xref: /titanic_50/usr/src/uts/common/io/wpi/wpi.c (revision 6e0414acac7fe81ff262fb9d3d83c0700fe9b695)
1 /*
2  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2006
8  *	Damien Bergamini <damien.bergamini@free.fr>
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/byteorder.h>
29 #include <sys/conf.h>
30 #include <sys/cmn_err.h>
31 #include <sys/stat.h>
32 #include <sys/ddi.h>
33 #include <sys/sunddi.h>
34 #include <sys/strsubr.h>
35 #include <sys/ethernet.h>
36 #include <inet/common.h>
37 #include <inet/nd.h>
38 #include <inet/mi.h>
39 #include <sys/note.h>
40 #include <sys/stream.h>
41 #include <sys/strsun.h>
42 #include <sys/modctl.h>
43 #include <sys/devops.h>
44 #include <sys/dlpi.h>
45 #include <sys/mac_provider.h>
46 #include <sys/mac_wifi.h>
47 #include <sys/net80211.h>
48 #include <sys/net80211_proto.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/pci.h>
52 
53 #include "wpireg.h"
54 #include "wpivar.h"
55 #include <inet/wifi_ioctl.h>
56 
57 #ifdef DEBUG
58 #define	WPI_DEBUG_80211		(1 << 0)
59 #define	WPI_DEBUG_CMD		(1 << 1)
60 #define	WPI_DEBUG_DMA		(1 << 2)
61 #define	WPI_DEBUG_EEPROM	(1 << 3)
62 #define	WPI_DEBUG_FW		(1 << 4)
63 #define	WPI_DEBUG_HW		(1 << 5)
64 #define	WPI_DEBUG_INTR		(1 << 6)
65 #define	WPI_DEBUG_MRR		(1 << 7)
66 #define	WPI_DEBUG_PIO		(1 << 8)
67 #define	WPI_DEBUG_RX		(1 << 9)
68 #define	WPI_DEBUG_SCAN		(1 << 10)
69 #define	WPI_DEBUG_TX		(1 << 11)
70 #define	WPI_DEBUG_RATECTL	(1 << 12)
71 #define	WPI_DEBUG_RADIO		(1 << 13)
72 #define	WPI_DEBUG_RESUME	(1 << 14)
73 uint32_t wpi_dbg_flags = 0;
74 #define	WPI_DBG(x) \
75 	wpi_dbg x
76 #else
77 #define	WPI_DBG(x)
78 #endif
79 
80 static void	*wpi_soft_state_p = NULL;
81 static uint8_t wpi_fw_bin [] = {
82 #include "fw-wpi/ipw3945.ucode.hex"
83 };
84 
85 /* DMA attributes for a shared page */
86 static ddi_dma_attr_t sh_dma_attr = {
87 	DMA_ATTR_V0,	/* version of this structure */
88 	0,		/* lowest usable address */
89 	0xffffffffU,	/* highest usable address */
90 	0xffffffffU,	/* maximum DMAable byte count */
91 	0x1000,		/* alignment in bytes */
92 	0x1000,		/* burst sizes (any?) */
93 	1,		/* minimum transfer */
94 	0xffffffffU,	/* maximum transfer */
95 	0xffffffffU,	/* maximum segment length */
96 	1,		/* maximum number of segments */
97 	1,		/* granularity */
98 	0,		/* flags (reserved) */
99 };
100 
101 /* DMA attributes for a ring descriptor */
102 static ddi_dma_attr_t ring_desc_dma_attr = {
103 	DMA_ATTR_V0,	/* version of this structure */
104 	0,		/* lowest usable address */
105 	0xffffffffU,	/* highest usable address */
106 	0xffffffffU,	/* maximum DMAable byte count */
107 	0x4000,		/* alignment in bytes */
108 	0x100,		/* burst sizes (any?) */
109 	1,		/* minimum transfer */
110 	0xffffffffU,	/* maximum transfer */
111 	0xffffffffU,	/* maximum segment length */
112 	1,		/* maximum number of segments */
113 	1,		/* granularity */
114 	0,		/* flags (reserved) */
115 };
116 
117 
118 /* DMA attributes for a tx cmd */
119 static ddi_dma_attr_t tx_cmd_dma_attr = {
120 	DMA_ATTR_V0,	/* version of this structure */
121 	0,		/* lowest usable address */
122 	0xffffffffU,	/* highest usable address */
123 	0xffffffffU,	/* maximum DMAable byte count */
124 	4,		/* alignment in bytes */
125 	0x100,		/* burst sizes (any?) */
126 	1,		/* minimum transfer */
127 	0xffffffffU,	/* maximum transfer */
128 	0xffffffffU,	/* maximum segment length */
129 	1,		/* maximum number of segments */
130 	1,		/* granularity */
131 	0,		/* flags (reserved) */
132 };
133 
134 /* DMA attributes for a rx buffer */
135 static ddi_dma_attr_t rx_buffer_dma_attr = {
136 	DMA_ATTR_V0,	/* version of this structure */
137 	0,		/* lowest usable address */
138 	0xffffffffU,	/* highest usable address */
139 	0xffffffffU,	/* maximum DMAable byte count */
140 	1,		/* alignment in bytes */
141 	0x100,		/* burst sizes (any?) */
142 	1,		/* minimum transfer */
143 	0xffffffffU,	/* maximum transfer */
144 	0xffffffffU,	/* maximum segment length */
145 	1,		/* maximum number of segments */
146 	1,		/* granularity */
147 	0,		/* flags (reserved) */
148 };
149 
150 /*
151  * DMA attributes for a tx buffer.
152  * the maximum number of segments is 4 for the hardware.
153  * now all the wifi drivers put the whole frame in a single
154  * descriptor, so we define the maximum  number of segments 4,
155  * just the same as the rx_buffer. we consider leverage the HW
156  * ability in the future, that is why we don't define rx and tx
157  * buffer_dma_attr as the same.
158  */
159 static ddi_dma_attr_t tx_buffer_dma_attr = {
160 	DMA_ATTR_V0,	/* version of this structure */
161 	0,		/* lowest usable address */
162 	0xffffffffU,	/* highest usable address */
163 	0xffffffffU,	/* maximum DMAable byte count */
164 	1,		/* alignment in bytes */
165 	0x100,		/* burst sizes (any?) */
166 	1,		/* minimum transfer */
167 	0xffffffffU,	/* maximum transfer */
168 	0xffffffffU,	/* maximum segment length */
169 	1,		/* maximum number of segments */
170 	1,		/* granularity */
171 	0,		/* flags (reserved) */
172 };
173 
174 /* DMA attributes for a load firmware */
175 static ddi_dma_attr_t fw_buffer_dma_attr = {
176 	DMA_ATTR_V0,	/* version of this structure */
177 	0,		/* lowest usable address */
178 	0xffffffffU,	/* highest usable address */
179 	0x7fffffff,	/* maximum DMAable byte count */
180 	4,		/* alignment in bytes */
181 	0x100,		/* burst sizes (any?) */
182 	1,		/* minimum transfer */
183 	0xffffffffU,	/* maximum transfer */
184 	0xffffffffU,	/* maximum segment length */
185 	4,		/* maximum number of segments */
186 	1,		/* granularity */
187 	0,		/* flags (reserved) */
188 };
189 
190 /* regs access attributes */
191 static ddi_device_acc_attr_t wpi_reg_accattr = {
192 	DDI_DEVICE_ATTR_V0,
193 	DDI_STRUCTURE_LE_ACC,
194 	DDI_STRICTORDER_ACC,
195 	DDI_DEFAULT_ACC
196 };
197 
198 /* DMA access attributes */
199 static ddi_device_acc_attr_t wpi_dma_accattr = {
200 	DDI_DEVICE_ATTR_V0,
201 	DDI_NEVERSWAP_ACC,
202 	DDI_STRICTORDER_ACC,
203 	DDI_DEFAULT_ACC
204 };
205 
206 static int	wpi_ring_init(wpi_sc_t *);
207 static void	wpi_ring_free(wpi_sc_t *);
208 static int	wpi_alloc_shared(wpi_sc_t *);
209 static void	wpi_free_shared(wpi_sc_t *);
210 static int	wpi_alloc_fw_dma(wpi_sc_t *);
211 static void	wpi_free_fw_dma(wpi_sc_t *);
212 static int	wpi_alloc_rx_ring(wpi_sc_t *);
213 static void	wpi_reset_rx_ring(wpi_sc_t *);
214 static void	wpi_free_rx_ring(wpi_sc_t *);
215 static int	wpi_alloc_tx_ring(wpi_sc_t *, wpi_tx_ring_t *, int, int);
216 static void	wpi_reset_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
217 static void	wpi_free_tx_ring(wpi_sc_t *, wpi_tx_ring_t *);
218 
219 static ieee80211_node_t *wpi_node_alloc(ieee80211com_t *);
220 static void	wpi_node_free(ieee80211_node_t *);
221 static int	wpi_newstate(ieee80211com_t *, enum ieee80211_state, int);
222 static int	wpi_key_set(ieee80211com_t *, const struct ieee80211_key *,
223     const uint8_t mac[IEEE80211_ADDR_LEN]);
224 static void	wpi_mem_lock(wpi_sc_t *);
225 static void	wpi_mem_unlock(wpi_sc_t *);
226 static uint32_t	wpi_mem_read(wpi_sc_t *, uint16_t);
227 static void	wpi_mem_write(wpi_sc_t *, uint16_t, uint32_t);
228 static void	wpi_mem_write_region_4(wpi_sc_t *, uint16_t,
229 		    const uint32_t *, int);
230 static uint16_t	wpi_read_prom_word(wpi_sc_t *, uint32_t);
231 static int	wpi_load_microcode(wpi_sc_t *);
232 static int	wpi_load_firmware(wpi_sc_t *, uint32_t);
233 static void	wpi_rx_intr(wpi_sc_t *, wpi_rx_desc_t *,
234 		    wpi_rx_data_t *);
235 static void	wpi_tx_intr(wpi_sc_t *, wpi_rx_desc_t *,
236 		    wpi_rx_data_t *);
237 static void	wpi_cmd_intr(wpi_sc_t *, wpi_rx_desc_t *);
238 static uint_t	wpi_intr(caddr_t);
239 static uint_t	wpi_notif_softintr(caddr_t);
240 static uint8_t	wpi_plcp_signal(int);
241 static void	wpi_read_eeprom(wpi_sc_t *);
242 static int	wpi_cmd(wpi_sc_t *, int, const void *, int, int);
243 static int	wpi_mrr_setup(wpi_sc_t *);
244 static void	wpi_set_led(wpi_sc_t *, uint8_t, uint8_t, uint8_t);
245 static int	wpi_auth(wpi_sc_t *);
246 static int	wpi_scan(wpi_sc_t *);
247 static int	wpi_config(wpi_sc_t *);
248 static void	wpi_stop_master(wpi_sc_t *);
249 static int	wpi_power_up(wpi_sc_t *);
250 static int	wpi_reset(wpi_sc_t *);
251 static void	wpi_hw_config(wpi_sc_t *);
252 static int	wpi_init(wpi_sc_t *);
253 static void	wpi_stop(wpi_sc_t *);
254 static int	wpi_quiesce(dev_info_t *dip);
255 static void	wpi_amrr_init(wpi_amrr_t *);
256 static void	wpi_amrr_timeout(wpi_sc_t *);
257 static void	wpi_amrr_ratectl(void *, ieee80211_node_t *);
258 
259 static int wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
260 static int wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
261 
262 /*
263  * GLD specific operations
264  */
265 static int	wpi_m_stat(void *arg, uint_t stat, uint64_t *val);
266 static int	wpi_m_start(void *arg);
267 static void	wpi_m_stop(void *arg);
268 static int	wpi_m_unicst(void *arg, const uint8_t *macaddr);
269 static int	wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m);
270 static int	wpi_m_promisc(void *arg, boolean_t on);
271 static mblk_t  *wpi_m_tx(void *arg, mblk_t *mp);
272 static void	wpi_m_ioctl(void *arg, queue_t *wq, mblk_t *mp);
273 static int	wpi_m_setprop(void *arg, const char *pr_name,
274     mac_prop_id_t wldp_pr_num, uint_t wldp_length, const void *wldp_buf);
275 static int	wpi_m_getprop(void *arg, const char *pr_name,
276     mac_prop_id_t wldp_pr_num, uint_t pr_flags, uint_t wldp_lenth,
277     void *wldp_buf, uint_t *);
278 static void	wpi_destroy_locks(wpi_sc_t *sc);
279 static int	wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type);
280 static void	wpi_thread(wpi_sc_t *sc);
281 
282 /*
283  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
284  */
285 static const struct ieee80211_rateset wpi_rateset_11b =
286 	{ 4, { 2, 4, 11, 22 } };
287 
288 static const struct ieee80211_rateset wpi_rateset_11g =
289 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
290 
291 static const uint8_t wpi_ridx_to_signal[] = {
292 	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
293 	/* R1-R4 (ral/ural is R4-R1) */
294 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
295 	/* CCK: device-dependent */
296 	10, 20, 55, 110
297 };
298 
299 /*
300  * For mfthread only
301  */
302 extern pri_t minclsyspri;
303 
304 /*
305  * Module Loading Data & Entry Points
306  */
307 DDI_DEFINE_STREAM_OPS(wpi_devops, nulldev, nulldev, wpi_attach,
308     wpi_detach, nodev, NULL, D_MP, NULL, wpi_quiesce);
309 
310 static struct modldrv wpi_modldrv = {
311 	&mod_driverops,
312 	"Intel(R) PRO/Wireless 3945ABG driver",
313 	&wpi_devops
314 };
315 
316 static struct modlinkage wpi_modlinkage = {
317 	MODREV_1,
318 	&wpi_modldrv,
319 	NULL
320 };
321 
322 int
323 _init(void)
324 {
325 	int	status;
326 
327 	status = ddi_soft_state_init(&wpi_soft_state_p,
328 	    sizeof (wpi_sc_t), 1);
329 	if (status != DDI_SUCCESS)
330 		return (status);
331 
332 	mac_init_ops(&wpi_devops, "wpi");
333 	status = mod_install(&wpi_modlinkage);
334 	if (status != DDI_SUCCESS) {
335 		mac_fini_ops(&wpi_devops);
336 		ddi_soft_state_fini(&wpi_soft_state_p);
337 	}
338 
339 	return (status);
340 }
341 
342 int
343 _fini(void)
344 {
345 	int status;
346 
347 	status = mod_remove(&wpi_modlinkage);
348 	if (status == DDI_SUCCESS) {
349 		mac_fini_ops(&wpi_devops);
350 		ddi_soft_state_fini(&wpi_soft_state_p);
351 	}
352 
353 	return (status);
354 }
355 
356 int
357 _info(struct modinfo *mip)
358 {
359 	return (mod_info(&wpi_modlinkage, mip));
360 }
361 
362 /*
363  * Mac Call Back entries
364  */
365 mac_callbacks_t	wpi_m_callbacks = {
366 	MC_IOCTL | MC_SETPROP | MC_GETPROP,
367 	wpi_m_stat,
368 	wpi_m_start,
369 	wpi_m_stop,
370 	wpi_m_promisc,
371 	wpi_m_multicst,
372 	wpi_m_unicst,
373 	wpi_m_tx,
374 	wpi_m_ioctl,
375 	NULL,
376 	NULL,
377 	NULL,
378 	wpi_m_setprop,
379 	wpi_m_getprop
380 };
381 
382 #ifdef DEBUG
383 void
384 wpi_dbg(uint32_t flags, const char *fmt, ...)
385 {
386 	va_list	ap;
387 
388 	if (flags & wpi_dbg_flags) {
389 		va_start(ap, fmt);
390 		vcmn_err(CE_NOTE, fmt, ap);
391 		va_end(ap);
392 	}
393 }
394 #endif
395 /*
396  * device operations
397  */
398 int
399 wpi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
400 {
401 	wpi_sc_t		*sc;
402 	ddi_acc_handle_t	cfg_handle;
403 	caddr_t			cfg_base;
404 	ieee80211com_t	*ic;
405 	int			instance, err, i;
406 	char			strbuf[32];
407 	wifi_data_t		wd = { 0 };
408 	mac_register_t		*macp;
409 
410 	switch (cmd) {
411 	case DDI_ATTACH:
412 		break;
413 	case DDI_RESUME:
414 		sc = ddi_get_soft_state(wpi_soft_state_p,
415 		    ddi_get_instance(dip));
416 		ASSERT(sc != NULL);
417 		mutex_enter(&sc->sc_glock);
418 		sc->sc_flags &= ~WPI_F_SUSPEND;
419 		mutex_exit(&sc->sc_glock);
420 		if (sc->sc_flags & WPI_F_RUNNING) {
421 			(void) wpi_init(sc);
422 			ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
423 		}
424 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: resume \n"));
425 		return (DDI_SUCCESS);
426 	default:
427 		err = DDI_FAILURE;
428 		goto attach_fail1;
429 	}
430 
431 	instance = ddi_get_instance(dip);
432 	err = ddi_soft_state_zalloc(wpi_soft_state_p, instance);
433 	if (err != DDI_SUCCESS) {
434 		cmn_err(CE_WARN,
435 		    "wpi_attach(): failed to allocate soft state\n");
436 		goto attach_fail1;
437 	}
438 	sc = ddi_get_soft_state(wpi_soft_state_p, instance);
439 	sc->sc_dip = dip;
440 
441 	err = ddi_regs_map_setup(dip, 0, &cfg_base, 0, 0,
442 	    &wpi_reg_accattr, &cfg_handle);
443 	if (err != DDI_SUCCESS) {
444 		cmn_err(CE_WARN,
445 		    "wpi_attach(): failed to map config spaces regs\n");
446 		goto attach_fail2;
447 	}
448 	sc->sc_rev = ddi_get8(cfg_handle,
449 	    (uint8_t *)(cfg_base + PCI_CONF_REVID));
450 	ddi_put8(cfg_handle, (uint8_t *)(cfg_base + 0x41), 0);
451 	sc->sc_clsz = ddi_get16(cfg_handle,
452 	    (uint16_t *)(cfg_base + PCI_CONF_CACHE_LINESZ));
453 	ddi_regs_map_free(&cfg_handle);
454 	if (!sc->sc_clsz)
455 		sc->sc_clsz = 16;
456 	sc->sc_clsz = (sc->sc_clsz << 2);
457 	sc->sc_dmabuf_sz = roundup(0x1000 + sizeof (struct ieee80211_frame) +
458 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
459 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
460 	    IEEE80211_WEP_CRCLEN), sc->sc_clsz);
461 	/*
462 	 * Map operating registers
463 	 */
464 	err = ddi_regs_map_setup(dip, 1, &sc->sc_base,
465 	    0, 0, &wpi_reg_accattr, &sc->sc_handle);
466 	if (err != DDI_SUCCESS) {
467 		cmn_err(CE_WARN,
468 		    "wpi_attach(): failed to map device regs\n");
469 		goto attach_fail2;
470 	}
471 
472 	/*
473 	 * Allocate shared page.
474 	 */
475 	err = wpi_alloc_shared(sc);
476 	if (err != DDI_SUCCESS) {
477 		cmn_err(CE_WARN, "failed to allocate shared page\n");
478 		goto attach_fail3;
479 	}
480 
481 	/*
482 	 * Get the hw conf, including MAC address, then init all rings.
483 	 */
484 	wpi_read_eeprom(sc);
485 	err = wpi_ring_init(sc);
486 	if (err != DDI_SUCCESS) {
487 		cmn_err(CE_WARN, "wpi_attach(): "
488 		    "failed to allocate and initialize ring\n");
489 		goto attach_fail4;
490 	}
491 
492 	sc->sc_hdr = (const wpi_firmware_hdr_t *)wpi_fw_bin;
493 
494 	/* firmware image layout: |HDR|<--TEXT-->|<--DATA-->|<--BOOT-->| */
495 	sc->sc_text = (const char *)(sc->sc_hdr + 1);
496 	sc->sc_data = sc->sc_text + LE_32(sc->sc_hdr->textsz);
497 	sc->sc_boot = sc->sc_data + LE_32(sc->sc_hdr->datasz);
498 	err = wpi_alloc_fw_dma(sc);
499 	if (err != DDI_SUCCESS) {
500 		cmn_err(CE_WARN, "wpi_attach(): "
501 		    "failed to allocate firmware dma\n");
502 		goto attach_fail5;
503 	}
504 
505 	/*
506 	 * Initialize mutexs and condvars
507 	 */
508 	err = ddi_get_iblock_cookie(dip, 0, &sc->sc_iblk);
509 	if (err != DDI_SUCCESS) {
510 		cmn_err(CE_WARN,
511 		    "wpi_attach(): failed to do ddi_get_iblock_cookie()\n");
512 		goto attach_fail6;
513 	}
514 	mutex_init(&sc->sc_glock, NULL, MUTEX_DRIVER, sc->sc_iblk);
515 	mutex_init(&sc->sc_tx_lock, NULL, MUTEX_DRIVER, sc->sc_iblk);
516 	cv_init(&sc->sc_fw_cv, NULL, CV_DRIVER, NULL);
517 	cv_init(&sc->sc_cmd_cv, NULL, CV_DRIVER, NULL);
518 
519 	/*
520 	 * initialize the mfthread
521 	 */
522 	mutex_init(&sc->sc_mt_lock, NULL, MUTEX_DRIVER,
523 	    (void *) sc->sc_iblk);
524 	cv_init(&sc->sc_mt_cv, NULL, CV_DRIVER, NULL);
525 	sc->sc_mf_thread = NULL;
526 	sc->sc_mf_thread_switch = 0;
527 	/*
528 	 * Initialize the wifi part, which will be used by
529 	 * generic layer
530 	 */
531 	ic = &sc->sc_ic;
532 	ic->ic_phytype  = IEEE80211_T_OFDM;
533 	ic->ic_opmode   = IEEE80211_M_STA; /* default to BSS mode */
534 	ic->ic_state    = IEEE80211_S_INIT;
535 	ic->ic_maxrssi  = 70; /* experimental number */
536 	ic->ic_caps = IEEE80211_C_SHPREAMBLE | IEEE80211_C_TXPMGT |
537 	    IEEE80211_C_PMGT | IEEE80211_C_SHSLOT;
538 
539 	/*
540 	 * use software WEP and TKIP, hardware CCMP;
541 	 */
542 	ic->ic_caps |= IEEE80211_C_AES_CCM;
543 	ic->ic_caps |= IEEE80211_C_WPA; /* Support WPA/WPA2 */
544 
545 	/* set supported .11b and .11g rates */
546 	ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
547 	ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
548 
549 	/* set supported .11b and .11g channels (1 through 14) */
550 	for (i = 1; i <= 14; i++) {
551 		ic->ic_sup_channels[i].ich_freq =
552 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
553 		ic->ic_sup_channels[i].ich_flags =
554 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
555 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ |
556 		    IEEE80211_CHAN_PASSIVE;
557 	}
558 	ic->ic_ibss_chan = &ic->ic_sup_channels[0];
559 	ic->ic_xmit = wpi_send;
560 	/*
561 	 * init Wifi layer
562 	 */
563 	ieee80211_attach(ic);
564 
565 	/* register WPA door */
566 	ieee80211_register_door(ic, ddi_driver_name(dip),
567 	    ddi_get_instance(dip));
568 
569 	/*
570 	 * Override 80211 default routines
571 	 */
572 	sc->sc_newstate = ic->ic_newstate;
573 	ic->ic_newstate = wpi_newstate;
574 	ic->ic_node_alloc = wpi_node_alloc;
575 	ic->ic_node_free = wpi_node_free;
576 	ic->ic_crypto.cs_key_set = wpi_key_set;
577 	ieee80211_media_init(ic);
578 	/*
579 	 * initialize default tx key
580 	 */
581 	ic->ic_def_txkey = 0;
582 
583 	err = ddi_add_softintr(dip, DDI_SOFTINT_LOW,
584 	    &sc->sc_notif_softint_id, &sc->sc_iblk, NULL, wpi_notif_softintr,
585 	    (caddr_t)sc);
586 	if (err != DDI_SUCCESS) {
587 		cmn_err(CE_WARN,
588 		    "wpi_attach(): failed to do ddi_add_softintr()\n");
589 		goto attach_fail7;
590 	}
591 
592 	/*
593 	 * Add the interrupt handler
594 	 */
595 	err = ddi_add_intr(dip, 0, &sc->sc_iblk, NULL,
596 	    wpi_intr, (caddr_t)sc);
597 	if (err != DDI_SUCCESS) {
598 		cmn_err(CE_WARN,
599 		    "wpi_attach(): failed to do ddi_add_intr()\n");
600 		goto attach_fail8;
601 	}
602 
603 	/*
604 	 * Initialize pointer to device specific functions
605 	 */
606 	wd.wd_secalloc = WIFI_SEC_NONE;
607 	wd.wd_opmode = ic->ic_opmode;
608 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_macaddr);
609 
610 	macp = mac_alloc(MAC_VERSION);
611 	if (err != DDI_SUCCESS) {
612 		cmn_err(CE_WARN,
613 		    "wpi_attach(): failed to do mac_alloc()\n");
614 		goto attach_fail9;
615 	}
616 
617 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
618 	macp->m_driver		= sc;
619 	macp->m_dip		= dip;
620 	macp->m_src_addr	= ic->ic_macaddr;
621 	macp->m_callbacks	= &wpi_m_callbacks;
622 	macp->m_min_sdu		= 0;
623 	macp->m_max_sdu		= IEEE80211_MTU;
624 	macp->m_pdata		= &wd;
625 	macp->m_pdata_size	= sizeof (wd);
626 
627 	/*
628 	 * Register the macp to mac
629 	 */
630 	err = mac_register(macp, &ic->ic_mach);
631 	mac_free(macp);
632 	if (err != DDI_SUCCESS) {
633 		cmn_err(CE_WARN,
634 		    "wpi_attach(): failed to do mac_register()\n");
635 		goto attach_fail9;
636 	}
637 
638 	/*
639 	 * Create minor node of type DDI_NT_NET_WIFI
640 	 */
641 	(void) snprintf(strbuf, sizeof (strbuf), "wpi%d", instance);
642 	err = ddi_create_minor_node(dip, strbuf, S_IFCHR,
643 	    instance + 1, DDI_NT_NET_WIFI, 0);
644 	if (err != DDI_SUCCESS)
645 		cmn_err(CE_WARN,
646 		    "wpi_attach(): failed to do ddi_create_minor_node()\n");
647 
648 	/*
649 	 * Notify link is down now
650 	 */
651 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
652 
653 	/*
654 	 * create the mf thread to handle the link status,
655 	 * recovery fatal error, etc.
656 	 */
657 
658 	sc->sc_mf_thread_switch = 1;
659 	if (sc->sc_mf_thread == NULL)
660 		sc->sc_mf_thread = thread_create((caddr_t)NULL, 0,
661 		    wpi_thread, sc, 0, &p0, TS_RUN, minclsyspri);
662 
663 	sc->sc_flags |= WPI_F_ATTACHED;
664 
665 	return (DDI_SUCCESS);
666 attach_fail9:
667 	ddi_remove_intr(dip, 0, sc->sc_iblk);
668 attach_fail8:
669 	ddi_remove_softintr(sc->sc_notif_softint_id);
670 	sc->sc_notif_softint_id = NULL;
671 attach_fail7:
672 	ieee80211_detach(ic);
673 	wpi_destroy_locks(sc);
674 attach_fail6:
675 	wpi_free_fw_dma(sc);
676 attach_fail5:
677 	wpi_ring_free(sc);
678 attach_fail4:
679 	wpi_free_shared(sc);
680 attach_fail3:
681 	ddi_regs_map_free(&sc->sc_handle);
682 attach_fail2:
683 	ddi_soft_state_free(wpi_soft_state_p, instance);
684 attach_fail1:
685 	return (err);
686 }
687 
688 int
689 wpi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
690 {
691 	wpi_sc_t	*sc;
692 	int err;
693 
694 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
695 	ASSERT(sc != NULL);
696 
697 	switch (cmd) {
698 	case DDI_DETACH:
699 		break;
700 	case DDI_SUSPEND:
701 		if (sc->sc_flags & WPI_F_RUNNING) {
702 			wpi_stop(sc);
703 		}
704 		mutex_enter(&sc->sc_glock);
705 		sc->sc_flags |= WPI_F_SUSPEND;
706 		mutex_exit(&sc->sc_glock);
707 		WPI_DBG((WPI_DEBUG_RESUME, "wpi: suspend \n"));
708 		return (DDI_SUCCESS);
709 	default:
710 		return (DDI_FAILURE);
711 	}
712 	if (!(sc->sc_flags & WPI_F_ATTACHED))
713 		return (DDI_FAILURE);
714 
715 	err = mac_disable(sc->sc_ic.ic_mach);
716 	if (err != DDI_SUCCESS)
717 		return (err);
718 
719 	/*
720 	 * Destroy the mf_thread
721 	 */
722 	mutex_enter(&sc->sc_mt_lock);
723 	sc->sc_mf_thread_switch = 0;
724 	while (sc->sc_mf_thread != NULL) {
725 		if (cv_wait_sig(&sc->sc_mt_cv, &sc->sc_mt_lock) == 0)
726 			break;
727 	}
728 	mutex_exit(&sc->sc_mt_lock);
729 
730 	wpi_stop(sc);
731 
732 	/*
733 	 * Unregiste from the MAC layer subsystem
734 	 */
735 	(void) mac_unregister(sc->sc_ic.ic_mach);
736 
737 	mutex_enter(&sc->sc_glock);
738 	wpi_free_fw_dma(sc);
739 	wpi_ring_free(sc);
740 	wpi_free_shared(sc);
741 	mutex_exit(&sc->sc_glock);
742 
743 	ddi_remove_intr(dip, 0, sc->sc_iblk);
744 	ddi_remove_softintr(sc->sc_notif_softint_id);
745 	sc->sc_notif_softint_id = NULL;
746 
747 	/*
748 	 * detach ieee80211
749 	 */
750 	ieee80211_detach(&sc->sc_ic);
751 
752 	wpi_destroy_locks(sc);
753 
754 	ddi_regs_map_free(&sc->sc_handle);
755 	ddi_remove_minor_node(dip, NULL);
756 	ddi_soft_state_free(wpi_soft_state_p, ddi_get_instance(dip));
757 
758 	return (DDI_SUCCESS);
759 }
760 
761 static void
762 wpi_destroy_locks(wpi_sc_t *sc)
763 {
764 	cv_destroy(&sc->sc_mt_cv);
765 	mutex_destroy(&sc->sc_mt_lock);
766 	cv_destroy(&sc->sc_cmd_cv);
767 	cv_destroy(&sc->sc_fw_cv);
768 	mutex_destroy(&sc->sc_tx_lock);
769 	mutex_destroy(&sc->sc_glock);
770 }
771 
772 /*
773  * Allocate an area of memory and a DMA handle for accessing it
774  */
775 static int
776 wpi_alloc_dma_mem(wpi_sc_t *sc, size_t memsize, ddi_dma_attr_t *dma_attr_p,
777 	ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, wpi_dma_t *dma_p)
778 {
779 	caddr_t vaddr;
780 	int err;
781 
782 	/*
783 	 * Allocate handle
784 	 */
785 	err = ddi_dma_alloc_handle(sc->sc_dip, dma_attr_p,
786 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
787 	if (err != DDI_SUCCESS) {
788 		dma_p->dma_hdl = NULL;
789 		return (DDI_FAILURE);
790 	}
791 
792 	/*
793 	 * Allocate memory
794 	 */
795 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
796 	    dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
797 	    DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
798 	if (err != DDI_SUCCESS) {
799 		ddi_dma_free_handle(&dma_p->dma_hdl);
800 		dma_p->dma_hdl = NULL;
801 		dma_p->acc_hdl = NULL;
802 		return (DDI_FAILURE);
803 	}
804 
805 	/*
806 	 * Bind the two together
807 	 */
808 	dma_p->mem_va = vaddr;
809 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
810 	    vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
811 	    &dma_p->cookie, &dma_p->ncookies);
812 	if (err != DDI_DMA_MAPPED) {
813 		ddi_dma_mem_free(&dma_p->acc_hdl);
814 		ddi_dma_free_handle(&dma_p->dma_hdl);
815 		dma_p->acc_hdl = NULL;
816 		dma_p->dma_hdl = NULL;
817 		return (DDI_FAILURE);
818 	}
819 
820 	dma_p->nslots = ~0U;
821 	dma_p->size = ~0U;
822 	dma_p->token = ~0U;
823 	dma_p->offset = 0;
824 	return (DDI_SUCCESS);
825 }
826 
827 /*
828  * Free one allocated area of DMAable memory
829  */
830 static void
831 wpi_free_dma_mem(wpi_dma_t *dma_p)
832 {
833 	if (dma_p->dma_hdl != NULL) {
834 		if (dma_p->ncookies) {
835 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
836 			dma_p->ncookies = 0;
837 		}
838 		ddi_dma_free_handle(&dma_p->dma_hdl);
839 		dma_p->dma_hdl = NULL;
840 	}
841 
842 	if (dma_p->acc_hdl != NULL) {
843 		ddi_dma_mem_free(&dma_p->acc_hdl);
844 		dma_p->acc_hdl = NULL;
845 	}
846 }
847 
848 /*
849  * Allocate an area of dma memory for firmware load.
850  * Idealy, this allocation should be a one time action, that is,
851  * the memory will be freed after the firmware is uploaded to the
852  * card. but since a recovery mechanism for the fatal firmware need
853  * reload the firmware, and re-allocate dma at run time may be failed,
854  * so we allocate it at attach and keep it in the whole lifecycle of
855  * the driver.
856  */
857 static int
858 wpi_alloc_fw_dma(wpi_sc_t *sc)
859 {
860 	int i, err = DDI_SUCCESS;
861 	wpi_dma_t *dma_p;
862 
863 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->textsz),
864 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
865 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
866 	    &sc->sc_dma_fw_text);
867 	dma_p = &sc->sc_dma_fw_text;
868 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
869 	    dma_p->ncookies, dma_p->cookie.dmac_address,
870 	    dma_p->cookie.dmac_size));
871 	if (err != DDI_SUCCESS) {
872 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
873 		    "text dma memory");
874 		goto fail;
875 	}
876 	for (i = 0; i < dma_p->ncookies; i++) {
877 		sc->sc_fw_text_cookie[i] = dma_p->cookie;
878 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
879 	}
880 	err = wpi_alloc_dma_mem(sc, LE_32(sc->sc_hdr->datasz),
881 	    &fw_buffer_dma_attr, &wpi_dma_accattr,
882 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
883 	    &sc->sc_dma_fw_data);
884 	dma_p = &sc->sc_dma_fw_data;
885 	WPI_DBG((WPI_DEBUG_DMA, "ncookies:%d addr1:%x size1:%x\n",
886 	    dma_p->ncookies, dma_p->cookie.dmac_address,
887 	    dma_p->cookie.dmac_size));
888 	if (err != DDI_SUCCESS) {
889 		cmn_err(CE_WARN, "wpi_alloc_fw_dma(): failed to alloc"
890 		    "data dma memory");
891 		goto fail;
892 	}
893 	for (i = 0; i < dma_p->ncookies; i++) {
894 		sc->sc_fw_data_cookie[i] = dma_p->cookie;
895 		ddi_dma_nextcookie(dma_p->dma_hdl, &dma_p->cookie);
896 	}
897 fail:
898 	return (err);
899 }
900 
901 static void
902 wpi_free_fw_dma(wpi_sc_t *sc)
903 {
904 	wpi_free_dma_mem(&sc->sc_dma_fw_text);
905 	wpi_free_dma_mem(&sc->sc_dma_fw_data);
906 }
907 
908 /*
909  * Allocate a shared page between host and NIC.
910  */
911 static int
912 wpi_alloc_shared(wpi_sc_t *sc)
913 {
914 	int err = DDI_SUCCESS;
915 
916 	/* must be aligned on a 4K-page boundary */
917 	err = wpi_alloc_dma_mem(sc, sizeof (wpi_shared_t),
918 	    &sh_dma_attr, &wpi_dma_accattr,
919 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
920 	    &sc->sc_dma_sh);
921 	if (err != DDI_SUCCESS)
922 		goto fail;
923 	sc->sc_shared = (wpi_shared_t *)sc->sc_dma_sh.mem_va;
924 	return (err);
925 
926 fail:
927 	wpi_free_shared(sc);
928 	return (err);
929 }
930 
931 static void
932 wpi_free_shared(wpi_sc_t *sc)
933 {
934 	wpi_free_dma_mem(&sc->sc_dma_sh);
935 }
936 
937 static int
938 wpi_alloc_rx_ring(wpi_sc_t *sc)
939 {
940 	wpi_rx_ring_t *ring;
941 	wpi_rx_data_t *data;
942 	int i, err = DDI_SUCCESS;
943 
944 	ring = &sc->sc_rxq;
945 	ring->cur = 0;
946 
947 	err = wpi_alloc_dma_mem(sc, WPI_RX_RING_COUNT * sizeof (uint32_t),
948 	    &ring_desc_dma_attr, &wpi_dma_accattr,
949 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
950 	    &ring->dma_desc);
951 	if (err != DDI_SUCCESS) {
952 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring desc failed\n"));
953 		goto fail;
954 	}
955 	ring->desc = (uint32_t *)ring->dma_desc.mem_va;
956 
957 	/*
958 	 * Allocate Rx buffers.
959 	 */
960 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
961 		data = &ring->data[i];
962 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
963 		    &rx_buffer_dma_attr, &wpi_dma_accattr,
964 		    DDI_DMA_READ | DDI_DMA_STREAMING,
965 		    &data->dma_data);
966 		if (err != DDI_SUCCESS) {
967 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc rx ring buf[%d] "
968 			    "failed\n", i));
969 			goto fail;
970 		}
971 
972 		ring->desc[i] = LE_32(data->dma_data.cookie.dmac_address);
973 	}
974 
975 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
976 
977 	return (err);
978 
979 fail:
980 	wpi_free_rx_ring(sc);
981 	return (err);
982 }
983 
984 static void
985 wpi_reset_rx_ring(wpi_sc_t *sc)
986 {
987 	int ntries;
988 
989 	wpi_mem_lock(sc);
990 
991 	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
992 	for (ntries = 0; ntries < 2000; ntries++) {
993 		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
994 			break;
995 		DELAY(1000);
996 	}
997 	if (ntries == 2000)
998 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Rx ring\n"));
999 
1000 	wpi_mem_unlock(sc);
1001 
1002 	sc->sc_rxq.cur = 0;
1003 }
1004 
1005 static void
1006 wpi_free_rx_ring(wpi_sc_t *sc)
1007 {
1008 	int i;
1009 
1010 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1011 		if (sc->sc_rxq.data[i].dma_data.dma_hdl)
1012 			WPI_DMA_SYNC(sc->sc_rxq.data[i].dma_data,
1013 			    DDI_DMA_SYNC_FORCPU);
1014 		wpi_free_dma_mem(&sc->sc_rxq.data[i].dma_data);
1015 	}
1016 
1017 	if (sc->sc_rxq.dma_desc.dma_hdl)
1018 		WPI_DMA_SYNC(sc->sc_rxq.dma_desc, DDI_DMA_SYNC_FORDEV);
1019 	wpi_free_dma_mem(&sc->sc_rxq.dma_desc);
1020 }
1021 
1022 static int
1023 wpi_alloc_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring, int count, int qid)
1024 {
1025 	wpi_tx_data_t *data;
1026 	wpi_tx_desc_t *desc_h;
1027 	uint32_t paddr_desc_h;
1028 	wpi_tx_cmd_t *cmd_h;
1029 	uint32_t paddr_cmd_h;
1030 	int i, err = DDI_SUCCESS;
1031 
1032 	ring->qid = qid;
1033 	ring->count = count;
1034 	ring->queued = 0;
1035 	ring->cur = 0;
1036 
1037 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_desc_t),
1038 	    &ring_desc_dma_attr, &wpi_dma_accattr,
1039 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1040 	    &ring->dma_desc);
1041 	if (err != DDI_SUCCESS) {
1042 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring desc[%d] failed\n",
1043 		    qid));
1044 		goto fail;
1045 	}
1046 
1047 	/* update shared page with ring's base address */
1048 	sc->sc_shared->txbase[qid] = ring->dma_desc.cookie.dmac_address;
1049 
1050 	desc_h = (wpi_tx_desc_t *)ring->dma_desc.mem_va;
1051 	paddr_desc_h = ring->dma_desc.cookie.dmac_address;
1052 
1053 	err = wpi_alloc_dma_mem(sc, count * sizeof (wpi_tx_cmd_t),
1054 	    &tx_cmd_dma_attr, &wpi_dma_accattr,
1055 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1056 	    &ring->dma_cmd);
1057 	if (err != DDI_SUCCESS) {
1058 		WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring cmd[%d] failed\n",
1059 		    qid));
1060 		goto fail;
1061 	}
1062 
1063 	cmd_h = (wpi_tx_cmd_t *)ring->dma_cmd.mem_va;
1064 	paddr_cmd_h = ring->dma_cmd.cookie.dmac_address;
1065 
1066 	/*
1067 	 * Allocate Tx buffers.
1068 	 */
1069 	ring->data = kmem_zalloc(sizeof (wpi_tx_data_t) * count, KM_NOSLEEP);
1070 	if (ring->data == NULL) {
1071 		WPI_DBG((WPI_DEBUG_DMA, "could not allocate tx data slots\n"));
1072 		goto fail;
1073 	}
1074 
1075 	for (i = 0; i < count; i++) {
1076 		data = &ring->data[i];
1077 		err = wpi_alloc_dma_mem(sc, sc->sc_dmabuf_sz,
1078 		    &tx_buffer_dma_attr, &wpi_dma_accattr,
1079 		    DDI_DMA_WRITE | DDI_DMA_STREAMING,
1080 		    &data->dma_data);
1081 		if (err != DDI_SUCCESS) {
1082 			WPI_DBG((WPI_DEBUG_DMA, "dma alloc tx ring buf[%d] "
1083 			    "failed\n", i));
1084 			goto fail;
1085 		}
1086 
1087 		data->desc = desc_h + i;
1088 		data->paddr_desc = paddr_desc_h +
1089 		    ((uintptr_t)data->desc - (uintptr_t)desc_h);
1090 		data->cmd = cmd_h + i;
1091 		data->paddr_cmd = paddr_cmd_h +
1092 		    ((uintptr_t)data->cmd - (uintptr_t)cmd_h);
1093 	}
1094 
1095 	return (err);
1096 
1097 fail:
1098 	wpi_free_tx_ring(sc, ring);
1099 	return (err);
1100 }
1101 
1102 static void
1103 wpi_reset_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1104 {
1105 	wpi_tx_data_t *data;
1106 	int i, ntries;
1107 
1108 	wpi_mem_lock(sc);
1109 
1110 	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1111 	for (ntries = 0; ntries < 100; ntries++) {
1112 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1113 			break;
1114 		DELAY(10);
1115 	}
1116 #ifdef DEBUG
1117 	if (ntries == 100 && wpi_dbg_flags > 0) {
1118 		WPI_DBG((WPI_DEBUG_DMA, "timeout resetting Tx ring %d\n",
1119 		    ring->qid));
1120 	}
1121 #endif
1122 	wpi_mem_unlock(sc);
1123 
1124 	if (!(sc->sc_flags & WPI_F_QUIESCED)) {
1125 		for (i = 0; i < ring->count; i++) {
1126 			data = &ring->data[i];
1127 			WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
1128 		}
1129 	}
1130 
1131 	ring->queued = 0;
1132 	ring->cur = 0;
1133 }
1134 
1135 /*ARGSUSED*/
1136 static void
1137 wpi_free_tx_ring(wpi_sc_t *sc, wpi_tx_ring_t *ring)
1138 {
1139 	int i;
1140 
1141 	if (ring->dma_desc.dma_hdl != NULL)
1142 		WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
1143 	wpi_free_dma_mem(&ring->dma_desc);
1144 
1145 	if (ring->dma_cmd.dma_hdl != NULL)
1146 		WPI_DMA_SYNC(ring->dma_cmd, DDI_DMA_SYNC_FORDEV);
1147 	wpi_free_dma_mem(&ring->dma_cmd);
1148 
1149 	if (ring->data != NULL) {
1150 		for (i = 0; i < ring->count; i++) {
1151 			if (ring->data[i].dma_data.dma_hdl)
1152 				WPI_DMA_SYNC(ring->data[i].dma_data,
1153 				    DDI_DMA_SYNC_FORDEV);
1154 			wpi_free_dma_mem(&ring->data[i].dma_data);
1155 		}
1156 		kmem_free(ring->data, ring->count * sizeof (wpi_tx_data_t));
1157 		ring->data = NULL;
1158 	}
1159 }
1160 
1161 static int
1162 wpi_ring_init(wpi_sc_t *sc)
1163 {
1164 	int i, err = DDI_SUCCESS;
1165 
1166 	for (i = 0; i < 4; i++) {
1167 		err = wpi_alloc_tx_ring(sc, &sc->sc_txq[i], WPI_TX_RING_COUNT,
1168 		    i);
1169 		if (err != DDI_SUCCESS)
1170 			goto fail;
1171 	}
1172 	err = wpi_alloc_tx_ring(sc, &sc->sc_cmdq, WPI_CMD_RING_COUNT, 4);
1173 	if (err != DDI_SUCCESS)
1174 		goto fail;
1175 	err = wpi_alloc_tx_ring(sc, &sc->sc_svcq, WPI_SVC_RING_COUNT, 5);
1176 	if (err != DDI_SUCCESS)
1177 		goto fail;
1178 	err = wpi_alloc_rx_ring(sc);
1179 	if (err != DDI_SUCCESS)
1180 		goto fail;
1181 	return (err);
1182 
1183 fail:
1184 	return (err);
1185 }
1186 
1187 static void
1188 wpi_ring_free(wpi_sc_t *sc)
1189 {
1190 	int i = 4;
1191 
1192 	wpi_free_rx_ring(sc);
1193 	wpi_free_tx_ring(sc, &sc->sc_svcq);
1194 	wpi_free_tx_ring(sc, &sc->sc_cmdq);
1195 	while (--i >= 0) {
1196 		wpi_free_tx_ring(sc, &sc->sc_txq[i]);
1197 	}
1198 }
1199 
1200 /* ARGSUSED */
1201 static ieee80211_node_t *
1202 wpi_node_alloc(ieee80211com_t *ic)
1203 {
1204 	wpi_amrr_t *amrr;
1205 
1206 	amrr = kmem_zalloc(sizeof (wpi_amrr_t), KM_SLEEP);
1207 	if (amrr != NULL)
1208 		wpi_amrr_init(amrr);
1209 	return (&amrr->in);
1210 }
1211 
1212 static void
1213 wpi_node_free(ieee80211_node_t *in)
1214 {
1215 	ieee80211com_t *ic = in->in_ic;
1216 
1217 	ic->ic_node_cleanup(in);
1218 	if (in->in_wpa_ie != NULL)
1219 		ieee80211_free(in->in_wpa_ie);
1220 	kmem_free(in, sizeof (wpi_amrr_t));
1221 }
1222 
1223 /*ARGSUSED*/
1224 static int
1225 wpi_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1226 {
1227 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1228 	ieee80211_node_t *in = ic->ic_bss;
1229 	enum ieee80211_state ostate;
1230 	int i, err = WPI_SUCCESS;
1231 
1232 	mutex_enter(&sc->sc_glock);
1233 	ostate = ic->ic_state;
1234 	switch (nstate) {
1235 	case IEEE80211_S_SCAN:
1236 		switch (ostate) {
1237 		case IEEE80211_S_INIT:
1238 		{
1239 			wpi_node_t node;
1240 
1241 			sc->sc_flags |= WPI_F_SCANNING;
1242 			sc->sc_scan_next = 0;
1243 
1244 			/* make the link LED blink while we're scanning */
1245 			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
1246 
1247 			/*
1248 			 * clear association to receive beacons from all
1249 			 * BSS'es
1250 			 */
1251 			sc->sc_config.state = 0;
1252 			sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1253 
1254 			WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x "
1255 			    "filter %x\n",
1256 			    sc->sc_config.chan, sc->sc_config.flags,
1257 			    sc->sc_config.filter));
1258 
1259 			err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1260 			    sizeof (wpi_config_t), 1);
1261 			if (err != WPI_SUCCESS) {
1262 				cmn_err(CE_WARN,
1263 				    "could not clear association\n");
1264 				sc->sc_flags &= ~WPI_F_SCANNING;
1265 				mutex_exit(&sc->sc_glock);
1266 				return (err);
1267 			}
1268 
1269 			/* add broadcast node to send probe request */
1270 			(void) memset(&node, 0, sizeof (node));
1271 			(void) memset(&node.bssid, 0xff, IEEE80211_ADDR_LEN);
1272 			node.id = WPI_ID_BROADCAST;
1273 
1274 			err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node,
1275 			    sizeof (node), 1);
1276 			if (err != WPI_SUCCESS) {
1277 				cmn_err(CE_WARN,
1278 				    "could not add broadcast node\n");
1279 				sc->sc_flags &= ~WPI_F_SCANNING;
1280 				mutex_exit(&sc->sc_glock);
1281 				return (err);
1282 			}
1283 			break;
1284 		}
1285 		case IEEE80211_S_SCAN:
1286 			mutex_exit(&sc->sc_glock);
1287 			/* step to next channel before actual FW scan */
1288 			err = sc->sc_newstate(ic, nstate, arg);
1289 			mutex_enter(&sc->sc_glock);
1290 			if ((err != 0) || ((err = wpi_scan(sc)) != 0)) {
1291 				cmn_err(CE_WARN,
1292 				    "could not initiate scan\n");
1293 				sc->sc_flags &= ~WPI_F_SCANNING;
1294 				ieee80211_cancel_scan(ic);
1295 			}
1296 			mutex_exit(&sc->sc_glock);
1297 			return (err);
1298 		default:
1299 			break;
1300 		}
1301 		sc->sc_clk = 0;
1302 		break;
1303 
1304 	case IEEE80211_S_AUTH:
1305 		if (ostate == IEEE80211_S_SCAN) {
1306 			sc->sc_flags &= ~WPI_F_SCANNING;
1307 		}
1308 
1309 		/* reset state to handle reassociations correctly */
1310 		sc->sc_config.state = 0;
1311 		sc->sc_config.filter &= ~LE_32(WPI_FILTER_BSS);
1312 
1313 		if ((err = wpi_auth(sc)) != 0) {
1314 			WPI_DBG((WPI_DEBUG_80211,
1315 			    "could not send authentication request\n"));
1316 			mutex_exit(&sc->sc_glock);
1317 			return (err);
1318 		}
1319 		break;
1320 
1321 	case IEEE80211_S_RUN:
1322 		if (ostate == IEEE80211_S_SCAN) {
1323 			sc->sc_flags &= ~WPI_F_SCANNING;
1324 		}
1325 
1326 		if (ic->ic_opmode == IEEE80211_M_MONITOR) {
1327 			/* link LED blinks while monitoring */
1328 			wpi_set_led(sc, WPI_LED_LINK, 5, 5);
1329 			break;
1330 		}
1331 
1332 		if (ic->ic_opmode != IEEE80211_M_STA) {
1333 			(void) wpi_auth(sc);
1334 			/* need setup beacon here */
1335 		}
1336 		WPI_DBG((WPI_DEBUG_80211, "wpi: associated."));
1337 
1338 		/* update adapter's configuration */
1339 		sc->sc_config.state = LE_16(WPI_CONFIG_ASSOCIATED);
1340 		/* short preamble/slot time are negotiated when associating */
1341 		sc->sc_config.flags &= ~LE_32(WPI_CONFIG_SHPREAMBLE |
1342 		    WPI_CONFIG_SHSLOT);
1343 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
1344 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHSLOT);
1345 		if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1346 			sc->sc_config.flags |= LE_32(WPI_CONFIG_SHPREAMBLE);
1347 		sc->sc_config.filter |= LE_32(WPI_FILTER_BSS);
1348 		if (ic->ic_opmode != IEEE80211_M_STA)
1349 			sc->sc_config.filter |= LE_32(WPI_FILTER_BEACON);
1350 
1351 		WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x\n",
1352 		    sc->sc_config.chan, sc->sc_config.flags));
1353 		err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
1354 		    sizeof (wpi_config_t), 1);
1355 		if (err != WPI_SUCCESS) {
1356 			WPI_DBG((WPI_DEBUG_80211,
1357 			    "could not update configuration\n"));
1358 			mutex_exit(&sc->sc_glock);
1359 			return (err);
1360 		}
1361 
1362 		/* start automatic rate control */
1363 		mutex_enter(&sc->sc_mt_lock);
1364 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1365 			sc->sc_flags |= WPI_F_RATE_AUTO_CTL;
1366 			/* set rate to some reasonable initial value */
1367 			i = in->in_rates.ir_nrates - 1;
1368 			while (i > 0 && IEEE80211_RATE(i) > 72)
1369 				i--;
1370 			in->in_txrate = i;
1371 		} else {
1372 			sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
1373 		}
1374 		mutex_exit(&sc->sc_mt_lock);
1375 
1376 		/* link LED always on while associated */
1377 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1378 		break;
1379 
1380 	case IEEE80211_S_INIT:
1381 		sc->sc_flags &= ~WPI_F_SCANNING;
1382 		break;
1383 
1384 	case IEEE80211_S_ASSOC:
1385 		sc->sc_flags &= ~WPI_F_SCANNING;
1386 		break;
1387 	}
1388 
1389 	mutex_exit(&sc->sc_glock);
1390 	return (sc->sc_newstate(ic, nstate, arg));
1391 }
1392 
1393 /*ARGSUSED*/
1394 static int wpi_key_set(ieee80211com_t *ic, const struct ieee80211_key *k,
1395     const uint8_t mac[IEEE80211_ADDR_LEN])
1396 {
1397 	wpi_sc_t *sc = (wpi_sc_t *)ic;
1398 	wpi_node_t node;
1399 	int err;
1400 
1401 	switch (k->wk_cipher->ic_cipher) {
1402 	case IEEE80211_CIPHER_WEP:
1403 	case IEEE80211_CIPHER_TKIP:
1404 		return (1); /* sofeware do it. */
1405 	case IEEE80211_CIPHER_AES_CCM:
1406 		break;
1407 	default:
1408 		return (0);
1409 	}
1410 	sc->sc_config.filter &= ~(WPI_FILTER_NODECRYPTUNI |
1411 	    WPI_FILTER_NODECRYPTMUL);
1412 
1413 	mutex_enter(&sc->sc_glock);
1414 
1415 	/* update ap/multicast node */
1416 	(void) memset(&node, 0, sizeof (node));
1417 	if (IEEE80211_IS_MULTICAST(mac)) {
1418 		(void) memset(node.bssid, 0xff, 6);
1419 		node.id = WPI_ID_BROADCAST;
1420 	} else {
1421 		IEEE80211_ADDR_COPY(node.bssid, ic->ic_bss->in_bssid);
1422 		node.id = WPI_ID_BSS;
1423 	}
1424 	if (k->wk_flags & IEEE80211_KEY_XMIT) {
1425 		node.key_flags = 0;
1426 		node.keyp = k->wk_keyix;
1427 	} else {
1428 		node.key_flags = (1 << 14);
1429 		node.keyp = k->wk_keyix + 4;
1430 	}
1431 	(void) memcpy(node.key, k->wk_key, k->wk_keylen);
1432 	node.key_flags |= (2 | (1 << 3) | (k->wk_keyix << 8));
1433 	node.sta_mask = 1;
1434 	node.control = 1;
1435 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
1436 	if (err != WPI_SUCCESS) {
1437 		cmn_err(CE_WARN, "wpi_key_set():"
1438 		    "failed to update ap node\n");
1439 		mutex_exit(&sc->sc_glock);
1440 		return (0);
1441 	}
1442 	mutex_exit(&sc->sc_glock);
1443 	return (1);
1444 }
1445 
1446 /*
1447  * Grab exclusive access to NIC memory.
1448  */
1449 static void
1450 wpi_mem_lock(wpi_sc_t *sc)
1451 {
1452 	uint32_t tmp;
1453 	int ntries;
1454 
1455 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1456 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1457 
1458 	/* spin until we actually get the lock */
1459 	for (ntries = 0; ntries < 1000; ntries++) {
1460 		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1461 		    (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1462 			break;
1463 		DELAY(10);
1464 	}
1465 	if (ntries == 1000)
1466 		WPI_DBG((WPI_DEBUG_PIO, "could not lock memory\n"));
1467 }
1468 
1469 /*
1470  * Release lock on NIC memory.
1471  */
1472 static void
1473 wpi_mem_unlock(wpi_sc_t *sc)
1474 {
1475 	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1476 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1477 }
1478 
1479 static uint32_t
1480 wpi_mem_read(wpi_sc_t *sc, uint16_t addr)
1481 {
1482 	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1483 	return (WPI_READ(sc, WPI_READ_MEM_DATA));
1484 }
1485 
1486 static void
1487 wpi_mem_write(wpi_sc_t *sc, uint16_t addr, uint32_t data)
1488 {
1489 	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1490 	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1491 }
1492 
1493 static void
1494 wpi_mem_write_region_4(wpi_sc_t *sc, uint16_t addr,
1495     const uint32_t *data, int wlen)
1496 {
1497 	for (; wlen > 0; wlen--, data++, addr += 4)
1498 		wpi_mem_write(sc, addr, *data);
1499 }
1500 
1501 /*
1502  * Read 16 bits from the EEPROM.  We access EEPROM through the MAC instead of
1503  * using the traditional bit-bang method.
1504  */
1505 static uint16_t
1506 wpi_read_prom_word(wpi_sc_t *sc, uint32_t addr)
1507 {
1508 	uint32_t val;
1509 	int ntries;
1510 
1511 	WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1512 
1513 	wpi_mem_lock(sc);
1514 	for (ntries = 0; ntries < 10; ntries++) {
1515 		if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1516 			break;
1517 		DELAY(10);
1518 	}
1519 	wpi_mem_unlock(sc);
1520 
1521 	if (ntries == 10) {
1522 		WPI_DBG((WPI_DEBUG_PIO, "could not read EEPROM\n"));
1523 		return (0xdead);
1524 	}
1525 	return (val >> 16);
1526 }
1527 
1528 /*
1529  * The firmware boot code is small and is intended to be copied directly into
1530  * the NIC internal memory.
1531  */
1532 static int
1533 wpi_load_microcode(wpi_sc_t *sc)
1534 {
1535 	const char *ucode;
1536 	int size;
1537 
1538 	ucode = sc->sc_boot;
1539 	size = LE_32(sc->sc_hdr->bootsz);
1540 	/* check that microcode size is a multiple of 4 */
1541 	if (size & 3)
1542 		return (EINVAL);
1543 
1544 	size /= sizeof (uint32_t);
1545 
1546 	wpi_mem_lock(sc);
1547 
1548 	/* copy microcode image into NIC memory */
1549 	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE, (const uint32_t *)ucode,
1550 	    size);
1551 
1552 	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1553 	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1554 	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1555 
1556 	/* run microcode */
1557 	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1558 
1559 	wpi_mem_unlock(sc);
1560 
1561 	return (WPI_SUCCESS);
1562 }
1563 
1564 /*
1565  * The firmware text and data segments are transferred to the NIC using DMA.
1566  * The driver just copies the firmware into DMA-safe memory and tells the NIC
1567  * where to find it.  Once the NIC has copied the firmware into its internal
1568  * memory, we can free our local copy in the driver.
1569  */
1570 static int
1571 wpi_load_firmware(wpi_sc_t *sc, uint32_t target)
1572 {
1573 	const char *fw;
1574 	int size;
1575 	wpi_dma_t *dma_p;
1576 	ddi_dma_cookie_t *cookie;
1577 	wpi_tx_desc_t desc;
1578 	int i, ntries, err = WPI_SUCCESS;
1579 
1580 	/* only text and data here */
1581 	if (target == WPI_FW_TEXT) {
1582 		fw = sc->sc_text;
1583 		size = LE_32(sc->sc_hdr->textsz);
1584 		dma_p = &sc->sc_dma_fw_text;
1585 		cookie = sc->sc_fw_text_cookie;
1586 	} else {
1587 		fw = sc->sc_data;
1588 		size = LE_32(sc->sc_hdr->datasz);
1589 		dma_p = &sc->sc_dma_fw_data;
1590 		cookie = sc->sc_fw_data_cookie;
1591 	}
1592 
1593 	/* copy firmware image to DMA-safe memory */
1594 	(void) memcpy(dma_p->mem_va, fw, size);
1595 
1596 	/* make sure the adapter will get up-to-date values */
1597 	(void) ddi_dma_sync(dma_p->dma_hdl, 0, size, DDI_DMA_SYNC_FORDEV);
1598 
1599 	(void) memset(&desc, 0, sizeof (desc));
1600 	desc.flags = LE_32(WPI_PAD32(size) << 28 | dma_p->ncookies << 24);
1601 	for (i = 0; i < dma_p->ncookies; i++) {
1602 		WPI_DBG((WPI_DEBUG_DMA, "cookie%d addr:%x size:%x\n",
1603 		    i, cookie[i].dmac_address, cookie[i].dmac_size));
1604 		desc.segs[i].addr = cookie[i].dmac_address;
1605 		desc.segs[i].len = (uint32_t)cookie[i].dmac_size;
1606 	}
1607 
1608 	wpi_mem_lock(sc);
1609 
1610 	/* tell adapter where to copy image in its internal memory */
1611 	WPI_WRITE(sc, WPI_FW_TARGET, target);
1612 
1613 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0);
1614 
1615 	/* copy firmware descriptor into NIC memory */
1616 	WPI_WRITE_REGION_4(sc, WPI_TX_DESC(6), (uint32_t *)&desc,
1617 	    sizeof desc / sizeof (uint32_t));
1618 
1619 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0xfffff);
1620 	WPI_WRITE(sc, WPI_TX_STATE(6), 0x4001);
1621 	WPI_WRITE(sc, WPI_TX_CONFIG(6), 0x80000001);
1622 
1623 	/* wait while the adapter is busy copying the firmware */
1624 	for (ntries = 0; ntries < 100; ntries++) {
1625 		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(6))
1626 			break;
1627 		DELAY(1000);
1628 	}
1629 	if (ntries == 100) {
1630 		WPI_DBG((WPI_DEBUG_FW, "timeout transferring firmware\n"));
1631 		err = ETIMEDOUT;
1632 	}
1633 
1634 	WPI_WRITE(sc, WPI_TX_CREDIT(6), 0);
1635 
1636 	wpi_mem_unlock(sc);
1637 
1638 	return (err);
1639 }
1640 
1641 /*ARGSUSED*/
1642 static void
1643 wpi_rx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1644 {
1645 	ieee80211com_t *ic = &sc->sc_ic;
1646 	wpi_rx_ring_t *ring = &sc->sc_rxq;
1647 	wpi_rx_stat_t *stat;
1648 	wpi_rx_head_t *head;
1649 	wpi_rx_tail_t *tail;
1650 	ieee80211_node_t *in;
1651 	struct ieee80211_frame *wh;
1652 	mblk_t *mp;
1653 	uint16_t len;
1654 
1655 	stat = (wpi_rx_stat_t *)(desc + 1);
1656 
1657 	if (stat->len > WPI_STAT_MAXLEN) {
1658 		WPI_DBG((WPI_DEBUG_RX, "invalid rx statistic header\n"));
1659 		return;
1660 	}
1661 
1662 	head = (wpi_rx_head_t *)((caddr_t)(stat + 1) + stat->len);
1663 	tail = (wpi_rx_tail_t *)((caddr_t)(head + 1) + LE_16(head->len));
1664 
1665 	len = LE_16(head->len);
1666 
1667 	WPI_DBG((WPI_DEBUG_RX, "rx intr: idx=%d len=%d stat len=%d rssi=%d "
1668 	    "rate=%x chan=%d tstamp=%llu", ring->cur, LE_32(desc->len),
1669 	    len, (int8_t)stat->rssi, head->rate, head->chan,
1670 	    LE_64(tail->tstamp)));
1671 
1672 	if ((len < 20) || (len > sc->sc_dmabuf_sz)) {
1673 		sc->sc_rx_err++;
1674 		return;
1675 	}
1676 
1677 	/*
1678 	 * Discard Rx frames with bad CRC early
1679 	 */
1680 	if ((LE_32(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1681 		WPI_DBG((WPI_DEBUG_RX, "rx tail flags error %x\n",
1682 		    LE_32(tail->flags)));
1683 		sc->sc_rx_err++;
1684 		return;
1685 	}
1686 
1687 	/* update Rx descriptor */
1688 	/* ring->desc[ring->cur] = LE_32(data->dma_data.cookie.dmac_address); */
1689 
1690 #ifdef WPI_BPF
1691 #ifndef WPI_CURRENT
1692 	if (sc->sc_drvbpf != NULL) {
1693 #else
1694 	if (bpf_peers_present(sc->sc_drvbpf)) {
1695 #endif
1696 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1697 
1698 		tap->wr_flags = 0;
1699 		tap->wr_rate = head->rate;
1700 		tap->wr_chan_freq =
1701 		    LE_16(ic->ic_channels[head->chan].ic_freq);
1702 		tap->wr_chan_flags =
1703 		    LE_16(ic->ic_channels[head->chan].ic_flags);
1704 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1705 		tap->wr_dbm_antnoise = (int8_t)LE_16(stat->noise);
1706 		tap->wr_tsft = tail->tstamp;
1707 		tap->wr_antenna = (LE_16(head->flags) >> 4) & 0xf;
1708 		switch (head->rate) {
1709 		/* CCK rates */
1710 		case  10: tap->wr_rate =   2; break;
1711 		case  20: tap->wr_rate =   4; break;
1712 		case  55: tap->wr_rate =  11; break;
1713 		case 110: tap->wr_rate =  22; break;
1714 		/* OFDM rates */
1715 		case 0xd: tap->wr_rate =  12; break;
1716 		case 0xf: tap->wr_rate =  18; break;
1717 		case 0x5: tap->wr_rate =  24; break;
1718 		case 0x7: tap->wr_rate =  36; break;
1719 		case 0x9: tap->wr_rate =  48; break;
1720 		case 0xb: tap->wr_rate =  72; break;
1721 		case 0x1: tap->wr_rate =  96; break;
1722 		case 0x3: tap->wr_rate = 108; break;
1723 		/* unknown rate: should not happen */
1724 		default:  tap->wr_rate =   0;
1725 		}
1726 		if (LE_16(head->flags) & 0x4)
1727 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1728 
1729 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1730 	}
1731 #endif
1732 	/* grab a reference to the source node */
1733 	wh = (struct ieee80211_frame *)(head + 1);
1734 
1735 #ifdef DEBUG
1736 	if (wpi_dbg_flags & WPI_DEBUG_RX)
1737 		ieee80211_dump_pkt((uint8_t *)wh, len, 0, 0);
1738 #endif
1739 
1740 	in = ieee80211_find_rxnode(ic, wh);
1741 	mp = allocb(len, BPRI_MED);
1742 	if (mp) {
1743 		(void) memcpy(mp->b_wptr, wh, len);
1744 		mp->b_wptr += len;
1745 
1746 		/* send the frame to the 802.11 layer */
1747 		(void) ieee80211_input(ic, mp, in, stat->rssi, 0);
1748 	} else {
1749 		sc->sc_rx_nobuf++;
1750 		WPI_DBG((WPI_DEBUG_RX,
1751 		    "wpi_rx_intr(): alloc rx buf failed\n"));
1752 	}
1753 	/* release node reference */
1754 	ieee80211_free_node(in);
1755 }
1756 
1757 /*ARGSUSED*/
1758 static void
1759 wpi_tx_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc, wpi_rx_data_t *data)
1760 {
1761 	ieee80211com_t *ic = &sc->sc_ic;
1762 	wpi_tx_ring_t *ring = &sc->sc_txq[desc->qid & 0x3];
1763 	/* wpi_tx_data_t *txdata = &ring->data[desc->idx]; */
1764 	wpi_tx_stat_t *stat = (wpi_tx_stat_t *)(desc + 1);
1765 	wpi_amrr_t *amrr = (wpi_amrr_t *)ic->ic_bss;
1766 
1767 	WPI_DBG((WPI_DEBUG_TX, "tx done: qid=%d idx=%d retries=%d nkill=%d "
1768 	    "rate=%x duration=%d status=%x\n",
1769 	    desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate,
1770 	    LE_32(stat->duration), LE_32(stat->status)));
1771 
1772 	amrr->txcnt++;
1773 	WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d cnt\n", amrr->txcnt));
1774 	if (stat->ntries > 0) {
1775 		amrr->retrycnt++;
1776 		sc->sc_tx_retries++;
1777 		WPI_DBG((WPI_DEBUG_RATECTL, "tx: %d retries\n",
1778 		    amrr->retrycnt));
1779 	}
1780 
1781 	sc->sc_tx_timer = 0;
1782 
1783 	mutex_enter(&sc->sc_tx_lock);
1784 	ring->queued--;
1785 	if (ring->queued < 0)
1786 		ring->queued = 0;
1787 	if ((sc->sc_need_reschedule) && (ring->queued <= (ring->count << 3))) {
1788 		sc->sc_need_reschedule = 0;
1789 		mutex_exit(&sc->sc_tx_lock);
1790 		mac_tx_update(ic->ic_mach);
1791 		mutex_enter(&sc->sc_tx_lock);
1792 	}
1793 	mutex_exit(&sc->sc_tx_lock);
1794 }
1795 
1796 static void
1797 wpi_cmd_intr(wpi_sc_t *sc, wpi_rx_desc_t *desc)
1798 {
1799 	if ((desc->qid & 7) != 4) {
1800 		return;	/* not a command ack */
1801 	}
1802 	mutex_enter(&sc->sc_glock);
1803 	sc->sc_flags |= WPI_F_CMD_DONE;
1804 	cv_signal(&sc->sc_cmd_cv);
1805 	mutex_exit(&sc->sc_glock);
1806 }
1807 
1808 static uint_t
1809 wpi_notif_softintr(caddr_t arg)
1810 {
1811 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1812 	wpi_rx_desc_t *desc;
1813 	wpi_rx_data_t *data;
1814 	uint32_t hw;
1815 
1816 	mutex_enter(&sc->sc_glock);
1817 	if (sc->sc_notif_softint_pending != 1) {
1818 		mutex_exit(&sc->sc_glock);
1819 		return (DDI_INTR_UNCLAIMED);
1820 	}
1821 	mutex_exit(&sc->sc_glock);
1822 
1823 	hw = LE_32(sc->sc_shared->next);
1824 
1825 	while (sc->sc_rxq.cur != hw) {
1826 		data = &sc->sc_rxq.data[sc->sc_rxq.cur];
1827 		desc = (wpi_rx_desc_t *)data->dma_data.mem_va;
1828 
1829 		WPI_DBG((WPI_DEBUG_INTR, "rx notification hw = %d cur = %d "
1830 		    "qid=%x idx=%d flags=%x type=%d len=%d\n",
1831 		    hw, sc->sc_rxq.cur, desc->qid, desc->idx, desc->flags,
1832 		    desc->type, LE_32(desc->len)));
1833 
1834 		if (!(desc->qid & 0x80))	/* reply to a command */
1835 			wpi_cmd_intr(sc, desc);
1836 
1837 		switch (desc->type) {
1838 		case WPI_RX_DONE:
1839 			/* a 802.11 frame was received */
1840 			wpi_rx_intr(sc, desc, data);
1841 			break;
1842 
1843 		case WPI_TX_DONE:
1844 			/* a 802.11 frame has been transmitted */
1845 			wpi_tx_intr(sc, desc, data);
1846 			break;
1847 
1848 		case WPI_UC_READY:
1849 		{
1850 			wpi_ucode_info_t *uc =
1851 			    (wpi_ucode_info_t *)(desc + 1);
1852 
1853 			/* the microcontroller is ready */
1854 			WPI_DBG((WPI_DEBUG_FW,
1855 			    "microcode alive notification version %x "
1856 			    "alive %x\n", LE_32(uc->version),
1857 			    LE_32(uc->valid)));
1858 
1859 			if (LE_32(uc->valid) != 1) {
1860 				WPI_DBG((WPI_DEBUG_FW,
1861 				    "microcontroller initialization failed\n"));
1862 			}
1863 			break;
1864 		}
1865 		case WPI_STATE_CHANGED:
1866 		{
1867 			uint32_t *status = (uint32_t *)(desc + 1);
1868 
1869 			/* enabled/disabled notification */
1870 			WPI_DBG((WPI_DEBUG_RADIO, "state changed to %x\n",
1871 			    LE_32(*status)));
1872 
1873 			if (LE_32(*status) & 1) {
1874 				/*
1875 				 * the radio button has to be pushed(OFF). It
1876 				 * is considered as a hw error, the
1877 				 * wpi_thread() tries to recover it after the
1878 				 * button is pushed again(ON)
1879 				 */
1880 				cmn_err(CE_NOTE,
1881 				    "wpi: Radio transmitter is off\n");
1882 				sc->sc_ostate = sc->sc_ic.ic_state;
1883 				ieee80211_new_state(&sc->sc_ic,
1884 				    IEEE80211_S_INIT, -1);
1885 				sc->sc_flags |=
1886 				    (WPI_F_HW_ERR_RECOVER | WPI_F_RADIO_OFF);
1887 			}
1888 			break;
1889 		}
1890 		case WPI_START_SCAN:
1891 		{
1892 			wpi_start_scan_t *scan =
1893 			    (wpi_start_scan_t *)(desc + 1);
1894 
1895 			WPI_DBG((WPI_DEBUG_SCAN,
1896 			    "scanning channel %d status %x\n",
1897 			    scan->chan, LE_32(scan->status)));
1898 
1899 			break;
1900 		}
1901 		case WPI_STOP_SCAN:
1902 		{
1903 			wpi_stop_scan_t *scan =
1904 			    (wpi_stop_scan_t *)(desc + 1);
1905 
1906 			WPI_DBG((WPI_DEBUG_SCAN,
1907 			    "completed channel %d (burst of %d) status %02x\n",
1908 			    scan->chan, scan->nchan, scan->status));
1909 
1910 			sc->sc_scan_pending = 0;
1911 			sc->sc_scan_next++;
1912 			break;
1913 		}
1914 		default:
1915 			break;
1916 		}
1917 
1918 		sc->sc_rxq.cur = (sc->sc_rxq.cur + 1) % WPI_RX_RING_COUNT;
1919 	}
1920 
1921 	/* tell the firmware what we have processed */
1922 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1923 	WPI_WRITE(sc, WPI_RX_WIDX, hw & (~7));
1924 	mutex_enter(&sc->sc_glock);
1925 	sc->sc_notif_softint_pending = 0;
1926 	mutex_exit(&sc->sc_glock);
1927 
1928 	return (DDI_INTR_CLAIMED);
1929 }
1930 
1931 static uint_t
1932 wpi_intr(caddr_t arg)
1933 {
1934 	wpi_sc_t *sc = (wpi_sc_t *)arg;
1935 	uint32_t r, rfh;
1936 
1937 	mutex_enter(&sc->sc_glock);
1938 	if (sc->sc_flags & WPI_F_SUSPEND) {
1939 		mutex_exit(&sc->sc_glock);
1940 		return (DDI_INTR_UNCLAIMED);
1941 	}
1942 
1943 	r = WPI_READ(sc, WPI_INTR);
1944 	if (r == 0 || r == 0xffffffff) {
1945 		mutex_exit(&sc->sc_glock);
1946 		return (DDI_INTR_UNCLAIMED);
1947 	}
1948 
1949 	WPI_DBG((WPI_DEBUG_INTR, "interrupt reg %x\n", r));
1950 
1951 	rfh = WPI_READ(sc, WPI_INTR_STATUS);
1952 	/* disable interrupts */
1953 	WPI_WRITE(sc, WPI_MASK, 0);
1954 	/* ack interrupts */
1955 	WPI_WRITE(sc, WPI_INTR, r);
1956 	WPI_WRITE(sc, WPI_INTR_STATUS, rfh);
1957 
1958 	if (sc->sc_notif_softint_id == NULL) {
1959 		mutex_exit(&sc->sc_glock);
1960 		return (DDI_INTR_CLAIMED);
1961 	}
1962 
1963 	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1964 		WPI_DBG((WPI_DEBUG_FW, "fatal firmware error\n"));
1965 		mutex_exit(&sc->sc_glock);
1966 		wpi_stop(sc);
1967 		if (!(sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
1968 			sc->sc_ostate = sc->sc_ic.ic_state;
1969 		}
1970 		ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1);
1971 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
1972 		return (DDI_INTR_CLAIMED);
1973 	}
1974 
1975 	if ((r & (WPI_RX_INTR | WPI_RX_SWINT)) ||
1976 	    (rfh & 0x40070000)) {
1977 		sc->sc_notif_softint_pending = 1;
1978 		ddi_trigger_softintr(sc->sc_notif_softint_id);
1979 	}
1980 
1981 	if (r & WPI_ALIVE_INTR)	{ /* firmware initialized */
1982 		sc->sc_flags |= WPI_F_FW_INIT;
1983 		cv_signal(&sc->sc_fw_cv);
1984 	}
1985 
1986 	/* re-enable interrupts */
1987 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1988 	mutex_exit(&sc->sc_glock);
1989 
1990 	return (DDI_INTR_CLAIMED);
1991 }
1992 
1993 static uint8_t
1994 wpi_plcp_signal(int rate)
1995 {
1996 	switch (rate) {
1997 	/* CCK rates (returned values are device-dependent) */
1998 	case 2:		return (10);
1999 	case 4:		return (20);
2000 	case 11:	return (55);
2001 	case 22:	return (110);
2002 
2003 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
2004 	/* R1-R4 (ral/ural is R4-R1) */
2005 	case 12:	return (0xd);
2006 	case 18:	return (0xf);
2007 	case 24:	return (0x5);
2008 	case 36:	return (0x7);
2009 	case 48:	return (0x9);
2010 	case 72:	return (0xb);
2011 	case 96:	return (0x1);
2012 	case 108:	return (0x3);
2013 
2014 	/* unsupported rates (should not get there) */
2015 	default:	return (0);
2016 	}
2017 }
2018 
2019 static mblk_t *
2020 wpi_m_tx(void *arg, mblk_t *mp)
2021 {
2022 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2023 	ieee80211com_t	*ic = &sc->sc_ic;
2024 	mblk_t			*next;
2025 
2026 	if (sc->sc_flags & WPI_F_SUSPEND) {
2027 		freemsgchain(mp);
2028 		return (NULL);
2029 	}
2030 
2031 	if (ic->ic_state != IEEE80211_S_RUN) {
2032 		freemsgchain(mp);
2033 		return (NULL);
2034 	}
2035 
2036 	while (mp != NULL) {
2037 		next = mp->b_next;
2038 		mp->b_next = NULL;
2039 		if (wpi_send(ic, mp, IEEE80211_FC0_TYPE_DATA) != 0) {
2040 			mp->b_next = next;
2041 			break;
2042 		}
2043 		mp = next;
2044 	}
2045 	return (mp);
2046 }
2047 
2048 /* ARGSUSED */
2049 static int
2050 wpi_send(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
2051 {
2052 	wpi_sc_t *sc = (wpi_sc_t *)ic;
2053 	wpi_tx_ring_t *ring;
2054 	wpi_tx_desc_t *desc;
2055 	wpi_tx_data_t *data;
2056 	wpi_tx_cmd_t *cmd;
2057 	wpi_cmd_data_t *tx;
2058 	ieee80211_node_t *in;
2059 	struct ieee80211_frame *wh;
2060 	struct ieee80211_key *k;
2061 	mblk_t *m, *m0;
2062 	int rate, hdrlen, len, mblen, off, err = WPI_SUCCESS;
2063 
2064 	ring = ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) ?
2065 	    (&sc->sc_txq[0]) : (&sc->sc_txq[1]);
2066 	data = &ring->data[ring->cur];
2067 	desc = data->desc;
2068 	cmd = data->cmd;
2069 	bzero(desc, sizeof (*desc));
2070 	bzero(cmd, sizeof (*cmd));
2071 
2072 	mutex_enter(&sc->sc_tx_lock);
2073 	if (sc->sc_flags & WPI_F_SUSPEND) {
2074 		mutex_exit(&sc->sc_tx_lock);
2075 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2076 		    IEEE80211_FC0_TYPE_DATA) {
2077 			freemsg(mp);
2078 		}
2079 		err = ENXIO;
2080 		goto exit;
2081 	}
2082 
2083 	if (ring->queued > ring->count - 64) {
2084 		WPI_DBG((WPI_DEBUG_TX, "wpi_send(): no txbuf\n"));
2085 		sc->sc_need_reschedule = 1;
2086 		mutex_exit(&sc->sc_tx_lock);
2087 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
2088 		    IEEE80211_FC0_TYPE_DATA) {
2089 			freemsg(mp);
2090 		}
2091 		sc->sc_tx_nobuf++;
2092 		err = ENOMEM;
2093 		goto exit;
2094 	}
2095 	mutex_exit(&sc->sc_tx_lock);
2096 
2097 	hdrlen = sizeof (struct ieee80211_frame);
2098 
2099 	m = allocb(msgdsize(mp) + 32, BPRI_MED);
2100 	if (m == NULL) { /* can not alloc buf, drop this package */
2101 		cmn_err(CE_WARN,
2102 		    "wpi_send(): failed to allocate msgbuf\n");
2103 		freemsg(mp);
2104 		err = WPI_SUCCESS;
2105 		goto exit;
2106 	}
2107 	for (off = 0, m0 = mp; m0 != NULL; m0 = m0->b_cont) {
2108 		mblen = MBLKL(m0);
2109 		(void) memcpy(m->b_rptr + off, m0->b_rptr, mblen);
2110 		off += mblen;
2111 	}
2112 	m->b_wptr += off;
2113 	freemsg(mp);
2114 
2115 	wh = (struct ieee80211_frame *)m->b_rptr;
2116 
2117 	in = ieee80211_find_txnode(ic, wh->i_addr1);
2118 	if (in == NULL) {
2119 		cmn_err(CE_WARN, "wpi_send(): failed to find tx node\n");
2120 		freemsg(m);
2121 		sc->sc_tx_err++;
2122 		err = WPI_SUCCESS;
2123 		goto exit;
2124 	}
2125 
2126 	(void) ieee80211_encap(ic, m, in);
2127 
2128 	cmd->code = WPI_CMD_TX_DATA;
2129 	cmd->flags = 0;
2130 	cmd->qid = ring->qid;
2131 	cmd->idx = ring->cur;
2132 
2133 	tx = (wpi_cmd_data_t *)cmd->data;
2134 	tx->flags = 0;
2135 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2136 		tx->flags |= LE_32(WPI_TX_NEED_ACK);
2137 	} else {
2138 		tx->flags &= ~(LE_32(WPI_TX_NEED_ACK));
2139 	}
2140 
2141 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2142 		k = ieee80211_crypto_encap(ic, m);
2143 		if (k == NULL) {
2144 			freemsg(m);
2145 			sc->sc_tx_err++;
2146 			err = WPI_SUCCESS;
2147 			goto exit;
2148 		}
2149 
2150 		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2151 			tx->security = 2; /* for CCMP */
2152 			tx->flags |= LE_32(WPI_TX_NEED_ACK);
2153 			(void) memcpy(&tx->key, k->wk_key, k->wk_keylen);
2154 		}
2155 
2156 		/* packet header may have moved, reset our local pointer */
2157 		wh = (struct ieee80211_frame *)m->b_rptr;
2158 	}
2159 
2160 	len = msgdsize(m);
2161 
2162 #ifdef DEBUG
2163 	if (wpi_dbg_flags & WPI_DEBUG_TX)
2164 		ieee80211_dump_pkt((uint8_t *)wh, hdrlen, 0, 0);
2165 #endif
2166 
2167 	/* pickup a rate */
2168 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2169 	    IEEE80211_FC0_TYPE_MGT) {
2170 		/* mgmt frames are sent at the lowest available bit-rate */
2171 		rate = 2;
2172 	} else {
2173 		if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
2174 			rate = ic->ic_fixed_rate;
2175 		} else
2176 			rate = in->in_rates.ir_rates[in->in_txrate];
2177 	}
2178 	rate &= IEEE80211_RATE_VAL;
2179 	WPI_DBG((WPI_DEBUG_RATECTL, "tx rate[%d of %d] = %x",
2180 	    in->in_txrate, in->in_rates.ir_nrates, rate));
2181 #ifdef WPI_BPF
2182 #ifndef WPI_CURRENT
2183 	if (sc->sc_drvbpf != NULL) {
2184 #else
2185 	if (bpf_peers_present(sc->sc_drvbpf)) {
2186 #endif
2187 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2188 
2189 		tap->wt_flags = 0;
2190 		tap->wt_chan_freq = LE_16(ic->ic_curchan->ic_freq);
2191 		tap->wt_chan_flags = LE_16(ic->ic_curchan->ic_flags);
2192 		tap->wt_rate = rate;
2193 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
2194 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2195 
2196 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2197 	}
2198 #endif
2199 
2200 	tx->flags |= (LE_32(WPI_TX_AUTO_SEQ));
2201 	tx->flags |= LE_32(WPI_TX_BT_DISABLE | WPI_TX_CALIBRATION);
2202 
2203 	/* retrieve destination node's id */
2204 	tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
2205 	    WPI_ID_BSS;
2206 
2207 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
2208 	    IEEE80211_FC0_TYPE_MGT) {
2209 		/* tell h/w to set timestamp in probe responses */
2210 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2211 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2212 			tx->flags |= LE_32(WPI_TX_INSERT_TSTAMP);
2213 
2214 		if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2215 		    IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
2216 		    ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
2217 		    IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
2218 			tx->timeout = 3;
2219 		else
2220 			tx->timeout = 2;
2221 	} else
2222 		tx->timeout = 0;
2223 
2224 	tx->rate = wpi_plcp_signal(rate);
2225 
2226 	/* be very persistant at sending frames out */
2227 	tx->rts_ntries = 7;
2228 	tx->data_ntries = 15;
2229 
2230 	tx->cck_mask  = 0x0f;
2231 	tx->ofdm_mask = 0xff;
2232 	tx->lifetime  = LE_32(0xffffffff);
2233 
2234 	tx->len = LE_16(len);
2235 
2236 	/* save and trim IEEE802.11 header */
2237 	(void) memcpy(tx + 1, m->b_rptr, hdrlen);
2238 	m->b_rptr += hdrlen;
2239 	(void) memcpy(data->dma_data.mem_va, m->b_rptr, len - hdrlen);
2240 
2241 	WPI_DBG((WPI_DEBUG_TX, "sending data: qid=%d idx=%d len=%d", ring->qid,
2242 	    ring->cur, len));
2243 
2244 	/* first scatter/gather segment is used by the tx data command */
2245 	desc->flags = LE_32(WPI_PAD32(len) << 28 | (2) << 24);
2246 	desc->segs[0].addr = LE_32(data->paddr_cmd);
2247 	desc->segs[0].len  = LE_32(
2248 	    roundup(4 + sizeof (wpi_cmd_data_t) + hdrlen, 4));
2249 	desc->segs[1].addr = LE_32(data->dma_data.cookie.dmac_address);
2250 	desc->segs[1].len  = LE_32(len - hdrlen);
2251 
2252 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2253 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2254 
2255 	mutex_enter(&sc->sc_tx_lock);
2256 	ring->queued++;
2257 	mutex_exit(&sc->sc_tx_lock);
2258 
2259 	/* kick ring */
2260 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2261 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2262 	freemsg(m);
2263 	/* release node reference */
2264 	ieee80211_free_node(in);
2265 
2266 	ic->ic_stats.is_tx_bytes += len;
2267 	ic->ic_stats.is_tx_frags++;
2268 
2269 	if (sc->sc_tx_timer == 0)
2270 		sc->sc_tx_timer = 5;
2271 exit:
2272 	return (err);
2273 }
2274 
2275 static void
2276 wpi_m_ioctl(void* arg, queue_t *wq, mblk_t *mp)
2277 {
2278 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2279 	ieee80211com_t	*ic = &sc->sc_ic;
2280 	int		err;
2281 
2282 	err = ieee80211_ioctl(ic, wq, mp);
2283 	if (err == ENETRESET) {
2284 		/*
2285 		 * This is special for the hidden AP connection.
2286 		 * In any case, we should make sure only one 'scan'
2287 		 * in the driver for a 'connect' CLI command. So
2288 		 * when connecting to a hidden AP, the scan is just
2289 		 * sent out to the air when we know the desired
2290 		 * essid of the AP we want to connect.
2291 		 */
2292 		if (ic->ic_des_esslen) {
2293 			if (sc->sc_flags & WPI_F_RUNNING) {
2294 				wpi_m_stop(sc);
2295 				(void) wpi_m_start(sc);
2296 				(void) ieee80211_new_state(ic,
2297 				    IEEE80211_S_SCAN, -1);
2298 			}
2299 		}
2300 	}
2301 }
2302 
2303 /*
2304  * Callback functions for get/set properties
2305  */
2306 /* ARGSUSED */
2307 static int
2308 wpi_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2309     uint_t pr_flags, uint_t wldp_length, void *wldp_buf, uint_t *perm)
2310 {
2311 	int		err = 0;
2312 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2313 
2314 	err = ieee80211_getprop(&sc->sc_ic, pr_name, wldp_pr_name,
2315 	    pr_flags, wldp_length, wldp_buf, perm);
2316 
2317 	return (err);
2318 }
2319 static int
2320 wpi_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_name,
2321     uint_t wldp_length, const void *wldp_buf)
2322 {
2323 	int		err;
2324 	wpi_sc_t	*sc = (wpi_sc_t *)arg;
2325 	ieee80211com_t  *ic = &sc->sc_ic;
2326 
2327 	err = ieee80211_setprop(ic, pr_name, wldp_pr_name,
2328 	    wldp_length, wldp_buf);
2329 
2330 	if (err == ENETRESET) {
2331 		if (ic->ic_des_esslen) {
2332 			if (sc->sc_flags & WPI_F_RUNNING) {
2333 				wpi_m_stop(sc);
2334 				(void) wpi_m_start(sc);
2335 				(void) ieee80211_new_state(ic,
2336 				    IEEE80211_S_SCAN, -1);
2337 			}
2338 		}
2339 
2340 		err = 0;
2341 	}
2342 
2343 	return (err);
2344 }
2345 
2346 /*ARGSUSED*/
2347 static int
2348 wpi_m_stat(void *arg, uint_t stat, uint64_t *val)
2349 {
2350 	wpi_sc_t	*sc  = (wpi_sc_t *)arg;
2351 	ieee80211com_t	*ic = &sc->sc_ic;
2352 	ieee80211_node_t *in;
2353 
2354 	mutex_enter(&sc->sc_glock);
2355 	switch (stat) {
2356 	case MAC_STAT_IFSPEED:
2357 		in = ic->ic_bss;
2358 		*val = ((ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) ?
2359 		    IEEE80211_RATE(in->in_txrate) :
2360 		    ic->ic_fixed_rate) / 2 * 1000000;
2361 		break;
2362 	case MAC_STAT_NOXMTBUF:
2363 		*val = sc->sc_tx_nobuf;
2364 		break;
2365 	case MAC_STAT_NORCVBUF:
2366 		*val = sc->sc_rx_nobuf;
2367 		break;
2368 	case MAC_STAT_IERRORS:
2369 		*val = sc->sc_rx_err;
2370 		break;
2371 	case MAC_STAT_RBYTES:
2372 		*val = ic->ic_stats.is_rx_bytes;
2373 		break;
2374 	case MAC_STAT_IPACKETS:
2375 		*val = ic->ic_stats.is_rx_frags;
2376 		break;
2377 	case MAC_STAT_OBYTES:
2378 		*val = ic->ic_stats.is_tx_bytes;
2379 		break;
2380 	case MAC_STAT_OPACKETS:
2381 		*val = ic->ic_stats.is_tx_frags;
2382 		break;
2383 	case MAC_STAT_OERRORS:
2384 	case WIFI_STAT_TX_FAILED:
2385 		*val = sc->sc_tx_err;
2386 		break;
2387 	case WIFI_STAT_TX_RETRANS:
2388 		*val = sc->sc_tx_retries;
2389 		break;
2390 	case WIFI_STAT_FCS_ERRORS:
2391 	case WIFI_STAT_WEP_ERRORS:
2392 	case WIFI_STAT_TX_FRAGS:
2393 	case WIFI_STAT_MCAST_TX:
2394 	case WIFI_STAT_RTS_SUCCESS:
2395 	case WIFI_STAT_RTS_FAILURE:
2396 	case WIFI_STAT_ACK_FAILURE:
2397 	case WIFI_STAT_RX_FRAGS:
2398 	case WIFI_STAT_MCAST_RX:
2399 	case WIFI_STAT_RX_DUPS:
2400 		mutex_exit(&sc->sc_glock);
2401 		return (ieee80211_stat(ic, stat, val));
2402 	default:
2403 		mutex_exit(&sc->sc_glock);
2404 		return (ENOTSUP);
2405 	}
2406 	mutex_exit(&sc->sc_glock);
2407 
2408 	return (WPI_SUCCESS);
2409 
2410 }
2411 
2412 static int
2413 wpi_m_start(void *arg)
2414 {
2415 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2416 	ieee80211com_t	*ic = &sc->sc_ic;
2417 	int err;
2418 
2419 	err = wpi_init(sc);
2420 	if (err != WPI_SUCCESS) {
2421 		wpi_stop(sc);
2422 		DELAY(1000000);
2423 		err = wpi_init(sc);
2424 	}
2425 
2426 	if (err) {
2427 		/*
2428 		 * The hw init err(eg. RF is OFF). Return Success to make
2429 		 * the 'plumb' succeed. The wpi_thread() tries to re-init
2430 		 * background.
2431 		 */
2432 		mutex_enter(&sc->sc_glock);
2433 		sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2434 		mutex_exit(&sc->sc_glock);
2435 		return (WPI_SUCCESS);
2436 	}
2437 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2438 	mutex_enter(&sc->sc_glock);
2439 	sc->sc_flags |= WPI_F_RUNNING;
2440 	mutex_exit(&sc->sc_glock);
2441 
2442 	return (WPI_SUCCESS);
2443 }
2444 
2445 static void
2446 wpi_m_stop(void *arg)
2447 {
2448 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2449 	ieee80211com_t	*ic = &sc->sc_ic;
2450 
2451 	wpi_stop(sc);
2452 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2453 	mutex_enter(&sc->sc_mt_lock);
2454 	sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2455 	sc->sc_flags &= ~WPI_F_RATE_AUTO_CTL;
2456 	mutex_exit(&sc->sc_mt_lock);
2457 	mutex_enter(&sc->sc_glock);
2458 	sc->sc_flags &= ~WPI_F_RUNNING;
2459 	mutex_exit(&sc->sc_glock);
2460 }
2461 
2462 /*ARGSUSED*/
2463 static int
2464 wpi_m_unicst(void *arg, const uint8_t *macaddr)
2465 {
2466 	wpi_sc_t *sc = (wpi_sc_t *)arg;
2467 	ieee80211com_t	*ic = &sc->sc_ic;
2468 	int err;
2469 
2470 	if (!IEEE80211_ADDR_EQ(ic->ic_macaddr, macaddr)) {
2471 		IEEE80211_ADDR_COPY(ic->ic_macaddr, macaddr);
2472 		mutex_enter(&sc->sc_glock);
2473 		err = wpi_config(sc);
2474 		mutex_exit(&sc->sc_glock);
2475 		if (err != WPI_SUCCESS) {
2476 			cmn_err(CE_WARN,
2477 			    "wpi_m_unicst(): "
2478 			    "failed to configure device\n");
2479 			goto fail;
2480 		}
2481 	}
2482 	return (WPI_SUCCESS);
2483 fail:
2484 	return (err);
2485 }
2486 
2487 /*ARGSUSED*/
2488 static int
2489 wpi_m_multicst(void *arg, boolean_t add, const uint8_t *m)
2490 {
2491 	return (WPI_SUCCESS);
2492 }
2493 
2494 /*ARGSUSED*/
2495 static int
2496 wpi_m_promisc(void *arg, boolean_t on)
2497 {
2498 	return (WPI_SUCCESS);
2499 }
2500 
2501 static void
2502 wpi_thread(wpi_sc_t *sc)
2503 {
2504 	ieee80211com_t	*ic = &sc->sc_ic;
2505 	clock_t clk;
2506 	int times = 0, err, n = 0, timeout = 0;
2507 	uint32_t tmp;
2508 
2509 	mutex_enter(&sc->sc_mt_lock);
2510 	while (sc->sc_mf_thread_switch) {
2511 		tmp = WPI_READ(sc, WPI_GPIO_CTL);
2512 		if (tmp & WPI_GPIO_HW_RF_KILL) {
2513 			sc->sc_flags &= ~WPI_F_RADIO_OFF;
2514 		} else {
2515 			sc->sc_flags |= WPI_F_RADIO_OFF;
2516 		}
2517 		/*
2518 		 * If in SUSPEND or the RF is OFF, do nothing
2519 		 */
2520 		if ((sc->sc_flags & WPI_F_SUSPEND) ||
2521 		    (sc->sc_flags & WPI_F_RADIO_OFF)) {
2522 			mutex_exit(&sc->sc_mt_lock);
2523 			delay(drv_usectohz(100000));
2524 			mutex_enter(&sc->sc_mt_lock);
2525 			continue;
2526 		}
2527 
2528 		/*
2529 		 * recovery fatal error
2530 		 */
2531 		if (ic->ic_mach &&
2532 		    (sc->sc_flags & WPI_F_HW_ERR_RECOVER)) {
2533 
2534 			WPI_DBG((WPI_DEBUG_FW,
2535 			    "wpi_thread(): "
2536 			    "try to recover fatal hw error: %d\n", times++));
2537 
2538 			wpi_stop(sc);
2539 			mutex_exit(&sc->sc_mt_lock);
2540 
2541 			ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2542 			delay(drv_usectohz(2000000));
2543 
2544 			mutex_enter(&sc->sc_mt_lock);
2545 			err = wpi_init(sc);
2546 			if (err != WPI_SUCCESS) {
2547 				n++;
2548 				if (n < 3)
2549 					continue;
2550 			}
2551 			n = 0;
2552 			if (!err)
2553 				sc->sc_flags |= WPI_F_RUNNING;
2554 			sc->sc_flags &= ~WPI_F_HW_ERR_RECOVER;
2555 			mutex_exit(&sc->sc_mt_lock);
2556 			delay(drv_usectohz(2000000));
2557 			if (sc->sc_ostate != IEEE80211_S_INIT)
2558 				ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
2559 			mutex_enter(&sc->sc_mt_lock);
2560 		}
2561 
2562 		/*
2563 		 * scan next channel
2564 		 */
2565 		if (ic->ic_mach &&
2566 		    (sc->sc_flags & WPI_F_SCANNING) && sc->sc_scan_next) {
2567 
2568 			WPI_DBG((WPI_DEBUG_SCAN,
2569 			    "wpi_thread(): "
2570 			    "wait for probe response\n"));
2571 
2572 			sc->sc_scan_next--;
2573 			mutex_exit(&sc->sc_mt_lock);
2574 			delay(drv_usectohz(200000));
2575 			ieee80211_next_scan(ic);
2576 			mutex_enter(&sc->sc_mt_lock);
2577 		}
2578 
2579 		/*
2580 		 * rate ctl
2581 		 */
2582 		if (ic->ic_mach &&
2583 		    (sc->sc_flags & WPI_F_RATE_AUTO_CTL)) {
2584 			clk = ddi_get_lbolt();
2585 			if (clk > sc->sc_clk + drv_usectohz(500000)) {
2586 				wpi_amrr_timeout(sc);
2587 			}
2588 		}
2589 		mutex_exit(&sc->sc_mt_lock);
2590 		delay(drv_usectohz(100000));
2591 		mutex_enter(&sc->sc_mt_lock);
2592 		if (sc->sc_tx_timer) {
2593 			timeout++;
2594 			if (timeout == 10) {
2595 				sc->sc_tx_timer--;
2596 				if (sc->sc_tx_timer == 0) {
2597 					sc->sc_flags |= WPI_F_HW_ERR_RECOVER;
2598 					sc->sc_ostate = IEEE80211_S_RUN;
2599 					WPI_DBG((WPI_DEBUG_FW,
2600 					    "wpi_thread(): send fail\n"));
2601 				}
2602 				timeout = 0;
2603 			}
2604 		}
2605 	}
2606 	sc->sc_mf_thread = NULL;
2607 	cv_signal(&sc->sc_mt_cv);
2608 	mutex_exit(&sc->sc_mt_lock);
2609 }
2610 
2611 /*
2612  * Extract various information from EEPROM.
2613  */
2614 static void
2615 wpi_read_eeprom(wpi_sc_t *sc)
2616 {
2617 	ieee80211com_t *ic = &sc->sc_ic;
2618 	uint16_t val;
2619 	int i;
2620 
2621 	/* read MAC address */
2622 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 0);
2623 	ic->ic_macaddr[0] = val & 0xff;
2624 	ic->ic_macaddr[1] = val >> 8;
2625 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 1);
2626 	ic->ic_macaddr[2] = val & 0xff;
2627 	ic->ic_macaddr[3] = val >> 8;
2628 	val = wpi_read_prom_word(sc, WPI_EEPROM_MAC + 2);
2629 	ic->ic_macaddr[4] = val & 0xff;
2630 	ic->ic_macaddr[5] = val >> 8;
2631 
2632 	WPI_DBG((WPI_DEBUG_EEPROM,
2633 	    "mac:%2x:%2x:%2x:%2x:%2x:%2x\n",
2634 	    ic->ic_macaddr[0], ic->ic_macaddr[1],
2635 	    ic->ic_macaddr[2], ic->ic_macaddr[3],
2636 	    ic->ic_macaddr[4], ic->ic_macaddr[5]));
2637 	/* read power settings for 2.4GHz channels */
2638 	for (i = 0; i < 14; i++) {
2639 		sc->sc_pwr1[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR1 + i);
2640 		sc->sc_pwr2[i] = wpi_read_prom_word(sc, WPI_EEPROM_PWR2 + i);
2641 		WPI_DBG((WPI_DEBUG_EEPROM,
2642 		    "channel %d pwr1 0x%04x pwr2 0x%04x\n", i + 1,
2643 		    sc->sc_pwr1[i], sc->sc_pwr2[i]));
2644 	}
2645 }
2646 
2647 /*
2648  * Send a command to the firmware.
2649  */
2650 static int
2651 wpi_cmd(wpi_sc_t *sc, int code, const void *buf, int size, int async)
2652 {
2653 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2654 	wpi_tx_desc_t *desc;
2655 	wpi_tx_cmd_t *cmd;
2656 
2657 	ASSERT(size <= sizeof (cmd->data));
2658 	ASSERT(mutex_owned(&sc->sc_glock));
2659 
2660 	WPI_DBG((WPI_DEBUG_CMD, "wpi_cmd() # code[%d]", code));
2661 	desc = ring->data[ring->cur].desc;
2662 	cmd = ring->data[ring->cur].cmd;
2663 
2664 	cmd->code = (uint8_t)code;
2665 	cmd->flags = 0;
2666 	cmd->qid = ring->qid;
2667 	cmd->idx = ring->cur;
2668 	(void) memcpy(cmd->data, buf, size);
2669 
2670 	desc->flags = LE_32(WPI_PAD32(size) << 28 | 1 << 24);
2671 	desc->segs[0].addr = ring->data[ring->cur].paddr_cmd;
2672 	desc->segs[0].len  = 4 + size;
2673 
2674 	/* kick cmd ring */
2675 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2676 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2677 
2678 	if (async)
2679 		return (WPI_SUCCESS);
2680 	else {
2681 		clock_t clk;
2682 		sc->sc_flags &= ~WPI_F_CMD_DONE;
2683 		clk = ddi_get_lbolt() + drv_usectohz(2000000);
2684 		while (!(sc->sc_flags & WPI_F_CMD_DONE)) {
2685 			if (cv_timedwait(&sc->sc_cmd_cv, &sc->sc_glock, clk)
2686 			    < 0)
2687 				break;
2688 		}
2689 		if (sc->sc_flags & WPI_F_CMD_DONE)
2690 			return (WPI_SUCCESS);
2691 		else
2692 			return (WPI_FAIL);
2693 	}
2694 }
2695 
2696 /*
2697  * Configure h/w multi-rate retries.
2698  */
2699 static int
2700 wpi_mrr_setup(wpi_sc_t *sc)
2701 {
2702 	wpi_mrr_setup_t mrr;
2703 	int i, err;
2704 
2705 	/* CCK rates (not used with 802.11a) */
2706 	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2707 		mrr.rates[i].flags = 0;
2708 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2709 		/* fallback to the immediate lower CCK rate (if any) */
2710 		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2711 		/* try one time at this rate before falling back to "next" */
2712 		mrr.rates[i].ntries = 1;
2713 	}
2714 
2715 	/* OFDM rates (not used with 802.11b) */
2716 	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2717 		mrr.rates[i].flags = 0;
2718 		mrr.rates[i].signal = wpi_ridx_to_signal[i];
2719 		/* fallback to the immediate lower OFDM rate (if any) */
2720 		mrr.rates[i].next = (i == WPI_OFDM6) ? WPI_OFDM6 : i - 1;
2721 		/* try one time at this rate before falling back to "next" */
2722 		mrr.rates[i].ntries = 1;
2723 	}
2724 
2725 	/* setup MRR for control frames */
2726 	mrr.which = LE_32(WPI_MRR_CTL);
2727 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2728 	if (err != WPI_SUCCESS) {
2729 		WPI_DBG((WPI_DEBUG_MRR,
2730 		    "could not setup MRR for control frames\n"));
2731 		return (err);
2732 	}
2733 
2734 	/* setup MRR for data frames */
2735 	mrr.which = LE_32(WPI_MRR_DATA);
2736 	err = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof (mrr), 1);
2737 	if (err != WPI_SUCCESS) {
2738 		WPI_DBG((WPI_DEBUG_MRR,
2739 		    "could not setup MRR for data frames\n"));
2740 		return (err);
2741 	}
2742 
2743 	return (WPI_SUCCESS);
2744 }
2745 
2746 static void
2747 wpi_set_led(wpi_sc_t *sc, uint8_t which, uint8_t off, uint8_t on)
2748 {
2749 	wpi_cmd_led_t led;
2750 
2751 	led.which = which;
2752 	led.unit = LE_32(100000);	/* on/off in unit of 100ms */
2753 	led.off = off;
2754 	led.on = on;
2755 
2756 	(void) wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof (led), 1);
2757 }
2758 
2759 static int
2760 wpi_auth(wpi_sc_t *sc)
2761 {
2762 	ieee80211com_t *ic = &sc->sc_ic;
2763 	ieee80211_node_t *in = ic->ic_bss;
2764 	wpi_node_t node;
2765 	int err;
2766 
2767 	/* update adapter's configuration */
2768 	IEEE80211_ADDR_COPY(sc->sc_config.bssid, in->in_bssid);
2769 	sc->sc_config.chan = ieee80211_chan2ieee(ic, in->in_chan);
2770 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2771 		sc->sc_config.cck_mask  = 0x03;
2772 		sc->sc_config.ofdm_mask = 0;
2773 	} else if ((in->in_chan != IEEE80211_CHAN_ANYC) &&
2774 	    (IEEE80211_IS_CHAN_5GHZ(in->in_chan))) {
2775 		sc->sc_config.cck_mask  = 0;
2776 		sc->sc_config.ofdm_mask = 0x15;
2777 	} else {	/* assume 802.11b/g */
2778 		sc->sc_config.cck_mask  = 0x0f;
2779 		sc->sc_config.ofdm_mask = 0xff;
2780 	}
2781 
2782 	WPI_DBG((WPI_DEBUG_80211, "config chan %d flags %x cck %x ofdm %x"
2783 	    " bssid:%02x:%02x:%02x:%02x:%02x:%2x\n",
2784 	    sc->sc_config.chan, sc->sc_config.flags,
2785 	    sc->sc_config.cck_mask, sc->sc_config.ofdm_mask,
2786 	    sc->sc_config.bssid[0], sc->sc_config.bssid[1],
2787 	    sc->sc_config.bssid[2], sc->sc_config.bssid[3],
2788 	    sc->sc_config.bssid[4], sc->sc_config.bssid[5]));
2789 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
2790 	    sizeof (wpi_config_t), 1);
2791 	if (err != WPI_SUCCESS) {
2792 		cmn_err(CE_WARN, "wpi_auth(): failed to configurate chan%d\n",
2793 		    sc->sc_config.chan);
2794 		return (err);
2795 	}
2796 
2797 	/* add default node */
2798 	(void) memset(&node, 0, sizeof (node));
2799 	IEEE80211_ADDR_COPY(node.bssid, in->in_bssid);
2800 	node.id = WPI_ID_BSS;
2801 	node.rate = wpi_plcp_signal(2);
2802 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 1);
2803 	if (err != WPI_SUCCESS) {
2804 		cmn_err(CE_WARN, "wpi_auth(): failed to add BSS node\n");
2805 		return (err);
2806 	}
2807 
2808 	err = wpi_mrr_setup(sc);
2809 	if (err != WPI_SUCCESS) {
2810 		cmn_err(CE_WARN, "wpi_auth(): failed to setup MRR\n");
2811 		return (err);
2812 	}
2813 
2814 	return (WPI_SUCCESS);
2815 }
2816 
2817 /*
2818  * Send a scan request to the firmware.
2819  */
2820 static int
2821 wpi_scan(wpi_sc_t *sc)
2822 {
2823 	ieee80211com_t *ic = &sc->sc_ic;
2824 	wpi_tx_ring_t *ring = &sc->sc_cmdq;
2825 	wpi_tx_desc_t *desc;
2826 	wpi_tx_data_t *data;
2827 	wpi_tx_cmd_t *cmd;
2828 	wpi_scan_hdr_t *hdr;
2829 	wpi_scan_chan_t *chan;
2830 	struct ieee80211_frame *wh;
2831 	ieee80211_node_t *in = ic->ic_bss;
2832 	uint8_t essid[IEEE80211_NWID_LEN+1];
2833 	struct ieee80211_rateset *rs;
2834 	enum ieee80211_phymode mode;
2835 	uint8_t *frm;
2836 	int i, pktlen, nrates;
2837 
2838 	/* previous scan not completed */
2839 	if (sc->sc_scan_pending) {
2840 		WPI_DBG((WPI_DEBUG_SCAN, "previous scan not completed\n"));
2841 		return (WPI_SUCCESS);
2842 	}
2843 
2844 	data = &ring->data[ring->cur];
2845 	desc = data->desc;
2846 	cmd = (wpi_tx_cmd_t *)data->dma_data.mem_va;
2847 
2848 	cmd->code = WPI_CMD_SCAN;
2849 	cmd->flags = 0;
2850 	cmd->qid = ring->qid;
2851 	cmd->idx = ring->cur;
2852 
2853 	hdr = (wpi_scan_hdr_t *)cmd->data;
2854 	(void) memset(hdr, 0, sizeof (wpi_scan_hdr_t));
2855 	hdr->first = 1;
2856 	hdr->nchan = 1;
2857 	hdr->len = hdr->nchan * sizeof (wpi_scan_chan_t);
2858 	hdr->quiet = LE_16(50);
2859 	hdr->threshold = LE_16(1);
2860 	hdr->filter = LE_32(5);
2861 	hdr->rate = wpi_plcp_signal(2);
2862 	hdr->id = WPI_ID_BROADCAST;
2863 	hdr->mask = LE_32(0xffffffff);
2864 	hdr->esslen = ic->ic_des_esslen;
2865 
2866 	if (ic->ic_des_esslen) {
2867 		bcopy(ic->ic_des_essid, essid, ic->ic_des_esslen);
2868 		essid[ic->ic_des_esslen] = '\0';
2869 		WPI_DBG((WPI_DEBUG_SCAN, "directed scan %s\n", essid));
2870 
2871 		bcopy(ic->ic_des_essid, hdr->essid, ic->ic_des_esslen);
2872 	} else {
2873 		bzero(hdr->essid, sizeof (hdr->essid));
2874 	}
2875 
2876 	/*
2877 	 * Build a probe request frame.  Most of the following code is a
2878 	 * copy & paste of what is done in net80211.  Unfortunately, the
2879 	 * functions to add IEs are static and thus can't be reused here.
2880 	 */
2881 	wh = (struct ieee80211_frame *)(hdr + 1);
2882 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2883 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2884 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2885 	(void) memset(wh->i_addr1, 0xff, 6);
2886 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_macaddr);
2887 	(void) memset(wh->i_addr3, 0xff, 6);
2888 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2889 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2890 
2891 	frm = (uint8_t *)(wh + 1);
2892 
2893 	/* add essid IE */
2894 	if (in->in_esslen) {
2895 		bcopy(in->in_essid, essid, in->in_esslen);
2896 		essid[in->in_esslen] = '\0';
2897 		WPI_DBG((WPI_DEBUG_SCAN, "probe with ESSID %s\n",
2898 		    essid));
2899 	}
2900 	*frm++ = IEEE80211_ELEMID_SSID;
2901 	*frm++ = in->in_esslen;
2902 	(void) memcpy(frm, in->in_essid, in->in_esslen);
2903 	frm += in->in_esslen;
2904 
2905 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
2906 	rs = &ic->ic_sup_rates[mode];
2907 
2908 	/* add supported rates IE */
2909 	*frm++ = IEEE80211_ELEMID_RATES;
2910 	nrates = rs->ir_nrates;
2911 	if (nrates > IEEE80211_RATE_SIZE)
2912 		nrates = IEEE80211_RATE_SIZE;
2913 	*frm++ = (uint8_t)nrates;
2914 	(void) memcpy(frm, rs->ir_rates, nrates);
2915 	frm += nrates;
2916 
2917 	/* add supported xrates IE */
2918 	if (rs->ir_nrates > IEEE80211_RATE_SIZE) {
2919 		nrates = rs->ir_nrates - IEEE80211_RATE_SIZE;
2920 		*frm++ = IEEE80211_ELEMID_XRATES;
2921 		*frm++ = (uint8_t)nrates;
2922 		(void) memcpy(frm, rs->ir_rates + IEEE80211_RATE_SIZE, nrates);
2923 		frm += nrates;
2924 	}
2925 
2926 	/* add optionnal IE (usually an RSN IE) */
2927 	if (ic->ic_opt_ie != NULL) {
2928 		(void) memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
2929 		frm += ic->ic_opt_ie_len;
2930 	}
2931 
2932 	/* setup length of probe request */
2933 	hdr->pbrlen = LE_16((uintptr_t)frm - (uintptr_t)wh);
2934 
2935 	/* align on a 4-byte boundary */
2936 	chan = (wpi_scan_chan_t *)frm;
2937 	for (i = 1; i <= hdr->nchan; i++, chan++) {
2938 		if (ic->ic_des_esslen) {
2939 			chan->flags = 0x3;
2940 		} else {
2941 			chan->flags = 0x1;
2942 		}
2943 		chan->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2944 		chan->magic = LE_16(0x62ab);
2945 		chan->active = LE_16(50);
2946 		chan->passive = LE_16(120);
2947 
2948 		frm += sizeof (wpi_scan_chan_t);
2949 	}
2950 
2951 	pktlen = (uintptr_t)frm - (uintptr_t)cmd;
2952 
2953 	desc->flags = LE_32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2954 	desc->segs[0].addr = LE_32(data->dma_data.cookie.dmac_address);
2955 	desc->segs[0].len  = LE_32(pktlen);
2956 
2957 	WPI_DMA_SYNC(data->dma_data, DDI_DMA_SYNC_FORDEV);
2958 	WPI_DMA_SYNC(ring->dma_desc, DDI_DMA_SYNC_FORDEV);
2959 
2960 	/* kick cmd ring */
2961 	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2962 	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2963 
2964 	sc->sc_scan_pending = 1;
2965 
2966 	return (WPI_SUCCESS);	/* will be notified async. of failure/success */
2967 }
2968 
2969 static int
2970 wpi_config(wpi_sc_t *sc)
2971 {
2972 	ieee80211com_t *ic = &sc->sc_ic;
2973 	wpi_txpower_t txpower;
2974 	wpi_power_t power;
2975 #ifdef WPI_BLUE_COEXISTENCE
2976 	wpi_bluetooth_t bluetooth;
2977 #endif
2978 	wpi_node_t node;
2979 	int err;
2980 
2981 	/* Intel's binary only daemon is a joke.. */
2982 
2983 	/* set Tx power for 2.4GHz channels (values read from EEPROM) */
2984 	(void) memset(&txpower, 0, sizeof (txpower));
2985 	(void) memcpy(txpower.pwr1, sc->sc_pwr1, 14 * sizeof (uint16_t));
2986 	(void) memcpy(txpower.pwr2, sc->sc_pwr2, 14 * sizeof (uint16_t));
2987 	err = wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof (txpower), 0);
2988 	if (err != WPI_SUCCESS) {
2989 		cmn_err(CE_WARN, "wpi_config(): failed to set txpower\n");
2990 		return (err);
2991 	}
2992 
2993 	/* set power mode */
2994 	(void) memset(&power, 0, sizeof (power));
2995 	power.flags = LE_32(0x8);
2996 	err = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof (power), 0);
2997 	if (err != WPI_SUCCESS) {
2998 		cmn_err(CE_WARN, "wpi_config(): failed to set power mode\n");
2999 		return (err);
3000 	}
3001 #ifdef WPI_BLUE_COEXISTENCE
3002 	/* configure bluetooth coexistence */
3003 	(void) memset(&bluetooth, 0, sizeof (bluetooth));
3004 	bluetooth.flags = 3;
3005 	bluetooth.lead = 0xaa;
3006 	bluetooth.kill = 1;
3007 	err = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth,
3008 	    sizeof (bluetooth), 0);
3009 	if (err != WPI_SUCCESS) {
3010 		cmn_err(CE_WARN,
3011 		    "wpi_config(): "
3012 		    "failed to configurate bluetooth coexistence\n");
3013 		return (err);
3014 	}
3015 #endif
3016 	/* configure adapter */
3017 	(void) memset(&sc->sc_config, 0, sizeof (wpi_config_t));
3018 	IEEE80211_ADDR_COPY(sc->sc_config.myaddr, ic->ic_macaddr);
3019 	sc->sc_config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3020 	sc->sc_config.flags = LE_32(WPI_CONFIG_TSF | WPI_CONFIG_AUTO |
3021 	    WPI_CONFIG_24GHZ);
3022 	sc->sc_config.filter = 0;
3023 	switch (ic->ic_opmode) {
3024 	case IEEE80211_M_STA:
3025 		sc->sc_config.mode = WPI_MODE_STA;
3026 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST);
3027 		break;
3028 	case IEEE80211_M_IBSS:
3029 	case IEEE80211_M_AHDEMO:
3030 		sc->sc_config.mode = WPI_MODE_IBSS;
3031 		break;
3032 	case IEEE80211_M_HOSTAP:
3033 		sc->sc_config.mode = WPI_MODE_HOSTAP;
3034 		break;
3035 	case IEEE80211_M_MONITOR:
3036 		sc->sc_config.mode = WPI_MODE_MONITOR;
3037 		sc->sc_config.filter |= LE_32(WPI_FILTER_MULTICAST |
3038 		    WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3039 		break;
3040 	}
3041 	sc->sc_config.cck_mask  = 0x0f;	/* not yet negotiated */
3042 	sc->sc_config.ofdm_mask = 0xff;	/* not yet negotiated */
3043 	err = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->sc_config,
3044 	    sizeof (wpi_config_t), 0);
3045 	if (err != WPI_SUCCESS) {
3046 		cmn_err(CE_WARN, "wpi_config(): "
3047 		    "failed to set configure command\n");
3048 		return (err);
3049 	}
3050 
3051 	/* add broadcast node */
3052 	(void) memset(&node, 0, sizeof (node));
3053 	(void) memset(node.bssid, 0xff, 6);
3054 	node.id = WPI_ID_BROADCAST;
3055 	node.rate = wpi_plcp_signal(2);
3056 	err = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof (node), 0);
3057 	if (err != WPI_SUCCESS) {
3058 		cmn_err(CE_WARN, "wpi_config(): "
3059 		    "failed to add broadcast node\n");
3060 		return (err);
3061 	}
3062 
3063 	return (WPI_SUCCESS);
3064 }
3065 
3066 static void
3067 wpi_stop_master(wpi_sc_t *sc)
3068 {
3069 	uint32_t tmp;
3070 	int ntries;
3071 
3072 	tmp = WPI_READ(sc, WPI_RESET);
3073 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3074 
3075 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3076 	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3077 		return;	/* already asleep */
3078 
3079 	for (ntries = 0; ntries < 2000; ntries++) {
3080 		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3081 			break;
3082 		DELAY(1000);
3083 	}
3084 	if (ntries == 2000)
3085 		WPI_DBG((WPI_DEBUG_HW, "timeout waiting for master\n"));
3086 }
3087 
3088 static int
3089 wpi_power_up(wpi_sc_t *sc)
3090 {
3091 	uint32_t tmp;
3092 	int ntries;
3093 
3094 	wpi_mem_lock(sc);
3095 	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3096 	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3097 	wpi_mem_unlock(sc);
3098 
3099 	for (ntries = 0; ntries < 5000; ntries++) {
3100 		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3101 			break;
3102 		DELAY(10);
3103 	}
3104 	if (ntries == 5000) {
3105 		cmn_err(CE_WARN,
3106 		    "wpi_power_up(): timeout waiting for NIC to power up\n");
3107 		return (ETIMEDOUT);
3108 	}
3109 	return (WPI_SUCCESS);
3110 }
3111 
3112 static int
3113 wpi_reset(wpi_sc_t *sc)
3114 {
3115 	uint32_t tmp;
3116 	int ntries;
3117 
3118 	/* clear any pending interrupts */
3119 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3120 
3121 	tmp = WPI_READ(sc, WPI_PLL_CTL);
3122 	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3123 
3124 	tmp = WPI_READ(sc, WPI_CHICKEN);
3125 	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3126 
3127 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3128 	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3129 
3130 	/* wait for clock stabilization */
3131 	for (ntries = 0; ntries < 1000; ntries++) {
3132 		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3133 			break;
3134 		DELAY(10);
3135 	}
3136 	if (ntries == 1000) {
3137 		cmn_err(CE_WARN,
3138 		    "wpi_reset(): timeout waiting for clock stabilization\n");
3139 		return (ETIMEDOUT);
3140 	}
3141 
3142 	/* initialize EEPROM */
3143 	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3144 	if ((tmp & WPI_EEPROM_VERSION) == 0) {
3145 		cmn_err(CE_WARN, "wpi_reset(): EEPROM not found\n");
3146 		return (EIO);
3147 	}
3148 	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3149 
3150 	return (WPI_SUCCESS);
3151 }
3152 
3153 static void
3154 wpi_hw_config(wpi_sc_t *sc)
3155 {
3156 	uint16_t val;
3157 	uint32_t hw;
3158 
3159 	/* voodoo from the Linux "driver".. */
3160 	hw = WPI_READ(sc, WPI_HWCONFIG);
3161 
3162 	if ((sc->sc_rev & 0xc0) == 0x40)
3163 		hw |= WPI_HW_ALM_MB;
3164 	else if (!(sc->sc_rev & 0x80))
3165 		hw |= WPI_HW_ALM_MM;
3166 
3167 	val = wpi_read_prom_word(sc, WPI_EEPROM_CAPABILITIES);
3168 	if ((val & 0xff) == 0x80)
3169 		hw |= WPI_HW_SKU_MRC;
3170 
3171 	val = wpi_read_prom_word(sc, WPI_EEPROM_REVISION);
3172 	hw &= ~WPI_HW_REV_D;
3173 	if ((val & 0xf0) == 0xd0)
3174 		hw |= WPI_HW_REV_D;
3175 
3176 	val = wpi_read_prom_word(sc, WPI_EEPROM_TYPE);
3177 	if ((val & 0xff) > 1)
3178 		hw |= WPI_HW_TYPE_B;
3179 
3180 	WPI_DBG((WPI_DEBUG_HW, "setting h/w config %x\n", hw));
3181 	WPI_WRITE(sc, WPI_HWCONFIG, hw);
3182 }
3183 
3184 static int
3185 wpi_init(wpi_sc_t *sc)
3186 {
3187 	uint32_t tmp;
3188 	int qid, ntries, err;
3189 	clock_t clk;
3190 
3191 	mutex_enter(&sc->sc_glock);
3192 	sc->sc_flags &= ~WPI_F_FW_INIT;
3193 
3194 	(void) wpi_reset(sc);
3195 
3196 	wpi_mem_lock(sc);
3197 	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3198 	DELAY(20);
3199 	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3200 	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3201 	wpi_mem_unlock(sc);
3202 
3203 	(void) wpi_power_up(sc);
3204 	wpi_hw_config(sc);
3205 
3206 	tmp = WPI_READ(sc, WPI_GPIO_CTL);
3207 	if (!(tmp & WPI_GPIO_HW_RF_KILL)) {
3208 		cmn_err(CE_WARN, "wpi_init(): Radio transmitter is off\n");
3209 		goto fail1;
3210 	}
3211 
3212 	/* init Rx ring */
3213 	wpi_mem_lock(sc);
3214 	WPI_WRITE(sc, WPI_RX_BASE, sc->sc_rxq.dma_desc.cookie.dmac_address);
3215 	WPI_WRITE(sc, WPI_RX_RIDX_PTR,
3216 	    (uint32_t)(sc->sc_dma_sh.cookie.dmac_address +
3217 	    offsetof(wpi_shared_t, next)));
3218 	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & (~7));
3219 	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3220 	wpi_mem_unlock(sc);
3221 
3222 	/* init Tx rings */
3223 	wpi_mem_lock(sc);
3224 	wpi_mem_write(sc, WPI_MEM_MODE, 2);	/* bypass mode */
3225 	wpi_mem_write(sc, WPI_MEM_RA, 1);	/* enable RA0 */
3226 	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f);	/* enable all 6 Tx rings */
3227 	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3228 	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3229 	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3230 	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3231 
3232 	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->sc_dma_sh.cookie.dmac_address);
3233 	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3234 
3235 	for (qid = 0; qid < 6; qid++) {
3236 		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3237 		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3238 		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3239 	}
3240 	wpi_mem_unlock(sc);
3241 
3242 	/* clear "radio off" and "disable command" bits (reversed logic) */
3243 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3244 	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3245 
3246 	/* clear any pending interrupts */
3247 	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3248 
3249 	/* enable interrupts */
3250 	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3251 
3252 	/* load firmware boot code into NIC */
3253 	err = wpi_load_microcode(sc);
3254 	if (err != WPI_SUCCESS) {
3255 		cmn_err(CE_WARN, "wpi_init(): failed to load microcode\n");
3256 		goto fail1;
3257 	}
3258 
3259 	/* load firmware .text segment into NIC */
3260 	err = wpi_load_firmware(sc, WPI_FW_TEXT);
3261 	if (err != WPI_SUCCESS) {
3262 		cmn_err(CE_WARN, "wpi_init(): "
3263 		    "failed to load firmware(text)\n");
3264 		goto fail1;
3265 	}
3266 
3267 	/* load firmware .data segment into NIC */
3268 	err = wpi_load_firmware(sc, WPI_FW_DATA);
3269 	if (err != WPI_SUCCESS) {
3270 		cmn_err(CE_WARN, "wpi_init(): "
3271 		    "failed to load firmware(data)\n");
3272 		goto fail1;
3273 	}
3274 
3275 	/* now press "execute" ;-) */
3276 	tmp = WPI_READ(sc, WPI_RESET);
3277 	tmp &= ~(WPI_MASTER_DISABLED | WPI_STOP_MASTER | WPI_NEVO_RESET);
3278 	WPI_WRITE(sc, WPI_RESET, tmp);
3279 
3280 	/* ..and wait at most one second for adapter to initialize */
3281 	clk = ddi_get_lbolt() + drv_usectohz(2000000);
3282 	while (!(sc->sc_flags & WPI_F_FW_INIT)) {
3283 		if (cv_timedwait(&sc->sc_fw_cv, &sc->sc_glock, clk) < 0)
3284 			break;
3285 	}
3286 	if (!(sc->sc_flags & WPI_F_FW_INIT)) {
3287 		cmn_err(CE_WARN,
3288 		    "wpi_init(): timeout waiting for firmware init\n");
3289 		goto fail1;
3290 	}
3291 
3292 	/* wait for thermal sensors to calibrate */
3293 	for (ntries = 0; ntries < 1000; ntries++) {
3294 		if (WPI_READ(sc, WPI_TEMPERATURE) != 0)
3295 			break;
3296 		DELAY(10);
3297 	}
3298 
3299 	if (ntries == 1000) {
3300 		WPI_DBG((WPI_DEBUG_HW,
3301 		    "wpi_init(): timeout waiting for thermal sensors "
3302 		    "calibration\n"));
3303 	}
3304 
3305 	WPI_DBG((WPI_DEBUG_HW, "temperature %d\n",
3306 	    (int)WPI_READ(sc, WPI_TEMPERATURE)));
3307 
3308 	err = wpi_config(sc);
3309 	if (err) {
3310 		cmn_err(CE_WARN, "wpi_init(): failed to configure device\n");
3311 		goto fail1;
3312 	}
3313 
3314 	mutex_exit(&sc->sc_glock);
3315 	return (WPI_SUCCESS);
3316 
3317 fail1:
3318 	err = WPI_FAIL;
3319 	mutex_exit(&sc->sc_glock);
3320 	return (err);
3321 }
3322 
3323 /*
3324  * quiesce(9E) entry point.
3325  * This function is called when the system is single-threaded at high
3326  * PIL with preemption disabled. Therefore, this function must not be
3327  * blocked.
3328  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
3329  * DDI_FAILURE indicates an error condition and should almost never happen.
3330  */
3331 static int
3332 wpi_quiesce(dev_info_t *dip)
3333 {
3334 	wpi_sc_t *sc;
3335 
3336 	sc = ddi_get_soft_state(wpi_soft_state_p, ddi_get_instance(dip));
3337 	if (sc == NULL)
3338 		return (DDI_FAILURE);
3339 
3340 #ifdef DEBUG
3341 	/* by pass any messages, if it's quiesce */
3342 	wpi_dbg_flags = 0;
3343 #endif
3344 
3345 	/*
3346 	 * No more blocking is allowed while we are in the
3347 	 * quiesce(9E) entry point.
3348 	 */
3349 	sc->sc_flags |= WPI_F_QUIESCED;
3350 
3351 	/*
3352 	 * Disable and mask all interrupts.
3353 	 */
3354 	wpi_stop(sc);
3355 	return (DDI_SUCCESS);
3356 }
3357 
3358 static void
3359 wpi_stop(wpi_sc_t *sc)
3360 {
3361 	uint32_t tmp;
3362 	int ac;
3363 
3364 	/* no mutex operation, if it's quiesced */
3365 	if (!(sc->sc_flags & WPI_F_QUIESCED))
3366 		mutex_enter(&sc->sc_glock);
3367 
3368 	/* disable interrupts */
3369 	WPI_WRITE(sc, WPI_MASK, 0);
3370 	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3371 	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3372 	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3373 
3374 	wpi_mem_lock(sc);
3375 	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3376 	wpi_mem_unlock(sc);
3377 
3378 	/* reset all Tx rings */
3379 	for (ac = 0; ac < 4; ac++)
3380 		wpi_reset_tx_ring(sc, &sc->sc_txq[ac]);
3381 	wpi_reset_tx_ring(sc, &sc->sc_cmdq);
3382 	wpi_reset_tx_ring(sc, &sc->sc_svcq);
3383 
3384 	/* reset Rx ring */
3385 	wpi_reset_rx_ring(sc);
3386 
3387 	wpi_mem_lock(sc);
3388 	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3389 	wpi_mem_unlock(sc);
3390 
3391 	DELAY(5);
3392 
3393 	wpi_stop_master(sc);
3394 
3395 	sc->sc_tx_timer = 0;
3396 	sc->sc_flags &= ~WPI_F_SCANNING;
3397 	sc->sc_scan_pending = 0;
3398 	sc->sc_scan_next = 0;
3399 
3400 	tmp = WPI_READ(sc, WPI_RESET);
3401 	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3402 
3403 	/* no mutex operation, if it's quiesced */
3404 	if (!(sc->sc_flags & WPI_F_QUIESCED))
3405 		mutex_exit(&sc->sc_glock);
3406 }
3407 
3408 /*
3409  * Naive implementation of the Adaptive Multi Rate Retry algorithm:
3410  * "IEEE 802.11 Rate Adaptation: A Practical Approach"
3411  * Mathieu Lacage, Hossein Manshaei, Thierry Turletti
3412  * INRIA Sophia - Projet Planete
3413  * http://www-sop.inria.fr/rapports/sophia/RR-5208.html
3414  */
3415 #define	is_success(amrr)	\
3416 	((amrr)->retrycnt < (amrr)->txcnt / 10)
3417 #define	is_failure(amrr)	\
3418 	((amrr)->retrycnt > (amrr)->txcnt / 3)
3419 #define	is_enough(amrr)		\
3420 	((amrr)->txcnt > 100)
3421 #define	is_min_rate(in)		\
3422 	((in)->in_txrate == 0)
3423 #define	is_max_rate(in)		\
3424 	((in)->in_txrate == (in)->in_rates.ir_nrates - 1)
3425 #define	increase_rate(in)	\
3426 	((in)->in_txrate++)
3427 #define	decrease_rate(in)	\
3428 	((in)->in_txrate--)
3429 #define	reset_cnt(amrr)		\
3430 	{ (amrr)->txcnt = (amrr)->retrycnt = 0; }
3431 
3432 #define	WPI_AMRR_MIN_SUCCESS_THRESHOLD	 1
3433 #define	WPI_AMRR_MAX_SUCCESS_THRESHOLD	15
3434 
3435 static void
3436 wpi_amrr_init(wpi_amrr_t *amrr)
3437 {
3438 	amrr->success = 0;
3439 	amrr->recovery = 0;
3440 	amrr->txcnt = amrr->retrycnt = 0;
3441 	amrr->success_threshold = WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3442 }
3443 
3444 static void
3445 wpi_amrr_timeout(wpi_sc_t *sc)
3446 {
3447 	ieee80211com_t *ic = &sc->sc_ic;
3448 
3449 	WPI_DBG((WPI_DEBUG_RATECTL, "wpi_amrr_timeout() enter\n"));
3450 	if (ic->ic_opmode == IEEE80211_M_STA)
3451 		wpi_amrr_ratectl(NULL, ic->ic_bss);
3452 	else
3453 		ieee80211_iterate_nodes(&ic->ic_sta, wpi_amrr_ratectl, NULL);
3454 	sc->sc_clk = ddi_get_lbolt();
3455 }
3456 
3457 /* ARGSUSED */
3458 static void
3459 wpi_amrr_ratectl(void *arg, ieee80211_node_t *in)
3460 {
3461 	wpi_amrr_t *amrr = (wpi_amrr_t *)in;
3462 	int need_change = 0;
3463 
3464 	if (is_success(amrr) && is_enough(amrr)) {
3465 		amrr->success++;
3466 		if (amrr->success >= amrr->success_threshold &&
3467 		    !is_max_rate(in)) {
3468 			amrr->recovery = 1;
3469 			amrr->success = 0;
3470 			increase_rate(in);
3471 			WPI_DBG((WPI_DEBUG_RATECTL,
3472 			    "AMRR increasing rate %d (txcnt=%d retrycnt=%d)\n",
3473 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3474 			need_change = 1;
3475 		} else {
3476 			amrr->recovery = 0;
3477 		}
3478 	} else if (is_failure(amrr)) {
3479 		amrr->success = 0;
3480 		if (!is_min_rate(in)) {
3481 			if (amrr->recovery) {
3482 				amrr->success_threshold++;
3483 				if (amrr->success_threshold >
3484 				    WPI_AMRR_MAX_SUCCESS_THRESHOLD)
3485 					amrr->success_threshold =
3486 					    WPI_AMRR_MAX_SUCCESS_THRESHOLD;
3487 			} else {
3488 				amrr->success_threshold =
3489 				    WPI_AMRR_MIN_SUCCESS_THRESHOLD;
3490 			}
3491 			decrease_rate(in);
3492 			WPI_DBG((WPI_DEBUG_RATECTL,
3493 			    "AMRR decreasing rate %d (txcnt=%d retrycnt=%d)\n",
3494 			    in->in_txrate, amrr->txcnt, amrr->retrycnt));
3495 			need_change = 1;
3496 		}
3497 		amrr->recovery = 0;	/* paper is incorrect */
3498 	}
3499 
3500 	if (is_enough(amrr) || need_change)
3501 		reset_cnt(amrr);
3502 }
3503