xref: /titanic_50/usr/src/uts/common/io/wpi/wpi.c (revision 94d05f6c7f329fdf908da99ab50b37d3d33f9fe5)
1 /*
2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2006
8  *	Damien Bergamini <damien.bergamini@free.fr>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/byteorder.h>
29 #include <sys/conf.h>
30 #include <sys/cmn_err.h>
31 #include <sys/stat.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/strsubr.h>
35 #include <sys/ethernet.h>
36 #include <inet/common.h>
37 #include <inet/nd.h>
38 #include <inet/mi.h>
39 #include <sys/note.h>
40 #include <sys/stream.h>
41 #include <sys/strsun.h>
42 #include <sys/modctl.h>
43 #include <sys/devops.h>
44 #include <sys/dlpi.h>
45 #include <sys/mac.h>
46 #include <sys/mac_wifi.h>
47 #include <sys/net80211.h>
48 #include <sys/net80211_proto.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/pci.h>
52 
53 #include "wpireg.h"
54 #include "wpivar.h"
55 #include <inet/wifi_ioctl.h>
56 
57 #ifdef DEBUG
58 #define	WPI_DEBUG_80211		(1 << 0)
59 #define	WPI_DEBUG_CMD		(1 << 1)
60 #define	WPI_DEBUG_DMA		(1 << 2)
61 #define	WPI_DEBUG_EEPROM	(1 << 3)
62 #define	WPI_DEBUG_FW		(1 << 4)
63 #define	WPI_DEBUG_HW		(1 << 5)
64 #define	WPI_DEBUG_INTR		(1 << 6)
65 #define	WPI_DEBUG_MRR		(1 << 7)
66 #define	WPI_DEBUG_PIO		(1 << 8)
67 #define	WPI_DEBUG_RX		(1 << 9)
68 #define	WPI_DEBUG_SCAN		(1 << 10)
69 #define	WPI_DEBUG_TX		(1 << 11)
70 #define	WPI_DEBUG_RATECTL	(1 << 12)
71 #define	WPI_DEBUG_RADIO		(1 << 13)
72 #define	WPI_DEBUG_RESUME	(1 << 14)
73 uint32_t wpi_dbg_flags = 0;
74 #define	WPI_DBG(x) \
75 	wpi_dbg x
76 #else
77 #define	WPI_DBG(x)
78 #endif
79 
80 static void	*wpi_soft_state_p = NULL;
81 static uint8_t wpi_fw_bin [] = {
82 #include "fw-wpi/ipw3945.ucode.hex"
83 };
84 
85 /* DMA attributes for a shared page */
86 static ddi_dma_attr_t sh_dma_attr = {
87 	DMA_ATTR_V0,	/* version of this structure */
88 	0,		/* lowest usable address */
89 	0xffffffffU,	/* highest usable address */
90 	0xffffffffU,	/* maximum DMAable byte count */
91 	0x1000,		/* alignment in bytes */
92 	0x1000,		/* burst sizes (any?) */
93 	1,		/* minimum transfer */
94 	0xffffffffU,	/* maximum transfer */
95 	0xffffffffU,	/* maximum segment length */
96 	1,		/* maximum number of segments */
97 	1,		/* granularity */
98 	0,		/* flags (reserved) */
99 };
100 
101 /* DMA attributes for a ring descriptor */
102 static ddi_dma_attr_t ring_desc_dma_attr = {
103 	DMA_ATTR_V0,	/* version of this structure */
104 	0,		/* lowest usable address */
105 	0xffffffffU,	/* highest usable address */
106 	0xffffffffU,	/* maximum DMAable byte count */
107 	0x4000,		/* alignment in bytes */
108 	0x100,		/* burst sizes (any?) */
109 	1,		/* minimum transfer */
110 	0xffffffffU,	/* maximum transfer */
111 	0xffffffffU,	/* maximum segment length */
112 	1,		/* maximum number of segments */
113 	1,		/* granularity */
114 	0,		/* flags (reserved) */
115 };
116 
117 
118 /* DMA attributes for a tx cmd */
119 static ddi_dma_attr_t tx_cmd_dma_attr = {
120 	DMA_ATTR_V0,	/* version of this structure */
121 	0,		/* lowest usable address */
122 	0xffffffffU,	/* highest usable address */
123 	0xffffffffU,	/* maximum DMAable byte count */
124 	4,		/* alignment in bytes */
125 	0x100,		/* burst sizes (any?) */
126 	1,		/* minimum transfer */
127 	0xffffffffU,	/* maximum transfer */
128 	0xffffffffU,	/* maximum segment length */
129 	1,		/* maximum number of segments */
130 	1,		/* granularity */
131 	0,		/* flags (reserved) */
132 };
133 
134 /* DMA attributes for a rx buffer */
135 static ddi_dma_attr_t rx_buffer_dma_attr = {
136 	DMA_ATTR_V0,	/* version of this structure */
137 	0,		/* lowest usable address */
138 	0xffffffffU,	/* highest usable address */
139 	0xffffffffU,	/* maximum DMAable byte count */
140 	1,		/* alignment in bytes */
141 	0x100,		/* burst sizes (any?) */
142 	1,		/* minimum transfer */
143 	0xffffffffU,	/* maximum transfer */
144 	0xffffffffU,	/* maximum segment length */
145 	1,		/* maximum number of segments */
146 	1,		/* granularity */
147 	0,		/* flags (reserved) */
148 };
149 
150 /*
151  * DMA attributes for a tx buffer.
152  * the maximum number of segments is 4 for the hardware.
153  * now all the wifi drivers put the whole frame in a single
154  * descriptor, so we define the maximum  number of segments 4,
155  * just the same as the rx_buffer. we consider leverage the HW
156  * ability in the future, that is why we don't define rx and tx
157  * buffer_dma_attr as the same.
158  */
159 static ddi_dma_attr_t tx_buffer_dma_attr = {
160 	DMA_ATTR_V0,	/* version of this structure */
161 	0,		/* lowest usable address */
162 	0xffffffffU,	/* highest usable address */
163 	0xffffffffU,	/* maximum DMAable byte count */
164 	1,		/* alignment in bytes */
165 	0x100,		/* burst sizes (any?) */
166 	1,		/* minimum transfer */
167 	0xffffffffU,	/* maximum transfer */
168 	0xffffffffU,	/* maximum segment length */
169 	1,		/* maximum number of segments */
170 	1,		/* granularity */
171 	0,		/* flags (reserved) */
172 };
173 
174 /* DMA attributes for a load firmware */
175 static ddi_dma_attr_t fw_buffer_dma_attr = {
176 	DMA_ATTR_V0,	/* version of this structure */
177 	0,		/* lowest usable address */
178 	0xffffffffU,	/* highest usable address */
179 	0x7fffffff,	/* maximum DMAable byte count */
180 	4,		/* alignment in bytes */
181 	0x100,		/* burst sizes (any?) */
182 	1,		/* minimum transfer */
183 	0xffffffffU,	/* maximum transfer */
184 	0xffffffffU,	/* maximum segment length */
185 	4,		/* maximum number of segments */
186 	1,		/* granularity */
187 	0,		/* flags (reserved) */
188 };
189 
190 /* regs access attributes */
191 static ddi_device_acc_attr_t wpi_reg_accattr = {
192 	DDI_DEVICE_ATTR_V0,
193 	DDI_STRUCTURE_LE_ACC,
194 	DDI_STRICTORDER_ACC,
195 	DDI_DEFAULT_ACC
196 };
197 
198 /* DMA access attributes */
199 static ddi_device_acc_attr_t wpi_dma_accattr = {
200 	DDI_DEVICE_ATTR_V0,
201 	DDI_NEVERSWAP_ACC,
202 	DDI_STRICTORDER_ACC,
203 	DDI_DEFAULT_ACC
204 };
205 
206 static int	wpi_ring_init(wpi_sc_t *);
207 static void	wpi_ring_free(wpi_sc_t *);
208 static int	wpi_alloc_shared(wpi_sc_t *);
209 static void	wpi_free_shared(wpi_sc_t *);
210 static int	wpi_alloc_fw_dma(wpi_sc_t *);
211 static void	wpi_free_fw_dma(wpi_sc_t *);
212 static int	wpi_alloc_rx_ring(wpi_sc_t *);
213 static void	wpi_reset_rx_ring(wpi_sc_t *);
214 static void	wpi_free_rx_ring(wpi_sc_t *);
215 static int	wpi_alloc_tx_ring(wpi_sc_t *, wpi_tx_ring_t *, int, int);
216 static void	wpi_reset_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
217 static void	wpi_free_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
218 
219 static ieee80211_node_t *wpi_node_alloc(ieee80211com_t *);
220 static void	wpi_node_free(ieee80211_node_t *);
221 static int	wpi_newstate(ieee80211com_t *, enum ieee80211_state, int);
222 static int	wpi_key_set(ieee80211com_t *, const struct ieee80211_key *,
223     const uint8_t mac[IEEE80211_ADDR_LEN]);
224 static void	wpi_mem_lock(wpi_sc_t *);
225 static void	wpi_mem_unlock(wpi_sc_t *);
226 static uint32_t	wpi_mem_read(wpi_sc_t *, uint16_t);
227 static void	wpi_mem_write(wpi_sc_t *, uint16_t, uint32_t);
228 static void	wpi_mem_write_region_4(wpi_sc_t *, uint16_t,
229 		    const uint32_t *, int);
230 static uint16_t	wpi_read_prom_word(wpi_sc_t *, uint32_t);
231 static int	wpi_load_microcode(wpi_sc_t *);
232 static int	wpi_load_firmware(wpi_sc_t *, uint32_t);
233 static void	wpi_rx_intr(wpi_sc_t *, wpi_rx_desc_t *,
234 		    wpi_rx_data_t *);
235 static void	wpi_tx_intr(wpi_sc_t *, wpi_rx_desc_t *,
236 		    wpi_rx_data_t *);
237 static void	wpi_cmd_intr(wpi_sc_t *, wpi_rx_desc_t *);
238 static uint_t	wpi_intr(caddr_t);
239 static uint_t	wpi_notif_softintr(caddr_t);
240 static uint8_t	wpi_plcp_signal(int);
241 static void	wpi_read_eeprom(wpi_sc_t *);
242 static int	wpi_cmd(wpi_sc_t *, int, const void *, int, int);
243 static int	wpi_mrr_setup(wpi_sc_t *);
244 static void	wpi_set_led(wpi_sc_t *, uint8_t, uint8_t, uint8_t);
245 static int	wpi_auth(wpi_sc_t *);
246 static int	wpi_scan(wpi_sc_t *);
247 static int	wpi_config(wpi_sc_t *);
248 static void	wpi_stop_master(wpi_sc_t *);
249 static int	wpi_power_up(wpi_sc_t *);
250 static int	wpi_reset(wpi_sc_t *);
251 static void	wpi_hw_config(wpi_sc_t *);
252 static int	wpi_init(wpi_sc_t *);
253 static void	wpi_stop(wpi_sc_t *);
254 static int	wpi_quiesce(dev_info_t *dip);
255 static void	wpi_amrr_init(wpi_amrr_t *);
256 static void	wpi_amrr_timeout(wpi_sc_t *);
257 static void	wpi_amrr_ratectl(void *, ieee80211_node_t *);
258 
259 static int wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
260 static int wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
261 
262 /*
263  * GLD specific operations
264  */
265 static int	wpi_m_stat(void *arg, uint_t stat, uint64_t *val);
266 static int	wpi_m_start(void *arg);
267 static void	wpi_m_stop(void *arg);
268 static int	wpi_m_unicst(void *arg, const uint8_t *macaddr);
269 static int	wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m);
270 static int	wpi_m_promisc(void *arg, boolean_t on);
271 static mblk_t  *wpi_m_tx(void *arg, mblk_t *mp);
272 static void	wpi_m_ioctl(void *arg, queue_t *wq, mblk_t *mp);
273 static int	wpi_m_setprop(void *arg, const char *pr_name,
274     mac_prop_id_t wldp_pr_num, uint_t wldp_length, const void *wldp_buf);
275 static int	wpi_m_getprop(void *arg, const char *pr_name,
276     mac_prop_id_t wldp_pr_num, uint_t pr_flags, uint_t wldp_lenth,
277     void *wldp_buf, uint_t *);
278 static void	wpi_destroy_locks(wpi_sc_t *sc);
279 static int	wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type);
280 static void	wpi_thread(wpi_sc_t *sc);
281 
282 /*
283  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
284  */
285 static const struct ieee80211_rateset wpi_rateset_11b =
286 	{ 4, { 2, 4, 11, 22 } };
287 
288 static const struct ieee80211_rateset wpi_rateset_11g =
289 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
290 
291 static const uint8_t wpi_ridx_to_signal[] = {
292 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
293 	/* R1-R4 (ral/ural is R4-R1) */
294 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
295 	/* CCK: device-dependent */
296 	10, 20, 55, 110
297 };
298 
299 /*
300  * For mfthread only
301  */
302 extern pri_t minclsyspri;
303 
304 /*
305  * Module Loading Data & Entry Points
306  */
307 DDI_DEFINE_STREAM_OPS(wpi_devops, nulldev, nulldev, wpi_attach,
308     wpi_detach, nodev, NULL, D_MP, NULL, wpi_quiesce);
309 
310 static struct modldrv wpi_modldrv = {
311 	&mod_driverops,
312 	"Intel(R) PRO/Wireless 3945ABG driver",
313 	&wpi_devops
314 };
315 
316 static struct modlinkage wpi_modlinkage = {
317 	MODREV_1,
318 	&wpi_modldrv,
319 	NULL
320 };
321 
322 int
323 _init(void)
324 {
325 	int	status;
326 
327 	status = ddi_soft_state_init(&wpi_soft_state_p,
328 	    sizeof (wpi_sc_t), 1);
329 	if (status != DDI_SUCCESS)
330 		return (status);
331 
332 	mac_init_ops(&wpi_devops, "wpi");
333 	status = mod_install(&wpi_modlinkage);
334 	if (status != DDI_SUCCESS) {
335 		mac_fini_ops(&wpi_devops);
336 		ddi_soft_state_fini(&wpi_soft_state_p);
337 	}
338 
339 	return (status);
340 }
341 
342 int
343 _fini(void)
344 {
345 	int status;
346 
347 	status = mod_remove(&wpi_modlinkage);
348 	if (status == DDI_SUCCESS) {
349 		mac_fini_ops(&wpi_devops);
350 		ddi_soft_state_fini(&wpi_soft_state_p);
351 	}
352 
353 	return (status);
354 }
355 
356 int
357 _info(struct modinfo *mip)
358 {
359 	return (mod_info(&wpi_modlinkage, mip));
360 }
361 
362 /*
363  * Mac Call Back entries
364  */
365 mac_callbacks_t	wpi_m_callbacks = {
366 	MC_IOCTL | MC_SETPROP | MC_GETPROP,
367 	wpi_m_stat,
368 	wpi_m_start,
369 	wpi_m_stop,
370 	wpi_m_promisc,
371 	wpi_m_multicst,
372 	wpi_m_unicst,
373 	wpi_m_tx,
374 	NULL,
375 	wpi_m_ioctl,
376 	NULL,
377 	NULL,
378 	NULL,
379 	wpi_m_setprop,
380 	wpi_m_getprop
381 };
382 
383 #ifdef DEBUG
384 void
385 wpi_dbg(uint32_t flags, const char *fmt, ...)
386 {
387 	va_list	ap;
388 
389 	if (flags & wpi_dbg_flags) {
390 		va_start(ap, fmt);
391 		vcmn_err(CE_NOTE, fmt, ap);
392 		va_end(ap);
393 	}
394 }
395 #endif
396 /*
397  * device operations
398  */
399 int
400 wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
401 {
402 	wpi_sc_t		*sc;
403 	ddi_acc_handle_t	cfg_handle;
404 	caddr_t			cfg_base;
405 	ieee80211com_t	*ic;
406 	int			instance, err, i;
407 	char			strbuf[32];
408 	wifi_data_t		wd = { 0 };
409 	mac_register_t		*macp;
410 
411 	switch (cmd) {
412 	case DDI_ATTACH:
413 		break;
414 	case DDI_RESUME:
415 		sc = ddi_get_soft_state(wpi_soft_state_p,
416 		    ddi_get_instance(dip));
417 		ASSERT(sc != NULL);
418 		mutex_enter(&sc->sc_glock);
419 		sc->sc_flags &= ~WPI_F_SUSPEND;
420 		mutex_exit(&sc->sc_glock);
421 		if (sc->sc_flags & WPI_F_RUNNING) {
422 			(void) wpi_init(sc);
423 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
424 		}
425 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: resume \n"));
426 		return (DDI_SUCCESS);
427 	default:
428 		err = DDI_FAILURE;
429 		goto attach_fail1;
430 	}
431 
432 	instance = ddi_get_instance(dip);
433 	err = ddi_soft_state_zalloc(wpi_soft_state_p, instance);
434 	if (err != DDI_SUCCESS) {
435 		cmn_err(CE_WARN,
436 		    "wpi_attach(): failed to allocate soft state\n");
437 		goto attach_fail1;
438 	}
439 	sc = ddi_get_soft_state(wpi_soft_state_p, instance);
440 	sc->sc_dip = dip;
441 
442 	err = ddi_regs_map_setup(dip, 0, &cfg_base, 0, 0,
443 	    &wpi_reg_accattr, &cfg_handle);
444 	if (err != DDI_SUCCESS) {
445 		cmn_err(CE_WARN,
446 		    "wpi_attach(): failed to map config spaces regs\n");
447 		goto attach_fail2;
448 	}
449 	sc->sc_rev = ddi_get8(cfg_handle,
450 	    (uint8_t *)(cfg_base + PCI_CONF_REVID));
451 	ddi_put8(cfg_handle, (uint8_t *)(cfg_base + 0x41), 0);
452 	sc->sc_clsz = ddi_get16(cfg_handle,
453 	    (uint16_t *)(cfg_base + PCI_CONF_CACHE_LINESZ));
454 	ddi_regs_map_free(&cfg_handle);
455 	if (!sc->sc_clsz)
456 		sc->sc_clsz = 16;
457 	sc->sc_clsz = (sc->sc_clsz << 2);
458 	sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
459 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
460 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
461 	    IEEE80211_WEP_CRCLEN), sc->sc_clsz);
462 	/*
463 	 * Map operating registers
464 	 */
465 	err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
466 	    0, 0, &wpi_reg_accattr, &sc->sc_handle);
467 	if (err != DDI_SUCCESS) {
468 		cmn_err(CE_WARN,
469 		    "wpi_attach(): failed to map device regs\n");
470 		goto attach_fail2;
471 	}
472 
473 	/*
474 	 * Allocate shared page.
475 	 */
476 	err = wpi_alloc_shared(sc);
477 	if (err != DDI_SUCCESS) {
478 		cmn_err(CE_WARN, "failed to allocate shared page\n");
479 		goto attach_fail3;
480 	}
481 
482 	/*
483 	 * Get the hw conf, including MAC address, then init all rings.
484 	 */
485 	wpi_read_eeprom(sc);
486 	err = wpi_ring_init(sc);
487 	if (err != DDI_SUCCESS) {
488 		cmn_err(CE_WARN, "wpi_attach(): "
489 		    "failed to allocate and initialize ring\n");
490 		goto attach_fail4;
491 	}
492 
493 	sc->sc_hdr = (const wpi_firmware_hdr_t *)wpi_fw_bin;
494 
495 	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
496 	sc->sc_text = (const char *)(sc->sc_hdr + 1);
497 	sc->sc_data = sc->sc_text + LE_32(sc->sc_hdr->textsz);
498 	sc->sc_boot = sc->sc_data + LE_32(sc->sc_hdr->datasz);
499 	err = wpi_alloc_fw_dma(sc);
500 	if (err != DDI_SUCCESS) {
501 		cmn_err(CE_WARN, "wpi_attach(): "
502 		    "failed to allocate firmware dma\n");
503 		goto attach_fail5;
504 	}
505 
506 	/*
507 	 * Initialize mutexs and condvars
508 	 */
509 	err = ddi_get_iblock_cookie(dip, 0, &sc->sc_iblk);
510 	if (err != DDI_SUCCESS) {
511 		cmn_err(CE_WARN,
512 		    "wpi_attach(): failed to do ddi_get_iblock_cookie()\n");
513 		goto attach_fail6;
514 	}
515 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, sc->sc_iblk);
516 	mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER, sc->sc_iblk);
517 	cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
518 	cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
519 
520 	/*
521 	 * initialize the mfthread
522 	 */
523 	mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
524 	    (void *) sc->sc_iblk);
525 	cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
526 	sc->sc_mf_thread = NULL;
527 	sc->sc_mf_thread_switch = 0;
528 	/*
529 	 * Initialize the wifi part, which will be used by
530 	 * generic layer
531 	 */
532 	ic = &sc->sc_ic;
533 	ic->ic_phytype  = IEEE80211_T_OFDM;
534 	ic->ic_opmode   = IEEE80211_M_STA; /* default to BSS mode */
535 	ic->ic_state    = IEEE80211_S_INIT;
536 	ic->ic_maxrssi  = 70; /* experimental number */
537 	ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
538 	    IEEE80211_C_PMGT | IEEE80211_C_SHSLOT;
539 
540 	/*
541 	 * use software WEP and TKIP, hardware CCMP;
542 	 */
543 	ic->ic_caps |= IEEE80211_C_AES_CCM;
544 	ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
545 
546 	/* set supported .11b and .11g rates */
547 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
548 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
549 
550 	/* set supported .11b and .11g channels (1 through 14) */
551 	for (i = 1; i <= 14; i++) {
552 		ic->ic_sup_channels[i].ich_freq =
553 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
554 		ic->ic_sup_channels[i].ich_flags =
555 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
556 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ |
557 		    IEEE80211_CHAN_PASSIVE;
558 	}
559 	ic->ic_ibss_chan = &ic->ic_sup_channels[0];
560 	ic->ic_xmit = wpi_send;
561 	/*
562 	 * init Wifi layer
563 	 */
564 	ieee80211_attach(ic);
565 
566 	/* register WPA door */
567 	ieee80211_register_door(ic, ddi_driver_name(dip),
568 	    ddi_get_instance(dip));
569 
570 	/*
571 	 * Override 80211 default routines
572 	 */
573 	sc->sc_newstate = ic->ic_newstate;
574 	ic->ic_newstate = wpi_newstate;
575 	ic->ic_node_alloc = wpi_node_alloc;
576 	ic->ic_node_free = wpi_node_free;
577 	ic->ic_crypto.cs_key_set = wpi_key_set;
578 	ieee80211_media_init(ic);
579 	/*
580 	 * initialize default tx key
581 	 */
582 	ic->ic_def_txkey = 0;
583 
584 	err = ddi_add_softintr(dip, DDI_SOFTINT_LOW,
585 	    &sc->sc_notif_softint_id, &sc->sc_iblk, NULL, wpi_notif_softintr,
586 	    (caddr_t)sc);
587 	if (err != DDI_SUCCESS) {
588 		cmn_err(CE_WARN,
589 		    "wpi_attach(): failed to do ddi_add_softintr()\n");
590 		goto attach_fail7;
591 	}
592 
593 	/*
594 	 * Add the interrupt handler
595 	 */
596 	err = ddi_add_intr(dip, 0, &sc->sc_iblk, NULL,
597 	    wpi_intr, (caddr_t)sc);
598 	if (err != DDI_SUCCESS) {
599 		cmn_err(CE_WARN,
600 		    "wpi_attach(): failed to do ddi_add_intr()\n");
601 		goto attach_fail8;
602 	}
603 
604 	/*
605 	 * Initialize pointer to device specific functions
606 	 */
607 	wd.wd_secalloc = WIFI_SEC_NONE;
608 	wd.wd_opmode = ic->ic_opmode;
609 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
610 
611 	macp = mac_alloc(MAC_VERSION);
612 	if (err != DDI_SUCCESS) {
613 		cmn_err(CE_WARN,
614 		    "wpi_attach(): failed to do mac_alloc()\n");
615 		goto attach_fail9;
616 	}
617 
618 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
619 	macp->m_driver		= sc;
620 	macp->m_dip		= dip;
621 	macp->m_src_addr	= ic->ic_macaddr;
622 	macp->m_callbacks	= &wpi_m_callbacks;
623 	macp->m_min_sdu		= 0;
624 	macp->m_max_sdu		= IEEE80211_MTU;
625 	macp->m_pdata		= &wd;
626 	macp->m_pdata_size	= sizeof (wd);
627 
628 	/*
629 	 * Register the macp to mac
630 	 */
631 	err = mac_register(macp, &ic->ic_mach);
632 	mac_free(macp);
633 	if (err != DDI_SUCCESS) {
634 		cmn_err(CE_WARN,
635 		    "wpi_attach(): failed to do mac_register()\n");
636 		goto attach_fail9;
637 	}
638 
639 	/*
640 	 * Create minor node of type DDI_NT_NET_WIFI
641 	 */
642 	(void) snprintf(strbuf, sizeof (strbuf), "wpi%d", instance);
643 	err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
644 	    instance + 1, DDI_NT_NET_WIFI, 0);
645 	if (err != DDI_SUCCESS)
646 		cmn_err(CE_WARN,
647 		    "wpi_attach(): failed to do ddi_create_minor_node()\n");
648 
649 	/*
650 	 * Notify link is down now
651 	 */
652 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
653 
654 	/*
655 	 * create the mf thread to handle the link status,
656 	 * recovery fatal error, etc.
657 	 */
658 
659 	sc->sc_mf_thread_switch = 1;
660 	if (sc->sc_mf_thread == NULL)
661 		sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
662 		    wpi_thread, sc, 0, &p0, TS_RUN, minclsyspri);
663 
664 	sc->sc_flags |= WPI_F_ATTACHED;
665 
666 	return (DDI_SUCCESS);
667 attach_fail9:
668 	ddi_remove_intr(dip, 0, sc->sc_iblk);
669 attach_fail8:
670 	ddi_remove_softintr(sc->sc_notif_softint_id);
671 	sc->sc_notif_softint_id = NULL;
672 attach_fail7:
673 	ieee80211_detach(ic);
674 	wpi_destroy_locks(sc);
675 attach_fail6:
676 	wpi_free_fw_dma(sc);
677 attach_fail5:
678 	wpi_ring_free(sc);
679 attach_fail4:
680 	wpi_free_shared(sc);
681 attach_fail3:
682 	ddi_regs_map_free(&sc->sc_handle);
683 attach_fail2:
684 	ddi_soft_state_free(wpi_soft_state_p, instance);
685 attach_fail1:
686 	return (err);
687 }
688 
689 int
690 wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
691 {
692 	wpi_sc_t	*sc;
693 	int err;
694 
695 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
696 	ASSERT(sc != NULL);
697 
698 	switch (cmd) {
699 	case DDI_DETACH:
700 		break;
701 	case DDI_SUSPEND:
702 		if (sc->sc_flags & WPI_F_RUNNING) {
703 			wpi_stop(sc);
704 		}
705 		mutex_enter(&sc->sc_glock);
706 		sc->sc_flags |= WPI_F_SUSPEND;
707 		mutex_exit(&sc->sc_glock);
708 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: suspend \n"));
709 		return (DDI_SUCCESS);
710 	default:
711 		return (DDI_FAILURE);
712 	}
713 	if (!(sc->sc_flags & WPI_F_ATTACHED))
714 		return (DDI_FAILURE);
715 
716 	err = mac_disable(sc->sc_ic.ic_mach);
717 	if (err != DDI_SUCCESS)
718 		return (err);
719 
720 	/*
721 	 * Destroy the mf_thread
722 	 */
723 	mutex_enter(&sc->sc_mt_lock);
724 	sc->sc_mf_thread_switch = 0;
725 	while (sc->sc_mf_thread != NULL) {
726 		if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0)
727 			break;
728 	}
729 	mutex_exit(&sc->sc_mt_lock);
730 
731 	wpi_stop(sc);
732 
733 	/*
734 	 * Unregiste from the MAC layer subsystem
735 	 */
736 	(void) mac_unregister(sc->sc_ic.ic_mach);
737 
738 	mutex_enter(&sc->sc_glock);
739 	wpi_free_fw_dma(sc);
740 	wpi_ring_free(sc);
741 	wpi_free_shared(sc);
742 	mutex_exit(&sc->sc_glock);
743 
744 	ddi_remove_intr(dip, 0, sc->sc_iblk);
745 	ddi_remove_softintr(sc->sc_notif_softint_id);
746 	sc->sc_notif_softint_id = NULL;
747 
748 	/*
749 	 * detach ieee80211
750 	 */
751 	ieee80211_detach(&sc->sc_ic);
752 
753 	wpi_destroy_locks(sc);
754 
755 	ddi_regs_map_free(&sc->sc_handle);
756 	ddi_remove_minor_node(dip, NULL);
757 	ddi_soft_state_free(wpi_soft_state_p, ddi_get_instance(dip));
758 
759 	return (DDI_SUCCESS);
760 }
761 
762 static void
763 wpi_destroy_locks(wpi_sc_t *sc)
764 {
765 	cv_destroy(&sc->sc_mt_cv);
766 	mutex_destroy(&sc->sc_mt_lock);
767 	cv_destroy(&sc->sc_cmd_cv);
768 	cv_destroy(&sc->sc_fw_cv);
769 	mutex_destroy(&sc->sc_tx_lock);
770 	mutex_destroy(&sc->sc_glock);
771 }
772 
773 /*
774  * Allocate an area of memory and a DMA handle for accessing it
775  */
776 static int
777 wpi_alloc_dma_mem(wpi_sc_t *sc, size_t memsize, ddi_dma_attr_t *dma_attr_p,
778 	ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, wpi_dma_t *dma_p)
779 {
780 	caddr_t vaddr;
781 	int err;
782 
783 	/*
784 	 * Allocate handle
785 	 */
786 	err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
787 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
788 	if (err != DDI_SUCCESS) {
789 		dma_p->dma_hdl = NULL;
790 		return (DDI_FAILURE);
791 	}
792 
793 	/*
794 	 * Allocate memory
795 	 */
796 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
797 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
798 	    DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
799 	if (err != DDI_SUCCESS) {
800 		ddi_dma_free_handle(&dma_p->dma_hdl);
801 		dma_p->dma_hdl = NULL;
802 		dma_p->acc_hdl = NULL;
803 		return (DDI_FAILURE);
804 	}
805 
806 	/*
807 	 * Bind the two together
808 	 */
809 	dma_p->mem_va = vaddr;
810 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
811 	    vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
812 	    &dma_p->cookie, &dma_p->ncookies);
813 	if (err != DDI_DMA_MAPPED) {
814 		ddi_dma_mem_free(&dma_p->acc_hdl);
815 		ddi_dma_free_handle(&dma_p->dma_hdl);
816 		dma_p->acc_hdl = NULL;
817 		dma_p->dma_hdl = NULL;
818 		return (DDI_FAILURE);
819 	}
820 
821 	dma_p->nslots = ~0U;
822 	dma_p->size = ~0U;
823 	dma_p->token = ~0U;
824 	dma_p->offset = 0;
825 	return (DDI_SUCCESS);
826 }
827 
828 /*
829  * Free one allocated area of DMAable memory
830  */
831 static void
832 wpi_free_dma_mem(wpi_dma_t *dma_p)
833 {
834 	if (dma_p->dma_hdl != NULL) {
835 		if (dma_p->ncookies) {
836 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
837 			dma_p->ncookies = 0;
838 		}
839 		ddi_dma_free_handle(&dma_p->dma_hdl);
840 		dma_p->dma_hdl = NULL;
841 	}
842 
843 	if (dma_p->acc_hdl != NULL) {
844 		ddi_dma_mem_free(&dma_p->acc_hdl);
845 		dma_p->acc_hdl = NULL;
846 	}
847 }
848 
849 /*
850  * Allocate an area of dma memory for firmware load.
851  * Idealy, this allocation should be a one time action, that is,
852  * the memory will be freed after the firmware is uploaded to the
853  * card. but since a recovery mechanism for the fatal firmware need
854  * reload the firmware, and re-allocate dma at run time may be failed,
855  * so we allocate it at attach and keep it in the whole lifecycle of
856  * the driver.
857  */
858 static int
859 wpi_alloc_fw_dma(wpi_sc_t *sc)
860 {
861 	int i, err = DDI_SUCCESS;
862 	wpi_dma_t *dma_p;
863 
864 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
865 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
866 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
867 	    &sc->sc_dma_fw_text);
868 	dma_p = &sc->sc_dma_fw_text;
869 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
870 	    dma_p->ncookies, dma_p->cookie.dmac_address,
871 	    dma_p->cookie.dmac_size));
872 	if (err != DDI_SUCCESS) {
873 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
874 		    "text dma memory");
875 		goto fail;
876 	}
877 	for (i = 0; i < dma_p->ncookies; i++) {
878 		sc->sc_fw_text_cookie[i] = dma_p->cookie;
879 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
880 	}
881 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
882 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
883 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
884 	    &sc->sc_dma_fw_data);
885 	dma_p = &sc->sc_dma_fw_data;
886 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
887 	    dma_p->ncookies, dma_p->cookie.dmac_address,
888 	    dma_p->cookie.dmac_size));
889 	if (err != DDI_SUCCESS) {
890 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
891 		    "data dma memory");
892 		goto fail;
893 	}
894 	for (i = 0; i < dma_p->ncookies; i++) {
895 		sc->sc_fw_data_cookie[i] = dma_p->cookie;
896 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
897 	}
898 fail:
899 	return (err);
900 }
901 
902 static void
903 wpi_free_fw_dma(wpi_sc_t *sc)
904 {
905 	wpi_free_dma_mem(&sc->sc_dma_fw_text);
906 	wpi_free_dma_mem(&sc->sc_dma_fw_data);
907 }
908 
909 /*
910  * Allocate a shared page between host and NIC.
911  */
912 static int
913 wpi_alloc_shared(wpi_sc_t *sc)
914 {
915 	int err = DDI_SUCCESS;
916 
917 	/* must be aligned on a 4K-page boundary */
918 	err = wpi_alloc_dma_mem(sc, sizeof (wpi_shared_t),
919 	    &sh_dma_attr, &wpi_dma_accattr,
920 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
921 	    &sc->sc_dma_sh);
922 	if (err != DDI_SUCCESS)
923 		goto fail;
924 	sc->sc_shared = (wpi_shared_t *)sc->sc_dma_sh.mem_va;
925 	return (err);
926 
927 fail:
928 	wpi_free_shared(sc);
929 	return (err);
930 }
931 
932 static void
933 wpi_free_shared(wpi_sc_t *sc)
934 {
935 	wpi_free_dma_mem(&sc->sc_dma_sh);
936 }
937 
938 static int
939 wpi_alloc_rx_ring(wpi_sc_t *sc)
940 {
941 	wpi_rx_ring_t *ring;
942 	wpi_rx_data_t *data;
943 	int i, err = DDI_SUCCESS;
944 
945 	ring = &sc->sc_rxq;
946 	ring->cur = 0;
947 
948 	err = wpi_alloc_dma_mem(sc, WPI_RX_RING_COUNT * sizeof (uint32_t),
949 	    &ring_desc_dma_attr, &wpi_dma_accattr,
950 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
951 	    &ring->dma_desc);
952 	if (err != DDI_SUCCESS) {
953 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring desc failed\n"));
954 		goto fail;
955 	}
956 	ring->desc = (uint32_t *)ring->dma_desc.mem_va;
957 
958 	/*
959 	 * Allocate Rx buffers.
960 	 */
961 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
962 		data = &ring->data[i];
963 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
964 		    &rx_buffer_dma_attr, &wpi_dma_accattr,
965 		    DDI_DMA_READ | DDI_DMA_STREAMING,
966 		    &data->dma_data);
967 		if (err != DDI_SUCCESS) {
968 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring buf[%d] "
969 			    "failed\n", i));
970 			goto fail;
971 		}
972 
973 		ring->desc[i] = LE_32(data->dma_data.cookie.dmac_address);
974 	}
975 
976 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
977 
978 	return (err);
979 
980 fail:
981 	wpi_free_rx_ring(sc);
982 	return (err);
983 }
984 
985 static void
986 wpi_reset_rx_ring(wpi_sc_t *sc)
987 {
988 	int ntries;
989 
990 	wpi_mem_lock(sc);
991 
992 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
993 	for (ntries = 0; ntries < 2000; ntries++) {
994 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
995 			break;
996 		DELAY(1000);
997 	}
998 	if (ntries == 2000)
999 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Rx ring\n"));
1000 
1001 	wpi_mem_unlock(sc);
1002 
1003 	sc->sc_rxq.cur = 0;
1004 }
1005 
1006 static void
1007 wpi_free_rx_ring(wpi_sc_t *sc)
1008 {
1009 	int i;
1010 
1011 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1012 		if (sc->sc_rxq.data[i].dma_data.dma_hdl)
1013 			WPI_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
1014 			    DDI_DMA_SYNC_FORCPU);
1015 		wpi_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
1016 	}
1017 
1018 	if (sc->sc_rxq.dma_desc.dma_hdl)
1019 		WPI_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
1020 	wpi_free_dma_mem(&sc->sc_rxq.dma_desc);
1021 }
1022 
1023 static int
1024 wpi_alloc_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring, int count, int qid)
1025 {
1026 	wpi_tx_data_t *data;
1027 	wpi_tx_desc_t *desc_h;
1028 	uint32_t paddr_desc_h;
1029 	wpi_tx_cmd_t *cmd_h;
1030 	uint32_t paddr_cmd_h;
1031 	int i, err = DDI_SUCCESS;
1032 
1033 	ring->qid = qid;
1034 	ring->count = count;
1035 	ring->queued = 0;
1036 	ring->cur = 0;
1037 
1038 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_desc_t),
1039 	    &ring_desc_dma_attr, &wpi_dma_accattr,
1040 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1041 	    &ring->dma_desc);
1042 	if (err != DDI_SUCCESS) {
1043 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring desc[%d] failed\n",
1044 		    qid));
1045 		goto fail;
1046 	}
1047 
1048 	/* update shared page with ring's base address */
1049 	sc->sc_shared->txbase[qid] = ring->dma_desc.cookie.dmac_address;
1050 
1051 	desc_h = (wpi_tx_desc_t *)ring->dma_desc.mem_va;
1052 	paddr_desc_h = ring->dma_desc.cookie.dmac_address;
1053 
1054 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_cmd_t),
1055 	    &tx_cmd_dma_attr, &wpi_dma_accattr,
1056 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1057 	    &ring->dma_cmd);
1058 	if (err != DDI_SUCCESS) {
1059 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring cmd[%d] failed\n",
1060 		    qid));
1061 		goto fail;
1062 	}
1063 
1064 	cmd_h = (wpi_tx_cmd_t *)ring->dma_cmd.mem_va;
1065 	paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
1066 
1067 	/*
1068 	 * Allocate Tx buffers.
1069 	 */
1070 	ring->data = kmem_zalloc(sizeof (wpi_tx_data_t) * count, KM_NOSLEEP);
1071 	if (ring->data == NULL) {
1072 		WPI_DBG((WPI_DEBUG_DMA, "could not allocate tx data slots\n"));
1073 		goto fail;
1074 	}
1075 
1076 	for (i = 0; i < count; i++) {
1077 		data = &ring->data[i];
1078 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1079 		    &tx_buffer_dma_attr, &wpi_dma_accattr,
1080 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1081 		    &data->dma_data);
1082 		if (err != DDI_SUCCESS) {
1083 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring buf[%d] "
1084 			    "failed\n", i));
1085 			goto fail;
1086 		}
1087 
1088 		data->desc = desc_h + i;
1089 		data->paddr_desc = paddr_desc_h +
1090 		    ((uintptr_t)data->desc - (uintptr_t)desc_h);
1091 		data->cmd = cmd_h + i;
1092 		data->paddr_cmd = paddr_cmd_h +
1093 		    ((uintptr_t)data->cmd - (uintptr_t)cmd_h);
1094 	}
1095 
1096 	return (err);
1097 
1098 fail:
1099 	wpi_free_tx_ring(sc, ring);
1100 	return (err);
1101 }
1102 
1103 static void
1104 wpi_reset_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1105 {
1106 	wpi_tx_data_t *data;
1107 	int i, ntries;
1108 
1109 	wpi_mem_lock(sc);
1110 
1111 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1112 	for (ntries = 0; ntries < 100; ntries++) {
1113 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1114 			break;
1115 		DELAY(10);
1116 	}
1117 #ifdef DEBUG
1118 	if (ntries == 100 && wpi_dbg_flags > 0) {
1119 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Tx ring %d\n",
1120 		    ring->qid));
1121 	}
1122 #endif
1123 	wpi_mem_unlock(sc);
1124 
1125 	if (!(sc->sc_flags & WPI_F_QUIESCED)) {
1126 		for (i = 0; i < ring->count; i++) {
1127 			data = &ring->data[i];
1128 			WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
1129 		}
1130 	}
1131 
1132 	ring->queued = 0;
1133 	ring->cur = 0;
1134 }
1135 
1136 /*ARGSUSED*/
1137 static void
1138 wpi_free_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1139 {
1140 	int i;
1141 
1142 	if (ring->dma_desc.dma_hdl != NULL)
1143 		WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1144 	wpi_free_dma_mem(&ring->dma_desc);
1145 
1146 	if (ring->dma_cmd.dma_hdl != NULL)
1147 		WPI_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
1148 	wpi_free_dma_mem(&ring->dma_cmd);
1149 
1150 	if (ring->data != NULL) {
1151 		for (i = 0; i < ring->count; i++) {
1152 			if (ring->data[i].dma_data.dma_hdl)
1153 				WPI_DMA_SYNC(ring->data[i].dma_data,
1154 				    DDI_DMA_SYNC_FORDEV);
1155 			wpi_free_dma_mem(&ring->data[i].dma_data);
1156 		}
1157 		kmem_free(ring->data, ring->count * sizeof (wpi_tx_data_t));
1158 		ring->data = NULL;
1159 	}
1160 }
1161 
1162 static int
1163 wpi_ring_init(wpi_sc_t *sc)
1164 {
1165 	int i, err = DDI_SUCCESS;
1166 
1167 	for (i = 0; i < 4; i++) {
1168 		err = wpi_alloc_tx_ring(sc, &sc->sc_txq[i], WPI_TX_RING_COUNT,
1169 		    i);
1170 		if (err != DDI_SUCCESS)
1171 			goto fail;
1172 	}
1173 	err = wpi_alloc_tx_ring(sc, &sc->sc_cmdq, WPI_CMD_RING_COUNT, 4);
1174 	if (err != DDI_SUCCESS)
1175 		goto fail;
1176 	err = wpi_alloc_tx_ring(sc, &sc->sc_svcq, WPI_SVC_RING_COUNT, 5);
1177 	if (err != DDI_SUCCESS)
1178 		goto fail;
1179 	err = wpi_alloc_rx_ring(sc);
1180 	if (err != DDI_SUCCESS)
1181 		goto fail;
1182 	return (err);
1183 
1184 fail:
1185 	return (err);
1186 }
1187 
1188 static void
1189 wpi_ring_free(wpi_sc_t *sc)
1190 {
1191 	int i = 4;
1192 
1193 	wpi_free_rx_ring(sc);
1194 	wpi_free_tx_ring(sc, &sc->sc_svcq);
1195 	wpi_free_tx_ring(sc, &sc->sc_cmdq);
1196 	while (--i >= 0) {
1197 		wpi_free_tx_ring(sc, &sc->sc_txq[i]);
1198 	}
1199 }
1200 
1201 /* ARGSUSED */
1202 static ieee80211_node_t *
1203 wpi_node_alloc(ieee80211com_t *ic)
1204 {
1205 	wpi_amrr_t *amrr;
1206 
1207 	amrr = kmem_zalloc(sizeof (wpi_amrr_t), KM_SLEEP);
1208 	if (amrr != NULL)
1209 		wpi_amrr_init(amrr);
1210 	return (&amrr->in);
1211 }
1212 
1213 static void
1214 wpi_node_free(ieee80211_node_t *in)
1215 {
1216 	ieee80211com_t *ic = in->in_ic;
1217 
1218 	ic->ic_node_cleanup(in);
1219 	if (in->in_wpa_ie != NULL)
1220 		ieee80211_free(in->in_wpa_ie);
1221 	kmem_free(in, sizeof (wpi_amrr_t));
1222 }
1223 
1224 /*ARGSUSED*/
1225 static int
1226 wpi_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1227 {
1228 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1229 	ieee80211_node_t *in = ic->ic_bss;
1230 	enum ieee80211_state ostate;
1231 	int i, err = WPI_SUCCESS;
1232 
1233 	mutex_enter(&sc->sc_glock);
1234 	ostate = ic->ic_state;
1235 	switch (nstate) {
1236 	case IEEE80211_S_SCAN:
1237 		switch (ostate) {
1238 		case IEEE80211_S_INIT:
1239 		{
1240 			wpi_node_t node;
1241 
1242 			sc->sc_flags |= WPI_F_SCANNING;
1243 			sc->sc_scan_next = 0;
1244 
1245 			/* make the link LED blink while we're scanning */
1246 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1247 
1248 			/*
1249 			 * clear association to receive beacons from all
1250 			 * BSS'es
1251 			 */
1252 			sc->sc_config.state = 0;
1253 			sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1254 
1255 			WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x "
1256 			    "filter %x\n",
1257 			    sc->sc_config.chan, sc->sc_config.flags,
1258 			    sc->sc_config.filter));
1259 
1260 			err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1261 			    sizeof (wpi_config_t), 1);
1262 			if (err != WPI_SUCCESS) {
1263 				cmn_err(CE_WARN,
1264 				    "could not clear association\n");
1265 				sc->sc_flags &= ~WPI_F_SCANNING;
1266 				mutex_exit(&sc->sc_glock);
1267 				return (err);
1268 			}
1269 
1270 			/* add broadcast node to send probe request */
1271 			(void) memset(&node, 0, sizeof (node));
1272 			(void) memset(&node.bssid, 0xff, IEEE80211_ADDR_LEN);
1273 			node.id = WPI_ID_BROADCAST;
1274 
1275 			err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node,
1276 			    sizeof (node), 1);
1277 			if (err != WPI_SUCCESS) {
1278 				cmn_err(CE_WARN,
1279 				    "could not add broadcast node\n");
1280 				sc->sc_flags &= ~WPI_F_SCANNING;
1281 				mutex_exit(&sc->sc_glock);
1282 				return (err);
1283 			}
1284 			break;
1285 		}
1286 		case IEEE80211_S_SCAN:
1287 			mutex_exit(&sc->sc_glock);
1288 			/* step to next channel before actual FW scan */
1289 			err = sc->sc_newstate(ic, nstate, arg);
1290 			mutex_enter(&sc->sc_glock);
1291 			if ((err != 0) || ((err = wpi_scan(sc)) != 0)) {
1292 				cmn_err(CE_WARN,
1293 				    "could not initiate scan\n");
1294 				sc->sc_flags &= ~WPI_F_SCANNING;
1295 				ieee80211_cancel_scan(ic);
1296 			}
1297 			mutex_exit(&sc->sc_glock);
1298 			return (err);
1299 		default:
1300 			break;
1301 		}
1302 		sc->sc_clk = 0;
1303 		break;
1304 
1305 	case IEEE80211_S_AUTH:
1306 		if (ostate == IEEE80211_S_SCAN) {
1307 			sc->sc_flags &= ~WPI_F_SCANNING;
1308 		}
1309 
1310 		/* reset state to handle reassociations correctly */
1311 		sc->sc_config.state = 0;
1312 		sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1313 
1314 		if ((err = wpi_auth(sc)) != 0) {
1315 			WPI_DBG((WPI_DEBUG_80211,
1316 			    "could not send authentication request\n"));
1317 			mutex_exit(&sc->sc_glock);
1318 			return (err);
1319 		}
1320 		break;
1321 
1322 	case IEEE80211_S_RUN:
1323 		if (ostate == IEEE80211_S_SCAN) {
1324 			sc->sc_flags &= ~WPI_F_SCANNING;
1325 		}
1326 
1327 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1328 			/* link LED blinks while monitoring */
1329 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1330 			break;
1331 		}
1332 
1333 		if (ic->ic_opmode != IEEE80211_M_STA) {
1334 			(void) wpi_auth(sc);
1335 			/* need setup beacon here */
1336 		}
1337 		WPI_DBG((WPI_DEBUG_80211, "wpi: associated."));
1338 
1339 		/* update adapter's configuration */
1340 		sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
1341 		/* short preamble/slot time are negotiated when associating */
1342 		sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
1343 		    WPI_CONFIG_SHSLOT);
1344 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1345 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
1346 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1347 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
1348 		sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
1349 		if (ic->ic_opmode != IEEE80211_M_STA)
1350 			sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
1351 
1352 		WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
1353 		    sc->sc_config.chan, sc->sc_config.flags));
1354 		err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1355 		    sizeof (wpi_config_t), 1);
1356 		if (err != WPI_SUCCESS) {
1357 			WPI_DBG((WPI_DEBUG_80211,
1358 			    "could not update configuration\n"));
1359 			mutex_exit(&sc->sc_glock);
1360 			return (err);
1361 		}
1362 
1363 		/* start automatic rate control */
1364 		mutex_enter(&sc->sc_mt_lock);
1365 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1366 			sc->sc_flags |= WPI_F_RATE_AUTO_CTL;
1367 			/* set rate to some reasonable initial value */
1368 			i = in->in_rates.ir_nrates - 1;
1369 			while (i > 0 && IEEE80211_RATE(i) > 72)
1370 				i--;
1371 			in->in_txrate = i;
1372 		} else {
1373 			sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
1374 		}
1375 		mutex_exit(&sc->sc_mt_lock);
1376 
1377 		/* link LED always on while associated */
1378 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1379 		break;
1380 
1381 	case IEEE80211_S_INIT:
1382 		sc->sc_flags &= ~WPI_F_SCANNING;
1383 		break;
1384 
1385 	case IEEE80211_S_ASSOC:
1386 		sc->sc_flags &= ~WPI_F_SCANNING;
1387 		break;
1388 	}
1389 
1390 	mutex_exit(&sc->sc_glock);
1391 	return (sc->sc_newstate(ic, nstate, arg));
1392 }
1393 
1394 /*ARGSUSED*/
1395 static int wpi_key_set(ieee80211com_t *ic, const struct ieee80211_key *k,
1396     const uint8_t mac[IEEE80211_ADDR_LEN])
1397 {
1398 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1399 	wpi_node_t node;
1400 	int err;
1401 
1402 	switch (k->wk_cipher->ic_cipher) {
1403 	case IEEE80211_CIPHER_WEP:
1404 	case IEEE80211_CIPHER_TKIP:
1405 		return (1); /* sofeware do it. */
1406 	case IEEE80211_CIPHER_AES_CCM:
1407 		break;
1408 	default:
1409 		return (0);
1410 	}
1411 	sc->sc_config.filter &= ~(WPI_FILTER_NODECRYPTUNI |
1412 	    WPI_FILTER_NODECRYPTMUL);
1413 
1414 	mutex_enter(&sc->sc_glock);
1415 
1416 	/* update ap/multicast node */
1417 	(void) memset(&node, 0, sizeof (node));
1418 	if (IEEE80211_IS_MULTICAST(mac)) {
1419 		(void) memset(node.bssid, 0xff, 6);
1420 		node.id = WPI_ID_BROADCAST;
1421 	} else {
1422 		IEEE80211_ADDR_COPY(node.bssid, ic->ic_bss->in_bssid);
1423 		node.id = WPI_ID_BSS;
1424 	}
1425 	if (k->wk_flags & IEEE80211_KEY_XMIT) {
1426 		node.key_flags = 0;
1427 		node.keyp = k->wk_keyix;
1428 	} else {
1429 		node.key_flags = (1 << 14);
1430 		node.keyp = k->wk_keyix + 4;
1431 	}
1432 	(void) memcpy(node.key, k->wk_key, k->wk_keylen);
1433 	node.key_flags |= (2 | (1 << 3) | (k->wk_keyix << 8));
1434 	node.sta_mask = 1;
1435 	node.control = 1;
1436 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
1437 	if (err != WPI_SUCCESS) {
1438 		cmn_err(CE_WARN, "wpi_key_set():"
1439 		    "failed to update ap node\n");
1440 		mutex_exit(&sc->sc_glock);
1441 		return (0);
1442 	}
1443 	mutex_exit(&sc->sc_glock);
1444 	return (1);
1445 }
1446 
1447 /*
1448  * Grab exclusive access to NIC memory.
1449  */
1450 static void
1451 wpi_mem_lock(wpi_sc_t *sc)
1452 {
1453 	uint32_t tmp;
1454 	int ntries;
1455 
1456 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1457 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1458 
1459 	/* spin until we actually get the lock */
1460 	for (ntries = 0; ntries < 1000; ntries++) {
1461 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1462 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1463 			break;
1464 		DELAY(10);
1465 	}
1466 	if (ntries == 1000)
1467 		WPI_DBG((WPI_DEBUG_PIO, "could not lock memory\n"));
1468 }
1469 
1470 /*
1471  * Release lock on NIC memory.
1472  */
1473 static void
1474 wpi_mem_unlock(wpi_sc_t *sc)
1475 {
1476 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1477 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1478 }
1479 
1480 static uint32_t
1481 wpi_mem_read(wpi_sc_t *sc, uint16_t addr)
1482 {
1483 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1484 	return (WPI_READ(sc, WPI_READ_MEM_DATA));
1485 }
1486 
1487 static void
1488 wpi_mem_write(wpi_sc_t *sc, uint16_t addr, uint32_t data)
1489 {
1490 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1491 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1492 }
1493 
1494 static void
1495 wpi_mem_write_region_4(wpi_sc_t *sc, uint16_t addr,
1496     const uint32_t *data, int wlen)
1497 {
1498 	for (; wlen > 0; wlen--, data++, addr += 4)
1499 		wpi_mem_write(sc, addr, *data);
1500 }
1501 
1502 /*
1503  * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
1504  * using the traditional bit-bang method.
1505  */
1506 static uint16_t
1507 wpi_read_prom_word(wpi_sc_t *sc, uint32_t addr)
1508 {
1509 	uint32_t val;
1510 	int ntries;
1511 
1512 	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1513 
1514 	wpi_mem_lock(sc);
1515 	for (ntries = 0; ntries < 10; ntries++) {
1516 		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1517 			break;
1518 		DELAY(10);
1519 	}
1520 	wpi_mem_unlock(sc);
1521 
1522 	if (ntries == 10) {
1523 		WPI_DBG((WPI_DEBUG_PIO, "could not read EEPROM\n"));
1524 		return (0xdead);
1525 	}
1526 	return (val >> 16);
1527 }
1528 
1529 /*
1530  * The firmware boot code is small and is intended to be copied directly into
1531  * the NIC internal memory.
1532  */
1533 static int
1534 wpi_load_microcode(wpi_sc_t *sc)
1535 {
1536 	const char *ucode;
1537 	int size;
1538 
1539 	ucode = sc->sc_boot;
1540 	size = LE_32(sc->sc_hdr->bootsz);
1541 	/* check that microcode size is a multiple of 4 */
1542 	if (size & 3)
1543 		return (EINVAL);
1544 
1545 	size /= sizeof (uint32_t);
1546 
1547 	wpi_mem_lock(sc);
1548 
1549 	/* copy microcode image into NIC memory */
1550 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
1551 	    size);
1552 
1553 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1554 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1555 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1556 
1557 	/* run microcode */
1558 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1559 
1560 	wpi_mem_unlock(sc);
1561 
1562 	return (WPI_SUCCESS);
1563 }
1564 
1565 /*
1566  * The firmware text and data segments are transferred to the NIC using DMA.
1567  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1568  * where to find it.  Once the NIC has copied the firmware into its internal
1569  * memory, we can free our local copy in the driver.
1570  */
1571 static int
1572 wpi_load_firmware(wpi_sc_t *sc, uint32_t target)
1573 {
1574 	const char *fw;
1575 	int size;
1576 	wpi_dma_t *dma_p;
1577 	ddi_dma_cookie_t *cookie;
1578 	wpi_tx_desc_t desc;
1579 	int i, ntries, err = WPI_SUCCESS;
1580 
1581 	/* only text and data here */
1582 	if (target == WPI_FW_TEXT) {
1583 		fw = sc->sc_text;
1584 		size = LE_32(sc->sc_hdr->textsz);
1585 		dma_p = &sc->sc_dma_fw_text;
1586 		cookie = sc->sc_fw_text_cookie;
1587 	} else {
1588 		fw = sc->sc_data;
1589 		size = LE_32(sc->sc_hdr->datasz);
1590 		dma_p = &sc->sc_dma_fw_data;
1591 		cookie = sc->sc_fw_data_cookie;
1592 	}
1593 
1594 	/* copy firmware image to DMA-safe memory */
1595 	(void) memcpy(dma_p->mem_va, fw, size);
1596 
1597 	/* make sure the adapter will get up-to-date values */
1598 	(void) ddi_dma_sync(dma_p->dma_hdl, 0, size, DDI_DMA_SYNC_FORDEV);
1599 
1600 	(void) memset(&desc, 0, sizeof (desc));
1601 	desc.flags = LE_32(WPI_PAD32(size) << 28 | dma_p->ncookies << 24);
1602 	for (i = 0; i < dma_p->ncookies; i++) {
1603 		WPI_DBG((WPI_DEBUG_DMA, "cookie%d addr:%x size:%x\n",
1604 		    i, cookie[i].dmac_address, cookie[i].dmac_size));
1605 		desc.segs[i].addr = cookie[i].dmac_address;
1606 		desc.segs[i].len = (uint32_t)cookie[i].dmac_size;
1607 	}
1608 
1609 	wpi_mem_lock(sc);
1610 
1611 	/* tell adapter where to copy image in its internal memory */
1612 	WPI_WRITE(sc, WPI_FW_TARGET, target);
1613 
1614 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1615 
1616 	/* copy firmware descriptor into NIC memory */
1617 	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1618 	    sizeof desc / sizeof (uint32_t));
1619 
1620 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1621 	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1622 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1623 
1624 	/* wait while the adapter is busy copying the firmware */
1625 	for (ntries = 0; ntries < 100; ntries++) {
1626 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1627 			break;
1628 		DELAY(1000);
1629 	}
1630 	if (ntries == 100) {
1631 		WPI_DBG((WPI_DEBUG_FW, "timeout transferring firmware\n"));
1632 		err = ETIMEDOUT;
1633 	}
1634 
1635 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1636 
1637 	wpi_mem_unlock(sc);
1638 
1639 	return (err);
1640 }
1641 
1642 /*ARGSUSED*/
1643 static void
1644 wpi_rx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1645 {
1646 	ieee80211com_t *ic = &sc->sc_ic;
1647 	wpi_rx_ring_t *ring = &sc->sc_rxq;
1648 	wpi_rx_stat_t *stat;
1649 	wpi_rx_head_t *head;
1650 	wpi_rx_tail_t *tail;
1651 	ieee80211_node_t *in;
1652 	struct ieee80211_frame *wh;
1653 	mblk_t *mp;
1654 	uint16_t len;
1655 
1656 	stat = (wpi_rx_stat_t *)(desc + 1);
1657 
1658 	if (stat->len > WPI_STAT_MAXLEN) {
1659 		WPI_DBG((WPI_DEBUG_RX, "invalid rx statistic header\n"));
1660 		return;
1661 	}
1662 
1663 	head = (wpi_rx_head_t *)((caddr_t)(stat + 1) + stat->len);
1664 	tail = (wpi_rx_tail_t *)((caddr_t)(head + 1) + LE_16(head->len));
1665 
1666 	len = LE_16(head->len);
1667 
1668 	WPI_DBG((WPI_DEBUG_RX, "rx intr: idx=%d len=%d stat len=%d rssi=%d "
1669 	    "rate=%x chan=%d tstamp=%llu", ring->cur, LE_32(desc->len),
1670 	    len, (int8_t)stat->rssi, head->rate, head->chan,
1671 	    LE_64(tail->tstamp)));
1672 
1673 	if ((len < 20) || (len > sc->sc_dmabuf_sz)) {
1674 		sc->sc_rx_err++;
1675 		return;
1676 	}
1677 
1678 	/*
1679 	 * Discard Rx frames with bad CRC early
1680 	 */
1681 	if ((LE_32(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1682 		WPI_DBG((WPI_DEBUG_RX, "rx tail flags error %x\n",
1683 		    LE_32(tail->flags)));
1684 		sc->sc_rx_err++;
1685 		return;
1686 	}
1687 
1688 	/* update Rx descriptor */
1689 	/* ring->desc[ring->cur] = LE_32(data->dma_data.cookie.dmac_address); */
1690 
1691 #ifdef WPI_BPF
1692 #ifndef WPI_CURRENT
1693 	if (sc->sc_drvbpf != NULL) {
1694 #else
1695 	if (bpf_peers_present(sc->sc_drvbpf)) {
1696 #endif
1697 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1698 
1699 		tap->wr_flags = 0;
1700 		tap->wr_rate = head->rate;
1701 		tap->wr_chan_freq =
1702 		    LE_16(ic->ic_channels[head->chan].ic_freq);
1703 		tap->wr_chan_flags =
1704 		    LE_16(ic->ic_channels[head->chan].ic_flags);
1705 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1706 		tap->wr_dbm_antnoise = (int8_t)LE_16(stat->noise);
1707 		tap->wr_tsft = tail->tstamp;
1708 		tap->wr_antenna = (LE_16(head->flags) >> 4) & 0xf;
1709 		switch (head->rate) {
1710 		/* CCK rates */
1711 		case  10: tap->wr_rate =   2; break;
1712 		case  20: tap->wr_rate =   4; break;
1713 		case  55: tap->wr_rate =  11; break;
1714 		case 110: tap->wr_rate =  22; break;
1715 		/* OFDM rates */
1716 		case 0xd: tap->wr_rate =  12; break;
1717 		case 0xf: tap->wr_rate =  18; break;
1718 		case 0x5: tap->wr_rate =  24; break;
1719 		case 0x7: tap->wr_rate =  36; break;
1720 		case 0x9: tap->wr_rate =  48; break;
1721 		case 0xb: tap->wr_rate =  72; break;
1722 		case 0x1: tap->wr_rate =  96; break;
1723 		case 0x3: tap->wr_rate = 108; break;
1724 		/* unknown rate: should not happen */
1725 		default:  tap->wr_rate =   0;
1726 		}
1727 		if (LE_16(head->flags) & 0x4)
1728 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1729 
1730 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1731 	}
1732 #endif
1733 	/* grab a reference to the source node */
1734 	wh = (struct ieee80211_frame *)(head + 1);
1735 
1736 #ifdef DEBUG
1737 	if (wpi_dbg_flags & WPI_DEBUG_RX)
1738 		ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
1739 #endif
1740 
1741 	in = ieee80211_find_rxnode(ic, wh);
1742 	mp = allocb(len, BPRI_MED);
1743 	if (mp) {
1744 		(void) memcpy(mp->b_wptr, wh, len);
1745 		mp->b_wptr += len;
1746 
1747 		/* send the frame to the 802.11 layer */
1748 		(void) ieee80211_input(ic, mp, in, stat->rssi, 0);
1749 	} else {
1750 		sc->sc_rx_nobuf++;
1751 		WPI_DBG((WPI_DEBUG_RX,
1752 		    "wpi_rx_intr(): alloc rx buf failed\n"));
1753 	}
1754 	/* release node reference */
1755 	ieee80211_free_node(in);
1756 }
1757 
1758 /*ARGSUSED*/
1759 static void
1760 wpi_tx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1761 {
1762 	ieee80211com_t *ic = &sc->sc_ic;
1763 	wpi_tx_ring_t *ring = &sc->sc_txq[desc->qid & 0x3];
1764 	/* wpi_tx_data_t *txdata = &ring->data[desc->idx]; */
1765 	wpi_tx_stat_t *stat = (wpi_tx_stat_t *)(desc + 1);
1766 	wpi_amrr_t *amrr = (wpi_amrr_t *)ic->ic_bss;
1767 
1768 	WPI_DBG((WPI_DEBUG_TX, "tx done: qid=%d idx=%d retries=%d nkill=%d "
1769 	    "rate=%x duration=%d status=%x\n",
1770 	    desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate,
1771 	    LE_32(stat->duration), LE_32(stat->status)));
1772 
1773 	amrr->txcnt++;
1774 	WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
1775 	if (stat->ntries > 0) {
1776 		amrr->retrycnt++;
1777 		sc->sc_tx_retries++;
1778 		WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d retries\n",
1779 		    amrr->retrycnt));
1780 	}
1781 
1782 	sc->sc_tx_timer = 0;
1783 
1784 	mutex_enter(&sc->sc_tx_lock);
1785 	ring->queued--;
1786 	if (ring->queued < 0)
1787 		ring->queued = 0;
1788 	if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
1789 		sc->sc_need_reschedule = 0;
1790 		mutex_exit(&sc->sc_tx_lock);
1791 		mac_tx_update(ic->ic_mach);
1792 		mutex_enter(&sc->sc_tx_lock);
1793 	}
1794 	mutex_exit(&sc->sc_tx_lock);
1795 }
1796 
1797 static void
1798 wpi_cmd_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc)
1799 {
1800 	if ((desc->qid & 7) != 4) {
1801 		return;	/* not a command ack */
1802 	}
1803 	mutex_enter(&sc->sc_glock);
1804 	sc->sc_flags |= WPI_F_CMD_DONE;
1805 	cv_signal(&sc->sc_cmd_cv);
1806 	mutex_exit(&sc->sc_glock);
1807 }
1808 
1809 static uint_t
1810 wpi_notif_softintr(caddr_t arg)
1811 {
1812 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1813 	wpi_rx_desc_t *desc;
1814 	wpi_rx_data_t *data;
1815 	uint32_t hw;
1816 
1817 	mutex_enter(&sc->sc_glock);
1818 	if (sc->sc_notif_softint_pending != 1) {
1819 		mutex_exit(&sc->sc_glock);
1820 		return (DDI_INTR_UNCLAIMED);
1821 	}
1822 	mutex_exit(&sc->sc_glock);
1823 
1824 	hw = LE_32(sc->sc_shared->next);
1825 
1826 	while (sc->sc_rxq.cur != hw) {
1827 		data = &sc->sc_rxq.data[sc->sc_rxq.cur];
1828 		desc = (wpi_rx_desc_t *)data->dma_data.mem_va;
1829 
1830 		WPI_DBG((WPI_DEBUG_INTR, "rx notification hw = %d cur = %d "
1831 		    "qid=%x idx=%d flags=%x type=%d len=%d\n",
1832 		    hw, sc->sc_rxq.cur, desc->qid, desc->idx, desc->flags,
1833 		    desc->type, LE_32(desc->len)));
1834 
1835 		if (!(desc->qid & 0x80))	/* reply to a command */
1836 			wpi_cmd_intr(sc, desc);
1837 
1838 		switch (desc->type) {
1839 		case WPI_RX_DONE:
1840 			/* a 802.11 frame was received */
1841 			wpi_rx_intr(sc, desc, data);
1842 			break;
1843 
1844 		case WPI_TX_DONE:
1845 			/* a 802.11 frame has been transmitted */
1846 			wpi_tx_intr(sc, desc, data);
1847 			break;
1848 
1849 		case WPI_UC_READY:
1850 		{
1851 			wpi_ucode_info_t *uc =
1852 			    (wpi_ucode_info_t *)(desc + 1);
1853 
1854 			/* the microcontroller is ready */
1855 			WPI_DBG((WPI_DEBUG_FW,
1856 			    "microcode alive notification version %x "
1857 			    "alive %x\n", LE_32(uc->version),
1858 			    LE_32(uc->valid)));
1859 
1860 			if (LE_32(uc->valid) != 1) {
1861 				WPI_DBG((WPI_DEBUG_FW,
1862 				    "microcontroller initialization failed\n"));
1863 			}
1864 			break;
1865 		}
1866 		case WPI_STATE_CHANGED:
1867 		{
1868 			uint32_t *status = (uint32_t *)(desc + 1);
1869 
1870 			/* enabled/disabled notification */
1871 			WPI_DBG((WPI_DEBUG_RADIO, "state changed to %x\n",
1872 			    LE_32(*status)));
1873 
1874 			if (LE_32(*status) & 1) {
1875 				/*
1876 				 * the radio button has to be pushed(OFF). It
1877 				 * is considered as a hw error, the
1878 				 * wpi_thread() tries to recover it after the
1879 				 * button is pushed again(ON)
1880 				 */
1881 				cmn_err(CE_NOTE,
1882 				    "wpi: Radio transmitter is off\n");
1883 				sc->sc_ostate = sc->sc_ic.ic_state;
1884 				ieee80211_new_state(&sc->sc_ic,
1885 				    IEEE80211_S_INIT, -1);
1886 				sc->sc_flags |=
1887 				    (WPI_F_HW_ERR_RECOVER | WPI_F_RADIO_OFF);
1888 			}
1889 			break;
1890 		}
1891 		case WPI_START_SCAN:
1892 		{
1893 			wpi_start_scan_t *scan =
1894 			    (wpi_start_scan_t *)(desc + 1);
1895 
1896 			WPI_DBG((WPI_DEBUG_SCAN,
1897 			    "scanning channel %d status %x\n",
1898 			    scan->chan, LE_32(scan->status)));
1899 
1900 			break;
1901 		}
1902 		case WPI_STOP_SCAN:
1903 		{
1904 			wpi_stop_scan_t *scan =
1905 			    (wpi_stop_scan_t *)(desc + 1);
1906 
1907 			WPI_DBG((WPI_DEBUG_SCAN,
1908 			    "completed channel %d (burst of %d) status %02x\n",
1909 			    scan->chan, scan->nchan, scan->status));
1910 
1911 			sc->sc_scan_pending = 0;
1912 			sc->sc_scan_next++;
1913 			break;
1914 		}
1915 		default:
1916 			break;
1917 		}
1918 
1919 		sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % WPI_RX_RING_COUNT;
1920 	}
1921 
1922 	/* tell the firmware what we have processed */
1923 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1924 	WPI_WRITE(sc, WPI_RX_WIDX, hw & (~7));
1925 	mutex_enter(&sc->sc_glock);
1926 	sc->sc_notif_softint_pending = 0;
1927 	mutex_exit(&sc->sc_glock);
1928 
1929 	return (DDI_INTR_CLAIMED);
1930 }
1931 
1932 static uint_t
1933 wpi_intr(caddr_t arg)
1934 {
1935 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1936 	uint32_t r, rfh;
1937 
1938 	mutex_enter(&sc->sc_glock);
1939 	if (sc->sc_flags & WPI_F_SUSPEND) {
1940 		mutex_exit(&sc->sc_glock);
1941 		return (DDI_INTR_UNCLAIMED);
1942 	}
1943 
1944 	r = WPI_READ(sc, WPI_INTR);
1945 	if (r == 0 || r == 0xffffffff) {
1946 		mutex_exit(&sc->sc_glock);
1947 		return (DDI_INTR_UNCLAIMED);
1948 	}
1949 
1950 	WPI_DBG((WPI_DEBUG_INTR, "interrupt reg %x\n", r));
1951 
1952 	rfh = WPI_READ(sc, WPI_INTR_STATUS);
1953 	/* disable interrupts */
1954 	WPI_WRITE(sc, WPI_MASK, 0);
1955 	/* ack interrupts */
1956 	WPI_WRITE(sc, WPI_INTR, r);
1957 	WPI_WRITE(sc, WPI_INTR_STATUS, rfh);
1958 
1959 	if (sc->sc_notif_softint_id == NULL) {
1960 		mutex_exit(&sc->sc_glock);
1961 		return (DDI_INTR_CLAIMED);
1962 	}
1963 
1964 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1965 		WPI_DBG((WPI_DEBUG_FW, "fatal firmware error\n"));
1966 		mutex_exit(&sc->sc_glock);
1967 		wpi_stop(sc);
1968 		if (!(sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
1969 			sc->sc_ostate = sc->sc_ic.ic_state;
1970 		}
1971 		ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1972 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
1973 		return (DDI_INTR_CLAIMED);
1974 	}
1975 
1976 	if ((r & (WPI_RX_INTR | WPI_RX_SWINT)) ||
1977 	    (rfh & 0x40070000)) {
1978 		sc->sc_notif_softint_pending = 1;
1979 		ddi_trigger_softintr(sc->sc_notif_softint_id);
1980 	}
1981 
1982 	if (r & WPI_ALIVE_INTR)	{ /* firmware initialized */
1983 		sc->sc_flags |= WPI_F_FW_INIT;
1984 		cv_signal(&sc->sc_fw_cv);
1985 	}
1986 
1987 	/* re-enable interrupts */
1988 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1989 	mutex_exit(&sc->sc_glock);
1990 
1991 	return (DDI_INTR_CLAIMED);
1992 }
1993 
1994 static uint8_t
1995 wpi_plcp_signal(int rate)
1996 {
1997 	switch (rate) {
1998 	/* CCK rates (returned values are device-dependent) */
1999 	case 2:		return (10);
2000 	case 4:		return (20);
2001 	case 11:	return (55);
2002 	case 22:	return (110);
2003 
2004 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2005 	/* R1-R4 (ral/ural is R4-R1) */
2006 	case 12:	return (0xd);
2007 	case 18:	return (0xf);
2008 	case 24:	return (0x5);
2009 	case 36:	return (0x7);
2010 	case 48:	return (0x9);
2011 	case 72:	return (0xb);
2012 	case 96:	return (0x1);
2013 	case 108:	return (0x3);
2014 
2015 	/* unsupported rates (should not get there) */
2016 	default:	return (0);
2017 	}
2018 }
2019 
2020 static mblk_t *
2021 wpi_m_tx(void *arg, mblk_t *mp)
2022 {
2023 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2024 	ieee80211com_t	*ic = &sc->sc_ic;
2025 	mblk_t			*next;
2026 
2027 	if (sc->sc_flags & WPI_F_SUSPEND) {
2028 		freemsgchain(mp);
2029 		return (NULL);
2030 	}
2031 
2032 	if (ic->ic_state != IEEE80211_S_RUN) {
2033 		freemsgchain(mp);
2034 		return (NULL);
2035 	}
2036 
2037 	while (mp != NULL) {
2038 		next = mp->b_next;
2039 		mp->b_next = NULL;
2040 		if (wpi_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
2041 			mp->b_next = next;
2042 			break;
2043 		}
2044 		mp = next;
2045 	}
2046 	return (mp);
2047 }
2048 
2049 /* ARGSUSED */
2050 static int
2051 wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2052 {
2053 	wpi_sc_t *sc = (wpi_sc_t *)ic;
2054 	wpi_tx_ring_t *ring;
2055 	wpi_tx_desc_t *desc;
2056 	wpi_tx_data_t *data;
2057 	wpi_tx_cmd_t *cmd;
2058 	wpi_cmd_data_t *tx;
2059 	ieee80211_node_t *in;
2060 	struct ieee80211_frame *wh;
2061 	struct ieee80211_key *k;
2062 	mblk_t *m, *m0;
2063 	int rate, hdrlen, len, mblen, off, err = WPI_SUCCESS;
2064 
2065 	ring = ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) ?
2066 	    (&sc->sc_txq[0]) : (&sc->sc_txq[1]);
2067 	data = &ring->data[ring->cur];
2068 	desc = data->desc;
2069 	cmd = data->cmd;
2070 	bzero(desc, sizeof (*desc));
2071 	bzero(cmd, sizeof (*cmd));
2072 
2073 	mutex_enter(&sc->sc_tx_lock);
2074 	if (sc->sc_flags & WPI_F_SUSPEND) {
2075 		mutex_exit(&sc->sc_tx_lock);
2076 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2077 		    IEEE80211_FC0_TYPE_DATA) {
2078 			freemsg(mp);
2079 		}
2080 		err = ENXIO;
2081 		goto exit;
2082 	}
2083 
2084 	if (ring->queued > ring->count - 64) {
2085 		WPI_DBG((WPI_DEBUG_TX, "wpi_send(): no txbuf\n"));
2086 		sc->sc_need_reschedule = 1;
2087 		mutex_exit(&sc->sc_tx_lock);
2088 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2089 		    IEEE80211_FC0_TYPE_DATA) {
2090 			freemsg(mp);
2091 		}
2092 		sc->sc_tx_nobuf++;
2093 		err = ENOMEM;
2094 		goto exit;
2095 	}
2096 	mutex_exit(&sc->sc_tx_lock);
2097 
2098 	hdrlen = sizeof (struct ieee80211_frame);
2099 
2100 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
2101 	if (m == NULL) { /* can not alloc buf, drop this package */
2102 		cmn_err(CE_WARN,
2103 		    "wpi_send(): failed to allocate msgbuf\n");
2104 		freemsg(mp);
2105 		err = WPI_SUCCESS;
2106 		goto exit;
2107 	}
2108 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
2109 		mblen = MBLKL(m0);
2110 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
2111 		off += mblen;
2112 	}
2113 	m->b_wptr += off;
2114 	freemsg(mp);
2115 
2116 	wh = (struct ieee80211_frame *)m->b_rptr;
2117 
2118 	in = ieee80211_find_txnode(ic, wh->i_addr1);
2119 	if (in == NULL) {
2120 		cmn_err(CE_WARN, "wpi_send(): failed to find tx node\n");
2121 		freemsg(m);
2122 		sc->sc_tx_err++;
2123 		err = WPI_SUCCESS;
2124 		goto exit;
2125 	}
2126 
2127 	(void) ieee80211_encap(ic, m, in);
2128 
2129 	cmd->code = WPI_CMD_TX_DATA;
2130 	cmd->flags = 0;
2131 	cmd->qid = ring->qid;
2132 	cmd->idx = ring->cur;
2133 
2134 	tx = (wpi_cmd_data_t *)cmd->data;
2135 	tx->flags = 0;
2136 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2137 		tx->flags |= LE_32(WPI_TX_NEED_ACK);
2138 	} else {
2139 		tx->flags &= ~(LE_32(WPI_TX_NEED_ACK));
2140 	}
2141 
2142 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2143 		k = ieee80211_crypto_encap(ic, m);
2144 		if (k == NULL) {
2145 			freemsg(m);
2146 			sc->sc_tx_err++;
2147 			err = WPI_SUCCESS;
2148 			goto exit;
2149 		}
2150 
2151 		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2152 			tx->security = 2; /* for CCMP */
2153 			tx->flags |= LE_32(WPI_TX_NEED_ACK);
2154 			(void) memcpy(&tx->key, k->wk_key, k->wk_keylen);
2155 		}
2156 
2157 		/* packet header may have moved, reset our local pointer */
2158 		wh = (struct ieee80211_frame *)m->b_rptr;
2159 	}
2160 
2161 	len = msgdsize(m);
2162 
2163 #ifdef DEBUG
2164 	if (wpi_dbg_flags & WPI_DEBUG_TX)
2165 		ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
2166 #endif
2167 
2168 	/* pickup a rate */
2169 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2170 	    IEEE80211_FC0_TYPE_MGT) {
2171 		/* mgmt frames are sent at the lowest available bit-rate */
2172 		rate = 2;
2173 	} else {
2174 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
2175 			rate = ic->ic_fixed_rate;
2176 		} else
2177 			rate = in->in_rates.ir_rates[in->in_txrate];
2178 	}
2179 	rate &= IEEE80211_RATE_VAL;
2180 	WPI_DBG((WPI_DEBUG_RATECTL, "tx rate[%d of %d] = %x",
2181 	    in->in_txrate, in->in_rates.ir_nrates, rate));
2182 #ifdef WPI_BPF
2183 #ifndef WPI_CURRENT
2184 	if (sc->sc_drvbpf != NULL) {
2185 #else
2186 	if (bpf_peers_present(sc->sc_drvbpf)) {
2187 #endif
2188 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2189 
2190 		tap->wt_flags = 0;
2191 		tap->wt_chan_freq = LE_16(ic->ic_curchan->ic_freq);
2192 		tap->wt_chan_flags = LE_16(ic->ic_curchan->ic_flags);
2193 		tap->wt_rate = rate;
2194 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2195 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2196 
2197 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2198 	}
2199 #endif
2200 
2201 	tx->flags |= (LE_32(WPI_TX_AUTO_SEQ));
2202 	tx->flags |= LE_32(WPI_TX_BT_DISABLE | WPI_TX_CALIBRATION);
2203 
2204 	/* retrieve destination node's id */
2205 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
2206 	    WPI_ID_BSS;
2207 
2208 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2209 	    IEEE80211_FC0_TYPE_MGT) {
2210 		/* tell h/w to set timestamp in probe responses */
2211 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2212 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2213 			tx->flags |= LE_32(WPI_TX_INSERT_TSTAMP);
2214 
2215 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2216 		    IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2217 		    ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2218 		    IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2219 			tx->timeout = 3;
2220 		else
2221 			tx->timeout = 2;
2222 	} else
2223 		tx->timeout = 0;
2224 
2225 	tx->rate = wpi_plcp_signal(rate);
2226 
2227 	/* be very persistant at sending frames out */
2228 	tx->rts_ntries = 7;
2229 	tx->data_ntries = 15;
2230 
2231 	tx->cck_mask  = 0x0f;
2232 	tx->ofdm_mask = 0xff;
2233 	tx->lifetime  = LE_32(0xffffffff);
2234 
2235 	tx->len = LE_16(len);
2236 
2237 	/* save and trim IEEE802.11 header */
2238 	(void) memcpy(tx + 1, m->b_rptr, hdrlen);
2239 	m->b_rptr += hdrlen;
2240 	(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
2241 
2242 	WPI_DBG((WPI_DEBUG_TX, "sending data: qid=%d idx=%d len=%d", ring->qid,
2243 	    ring->cur, len));
2244 
2245 	/* first scatter/gather segment is used by the tx data command */
2246 	desc->flags = LE_32(WPI_PAD32(len) << 28 | (2) << 24);
2247 	desc->segs[0].addr = LE_32(data->paddr_cmd);
2248 	desc->segs[0].len  = LE_32(
2249 	    roundup(4 + sizeof (wpi_cmd_data_t) + hdrlen, 4));
2250 	desc->segs[1].addr = LE_32(data->dma_data.cookie.dmac_address);
2251 	desc->segs[1].len  = LE_32(len - hdrlen);
2252 
2253 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2254 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2255 
2256 	mutex_enter(&sc->sc_tx_lock);
2257 	ring->queued++;
2258 	mutex_exit(&sc->sc_tx_lock);
2259 
2260 	/* kick ring */
2261 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2262 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2263 	freemsg(m);
2264 	/* release node reference */
2265 	ieee80211_free_node(in);
2266 
2267 	ic->ic_stats.is_tx_bytes += len;
2268 	ic->ic_stats.is_tx_frags++;
2269 
2270 	if (sc->sc_tx_timer == 0)
2271 		sc->sc_tx_timer = 5;
2272 exit:
2273 	return (err);
2274 }
2275 
2276 static void
2277 wpi_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2278 {
2279 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2280 	ieee80211com_t	*ic = &sc->sc_ic;
2281 	int		err;
2282 
2283 	err = ieee80211_ioctl(ic, wq, mp);
2284 	if (err == ENETRESET) {
2285 		/*
2286 		 * This is special for the hidden AP connection.
2287 		 * In any case, we should make sure only one 'scan'
2288 		 * in the driver for a 'connect' CLI command. So
2289 		 * when connecting to a hidden AP, the scan is just
2290 		 * sent out to the air when we know the desired
2291 		 * essid of the AP we want to connect.
2292 		 */
2293 		if (ic->ic_des_esslen) {
2294 			if (sc->sc_flags & WPI_F_RUNNING) {
2295 				wpi_m_stop(sc);
2296 				(void) wpi_m_start(sc);
2297 				(void) ieee80211_new_state(ic,
2298 				    IEEE80211_S_SCAN, -1);
2299 			}
2300 		}
2301 	}
2302 }
2303 
2304 /*
2305  * Callback functions for get/set properties
2306  */
2307 /* ARGSUSED */
2308 static int
2309 wpi_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2310     uint_t pr_flags, uint_t wldp_length, void *wldp_buf, uint_t *perm)
2311 {
2312 	int		err = 0;
2313 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2314 
2315 	err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_name,
2316 	    pr_flags, wldp_length, wldp_buf, perm);
2317 
2318 	return (err);
2319 }
2320 static int
2321 wpi_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2322     uint_t wldp_length, const void *wldp_buf)
2323 {
2324 	int		err;
2325 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2326 	ieee80211com_t  *ic = &sc->sc_ic;
2327 
2328 	err = ieee80211_setprop(ic, pr_name, wldp_pr_name,
2329 	    wldp_length, wldp_buf);
2330 
2331 	if (err == ENETRESET) {
2332 		if (ic->ic_des_esslen) {
2333 			if (sc->sc_flags & WPI_F_RUNNING) {
2334 				wpi_m_stop(sc);
2335 				(void) wpi_m_start(sc);
2336 				(void) ieee80211_new_state(ic,
2337 				    IEEE80211_S_SCAN, -1);
2338 			}
2339 		}
2340 
2341 		err = 0;
2342 	}
2343 
2344 	return (err);
2345 }
2346 
2347 /*ARGSUSED*/
2348 static int
2349 wpi_m_stat(void *arg, uint_t stat, uint64_t *val)
2350 {
2351 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2352 	ieee80211com_t	*ic = &sc->sc_ic;
2353 	ieee80211_node_t *in;
2354 
2355 	mutex_enter(&sc->sc_glock);
2356 	switch (stat) {
2357 	case MAC_STAT_IFSPEED:
2358 		in = ic->ic_bss;
2359 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2360 		    IEEE80211_RATE(in->in_txrate) :
2361 		    ic->ic_fixed_rate) / 2 * 1000000;
2362 		break;
2363 	case MAC_STAT_NOXMTBUF:
2364 		*val = sc->sc_tx_nobuf;
2365 		break;
2366 	case MAC_STAT_NORCVBUF:
2367 		*val = sc->sc_rx_nobuf;
2368 		break;
2369 	case MAC_STAT_IERRORS:
2370 		*val = sc->sc_rx_err;
2371 		break;
2372 	case MAC_STAT_RBYTES:
2373 		*val = ic->ic_stats.is_rx_bytes;
2374 		break;
2375 	case MAC_STAT_IPACKETS:
2376 		*val = ic->ic_stats.is_rx_frags;
2377 		break;
2378 	case MAC_STAT_OBYTES:
2379 		*val = ic->ic_stats.is_tx_bytes;
2380 		break;
2381 	case MAC_STAT_OPACKETS:
2382 		*val = ic->ic_stats.is_tx_frags;
2383 		break;
2384 	case MAC_STAT_OERRORS:
2385 	case WIFI_STAT_TX_FAILED:
2386 		*val = sc->sc_tx_err;
2387 		break;
2388 	case WIFI_STAT_TX_RETRANS:
2389 		*val = sc->sc_tx_retries;
2390 		break;
2391 	case WIFI_STAT_FCS_ERRORS:
2392 	case WIFI_STAT_WEP_ERRORS:
2393 	case WIFI_STAT_TX_FRAGS:
2394 	case WIFI_STAT_MCAST_TX:
2395 	case WIFI_STAT_RTS_SUCCESS:
2396 	case WIFI_STAT_RTS_FAILURE:
2397 	case WIFI_STAT_ACK_FAILURE:
2398 	case WIFI_STAT_RX_FRAGS:
2399 	case WIFI_STAT_MCAST_RX:
2400 	case WIFI_STAT_RX_DUPS:
2401 		mutex_exit(&sc->sc_glock);
2402 		return (ieee80211_stat(ic, stat, val));
2403 	default:
2404 		mutex_exit(&sc->sc_glock);
2405 		return (ENOTSUP);
2406 	}
2407 	mutex_exit(&sc->sc_glock);
2408 
2409 	return (WPI_SUCCESS);
2410 
2411 }
2412 
2413 static int
2414 wpi_m_start(void *arg)
2415 {
2416 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2417 	ieee80211com_t	*ic = &sc->sc_ic;
2418 	int err;
2419 
2420 	err = wpi_init(sc);
2421 	if (err != WPI_SUCCESS) {
2422 		wpi_stop(sc);
2423 		DELAY(1000000);
2424 		err = wpi_init(sc);
2425 	}
2426 
2427 	if (err) {
2428 		/*
2429 		 * The hw init err(eg. RF is OFF). Return Success to make
2430 		 * the 'plumb' succeed. The wpi_thread() tries to re-init
2431 		 * background.
2432 		 */
2433 		mutex_enter(&sc->sc_glock);
2434 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2435 		mutex_exit(&sc->sc_glock);
2436 		return (WPI_SUCCESS);
2437 	}
2438 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2439 	mutex_enter(&sc->sc_glock);
2440 	sc->sc_flags |= WPI_F_RUNNING;
2441 	mutex_exit(&sc->sc_glock);
2442 
2443 	return (WPI_SUCCESS);
2444 }
2445 
2446 static void
2447 wpi_m_stop(void *arg)
2448 {
2449 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2450 	ieee80211com_t	*ic = &sc->sc_ic;
2451 
2452 	wpi_stop(sc);
2453 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2454 	mutex_enter(&sc->sc_mt_lock);
2455 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2456 	sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
2457 	mutex_exit(&sc->sc_mt_lock);
2458 	mutex_enter(&sc->sc_glock);
2459 	sc->sc_flags &= ~WPI_F_RUNNING;
2460 	mutex_exit(&sc->sc_glock);
2461 }
2462 
2463 /*ARGSUSED*/
2464 static int
2465 wpi_m_unicst(void *arg, const uint8_t *macaddr)
2466 {
2467 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2468 	ieee80211com_t	*ic = &sc->sc_ic;
2469 	int err;
2470 
2471 	if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
2472 		IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2473 		mutex_enter(&sc->sc_glock);
2474 		err = wpi_config(sc);
2475 		mutex_exit(&sc->sc_glock);
2476 		if (err != WPI_SUCCESS) {
2477 			cmn_err(CE_WARN,
2478 			    "wpi_m_unicst(): "
2479 			    "failed to configure device\n");
2480 			goto fail;
2481 		}
2482 	}
2483 	return (WPI_SUCCESS);
2484 fail:
2485 	return (err);
2486 }
2487 
2488 /*ARGSUSED*/
2489 static int
2490 wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m)
2491 {
2492 	return (WPI_SUCCESS);
2493 }
2494 
2495 /*ARGSUSED*/
2496 static int
2497 wpi_m_promisc(void *arg, boolean_t on)
2498 {
2499 	return (WPI_SUCCESS);
2500 }
2501 
2502 static void
2503 wpi_thread(wpi_sc_t *sc)
2504 {
2505 	ieee80211com_t	*ic = &sc->sc_ic;
2506 	clock_t clk;
2507 	int times = 0, err, n = 0, timeout = 0;
2508 	uint32_t tmp;
2509 
2510 	mutex_enter(&sc->sc_mt_lock);
2511 	while (sc->sc_mf_thread_switch) {
2512 		tmp = WPI_READ(sc, WPI_GPIO_CTL);
2513 		if (tmp & WPI_GPIO_HW_RF_KILL) {
2514 			sc->sc_flags &= ~WPI_F_RADIO_OFF;
2515 		} else {
2516 			sc->sc_flags |= WPI_F_RADIO_OFF;
2517 		}
2518 		/*
2519 		 * If in SUSPEND or the RF is OFF, do nothing
2520 		 */
2521 		if ((sc->sc_flags & WPI_F_SUSPEND) ||
2522 		    (sc->sc_flags & WPI_F_RADIO_OFF)) {
2523 			mutex_exit(&sc->sc_mt_lock);
2524 			delay(drv_usectohz(100000));
2525 			mutex_enter(&sc->sc_mt_lock);
2526 			continue;
2527 		}
2528 
2529 		/*
2530 		 * recovery fatal error
2531 		 */
2532 		if (ic->ic_mach &&
2533 		    (sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
2534 
2535 			WPI_DBG((WPI_DEBUG_FW,
2536 			    "wpi_thread(): "
2537 			    "try to recover fatal hw error: %d\n", times++));
2538 
2539 			wpi_stop(sc);
2540 			mutex_exit(&sc->sc_mt_lock);
2541 
2542 			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2543 			delay(drv_usectohz(2000000));
2544 
2545 			mutex_enter(&sc->sc_mt_lock);
2546 			err = wpi_init(sc);
2547 			if (err != WPI_SUCCESS) {
2548 				n++;
2549 				if (n < 3)
2550 					continue;
2551 			}
2552 			n = 0;
2553 			if (!err)
2554 				sc->sc_flags |= WPI_F_RUNNING;
2555 			sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2556 			mutex_exit(&sc->sc_mt_lock);
2557 			delay(drv_usectohz(2000000));
2558 			if (sc->sc_ostate != IEEE80211_S_INIT)
2559 				ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
2560 			mutex_enter(&sc->sc_mt_lock);
2561 		}
2562 
2563 		/*
2564 		 * scan next channel
2565 		 */
2566 		if (ic->ic_mach &&
2567 		    (sc->sc_flags & WPI_F_SCANNING) && sc->sc_scan_next) {
2568 
2569 			WPI_DBG((WPI_DEBUG_SCAN,
2570 			    "wpi_thread(): "
2571 			    "wait for probe response\n"));
2572 
2573 			sc->sc_scan_next--;
2574 			mutex_exit(&sc->sc_mt_lock);
2575 			delay(drv_usectohz(200000));
2576 			ieee80211_next_scan(ic);
2577 			mutex_enter(&sc->sc_mt_lock);
2578 		}
2579 
2580 		/*
2581 		 * rate ctl
2582 		 */
2583 		if (ic->ic_mach &&
2584 		    (sc->sc_flags & WPI_F_RATE_AUTO_CTL)) {
2585 			clk = ddi_get_lbolt();
2586 			if (clk > sc->sc_clk + drv_usectohz(500000)) {
2587 				wpi_amrr_timeout(sc);
2588 			}
2589 		}
2590 		mutex_exit(&sc->sc_mt_lock);
2591 		delay(drv_usectohz(100000));
2592 		mutex_enter(&sc->sc_mt_lock);
2593 		if (sc->sc_tx_timer) {
2594 			timeout++;
2595 			if (timeout == 10) {
2596 				sc->sc_tx_timer--;
2597 				if (sc->sc_tx_timer == 0) {
2598 					sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2599 					sc->sc_ostate = IEEE80211_S_RUN;
2600 					WPI_DBG((WPI_DEBUG_FW,
2601 					    "wpi_thread(): send fail\n"));
2602 				}
2603 				timeout = 0;
2604 			}
2605 		}
2606 	}
2607 	sc->sc_mf_thread = NULL;
2608 	cv_signal(&sc->sc_mt_cv);
2609 	mutex_exit(&sc->sc_mt_lock);
2610 }
2611 
2612 /*
2613  * Extract various information from EEPROM.
2614  */
2615 static void
2616 wpi_read_eeprom(wpi_sc_t *sc)
2617 {
2618 	ieee80211com_t *ic = &sc->sc_ic;
2619 	uint16_t val;
2620 	int i;
2621 
2622 	/* read MAC address */
2623 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
2624 	ic->ic_macaddr[0] = val & 0xff;
2625 	ic->ic_macaddr[1] = val >> 8;
2626 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
2627 	ic->ic_macaddr[2] = val & 0xff;
2628 	ic->ic_macaddr[3] = val >> 8;
2629 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
2630 	ic->ic_macaddr[4] = val & 0xff;
2631 	ic->ic_macaddr[5] = val >> 8;
2632 
2633 	WPI_DBG((WPI_DEBUG_EEPROM,
2634 	    "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
2635 	    ic->ic_macaddr[0], ic->ic_macaddr[1],
2636 	    ic->ic_macaddr[2], ic->ic_macaddr[3],
2637 	    ic->ic_macaddr[4], ic->ic_macaddr[5]));
2638 	/* read power settings for 2.4GHz channels */
2639 	for (i = 0; i < 14; i++) {
2640 		sc->sc_pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
2641 		sc->sc_pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
2642 		WPI_DBG((WPI_DEBUG_EEPROM,
2643 		    "channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
2644 		    sc->sc_pwr1[i], sc->sc_pwr2[i]));
2645 	}
2646 }
2647 
2648 /*
2649  * Send a command to the firmware.
2650  */
2651 static int
2652 wpi_cmd(wpi_sc_t *sc, int code, const void *buf, int size, int async)
2653 {
2654 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2655 	wpi_tx_desc_t *desc;
2656 	wpi_tx_cmd_t *cmd;
2657 
2658 	ASSERT(size <= sizeof (cmd->data));
2659 	ASSERT(mutex_owned(&sc->sc_glock));
2660 
2661 	WPI_DBG((WPI_DEBUG_CMD, "wpi_cmd() # code[%d]", code));
2662 	desc = ring->data[ring->cur].desc;
2663 	cmd = ring->data[ring->cur].cmd;
2664 
2665 	cmd->code = (uint8_t)code;
2666 	cmd->flags = 0;
2667 	cmd->qid = ring->qid;
2668 	cmd->idx = ring->cur;
2669 	(void) memcpy(cmd->data, buf, size);
2670 
2671 	desc->flags = LE_32(WPI_PAD32(size) << 28 | 1 << 24);
2672 	desc->segs[0].addr = ring->data[ring->cur].paddr_cmd;
2673 	desc->segs[0].len  = 4 + size;
2674 
2675 	/* kick cmd ring */
2676 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2677 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2678 
2679 	if (async)
2680 		return (WPI_SUCCESS);
2681 	else {
2682 		clock_t clk;
2683 		sc->sc_flags &= ~WPI_F_CMD_DONE;
2684 		clk = ddi_get_lbolt() + drv_usectohz(2000000);
2685 		while (!(sc->sc_flags & WPI_F_CMD_DONE)) {
2686 			if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk)
2687 			    < 0)
2688 				break;
2689 		}
2690 		if (sc->sc_flags & WPI_F_CMD_DONE)
2691 			return (WPI_SUCCESS);
2692 		else
2693 			return (WPI_FAIL);
2694 	}
2695 }
2696 
2697 /*
2698  * Configure h/w multi-rate retries.
2699  */
2700 static int
2701 wpi_mrr_setup(wpi_sc_t *sc)
2702 {
2703 	wpi_mrr_setup_t mrr;
2704 	int i, err;
2705 
2706 	/* CCK rates (not used with 802.11a) */
2707 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2708 		mrr.rates[i].flags = 0;
2709 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2710 		/* fallback to the immediate lower CCK rate (if any) */
2711 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2712 		/* try one time at this rate before falling back to "next" */
2713 		mrr.rates[i].ntries = 1;
2714 	}
2715 
2716 	/* OFDM rates (not used with 802.11b) */
2717 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2718 		mrr.rates[i].flags = 0;
2719 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2720 		/* fallback to the immediate lower OFDM rate (if any) */
2721 		mrr.rates[i].next = (i == WPI_OFDM6) ? WPI_OFDM6 : i - 1;
2722 		/* try one time at this rate before falling back to "next" */
2723 		mrr.rates[i].ntries = 1;
2724 	}
2725 
2726 	/* setup MRR for control frames */
2727 	mrr.which = LE_32(WPI_MRR_CTL);
2728 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2729 	if (err != WPI_SUCCESS) {
2730 		WPI_DBG((WPI_DEBUG_MRR,
2731 		    "could not setup MRR for control frames\n"));
2732 		return (err);
2733 	}
2734 
2735 	/* setup MRR for data frames */
2736 	mrr.which = LE_32(WPI_MRR_DATA);
2737 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2738 	if (err != WPI_SUCCESS) {
2739 		WPI_DBG((WPI_DEBUG_MRR,
2740 		    "could not setup MRR for data frames\n"));
2741 		return (err);
2742 	}
2743 
2744 	return (WPI_SUCCESS);
2745 }
2746 
2747 static void
2748 wpi_set_led(wpi_sc_t *sc, uint8_t which, uint8_t off, uint8_t on)
2749 {
2750 	wpi_cmd_led_t led;
2751 
2752 	led.which = which;
2753 	led.unit = LE_32(100000);	/* on/off in unit of 100ms */
2754 	led.off = off;
2755 	led.on = on;
2756 
2757 	(void) wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof (led), 1);
2758 }
2759 
2760 static int
2761 wpi_auth(wpi_sc_t *sc)
2762 {
2763 	ieee80211com_t *ic = &sc->sc_ic;
2764 	ieee80211_node_t *in = ic->ic_bss;
2765 	wpi_node_t node;
2766 	int err;
2767 
2768 	/* update adapter's configuration */
2769 	IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
2770 	sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan);
2771 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2772 		sc->sc_config.cck_mask  = 0x03;
2773 		sc->sc_config.ofdm_mask = 0;
2774 	} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
2775 	    (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
2776 		sc->sc_config.cck_mask  = 0;
2777 		sc->sc_config.ofdm_mask = 0x15;
2778 	} else {	/* assume 802.11b/g */
2779 		sc->sc_config.cck_mask  = 0x0f;
2780 		sc->sc_config.ofdm_mask = 0xff;
2781 	}
2782 
2783 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x cck %x ofdm %x"
2784 	    " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
2785 	    sc->sc_config.chan, sc->sc_config.flags,
2786 	    sc->sc_config.cck_mask, sc->sc_config.ofdm_mask,
2787 	    sc->sc_config.bssid[0], sc->sc_config.bssid[1],
2788 	    sc->sc_config.bssid[2], sc->sc_config.bssid[3],
2789 	    sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
2790 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2791 	    sizeof (wpi_config_t), 1);
2792 	if (err != WPI_SUCCESS) {
2793 		cmn_err(CE_WARN, "wpi_auth(): failed to configurate chan%d\n",
2794 		    sc->sc_config.chan);
2795 		return (err);
2796 	}
2797 
2798 	/* add default node */
2799 	(void) memset(&node, 0, sizeof (node));
2800 	IEEE80211_ADDR_COPY(node.bssid, in->in_bssid);
2801 	node.id = WPI_ID_BSS;
2802 	node.rate = wpi_plcp_signal(2);
2803 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
2804 	if (err != WPI_SUCCESS) {
2805 		cmn_err(CE_WARN, "wpi_auth(): failed to add BSS node\n");
2806 		return (err);
2807 	}
2808 
2809 	err = wpi_mrr_setup(sc);
2810 	if (err != WPI_SUCCESS) {
2811 		cmn_err(CE_WARN, "wpi_auth(): failed to setup MRR\n");
2812 		return (err);
2813 	}
2814 
2815 	return (WPI_SUCCESS);
2816 }
2817 
2818 /*
2819  * Send a scan request to the firmware.
2820  */
2821 static int
2822 wpi_scan(wpi_sc_t *sc)
2823 {
2824 	ieee80211com_t *ic = &sc->sc_ic;
2825 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2826 	wpi_tx_desc_t *desc;
2827 	wpi_tx_data_t *data;
2828 	wpi_tx_cmd_t *cmd;
2829 	wpi_scan_hdr_t *hdr;
2830 	wpi_scan_chan_t *chan;
2831 	struct ieee80211_frame *wh;
2832 	ieee80211_node_t *in = ic->ic_bss;
2833 	uint8_t essid[IEEE80211_NWID_LEN+1];
2834 	struct ieee80211_rateset *rs;
2835 	enum ieee80211_phymode mode;
2836 	uint8_t *frm;
2837 	int i, pktlen, nrates;
2838 
2839 	/* previous scan not completed */
2840 	if (sc->sc_scan_pending) {
2841 		WPI_DBG((WPI_DEBUG_SCAN, "previous scan not completed\n"));
2842 		return (WPI_SUCCESS);
2843 	}
2844 
2845 	data = &ring->data[ring->cur];
2846 	desc = data->desc;
2847 	cmd = (wpi_tx_cmd_t *)data->dma_data.mem_va;
2848 
2849 	cmd->code = WPI_CMD_SCAN;
2850 	cmd->flags = 0;
2851 	cmd->qid = ring->qid;
2852 	cmd->idx = ring->cur;
2853 
2854 	hdr = (wpi_scan_hdr_t *)cmd->data;
2855 	(void) memset(hdr, 0, sizeof (wpi_scan_hdr_t));
2856 	hdr->first = 1;
2857 	hdr->nchan = 1;
2858 	hdr->len = hdr->nchan * sizeof (wpi_scan_chan_t);
2859 	hdr->quiet = LE_16(50);
2860 	hdr->threshold = LE_16(1);
2861 	hdr->filter = LE_32(5);
2862 	hdr->rate = wpi_plcp_signal(2);
2863 	hdr->id = WPI_ID_BROADCAST;
2864 	hdr->mask = LE_32(0xffffffff);
2865 	hdr->esslen = ic->ic_des_esslen;
2866 
2867 	if (ic->ic_des_esslen) {
2868 		bcopy(ic->ic_des_essid, essid, ic->ic_des_esslen);
2869 		essid[ic->ic_des_esslen] = '\0';
2870 		WPI_DBG((WPI_DEBUG_SCAN, "directed scan %s\n", essid));
2871 
2872 		bcopy(ic->ic_des_essid, hdr->essid, ic->ic_des_esslen);
2873 	} else {
2874 		bzero(hdr->essid, sizeof (hdr->essid));
2875 	}
2876 
2877 	/*
2878 	 * Build a probe request frame.  Most of the following code is a
2879 	 * copy & paste of what is done in net80211.  Unfortunately, the
2880 	 * functions to add IEs are static and thus can't be reused here.
2881 	 */
2882 	wh = (struct ieee80211_frame *)(hdr + 1);
2883 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2884 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2885 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2886 	(void) memset(wh->i_addr1, 0xff, 6);
2887 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
2888 	(void) memset(wh->i_addr3, 0xff, 6);
2889 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2890 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2891 
2892 	frm = (uint8_t *)(wh + 1);
2893 
2894 	/* add essid IE */
2895 	if (in->in_esslen) {
2896 		bcopy(in->in_essid, essid, in->in_esslen);
2897 		essid[in->in_esslen] = '\0';
2898 		WPI_DBG((WPI_DEBUG_SCAN, "probe with ESSID %s\n",
2899 		    essid));
2900 	}
2901 	*frm++ = IEEE80211_ELEMID_SSID;
2902 	*frm++ = in->in_esslen;
2903 	(void) memcpy(frm, in->in_essid, in->in_esslen);
2904 	frm += in->in_esslen;
2905 
2906 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
2907 	rs = &ic->ic_sup_rates[mode];
2908 
2909 	/* add supported rates IE */
2910 	*frm++ = IEEE80211_ELEMID_RATES;
2911 	nrates = rs->ir_nrates;
2912 	if (nrates > IEEE80211_RATE_SIZE)
2913 		nrates = IEEE80211_RATE_SIZE;
2914 	*frm++ = (uint8_t)nrates;
2915 	(void) memcpy(frm, rs->ir_rates, nrates);
2916 	frm += nrates;
2917 
2918 	/* add supported xrates IE */
2919 	if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
2920 		nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
2921 		*frm++ = IEEE80211_ELEMID_XRATES;
2922 		*frm++ = (uint8_t)nrates;
2923 		(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
2924 		frm += nrates;
2925 	}
2926 
2927 	/* add optionnal IE (usually an RSN IE) */
2928 	if (ic->ic_opt_ie != NULL) {
2929 		(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2930 		frm += ic->ic_opt_ie_len;
2931 	}
2932 
2933 	/* setup length of probe request */
2934 	hdr->pbrlen = LE_16((uintptr_t)frm - (uintptr_t)wh);
2935 
2936 	/* align on a 4-byte boundary */
2937 	chan = (wpi_scan_chan_t *)frm;
2938 	for (i = 1; i <= hdr->nchan; i++, chan++) {
2939 		if (ic->ic_des_esslen) {
2940 			chan->flags = 0x3;
2941 		} else {
2942 			chan->flags = 0x1;
2943 		}
2944 		chan->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2945 		chan->magic = LE_16(0x62ab);
2946 		chan->active = LE_16(50);
2947 		chan->passive = LE_16(120);
2948 
2949 		frm += sizeof (wpi_scan_chan_t);
2950 	}
2951 
2952 	pktlen = (uintptr_t)frm - (uintptr_t)cmd;
2953 
2954 	desc->flags = LE_32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2955 	desc->segs[0].addr = LE_32(data->dma_data.cookie.dmac_address);
2956 	desc->segs[0].len  = LE_32(pktlen);
2957 
2958 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2959 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2960 
2961 	/* kick cmd ring */
2962 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2963 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2964 
2965 	sc->sc_scan_pending = 1;
2966 
2967 	return (WPI_SUCCESS);	/* will be notified async. of failure/success */
2968 }
2969 
2970 static int
2971 wpi_config(wpi_sc_t *sc)
2972 {
2973 	ieee80211com_t *ic = &sc->sc_ic;
2974 	wpi_txpower_t txpower;
2975 	wpi_power_t power;
2976 #ifdef WPI_BLUE_COEXISTENCE
2977 	wpi_bluetooth_t bluetooth;
2978 #endif
2979 	wpi_node_t node;
2980 	int err;
2981 
2982 	/* Intel's binary only daemon is a joke.. */
2983 
2984 	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
2985 	(void) memset(&txpower, 0, sizeof (txpower));
2986 	(void) memcpy(txpower.pwr1, sc->sc_pwr1, 14 * sizeof (uint16_t));
2987 	(void) memcpy(txpower.pwr2, sc->sc_pwr2, 14 * sizeof (uint16_t));
2988 	err = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof (txpower), 0);
2989 	if (err != WPI_SUCCESS) {
2990 		cmn_err(CE_WARN, "wpi_config(): failed to set txpower\n");
2991 		return (err);
2992 	}
2993 
2994 	/* set power mode */
2995 	(void) memset(&power, 0, sizeof (power));
2996 	power.flags = LE_32(0x8);
2997 	err = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof (power), 0);
2998 	if (err != WPI_SUCCESS) {
2999 		cmn_err(CE_WARN, "wpi_config(): failed to set power mode\n");
3000 		return (err);
3001 	}
3002 #ifdef WPI_BLUE_COEXISTENCE
3003 	/* configure bluetooth coexistence */
3004 	(void) memset(&bluetooth, 0, sizeof (bluetooth));
3005 	bluetooth.flags = 3;
3006 	bluetooth.lead = 0xaa;
3007 	bluetooth.kill = 1;
3008 	err = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth,
3009 	    sizeof (bluetooth), 0);
3010 	if (err != WPI_SUCCESS) {
3011 		cmn_err(CE_WARN,
3012 		    "wpi_config(): "
3013 		    "failed to configurate bluetooth coexistence\n");
3014 		return (err);
3015 	}
3016 #endif
3017 	/* configure adapter */
3018 	(void) memset(&sc->sc_config, 0, sizeof (wpi_config_t));
3019 	IEEE80211_ADDR_COPY(sc->sc_config.myaddr, ic->ic_macaddr);
3020 	sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3021 	sc->sc_config.flags = LE_32(WPI_CONFIG_TSF | WPI_CONFIG_AUTO |
3022 	    WPI_CONFIG_24GHZ);
3023 	sc->sc_config.filter = 0;
3024 	switch (ic->ic_opmode) {
3025 	case IEEE80211_M_STA:
3026 		sc->sc_config.mode = WPI_MODE_STA;
3027 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST);
3028 		break;
3029 	case IEEE80211_M_IBSS:
3030 	case IEEE80211_M_AHDEMO:
3031 		sc->sc_config.mode = WPI_MODE_IBSS;
3032 		break;
3033 	case IEEE80211_M_HOSTAP:
3034 		sc->sc_config.mode = WPI_MODE_HOSTAP;
3035 		break;
3036 	case IEEE80211_M_MONITOR:
3037 		sc->sc_config.mode = WPI_MODE_MONITOR;
3038 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
3039 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3040 		break;
3041 	}
3042 	sc->sc_config.cck_mask  = 0x0f;	/* not yet negotiated */
3043 	sc->sc_config.ofdm_mask = 0xff;	/* not yet negotiated */
3044 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
3045 	    sizeof (wpi_config_t), 0);
3046 	if (err != WPI_SUCCESS) {
3047 		cmn_err(CE_WARN, "wpi_config(): "
3048 		    "failed to set configure command\n");
3049 		return (err);
3050 	}
3051 
3052 	/* add broadcast node */
3053 	(void) memset(&node, 0, sizeof (node));
3054 	(void) memset(node.bssid, 0xff, 6);
3055 	node.id = WPI_ID_BROADCAST;
3056 	node.rate = wpi_plcp_signal(2);
3057 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 0);
3058 	if (err != WPI_SUCCESS) {
3059 		cmn_err(CE_WARN, "wpi_config(): "
3060 		    "failed to add broadcast node\n");
3061 		return (err);
3062 	}
3063 
3064 	return (WPI_SUCCESS);
3065 }
3066 
3067 static void
3068 wpi_stop_master(wpi_sc_t *sc)
3069 {
3070 	uint32_t tmp;
3071 	int ntries;
3072 
3073 	tmp = WPI_READ(sc, WPI_RESET);
3074 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3075 
3076 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3077 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3078 		return;	/* already asleep */
3079 
3080 	for (ntries = 0; ntries < 2000; ntries++) {
3081 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3082 			break;
3083 		DELAY(1000);
3084 	}
3085 	if (ntries == 2000)
3086 		WPI_DBG((WPI_DEBUG_HW, "timeout waiting for master\n"));
3087 }
3088 
3089 static int
3090 wpi_power_up(wpi_sc_t *sc)
3091 {
3092 	uint32_t tmp;
3093 	int ntries;
3094 
3095 	wpi_mem_lock(sc);
3096 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3097 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3098 	wpi_mem_unlock(sc);
3099 
3100 	for (ntries = 0; ntries < 5000; ntries++) {
3101 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3102 			break;
3103 		DELAY(10);
3104 	}
3105 	if (ntries == 5000) {
3106 		cmn_err(CE_WARN,
3107 		    "wpi_power_up(): timeout waiting for NIC to power up\n");
3108 		return (ETIMEDOUT);
3109 	}
3110 	return (WPI_SUCCESS);
3111 }
3112 
3113 static int
3114 wpi_reset(wpi_sc_t *sc)
3115 {
3116 	uint32_t tmp;
3117 	int ntries;
3118 
3119 	/* clear any pending interrupts */
3120 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3121 
3122 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3123 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3124 
3125 	tmp = WPI_READ(sc, WPI_CHICKEN);
3126 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3127 
3128 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3129 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3130 
3131 	/* wait for clock stabilization */
3132 	for (ntries = 0; ntries < 1000; ntries++) {
3133 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3134 			break;
3135 		DELAY(10);
3136 	}
3137 	if (ntries == 1000) {
3138 		cmn_err(CE_WARN,
3139 		    "wpi_reset(): timeout waiting for clock stabilization\n");
3140 		return (ETIMEDOUT);
3141 	}
3142 
3143 	/* initialize EEPROM */
3144 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3145 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3146 		cmn_err(CE_WARN, "wpi_reset(): EEPROM not found\n");
3147 		return (EIO);
3148 	}
3149 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3150 
3151 	return (WPI_SUCCESS);
3152 }
3153 
3154 static void
3155 wpi_hw_config(wpi_sc_t *sc)
3156 {
3157 	uint16_t val;
3158 	uint32_t hw;
3159 
3160 	/* voodoo from the Linux "driver".. */
3161 	hw = WPI_READ(sc, WPI_HWCONFIG);
3162 
3163 	if ((sc->sc_rev & 0xc0) == 0x40)
3164 		hw |= WPI_HW_ALM_MB;
3165 	else if (!(sc->sc_rev & 0x80))
3166 		hw |= WPI_HW_ALM_MM;
3167 
3168 	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
3169 	if ((val & 0xff) == 0x80)
3170 		hw |= WPI_HW_SKU_MRC;
3171 
3172 	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
3173 	hw &= ~WPI_HW_REV_D;
3174 	if ((val & 0xf0) == 0xd0)
3175 		hw |= WPI_HW_REV_D;
3176 
3177 	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
3178 	if ((val & 0xff) > 1)
3179 		hw |= WPI_HW_TYPE_B;
3180 
3181 	WPI_DBG((WPI_DEBUG_HW, "setting h/w config %x\n", hw));
3182 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3183 }
3184 
3185 static int
3186 wpi_init(wpi_sc_t *sc)
3187 {
3188 	uint32_t tmp;
3189 	int qid, ntries, err;
3190 	clock_t clk;
3191 
3192 	mutex_enter(&sc->sc_glock);
3193 	sc->sc_flags &= ~WPI_F_FW_INIT;
3194 
3195 	(void) wpi_reset(sc);
3196 
3197 	wpi_mem_lock(sc);
3198 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3199 	DELAY(20);
3200 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3201 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3202 	wpi_mem_unlock(sc);
3203 
3204 	(void) wpi_power_up(sc);
3205 	wpi_hw_config(sc);
3206 
3207 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3208 	if (!(tmp & WPI_GPIO_HW_RF_KILL)) {
3209 		cmn_err(CE_WARN, "wpi_init(): Radio transmitter is off\n");
3210 		goto fail1;
3211 	}
3212 
3213 	/* init Rx ring */
3214 	wpi_mem_lock(sc);
3215 	WPI_WRITE(sc, WPI_RX_BASE, sc->sc_rxq.dma_desc.cookie.dmac_address);
3216 	WPI_WRITE(sc, WPI_RX_RIDX_PTR,
3217 	    (uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
3218 	    offsetof(wpi_shared_t, next)));
3219 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & (~7));
3220 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3221 	wpi_mem_unlock(sc);
3222 
3223 	/* init Tx rings */
3224 	wpi_mem_lock(sc);
3225 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3226 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3227 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3228 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3229 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3230 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3231 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3232 
3233 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->sc_dma_sh.cookie.dmac_address);
3234 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3235 
3236 	for (qid = 0; qid < 6; qid++) {
3237 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3238 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3239 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3240 	}
3241 	wpi_mem_unlock(sc);
3242 
3243 	/* clear "radio off" and "disable command" bits (reversed logic) */
3244 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3245 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3246 
3247 	/* clear any pending interrupts */
3248 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3249 
3250 	/* enable interrupts */
3251 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3252 
3253 	/* load firmware boot code into NIC */
3254 	err = wpi_load_microcode(sc);
3255 	if (err != WPI_SUCCESS) {
3256 		cmn_err(CE_WARN, "wpi_init(): failed to load microcode\n");
3257 		goto fail1;
3258 	}
3259 
3260 	/* load firmware .text segment into NIC */
3261 	err = wpi_load_firmware(sc, WPI_FW_TEXT);
3262 	if (err != WPI_SUCCESS) {
3263 		cmn_err(CE_WARN, "wpi_init(): "
3264 		    "failed to load firmware(text)\n");
3265 		goto fail1;
3266 	}
3267 
3268 	/* load firmware .data segment into NIC */
3269 	err = wpi_load_firmware(sc, WPI_FW_DATA);
3270 	if (err != WPI_SUCCESS) {
3271 		cmn_err(CE_WARN, "wpi_init(): "
3272 		    "failed to load firmware(data)\n");
3273 		goto fail1;
3274 	}
3275 
3276 	/* now press "execute" ;-) */
3277 	tmp = WPI_READ(sc, WPI_RESET);
3278 	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
3279 	WPI_WRITE(sc, WPI_RESET, tmp);
3280 
3281 	/* ..and wait at most one second for adapter to initialize */
3282 	clk = ddi_get_lbolt() + drv_usectohz(2000000);
3283 	while (!(sc->sc_flags & WPI_F_FW_INIT)) {
3284 		if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0)
3285 			break;
3286 	}
3287 	if (!(sc->sc_flags & WPI_F_FW_INIT)) {
3288 		cmn_err(CE_WARN,
3289 		    "wpi_init(): timeout waiting for firmware init\n");
3290 		goto fail1;
3291 	}
3292 
3293 	/* wait for thermal sensors to calibrate */
3294 	for (ntries = 0; ntries < 1000; ntries++) {
3295 		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
3296 			break;
3297 		DELAY(10);
3298 	}
3299 
3300 	if (ntries == 1000) {
3301 		WPI_DBG((WPI_DEBUG_HW,
3302 		    "wpi_init(): timeout waiting for thermal sensors "
3303 		    "calibration\n"));
3304 	}
3305 
3306 	WPI_DBG((WPI_DEBUG_HW, "temperature %d\n",
3307 	    (int)WPI_READ(sc, WPI_TEMPERATURE)));
3308 
3309 	err = wpi_config(sc);
3310 	if (err) {
3311 		cmn_err(CE_WARN, "wpi_init(): failed to configure device\n");
3312 		goto fail1;
3313 	}
3314 
3315 	mutex_exit(&sc->sc_glock);
3316 	return (WPI_SUCCESS);
3317 
3318 fail1:
3319 	err = WPI_FAIL;
3320 	mutex_exit(&sc->sc_glock);
3321 	return (err);
3322 }
3323 
3324 /*
3325  * quiesce(9E) entry point.
3326  * This function is called when the system is single-threaded at high
3327  * PIL with preemption disabled. Therefore, this function must not be
3328  * blocked.
3329  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
3330  * DDI_FAILURE indicates an error condition and should almost never happen.
3331  */
3332 static int
3333 wpi_quiesce(dev_info_t *dip)
3334 {
3335 	wpi_sc_t *sc;
3336 
3337 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
3338 	if (sc == NULL)
3339 		return (DDI_FAILURE);
3340 
3341 #ifdef DEBUG
3342 	/* by pass any messages, if it's quiesce */
3343 	wpi_dbg_flags = 0;
3344 #endif
3345 
3346 	/*
3347 	 * No more blocking is allowed while we are in the
3348 	 * quiesce(9E) entry point.
3349 	 */
3350 	sc->sc_flags |= WPI_F_QUIESCED;
3351 
3352 	/*
3353 	 * Disable and mask all interrupts.
3354 	 */
3355 	wpi_stop(sc);
3356 	return (DDI_SUCCESS);
3357 }
3358 
3359 static void
3360 wpi_stop(wpi_sc_t *sc)
3361 {
3362 	uint32_t tmp;
3363 	int ac;
3364 
3365 	/* no mutex operation, if it's quiesced */
3366 	if (!(sc->sc_flags & WPI_F_QUIESCED))
3367 		mutex_enter(&sc->sc_glock);
3368 
3369 	/* disable interrupts */
3370 	WPI_WRITE(sc, WPI_MASK, 0);
3371 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3372 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3373 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3374 
3375 	wpi_mem_lock(sc);
3376 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3377 	wpi_mem_unlock(sc);
3378 
3379 	/* reset all Tx rings */
3380 	for (ac = 0; ac < 4; ac++)
3381 		wpi_reset_tx_ring(sc, &sc->sc_txq[ac]);
3382 	wpi_reset_tx_ring(sc, &sc->sc_cmdq);
3383 	wpi_reset_tx_ring(sc, &sc->sc_svcq);
3384 
3385 	/* reset Rx ring */
3386 	wpi_reset_rx_ring(sc);
3387 
3388 	wpi_mem_lock(sc);
3389 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3390 	wpi_mem_unlock(sc);
3391 
3392 	DELAY(5);
3393 
3394 	wpi_stop_master(sc);
3395 
3396 	sc->sc_tx_timer = 0;
3397 	sc->sc_flags &= ~WPI_F_SCANNING;
3398 	sc->sc_scan_pending = 0;
3399 	sc->sc_scan_next = 0;
3400 
3401 	tmp = WPI_READ(sc, WPI_RESET);
3402 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3403 
3404 	/* no mutex operation, if it's quiesced */
3405 	if (!(sc->sc_flags & WPI_F_QUIESCED))
3406 		mutex_exit(&sc->sc_glock);
3407 }
3408 
3409 /*
3410  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
3411  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
3412  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
3413  * INRIA Sophia - Projet Planete
3414  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
3415  */
3416 #define	is_success(amrr)	\
3417 	((amrr)->retrycnt < (amrr)->txcnt / 10)
3418 #define	is_failure(amrr)	\
3419 	((amrr)->retrycnt > (amrr)->txcnt / 3)
3420 #define	is_enough(amrr)		\
3421 	((amrr)->txcnt > 100)
3422 #define	is_min_rate(in)		\
3423 	((in)->in_txrate == 0)
3424 #define	is_max_rate(in)		\
3425 	((in)->in_txrate == (in)->in_rates.ir_nrates - 1)
3426 #define	increase_rate(in)	\
3427 	((in)->in_txrate++)
3428 #define	decrease_rate(in)	\
3429 	((in)->in_txrate--)
3430 #define	reset_cnt(amrr)		\
3431 	{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
3432 
3433 #define	WPI_AMRR_MIN_SUCCESS_THRESHOLD	 1
3434 #define	WPI_AMRR_MAX_SUCCESS_THRESHOLD	15
3435 
3436 static void
3437 wpi_amrr_init(wpi_amrr_t *amrr)
3438 {
3439 	amrr->success = 0;
3440 	amrr->recovery = 0;
3441 	amrr->txcnt = amrr->retrycnt = 0;
3442 	amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3443 }
3444 
3445 static void
3446 wpi_amrr_timeout(wpi_sc_t *sc)
3447 {
3448 	ieee80211com_t *ic = &sc->sc_ic;
3449 
3450 	WPI_DBG((WPI_DEBUG_RATECTL, "wpi_amrr_timeout() enter\n"));
3451 	if (ic->ic_opmode == IEEE80211_M_STA)
3452 		wpi_amrr_ratectl(NULL, ic->ic_bss);
3453 	else
3454 		ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
3455 	sc->sc_clk = ddi_get_lbolt();
3456 }
3457 
3458 /* ARGSUSED */
3459 static void
3460 wpi_amrr_ratectl(void *arg, ieee80211_node_t *in)
3461 {
3462 	wpi_amrr_t *amrr = (wpi_amrr_t *)in;
3463 	int need_change = 0;
3464 
3465 	if (is_success(amrr) && is_enough(amrr)) {
3466 		amrr->success++;
3467 		if (amrr->success >= amrr->success_threshold &&
3468 		    !is_max_rate(in)) {
3469 			amrr->recovery = 1;
3470 			amrr->success = 0;
3471 			increase_rate(in);
3472 			WPI_DBG((WPI_DEBUG_RATECTL,
3473 			    "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
3474 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3475 			need_change = 1;
3476 		} else {
3477 			amrr->recovery = 0;
3478 		}
3479 	} else if (is_failure(amrr)) {
3480 		amrr->success = 0;
3481 		if (!is_min_rate(in)) {
3482 			if (amrr->recovery) {
3483 				amrr->success_threshold++;
3484 				if (amrr->success_threshold >
3485 				    WPI_AMRR_MAX_SUCCESS_THRESHOLD)
3486 					amrr->success_threshold =
3487 					    WPI_AMRR_MAX_SUCCESS_THRESHOLD;
3488 			} else {
3489 				amrr->success_threshold =
3490 				    WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3491 			}
3492 			decrease_rate(in);
3493 			WPI_DBG((WPI_DEBUG_RATECTL,
3494 			    "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
3495 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3496 			need_change = 1;
3497 		}
3498 		amrr->recovery = 0;	/* paper is incorrect */
3499 	}
3500 
3501 	if (is_enough(amrr) || need_change)
3502 		reset_cnt(amrr);
3503 }
3504