & TOD_CPR_RESUME_DONE) {
2245 		/*
2246 		 * The system's coming back from a checkpoint resume.
2247 		 */
2248 		cpr_resume_done = 1;
2249 		tod_status_flag &= ~TOD_CPR_RESUME_DONE;
2250 		/*
2251 		 * We need to handle the possibility of a CPR suspend
2252 		 * operation having been initiated whilst a DR event was
2253 		 * in-flight.
2254 		 */
2255 		if (tod_status_flag & TOD_DR_RESUME_DONE) {
2256 			dr_resume_done = 1;
2257 			tod_status_flag &= ~TOD_DR_RESUME_DONE;
2258 		}
2259 	} else if (tod_status_flag & TOD_DR_RESUME_DONE) {
2260 		/*
2261 		 * A Dynamic Reconfiguration event has taken place.
2262 		 */
2263 		dr_resume_done = 1;
2264 		tod_status_flag &= ~TOD_DR_RESUME_DONE;
2265 	}
2266 
2267 	/* test hook */
2268 	switch (tod_unit_test) {
2269 	case 1: /* for testing jumping tod */
2270 		tod += tod_test_injector;
2271 		tod_unit_test = 0;
2272 		break;
2273 	case 2:	/* for testing stuck tod bit */
2274 		tod |= 1 << tod_test_injector;
2275 		tod_unit_test = 0;
2276 		break;
2277 	case 3:	/* for testing stalled tod */
2278 		tod = prev_tod;
2279 		tod_unit_test = 0;
2280 		break;
2281 	case 4:	/* reset tod fault status */
2282 		(void) tod_fault(TOD_NOFAULT, 0);
2283 		tod_unit_test = 0;
2284 		break;
2285 	default:
2286 		break;
2287 	}
2288 
2289 	diff_tod = tod - prev_tod;
2290 	diff_tick = tick - prev_tick;
2291 
2292 	ASSERT(diff_tick >= 0);
2293 
2294 	if (diff_tod < 0) {
2295 		/* ERROR - tod reversed */
2296 		tod_bad = TOD_REVERSED;
2297 		off = (int)(prev_tod - tod);
2298 	} else if (diff_tod == 0) {
2299 		/* tod did not advance */
2300 		if (diff_tick > TOD_STALL_THRESHOLD) {
2301 			/* ERROR - tod stalled */
2302 			tod_bad = TOD_STALLED;
2303 		} else {
2304 			/*
2305 			 * Make sure we don't update prev_tick
2306 			 * so that diff_tick is calculated since
2307 			 * the first diff_tod == 0
2308 			 */
2309 			return (tod);
2310 		}
2311 	} else {
2312 		/* calculate dtick */
2313 		dtick = diff_tick / diff_tod;
2314 
2315 		/* update dtick averages */
2316 		dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N);
2317 
2318 		/*
2319 		 * Calculate dtick_delta as
2320 		 * variation from reference freq in quartiles
2321 		 */
2322 		dtick_delta = (dtick_avg - TOD_REF_FREQ) /
2323 		    (TOD_REF_FREQ >> 2);
2324 
2325 		/*
2326 		 * Even with a perfectly functioning TOD device,
2327 		 * when the number of elapsed seconds is low the
2328 		 * algorithm can calculate a rate that is beyond
2329 		 * tolerance, causing an error.  The algorithm is
2330 		 * inaccurate when elapsed time is low (less than
2331 		 * 5 seconds).
2332 		 */
2333 		if (diff_tod > 4) {
2334 			if (dtick < TOD_JUMP_THRESHOLD) {
2335 				/*
2336 				 * If we've just done a CPR resume, we detect
2337 				 * a jump in the TOD but, actually, what's
2338 				 * happened is that the TOD has been increasing
2339 				 * whilst the system was suspended and the tick
2340 				 * count hasn't kept up.  We consider the first
2341 				 * occurrence of this after a resume as normal
2342 				 * and ignore it; otherwise, in a non-resume
2343 				 * case, we regard it as a TOD problem.
2344 				 */
2345 				if (!cpr_resume_done) {
2346 					/* ERROR - tod jumped */
2347 					tod_bad = TOD_JUMPED;
2348 					off = (int)diff_tod;
2349 				}
2350 			}
2351 			if (dtick_delta) {
2352 				/*
2353 				 * If we've just done a DR resume, dtick_avg
2354 				 * can go a bit askew so we reset it and carry
2355 				 * on; otherwise, the TOD is in error.
2356 				 */
2357 				if (dr_resume_done) {
2358 					dtick_avg = TOD_REF_FREQ;
2359 				} else {
2360 					/* ERROR - change in clock rate */
2361 					tod_bad = TOD_RATECHANGED;
2362 				}
2363 			}
2364 		}
2365 	}
2366 
2367 	if (tod_bad != TOD_NOFAULT) {
2368 		(void) tod_fault(tod_bad, off);
2369 
2370 		/*
2371 		 * Disable dosynctodr since we are going to fault
2372 		 * the TOD chip anyway here
2373 		 */
2374 		dosynctodr = 0;
2375 
2376 		/*
2377 		 * Set tod to the correct value from hrestime
2378 		 */
2379 		tod = hrestime.tv_sec;
2380 	}
2381 
2382 	prev_tod = tod;
2383 	prev_tick = tick;
2384 	return (tod);
2385 }
2386 
2387 static void
2388 calcloadavg(int nrun, uint64_t *hp_ave)
2389 {
2390 	static int64_t f[3] = { 135, 27, 9 };
2391 	uint_t i;
2392 	int64_t q, r;
2393 
2394 	/*
2395 	 * Compute load average over the last 1, 5, and 15 minutes
2396 	 * (60, 300, and 900 seconds).  The constants in f[3] are for
2397 	 * exponential decay:
2398 	 * (1 - exp(-1/60)) << 13 = 135,
2399 	 * (1 - exp(-1/300)) << 13 = 27,
2400 	 * (1 - exp(-1/900)) << 13 = 9.
2401 	 */
2402 
2403 	/*
2404 	 * a little hoop-jumping to avoid integer overflow
2405 	 */
2406 	for (i = 0; i < 3; i++) {
2407 		q = (hp_ave[i]  >> 16) << 7;
2408 		r = (hp_ave[i]  & 0xffff) << 7;
2409 		hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
2410 	}
2411 }
2412 
2413 /*
2414  * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to
2415  * calculate the value of lbolt according to the current mode. In the event
2416  * driven mode (the default), lbolt is calculated by dividing the current hires
2417  * time by the number of nanoseconds per clock tick. In the cyclic driven mode
2418  * an internal variable is incremented at each firing of the lbolt cyclic
2419  * and returned by lbolt_cyclic_driven().
2420  *
2421  * The system will transition from event to cyclic driven mode when the number
2422  * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a
2423  * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to
2424  * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is
2425  * causing enough activity to cross the thresholds.
2426  */
2427 int64_t
2428 lbolt_bootstrap(void)
2429 {
2430 	return (0);
2431 }
2432 
2433 /* ARGSUSED */
2434 uint_t
2435 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2)
2436 {
2437 	hrtime_t ts, exp;
2438 	int ret;
2439 
2440 	ASSERT(lbolt_hybrid != lbolt_cyclic_driven);
2441 
2442 	kpreempt_disable();
2443 
2444 	ts = gethrtime();
2445 	lb_info->lbi_internal = (ts/nsec_per_tick);
2446 
2447 	/*
2448 	 * Align the next expiration to a clock tick boundary.
2449 	 */
2450 	exp = ts + nsec_per_tick - 1;
2451 	exp = (exp/nsec_per_tick) * nsec_per_tick;
2452 
2453 	ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp);
2454 	ASSERT(ret);
2455 
2456 	lbolt_hybrid = lbolt_cyclic_driven;
2457 	lb_info->lbi_cyc_deactivate = B_FALSE;
2458 	lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2459 
2460 	kpreempt_enable();
2461 
2462 	ret = atomic_dec_32_nv(&lb_info->lbi_token);
2463 	ASSERT(ret == 0);
2464 
2465 	return (1);
2466 }
2467 
2468 int64_t
2469 lbolt_event_driven(void)
2470 {
2471 	hrtime_t ts;
2472 	int64_t lb;
2473 	int ret, cpu = CPU->cpu_seqid;
2474 
2475 	ts = gethrtime();
2476 	ASSERT(ts > 0);
2477 
2478 	ASSERT(nsec_per_tick > 0);
2479 	lb = (ts/nsec_per_tick);
2480 
2481 	/*
2482 	 * Switch to cyclic mode if the number of calls to this routine
2483 	 * has reached the threshold within the interval.
2484 	 */
2485 	if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) {
2486 
2487 		if (--lb_cpu[cpu].lbc_counter == 0) {
2488 			/*
2489 			 * Reached the threshold within the interval, reset
2490 			 * the usage statistics.
2491 			 */
2492 			lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2493 			lb_cpu[cpu].lbc_cnt_start = lb;
2494 
2495 			/*
2496 			 * Make sure only one thread reprograms the
2497 			 * lbolt cyclic and changes the mode.
2498 			 */
2499 			if (panicstr == NULL &&
2500 			    atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2501 
2502 				if (lbolt_hybrid == lbolt_cyclic_driven) {
2503 					ret = atomic_dec_32_nv(
2504 					    &lb_info->lbi_token);
2505 					ASSERT(ret == 0);
2506 				} else {
2507 					lbolt_softint_post();
2508 				}
2509 			}
2510 		}
2511 	} else {
2512 		/*
2513 		 * Exceeded the interval, reset the usage statistics.
2514 		 */
2515 		lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2516 		lb_cpu[cpu].lbc_cnt_start = lb;
2517 	}
2518 
2519 	ASSERT(lb >= lb_info->lbi_debug_time);
2520 
2521 	return (lb - lb_info->lbi_debug_time);
2522 }
2523 
2524 int64_t
2525 lbolt_cyclic_driven(void)
2526 {
2527 	int64_t lb = lb_info->lbi_internal;
2528 	int cpu;
2529 
2530 	/*
2531 	 * If a CPU has already prevented the lbolt cyclic from deactivating
2532 	 * itself, don't bother tracking the usage. Otherwise check if we're
2533 	 * within the interval and how the per CPU counter is doing.
2534 	 */
2535 	if (lb_info->lbi_cyc_deactivate) {
2536 		cpu = CPU->cpu_seqid;
2537 		if ((lb - lb_cpu[cpu].lbc_cnt_start) <
2538 		    lb_info->lbi_thresh_interval) {
2539 
2540 			if (lb_cpu[cpu].lbc_counter == 0)
2541 				/*
2542 				 * Reached the threshold within the interval,
2543 				 * prevent the lbolt cyclic from turning itself
2544 				 * off.
2545 				 */
2546 				lb_info->lbi_cyc_deactivate = B_FALSE;
2547 			else
2548 				lb_cpu[cpu].lbc_counter--;
2549 		} else {
2550 			/*
2551 			 * Only reset the usage statistics when we have
2552 			 * exceeded the interval.
2553 			 */
2554 			lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls;
2555 			lb_cpu[cpu].lbc_cnt_start = lb;
2556 		}
2557 	}
2558 
2559 	ASSERT(lb >= lb_info->lbi_debug_time);
2560 
2561 	return (lb - lb_info->lbi_debug_time);
2562 }
2563 
2564 /*
2565  * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy
2566  * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers.
2567  * It is inactive by default, and will be activated when switching from event
2568  * to cyclic driven lbolt. The cyclic will turn itself off unless signaled
2569  * by lbolt_cyclic_driven().
2570  */
2571 static void
2572 lbolt_cyclic(void)
2573 {
2574 	int ret;
2575 
2576 	lb_info->lbi_internal++;
2577 
2578 	if (!lbolt_cyc_only) {
2579 
2580 		if (lb_info->lbi_cyc_deactivate) {
2581 			/*
2582 			 * Switching from cyclic to event driven mode.
2583 			 */
2584 			if (panicstr == NULL &&
2585 			    atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) {
2586 
2587 				if (lbolt_hybrid == lbolt_event_driven) {
2588 					ret = atomic_dec_32_nv(
2589 					    &lb_info->lbi_token);
2590 					ASSERT(ret == 0);
2591 					return;
2592 				}
2593 
2594 				kpreempt_disable();
2595 
2596 				lbolt_hybrid = lbolt_event_driven;
2597 				ret = cyclic_reprogram(
2598 				    lb_info->id.lbi_cyclic_id,
2599 				    CY_INFINITY);
2600 				ASSERT(ret);
2601 
2602 				kpreempt_enable();
2603 
2604 				ret = atomic_dec_32_nv(&lb_info->lbi_token);
2605 				ASSERT(ret == 0);
2606 			}
2607 		}
2608 
2609 		/*
2610 		 * The lbolt cyclic should not try to deactivate itself before
2611 		 * the sampling period has elapsed.
2612 		 */
2613 		if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >=
2614 		    lb_info->lbi_thresh_interval) {
2615 			lb_info->lbi_cyc_deactivate = B_TRUE;
2616 			lb_info->lbi_cyc_deac_start = lb_info->lbi_internal;
2617 		}
2618 	}
2619 }
2620 
2621 /*
2622  * Since the lbolt service was historically cyclic driven, it must be 'stopped'
2623  * when the system drops into the kernel debugger. lbolt_debug_entry() is
2624  * called by the KDI system claim callbacks to record a hires timestamp at
2625  * debug enter time. lbolt_debug_return() is called by the sistem release
2626  * callbacks to account for the time spent in the debugger. The value is then
2627  * accumulated in the lb_info structure and used by lbolt_event_driven() and
2628  * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine.
2629  */
2630 void
2631 lbolt_debug_entry(void)
2632 {
2633 	if (lbolt_hybrid != lbolt_bootstrap) {
2634 		ASSERT(lb_info != NULL);
2635 		lb_info->lbi_debug_ts = gethrtime();
2636 	}
2637 }
2638 
2639 /*
2640  * Calculate the time spent in the debugger and add it to the lbolt info
2641  * structure. We also update the internal lbolt value in case we were in
2642  * cyclic driven mode going in.
2643  */
2644 void
2645 lbolt_debug_return(void)
2646 {
2647 	hrtime_t ts;
2648 
2649 	if (lbolt_hybrid != lbolt_bootstrap) {
2650 		ASSERT(lb_info != NULL);
2651 		ASSERT(nsec_per_tick > 0);
2652 
2653 		ts = gethrtime();
2654 		lb_info->lbi_internal = (ts/nsec_per_tick);
2655 		lb_info->lbi_debug_time +=
2656 		    ((ts - lb_info->lbi_debug_ts)/nsec_per_tick);
2657 
2658 		lb_info->lbi_debug_ts = 0;
2659 	}
2660 }
2661