xref: /titanic_50/usr/src/uts/common/krtld/kobj.c (revision b8bf75cb74c7cf11bde9dc90fb021429968d7654)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Kernel's linker/loader
30  */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/sysmacros.h>
35 #include <sys/systm.h>
36 #include <sys/user.h>
37 #include <sys/kmem.h>
38 #include <sys/reboot.h>
39 #include <sys/bootconf.h>
40 #include <sys/debug.h>
41 #include <sys/uio.h>
42 #include <sys/file.h>
43 #include <sys/vnode.h>
44 #include <sys/user.h>
45 #include <sys/mman.h>
46 #include <vm/as.h>
47 #include <vm/seg_kp.h>
48 #include <vm/seg_kmem.h>
49 #include <sys/elf.h>
50 #include <sys/elf_notes.h>
51 #include <sys/vmsystm.h>
52 #include <sys/kdi.h>
53 #include <sys/atomic.h>
54 #include <sys/kmdb.h>
55 
56 #include <sys/link.h>
57 #include <sys/kobj.h>
58 #include <sys/ksyms.h>
59 #include <sys/disp.h>
60 #include <sys/modctl.h>
61 #include <sys/varargs.h>
62 #include <sys/kstat.h>
63 #include <sys/kobj_impl.h>
64 #include <sys/callb.h>
65 #include <sys/cmn_err.h>
66 #include <sys/tnf_probe.h>
67 
68 #include <reloc.h>
69 #include <kobj_kdi.h>
70 #include <sys/sha1.h>
71 #include <sys/crypto/elfsign.h>
72 
73 #if !defined(__sparc)
74 #include <sys/bootvfs.h>
75 #endif
76 
77 /*
78  * do_symbols() error codes
79  */
80 #define	DOSYM_UNDEF		-1	/* undefined symbol */
81 #define	DOSYM_UNSAFE		-2	/* MT-unsafe driver symbol */
82 
83 static struct module *load_exec(val_t *);
84 static void load_linker(val_t *);
85 static struct modctl *add_primary(char *filename, int);
86 static int bind_primary(val_t *, int);
87 static int load_primary(struct module *, int);
88 static int load_kmdb(val_t *);
89 static int get_progbits(struct module *, struct _buf *);
90 static int get_syms(struct module *, struct _buf *);
91 static int get_ctf(struct module *, struct _buf *);
92 static void get_signature(struct module *, struct _buf *);
93 static int do_common(struct module *);
94 static void add_dependent(struct module *, struct module *);
95 static int do_dependents(struct modctl *, char *, size_t);
96 static int do_symbols(struct module *, Elf64_Addr);
97 static void module_assign(struct modctl *, struct module *);
98 static void free_module_data(struct module *);
99 static char *depends_on(struct module *);
100 static char *getmodpath(void);
101 static char *basename(char *);
102 static void attr_val(val_t *);
103 static char *find_libmacro(char *);
104 static char *expand_libmacro(char *, char *, char *);
105 static int read_bootflags(void);
106 static int kobj_boot_open(char *, int);
107 static int kobj_boot_close(int);
108 static int kobj_boot_seek(int, off_t, off_t);
109 static int kobj_boot_read(int, caddr_t, size_t);
110 static int kobj_boot_fstat(int, struct bootstat *);
111 
112 static Sym *lookup_one(struct module *, const char *);
113 static void sym_insert(struct module *, char *, symid_t);
114 static Sym *sym_lookup(struct module *, Sym *);
115 
116 /*PRINTFLIKE2*/
117 static void kprintf(void *, const char *, ...)  __KPRINTFLIKE(2);
118 
119 static struct kobjopen_tctl *kobjopen_alloc(char *filename);
120 static void kobjopen_free(struct kobjopen_tctl *ltp);
121 static void kobjopen_thread(struct kobjopen_tctl *ltp);
122 
123 extern int kcopy(const void *, void *, size_t);
124 extern int elf_mach_ok(Ehdr *);
125 extern int alloc_gottable(struct module *, caddr_t *, caddr_t *);
126 
127 static void tnf_unsplice_probes(unsigned int, struct modctl *);
128 
129 extern int modrootloaded;
130 extern int swaploaded;
131 extern int bop_io_quiesced;
132 extern int last_module_id;
133 
134 #ifdef KOBJ_DEBUG
135 /*
136  * Values that can be or'd in to kobj_debug and their effects:
137  *
138  *	D_DEBUG		- misc. debugging information.
139  *	D_SYMBOLS	- list symbols and their values as they are entered
140  *			  into the hash table
141  *	D_RELOCATIONS	- display relocation processing information
142  *	D_LOADING	- display information about each module as it
143  *			  is loaded.
144  */
145 int kobj_debug = 0;
146 #endif
147 
148 #define	MODPATH_PROPNAME	"module-path"
149 
150 #ifdef MODDIR_SUFFIX
151 static char slash_moddir_suffix_slash[] = MODDIR_SUFFIX "/";
152 #else
153 #define	slash_moddir_suffix_slash	""
154 #endif
155 
156 #define	_moddebug	get_weakish_int(&moddebug)
157 #define	_modrootloaded	get_weakish_int(&modrootloaded)
158 #define	_swaploaded	get_weakish_int(&swaploaded)
159 #define	_ioquiesced	get_weakish_int(&bop_io_quiesced)
160 
161 #define	mod(X)		(struct module *)((X)->modl_modp->mod_mp)
162 
163 void	*romp;		/* rom vector (opaque to us) */
164 struct bootops *ops;	/* bootops vector */
165 void *dbvec;		/* debug vector */
166 
167 /*
168  * kobjopen thread control structure
169  */
170 struct kobjopen_tctl {
171 	ksema_t		sema;
172 	char		*name;		/* name of file */
173 	struct vnode	*vp;		/* vnode return from vn_open() */
174 	int		Errno;		/* error return from vnopen    */
175 };
176 
177 /*
178  * Structure for defining dynamically expandable library macros
179  */
180 
181 struct lib_macro_info {
182 	char	*lmi_list;		/* ptr to list of possible choices */
183 	char	*lmi_macroname;		/* pointer to macro name */
184 	ushort_t lmi_ba_index;		/* index into bootaux vector */
185 	ushort_t lmi_macrolen;		/* macro length */
186 } libmacros[] = {
187 	{ NULL, "CPU", BA_CPU, 0 },
188 	{ NULL, "MMU", BA_MMU, 0 }
189 };
190 
191 #define	NLIBMACROS	sizeof (libmacros) / sizeof (struct lib_macro_info)
192 
193 char *boot_cpu_compatible_list;			/* make $CPU available */
194 
195 #ifdef	MPSAS
196 void	sas_prisyms(struct modctl_list *);
197 void	sas_syms(struct module *);
198 #endif
199 
200 vmem_t	*text_arena;				/* module text arena */
201 static vmem_t *data_arena;			/* module data & bss arena */
202 static vmem_t *ctf_arena;			/* CTF debug data arena */
203 static struct modctl *kobj_modules = NULL;	/* modules loaded */
204 static char *module_path;			/* module search path */
205 int kobj_mmu_pagesize;				/* system pagesize */
206 static int lg_pagesize;				/* "large" pagesize */
207 static int kobj_last_module_id = 0;		/* id assignment */
208 static kmutex_t kobj_lock;			/* protects mach memory list */
209 
210 /*
211  * The following functions have been implemented by the kernel.
212  * However, many 3rd party drivers provide their own implementations
213  * of these functions.  When such drivers are loaded, messages
214  * indicateing that these symbols have been mulply defined will be
215  * emitted to the console.  To avoid alarming customers for no good
216  * reason, we simply suppress such warnings for the following set of
217  * functions.
218  */
219 static char *suppress_sym_list[] =
220 {
221 	"strstr",
222 	"strncat",
223 	"strlcat",
224 	"strlcpy",
225 	"strspn",
226 	"memcpy",
227 	"memset",
228 	"memmove",
229 	"memcmp",
230 	"memchr",
231 	"__udivdi3",
232 	"__divdi3",
233 	"__umoddi3",
234 	"__moddi3",
235 	NULL		/* This entry must exist */
236 };
237 
238 /* indexed by KOBJ_NOTIFY_* */
239 static kobj_notify_list_t *kobj_notifiers[KOBJ_NOTIFY_MAX + 1];
240 
241 /*
242  * TNF probe management globals
243  */
244 tnf_probe_control_t	*__tnf_probe_list_head = NULL;
245 tnf_tag_data_t		*__tnf_tag_list_head = NULL;
246 int			tnf_changed_probe_list = 0;
247 
248 /*
249  * Prefix for statically defined tracing (SDT) DTrace probes.
250  */
251 const char		*sdt_prefix = "__dtrace_probe_";
252 
253 #if defined(__sparc)
254 /*
255  * Some PROMs return SUNW,UltraSPARC when they actually have
256  * SUNW,UltraSPARC-II cpus. SInce we're now filtering out all
257  * SUNW,UltraSPARC systems during the boot phase, we can safely
258  * point the auxv CPU value at SUNW,UltraSPARC-II. This is what
259  * we point it at.
260  */
261 const char		*ultra_2 = "SUNW,UltraSPARC-II";
262 #endif
263 
264 /*
265  * Beginning and end of the kernel's
266  * dynamic text/data segments.
267  */
268 static caddr_t _text;
269 static caddr_t _etext;
270 static caddr_t	_data;
271 caddr_t _edata;
272 
273 static Addr dynseg = 0;	/* load address of "dynamic" segment */
274 
275 int standalone = 1;			/* an unwholey kernel? */
276 int use_iflush;				/* iflush after relocations */
277 
278 /*
279  * _kobj_printf()
280  *
281  * Common printf function pointer. Can handle only one conversion
282  * specification in the format string. Some of the functions invoked
283  * through this function pointer cannot handle more that one conversion
284  * specification in the format string.
285  */
286 void (*_kobj_printf)(void *, const char *, ...);	/* printf routine */
287 
288 static kobj_stat_t kobj_stat;
289 
290 #define	MINALIGN	8	/* at least a double-word */
291 
292 int
293 get_weakish_int(int *ip)
294 {
295 	if (standalone)
296 		return (0);
297 	return (ip == NULL ? 0 : *ip);
298 }
299 
300 static void *
301 get_weakish_pointer(void **ptrp)
302 {
303 	if (standalone)
304 		return (0);
305 	return (ptrp == NULL ? 0 : *ptrp);
306 }
307 
308 /*
309  * XXX fix dependencies on "kernel"; this should work
310  * for other standalone binaries as well.
311  *
312  * XXX Fix hashing code to use one pointer to
313  * hash entries.
314  *	|----------|
315  *	| nbuckets |
316  *	|----------|
317  *	| nchains  |
318  *	|----------|
319  *	| bucket[] |
320  *	|----------|
321  *	| chain[]  |
322  *	|----------|
323  */
324 
325 /*
326  * Load, bind and relocate all modules that
327  * form the primary kernel. At this point, our
328  * externals have not been relocated.
329  */
330 void
331 kobj_init(
332 	void *romvec,
333 	void *dvec,
334 	struct bootops *bootvec,
335 	val_t *bootaux)
336 {
337 	struct module *mp;
338 	struct modctl *modp;
339 	Addr entry;
340 
341 	/*
342 	 * Save these to pass on to
343 	 * the booted standalone.
344 	 */
345 	romp = romvec;
346 	dbvec = dvec;
347 
348 	ops = bootvec;
349 #if defined(__i386) || defined(__amd64)
350 	_kobj_printf = (void (*)(void *, const char *, ...))ops->bsys_printf;
351 #else
352 	_kobj_printf = (void (*)(void *, const char *, ...))bop_putsarg;
353 #endif
354 
355 #if defined(__sparc)
356 	/* XXXQ should suppress this test on sun4v */
357 	if (bootaux[BA_CPU].ba_ptr) {
358 		if (strcmp("SUNW,UltraSPARC", bootaux[BA_CPU].ba_ptr) == 0) {
359 			bootaux[BA_CPU].ba_ptr = (void *) ultra_2;
360 		}
361 	}
362 #endif
363 	/*
364 	 * Save the interesting attribute-values
365 	 * (scanned by kobj_boot).
366 	 */
367 	attr_val(bootaux);
368 
369 	/*
370 	 * Check bootops version.
371 	 */
372 	if (BOP_GETVERSION(ops) != BO_VERSION) {
373 		_kobj_printf(ops, "Warning: Using boot version %d, ",
374 		    BOP_GETVERSION(ops));
375 		_kobj_printf(ops, "expected %d\n", BO_VERSION);
376 	}
377 
378 	/*
379 	 * We don't support standalone debuggers anymore.  The use of kadb
380 	 * will interfere with the later use of kmdb.  Let the user mend
381 	 * their ways now.  Users will reach this message if they still
382 	 * have the kadb binary on their system (perhaps they used an old
383 	 * bfu, or maybe they intentionally copied it there) and have
384 	 * specified its use in a way that eluded our checking in the boot
385 	 * program.
386 	 */
387 	if (dvec != NULL) {
388 		_kobj_printf(ops, "\nWARNING: Standalone debuggers such as "
389 		    "kadb are no longer supported\n\n");
390 		goto fail;
391 	}
392 
393 #ifndef __sparc
394 	{
395 		/* on x86, we always boot with a ramdisk */
396 		extern int kobj_boot_mountroot(void);
397 		(void) kobj_boot_mountroot();
398 	}
399 #endif
400 
401 	/*
402 	 * Set the module search path.
403 	 */
404 	module_path = getmodpath();
405 
406 	boot_cpu_compatible_list = find_libmacro("CPU");
407 
408 	/*
409 	 * These two modules have actually been
410 	 * loaded by boot, but we finish the job
411 	 * by introducing them into the world of
412 	 * loadable modules.
413 	 */
414 
415 	mp = load_exec(bootaux);
416 	load_linker(bootaux);
417 
418 	/*
419 	 * Load all the primary dependent modules.
420 	 */
421 	if (load_primary(mp, KOBJ_LM_PRIMARY) == -1)
422 		goto fail;
423 
424 	/*
425 	 * Glue it together.
426 	 */
427 	if (bind_primary(bootaux, KOBJ_LM_PRIMARY) == -1)
428 		goto fail;
429 
430 	entry = bootaux[BA_ENTRY].ba_val;
431 
432 #ifdef	__sparc
433 	/*
434 	 * On sparcv9, boot scratch memory is running out.
435 	 * Free the temporary allocations here to allow boot
436 	 * to continue.
437 	 */
438 	kobj_tmp_free();
439 #endif
440 
441 	/*
442 	 * Get the boot flags
443 	 */
444 	bootflags(ops);
445 
446 	if (boothowto & RB_VERBOSE)
447 		kobj_lm_dump(KOBJ_LM_PRIMARY);
448 
449 	kobj_kdi_init();
450 
451 	if (boothowto & RB_KMDB) {
452 		if (load_kmdb(bootaux) < 0)
453 			goto fail;
454 	}
455 
456 	/*
457 	 * Post setup.
458 	 */
459 #ifdef	MPSAS
460 	sas_prisyms(kobj_lm_lookup(KOBJ_LM_PRIMARY));
461 #endif
462 	s_text = _text;
463 	e_text = _etext;
464 	s_data = _data;
465 	e_data = _edata;
466 
467 	kobj_sync_instruction_memory(s_text, e_text - s_text);
468 
469 #ifdef	KOBJ_DEBUG
470 	if (kobj_debug & D_DEBUG)
471 		_kobj_printf(ops,
472 		    "krtld: transferring control to: 0x%p\n", entry);
473 #endif
474 
475 	/*
476 	 * Make sure the mod system knows about the modules already loaded.
477 	 */
478 	last_module_id = kobj_last_module_id;
479 	bcopy(kobj_modules, &modules, sizeof (modules));
480 	modp = &modules;
481 	do {
482 		if (modp->mod_next == kobj_modules)
483 			modp->mod_next = &modules;
484 		if (modp->mod_prev == kobj_modules)
485 			modp->mod_prev = &modules;
486 	} while ((modp = modp->mod_next) != &modules);
487 
488 	standalone = 0;
489 
490 #ifdef	__sparc
491 	/*
492 	 * On sparcv9, boot scratch memory is running out.
493 	 * Free the temporary allocations here to allow boot
494 	 * to continue.
495 	 */
496 	kobj_tmp_free();
497 #endif
498 
499 	_kobj_printf = kprintf;
500 	exitto((caddr_t)entry);
501 fail:
502 
503 	_kobj_printf(ops, "krtld: error during initial load/link phase\n");
504 }
505 
506 /*
507  * Set up any global information derived
508  * from attribute/values in the boot or
509  * aux vector.
510  */
511 static void
512 attr_val(val_t *bootaux)
513 {
514 	Phdr *phdr;
515 	int phnum, phsize;
516 	int i;
517 
518 	kobj_mmu_pagesize = bootaux[BA_PAGESZ].ba_val;
519 	lg_pagesize = bootaux[BA_LPAGESZ].ba_val;
520 	use_iflush = bootaux[BA_IFLUSH].ba_val;
521 
522 	phdr = (Phdr *)bootaux[BA_PHDR].ba_ptr;
523 	phnum = bootaux[BA_PHNUM].ba_val;
524 	phsize = bootaux[BA_PHENT].ba_val;
525 	for (i = 0; i < phnum; i++) {
526 		phdr = (Phdr *)(bootaux[BA_PHDR].ba_val + i * phsize);
527 
528 		if (phdr->p_type != PT_LOAD)
529 			continue;
530 		/*
531 		 * Bounds of the various segments.
532 		 */
533 		if (!(phdr->p_flags & PF_X)) {
534 			dynseg = phdr->p_vaddr;
535 		} else {
536 			if (phdr->p_flags & PF_W) {
537 					_data = (caddr_t)phdr->p_vaddr;
538 					_edata = _data + phdr->p_memsz;
539 			} else {
540 				_text = (caddr_t)phdr->p_vaddr;
541 				_etext = _text + phdr->p_memsz;
542 			}
543 		}
544 	}
545 
546 	/* To do the kobj_alloc, _edata needs to be set. */
547 	for (i = 0; i < NLIBMACROS; i++) {
548 		if (bootaux[libmacros[i].lmi_ba_index].ba_ptr != NULL) {
549 			libmacros[i].lmi_list = kobj_alloc(
550 			    strlen(bootaux[libmacros[i].lmi_ba_index].ba_ptr) +
551 			    1, KM_WAIT);
552 			(void) strcpy(libmacros[i].lmi_list,
553 				bootaux[libmacros[i].lmi_ba_index].ba_ptr);
554 		}
555 		libmacros[i].lmi_macrolen = strlen(libmacros[i].lmi_macroname);
556 	}
557 }
558 
559 /*
560  * Set up the booted executable.
561  */
562 static struct module *
563 load_exec(val_t *bootaux)
564 {
565 	char filename[MAXPATHLEN];
566 	struct modctl *cp;
567 	struct module *mp;
568 	Dyn *dyn;
569 	Sym *sp;
570 	int i, lsize, osize, nsize, allocsize;
571 	char *libname, *tmp;
572 
573 	(void) BOP_GETPROP(ops, "whoami", filename);
574 
575 	cp = add_primary(filename, KOBJ_LM_PRIMARY);
576 
577 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
578 	cp->mod_mp = mp;
579 
580 	/*
581 	 * We don't have the following information
582 	 * since this module is an executable and not
583 	 * a relocatable .o.
584 	 */
585 	mp->symtbl_section = 0;
586 	mp->shdrs = NULL;
587 	mp->strhdr = NULL;
588 
589 	/*
590 	 * Since this module is the only exception,
591 	 * we cons up some section headers.
592 	 */
593 	mp->symhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
594 	mp->strhdr = kobj_zalloc(sizeof (Shdr), KM_WAIT);
595 
596 	mp->symhdr->sh_type = SHT_SYMTAB;
597 	mp->strhdr->sh_type = SHT_STRTAB;
598 	/*
599 	 * Scan the dynamic structure.
600 	 */
601 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
602 	    dyn->d_tag != DT_NULL; dyn++) {
603 		switch (dyn->d_tag) {
604 		case DT_SYMTAB:
605 			dyn->d_un.d_ptr += dynseg;
606 			mp->symspace = mp->symtbl = (char *)dyn->d_un.d_ptr;
607 			mp->symhdr->sh_addr = dyn->d_un.d_ptr;
608 			break;
609 		case DT_HASH:
610 			dyn->d_un.d_ptr += dynseg;
611 			mp->nsyms = *((uint_t *)dyn->d_un.d_ptr + 1);
612 			mp->hashsize = *(uint_t *)dyn->d_un.d_ptr;
613 			break;
614 		case DT_STRTAB:
615 			dyn->d_un.d_ptr += dynseg;
616 			mp->strings = (char *)dyn->d_un.d_ptr;
617 			mp->strhdr->sh_addr = dyn->d_un.d_ptr;
618 			break;
619 		case DT_STRSZ:
620 			mp->strhdr->sh_size = dyn->d_un.d_val;
621 			break;
622 		case DT_SYMENT:
623 			mp->symhdr->sh_entsize = dyn->d_un.d_val;
624 			break;
625 		}
626 	}
627 
628 	/*
629 	 * Collapse any DT_NEEDED entries into one string.
630 	 */
631 	nsize = osize = 0;
632 	allocsize = MAXPATHLEN;
633 
634 	mp->depends_on = kobj_alloc(allocsize, KM_WAIT);
635 
636 	for (dyn = (Dyn *) bootaux[BA_DYNAMIC].ba_ptr;
637 	    dyn->d_tag != DT_NULL; dyn++)
638 		if (dyn->d_tag == DT_NEEDED) {
639 			char *_lib;
640 
641 			libname = mp->strings + dyn->d_un.d_val;
642 			if (strchr(libname, '$') != NULL) {
643 				if ((_lib = expand_libmacro(libname,
644 				    filename, filename)) != NULL)
645 					libname = _lib;
646 				else
647 					_kobj_printf(ops, "krtld: "
648 					    "load_exec: fail to "
649 					    "expand %s\n", libname);
650 			}
651 			lsize = strlen(libname);
652 			nsize += lsize;
653 			if (nsize + 1 > allocsize) {
654 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
655 				    KM_WAIT);
656 				bcopy(mp->depends_on, tmp, osize);
657 				kobj_free(mp->depends_on, allocsize);
658 				mp->depends_on = tmp;
659 				allocsize += MAXPATHLEN;
660 			}
661 			bcopy(libname, mp->depends_on + osize, lsize);
662 			*(mp->depends_on + nsize) = ' '; /* seperate */
663 			nsize++;
664 			osize = nsize;
665 		}
666 	if (nsize) {
667 		mp->depends_on[nsize - 1] = '\0'; /* terminate the string */
668 		/*
669 		 * alloc with exact size and copy whatever it got over
670 		 */
671 		tmp = kobj_alloc(nsize, KM_WAIT);
672 		bcopy(mp->depends_on, tmp, nsize);
673 		kobj_free(mp->depends_on, allocsize);
674 		mp->depends_on = tmp;
675 	} else {
676 		kobj_free(mp->depends_on, allocsize);
677 		mp->depends_on = NULL;
678 	}
679 
680 	mp->flags = KOBJ_EXEC|KOBJ_PRIM;	/* NOT a relocatable .o */
681 	mp->symhdr->sh_size = mp->nsyms * mp->symhdr->sh_entsize;
682 	/*
683 	 * We allocate our own table since we don't
684 	 * hash undefined references.
685 	 */
686 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
687 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
688 
689 	mp->text = _text;
690 	mp->data = _data;
691 	cp->mod_text = mp->text;
692 	cp->mod_text_size = mp->text_size;
693 
694 	mp->filename = cp->mod_filename;
695 
696 #ifdef	KOBJ_DEBUG
697 	if (kobj_debug & D_LOADING) {
698 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
699 		_kobj_printf(ops, "\ttext: 0x%p", mp->text);
700 		_kobj_printf(ops, " size: 0x%x\n", mp->text_size);
701 		_kobj_printf(ops, "\tdata: 0x%p", mp->data);
702 		_kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
703 	}
704 #endif /* KOBJ_DEBUG */
705 
706 	/*
707 	 * Insert symbols into the hash table.
708 	 */
709 	for (i = 0; i < mp->nsyms; i++) {
710 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
711 
712 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
713 			continue;
714 #ifdef	__sparc
715 		/*
716 		 * Register symbols are ignored in the kernel
717 		 */
718 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER)
719 			continue;
720 #endif	/* __sparc */
721 
722 		sym_insert(mp, mp->strings + sp->st_name, i);
723 	}
724 
725 	return (mp);
726 }
727 
728 /*
729  * Set up the linker module.
730  */
731 static void
732 load_linker(val_t *bootaux)
733 {
734 	struct module *kmp = (struct module *)kobj_modules->mod_mp;
735 	struct module *mp;
736 	struct modctl *cp;
737 	int i;
738 	Shdr *shp;
739 	Sym *sp;
740 	int shsize;
741 	char *dlname = (char *)bootaux[BA_LDNAME].ba_ptr;
742 
743 	cp = add_primary(dlname, KOBJ_LM_PRIMARY);
744 
745 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
746 
747 	cp->mod_mp = mp;
748 	mp->hdr = *(Ehdr *)bootaux[BA_LDELF].ba_ptr;
749 	shsize = mp->hdr.e_shentsize * mp->hdr.e_shnum;
750 	mp->shdrs = kobj_alloc(shsize, KM_WAIT);
751 	bcopy(bootaux[BA_LDSHDR].ba_ptr, mp->shdrs, shsize);
752 
753 	for (i = 1; i < (int)mp->hdr.e_shnum; i++) {
754 		shp = (Shdr *)(mp->shdrs + (i * mp->hdr.e_shentsize));
755 
756 		if (shp->sh_flags & SHF_ALLOC) {
757 			if (shp->sh_flags & SHF_WRITE) {
758 				if (mp->data == NULL)
759 					mp->data = (char *)shp->sh_addr;
760 			} else if (mp->text == NULL) {
761 				mp->text = (char *)shp->sh_addr;
762 			}
763 		}
764 		if (shp->sh_type == SHT_SYMTAB) {
765 			mp->symtbl_section = i;
766 			mp->symhdr = shp;
767 			mp->symspace = mp->symtbl = (char *)shp->sh_addr;
768 		}
769 	}
770 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
771 	mp->flags = KOBJ_INTERP|KOBJ_PRIM;
772 	mp->strhdr = (Shdr *)
773 		(mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
774 	mp->strings = (char *)mp->strhdr->sh_addr;
775 	mp->hashsize = kobj_gethashsize(mp->nsyms);
776 
777 	mp->symsize = mp->symhdr->sh_size + mp->strhdr->sh_size + sizeof (int) +
778 		(mp->hashsize + mp->nsyms) * sizeof (symid_t);
779 
780 	mp->chains = kobj_zalloc(mp->nsyms * sizeof (symid_t), KM_WAIT);
781 	mp->buckets = kobj_zalloc(mp->hashsize * sizeof (symid_t), KM_WAIT);
782 
783 	mp->bss = bootaux[BA_BSS].ba_val;
784 	mp->bss_align = 0;	/* pre-aligned during allocation */
785 	mp->bss_size = (uintptr_t)_edata - mp->bss;
786 	mp->text_size = _etext - mp->text;
787 	mp->data_size = _edata - mp->data;
788 	mp->filename = cp->mod_filename;
789 	cp->mod_text = mp->text;
790 	cp->mod_text_size = mp->text_size;
791 
792 	/*
793 	 * Now that we've figured out where the linker is,
794 	 * set the limits for the booted object.
795 	 */
796 	kmp->text_size = (size_t)(mp->text - kmp->text);
797 	kmp->data_size = (size_t)(mp->data - kmp->data);
798 	kobj_modules->mod_text_size = kmp->text_size;
799 
800 #ifdef	KOBJ_DEBUG
801 	if (kobj_debug & D_LOADING) {
802 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
803 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
804 		_kobj_printf(ops, " size: 0x%x\n", mp->text_size);
805 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
806 		_kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
807 	}
808 #endif /* KOBJ_DEBUG */
809 
810 	/*
811 	 * Insert the symbols into the hash table.
812 	 */
813 	for (i = 0; i < mp->nsyms; i++) {
814 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
815 
816 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
817 			continue;
818 		if (ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
819 			if (sp->st_shndx == SHN_COMMON)
820 				sp->st_shndx = SHN_ABS;
821 		}
822 		sym_insert(mp, mp->strings + sp->st_name, i);
823 	}
824 
825 }
826 
827 static kobj_notify_list_t **
828 kobj_notify_lookup(uint_t type)
829 {
830 	ASSERT(type != 0 && type < sizeof (kobj_notifiers) /
831 	    sizeof (kobj_notify_list_t *));
832 
833 	return (&kobj_notifiers[type]);
834 }
835 
836 int
837 kobj_notify_add(kobj_notify_list_t *knp)
838 {
839 	kobj_notify_list_t **knl;
840 
841 	knl = kobj_notify_lookup(knp->kn_type);
842 
843 	knp->kn_next = NULL;
844 	knp->kn_prev = NULL;
845 
846 	mutex_enter(&kobj_lock);
847 
848 	if (*knl != NULL) {
849 		(*knl)->kn_prev = knp;
850 		knp->kn_next = *knl;
851 	}
852 	(*knl) = knp;
853 
854 	mutex_exit(&kobj_lock);
855 	return (0);
856 }
857 
858 int
859 kobj_notify_remove(kobj_notify_list_t *knp)
860 {
861 	kobj_notify_list_t **knl = kobj_notify_lookup(knp->kn_type);
862 	kobj_notify_list_t *tknp;
863 
864 	mutex_enter(&kobj_lock);
865 
866 	/* LINTED */
867 	if (tknp = knp->kn_next)
868 		tknp->kn_prev = knp->kn_prev;
869 
870 	/* LINTED */
871 	if (tknp = knp->kn_prev)
872 		tknp->kn_next = knp->kn_next;
873 	else
874 		*knl = knp->kn_next;
875 
876 	mutex_exit(&kobj_lock);
877 
878 	return (0);
879 }
880 
881 /*
882  * Notify all interested callbacks of a specified change in module state.
883  */
884 static void
885 kobj_notify(int type, struct modctl *modp)
886 {
887 	kobj_notify_list_t *knp;
888 
889 	if (modp->mod_loadflags & MOD_NONOTIFY || standalone)
890 		return;
891 
892 	mutex_enter(&kobj_lock);
893 
894 	for (knp = *(kobj_notify_lookup(type)); knp != NULL; knp = knp->kn_next)
895 		knp->kn_func(type, modp);
896 
897 	/*
898 	 * KDI notification must be last (it has to allow for work done by the
899 	 * other notification callbacks), so we call it manually.
900 	 */
901 	kobj_kdi_mod_notify(type, modp);
902 
903 	mutex_exit(&kobj_lock);
904 }
905 
906 /*
907  * Ask boot for the module path.
908  */
909 static char *
910 getmodpath(void)
911 {
912 	char *path;
913 	int len;
914 
915 	if ((len = BOP_GETPROPLEN(ops, MODPATH_PROPNAME)) == -1)
916 		return (MOD_DEFPATH);
917 
918 	path = kobj_zalloc(len, KM_WAIT);
919 
920 	(void) BOP_GETPROP(ops, MODPATH_PROPNAME, path);
921 
922 	return (*path ? path : MOD_DEFPATH);
923 }
924 
925 static struct modctl *
926 add_primary(char *filename, int lmid)
927 {
928 	struct modctl *cp;
929 
930 	cp = kobj_zalloc(sizeof (struct modctl), KM_WAIT);
931 
932 	cp->mod_filename = kobj_alloc(strlen(filename) + 1, KM_WAIT);
933 
934 	/*
935 	 * For symbol lookup, we assemble our own
936 	 * modctl list of the primary modules.
937 	 */
938 
939 	(void) strcpy(cp->mod_filename, filename);
940 	cp->mod_modname = basename(cp->mod_filename);
941 
942 	/* set values for modinfo assuming that the load will work */
943 	cp->mod_prim = 1;
944 	cp->mod_loaded = 1;
945 	cp->mod_installed = 1;
946 	cp->mod_loadcnt = 1;
947 	cp->mod_loadflags = MOD_NOAUTOUNLOAD;
948 
949 	cp->mod_id = kobj_last_module_id++;
950 
951 	/*
952 	 * Link the module in. We'll pass this info on
953 	 * to the mod squad later.
954 	 */
955 	if (kobj_modules == NULL) {
956 		kobj_modules = cp;
957 		cp->mod_prev = cp->mod_next = cp;
958 	} else {
959 		cp->mod_prev = kobj_modules->mod_prev;
960 		cp->mod_next = kobj_modules;
961 		kobj_modules->mod_prev->mod_next = cp;
962 		kobj_modules->mod_prev = cp;
963 	}
964 
965 	kobj_lm_append(lmid, cp);
966 
967 	return (cp);
968 }
969 
970 static int
971 bind_primary(val_t *bootaux, int lmid)
972 {
973 	struct modctl_list *linkmap = kobj_lm_lookup(lmid);
974 	struct modctl_list *lp;
975 	struct module *mp;
976 	Dyn *dyn;
977 	Word relasz;
978 	Word relaent;
979 	char *rela;
980 
981 	/*
982 	 * Do common symbols.
983 	 */
984 	for (lp = linkmap; lp; lp = lp->modl_next) {
985 		mp = mod(lp);
986 
987 		/*
988 		 * Don't do common section relocations for modules that
989 		 * don't need it.
990 		 */
991 		if (mp->flags & (KOBJ_EXEC|KOBJ_INTERP))
992 			continue;
993 
994 		if (do_common(mp) < 0)
995 			return (-1);
996 	}
997 
998 	/*
999 	 * Resolve symbols.
1000 	 */
1001 	for (lp = linkmap; lp; lp = lp->modl_next) {
1002 		mp = mod(lp);
1003 
1004 		if (do_symbols(mp, 0) < 0)
1005 			return (-1);
1006 	}
1007 
1008 	/*
1009 	 * Do relocations.
1010 	 */
1011 	for (lp = linkmap; lp; lp = lp->modl_next) {
1012 		mp = mod(lp);
1013 
1014 		if (mp->flags & KOBJ_EXEC) {
1015 			Word	shtype;
1016 
1017 			relasz = 0;
1018 			relaent = 0;
1019 			rela = NULL;
1020 
1021 			for (dyn = (Dyn *)bootaux[BA_DYNAMIC].ba_ptr;
1022 			    dyn->d_tag != DT_NULL; dyn++) {
1023 				switch (dyn->d_tag) {
1024 				case DT_RELASZ:
1025 				case DT_RELSZ:
1026 					relasz = dyn->d_un.d_val;
1027 					break;
1028 				case DT_RELAENT:
1029 				case DT_RELENT:
1030 					relaent = dyn->d_un.d_val;
1031 					break;
1032 				case DT_RELA:
1033 					shtype = SHT_RELA;
1034 					rela = (char *)(dyn->d_un.d_ptr +
1035 						dynseg);
1036 					break;
1037 				case DT_REL:
1038 					shtype = SHT_REL;
1039 					rela = (char *)(dyn->d_un.d_ptr +
1040 						dynseg);
1041 					break;
1042 				}
1043 			}
1044 			if (relasz == 0 ||
1045 			    relaent == 0 || rela == NULL) {
1046 				_kobj_printf(ops, "krtld: bind_primary(): "
1047 				    "no relocation information found for "
1048 				    "module %s\n", mp->filename);
1049 				return (-1);
1050 			}
1051 
1052 #ifdef	KOBJ_DEBUG
1053 			if (kobj_debug & D_RELOCATIONS)
1054 				_kobj_printf(ops, "krtld: relocating: file=%s "
1055 				    "KOBJ_EXEC\n", mp->filename);
1056 #endif
1057 			if (do_relocate(mp, rela, shtype, relasz/relaent,
1058 			    relaent, (Addr)mp->text) < 0)
1059 				return (-1);
1060 		} else {
1061 			if (do_relocations(mp) < 0)
1062 				return (-1);
1063 		}
1064 
1065 		/* sync_instruction_memory */
1066 		kobj_sync_instruction_memory(mp->text, mp->text_size);
1067 	}
1068 
1069 	for (lp = linkmap; lp; lp = lp->modl_next) {
1070 		mp = mod(lp);
1071 
1072 		/*
1073 		 * We need to re-read the full symbol table for the boot file,
1074 		 * since we couldn't use the full one before.  We also need to
1075 		 * load the CTF sections of both the boot file and the
1076 		 * interpreter (us).
1077 		 */
1078 		if (mp->flags & KOBJ_EXEC) {
1079 			struct _buf *file;
1080 			int n;
1081 
1082 			file = kobj_open_file(mp->filename);
1083 			if (file == (struct _buf *)-1)
1084 				return (-1);
1085 			if (kobj_read_file(file, (char *)&mp->hdr,
1086 			    sizeof (mp->hdr), 0) < 0)
1087 				return (-1);
1088 			n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1089 			mp->shdrs = kobj_alloc(n, KM_WAIT);
1090 			if (kobj_read_file(file, mp->shdrs, n,
1091 			    mp->hdr.e_shoff) < 0)
1092 				return (-1);
1093 			if (get_syms(mp, file) < 0)
1094 				return (-1);
1095 			if (get_ctf(mp, file) < 0)
1096 				return (-1);
1097 			kobj_close_file(file);
1098 			mp->flags |= KOBJ_RELOCATED;
1099 
1100 		} else if (mp->flags & KOBJ_INTERP) {
1101 			struct _buf *file;
1102 
1103 			/*
1104 			 * The interpreter path fragment in mp->filename
1105 			 * will already have the module directory suffix
1106 			 * in it (if appropriate).
1107 			 */
1108 			file = kobj_open_path(mp->filename, 1, 0);
1109 			if (file == (struct _buf *)-1)
1110 				return (-1);
1111 			if (get_ctf(mp, file) < 0)
1112 				return (-1);
1113 			kobj_close_file(file);
1114 			mp->flags |= KOBJ_RELOCATED;
1115 		}
1116 	}
1117 
1118 	return (0);
1119 }
1120 
1121 static struct modctl *
1122 mod_already_loaded(char *modname)
1123 {
1124 	struct modctl *mctl = kobj_modules;
1125 
1126 	do {
1127 		if (strcmp(modname, mctl->mod_filename) == 0)
1128 			return (mctl);
1129 		mctl = mctl->mod_next;
1130 
1131 	} while (mctl != kobj_modules);
1132 
1133 	return (NULL);
1134 }
1135 
1136 /*
1137  * Load all the primary dependent modules.
1138  */
1139 static int
1140 load_primary(struct module *mp, int lmid)
1141 {
1142 	struct modctl *cp;
1143 	struct module *dmp;
1144 	char *p, *q;
1145 	char modname[MODMAXNAMELEN];
1146 
1147 	if ((p = mp->depends_on) == NULL)
1148 		return (0);
1149 
1150 	/* CONSTANTCONDITION */
1151 	while (1) {
1152 		/*
1153 		 * Skip space.
1154 		 */
1155 		while (*p && (*p == ' ' || *p == '\t'))
1156 			p++;
1157 		/*
1158 		 * Get module name.
1159 		 */
1160 		q = modname;
1161 		while (*p && *p != ' ' && *p != '\t')
1162 			*q++ = *p++;
1163 
1164 		if (q == modname)
1165 			break;
1166 
1167 		*q = '\0';
1168 		/*
1169 		 * Check for dup dependencies.
1170 		 */
1171 		if (strcmp(modname, "dtracestubs") == 0 ||
1172 		    mod_already_loaded(modname) != NULL)
1173 			continue;
1174 
1175 		cp = add_primary(modname, lmid);
1176 		cp->mod_busy = 1;
1177 		/*
1178 		 * Load it.
1179 		 */
1180 		(void) kobj_load_module(cp, 1);
1181 		cp->mod_busy = 0;
1182 
1183 		if ((dmp = cp->mod_mp) == NULL) {
1184 			cp->mod_loaded = 0;
1185 			cp->mod_installed = 0;
1186 			cp->mod_loadcnt = 0;
1187 			return (-1);
1188 		}
1189 
1190 		add_dependent(mp, dmp);
1191 		dmp->flags |= KOBJ_PRIM;
1192 
1193 		/*
1194 		 * Recurse.
1195 		 */
1196 		if (load_primary(dmp, lmid) == -1) {
1197 			cp->mod_loaded = 0;
1198 			cp->mod_installed = 0;
1199 			cp->mod_loadcnt = 0;
1200 			return (-1);
1201 		}
1202 	}
1203 	return (0);
1204 }
1205 
1206 static int
1207 load_kmdb(val_t *bootaux)
1208 {
1209 	struct modctl *mctl;
1210 	struct module *mp;
1211 	Sym *sym;
1212 
1213 	_kobj_printf(ops, "Loading kmdb...\n");
1214 
1215 	if ((mctl = add_primary("misc/kmdbmod", KOBJ_LM_DEBUGGER)) == NULL)
1216 		return (-1);
1217 
1218 	mctl->mod_busy = 1;
1219 	(void) kobj_load_module(mctl, 1);
1220 	mctl->mod_busy = 0;
1221 
1222 	if ((mp = mctl->mod_mp) == NULL)
1223 		return (-1);
1224 
1225 	mp->flags |= KOBJ_PRIM;
1226 
1227 	if (load_primary(mp, KOBJ_LM_DEBUGGER) < 0)
1228 		return (-1);
1229 
1230 	if (boothowto & RB_VERBOSE)
1231 		kobj_lm_dump(KOBJ_LM_DEBUGGER);
1232 
1233 	if (bind_primary(bootaux, KOBJ_LM_DEBUGGER) < 0)
1234 		return (-1);
1235 
1236 	if ((sym = lookup_one(mctl->mod_mp, "kctl_boot_activate")) == NULL)
1237 		return (-1);
1238 
1239 	if (((kctl_boot_activate_f *)sym->st_value)(ops, romp, 0,
1240 	    (const char **)kobj_kmdb_argv) < 0)
1241 		return (-1);
1242 
1243 	return (0);
1244 }
1245 
1246 /*
1247  * Return a string listing module dependencies.
1248  */
1249 static char *
1250 depends_on(struct module *mp)
1251 {
1252 	Sym *sp;
1253 	char *depstr, *q;
1254 
1255 	/*
1256 	 * The module doesn't have a depends_on value, so let's try it the
1257 	 * old-fashioned way - via "_depends_on"
1258 	 */
1259 	if ((sp = lookup_one(mp, "_depends_on")) == NULL)
1260 		return (NULL);
1261 
1262 	q = (char *)sp->st_value;
1263 
1264 	/*
1265 	 * Idiot checks. Make sure it's
1266 	 * in-bounds and NULL terminated.
1267 	 */
1268 	if (kobj_addrcheck(mp, q) || q[sp->st_size - 1] != '\0') {
1269 		_kobj_printf(ops, "Error processing dependency for %s\n",
1270 		    mp->filename);
1271 		return (NULL);
1272 	}
1273 
1274 	depstr = (char *)kobj_alloc(strlen(q) + 1, KM_WAIT);
1275 	(void) strcpy(depstr, q);
1276 
1277 	return (depstr);
1278 }
1279 
1280 void
1281 kobj_getmodinfo(void *xmp, struct modinfo *modinfo)
1282 {
1283 	struct module *mp;
1284 	mp = (struct module *)xmp;
1285 
1286 	modinfo->mi_base = mp->text;
1287 	modinfo->mi_size = mp->text_size + mp->data_size;
1288 }
1289 
1290 /*
1291  * kobj_export_ksyms() performs the following services:
1292  *
1293  * (1) Migrates the symbol table from boot/kobj memory to the ksyms arena.
1294  * (2) Removes unneeded symbols to save space.
1295  * (3) Reduces memory footprint by using VM_BESTFIT allocations.
1296  * (4) Makes the symbol table visible to /dev/ksyms.
1297  */
1298 static void
1299 kobj_export_ksyms(struct module *mp)
1300 {
1301 	Sym *esp = (Sym *)(mp->symtbl + mp->symhdr->sh_size);
1302 	Sym *sp, *osp;
1303 	char *name;
1304 	size_t namelen;
1305 	struct module *omp;
1306 	uint_t nsyms;
1307 	size_t symsize = mp->symhdr->sh_entsize;
1308 	size_t locals = 1;
1309 	size_t strsize;
1310 
1311 	/*
1312 	 * Make a copy of the original module structure.
1313 	 */
1314 	omp = kobj_alloc(sizeof (struct module), KM_WAIT);
1315 	bcopy(mp, omp, sizeof (struct module));
1316 
1317 	/*
1318 	 * Compute the sizes of the new symbol table sections.
1319 	 */
1320 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1321 		if (osp->st_value == 0)
1322 			continue;
1323 		if (sym_lookup(omp, osp) == NULL)
1324 			continue;
1325 		name = omp->strings + osp->st_name;
1326 		namelen = strlen(name);
1327 		if (ELF_ST_BIND(osp->st_info) == STB_LOCAL)
1328 			locals++;
1329 		nsyms++;
1330 		strsize += namelen + 1;
1331 	}
1332 
1333 	mp->nsyms = nsyms;
1334 	mp->hashsize = kobj_gethashsize(mp->nsyms);
1335 
1336 	/*
1337 	 * ksyms_lock must be held as writer during any operation that
1338 	 * modifies ksyms_arena, including allocation from same, and
1339 	 * must not be dropped until the arena is vmem_walk()able.
1340 	 */
1341 	rw_enter(&ksyms_lock, RW_WRITER);
1342 
1343 	/*
1344 	 * Allocate space for the new section headers (symtab and strtab),
1345 	 * symbol table, buckets, chains, and strings.
1346 	 */
1347 	mp->symsize = (2 * sizeof (Shdr)) + (nsyms * symsize) +
1348 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + strsize;
1349 
1350 	if (mp->flags & KOBJ_NOKSYMS) {
1351 		mp->symspace = kobj_alloc(mp->symsize, KM_WAIT);
1352 	} else {
1353 		mp->symspace = vmem_alloc(ksyms_arena, mp->symsize,
1354 		    VM_BESTFIT | VM_SLEEP);
1355 	}
1356 	bzero(mp->symspace, mp->symsize);
1357 
1358 	/*
1359 	 * Divvy up symspace.
1360 	 */
1361 	mp->shdrs = mp->symspace;
1362 	mp->symhdr = (Shdr *)mp->shdrs;
1363 	mp->strhdr = (Shdr *)(mp->symhdr + 1);
1364 	mp->symtbl = (char *)(mp->strhdr + 1);
1365 	mp->buckets = (symid_t *)(mp->symtbl + (nsyms * symsize));
1366 	mp->chains = (symid_t *)(mp->buckets + mp->hashsize);
1367 	mp->strings = (char *)(mp->chains + nsyms);
1368 
1369 	/*
1370 	 * Fill in the new section headers (symtab and strtab).
1371 	 */
1372 	mp->hdr.e_shnum = 2;
1373 	mp->symtbl_section = 0;
1374 
1375 	mp->symhdr->sh_type = SHT_SYMTAB;
1376 	mp->symhdr->sh_addr = (Addr)mp->symtbl;
1377 	mp->symhdr->sh_size = nsyms * symsize;
1378 	mp->symhdr->sh_link = 1;
1379 	mp->symhdr->sh_info = locals;
1380 	mp->symhdr->sh_addralign = sizeof (Addr);
1381 	mp->symhdr->sh_entsize = symsize;
1382 
1383 	mp->strhdr->sh_type = SHT_STRTAB;
1384 	mp->strhdr->sh_addr = (Addr)mp->strings;
1385 	mp->strhdr->sh_size = strsize;
1386 	mp->strhdr->sh_addralign = 1;
1387 
1388 	/*
1389 	 * Construct the new symbol table.
1390 	 */
1391 	for (nsyms = strsize = 1, osp = (Sym *)omp->symtbl; osp < esp; osp++) {
1392 		if (osp->st_value == 0)
1393 			continue;
1394 		if (sym_lookup(omp, osp) == NULL)
1395 			continue;
1396 		name = omp->strings + osp->st_name;
1397 		namelen = strlen(name);
1398 		sp = (Sym *)(mp->symtbl + symsize * nsyms);
1399 		bcopy(osp, sp, symsize);
1400 		bcopy(name, mp->strings + strsize, namelen);
1401 		sp->st_name = strsize;
1402 		sym_insert(mp, name, nsyms);
1403 		nsyms++;
1404 		strsize += namelen + 1;
1405 	}
1406 
1407 	rw_exit(&ksyms_lock);
1408 
1409 	/*
1410 	 * Free the old section headers -- we'll never need them again.
1411 	 */
1412 	if (!(mp->flags & KOBJ_PRIM))
1413 		kobj_free(omp->shdrs, omp->hdr.e_shentsize * omp->hdr.e_shnum);
1414 	/*
1415 	 * Discard the old symbol table and our copy of the module strucure.
1416 	 */
1417 	if (!(mp->flags & KOBJ_PRIM))
1418 		kobj_free(omp->symspace, omp->symsize);
1419 	kobj_free(omp, sizeof (struct module));
1420 }
1421 
1422 static void
1423 kobj_export_ctf(struct module *mp)
1424 {
1425 	char *data = mp->ctfdata;
1426 	size_t size = mp->ctfsize;
1427 
1428 	if (data != NULL) {
1429 		if (_moddebug & MODDEBUG_NOCTF) {
1430 			mp->ctfdata = NULL;
1431 			mp->ctfsize = 0;
1432 		} else {
1433 			mp->ctfdata = vmem_alloc(ctf_arena, size,
1434 			    VM_BESTFIT | VM_SLEEP);
1435 			bcopy(data, mp->ctfdata, size);
1436 		}
1437 
1438 		if (!(mp->flags & KOBJ_PRIM))
1439 			kobj_free(data, size);
1440 	}
1441 }
1442 
1443 void
1444 kobj_export_module(struct module *mp)
1445 {
1446 	kobj_export_ksyms(mp);
1447 	kobj_export_ctf(mp);
1448 
1449 	mp->flags |= KOBJ_EXPORTED;
1450 }
1451 
1452 static int
1453 process_dynamic(struct module *mp, char *dyndata, char *strdata)
1454 {
1455 	char *path = NULL, *depstr = NULL;
1456 	int allocsize = 0, osize = 0, nsize = 0;
1457 	char *libname, *tmp;
1458 	int lsize;
1459 	Dyn *dynp;
1460 
1461 	for (dynp = (Dyn *)dyndata; dynp && dynp->d_tag != DT_NULL; dynp++) {
1462 		switch (dynp->d_tag) {
1463 		case DT_NEEDED:
1464 			/*
1465 			 * Read the DT_NEEDED entries, expanding the macros they
1466 			 * contain (if any), and concatenating them into a
1467 			 * single space-separated dependency list.
1468 			 */
1469 			libname = (ulong_t)dynp->d_un.d_ptr + strdata;
1470 
1471 			if (strchr(libname, '$') != NULL) {
1472 				char *_lib;
1473 
1474 				if (path == NULL)
1475 					path = kobj_alloc(MAXPATHLEN, KM_WAIT);
1476 				if ((_lib = expand_libmacro(libname, path,
1477 				    path)) != NULL)
1478 					libname = _lib;
1479 				else {
1480 					_kobj_printf(ops, "krtld: "
1481 					    "process_dynamic: failed to expand "
1482 					    "%s\n", libname);
1483 				}
1484 			}
1485 
1486 			lsize = strlen(libname);
1487 			nsize += lsize;
1488 			if (nsize + 1 > allocsize) {
1489 				tmp = kobj_alloc(allocsize + MAXPATHLEN,
1490 				    KM_WAIT);
1491 				if (depstr != NULL) {
1492 					bcopy(depstr, tmp, osize);
1493 					kobj_free(depstr, allocsize);
1494 				}
1495 				depstr = tmp;
1496 				allocsize += MAXPATHLEN;
1497 			}
1498 			bcopy(libname, depstr + osize, lsize);
1499 			*(depstr + nsize) = ' '; /* separator */
1500 			nsize++;
1501 			osize = nsize;
1502 			break;
1503 
1504 		case DT_FLAGS_1:
1505 			if (dynp->d_un.d_val & DF_1_IGNMULDEF)
1506 				mp->flags |= KOBJ_IGNMULDEF;
1507 			if (dynp->d_un.d_val & DF_1_NOKSYMS)
1508 				mp->flags |= KOBJ_NOKSYMS;
1509 
1510 			break;
1511 		}
1512 	}
1513 
1514 	/*
1515 	 * finish up the depends string (if any)
1516 	 */
1517 	if (depstr != NULL) {
1518 		*(depstr + nsize - 1) = '\0'; /* overwrite seperator w/term */
1519 		if (path != NULL)
1520 			kobj_free(path, MAXPATHLEN);
1521 
1522 		tmp = kobj_alloc(nsize, KM_WAIT);
1523 		bcopy(depstr, tmp, nsize);
1524 		kobj_free(depstr, allocsize);
1525 		depstr = tmp;
1526 
1527 		mp->depends_on = depstr;
1528 	}
1529 
1530 	return (0);
1531 }
1532 
1533 static int
1534 do_dynamic(struct module *mp, struct _buf *file)
1535 {
1536 	Shdr *dshp, *dstrp, *shp;
1537 	char *dyndata, *dstrdata;
1538 	int dshn, shn, rc;
1539 
1540 	/* find and validate the dynamic section (if any) */
1541 
1542 	for (dshp = NULL, shn = 1; shn < mp->hdr.e_shnum; shn++) {
1543 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
1544 		switch (shp->sh_type) {
1545 		case SHT_DYNAMIC:
1546 			if (dshp != NULL) {
1547 				_kobj_printf(ops, "krtld: get_dynamic: %s, ",
1548 				    mp->filename);
1549 				_kobj_printf(ops,
1550 				    "multiple dynamic sections\n");
1551 				return (-1);
1552 			} else {
1553 				dshp = shp;
1554 				dshn = shn;
1555 			}
1556 			break;
1557 		}
1558 	}
1559 
1560 	if (dshp == NULL)
1561 		return (0);
1562 
1563 	if (dshp->sh_link > mp->hdr.e_shnum) {
1564 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1565 		_kobj_printf(ops, "no section for sh_link %d\n", dshp->sh_link);
1566 		return (-1);
1567 	}
1568 	dstrp = (Shdr *)(mp->shdrs + dshp->sh_link * mp->hdr.e_shentsize);
1569 
1570 	if (dstrp->sh_type != SHT_STRTAB) {
1571 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1572 		_kobj_printf(ops, "sh_link not a string table for section %d\n",
1573 		    dshn);
1574 		return (-1);
1575 	}
1576 
1577 	/* read it from disk */
1578 
1579 	dyndata = kobj_alloc(dshp->sh_size, KM_WAIT|KM_TMP);
1580 	if (kobj_read_file(file, dyndata, dshp->sh_size, dshp->sh_offset) < 0) {
1581 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1582 		_kobj_printf(ops, "error reading section %d\n", dshn);
1583 
1584 		kobj_free(dyndata, dshp->sh_size);
1585 		return (-1);
1586 	}
1587 
1588 	dstrdata = kobj_alloc(dstrp->sh_size, KM_WAIT|KM_TMP);
1589 	if (kobj_read_file(file, dstrdata, dstrp->sh_size,
1590 	    dstrp->sh_offset) < 0) {
1591 		_kobj_printf(ops, "krtld: get_dynamic: %s, ", mp->filename);
1592 		_kobj_printf(ops, "error reading section %d\n", dshp->sh_link);
1593 
1594 		kobj_free(dyndata, dshp->sh_size);
1595 		kobj_free(dstrdata, dstrp->sh_size);
1596 		return (-1);
1597 	}
1598 
1599 	/* pull the interesting pieces out */
1600 
1601 	rc = process_dynamic(mp, dyndata, dstrdata);
1602 
1603 	kobj_free(dyndata, dshp->sh_size);
1604 	kobj_free(dstrdata, dstrp->sh_size);
1605 
1606 	return (rc);
1607 }
1608 
1609 void
1610 kobj_set_ctf(struct module *mp, caddr_t data, size_t size)
1611 {
1612 	if (!standalone) {
1613 		if (mp->ctfdata != NULL) {
1614 			if (vmem_contains(ctf_arena, mp->ctfdata,
1615 				mp->ctfsize)) {
1616 				vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1617 			} else {
1618 				kobj_free(mp->ctfdata, mp->ctfsize);
1619 			}
1620 		}
1621 	}
1622 
1623 	/*
1624 	 * The order is very important here.  We need to make sure that
1625 	 * consumers, at any given instant, see a consistent state.  We'd
1626 	 * rather they see no CTF data than the address of one buffer and the
1627 	 * size of another.
1628 	 */
1629 	mp->ctfdata = NULL;
1630 	membar_producer();
1631 	mp->ctfsize = size;
1632 	mp->ctfdata = data;
1633 	membar_producer();
1634 }
1635 
1636 int
1637 kobj_load_module(struct modctl *modp, int use_path)
1638 {
1639 	char *filename = modp->mod_filename;
1640 	char *modname = modp->mod_modname;
1641 	int i;
1642 	int n;
1643 	struct _buf *file;
1644 	struct module *mp = NULL;
1645 #ifdef MODDIR_SUFFIX
1646 	int no_suffixdir_drv = 0;
1647 #endif
1648 
1649 	mp = kobj_zalloc(sizeof (struct module), KM_WAIT);
1650 
1651 	/*
1652 	 * We need to prevent kmdb's symbols from leaking into /dev/ksyms.
1653 	 * kmdb contains a bunch of symbols with well-known names, symbols
1654 	 * which will mask the real versions, thus causing no end of trouble
1655 	 * for mdb.
1656 	 */
1657 	if (strcmp(modp->mod_modname, "kmdbmod") == 0)
1658 		mp->flags |= KOBJ_NOKSYMS;
1659 
1660 	file = kobj_open_path(filename, use_path, 1);
1661 	if (file == (struct _buf *)-1) {
1662 #ifdef MODDIR_SUFFIX
1663 		file = kobj_open_path(filename, use_path, 0);
1664 #endif
1665 		if (file == (struct _buf *)-1) {
1666 			kobj_free(mp, sizeof (*mp));
1667 			goto bad;
1668 		}
1669 #ifdef MODDIR_SUFFIX
1670 		/*
1671 		 * There is no driver module in the ISA specific (suffix)
1672 		 * subdirectory but there is a module in the parent directory.
1673 		 */
1674 		if (strncmp(filename, "drv/", 4) == 0) {
1675 			no_suffixdir_drv = 1;
1676 		}
1677 #endif
1678 	}
1679 
1680 	mp->filename = kobj_alloc(strlen(file->_name) + 1, KM_WAIT);
1681 	(void) strcpy(mp->filename, file->_name);
1682 
1683 	if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) {
1684 		_kobj_printf(ops, "kobj_load_module: %s read header failed\n",
1685 		    modname);
1686 		kobj_free(mp->filename, strlen(file->_name) + 1);
1687 		kobj_free(mp, sizeof (*mp));
1688 		goto bad;
1689 	}
1690 	for (i = 0; i < SELFMAG; i++) {
1691 		if (mp->hdr.e_ident[i] != ELFMAG[i]) {
1692 			if (_moddebug & MODDEBUG_ERRMSG)
1693 				_kobj_printf(ops, "%s not an elf module\n",
1694 				    modname);
1695 			kobj_free(mp->filename, strlen(file->_name) + 1);
1696 			kobj_free(mp, sizeof (*mp));
1697 			goto bad;
1698 		}
1699 	}
1700 	/*
1701 	 * It's ELF, but is it our ISA?  Interpreting the header
1702 	 * from a file for a byte-swapped ISA could cause a huge
1703 	 * and unsatisfiable value to be passed to kobj_alloc below
1704 	 * and therefore hang booting.
1705 	 */
1706 	if (!elf_mach_ok(&mp->hdr)) {
1707 		if (_moddebug & MODDEBUG_ERRMSG)
1708 			_kobj_printf(ops, "%s not an elf module for this ISA\n",
1709 			    modname);
1710 		kobj_free(mp->filename, strlen(file->_name) + 1);
1711 		kobj_free(mp, sizeof (*mp));
1712 #ifdef MODDIR_SUFFIX
1713 		/*
1714 		 * The driver mod is not in the ISA specific subdirectory
1715 		 * and the module in the parent directory is not our ISA.
1716 		 * If it is our ISA, for now we will silently succeed.
1717 		 */
1718 		if (no_suffixdir_drv == 1) {
1719 			cmn_err(CE_CONT, "?NOTICE: %s: 64-bit driver module"
1720 			    " not found\n", modname);
1721 		}
1722 #endif
1723 		goto bad;
1724 	}
1725 
1726 	/*
1727 	 * All modules, save for unix, should be relocatable (as opposed to
1728 	 * dynamic).  Dynamic modules come with PLTs and GOTs, which can't
1729 	 * currently be processed by krtld.
1730 	 */
1731 	if (mp->hdr.e_type != ET_REL) {
1732 		if (_moddebug & MODDEBUG_ERRMSG)
1733 			_kobj_printf(ops, "%s isn't a relocatable (ET_REL) "
1734 			    "module\n", modname);
1735 		kobj_free(mp->filename, strlen(file->_name) + 1);
1736 		kobj_free(mp, sizeof (*mp));
1737 		goto bad;
1738 	}
1739 
1740 	n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
1741 	mp->shdrs = kobj_alloc(n, KM_WAIT);
1742 
1743 	if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) {
1744 		_kobj_printf(ops, "kobj_load_module: %s error reading "
1745 		    "section headers\n", modname);
1746 		kobj_free(mp->shdrs, n);
1747 		kobj_free(mp->filename, strlen(file->_name) + 1);
1748 		kobj_free(mp, sizeof (*mp));
1749 		goto bad;
1750 	}
1751 
1752 	kobj_notify(KOBJ_NOTIFY_MODLOADING, modp);
1753 	module_assign(modp, mp);
1754 
1755 	/* read in sections */
1756 	if (get_progbits(mp, file) < 0) {
1757 		_kobj_printf(ops, "%s error reading sections\n", modname);
1758 		goto bad;
1759 	}
1760 
1761 	if (do_dynamic(mp, file) < 0) {
1762 		_kobj_printf(ops, "%s error reading dynamic section\n",
1763 		    modname);
1764 		goto bad;
1765 	}
1766 
1767 	modp->mod_text = mp->text;
1768 	modp->mod_text_size = mp->text_size;
1769 
1770 	/* read in symbols; adjust values for each section's real address */
1771 	if (get_syms(mp, file) < 0) {
1772 		_kobj_printf(ops, "%s error reading symbols\n",
1773 		    modname);
1774 		goto bad;
1775 	}
1776 
1777 	/*
1778 	 * If we didn't dependency information from the dynamic section, look
1779 	 * for it the old-fashioned way.
1780 	 */
1781 	if (mp->depends_on == NULL)
1782 		mp->depends_on = depends_on(mp);
1783 
1784 	if (get_ctf(mp, file) < 0) {
1785 		_kobj_printf(ops, "%s debug information will not "
1786 		    "be available\n", modname);
1787 	}
1788 
1789 	/* primary kernel modules do not have a signature section */
1790 	if (!(mp->flags & KOBJ_PRIM))
1791 		get_signature(mp, file);
1792 
1793 #ifdef	KOBJ_DEBUG
1794 	if (kobj_debug & D_LOADING) {
1795 		_kobj_printf(ops, "krtld: file=%s\n", mp->filename);
1796 		_kobj_printf(ops, "\ttext:0x%p", mp->text);
1797 		_kobj_printf(ops, " size: 0x%x\n", mp->text_size);
1798 		_kobj_printf(ops, "\tdata:0x%p", mp->data);
1799 		_kobj_printf(ops, " dsize: 0x%x\n", mp->data_size);
1800 	}
1801 #endif /* KOBJ_DEBUG */
1802 
1803 	/*
1804 	 * For primary kernel modules, we defer
1805 	 * symbol resolution and relocation until
1806 	 * all primary objects have been loaded.
1807 	 */
1808 	if (!standalone) {
1809 		int ddrval, dcrval;
1810 		char *dependent_modname;
1811 		/* load all dependents */
1812 		dependent_modname = kobj_zalloc(MODMAXNAMELEN, KM_WAIT);
1813 		ddrval = do_dependents(modp, dependent_modname, MODMAXNAMELEN);
1814 
1815 		/*
1816 		 * resolve undefined and common symbols,
1817 		 * also allocates common space
1818 		 */
1819 		if ((dcrval = do_common(mp)) < 0) {
1820 			switch (dcrval) {
1821 			case DOSYM_UNSAFE:
1822 				_kobj_printf(ops, "WARNING: mod_load: "
1823 				    "MT-unsafe module '%s' rejected\n",
1824 				    modname);
1825 				break;
1826 			case DOSYM_UNDEF:
1827 				_kobj_printf(ops, "WARNING: mod_load: "
1828 				    "cannot load module '%s'\n",
1829 				    modname);
1830 				if (ddrval == -1) {
1831 					_kobj_printf(ops, "WARNING: %s: ",
1832 					    modname);
1833 					_kobj_printf(ops,
1834 					    "unable to resolve dependency, "
1835 					    "module '%s' not found\n",
1836 					    dependent_modname);
1837 				}
1838 				break;
1839 			}
1840 		}
1841 		kobj_free(dependent_modname, MODMAXNAMELEN);
1842 		if (dcrval < 0)
1843 			goto bad;
1844 
1845 		/* process relocation tables */
1846 		if (do_relocations(mp) < 0) {
1847 			_kobj_printf(ops, "%s error doing relocations\n",
1848 			    modname);
1849 			goto bad;
1850 		}
1851 
1852 		if (mp->destination) {
1853 			off_t	off = (uintptr_t)mp->destination & PAGEOFFSET;
1854 			caddr_t	base = (caddr_t)mp->destination - off;
1855 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
1856 
1857 			hat_unload(kas.a_hat, base, size, HAT_UNLOAD_UNLOCK);
1858 			vmem_free(heap_arena, base, size);
1859 		}
1860 
1861 		/* sync_instruction_memory */
1862 		kobj_sync_instruction_memory(mp->text, mp->text_size);
1863 #ifdef	MPSAS
1864 		sas_syms(mp);
1865 #endif
1866 		kobj_export_module(mp);
1867 		kobj_notify(KOBJ_NOTIFY_MODLOADED, modp);
1868 	}
1869 	kobj_close_file(file);
1870 	return (0);
1871 bad:
1872 	if (file != (struct _buf *)-1)
1873 		kobj_close_file(file);
1874 	if (modp->mod_mp != NULL)
1875 		free_module_data(modp->mod_mp);
1876 
1877 	module_assign(modp, NULL);
1878 	return ((file == (struct _buf *)-1) ? ENOENT : EINVAL);
1879 }
1880 
1881 int
1882 kobj_load_primary_module(struct modctl *modp)
1883 {
1884 	struct modctl *dep;
1885 	struct module *mp;
1886 
1887 	if (kobj_load_module(modp, 0) != 0)
1888 		return (-1);
1889 
1890 	mp = modp->mod_mp;
1891 	mp->flags |= KOBJ_PRIM;
1892 
1893 	/* Bind new module to its dependents */
1894 	if (mp->depends_on != NULL && (dep =
1895 	    mod_already_loaded(mp->depends_on)) == NULL) {
1896 #ifdef	KOBJ_DEBUG
1897 		if (kobj_debug & D_DEBUG) {
1898 			_kobj_printf(ops, "krtld: failed to resolve deps "
1899 			    "for primary %s\n", modp->mod_modname);
1900 		}
1901 #endif
1902 		return (-1);
1903 	}
1904 
1905 	add_dependent(mp, dep->mod_mp);
1906 
1907 	/*
1908 	 * Relocate it.  This module may not be part of a link map, so we
1909 	 * can't use bind_primary.
1910 	 */
1911 	if (do_common(mp) < 0 || do_symbols(mp, 0) < 0 ||
1912 	    do_relocations(mp) < 0) {
1913 #ifdef	KOBJ_DEBUG
1914 		if (kobj_debug & D_DEBUG) {
1915 			_kobj_printf(ops, "krtld: failed to relocate "
1916 			    "primary %s\n", modp->mod_modname);
1917 		}
1918 #endif
1919 		return (-1);
1920 	}
1921 
1922 	return (0);
1923 }
1924 
1925 static void
1926 module_assign(struct modctl *cp, struct module *mp)
1927 {
1928 	if (standalone) {
1929 		cp->mod_mp = mp;
1930 		return;
1931 	}
1932 	mutex_enter(&mod_lock);
1933 	cp->mod_mp = mp;
1934 	cp->mod_gencount++;
1935 	mutex_exit(&mod_lock);
1936 }
1937 
1938 void
1939 kobj_unload_module(struct modctl *modp)
1940 {
1941 	struct module *mp = modp->mod_mp;
1942 
1943 	if ((_moddebug & MODDEBUG_KEEPTEXT) && mp) {
1944 		_kobj_printf(ops, "text for %s ", mp->filename);
1945 		_kobj_printf(ops, "was at %p\n", mp->text);
1946 		mp->text = NULL;	/* don't actually free it */
1947 	}
1948 
1949 	kobj_notify(KOBJ_NOTIFY_MODUNLOADING, modp);
1950 
1951 	/*
1952 	 * Null out mod_mp first, so consumers (debuggers) know not to look
1953 	 * at the module structure any more.
1954 	 */
1955 	mutex_enter(&mod_lock);
1956 	modp->mod_mp = NULL;
1957 	mutex_exit(&mod_lock);
1958 
1959 	kobj_notify(KOBJ_NOTIFY_MODUNLOADED, modp);
1960 	free_module_data(mp);
1961 }
1962 
1963 static void
1964 free_module_data(struct module *mp)
1965 {
1966 	struct module_list *lp, *tmp;
1967 	int ksyms_exported = 0;
1968 
1969 	lp = mp->head;
1970 	while (lp) {
1971 		tmp = lp;
1972 		lp = lp->next;
1973 		kobj_free((char *)tmp, sizeof (*tmp));
1974 	}
1975 
1976 	rw_enter(&ksyms_lock, RW_WRITER);
1977 	if (mp->symspace) {
1978 		if (vmem_contains(ksyms_arena, mp->symspace, mp->symsize)) {
1979 			vmem_free(ksyms_arena, mp->symspace, mp->symsize);
1980 			ksyms_exported = 1;
1981 		} else {
1982 			if (mp->flags & KOBJ_NOKSYMS)
1983 				ksyms_exported = 1;
1984 			kobj_free(mp->symspace, mp->symsize);
1985 		}
1986 	}
1987 	rw_exit(&ksyms_lock);
1988 
1989 	if (mp->ctfdata) {
1990 		if (vmem_contains(ctf_arena, mp->ctfdata, mp->ctfsize))
1991 			vmem_free(ctf_arena, mp->ctfdata, mp->ctfsize);
1992 		else
1993 			kobj_free(mp->ctfdata, mp->ctfsize);
1994 	}
1995 
1996 	if (mp->sigdata)
1997 		kobj_free(mp->sigdata, mp->sigsize);
1998 
1999 	/*
2000 	 * We did not get far enough into kobj_export_ksyms() to free allocated
2001 	 * buffers because we encounted error conditions. Free the buffers.
2002 	 */
2003 	if ((ksyms_exported == 0) && (mp->shdrs != NULL)) {
2004 		uint_t shn;
2005 		Shdr *shp;
2006 
2007 		for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2008 			shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2009 			switch (shp->sh_type) {
2010 			case SHT_RELA:
2011 			case SHT_REL:
2012 				if (shp->sh_addr != 0)
2013 					kobj_free((void *)shp->sh_addr,
2014 					    shp->sh_size);
2015 				break;
2016 			}
2017 		}
2018 err_free_done:
2019 		if (!(mp->flags & KOBJ_PRIM)) {
2020 			kobj_free(mp->shdrs,
2021 			    mp->hdr.e_shentsize * mp->hdr.e_shnum);
2022 		}
2023 	}
2024 
2025 	if (mp->bss)
2026 		vmem_free(data_arena, (void *)mp->bss, mp->bss_size);
2027 
2028 	if (mp->fbt_tab)
2029 		kobj_texthole_free(mp->fbt_tab, mp->fbt_size);
2030 
2031 	if (mp->textwin_base)
2032 		kobj_textwin_free(mp);
2033 
2034 	if (mp->sdt_probes != NULL) {
2035 		sdt_probedesc_t *sdp = mp->sdt_probes, *next;
2036 
2037 		while (sdp != NULL) {
2038 			next = sdp->sdpd_next;
2039 			kobj_free(sdp->sdpd_name, strlen(sdp->sdpd_name) + 1);
2040 			kobj_free(sdp, sizeof (sdt_probedesc_t));
2041 			sdp = next;
2042 		}
2043 	}
2044 
2045 	if (mp->sdt_tab)
2046 		kobj_texthole_free(mp->sdt_tab, mp->sdt_size);
2047 	if (mp->text)
2048 		vmem_free(text_arena, mp->text, mp->text_size);
2049 	if (mp->data)
2050 		vmem_free(data_arena, mp->data, mp->data_size);
2051 	if (mp->depends_on)
2052 		kobj_free(mp->depends_on, strlen(mp->depends_on)+1);
2053 	if (mp->filename)
2054 		kobj_free(mp->filename, strlen(mp->filename)+1);
2055 
2056 	kobj_free((char *)mp, sizeof (*mp));
2057 }
2058 
2059 static int
2060 get_progbits(struct module *mp, struct _buf *file)
2061 {
2062 	struct proginfo *tp, *dp, *sdp;
2063 	Shdr *shp;
2064 	reloc_dest_t dest = NULL;
2065 	uintptr_t bits_ptr;
2066 	uintptr_t text = 0, data, sdata = 0, textptr;
2067 	uint_t shn;
2068 	int err = -1;
2069 
2070 	tp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT);
2071 	dp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT);
2072 	sdp = kobj_zalloc(sizeof (struct proginfo), KM_WAIT);
2073 	/*
2074 	 * loop through sections to find out how much space we need
2075 	 * for text, data, (also bss that is already assigned)
2076 	 */
2077 	if (get_progbits_size(mp, tp, dp, sdp) < 0)
2078 		goto done;
2079 
2080 	mp->text_size = tp->size;
2081 	mp->data_size = dp->size;
2082 
2083 	if (standalone) {
2084 		mp->text = kobj_segbrk(&_etext, mp->text_size,
2085 			tp->align, _data);
2086 		/*
2087 		 * If we can't grow the text segment, try the
2088 		 * data segment before failing.
2089 		 */
2090 		if (mp->text == NULL) {
2091 			mp->text = kobj_segbrk(&_edata, mp->text_size,
2092 					tp->align, 0);
2093 		}
2094 
2095 		mp->data = kobj_segbrk(&_edata, mp->data_size, dp->align, 0);
2096 
2097 		if (mp->text == NULL || mp->data == NULL)
2098 			goto done;
2099 
2100 	} else {
2101 		if (text_arena == NULL)
2102 			kobj_vmem_init(&text_arena, &data_arena);
2103 
2104 		/*
2105 		 * some architectures may want to load the module on a
2106 		 * page that is currently read only. It may not be
2107 		 * possible for those architectures to remap their page
2108 		 * on the fly. So we provide a facility for them to hang
2109 		 * a private hook where the memory they assign the module
2110 		 * is not the actual place where the module loads.
2111 		 *
2112 		 * In this case there are two addresses that deal with the
2113 		 * modload.
2114 		 * 1) the final destination of the module
2115 		 * 2) the address that is used to view the newly
2116 		 * loaded module until all the relocations relative to 1
2117 		 * above are completed.
2118 		 *
2119 		 * That is what dest is used for below.
2120 		 */
2121 		mp->text_size += tp->align;
2122 		mp->data_size += dp->align;
2123 
2124 		mp->text = kobj_text_alloc(text_arena, mp->text_size);
2125 
2126 		/*
2127 		 * a remap is taking place. Align the text ptr relative
2128 		 * to the secondary mapping. That is where the bits will
2129 		 * be read in.
2130 		 */
2131 		if (kvseg.s_base != NULL && !vmem_contains(heaptext_arena,
2132 		    mp->text, mp->text_size)) {
2133 			off_t	off = (uintptr_t)mp->text & PAGEOFFSET;
2134 			size_t	size = P2ROUNDUP(mp->text_size + off, PAGESIZE);
2135 			caddr_t	map = vmem_alloc(heap_arena, size, VM_SLEEP);
2136 			caddr_t orig = mp->text - off;
2137 			pgcnt_t pages = size / PAGESIZE;
2138 
2139 			dest = (reloc_dest_t)(map + off);
2140 			text = ALIGN((uintptr_t)dest, tp->align);
2141 
2142 			while (pages--) {
2143 				hat_devload(kas.a_hat, map, PAGESIZE,
2144 				    hat_getpfnum(kas.a_hat, orig),
2145 				    PROT_READ | PROT_WRITE | PROT_EXEC,
2146 				    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
2147 				map += PAGESIZE;
2148 				orig += PAGESIZE;
2149 			}
2150 			/*
2151 			 * Since we set up a non-cacheable mapping, we need
2152 			 * to flush any old entries in the cache that might
2153 			 * be left around from the read-only mapping.
2154 			 */
2155 			dcache_flushall();
2156 		}
2157 		if (mp->data_size)
2158 			mp->data = vmem_alloc(data_arena, mp->data_size,
2159 			    VM_SLEEP | VM_BESTFIT);
2160 	}
2161 	textptr = (uintptr_t)mp->text;
2162 	textptr = ALIGN(textptr, tp->align);
2163 	mp->destination = dest;
2164 
2165 	/*
2166 	 * This is the case where a remap is not being done.
2167 	 */
2168 	if (text == 0)
2169 		text = ALIGN((uintptr_t)mp->text, tp->align);
2170 	data = ALIGN((uintptr_t)mp->data, dp->align);
2171 
2172 	/* now loop though sections assigning addresses and loading the data */
2173 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2174 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2175 		if (!(shp->sh_flags & SHF_ALLOC))
2176 			continue;
2177 
2178 		if ((shp->sh_flags & SHF_WRITE) == 0)
2179 			bits_ptr = text;
2180 		else if (shp->sh_flags & SHF_NEUT_SHORT)
2181 			bits_ptr = sdata;
2182 		else
2183 			bits_ptr = data;
2184 
2185 		bits_ptr = ALIGN(bits_ptr, shp->sh_addralign);
2186 
2187 		if (shp->sh_type == SHT_NOBITS) {
2188 			/*
2189 			 * Zero bss.
2190 			 */
2191 			bzero((caddr_t)bits_ptr, shp->sh_size);
2192 			shp->sh_type = SHT_PROGBITS;
2193 		} else {
2194 			if (kobj_read_file(file, (char *)bits_ptr,
2195 			    shp->sh_size, shp->sh_offset) < 0)
2196 				goto done;
2197 		}
2198 
2199 		if (shp->sh_flags & SHF_WRITE) {
2200 			shp->sh_addr = bits_ptr;
2201 		} else {
2202 			textptr = ALIGN(textptr, shp->sh_addralign);
2203 			shp->sh_addr = textptr;
2204 			textptr += shp->sh_size;
2205 		}
2206 
2207 		bits_ptr += shp->sh_size;
2208 		if ((shp->sh_flags & SHF_WRITE) == 0)
2209 			text = bits_ptr;
2210 		else if (shp->sh_flags & SHF_NEUT_SHORT)
2211 			sdata = bits_ptr;
2212 		else
2213 			data = bits_ptr;
2214 	}
2215 
2216 	err = 0;
2217 done:
2218 	/*
2219 	 * Free and mark as freed the section headers here so that
2220 	 * free_module_data() does not have to worry about this buffer.
2221 	 *
2222 	 * This buffer is freed here because one of the possible reasons
2223 	 * for error is a section with non-zero sh_addr and in that case
2224 	 * free_module_data() would have no way of recognizing that this
2225 	 * buffer was unallocated.
2226 	 */
2227 	if (err != 0) {
2228 		kobj_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
2229 		mp->shdrs = NULL;
2230 	}
2231 
2232 	(void) kobj_free(tp, sizeof (struct proginfo));
2233 	(void) kobj_free(dp, sizeof (struct proginfo));
2234 	(void) kobj_free(sdp, sizeof (struct proginfo));
2235 
2236 	return (err);
2237 }
2238 
2239 /*
2240  * Go through suppress_sym_list to see if "multiply defined"
2241  * warning of this symbol should be suppressed.  Return 1 if
2242  * warning should be suppressed, 0 otherwise.
2243  */
2244 static int
2245 kobj_suppress_warning(char *symname)
2246 {
2247 	int	i;
2248 
2249 	for (i = 0; suppress_sym_list[i] != NULL; i++) {
2250 		if (strcmp(suppress_sym_list[i], symname) == 0)
2251 			return (1);
2252 	}
2253 
2254 	return (0);
2255 }
2256 
2257 static int
2258 get_syms(struct module *mp, struct _buf *file)
2259 {
2260 	uint_t		shn;
2261 	Shdr	*shp;
2262 	uint_t		i;
2263 	Sym	*sp, *ksp;
2264 	char		*symname;
2265 	int		dosymtab = 0;
2266 	extern char 	stubs_base[], stubs_end[];
2267 
2268 	/*
2269 	 * Find the interesting sections.
2270 	 */
2271 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2272 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2273 		switch (shp->sh_type) {
2274 		case SHT_SYMTAB:
2275 			mp->symtbl_section = shn;
2276 			mp->symhdr = shp;
2277 			dosymtab++;
2278 			break;
2279 
2280 		case SHT_RELA:
2281 		case SHT_REL:
2282 			/*
2283 			 * Already loaded.
2284 			 */
2285 			if (shp->sh_addr)
2286 				continue;
2287 			shp->sh_addr = (Addr)
2288 			    kobj_alloc(shp->sh_size, KM_WAIT|KM_TMP);
2289 
2290 			if (kobj_read_file(file, (char *)shp->sh_addr,
2291 			    shp->sh_size, shp->sh_offset) < 0) {
2292 				_kobj_printf(ops, "krtld: get_syms: %s, ",
2293 				    mp->filename);
2294 				_kobj_printf(ops, "error reading section %d\n",
2295 				    shn);
2296 				return (-1);
2297 			}
2298 			break;
2299 		}
2300 	}
2301 
2302 	/*
2303 	 * This is true for a stripped executable.  In the case of
2304 	 * 'unix' it can be stripped but it still contains the SHT_DYNSYM,
2305 	 * and since that symbol information is still present everything
2306 	 * is just fine.
2307 	 */
2308 	if (!dosymtab) {
2309 		if (mp->flags & KOBJ_EXEC)
2310 			return (0);
2311 		_kobj_printf(ops, "krtld: get_syms: %s ",
2312 			mp->filename);
2313 		_kobj_printf(ops, "no SHT_SYMTAB symbol table found\n");
2314 		return (-1);
2315 	}
2316 
2317 	/*
2318 	 * get the associated string table header
2319 	 */
2320 	if ((mp->symhdr == 0) || (mp->symhdr->sh_link >= mp->hdr.e_shnum))
2321 		return (-1);
2322 	mp->strhdr = (Shdr *)
2323 		(mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
2324 
2325 	mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
2326 	mp->hashsize = kobj_gethashsize(mp->nsyms);
2327 
2328 	/*
2329 	 * Allocate space for the symbol table, buckets, chains, and strings.
2330 	 */
2331 	mp->symsize = mp->symhdr->sh_size +
2332 	    (mp->hashsize + mp->nsyms) * sizeof (symid_t) + mp->strhdr->sh_size;
2333 	mp->symspace = kobj_zalloc(mp->symsize, KM_WAIT|KM_SCRATCH);
2334 
2335 	mp->symtbl = mp->symspace;
2336 	mp->buckets = (symid_t *)(mp->symtbl + mp->symhdr->sh_size);
2337 	mp->chains = mp->buckets + mp->hashsize;
2338 	mp->strings = (char *)(mp->chains + mp->nsyms);
2339 
2340 	if (kobj_read_file(file, mp->symtbl,
2341 	    mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0 ||
2342 	    kobj_read_file(file, mp->strings,
2343 	    mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)
2344 		return (-1);
2345 
2346 	/*
2347 	 * loop through the symbol table adjusting values to account
2348 	 * for where each section got loaded into memory.  Also
2349 	 * fill in the hash table.
2350 	 */
2351 	for (i = 1; i < mp->nsyms; i++) {
2352 		sp = (Sym *)(mp->symtbl + i * mp->symhdr->sh_entsize);
2353 		if (sp->st_shndx < SHN_LORESERVE) {
2354 			if (sp->st_shndx >= mp->hdr.e_shnum) {
2355 				_kobj_printf(ops, "%s bad shndx ",
2356 				    file->_name);
2357 				_kobj_printf(ops, "in symbol %d\n", i);
2358 				return (-1);
2359 			}
2360 			shp = (Shdr *)
2361 			    (mp->shdrs +
2362 			    sp->st_shndx * mp->hdr.e_shentsize);
2363 			if (!(mp->flags & KOBJ_EXEC))
2364 				sp->st_value += shp->sh_addr;
2365 		}
2366 
2367 		if (sp->st_name == 0 || sp->st_shndx == SHN_UNDEF)
2368 			continue;
2369 		if (sp->st_name >= mp->strhdr->sh_size)
2370 			return (-1);
2371 
2372 		symname = mp->strings + sp->st_name;
2373 
2374 		if (!(mp->flags & KOBJ_EXEC) &&
2375 		    ELF_ST_BIND(sp->st_info) == STB_GLOBAL) {
2376 			ksp = kobj_lookup_all(mp, symname, 0);
2377 
2378 			if (ksp && ELF_ST_BIND(ksp->st_info) == STB_GLOBAL &&
2379 			    !kobj_suppress_warning(symname) &&
2380 			    sp->st_shndx != SHN_UNDEF &&
2381 			    sp->st_shndx != SHN_COMMON &&
2382 			    ksp->st_shndx != SHN_UNDEF &&
2383 			    ksp->st_shndx != SHN_COMMON) {
2384 				/*
2385 				 * Unless this symbol is a stub, it's multiply
2386 				 * defined.  Multiply-defined symbols are
2387 				 * usually bad, but some objects (kmdb) have
2388 				 * a legitimate need to have their own
2389 				 * copies of common functions.
2390 				 */
2391 				if ((standalone ||
2392 				    ksp->st_value < (uintptr_t)stubs_base ||
2393 				    ksp->st_value >= (uintptr_t)stubs_end) &&
2394 				    !(mp->flags & KOBJ_IGNMULDEF)) {
2395 					_kobj_printf(ops,
2396 					    "%s symbol ", file->_name);
2397 					_kobj_printf(ops,
2398 					    "%s multiply defined\n", symname);
2399 				}
2400 			}
2401 		}
2402 		sym_insert(mp, symname, i);
2403 	}
2404 
2405 	return (0);
2406 }
2407 
2408 static int
2409 get_ctf(struct module *mp, struct _buf *file)
2410 {
2411 	char *shstrtab, *ctfdata;
2412 	size_t shstrlen;
2413 	Shdr *shp;
2414 	uint_t i;
2415 
2416 	if (_moddebug & MODDEBUG_NOCTF)
2417 		return (0); /* do not attempt to even load CTF data */
2418 
2419 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2420 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2421 		    mp->filename);
2422 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2423 		    mp->hdr.e_shstrndx);
2424 		return (-1);
2425 	}
2426 
2427 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2428 	shstrlen = shp->sh_size;
2429 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2430 
2431 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2432 		_kobj_printf(ops, "krtld: get_ctf: %s, ",
2433 		    mp->filename);
2434 		_kobj_printf(ops, "error reading section %u\n",
2435 		    mp->hdr.e_shstrndx);
2436 		kobj_free(shstrtab, shstrlen);
2437 		return (-1);
2438 	}
2439 
2440 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2441 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2442 
2443 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2444 		    strcmp(shstrtab + shp->sh_name, ".SUNW_ctf") == 0) {
2445 			ctfdata = kobj_alloc(shp->sh_size, KM_WAIT|KM_SCRATCH);
2446 
2447 			if (kobj_read_file(file, ctfdata, shp->sh_size,
2448 			    shp->sh_offset) < 0) {
2449 				_kobj_printf(ops, "krtld: get_ctf: %s, error "
2450 				    "reading .SUNW_ctf data\n", mp->filename);
2451 				kobj_free(ctfdata, shp->sh_size);
2452 				kobj_free(shstrtab, shstrlen);
2453 				return (-1);
2454 			}
2455 
2456 			mp->ctfdata = ctfdata;
2457 			mp->ctfsize = shp->sh_size;
2458 			break;
2459 		}
2460 	}
2461 
2462 	kobj_free(shstrtab, shstrlen);
2463 	return (0);
2464 }
2465 
2466 #define	SHA1_DIGEST_LENGTH	20	/* SHA1 digest length in bytes */
2467 
2468 /*
2469  * Return the hash of the ELF sections that are memory resident.
2470  * i.e. text and data.  We skip a SHT_NOBITS section since it occupies
2471  * no space in the file. We use SHA1 here since libelfsign uses
2472  * it and both places need to use the same algorithm.
2473  */
2474 static void
2475 crypto_es_hash(struct module *mp, char *hash, char *shstrtab)
2476 {
2477 	uint_t shn;
2478 	Shdr *shp;
2479 	SHA1_CTX ctx;
2480 
2481 	SHA1Init(&ctx);
2482 
2483 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
2484 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
2485 		if (!(shp->sh_flags & SHF_ALLOC) || shp->sh_size == 0)
2486 			continue;
2487 
2488 		/*
2489 		 * The check should ideally be shp->sh_type == SHT_NOBITS.
2490 		 * However, we can't do that check here as get_progbits()
2491 		 * resets the type.
2492 		 */
2493 		if (strcmp(shstrtab + shp->sh_name, ".bss") == 0)
2494 			continue;
2495 #ifdef	KOBJ_DEBUG
2496 		if (kobj_debug & D_DEBUG)
2497 			_kobj_printf(ops,
2498 			    "krtld: crypto_es_hash: updating hash with"
2499 			    " %s data size=%d\n", shstrtab + shp->sh_name,
2500 				shp->sh_size);
2501 #endif
2502 		ASSERT(shp->sh_addr != NULL);
2503 		SHA1Update(&ctx, (const uint8_t *)shp->sh_addr, shp->sh_size);
2504 	}
2505 
2506 	SHA1Final((uchar_t *)hash, &ctx);
2507 }
2508 
2509 /*
2510  * Get the .SUNW_signature section for the module, it it exists.
2511  *
2512  * This section exists only for crypto modules. None of the
2513  * primary modules have this section currently.
2514  */
2515 static void
2516 get_signature(struct module *mp, struct _buf *file)
2517 {
2518 	char *shstrtab, *sigdata = NULL;
2519 	size_t shstrlen;
2520 	Shdr *shp;
2521 	uint_t i;
2522 
2523 	if (mp->hdr.e_shstrndx >= mp->hdr.e_shnum) {
2524 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2525 		    mp->filename);
2526 		_kobj_printf(ops, "corrupt e_shstrndx %u\n",
2527 		    mp->hdr.e_shstrndx);
2528 		return;
2529 	}
2530 
2531 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
2532 	shstrlen = shp->sh_size;
2533 	shstrtab = kobj_alloc(shstrlen, KM_WAIT|KM_TMP);
2534 
2535 	if (kobj_read_file(file, shstrtab, shstrlen, shp->sh_offset) < 0) {
2536 		_kobj_printf(ops, "krtld: get_signature: %s, ",
2537 		    mp->filename);
2538 		_kobj_printf(ops, "error reading section %u\n",
2539 		    mp->hdr.e_shstrndx);
2540 		kobj_free(shstrtab, shstrlen);
2541 		return;
2542 	}
2543 
2544 	for (i = 0; i < mp->hdr.e_shnum; i++) {
2545 		shp = (Shdr *)(mp->shdrs + i * mp->hdr.e_shentsize);
2546 		if (shp->sh_size != 0 && shp->sh_name < shstrlen &&
2547 		    strcmp(shstrtab + shp->sh_name,
2548 		    ELF_SIGNATURE_SECTION) == 0) {
2549 			filesig_vers_t filesig_version;
2550 			size_t sigsize = shp->sh_size + SHA1_DIGEST_LENGTH;
2551 			sigdata = kobj_alloc(sigsize, KM_WAIT|KM_SCRATCH);
2552 
2553 			if (kobj_read_file(file, sigdata, shp->sh_size,
2554 			    shp->sh_offset) < 0) {
2555 				_kobj_printf(ops, "krtld: get_signature: %s,"
2556 				    " error reading .SUNW_signature data\n",
2557 				    mp->filename);
2558 				kobj_free(sigdata, sigsize);
2559 				kobj_free(shstrtab, shstrlen);
2560 				return;
2561 			}
2562 			filesig_version = ((struct filesignatures *)sigdata)->
2563 			    filesig_sig.filesig_version;
2564 			if (!(filesig_version == FILESIG_VERSION1 ||
2565 			    filesig_version == FILESIG_VERSION3)) {
2566 				/* skip versions we don't understand */
2567 				kobj_free(sigdata, sigsize);
2568 				kobj_free(shstrtab, shstrlen);
2569 				return;
2570 			}
2571 
2572 			mp->sigdata = sigdata;
2573 			mp->sigsize = sigsize;
2574 			break;
2575 		}
2576 	}
2577 
2578 	if (sigdata != NULL) {
2579 		crypto_es_hash(mp, sigdata + shp->sh_size, shstrtab);
2580 	}
2581 
2582 	kobj_free(shstrtab, shstrlen);
2583 }
2584 
2585 static void
2586 add_dependent(struct module *mp, struct module *dep)
2587 {
2588 	struct module_list *lp;
2589 
2590 	for (lp = mp->head; lp; lp = lp->next) {
2591 		if (lp->mp == dep)
2592 			return;	/* already on the list */
2593 	}
2594 
2595 	if (lp == NULL) {
2596 		lp = kobj_zalloc(sizeof (*lp), KM_WAIT);
2597 
2598 		lp->mp = dep;
2599 		lp->next = NULL;
2600 		if (mp->tail)
2601 			mp->tail->next = lp;
2602 		else
2603 			mp->head = lp;
2604 		mp->tail = lp;
2605 	}
2606 }
2607 
2608 static int
2609 do_dependents(struct modctl *modp, char *modname, size_t modnamelen)
2610 {
2611 	struct module *mp;
2612 	struct modctl *req;
2613 	char *d, *p, *q;
2614 	int c;
2615 	char *err_modname = NULL;
2616 
2617 	mp = modp->mod_mp;
2618 
2619 	if ((p = mp->depends_on) == NULL)
2620 		return (0);
2621 
2622 	for (;;) {
2623 		/*
2624 		 * Skip space.
2625 		 */
2626 		while (*p && (*p == ' ' || *p == '\t'))
2627 			p++;
2628 		/*
2629 		 * Get module name.
2630 		 */
2631 		d = p;
2632 		q = modname;
2633 		c = 0;
2634 		while (*p && *p != ' ' && *p != '\t') {
2635 			if (c < modnamelen - 1) {
2636 				*q++ = *p;
2637 				c++;
2638 			}
2639 			p++;
2640 		}
2641 
2642 		if (q == modname)
2643 			break;
2644 
2645 		if (c == modnamelen - 1) {
2646 			char *dep = kobj_alloc(p - d + 1, KM_WAIT|KM_TMP);
2647 
2648 			(void) strncpy(dep, d,  p - d + 1);
2649 			dep[p - d] = '\0';
2650 
2651 			_kobj_printf(ops, "%s: dependency ", modp->mod_modname);
2652 			_kobj_printf(ops, "'%s' too long ", dep);
2653 			_kobj_printf(ops, "(max %d chars)\n", modnamelen);
2654 
2655 			kobj_free(dep, p - d + 1);
2656 
2657 			return (-1);
2658 		}
2659 
2660 		*q = '\0';
2661 		if ((req = mod_load_requisite(modp, modname)) == NULL) {
2662 #ifndef	KOBJ_DEBUG
2663 			if (_moddebug & MODDEBUG_LOADMSG) {
2664 #endif	/* KOBJ_DEBUG */
2665 				_kobj_printf(ops,
2666 				    "%s: unable to resolve dependency, ",
2667 				    modp->mod_modname);
2668 				_kobj_printf(ops, "cannot load module '%s'\n",
2669 				    modname);
2670 #ifndef	KOBJ_DEBUG
2671 			}
2672 #endif	/* KOBJ_DEBUG */
2673 			if (err_modname == NULL) {
2674 				/*
2675 				 * This must be the same size as the modname
2676 				 * one.
2677 				 */
2678 				err_modname = kobj_zalloc(MODMAXNAMELEN,
2679 				    KM_WAIT);
2680 
2681 				/*
2682 				 * We can use strcpy() here without fearing
2683 				 * the NULL terminator because the size of
2684 				 * err_modname is the same as one of modname,
2685 				 * and it's filled with zeros.
2686 				 */
2687 				(void) strcpy(err_modname, modname);
2688 			}
2689 			continue;
2690 		}
2691 
2692 		add_dependent(mp, req->mod_mp);
2693 		mod_release_mod(req);
2694 
2695 	}
2696 
2697 	if (err_modname != NULL) {
2698 		/*
2699 		 * Copy the first module name where you detect an error to keep
2700 		 * its behavior the same as before.
2701 		 * This way keeps minimizing the memory use for error
2702 		 * modules, and this might be important at boot time because
2703 		 * the memory usage is a crucial factor for booting in most
2704 		 * cases. You can expect more verbose messages when using
2705 		 * a debug kernel or setting a bit in moddebug.
2706 		 */
2707 		bzero(modname, MODMAXNAMELEN);
2708 		(void) strcpy(modname, err_modname);
2709 		kobj_free(err_modname, MODMAXNAMELEN);
2710 		return (-1);
2711 	}
2712 
2713 	return (0);
2714 }
2715 
2716 static int
2717 do_common(struct module *mp)
2718 {
2719 	int err;
2720 
2721 	/*
2722 	 * first time through, assign all symbols defined in other
2723 	 * modules, and count up how much common space will be needed
2724 	 * (bss_size and bss_align)
2725 	 */
2726 	if ((err = do_symbols(mp, 0)) < 0)
2727 		return (err);
2728 	/*
2729 	 * increase bss_size by the maximum delta that could be
2730 	 * computed by the ALIGN below
2731 	 */
2732 	mp->bss_size += mp->bss_align;
2733 	if (mp->bss_size) {
2734 		if (standalone)
2735 			mp->bss = (uintptr_t)kobj_segbrk(&_edata, mp->bss_size,
2736 			    MINALIGN, 0);
2737 		else
2738 			mp->bss = (uintptr_t)vmem_alloc(data_arena,
2739 			    mp->bss_size, VM_SLEEP | VM_BESTFIT);
2740 		bzero((void *)mp->bss, mp->bss_size);
2741 		/* now assign addresses to all common symbols */
2742 		if ((err = do_symbols(mp, ALIGN(mp->bss, mp->bss_align))) < 0)
2743 			return (err);
2744 	}
2745 	return (0);
2746 }
2747 
2748 static int
2749 do_symbols(struct module *mp, Elf64_Addr bss_base)
2750 {
2751 	int bss_align;
2752 	uintptr_t bss_ptr;
2753 	int err;
2754 	int i;
2755 	Sym *sp, *sp1;
2756 	char *name;
2757 	int assign;
2758 	int resolved = 1;
2759 
2760 	/*
2761 	 * Nothing left to do (optimization).
2762 	 */
2763 	if (mp->flags & KOBJ_RESOLVED)
2764 		return (0);
2765 
2766 	assign = (bss_base) ? 1 : 0;
2767 	bss_ptr = bss_base;
2768 	bss_align = 0;
2769 	err = 0;
2770 
2771 	for (i = 1; i < mp->nsyms; i++) {
2772 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * i);
2773 		/*
2774 		 * we know that st_name is in bounds, since get_sections
2775 		 * has already checked all of the symbols
2776 		 */
2777 		name = mp->strings + sp->st_name;
2778 		if (sp->st_shndx != SHN_UNDEF && sp->st_shndx != SHN_COMMON)
2779 			continue;
2780 #ifdef	__sparc
2781 		/*
2782 		 * Register symbols are ignored in the kernel
2783 		 */
2784 		if (ELF_ST_TYPE(sp->st_info) == STT_SPARC_REGISTER) {
2785 			if (*name != '\0') {
2786 				_kobj_printf(ops, "%s: named REGISTER symbol ",
2787 						mp->filename);
2788 				_kobj_printf(ops, "not supported '%s'\n",
2789 						name);
2790 				err = DOSYM_UNDEF;
2791 			}
2792 			continue;
2793 		}
2794 #endif	/* __sparc */
2795 		/*
2796 		 * TLS symbols are ignored in the kernel
2797 		 */
2798 		if (ELF_ST_TYPE(sp->st_info) == STT_TLS) {
2799 			_kobj_printf(ops, "%s: TLS symbol ",
2800 					mp->filename);
2801 			_kobj_printf(ops, "not supported '%s'\n",
2802 					name);
2803 			err = DOSYM_UNDEF;
2804 			continue;
2805 		}
2806 
2807 		if (ELF_ST_BIND(sp->st_info) != STB_LOCAL) {
2808 			if ((sp1 = kobj_lookup_all(mp, name, 0)) != NULL) {
2809 				sp->st_shndx = SHN_ABS;
2810 				sp->st_value = sp1->st_value;
2811 				continue;
2812 			}
2813 		}
2814 
2815 		if (sp->st_shndx == SHN_UNDEF) {
2816 			resolved = 0;
2817 
2818 			if (strncmp(name, sdt_prefix, strlen(sdt_prefix)) == 0)
2819 				continue;
2820 
2821 			/*
2822 			 * If it's not a weak reference and it's
2823 			 * not a primary object, it's an error.
2824 			 * (Primary objects may take more than
2825 			 * one pass to resolve)
2826 			 */
2827 			if (!(mp->flags & KOBJ_PRIM) &&
2828 			    ELF_ST_BIND(sp->st_info) != STB_WEAK) {
2829 				_kobj_printf(ops, "%s: undefined symbol",
2830 				    mp->filename);
2831 				_kobj_printf(ops, " '%s'\n", name);
2832 				/*
2833 				 * Try to determine whether this symbol
2834 				 * represents a dependency on obsolete
2835 				 * unsafe driver support.  This is just
2836 				 * to make the warning more informative.
2837 				 */
2838 				if (strcmp(name, "sleep") == 0 ||
2839 				    strcmp(name, "unsleep") == 0 ||
2840 				    strcmp(name, "wakeup") == 0 ||
2841 				    strcmp(name, "bsd_compat_ioctl") == 0 ||
2842 				    strcmp(name, "unsafe_driver") == 0 ||
2843 				    strncmp(name, "spl", 3) == 0 ||
2844 				    strncmp(name, "i_ddi_spl", 9) == 0)
2845 					err = DOSYM_UNSAFE;
2846 				if (err == 0)
2847 					err = DOSYM_UNDEF;
2848 			}
2849 			continue;
2850 		}
2851 		/*
2852 		 * It's a common symbol - st_value is the
2853 		 * required alignment.
2854 		 */
2855 		if (sp->st_value > bss_align)
2856 			bss_align = sp->st_value;
2857 		bss_ptr = ALIGN(bss_ptr, sp->st_value);
2858 		if (assign) {
2859 			sp->st_shndx = SHN_ABS;
2860 			sp->st_value = bss_ptr;
2861 		}
2862 		bss_ptr += sp->st_size;
2863 	}
2864 	if (err)
2865 		return (err);
2866 	if (assign == 0 && mp->bss == NULL) {
2867 		mp->bss_align = bss_align;
2868 		mp->bss_size = bss_ptr;
2869 	} else if (resolved) {
2870 		mp->flags |= KOBJ_RESOLVED;
2871 	}
2872 
2873 	return (0);
2874 }
2875 
2876 uint_t
2877 kobj_hash_name(const char *p)
2878 {
2879 	unsigned int g;
2880 	uint_t hval;
2881 
2882 	hval = 0;
2883 	while (*p) {
2884 		hval = (hval << 4) + *p++;
2885 		if ((g = (hval & 0xf0000000)) != 0)
2886 			hval ^= g >> 24;
2887 		hval &= ~g;
2888 	}
2889 	return (hval);
2890 }
2891 
2892 /* look for name in all modules */
2893 uintptr_t
2894 kobj_getsymvalue(char *name, int kernelonly)
2895 {
2896 	Sym		*sp;
2897 	struct modctl	*modp;
2898 	struct module	*mp;
2899 	uintptr_t	value = 0;
2900 
2901 	if ((sp = kobj_lookup_kernel(name)) != NULL)
2902 		return ((uintptr_t)sp->st_value);
2903 
2904 	if (kernelonly)
2905 		return (0);	/* didn't find it in the kernel so give up */
2906 
2907 	mutex_enter(&mod_lock);
2908 	modp = &modules;
2909 	do {
2910 		mp = (struct module *)modp->mod_mp;
2911 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
2912 		    (sp = lookup_one(mp, name))) {
2913 			value = (uintptr_t)sp->st_value;
2914 			break;
2915 		}
2916 	} while ((modp = modp->mod_next) != &modules);
2917 	mutex_exit(&mod_lock);
2918 	return (value);
2919 }
2920 
2921 /* look for a symbol near value. */
2922 char *
2923 kobj_getsymname(uintptr_t value, ulong_t *offset)
2924 {
2925 	char *name = NULL;
2926 	struct modctl *modp;
2927 
2928 	struct modctl_list *lp;
2929 	struct module *mp;
2930 
2931 	/*
2932 	 * Loop through the primary kernel modules.
2933 	 */
2934 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
2935 		mp = mod(lp);
2936 
2937 		if ((name = kobj_searchsym(mp, value, offset)) != NULL)
2938 			return (name);
2939 	}
2940 
2941 	mutex_enter(&mod_lock);
2942 	modp = &modules;
2943 	do {
2944 		mp = (struct module *)modp->mod_mp;
2945 		if (mp && !(mp->flags & KOBJ_PRIM) && modp->mod_loaded &&
2946 		    (name = kobj_searchsym(mp, value, offset)))
2947 			break;
2948 	} while ((modp = modp->mod_next) != &modules);
2949 	mutex_exit(&mod_lock);
2950 	return (name);
2951 }
2952 
2953 /* return address of symbol and size */
2954 
2955 uintptr_t
2956 kobj_getelfsym(char *name, void *mp, int *size)
2957 {
2958 	Sym *sp;
2959 
2960 	if (mp == NULL)
2961 		sp = kobj_lookup_kernel(name);
2962 	else
2963 		sp = lookup_one(mp, name);
2964 
2965 	if (sp == NULL)
2966 		return (0);
2967 
2968 	*size = (int)sp->st_size;
2969 	return ((uintptr_t)sp->st_value);
2970 }
2971 
2972 uintptr_t
2973 kobj_lookup(struct module *mod, const char *name)
2974 {
2975 	Sym *sp;
2976 
2977 	sp = lookup_one(mod, name);
2978 
2979 	if (sp == NULL)
2980 		return (0);
2981 
2982 	return ((uintptr_t)sp->st_value);
2983 }
2984 
2985 char *
2986 kobj_searchsym(struct module *mp, uintptr_t value, ulong_t *offset)
2987 {
2988 	Sym *symtabptr;
2989 	char *strtabptr;
2990 	int symnum;
2991 	Sym *sym;
2992 	Sym *cursym;
2993 	uintptr_t curval;
2994 
2995 	*offset = (ulong_t)-1l;		/* assume not found */
2996 	cursym  = NULL;
2997 
2998 	if (kobj_addrcheck(mp, (void *)value) != 0)
2999 		return (NULL);		/* not in this module */
3000 
3001 	strtabptr  = mp->strings;
3002 	symtabptr  = (Sym *)mp->symtbl;
3003 
3004 	/*
3005 	 * Scan the module's symbol table for a symbol <= value
3006 	 */
3007 	for (symnum = 1, sym = symtabptr + 1;
3008 	    symnum < mp->nsyms; symnum++, sym = (Sym *)
3009 	    ((uintptr_t)sym + mp->symhdr->sh_entsize)) {
3010 		if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) {
3011 			if (ELF_ST_BIND(sym->st_info) != STB_LOCAL)
3012 				continue;
3013 			if (ELF_ST_TYPE(sym->st_info) != STT_OBJECT &&
3014 			    ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3015 				continue;
3016 		}
3017 
3018 		curval = (uintptr_t)sym->st_value;
3019 
3020 		if (curval > value)
3021 			continue;
3022 
3023 		/*
3024 		 * If one or both are functions...
3025 		 */
3026 		if (ELF_ST_TYPE(sym->st_info) == STT_FUNC || (cursym != NULL &&
3027 		    ELF_ST_TYPE(cursym->st_info) == STT_FUNC)) {
3028 			/* Ignore if the address is out of the bounds */
3029 			if (value - sym->st_value >= sym->st_size)
3030 				continue;
3031 
3032 			if (cursym != NULL &&
3033 			    ELF_ST_TYPE(cursym->st_info) == STT_FUNC) {
3034 				/* Prefer the function to the non-function */
3035 				if (ELF_ST_TYPE(sym->st_info) != STT_FUNC)
3036 					continue;
3037 
3038 				/* Prefer the larger of the two functions */
3039 				if (sym->st_size <= cursym->st_size)
3040 					continue;
3041 			}
3042 		} else if (value - curval >= *offset) {
3043 			continue;
3044 		}
3045 
3046 		*offset = (ulong_t)(value - curval);
3047 		cursym = sym;
3048 	}
3049 	if (cursym == NULL)
3050 		return (NULL);
3051 
3052 	return (strtabptr + cursym->st_name);
3053 }
3054 
3055 Sym *
3056 kobj_lookup_all(struct module *mp, char *name, int include_self)
3057 {
3058 	Sym *sp;
3059 	struct module_list *mlp;
3060 	struct modctl_list *clp;
3061 	struct module *mmp;
3062 
3063 	if (include_self && (sp = lookup_one(mp, name)) != NULL)
3064 		return (sp);
3065 
3066 	for (mlp = mp->head; mlp; mlp = mlp->next) {
3067 		if ((sp = lookup_one(mlp->mp, name)) != NULL &&
3068 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3069 			return (sp);
3070 	}
3071 
3072 	/*
3073 	 * Loop through the primary kernel modules.
3074 	 */
3075 	for (clp = kobj_lm_lookup(KOBJ_LM_PRIMARY); clp; clp = clp->modl_next) {
3076 		mmp = mod(clp);
3077 
3078 		if (mmp == NULL || mp == mmp)
3079 			continue;
3080 
3081 		if ((sp = lookup_one(mmp, name)) != NULL &&
3082 		    ELF_ST_BIND(sp->st_info) != STB_LOCAL)
3083 			return (sp);
3084 	}
3085 	return (NULL);
3086 }
3087 
3088 Sym *
3089 kobj_lookup_kernel(const char *name)
3090 {
3091 	struct modctl_list *lp;
3092 	struct module *mp;
3093 	Sym *sp;
3094 
3095 	/*
3096 	 * Loop through the primary kernel modules.
3097 	 */
3098 	for (lp = kobj_lm_lookup(KOBJ_LM_PRIMARY); lp; lp = lp->modl_next) {
3099 		mp = mod(lp);
3100 
3101 		if (mp == NULL)
3102 			continue;
3103 
3104 		if ((sp = lookup_one(mp, name)) != NULL)
3105 			return (sp);
3106 	}
3107 	return (NULL);
3108 }
3109 
3110 static Sym *
3111 lookup_one(struct module *mp, const char *name)
3112 {
3113 	symid_t *ip;
3114 	char *name1;
3115 	Sym *sp;
3116 
3117 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3118 	    ip = &mp->chains[*ip]) {
3119 		sp = (Sym *)(mp->symtbl +
3120 		    mp->symhdr->sh_entsize * *ip);
3121 		name1 = mp->strings + sp->st_name;
3122 		if (strcmp(name, name1) == 0 &&
3123 		    ELF_ST_TYPE(sp->st_info) != STT_FILE &&
3124 		    sp->st_shndx != SHN_UNDEF &&
3125 		    sp->st_shndx != SHN_COMMON)
3126 			return (sp);
3127 	}
3128 	return (NULL);
3129 }
3130 
3131 /*
3132  * Lookup a given symbol pointer in the module's symbol hash.  If the symbol
3133  * is hashed, return the symbol pointer; otherwise return NULL.
3134  */
3135 static Sym *
3136 sym_lookup(struct module *mp, Sym *ksp)
3137 {
3138 	char *name = mp->strings + ksp->st_name;
3139 	symid_t *ip;
3140 	Sym *sp;
3141 
3142 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3143 	    ip = &mp->chains[*ip]) {
3144 		sp = (Sym *)(mp->symtbl + mp->symhdr->sh_entsize * *ip);
3145 		if (sp == ksp)
3146 			return (ksp);
3147 	}
3148 	return (NULL);
3149 }
3150 
3151 static void
3152 sym_insert(struct module *mp, char *name, symid_t index)
3153 {
3154 	symid_t *ip;
3155 
3156 #ifdef KOBJ_DEBUG
3157 		if (kobj_debug & D_SYMBOLS) {
3158 			static struct module *lastmp = NULL;
3159 			Sym *sp;
3160 			if (lastmp != mp) {
3161 				_kobj_printf(ops,
3162 				    "krtld: symbol entry: file=%s\n",
3163 				    mp->filename);
3164 				_kobj_printf(ops,
3165 				    "krtld:\tsymndx\tvalue\t\t"
3166 				    "symbol name\n");
3167 				lastmp = mp;
3168 			}
3169 			sp = (Sym *)(mp->symtbl +
3170 				index * mp->symhdr->sh_entsize);
3171 			_kobj_printf(ops, "krtld:\t[%3d]", index);
3172 			_kobj_printf(ops, "\t0x%lx", sp->st_value);
3173 			_kobj_printf(ops, "\t%s\n", name);
3174 		}
3175 
3176 #endif
3177 	for (ip = &mp->buckets[kobj_hash_name(name) % mp->hashsize]; *ip;
3178 	    ip = &mp->chains[*ip]) {
3179 		;
3180 	}
3181 	*ip = index;
3182 }
3183 
3184 struct modctl *
3185 kobj_boot_mod_lookup(const char *modname)
3186 {
3187 	struct modctl *mctl = kobj_modules;
3188 
3189 	do {
3190 		if (strcmp(modname, mctl->mod_modname) == 0)
3191 			return (mctl);
3192 	} while ((mctl = mctl->mod_next) != kobj_modules);
3193 
3194 	return (NULL);
3195 }
3196 
3197 /*
3198  * Determine if the module exists.
3199  */
3200 int
3201 kobj_path_exists(char *name, int use_path)
3202 {
3203 	struct _buf *file;
3204 
3205 	file = kobj_open_path(name, use_path, 1);
3206 #ifdef	MODDIR_SUFFIX
3207 	if (file == (struct _buf *)-1)
3208 		file = kobj_open_path(name, use_path, 0);
3209 #endif	/* MODDIR_SUFFIX */
3210 	if (file == (struct _buf *)-1)
3211 		return (0);
3212 	kobj_close_file(file);
3213 	return (1);
3214 }
3215 
3216 /*
3217  * fullname is dynamically allocated to be able to hold the
3218  * maximum size string that can be constructed from name.
3219  * path is exactly like the shell PATH variable.
3220  */
3221 struct _buf *
3222 kobj_open_path(char *name, int use_path, int use_moddir_suffix)
3223 {
3224 	char *p, *q;
3225 	char *pathp;
3226 	char *pathpsave;
3227 	char *fullname;
3228 	int maxpathlen;
3229 	struct _buf *file;
3230 
3231 #if !defined(MODDIR_SUFFIX)
3232 	use_moddir_suffix = B_FALSE;
3233 #endif
3234 
3235 	if (!use_path)
3236 		pathp = "";		/* use name as specified */
3237 	else
3238 		pathp = module_path;	/* use configured default path */
3239 
3240 	pathpsave = pathp;		/* keep this for error reporting */
3241 
3242 	/*
3243 	 * Allocate enough space for the largest possible fullname.
3244 	 * since path is of the form <directory> : <directory> : ...
3245 	 * we're potentially allocating a little more than we need to
3246 	 * but we'll allocate the exact amount when we find the right directory.
3247 	 * (The + 3 below is one for NULL terminator and one for the '/'
3248 	 * we might have to add at the beginning of path and one for
3249 	 * the '/' between path and name.)
3250 	 */
3251 	maxpathlen = strlen(pathp) + strlen(name) + 3;
3252 	/* sizeof includes null */
3253 	maxpathlen += sizeof (slash_moddir_suffix_slash) - 1;
3254 	fullname = kobj_zalloc(maxpathlen, KM_WAIT);
3255 
3256 	for (;;) {
3257 		p = fullname;
3258 		if (*pathp != '\0' && *pathp != '/')
3259 			*p++ = '/';	/* path must start with '/' */
3260 		while (*pathp && *pathp != ':' && *pathp != ' ')
3261 			*p++ = *pathp++;
3262 		if (p != fullname && p[-1] != '/')
3263 			*p++ = '/';
3264 		if (use_moddir_suffix) {
3265 			char *b = basename(name);
3266 			char *s;
3267 
3268 			/* copy everything up to the base name */
3269 			q = name;
3270 			while (q != b && *q)
3271 				*p++ = *q++;
3272 			s = slash_moddir_suffix_slash;
3273 			while (*s)
3274 				*p++ = *s++;
3275 			/* copy the rest */
3276 			while (*b)
3277 				*p++ = *b++;
3278 		} else {
3279 			q = name;
3280 			while (*q)
3281 				*p++ = *q++;
3282 		}
3283 		*p = 0;
3284 		if ((file = kobj_open_file(fullname)) != (struct _buf *)-1) {
3285 			kobj_free(fullname, maxpathlen);
3286 			return (file);
3287 		}
3288 		if (*pathp == 0)
3289 			break;
3290 		pathp++;
3291 	}
3292 	kobj_free(fullname, maxpathlen);
3293 	if (_moddebug & MODDEBUG_ERRMSG) {
3294 		_kobj_printf(ops, "can't open %s,", name);
3295 		_kobj_printf(ops, " path is %s\n", pathpsave);
3296 	}
3297 	return ((struct _buf *)-1);
3298 }
3299 
3300 intptr_t
3301 kobj_open(char *filename)
3302 {
3303 	struct vnode *vp;
3304 	int fd;
3305 
3306 	if (_modrootloaded) {
3307 		struct kobjopen_tctl *ltp = kobjopen_alloc(filename);
3308 		int Errno;
3309 
3310 		/*
3311 		 * Hand off the open to a thread who has a
3312 		 * stack size capable handling the request.
3313 		 */
3314 		if (curthread != &t0) {
3315 			(void) thread_create(NULL, DEFAULTSTKSZ * 2,
3316 			    kobjopen_thread, ltp, 0, &p0, TS_RUN, maxclsyspri);
3317 			sema_p(&ltp->sema);
3318 			Errno = ltp->Errno;
3319 			vp = ltp->vp;
3320 		} else {
3321 			/*
3322 			 * 1098067: module creds should not be those of the
3323 			 * caller
3324 			 */
3325 			cred_t *saved_cred = curthread->t_cred;
3326 			curthread->t_cred = kcred;
3327 			Errno = vn_openat(filename, UIO_SYSSPACE, FREAD, 0, &vp,
3328 			    0, 0, rootdir);
3329 			curthread->t_cred = saved_cred;
3330 		}
3331 		kobjopen_free(ltp);
3332 
3333 		if (Errno) {
3334 			if (_moddebug & MODDEBUG_ERRMSG) {
3335 				_kobj_printf(ops,
3336 				    "kobj_open: vn_open of %s fails, ",
3337 				    filename);
3338 				_kobj_printf(ops, "Errno = %d\n", Errno);
3339 			}
3340 			return (-1);
3341 		} else {
3342 			if (_moddebug & MODDEBUG_ERRMSG) {
3343 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3344 				_kobj_printf(ops, " vp = %p\n", vp);
3345 			}
3346 			return ((intptr_t)vp);
3347 		}
3348 	} else {
3349 		fd = kobj_boot_open(filename, 0);
3350 
3351 		if (_moddebug & MODDEBUG_ERRMSG) {
3352 			if (fd < 0)
3353 				_kobj_printf(ops,
3354 				    "kobj_open: can't open %s\n", filename);
3355 			else {
3356 				_kobj_printf(ops, "kobj_open: '%s'", filename);
3357 				_kobj_printf(ops, " descr = 0x%x\n", fd);
3358 			}
3359 		}
3360 		return ((intptr_t)fd);
3361 	}
3362 }
3363 
3364 /*
3365  * Calls to kobj_open() are handled off to this routine as a separate thread.
3366  */
3367 static void
3368 kobjopen_thread(struct kobjopen_tctl *ltp)
3369 {
3370 	kmutex_t	cpr_lk;
3371 	callb_cpr_t	cpr_i;
3372 
3373 	mutex_init(&cpr_lk, NULL, MUTEX_DEFAULT, NULL);
3374 	CALLB_CPR_INIT(&cpr_i, &cpr_lk, callb_generic_cpr, "kobjopen");
3375 	ltp->Errno = vn_open(ltp->name, UIO_SYSSPACE, FREAD, 0, &(ltp->vp),
3376 									0, 0);
3377 	sema_v(&ltp->sema);
3378 	mutex_enter(&cpr_lk);
3379 	CALLB_CPR_EXIT(&cpr_i);
3380 	mutex_destroy(&cpr_lk);
3381 	thread_exit();
3382 }
3383 
3384 /*
3385  * allocate and initialize a kobjopen thread structure
3386  */
3387 static struct kobjopen_tctl *
3388 kobjopen_alloc(char *filename)
3389 {
3390 	struct kobjopen_tctl *ltp = kmem_zalloc(sizeof (*ltp), KM_SLEEP);
3391 
3392 	ASSERT(filename != NULL);
3393 
3394 	ltp->name = kmem_alloc(strlen(filename) + 1, KM_SLEEP);
3395 	bcopy(filename, ltp->name, strlen(filename) + 1);
3396 	sema_init(&ltp->sema, 0, NULL, SEMA_DEFAULT, NULL);
3397 	return (ltp);
3398 }
3399 
3400 /*
3401  * free a kobjopen thread control structure
3402  */
3403 static void
3404 kobjopen_free(struct kobjopen_tctl *ltp)
3405 {
3406 	sema_destroy(&ltp->sema);
3407 	kmem_free(ltp->name, strlen(ltp->name) + 1);
3408 	kmem_free(ltp, sizeof (*ltp));
3409 }
3410 
3411 int
3412 kobj_read(intptr_t descr, char *buf, unsigned size, unsigned offset)
3413 {
3414 	int stat;
3415 	ssize_t resid;
3416 
3417 	if (_modrootloaded) {
3418 		if ((stat = vn_rdwr(UIO_READ, (struct vnode *)descr, buf, size,
3419 		    (offset_t)offset, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(),
3420 		    &resid)) != 0) {
3421 			_kobj_printf(ops,
3422 			    "vn_rdwr failed with error 0x%x\n", stat);
3423 			return (-1);
3424 		}
3425 		return (size - resid);
3426 	} else {
3427 		int count = 0;
3428 
3429 		if (kobj_boot_seek((int)descr, (off_t)0, offset) != 0) {
3430 			_kobj_printf(ops,
3431 			    "kobj_read: seek 0x%x failed\n", offset);
3432 			return (-1);
3433 		}
3434 
3435 		count = kobj_boot_read((int)descr, buf, size);
3436 		if (count < size) {
3437 			if (_moddebug & MODDEBUG_ERRMSG) {
3438 				_kobj_printf(ops,
3439 				    "kobj_read: req %d bytes, ", size);
3440 				_kobj_printf(ops, "got %d\n", count);
3441 			}
3442 		}
3443 		return (count);
3444 	}
3445 }
3446 
3447 void
3448 kobj_close(intptr_t descr)
3449 {
3450 	if (_moddebug & MODDEBUG_ERRMSG)
3451 		_kobj_printf(ops, "kobj_close: 0x%lx\n", descr);
3452 
3453 	if (_modrootloaded) {
3454 		struct vnode *vp = (struct vnode *)descr;
3455 		(void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED());
3456 		VN_RELE(vp);
3457 	} else
3458 		(void) kobj_boot_close((int)descr);
3459 }
3460 
3461 int
3462 kobj_fstat(intptr_t descr, struct bootstat *buf)
3463 {
3464 	if (buf == NULL)
3465 		return (-1);
3466 
3467 	if (_modrootloaded) {
3468 		vattr_t vattr;
3469 		struct vnode *vp = (struct vnode *)descr;
3470 		if (VOP_GETATTR(vp, &vattr, 0, kcred) != 0)
3471 			return (-1);
3472 
3473 		/*
3474 		 * The vattr and bootstat structures are similar, but not
3475 		 * identical.  We do our best to fill in the bootstat structure
3476 		 * from the contents of vattr (transfering only the ones that
3477 		 * are obvious.
3478 		 */
3479 
3480 		buf->st_mode = (uint32_t)vattr.va_mode;
3481 		buf->st_nlink = (uint32_t)vattr.va_nlink;
3482 		buf->st_uid = (int32_t)vattr.va_uid;
3483 		buf->st_gid = (int32_t)vattr.va_gid;
3484 		buf->st_rdev = (uint64_t)vattr.va_rdev;
3485 		buf->st_size = (uint64_t)vattr.va_size;
3486 		buf->st_atim.tv_sec = (int64_t)vattr.va_atime.tv_sec;
3487 		buf->st_atim.tv_nsec = (int64_t)vattr.va_atime.tv_nsec;
3488 		buf->st_mtim.tv_sec = (int64_t)vattr.va_mtime.tv_sec;
3489 		buf->st_mtim.tv_nsec = (int64_t)vattr.va_mtime.tv_nsec;
3490 		buf->st_ctim.tv_sec = (int64_t)vattr.va_ctime.tv_sec;
3491 		buf->st_ctim.tv_nsec = (int64_t)vattr.va_ctime.tv_nsec;
3492 		buf->st_blksize = (int32_t)vattr.va_blksize;
3493 		buf->st_blocks = (int64_t)vattr.va_nblocks;
3494 
3495 		return (0);
3496 	}
3497 
3498 	return (kobj_boot_fstat((int)descr, buf));
3499 }
3500 
3501 
3502 struct _buf *
3503 kobj_open_file(char *name)
3504 {
3505 	struct _buf *file;
3506 	intptr_t fd;
3507 
3508 	if ((fd = kobj_open(name)) == -1) {
3509 		return ((struct _buf *)-1);
3510 	}
3511 
3512 	file = kobj_zalloc(sizeof (struct _buf), KM_WAIT|KM_TMP);
3513 	file->_fd = fd;
3514 	file->_name = kobj_alloc(strlen(name)+1, KM_WAIT|KM_TMP);
3515 	file->_base = kobj_zalloc(MAXBSIZE, KM_WAIT|KM_TMP);
3516 	file->_cnt = file->_size = file->_off = 0;
3517 	file->_ln = 1;
3518 	file->_ptr = file->_base;
3519 	(void) strcpy(file->_name, name);
3520 	return (file);
3521 }
3522 
3523 void
3524 kobj_close_file(struct _buf *file)
3525 {
3526 	kobj_close(file->_fd);
3527 	kobj_free(file->_base, MAXBSIZE);
3528 	kobj_free(file->_name, strlen(file->_name)+1);
3529 	kobj_free(file, sizeof (struct _buf));
3530 }
3531 
3532 int
3533 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
3534 {
3535 	int b_size, c_size;
3536 	int b_off;	/* Offset into buffer for start of bcopy */
3537 	int count = 0;
3538 	int page_addr;
3539 
3540 	if (_moddebug & MODDEBUG_ERRMSG) {
3541 		_kobj_printf(ops, "kobj_read_file: size=%x,", size);
3542 		_kobj_printf(ops, " offset=%x at", off);
3543 		_kobj_printf(ops, " buf=%x\n", buf);
3544 	}
3545 
3546 	while (size) {
3547 		page_addr = F_PAGE(off);
3548 		b_size = file->_size;
3549 		/*
3550 		 * If we have the filesystem page the caller's referring to
3551 		 * and we have something in the buffer,
3552 		 * satisfy as much of the request from the buffer as we can.
3553 		 */
3554 		if (page_addr == file->_off && b_size > 0) {
3555 			b_off = B_OFFSET(off);
3556 			c_size = b_size - b_off;
3557 			/*
3558 			 * If there's nothing to copy, we're at EOF.
3559 			 */
3560 			if (c_size <= 0)
3561 				break;
3562 			if (c_size > size)
3563 				c_size = size;
3564 			if (buf) {
3565 				if (_moddebug & MODDEBUG_ERRMSG)
3566 					_kobj_printf(ops, "copying %x bytes\n",
3567 					    c_size);
3568 				bcopy(file->_base+b_off, buf, c_size);
3569 				size -= c_size;
3570 				off += c_size;
3571 				buf += c_size;
3572 				count += c_size;
3573 			} else {
3574 				_kobj_printf(ops, "kobj_read: system error");
3575 				count = -1;
3576 				break;
3577 			}
3578 		} else {
3579 			/*
3580 			 * If the caller's offset is page aligned and
3581 			 * the caller want's at least a filesystem page and
3582 			 * the caller provided a buffer,
3583 			 * read directly into the caller's buffer.
3584 			 */
3585 			if (page_addr == off &&
3586 			    (c_size = F_PAGE(size)) && buf) {
3587 				c_size = kobj_read(file->_fd, buf, c_size,
3588 					page_addr);
3589 				if (c_size < 0) {
3590 					count = -1;
3591 					break;
3592 				}
3593 				count += c_size;
3594 				if (c_size != F_PAGE(size))
3595 					break;
3596 				size -= c_size;
3597 				off += c_size;
3598 				buf += c_size;
3599 			/*
3600 			 * Otherwise, read into our buffer and copy next time
3601 			 * around the loop.
3602 			 */
3603 			} else {
3604 				file->_off = page_addr;
3605 				c_size = kobj_read(file->_fd, file->_base,
3606 						MAXBSIZE, page_addr);
3607 				file->_ptr = file->_base;
3608 				file->_cnt = c_size;
3609 				file->_size = c_size;
3610 				/*
3611 				 * If a _filbuf call or nothing read, break.
3612 				 */
3613 				if (buf == NULL || c_size <= 0) {
3614 					count = c_size;
3615 					break;
3616 				}
3617 			}
3618 			if (_moddebug & MODDEBUG_ERRMSG)
3619 				_kobj_printf(ops, "read %x bytes\n", c_size);
3620 		}
3621 	}
3622 	if (_moddebug & MODDEBUG_ERRMSG)
3623 		_kobj_printf(ops, "count = %x\n", count);
3624 
3625 	return (count);
3626 }
3627 
3628 int
3629 kobj_filbuf(struct _buf *f)
3630 {
3631 	if (kobj_read_file(f, NULL, MAXBSIZE, f->_off + f->_size) > 0)
3632 		return (kobj_getc(f));
3633 	return (-1);
3634 }
3635 
3636 void
3637 kobj_free(void *address, size_t size)
3638 {
3639 	if (standalone)
3640 		return;
3641 
3642 	kmem_free(address, size);
3643 	kobj_stat.nfree_calls++;
3644 	kobj_stat.nfree += size;
3645 }
3646 
3647 void *
3648 kobj_zalloc(size_t size, int flag)
3649 {
3650 	void *v;
3651 
3652 	if ((v = kobj_alloc(size, flag)) != 0) {
3653 		bzero(v, size);
3654 	}
3655 
3656 	return (v);
3657 }
3658 
3659 void *
3660 kobj_alloc(size_t size, int flag)
3661 {
3662 	/*
3663 	 * If we are running standalone in the
3664 	 * linker, we ask boot for memory.
3665 	 * Either it's temporary memory that we lose
3666 	 * once boot is mapped out or we allocate it
3667 	 * permanently using the dynamic data segment.
3668 	 */
3669 	if (standalone) {
3670 #ifdef __sparc
3671 		if (flag & KM_TMP) {
3672 			return (kobj_tmp_alloc(size));
3673 		} else if (flag & KM_SCRATCH) {
3674 			void *buf = kobj_bs_alloc(size);
3675 
3676 			if (buf != NULL)
3677 				return (buf);
3678 #ifdef	KOBJ_DEBUG
3679 			if (kobj_debug & D_DEBUG) {
3680 				_kobj_printf(ops, "krtld: failed scratch alloc "
3681 				    "of %u bytes -- falling back\n", size);
3682 			}
3683 #endif
3684 		}
3685 
3686 #else /* x86 */
3687 		if (flag & (KM_TMP | KM_SCRATCH))
3688 			return (BOP_ALLOC(ops, 0, size, MINALIGN));
3689 #endif
3690 		return (kobj_segbrk(&_edata, size, MINALIGN, 0));
3691 	}
3692 
3693 	kobj_stat.nalloc_calls++;
3694 	kobj_stat.nalloc += size;
3695 
3696 	return (kmem_alloc(size, (flag & KM_NOWAIT) ? KM_NOSLEEP : KM_SLEEP));
3697 }
3698 
3699 /*
3700  * Allow the "mod" system to sync up with the work
3701  * already done by kobj during the initial loading
3702  * of the kernel.  This also gives us a chance
3703  * to reallocate memory that belongs to boot.
3704  */
3705 void
3706 kobj_sync(void)
3707 {
3708 	struct modctl_list *lp, **lpp;
3709 
3710 	extern char *default_path;
3711 
3712 	/*
3713 	 * module_path can be set in /etc/system
3714 	 */
3715 	if (default_path != NULL)
3716 		module_path = default_path;
3717 	else
3718 		default_path = module_path;
3719 
3720 	ksyms_arena = vmem_create("ksyms", NULL, 0, sizeof (uint64_t),
3721 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
3722 
3723 	ctf_arena = vmem_create("ctf", NULL, 0, sizeof (uint_t),
3724 	    segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
3725 
3726 	/*
3727 	 * Move symbol tables from boot memory to ksyms_arena.
3728 	 */
3729 	for (lpp = kobj_linkmaps; *lpp != NULL; lpp++) {
3730 		for (lp = *lpp; lp != NULL; lp = lp->modl_next)
3731 			kobj_export_module(mod(lp));
3732 	}
3733 }
3734 
3735 caddr_t
3736 kobj_segbrk(caddr_t *spp, size_t size, size_t align, caddr_t limit)
3737 {
3738 	uintptr_t va, pva;
3739 	size_t alloc_pgsz = kobj_mmu_pagesize;
3740 	size_t alloc_align = BO_NO_ALIGN;
3741 	size_t alloc_size;
3742 
3743 	/*
3744 	 * If we are using "large" mappings for the kernel,
3745 	 * request aligned memory from boot using the
3746 	 * "large" pagesize.
3747 	 */
3748 	if (lg_pagesize) {
3749 		alloc_align = lg_pagesize;
3750 		alloc_pgsz = lg_pagesize;
3751 	}
3752 	va = ALIGN((uintptr_t)*spp, align);
3753 	pva = P2ROUNDUP((uintptr_t)*spp, alloc_pgsz);
3754 	/*
3755 	 * Need more pages?
3756 	 */
3757 	if (va + size > pva) {
3758 		alloc_size = P2ROUNDUP(size - (pva - va), alloc_pgsz);
3759 		/*
3760 		 * Check for overlapping segments.
3761 		 */
3762 		if (limit && limit <= *spp + alloc_size)
3763 			return ((caddr_t)0);
3764 
3765 		pva = (uintptr_t)BOP_ALLOC(ops, (caddr_t)pva,
3766 					alloc_size, alloc_align);
3767 		if (pva == NULL) {
3768 			_kobj_printf(ops, "BOP_ALLOC refused, 0x%x bytes ",
3769 			    alloc_size);
3770 			_kobj_printf(ops, " at 0x%lx\n", pva);
3771 		}
3772 	}
3773 	*spp = (caddr_t)(va + size);
3774 
3775 	return ((caddr_t)va);
3776 }
3777 
3778 /*
3779  * Calculate the number of output hash buckets.
3780  * We use the next prime larger than n / 4,
3781  * so the average hash chain is about 4 entries.
3782  * More buckets would just be a waste of memory.
3783  */
3784 uint_t
3785 kobj_gethashsize(uint_t n)
3786 {
3787 	int f;
3788 	int hsize = MAX(n / 4, 2);
3789 
3790 	for (f = 2; f * f <= hsize; f++)
3791 		if (hsize % f == 0)
3792 			hsize += f = 1;
3793 
3794 	return (hsize);
3795 }
3796 
3797 static char *
3798 basename(char *s)
3799 {
3800 	char *p, *q;
3801 
3802 	q = NULL;
3803 	p = s;
3804 	do {
3805 		if (*p == '/')
3806 			q = p;
3807 	} while (*p++);
3808 	return (q ? q + 1 : s);
3809 }
3810 
3811 /*ARGSUSED*/
3812 static void
3813 kprintf(void *op, const char *fmt, ...)
3814 {
3815 	va_list adx;
3816 
3817 	va_start(adx, fmt);
3818 	vprintf(fmt, adx);
3819 	va_end(adx);
3820 }
3821 
3822 void
3823 kobj_stat_get(kobj_stat_t *kp)
3824 {
3825 	*kp = kobj_stat;
3826 }
3827 
3828 int
3829 kobj_getpagesize()
3830 {
3831 	return (lg_pagesize);
3832 }
3833 
3834 void
3835 kobj_textwin_alloc(struct module *mp)
3836 {
3837 	ASSERT(MUTEX_HELD(&mod_lock));
3838 
3839 	if (mp->textwin != NULL)
3840 		return;
3841 
3842 	/*
3843 	 * If the text is not contained in the heap, then it is not contained
3844 	 * by a writable mapping.  (Specifically, it's on the nucleus page.)
3845 	 * We allocate a read/write mapping for this module's text to allow
3846 	 * the text to be patched without calling hot_patch_kernel_text()
3847 	 * (which is quite slow).
3848 	 */
3849 	if (!vmem_contains(heaptext_arena, mp->text, mp->text_size)) {
3850 		uintptr_t text = (uintptr_t)mp->text;
3851 		uintptr_t size = (uintptr_t)mp->text_size;
3852 		uintptr_t i;
3853 		caddr_t va;
3854 		size_t sz = ((text + size + PAGESIZE - 1) & PAGEMASK) -
3855 		    (text & PAGEMASK);
3856 
3857 		va = mp->textwin_base = vmem_alloc(heap_arena, sz, VM_SLEEP);
3858 
3859 		for (i = text & PAGEMASK; i < text + size; i += PAGESIZE) {
3860 			hat_devload(kas.a_hat, va, PAGESIZE,
3861 			    hat_getpfnum(kas.a_hat, (caddr_t)i),
3862 			    PROT_READ | PROT_WRITE,
3863 			    HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
3864 			va += PAGESIZE;
3865 		}
3866 
3867 		mp->textwin = mp->textwin_base + (text & PAGEOFFSET);
3868 	} else {
3869 		mp->textwin = mp->text;
3870 	}
3871 }
3872 
3873 void
3874 kobj_textwin_free(struct module *mp)
3875 {
3876 	uintptr_t text = (uintptr_t)mp->text;
3877 	uintptr_t tsize = (uintptr_t)mp->text_size;
3878 	size_t size = (((text + tsize + PAGESIZE - 1) & PAGEMASK) -
3879 	    (text & PAGEMASK));
3880 
3881 	mp->textwin = NULL;
3882 
3883 	if (mp->textwin_base == NULL)
3884 		return;
3885 
3886 	hat_unload(kas.a_hat, mp->textwin_base, size, HAT_UNLOAD_UNLOCK);
3887 	vmem_free(heap_arena, mp->textwin_base, size);
3888 	mp->textwin_base = NULL;
3889 }
3890 
3891 static char *
3892 find_libmacro(char *name)
3893 {
3894 	int lmi;
3895 
3896 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
3897 		if (strcmp(name, libmacros[lmi].lmi_macroname) == 0)
3898 			return (libmacros[lmi].lmi_list);
3899 	}
3900 	return (NULL);
3901 }
3902 
3903 /*
3904  * Check for $MACRO in tail (string to expand) and expand it in path at pathend
3905  * returns path if successful, else NULL
3906  * Support multiple $MACROs expansion and the first valid path will be returned
3907  * Caller's responsibility to provide enough space in path to expand
3908  */
3909 char *
3910 expand_libmacro(char *tail, char *path, char *pathend)
3911 {
3912 	char c, *p, *p1, *p2, *path2, *endp;
3913 	int diff, lmi, macrolen, valid_macro, more_macro;
3914 	struct _buf *file;
3915 
3916 	/*
3917 	 * check for $MACROS between nulls or slashes
3918 	 */
3919 	p = strchr(tail, '$');
3920 	if (p == NULL)
3921 		return (NULL);
3922 	for (lmi = 0; lmi < NLIBMACROS; lmi++) {
3923 		macrolen = libmacros[lmi].lmi_macrolen;
3924 		if (strncmp(p + 1, libmacros[lmi].lmi_macroname, macrolen) == 0)
3925 			break;
3926 	}
3927 
3928 	valid_macro = 0;
3929 	if (lmi < NLIBMACROS) {
3930 		/*
3931 		 * The following checks are used to restrict expansion of
3932 		 * macros to those that form a full directory/file name
3933 		 * and to keep the behavior same as before.  If this
3934 		 * restriction is removed or no longer valid in the future,
3935 		 * the checks below can be deleted.
3936 		 */
3937 		if ((p == tail) || (*(p - 1) == '/')) {
3938 			c = *(p + macrolen + 1);
3939 			if (c == '/' || c == '\0')
3940 				valid_macro = 1;
3941 		}
3942 	}
3943 
3944 	if (!valid_macro) {
3945 		p2 = strchr(p, '/');
3946 		/*
3947 		 * if no more macro to expand, then just copy whatever left
3948 		 * and check whether it exists
3949 		 */
3950 		if (p2 == NULL || strchr(p2, '$') == NULL) {
3951 			(void) strcpy(pathend, tail);
3952 			if ((file = kobj_open_path(path, 1, 1)) !=
3953 			    (struct _buf *)-1) {
3954 				kobj_close_file(file);
3955 				return (path);
3956 			} else
3957 				return (NULL);
3958 		} else {
3959 			/*
3960 			 * copy all chars before '/' and call expand_libmacro()
3961 			 * again
3962 			 */
3963 			diff = p2 - tail;
3964 			bcopy(tail, pathend, diff);
3965 			pathend += diff;
3966 			*(pathend) = '\0';
3967 			return (expand_libmacro(p2, path, pathend));
3968 		}
3969 	}
3970 
3971 	more_macro = 0;
3972 	if (c != '\0') {
3973 		endp = p + macrolen + 1;
3974 		if (strchr(endp, '$') != NULL)
3975 			more_macro = 1;
3976 	} else
3977 		endp = NULL;
3978 
3979 	/*
3980 	 * copy lmi_list and split it into components.
3981 	 * then put the part of tail before $MACRO into path
3982 	 * at pathend
3983 	 */
3984 	diff = p - tail;
3985 	if (diff > 0)
3986 		bcopy(tail, pathend, diff);
3987 	path2 = pathend + diff;
3988 	p1 = libmacros[lmi].lmi_list;
3989 	while (p1 && (*p1 != '\0')) {
3990 		p2 = strchr(p1, ':');
3991 		if (p2) {
3992 			diff = p2 - p1;
3993 			bcopy(p1, path2, diff);
3994 			*(path2 + diff) = '\0';
3995 		} else {
3996 			diff = strlen(p1);
3997 			bcopy(p1, path2, diff + 1);
3998 		}
3999 		/* copy endp only if there isn't any more macro to expand */
4000 		if (!more_macro && (endp != NULL))
4001 			(void) strcat(path2, endp);
4002 		file = kobj_open_path(path, 1, 1);
4003 		if (file != (struct _buf *)-1) {
4004 			kobj_close_file(file);
4005 			/*
4006 			 * if more macros to expand then call expand_libmacro(),
4007 			 * else return path which has the whole path
4008 			 */
4009 			if (!more_macro || (expand_libmacro(endp, path,
4010 			    path2 + diff) != NULL)) {
4011 				return (path);
4012 			}
4013 		}
4014 		if (p2)
4015 			p1 = ++p2;
4016 		else
4017 			return (NULL);
4018 	}
4019 	return (NULL);
4020 }
4021 
4022 static void
4023 tnf_add_notifyunload(kobj_notify_f *fp)
4024 {
4025 	kobj_notify_list_t *entry;
4026 
4027 	entry = kobj_alloc(sizeof (kobj_notify_list_t), KM_WAIT);
4028 	entry->kn_type = KOBJ_NOTIFY_MODUNLOADING;
4029 	entry->kn_func = fp;
4030 	(void) kobj_notify_add(entry);
4031 }
4032 
4033 /* ARGSUSED */
4034 static void
4035 tnf_unsplice_probes(unsigned int what, struct modctl *mod)
4036 {
4037 	extern tnf_probe_control_t *__tnf_probe_list_head;
4038 	extern tnf_tag_data_t *__tnf_tag_list_head;
4039 	tnf_probe_control_t **p;
4040 	tnf_tag_data_t **q;
4041 	struct module *mp = mod->mod_mp;
4042 
4043 	if (!(mp->flags & KOBJ_TNF_PROBE))
4044 		return;
4045 
4046 	for (p = &__tnf_probe_list_head; *p; )
4047 		if (kobj_addrcheck(mp, (char *)*p) == 0)
4048 			*p = (*p)->next;
4049 		else
4050 			p = &(*p)->next;
4051 
4052 	for (q = &__tnf_tag_list_head; *q; )
4053 		if (kobj_addrcheck(mp, (char *)*q) == 0)
4054 			*q = (tnf_tag_data_t *)(*q)->tag_version;
4055 		else
4056 			q = (tnf_tag_data_t **)&(*q)->tag_version;
4057 
4058 	tnf_changed_probe_list = 1;
4059 }
4060 
4061 int
4062 tnf_splice_probes(int boot_load, tnf_probe_control_t *plist,
4063     tnf_tag_data_t *tlist)
4064 {
4065 	int result = 0;
4066 	static int add_notify = 1;
4067 
4068 	if (plist) {
4069 		tnf_probe_control_t *pl;
4070 
4071 		for (pl = plist; pl->next; )
4072 			pl = pl->next;
4073 
4074 		if (!boot_load)
4075 			mutex_enter(&mod_lock);
4076 		tnf_changed_probe_list = 1;
4077 		pl->next = __tnf_probe_list_head;
4078 		__tnf_probe_list_head = plist;
4079 		if (!boot_load)
4080 			mutex_exit(&mod_lock);
4081 		result = 1;
4082 	}
4083 
4084 	if (tlist) {
4085 		tnf_tag_data_t *tl;
4086 
4087 		for (tl = tlist; tl->tag_version; )
4088 			tl = (tnf_tag_data_t *)tl->tag_version;
4089 
4090 		if (!boot_load)
4091 			mutex_enter(&mod_lock);
4092 		tl->tag_version = (tnf_tag_version_t *)__tnf_tag_list_head;
4093 		__tnf_tag_list_head = tlist;
4094 		if (!boot_load)
4095 			mutex_exit(&mod_lock);
4096 		result = 1;
4097 	}
4098 	if (!boot_load && result && add_notify) {
4099 		tnf_add_notifyunload(tnf_unsplice_probes);
4100 		add_notify = 0;
4101 	}
4102 	return (result);
4103 }
4104 
4105 #if defined(__x86)
4106 /*
4107  * This code is for the purpose of manually recording which files
4108  * needs to go into the boot archive on any given system.
4109  *
4110  * To enable the code, set kobj_file_bufsize in /etc/system
4111  * and reboot the system, then use mdb to look at kobj_file_buf.
4112  */
4113 static void
4114 kobj_record_file(char *filename)
4115 {
4116 	extern char *kobj_file_buf;
4117 	extern int kobj_file_bufsize;
4118 	static char *buf;
4119 	static int size = 0;
4120 	int n;
4121 
4122 	if (standalone)		/* kernel symbol not available */
4123 		return;
4124 
4125 	if (kobj_file_bufsize == 0)	/* don't bother */
4126 		return;
4127 
4128 	if (kobj_file_buf == NULL) {	/* allocate buffer */
4129 		size = kobj_file_bufsize;
4130 		buf = kobj_file_buf = kobj_alloc(size, KM_WAIT|KM_TMP);
4131 	}
4132 
4133 	n = snprintf(buf, size, "%s\n", filename);
4134 	if (n > size)
4135 		n = size;
4136 	size -= n;
4137 	buf += n;
4138 }
4139 #endif	/* __x86 */
4140 
4141 static int
4142 kobj_boot_fstat(int fd, struct bootstat *stp)
4143 {
4144 #if defined(__sparc)
4145 	if (!standalone && _ioquiesced)
4146 		return (-1);
4147 	return (BOP_FSTAT(ops, fd, stp));
4148 #else
4149 	return (BRD_FSTAT(bfs_ops, fd, stp));
4150 #endif
4151 }
4152 
4153 /*
4154  * XXX these wrappers should go away when sparc is converted
4155  * boot from ramdisk
4156  */
4157 static int
4158 kobj_boot_open(char *filename, int flags)
4159 {
4160 #if defined(__sparc)
4161 	/*
4162 	 * If io via bootops is quiesced, it means boot is no longer
4163 	 * available to us.  We make it look as if we can't open the
4164 	 * named file - which is reasonably accurate.
4165 	 */
4166 	if (!standalone && _ioquiesced)
4167 		return (-1);
4168 
4169 	return (BOP_OPEN(ops, filename, flags));
4170 #else /* x86 */
4171 	kobj_record_file(filename);
4172 	return (BRD_OPEN(bfs_ops, filename, flags));
4173 #endif
4174 }
4175 
4176 static int
4177 kobj_boot_close(int fd)
4178 {
4179 #if defined(__sparc)
4180 	if (!standalone && _ioquiesced)
4181 		return (-1);
4182 
4183 	return (BOP_CLOSE(ops, fd));
4184 #else /* x86 */
4185 	return (BRD_CLOSE(bfs_ops, fd));
4186 #endif
4187 }
4188 
4189 /*ARGSUSED*/
4190 static int
4191 kobj_boot_seek(int fd, off_t hi, off_t lo)
4192 {
4193 #if defined(__sparc)
4194 	return (BOP_SEEK(ops, fd, hi, lo));
4195 #else
4196 	return (BRD_SEEK(bfs_ops, fd, lo, SEEK_SET));
4197 #endif
4198 }
4199 
4200 static int
4201 kobj_boot_read(int fd, caddr_t buf, size_t size)
4202 {
4203 #if defined(__sparc)
4204 	return (BOP_READ(ops, fd, buf, size));
4205 #else
4206 	return (BRD_READ(bfs_ops, fd, buf, size));
4207 #endif
4208 }
4209