xref: /titanic_50/usr/src/uts/common/os/aio.c (revision 7712e92cf4ce9bcf161748b8648b7537d95ffb16)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Kernel asynchronous I/O.
31  * This is only for raw devices now (as of Nov. 1993).
32  */
33 
34 #include <sys/types.h>
35 #include <sys/errno.h>
36 #include <sys/conf.h>
37 #include <sys/file.h>
38 #include <sys/fs/snode.h>
39 #include <sys/unistd.h>
40 #include <sys/cmn_err.h>
41 #include <vm/as.h>
42 #include <vm/faultcode.h>
43 #include <sys/sysmacros.h>
44 #include <sys/procfs.h>
45 #include <sys/kmem.h>
46 #include <sys/autoconf.h>
47 #include <sys/ddi_impldefs.h>
48 #include <sys/sunddi.h>
49 #include <sys/aio_impl.h>
50 #include <sys/debug.h>
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/vmsystm.h>
54 #include <sys/fs/pxfs_ki.h>
55 #include <sys/contract/process_impl.h>
56 
57 /*
58  * external entry point.
59  */
60 #ifdef _LP64
61 static int64_t kaioc(long, long, long, long, long, long);
62 #endif
63 static int kaio(ulong_t *, rval_t *);
64 
65 
66 #define	AIO_64	0
67 #define	AIO_32	1
68 #define	AIO_LARGEFILE	2
69 
70 /*
71  * implementation specific functions (private)
72  */
73 #ifdef _LP64
74 static int alio(int, aiocb_t **, int, struct sigevent *);
75 #endif
76 static int aionotify(void);
77 static int aioinit(void);
78 static int aiostart(void);
79 static void alio_cleanup(aio_t *, aiocb_t **, int, int);
80 static int (*check_vp(struct vnode *, int))(vnode_t *, struct aio_req *,
81     cred_t *);
82 static void lio_set_error(aio_req_t *, int portused);
83 static aio_t *aio_aiop_alloc();
84 static int aio_req_alloc(aio_req_t **, aio_result_t *);
85 static int aio_lio_alloc(aio_lio_t **);
86 static aio_req_t *aio_req_done(void *);
87 static aio_req_t *aio_req_remove(aio_req_t *);
88 static int aio_req_find(aio_result_t *, aio_req_t **);
89 static int aio_hash_insert(struct aio_req_t *, aio_t *);
90 static int aio_req_setup(aio_req_t **, aio_t *, aiocb_t *,
91     aio_result_t *, vnode_t *);
92 static int aio_cleanup_thread(aio_t *);
93 static aio_lio_t *aio_list_get(aio_result_t *);
94 static void lio_set_uerror(void *, int);
95 extern void aio_zerolen(aio_req_t *);
96 static int aiowait(struct timeval *, int, long	*);
97 static int aiowaitn(void *, uint_t, uint_t *, timespec_t *);
98 static int aio_unlock_requests(caddr_t iocblist, int iocb_index,
99     aio_req_t *reqlist, aio_t *aiop, model_t model);
100 static int aio_reqlist_concat(aio_t *aiop, aio_req_t **reqlist, int max);
101 static int aiosuspend(void *, int, struct  timespec *, int,
102     long	*, int);
103 static int aliowait(int, void *, int, void *, int);
104 static int aioerror(void *, int);
105 static int aio_cancel(int, void *, long	*, int);
106 static int arw(int, int, char *, int, offset_t, aio_result_t *, int);
107 static int aiorw(int, void *, int, int);
108 
109 static int alioLF(int, void *, int, void *);
110 static int aio_req_setupLF(aio_req_t **, aio_t *, aiocb64_32_t *,
111     aio_result_t *, vnode_t *);
112 static int alio32(int, void *, int, void *);
113 static int driver_aio_write(vnode_t *vp, struct aio_req *aio, cred_t *cred_p);
114 static int driver_aio_read(vnode_t *vp, struct aio_req *aio, cred_t *cred_p);
115 
116 #ifdef  _SYSCALL32_IMPL
117 static void aiocb_LFton(aiocb64_32_t *, aiocb_t *);
118 void	aiocb_32ton(aiocb32_t *, aiocb_t *);
119 #endif /* _SYSCALL32_IMPL */
120 
121 /*
122  * implementation specific functions (external)
123  */
124 void aio_req_free(aio_t *, aio_req_t *);
125 
126 /*
127  * Event Port framework
128  */
129 
130 void aio_req_free_port(aio_t *, aio_req_t *);
131 static int aio_port_callback(void *, int *, pid_t, int, void *);
132 
133 /*
134  * This is the loadable module wrapper.
135  */
136 #include <sys/modctl.h>
137 #include <sys/syscall.h>
138 
139 #ifdef _LP64
140 
141 static struct sysent kaio_sysent = {
142 	6,
143 	SE_NOUNLOAD | SE_64RVAL | SE_ARGC,
144 	(int (*)())kaioc
145 };
146 
147 #ifdef _SYSCALL32_IMPL
148 static struct sysent kaio_sysent32 = {
149 	7,
150 	SE_NOUNLOAD | SE_64RVAL,
151 	kaio
152 };
153 #endif  /* _SYSCALL32_IMPL */
154 
155 #else   /* _LP64 */
156 
157 static struct sysent kaio_sysent = {
158 	7,
159 	SE_NOUNLOAD | SE_32RVAL1,
160 	kaio
161 };
162 
163 #endif  /* _LP64 */
164 
165 /*
166  * Module linkage information for the kernel.
167  */
168 
169 static struct modlsys modlsys = {
170 	&mod_syscallops,
171 	"kernel Async I/O",
172 	&kaio_sysent
173 };
174 
175 #ifdef  _SYSCALL32_IMPL
176 static struct modlsys modlsys32 = {
177 	&mod_syscallops32,
178 	"kernel Async I/O for 32 bit compatibility",
179 	&kaio_sysent32
180 };
181 #endif  /* _SYSCALL32_IMPL */
182 
183 
184 static struct modlinkage modlinkage = {
185 	MODREV_1,
186 	&modlsys,
187 #ifdef  _SYSCALL32_IMPL
188 	&modlsys32,
189 #endif
190 	NULL
191 };
192 
193 int
194 _init(void)
195 {
196 	int retval;
197 
198 	if ((retval = mod_install(&modlinkage)) != 0)
199 		return (retval);
200 
201 	return (0);
202 }
203 
204 int
205 _fini(void)
206 {
207 	int retval;
208 
209 	retval = mod_remove(&modlinkage);
210 
211 	return (retval);
212 }
213 
214 int
215 _info(struct modinfo *modinfop)
216 {
217 	return (mod_info(&modlinkage, modinfop));
218 }
219 
220 #ifdef	_LP64
221 static int64_t
222 kaioc(
223 	long	a0,
224 	long	a1,
225 	long	a2,
226 	long	a3,
227 	long	a4,
228 	long	a5)
229 {
230 	int	error;
231 	long	rval = 0;
232 
233 	switch ((int)a0 & ~AIO_POLL_BIT) {
234 	case AIOREAD:
235 		error = arw((int)a0, (int)a1, (char *)a2, (int)a3,
236 		    (offset_t)a4, (aio_result_t *)a5, FREAD);
237 		break;
238 	case AIOWRITE:
239 		error = arw((int)a0, (int)a1, (char *)a2, (int)a3,
240 		    (offset_t)a4, (aio_result_t *)a5, FWRITE);
241 		break;
242 	case AIOWAIT:
243 		error = aiowait((struct timeval *)a1, (int)a2, &rval);
244 		break;
245 	case AIOWAITN:
246 		error = aiowaitn((void *)a1, (uint_t)a2, (uint_t *)a3,
247 		    (timespec_t *)a4);
248 		break;
249 	case AIONOTIFY:
250 		error = aionotify();
251 		break;
252 	case AIOINIT:
253 		error = aioinit();
254 		break;
255 	case AIOSTART:
256 		error = aiostart();
257 		break;
258 	case AIOLIO:
259 		error = alio((int)a1, (aiocb_t **)a2, (int)a3,
260 		    (struct sigevent *)a4);
261 		break;
262 	case AIOLIOWAIT:
263 		error = aliowait((int)a1, (void *)a2, (int)a3,
264 		    (struct sigevent *)a4, AIO_64);
265 		break;
266 	case AIOSUSPEND:
267 		error = aiosuspend((void *)a1, (int)a2, (timespec_t *)a3,
268 		    (int)a4, &rval, AIO_64);
269 		break;
270 	case AIOERROR:
271 		error = aioerror((void *)a1, AIO_64);
272 		break;
273 	case AIOAREAD:
274 		error = aiorw((int)a0, (void *)a1, FREAD, AIO_64);
275 		break;
276 	case AIOAWRITE:
277 		error = aiorw((int)a0, (void *)a1, FWRITE, AIO_64);
278 		break;
279 	case AIOCANCEL:
280 		error = aio_cancel((int)a1, (void *)a2, &rval, AIO_64);
281 		break;
282 
283 	/*
284 	 * The large file related stuff is valid only for
285 	 * 32 bit kernel and not for 64 bit kernel
286 	 * On 64 bit kernel we convert large file calls
287 	 * to regular 64bit calls.
288 	 */
289 
290 	default:
291 		error = EINVAL;
292 	}
293 	if (error)
294 		return ((int64_t)set_errno(error));
295 	return (rval);
296 }
297 #endif
298 
299 static int
300 kaio(
301 	ulong_t *uap,
302 	rval_t *rvp)
303 {
304 	long rval = 0;
305 	int	error = 0;
306 	offset_t	off;
307 
308 
309 		rvp->r_vals = 0;
310 #if defined(_LITTLE_ENDIAN)
311 	off = ((u_offset_t)uap[5] << 32) | (u_offset_t)uap[4];
312 #else
313 	off = ((u_offset_t)uap[4] << 32) | (u_offset_t)uap[5];
314 #endif
315 
316 	switch (uap[0] & ~AIO_POLL_BIT) {
317 	/*
318 	 * It must be the 32 bit system call on 64 bit kernel
319 	 */
320 	case AIOREAD:
321 		return (arw((int)uap[0], (int)uap[1], (char *)uap[2],
322 		    (int)uap[3], off, (aio_result_t *)uap[6], FREAD));
323 	case AIOWRITE:
324 		return (arw((int)uap[0], (int)uap[1], (char *)uap[2],
325 		    (int)uap[3], off, (aio_result_t *)uap[6], FWRITE));
326 	case AIOWAIT:
327 		error = aiowait((struct	timeval *)uap[1], (int)uap[2],
328 		    &rval);
329 		break;
330 	case AIOWAITN:
331 		error = aiowaitn((void *)uap[1], (uint_t)uap[2],
332 		    (uint_t *)uap[3], (timespec_t *)uap[4]);
333 		break;
334 	case AIONOTIFY:
335 		return (aionotify());
336 	case AIOINIT:
337 		return (aioinit());
338 	case AIOSTART:
339 		return (aiostart());
340 	case AIOLIO:
341 		return (alio32((int)uap[1], (void *)uap[2], (int)uap[3],
342 		    (void *)uap[4]));
343 	case AIOLIOWAIT:
344 		return (aliowait((int)uap[1], (void *)uap[2],
345 		    (int)uap[3], (struct sigevent *)uap[4], AIO_32));
346 	case AIOSUSPEND:
347 		error = aiosuspend((void *)uap[1], (int)uap[2],
348 		    (timespec_t *)uap[3], (int)uap[4],
349 		    &rval, AIO_32);
350 		break;
351 	case AIOERROR:
352 		return (aioerror((void *)uap[1], AIO_32));
353 	case AIOAREAD:
354 		return (aiorw((int)uap[0], (void *)uap[1],
355 		    FREAD, AIO_32));
356 	case AIOAWRITE:
357 		return (aiorw((int)uap[0], (void *)uap[1],
358 		    FWRITE, AIO_32));
359 	case AIOCANCEL:
360 		error = (aio_cancel((int)uap[1], (void *)uap[2], &rval,
361 		    AIO_32));
362 		break;
363 	case AIOLIO64:
364 		return (alioLF((int)uap[1], (void *)uap[2],
365 		    (int)uap[3], (void *)uap[4]));
366 	case AIOLIOWAIT64:
367 		return (aliowait(uap[1], (void *)uap[2],
368 		    (int)uap[3], (void *)uap[4], AIO_LARGEFILE));
369 	case AIOSUSPEND64:
370 		error = aiosuspend((void *)uap[1], (int)uap[2],
371 		    (timespec_t *)uap[3], (int)uap[4], &rval,
372 		    AIO_LARGEFILE);
373 		break;
374 	case AIOERROR64:
375 		return (aioerror((void *)uap[1], AIO_LARGEFILE));
376 	case AIOAREAD64:
377 		return (aiorw((int)uap[0], (void *)uap[1], FREAD,
378 		    AIO_LARGEFILE));
379 	case AIOAWRITE64:
380 		return (aiorw((int)uap[0], (void *)uap[1], FWRITE,
381 		    AIO_LARGEFILE));
382 	case AIOCANCEL64:
383 		error = (aio_cancel((int)uap[1], (void *)uap[2],
384 		    &rval, AIO_LARGEFILE));
385 		break;
386 	default:
387 		return (EINVAL);
388 	}
389 
390 	rvp->r_val1 = rval;
391 	return (error);
392 }
393 
394 /*
395  * wake up LWPs in this process that are sleeping in
396  * aiowait().
397  */
398 static int
399 aionotify(void)
400 {
401 	aio_t	*aiop;
402 
403 	aiop = curproc->p_aio;
404 	if (aiop == NULL)
405 		return (0);
406 
407 	mutex_enter(&aiop->aio_mutex);
408 	aiop->aio_notifycnt++;
409 	cv_broadcast(&aiop->aio_waitcv);
410 	mutex_exit(&aiop->aio_mutex);
411 
412 	return (0);
413 }
414 
415 static int
416 timeval2reltime(struct timeval *timout, timestruc_t *rqtime,
417 	timestruc_t **rqtp, int *blocking)
418 {
419 #ifdef	_SYSCALL32_IMPL
420 	struct timeval32 wait_time_32;
421 #endif
422 	struct timeval wait_time;
423 	model_t	model = get_udatamodel();
424 
425 	*rqtp = NULL;
426 	if (timout == NULL) {		/* wait indefinitely */
427 		*blocking = 1;
428 		return (0);
429 	}
430 
431 	/*
432 	 * Need to correctly compare with the -1 passed in for a user
433 	 * address pointer, with both 32 bit and 64 bit apps.
434 	 */
435 	if (model == DATAMODEL_NATIVE) {
436 		if ((intptr_t)timout == (intptr_t)-1) {	/* don't wait */
437 			*blocking = 0;
438 			return (0);
439 		}
440 
441 		if (copyin(timout, &wait_time, sizeof (wait_time)))
442 			return (EFAULT);
443 	}
444 #ifdef	_SYSCALL32_IMPL
445 	else {
446 		/*
447 		 * -1 from a 32bit app. It will not get sign extended.
448 		 * don't wait if -1.
449 		 */
450 		if ((intptr_t)timout == (intptr_t)((uint32_t)-1)) {
451 			*blocking = 0;
452 			return (0);
453 		}
454 
455 		if (copyin(timout, &wait_time_32, sizeof (wait_time_32)))
456 			return (EFAULT);
457 		TIMEVAL32_TO_TIMEVAL(&wait_time, &wait_time_32);
458 	}
459 #endif  /* _SYSCALL32_IMPL */
460 
461 	if (wait_time.tv_sec == 0 && wait_time.tv_usec == 0) {	/* don't wait */
462 		*blocking = 0;
463 		return (0);
464 	}
465 
466 	if (wait_time.tv_sec < 0 ||
467 	    wait_time.tv_usec < 0 || wait_time.tv_usec >= MICROSEC)
468 		return (EINVAL);
469 
470 	rqtime->tv_sec = wait_time.tv_sec;
471 	rqtime->tv_nsec = wait_time.tv_usec * 1000;
472 	*rqtp = rqtime;
473 	*blocking = 1;
474 
475 	return (0);
476 }
477 
478 static int
479 timespec2reltime(timespec_t *timout, timestruc_t *rqtime,
480 	timestruc_t **rqtp, int *blocking)
481 {
482 #ifdef	_SYSCALL32_IMPL
483 	timespec32_t wait_time_32;
484 #endif
485 	model_t	model = get_udatamodel();
486 
487 	*rqtp = NULL;
488 	if (timout == NULL) {
489 		*blocking = 1;
490 		return (0);
491 	}
492 
493 	if (model == DATAMODEL_NATIVE) {
494 		if (copyin(timout, rqtime, sizeof (*rqtime)))
495 			return (EFAULT);
496 	}
497 #ifdef	_SYSCALL32_IMPL
498 	else {
499 		if (copyin(timout, &wait_time_32, sizeof (wait_time_32)))
500 			return (EFAULT);
501 		TIMESPEC32_TO_TIMESPEC(rqtime, &wait_time_32);
502 	}
503 #endif  /* _SYSCALL32_IMPL */
504 
505 	if (rqtime->tv_sec == 0 && rqtime->tv_nsec == 0) {
506 		*blocking = 0;
507 		return (0);
508 	}
509 
510 	if (rqtime->tv_sec < 0 ||
511 	    rqtime->tv_nsec < 0 || rqtime->tv_nsec >= NANOSEC)
512 		return (EINVAL);
513 
514 	*rqtp = rqtime;
515 	*blocking = 1;
516 
517 	return (0);
518 }
519 
520 /*ARGSUSED*/
521 static int
522 aiowait(
523 	struct timeval	*timout,
524 	int	dontblockflg,
525 	long	*rval)
526 {
527 	int 		error;
528 	aio_t		*aiop;
529 	aio_req_t	*reqp;
530 	clock_t		status;
531 	int		blocking;
532 	int		timecheck;
533 	timestruc_t	rqtime;
534 	timestruc_t	*rqtp;
535 
536 	aiop = curproc->p_aio;
537 	if (aiop == NULL)
538 		return (EINVAL);
539 
540 	/*
541 	 * Establish the absolute future time for the timeout.
542 	 */
543 	error = timeval2reltime(timout, &rqtime, &rqtp, &blocking);
544 	if (error)
545 		return (error);
546 	if (rqtp) {
547 		timestruc_t now;
548 		timecheck = timechanged;
549 		gethrestime(&now);
550 		timespecadd(rqtp, &now);
551 	}
552 
553 	mutex_enter(&aiop->aio_mutex);
554 	for (;;) {
555 		/* process requests on poll queue */
556 		if (aiop->aio_pollq) {
557 			mutex_exit(&aiop->aio_mutex);
558 			aio_cleanup(0);
559 			mutex_enter(&aiop->aio_mutex);
560 		}
561 		if ((reqp = aio_req_remove(NULL)) != NULL) {
562 			*rval = (long)reqp->aio_req_resultp;
563 			break;
564 		}
565 		/* user-level done queue might not be empty */
566 		if (aiop->aio_notifycnt > 0) {
567 			aiop->aio_notifycnt--;
568 			*rval = 1;
569 			break;
570 		}
571 		/* don't block if no outstanding aio */
572 		if (aiop->aio_outstanding == 0 && dontblockflg) {
573 			error = EINVAL;
574 			break;
575 		}
576 		if (blocking) {
577 			status = cv_waituntil_sig(&aiop->aio_waitcv,
578 			    &aiop->aio_mutex, rqtp, timecheck);
579 
580 			if (status > 0)		/* check done queue again */
581 				continue;
582 			if (status == 0) {	/* interrupted by a signal */
583 				error = EINTR;
584 				*rval = -1;
585 			} else {		/* timer expired */
586 				error = ETIME;
587 			}
588 		}
589 		break;
590 	}
591 	mutex_exit(&aiop->aio_mutex);
592 	if (reqp) {
593 		aphysio_unlock(reqp);
594 		aio_copyout_result(reqp);
595 		mutex_enter(&aiop->aio_mutex);
596 		aio_req_free(aiop, reqp);
597 		mutex_exit(&aiop->aio_mutex);
598 	}
599 	return (error);
600 }
601 
602 /*
603  * aiowaitn can be used to reap completed asynchronous requests submitted with
604  * lio_listio, aio_read or aio_write.
605  * This function only reaps asynchronous raw I/Os.
606  */
607 
608 /*ARGSUSED*/
609 static int
610 aiowaitn(void *uiocb, uint_t nent, uint_t *nwait, timespec_t *timout)
611 {
612 	int 		error = 0;
613 	aio_t		*aiop;
614 	aio_req_t	*reqlist = NULL;
615 	caddr_t		iocblist = NULL;	/* array of iocb ptr's */
616 	uint_t		waitcnt, cnt = 0;	/* iocb cnt */
617 	size_t		iocbsz;			/* users iocb size */
618 	size_t		riocbsz;		/* returned iocb size */
619 	int		iocb_index = 0;
620 	model_t		model = get_udatamodel();
621 	int		blocking = 1;
622 	int		timecheck;
623 	timestruc_t	rqtime;
624 	timestruc_t	*rqtp;
625 
626 	aiop = curproc->p_aio;
627 
628 	if (aiop == NULL || aiop->aio_outstanding == 0)
629 		return (EAGAIN);
630 
631 	if (copyin(nwait, &waitcnt, sizeof (uint_t)))
632 		return (EFAULT);
633 
634 	/* set *nwait to zero, if we must return prematurely */
635 	if (copyout(&cnt, nwait, sizeof (uint_t)))
636 		return (EFAULT);
637 
638 	if (waitcnt == 0) {
639 		blocking = 0;
640 		rqtp = NULL;
641 		waitcnt = nent;
642 	} else {
643 		error = timespec2reltime(timout, &rqtime, &rqtp, &blocking);
644 		if (error)
645 			return (error);
646 	}
647 
648 	if (model == DATAMODEL_NATIVE)
649 		iocbsz = (sizeof (aiocb_t *) * nent);
650 #ifdef	_SYSCALL32_IMPL
651 	else
652 		iocbsz = (sizeof (caddr32_t) * nent);
653 #endif  /* _SYSCALL32_IMPL */
654 
655 	/*
656 	 * Only one aio_waitn call is allowed at a time.
657 	 * The active aio_waitn will collect all requests
658 	 * out of the "done" list and if necessary it will wait
659 	 * for some/all pending requests to fulfill the nwait
660 	 * parameter.
661 	 * A second or further aio_waitn calls will sleep here
662 	 * until the active aio_waitn finishes and leaves the kernel
663 	 * If the second call does not block (poll), then return
664 	 * immediately with the error code : EAGAIN.
665 	 * If the second call should block, then sleep here, but
666 	 * do not touch the timeout. The timeout starts when this
667 	 * aio_waitn-call becomes active.
668 	 */
669 
670 	mutex_enter(&aiop->aio_mutex);
671 
672 	while (aiop->aio_flags & AIO_WAITN) {
673 		if (blocking == 0) {
674 			mutex_exit(&aiop->aio_mutex);
675 			return (EAGAIN);
676 		}
677 
678 		/* block, no timeout */
679 		aiop->aio_flags |= AIO_WAITN_PENDING;
680 		if (!cv_wait_sig(&aiop->aio_waitncv, &aiop->aio_mutex)) {
681 			mutex_exit(&aiop->aio_mutex);
682 			return (EINTR);
683 		}
684 	}
685 
686 	/*
687 	 * Establish the absolute future time for the timeout.
688 	 */
689 	if (rqtp) {
690 		timestruc_t now;
691 		timecheck = timechanged;
692 		gethrestime(&now);
693 		timespecadd(rqtp, &now);
694 	}
695 
696 	if (iocbsz > aiop->aio_iocbsz && aiop->aio_iocb != NULL) {
697 		kmem_free(aiop->aio_iocb, aiop->aio_iocbsz);
698 		aiop->aio_iocb = NULL;
699 	}
700 
701 	if (aiop->aio_iocb == NULL) {
702 		iocblist = kmem_zalloc(iocbsz, KM_NOSLEEP);
703 		if (iocblist == NULL) {
704 			mutex_exit(&aiop->aio_mutex);
705 			return (ENOMEM);
706 		}
707 		aiop->aio_iocb = (aiocb_t **)iocblist;
708 		aiop->aio_iocbsz = iocbsz;
709 	} else {
710 		iocblist = (char *)aiop->aio_iocb;
711 	}
712 
713 	aiop->aio_waitncnt = waitcnt;
714 	aiop->aio_flags |= AIO_WAITN;
715 
716 	for (;;) {
717 		/* push requests on poll queue to done queue */
718 		if (aiop->aio_pollq) {
719 			mutex_exit(&aiop->aio_mutex);
720 			aio_cleanup(0);
721 			mutex_enter(&aiop->aio_mutex);
722 		}
723 
724 		/* check for requests on done queue */
725 		if (aiop->aio_doneq) {
726 			cnt += aio_reqlist_concat(aiop, &reqlist, nent - cnt);
727 			aiop->aio_waitncnt = waitcnt - cnt;
728 		}
729 
730 		/* user-level done queue might not be empty */
731 		if (aiop->aio_notifycnt > 0) {
732 			aiop->aio_notifycnt--;
733 			error = 0;
734 			break;
735 		}
736 
737 		/*
738 		 * if we are here second time as a result of timer
739 		 * expiration, we reset error if there are enough
740 		 * aiocb's to satisfy request.
741 		 * We return also if all requests are already done
742 		 * and we picked up the whole done queue.
743 		 */
744 
745 		if ((cnt >= waitcnt) || (cnt > 0 && aiop->aio_pending == 0 &&
746 		    aiop->aio_doneq == NULL)) {
747 			error = 0;
748 			break;
749 		}
750 
751 		if ((cnt < waitcnt) && blocking) {
752 			int rval = cv_waituntil_sig(&aiop->aio_waitcv,
753 			    &aiop->aio_mutex, rqtp, timecheck);
754 			if (rval > 0)
755 				continue;
756 			if (rval < 0) {
757 				error = ETIME;
758 				blocking = 0;
759 				continue;
760 			}
761 			error = EINTR;
762 		}
763 		break;
764 	}
765 
766 	mutex_exit(&aiop->aio_mutex);
767 
768 	if (cnt > 0) {
769 
770 		iocb_index = aio_unlock_requests(iocblist, iocb_index, reqlist,
771 		    aiop, model);
772 
773 		if (model == DATAMODEL_NATIVE)
774 			riocbsz = (sizeof (aiocb_t *) * cnt);
775 #ifdef	_SYSCALL32_IMPL
776 		else
777 			riocbsz = (sizeof (caddr32_t) * cnt);
778 #endif  /* _SYSCALL32_IMPL */
779 
780 		if (copyout(iocblist, uiocb, riocbsz) ||
781 		    copyout(&cnt, nwait, sizeof (uint_t)))
782 			error = EFAULT;
783 	}
784 
785 	if (aiop->aio_iocbsz > AIO_IOCB_MAX) {
786 		kmem_free(iocblist, aiop->aio_iocbsz);
787 		aiop->aio_iocb = NULL;
788 	}
789 
790 	/* check if there is another thread waiting for execution */
791 	mutex_enter(&aiop->aio_mutex);
792 	aiop->aio_flags &= ~AIO_WAITN;
793 	if (aiop->aio_flags & AIO_WAITN_PENDING) {
794 		aiop->aio_flags &= ~AIO_WAITN_PENDING;
795 		cv_signal(&aiop->aio_waitncv);
796 	}
797 	mutex_exit(&aiop->aio_mutex);
798 
799 	return (error);
800 }
801 
802 /*
803  * aio_unlock_requests
804  * copyouts the result of the request as well as the return value.
805  * It builds the list of completed asynchronous requests,
806  * unlocks the allocated memory ranges and
807  * put the aio request structure back into the free list.
808  */
809 
810 static int
811 aio_unlock_requests(
812 	caddr_t	iocblist,
813 	int	iocb_index,
814 	aio_req_t *reqlist,
815 	aio_t	*aiop,
816 	model_t	model)
817 {
818 	aio_req_t	*reqp, *nreqp;
819 
820 	if (model == DATAMODEL_NATIVE) {
821 		for (reqp = reqlist; reqp != NULL;  reqp = nreqp) {
822 			(((caddr_t *)iocblist)[iocb_index++]) =
823 			    reqp->aio_req_iocb.iocb;
824 			nreqp = reqp->aio_req_next;
825 			aphysio_unlock(reqp);
826 			aio_copyout_result(reqp);
827 			mutex_enter(&aiop->aio_mutex);
828 			aio_req_free(aiop, reqp);
829 			mutex_exit(&aiop->aio_mutex);
830 		}
831 	}
832 #ifdef	_SYSCALL32_IMPL
833 	else {
834 		for (reqp = reqlist; reqp != NULL;  reqp = nreqp) {
835 			((caddr32_t *)iocblist)[iocb_index++] =
836 			    reqp->aio_req_iocb.iocb32;
837 			nreqp = reqp->aio_req_next;
838 			aphysio_unlock(reqp);
839 			aio_copyout_result(reqp);
840 			mutex_enter(&aiop->aio_mutex);
841 			aio_req_free(aiop, reqp);
842 			mutex_exit(&aiop->aio_mutex);
843 		}
844 	}
845 #endif	/* _SYSCALL32_IMPL */
846 	return (iocb_index);
847 }
848 
849 /*
850  * aio_reqlist_concat
851  * moves "max" elements from the done queue to the reqlist queue and removes
852  * the AIO_DONEQ flag.
853  * - reqlist queue is a simple linked list
854  * - done queue is a double linked list
855  */
856 
857 static int
858 aio_reqlist_concat(aio_t *aiop, aio_req_t **reqlist, int max)
859 {
860 	aio_req_t *q2, *q2work, *list;
861 	int count = 0;
862 
863 	list = *reqlist;
864 	q2 = aiop->aio_doneq;
865 	q2work = q2;
866 	while (max-- > 0) {
867 		q2work->aio_req_flags &= ~AIO_DONEQ;
868 		q2work = q2work->aio_req_next;
869 		count++;
870 		if (q2work == q2)
871 			break;
872 	}
873 
874 	if (q2work == q2) {
875 		/* all elements revised */
876 		q2->aio_req_prev->aio_req_next = list;
877 		list = q2;
878 		aiop->aio_doneq = NULL;
879 	} else {
880 		/*
881 		 * max < elements in the doneq
882 		 * detach only the required amount of elements
883 		 * out of the doneq
884 		 */
885 		q2work->aio_req_prev->aio_req_next = list;
886 		list = q2;
887 
888 		aiop->aio_doneq = q2work;
889 		q2work->aio_req_prev = q2->aio_req_prev;
890 		q2->aio_req_prev->aio_req_next = q2work;
891 	}
892 	*reqlist = list;
893 	return (count);
894 }
895 
896 /*ARGSUSED*/
897 static int
898 aiosuspend(
899 	void	*aiocb,
900 	int	nent,
901 	struct	timespec	*timout,
902 	int	flag,
903 	long	*rval,
904 	int	run_mode)
905 {
906 	int 		error;
907 	aio_t		*aiop;
908 	aio_req_t	*reqp, *found, *next;
909 	caddr_t		cbplist = NULL;
910 	aiocb_t		*cbp, **ucbp;
911 #ifdef	_SYSCALL32_IMPL
912 	aiocb32_t	*cbp32;
913 	caddr32_t	*ucbp32;
914 #endif  /* _SYSCALL32_IMPL */
915 	aiocb64_32_t	*cbp64;
916 	int		rv;
917 	int		i;
918 	size_t		ssize;
919 	model_t		model = get_udatamodel();
920 	int		blocking;
921 	int		timecheck;
922 	timestruc_t	rqtime;
923 	timestruc_t	*rqtp;
924 
925 	aiop = curproc->p_aio;
926 	if (aiop == NULL || nent <= 0)
927 		return (EINVAL);
928 
929 	/*
930 	 * Establish the absolute future time for the timeout.
931 	 */
932 	error = timespec2reltime(timout, &rqtime, &rqtp, &blocking);
933 	if (error)
934 		return (error);
935 	if (rqtp) {
936 		timestruc_t now;
937 		timecheck = timechanged;
938 		gethrestime(&now);
939 		timespecadd(rqtp, &now);
940 	}
941 
942 	/*
943 	 * If we are not blocking and there's no IO complete
944 	 * skip aiocb copyin.
945 	 */
946 	if (!blocking && (aiop->aio_pollq == NULL) &&
947 	    (aiop->aio_doneq == NULL)) {
948 		return (EAGAIN);
949 	}
950 
951 	if (model == DATAMODEL_NATIVE)
952 		ssize = (sizeof (aiocb_t *) * nent);
953 #ifdef	_SYSCALL32_IMPL
954 	else
955 		ssize = (sizeof (caddr32_t) * nent);
956 #endif  /* _SYSCALL32_IMPL */
957 
958 	cbplist = kmem_alloc(ssize, KM_NOSLEEP);
959 	if (cbplist == NULL)
960 		return (ENOMEM);
961 
962 	if (copyin(aiocb, cbplist, ssize)) {
963 		error = EFAULT;
964 		goto done;
965 	}
966 
967 	found = NULL;
968 	/*
969 	 * we need to get the aio_cleanupq_mutex since we call
970 	 * aio_req_done().
971 	 */
972 	mutex_enter(&aiop->aio_cleanupq_mutex);
973 	mutex_enter(&aiop->aio_mutex);
974 	for (;;) {
975 		/* push requests on poll queue to done queue */
976 		if (aiop->aio_pollq) {
977 			mutex_exit(&aiop->aio_mutex);
978 			mutex_exit(&aiop->aio_cleanupq_mutex);
979 			aio_cleanup(0);
980 			mutex_enter(&aiop->aio_cleanupq_mutex);
981 			mutex_enter(&aiop->aio_mutex);
982 		}
983 		/* check for requests on done queue */
984 		if (aiop->aio_doneq) {
985 			if (model == DATAMODEL_NATIVE)
986 				ucbp = (aiocb_t **)cbplist;
987 #ifdef	_SYSCALL32_IMPL
988 			else
989 				ucbp32 = (caddr32_t *)cbplist;
990 #endif  /* _SYSCALL32_IMPL */
991 			for (i = 0; i < nent; i++) {
992 				if (model == DATAMODEL_NATIVE) {
993 					if ((cbp = *ucbp++) == NULL)
994 						continue;
995 					if (run_mode != AIO_LARGEFILE)
996 						reqp = aio_req_done(
997 						    &cbp->aio_resultp);
998 					else {
999 						cbp64 = (aiocb64_32_t *)cbp;
1000 						reqp = aio_req_done(
1001 						    &cbp64->aio_resultp);
1002 					}
1003 				}
1004 #ifdef	_SYSCALL32_IMPL
1005 				else {
1006 					if (run_mode == AIO_32) {
1007 						if ((cbp32 =
1008 						    (aiocb32_t *)(uintptr_t)
1009 						    *ucbp32++) == NULL)
1010 							continue;
1011 						reqp = aio_req_done(
1012 						    &cbp32->aio_resultp);
1013 					} else if (run_mode == AIO_LARGEFILE) {
1014 						if ((cbp64 =
1015 						    (aiocb64_32_t *)(uintptr_t)
1016 						    *ucbp32++) == NULL)
1017 							continue;
1018 						reqp = aio_req_done(
1019 						    &cbp64->aio_resultp);
1020 					}
1021 
1022 				}
1023 #endif  /* _SYSCALL32_IMPL */
1024 				if (reqp) {
1025 					reqp->aio_req_next = found;
1026 					found = reqp;
1027 				}
1028 				if (aiop->aio_doneq == NULL)
1029 					break;
1030 			}
1031 			if (found)
1032 				break;
1033 		}
1034 		if (aiop->aio_notifycnt > 0) {
1035 			/*
1036 			 * nothing on the kernel's queue. the user
1037 			 * has notified the kernel that it has items
1038 			 * on a user-level queue.
1039 			 */
1040 			aiop->aio_notifycnt--;
1041 			*rval = 1;
1042 			error = 0;
1043 			break;
1044 		}
1045 		/* don't block if nothing is outstanding */
1046 		if (aiop->aio_outstanding == 0) {
1047 			error = EAGAIN;
1048 			break;
1049 		}
1050 		if (blocking) {
1051 			/*
1052 			 * drop the aio_cleanupq_mutex as we are
1053 			 * going to block.
1054 			 */
1055 			mutex_exit(&aiop->aio_cleanupq_mutex);
1056 			rv = cv_waituntil_sig(&aiop->aio_waitcv,
1057 			    &aiop->aio_mutex, rqtp, timecheck);
1058 			/*
1059 			 * we have to drop aio_mutex and
1060 			 * grab it in the right order.
1061 			 */
1062 			mutex_exit(&aiop->aio_mutex);
1063 			mutex_enter(&aiop->aio_cleanupq_mutex);
1064 			mutex_enter(&aiop->aio_mutex);
1065 			if (rv > 0)	/* check done queue again */
1066 				continue;
1067 			if (rv == 0)	/* interrupted by a signal */
1068 				error = EINTR;
1069 			else		/* timer expired */
1070 				error = ETIME;
1071 		} else {
1072 			error = EAGAIN;
1073 		}
1074 		break;
1075 	}
1076 	mutex_exit(&aiop->aio_mutex);
1077 	mutex_exit(&aiop->aio_cleanupq_mutex);
1078 	for (reqp = found; reqp != NULL; reqp = next) {
1079 		next = reqp->aio_req_next;
1080 		aphysio_unlock(reqp);
1081 		aio_copyout_result(reqp);
1082 		mutex_enter(&aiop->aio_mutex);
1083 		aio_req_free(aiop, reqp);
1084 		mutex_exit(&aiop->aio_mutex);
1085 	}
1086 done:
1087 	kmem_free(cbplist, ssize);
1088 	return (error);
1089 }
1090 
1091 /*
1092  * initialize aio by allocating an aio_t struct for this
1093  * process.
1094  */
1095 static int
1096 aioinit(void)
1097 {
1098 	proc_t *p = curproc;
1099 	aio_t *aiop;
1100 	mutex_enter(&p->p_lock);
1101 	if ((aiop = p->p_aio) == NULL) {
1102 		aiop = aio_aiop_alloc();
1103 		p->p_aio = aiop;
1104 	}
1105 	mutex_exit(&p->p_lock);
1106 	if (aiop == NULL)
1107 		return (ENOMEM);
1108 	return (0);
1109 }
1110 
1111 /*
1112  * start a special thread that will cleanup after aio requests
1113  * that are preventing a segment from being unmapped. as_unmap()
1114  * blocks until all phsyio to this segment is completed. this
1115  * doesn't happen until all the pages in this segment are not
1116  * SOFTLOCKed. Some pages will be SOFTLOCKed when there are aio
1117  * requests still outstanding. this special thread will make sure
1118  * that these SOFTLOCKed pages will eventually be SOFTUNLOCKed.
1119  *
1120  * this function will return an error if the process has only
1121  * one LWP. the assumption is that the caller is a separate LWP
1122  * that remains blocked in the kernel for the life of this process.
1123  */
1124 static int
1125 aiostart(void)
1126 {
1127 	proc_t *p = curproc;
1128 	aio_t *aiop;
1129 	int first, error = 0;
1130 
1131 	if (p->p_lwpcnt == 1)
1132 		return (EDEADLK);
1133 	mutex_enter(&p->p_lock);
1134 	if ((aiop = p->p_aio) == NULL)
1135 		error = EINVAL;
1136 	else {
1137 		first = aiop->aio_ok;
1138 		if (aiop->aio_ok == 0)
1139 			aiop->aio_ok = 1;
1140 	}
1141 	mutex_exit(&p->p_lock);
1142 	if (error == 0 && first == 0) {
1143 		return (aio_cleanup_thread(aiop));
1144 		/* should return only to exit */
1145 	}
1146 	return (error);
1147 }
1148 
1149 /*
1150  * Associate an aiocb with a port.
1151  * This function is used by aiorw() to associate a transaction with a port.
1152  * Allocate an event port structure (port_alloc_event()) and store the
1153  * delivered user pointer (portnfy_user) in the portkev_user field of the
1154  * port_kevent_t structure..
1155  * The aio_req_portkev pointer in the aio_req_t structure was added to identify
1156  * the port association.
1157  */
1158 
1159 static int
1160 aio_req_assoc_port_rw(port_notify_t *pntfy, aiocb_t *cbp,
1161 	aio_req_t *reqp, int event)
1162 {
1163 	port_kevent_t	*pkevp = NULL;
1164 	int		error;
1165 
1166 	error = port_alloc_event(pntfy->portnfy_port, PORT_ALLOC_DEFAULT,
1167 	    PORT_SOURCE_AIO, &pkevp);
1168 	if (error) {
1169 		if ((error == ENOMEM) || (error == EAGAIN))
1170 			error = EAGAIN;
1171 		else
1172 			error = EINVAL;
1173 	} else {
1174 		port_init_event(pkevp, (uintptr_t)cbp, pntfy->portnfy_user,
1175 		    aio_port_callback, reqp);
1176 		pkevp->portkev_events = event;
1177 		reqp->aio_req_portkev = pkevp;
1178 		reqp->aio_req_port = pntfy->portnfy_port;
1179 	}
1180 	return (error);
1181 }
1182 
1183 #ifdef _LP64
1184 
1185 /*
1186  * Asynchronous list IO. A chain of aiocb's are copied in
1187  * one at a time. If the aiocb is invalid, it is skipped.
1188  * For each aiocb, the appropriate driver entry point is
1189  * called. Optimize for the common case where the list
1190  * of requests is to the same file descriptor.
1191  *
1192  * One possible optimization is to define a new driver entry
1193  * point that supports a list of IO requests. Whether this
1194  * improves performance depends somewhat on the driver's
1195  * locking strategy. Processing a list could adversely impact
1196  * the driver's interrupt latency.
1197  */
1198 static int
1199 alio(
1200 	int		mode_arg,
1201 	aiocb_t		**aiocb_arg,
1202 	int		nent,
1203 	struct sigevent	*sigev)
1204 {
1205 	file_t		*fp;
1206 	file_t		*prev_fp = NULL;
1207 	int		prev_mode = -1;
1208 	struct vnode	*vp;
1209 	aio_lio_t	*head;
1210 	aio_req_t	*reqp;
1211 	aio_t		*aiop;
1212 	caddr_t		cbplist;
1213 	aiocb_t		cb;
1214 	aiocb_t		*aiocb = &cb;
1215 	aiocb_t		*cbp;
1216 	aiocb_t		**ucbp;
1217 	struct sigevent sigevk;
1218 	sigqueue_t	*sqp;
1219 	int		(*aio_func)();
1220 	int		mode;
1221 	int		error = 0;
1222 	int		aio_errors = 0;
1223 	int		i;
1224 	size_t		ssize;
1225 	int		deadhead = 0;
1226 	int		aio_notsupported = 0;
1227 	int		lio_head_port;
1228 	int		aio_port;
1229 	int		aio_thread;
1230 	port_kevent_t	*pkevtp = NULL;
1231 	int		portused = 0;
1232 	port_notify_t	pnotify;
1233 	int		event;
1234 
1235 	aiop = curproc->p_aio;
1236 	if (aiop == NULL || nent <= 0 || nent > _AIO_LISTIO_MAX)
1237 		return (EINVAL);
1238 
1239 	ssize = (sizeof (aiocb_t *) * nent);
1240 	cbplist = kmem_alloc(ssize, KM_SLEEP);
1241 	ucbp = (aiocb_t **)cbplist;
1242 
1243 	if (copyin(aiocb_arg, cbplist, ssize) ||
1244 	    (sigev && copyin(sigev, &sigevk, sizeof (struct sigevent)))) {
1245 		kmem_free(cbplist, ssize);
1246 		return (EFAULT);
1247 	}
1248 
1249 	/* Event Ports  */
1250 	if (sigev &&
1251 	    (sigevk.sigev_notify == SIGEV_THREAD ||
1252 	    sigevk.sigev_notify == SIGEV_PORT)) {
1253 		if (sigevk.sigev_notify == SIGEV_THREAD) {
1254 			pnotify.portnfy_port = sigevk.sigev_signo;
1255 			pnotify.portnfy_user = sigevk.sigev_value.sival_ptr;
1256 		} else if (copyin(sigevk.sigev_value.sival_ptr,
1257 		    &pnotify, sizeof (pnotify))) {
1258 			kmem_free(cbplist, ssize);
1259 			return (EFAULT);
1260 		}
1261 		error = port_alloc_event(pnotify.portnfy_port,
1262 		    PORT_ALLOC_DEFAULT, PORT_SOURCE_AIO, &pkevtp);
1263 		if (error) {
1264 			if (error == ENOMEM || error == EAGAIN)
1265 				error = EAGAIN;
1266 			else
1267 				error = EINVAL;
1268 			kmem_free(cbplist, ssize);
1269 			return (error);
1270 		}
1271 		lio_head_port = pnotify.portnfy_port;
1272 		portused = 1;
1273 	}
1274 
1275 	/*
1276 	 * a list head should be allocated if notification is
1277 	 * enabled for this list.
1278 	 */
1279 	head = NULL;
1280 
1281 	if (mode_arg == LIO_WAIT || sigev) {
1282 		mutex_enter(&aiop->aio_mutex);
1283 		error = aio_lio_alloc(&head);
1284 		mutex_exit(&aiop->aio_mutex);
1285 		if (error)
1286 			goto done;
1287 		deadhead = 1;
1288 		head->lio_nent = nent;
1289 		head->lio_refcnt = nent;
1290 		head->lio_port = -1;
1291 		head->lio_portkev = NULL;
1292 		if (sigev && sigevk.sigev_notify == SIGEV_SIGNAL &&
1293 		    sigevk.sigev_signo > 0 && sigevk.sigev_signo < NSIG) {
1294 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_NOSLEEP);
1295 			if (sqp == NULL) {
1296 				error = EAGAIN;
1297 				goto done;
1298 			}
1299 			sqp->sq_func = NULL;
1300 			sqp->sq_next = NULL;
1301 			sqp->sq_info.si_code = SI_ASYNCIO;
1302 			sqp->sq_info.si_pid = curproc->p_pid;
1303 			sqp->sq_info.si_ctid = PRCTID(curproc);
1304 			sqp->sq_info.si_zoneid = getzoneid();
1305 			sqp->sq_info.si_uid = crgetuid(curproc->p_cred);
1306 			sqp->sq_info.si_signo = sigevk.sigev_signo;
1307 			sqp->sq_info.si_value = sigevk.sigev_value;
1308 			head->lio_sigqp = sqp;
1309 		} else {
1310 			head->lio_sigqp = NULL;
1311 		}
1312 		if (pkevtp) {
1313 			/*
1314 			 * Prepare data to send when list of aiocb's
1315 			 * has completed.
1316 			 */
1317 			port_init_event(pkevtp, (uintptr_t)sigev,
1318 			    (void *)(uintptr_t)pnotify.portnfy_user,
1319 			    NULL, head);
1320 			pkevtp->portkev_events = AIOLIO;
1321 			head->lio_portkev = pkevtp;
1322 			head->lio_port = pnotify.portnfy_port;
1323 		}
1324 	}
1325 
1326 	for (i = 0; i < nent; i++, ucbp++) {
1327 
1328 		cbp = *ucbp;
1329 		/* skip entry if it can't be copied. */
1330 		if (cbp == NULL || copyin(cbp, aiocb, sizeof (*aiocb))) {
1331 			if (head) {
1332 				mutex_enter(&aiop->aio_mutex);
1333 				head->lio_nent--;
1334 				head->lio_refcnt--;
1335 				mutex_exit(&aiop->aio_mutex);
1336 			}
1337 			continue;
1338 		}
1339 
1340 		/* skip if opcode for aiocb is LIO_NOP */
1341 		mode = aiocb->aio_lio_opcode;
1342 		if (mode == LIO_NOP) {
1343 			cbp = NULL;
1344 			if (head) {
1345 				mutex_enter(&aiop->aio_mutex);
1346 				head->lio_nent--;
1347 				head->lio_refcnt--;
1348 				mutex_exit(&aiop->aio_mutex);
1349 			}
1350 			continue;
1351 		}
1352 
1353 		/* increment file descriptor's ref count. */
1354 		if ((fp = getf(aiocb->aio_fildes)) == NULL) {
1355 			lio_set_uerror(&cbp->aio_resultp, EBADF);
1356 			if (head) {
1357 				mutex_enter(&aiop->aio_mutex);
1358 				head->lio_nent--;
1359 				head->lio_refcnt--;
1360 				mutex_exit(&aiop->aio_mutex);
1361 			}
1362 			aio_errors++;
1363 			continue;
1364 		}
1365 
1366 		/*
1367 		 * check the permission of the partition
1368 		 */
1369 		if ((fp->f_flag & mode) == 0) {
1370 			releasef(aiocb->aio_fildes);
1371 			lio_set_uerror(&cbp->aio_resultp, EBADF);
1372 			if (head) {
1373 				mutex_enter(&aiop->aio_mutex);
1374 				head->lio_nent--;
1375 				head->lio_refcnt--;
1376 				mutex_exit(&aiop->aio_mutex);
1377 			}
1378 			aio_errors++;
1379 			continue;
1380 		}
1381 
1382 		/*
1383 		 * common case where requests are to the same fd
1384 		 * for the same r/w operation.
1385 		 * for UFS, need to set EBADFD
1386 		 */
1387 		vp = fp->f_vnode;
1388 		if (fp != prev_fp || mode != prev_mode) {
1389 			aio_func = check_vp(vp, mode);
1390 			if (aio_func == NULL) {
1391 				prev_fp = NULL;
1392 				releasef(aiocb->aio_fildes);
1393 				lio_set_uerror(&cbp->aio_resultp, EBADFD);
1394 				aio_notsupported++;
1395 				if (head) {
1396 					mutex_enter(&aiop->aio_mutex);
1397 					head->lio_nent--;
1398 					head->lio_refcnt--;
1399 					mutex_exit(&aiop->aio_mutex);
1400 				}
1401 				continue;
1402 			} else {
1403 				prev_fp = fp;
1404 				prev_mode = mode;
1405 			}
1406 		}
1407 
1408 		error = aio_req_setup(&reqp, aiop, aiocb,
1409 		    &cbp->aio_resultp, vp);
1410 		if (error) {
1411 			releasef(aiocb->aio_fildes);
1412 			lio_set_uerror(&cbp->aio_resultp, error);
1413 			if (head) {
1414 				mutex_enter(&aiop->aio_mutex);
1415 				head->lio_nent--;
1416 				head->lio_refcnt--;
1417 				mutex_exit(&aiop->aio_mutex);
1418 			}
1419 			aio_errors++;
1420 			continue;
1421 		}
1422 
1423 		reqp->aio_req_lio = head;
1424 		deadhead = 0;
1425 
1426 		/*
1427 		 * Set the errno field now before sending the request to
1428 		 * the driver to avoid a race condition
1429 		 */
1430 		(void) suword32(&cbp->aio_resultp.aio_errno,
1431 		    EINPROGRESS);
1432 
1433 		reqp->aio_req_iocb.iocb = (caddr_t)cbp;
1434 
1435 		event = (mode == LIO_READ)? AIOAREAD : AIOAWRITE;
1436 		aio_port = (aiocb->aio_sigevent.sigev_notify == SIGEV_PORT);
1437 		aio_thread = (aiocb->aio_sigevent.sigev_notify == SIGEV_THREAD);
1438 		if (aio_port | aio_thread) {
1439 			port_kevent_t *lpkevp;
1440 			/*
1441 			 * Prepare data to send with each aiocb completed.
1442 			 */
1443 			if (aio_port) {
1444 				void *paddr =
1445 				    aiocb->aio_sigevent.sigev_value.sival_ptr;
1446 				if (copyin(paddr, &pnotify, sizeof (pnotify)))
1447 					error = EFAULT;
1448 			} else {	/* aio_thread */
1449 				pnotify.portnfy_port =
1450 				    aiocb->aio_sigevent.sigev_signo;
1451 				pnotify.portnfy_user =
1452 				    aiocb->aio_sigevent.sigev_value.sival_ptr;
1453 			}
1454 			if (error)
1455 				/* EMPTY */;
1456 			else if (pkevtp != NULL &&
1457 			    pnotify.portnfy_port == lio_head_port)
1458 				error = port_dup_event(pkevtp, &lpkevp,
1459 				    PORT_ALLOC_DEFAULT);
1460 			else
1461 				error = port_alloc_event(pnotify.portnfy_port,
1462 				    PORT_ALLOC_DEFAULT, PORT_SOURCE_AIO,
1463 				    &lpkevp);
1464 			if (error == 0) {
1465 				port_init_event(lpkevp, (uintptr_t)cbp,
1466 				    (void *)(uintptr_t)pnotify.portnfy_user,
1467 				    aio_port_callback, reqp);
1468 				lpkevp->portkev_events = event;
1469 				reqp->aio_req_portkev = lpkevp;
1470 				reqp->aio_req_port = pnotify.portnfy_port;
1471 			}
1472 		}
1473 
1474 		/*
1475 		 * send the request to driver.
1476 		 */
1477 		if (error == 0) {
1478 			if (aiocb->aio_nbytes == 0) {
1479 				clear_active_fd(aiocb->aio_fildes);
1480 				aio_zerolen(reqp);
1481 				continue;
1482 			}
1483 			error = (*aio_func)(vp, (aio_req_t *)&reqp->aio_req,
1484 			    CRED());
1485 		}
1486 
1487 		/*
1488 		 * the fd's ref count is not decremented until the IO has
1489 		 * completed unless there was an error.
1490 		 */
1491 		if (error) {
1492 			releasef(aiocb->aio_fildes);
1493 			lio_set_uerror(&cbp->aio_resultp, error);
1494 			if (head) {
1495 				mutex_enter(&aiop->aio_mutex);
1496 				head->lio_nent--;
1497 				head->lio_refcnt--;
1498 				mutex_exit(&aiop->aio_mutex);
1499 			}
1500 			if (error == ENOTSUP)
1501 				aio_notsupported++;
1502 			else
1503 				aio_errors++;
1504 			lio_set_error(reqp, portused);
1505 		} else {
1506 			clear_active_fd(aiocb->aio_fildes);
1507 		}
1508 	}
1509 
1510 	if (aio_notsupported) {
1511 		error = ENOTSUP;
1512 	} else if (aio_errors) {
1513 		/*
1514 		 * return EIO if any request failed
1515 		 */
1516 		error = EIO;
1517 	}
1518 
1519 	if (mode_arg == LIO_WAIT) {
1520 		mutex_enter(&aiop->aio_mutex);
1521 		while (head->lio_refcnt > 0) {
1522 			if (!cv_wait_sig(&head->lio_notify, &aiop->aio_mutex)) {
1523 				mutex_exit(&aiop->aio_mutex);
1524 				error = EINTR;
1525 				goto done;
1526 			}
1527 		}
1528 		mutex_exit(&aiop->aio_mutex);
1529 		alio_cleanup(aiop, (aiocb_t **)cbplist, nent, AIO_64);
1530 	}
1531 
1532 done:
1533 	kmem_free(cbplist, ssize);
1534 	if (deadhead) {
1535 		if (head->lio_sigqp)
1536 			kmem_free(head->lio_sigqp, sizeof (sigqueue_t));
1537 		if (head->lio_portkev)
1538 			port_free_event(head->lio_portkev);
1539 		kmem_free(head, sizeof (aio_lio_t));
1540 	}
1541 	return (error);
1542 }
1543 
1544 #endif /* _LP64 */
1545 
1546 /*
1547  * Asynchronous list IO.
1548  * If list I/O is called with LIO_WAIT it can still return
1549  * before all the I/O's are completed if a signal is caught
1550  * or if the list include UFS I/O requests. If this happens,
1551  * libaio will call aliowait() to wait for the I/O's to
1552  * complete
1553  */
1554 /*ARGSUSED*/
1555 static int
1556 aliowait(
1557 	int	mode,
1558 	void	*aiocb,
1559 	int	nent,
1560 	void	*sigev,
1561 	int	run_mode)
1562 {
1563 	aio_lio_t	*head;
1564 	aio_t		*aiop;
1565 	caddr_t		cbplist;
1566 	aiocb_t		*cbp, **ucbp;
1567 #ifdef	_SYSCALL32_IMPL
1568 	aiocb32_t	*cbp32;
1569 	caddr32_t	*ucbp32;
1570 	aiocb64_32_t	*cbp64;
1571 #endif
1572 	int		error = 0;
1573 	int		i;
1574 	size_t		ssize = 0;
1575 	model_t		model = get_udatamodel();
1576 
1577 	aiop = curproc->p_aio;
1578 	if (aiop == NULL || nent <= 0 || nent > _AIO_LISTIO_MAX)
1579 		return (EINVAL);
1580 
1581 	if (model == DATAMODEL_NATIVE)
1582 		ssize = (sizeof (aiocb_t *) * nent);
1583 #ifdef	_SYSCALL32_IMPL
1584 	else
1585 		ssize = (sizeof (caddr32_t) * nent);
1586 #endif  /* _SYSCALL32_IMPL */
1587 
1588 	if (ssize == 0)
1589 		return (EINVAL);
1590 
1591 	cbplist = kmem_alloc(ssize, KM_SLEEP);
1592 
1593 	if (model == DATAMODEL_NATIVE)
1594 		ucbp = (aiocb_t **)cbplist;
1595 #ifdef	_SYSCALL32_IMPL
1596 	else
1597 		ucbp32 = (caddr32_t *)cbplist;
1598 #endif  /* _SYSCALL32_IMPL */
1599 
1600 	if (copyin(aiocb, cbplist, ssize)) {
1601 		error = EFAULT;
1602 		goto done;
1603 	}
1604 
1605 	/*
1606 	 * To find the list head, we go through the
1607 	 * list of aiocb structs, find the request
1608 	 * its for, then get the list head that reqp
1609 	 * points to
1610 	 */
1611 	head = NULL;
1612 
1613 	for (i = 0; i < nent; i++) {
1614 		if (model == DATAMODEL_NATIVE) {
1615 			/*
1616 			 * Since we are only checking for a NULL pointer
1617 			 * Following should work on both native data sizes
1618 			 * as well as for largefile aiocb.
1619 			 */
1620 			if ((cbp = *ucbp++) == NULL)
1621 				continue;
1622 			if (run_mode != AIO_LARGEFILE)
1623 				if (head = aio_list_get(&cbp->aio_resultp))
1624 					break;
1625 			else {
1626 				/*
1627 				 * This is a case when largefile call is
1628 				 * made on 32 bit kernel.
1629 				 * Treat each pointer as pointer to
1630 				 * aiocb64_32
1631 				 */
1632 				if (head = aio_list_get((aio_result_t *)
1633 				    &(((aiocb64_32_t *)cbp)->aio_resultp)))
1634 					break;
1635 			}
1636 		}
1637 #ifdef	_SYSCALL32_IMPL
1638 		else {
1639 			if (run_mode == AIO_LARGEFILE) {
1640 				if ((cbp64 = (aiocb64_32_t *)
1641 				    (uintptr_t)*ucbp32++) == NULL)
1642 					continue;
1643 				if (head = aio_list_get((aio_result_t *)
1644 				    &cbp64->aio_resultp))
1645 					break;
1646 			} else if (run_mode == AIO_32) {
1647 				if ((cbp32 = (aiocb32_t *)
1648 				    (uintptr_t)*ucbp32++) == NULL)
1649 					continue;
1650 				if (head = aio_list_get((aio_result_t *)
1651 				    &cbp32->aio_resultp))
1652 					break;
1653 			}
1654 		}
1655 #endif	/* _SYSCALL32_IMPL */
1656 	}
1657 
1658 	if (head == NULL) {
1659 		error = EINVAL;
1660 		goto done;
1661 	}
1662 
1663 	mutex_enter(&aiop->aio_mutex);
1664 	while (head->lio_refcnt > 0) {
1665 		if (!cv_wait_sig(&head->lio_notify, &aiop->aio_mutex)) {
1666 			mutex_exit(&aiop->aio_mutex);
1667 			error = EINTR;
1668 			goto done;
1669 		}
1670 	}
1671 	mutex_exit(&aiop->aio_mutex);
1672 	alio_cleanup(aiop, (aiocb_t **)cbplist, nent, run_mode);
1673 done:
1674 	kmem_free(cbplist, ssize);
1675 	return (error);
1676 }
1677 
1678 aio_lio_t *
1679 aio_list_get(aio_result_t *resultp)
1680 {
1681 	aio_lio_t	*head = NULL;
1682 	aio_t		*aiop;
1683 	aio_req_t 	**bucket;
1684 	aio_req_t 	*reqp;
1685 	long		index;
1686 
1687 	aiop = curproc->p_aio;
1688 	if (aiop == NULL)
1689 		return (NULL);
1690 
1691 	if (resultp) {
1692 		index = AIO_HASH(resultp);
1693 		bucket = &aiop->aio_hash[index];
1694 		for (reqp = *bucket; reqp != NULL;
1695 		    reqp = reqp->aio_hash_next) {
1696 			if (reqp->aio_req_resultp == resultp) {
1697 				head = reqp->aio_req_lio;
1698 				return (head);
1699 			}
1700 		}
1701 	}
1702 	return (NULL);
1703 }
1704 
1705 
1706 static void
1707 lio_set_uerror(void *resultp, int error)
1708 {
1709 	/*
1710 	 * the resultp field is a pointer to where the
1711 	 * error should be written out to the user's
1712 	 * aiocb.
1713 	 *
1714 	 */
1715 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1716 		(void) sulword(&((aio_result_t *)resultp)->aio_return,
1717 		    (ssize_t)-1);
1718 		(void) suword32(&((aio_result_t *)resultp)->aio_errno, error);
1719 	}
1720 #ifdef	_SYSCALL32_IMPL
1721 	else {
1722 		(void) suword32(&((aio_result32_t *)resultp)->aio_return,
1723 		    (uint_t)-1);
1724 		(void) suword32(&((aio_result32_t *)resultp)->aio_errno, error);
1725 	}
1726 #endif  /* _SYSCALL32_IMPL */
1727 }
1728 
1729 /*
1730  * do cleanup completion for all requests in list. memory for
1731  * each request is also freed.
1732  */
1733 static void
1734 alio_cleanup(aio_t *aiop, aiocb_t **cbp, int nent, int run_mode)
1735 {
1736 	int i;
1737 	aio_req_t *reqp;
1738 	aio_result_t *resultp;
1739 	aiocb64_32_t *aiocb_64;
1740 
1741 	for (i = 0; i < nent; i++) {
1742 		if (get_udatamodel() == DATAMODEL_NATIVE) {
1743 			if (cbp[i] == NULL)
1744 				continue;
1745 			if (run_mode == AIO_LARGEFILE) {
1746 				aiocb_64 = (aiocb64_32_t *)cbp[i];
1747 				resultp = (aio_result_t *)
1748 				    &aiocb_64->aio_resultp;
1749 			} else
1750 				resultp = &cbp[i]->aio_resultp;
1751 		}
1752 #ifdef	_SYSCALL32_IMPL
1753 		else {
1754 			aiocb32_t *aiocb_32;
1755 			caddr32_t *cbp32;
1756 
1757 			cbp32 = (caddr32_t *)cbp;
1758 			if (cbp32[i] == NULL)
1759 				continue;
1760 			if (run_mode == AIO_32) {
1761 				aiocb_32 = (aiocb32_t *)(uintptr_t)cbp32[i];
1762 				resultp = (aio_result_t *)&aiocb_32->
1763 				    aio_resultp;
1764 			} else if (run_mode == AIO_LARGEFILE) {
1765 				aiocb_64 = (aiocb64_32_t *)(uintptr_t)cbp32[i];
1766 				resultp = (aio_result_t *)&aiocb_64->
1767 				    aio_resultp;
1768 			}
1769 		}
1770 #endif  /* _SYSCALL32_IMPL */
1771 		/*
1772 		 * we need to get the aio_cleanupq_mutex since we call
1773 		 * aio_req_done().
1774 		 */
1775 		mutex_enter(&aiop->aio_cleanupq_mutex);
1776 		mutex_enter(&aiop->aio_mutex);
1777 		reqp = aio_req_done(resultp);
1778 		mutex_exit(&aiop->aio_mutex);
1779 		mutex_exit(&aiop->aio_cleanupq_mutex);
1780 		if (reqp != NULL) {
1781 			aphysio_unlock(reqp);
1782 			aio_copyout_result(reqp);
1783 			mutex_enter(&aiop->aio_mutex);
1784 			aio_req_free(aiop, reqp);
1785 			mutex_exit(&aiop->aio_mutex);
1786 		}
1787 	}
1788 }
1789 
1790 /*
1791  * Write out the results for an aio request that is done.
1792  */
1793 static int
1794 aioerror(void *cb, int run_mode)
1795 {
1796 	aio_result_t *resultp;
1797 	aio_t *aiop;
1798 	aio_req_t *reqp;
1799 	int retval;
1800 
1801 	aiop = curproc->p_aio;
1802 	if (aiop == NULL || cb == NULL)
1803 		return (EINVAL);
1804 
1805 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1806 		if (run_mode == AIO_LARGEFILE)
1807 			resultp = (aio_result_t *)&((aiocb64_32_t *)cb)->
1808 			    aio_resultp;
1809 		else
1810 			resultp = &((aiocb_t *)cb)->aio_resultp;
1811 	}
1812 #ifdef	_SYSCALL32_IMPL
1813 	else {
1814 		if (run_mode == AIO_LARGEFILE)
1815 			resultp = (aio_result_t *)&((aiocb64_32_t *)cb)->
1816 			    aio_resultp;
1817 		else if (run_mode == AIO_32)
1818 			resultp = (aio_result_t *)&((aiocb32_t *)cb)->
1819 			    aio_resultp;
1820 	}
1821 #endif  /* _SYSCALL32_IMPL */
1822 	/*
1823 	 * we need to get the aio_cleanupq_mutex since we call
1824 	 * aio_req_find().
1825 	 */
1826 	mutex_enter(&aiop->aio_cleanupq_mutex);
1827 	mutex_enter(&aiop->aio_mutex);
1828 	retval = aio_req_find(resultp, &reqp);
1829 	mutex_exit(&aiop->aio_mutex);
1830 	mutex_exit(&aiop->aio_cleanupq_mutex);
1831 	if (retval == 0) {
1832 		aphysio_unlock(reqp);
1833 		aio_copyout_result(reqp);
1834 		mutex_enter(&aiop->aio_mutex);
1835 		aio_req_free(aiop, reqp);
1836 		mutex_exit(&aiop->aio_mutex);
1837 		return (0);
1838 	} else if (retval == 1)
1839 		return (EINPROGRESS);
1840 	else if (retval == 2)
1841 		return (EINVAL);
1842 	return (0);
1843 }
1844 
1845 /*
1846  * 	aio_cancel - if no requests outstanding,
1847  *			return AIO_ALLDONE
1848  *			else
1849  *			return AIO_NOTCANCELED
1850  */
1851 static int
1852 aio_cancel(
1853 	int	fildes,
1854 	void 	*cb,
1855 	long	*rval,
1856 	int	run_mode)
1857 {
1858 	aio_t *aiop;
1859 	void *resultp;
1860 	int index;
1861 	aio_req_t **bucket;
1862 	aio_req_t *ent;
1863 
1864 
1865 	/*
1866 	 * Verify valid file descriptor
1867 	 */
1868 	if ((getf(fildes)) == NULL) {
1869 		return (EBADF);
1870 	}
1871 	releasef(fildes);
1872 
1873 	aiop = curproc->p_aio;
1874 	if (aiop == NULL)
1875 		return (EINVAL);
1876 
1877 	if (aiop->aio_outstanding == 0) {
1878 		*rval = AIO_ALLDONE;
1879 		return (0);
1880 	}
1881 
1882 	mutex_enter(&aiop->aio_mutex);
1883 	if (cb != NULL) {
1884 		if (get_udatamodel() == DATAMODEL_NATIVE) {
1885 			if (run_mode == AIO_LARGEFILE)
1886 				resultp = (aio_result_t *)&((aiocb64_32_t *)cb)
1887 				    ->aio_resultp;
1888 			else
1889 				resultp = &((aiocb_t *)cb)->aio_resultp;
1890 		}
1891 #ifdef	_SYSCALL32_IMPL
1892 		else {
1893 			if (run_mode == AIO_LARGEFILE)
1894 				resultp = (aio_result_t *)&((aiocb64_32_t *)cb)
1895 				    ->aio_resultp;
1896 			else if (run_mode == AIO_32)
1897 				resultp = (aio_result_t *)&((aiocb32_t *)cb)
1898 				    ->aio_resultp;
1899 		}
1900 #endif  /* _SYSCALL32_IMPL */
1901 		index = AIO_HASH(resultp);
1902 		bucket = &aiop->aio_hash[index];
1903 		for (ent = *bucket; ent != NULL; ent = ent->aio_hash_next) {
1904 			if (ent->aio_req_resultp == resultp) {
1905 				if ((ent->aio_req_flags & AIO_PENDING) == 0) {
1906 					mutex_exit(&aiop->aio_mutex);
1907 					*rval = AIO_ALLDONE;
1908 					return (0);
1909 				}
1910 				mutex_exit(&aiop->aio_mutex);
1911 				*rval = AIO_NOTCANCELED;
1912 				return (0);
1913 			}
1914 		}
1915 		mutex_exit(&aiop->aio_mutex);
1916 		*rval = AIO_ALLDONE;
1917 		return (0);
1918 	}
1919 
1920 	for (index = 0; index < AIO_HASHSZ; index++) {
1921 		bucket = &aiop->aio_hash[index];
1922 		for (ent = *bucket; ent != NULL; ent = ent->aio_hash_next) {
1923 			if (ent->aio_req_fd == fildes) {
1924 				if ((ent->aio_req_flags & AIO_PENDING) != 0) {
1925 					mutex_exit(&aiop->aio_mutex);
1926 					*rval = AIO_NOTCANCELED;
1927 					return (0);
1928 				}
1929 			}
1930 		}
1931 	}
1932 	mutex_exit(&aiop->aio_mutex);
1933 	*rval = AIO_ALLDONE;
1934 	return (0);
1935 }
1936 
1937 /*
1938  * solaris version of asynchronous read and write
1939  */
1940 static int
1941 arw(
1942 	int	opcode,
1943 	int	fdes,
1944 	char	*bufp,
1945 	int	bufsize,
1946 	offset_t	offset,
1947 	aio_result_t	*resultp,
1948 	int		mode)
1949 {
1950 	file_t		*fp;
1951 	int		error;
1952 	struct vnode	*vp;
1953 	aio_req_t	*reqp;
1954 	aio_t		*aiop;
1955 	int		(*aio_func)();
1956 #ifdef _LP64
1957 	aiocb_t		aiocb;
1958 #else
1959 	aiocb64_32_t	aiocb64;
1960 #endif
1961 
1962 	aiop = curproc->p_aio;
1963 	if (aiop == NULL)
1964 		return (EINVAL);
1965 
1966 	if ((fp = getf(fdes)) == NULL) {
1967 		return (EBADF);
1968 	}
1969 
1970 	/*
1971 	 * check the permission of the partition
1972 	 */
1973 	if ((fp->f_flag & mode) == 0) {
1974 		releasef(fdes);
1975 		return (EBADF);
1976 	}
1977 
1978 	vp = fp->f_vnode;
1979 	aio_func = check_vp(vp, mode);
1980 	if (aio_func == NULL) {
1981 		releasef(fdes);
1982 		return (EBADFD);
1983 	}
1984 #ifdef _LP64
1985 	aiocb.aio_fildes = fdes;
1986 	aiocb.aio_buf = bufp;
1987 	aiocb.aio_nbytes = bufsize;
1988 	aiocb.aio_offset = offset;
1989 	aiocb.aio_sigevent.sigev_notify = 0;
1990 	error = aio_req_setup(&reqp, aiop, &aiocb, resultp, vp);
1991 #else
1992 	aiocb64.aio_fildes = fdes;
1993 	aiocb64.aio_buf = (caddr32_t)bufp;
1994 	aiocb64.aio_nbytes = bufsize;
1995 	aiocb64.aio_offset = offset;
1996 	aiocb64.aio_sigevent.sigev_notify = 0;
1997 	error = aio_req_setupLF(&reqp, aiop, &aiocb64, resultp, vp);
1998 #endif
1999 	if (error) {
2000 		releasef(fdes);
2001 		return (error);
2002 	}
2003 
2004 	/*
2005 	 * enable polling on this request if the opcode has
2006 	 * the AIO poll bit set
2007 	 */
2008 	if (opcode & AIO_POLL_BIT)
2009 		reqp->aio_req_flags |= AIO_POLL;
2010 
2011 	if (bufsize == 0) {
2012 		clear_active_fd(fdes);
2013 		aio_zerolen(reqp);
2014 		return (0);
2015 	}
2016 	/*
2017 	 * send the request to driver.
2018 	 */
2019 	error = (*aio_func)(vp, (aio_req_t *)&reqp->aio_req, CRED());
2020 	/*
2021 	 * the fd is stored in the aio_req_t by aio_req_setup(), and
2022 	 * is released by the aio_cleanup_thread() when the IO has
2023 	 * completed.
2024 	 */
2025 	if (error) {
2026 		releasef(fdes);
2027 		mutex_enter(&aiop->aio_mutex);
2028 		aio_req_free(aiop, reqp);
2029 		aiop->aio_pending--;
2030 		if (aiop->aio_flags & AIO_REQ_BLOCK)
2031 			cv_signal(&aiop->aio_cleanupcv);
2032 		mutex_exit(&aiop->aio_mutex);
2033 		return (error);
2034 	}
2035 	clear_active_fd(fdes);
2036 	return (0);
2037 }
2038 
2039 /*
2040  * posix version of asynchronous read and write
2041  */
2042 static int
2043 aiorw(
2044 	int		opcode,
2045 	void		*aiocb_arg,
2046 	int		mode,
2047 	int		run_mode)
2048 {
2049 #ifdef _SYSCALL32_IMPL
2050 	aiocb32_t	aiocb32;
2051 	struct	sigevent32 *sigev32;
2052 	port_notify32_t	pntfy32;
2053 #endif
2054 	aiocb64_32_t	aiocb64;
2055 	aiocb_t		aiocb;
2056 	file_t		*fp;
2057 	int		error, fd;
2058 	size_t		bufsize;
2059 	struct vnode	*vp;
2060 	aio_req_t	*reqp;
2061 	aio_t		*aiop;
2062 	int		(*aio_func)();
2063 	aio_result_t	*resultp;
2064 	struct	sigevent *sigev;
2065 	model_t		model;
2066 	int		aio_use_port = 0;
2067 	port_notify_t	pntfy;
2068 
2069 	model = get_udatamodel();
2070 	aiop = curproc->p_aio;
2071 	if (aiop == NULL)
2072 		return (EINVAL);
2073 
2074 	if (model == DATAMODEL_NATIVE) {
2075 		if (run_mode != AIO_LARGEFILE) {
2076 			if (copyin(aiocb_arg, &aiocb, sizeof (aiocb_t)))
2077 				return (EFAULT);
2078 			bufsize = aiocb.aio_nbytes;
2079 			resultp = &(((aiocb_t *)aiocb_arg)->aio_resultp);
2080 			if ((fp = getf(fd = aiocb.aio_fildes)) == NULL) {
2081 				return (EBADF);
2082 			}
2083 			sigev = &aiocb.aio_sigevent;
2084 		} else {
2085 			/*
2086 			 * We come here only when we make largefile
2087 			 * call on 32 bit kernel using 32 bit library.
2088 			 */
2089 			if (copyin(aiocb_arg, &aiocb64, sizeof (aiocb64_32_t)))
2090 				return (EFAULT);
2091 			bufsize = aiocb64.aio_nbytes;
2092 			resultp = (aio_result_t *)&(((aiocb64_32_t *)aiocb_arg)
2093 			    ->aio_resultp);
2094 			if ((fp = getf(fd = aiocb64.aio_fildes)) == NULL)
2095 				return (EBADF);
2096 			sigev = (struct sigevent *)&aiocb64.aio_sigevent;
2097 		}
2098 
2099 		if (sigev->sigev_notify == SIGEV_PORT) {
2100 			if (copyin((void *)sigev->sigev_value.sival_ptr,
2101 			    &pntfy, sizeof (port_notify_t))) {
2102 				releasef(fd);
2103 				return (EFAULT);
2104 			}
2105 			aio_use_port = 1;
2106 		} else if (sigev->sigev_notify == SIGEV_THREAD) {
2107 			pntfy.portnfy_port = aiocb.aio_sigevent.sigev_signo;
2108 			pntfy.portnfy_user =
2109 			    aiocb.aio_sigevent.sigev_value.sival_ptr;
2110 			aio_use_port = 1;
2111 		}
2112 	}
2113 #ifdef	_SYSCALL32_IMPL
2114 	else {
2115 		if (run_mode == AIO_32) {
2116 			/* 32 bit system call is being made on 64 bit kernel */
2117 			if (copyin(aiocb_arg, &aiocb32, sizeof (aiocb32_t)))
2118 				return (EFAULT);
2119 
2120 			bufsize = aiocb32.aio_nbytes;
2121 			aiocb_32ton(&aiocb32, &aiocb);
2122 			resultp = (aio_result_t *)&(((aiocb32_t *)aiocb_arg)->
2123 			    aio_resultp);
2124 			if ((fp = getf(fd = aiocb32.aio_fildes)) == NULL) {
2125 				return (EBADF);
2126 			}
2127 			sigev32 = &aiocb32.aio_sigevent;
2128 		} else if (run_mode == AIO_LARGEFILE) {
2129 			/*
2130 			 * We come here only when we make largefile
2131 			 * call on 64 bit kernel using 32 bit library.
2132 			 */
2133 			if (copyin(aiocb_arg, &aiocb64, sizeof (aiocb64_32_t)))
2134 				return (EFAULT);
2135 			bufsize = aiocb64.aio_nbytes;
2136 			aiocb_LFton(&aiocb64, &aiocb);
2137 			resultp = (aio_result_t *)&(((aiocb64_32_t *)aiocb_arg)
2138 			    ->aio_resultp);
2139 			if ((fp = getf(fd = aiocb64.aio_fildes)) == NULL)
2140 				return (EBADF);
2141 			sigev32 = &aiocb64.aio_sigevent;
2142 		}
2143 
2144 		if (sigev32->sigev_notify == SIGEV_PORT) {
2145 			if (copyin(
2146 			    (void *)(uintptr_t)sigev32->sigev_value.sival_ptr,
2147 			    &pntfy32, sizeof (port_notify32_t))) {
2148 				releasef(fd);
2149 				return (EFAULT);
2150 			}
2151 			pntfy.portnfy_port = pntfy32.portnfy_port;
2152 			pntfy.portnfy_user = (void *)(uintptr_t)
2153 			    pntfy32.portnfy_user;
2154 			aio_use_port = 1;
2155 		} else if (sigev32->sigev_notify == SIGEV_THREAD) {
2156 			pntfy.portnfy_port = sigev32->sigev_signo;
2157 			pntfy.portnfy_user = (void *)(uintptr_t)
2158 			    sigev32->sigev_value.sival_ptr;
2159 			aio_use_port = 1;
2160 		}
2161 	}
2162 #endif  /* _SYSCALL32_IMPL */
2163 
2164 	/*
2165 	 * check the permission of the partition
2166 	 */
2167 
2168 	if ((fp->f_flag & mode) == 0) {
2169 		releasef(fd);
2170 		return (EBADF);
2171 	}
2172 
2173 	vp = fp->f_vnode;
2174 	aio_func = check_vp(vp, mode);
2175 	if (aio_func == NULL) {
2176 		releasef(fd);
2177 		return (EBADFD);
2178 	}
2179 	if (run_mode == AIO_LARGEFILE)
2180 		error = aio_req_setupLF(&reqp, aiop, &aiocb64, resultp, vp);
2181 	else
2182 		error = aio_req_setup(&reqp, aiop, &aiocb, resultp, vp);
2183 
2184 	if (error) {
2185 		releasef(fd);
2186 		return (error);
2187 	}
2188 	/*
2189 	 * enable polling on this request if the opcode has
2190 	 * the AIO poll bit set
2191 	 */
2192 	if (opcode & AIO_POLL_BIT)
2193 		reqp->aio_req_flags |= AIO_POLL;
2194 
2195 	if (model == DATAMODEL_NATIVE)
2196 		reqp->aio_req_iocb.iocb = aiocb_arg;
2197 #ifdef  _SYSCALL32_IMPL
2198 	else
2199 		reqp->aio_req_iocb.iocb32 = (caddr32_t)(uintptr_t)aiocb_arg;
2200 #endif
2201 
2202 	if (aio_use_port) {
2203 		int event = (run_mode == AIO_LARGEFILE)?
2204 		    ((mode == FREAD)? AIOAREAD64 : AIOAWRITE64) :
2205 		    ((mode == FREAD)? AIOAREAD : AIOAWRITE);
2206 		error = aio_req_assoc_port_rw(&pntfy, aiocb_arg, reqp, event);
2207 	}
2208 
2209 	/*
2210 	 * send the request to driver.
2211 	 */
2212 	if (error == 0) {
2213 		if (bufsize == 0) {
2214 			clear_active_fd(fd);
2215 			aio_zerolen(reqp);
2216 			return (0);
2217 		}
2218 		error = (*aio_func)(vp, (aio_req_t *)&reqp->aio_req, CRED());
2219 	}
2220 
2221 	/*
2222 	 * the fd is stored in the aio_req_t by aio_req_setup(), and
2223 	 * is released by the aio_cleanup_thread() when the IO has
2224 	 * completed.
2225 	 */
2226 	if (error) {
2227 		releasef(fd);
2228 		mutex_enter(&aiop->aio_mutex);
2229 		if (aio_use_port)
2230 			aio_deq(&aiop->aio_portpending, reqp);
2231 		aio_req_free(aiop, reqp);
2232 		aiop->aio_pending--;
2233 		if (aiop->aio_flags & AIO_REQ_BLOCK)
2234 			cv_signal(&aiop->aio_cleanupcv);
2235 		mutex_exit(&aiop->aio_mutex);
2236 		return (error);
2237 	}
2238 	clear_active_fd(fd);
2239 	return (0);
2240 }
2241 
2242 
2243 /*
2244  * set error for a list IO entry that failed.
2245  */
2246 static void
2247 lio_set_error(aio_req_t *reqp, int portused)
2248 {
2249 	aio_t *aiop = curproc->p_aio;
2250 
2251 	if (aiop == NULL)
2252 		return;
2253 
2254 	mutex_enter(&aiop->aio_mutex);
2255 	if (portused)
2256 		aio_deq(&aiop->aio_portpending, reqp);
2257 	aiop->aio_pending--;
2258 	/* request failed, AIO_PHYSIODONE set to aviod physio cleanup. */
2259 	reqp->aio_req_flags |= AIO_PHYSIODONE;
2260 	/*
2261 	 * Need to free the request now as its never
2262 	 * going to get on the done queue
2263 	 *
2264 	 * Note: aio_outstanding is decremented in
2265 	 *	 aio_req_free()
2266 	 */
2267 	aio_req_free(aiop, reqp);
2268 	if (aiop->aio_flags & AIO_REQ_BLOCK)
2269 		cv_signal(&aiop->aio_cleanupcv);
2270 	mutex_exit(&aiop->aio_mutex);
2271 }
2272 
2273 /*
2274  * check if a specified request is done, and remove it from
2275  * the done queue. otherwise remove anybody from the done queue
2276  * if NULL is specified.
2277  */
2278 static aio_req_t *
2279 aio_req_done(void *resultp)
2280 {
2281 	aio_req_t **bucket;
2282 	aio_req_t *ent;
2283 	aio_t *aiop = curproc->p_aio;
2284 	long index;
2285 
2286 	ASSERT(MUTEX_HELD(&aiop->aio_cleanupq_mutex));
2287 	ASSERT(MUTEX_HELD(&aiop->aio_mutex));
2288 
2289 	if (resultp) {
2290 		index = AIO_HASH(resultp);
2291 		bucket = &aiop->aio_hash[index];
2292 		for (ent = *bucket; ent != NULL; ent = ent->aio_hash_next) {
2293 			if (ent->aio_req_resultp == (aio_result_t *)resultp) {
2294 				if (ent->aio_req_flags & AIO_DONEQ) {
2295 					return (aio_req_remove(ent));
2296 				}
2297 				return (NULL);
2298 			}
2299 		}
2300 		/* no match, resultp is invalid */
2301 		return (NULL);
2302 	}
2303 	return (aio_req_remove(NULL));
2304 }
2305 
2306 /*
2307  * determine if a user-level resultp pointer is associated with an
2308  * active IO request. Zero is returned when the request is done,
2309  * and the request is removed from the done queue. Only when the
2310  * return value is zero, is the "reqp" pointer valid. One is returned
2311  * when the request is inprogress. Two is returned when the request
2312  * is invalid.
2313  */
2314 static int
2315 aio_req_find(aio_result_t *resultp, aio_req_t **reqp)
2316 {
2317 	aio_req_t **bucket;
2318 	aio_req_t *ent;
2319 	aio_t *aiop = curproc->p_aio;
2320 	long index;
2321 
2322 	ASSERT(MUTEX_HELD(&aiop->aio_cleanupq_mutex));
2323 	ASSERT(MUTEX_HELD(&aiop->aio_mutex));
2324 
2325 	index = AIO_HASH(resultp);
2326 	bucket = &aiop->aio_hash[index];
2327 	for (ent = *bucket; ent != NULL; ent = ent->aio_hash_next) {
2328 		if (ent->aio_req_resultp == resultp) {
2329 			if (ent->aio_req_flags & AIO_DONEQ) {
2330 				*reqp = aio_req_remove(ent);
2331 				return (0);
2332 			}
2333 			return (1);
2334 		}
2335 	}
2336 	/* no match, resultp is invalid */
2337 	return (2);
2338 }
2339 
2340 /*
2341  * remove a request from the done queue.
2342  */
2343 static aio_req_t *
2344 aio_req_remove(aio_req_t *reqp)
2345 {
2346 	aio_t *aiop = curproc->p_aio;
2347 
2348 	ASSERT(MUTEX_HELD(&aiop->aio_mutex));
2349 
2350 	if (reqp != NULL) {
2351 		ASSERT(reqp->aio_req_flags & AIO_DONEQ);
2352 		if (reqp->aio_req_next == reqp) {
2353 			/* only one request on queue */
2354 			if (reqp ==  aiop->aio_doneq) {
2355 				aiop->aio_doneq = NULL;
2356 			} else {
2357 				ASSERT(reqp == aiop->aio_cleanupq);
2358 				aiop->aio_cleanupq = NULL;
2359 			}
2360 		} else {
2361 			reqp->aio_req_next->aio_req_prev = reqp->aio_req_prev;
2362 			reqp->aio_req_prev->aio_req_next = reqp->aio_req_next;
2363 			/*
2364 			 * The request can be either on the aio_doneq or the
2365 			 * aio_cleanupq
2366 			 */
2367 			if (reqp == aiop->aio_doneq)
2368 				aiop->aio_doneq = reqp->aio_req_next;
2369 
2370 			if (reqp == aiop->aio_cleanupq)
2371 				aiop->aio_cleanupq = reqp->aio_req_next;
2372 		}
2373 		reqp->aio_req_flags &= ~AIO_DONEQ;
2374 		reqp->aio_req_next = NULL;
2375 		reqp->aio_req_prev = NULL;
2376 	} else if ((reqp = aiop->aio_doneq) != NULL) {
2377 		ASSERT(reqp->aio_req_flags & AIO_DONEQ);
2378 		if (reqp == reqp->aio_req_next) {
2379 			/* only one request on queue */
2380 			aiop->aio_doneq = NULL;
2381 		} else {
2382 			reqp->aio_req_prev->aio_req_next = reqp->aio_req_next;
2383 			reqp->aio_req_next->aio_req_prev = reqp->aio_req_prev;
2384 			aiop->aio_doneq = reqp->aio_req_next;
2385 		}
2386 		reqp->aio_req_flags &= ~AIO_DONEQ;
2387 		reqp->aio_req_next = NULL;
2388 		reqp->aio_req_prev = NULL;
2389 	}
2390 	if (aiop->aio_doneq == NULL && (aiop->aio_flags & AIO_WAITN))
2391 		cv_broadcast(&aiop->aio_waitcv);
2392 	return (reqp);
2393 }
2394 
2395 static int
2396 aio_req_setup(
2397 	aio_req_t	**reqpp,
2398 	aio_t 		*aiop,
2399 	aiocb_t 	*arg,
2400 	aio_result_t 	*resultp,
2401 	vnode_t		*vp)
2402 {
2403 	sigqueue_t	*sqp = NULL;
2404 	aio_req_t 	*reqp;
2405 	struct uio 	*uio;
2406 	struct sigevent *sigev;
2407 	int		error;
2408 
2409 	sigev = &arg->aio_sigevent;
2410 	if (sigev->sigev_notify == SIGEV_SIGNAL &&
2411 	    sigev->sigev_signo > 0 && sigev->sigev_signo < NSIG) {
2412 		sqp = kmem_zalloc(sizeof (sigqueue_t), KM_NOSLEEP);
2413 		if (sqp == NULL)
2414 			return (EAGAIN);
2415 		sqp->sq_func = NULL;
2416 		sqp->sq_next = NULL;
2417 		sqp->sq_info.si_code = SI_ASYNCIO;
2418 		sqp->sq_info.si_pid = curproc->p_pid;
2419 		sqp->sq_info.si_ctid = PRCTID(curproc);
2420 		sqp->sq_info.si_zoneid = getzoneid();
2421 		sqp->sq_info.si_uid = crgetuid(curproc->p_cred);
2422 		sqp->sq_info.si_signo = sigev->sigev_signo;
2423 		sqp->sq_info.si_value = sigev->sigev_value;
2424 	}
2425 
2426 	mutex_enter(&aiop->aio_mutex);
2427 
2428 	if (aiop->aio_flags & AIO_REQ_BLOCK) {
2429 		mutex_exit(&aiop->aio_mutex);
2430 		if (sqp)
2431 			kmem_free(sqp, sizeof (sigqueue_t));
2432 		return (EIO);
2433 	}
2434 	/*
2435 	 * get an aio_reqp from the free list or allocate one
2436 	 * from dynamic memory.
2437 	 */
2438 	if (error = aio_req_alloc(&reqp, resultp)) {
2439 		mutex_exit(&aiop->aio_mutex);
2440 		if (sqp)
2441 			kmem_free(sqp, sizeof (sigqueue_t));
2442 		return (error);
2443 	}
2444 	aiop->aio_pending++;
2445 	aiop->aio_outstanding++;
2446 	reqp->aio_req_flags = AIO_PENDING;
2447 	if (sigev->sigev_notify == SIGEV_THREAD ||
2448 	    sigev->sigev_notify == SIGEV_PORT)
2449 		aio_enq(&aiop->aio_portpending, reqp, 0);
2450 	mutex_exit(&aiop->aio_mutex);
2451 	/*
2452 	 * initialize aio request.
2453 	 */
2454 	reqp->aio_req_fd = arg->aio_fildes;
2455 	reqp->aio_req_sigqp = sqp;
2456 	reqp->aio_req_iocb.iocb = NULL;
2457 	reqp->aio_req_lio = NULL;
2458 	reqp->aio_req_buf.b_file = vp;
2459 	uio = reqp->aio_req.aio_uio;
2460 	uio->uio_iovcnt = 1;
2461 	uio->uio_iov->iov_base = (caddr_t)arg->aio_buf;
2462 	uio->uio_iov->iov_len = arg->aio_nbytes;
2463 	uio->uio_loffset = arg->aio_offset;
2464 	*reqpp = reqp;
2465 	return (0);
2466 }
2467 
2468 /*
2469  * Allocate p_aio struct.
2470  */
2471 static aio_t *
2472 aio_aiop_alloc(void)
2473 {
2474 	aio_t	*aiop;
2475 
2476 	ASSERT(MUTEX_HELD(&curproc->p_lock));
2477 
2478 	aiop = kmem_zalloc(sizeof (struct aio), KM_NOSLEEP);
2479 	if (aiop) {
2480 		mutex_init(&aiop->aio_mutex, NULL, MUTEX_DEFAULT, NULL);
2481 		mutex_init(&aiop->aio_cleanupq_mutex, NULL, MUTEX_DEFAULT,
2482 		    NULL);
2483 		mutex_init(&aiop->aio_portq_mutex, NULL, MUTEX_DEFAULT, NULL);
2484 	}
2485 	return (aiop);
2486 }
2487 
2488 /*
2489  * Allocate an aio_req struct.
2490  */
2491 static int
2492 aio_req_alloc(aio_req_t **nreqp, aio_result_t *resultp)
2493 {
2494 	aio_req_t *reqp;
2495 	aio_t *aiop = curproc->p_aio;
2496 
2497 	ASSERT(MUTEX_HELD(&aiop->aio_mutex));
2498 
2499 	if ((reqp = aiop->aio_free) != NULL) {
2500 		aiop->aio_free = reqp->aio_req_next;
2501 		bzero(reqp, sizeof (*reqp));
2502 	} else {
2503 		/*
2504 		 * Check whether memory is getting tight.
2505 		 * This is a temporary mechanism to avoid memory
2506 		 * exhaustion by a single process until we come up
2507 		 * with a per process solution such as setrlimit().
2508 		 */
2509 		if (freemem < desfree)
2510 			return (EAGAIN);
2511 		reqp = kmem_zalloc(sizeof (struct aio_req_t), KM_NOSLEEP);
2512 		if (reqp == NULL)
2513 			return (EAGAIN);
2514 	}
2515 	reqp->aio_req.aio_uio = &reqp->aio_req_uio;
2516 	reqp->aio_req.aio_uio->uio_iov = &reqp->aio_req_iov;
2517 	reqp->aio_req.aio_private = reqp;
2518 	reqp->aio_req_buf.b_offset = -1;
2519 	reqp->aio_req_resultp = resultp;
2520 	if (aio_hash_insert(reqp, aiop)) {
2521 		reqp->aio_req_next = aiop->aio_free;
2522 		aiop->aio_free = reqp;
2523 		return (EINVAL);
2524 	}
2525 	*nreqp = reqp;
2526 	return (0);
2527 }
2528 
2529 /*
2530  * Allocate an aio_lio_t struct.
2531  */
2532 static int
2533 aio_lio_alloc(aio_lio_t **head)
2534 {
2535 	aio_lio_t *liop;
2536 	aio_t *aiop = curproc->p_aio;
2537 
2538 	ASSERT(MUTEX_HELD(&aiop->aio_mutex));
2539 
2540 	if ((liop = aiop->aio_lio_free) != NULL) {
2541 		aiop->aio_lio_free = liop->lio_next;
2542 	} else {
2543 		/*
2544 		 * Check whether memory is getting tight.
2545 		 * This is a temporary mechanism to avoid memory
2546 		 * exhaustion by a single process until we come up
2547 		 * with a per process solution such as setrlimit().
2548 		 */
2549 		if (freemem < desfree)
2550 			return (EAGAIN);
2551 
2552 		liop = kmem_zalloc(sizeof (aio_lio_t), KM_NOSLEEP);
2553 		if (liop == NULL)
2554 			return (EAGAIN);
2555 	}
2556 	*head = liop;
2557 	return (0);
2558 }
2559 
2560 /*
2561  * this is a special per-process thread that is only activated if
2562  * the process is unmapping a segment with outstanding aio. normally,
2563  * the process will have completed the aio before unmapping the
2564  * segment. If the process does unmap a segment with outstanding aio,
2565  * this special thread will guarentee that the locked pages due to
2566  * aphysio() are released, thereby permitting the segment to be
2567  * unmapped. In addition to this, the cleanup thread is woken up
2568  * during DR operations to release the locked pages.
2569  */
2570 
2571 static int
2572 aio_cleanup_thread(aio_t *aiop)
2573 {
2574 	proc_t *p = curproc;
2575 	struct as *as = p->p_as;
2576 	int poked = 0;
2577 	kcondvar_t *cvp;
2578 	int exit_flag = 0;
2579 	int rqclnup = 0;
2580 
2581 	sigfillset(&curthread->t_hold);
2582 	sigdiffset(&curthread->t_hold, &cantmask);
2583 	for (;;) {
2584 		/*
2585 		 * if a segment is being unmapped, and the current
2586 		 * process's done queue is not empty, then every request
2587 		 * on the doneq with locked resources should be forced
2588 		 * to release their locks. By moving the doneq request
2589 		 * to the cleanupq, aio_cleanup() will process the cleanupq,
2590 		 * and place requests back onto the doneq. All requests
2591 		 * processed by aio_cleanup() will have their physical
2592 		 * resources unlocked.
2593 		 */
2594 		mutex_enter(&aiop->aio_mutex);
2595 		if ((aiop->aio_flags & AIO_CLEANUP) == 0) {
2596 			aiop->aio_flags |= AIO_CLEANUP;
2597 			mutex_enter(&as->a_contents);
2598 			if (aiop->aio_rqclnup) {
2599 				aiop->aio_rqclnup = 0;
2600 				rqclnup = 1;
2601 			}
2602 
2603 			if ((rqclnup || AS_ISUNMAPWAIT(as)) &&
2604 			    aiop->aio_doneq) {
2605 				aio_req_t *doneqhead = aiop->aio_doneq;
2606 				mutex_exit(&as->a_contents);
2607 				aiop->aio_doneq = NULL;
2608 				aio_cleanupq_concat(aiop, doneqhead, AIO_DONEQ);
2609 			} else {
2610 				mutex_exit(&as->a_contents);
2611 			}
2612 		}
2613 		mutex_exit(&aiop->aio_mutex);
2614 		aio_cleanup(AIO_CLEANUP_THREAD);
2615 		/*
2616 		 * thread should block on the cleanupcv while
2617 		 * AIO_CLEANUP is set.
2618 		 */
2619 		cvp = &aiop->aio_cleanupcv;
2620 		mutex_enter(&aiop->aio_mutex);
2621 
2622 		if (aiop->aio_pollq != NULL || aiop->aio_cleanupq != NULL ||
2623 		    aiop->aio_notifyq != NULL ||
2624 		    aiop->aio_portcleanupq != NULL) {
2625 			mutex_exit(&aiop->aio_mutex);
2626 			continue;
2627 		}
2628 		mutex_enter(&as->a_contents);
2629 
2630 		/*
2631 		 * AIO_CLEANUP determines when the cleanup thread
2632 		 * should be active. This flag is set when
2633 		 * the cleanup thread is awakened by as_unmap() or
2634 		 * due to DR operations.
2635 		 * The flag is cleared when the blocking as_unmap()
2636 		 * that originally awakened us is allowed to
2637 		 * complete. as_unmap() blocks when trying to
2638 		 * unmap a segment that has SOFTLOCKed pages. when
2639 		 * the segment's pages are all SOFTUNLOCKed,
2640 		 * as->a_flags & AS_UNMAPWAIT should be zero.
2641 		 *
2642 		 * In case of cleanup request by DR, the flag is cleared
2643 		 * once all the pending aio requests have been processed.
2644 		 *
2645 		 * The flag shouldn't be cleared right away if the
2646 		 * cleanup thread was interrupted because the process
2647 		 * is doing forkall(). This happens when cv_wait_sig()
2648 		 * returns zero, because it was awakened by a pokelwps().
2649 		 * If the process is not exiting, it must be doing forkall().
2650 		 */
2651 		if ((poked == 0) &&
2652 		    ((!rqclnup && (AS_ISUNMAPWAIT(as) == 0)) ||
2653 		    (aiop->aio_pending == 0))) {
2654 			aiop->aio_flags &= ~(AIO_CLEANUP | AIO_CLEANUP_PORT);
2655 			cvp = &as->a_cv;
2656 			rqclnup = 0;
2657 		}
2658 		mutex_exit(&aiop->aio_mutex);
2659 		if (poked) {
2660 			/*
2661 			 * If the process is exiting/killed, don't return
2662 			 * immediately without waiting for pending I/O's
2663 			 * and releasing the page locks.
2664 			 */
2665 			if (p->p_flag & (SEXITLWPS|SKILLED)) {
2666 				/*
2667 				 * If exit_flag is set, then it is
2668 				 * safe to exit because we have released
2669 				 * page locks of completed I/O's.
2670 				 */
2671 				if (exit_flag)
2672 					break;
2673 
2674 				mutex_exit(&as->a_contents);
2675 
2676 				/*
2677 				 * Wait for all the pending aio to complete.
2678 				 */
2679 				mutex_enter(&aiop->aio_mutex);
2680 				aiop->aio_flags |= AIO_REQ_BLOCK;
2681 				while (aiop->aio_pending != 0)
2682 					cv_wait(&aiop->aio_cleanupcv,
2683 					    &aiop->aio_mutex);
2684 				mutex_exit(&aiop->aio_mutex);
2685 				exit_flag = 1;
2686 				continue;
2687 			} else if (p->p_flag &
2688 			    (SHOLDFORK|SHOLDFORK1|SHOLDWATCH)) {
2689 				/*
2690 				 * hold LWP until it
2691 				 * is continued.
2692 				 */
2693 				mutex_exit(&as->a_contents);
2694 				mutex_enter(&p->p_lock);
2695 				stop(PR_SUSPENDED, SUSPEND_NORMAL);
2696 				mutex_exit(&p->p_lock);
2697 				poked = 0;
2698 				continue;
2699 			}
2700 		} else {
2701 			/*
2702 			 * When started this thread will sleep on as->a_cv.
2703 			 * as_unmap will awake this thread if the
2704 			 * segment has SOFTLOCKed pages (poked = 0).
2705 			 * 1. pokelwps() awakes this thread =>
2706 			 *    break the loop to check SEXITLWPS, SHOLDFORK, etc
2707 			 * 2. as_unmap awakes this thread =>
2708 			 *    to break the loop it is necessary that
2709 			 *    - AS_UNMAPWAIT is set (as_unmap is waiting for
2710 			 *	memory to be unlocked)
2711 			 *    - AIO_CLEANUP is not set
2712 			 *	(if AIO_CLEANUP is set we have to wait for
2713 			 *	pending requests. aio_done will send a signal
2714 			 *	for every request which completes to continue
2715 			 *	unmapping the corresponding address range)
2716 			 * 3. A cleanup request will wake this thread up, ex.
2717 			 *    by the DR operations. The aio_rqclnup flag will
2718 			 *    be set.
2719 			 */
2720 			while (poked == 0) {
2721 				/*
2722 				 * we need to handle cleanup requests
2723 				 * that come in after we had just cleaned up,
2724 				 * so that we do cleanup of any new aio
2725 				 * requests that got completed and have
2726 				 * locked resources.
2727 				 */
2728 				if ((aiop->aio_rqclnup ||
2729 				    (AS_ISUNMAPWAIT(as) != 0)) &&
2730 				    (aiop->aio_flags & AIO_CLEANUP) == 0)
2731 					break;
2732 				poked = !cv_wait_sig(cvp, &as->a_contents);
2733 				if (AS_ISUNMAPWAIT(as) == 0)
2734 					cv_signal(cvp);
2735 				if (aiop->aio_outstanding != 0)
2736 					break;
2737 			}
2738 		}
2739 		mutex_exit(&as->a_contents);
2740 	}
2741 exit:
2742 	mutex_exit(&as->a_contents);
2743 	ASSERT((curproc->p_flag & (SEXITLWPS|SKILLED)));
2744 	aston(curthread);	/* make thread do post_syscall */
2745 	return (0);
2746 }
2747 
2748 /*
2749  * save a reference to a user's outstanding aio in a hash list.
2750  */
2751 static int
2752 aio_hash_insert(
2753 	aio_req_t *aio_reqp,
2754 	aio_t *aiop)
2755 {
2756 	long index;
2757 	aio_result_t *resultp = aio_reqp->aio_req_resultp;
2758 	aio_req_t *current;
2759 	aio_req_t **nextp;
2760 
2761 	index = AIO_HASH(resultp);
2762 	nextp = &aiop->aio_hash[index];
2763 	while ((current = *nextp) != NULL) {
2764 		if (current->aio_req_resultp == resultp)
2765 			return (DUPLICATE);
2766 		nextp = &current->aio_hash_next;
2767 	}
2768 	*nextp = aio_reqp;
2769 	aio_reqp->aio_hash_next = NULL;
2770 	return (0);
2771 }
2772 
2773 static int
2774 (*check_vp(struct vnode *vp, int mode))(vnode_t *, struct aio_req *,
2775     cred_t *)
2776 {
2777 	struct snode *sp;
2778 	dev_t		dev;
2779 	struct cb_ops  	*cb;
2780 	major_t		major;
2781 	int		(*aio_func)();
2782 
2783 	dev = vp->v_rdev;
2784 	major = getmajor(dev);
2785 
2786 	/*
2787 	 * return NULL for requests to files and STREAMs so
2788 	 * that libaio takes care of them.
2789 	 */
2790 	if (vp->v_type == VCHR) {
2791 		/* no stream device for kaio */
2792 		if (STREAMSTAB(major)) {
2793 			return (NULL);
2794 		}
2795 	} else {
2796 		return (NULL);
2797 	}
2798 
2799 	/*
2800 	 * Check old drivers which do not have async I/O entry points.
2801 	 */
2802 	if (devopsp[major]->devo_rev < 3)
2803 		return (NULL);
2804 
2805 	cb = devopsp[major]->devo_cb_ops;
2806 
2807 	if (cb->cb_rev < 1)
2808 		return (NULL);
2809 
2810 	/*
2811 	 * Check whether this device is a block device.
2812 	 * Kaio is not supported for devices like tty.
2813 	 */
2814 	if (cb->cb_strategy == nodev || cb->cb_strategy == NULL)
2815 		return (NULL);
2816 
2817 	/*
2818 	 * Clustering: If vnode is a PXFS vnode, then the device may be remote.
2819 	 * We cannot call the driver directly. Instead return the
2820 	 * PXFS functions.
2821 	 */
2822 
2823 	if (IS_PXFSVP(vp)) {
2824 		if (mode & FREAD)
2825 			return (clpxfs_aio_read);
2826 		else
2827 			return (clpxfs_aio_write);
2828 	}
2829 	if (mode & FREAD)
2830 		aio_func = (cb->cb_aread == nodev) ? NULL : driver_aio_read;
2831 	else
2832 		aio_func = (cb->cb_awrite == nodev) ? NULL : driver_aio_write;
2833 
2834 	/*
2835 	 * Do we need this ?
2836 	 * nodev returns ENXIO anyway.
2837 	 */
2838 	if (aio_func == nodev)
2839 		return (NULL);
2840 
2841 	sp = VTOS(vp);
2842 	smark(sp, SACC);
2843 	return (aio_func);
2844 }
2845 
2846 /*
2847  * Clustering: We want check_vp to return a function prototyped
2848  * correctly that will be common to both PXFS and regular case.
2849  * We define this intermediate function that will do the right
2850  * thing for driver cases.
2851  */
2852 
2853 static int
2854 driver_aio_write(vnode_t *vp, struct aio_req *aio, cred_t *cred_p)
2855 {
2856 	dev_t dev;
2857 	struct cb_ops  	*cb;
2858 
2859 	ASSERT(vp->v_type == VCHR);
2860 	ASSERT(!IS_PXFSVP(vp));
2861 	dev = VTOS(vp)->s_dev;
2862 	ASSERT(STREAMSTAB(getmajor(dev)) == NULL);
2863 
2864 	cb = devopsp[getmajor(dev)]->devo_cb_ops;
2865 
2866 	ASSERT(cb->cb_awrite != nodev);
2867 	return ((*cb->cb_awrite)(dev, aio, cred_p));
2868 }
2869 
2870 /*
2871  * Clustering: We want check_vp to return a function prototyped
2872  * correctly that will be common to both PXFS and regular case.
2873  * We define this intermediate function that will do the right
2874  * thing for driver cases.
2875  */
2876 
2877 static int
2878 driver_aio_read(vnode_t *vp, struct aio_req *aio, cred_t *cred_p)
2879 {
2880 	dev_t dev;
2881 	struct cb_ops  	*cb;
2882 
2883 	ASSERT(vp->v_type == VCHR);
2884 	ASSERT(!IS_PXFSVP(vp));
2885 	dev = VTOS(vp)->s_dev;
2886 	ASSERT(!STREAMSTAB(getmajor(dev)));
2887 
2888 	cb = devopsp[getmajor(dev)]->devo_cb_ops;
2889 
2890 	ASSERT(cb->cb_aread != nodev);
2891 	return ((*cb->cb_aread)(dev, aio, cred_p));
2892 }
2893 
2894 /*
2895  * This routine is called when a largefile call is made by a 32bit
2896  * process on a ILP32 or LP64 kernel. All 64bit processes are large
2897  * file by definition and will call alio() instead.
2898  */
2899 static int
2900 alioLF(
2901 	int		mode_arg,
2902 	void		*aiocb_arg,
2903 	int		nent,
2904 	void		*sigev)
2905 {
2906 	file_t		*fp;
2907 	file_t		*prev_fp = NULL;
2908 	int		prev_mode = -1;
2909 	struct vnode	*vp;
2910 	aio_lio_t	*head;
2911 	aio_req_t	*reqp;
2912 	aio_t		*aiop;
2913 	caddr_t		cbplist;
2914 	aiocb64_32_t	cb64;
2915 	aiocb64_32_t	*aiocb = &cb64;
2916 	aiocb64_32_t	*cbp;
2917 	caddr32_t	*ucbp;
2918 #ifdef _LP64
2919 	aiocb_t		aiocb_n;
2920 #endif
2921 	struct sigevent32	sigevk;
2922 	sigqueue_t	*sqp;
2923 	int		(*aio_func)();
2924 	int		mode;
2925 	int		error = 0;
2926 	int		aio_errors = 0;
2927 	int		i;
2928 	size_t		ssize;
2929 	int		deadhead = 0;
2930 	int		aio_notsupported = 0;
2931 	int		lio_head_port;
2932 	int		aio_port;
2933 	int		aio_thread;
2934 	port_kevent_t	*pkevtp = NULL;
2935 	int		portused = 0;
2936 	port_notify32_t	pnotify;
2937 	int		event;
2938 
2939 	aiop = curproc->p_aio;
2940 	if (aiop == NULL || nent <= 0 || nent > _AIO_LISTIO_MAX)
2941 		return (EINVAL);
2942 
2943 	ASSERT(get_udatamodel() == DATAMODEL_ILP32);
2944 
2945 	ssize = (sizeof (caddr32_t) * nent);
2946 	cbplist = kmem_alloc(ssize, KM_SLEEP);
2947 	ucbp = (caddr32_t *)cbplist;
2948 
2949 	if (copyin(aiocb_arg, cbplist, ssize) ||
2950 	    (sigev && copyin(sigev, &sigevk, sizeof (sigevk)))) {
2951 		kmem_free(cbplist, ssize);
2952 		return (EFAULT);
2953 	}
2954 
2955 	/* Event Ports  */
2956 	if (sigev &&
2957 	    (sigevk.sigev_notify == SIGEV_THREAD ||
2958 	    sigevk.sigev_notify == SIGEV_PORT)) {
2959 		if (sigevk.sigev_notify == SIGEV_THREAD) {
2960 			pnotify.portnfy_port = sigevk.sigev_signo;
2961 			pnotify.portnfy_user = sigevk.sigev_value.sival_ptr;
2962 		} else if (copyin(
2963 		    (void *)(uintptr_t)sigevk.sigev_value.sival_ptr,
2964 		    &pnotify, sizeof (pnotify))) {
2965 			kmem_free(cbplist, ssize);
2966 			return (EFAULT);
2967 		}
2968 		error = port_alloc_event(pnotify.portnfy_port,
2969 		    PORT_ALLOC_DEFAULT, PORT_SOURCE_AIO, &pkevtp);
2970 		if (error) {
2971 			if (error == ENOMEM || error == EAGAIN)
2972 				error = EAGAIN;
2973 			else
2974 				error = EINVAL;
2975 			kmem_free(cbplist, ssize);
2976 			return (error);
2977 		}
2978 		lio_head_port = pnotify.portnfy_port;
2979 		portused = 1;
2980 	}
2981 
2982 	/*
2983 	 * a list head should be allocated if notification is
2984 	 * enabled for this list.
2985 	 */
2986 	head = NULL;
2987 
2988 	if (mode_arg == LIO_WAIT || sigev) {
2989 		mutex_enter(&aiop->aio_mutex);
2990 		error = aio_lio_alloc(&head);
2991 		mutex_exit(&aiop->aio_mutex);
2992 		if (error)
2993 			goto done;
2994 		deadhead = 1;
2995 		head->lio_nent = nent;
2996 		head->lio_refcnt = nent;
2997 		head->lio_port = -1;
2998 		head->lio_portkev = NULL;
2999 		if (sigev && sigevk.sigev_notify == SIGEV_SIGNAL &&
3000 		    sigevk.sigev_signo > 0 && sigevk.sigev_signo < NSIG) {
3001 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_NOSLEEP);
3002 			if (sqp == NULL) {
3003 				error = EAGAIN;
3004 				goto done;
3005 			}
3006 			sqp->sq_func = NULL;
3007 			sqp->sq_next = NULL;
3008 			sqp->sq_info.si_code = SI_ASYNCIO;
3009 			sqp->sq_info.si_pid = curproc->p_pid;
3010 			sqp->sq_info.si_ctid = PRCTID(curproc);
3011 			sqp->sq_info.si_zoneid = getzoneid();
3012 			sqp->sq_info.si_uid = crgetuid(curproc->p_cred);
3013 			sqp->sq_info.si_signo = sigevk.sigev_signo;
3014 			sqp->sq_info.si_value.sival_int =
3015 			    sigevk.sigev_value.sival_int;
3016 			head->lio_sigqp = sqp;
3017 		} else {
3018 			head->lio_sigqp = NULL;
3019 		}
3020 		if (pkevtp) {
3021 			/*
3022 			 * Prepare data to send when list of aiocb's
3023 			 * has completed.
3024 			 */
3025 			port_init_event(pkevtp, (uintptr_t)sigev,
3026 			    (void *)(uintptr_t)pnotify.portnfy_user,
3027 			    NULL, head);
3028 			pkevtp->portkev_events = AIOLIO64;
3029 			head->lio_portkev = pkevtp;
3030 			head->lio_port = pnotify.portnfy_port;
3031 		}
3032 	}
3033 
3034 	for (i = 0; i < nent; i++, ucbp++) {
3035 
3036 		cbp = (aiocb64_32_t *)(uintptr_t)*ucbp;
3037 		/* skip entry if it can't be copied. */
3038 		if (cbp == NULL || copyin(cbp, aiocb, sizeof (*aiocb))) {
3039 			if (head) {
3040 				mutex_enter(&aiop->aio_mutex);
3041 				head->lio_nent--;
3042 				head->lio_refcnt--;
3043 				mutex_exit(&aiop->aio_mutex);
3044 			}
3045 			continue;
3046 		}
3047 
3048 		/* skip if opcode for aiocb is LIO_NOP */
3049 		mode = aiocb->aio_lio_opcode;
3050 		if (mode == LIO_NOP) {
3051 			cbp = NULL;
3052 			if (head) {
3053 				mutex_enter(&aiop->aio_mutex);
3054 				head->lio_nent--;
3055 				head->lio_refcnt--;
3056 				mutex_exit(&aiop->aio_mutex);
3057 			}
3058 			continue;
3059 		}
3060 
3061 		/* increment file descriptor's ref count. */
3062 		if ((fp = getf(aiocb->aio_fildes)) == NULL) {
3063 			lio_set_uerror(&cbp->aio_resultp, EBADF);
3064 			if (head) {
3065 				mutex_enter(&aiop->aio_mutex);
3066 				head->lio_nent--;
3067 				head->lio_refcnt--;
3068 				mutex_exit(&aiop->aio_mutex);
3069 			}
3070 			aio_errors++;
3071 			continue;
3072 		}
3073 
3074 		/*
3075 		 * check the permission of the partition
3076 		 */
3077 		if ((fp->f_flag & mode) == 0) {
3078 			releasef(aiocb->aio_fildes);
3079 			lio_set_uerror(&cbp->aio_resultp, EBADF);
3080 			if (head) {
3081 				mutex_enter(&aiop->aio_mutex);
3082 				head->lio_nent--;
3083 				head->lio_refcnt--;
3084 				mutex_exit(&aiop->aio_mutex);
3085 			}
3086 			aio_errors++;
3087 			continue;
3088 		}
3089 
3090 		/*
3091 		 * common case where requests are to the same fd
3092 		 * for the same r/w operation
3093 		 * for UFS, need to set EBADFD
3094 		 */
3095 		vp = fp->f_vnode;
3096 		if (fp != prev_fp || mode != prev_mode) {
3097 			aio_func = check_vp(vp, mode);
3098 			if (aio_func == NULL) {
3099 				prev_fp = NULL;
3100 				releasef(aiocb->aio_fildes);
3101 				lio_set_uerror(&cbp->aio_resultp, EBADFD);
3102 				aio_notsupported++;
3103 				if (head) {
3104 					mutex_enter(&aiop->aio_mutex);
3105 					head->lio_nent--;
3106 					head->lio_refcnt--;
3107 					mutex_exit(&aiop->aio_mutex);
3108 				}
3109 				continue;
3110 			} else {
3111 				prev_fp = fp;
3112 				prev_mode = mode;
3113 			}
3114 		}
3115 
3116 #ifdef	_LP64
3117 		aiocb_LFton(aiocb, &aiocb_n);
3118 		error = aio_req_setup(&reqp, aiop, &aiocb_n,
3119 		    (aio_result_t *)&cbp->aio_resultp, vp);
3120 #else
3121 		error = aio_req_setupLF(&reqp, aiop, aiocb,
3122 		    (aio_result_t *)&cbp->aio_resultp, vp);
3123 #endif  /* _LP64 */
3124 		if (error) {
3125 			releasef(aiocb->aio_fildes);
3126 			lio_set_uerror(&cbp->aio_resultp, error);
3127 			if (head) {
3128 				mutex_enter(&aiop->aio_mutex);
3129 				head->lio_nent--;
3130 				head->lio_refcnt--;
3131 				mutex_exit(&aiop->aio_mutex);
3132 			}
3133 			aio_errors++;
3134 			continue;
3135 		}
3136 
3137 		reqp->aio_req_lio = head;
3138 		deadhead = 0;
3139 
3140 		/*
3141 		 * Set the errno field now before sending the request to
3142 		 * the driver to avoid a race condition
3143 		 */
3144 		(void) suword32(&cbp->aio_resultp.aio_errno,
3145 		    EINPROGRESS);
3146 
3147 		reqp->aio_req_iocb.iocb32 = *ucbp;
3148 
3149 		event = (mode == LIO_READ)? AIOAREAD64 : AIOAWRITE64;
3150 		aio_port = (aiocb->aio_sigevent.sigev_notify == SIGEV_PORT);
3151 		aio_thread = (aiocb->aio_sigevent.sigev_notify == SIGEV_THREAD);
3152 		if (aio_port | aio_thread) {
3153 			port_kevent_t *lpkevp;
3154 			/*
3155 			 * Prepare data to send with each aiocb completed.
3156 			 */
3157 			if (aio_port) {
3158 				void *paddr = (void *)(uintptr_t)
3159 				    aiocb->aio_sigevent.sigev_value.sival_ptr;
3160 				if (copyin(paddr, &pnotify, sizeof (pnotify)))
3161 					error = EFAULT;
3162 			} else {	/* aio_thread */
3163 				pnotify.portnfy_port =
3164 				    aiocb->aio_sigevent.sigev_signo;
3165 				pnotify.portnfy_user =
3166 				    aiocb->aio_sigevent.sigev_value.sival_ptr;
3167 			}
3168 			if (error)
3169 				/* EMPTY */;
3170 			else if (pkevtp != NULL &&
3171 			    pnotify.portnfy_port == lio_head_port)
3172 				error = port_dup_event(pkevtp, &lpkevp,
3173 				    PORT_ALLOC_DEFAULT);
3174 			else
3175 				error = port_alloc_event(pnotify.portnfy_port,
3176 				    PORT_ALLOC_DEFAULT, PORT_SOURCE_AIO,
3177 				    &lpkevp);
3178 			if (error == 0) {
3179 				port_init_event(lpkevp, (uintptr_t)*ucbp,
3180 				    (void *)(uintptr_t)pnotify.portnfy_user,
3181 				    aio_port_callback, reqp);
3182 				lpkevp->portkev_events = event;
3183 				reqp->aio_req_portkev = lpkevp;
3184 				reqp->aio_req_port = pnotify.portnfy_port;
3185 			}
3186 		}
3187 
3188 		/*
3189 		 * send the request to driver.
3190 		 */
3191 		if (error == 0) {
3192 			if (aiocb->aio_nbytes == 0) {
3193 				clear_active_fd(aiocb->aio_fildes);
3194 				aio_zerolen(reqp);
3195 				continue;
3196 			}
3197 			error = (*aio_func)(vp, (aio_req_t *)&reqp->aio_req,
3198 			    CRED());
3199 		}
3200 
3201 		/*
3202 		 * the fd's ref count is not decremented until the IO has
3203 		 * completed unless there was an error.
3204 		 */
3205 		if (error) {
3206 			releasef(aiocb->aio_fildes);
3207 			lio_set_uerror(&cbp->aio_resultp, error);
3208 			if (head) {
3209 				mutex_enter(&aiop->aio_mutex);
3210 				head->lio_nent--;
3211 				head->lio_refcnt--;
3212 				mutex_exit(&aiop->aio_mutex);
3213 			}
3214 			if (error == ENOTSUP)
3215 				aio_notsupported++;
3216 			else
3217 				aio_errors++;
3218 			lio_set_error(reqp, portused);
3219 		} else {
3220 			clear_active_fd(aiocb->aio_fildes);
3221 		}
3222 	}
3223 
3224 	if (aio_notsupported) {
3225 		error = ENOTSUP;
3226 	} else if (aio_errors) {
3227 		/*
3228 		 * return EIO if any request failed
3229 		 */
3230 		error = EIO;
3231 	}
3232 
3233 	if (mode_arg == LIO_WAIT) {
3234 		mutex_enter(&aiop->aio_mutex);
3235 		while (head->lio_refcnt > 0) {
3236 			if (!cv_wait_sig(&head->lio_notify, &aiop->aio_mutex)) {
3237 				mutex_exit(&aiop->aio_mutex);
3238 				error = EINTR;
3239 				goto done;
3240 			}
3241 		}
3242 		mutex_exit(&aiop->aio_mutex);
3243 		alio_cleanup(aiop, (aiocb_t **)cbplist, nent, AIO_LARGEFILE);
3244 	}
3245 
3246 done:
3247 	kmem_free(cbplist, ssize);
3248 	if (deadhead) {
3249 		if (head->lio_sigqp)
3250 			kmem_free(head->lio_sigqp, sizeof (sigqueue_t));
3251 		if (head->lio_portkev)
3252 			port_free_event(head->lio_portkev);
3253 		kmem_free(head, sizeof (aio_lio_t));
3254 	}
3255 	return (error);
3256 }
3257 
3258 #ifdef  _SYSCALL32_IMPL
3259 static void
3260 aiocb_LFton(aiocb64_32_t *src, aiocb_t *dest)
3261 {
3262 	dest->aio_fildes = src->aio_fildes;
3263 	dest->aio_buf = (void *)(uintptr_t)src->aio_buf;
3264 	dest->aio_nbytes = (size_t)src->aio_nbytes;
3265 	dest->aio_offset = (off_t)src->aio_offset;
3266 	dest->aio_reqprio = src->aio_reqprio;
3267 	dest->aio_sigevent.sigev_notify = src->aio_sigevent.sigev_notify;
3268 	dest->aio_sigevent.sigev_signo = src->aio_sigevent.sigev_signo;
3269 
3270 	/*
3271 	 * See comment in sigqueue32() on handling of 32-bit
3272 	 * sigvals in a 64-bit kernel.
3273 	 */
3274 	dest->aio_sigevent.sigev_value.sival_int =
3275 	    (int)src->aio_sigevent.sigev_value.sival_int;
3276 	dest->aio_sigevent.sigev_notify_function = (void (*)(union sigval))
3277 	    (uintptr_t)src->aio_sigevent.sigev_notify_function;
3278 	dest->aio_sigevent.sigev_notify_attributes = (pthread_attr_t *)
3279 	    (uintptr_t)src->aio_sigevent.sigev_notify_attributes;
3280 	dest->aio_sigevent.__sigev_pad2 = src->aio_sigevent.__sigev_pad2;
3281 	dest->aio_lio_opcode = src->aio_lio_opcode;
3282 	dest->aio_state = src->aio_state;
3283 	dest->aio__pad[0] = src->aio__pad[0];
3284 }
3285 #endif
3286 
3287 /*
3288  * This function is used only for largefile calls made by
3289  * 32 bit applications.
3290  */
3291 static int
3292 aio_req_setupLF(
3293 	aio_req_t	**reqpp,
3294 	aio_t		*aiop,
3295 	aiocb64_32_t	*arg,
3296 	aio_result_t	*resultp,
3297 	vnode_t		*vp)
3298 {
3299 	sigqueue_t	*sqp = NULL;
3300 	aio_req_t	*reqp;
3301 	struct uio	*uio;
3302 	struct sigevent32 *sigev;
3303 	int 		error;
3304 
3305 	sigev = &arg->aio_sigevent;
3306 	if (sigev->sigev_notify == SIGEV_SIGNAL &&
3307 	    sigev->sigev_signo > 0 && sigev->sigev_signo < NSIG) {
3308 		sqp = kmem_zalloc(sizeof (sigqueue_t), KM_NOSLEEP);
3309 		if (sqp == NULL)
3310 			return (EAGAIN);
3311 		sqp->sq_func = NULL;
3312 		sqp->sq_next = NULL;
3313 		sqp->sq_info.si_code = SI_ASYNCIO;
3314 		sqp->sq_info.si_pid = curproc->p_pid;
3315 		sqp->sq_info.si_ctid = PRCTID(curproc);
3316 		sqp->sq_info.si_zoneid = getzoneid();
3317 		sqp->sq_info.si_uid = crgetuid(curproc->p_cred);
3318 		sqp->sq_info.si_signo = sigev->sigev_signo;
3319 		sqp->sq_info.si_value.sival_int = sigev->sigev_value.sival_int;
3320 	}
3321 
3322 	mutex_enter(&aiop->aio_mutex);
3323 
3324 	if (aiop->aio_flags & AIO_REQ_BLOCK) {
3325 		mutex_exit(&aiop->aio_mutex);
3326 		if (sqp)
3327 			kmem_free(sqp, sizeof (sigqueue_t));
3328 		return (EIO);
3329 	}
3330 	/*
3331 	 * get an aio_reqp from the free list or allocate one
3332 	 * from dynamic memory.
3333 	 */
3334 	if (error = aio_req_alloc(&reqp, resultp)) {
3335 		mutex_exit(&aiop->aio_mutex);
3336 		if (sqp)
3337 			kmem_free(sqp, sizeof (sigqueue_t));
3338 		return (error);
3339 	}
3340 	aiop->aio_pending++;
3341 	aiop->aio_outstanding++;
3342 	reqp->aio_req_flags = AIO_PENDING;
3343 	if (sigev->sigev_notify == SIGEV_THREAD ||
3344 	    sigev->sigev_notify == SIGEV_PORT)
3345 		aio_enq(&aiop->aio_portpending, reqp, 0);
3346 	mutex_exit(&aiop->aio_mutex);
3347 	/*
3348 	 * initialize aio request.
3349 	 */
3350 	reqp->aio_req_fd = arg->aio_fildes;
3351 	reqp->aio_req_sigqp = sqp;
3352 	reqp->aio_req_iocb.iocb = NULL;
3353 	reqp->aio_req_lio = NULL;
3354 	reqp->aio_req_buf.b_file = vp;
3355 	uio = reqp->aio_req.aio_uio;
3356 	uio->uio_iovcnt = 1;
3357 	uio->uio_iov->iov_base = (caddr_t)(uintptr_t)arg->aio_buf;
3358 	uio->uio_iov->iov_len = arg->aio_nbytes;
3359 	uio->uio_loffset = arg->aio_offset;
3360 	*reqpp = reqp;
3361 	return (0);
3362 }
3363 
3364 /*
3365  * This routine is called when a non largefile call is made by a 32bit
3366  * process on a ILP32 or LP64 kernel.
3367  */
3368 static int
3369 alio32(
3370 	int		mode_arg,
3371 	void		*aiocb_arg,
3372 	int		nent,
3373 	void		*sigev)
3374 {
3375 	file_t		*fp;
3376 	file_t		*prev_fp = NULL;
3377 	int		prev_mode = -1;
3378 	struct vnode	*vp;
3379 	aio_lio_t	*head;
3380 	aio_req_t	*reqp;
3381 	aio_t		*aiop;
3382 	caddr_t		cbplist;
3383 	aiocb_t		cb;
3384 	aiocb_t		*aiocb = &cb;
3385 #ifdef	_LP64
3386 	aiocb32_t	*cbp;
3387 	caddr32_t	*ucbp;
3388 	aiocb32_t	cb32;
3389 	aiocb32_t	*aiocb32 = &cb32;
3390 	struct sigevent32	sigevk;
3391 #else
3392 	aiocb_t		*cbp, **ucbp;
3393 	struct sigevent	sigevk;
3394 #endif
3395 	sigqueue_t	*sqp;
3396 	int		(*aio_func)();
3397 	int		mode;
3398 	int		error = 0;
3399 	int		aio_errors = 0;
3400 	int		i;
3401 	size_t		ssize;
3402 	int		deadhead = 0;
3403 	int		aio_notsupported = 0;
3404 	int		lio_head_port;
3405 	int		aio_port;
3406 	int		aio_thread;
3407 	port_kevent_t	*pkevtp = NULL;
3408 	int		portused = 0;
3409 #ifdef	_LP64
3410 	port_notify32_t	pnotify;
3411 #else
3412 	port_notify_t	pnotify;
3413 #endif
3414 	int		event;
3415 
3416 	aiop = curproc->p_aio;
3417 	if (aiop == NULL || nent <= 0 || nent > _AIO_LISTIO_MAX)
3418 		return (EINVAL);
3419 
3420 #ifdef	_LP64
3421 	ssize = (sizeof (caddr32_t) * nent);
3422 #else
3423 	ssize = (sizeof (aiocb_t *) * nent);
3424 #endif
3425 	cbplist = kmem_alloc(ssize, KM_SLEEP);
3426 	ucbp = (void *)cbplist;
3427 
3428 	if (copyin(aiocb_arg, cbplist, ssize) ||
3429 	    (sigev && copyin(sigev, &sigevk, sizeof (struct sigevent32)))) {
3430 		kmem_free(cbplist, ssize);
3431 		return (EFAULT);
3432 	}
3433 
3434 	/* Event Ports  */
3435 	if (sigev &&
3436 	    (sigevk.sigev_notify == SIGEV_THREAD ||
3437 	    sigevk.sigev_notify == SIGEV_PORT)) {
3438 		if (sigevk.sigev_notify == SIGEV_THREAD) {
3439 			pnotify.portnfy_port = sigevk.sigev_signo;
3440 			pnotify.portnfy_user = sigevk.sigev_value.sival_ptr;
3441 		} else if (copyin(
3442 		    (void *)(uintptr_t)sigevk.sigev_value.sival_ptr,
3443 		    &pnotify, sizeof (pnotify))) {
3444 			kmem_free(cbplist, ssize);
3445 			return (EFAULT);
3446 		}
3447 		error = port_alloc_event(pnotify.portnfy_port,
3448 		    PORT_ALLOC_DEFAULT, PORT_SOURCE_AIO, &pkevtp);
3449 		if (error) {
3450 			if (error == ENOMEM || error == EAGAIN)
3451 				error = EAGAIN;
3452 			else
3453 				error = EINVAL;
3454 			kmem_free(cbplist, ssize);
3455 			return (error);
3456 		}
3457 		lio_head_port = pnotify.portnfy_port;
3458 		portused = 1;
3459 	}
3460 
3461 	/*
3462 	 * a list head should be allocated if notification is
3463 	 * enabled for this list.
3464 	 */
3465 	head = NULL;
3466 
3467 	if (mode_arg == LIO_WAIT || sigev) {
3468 		mutex_enter(&aiop->aio_mutex);
3469 		error = aio_lio_alloc(&head);
3470 		mutex_exit(&aiop->aio_mutex);
3471 		if (error)
3472 			goto done;
3473 		deadhead = 1;
3474 		head->lio_nent = nent;
3475 		head->lio_refcnt = nent;
3476 		head->lio_port = -1;
3477 		head->lio_portkev = NULL;
3478 		if (sigev && sigevk.sigev_notify == SIGEV_SIGNAL &&
3479 		    sigevk.sigev_signo > 0 && sigevk.sigev_signo < NSIG) {
3480 			sqp = kmem_zalloc(sizeof (sigqueue_t), KM_NOSLEEP);
3481 			if (sqp == NULL) {
3482 				error = EAGAIN;
3483 				goto done;
3484 			}
3485 			sqp->sq_func = NULL;
3486 			sqp->sq_next = NULL;
3487 			sqp->sq_info.si_code = SI_ASYNCIO;
3488 			sqp->sq_info.si_pid = curproc->p_pid;
3489 			sqp->sq_info.si_ctid = PRCTID(curproc);
3490 			sqp->sq_info.si_zoneid = getzoneid();
3491 			sqp->sq_info.si_uid = crgetuid(curproc->p_cred);
3492 			sqp->sq_info.si_signo = sigevk.sigev_signo;
3493 			sqp->sq_info.si_value.sival_int =
3494 			    sigevk.sigev_value.sival_int;
3495 			head->lio_sigqp = sqp;
3496 		} else {
3497 			head->lio_sigqp = NULL;
3498 		}
3499 		if (pkevtp) {
3500 			/*
3501 			 * Prepare data to send when list of aiocb's has
3502 			 * completed.
3503 			 */
3504 			port_init_event(pkevtp, (uintptr_t)sigev,
3505 			    (void *)(uintptr_t)pnotify.portnfy_user,
3506 			    NULL, head);
3507 			pkevtp->portkev_events = AIOLIO;
3508 			head->lio_portkev = pkevtp;
3509 			head->lio_port = pnotify.portnfy_port;
3510 		}
3511 	}
3512 
3513 	for (i = 0; i < nent; i++, ucbp++) {
3514 
3515 		/* skip entry if it can't be copied. */
3516 #ifdef	_LP64
3517 		cbp = (aiocb32_t *)(uintptr_t)*ucbp;
3518 		if (cbp == NULL || copyin(cbp, aiocb32, sizeof (*aiocb32)))
3519 #else
3520 		cbp = (aiocb_t *)*ucbp;
3521 		if (cbp == NULL || copyin(cbp, aiocb, sizeof (*aiocb)))
3522 #endif
3523 		{
3524 			if (head) {
3525 				mutex_enter(&aiop->aio_mutex);
3526 				head->lio_nent--;
3527 				head->lio_refcnt--;
3528 				mutex_exit(&aiop->aio_mutex);
3529 			}
3530 			continue;
3531 		}
3532 #ifdef	_LP64
3533 		/*
3534 		 * copy 32 bit structure into 64 bit structure
3535 		 */
3536 		aiocb_32ton(aiocb32, aiocb);
3537 #endif /* _LP64 */
3538 
3539 		/* skip if opcode for aiocb is LIO_NOP */
3540 		mode = aiocb->aio_lio_opcode;
3541 		if (mode == LIO_NOP) {
3542 			cbp = NULL;
3543 			if (head) {
3544 				mutex_enter(&aiop->aio_mutex);
3545 				head->lio_nent--;
3546 				head->lio_refcnt--;
3547 				mutex_exit(&aiop->aio_mutex);
3548 			}
3549 			continue;
3550 		}
3551 
3552 		/* increment file descriptor's ref count. */
3553 		if ((fp = getf(aiocb->aio_fildes)) == NULL) {
3554 			lio_set_uerror(&cbp->aio_resultp, EBADF);
3555 			if (head) {
3556 				mutex_enter(&aiop->aio_mutex);
3557 				head->lio_nent--;
3558 				head->lio_refcnt--;
3559 				mutex_exit(&aiop->aio_mutex);
3560 			}
3561 			aio_errors++;
3562 			continue;
3563 		}
3564 
3565 		/*
3566 		 * check the permission of the partition
3567 		 */
3568 		if ((fp->f_flag & mode) == 0) {
3569 			releasef(aiocb->aio_fildes);
3570 			lio_set_uerror(&cbp->aio_resultp, EBADF);
3571 			if (head) {
3572 				mutex_enter(&aiop->aio_mutex);
3573 				head->lio_nent--;
3574 				head->lio_refcnt--;
3575 				mutex_exit(&aiop->aio_mutex);
3576 			}
3577 			aio_errors++;
3578 			continue;
3579 		}
3580 
3581 		/*
3582 		 * common case where requests are to the same fd
3583 		 * for the same r/w operation
3584 		 * for UFS, need to set EBADFD
3585 		 */
3586 		vp = fp->f_vnode;
3587 		if (fp != prev_fp || mode != prev_mode) {
3588 			aio_func = check_vp(vp, mode);
3589 			if (aio_func == NULL) {
3590 				prev_fp = NULL;
3591 				releasef(aiocb->aio_fildes);
3592 				lio_set_uerror(&cbp->aio_resultp, EBADFD);
3593 				aio_notsupported++;
3594 				if (head) {
3595 					mutex_enter(&aiop->aio_mutex);
3596 					head->lio_nent--;
3597 					head->lio_refcnt--;
3598 					mutex_exit(&aiop->aio_mutex);
3599 				}
3600 				continue;
3601 			} else {
3602 				prev_fp = fp;
3603 				prev_mode = mode;
3604 			}
3605 		}
3606 
3607 		error = aio_req_setup(&reqp, aiop, aiocb,
3608 		    (aio_result_t *)&cbp->aio_resultp, vp);
3609 		if (error) {
3610 			releasef(aiocb->aio_fildes);
3611 			lio_set_uerror(&cbp->aio_resultp, error);
3612 			if (head) {
3613 				mutex_enter(&aiop->aio_mutex);
3614 				head->lio_nent--;
3615 				head->lio_refcnt--;
3616 				mutex_exit(&aiop->aio_mutex);
3617 			}
3618 			aio_errors++;
3619 			continue;
3620 		}
3621 
3622 		reqp->aio_req_lio = head;
3623 		deadhead = 0;
3624 
3625 		/*
3626 		 * Set the errno field now before sending the request to
3627 		 * the driver to avoid a race condition
3628 		 */
3629 		(void) suword32(&cbp->aio_resultp.aio_errno,
3630 		    EINPROGRESS);
3631 
3632 		reqp->aio_req_iocb.iocb32 = (caddr32_t)(uintptr_t)cbp;
3633 
3634 		event = (mode == LIO_READ)? AIOAREAD : AIOAWRITE;
3635 		aio_port = (aiocb->aio_sigevent.sigev_notify == SIGEV_PORT);
3636 		aio_thread = (aiocb->aio_sigevent.sigev_notify == SIGEV_THREAD);
3637 		if (aio_port | aio_thread) {
3638 			port_kevent_t *lpkevp;
3639 			/*
3640 			 * Prepare data to send with each aiocb completed.
3641 			 */
3642 #ifdef _LP64
3643 			if (aio_port) {
3644 				void *paddr = (void  *)(uintptr_t)
3645 				    aiocb32->aio_sigevent.sigev_value.sival_ptr;
3646 				if (copyin(paddr, &pnotify, sizeof (pnotify)))
3647 					error = EFAULT;
3648 			} else {	/* aio_thread */
3649 				pnotify.portnfy_port =
3650 				    aiocb32->aio_sigevent.sigev_signo;
3651 				pnotify.portnfy_user =
3652 				    aiocb32->aio_sigevent.sigev_value.sival_ptr;
3653 			}
3654 #else
3655 			if (aio_port) {
3656 				void *paddr =
3657 				    aiocb->aio_sigevent.sigev_value.sival_ptr;
3658 				if (copyin(paddr, &pnotify, sizeof (pnotify)))
3659 					error = EFAULT;
3660 			} else {	/* aio_thread */
3661 				pnotify.portnfy_port =
3662 				    aiocb->aio_sigevent.sigev_signo;
3663 				pnotify.portnfy_user =
3664 				    aiocb->aio_sigevent.sigev_value.sival_ptr;
3665 			}
3666 #endif
3667 			if (error)
3668 				/* EMPTY */;
3669 			else if (pkevtp != NULL &&
3670 			    pnotify.portnfy_port == lio_head_port)
3671 				error = port_dup_event(pkevtp, &lpkevp,
3672 				    PORT_ALLOC_DEFAULT);
3673 			else
3674 				error = port_alloc_event(pnotify.portnfy_port,
3675 				    PORT_ALLOC_DEFAULT, PORT_SOURCE_AIO,
3676 				    &lpkevp);
3677 			if (error == 0) {
3678 				port_init_event(lpkevp, (uintptr_t)cbp,
3679 				    (void *)(uintptr_t)pnotify.portnfy_user,
3680 				    aio_port_callback, reqp);
3681 				lpkevp->portkev_events = event;
3682 				reqp->aio_req_portkev = lpkevp;
3683 				reqp->aio_req_port = pnotify.portnfy_port;
3684 			}
3685 		}
3686 
3687 		/*
3688 		 * send the request to driver.
3689 		 */
3690 		if (error == 0) {
3691 			if (aiocb->aio_nbytes == 0) {
3692 				clear_active_fd(aiocb->aio_fildes);
3693 				aio_zerolen(reqp);
3694 				continue;
3695 			}
3696 			error = (*aio_func)(vp, (aio_req_t *)&reqp->aio_req,
3697 			    CRED());
3698 		}
3699 
3700 		/*
3701 		 * the fd's ref count is not decremented until the IO has
3702 		 * completed unless there was an error.
3703 		 */
3704 		if (error) {
3705 			releasef(aiocb->aio_fildes);
3706 			lio_set_uerror(&cbp->aio_resultp, error);
3707 			if (head) {
3708 				mutex_enter(&aiop->aio_mutex);
3709 				head->lio_nent--;
3710 				head->lio_refcnt--;
3711 				mutex_exit(&aiop->aio_mutex);
3712 			}
3713 			if (error == ENOTSUP)
3714 				aio_notsupported++;
3715 			else
3716 				aio_errors++;
3717 			lio_set_error(reqp, portused);
3718 		} else {
3719 			clear_active_fd(aiocb->aio_fildes);
3720 		}
3721 	}
3722 
3723 	if (aio_notsupported) {
3724 		error = ENOTSUP;
3725 	} else if (aio_errors) {
3726 		/*
3727 		 * return EIO if any request failed
3728 		 */
3729 		error = EIO;
3730 	}
3731 
3732 	if (mode_arg == LIO_WAIT) {
3733 		mutex_enter(&aiop->aio_mutex);
3734 		while (head->lio_refcnt > 0) {
3735 			if (!cv_wait_sig(&head->lio_notify, &aiop->aio_mutex)) {
3736 				mutex_exit(&aiop->aio_mutex);
3737 				error = EINTR;
3738 				goto done;
3739 			}
3740 		}
3741 		mutex_exit(&aiop->aio_mutex);
3742 		alio_cleanup(aiop, (aiocb_t **)cbplist, nent, AIO_32);
3743 	}
3744 
3745 done:
3746 	kmem_free(cbplist, ssize);
3747 	if (deadhead) {
3748 		if (head->lio_sigqp)
3749 			kmem_free(head->lio_sigqp, sizeof (sigqueue_t));
3750 		if (head->lio_portkev)
3751 			port_free_event(head->lio_portkev);
3752 		kmem_free(head, sizeof (aio_lio_t));
3753 	}
3754 	return (error);
3755 }
3756 
3757 
3758 #ifdef  _SYSCALL32_IMPL
3759 void
3760 aiocb_32ton(aiocb32_t *src, aiocb_t *dest)
3761 {
3762 	dest->aio_fildes = src->aio_fildes;
3763 	dest->aio_buf = (caddr_t)(uintptr_t)src->aio_buf;
3764 	dest->aio_nbytes = (size_t)src->aio_nbytes;
3765 	dest->aio_offset = (off_t)src->aio_offset;
3766 	dest->aio_reqprio = src->aio_reqprio;
3767 	dest->aio_sigevent.sigev_notify = src->aio_sigevent.sigev_notify;
3768 	dest->aio_sigevent.sigev_signo = src->aio_sigevent.sigev_signo;
3769 
3770 	/*
3771 	 * See comment in sigqueue32() on handling of 32-bit
3772 	 * sigvals in a 64-bit kernel.
3773 	 */
3774 	dest->aio_sigevent.sigev_value.sival_int =
3775 	    (int)src->aio_sigevent.sigev_value.sival_int;
3776 	dest->aio_sigevent.sigev_notify_function = (void (*)(union sigval))
3777 	    (uintptr_t)src->aio_sigevent.sigev_notify_function;
3778 	dest->aio_sigevent.sigev_notify_attributes = (pthread_attr_t *)
3779 	    (uintptr_t)src->aio_sigevent.sigev_notify_attributes;
3780 	dest->aio_sigevent.__sigev_pad2 = src->aio_sigevent.__sigev_pad2;
3781 	dest->aio_lio_opcode = src->aio_lio_opcode;
3782 	dest->aio_state = src->aio_state;
3783 	dest->aio__pad[0] = src->aio__pad[0];
3784 }
3785 #endif /* _SYSCALL32_IMPL */
3786 
3787 /*
3788  * aio_port_callback() is called just before the event is retrieved from the
3789  * port. The task of this callback function is to finish the work of the
3790  * transaction for the application, it means :
3791  * - copyout transaction data to the application
3792  *	(this thread is running in the right process context)
3793  * - keep trace of the transaction (update of counters).
3794  * - free allocated buffers
3795  * The aiocb pointer is the object element of the port_kevent_t structure.
3796  *
3797  * flag :
3798  *	PORT_CALLBACK_DEFAULT : do copyout and free resources
3799  *	PORT_CALLBACK_CLOSE   : don't do copyout, free resources
3800  */
3801 
3802 /*ARGSUSED*/
3803 int
3804 aio_port_callback(void *arg, int *events, pid_t pid, int flag, void *evp)
3805 {
3806 	aio_t		*aiop = curproc->p_aio;
3807 	aio_req_t	*reqp = arg;
3808 	struct	iovec	*iov;
3809 	struct	buf	*bp;
3810 	void		*resultp;
3811 
3812 	if (pid != curproc->p_pid) {
3813 		/* wrong proc !!, can not deliver data here ... */
3814 		return (EACCES);
3815 	}
3816 
3817 	mutex_enter(&aiop->aio_portq_mutex);
3818 	reqp->aio_req_portkev = NULL;
3819 	aio_req_remove_portq(aiop, reqp); /* remove request from portq */
3820 	mutex_exit(&aiop->aio_portq_mutex);
3821 	aphysio_unlock(reqp);		/* unlock used pages */
3822 	mutex_enter(&aiop->aio_mutex);
3823 	if (reqp->aio_req_flags & AIO_COPYOUTDONE) {
3824 		aio_req_free_port(aiop, reqp);	/* back to free list */
3825 		mutex_exit(&aiop->aio_mutex);
3826 		return (0);
3827 	}
3828 
3829 	iov = reqp->aio_req_uio.uio_iov;
3830 	bp = &reqp->aio_req_buf;
3831 	resultp = (void *)reqp->aio_req_resultp;
3832 	aio_req_free_port(aiop, reqp);	/* request struct back to free list */
3833 	mutex_exit(&aiop->aio_mutex);
3834 	if (flag == PORT_CALLBACK_DEFAULT)
3835 		aio_copyout_result_port(iov, bp, resultp);
3836 	return (0);
3837 }
3838