xref: /titanic_50/usr/src/uts/common/io/wpi/wpi.c (revision f3af49816e370d667d566ab703e94b81305a536e)
1 /*
2  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2006
8  *	Damien Bergamini <damien.bergamini@free.fr>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 #pragma ident	"%Z%%M%	%I%	%E% SMI"
24 
25 /*
26  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
27  */
28 
29 #include <sys/types.h>
30 #include <sys/byteorder.h>
31 #include <sys/conf.h>
32 #include <sys/cmn_err.h>
33 #include <sys/stat.h>
34 #include <sys/ddi.h>
35 #include <sys/sunddi.h>
36 #include <sys/strsubr.h>
37 #include <sys/ethernet.h>
38 #include <inet/common.h>
39 #include <inet/nd.h>
40 #include <inet/mi.h>
41 #include <sys/note.h>
42 #include <sys/stream.h>
43 #include <sys/strsun.h>
44 #include <sys/modctl.h>
45 #include <sys/devops.h>
46 #include <sys/dlpi.h>
47 #include <sys/mac.h>
48 #include <sys/mac_wifi.h>
49 #include <sys/net80211.h>
50 #include <sys/net80211_proto.h>
51 #include <sys/varargs.h>
52 #include <sys/policy.h>
53 #include <sys/pci.h>
54 
55 #include "wpireg.h"
56 #include "wpivar.h"
57 #include <inet/wifi_ioctl.h>
58 
59 #ifdef DEBUG
60 #define	WPI_DEBUG_80211		(1 << 0)
61 #define	WPI_DEBUG_CMD		(1 << 1)
62 #define	WPI_DEBUG_DMA		(1 << 2)
63 #define	WPI_DEBUG_EEPROM	(1 << 3)
64 #define	WPI_DEBUG_FW		(1 << 4)
65 #define	WPI_DEBUG_HW		(1 << 5)
66 #define	WPI_DEBUG_INTR		(1 << 6)
67 #define	WPI_DEBUG_MRR		(1 << 7)
68 #define	WPI_DEBUG_PIO		(1 << 8)
69 #define	WPI_DEBUG_RX		(1 << 9)
70 #define	WPI_DEBUG_SCAN		(1 << 10)
71 #define	WPI_DEBUG_TX		(1 << 11)
72 #define	WPI_DEBUG_RATECTL	(1 << 12)
73 #define	WPI_DEBUG_RADIO		(1 << 13)
74 uint32_t wpi_dbg_flags = 0;
75 #define	WPI_DBG(x) \
76 	wpi_dbg x
77 #else
78 #define	WPI_DBG(x)
79 #endif
80 
81 static void	*wpi_soft_state_p = NULL;
82 static uint8_t wpi_fw_bin [] = {
83 #include "fw-wpi/ipw3945.ucode.hex"
84 };
85 
86 /* DMA attributes for a shared page */
87 static ddi_dma_attr_t sh_dma_attr = {
88 	DMA_ATTR_V0,	/* version of this structure */
89 	0,		/* lowest usable address */
90 	0xffffffffU,	/* highest usable address */
91 	0xffffffffU,	/* maximum DMAable byte count */
92 	0x1000,		/* alignment in bytes */
93 	0x1000,		/* burst sizes (any?) */
94 	1,		/* minimum transfer */
95 	0xffffffffU,	/* maximum transfer */
96 	0xffffffffU,	/* maximum segment length */
97 	1,		/* maximum number of segments */
98 	1,		/* granularity */
99 	0,		/* flags (reserved) */
100 };
101 
102 /* DMA attributes for a ring descriptor */
103 static ddi_dma_attr_t ring_desc_dma_attr = {
104 	DMA_ATTR_V0,	/* version of this structure */
105 	0,		/* lowest usable address */
106 	0xffffffffU,	/* highest usable address */
107 	0xffffffffU,	/* maximum DMAable byte count */
108 	0x4000,		/* alignment in bytes */
109 	0x100,		/* burst sizes (any?) */
110 	1,		/* minimum transfer */
111 	0xffffffffU,	/* maximum transfer */
112 	0xffffffffU,	/* maximum segment length */
113 	1,		/* maximum number of segments */
114 	1,		/* granularity */
115 	0,		/* flags (reserved) */
116 };
117 
118 
119 /* DMA attributes for a tx cmd */
120 static ddi_dma_attr_t tx_cmd_dma_attr = {
121 	DMA_ATTR_V0,	/* version of this structure */
122 	0,		/* lowest usable address */
123 	0xffffffffU,	/* highest usable address */
124 	0xffffffffU,	/* maximum DMAable byte count */
125 	4,		/* alignment in bytes */
126 	0x100,		/* burst sizes (any?) */
127 	1,		/* minimum transfer */
128 	0xffffffffU,	/* maximum transfer */
129 	0xffffffffU,	/* maximum segment length */
130 	1,		/* maximum number of segments */
131 	1,		/* granularity */
132 	0,		/* flags (reserved) */
133 };
134 
135 /* DMA attributes for a rx buffer */
136 static ddi_dma_attr_t rx_buffer_dma_attr = {
137 	DMA_ATTR_V0,	/* version of this structure */
138 	0,		/* lowest usable address */
139 	0xffffffffU,	/* highest usable address */
140 	0xffffffffU,	/* maximum DMAable byte count */
141 	1,		/* alignment in bytes */
142 	0x100,		/* burst sizes (any?) */
143 	1,		/* minimum transfer */
144 	0xffffffffU,	/* maximum transfer */
145 	0xffffffffU,	/* maximum segment length */
146 	1,		/* maximum number of segments */
147 	1,		/* granularity */
148 	0,		/* flags (reserved) */
149 };
150 
151 /*
152  * DMA attributes for a tx buffer.
153  * the maximum number of segments is 4 for the hardware.
154  * now all the wifi drivers put the whole frame in a single
155  * descriptor, so we define the maximum  number of segments 4,
156  * just the same as the rx_buffer. we consider leverage the HW
157  * ability in the future, that is why we don't define rx and tx
158  * buffer_dma_attr as the same.
159  */
160 static ddi_dma_attr_t tx_buffer_dma_attr = {
161 	DMA_ATTR_V0,	/* version of this structure */
162 	0,		/* lowest usable address */
163 	0xffffffffU,	/* highest usable address */
164 	0xffffffffU,	/* maximum DMAable byte count */
165 	1,		/* alignment in bytes */
166 	0x100,		/* burst sizes (any?) */
167 	1,		/* minimum transfer */
168 	0xffffffffU,	/* maximum transfer */
169 	0xffffffffU,	/* maximum segment length */
170 	1,		/* maximum number of segments */
171 	1,		/* granularity */
172 	0,		/* flags (reserved) */
173 };
174 
175 /* DMA attributes for a load firmware */
176 static ddi_dma_attr_t fw_buffer_dma_attr = {
177 	DMA_ATTR_V0,	/* version of this structure */
178 	0,		/* lowest usable address */
179 	0xffffffffU,	/* highest usable address */
180 	0x7fffffff,	/* maximum DMAable byte count */
181 	4,		/* alignment in bytes */
182 	0x100,		/* burst sizes (any?) */
183 	1,		/* minimum transfer */
184 	0xffffffffU,	/* maximum transfer */
185 	0xffffffffU,	/* maximum segment length */
186 	4,		/* maximum number of segments */
187 	1,		/* granularity */
188 	0,		/* flags (reserved) */
189 };
190 
191 /* regs access attributes */
192 static ddi_device_acc_attr_t wpi_reg_accattr = {
193 	DDI_DEVICE_ATTR_V0,
194 	DDI_STRUCTURE_LE_ACC,
195 	DDI_STRICTORDER_ACC,
196 	DDI_DEFAULT_ACC
197 };
198 
199 /* DMA access attributes */
200 static ddi_device_acc_attr_t wpi_dma_accattr = {
201 	DDI_DEVICE_ATTR_V0,
202 	DDI_NEVERSWAP_ACC,
203 	DDI_STRICTORDER_ACC,
204 	DDI_DEFAULT_ACC
205 };
206 
207 static int	wpi_ring_init(wpi_sc_t *);
208 static void	wpi_ring_free(wpi_sc_t *);
209 static int	wpi_alloc_shared(wpi_sc_t *);
210 static void	wpi_free_shared(wpi_sc_t *);
211 static int	wpi_alloc_fw_dma(wpi_sc_t *);
212 static void	wpi_free_fw_dma(wpi_sc_t *);
213 static int	wpi_alloc_rx_ring(wpi_sc_t *);
214 static void	wpi_reset_rx_ring(wpi_sc_t *);
215 static void	wpi_free_rx_ring(wpi_sc_t *);
216 static int	wpi_alloc_tx_ring(wpi_sc_t *, wpi_tx_ring_t *, int, int);
217 static void	wpi_reset_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
218 static void	wpi_free_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
219 
220 static ieee80211_node_t *wpi_node_alloc(ieee80211com_t *);
221 static void	wpi_node_free(ieee80211_node_t *);
222 static int	wpi_newstate(ieee80211com_t *, enum ieee80211_state, int);
223 static void	wpi_mem_lock(wpi_sc_t *);
224 static void	wpi_mem_unlock(wpi_sc_t *);
225 static uint32_t	wpi_mem_read(wpi_sc_t *, uint16_t);
226 static void	wpi_mem_write(wpi_sc_t *, uint16_t, uint32_t);
227 static void	wpi_mem_write_region_4(wpi_sc_t *, uint16_t,
228 		    const uint32_t *, int);
229 static uint16_t	wpi_read_prom_word(wpi_sc_t *, uint32_t);
230 static int	wpi_load_microcode(wpi_sc_t *);
231 static int	wpi_load_firmware(wpi_sc_t *, uint32_t);
232 static void	wpi_rx_intr(wpi_sc_t *, wpi_rx_desc_t *,
233 		    wpi_rx_data_t *);
234 static void	wpi_tx_intr(wpi_sc_t *, wpi_rx_desc_t *,
235 		    wpi_rx_data_t *);
236 static void	wpi_cmd_intr(wpi_sc_t *, wpi_rx_desc_t *);
237 static uint_t	wpi_intr(caddr_t);
238 static uint_t	wpi_notif_softintr(caddr_t);
239 static uint8_t	wpi_plcp_signal(int);
240 static void	wpi_read_eeprom(wpi_sc_t *);
241 static int	wpi_cmd(wpi_sc_t *, int, const void *, int, int);
242 static int	wpi_mrr_setup(wpi_sc_t *);
243 static void	wpi_set_led(wpi_sc_t *, uint8_t, uint8_t, uint8_t);
244 static int	wpi_auth(wpi_sc_t *);
245 static int	wpi_scan(wpi_sc_t *);
246 static int	wpi_config(wpi_sc_t *);
247 static void	wpi_stop_master(wpi_sc_t *);
248 static int	wpi_power_up(wpi_sc_t *);
249 static int	wpi_reset(wpi_sc_t *);
250 static void	wpi_hw_config(wpi_sc_t *);
251 static int	wpi_init(wpi_sc_t *);
252 static void	wpi_stop(wpi_sc_t *);
253 static void	wpi_amrr_init(wpi_amrr_t *);
254 static void	wpi_amrr_timeout(wpi_sc_t *);
255 static void	wpi_amrr_ratectl(void *, ieee80211_node_t *);
256 
257 static int wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
258 static int wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
259 
260 /*
261  * GLD specific operations
262  */
263 static int	wpi_m_stat(void *arg, uint_t stat, uint64_t *val);
264 static int	wpi_m_start(void *arg);
265 static void	wpi_m_stop(void *arg);
266 static int	wpi_m_unicst(void *arg, const uint8_t *macaddr);
267 static int	wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m);
268 static int	wpi_m_promisc(void *arg, boolean_t on);
269 static mblk_t  *wpi_m_tx(void *arg, mblk_t *mp);
270 static void	wpi_m_ioctl(void *arg, queue_t *wq, mblk_t *mp);
271 
272 static void	wpi_destroy_locks(wpi_sc_t *sc);
273 static int	wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type);
274 static void	wpi_thread(wpi_sc_t *sc);
275 
276 /*
277  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
278  */
279 static const struct ieee80211_rateset wpi_rateset_11b =
280 	{ 4, { 2, 4, 11, 22 } };
281 
282 static const struct ieee80211_rateset wpi_rateset_11g =
283 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
284 
285 static const uint8_t wpi_ridx_to_signal[] = {
286 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
287 	/* R1-R4 (ral/ural is R4-R1) */
288 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
289 	/* CCK: device-dependent */
290 	10, 20, 55, 110
291 };
292 
293 /*
294  * For mfthread only
295  */
296 extern pri_t minclsyspri;
297 
298 /*
299  * Module Loading Data & Entry Points
300  */
301 DDI_DEFINE_STREAM_OPS(wpi_devops, nulldev, nulldev, wpi_attach,
302     wpi_detach, nodev, NULL, D_MP, NULL);
303 
304 static struct modldrv wpi_modldrv = {
305 	&mod_driverops,
306 	"Intel(R) PRO/Wireless 3945ABG driver",
307 	&wpi_devops
308 };
309 
310 static struct modlinkage wpi_modlinkage = {
311 	MODREV_1,
312 	&wpi_modldrv,
313 	NULL
314 };
315 
316 int
317 _init(void)
318 {
319 	int	status;
320 
321 	status = ddi_soft_state_init(&wpi_soft_state_p,
322 	    sizeof (wpi_sc_t), 1);
323 	if (status != DDI_SUCCESS)
324 		return (status);
325 
326 	mac_init_ops(&wpi_devops, "wpi");
327 	status = mod_install(&wpi_modlinkage);
328 	if (status != DDI_SUCCESS) {
329 		mac_fini_ops(&wpi_devops);
330 		ddi_soft_state_fini(&wpi_soft_state_p);
331 	}
332 
333 	return (status);
334 }
335 
336 int
337 _fini(void)
338 {
339 	int status;
340 
341 	status = mod_remove(&wpi_modlinkage);
342 	if (status == DDI_SUCCESS) {
343 		mac_fini_ops(&wpi_devops);
344 		ddi_soft_state_fini(&wpi_soft_state_p);
345 	}
346 
347 	return (status);
348 }
349 
350 int
351 _info(struct modinfo *mip)
352 {
353 	return (mod_info(&wpi_modlinkage, mip));
354 }
355 
356 /*
357  * Mac Call Back entries
358  */
359 mac_callbacks_t	wpi_m_callbacks = {
360 	MC_IOCTL,
361 	wpi_m_stat,
362 	wpi_m_start,
363 	wpi_m_stop,
364 	wpi_m_promisc,
365 	wpi_m_multicst,
366 	wpi_m_unicst,
367 	wpi_m_tx,
368 	NULL,
369 	wpi_m_ioctl
370 };
371 
372 #ifdef DEBUG
373 void
374 wpi_dbg(uint32_t flags, const char *fmt, ...)
375 {
376 	va_list	ap;
377 
378 	if (flags & wpi_dbg_flags) {
379 		va_start(ap, fmt);
380 		vcmn_err(CE_NOTE, fmt, ap);
381 		va_end(ap);
382 	}
383 }
384 #endif
385 /*
386  * device operations
387  */
388 int
389 wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
390 {
391 	wpi_sc_t		*sc;
392 	ddi_acc_handle_t	cfg_handle;
393 	caddr_t			cfg_base;
394 	ieee80211com_t	*ic;
395 	int			instance, err, i;
396 	char			strbuf[32];
397 	wifi_data_t		wd = { 0 };
398 	mac_register_t		*macp;
399 
400 	if (cmd != DDI_ATTACH) {
401 		err = DDI_FAILURE;
402 		goto attach_fail1;
403 	}
404 
405 	instance = ddi_get_instance(dip);
406 	err = ddi_soft_state_zalloc(wpi_soft_state_p, instance);
407 	if (err != DDI_SUCCESS) {
408 		cmn_err(CE_WARN,
409 		    "wpi_attach(): failed to allocate soft state\n");
410 		goto attach_fail1;
411 	}
412 	sc = ddi_get_soft_state(wpi_soft_state_p, instance);
413 	sc->sc_dip = dip;
414 
415 	err = ddi_regs_map_setup(dip, 0, &cfg_base, 0, 0,
416 	    &wpi_reg_accattr, &cfg_handle);
417 	if (err != DDI_SUCCESS) {
418 		cmn_err(CE_WARN,
419 		    "wpi_attach(): failed to map config spaces regs\n");
420 		goto attach_fail2;
421 	}
422 	sc->sc_rev = ddi_get8(cfg_handle,
423 	    (uint8_t *)(cfg_base + PCI_CONF_REVID));
424 	ddi_put8(cfg_handle, (uint8_t *)(cfg_base + 0x41), 0);
425 	sc->sc_clsz = ddi_get16(cfg_handle,
426 	    (uint16_t *)(cfg_base + PCI_CONF_CACHE_LINESZ));
427 	ddi_regs_map_free(&cfg_handle);
428 	if (!sc->sc_clsz)
429 		sc->sc_clsz = 16;
430 	sc->sc_clsz = (sc->sc_clsz << 2);
431 	sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
432 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
433 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
434 	    IEEE80211_WEP_CRCLEN), sc->sc_clsz);
435 	/*
436 	 * Map operating registers
437 	 */
438 	err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
439 	    0, 0, &wpi_reg_accattr, &sc->sc_handle);
440 	if (err != DDI_SUCCESS) {
441 		cmn_err(CE_WARN,
442 		    "wpi_attach(): failed to map device regs\n");
443 		goto attach_fail2;
444 	}
445 
446 	/*
447 	 * Allocate shared page.
448 	 */
449 	err = wpi_alloc_shared(sc);
450 	if (err != DDI_SUCCESS) {
451 		cmn_err(CE_WARN, "failed to allocate shared page\n");
452 		goto attach_fail3;
453 	}
454 
455 	/*
456 	 * Get the hw conf, including MAC address, then init all rings.
457 	 */
458 	wpi_read_eeprom(sc);
459 	err = wpi_ring_init(sc);
460 	if (err != DDI_SUCCESS) {
461 		cmn_err(CE_WARN, "wpi_attach(): "
462 		    "failed to allocate and initialize ring\n");
463 		goto attach_fail4;
464 	}
465 
466 	sc->sc_hdr = (const wpi_firmware_hdr_t *)wpi_fw_bin;
467 
468 	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
469 	sc->sc_text = (const char *)(sc->sc_hdr + 1);
470 	sc->sc_data = sc->sc_text + LE_32(sc->sc_hdr->textsz);
471 	sc->sc_boot = sc->sc_data + LE_32(sc->sc_hdr->datasz);
472 	err = wpi_alloc_fw_dma(sc);
473 	if (err != DDI_SUCCESS) {
474 		cmn_err(CE_WARN, "wpi_attach(): "
475 		    "failed to allocate firmware dma\n");
476 		goto attach_fail5;
477 	}
478 
479 	/*
480 	 * Initialize mutexs and condvars
481 	 */
482 	err = ddi_get_iblock_cookie(dip, 0, &sc->sc_iblk);
483 	if (err != DDI_SUCCESS) {
484 		cmn_err(CE_WARN,
485 		    "wpi_attach(): failed to do ddi_get_iblock_cookie()\n");
486 		goto attach_fail6;
487 	}
488 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, sc->sc_iblk);
489 	mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER, sc->sc_iblk);
490 	cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
491 	cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
492 	cv_init(&sc->sc_tx_cv, "tx-ring", CV_DRIVER, NULL);
493 	/*
494 	 * initialize the mfthread
495 	 */
496 	mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
497 	    (void *) sc->sc_iblk);
498 	cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
499 	sc->sc_mf_thread = NULL;
500 	sc->sc_mf_thread_switch = 0;
501 	/*
502 	 * Initialize the wifi part, which will be used by
503 	 * generic layer
504 	 */
505 	ic = &sc->sc_ic;
506 	ic->ic_phytype  = IEEE80211_T_OFDM;
507 	ic->ic_opmode   = IEEE80211_M_STA; /* default to BSS mode */
508 	ic->ic_state    = IEEE80211_S_INIT;
509 	ic->ic_maxrssi  = 70; /* experimental number */
510 	/*
511 	 * use software WEP for the current version.
512 	 */
513 	ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
514 	    IEEE80211_C_PMGT;
515 
516 	/* set supported .11b and .11g rates */
517 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
518 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
519 
520 	/* set supported .11b and .11g channels (1 through 14) */
521 	for (i = 1; i <= 14; i++) {
522 		ic->ic_sup_channels[i].ich_freq =
523 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
524 		ic->ic_sup_channels[i].ich_flags =
525 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
526 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
527 	}
528 	ic->ic_ibss_chan = &ic->ic_sup_channels[0];
529 	ic->ic_xmit = wpi_send;
530 	/*
531 	 * init Wifi layer
532 	 */
533 	ieee80211_attach(ic);
534 
535 	/*
536 	 * Override 80211 default routines
537 	 */
538 	sc->sc_newstate = ic->ic_newstate;
539 	ic->ic_newstate = wpi_newstate;
540 	ic->ic_node_alloc = wpi_node_alloc;
541 	ic->ic_node_free = wpi_node_free;
542 	ieee80211_media_init(ic);
543 	/*
544 	 * initialize default tx key
545 	 */
546 	ic->ic_def_txkey = 0;
547 
548 	err = ddi_add_softintr(dip, DDI_SOFTINT_LOW,
549 	    &sc->sc_notif_softint_id, &sc->sc_iblk, NULL, wpi_notif_softintr,
550 	    (caddr_t)sc);
551 	if (err != DDI_SUCCESS) {
552 		cmn_err(CE_WARN,
553 		    "wpi_attach(): failed to do ddi_add_softintr()\n");
554 		goto attach_fail7;
555 	}
556 
557 	/*
558 	 * Add the interrupt handler
559 	 */
560 	err = ddi_add_intr(dip, 0, &sc->sc_iblk, NULL,
561 	    wpi_intr, (caddr_t)sc);
562 	if (err != DDI_SUCCESS) {
563 		cmn_err(CE_WARN,
564 		    "wpi_attach(): failed to do ddi_add_intr()\n");
565 		goto attach_fail8;
566 	}
567 
568 	/*
569 	 * Initialize pointer to device specific functions
570 	 */
571 	wd.wd_secalloc = WIFI_SEC_NONE;
572 	wd.wd_opmode = ic->ic_opmode;
573 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
574 
575 	macp = mac_alloc(MAC_VERSION);
576 	if (err != DDI_SUCCESS) {
577 		cmn_err(CE_WARN,
578 		    "wpi_attach(): failed to do mac_alloc()\n");
579 		goto attach_fail9;
580 	}
581 
582 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
583 	macp->m_driver		= sc;
584 	macp->m_dip		= dip;
585 	macp->m_src_addr	= ic->ic_macaddr;
586 	macp->m_callbacks	= &wpi_m_callbacks;
587 	macp->m_min_sdu		= 0;
588 	macp->m_max_sdu		= IEEE80211_MTU;
589 	macp->m_pdata		= &wd;
590 	macp->m_pdata_size	= sizeof (wd);
591 
592 	/*
593 	 * Register the macp to mac
594 	 */
595 	err = mac_register(macp, &ic->ic_mach);
596 	mac_free(macp);
597 	if (err != DDI_SUCCESS) {
598 		cmn_err(CE_WARN,
599 		    "wpi_attach(): failed to do mac_register()\n");
600 		goto attach_fail9;
601 	}
602 
603 	/*
604 	 * Create minor node of type DDI_NT_NET_WIFI
605 	 */
606 	(void) snprintf(strbuf, sizeof (strbuf), "wpi%d", instance);
607 	err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
608 	    instance + 1, DDI_NT_NET_WIFI, 0);
609 	if (err != DDI_SUCCESS)
610 		cmn_err(CE_WARN,
611 		    "wpi_attach(): failed to do ddi_create_minor_node()\n");
612 
613 	/*
614 	 * Notify link is down now
615 	 */
616 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
617 
618 	/*
619 	 * create the mf thread to handle the link status,
620 	 * recovery fatal error, etc.
621 	 */
622 
623 	sc->sc_mf_thread_switch = 1;
624 	if (sc->sc_mf_thread == NULL)
625 		sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
626 		    wpi_thread, sc, 0, &p0, TS_RUN, minclsyspri);
627 
628 	sc->sc_flags |= WPI_F_ATTACHED;
629 
630 	return (DDI_SUCCESS);
631 attach_fail9:
632 	ddi_remove_intr(dip, 0, sc->sc_iblk);
633 attach_fail8:
634 	ddi_remove_softintr(sc->sc_notif_softint_id);
635 	sc->sc_notif_softint_id = NULL;
636 attach_fail7:
637 	ieee80211_detach(ic);
638 	wpi_destroy_locks(sc);
639 attach_fail6:
640 	wpi_free_fw_dma(sc);
641 attach_fail5:
642 	wpi_ring_free(sc);
643 attach_fail4:
644 	wpi_free_shared(sc);
645 attach_fail3:
646 	ddi_regs_map_free(&sc->sc_handle);
647 attach_fail2:
648 	ddi_soft_state_free(wpi_soft_state_p, instance);
649 attach_fail1:
650 	return (err);
651 }
652 
653 int
654 wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
655 {
656 	wpi_sc_t	*sc;
657 	int err;
658 
659 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
660 	ASSERT(sc != NULL);
661 
662 	if (cmd != DDI_DETACH)
663 		return (DDI_FAILURE);
664 	if (!(sc->sc_flags & WPI_F_ATTACHED))
665 		return (DDI_FAILURE);
666 
667 	/*
668 	 * Destroy the mf_thread
669 	 */
670 	mutex_enter(&sc->sc_mt_lock);
671 	sc->sc_mf_thread_switch = 0;
672 	while (sc->sc_mf_thread != NULL) {
673 		if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0)
674 			break;
675 	}
676 	mutex_exit(&sc->sc_mt_lock);
677 
678 	wpi_stop(sc);
679 
680 	/*
681 	 * Unregiste from the MAC layer subsystem
682 	 */
683 	err = mac_unregister(sc->sc_ic.ic_mach);
684 	if (err != DDI_SUCCESS)
685 		return (err);
686 
687 	mutex_enter(&sc->sc_glock);
688 	wpi_free_fw_dma(sc);
689 	wpi_ring_free(sc);
690 	wpi_free_shared(sc);
691 	mutex_exit(&sc->sc_glock);
692 
693 	ddi_remove_intr(dip, 0, sc->sc_iblk);
694 	ddi_remove_softintr(sc->sc_notif_softint_id);
695 	sc->sc_notif_softint_id = NULL;
696 
697 	/*
698 	 * detach ieee80211
699 	 */
700 	ieee80211_detach(&sc->sc_ic);
701 
702 	wpi_destroy_locks(sc);
703 
704 	ddi_regs_map_free(&sc->sc_handle);
705 	ddi_remove_minor_node(dip, NULL);
706 	ddi_soft_state_free(wpi_soft_state_p, ddi_get_instance(dip));
707 
708 	return (DDI_SUCCESS);
709 }
710 
711 static void
712 wpi_destroy_locks(wpi_sc_t *sc)
713 {
714 	cv_destroy(&sc->sc_mt_cv);
715 	mutex_destroy(&sc->sc_mt_lock);
716 	cv_destroy(&sc->sc_tx_cv);
717 	cv_destroy(&sc->sc_cmd_cv);
718 	cv_destroy(&sc->sc_fw_cv);
719 	mutex_destroy(&sc->sc_tx_lock);
720 	mutex_destroy(&sc->sc_glock);
721 }
722 
723 /*
724  * Allocate an area of memory and a DMA handle for accessing it
725  */
726 static int
727 wpi_alloc_dma_mem(wpi_sc_t *sc, size_t memsize, ddi_dma_attr_t *dma_attr_p,
728 	ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, wpi_dma_t *dma_p)
729 {
730 	caddr_t vaddr;
731 	int err;
732 
733 	/*
734 	 * Allocate handle
735 	 */
736 	err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
737 		    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
738 	if (err != DDI_SUCCESS) {
739 		dma_p->dma_hdl = NULL;
740 		return (DDI_FAILURE);
741 	}
742 
743 	/*
744 	 * Allocate memory
745 	 */
746 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
747 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
748 	    DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
749 	if (err != DDI_SUCCESS) {
750 		ddi_dma_free_handle(&dma_p->dma_hdl);
751 		dma_p->dma_hdl = NULL;
752 		dma_p->acc_hdl = NULL;
753 		return (DDI_FAILURE);
754 	}
755 
756 	/*
757 	 * Bind the two together
758 	 */
759 	dma_p->mem_va = vaddr;
760 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
761 	    vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
762 	    &dma_p->cookie, &dma_p->ncookies);
763 	if (err != DDI_DMA_MAPPED) {
764 		ddi_dma_mem_free(&dma_p->acc_hdl);
765 		ddi_dma_free_handle(&dma_p->dma_hdl);
766 		dma_p->acc_hdl = NULL;
767 		dma_p->dma_hdl = NULL;
768 		return (DDI_FAILURE);
769 	}
770 
771 	dma_p->nslots = ~0U;
772 	dma_p->size = ~0U;
773 	dma_p->token = ~0U;
774 	dma_p->offset = 0;
775 	return (DDI_SUCCESS);
776 }
777 
778 /*
779  * Free one allocated area of DMAable memory
780  */
781 static void
782 wpi_free_dma_mem(wpi_dma_t *dma_p)
783 {
784 	if (dma_p->dma_hdl != NULL) {
785 		if (dma_p->ncookies) {
786 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
787 			dma_p->ncookies = 0;
788 		}
789 		ddi_dma_free_handle(&dma_p->dma_hdl);
790 		dma_p->dma_hdl = NULL;
791 	}
792 
793 	if (dma_p->acc_hdl != NULL) {
794 		ddi_dma_mem_free(&dma_p->acc_hdl);
795 		dma_p->acc_hdl = NULL;
796 	}
797 }
798 
799 /*
800  * Allocate an area of dma memory for firmware load.
801  * Idealy, this allocation should be a one time action, that is,
802  * the memory will be freed after the firmware is uploaded to the
803  * card. but since a recovery mechanism for the fatal firmware need
804  * reload the firmware, and re-allocate dma at run time may be failed,
805  * so we allocate it at attach and keep it in the whole lifecycle of
806  * the driver.
807  */
808 static int
809 wpi_alloc_fw_dma(wpi_sc_t *sc)
810 {
811 	int i, err = DDI_SUCCESS;
812 	wpi_dma_t *dma_p;
813 
814 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
815 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
816 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
817 	    &sc->sc_dma_fw_text);
818 	dma_p = &sc->sc_dma_fw_text;
819 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
820 	    dma_p->ncookies, dma_p->cookie.dmac_address,
821 	    dma_p->cookie.dmac_size));
822 	if (err != DDI_SUCCESS) {
823 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
824 		    "text dma memory");
825 		goto fail;
826 	}
827 	for (i = 0; i < dma_p->ncookies; i++) {
828 		sc->sc_fw_text_cookie[i] = dma_p->cookie;
829 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
830 	}
831 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
832 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
833 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
834 	    &sc->sc_dma_fw_data);
835 	dma_p = &sc->sc_dma_fw_data;
836 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
837 	    dma_p->ncookies, dma_p->cookie.dmac_address,
838 	    dma_p->cookie.dmac_size));
839 	if (err != DDI_SUCCESS) {
840 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
841 		    "data dma memory");
842 		goto fail;
843 	}
844 	for (i = 0; i < dma_p->ncookies; i++) {
845 		sc->sc_fw_data_cookie[i] = dma_p->cookie;
846 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
847 	}
848 fail:
849 	return (err);
850 }
851 
852 static void
853 wpi_free_fw_dma(wpi_sc_t *sc)
854 {
855 	wpi_free_dma_mem(&sc->sc_dma_fw_text);
856 	wpi_free_dma_mem(&sc->sc_dma_fw_data);
857 }
858 
859 /*
860  * Allocate a shared page between host and NIC.
861  */
862 static int
863 wpi_alloc_shared(wpi_sc_t *sc)
864 {
865 	int err = DDI_SUCCESS;
866 
867 	/* must be aligned on a 4K-page boundary */
868 	err = wpi_alloc_dma_mem(sc, sizeof (wpi_shared_t),
869 	    &sh_dma_attr, &wpi_dma_accattr,
870 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
871 	    &sc->sc_dma_sh);
872 	if (err != DDI_SUCCESS)
873 		goto fail;
874 	sc->sc_shared = (wpi_shared_t *)sc->sc_dma_sh.mem_va;
875 	return (err);
876 
877 fail:
878 	wpi_free_shared(sc);
879 	return (err);
880 }
881 
882 static void
883 wpi_free_shared(wpi_sc_t *sc)
884 {
885 	wpi_free_dma_mem(&sc->sc_dma_sh);
886 }
887 
888 static int
889 wpi_alloc_rx_ring(wpi_sc_t *sc)
890 {
891 	wpi_rx_ring_t *ring;
892 	wpi_rx_data_t *data;
893 	int i, err = DDI_SUCCESS;
894 
895 	ring = &sc->sc_rxq;
896 	ring->cur = 0;
897 
898 	err = wpi_alloc_dma_mem(sc, WPI_RX_RING_COUNT * sizeof (uint32_t),
899 	    &ring_desc_dma_attr, &wpi_dma_accattr,
900 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
901 	    &ring->dma_desc);
902 	if (err != DDI_SUCCESS) {
903 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring desc failed\n"));
904 		goto fail;
905 	}
906 	ring->desc = (uint32_t *)ring->dma_desc.mem_va;
907 
908 	/*
909 	 * Allocate Rx buffers.
910 	 */
911 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
912 		data = &ring->data[i];
913 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
914 		    &rx_buffer_dma_attr, &wpi_dma_accattr,
915 		    DDI_DMA_READ | DDI_DMA_STREAMING,
916 		    &data->dma_data);
917 		if (err != DDI_SUCCESS) {
918 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring buf[%d] "
919 			    "failed\n", i));
920 			goto fail;
921 		}
922 
923 		ring->desc[i] = LE_32(data->dma_data.cookie.dmac_address);
924 	}
925 
926 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
927 
928 	return (err);
929 
930 fail:
931 	wpi_free_rx_ring(sc);
932 	return (err);
933 }
934 
935 static void
936 wpi_reset_rx_ring(wpi_sc_t *sc)
937 {
938 	int ntries;
939 
940 	wpi_mem_lock(sc);
941 
942 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
943 	for (ntries = 0; ntries < 2000; ntries++) {
944 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
945 			break;
946 		DELAY(1000);
947 	}
948 #ifdef DEBUG
949 	if (ntries == 2000)
950 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Rx ring\n"));
951 #endif
952 	wpi_mem_unlock(sc);
953 
954 	sc->sc_rxq.cur = 0;
955 }
956 
957 static void
958 wpi_free_rx_ring(wpi_sc_t *sc)
959 {
960 	int i;
961 
962 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
963 		if (sc->sc_rxq.data[i].dma_data.dma_hdl)
964 			WPI_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
965 			    DDI_DMA_SYNC_FORCPU);
966 		wpi_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
967 	}
968 
969 	if (sc->sc_rxq.dma_desc.dma_hdl)
970 		WPI_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
971 	wpi_free_dma_mem(&sc->sc_rxq.dma_desc);
972 }
973 
974 static int
975 wpi_alloc_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring, int count, int qid)
976 {
977 	wpi_tx_data_t *data;
978 	wpi_tx_desc_t *desc_h;
979 	uint32_t paddr_desc_h;
980 	wpi_tx_cmd_t *cmd_h;
981 	uint32_t paddr_cmd_h;
982 	int i, err = DDI_SUCCESS;
983 
984 	ring->qid = qid;
985 	ring->count = count;
986 	ring->queued = 0;
987 	ring->cur = 0;
988 
989 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_desc_t),
990 	    &ring_desc_dma_attr, &wpi_dma_accattr,
991 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
992 	    &ring->dma_desc);
993 	if (err != DDI_SUCCESS) {
994 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring desc[%d] failed\n",
995 		    qid));
996 		goto fail;
997 	}
998 
999 	/* update shared page with ring's base address */
1000 	sc->sc_shared->txbase[qid] = ring->dma_desc.cookie.dmac_address;
1001 
1002 	desc_h = (wpi_tx_desc_t *)ring->dma_desc.mem_va;
1003 	paddr_desc_h = ring->dma_desc.cookie.dmac_address;
1004 
1005 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_cmd_t),
1006 	    &tx_cmd_dma_attr, &wpi_dma_accattr,
1007 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1008 	    &ring->dma_cmd);
1009 	if (err != DDI_SUCCESS) {
1010 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring cmd[%d] failed\n",
1011 		    qid));
1012 		goto fail;
1013 	}
1014 
1015 	cmd_h = (wpi_tx_cmd_t *)ring->dma_cmd.mem_va;
1016 	paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
1017 
1018 	/*
1019 	 * Allocate Tx buffers.
1020 	 */
1021 	ring->data = kmem_zalloc(sizeof (wpi_tx_data_t) * count, KM_NOSLEEP);
1022 	if (ring->data == NULL) {
1023 		WPI_DBG((WPI_DEBUG_DMA, "could not allocate tx data slots\n"));
1024 		goto fail;
1025 	}
1026 
1027 	for (i = 0; i < count; i++) {
1028 		data = &ring->data[i];
1029 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1030 		    &tx_buffer_dma_attr, &wpi_dma_accattr,
1031 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1032 		    &data->dma_data);
1033 		if (err != DDI_SUCCESS) {
1034 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring buf[%d] "
1035 			    "failed\n", i));
1036 			goto fail;
1037 		}
1038 
1039 		data->desc = desc_h + i;
1040 		data->paddr_desc = paddr_desc_h +
1041 		    ((caddr_t)data->desc - (caddr_t)desc_h);
1042 		data->cmd = cmd_h + i;
1043 		data->paddr_cmd = paddr_cmd_h +
1044 		    ((caddr_t)data->cmd - (caddr_t)cmd_h);
1045 	}
1046 
1047 	return (err);
1048 
1049 fail:
1050 	if (ring->data)
1051 		kmem_free(ring->data, sizeof (wpi_tx_data_t) * count);
1052 	wpi_free_tx_ring(sc, ring);
1053 	return (err);
1054 }
1055 
1056 static void
1057 wpi_reset_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1058 {
1059 	wpi_tx_data_t *data;
1060 	int i, ntries;
1061 
1062 	wpi_mem_lock(sc);
1063 
1064 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1065 	for (ntries = 0; ntries < 100; ntries++) {
1066 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1067 			break;
1068 		DELAY(10);
1069 	}
1070 #ifdef DEBUG
1071 	if (ntries == 100 && wpi_dbg_flags > 0) {
1072 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Tx ring %d\n",
1073 		    ring->qid));
1074 	}
1075 #endif
1076 	wpi_mem_unlock(sc);
1077 
1078 	for (i = 0; i < ring->count; i++) {
1079 		data = &ring->data[i];
1080 		WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
1081 	}
1082 
1083 	ring->queued = 0;
1084 	ring->cur = 0;
1085 }
1086 
1087 /*ARGSUSED*/
1088 static void
1089 wpi_free_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1090 {
1091 	int i;
1092 
1093 	if (ring->dma_desc.dma_hdl != NULL)
1094 		WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1095 	wpi_free_dma_mem(&ring->dma_desc);
1096 
1097 	if (ring->dma_cmd.dma_hdl != NULL)
1098 		WPI_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
1099 	wpi_free_dma_mem(&ring->dma_cmd);
1100 
1101 	if (ring->data != NULL) {
1102 		for (i = 0; i < ring->count; i++) {
1103 			if (ring->data[i].dma_data.dma_hdl)
1104 				WPI_DMA_SYNC(ring->data[i].dma_data,
1105 				    DDI_DMA_SYNC_FORDEV);
1106 			wpi_free_dma_mem(&ring->data[i].dma_data);
1107 		}
1108 		kmem_free(ring->data, ring->count * sizeof (wpi_tx_data_t));
1109 	}
1110 }
1111 
1112 static int
1113 wpi_ring_init(wpi_sc_t *sc)
1114 {
1115 	int i, err = DDI_SUCCESS;
1116 
1117 	for (i = 0; i < 4; i++) {
1118 		err = wpi_alloc_tx_ring(sc, &sc->sc_txq[i], WPI_TX_RING_COUNT,
1119 		    i);
1120 		if (err != DDI_SUCCESS)
1121 			goto fail;
1122 	}
1123 	err = wpi_alloc_tx_ring(sc, &sc->sc_cmdq, WPI_CMD_RING_COUNT, 4);
1124 	if (err != DDI_SUCCESS)
1125 		goto fail;
1126 	err = wpi_alloc_tx_ring(sc, &sc->sc_svcq, WPI_SVC_RING_COUNT, 5);
1127 	if (err != DDI_SUCCESS)
1128 		goto fail;
1129 	err = wpi_alloc_rx_ring(sc);
1130 	if (err != DDI_SUCCESS)
1131 		goto fail;
1132 	return (err);
1133 
1134 fail:
1135 	return (err);
1136 }
1137 
1138 static void
1139 wpi_ring_free(wpi_sc_t *sc)
1140 {
1141 	int i = 4;
1142 
1143 	wpi_free_rx_ring(sc);
1144 	wpi_free_tx_ring(sc, &sc->sc_svcq);
1145 	wpi_free_tx_ring(sc, &sc->sc_cmdq);
1146 	while (--i >= 0) {
1147 		wpi_free_tx_ring(sc, &sc->sc_txq[i]);
1148 	}
1149 }
1150 
1151 /* ARGSUSED */
1152 static ieee80211_node_t *
1153 wpi_node_alloc(ieee80211com_t *ic)
1154 {
1155 	wpi_amrr_t *amrr;
1156 
1157 	amrr = kmem_zalloc(sizeof (wpi_amrr_t), KM_SLEEP);
1158 	if (amrr != NULL)
1159 		wpi_amrr_init(amrr);
1160 	return (&amrr->in);
1161 }
1162 
1163 static void
1164 wpi_node_free(ieee80211_node_t *in)
1165 {
1166 	ieee80211com_t *ic = in->in_ic;
1167 
1168 	ic->ic_node_cleanup(in);
1169 	kmem_free(in, sizeof (wpi_amrr_t));
1170 }
1171 
1172 /*ARGSUSED*/
1173 static int
1174 wpi_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1175 {
1176 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1177 	ieee80211_node_t *in = ic->ic_bss;
1178 	int i, err = WPI_SUCCESS;
1179 
1180 	mutex_enter(&sc->sc_glock);
1181 	switch (nstate) {
1182 	case IEEE80211_S_SCAN:
1183 		/* ieee80211_node_table_reset(&ic->ic_scan); */
1184 		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1185 		/* make the link LED blink while we're scanning */
1186 		wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1187 
1188 		if ((err = wpi_scan(sc)) != 0) {
1189 			WPI_DBG((WPI_DEBUG_80211, "could not initiate scan\n"));
1190 			ic->ic_flags &= ~(IEEE80211_F_SCAN |
1191 			    IEEE80211_F_ASCAN);
1192 			mutex_exit(&sc->sc_glock);
1193 			return (err);
1194 		}
1195 		ic->ic_state = nstate;
1196 		sc->sc_clk = 0;
1197 
1198 		mutex_exit(&sc->sc_glock);
1199 		return (WPI_SUCCESS);
1200 
1201 	case IEEE80211_S_AUTH:
1202 		/* reset state to handle reassociations correctly */
1203 		sc->sc_config.state = 0;
1204 		sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1205 
1206 		if ((err = wpi_auth(sc)) != 0) {
1207 			WPI_DBG((WPI_DEBUG_80211,
1208 			    "could not send authentication request\n"));
1209 			mutex_exit(&sc->sc_glock);
1210 			return (err);
1211 		}
1212 		break;
1213 
1214 	case IEEE80211_S_RUN:
1215 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1216 			/* link LED blinks while monitoring */
1217 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1218 			break;
1219 		}
1220 
1221 		if (ic->ic_opmode != IEEE80211_M_STA) {
1222 			(void) wpi_auth(sc);
1223 			/* need setup beacon here */
1224 		}
1225 		WPI_DBG((WPI_DEBUG_80211, "wpi: associated."));
1226 
1227 		/* update adapter's configuration */
1228 		sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
1229 		/* short preamble/slot time are negotiated when associating */
1230 		sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
1231 		    WPI_CONFIG_SHSLOT);
1232 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1233 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
1234 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1235 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
1236 		sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
1237 		if (ic->ic_opmode != IEEE80211_M_STA)
1238 			sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
1239 
1240 		WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
1241 		    sc->sc_config.chan, sc->sc_config.flags));
1242 		err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1243 		    sizeof (wpi_config_t), 1);
1244 		if (err != WPI_SUCCESS) {
1245 			WPI_DBG((WPI_DEBUG_80211,
1246 			    "could not update configuration\n"));
1247 			mutex_exit(&sc->sc_glock);
1248 			return (err);
1249 		}
1250 
1251 		/* start automatic rate control */
1252 		mutex_enter(&sc->sc_mt_lock);
1253 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1254 			sc->sc_flags |= WPI_F_RATE_AUTO_CTL;
1255 			/* set rate to some reasonable initial value */
1256 			for (i = in->in_rates.ir_nrates - 1;
1257 			    i > 0 && IEEE80211_RATE(i) > 72; i--);
1258 			in->in_txrate = i;
1259 		} else {
1260 			sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
1261 		}
1262 		mutex_exit(&sc->sc_mt_lock);
1263 
1264 		/* link LED always on while associated */
1265 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1266 		break;
1267 
1268 	case IEEE80211_S_INIT:
1269 	case IEEE80211_S_ASSOC:
1270 		break;
1271 	}
1272 
1273 	mutex_exit(&sc->sc_glock);
1274 	return (sc->sc_newstate(ic, nstate, arg));
1275 }
1276 
1277 /*
1278  * Grab exclusive access to NIC memory.
1279  */
1280 static void
1281 wpi_mem_lock(wpi_sc_t *sc)
1282 {
1283 	uint32_t tmp;
1284 	int ntries;
1285 
1286 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1287 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1288 
1289 	/* spin until we actually get the lock */
1290 	for (ntries = 0; ntries < 1000; ntries++) {
1291 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1292 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1293 			break;
1294 		DELAY(10);
1295 	}
1296 	if (ntries == 1000)
1297 		WPI_DBG((WPI_DEBUG_PIO, "could not lock memory\n"));
1298 }
1299 
1300 /*
1301  * Release lock on NIC memory.
1302  */
1303 static void
1304 wpi_mem_unlock(wpi_sc_t *sc)
1305 {
1306 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1307 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1308 }
1309 
1310 static uint32_t
1311 wpi_mem_read(wpi_sc_t *sc, uint16_t addr)
1312 {
1313 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1314 	return (WPI_READ(sc, WPI_READ_MEM_DATA));
1315 }
1316 
1317 static void
1318 wpi_mem_write(wpi_sc_t *sc, uint16_t addr, uint32_t data)
1319 {
1320 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1321 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1322 }
1323 
1324 static void
1325 wpi_mem_write_region_4(wpi_sc_t *sc, uint16_t addr,
1326     const uint32_t *data, int wlen)
1327 {
1328 	for (; wlen > 0; wlen--, data++, addr += 4)
1329 		wpi_mem_write(sc, addr, *data);
1330 }
1331 
1332 /*
1333  * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
1334  * using the traditional bit-bang method.
1335  */
1336 static uint16_t
1337 wpi_read_prom_word(wpi_sc_t *sc, uint32_t addr)
1338 {
1339 	uint32_t val;
1340 	int ntries;
1341 
1342 	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1343 
1344 	wpi_mem_lock(sc);
1345 	for (ntries = 0; ntries < 10; ntries++) {
1346 		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1347 			break;
1348 		DELAY(10);
1349 	}
1350 	wpi_mem_unlock(sc);
1351 
1352 	if (ntries == 10) {
1353 		WPI_DBG((WPI_DEBUG_PIO, "could not read EEPROM\n"));
1354 		return (0xdead);
1355 	}
1356 	return (val >> 16);
1357 }
1358 
1359 /*
1360  * The firmware boot code is small and is intended to be copied directly into
1361  * the NIC internal memory.
1362  */
1363 static int
1364 wpi_load_microcode(wpi_sc_t *sc)
1365 {
1366 	const char *ucode;
1367 	int size;
1368 
1369 	ucode = sc->sc_boot;
1370 	size = LE_32(sc->sc_hdr->bootsz);
1371 	/* check that microcode size is a multiple of 4 */
1372 	if (size & 3)
1373 		return (EINVAL);
1374 
1375 	size /= sizeof (uint32_t);
1376 
1377 	wpi_mem_lock(sc);
1378 
1379 	/* copy microcode image into NIC memory */
1380 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
1381 	    size);
1382 
1383 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1384 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1385 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1386 
1387 	/* run microcode */
1388 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1389 
1390 	wpi_mem_unlock(sc);
1391 
1392 	return (WPI_SUCCESS);
1393 }
1394 
1395 /*
1396  * The firmware text and data segments are transferred to the NIC using DMA.
1397  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1398  * where to find it.  Once the NIC has copied the firmware into its internal
1399  * memory, we can free our local copy in the driver.
1400  */
1401 static int
1402 wpi_load_firmware(wpi_sc_t *sc, uint32_t target)
1403 {
1404 	const char *fw;
1405 	int size;
1406 	wpi_dma_t *dma_p;
1407 	ddi_dma_cookie_t *cookie;
1408 	wpi_tx_desc_t desc;
1409 	int i, ntries, err = WPI_SUCCESS;
1410 
1411 	/* only text and data here */
1412 	if (target == WPI_FW_TEXT) {
1413 		fw = sc->sc_text;
1414 		size = LE_32(sc->sc_hdr->textsz);
1415 		dma_p = &sc->sc_dma_fw_text;
1416 		cookie = sc->sc_fw_text_cookie;
1417 	} else {
1418 		fw = sc->sc_data;
1419 		size = LE_32(sc->sc_hdr->datasz);
1420 		dma_p = &sc->sc_dma_fw_data;
1421 		cookie = sc->sc_fw_data_cookie;
1422 	}
1423 
1424 	/* copy firmware image to DMA-safe memory */
1425 	(void) memcpy(dma_p->mem_va, fw, size);
1426 
1427 	/* make sure the adapter will get up-to-date values */
1428 	(void) ddi_dma_sync(dma_p->dma_hdl, 0, size, DDI_DMA_SYNC_FORDEV);
1429 
1430 	(void) memset(&desc, 0, sizeof (desc));
1431 	desc.flags = LE_32(WPI_PAD32(size) << 28 | dma_p->ncookies << 24);
1432 	for (i = 0; i < dma_p->ncookies; i++) {
1433 		WPI_DBG((WPI_DEBUG_DMA, "cookie%d addr:%x size:%x\n",
1434 		    i, cookie[i].dmac_address, cookie[i].dmac_size));
1435 		desc.segs[i].addr = cookie[i].dmac_address;
1436 		desc.segs[i].len = (uint32_t)cookie[i].dmac_size;
1437 	}
1438 
1439 	wpi_mem_lock(sc);
1440 
1441 	/* tell adapter where to copy image in its internal memory */
1442 	WPI_WRITE(sc, WPI_FW_TARGET, target);
1443 
1444 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1445 
1446 	/* copy firmware descriptor into NIC memory */
1447 	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1448 	    sizeof desc / sizeof (uint32_t));
1449 
1450 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1451 	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1452 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1453 
1454 	/* wait while the adapter is busy copying the firmware */
1455 	for (ntries = 0; ntries < 100; ntries++) {
1456 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1457 			break;
1458 		DELAY(1000);
1459 	}
1460 	if (ntries == 100) {
1461 		WPI_DBG((WPI_DEBUG_FW, "timeout transferring firmware\n"));
1462 		err = ETIMEDOUT;
1463 	}
1464 
1465 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1466 
1467 	wpi_mem_unlock(sc);
1468 
1469 	return (err);
1470 }
1471 
1472 /*ARGSUSED*/
1473 static void
1474 wpi_rx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1475 {
1476 	ieee80211com_t *ic = &sc->sc_ic;
1477 	wpi_rx_ring_t *ring = &sc->sc_rxq;
1478 	wpi_rx_stat_t *stat;
1479 	wpi_rx_head_t *head;
1480 	wpi_rx_tail_t *tail;
1481 	ieee80211_node_t *in;
1482 	struct ieee80211_frame *wh;
1483 	mblk_t *mp;
1484 	uint16_t len;
1485 
1486 	stat = (wpi_rx_stat_t *)(desc + 1);
1487 
1488 	if (stat->len > WPI_STAT_MAXLEN) {
1489 		WPI_DBG((WPI_DEBUG_RX, "invalid rx statistic header\n"));
1490 		return;
1491 	}
1492 
1493 	head = (wpi_rx_head_t *)((caddr_t)(stat + 1) + stat->len);
1494 	tail = (wpi_rx_tail_t *)((caddr_t)(head + 1) + LE_16(head->len));
1495 
1496 	len = LE_16(head->len);
1497 
1498 	WPI_DBG((WPI_DEBUG_RX, "rx intr: idx=%d len=%d stat len=%d rssi=%d "
1499 	    "rate=%x chan=%d tstamp=%llu", ring->cur, LE_32(desc->len),
1500 	    len, (int8_t)stat->rssi, head->rate, head->chan,
1501 	    LE_64(tail->tstamp)));
1502 
1503 	if ((len < 20) || (len > sc->sc_dmabuf_sz)) {
1504 		sc->sc_rx_err++;
1505 		return;
1506 	}
1507 
1508 	/*
1509 	 * Discard Rx frames with bad CRC early
1510 	 */
1511 	if ((LE_32(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1512 		WPI_DBG((WPI_DEBUG_RX, "rx tail flags error %x\n",
1513 		    LE_32(tail->flags)));
1514 		sc->sc_rx_err++;
1515 		return;
1516 	}
1517 
1518 	/* update Rx descriptor */
1519 	/* ring->desc[ring->cur] = LE_32(data->dma_data.cookie.dmac_address); */
1520 
1521 #ifdef WPI_BPF
1522 #ifndef WPI_CURRENT
1523 	if (sc->sc_drvbpf != NULL) {
1524 #else
1525 	if (bpf_peers_present(sc->sc_drvbpf)) {
1526 #endif
1527 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1528 
1529 		tap->wr_flags = 0;
1530 		tap->wr_rate = head->rate;
1531 		tap->wr_chan_freq =
1532 		    LE_16(ic->ic_channels[head->chan].ic_freq);
1533 		tap->wr_chan_flags =
1534 		    LE_16(ic->ic_channels[head->chan].ic_flags);
1535 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1536 		tap->wr_dbm_antnoise = (int8_t)LE_16(stat->noise);
1537 		tap->wr_tsft = tail->tstamp;
1538 		tap->wr_antenna = (LE_16(head->flags) >> 4) & 0xf;
1539 		switch (head->rate) {
1540 		/* CCK rates */
1541 		case  10: tap->wr_rate =   2; break;
1542 		case  20: tap->wr_rate =   4; break;
1543 		case  55: tap->wr_rate =  11; break;
1544 		case 110: tap->wr_rate =  22; break;
1545 		/* OFDM rates */
1546 		case 0xd: tap->wr_rate =  12; break;
1547 		case 0xf: tap->wr_rate =  18; break;
1548 		case 0x5: tap->wr_rate =  24; break;
1549 		case 0x7: tap->wr_rate =  36; break;
1550 		case 0x9: tap->wr_rate =  48; break;
1551 		case 0xb: tap->wr_rate =  72; break;
1552 		case 0x1: tap->wr_rate =  96; break;
1553 		case 0x3: tap->wr_rate = 108; break;
1554 		/* unknown rate: should not happen */
1555 		default:  tap->wr_rate =   0;
1556 		}
1557 		if (LE_16(head->flags) & 0x4)
1558 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1559 
1560 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1561 	}
1562 #endif
1563 	/* grab a reference to the source node */
1564 	wh = (struct ieee80211_frame *)(head + 1);
1565 
1566 #ifdef DEBUG
1567 	if (wpi_dbg_flags & WPI_DEBUG_RX)
1568 		ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
1569 #endif
1570 
1571 	in = ieee80211_find_rxnode(ic, wh);
1572 	mp = allocb(len, BPRI_MED);
1573 	if (mp) {
1574 		(void) memcpy(mp->b_wptr, wh, len);
1575 		mp->b_wptr += len;
1576 
1577 		/* send the frame to the 802.11 layer */
1578 		(void) ieee80211_input(ic, mp, in, stat->rssi, 0);
1579 	} else {
1580 		sc->sc_rx_nobuf++;
1581 		WPI_DBG((WPI_DEBUG_RX,
1582 		    "wpi_rx_intr(): alloc rx buf failed\n"));
1583 	}
1584 	/* release node reference */
1585 	ieee80211_free_node(in);
1586 }
1587 
1588 /*ARGSUSED*/
1589 static void
1590 wpi_tx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1591 {
1592 	ieee80211com_t *ic = &sc->sc_ic;
1593 	wpi_tx_ring_t *ring = &sc->sc_txq[desc->qid & 0x3];
1594 	/* wpi_tx_data_t *txdata = &ring->data[desc->idx]; */
1595 	wpi_tx_stat_t *stat = (wpi_tx_stat_t *)(desc + 1);
1596 	wpi_amrr_t *amrr = (wpi_amrr_t *)ic->ic_bss;
1597 
1598 	WPI_DBG((WPI_DEBUG_TX, "tx done: qid=%d idx=%d retries=%d nkill=%d "
1599 	    "rate=%x duration=%d status=%x\n",
1600 	    desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate,
1601 	    LE_32(stat->duration), LE_32(stat->status)));
1602 
1603 	amrr->txcnt++;
1604 	WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
1605 	if (stat->ntries > 0) {
1606 		amrr->retrycnt++;
1607 		sc->sc_tx_retries++;
1608 		WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d retries\n",
1609 		    amrr->retrycnt));
1610 	}
1611 
1612 	sc->sc_tx_timer = 0;
1613 
1614 	mutex_enter(&sc->sc_tx_lock);
1615 	ring->queued--;
1616 	if (ring->queued < 0)
1617 		ring->queued = 0;
1618 	if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
1619 		sc->sc_need_reschedule = 0;
1620 		mutex_exit(&sc->sc_tx_lock);
1621 		mac_tx_update(ic->ic_mach);
1622 		mutex_enter(&sc->sc_tx_lock);
1623 	}
1624 	mutex_exit(&sc->sc_tx_lock);
1625 }
1626 
1627 static void
1628 wpi_cmd_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc)
1629 {
1630 	if ((desc->qid & 7) != 4) {
1631 		return;	/* not a command ack */
1632 	}
1633 	mutex_enter(&sc->sc_glock);
1634 	sc->sc_flags |= WPI_F_CMD_DONE;
1635 	cv_signal(&sc->sc_cmd_cv);
1636 	mutex_exit(&sc->sc_glock);
1637 }
1638 
1639 static uint_t
1640 wpi_notif_softintr(caddr_t arg)
1641 {
1642 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1643 	ieee80211com_t *ic = &sc->sc_ic;
1644 	wpi_rx_desc_t *desc;
1645 	wpi_rx_data_t *data;
1646 	uint32_t hw;
1647 
1648 	mutex_enter(&sc->sc_glock);
1649 	if (sc->sc_notif_softint_pending != 1) {
1650 		mutex_exit(&sc->sc_glock);
1651 		return (DDI_INTR_UNCLAIMED);
1652 	}
1653 	mutex_exit(&sc->sc_glock);
1654 
1655 	hw = LE_32(sc->sc_shared->next);
1656 
1657 	while (sc->sc_rxq.cur != hw) {
1658 		data = &sc->sc_rxq.data[sc->sc_rxq.cur];
1659 		desc = (wpi_rx_desc_t *)data->dma_data.mem_va;
1660 
1661 		WPI_DBG((WPI_DEBUG_INTR, "rx notification hw = %d cur = %d "
1662 		    "qid=%x idx=%d flags=%x type=%d len=%d\n",
1663 		    hw, sc->sc_rxq.cur, desc->qid, desc->idx, desc->flags,
1664 		    desc->type, LE_32(desc->len)));
1665 
1666 		if (!(desc->qid & 0x80))	/* reply to a command */
1667 			wpi_cmd_intr(sc, desc);
1668 
1669 		switch (desc->type) {
1670 		case WPI_RX_DONE:
1671 			/* a 802.11 frame was received */
1672 			wpi_rx_intr(sc, desc, data);
1673 			break;
1674 
1675 		case WPI_TX_DONE:
1676 			/* a 802.11 frame has been transmitted */
1677 			wpi_tx_intr(sc, desc, data);
1678 			break;
1679 
1680 		case WPI_UC_READY:
1681 		{
1682 			wpi_ucode_info_t *uc =
1683 			    (wpi_ucode_info_t *)(desc + 1);
1684 
1685 			/* the microcontroller is ready */
1686 			WPI_DBG((WPI_DEBUG_FW,
1687 			    "microcode alive notification version %x "
1688 			    "alive %x\n", LE_32(uc->version),
1689 			    LE_32(uc->valid)));
1690 
1691 			if (LE_32(uc->valid) != 1) {
1692 				WPI_DBG((WPI_DEBUG_FW,
1693 				    "microcontroller initialization failed\n"));
1694 			}
1695 			break;
1696 		}
1697 		case WPI_STATE_CHANGED:
1698 		{
1699 			uint32_t *status = (uint32_t *)(desc + 1);
1700 
1701 			/* enabled/disabled notification */
1702 			WPI_DBG((WPI_DEBUG_RADIO, "state changed to %x\n",
1703 			    LE_32(*status)));
1704 
1705 			if (LE_32(*status) & 1) {
1706 				/* the radio button has to be pushed */
1707 				cmn_err(CE_NOTE,
1708 				    "wpi: Radio transmitter is off\n");
1709 			}
1710 			break;
1711 		}
1712 		case WPI_START_SCAN:
1713 		{
1714 			wpi_start_scan_t *scan =
1715 			    (wpi_start_scan_t *)(desc + 1);
1716 
1717 			WPI_DBG((WPI_DEBUG_SCAN,
1718 			    "scanning channel %d status %x\n",
1719 			    scan->chan, LE_32(scan->status)));
1720 
1721 			/* fix current channel */
1722 			ic->ic_curchan = &ic->ic_sup_channels[scan->chan];
1723 			break;
1724 		}
1725 		case WPI_STOP_SCAN:
1726 			WPI_DBG((WPI_DEBUG_SCAN, "scan finished\n"));
1727 			ieee80211_end_scan(ic);
1728 			break;
1729 		}
1730 
1731 		sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % WPI_RX_RING_COUNT;
1732 	}
1733 
1734 	/* tell the firmware what we have processed */
1735 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1736 	WPI_WRITE(sc, WPI_RX_WIDX, hw & (~7));
1737 	mutex_enter(&sc->sc_glock);
1738 	sc->sc_notif_softint_pending = 0;
1739 	mutex_exit(&sc->sc_glock);
1740 
1741 	return (DDI_INTR_CLAIMED);
1742 }
1743 
1744 static uint_t
1745 wpi_intr(caddr_t arg)
1746 {
1747 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1748 	uint32_t r;
1749 
1750 	mutex_enter(&sc->sc_glock);
1751 	r = WPI_READ(sc, WPI_INTR);
1752 	if (r == 0 || r == 0xffffffff) {
1753 		mutex_exit(&sc->sc_glock);
1754 		return (DDI_INTR_UNCLAIMED);
1755 	}
1756 
1757 	WPI_DBG((WPI_DEBUG_INTR, "interrupt reg %x\n", r));
1758 
1759 	/* disable interrupts */
1760 	WPI_WRITE(sc, WPI_MASK, 0);
1761 	/* ack interrupts */
1762 	WPI_WRITE(sc, WPI_INTR, r);
1763 
1764 	if (sc->sc_notif_softint_id == NULL) {
1765 		mutex_exit(&sc->sc_glock);
1766 		return (DDI_INTR_CLAIMED);
1767 	}
1768 
1769 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1770 		WPI_DBG((WPI_DEBUG_FW, "fatal firmware error\n"));
1771 		mutex_exit(&sc->sc_glock);
1772 		wpi_stop(sc);
1773 		sc->sc_ostate = sc->sc_ic.ic_state;
1774 		ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1775 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
1776 		return (DDI_INTR_CLAIMED);
1777 	}
1778 
1779 	if (r & WPI_RX_INTR) {
1780 		sc->sc_notif_softint_pending = 1;
1781 		ddi_trigger_softintr(sc->sc_notif_softint_id);
1782 	}
1783 
1784 	if (r & WPI_ALIVE_INTR)	{ /* firmware initialized */
1785 		sc->sc_flags |= WPI_F_FW_INIT;
1786 		cv_signal(&sc->sc_fw_cv);
1787 	}
1788 
1789 	/* re-enable interrupts */
1790 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1791 	mutex_exit(&sc->sc_glock);
1792 
1793 	return (DDI_INTR_CLAIMED);
1794 }
1795 
1796 static uint8_t
1797 wpi_plcp_signal(int rate)
1798 {
1799 	switch (rate) {
1800 	/* CCK rates (returned values are device-dependent) */
1801 	case 2:		return (10);
1802 	case 4:		return (20);
1803 	case 11:	return (55);
1804 	case 22:	return (110);
1805 
1806 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1807 	/* R1-R4 (ral/ural is R4-R1) */
1808 	case 12:	return (0xd);
1809 	case 18:	return (0xf);
1810 	case 24:	return (0x5);
1811 	case 36:	return (0x7);
1812 	case 48:	return (0x9);
1813 	case 72:	return (0xb);
1814 	case 96:	return (0x1);
1815 	case 108:	return (0x3);
1816 
1817 	/* unsupported rates (should not get there) */
1818 	default:	return (0);
1819 	}
1820 }
1821 
1822 static mblk_t *
1823 wpi_m_tx(void *arg, mblk_t *mp)
1824 {
1825 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
1826 	ieee80211com_t	*ic = &sc->sc_ic;
1827 	mblk_t			*next;
1828 
1829 	if (ic->ic_state != IEEE80211_S_RUN) {
1830 		freemsgchain(mp);
1831 		return (NULL);
1832 	}
1833 
1834 	while (mp != NULL) {
1835 		next = mp->b_next;
1836 		mp->b_next = NULL;
1837 		if (wpi_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
1838 			mp->b_next = next;
1839 			break;
1840 		}
1841 		mp = next;
1842 	}
1843 	return (mp);
1844 }
1845 
1846 /* ARGSUSED */
1847 static int
1848 wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
1849 {
1850 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1851 	wpi_tx_ring_t *ring;
1852 	wpi_tx_desc_t *desc;
1853 	wpi_tx_data_t *data;
1854 	wpi_tx_cmd_t *cmd;
1855 	wpi_cmd_data_t *tx;
1856 	ieee80211_node_t *in;
1857 	struct ieee80211_frame *wh;
1858 	struct ieee80211_key *k;
1859 	mblk_t *m, *m0;
1860 	int rate, hdrlen, len, mblen, off, err = WPI_SUCCESS;
1861 
1862 	ring = ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) ?
1863 	    (&sc->sc_txq[0]) : (&sc->sc_txq[1]);
1864 	data = &ring->data[ring->cur];
1865 	desc = data->desc;
1866 	cmd = data->cmd;
1867 	bzero(desc, sizeof (*desc));
1868 	bzero(cmd, sizeof (*cmd));
1869 
1870 	mutex_enter(&sc->sc_tx_lock);
1871 	if (ring->queued > ring->count - 64) {
1872 		WPI_DBG((WPI_DEBUG_TX, "wpi_send(): no txbuf\n"));
1873 		sc->sc_need_reschedule = 1;
1874 		mutex_exit(&sc->sc_tx_lock);
1875 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
1876 		    IEEE80211_FC0_TYPE_DATA) {
1877 			freemsg(mp);
1878 		}
1879 		sc->sc_tx_nobuf++;
1880 		err = WPI_FAIL;
1881 		goto exit;
1882 	}
1883 	mutex_exit(&sc->sc_tx_lock);
1884 
1885 	hdrlen = sizeof (struct ieee80211_frame);
1886 
1887 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
1888 	if (m == NULL) { /* can not alloc buf, drop this package */
1889 		cmn_err(CE_WARN,
1890 		    "wpi_send(): failed to allocate msgbuf\n");
1891 		freemsg(mp);
1892 		err = WPI_SUCCESS;
1893 		goto exit;
1894 	}
1895 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
1896 		mblen = MBLKL(m0);
1897 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
1898 		off += mblen;
1899 	}
1900 	m->b_wptr += off;
1901 	freemsg(mp);
1902 
1903 	wh = (struct ieee80211_frame *)m->b_rptr;
1904 
1905 	in = ieee80211_find_txnode(ic, wh->i_addr1);
1906 	if (in == NULL) {
1907 		cmn_err(CE_WARN, "wpi_send(): failed to find tx node\n");
1908 		freemsg(m);
1909 		sc->sc_tx_err++;
1910 		err = WPI_SUCCESS;
1911 		goto exit;
1912 	}
1913 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1914 		k = ieee80211_crypto_encap(ic, m);
1915 		if (k == NULL) {
1916 			freemsg(m);
1917 			sc->sc_tx_err++;
1918 			err = WPI_SUCCESS;
1919 			goto exit;
1920 		}
1921 
1922 		/* packet header may have moved, reset our local pointer */
1923 		wh = (struct ieee80211_frame *)m->b_rptr;
1924 	}
1925 
1926 	len = msgdsize(m);
1927 
1928 #ifdef DEBUG
1929 	if (wpi_dbg_flags & WPI_DEBUG_TX)
1930 		ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
1931 #endif
1932 
1933 	/* pickup a rate */
1934 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1935 	    IEEE80211_FC0_TYPE_MGT) {
1936 		/* mgmt frames are sent at the lowest available bit-rate */
1937 		rate = in->in_rates.ir_rates[0];
1938 	} else {
1939 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1940 			rate = ic->ic_fixed_rate;
1941 		} else
1942 			rate = in->in_rates.ir_rates[in->in_txrate];
1943 	}
1944 	rate &= IEEE80211_RATE_VAL;
1945 	WPI_DBG((WPI_DEBUG_RATECTL, "tx rate[%d of %d] = %x",
1946 	    in->in_txrate, in->in_rates.ir_nrates, rate));
1947 #ifdef WPI_BPF
1948 #ifndef WPI_CURRENT
1949 	if (sc->sc_drvbpf != NULL) {
1950 #else
1951 	if (bpf_peers_present(sc->sc_drvbpf)) {
1952 #endif
1953 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1954 
1955 		tap->wt_flags = 0;
1956 		tap->wt_chan_freq = LE_16(ic->ic_curchan->ic_freq);
1957 		tap->wt_chan_flags = LE_16(ic->ic_curchan->ic_flags);
1958 		tap->wt_rate = rate;
1959 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1960 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1961 
1962 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1963 	}
1964 #endif
1965 
1966 	cmd->code = WPI_CMD_TX_DATA;
1967 	cmd->flags = 0;
1968 	cmd->qid = ring->qid;
1969 	cmd->idx = ring->cur;
1970 
1971 	tx = (wpi_cmd_data_t *)cmd->data;
1972 	tx->flags = 0;
1973 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1974 		tx->flags |= LE_32(WPI_TX_NEED_ACK);
1975 	} else {
1976 		tx->flags &= ~(LE_32(WPI_TX_NEED_ACK));
1977 	}
1978 
1979 	tx->flags |= (LE_32(WPI_TX_AUTO_SEQ));
1980 	tx->flags |= LE_32(WPI_TX_BT_DISABLE | WPI_TX_CALIBRATION);
1981 
1982 	/* retrieve destination node's id */
1983 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1984 	    WPI_ID_BSS;
1985 
1986 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1987 	    IEEE80211_FC0_TYPE_MGT) {
1988 		/* tell h/w to set timestamp in probe responses */
1989 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1990 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1991 			tx->flags |= LE_32(WPI_TX_INSERT_TSTAMP);
1992 
1993 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1994 		    IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1995 		    ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1996 		    IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1997 			tx->timeout = 3;
1998 		else
1999 			tx->timeout = 2;
2000 	} else
2001 		tx->timeout = 0;
2002 
2003 	tx->rate = wpi_plcp_signal(rate);
2004 
2005 	/* be very persistant at sending frames out */
2006 	tx->rts_ntries = 7;
2007 	tx->data_ntries = 15;
2008 
2009 	tx->cck_mask  = 0x0f;
2010 	tx->ofdm_mask = 0xff;
2011 	tx->lifetime  = LE_32(0xffffffff);
2012 
2013 	tx->len = LE_16(len);
2014 
2015 	/* save and trim IEEE802.11 header */
2016 	(void) memcpy(tx + 1, m->b_rptr, hdrlen);
2017 	m->b_rptr += hdrlen;
2018 	(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
2019 
2020 	WPI_DBG((WPI_DEBUG_TX, "sending data: qid=%d idx=%d len=%d", ring->qid,
2021 	    ring->cur, len));
2022 
2023 	/* first scatter/gather segment is used by the tx data command */
2024 	desc->flags = LE_32(WPI_PAD32(len) << 28 | (2) << 24);
2025 	desc->segs[0].addr = LE_32(data->paddr_cmd);
2026 	desc->segs[0].len  = LE_32(
2027 	    roundup(4 + sizeof (wpi_cmd_data_t) + hdrlen, 4));
2028 	desc->segs[1].addr = LE_32(data->dma_data.cookie.dmac_address);
2029 	desc->segs[1].len  = LE_32(len - hdrlen);
2030 
2031 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2032 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2033 
2034 	mutex_enter(&sc->sc_tx_lock);
2035 	ring->queued++;
2036 	mutex_exit(&sc->sc_tx_lock);
2037 
2038 	/* kick ring */
2039 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2040 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2041 	freemsg(m);
2042 	/* release node reference */
2043 	ieee80211_free_node(in);
2044 
2045 	ic->ic_stats.is_tx_bytes += len;
2046 	ic->ic_stats.is_tx_frags++;
2047 
2048 	if (sc->sc_tx_timer == 0)
2049 		sc->sc_tx_timer = 5;
2050 exit:
2051 	return (err);
2052 }
2053 
2054 static void
2055 wpi_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2056 {
2057 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2058 	ieee80211com_t	*ic = &sc->sc_ic;
2059 	int		err;
2060 
2061 	err = ieee80211_ioctl(ic, wq, mp);
2062 	if (err == ENETRESET) {
2063 		(void) ieee80211_new_state(ic,
2064 		    IEEE80211_S_SCAN, -1);
2065 	}
2066 }
2067 
2068 /*ARGSUSED*/
2069 static int
2070 wpi_m_stat(void *arg, uint_t stat, uint64_t *val)
2071 {
2072 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2073 	ieee80211com_t	*ic = &sc->sc_ic;
2074 	ieee80211_node_t *in = ic->ic_bss;
2075 	struct ieee80211_rateset *rs = &in->in_rates;
2076 
2077 	mutex_enter(&sc->sc_glock);
2078 	switch (stat) {
2079 	case MAC_STAT_IFSPEED:
2080 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2081 		    (rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL)
2082 		    : ic->ic_fixed_rate) * 5000000ull;
2083 		break;
2084 	case MAC_STAT_NOXMTBUF:
2085 		*val = sc->sc_tx_nobuf;
2086 		break;
2087 	case MAC_STAT_NORCVBUF:
2088 		*val = sc->sc_rx_nobuf;
2089 		break;
2090 	case MAC_STAT_IERRORS:
2091 		*val = sc->sc_rx_err;
2092 		break;
2093 	case MAC_STAT_RBYTES:
2094 		*val = ic->ic_stats.is_rx_bytes;
2095 		break;
2096 	case MAC_STAT_IPACKETS:
2097 		*val = ic->ic_stats.is_rx_frags;
2098 		break;
2099 	case MAC_STAT_OBYTES:
2100 		*val = ic->ic_stats.is_tx_bytes;
2101 		break;
2102 	case MAC_STAT_OPACKETS:
2103 		*val = ic->ic_stats.is_tx_frags;
2104 		break;
2105 	case MAC_STAT_OERRORS:
2106 	case WIFI_STAT_TX_FAILED:
2107 		*val = sc->sc_tx_err;
2108 		break;
2109 	case WIFI_STAT_TX_RETRANS:
2110 		*val = sc->sc_tx_retries;
2111 		break;
2112 	case WIFI_STAT_FCS_ERRORS:
2113 	case WIFI_STAT_WEP_ERRORS:
2114 	case WIFI_STAT_TX_FRAGS:
2115 	case WIFI_STAT_MCAST_TX:
2116 	case WIFI_STAT_RTS_SUCCESS:
2117 	case WIFI_STAT_RTS_FAILURE:
2118 	case WIFI_STAT_ACK_FAILURE:
2119 	case WIFI_STAT_RX_FRAGS:
2120 	case WIFI_STAT_MCAST_RX:
2121 	case WIFI_STAT_RX_DUPS:
2122 		mutex_exit(&sc->sc_glock);
2123 		return (ieee80211_stat(ic, stat, val));
2124 	default:
2125 		mutex_exit(&sc->sc_glock);
2126 		return (ENOTSUP);
2127 	}
2128 	mutex_exit(&sc->sc_glock);
2129 
2130 	return (WPI_SUCCESS);
2131 
2132 }
2133 
2134 static int
2135 wpi_m_start(void *arg)
2136 {
2137 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2138 	ieee80211com_t	*ic = &sc->sc_ic;
2139 	int err;
2140 
2141 	err = wpi_init(sc);
2142 	if (err != WPI_SUCCESS) {
2143 		wpi_stop(sc);
2144 		DELAY(1000000);
2145 		err = wpi_init(sc);
2146 	}
2147 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2148 
2149 	return (err);
2150 }
2151 
2152 static void
2153 wpi_m_stop(void *arg)
2154 {
2155 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2156 	ieee80211com_t	*ic = &sc->sc_ic;
2157 
2158 	wpi_stop(sc);
2159 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2160 	mutex_enter(&sc->sc_mt_lock);
2161 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2162 	sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
2163 	mutex_exit(&sc->sc_mt_lock);
2164 }
2165 
2166 /*ARGSUSED*/
2167 static int
2168 wpi_m_unicst(void *arg, const uint8_t *macaddr)
2169 {
2170 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2171 	ieee80211com_t	*ic = &sc->sc_ic;
2172 	int err;
2173 
2174 	if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
2175 		IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2176 		mutex_enter(&sc->sc_glock);
2177 		err = wpi_config(sc);
2178 		mutex_exit(&sc->sc_glock);
2179 		if (err != WPI_SUCCESS) {
2180 			cmn_err(CE_WARN,
2181 			    "wpi_m_unicst(): "
2182 			    "failed to configure device\n");
2183 			goto fail;
2184 		}
2185 	}
2186 	return (WPI_SUCCESS);
2187 fail:
2188 	return (err);
2189 }
2190 
2191 /*ARGSUSED*/
2192 static int
2193 wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m)
2194 {
2195 	return (WPI_SUCCESS);
2196 }
2197 
2198 /*ARGSUSED*/
2199 static int
2200 wpi_m_promisc(void *arg, boolean_t on)
2201 {
2202 	return (WPI_SUCCESS);
2203 }
2204 
2205 static void
2206 wpi_thread(wpi_sc_t *sc)
2207 {
2208 	ieee80211com_t	*ic = &sc->sc_ic;
2209 	clock_t clk;
2210 	int times = 0, err, n = 0, timeout = 0;
2211 
2212 	mutex_enter(&sc->sc_mt_lock);
2213 	while (sc->sc_mf_thread_switch) {
2214 		/*
2215 		 * recovery fatal error
2216 		 */
2217 		if (ic->ic_mach &&
2218 		    (sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
2219 
2220 			WPI_DBG((WPI_DEBUG_FW,
2221 			    "wpi_thread(): "
2222 			    "try to recover fatal hw error: %d\n", times++));
2223 
2224 			wpi_stop(sc);
2225 			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2226 
2227 			mutex_exit(&sc->sc_mt_lock);
2228 			delay(drv_usectohz(2000000));
2229 			mutex_enter(&sc->sc_mt_lock);
2230 			err = wpi_init(sc);
2231 			if (err != WPI_SUCCESS) {
2232 				n++;
2233 				if (n < 3)
2234 					continue;
2235 			}
2236 			n = 0;
2237 			sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2238 			mutex_exit(&sc->sc_mt_lock);
2239 			delay(drv_usectohz(2000000));
2240 			if (sc->sc_ostate != IEEE80211_S_INIT)
2241 				ieee80211_begin_scan(ic, 0);
2242 			mutex_enter(&sc->sc_mt_lock);
2243 		}
2244 
2245 		/*
2246 		 * rate ctl
2247 		 */
2248 		if (ic->ic_mach &&
2249 		    (sc->sc_flags & WPI_F_RATE_AUTO_CTL)) {
2250 			clk = ddi_get_lbolt();
2251 			if (clk > sc->sc_clk + drv_usectohz(500000)) {
2252 				wpi_amrr_timeout(sc);
2253 			}
2254 		}
2255 		mutex_exit(&sc->sc_mt_lock);
2256 		delay(drv_usectohz(100000));
2257 		mutex_enter(&sc->sc_mt_lock);
2258 		if (sc->sc_tx_timer) {
2259 			timeout++;
2260 			if (timeout == 10) {
2261 				sc->sc_tx_timer--;
2262 				if (sc->sc_tx_timer == 0) {
2263 					sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2264 					sc->sc_ostate = IEEE80211_S_RUN;
2265 				}
2266 				timeout = 0;
2267 			}
2268 		}
2269 	}
2270 	sc->sc_mf_thread = NULL;
2271 	cv_signal(&sc->sc_mt_cv);
2272 	mutex_exit(&sc->sc_mt_lock);
2273 }
2274 
2275 /*
2276  * Extract various information from EEPROM.
2277  */
2278 static void
2279 wpi_read_eeprom(wpi_sc_t *sc)
2280 {
2281 	ieee80211com_t *ic = &sc->sc_ic;
2282 	uint16_t val;
2283 	int i;
2284 
2285 	/* read MAC address */
2286 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
2287 	ic->ic_macaddr[0] = val & 0xff;
2288 	ic->ic_macaddr[1] = val >> 8;
2289 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
2290 	ic->ic_macaddr[2] = val & 0xff;
2291 	ic->ic_macaddr[3] = val >> 8;
2292 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
2293 	ic->ic_macaddr[4] = val & 0xff;
2294 	ic->ic_macaddr[5] = val >> 8;
2295 
2296 	WPI_DBG((WPI_DEBUG_EEPROM,
2297 	    "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
2298 	    ic->ic_macaddr[0], ic->ic_macaddr[1],
2299 	    ic->ic_macaddr[2], ic->ic_macaddr[3],
2300 	    ic->ic_macaddr[4], ic->ic_macaddr[5]));
2301 	/* read power settings for 2.4GHz channels */
2302 	for (i = 0; i < 14; i++) {
2303 		sc->sc_pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
2304 		sc->sc_pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
2305 		WPI_DBG((WPI_DEBUG_EEPROM,
2306 		    "channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
2307 		    sc->sc_pwr1[i], sc->sc_pwr2[i]));
2308 	}
2309 }
2310 
2311 /*
2312  * Send a command to the firmware.
2313  */
2314 static int
2315 wpi_cmd(wpi_sc_t *sc, int code, const void *buf, int size, int async)
2316 {
2317 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2318 	wpi_tx_desc_t *desc;
2319 	wpi_tx_cmd_t *cmd;
2320 
2321 	ASSERT(size <= sizeof (cmd->data));
2322 	ASSERT(mutex_owned(&sc->sc_glock));
2323 
2324 	WPI_DBG((WPI_DEBUG_CMD, "wpi_cmd() # code[%d]", code));
2325 	desc = ring->data[ring->cur].desc;
2326 	cmd = ring->data[ring->cur].cmd;
2327 
2328 	cmd->code = (uint8_t)code;
2329 	cmd->flags = 0;
2330 	cmd->qid = ring->qid;
2331 	cmd->idx = ring->cur;
2332 	(void) memcpy(cmd->data, buf, size);
2333 
2334 	desc->flags = LE_32(WPI_PAD32(size) << 28 | 1 << 24);
2335 	desc->segs[0].addr = ring->data[ring->cur].paddr_cmd;
2336 	desc->segs[0].len  = 4 + size;
2337 
2338 	/* kick cmd ring */
2339 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2340 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2341 
2342 	if (async)
2343 		return (WPI_SUCCESS);
2344 	else {
2345 		clock_t clk;
2346 		sc->sc_flags &= ~WPI_F_CMD_DONE;
2347 		clk = ddi_get_lbolt() + drv_usectohz(2000000);
2348 		while (!(sc->sc_flags & WPI_F_CMD_DONE)) {
2349 			if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk)
2350 			    < 0)
2351 				break;
2352 		}
2353 		if (sc->sc_flags & WPI_F_CMD_DONE)
2354 			return (WPI_SUCCESS);
2355 		else
2356 			return (WPI_FAIL);
2357 	}
2358 }
2359 
2360 /*
2361  * Configure h/w multi-rate retries.
2362  */
2363 static int
2364 wpi_mrr_setup(wpi_sc_t *sc)
2365 {
2366 	wpi_mrr_setup_t mrr;
2367 	int i, err;
2368 
2369 	/* CCK rates (not used with 802.11a) */
2370 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2371 		mrr.rates[i].flags = 0;
2372 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2373 		/* fallback to the immediate lower CCK rate (if any) */
2374 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2375 		/* try one time at this rate before falling back to "next" */
2376 		mrr.rates[i].ntries = 1;
2377 	}
2378 
2379 	/* OFDM rates (not used with 802.11b) */
2380 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2381 		mrr.rates[i].flags = 0;
2382 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2383 		/* fallback to the immediate lower OFDM rate (if any) */
2384 		mrr.rates[i].next = (i == WPI_OFDM6) ? WPI_OFDM6 : i - 1;
2385 		/* try one time at this rate before falling back to "next" */
2386 		mrr.rates[i].ntries = 1;
2387 	}
2388 
2389 	/* setup MRR for control frames */
2390 	mrr.which = LE_32(WPI_MRR_CTL);
2391 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2392 	if (err != WPI_SUCCESS) {
2393 		WPI_DBG((WPI_DEBUG_MRR,
2394 		    "could not setup MRR for control frames\n"));
2395 		return (err);
2396 	}
2397 
2398 	/* setup MRR for data frames */
2399 	mrr.which = LE_32(WPI_MRR_DATA);
2400 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2401 	if (err != WPI_SUCCESS) {
2402 		WPI_DBG((WPI_DEBUG_MRR,
2403 		    "could not setup MRR for data frames\n"));
2404 		return (err);
2405 	}
2406 
2407 	return (WPI_SUCCESS);
2408 }
2409 
2410 static void
2411 wpi_set_led(wpi_sc_t *sc, uint8_t which, uint8_t off, uint8_t on)
2412 {
2413 	wpi_cmd_led_t led;
2414 
2415 	led.which = which;
2416 	led.unit = LE_32(100000);	/* on/off in unit of 100ms */
2417 	led.off = off;
2418 	led.on = on;
2419 
2420 	(void) wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof (led), 1);
2421 }
2422 
2423 static int
2424 wpi_auth(wpi_sc_t *sc)
2425 {
2426 	ieee80211com_t *ic = &sc->sc_ic;
2427 	ieee80211_node_t *in = ic->ic_bss;
2428 	wpi_node_t node;
2429 	int err;
2430 
2431 	/* update adapter's configuration */
2432 	IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
2433 	sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan);
2434 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2435 		sc->sc_config.cck_mask  = 0x03;
2436 		sc->sc_config.ofdm_mask = 0;
2437 	} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
2438 	    (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
2439 		sc->sc_config.cck_mask  = 0;
2440 		sc->sc_config.ofdm_mask = 0x15;
2441 	} else {	/* assume 802.11b/g */
2442 		sc->sc_config.cck_mask  = 0x0f;
2443 		sc->sc_config.ofdm_mask = 0x15;
2444 	}
2445 
2446 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x cck %x ofdm %x"
2447 	    " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
2448 	    sc->sc_config.chan, sc->sc_config.flags,
2449 	    sc->sc_config.cck_mask, sc->sc_config.ofdm_mask,
2450 	    sc->sc_config.bssid[0], sc->sc_config.bssid[1],
2451 	    sc->sc_config.bssid[2], sc->sc_config.bssid[3],
2452 	    sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
2453 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2454 	    sizeof (wpi_config_t), 1);
2455 	if (err != WPI_SUCCESS) {
2456 		cmn_err(CE_WARN, "wpi_auth(): failed to configurate chan%d\n",
2457 		    sc->sc_config.chan);
2458 		return (err);
2459 	}
2460 
2461 	/* add default node */
2462 	(void) memset(&node, 0, sizeof (node));
2463 	IEEE80211_ADDR_COPY(node.bssid, in->in_bssid);
2464 	node.id = WPI_ID_BSS;
2465 	node.rate = wpi_plcp_signal(2);
2466 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
2467 	if (err != WPI_SUCCESS) {
2468 		cmn_err(CE_WARN, "wpi_auth(): failed to add BSS node\n");
2469 		return (err);
2470 	}
2471 
2472 	err = wpi_mrr_setup(sc);
2473 	if (err != WPI_SUCCESS) {
2474 		cmn_err(CE_WARN, "wpi_auth(): failed to setup MRR\n");
2475 		return (err);
2476 	}
2477 
2478 	return (WPI_SUCCESS);
2479 }
2480 
2481 /*
2482  * Send a scan request to the firmware.
2483  */
2484 static int
2485 wpi_scan(wpi_sc_t *sc)
2486 {
2487 	ieee80211com_t *ic = &sc->sc_ic;
2488 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2489 	wpi_tx_desc_t *desc;
2490 	wpi_tx_data_t *data;
2491 	wpi_tx_cmd_t *cmd;
2492 	wpi_scan_hdr_t *hdr;
2493 	wpi_scan_chan_t *chan;
2494 	struct ieee80211_frame *wh;
2495 	ieee80211_node_t *in = ic->ic_bss;
2496 	struct ieee80211_rateset *rs;
2497 	enum ieee80211_phymode mode;
2498 	uint8_t *frm;
2499 	int i, pktlen, nrates;
2500 
2501 	data = &ring->data[ring->cur];
2502 	desc = data->desc;
2503 	cmd = (wpi_tx_cmd_t *)data->dma_data.mem_va;
2504 
2505 	cmd->code = WPI_CMD_SCAN;
2506 	cmd->flags = 0;
2507 	cmd->qid = ring->qid;
2508 	cmd->idx = ring->cur;
2509 
2510 	hdr = (wpi_scan_hdr_t *)cmd->data;
2511 	(void) memset(hdr, 0, sizeof (wpi_scan_hdr_t));
2512 	hdr->first = 1;
2513 	hdr->nchan = 14;
2514 	hdr->len = hdr->nchan * sizeof (wpi_scan_chan_t);
2515 	hdr->quiet = LE_16(5);
2516 	hdr->threshold = LE_16(1);
2517 	hdr->filter = LE_32(5);
2518 	hdr->rate = wpi_plcp_signal(2);
2519 	hdr->id = WPI_ID_BROADCAST;
2520 	hdr->mask = LE_32(0xffffffff);
2521 	hdr->esslen = ic->ic_des_esslen;
2522 	if (ic->ic_des_esslen)
2523 		bcopy(ic->ic_des_essid, hdr->essid, ic->ic_des_esslen);
2524 	else
2525 		bzero(hdr->essid, sizeof (hdr->essid));
2526 	/*
2527 	 * Build a probe request frame.  Most of the following code is a
2528 	 * copy & paste of what is done in net80211.  Unfortunately, the
2529 	 * functions to add IEs are static and thus can't be reused here.
2530 	 */
2531 	wh = (struct ieee80211_frame *)(hdr + 1);
2532 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2533 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2534 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2535 	(void) memset(wh->i_addr1, 0xff, 6);
2536 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
2537 	(void) memset(wh->i_addr3, 0xff, 6);
2538 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2539 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2540 
2541 	frm = (uint8_t *)(wh + 1);
2542 
2543 	/* add essid IE */
2544 	*frm++ = IEEE80211_ELEMID_SSID;
2545 	*frm++ = in->in_esslen;
2546 	(void) memcpy(frm, in->in_essid, in->in_esslen);
2547 	frm += in->in_esslen;
2548 
2549 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
2550 	rs = &ic->ic_sup_rates[mode];
2551 
2552 	/* add supported rates IE */
2553 	*frm++ = IEEE80211_ELEMID_RATES;
2554 	nrates = rs->ir_nrates;
2555 	if (nrates > IEEE80211_RATE_SIZE)
2556 		nrates = IEEE80211_RATE_SIZE;
2557 	*frm++ = (uint8_t)nrates;
2558 	(void) memcpy(frm, rs->ir_rates, nrates);
2559 	frm += nrates;
2560 
2561 	/* add supported xrates IE */
2562 	if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
2563 		nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
2564 		*frm++ = IEEE80211_ELEMID_XRATES;
2565 		*frm++ = (uint8_t)nrates;
2566 		(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
2567 		frm += nrates;
2568 	}
2569 
2570 	/* add optionnal IE (usually an RSN IE) */
2571 	if (ic->ic_opt_ie != NULL) {
2572 		(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2573 		frm += ic->ic_opt_ie_len;
2574 	}
2575 
2576 	/* setup length of probe request */
2577 	hdr->pbrlen = LE_16(frm - (uint8_t *)wh);
2578 
2579 	/* align on a 4-byte boundary */
2580 	chan = (wpi_scan_chan_t *)frm;
2581 	for (i = 1; i <= hdr->nchan; i++, chan++) {
2582 		chan->flags = 3;
2583 		chan->chan = (uint8_t)i;
2584 		chan->magic = LE_16(0x62ab);
2585 		chan->active = LE_16(20);
2586 		chan->passive = LE_16(120);
2587 
2588 		frm += sizeof (wpi_scan_chan_t);
2589 	}
2590 
2591 	pktlen = frm - (uint8_t *)cmd;
2592 
2593 	desc->flags = LE_32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2594 	desc->segs[0].addr = LE_32(data->dma_data.cookie.dmac_address);
2595 	desc->segs[0].len  = LE_32(pktlen);
2596 
2597 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2598 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2599 
2600 	/* kick cmd ring */
2601 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2602 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2603 
2604 	return (WPI_SUCCESS);	/* will be notified async. of failure/success */
2605 }
2606 
2607 static int
2608 wpi_config(wpi_sc_t *sc)
2609 {
2610 	ieee80211com_t *ic = &sc->sc_ic;
2611 	wpi_txpower_t txpower;
2612 	wpi_power_t power;
2613 #ifdef WPI_BLUE_COEXISTENCE
2614 	wpi_bluetooth_t bluetooth;
2615 #endif
2616 	wpi_node_t node;
2617 	int err;
2618 
2619 	/* Intel's binary only daemon is a joke.. */
2620 
2621 	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
2622 	(void) memset(&txpower, 0, sizeof (txpower));
2623 	(void) memcpy(txpower.pwr1, sc->sc_pwr1, 14 * sizeof (uint16_t));
2624 	(void) memcpy(txpower.pwr2, sc->sc_pwr2, 14 * sizeof (uint16_t));
2625 	err = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof (txpower), 0);
2626 	if (err != WPI_SUCCESS) {
2627 		cmn_err(CE_WARN, "wpi_config(): failed to set txpower\n");
2628 		return (err);
2629 	}
2630 
2631 	/* set power mode */
2632 	(void) memset(&power, 0, sizeof (power));
2633 	power.flags = LE_32(0x8);
2634 	err = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof (power), 0);
2635 	if (err != WPI_SUCCESS) {
2636 		cmn_err(CE_WARN, "wpi_config(): failed to set power mode\n");
2637 		return (err);
2638 	}
2639 #ifdef WPI_BLUE_COEXISTENCE
2640 	/* configure bluetooth coexistence */
2641 	(void) memset(&bluetooth, 0, sizeof (bluetooth));
2642 	bluetooth.flags = 3;
2643 	bluetooth.lead = 0xaa;
2644 	bluetooth.kill = 1;
2645 	err = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth,
2646 	    sizeof (bluetooth), 0);
2647 	if (err != WPI_SUCCESS) {
2648 		cmn_err(CE_WARN,
2649 		    "wpi_config(): "
2650 		    "failed to configurate bluetooth coexistence\n");
2651 		return (err);
2652 	}
2653 #endif
2654 	/* configure adapter */
2655 	(void) memset(&sc->sc_config, 0, sizeof (wpi_config_t));
2656 	IEEE80211_ADDR_COPY(sc->sc_config.myaddr, ic->ic_macaddr);
2657 	sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2658 	sc->sc_config.flags = LE_32(WPI_CONFIG_TSF | WPI_CONFIG_AUTO |
2659 	    WPI_CONFIG_24GHZ);
2660 	sc->sc_config.filter = 0;
2661 	switch (ic->ic_opmode) {
2662 	case IEEE80211_M_STA:
2663 		sc->sc_config.mode = WPI_MODE_STA;
2664 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
2665 		    WPI_FILTER_NODECRYPT);
2666 		break;
2667 	case IEEE80211_M_IBSS:
2668 	case IEEE80211_M_AHDEMO:
2669 		sc->sc_config.mode = WPI_MODE_IBSS;
2670 		break;
2671 	case IEEE80211_M_HOSTAP:
2672 		sc->sc_config.mode = WPI_MODE_HOSTAP;
2673 		break;
2674 	case IEEE80211_M_MONITOR:
2675 		sc->sc_config.mode = WPI_MODE_MONITOR;
2676 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
2677 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2678 		break;
2679 	}
2680 	sc->sc_config.cck_mask  = 0x0f;	/* not yet negotiated */
2681 	sc->sc_config.ofdm_mask = 0xff;	/* not yet negotiated */
2682 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2683 	    sizeof (wpi_config_t), 0);
2684 	if (err != WPI_SUCCESS) {
2685 		cmn_err(CE_WARN, "wpi_config(): "
2686 		    "failed to set configure command\n");
2687 		return (err);
2688 	}
2689 
2690 	/* add broadcast node */
2691 	(void) memset(&node, 0, sizeof (node));
2692 	(void) memset(node.bssid, 0xff, 6);
2693 	node.id = WPI_ID_BROADCAST;
2694 	node.rate = wpi_plcp_signal(2);
2695 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 0);
2696 	if (err != WPI_SUCCESS) {
2697 		cmn_err(CE_WARN, "wpi_config(): "
2698 		    "failed to add broadcast node\n");
2699 		return (err);
2700 	}
2701 
2702 	return (WPI_SUCCESS);
2703 }
2704 
2705 static void
2706 wpi_stop_master(wpi_sc_t *sc)
2707 {
2708 	uint32_t tmp;
2709 	int ntries;
2710 
2711 	tmp = WPI_READ(sc, WPI_RESET);
2712 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
2713 
2714 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2715 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2716 		return;	/* already asleep */
2717 
2718 	for (ntries = 0; ntries < 2000; ntries++) {
2719 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2720 			break;
2721 		DELAY(1000);
2722 	}
2723 	if (ntries == 2000)
2724 		WPI_DBG((WPI_DEBUG_HW, "timeout waiting for master\n"));
2725 }
2726 
2727 static int
2728 wpi_power_up(wpi_sc_t *sc)
2729 {
2730 	uint32_t tmp;
2731 	int ntries;
2732 
2733 	wpi_mem_lock(sc);
2734 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2735 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2736 	wpi_mem_unlock(sc);
2737 
2738 	for (ntries = 0; ntries < 5000; ntries++) {
2739 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2740 			break;
2741 		DELAY(10);
2742 	}
2743 	if (ntries == 5000) {
2744 		cmn_err(CE_WARN,
2745 		    "wpi_power_up(): timeout waiting for NIC to power up\n");
2746 		return (ETIMEDOUT);
2747 	}
2748 	return (WPI_SUCCESS);
2749 }
2750 
2751 static int
2752 wpi_reset(wpi_sc_t *sc)
2753 {
2754 	uint32_t tmp;
2755 	int ntries;
2756 
2757 	/* clear any pending interrupts */
2758 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2759 
2760 	tmp = WPI_READ(sc, WPI_PLL_CTL);
2761 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2762 
2763 	tmp = WPI_READ(sc, WPI_CHICKEN);
2764 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2765 
2766 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2767 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2768 
2769 	/* wait for clock stabilization */
2770 	for (ntries = 0; ntries < 1000; ntries++) {
2771 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2772 			break;
2773 		DELAY(10);
2774 	}
2775 	if (ntries == 1000) {
2776 		cmn_err(CE_WARN,
2777 		    "wpi_reset(): timeout waiting for clock stabilization\n");
2778 		return (ETIMEDOUT);
2779 	}
2780 
2781 	/* initialize EEPROM */
2782 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2783 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2784 		cmn_err(CE_WARN, "wpi_reset(): EEPROM not found\n");
2785 		return (EIO);
2786 	}
2787 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2788 
2789 	return (WPI_SUCCESS);
2790 }
2791 
2792 static void
2793 wpi_hw_config(wpi_sc_t *sc)
2794 {
2795 	uint16_t val;
2796 	uint32_t hw;
2797 
2798 	/* voodoo from the Linux "driver".. */
2799 	hw = WPI_READ(sc, WPI_HWCONFIG);
2800 
2801 	if ((sc->sc_rev & 0xc0) == 0x40)
2802 		hw |= WPI_HW_ALM_MB;
2803 	else if (!(sc->sc_rev & 0x80))
2804 		hw |= WPI_HW_ALM_MM;
2805 
2806 	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
2807 	if ((val & 0xff) == 0x80)
2808 		hw |= WPI_HW_SKU_MRC;
2809 
2810 	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
2811 	hw &= ~WPI_HW_REV_D;
2812 	if ((val & 0xf0) == 0xd0)
2813 		hw |= WPI_HW_REV_D;
2814 
2815 	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
2816 	if ((val & 0xff) > 1)
2817 		hw |= WPI_HW_TYPE_B;
2818 
2819 	WPI_DBG((WPI_DEBUG_HW, "setting h/w config %x\n", hw));
2820 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2821 }
2822 
2823 static int
2824 wpi_init(wpi_sc_t *sc)
2825 {
2826 	uint32_t tmp;
2827 	int qid, ntries, err;
2828 	clock_t clk;
2829 
2830 	mutex_enter(&sc->sc_glock);
2831 	sc->sc_flags &= ~WPI_F_FW_INIT;
2832 
2833 	(void) wpi_reset(sc);
2834 
2835 	wpi_mem_lock(sc);
2836 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
2837 	DELAY(20);
2838 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
2839 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
2840 	wpi_mem_unlock(sc);
2841 
2842 	(void) wpi_power_up(sc);
2843 	wpi_hw_config(sc);
2844 
2845 	/* init Rx ring */
2846 	wpi_mem_lock(sc);
2847 	WPI_WRITE(sc, WPI_RX_BASE, sc->sc_rxq.dma_desc.cookie.dmac_address);
2848 	WPI_WRITE(sc, WPI_RX_RIDX_PTR,
2849 	    (uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
2850 	    offsetof(wpi_shared_t, next)));
2851 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & (~7));
2852 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
2853 	wpi_mem_unlock(sc);
2854 
2855 	/* init Tx rings */
2856 	wpi_mem_lock(sc);
2857 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
2858 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
2859 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
2860 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
2861 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
2862 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
2863 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
2864 
2865 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->sc_dma_sh.cookie.dmac_address);
2866 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
2867 
2868 	for (qid = 0; qid < 6; qid++) {
2869 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
2870 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
2871 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
2872 	}
2873 	wpi_mem_unlock(sc);
2874 
2875 	/* clear "radio off" and "disable command" bits (reversed logic) */
2876 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
2877 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
2878 
2879 	/* clear any pending interrupts */
2880 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2881 
2882 	/* enable interrupts */
2883 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
2884 
2885 	/* load firmware boot code into NIC */
2886 	err = wpi_load_microcode(sc);
2887 	if (err != WPI_SUCCESS) {
2888 		cmn_err(CE_WARN, "wpi_init(): failed to load microcode\n");
2889 		goto fail1;
2890 	}
2891 
2892 	/* load firmware .text segment into NIC */
2893 	err = wpi_load_firmware(sc, WPI_FW_TEXT);
2894 	if (err != WPI_SUCCESS) {
2895 		cmn_err(CE_WARN, "wpi_init(): "
2896 		    "failed to load firmware(text)\n");
2897 		goto fail1;
2898 	}
2899 
2900 	/* load firmware .data segment into NIC */
2901 	err = wpi_load_firmware(sc, WPI_FW_DATA);
2902 	if (err != WPI_SUCCESS) {
2903 		cmn_err(CE_WARN, "wpi_init(): "
2904 		    "failed to load firmware(data)\n");
2905 		goto fail1;
2906 	}
2907 
2908 	/* now press "execute" ;-) */
2909 	tmp = WPI_READ(sc, WPI_RESET);
2910 	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
2911 	WPI_WRITE(sc, WPI_RESET, tmp);
2912 
2913 	/* ..and wait at most one second for adapter to initialize */
2914 	clk = ddi_get_lbolt() + drv_usectohz(2000000);
2915 	while (!(sc->sc_flags & WPI_F_FW_INIT)) {
2916 		if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0)
2917 			break;
2918 	}
2919 	if (!(sc->sc_flags & WPI_F_FW_INIT)) {
2920 		cmn_err(CE_WARN,
2921 		    "wpi_init(): timeout waiting for firmware init\n");
2922 		goto fail1;
2923 	}
2924 
2925 	/* wait for thermal sensors to calibrate */
2926 	for (ntries = 0; ntries < 1000; ntries++) {
2927 		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
2928 			break;
2929 		DELAY(10);
2930 	}
2931 
2932 	if (ntries == 1000) {
2933 		WPI_DBG((WPI_DEBUG_HW,
2934 		    "wpi_init(): timeout waiting for thermal sensors "
2935 		    "calibration\n"));
2936 	}
2937 
2938 	WPI_DBG((WPI_DEBUG_HW, "temperature %d\n",
2939 	    (int)WPI_READ(sc, WPI_TEMPERATURE)));
2940 
2941 	err = wpi_config(sc);
2942 	if (err) {
2943 		cmn_err(CE_WARN, "wpi_init(): failed to configure device\n");
2944 		goto fail1;
2945 	}
2946 
2947 	mutex_exit(&sc->sc_glock);
2948 	return (WPI_SUCCESS);
2949 
2950 fail1:
2951 	err = WPI_FAIL;
2952 	mutex_exit(&sc->sc_glock);
2953 	return (err);
2954 }
2955 
2956 static void
2957 wpi_stop(wpi_sc_t *sc)
2958 {
2959 	uint32_t tmp;
2960 	int ac;
2961 
2962 
2963 	mutex_enter(&sc->sc_glock);
2964 	/* disable interrupts */
2965 	WPI_WRITE(sc, WPI_MASK, 0);
2966 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
2967 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
2968 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
2969 
2970 	wpi_mem_lock(sc);
2971 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
2972 	wpi_mem_unlock(sc);
2973 
2974 	/* reset all Tx rings */
2975 	for (ac = 0; ac < 4; ac++)
2976 		wpi_reset_tx_ring(sc, &sc->sc_txq[ac]);
2977 	wpi_reset_tx_ring(sc, &sc->sc_cmdq);
2978 	wpi_reset_tx_ring(sc, &sc->sc_svcq);
2979 
2980 	/* reset Rx ring */
2981 	wpi_reset_rx_ring(sc);
2982 
2983 	wpi_mem_lock(sc);
2984 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
2985 	wpi_mem_unlock(sc);
2986 
2987 	DELAY(5);
2988 
2989 	wpi_stop_master(sc);
2990 
2991 	sc->sc_tx_timer = 0;
2992 	tmp = WPI_READ(sc, WPI_RESET);
2993 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
2994 	mutex_exit(&sc->sc_glock);
2995 }
2996 
2997 /*
2998  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
2999  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
3000  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
3001  * INRIA Sophia - Projet Planete
3002  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
3003  */
3004 #define	is_success(amrr)	\
3005 	((amrr)->retrycnt < (amrr)->txcnt / 10)
3006 #define	is_failure(amrr)	\
3007 	((amrr)->retrycnt > (amrr)->txcnt / 3)
3008 #define	is_enough(amrr)		\
3009 	((amrr)->txcnt > 100)
3010 #define	is_min_rate(in)		\
3011 	((in)->in_txrate == 0)
3012 #define	is_max_rate(in)		\
3013 	((in)->in_txrate == (in)->in_rates.ir_nrates - 1)
3014 #define	increase_rate(in)	\
3015 	((in)->in_txrate++)
3016 #define	decrease_rate(in)	\
3017 	((in)->in_txrate--)
3018 #define	reset_cnt(amrr)		\
3019 	{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
3020 
3021 #define	WPI_AMRR_MIN_SUCCESS_THRESHOLD	 1
3022 #define	WPI_AMRR_MAX_SUCCESS_THRESHOLD	15
3023 
3024 static void
3025 wpi_amrr_init(wpi_amrr_t *amrr)
3026 {
3027 	amrr->success = 0;
3028 	amrr->recovery = 0;
3029 	amrr->txcnt = amrr->retrycnt = 0;
3030 	amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3031 }
3032 
3033 static void
3034 wpi_amrr_timeout(wpi_sc_t *sc)
3035 {
3036 	ieee80211com_t *ic = &sc->sc_ic;
3037 
3038 	WPI_DBG((WPI_DEBUG_RATECTL, "wpi_amrr_timeout() enter\n"));
3039 	if (ic->ic_opmode == IEEE80211_M_STA)
3040 		wpi_amrr_ratectl(NULL, ic->ic_bss);
3041 	else
3042 		ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
3043 	sc->sc_clk = ddi_get_lbolt();
3044 }
3045 
3046 /* ARGSUSED */
3047 static void
3048 wpi_amrr_ratectl(void *arg, ieee80211_node_t *in)
3049 {
3050 	wpi_amrr_t *amrr = (wpi_amrr_t *)in;
3051 	int need_change = 0;
3052 
3053 	if (is_success(amrr) && is_enough(amrr)) {
3054 		amrr->success++;
3055 		if (amrr->success >= amrr->success_threshold &&
3056 		    !is_max_rate(in)) {
3057 			amrr->recovery = 1;
3058 			amrr->success = 0;
3059 			increase_rate(in);
3060 			WPI_DBG((WPI_DEBUG_RATECTL,
3061 			    "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
3062 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3063 			need_change = 1;
3064 		} else {
3065 			amrr->recovery = 0;
3066 		}
3067 	} else if (is_failure(amrr)) {
3068 		amrr->success = 0;
3069 		if (!is_min_rate(in)) {
3070 			if (amrr->recovery) {
3071 				amrr->success_threshold++;
3072 				if (amrr->success_threshold >
3073 				    WPI_AMRR_MAX_SUCCESS_THRESHOLD)
3074 					amrr->success_threshold =
3075 					    WPI_AMRR_MAX_SUCCESS_THRESHOLD;
3076 			} else {
3077 				amrr->success_threshold =
3078 				    WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3079 			}
3080 			decrease_rate(in);
3081 			WPI_DBG((WPI_DEBUG_RATECTL,
3082 			    "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
3083 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3084 			need_change = 1;
3085 		}
3086 		amrr->recovery = 0;	/* paper is incorrect */
3087 	}
3088 
3089 	if (is_enough(amrr) || need_change)
3090 		reset_cnt(amrr);
3091 }
3092