xref: /titanic_50/usr/src/uts/common/io/timod.c (revision 80c94ecd7a524eb933a4bb221a9618b9dc490e76)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved  	*/
27 
28 
29 /*
30  * Transport Interface Library cooperating module - issue 2
31  */
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/stream.h>
36 #include <sys/stropts.h>
37 #include <sys/strsubr.h>
38 #define	_SUN_TPI_VERSION 2
39 #include <sys/tihdr.h>
40 #include <sys/timod.h>
41 #include <sys/suntpi.h>
42 #include <sys/debug.h>
43 #include <sys/strlog.h>
44 #include <sys/errno.h>
45 #include <sys/cred.h>
46 #include <sys/cmn_err.h>
47 #include <sys/kmem.h>
48 #include <sys/sysmacros.h>
49 #include <sys/ddi.h>
50 #include <sys/sunddi.h>
51 #include <sys/strsun.h>
52 #include <c2/audit.h>
53 
54 /*
55  * This is the loadable module wrapper.
56  */
57 #include <sys/conf.h>
58 #include <sys/modctl.h>
59 
60 static struct streamtab timinfo;
61 
62 static struct fmodsw fsw = {
63 	"timod",
64 	&timinfo,
65 	D_MTQPAIR | D_MP,
66 };
67 
68 /*
69  * Module linkage information for the kernel.
70  */
71 
72 static struct modlstrmod modlstrmod = {
73 	&mod_strmodops, "transport interface str mod", &fsw
74 };
75 
76 static struct modlinkage modlinkage = {
77 	MODREV_1, &modlstrmod, NULL
78 };
79 
80 static krwlock_t	tim_list_rwlock;
81 
82 /*
83  * This module keeps track of capabilities of underlying transport. Information
84  * is persistent through module invocations (open/close). Currently it remembers
85  * whether underlying transport supports TI_GET{MY,PEER}NAME ioctls and
86  * T_CAPABILITY_REQ message. This module either passes ioctl/messages to the
87  * transport or emulates it when transport doesn't understand these
88  * ioctl/messages.
89  *
90  * It is assumed that transport supports T_CAPABILITY_REQ when timod receives
91  * T_CAPABILITY_ACK from the transport. There is no current standard describing
92  * transport behaviour when it receives unknown message type, so following
93  * reactions are expected and handled:
94  *
95  * 1) Transport drops unknown T_CAPABILITY_REQ message type. In this case timod
96  *    will wait for tcap_wait time and assume that transport doesn't provide
97  *    this message type. T_CAPABILITY_REQ should never travel over the wire, so
98  *    timeout value should only take into consideration internal processing time
99  *    for the message. From user standpoint it may mean that an application will
100  *    hang for TCAP_WAIT time in the kernel the first time this message is used
101  *    with some particular transport (e.g. TCP/IP) during system uptime.
102  *
103  * 2) Transport responds with T_ERROR_ACK specifying T_CAPABILITY_REQ as
104  *    original message type. In this case it is assumed that transport doesn't
105  *    support it (which may not always be true - some transports return
106  *    T_ERROR_ACK in other cases like lack of system memory).
107  *
108  * 3) Transport responds with M_ERROR, effectively shutting down the
109  *    stream. Unfortunately there is no standard way to pass the reason of
110  *    M_ERROR message back to the caller, so it is assumed that if M_ERROR was
111  *    sent in response to T_CAPABILITY_REQ message, transport doesn't support
112  *    it.
113  *
114  * It is possible under certain circumstances that timod will incorrectly assume
115  * that underlying transport doesn't provide T_CAPABILITY_REQ message type. In
116  * this "worst-case" scenario timod will emulate its functionality by itself and
117  * will provide only TC1_INFO capability. All other bits in CAP_bits1 field are
118  * cleaned. TC1_INFO is emulated by sending T_INFO_REQ down to transport
119  * provider.
120  */
121 
122 /*
123  * Notes about locking:
124  *
125  * tim_list_rwlock protects the list of tim_tim structures itself.  When this
126  * lock is held, the list itself is stable, but the contents of the entries
127  * themselves might not be.
128  *
129  * The rest of the members are generally protected by D_MTQPAIR, which
130  * specifies a default exclusive inner perimeter.  If you're looking at
131  * q->q_ptr, then it's stable.
132  *
133  * There's one exception to this rule: tim_peer{maxlen,len,name}.  These members
134  * are touched without entering the associated STREAMS perimeter because we
135  * get the pointer via tim_findlink() rather than q_ptr.  These are protected
136  * by tim_mutex instead.  If you don't hold that lock, don't look at them.
137  *
138  * (It would be possible to separate out the 'set by T_CONN_RES' cases from the
139  * others, but there appears to be no reason to do so.)
140  */
141 struct tim_tim {
142 	uint32_t	tim_flags;
143 	t_uscalar_t	tim_backlog;
144 	mblk_t		*tim_iocsave;
145 	t_scalar_t	tim_mymaxlen;
146 	t_scalar_t	tim_mylen;
147 	caddr_t		tim_myname;
148 	t_scalar_t	tim_peermaxlen;
149 	t_scalar_t	tim_peerlen;
150 	caddr_t		tim_peername;
151 	cred_t		*tim_peercred;
152 	mblk_t		*tim_consave;
153 	bufcall_id_t	tim_wbufcid;
154 	bufcall_id_t	tim_rbufcid;
155 	timeout_id_t	tim_wtimoutid;
156 	timeout_id_t	tim_rtimoutid;
157 	/* Protected by the global tim_list_rwlock for all instances */
158 	struct tim_tim	*tim_next;
159 	struct tim_tim	**tim_ptpn;
160 	t_uscalar_t	tim_acceptor;
161 	t_scalar_t	tim_saved_prim;		/* Primitive from message */
162 						/*  part of ioctl. */
163 	timeout_id_t	tim_tcap_timoutid;	/* For T_CAP_REQ timeout */
164 	tpi_provinfo_t	*tim_provinfo;		/* Transport description */
165 	kmutex_t	tim_mutex;		/* protect tim_peer* */
166 	pid_t		tim_cpid;
167 };
168 
169 
170 /*
171  * Local flags used with tim_flags field in instance structure of
172  * type 'struct _ti_user' declared above.
173  * Historical note:
174  * This namespace constants were previously declared in a
175  * a very messed up namespace in timod.h
176  *
177  * There may be 3 states for transport:
178  *
179  * 1) It provides T_CAPABILITY_REQ
180  * 2) It does not provide T_CAPABILITY_REQ
181  * 3) It is not known yet whether transport provides T_CAPABILITY_REQ or not.
182  *
183  * It is assumed that the underlying transport either provides
184  * T_CAPABILITY_REQ or not and this does not changes during the
185  * system lifetime.
186  *
187  */
188 #define	PEEK_RDQ_EXPIND 0x0001	/* look for expinds on stream rd queues */
189 #define	WAITIOCACK	0x0002	/* waiting for info for ioctl act	*/
190 #define	CLTS		0x0004	/* connectionless transport		*/
191 #define	COTS		0x0008	/* connection-oriented transport	*/
192 #define	CONNWAIT	0x0010	/* waiting for connect confirmation	*/
193 #define	LOCORDREL	0x0020	/* local end has orderly released	*/
194 #define	REMORDREL	0x0040	/* remote end had orderly released	*/
195 #define	NAMEPROC	0x0080	/* processing a NAME ioctl		*/
196 #define	DO_MYNAME	0x0100	/* timod handles TI_GETMYNAME		*/
197 #define	DO_PEERNAME	0x0200	/* timod handles TI_GETPEERNAME		*/
198 #define	TI_CAP_RECVD	0x0400	/* TI_CAPABILITY received		*/
199 #define	CAP_WANTS_INFO	0x0800	/* TI_CAPABILITY has TC1_INFO set	*/
200 #define	WAIT_IOCINFOACK	0x1000	/* T_INFO_REQ generated from ioctl	*/
201 #define	WAIT_CONNRESACK	0x2000	/* waiting for T_OK_ACK to T_CONN_RES	*/
202 
203 
204 /* Debugging facilities */
205 /*
206  * Logging needed for debugging timod should only appear in DEBUG kernel.
207  */
208 #ifdef DEBUG
209 #define	TILOG(msg, arg)		tilog((msg), (arg))
210 #define	TILOGP(msg, arg)	tilogp((msg), (arg))
211 #else
212 #define	TILOG(msg, arg)
213 #define	TILOGP(msg, arg)
214 #endif
215 
216 
217 /*
218  * Sleep timeout for T_CAPABILITY_REQ. This message never travels across
219  * network, so timeout value should be enough to cover all internal processing
220  * time.
221  */
222 clock_t tim_tcap_wait = 2;
223 
224 /* Sleep timeout in tim_recover() */
225 #define	TIMWAIT	(1*hz)
226 /* Sleep timeout in tim_ioctl_retry() 0.2 seconds */
227 #define	TIMIOCWAIT	(200*hz/1000)
228 
229 /*
230  * Return values for ti_doname().
231  */
232 #define	DONAME_FAIL	0	/* failing ioctl (done) */
233 #define	DONAME_DONE	1	/* done processing */
234 #define	DONAME_CONT	2	/* continue proceesing (not done yet) */
235 
236 /*
237  * Function prototypes
238  */
239 static int ti_doname(queue_t *, mblk_t *);
240 static int ti_expind_on_rdqueues(queue_t *);
241 static void tim_ioctl_send_reply(queue_t *, mblk_t *, mblk_t *);
242 static void tim_send_ioc_error_ack(queue_t *, struct tim_tim *, mblk_t *);
243 static void tim_tcap_timer(void *);
244 static void tim_tcap_genreply(queue_t *, struct tim_tim *);
245 static void tim_send_reply(queue_t *, mblk_t *, struct tim_tim *, t_scalar_t);
246 static void tim_answer_ti_sync(queue_t *, mblk_t *, struct tim_tim *,
247     mblk_t *, uint32_t);
248 static void tim_send_ioctl_tpi_msg(queue_t *, mblk_t *, struct tim_tim *,
249 	struct iocblk *);
250 static void tim_clear_peer(struct tim_tim *);
251 
252 int
253 _init(void)
254 {
255 	int	error;
256 
257 	rw_init(&tim_list_rwlock, NULL, RW_DRIVER, NULL);
258 	error = mod_install(&modlinkage);
259 	if (error != 0) {
260 		rw_destroy(&tim_list_rwlock);
261 		return (error);
262 	}
263 
264 	return (0);
265 }
266 
267 int
268 _fini(void)
269 {
270 	int	error;
271 
272 	error = mod_remove(&modlinkage);
273 	if (error != 0)
274 		return (error);
275 	rw_destroy(&tim_list_rwlock);
276 	return (0);
277 }
278 
279 int
280 _info(struct modinfo *modinfop)
281 {
282 	return (mod_info(&modlinkage, modinfop));
283 }
284 
285 
286 /*
287  * Hash list for all instances. Used to find tim_tim structure based on
288  * ACCEPTOR_id in T_CONN_RES. Protected by tim_list_rwlock.
289  */
290 #define	TIM_HASH_SIZE	256
291 #ifdef	_ILP32
292 #define	TIM_HASH(id) (((uintptr_t)(id) >> 8) % TIM_HASH_SIZE)
293 #else
294 #define	TIM_HASH(id) ((uintptr_t)(id) % TIM_HASH_SIZE)
295 #endif	/* _ILP32 */
296 static struct tim_tim	*tim_hash[TIM_HASH_SIZE];
297 int		tim_cnt = 0;
298 
299 static void tilog(char *, t_scalar_t);
300 static void tilogp(char *, uintptr_t);
301 static mblk_t *tim_filladdr(queue_t *, mblk_t *, boolean_t);
302 static void tim_addlink(struct tim_tim	*);
303 static void tim_dellink(struct tim_tim	*);
304 static struct tim_tim *tim_findlink(t_uscalar_t);
305 static void tim_recover(queue_t *, mblk_t *, t_scalar_t);
306 static void tim_ioctl_retry(queue_t *);
307 
308 int dotilog = 0;
309 
310 #define	TIMOD_ID	3
311 
312 static int timodopen(queue_t *, dev_t *, int, int, cred_t *);
313 static int timodclose(queue_t *, int, cred_t *);
314 static void timodwput(queue_t *, mblk_t *);
315 static void timodrput(queue_t *, mblk_t *);
316 static void timodrsrv(queue_t *);
317 static void timodwsrv(queue_t *);
318 static int timodrproc(queue_t *, mblk_t *);
319 static int timodwproc(queue_t *, mblk_t *);
320 
321 /* stream data structure definitions */
322 
323 static struct module_info timod_info =
324 	{TIMOD_ID, "timod", 0, INFPSZ, 512, 128};
325 static struct qinit timodrinit = {
326 	(int (*)())timodrput,
327 	(int (*)())timodrsrv,
328 	timodopen,
329 	timodclose,
330 	nulldev,
331 	&timod_info,
332 	NULL
333 };
334 static struct qinit timodwinit = {
335 	(int (*)())timodwput,
336 	(int (*)())timodwsrv,
337 	timodopen,
338 	timodclose,
339 	nulldev,
340 	&timod_info,
341 	NULL
342 };
343 static struct streamtab timinfo = { &timodrinit, &timodwinit, NULL, NULL };
344 
345 /*
346  * timodopen -	open routine gets called when the module gets pushed
347  *		onto the stream.
348  */
349 /*ARGSUSED*/
350 static int
351 timodopen(
352 	queue_t *q,
353 	dev_t *devp,
354 	int flag,
355 	int sflag,
356 	cred_t *crp)
357 {
358 	struct tim_tim *tp;
359 	struct stroptions *sop;
360 	mblk_t *bp;
361 
362 	ASSERT(q != NULL);
363 
364 	if (q->q_ptr) {
365 		return (0);
366 	}
367 
368 	if ((bp = allocb(sizeof (struct stroptions), BPRI_MED)) == 0)
369 		return (ENOMEM);
370 
371 	tp = kmem_zalloc(sizeof (struct tim_tim), KM_SLEEP);
372 
373 	tp->tim_cpid = -1;
374 	tp->tim_saved_prim = -1;
375 
376 	mutex_init(&tp->tim_mutex, NULL, MUTEX_DEFAULT, NULL);
377 
378 	q->q_ptr = (caddr_t)tp;
379 	WR(q)->q_ptr = (caddr_t)tp;
380 
381 	tilogp("timodopen: Allocated for tp %lx\n", (uintptr_t)tp);
382 	tilogp("timodopen: Allocated for q %lx\n", (uintptr_t)q);
383 
384 	/* Must be done before tpi_findprov and _ILP32 q_next walk below */
385 	qprocson(q);
386 
387 	tp->tim_provinfo = tpi_findprov(q);
388 
389 	/*
390 	 * Defer allocation of the buffers for the local address and
391 	 * the peer's address until we need them.
392 	 * Assume that timod has to handle getname until we here
393 	 * an iocack from the transport provider or we know that
394 	 * transport provider doesn't understand it.
395 	 */
396 	if (tp->tim_provinfo->tpi_myname != PI_YES) {
397 		TILOG("timodopen: setting DO_MYNAME\n", 0);
398 		tp->tim_flags |= DO_MYNAME;
399 	}
400 
401 	if (tp->tim_provinfo->tpi_peername != PI_YES) {
402 		TILOG("timodopen: setting DO_PEERNAME\n", 0);
403 		tp->tim_flags |= DO_PEERNAME;
404 	}
405 
406 #ifdef	_ILP32
407 	{
408 		queue_t *driverq;
409 
410 		/*
411 		 * Find my driver's read queue (for T_CONN_RES handling)
412 		 */
413 		driverq = WR(q);
414 		while (SAMESTR(driverq))
415 			driverq = driverq->q_next;
416 
417 		tp->tim_acceptor = (t_uscalar_t)RD(driverq);
418 	}
419 #else
420 	tp->tim_acceptor = (t_uscalar_t)getminor(*devp);
421 #endif	/* _ILP32 */
422 
423 	/*
424 	 * Add this one to the list.
425 	 */
426 	tim_addlink(tp);
427 
428 	/*
429 	 * Send M_SETOPTS to stream head to make sure M_PCPROTO messages
430 	 * are not flushed. This prevents application deadlocks.
431 	 */
432 	bp->b_datap->db_type = M_SETOPTS;
433 	bp->b_wptr += sizeof (struct stroptions);
434 	sop = (struct stroptions *)bp->b_rptr;
435 	sop->so_flags = SO_READOPT;
436 	sop->so_readopt = RFLUSHPCPROT;
437 
438 	putnext(q, bp);
439 
440 	return (0);
441 }
442 
443 static void
444 tim_timer(void *arg)
445 {
446 	queue_t *q = arg;
447 	struct tim_tim *tp = (struct tim_tim *)q->q_ptr;
448 
449 	ASSERT(tp);
450 
451 	if (q->q_flag & QREADR) {
452 		ASSERT(tp->tim_rtimoutid);
453 		tp->tim_rtimoutid = 0;
454 	} else {
455 		ASSERT(tp->tim_wtimoutid);
456 		tp->tim_wtimoutid = 0;
457 	}
458 	enableok(q);
459 	qenable(q);
460 }
461 
462 static void
463 tim_buffer(void *arg)
464 {
465 	queue_t *q = arg;
466 	struct tim_tim *tp = (struct tim_tim *)q->q_ptr;
467 
468 	ASSERT(tp);
469 
470 	if (q->q_flag & QREADR) {
471 		ASSERT(tp->tim_rbufcid);
472 		tp->tim_rbufcid = 0;
473 	} else {
474 		ASSERT(tp->tim_wbufcid);
475 		tp->tim_wbufcid = 0;
476 	}
477 	enableok(q);
478 	qenable(q);
479 }
480 
481 /*
482  * timodclose - This routine gets called when the module gets popped
483  * off of the stream.
484  */
485 /*ARGSUSED*/
486 static int
487 timodclose(
488 	queue_t *q,
489 	int flag,
490 	cred_t *crp)
491 {
492 	struct tim_tim *tp;
493 	mblk_t *mp;
494 	mblk_t *nmp;
495 
496 	ASSERT(q != NULL);
497 
498 	tp = (struct tim_tim *)q->q_ptr;
499 	q->q_ptr = NULL;
500 
501 	ASSERT(tp != NULL);
502 
503 	tilogp("timodclose: Entered for tp %lx\n", (uintptr_t)tp);
504 	tilogp("timodclose: Entered for q %lx\n", (uintptr_t)q);
505 
506 	qprocsoff(q);
507 	tim_dellink(tp);
508 
509 	/*
510 	 * Cancel any outstanding bufcall
511 	 * or timeout requests.
512 	 */
513 	if (tp->tim_wbufcid) {
514 		qunbufcall(q, tp->tim_wbufcid);
515 		tp->tim_wbufcid = 0;
516 	}
517 	if (tp->tim_rbufcid) {
518 		qunbufcall(q, tp->tim_rbufcid);
519 		tp->tim_rbufcid = 0;
520 	}
521 	if (tp->tim_wtimoutid) {
522 		(void) quntimeout(q, tp->tim_wtimoutid);
523 		tp->tim_wtimoutid = 0;
524 	}
525 	if (tp->tim_rtimoutid) {
526 		(void) quntimeout(q, tp->tim_rtimoutid);
527 		tp->tim_rtimoutid = 0;
528 	}
529 
530 	if (tp->tim_tcap_timoutid != 0) {
531 		(void) quntimeout(q, tp->tim_tcap_timoutid);
532 		tp->tim_tcap_timoutid = 0;
533 	}
534 
535 	if (tp->tim_iocsave != NULL)
536 		freemsg(tp->tim_iocsave);
537 	mp = tp->tim_consave;
538 	while (mp) {
539 		nmp = mp->b_next;
540 		mp->b_next = NULL;
541 		freemsg(mp);
542 		mp = nmp;
543 	}
544 	ASSERT(tp->tim_mymaxlen >= 0);
545 	if (tp->tim_mymaxlen != 0)
546 		kmem_free(tp->tim_myname, (size_t)tp->tim_mymaxlen);
547 	ASSERT(tp->tim_peermaxlen >= 0);
548 	if (tp->tim_peermaxlen != 0)
549 		kmem_free(tp->tim_peername, (size_t)tp->tim_peermaxlen);
550 
551 	q->q_ptr = WR(q)->q_ptr = NULL;
552 
553 	mutex_destroy(&tp->tim_mutex);
554 
555 	if (tp->tim_peercred != NULL)
556 		crfree(tp->tim_peercred);
557 
558 	kmem_free(tp, sizeof (struct tim_tim));
559 
560 	return (0);
561 }
562 
563 /*
564  * timodrput -	Module read put procedure.  This is called from
565  *		the module, driver, or stream head upstream/downstream.
566  *		Handles M_FLUSH, M_DATA and some M_PROTO (T_DATA_IND,
567  *		and T_UNITDATA_IND) messages. All others are queued to
568  *		be handled by the service procedures.
569  */
570 static void
571 timodrput(queue_t *q, mblk_t *mp)
572 {
573 	union T_primitives *pptr;
574 
575 	/*
576 	 * During flow control and other instances when messages
577 	 * are on queue, queue up a non high priority message
578 	 */
579 	if (q->q_first != 0 && mp->b_datap->db_type < QPCTL) {
580 		(void) putq(q, mp);
581 		return;
582 	}
583 
584 	/*
585 	 * Inline processing of data (to avoid additional procedure call).
586 	 * Rest is handled in timodrproc.
587 	 */
588 
589 	switch (mp->b_datap->db_type) {
590 	case M_DATA:
591 		if (bcanputnext(q, mp->b_band))
592 			putnext(q, mp);
593 		else
594 			(void) putq(q, mp);
595 		break;
596 	case M_PROTO:
597 	case M_PCPROTO:
598 		if (MBLKL(mp) < sizeof (t_scalar_t)) {
599 			if (mp->b_datap->db_type == M_PCPROTO ||
600 			    bcanputnext(q, mp->b_band)) {
601 				putnext(q, mp);
602 			} else {
603 				(void) putq(q, mp);
604 			}
605 			break;
606 		}
607 		pptr = (union T_primitives *)mp->b_rptr;
608 		switch (pptr->type) {
609 		case T_EXDATA_IND:
610 		case T_DATA_IND:
611 		case T_UNITDATA_IND:
612 			if (bcanputnext(q, mp->b_band))
613 				putnext(q, mp);
614 			else
615 				(void) putq(q, mp);
616 			break;
617 		default:
618 			(void) timodrproc(q, mp);
619 			break;
620 		}
621 		break;
622 	default:
623 		(void) timodrproc(q, mp);
624 		break;
625 	}
626 }
627 
628 /*
629  * timodrsrv -	Module read queue service procedure.  This is called when
630  *		messages are placed on an empty queue, when high priority
631  *		messages are placed on the queue, and when flow control
632  *		restrictions subside.  This code used to be included in a
633  *		put procedure, but it was moved to a service procedure
634  *		because several points were added where memory allocation
635  *		could fail, and there is no reasonable recovery mechanism
636  *		from the put procedure.
637  */
638 /*ARGSUSED*/
639 static void
640 timodrsrv(queue_t *q)
641 {
642 	mblk_t *mp;
643 	struct tim_tim *tp;
644 
645 	ASSERT(q != NULL);
646 
647 	tp = (struct tim_tim *)q->q_ptr;
648 	if (!tp)
649 		return;
650 
651 	while ((mp = getq(q)) != NULL) {
652 		if (timodrproc(q, mp)) {
653 			/*
654 			 * timodrproc did a putbq - stop processing
655 			 * messages.
656 			 */
657 			return;
658 		}
659 	}
660 }
661 
662 /*
663  * Perform common processing when a T_CAPABILITY_ACK or T_INFO_ACK
664  * arrive.  Set the queue properties and adjust the tim_flags according
665  * to the service type.
666  */
667 static void
668 timodprocessinfo(queue_t *q, struct tim_tim *tp, struct T_info_ack *tia)
669 {
670 	TILOG("timodprocessinfo: strqset(%d)\n", tia->TIDU_size);
671 	(void) strqset(q, QMAXPSZ, 0, tia->TIDU_size);
672 	(void) strqset(OTHERQ(q), QMAXPSZ, 0, tia->TIDU_size);
673 
674 	if ((tia->SERV_type == T_COTS) || (tia->SERV_type == T_COTS_ORD))
675 		tp->tim_flags = (tp->tim_flags & ~CLTS) | COTS;
676 	else if (tia->SERV_type == T_CLTS)
677 		tp->tim_flags = (tp->tim_flags & ~COTS) | CLTS;
678 }
679 
680 static int
681 timodrproc(queue_t *q, mblk_t *mp)
682 {
683 	uint32_t auditing = AU_AUDITING();
684 	union T_primitives *pptr;
685 	struct tim_tim *tp;
686 	struct iocblk *iocbp;
687 	mblk_t *nbp;
688 	size_t blen;
689 
690 	tp = (struct tim_tim *)q->q_ptr;
691 
692 	switch (mp->b_datap->db_type) {
693 	default:
694 		putnext(q, mp);
695 		break;
696 
697 	case M_ERROR:
698 		TILOG("timodrproc: Got M_ERROR, flags = %x\n", tp->tim_flags);
699 		/*
700 		 * There is no specified standard response for driver when it
701 		 * receives unknown message type and M_ERROR is one
702 		 * possibility. If we send T_CAPABILITY_REQ down and transport
703 		 * provider responds with M_ERROR we assume that it doesn't
704 		 * understand this message type. This assumption may be
705 		 * sometimes incorrect (transport may reply with M_ERROR for
706 		 * some other reason) but there is no way for us to distinguish
707 		 * between different cases. In the worst case timod and everyone
708 		 * else sharing global transport description with it may end up
709 		 * emulating T_CAPABILITY_REQ.
710 		 */
711 
712 		/*
713 		 * Check that we are waiting for T_CAPABILITY_ACK and
714 		 * T_CAPABILITY_REQ is not implemented by transport or emulated
715 		 * by timod.
716 		 */
717 		if ((tp->tim_provinfo->tpi_capability == PI_DONTKNOW) &&
718 		    ((tp->tim_flags & TI_CAP_RECVD) != 0)) {
719 			/*
720 			 * Good chances that this transport doesn't provide
721 			 * T_CAPABILITY_REQ. Mark this information  permanently
722 			 * for the module + transport combination.
723 			 */
724 			PI_PROVLOCK(tp->tim_provinfo);
725 			if (tp->tim_provinfo->tpi_capability == PI_DONTKNOW)
726 				tp->tim_provinfo->tpi_capability = PI_NO;
727 			PI_PROVUNLOCK(tp->tim_provinfo);
728 			if (tp->tim_tcap_timoutid != 0) {
729 				(void) quntimeout(q, tp->tim_tcap_timoutid);
730 				tp->tim_tcap_timoutid = 0;
731 			}
732 		}
733 		putnext(q, mp);
734 		break;
735 	case M_DATA:
736 		if (!bcanputnext(q, mp->b_band)) {
737 			(void) putbq(q, mp);
738 			return (1);
739 		}
740 		putnext(q, mp);
741 		break;
742 
743 	case M_PROTO:
744 	case M_PCPROTO:
745 		blen = MBLKL(mp);
746 		if (blen < sizeof (t_scalar_t)) {
747 			/*
748 			 * Note: it's not actually possible to get
749 			 * here with db_type M_PCPROTO, because
750 			 * timodrput has already checked MBLKL, and
751 			 * thus the assertion below.  If the length
752 			 * was too short, then the message would have
753 			 * already been putnext'd, and would thus
754 			 * never appear here.  Just the same, the code
755 			 * below handles the impossible case since
756 			 * it's easy to do and saves future
757 			 * maintainers from unfortunate accidents.
758 			 */
759 			ASSERT(mp->b_datap->db_type == M_PROTO);
760 			if (mp->b_datap->db_type == M_PROTO &&
761 			    !bcanputnext(q, mp->b_band)) {
762 				(void) putbq(q, mp);
763 				return (1);
764 			}
765 			putnext(q, mp);
766 			break;
767 		}
768 
769 		pptr = (union T_primitives *)mp->b_rptr;
770 		switch (pptr->type) {
771 		default:
772 
773 			if (auditing)
774 				audit_sock(T_UNITDATA_IND, q, mp, TIMOD_ID);
775 			putnext(q, mp);
776 			break;
777 
778 		case T_ERROR_ACK:
779 			/* Restore db_type - recover() might have changed it */
780 			mp->b_datap->db_type = M_PCPROTO;
781 			if (blen < sizeof (struct T_error_ack)) {
782 				putnext(q, mp);
783 				break;
784 			}
785 
786 			tilog("timodrproc: Got T_ERROR_ACK, flags = %x\n",
787 			    tp->tim_flags);
788 
789 			if ((tp->tim_flags & WAIT_CONNRESACK) &&
790 			    tp->tim_saved_prim == pptr->error_ack.ERROR_prim) {
791 				tp->tim_flags &=
792 				    ~(WAIT_CONNRESACK | WAITIOCACK);
793 				freemsg(tp->tim_iocsave);
794 				tp->tim_iocsave = NULL;
795 				tp->tim_saved_prim = -1;
796 				putnext(q, mp);
797 			} else if (tp->tim_flags & WAITIOCACK) {
798 				tim_send_ioc_error_ack(q, tp, mp);
799 			} else {
800 				putnext(q, mp);
801 			}
802 			break;
803 
804 		case T_OK_ACK:
805 			if (blen < sizeof (pptr->ok_ack)) {
806 				mp->b_datap->db_type = M_PCPROTO;
807 				putnext(q, mp);
808 				break;
809 			}
810 
811 			tilog("timodrproc: Got T_OK_ACK\n", 0);
812 
813 			if (pptr->ok_ack.CORRECT_prim == T_UNBIND_REQ)
814 				tp->tim_mylen = 0;
815 
816 			if ((tp->tim_flags & WAIT_CONNRESACK) &&
817 			    tp->tim_saved_prim == pptr->ok_ack.CORRECT_prim) {
818 				struct T_conn_res *resp;
819 				struct T_conn_ind *indp;
820 				struct tim_tim *ntp;
821 				caddr_t ptr;
822 
823 				rw_enter(&tim_list_rwlock, RW_READER);
824 				resp = (struct T_conn_res *)
825 				    tp->tim_iocsave->b_rptr;
826 				ntp = tim_findlink(resp->ACCEPTOR_id);
827 				if (ntp == NULL)
828 					goto cresackout;
829 
830 				mutex_enter(&ntp->tim_mutex);
831 				if (ntp->tim_peercred != NULL)
832 					crfree(ntp->tim_peercred);
833 				ntp->tim_peercred =
834 				    msg_getcred(tp->tim_iocsave->b_cont,
835 				    &ntp->tim_cpid);
836 				if (ntp->tim_peercred != NULL)
837 					crhold(ntp->tim_peercred);
838 
839 				if (!(ntp->tim_flags & DO_PEERNAME)) {
840 					mutex_exit(&ntp->tim_mutex);
841 					goto cresackout;
842 				}
843 
844 				indp = (struct T_conn_ind *)
845 				    tp->tim_iocsave->b_cont->b_rptr;
846 				/* true as message is put on list */
847 				ASSERT(indp->SRC_length >= 0);
848 
849 				if (indp->SRC_length > ntp->tim_peermaxlen) {
850 					ptr = kmem_alloc(indp->SRC_length,
851 					    KM_NOSLEEP);
852 					if (ptr == NULL) {
853 						mutex_exit(&ntp->tim_mutex);
854 						rw_exit(&tim_list_rwlock);
855 						tilog("timodwproc: kmem_alloc "
856 						    "failed, attempting "
857 						    "recovery\n", 0);
858 						tim_recover(q, mp,
859 						    indp->SRC_length);
860 						return (1);
861 					}
862 					if (ntp->tim_peermaxlen > 0)
863 						kmem_free(ntp->tim_peername,
864 						    ntp->tim_peermaxlen);
865 					ntp->tim_peername = ptr;
866 					ntp->tim_peermaxlen = indp->SRC_length;
867 				}
868 				ntp->tim_peerlen = indp->SRC_length;
869 				ptr = (caddr_t)indp + indp->SRC_offset;
870 				bcopy(ptr, ntp->tim_peername, ntp->tim_peerlen);
871 
872 				mutex_exit(&ntp->tim_mutex);
873 
874 			cresackout:
875 				rw_exit(&tim_list_rwlock);
876 				tp->tim_flags &=
877 				    ~(WAIT_CONNRESACK | WAITIOCACK);
878 				freemsg(tp->tim_iocsave);
879 				tp->tim_iocsave = NULL;
880 				tp->tim_saved_prim = -1;
881 			}
882 
883 			tim_send_reply(q, mp, tp, pptr->ok_ack.CORRECT_prim);
884 			break;
885 
886 		case T_BIND_ACK: {
887 			struct T_bind_ack *ackp =
888 			    (struct T_bind_ack *)mp->b_rptr;
889 
890 			/* Restore db_type - recover() might have changed it */
891 			mp->b_datap->db_type = M_PCPROTO;
892 			if (blen < sizeof (*ackp)) {
893 				putnext(q, mp);
894 				break;
895 			}
896 
897 			/* save negotiated backlog */
898 			tp->tim_backlog = ackp->CONIND_number;
899 
900 			if (((tp->tim_flags & WAITIOCACK) == 0) ||
901 			    ((tp->tim_saved_prim != O_T_BIND_REQ) &&
902 			    (tp->tim_saved_prim != T_BIND_REQ))) {
903 				putnext(q, mp);
904 				break;
905 			}
906 			ASSERT(tp->tim_iocsave != NULL);
907 
908 			if (tp->tim_flags & DO_MYNAME) {
909 				caddr_t p;
910 
911 				if (ackp->ADDR_length < 0 ||
912 				    mp->b_rptr + ackp->ADDR_offset +
913 				    ackp->ADDR_length > mp->b_wptr) {
914 					putnext(q, mp);
915 					break;
916 				}
917 				if (ackp->ADDR_length > tp->tim_mymaxlen) {
918 					p = kmem_alloc(ackp->ADDR_length,
919 					    KM_NOSLEEP);
920 					if (p == NULL) {
921 						tilog("timodrproc: kmem_alloc "
922 						    "failed attempt recovery",
923 						    0);
924 
925 						tim_recover(q, mp,
926 						    ackp->ADDR_length);
927 						return (1);
928 					}
929 					ASSERT(tp->tim_mymaxlen >= 0);
930 					if (tp->tim_mymaxlen != NULL) {
931 						kmem_free(tp->tim_myname,
932 						    tp->tim_mymaxlen);
933 					}
934 					tp->tim_myname = p;
935 					tp->tim_mymaxlen = ackp->ADDR_length;
936 				}
937 				tp->tim_mylen = ackp->ADDR_length;
938 				bcopy(mp->b_rptr + ackp->ADDR_offset,
939 				    tp->tim_myname, tp->tim_mylen);
940 			}
941 			tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
942 			tp->tim_iocsave = NULL;
943 			tp->tim_saved_prim = -1;
944 			tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
945 			    TI_CAP_RECVD | CAP_WANTS_INFO);
946 			break;
947 		}
948 
949 		case T_OPTMGMT_ACK:
950 
951 			tilog("timodrproc: Got T_OPTMGMT_ACK\n", 0);
952 
953 			/* Restore db_type - recover() might have change it */
954 			mp->b_datap->db_type = M_PCPROTO;
955 
956 			if (((tp->tim_flags & WAITIOCACK) == 0) ||
957 			    ((tp->tim_saved_prim != T_SVR4_OPTMGMT_REQ) &&
958 			    (tp->tim_saved_prim != T_OPTMGMT_REQ))) {
959 				putnext(q, mp);
960 			} else {
961 				ASSERT(tp->tim_iocsave != NULL);
962 				tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
963 				tp->tim_iocsave = NULL;
964 				tp->tim_saved_prim = -1;
965 				tp->tim_flags &= ~(WAITIOCACK |
966 				    WAIT_IOCINFOACK | TI_CAP_RECVD |
967 				    CAP_WANTS_INFO);
968 			}
969 		break;
970 
971 		case T_INFO_ACK: {
972 		struct T_info_ack *tia = (struct T_info_ack *)pptr;
973 
974 		/* Restore db_type - recover() might have changed it */
975 		mp->b_datap->db_type = M_PCPROTO;
976 
977 		if (blen < sizeof (*tia)) {
978 			putnext(q, mp);
979 			break;
980 		}
981 
982 		tilog("timodrproc: Got T_INFO_ACK, flags = %x\n",
983 		    tp->tim_flags);
984 
985 		timodprocessinfo(q, tp, tia);
986 
987 		TILOG("timodrproc: flags = %x\n", tp->tim_flags);
988 		if ((tp->tim_flags & WAITIOCACK) != 0) {
989 			size_t	expected_ack_size;
990 			ssize_t	deficit;
991 			int	ioc_cmd;
992 			struct T_capability_ack *tcap;
993 
994 			/*
995 			 * The only case when T_INFO_ACK may be received back
996 			 * when we are waiting for ioctl to complete is when
997 			 * this ioctl sent T_INFO_REQ down.
998 			 */
999 			if (!(tp->tim_flags & WAIT_IOCINFOACK)) {
1000 				putnext(q, mp);
1001 				break;
1002 			}
1003 			ASSERT(tp->tim_iocsave != NULL);
1004 
1005 			iocbp = (struct iocblk *)tp->tim_iocsave->b_rptr;
1006 			ioc_cmd = iocbp->ioc_cmd;
1007 
1008 			/*
1009 			 * Was it sent from TI_CAPABILITY emulation?
1010 			 */
1011 			if (ioc_cmd == TI_CAPABILITY) {
1012 				struct T_info_ack	saved_info;
1013 
1014 				/*
1015 				 * Perform sanity checks. The only case when we
1016 				 * send T_INFO_REQ from TI_CAPABILITY is when
1017 				 * timod emulates T_CAPABILITY_REQ and CAP_bits1
1018 				 * has TC1_INFO set.
1019 				 */
1020 				if ((tp->tim_flags &
1021 				    (TI_CAP_RECVD | CAP_WANTS_INFO)) !=
1022 				    (TI_CAP_RECVD | CAP_WANTS_INFO)) {
1023 					putnext(q, mp);
1024 					break;
1025 				}
1026 
1027 				TILOG("timodrproc: emulating TI_CAPABILITY/"
1028 				    "info\n", 0);
1029 
1030 				/* Save info & reuse mp for T_CAPABILITY_ACK */
1031 				saved_info = *tia;
1032 
1033 				mp = tpi_ack_alloc(mp,
1034 				    sizeof (struct T_capability_ack),
1035 				    M_PCPROTO, T_CAPABILITY_ACK);
1036 
1037 				if (mp == NULL) {
1038 					tilog("timodrproc: realloc failed, "
1039 					    "no recovery attempted\n", 0);
1040 					return (1);
1041 				}
1042 
1043 				/*
1044 				 * Copy T_INFO information into T_CAPABILITY_ACK
1045 				 */
1046 				tcap = (struct T_capability_ack *)mp->b_rptr;
1047 				tcap->CAP_bits1 = TC1_INFO;
1048 				tcap->INFO_ack = saved_info;
1049 				tp->tim_flags &= ~(WAITIOCACK |
1050 				    WAIT_IOCINFOACK | TI_CAP_RECVD |
1051 				    CAP_WANTS_INFO);
1052 				tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
1053 				tp->tim_iocsave = NULL;
1054 				tp->tim_saved_prim = -1;
1055 				break;
1056 			}
1057 
1058 			/*
1059 			 * The code for TI_SYNC/TI_GETINFO is left here only for
1060 			 * backward compatibility with staticaly linked old
1061 			 * applications. New TLI/XTI code should use
1062 			 * TI_CAPABILITY for getting transport info and should
1063 			 * not use TI_GETINFO/TI_SYNC for this purpose.
1064 			 */
1065 
1066 			/*
1067 			 * make sure the message sent back is the size of
1068 			 * the "expected ack"
1069 			 * For TI_GETINFO, expected ack size is
1070 			 *	sizeof (T_info_ack)
1071 			 * For TI_SYNC, expected ack size is
1072 			 *	sizeof (struct ti_sync_ack);
1073 			 */
1074 			if (ioc_cmd != TI_GETINFO && ioc_cmd != TI_SYNC) {
1075 				putnext(q, mp);
1076 				break;
1077 			}
1078 
1079 			expected_ack_size =
1080 			    sizeof (struct T_info_ack); /* TI_GETINFO */
1081 			if (iocbp->ioc_cmd == TI_SYNC) {
1082 				expected_ack_size = 2 * sizeof (uint32_t) +
1083 				    sizeof (struct ti_sync_ack);
1084 			}
1085 			deficit = expected_ack_size - blen;
1086 
1087 			if (deficit != 0) {
1088 				if (mp->b_datap->db_lim - mp->b_wptr <
1089 				    deficit) {
1090 					mblk_t *tmp = allocb(expected_ack_size,
1091 					    BPRI_HI);
1092 					if (tmp == NULL) {
1093 						ASSERT(MBLKSIZE(mp) >=
1094 						    sizeof (struct T_error_ack));
1095 
1096 						tilog("timodrproc: allocb failed no "
1097 						    "recovery attempt\n", 0);
1098 
1099 						mp->b_rptr = mp->b_datap->db_base;
1100 						pptr = (union T_primitives *)
1101 						    mp->b_rptr;
1102 						pptr->error_ack.ERROR_prim = T_INFO_REQ;
1103 						pptr->error_ack.TLI_error = TSYSERR;
1104 						pptr->error_ack.UNIX_error = EAGAIN;
1105 						pptr->error_ack.PRIM_type = T_ERROR_ACK;
1106 						mp->b_datap->db_type = M_PCPROTO;
1107 						tim_send_ioc_error_ack(q, tp, mp);
1108 						break;
1109 					} else {
1110 						bcopy(mp->b_rptr, tmp->b_rptr, blen);
1111 						tmp->b_wptr += blen;
1112 						pptr = (union T_primitives *)
1113 						    tmp->b_rptr;
1114 						freemsg(mp);
1115 						mp = tmp;
1116 					}
1117 				}
1118 			}
1119 			/*
1120 			 * We now have "mp" which has enough space for an
1121 			 * appropriate ack and contains struct T_info_ack
1122 			 * that the transport provider returned. We now
1123 			 * stuff it with more stuff to fullfill
1124 			 * TI_SYNC ioctl needs, as necessary
1125 			 */
1126 			if (iocbp->ioc_cmd == TI_SYNC) {
1127 				/*
1128 				 * Assumes struct T_info_ack is first embedded
1129 				 * type in struct ti_sync_ack so it is
1130 				 * automatically there.
1131 				 */
1132 				struct ti_sync_ack *tsap =
1133 				    (struct ti_sync_ack *)mp->b_rptr;
1134 
1135 				/*
1136 				 * tsap->tsa_qlen needs to be set only if
1137 				 * TSRF_QLEN_REQ flag is set, but for
1138 				 * compatibility with statically linked
1139 				 * applications it is set here regardless of the
1140 				 * flag since old XTI library expected it to be
1141 				 * set.
1142 				 */
1143 				tsap->tsa_qlen = tp->tim_backlog;
1144 				tsap->tsa_flags = 0x0; /* intialize clear */
1145 				if (tp->tim_flags & PEEK_RDQ_EXPIND) {
1146 					/*
1147 					 * Request to peek for EXPIND in
1148 					 * rcvbuf.
1149 					 */
1150 					if (ti_expind_on_rdqueues(q)) {
1151 						/*
1152 						 * Expedited data is
1153 						 * queued on the stream
1154 						 * read side
1155 						 */
1156 						tsap->tsa_flags |=
1157 						    TSAF_EXP_QUEUED;
1158 					}
1159 					tp->tim_flags &=
1160 					    ~PEEK_RDQ_EXPIND;
1161 				}
1162 				mp->b_wptr += 2*sizeof (uint32_t);
1163 			}
1164 			tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
1165 			tp->tim_iocsave = NULL;
1166 			tp->tim_saved_prim = -1;
1167 			tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
1168 			    TI_CAP_RECVD | CAP_WANTS_INFO);
1169 			break;
1170 		}
1171 	    }
1172 
1173 	    putnext(q, mp);
1174 	    break;
1175 
1176 	    case T_ADDR_ACK:
1177 		tilog("timodrproc: Got T_ADDR_ACK\n", 0);
1178 		tim_send_reply(q, mp, tp, T_ADDR_REQ);
1179 		break;
1180 
1181 		case T_CONN_IND: {
1182 			struct T_conn_ind *tcip =
1183 			    (struct T_conn_ind *)mp->b_rptr;
1184 
1185 			tilog("timodrproc: Got T_CONN_IND\n", 0);
1186 
1187 			if (blen >= sizeof (*tcip) &&
1188 			    MBLKIN(mp, tcip->SRC_offset, tcip->SRC_length)) {
1189 				if (((nbp = dupmsg(mp)) != NULL) ||
1190 				    ((nbp = copymsg(mp)) != NULL)) {
1191 					nbp->b_next = tp->tim_consave;
1192 					tp->tim_consave = nbp;
1193 				} else {
1194 					tim_recover(q, mp,
1195 					    (t_scalar_t)sizeof (mblk_t));
1196 					return (1);
1197 				}
1198 			}
1199 			if (auditing)
1200 				audit_sock(T_CONN_IND, q, mp, TIMOD_ID);
1201 			putnext(q, mp);
1202 			break;
1203 		}
1204 
1205 	    case T_CONN_CON:
1206 		mutex_enter(&tp->tim_mutex);
1207 		if (tp->tim_peercred != NULL)
1208 			crfree(tp->tim_peercred);
1209 		tp->tim_peercred = msg_getcred(mp, &tp->tim_cpid);
1210 		if (tp->tim_peercred != NULL)
1211 			crhold(tp->tim_peercred);
1212 		mutex_exit(&tp->tim_mutex);
1213 
1214 		tilog("timodrproc: Got T_CONN_CON\n", 0);
1215 
1216 		tp->tim_flags &= ~CONNWAIT;
1217 		putnext(q, mp);
1218 		break;
1219 
1220 	    case T_DISCON_IND: {
1221 		struct T_discon_ind *disp;
1222 		struct T_conn_ind *conp;
1223 		mblk_t *pbp = NULL;
1224 
1225 		if (q->q_first != 0)
1226 			tilog("timodrput: T_DISCON_IND - flow control\n", 0);
1227 
1228 		if (blen < sizeof (*disp)) {
1229 			putnext(q, mp);
1230 			break;
1231 		}
1232 
1233 		disp = (struct T_discon_ind *)mp->b_rptr;
1234 
1235 		tilog("timodrproc: Got T_DISCON_IND Reason: %d\n",
1236 		    disp->DISCON_reason);
1237 
1238 		tp->tim_flags &= ~(CONNWAIT|LOCORDREL|REMORDREL);
1239 		tim_clear_peer(tp);
1240 		for (nbp = tp->tim_consave; nbp; nbp = nbp->b_next) {
1241 			conp = (struct T_conn_ind *)nbp->b_rptr;
1242 			if (conp->SEQ_number == disp->SEQ_number)
1243 				break;
1244 			pbp = nbp;
1245 		}
1246 		if (nbp) {
1247 			if (pbp)
1248 				pbp->b_next = nbp->b_next;
1249 			else
1250 				tp->tim_consave = nbp->b_next;
1251 			nbp->b_next = NULL;
1252 			freemsg(nbp);
1253 		}
1254 		putnext(q, mp);
1255 		break;
1256 	    }
1257 
1258 	    case T_ORDREL_IND:
1259 
1260 		    tilog("timodrproc: Got T_ORDREL_IND\n", 0);
1261 
1262 		    if (tp->tim_flags & LOCORDREL) {
1263 			    tp->tim_flags &= ~(LOCORDREL|REMORDREL);
1264 			    tim_clear_peer(tp);
1265 		    } else {
1266 			    tp->tim_flags |= REMORDREL;
1267 		    }
1268 		    putnext(q, mp);
1269 		    break;
1270 
1271 	    case T_EXDATA_IND:
1272 	    case T_DATA_IND:
1273 	    case T_UNITDATA_IND:
1274 		if (pptr->type == T_EXDATA_IND)
1275 			tilog("timodrproc: Got T_EXDATA_IND\n", 0);
1276 
1277 		if (!bcanputnext(q, mp->b_band)) {
1278 			(void) putbq(q, mp);
1279 			return (1);
1280 		}
1281 		putnext(q, mp);
1282 		break;
1283 
1284 	    case T_CAPABILITY_ACK: {
1285 			struct T_capability_ack	*tca;
1286 
1287 			if (blen < sizeof (*tca)) {
1288 				putnext(q, mp);
1289 				break;
1290 			}
1291 
1292 			/* This transport supports T_CAPABILITY_REQ */
1293 			tilog("timodrproc: Got T_CAPABILITY_ACK\n", 0);
1294 
1295 			PI_PROVLOCK(tp->tim_provinfo);
1296 			if (tp->tim_provinfo->tpi_capability != PI_YES)
1297 				tp->tim_provinfo->tpi_capability = PI_YES;
1298 			PI_PROVUNLOCK(tp->tim_provinfo);
1299 
1300 			/* Reset possible pending timeout */
1301 			if (tp->tim_tcap_timoutid != 0) {
1302 				(void) quntimeout(q, tp->tim_tcap_timoutid);
1303 				tp->tim_tcap_timoutid = 0;
1304 			}
1305 
1306 			tca = (struct T_capability_ack *)mp->b_rptr;
1307 
1308 			if (tca->CAP_bits1 & TC1_INFO)
1309 				timodprocessinfo(q, tp, &tca->INFO_ack);
1310 
1311 			tim_send_reply(q, mp, tp, T_CAPABILITY_REQ);
1312 		}
1313 		break;
1314 	    }
1315 	    break;
1316 
1317 	case M_FLUSH:
1318 
1319 		tilog("timodrproc: Got M_FLUSH\n", 0);
1320 
1321 		if (*mp->b_rptr & FLUSHR) {
1322 			if (*mp->b_rptr & FLUSHBAND)
1323 				flushband(q, *(mp->b_rptr + 1), FLUSHDATA);
1324 			else
1325 				flushq(q, FLUSHDATA);
1326 		}
1327 		putnext(q, mp);
1328 		break;
1329 
1330 	case M_IOCACK:
1331 	    iocbp = (struct iocblk *)mp->b_rptr;
1332 
1333 	    tilog("timodrproc: Got M_IOCACK\n", 0);
1334 
1335 	    if (iocbp->ioc_cmd == TI_GETMYNAME) {
1336 
1337 		/*
1338 		 * Transport provider supports this ioctl,
1339 		 * so I don't have to.
1340 		 */
1341 		if ((tp->tim_flags & DO_MYNAME) != 0) {
1342 			tp->tim_flags &= ~DO_MYNAME;
1343 			PI_PROVLOCK(tp->tim_provinfo);
1344 			tp->tim_provinfo->tpi_myname = PI_YES;
1345 			PI_PROVUNLOCK(tp->tim_provinfo);
1346 		}
1347 
1348 		ASSERT(tp->tim_mymaxlen >= 0);
1349 		if (tp->tim_mymaxlen != 0) {
1350 			kmem_free(tp->tim_myname, (size_t)tp->tim_mymaxlen);
1351 			tp->tim_myname = NULL;
1352 			tp->tim_mymaxlen = 0;
1353 		}
1354 		/* tim_iocsave may already be overwritten. */
1355 		if (tp->tim_saved_prim == -1) {
1356 			freemsg(tp->tim_iocsave);
1357 			tp->tim_iocsave = NULL;
1358 		}
1359 	    } else if (iocbp->ioc_cmd == TI_GETPEERNAME) {
1360 		boolean_t clearit;
1361 
1362 		/*
1363 		 * Transport provider supports this ioctl,
1364 		 * so I don't have to.
1365 		 */
1366 		if ((tp->tim_flags & DO_PEERNAME) != 0) {
1367 			tp->tim_flags &= ~DO_PEERNAME;
1368 			PI_PROVLOCK(tp->tim_provinfo);
1369 			tp->tim_provinfo->tpi_peername = PI_YES;
1370 			PI_PROVUNLOCK(tp->tim_provinfo);
1371 		}
1372 
1373 		mutex_enter(&tp->tim_mutex);
1374 		ASSERT(tp->tim_peermaxlen >= 0);
1375 		clearit = tp->tim_peermaxlen != 0;
1376 		if (clearit) {
1377 			kmem_free(tp->tim_peername, tp->tim_peermaxlen);
1378 			tp->tim_peername = NULL;
1379 			tp->tim_peermaxlen = 0;
1380 			tp->tim_peerlen = 0;
1381 		}
1382 		mutex_exit(&tp->tim_mutex);
1383 		if (clearit) {
1384 			mblk_t *bp;
1385 
1386 			bp = tp->tim_consave;
1387 			while (bp != NULL) {
1388 				nbp = bp->b_next;
1389 				bp->b_next = NULL;
1390 				freemsg(bp);
1391 				bp = nbp;
1392 			}
1393 			tp->tim_consave = NULL;
1394 		}
1395 		/* tim_iocsave may already be overwritten. */
1396 		if (tp->tim_saved_prim == -1) {
1397 			freemsg(tp->tim_iocsave);
1398 			tp->tim_iocsave = NULL;
1399 		}
1400 	    }
1401 	    putnext(q, mp);
1402 	    break;
1403 
1404 	case M_IOCNAK:
1405 
1406 		tilog("timodrproc: Got M_IOCNAK\n", 0);
1407 
1408 		iocbp = (struct iocblk *)mp->b_rptr;
1409 		if (((iocbp->ioc_cmd == TI_GETMYNAME) ||
1410 		    (iocbp->ioc_cmd == TI_GETPEERNAME)) &&
1411 		    ((iocbp->ioc_error == EINVAL) || (iocbp->ioc_error == 0))) {
1412 			PI_PROVLOCK(tp->tim_provinfo);
1413 			if (iocbp->ioc_cmd == TI_GETMYNAME) {
1414 				if (tp->tim_provinfo->tpi_myname == PI_DONTKNOW)
1415 					tp->tim_provinfo->tpi_myname = PI_NO;
1416 			} else if (iocbp->ioc_cmd == TI_GETPEERNAME) {
1417 				if (tp->tim_provinfo->tpi_peername == PI_DONTKNOW)
1418 					tp->tim_provinfo->tpi_peername = PI_NO;
1419 			}
1420 			PI_PROVUNLOCK(tp->tim_provinfo);
1421 			/* tim_iocsave may already be overwritten. */
1422 			if ((tp->tim_iocsave != NULL) &&
1423 			    (tp->tim_saved_prim == -1)) {
1424 				freemsg(mp);
1425 				mp = tp->tim_iocsave;
1426 				tp->tim_iocsave = NULL;
1427 				tp->tim_flags |= NAMEPROC;
1428 				if (ti_doname(WR(q), mp) != DONAME_CONT) {
1429 					tp->tim_flags &= ~NAMEPROC;
1430 				}
1431 				break;
1432 			}
1433 		}
1434 		putnext(q, mp);
1435 		break;
1436 	}
1437 
1438 	return (0);
1439 }
1440 
1441 /*
1442  * timodwput -	Module write put procedure.  This is called from
1443  *		the module, driver, or stream head upstream/downstream.
1444  *		Handles M_FLUSH, M_DATA and some M_PROTO (T_DATA_REQ,
1445  *		and T_UNITDATA_REQ) messages. All others are queued to
1446  *		be handled by the service procedures.
1447  */
1448 
1449 static void
1450 timodwput(queue_t *q, mblk_t *mp)
1451 {
1452 	union T_primitives *pptr;
1453 	struct tim_tim *tp;
1454 	struct iocblk *iocbp;
1455 
1456 	/*
1457 	 * Enqueue normal-priority messages if our queue already
1458 	 * holds some messages for deferred processing but don't
1459 	 * enqueue those M_IOCTLs which will result in an
1460 	 * M_PCPROTO (ie, high priority) message being created.
1461 	 */
1462 	if (q->q_first != 0 && mp->b_datap->db_type < QPCTL) {
1463 		if (mp->b_datap->db_type == M_IOCTL) {
1464 			iocbp = (struct iocblk *)mp->b_rptr;
1465 			switch (iocbp->ioc_cmd) {
1466 			default:
1467 				(void) putq(q, mp);
1468 				return;
1469 
1470 			case TI_GETINFO:
1471 			case TI_SYNC:
1472 			case TI_CAPABILITY:
1473 				break;
1474 			}
1475 		} else {
1476 			(void) putq(q, mp);
1477 			return;
1478 		}
1479 	}
1480 	/*
1481 	 * Inline processing of data (to avoid additional procedure call).
1482 	 * Rest is handled in timodwproc.
1483 	 */
1484 
1485 	switch (mp->b_datap->db_type) {
1486 	case M_DATA:
1487 		tp = (struct tim_tim *)q->q_ptr;
1488 		ASSERT(tp);
1489 		if (tp->tim_flags & CLTS) {
1490 			mblk_t	*tmp;
1491 
1492 			if ((tmp = tim_filladdr(q, mp, B_FALSE)) == NULL) {
1493 				(void) putq(q, mp);
1494 				break;
1495 			} else {
1496 				mp = tmp;
1497 			}
1498 		}
1499 		if (bcanputnext(q, mp->b_band))
1500 			putnext(q, mp);
1501 		else
1502 			(void) putq(q, mp);
1503 		break;
1504 	case M_PROTO:
1505 	case M_PCPROTO:
1506 		pptr = (union T_primitives *)mp->b_rptr;
1507 		switch (pptr->type) {
1508 		case T_UNITDATA_REQ:
1509 			tp = (struct tim_tim *)q->q_ptr;
1510 			ASSERT(tp);
1511 			if (tp->tim_flags & CLTS) {
1512 				mblk_t	*tmp;
1513 
1514 				tmp = tim_filladdr(q, mp, B_FALSE);
1515 				if (tmp == NULL) {
1516 					(void) putq(q, mp);
1517 					break;
1518 				} else {
1519 					mp = tmp;
1520 				}
1521 			}
1522 			if (bcanputnext(q, mp->b_band))
1523 				putnext(q, mp);
1524 			else
1525 				(void) putq(q, mp);
1526 			break;
1527 
1528 		case T_DATA_REQ:
1529 		case T_EXDATA_REQ:
1530 			if (bcanputnext(q, mp->b_band))
1531 				putnext(q, mp);
1532 			else
1533 				(void) putq(q, mp);
1534 			break;
1535 		default:
1536 			(void) timodwproc(q, mp);
1537 			break;
1538 		}
1539 		break;
1540 	default:
1541 		(void) timodwproc(q, mp);
1542 		break;
1543 	}
1544 }
1545 /*
1546  * timodwsrv -	Module write queue service procedure.
1547  *		This is called when messages are placed on an empty queue,
1548  *		when high priority messages are placed on the queue, and
1549  *		when flow control restrictions subside.  This code used to
1550  *		be included in a put procedure, but it was moved to a
1551  *		service procedure because several points were added where
1552  *		memory allocation could fail, and there is no reasonable
1553  *		recovery mechanism from the put procedure.
1554  */
1555 static void
1556 timodwsrv(queue_t *q)
1557 {
1558 	mblk_t *mp;
1559 
1560 	ASSERT(q != NULL);
1561 	if (q->q_ptr == NULL)
1562 		return;
1563 
1564 	while ((mp = getq(q)) != NULL) {
1565 		if (timodwproc(q, mp)) {
1566 			/*
1567 			 * timodwproc did a putbq - stop processing
1568 			 * messages.
1569 			 */
1570 			return;
1571 		}
1572 	}
1573 }
1574 
1575 /*
1576  * Common routine to process write side messages
1577  */
1578 
1579 static int
1580 timodwproc(queue_t *q, mblk_t *mp)
1581 {
1582 	union T_primitives *pptr;
1583 	struct tim_tim *tp;
1584 	uint32_t auditing = AU_AUDITING();
1585 	mblk_t *tmp;
1586 	struct iocblk *iocbp;
1587 	int error;
1588 
1589 	tp = (struct tim_tim *)q->q_ptr;
1590 
1591 	switch (mp->b_datap->db_type) {
1592 	default:
1593 		putnext(q, mp);
1594 		break;
1595 
1596 	case M_DATA:
1597 		if (tp->tim_flags & CLTS) {
1598 			if ((tmp = tim_filladdr(q, mp, B_TRUE)) == NULL) {
1599 				return (1);
1600 			} else {
1601 				mp = tmp;
1602 			}
1603 		}
1604 		if (!bcanputnext(q, mp->b_band)) {
1605 			(void) putbq(q, mp);
1606 			return (1);
1607 		}
1608 		putnext(q, mp);
1609 		break;
1610 
1611 	case M_IOCTL:
1612 
1613 		iocbp = (struct iocblk *)mp->b_rptr;
1614 		TILOG("timodwproc: Got M_IOCTL(%d)\n", iocbp->ioc_cmd);
1615 
1616 		ASSERT(MBLKL(mp) == sizeof (struct iocblk));
1617 
1618 		/*
1619 		 * TPI requires we await response to a previously sent message
1620 		 * before handling another, put it back on the head of queue.
1621 		 * Since putbq() may see QWANTR unset when called from the
1622 		 * service procedure, the queue must be explicitly scheduled
1623 		 * for service, as no backenable will occur for this case.
1624 		 * tim_ioctl_retry() sets a timer to handle the qenable.
1625 		 */
1626 		if (tp->tim_flags & WAITIOCACK) {
1627 			TILOG("timodwproc: putbq M_IOCTL(%d)\n",
1628 			    iocbp->ioc_cmd);
1629 			(void) putbq(q, mp);
1630 			/* Called from timodwsrv() and messages on queue */
1631 			if (!(q->q_flag & QWANTR))
1632 				tim_ioctl_retry(q);
1633 			return (1);
1634 		}
1635 
1636 		switch (iocbp->ioc_cmd) {
1637 		default:
1638 			putnext(q, mp);
1639 			break;
1640 
1641 		case _I_GETPEERCRED:
1642 			if ((tp->tim_flags & COTS) == 0) {
1643 				miocnak(q, mp, 0, ENOTSUP);
1644 			} else {
1645 				mblk_t *cmp = mp->b_cont;
1646 				k_peercred_t *kp = NULL;
1647 
1648 				mutex_enter(&tp->tim_mutex);
1649 				if (cmp != NULL &&
1650 				    iocbp->ioc_flag == IOC_NATIVE &&
1651 				    (tp->tim_flags &
1652 				    (CONNWAIT|LOCORDREL|REMORDREL)) == 0 &&
1653 				    tp->tim_peercred != NULL &&
1654 				    DB_TYPE(cmp) == M_DATA &&
1655 				    MBLKL(cmp) == sizeof (k_peercred_t)) {
1656 					kp = (k_peercred_t *)cmp->b_rptr;
1657 					crhold(kp->pc_cr = tp->tim_peercred);
1658 					kp->pc_cpid = tp->tim_cpid;
1659 				}
1660 				mutex_exit(&tp->tim_mutex);
1661 				if (kp != NULL)
1662 					miocack(q, mp, sizeof (*kp), 0);
1663 				else
1664 					miocnak(q, mp, 0, ENOTCONN);
1665 			}
1666 			break;
1667 		case TI_BIND:
1668 		case TI_UNBIND:
1669 		case TI_OPTMGMT:
1670 		case TI_GETADDRS:
1671 			TILOG("timodwproc: TI_{BIND|UNBIND|OPTMGMT|GETADDRS}"
1672 			    "\n", 0);
1673 
1674 			/*
1675 			 * We know that tim_send_ioctl_tpi_msg() is only
1676 			 * going to examine the `type' field, so we only
1677 			 * check that we can access that much data.
1678 			 */
1679 			error = miocpullup(mp, sizeof (t_scalar_t));
1680 			if (error != 0) {
1681 				miocnak(q, mp, 0, error);
1682 				break;
1683 			}
1684 			tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1685 			break;
1686 
1687 		case TI_GETINFO:
1688 			TILOG("timodwproc: TI_GETINFO\n", 0);
1689 			error = miocpullup(mp, sizeof (struct T_info_req));
1690 			if (error != 0) {
1691 				miocnak(q, mp, 0, error);
1692 				break;
1693 			}
1694 			tp->tim_flags |= WAIT_IOCINFOACK;
1695 			tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1696 			break;
1697 
1698 		case TI_SYNC: {
1699 			mblk_t *tsr_mp;
1700 			struct ti_sync_req *tsr;
1701 			uint32_t tsr_flags;
1702 
1703 			error = miocpullup(mp, sizeof (struct ti_sync_req));
1704 			if (error != 0) {
1705 				miocnak(q, mp, 0, error);
1706 				break;
1707 			}
1708 
1709 			tsr_mp = mp->b_cont;
1710 			tsr = (struct ti_sync_req *)tsr_mp->b_rptr;
1711 			TILOG("timodwproc: TI_SYNC(%x)\n", tsr->tsr_flags);
1712 
1713 			/*
1714 			 * Save out the value of tsr_flags, in case we
1715 			 * reallocb() tsr_mp (below).
1716 			 */
1717 			tsr_flags = tsr->tsr_flags;
1718 			if ((tsr_flags & TSRF_INFO_REQ) == 0) {
1719 				mblk_t *ack_mp = reallocb(tsr_mp,
1720 				    sizeof (struct ti_sync_ack), 0);
1721 
1722 				/* Can reply immediately. */
1723 				mp->b_cont = NULL;
1724 				if (ack_mp == NULL) {
1725 					tilog("timodwproc: allocb failed no "
1726 					    "recovery attempt\n", 0);
1727 					freemsg(tsr_mp);
1728 					miocnak(q, mp, 0, ENOMEM);
1729 				} else {
1730 					tim_answer_ti_sync(q, mp, tp,
1731 					    ack_mp, tsr_flags);
1732 				}
1733 				break;
1734 			}
1735 
1736 			/*
1737 			 * This code is retained for compatibility with
1738 			 * old statically linked applications. New code
1739 			 * should use TI_CAPABILITY for all TPI
1740 			 * information and should not use TSRF_INFO_REQ
1741 			 * flag.
1742 			 *
1743 			 * defer processsing necessary to rput procedure
1744 			 * as we need to get information from transport
1745 			 * driver. Set flags that will tell the read
1746 			 * side the work needed on this request.
1747 			 */
1748 
1749 			if (tsr_flags & TSRF_IS_EXP_IN_RCVBUF)
1750 				tp->tim_flags |= PEEK_RDQ_EXPIND;
1751 
1752 			/*
1753 			 * Convert message to a T_INFO_REQ message; relies
1754 			 * on sizeof (struct ti_sync_req) >= sizeof (struct
1755 			 * T_info_req)).
1756 			 */
1757 			ASSERT(MBLKL(tsr_mp) >= sizeof (struct T_info_req));
1758 
1759 			((struct T_info_req *)tsr_mp->b_rptr)->PRIM_type =
1760 			    T_INFO_REQ;
1761 			tsr_mp->b_wptr = tsr_mp->b_rptr +
1762 			    sizeof (struct T_info_req);
1763 			tp->tim_flags |= WAIT_IOCINFOACK;
1764 			tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1765 		}
1766 		break;
1767 
1768 		case TI_CAPABILITY: {
1769 			mblk_t *tcsr_mp;
1770 			struct T_capability_req *tcr;
1771 
1772 			error = miocpullup(mp, sizeof (*tcr));
1773 			if (error != 0) {
1774 				miocnak(q, mp, 0, error);
1775 				break;
1776 			}
1777 
1778 			tcsr_mp = mp->b_cont;
1779 			tcr = (struct T_capability_req *)tcsr_mp->b_rptr;
1780 			TILOG("timodwproc: TI_CAPABILITY(CAP_bits1 = %x)\n",
1781 			    tcr->CAP_bits1);
1782 
1783 			if (tcr->PRIM_type != T_CAPABILITY_REQ) {
1784 				TILOG("timodwproc: invalid msg type %d\n",
1785 				    tcr->PRIM_type);
1786 				miocnak(q, mp, 0, EPROTO);
1787 				break;
1788 			}
1789 
1790 			switch (tp->tim_provinfo->tpi_capability) {
1791 			case PI_YES:
1792 				/* Just send T_CAPABILITY_REQ down */
1793 				tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1794 				break;
1795 
1796 			case PI_DONTKNOW:
1797 				/*
1798 				 * It is unknown yet whether transport provides
1799 				 * T_CAPABILITY_REQ or not. Send message down
1800 				 * and wait for reply.
1801 				 */
1802 
1803 				ASSERT(tp->tim_tcap_timoutid == 0);
1804 				if ((tcr->CAP_bits1 & TC1_INFO) == 0) {
1805 					tp->tim_flags |= TI_CAP_RECVD;
1806 				} else {
1807 					tp->tim_flags |= (TI_CAP_RECVD |
1808 					    CAP_WANTS_INFO);
1809 				}
1810 
1811 				tp->tim_tcap_timoutid = qtimeout(q,
1812 				    tim_tcap_timer, q, tim_tcap_wait * hz);
1813 				tim_send_ioctl_tpi_msg(q, mp, tp, iocbp);
1814 				break;
1815 
1816 			case PI_NO:
1817 				/*
1818 				 * Transport doesn't support T_CAPABILITY_REQ.
1819 				 * Either reply immediately or send T_INFO_REQ
1820 				 * if needed.
1821 				 */
1822 				if ((tcr->CAP_bits1 & TC1_INFO) != 0) {
1823 					tp->tim_flags |= (TI_CAP_RECVD |
1824 					    CAP_WANTS_INFO | WAIT_IOCINFOACK);
1825 					TILOG("timodwproc: sending down "
1826 					    "T_INFO_REQ, flags = %x\n",
1827 					    tp->tim_flags);
1828 
1829 				/*
1830 				 * Generate T_INFO_REQ message and send
1831 				 * it down
1832 				 */
1833 					((struct T_info_req *)tcsr_mp->b_rptr)->
1834 					    PRIM_type = T_INFO_REQ;
1835 					tcsr_mp->b_wptr = tcsr_mp->b_rptr +
1836 					    sizeof (struct T_info_req);
1837 					tim_send_ioctl_tpi_msg(q, mp, tp,
1838 					    iocbp);
1839 					break;
1840 				}
1841 
1842 
1843 				/*
1844 				 * Can reply immediately. Just send back
1845 				 * T_CAPABILITY_ACK with CAP_bits1 set to 0.
1846 				 */
1847 				mp->b_cont = tcsr_mp = tpi_ack_alloc(mp->b_cont,
1848 				    sizeof (struct T_capability_ack), M_PCPROTO,
1849 				    T_CAPABILITY_ACK);
1850 
1851 				if (tcsr_mp == NULL) {
1852 					tilog("timodwproc: allocb failed no "
1853 					    "recovery attempt\n", 0);
1854 					miocnak(q, mp, 0, ENOMEM);
1855 					break;
1856 				}
1857 
1858 				tp->tim_flags &= ~(WAITIOCACK | TI_CAP_RECVD |
1859 				    WAIT_IOCINFOACK | CAP_WANTS_INFO);
1860 				((struct T_capability_ack *)
1861 				    tcsr_mp->b_rptr)->CAP_bits1 = 0;
1862 				tim_ioctl_send_reply(q, mp, tcsr_mp);
1863 
1864 				/*
1865 				 * It could happen when timod is awaiting ack
1866 				 * for TI_GETPEERNAME/TI_GETMYNAME.
1867 				 */
1868 				if (tp->tim_iocsave != NULL) {
1869 					freemsg(tp->tim_iocsave);
1870 					tp->tim_iocsave = NULL;
1871 					tp->tim_saved_prim = -1;
1872 				}
1873 				break;
1874 
1875 			default:
1876 				cmn_err(CE_PANIC,
1877 				    "timodwproc: unknown tpi_capability value "
1878 				    "%d\n", tp->tim_provinfo->tpi_capability);
1879 				break;
1880 			}
1881 		}
1882 		break;
1883 
1884 		case TI_GETMYNAME:
1885 
1886 			tilog("timodwproc: Got TI_GETMYNAME\n", 0);
1887 
1888 			if (tp->tim_provinfo->tpi_myname == PI_YES) {
1889 				putnext(q, mp);
1890 				break;
1891 			}
1892 			goto getname;
1893 
1894 		case TI_GETPEERNAME:
1895 
1896 			tilog("timodwproc: Got TI_GETPEERNAME\n", 0);
1897 
1898 			if (tp->tim_provinfo->tpi_peername == PI_YES) {
1899 				putnext(q, mp);
1900 				break;
1901 			}
1902 getname:
1903 			if ((tmp = copymsg(mp)) == NULL) {
1904 				tim_recover(q, mp, msgsize(mp));
1905 				return (1);
1906 			}
1907 			/*
1908 			 * tim_iocsave may be non-NULL when timod is awaiting
1909 			 * ack for another TI_GETPEERNAME/TI_GETMYNAME.
1910 			 */
1911 			freemsg(tp->tim_iocsave);
1912 			tp->tim_iocsave = mp;
1913 			tp->tim_saved_prim = -1;
1914 			putnext(q, tmp);
1915 			break;
1916 			}
1917 		break;
1918 
1919 	case M_IOCDATA:
1920 
1921 		if (tp->tim_flags & NAMEPROC) {
1922 			if (ti_doname(q, mp) != DONAME_CONT) {
1923 				tp->tim_flags &= ~NAMEPROC;
1924 			}
1925 		} else
1926 			putnext(q, mp);
1927 		break;
1928 
1929 	case M_PROTO:
1930 	case M_PCPROTO:
1931 		if (MBLKL(mp) < sizeof (t_scalar_t)) {
1932 			merror(q, mp, EPROTO);
1933 			return (1);
1934 		}
1935 
1936 		pptr = (union T_primitives *)mp->b_rptr;
1937 		switch (pptr->type) {
1938 		default:
1939 			putnext(q, mp);
1940 			break;
1941 
1942 		case T_EXDATA_REQ:
1943 		case T_DATA_REQ:
1944 			if (pptr->type == T_EXDATA_REQ)
1945 				tilog("timodwproc: Got T_EXDATA_REQ\n", 0);
1946 
1947 		if (!bcanputnext(q, mp->b_band)) {
1948 			(void) putbq(q, mp);
1949 			return (1);
1950 		}
1951 		putnext(q, mp);
1952 		break;
1953 
1954 		case T_UNITDATA_REQ:
1955 			if (tp->tim_flags & CLTS) {
1956 				tmp = tim_filladdr(q, mp, B_TRUE);
1957 				if (tmp == NULL) {
1958 					return (1);
1959 				} else {
1960 					mp = tmp;
1961 				}
1962 			}
1963 			if (auditing)
1964 				audit_sock(T_UNITDATA_REQ, q, mp, TIMOD_ID);
1965 		if (!bcanputnext(q, mp->b_band)) {
1966 				(void) putbq(q, mp);
1967 				return (1);
1968 			}
1969 			putnext(q, mp);
1970 			break;
1971 
1972 		case T_CONN_REQ: {
1973 			struct T_conn_req *reqp = (struct T_conn_req *)
1974 			    mp->b_rptr;
1975 			void *p;
1976 
1977 			tilog("timodwproc: Got T_CONN_REQ\n", 0);
1978 
1979 			if (MBLKL(mp) < sizeof (struct T_conn_req)) {
1980 				merror(q, mp, EPROTO);
1981 				return (1);
1982 			}
1983 
1984 			if (tp->tim_flags & DO_PEERNAME) {
1985 				if (!MBLKIN(mp, reqp->DEST_offset,
1986 				    reqp->DEST_length)) {
1987 					merror(q, mp, EPROTO);
1988 					return (1);
1989 				}
1990 				ASSERT(reqp->DEST_length >= 0);
1991 				mutex_enter(&tp->tim_mutex);
1992 				if (reqp->DEST_length > tp->tim_peermaxlen) {
1993 					p = kmem_alloc(reqp->DEST_length,
1994 					    KM_NOSLEEP);
1995 					if (p == NULL) {
1996 						mutex_exit(&tp->tim_mutex);
1997 						tilog("timodwproc: kmem_alloc "
1998 						    "failed, attempting "
1999 						    "recovery\n", 0);
2000 						tim_recover(q, mp,
2001 						    reqp->DEST_length);
2002 						return (1);
2003 					}
2004 					if (tp->tim_peermaxlen)
2005 						kmem_free(tp->tim_peername,
2006 						    tp->tim_peermaxlen);
2007 					tp->tim_peername = p;
2008 					tp->tim_peermaxlen = reqp->DEST_length;
2009 				}
2010 				tp->tim_peerlen = reqp->DEST_length;
2011 				p = mp->b_rptr + reqp->DEST_offset;
2012 				bcopy(p, tp->tim_peername, tp->tim_peerlen);
2013 				mutex_exit(&tp->tim_mutex);
2014 			}
2015 			if (tp->tim_flags & COTS)
2016 				tp->tim_flags |= CONNWAIT;
2017 			if (auditing)
2018 				audit_sock(T_CONN_REQ, q, mp, TIMOD_ID);
2019 		putnext(q, mp);
2020 		break;
2021 		}
2022 
2023 		case O_T_CONN_RES:
2024 		case T_CONN_RES: {
2025 			struct T_conn_res *resp;
2026 			struct T_conn_ind *indp;
2027 			mblk_t *pmp = NULL;
2028 			mblk_t *nbp;
2029 
2030 			if (MBLKL(mp) < sizeof (struct T_conn_res) ||
2031 			    (tp->tim_flags & WAITIOCACK)) {
2032 				merror(q, mp, EPROTO);
2033 				return (1);
2034 			}
2035 
2036 			resp = (struct T_conn_res *)mp->b_rptr;
2037 			for (tmp = tp->tim_consave; tmp != NULL;
2038 			    tmp = tmp->b_next) {
2039 				indp = (struct T_conn_ind *)tmp->b_rptr;
2040 				if (indp->SEQ_number == resp->SEQ_number)
2041 					break;
2042 				pmp = tmp;
2043 			}
2044 			if (tmp == NULL)
2045 				goto cresout;
2046 
2047 			if ((nbp = dupb(mp)) == NULL &&
2048 			    (nbp = copyb(mp)) == NULL) {
2049 				tim_recover(q, mp, msgsize(mp));
2050 				return (1);
2051 			}
2052 
2053 			if (pmp != NULL)
2054 				pmp->b_next = tmp->b_next;
2055 			else
2056 				tp->tim_consave = tmp->b_next;
2057 			tmp->b_next = NULL;
2058 
2059 			/*
2060 			 * Construct a list with:
2061 			 *	nbp - copy of user's original request
2062 			 *	tmp - the extracted T_conn_ind
2063 			 */
2064 			nbp->b_cont = tmp;
2065 			/*
2066 			 * tim_iocsave may be non-NULL when timod is awaiting
2067 			 * ack for TI_GETPEERNAME/TI_GETMYNAME.
2068 			 */
2069 			freemsg(tp->tim_iocsave);
2070 			tp->tim_iocsave = nbp;
2071 			tp->tim_saved_prim = pptr->type;
2072 			tp->tim_flags |= WAIT_CONNRESACK | WAITIOCACK;
2073 
2074 		cresout:
2075 			putnext(q, mp);
2076 			break;
2077 		}
2078 
2079 		case T_DISCON_REQ: {
2080 			struct T_discon_req *disp;
2081 			struct T_conn_ind *conp;
2082 			mblk_t *pmp = NULL;
2083 
2084 			if (MBLKL(mp) < sizeof (struct T_discon_req)) {
2085 				merror(q, mp, EPROTO);
2086 				return (1);
2087 			}
2088 
2089 			disp = (struct T_discon_req *)mp->b_rptr;
2090 			tp->tim_flags &= ~(CONNWAIT|LOCORDREL|REMORDREL);
2091 			tim_clear_peer(tp);
2092 
2093 			/*
2094 			 * If we are already connected, there won't
2095 			 * be any messages on tim_consave.
2096 			 */
2097 			for (tmp = tp->tim_consave; tmp; tmp = tmp->b_next) {
2098 				conp = (struct T_conn_ind *)tmp->b_rptr;
2099 				if (conp->SEQ_number == disp->SEQ_number)
2100 					break;
2101 				pmp = tmp;
2102 			}
2103 			if (tmp) {
2104 				if (pmp)
2105 					pmp->b_next = tmp->b_next;
2106 				else
2107 					tp->tim_consave = tmp->b_next;
2108 				tmp->b_next = NULL;
2109 				freemsg(tmp);
2110 			}
2111 			putnext(q, mp);
2112 			break;
2113 		}
2114 
2115 		case T_ORDREL_REQ:
2116 			if (tp->tim_flags & REMORDREL) {
2117 				tp->tim_flags &= ~(LOCORDREL|REMORDREL);
2118 				tim_clear_peer(tp);
2119 			} else {
2120 				tp->tim_flags |= LOCORDREL;
2121 			}
2122 			putnext(q, mp);
2123 			break;
2124 
2125 		case T_CAPABILITY_REQ:
2126 			tilog("timodwproc: Got T_CAPABILITY_REQ\n", 0);
2127 			/*
2128 			 * XXX: We may know at this point whether transport
2129 			 * provides T_CAPABILITY_REQ or not and we may utilise
2130 			 * this knowledge here.
2131 			 */
2132 			putnext(q, mp);
2133 			break;
2134 		}
2135 		break;
2136 	case M_FLUSH:
2137 
2138 		tilog("timodwproc: Got M_FLUSH\n", 0);
2139 
2140 		if (*mp->b_rptr & FLUSHW) {
2141 			if (*mp->b_rptr & FLUSHBAND)
2142 				flushband(q, *(mp->b_rptr + 1), FLUSHDATA);
2143 			else
2144 				flushq(q, FLUSHDATA);
2145 		}
2146 		putnext(q, mp);
2147 		break;
2148 	}
2149 
2150 	return (0);
2151 }
2152 
2153 static void
2154 tilog(char *str, t_scalar_t arg)
2155 {
2156 	if (dotilog) {
2157 		if (dotilog & 2)
2158 			cmn_err(CE_CONT, str, arg);
2159 		if (dotilog & 4)
2160 			(void) strlog(TIMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
2161 			    str, arg);
2162 		else
2163 			(void) strlog(TIMOD_ID, -1, 0, SL_TRACE, str, arg);
2164 	}
2165 }
2166 
2167 static void
2168 tilogp(char *str, uintptr_t arg)
2169 {
2170 	if (dotilog) {
2171 		if (dotilog & 2)
2172 			cmn_err(CE_CONT, str, arg);
2173 		if (dotilog & 4)
2174 			(void) strlog(TIMOD_ID, -1, 0, SL_TRACE | SL_ERROR,
2175 			    str, arg);
2176 		else
2177 			(void) strlog(TIMOD_ID, -1, 0, SL_TRACE, str, arg);
2178 	}
2179 }
2180 
2181 
2182 /*
2183  * Process the TI_GETNAME ioctl.  If no name exists, return len = 0
2184  * in strbuf structures.  The state transitions are determined by what
2185  * is hung of cq_private (cp_private) in the copyresp (copyreq) structure.
2186  * The high-level steps in the ioctl processing are as follows:
2187  *
2188  * 1) we recieve an transparent M_IOCTL with the arg in the second message
2189  *	block of the message.
2190  * 2) we send up an M_COPYIN request for the strbuf structure pointed to
2191  *	by arg.  The block containing arg is hung off cq_private.
2192  * 3) we receive an M_IOCDATA response with cp->cp_private->b_cont == NULL.
2193  *	This means that the strbuf structure is found in the message block
2194  *	mp->b_cont.
2195  * 4) we send up an M_COPYOUT request with the strbuf message hung off
2196  *	cq_private->b_cont.  The address we are copying to is strbuf.buf.
2197  *	we set strbuf.len to 0 to indicate that we should copy the strbuf
2198  *	structure the next time.  The message mp->b_cont contains the
2199  *	address info.
2200  * 5) we receive an M_IOCDATA with cp_private->b_cont != NULL and
2201  *	strbuf.len == 0.  Restore strbuf.len to either tp->tim_mylen or
2202  *	tp->tim_peerlen.
2203  * 6) we send up an M_COPYOUT request with a copy of the strbuf message
2204  *	hung off mp->b_cont.  In the strbuf structure in the message hung
2205  *	off cq_private->b_cont, we set strbuf.len to 0 and strbuf.maxlen
2206  *	to 0.  This means that the next step is to ACK the ioctl.
2207  * 7) we receive an M_IOCDATA message with cp_private->b_cont != NULL and
2208  *	strbuf.len == 0 and strbuf.maxlen == 0.  Free up cp->private and
2209  *	send an M_IOCACK upstream, and we are done.
2210  *
2211  */
2212 static int
2213 ti_doname(
2214 	queue_t *q,		/* queue message arrived at */
2215 	mblk_t *mp)		/* M_IOCTL or M_IOCDATA message only */
2216 {
2217 	struct iocblk *iocp;
2218 	struct copyreq *cqp;
2219 	STRUCT_HANDLE(strbuf, sb);
2220 	struct copyresp *csp;
2221 	int ret;
2222 	mblk_t *bp;
2223 	struct tim_tim *tp = q->q_ptr;
2224 	boolean_t getpeer;
2225 
2226 	switch (mp->b_datap->db_type) {
2227 	case M_IOCTL:
2228 		iocp = (struct iocblk *)mp->b_rptr;
2229 		if ((iocp->ioc_cmd != TI_GETMYNAME) &&
2230 		    (iocp->ioc_cmd != TI_GETPEERNAME)) {
2231 			tilog("ti_doname: bad M_IOCTL command\n", 0);
2232 			miocnak(q, mp, 0, EINVAL);
2233 			ret = DONAME_FAIL;
2234 			break;
2235 		}
2236 		if ((iocp->ioc_count != TRANSPARENT)) {
2237 			miocnak(q, mp, 0, EINVAL);
2238 			ret = DONAME_FAIL;
2239 			break;
2240 		}
2241 
2242 		cqp = (struct copyreq *)mp->b_rptr;
2243 		cqp->cq_private = mp->b_cont;
2244 		cqp->cq_addr = (caddr_t)*(intptr_t *)mp->b_cont->b_rptr;
2245 		mp->b_cont = NULL;
2246 		cqp->cq_size = SIZEOF_STRUCT(strbuf, iocp->ioc_flag);
2247 		cqp->cq_flag = 0;
2248 		mp->b_datap->db_type = M_COPYIN;
2249 		mp->b_wptr = mp->b_rptr + sizeof (struct copyreq);
2250 		qreply(q, mp);
2251 		ret = DONAME_CONT;
2252 		break;
2253 
2254 	case M_IOCDATA:
2255 		csp = (struct copyresp *)mp->b_rptr;
2256 		iocp = (struct iocblk *)mp->b_rptr;
2257 		cqp = (struct copyreq *)mp->b_rptr;
2258 		if ((csp->cp_cmd != TI_GETMYNAME) &&
2259 		    (csp->cp_cmd != TI_GETPEERNAME)) {
2260 			cmn_err(CE_WARN, "ti_doname: bad M_IOCDATA command\n");
2261 			miocnak(q, mp, 0, EINVAL);
2262 			ret = DONAME_FAIL;
2263 			break;
2264 		}
2265 		if (csp->cp_rval) {	/* error */
2266 			freemsg(csp->cp_private);
2267 			freemsg(mp);
2268 			ret = DONAME_FAIL;
2269 			break;
2270 		}
2271 		ASSERT(csp->cp_private != NULL);
2272 		getpeer = csp->cp_cmd == TI_GETPEERNAME;
2273 		if (getpeer)
2274 			mutex_enter(&tp->tim_mutex);
2275 		if (csp->cp_private->b_cont == NULL) {	/* got strbuf */
2276 			ASSERT(mp->b_cont);
2277 			STRUCT_SET_HANDLE(sb, iocp->ioc_flag,
2278 			    (void *)mp->b_cont->b_rptr);
2279 			if (getpeer) {
2280 				if (tp->tim_peerlen == 0) {
2281 					/* copy just strbuf */
2282 					STRUCT_FSET(sb, len, 0);
2283 				} else if (tp->tim_peerlen >
2284 				    STRUCT_FGET(sb, maxlen)) {
2285 					mutex_exit(&tp->tim_mutex);
2286 					miocnak(q, mp, 0, ENAMETOOLONG);
2287 					ret = DONAME_FAIL;
2288 					break;
2289 				} else {
2290 					/* copy buffer */
2291 					STRUCT_FSET(sb, len, tp->tim_peerlen);
2292 				}
2293 			} else {
2294 				if (tp->tim_mylen == 0) {
2295 					/* copy just strbuf */
2296 					STRUCT_FSET(sb, len, 0);
2297 				} else if (tp->tim_mylen >
2298 				    STRUCT_FGET(sb, maxlen)) {
2299 					freemsg(csp->cp_private);
2300 					miocnak(q, mp, 0, ENAMETOOLONG);
2301 					ret = DONAME_FAIL;
2302 					break;
2303 				} else {
2304 					/* copy buffer */
2305 					STRUCT_FSET(sb, len, tp->tim_mylen);
2306 				}
2307 			}
2308 			csp->cp_private->b_cont = mp->b_cont;
2309 			mp->b_cont = NULL;
2310 		}
2311 		STRUCT_SET_HANDLE(sb, iocp->ioc_flag,
2312 		    (void *)csp->cp_private->b_cont->b_rptr);
2313 		if (STRUCT_FGET(sb, len) == 0) {
2314 			/*
2315 			 * restore strbuf.len
2316 			 */
2317 			if (getpeer)
2318 				STRUCT_FSET(sb, len, tp->tim_peerlen);
2319 			else
2320 				STRUCT_FSET(sb, len, tp->tim_mylen);
2321 
2322 			if (getpeer)
2323 				mutex_exit(&tp->tim_mutex);
2324 			if (STRUCT_FGET(sb, maxlen) == 0) {
2325 
2326 				/*
2327 				 * ack the ioctl
2328 				 */
2329 				freemsg(csp->cp_private);
2330 				tim_ioctl_send_reply(q, mp, NULL);
2331 				ret = DONAME_DONE;
2332 				break;
2333 			}
2334 
2335 			if ((bp = allocb(STRUCT_SIZE(sb), BPRI_MED)) == NULL) {
2336 
2337 				tilog(
2338 			"ti_doname: allocb failed no recovery attempt\n", 0);
2339 
2340 				freemsg(csp->cp_private);
2341 				miocnak(q, mp, 0, EAGAIN);
2342 				ret = DONAME_FAIL;
2343 				break;
2344 			}
2345 			bp->b_wptr += STRUCT_SIZE(sb);
2346 			bcopy(STRUCT_BUF(sb), bp->b_rptr, STRUCT_SIZE(sb));
2347 			cqp->cq_addr =
2348 			    (caddr_t)*(intptr_t *)csp->cp_private->b_rptr;
2349 			cqp->cq_size = STRUCT_SIZE(sb);
2350 			cqp->cq_flag = 0;
2351 			mp->b_datap->db_type = M_COPYOUT;
2352 			mp->b_cont = bp;
2353 			STRUCT_FSET(sb, len, 0);
2354 			STRUCT_FSET(sb, maxlen, 0); /* ack next time around */
2355 			qreply(q, mp);
2356 			ret = DONAME_CONT;
2357 			break;
2358 		}
2359 
2360 		/*
2361 		 * copy the address to the user
2362 		 */
2363 		if ((bp = allocb((size_t)STRUCT_FGET(sb, len), BPRI_MED))
2364 		    == NULL) {
2365 			if (getpeer)
2366 				mutex_exit(&tp->tim_mutex);
2367 
2368 			tilog("ti_doname: allocb failed no recovery attempt\n",
2369 			    0);
2370 
2371 			freemsg(csp->cp_private);
2372 			miocnak(q, mp, 0, EAGAIN);
2373 			ret = DONAME_FAIL;
2374 			break;
2375 		}
2376 		bp->b_wptr += STRUCT_FGET(sb, len);
2377 		if (getpeer) {
2378 			bcopy(tp->tim_peername, bp->b_rptr,
2379 			    STRUCT_FGET(sb, len));
2380 			mutex_exit(&tp->tim_mutex);
2381 		} else {
2382 			bcopy(tp->tim_myname, bp->b_rptr, STRUCT_FGET(sb, len));
2383 		}
2384 		cqp->cq_addr = (caddr_t)STRUCT_FGETP(sb, buf);
2385 		cqp->cq_size = STRUCT_FGET(sb, len);
2386 		cqp->cq_flag = 0;
2387 		mp->b_datap->db_type = M_COPYOUT;
2388 		mp->b_cont = bp;
2389 		STRUCT_FSET(sb, len, 0); /* copy the strbuf next time around */
2390 		qreply(q, mp);
2391 		ret = DONAME_CONT;
2392 		break;
2393 
2394 	default:
2395 		tilog("ti_doname: freeing bad message type = %d\n",
2396 		    mp->b_datap->db_type);
2397 		freemsg(mp);
2398 		ret = DONAME_FAIL;
2399 		break;
2400 	}
2401 	return (ret);
2402 }
2403 
2404 
2405 /*
2406  * Fill in the address of a connectionless data packet if a connect
2407  * had been done on this endpoint.
2408  */
2409 static mblk_t *
2410 tim_filladdr(queue_t *q, mblk_t *mp, boolean_t dorecover)
2411 {
2412 	mblk_t *bp;
2413 	struct tim_tim *tp;
2414 	struct T_unitdata_req *up;
2415 	struct T_unitdata_req *nup;
2416 	size_t plen;
2417 
2418 	tp = (struct tim_tim *)q->q_ptr;
2419 	if (mp->b_datap->db_type == M_DATA) {
2420 		mutex_enter(&tp->tim_mutex);
2421 		bp = allocb(sizeof (struct T_unitdata_req) + tp->tim_peerlen,
2422 		    BPRI_MED);
2423 		if (bp != NULL) {
2424 			bp->b_datap->db_type = M_PROTO;
2425 			up = (struct T_unitdata_req *)bp->b_rptr;
2426 			up->PRIM_type = T_UNITDATA_REQ;
2427 			up->DEST_length = tp->tim_peerlen;
2428 			bp->b_wptr += sizeof (struct T_unitdata_req);
2429 			up->DEST_offset = sizeof (struct T_unitdata_req);
2430 			up->OPT_length = 0;
2431 			up->OPT_offset = 0;
2432 			if (tp->tim_peerlen > 0) {
2433 				bcopy(tp->tim_peername, bp->b_wptr,
2434 				    tp->tim_peerlen);
2435 				bp->b_wptr += tp->tim_peerlen;
2436 			}
2437 			bp->b_cont = mp;
2438 		}
2439 	} else {
2440 		ASSERT(mp->b_datap->db_type == M_PROTO);
2441 		up = (struct T_unitdata_req *)mp->b_rptr;
2442 		ASSERT(up->PRIM_type == T_UNITDATA_REQ);
2443 		if (up->DEST_length != 0)
2444 			return (mp);
2445 		mutex_enter(&tp->tim_mutex);
2446 		bp = allocb(sizeof (struct T_unitdata_req) + up->OPT_length +
2447 		    tp->tim_peerlen, BPRI_MED);
2448 		if (bp != NULL) {
2449 			bp->b_datap->db_type = M_PROTO;
2450 			nup = (struct T_unitdata_req *)bp->b_rptr;
2451 			nup->PRIM_type = T_UNITDATA_REQ;
2452 			nup->DEST_length = plen = tp->tim_peerlen;
2453 			bp->b_wptr += sizeof (struct T_unitdata_req);
2454 			nup->DEST_offset = sizeof (struct T_unitdata_req);
2455 			if (plen > 0) {
2456 				bcopy(tp->tim_peername, bp->b_wptr, plen);
2457 				bp->b_wptr += plen;
2458 			}
2459 			mutex_exit(&tp->tim_mutex);
2460 			if (up->OPT_length == 0) {
2461 				nup->OPT_length = 0;
2462 				nup->OPT_offset = 0;
2463 			} else {
2464 				nup->OPT_length = up->OPT_length;
2465 				nup->OPT_offset =
2466 				    sizeof (struct T_unitdata_req) + plen;
2467 				bcopy((mp->b_wptr + up->OPT_offset), bp->b_wptr,
2468 				    up->OPT_length);
2469 				bp->b_wptr += up->OPT_length;
2470 			}
2471 			bp->b_cont = mp->b_cont;
2472 			mp->b_cont = NULL;
2473 			freeb(mp);
2474 			return (bp);
2475 		}
2476 	}
2477 	ASSERT(MUTEX_HELD(&tp->tim_mutex));
2478 	if (bp == NULL && dorecover) {
2479 		tim_recover(q, mp,
2480 		    sizeof (struct T_unitdata_req) + tp->tim_peerlen);
2481 	}
2482 	mutex_exit(&tp->tim_mutex);
2483 	return (bp);
2484 }
2485 
2486 static void
2487 tim_addlink(struct tim_tim *tp)
2488 {
2489 	struct tim_tim **tpp;
2490 	struct tim_tim	*next;
2491 
2492 	tpp = &tim_hash[TIM_HASH(tp->tim_acceptor)];
2493 	rw_enter(&tim_list_rwlock, RW_WRITER);
2494 
2495 	if ((next = *tpp) != NULL)
2496 		next->tim_ptpn = &tp->tim_next;
2497 	tp->tim_next = next;
2498 	tp->tim_ptpn = tpp;
2499 	*tpp = tp;
2500 
2501 	tim_cnt++;
2502 
2503 	rw_exit(&tim_list_rwlock);
2504 }
2505 
2506 static void
2507 tim_dellink(struct tim_tim *tp)
2508 {
2509 	struct tim_tim	*next;
2510 
2511 	rw_enter(&tim_list_rwlock, RW_WRITER);
2512 
2513 	if ((next = tp->tim_next) != NULL)
2514 		next->tim_ptpn = tp->tim_ptpn;
2515 	*(tp->tim_ptpn) = next;
2516 
2517 	tim_cnt--;
2518 
2519 	rw_exit(&tim_list_rwlock);
2520 }
2521 
2522 static struct tim_tim *
2523 tim_findlink(t_uscalar_t id)
2524 {
2525 	struct tim_tim	*tp;
2526 
2527 	ASSERT(rw_lock_held(&tim_list_rwlock));
2528 
2529 	for (tp = tim_hash[TIM_HASH(id)]; tp != NULL; tp = tp->tim_next) {
2530 		if (tp->tim_acceptor == id) {
2531 			break;
2532 		}
2533 	}
2534 	return (tp);
2535 }
2536 
2537 static void
2538 tim_recover(queue_t *q, mblk_t *mp, t_scalar_t size)
2539 {
2540 	struct tim_tim	*tp;
2541 	bufcall_id_t	bid;
2542 	timeout_id_t	tid;
2543 
2544 	tp = (struct tim_tim *)q->q_ptr;
2545 
2546 	/*
2547 	 * Avoid re-enabling the queue.
2548 	 */
2549 	if (mp->b_datap->db_type == M_PCPROTO)
2550 		mp->b_datap->db_type = M_PROTO;
2551 	noenable(q);
2552 	(void) putbq(q, mp);
2553 
2554 	/*
2555 	 * Make sure there is at most one outstanding request per queue.
2556 	 */
2557 	if (q->q_flag & QREADR) {
2558 		if (tp->tim_rtimoutid || tp->tim_rbufcid)
2559 			return;
2560 	} else {
2561 		if (tp->tim_wtimoutid || tp->tim_wbufcid)
2562 			return;
2563 	}
2564 	if (!(bid = qbufcall(RD(q), (size_t)size, BPRI_MED, tim_buffer, q))) {
2565 		tid = qtimeout(RD(q), tim_timer, q, TIMWAIT);
2566 		if (q->q_flag & QREADR)
2567 			tp->tim_rtimoutid = tid;
2568 		else
2569 			tp->tim_wtimoutid = tid;
2570 	} else	{
2571 		if (q->q_flag & QREADR)
2572 			tp->tim_rbufcid = bid;
2573 		else
2574 			tp->tim_wbufcid = bid;
2575 	}
2576 }
2577 
2578 /*
2579  * Timod is waiting on a downstream ioctl reply, come back soon
2580  * to reschedule the write side service routine, which will check
2581  * if the ioctl is done and another can proceed.
2582  */
2583 static void
2584 tim_ioctl_retry(queue_t *q)
2585 {
2586 	struct tim_tim  *tp;
2587 
2588 	tp = (struct tim_tim *)q->q_ptr;
2589 
2590 	/*
2591 	 * Make sure there is at most one outstanding request per wqueue.
2592 	 */
2593 	if (tp->tim_wtimoutid || tp->tim_wbufcid)
2594 		return;
2595 
2596 	tp->tim_wtimoutid = qtimeout(RD(q), tim_timer, q, TIMIOCWAIT);
2597 }
2598 
2599 /*
2600  * Inspect the data on read queues starting from read queues passed as
2601  * paramter (timod read queue) and traverse until
2602  * q_next is NULL (stream head). Look for a TPI T_EXDATA_IND message
2603  * reutrn 1 if found, 0 if not found.
2604  */
2605 static int
2606 ti_expind_on_rdqueues(queue_t *rq)
2607 {
2608 	mblk_t *bp;
2609 	queue_t *q;
2610 
2611 	q = rq;
2612 	/*
2613 	 * We are going to walk q_next, so protect stream from plumbing
2614 	 * changes.
2615 	 */
2616 	claimstr(q);
2617 	do {
2618 		/*
2619 		 * Hold QLOCK while referencing data on queues
2620 		 */
2621 		mutex_enter(QLOCK(rq));
2622 		bp = rq->q_first;
2623 		while (bp != NULL) {
2624 			/*
2625 			 * Walk the messages on the queue looking
2626 			 * for a possible T_EXDATA_IND
2627 			 */
2628 			if ((bp->b_datap->db_type == M_PROTO) &&
2629 			    ((bp->b_wptr - bp->b_rptr) >=
2630 			    sizeof (struct T_exdata_ind)) &&
2631 			    (((struct T_exdata_ind *)bp->b_rptr)->PRIM_type
2632 			    == T_EXDATA_IND)) {
2633 				/* bp is T_EXDATA_IND */
2634 				mutex_exit(QLOCK(rq));
2635 				releasestr(q); /* decrement sd_refcnt  */
2636 				return (1); /* expdata is on a read queue */
2637 			}
2638 			bp = bp->b_next; /* next message */
2639 		}
2640 		mutex_exit(QLOCK(rq));
2641 		rq = rq->q_next;	/* next upstream queue */
2642 	} while (rq != NULL);
2643 	releasestr(q);
2644 	return (0);		/* no expdata on read queues */
2645 }
2646 
2647 static void
2648 tim_tcap_timer(void *q_ptr)
2649 {
2650 	queue_t *q = (queue_t *)q_ptr;
2651 	struct tim_tim *tp = (struct tim_tim *)q->q_ptr;
2652 
2653 	ASSERT(tp != NULL && tp->tim_tcap_timoutid != 0);
2654 	ASSERT((tp->tim_flags & TI_CAP_RECVD) != 0);
2655 
2656 	tp->tim_tcap_timoutid = 0;
2657 	TILOG("tim_tcap_timer: fired\n", 0);
2658 	tim_tcap_genreply(q, tp);
2659 }
2660 
2661 /*
2662  * tim_tcap_genreply() is called either from timeout routine or when
2663  * T_ERROR_ACK is received. In both cases it means that underlying
2664  * transport doesn't provide T_CAPABILITY_REQ.
2665  */
2666 static void
2667 tim_tcap_genreply(queue_t *q, struct tim_tim *tp)
2668 {
2669 	mblk_t		*mp = tp->tim_iocsave;
2670 	struct iocblk	*iocbp;
2671 
2672 	TILOG("timodrproc: tim_tcap_genreply\n", 0);
2673 
2674 	ASSERT(tp == (struct tim_tim *)q->q_ptr);
2675 	ASSERT(mp != NULL);
2676 
2677 	iocbp = (struct iocblk *)mp->b_rptr;
2678 	ASSERT(iocbp != NULL);
2679 	ASSERT(MBLKL(mp) == sizeof (struct iocblk));
2680 	ASSERT(iocbp->ioc_cmd == TI_CAPABILITY);
2681 	ASSERT(mp->b_cont == NULL);
2682 
2683 	/* Save this information permanently in the module */
2684 	PI_PROVLOCK(tp->tim_provinfo);
2685 	if (tp->tim_provinfo->tpi_capability == PI_DONTKNOW)
2686 		tp->tim_provinfo->tpi_capability = PI_NO;
2687 	PI_PROVUNLOCK(tp->tim_provinfo);
2688 
2689 	if (tp->tim_tcap_timoutid != 0) {
2690 		(void) quntimeout(q, tp->tim_tcap_timoutid);
2691 		tp->tim_tcap_timoutid = 0;
2692 	}
2693 
2694 	if ((tp->tim_flags & CAP_WANTS_INFO) != 0) {
2695 		/* Send T_INFO_REQ down */
2696 		mblk_t *tirmp = tpi_ack_alloc(NULL,
2697 		    sizeof (struct T_info_req), M_PCPROTO, T_INFO_REQ);
2698 
2699 		if (tirmp != NULL) {
2700 			/* Emulate TC1_INFO */
2701 			TILOG("emulate_tcap_ioc_req: sending T_INFO_REQ\n", 0);
2702 			tp->tim_flags |= WAIT_IOCINFOACK;
2703 			putnext(WR(q), tirmp);
2704 		} else {
2705 			tilog("emulate_tcap_req: allocb fail, "
2706 			    "no recovery attmpt\n", 0);
2707 			tp->tim_iocsave = NULL;
2708 			tp->tim_saved_prim = -1;
2709 			tp->tim_flags &= ~(TI_CAP_RECVD | WAITIOCACK |
2710 			    CAP_WANTS_INFO | WAIT_IOCINFOACK);
2711 			miocnak(q, mp, 0, ENOMEM);
2712 		}
2713 	} else {
2714 		/* Reply immediately */
2715 		mblk_t *ackmp = tpi_ack_alloc(NULL,
2716 		    sizeof (struct T_capability_ack), M_PCPROTO,
2717 		    T_CAPABILITY_ACK);
2718 
2719 		mp->b_cont = ackmp;
2720 
2721 		if (ackmp != NULL) {
2722 			((struct T_capability_ack *)
2723 			    ackmp->b_rptr)->CAP_bits1 = 0;
2724 			tim_ioctl_send_reply(q, mp, ackmp);
2725 			tp->tim_iocsave = NULL;
2726 			tp->tim_saved_prim = -1;
2727 			tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
2728 			    TI_CAP_RECVD | CAP_WANTS_INFO);
2729 		} else {
2730 			tilog("timodwproc:allocb failed no "
2731 			    "recovery attempt\n", 0);
2732 			tp->tim_iocsave = NULL;
2733 			tp->tim_saved_prim = -1;
2734 			tp->tim_flags &= ~(TI_CAP_RECVD | WAITIOCACK |
2735 			    CAP_WANTS_INFO | WAIT_IOCINFOACK);
2736 			miocnak(q, mp, 0, ENOMEM);
2737 		}
2738 	}
2739 }
2740 
2741 
2742 static void
2743 tim_ioctl_send_reply(queue_t *q, mblk_t *ioc_mp, mblk_t *mp)
2744 {
2745 	struct iocblk	*iocbp;
2746 
2747 	ASSERT(q != NULL && ioc_mp != NULL);
2748 
2749 	ioc_mp->b_datap->db_type = M_IOCACK;
2750 	if (mp != NULL)
2751 		mp->b_datap->db_type = M_DATA;
2752 
2753 	if (ioc_mp->b_cont != mp) {
2754 		/* It is safe to call freemsg for NULL pointers */
2755 		freemsg(ioc_mp->b_cont);
2756 		ioc_mp->b_cont = mp;
2757 	}
2758 	iocbp = (struct iocblk *)ioc_mp->b_rptr;
2759 	iocbp->ioc_error = 0;
2760 	iocbp->ioc_rval = 0;
2761 	/*
2762 	 * All ioctl's may return more data than was specified by
2763 	 * count arg. For TI_CAPABILITY count is treated as maximum data size.
2764 	 */
2765 	if (mp == NULL)
2766 		iocbp->ioc_count = 0;
2767 	else if (iocbp->ioc_cmd != TI_CAPABILITY)
2768 		iocbp->ioc_count = msgsize(mp);
2769 	else {
2770 		iocbp->ioc_count = MIN(MBLKL(mp), iocbp->ioc_count);
2771 		/* Truncate message if too large */
2772 		mp->b_wptr = mp->b_rptr + iocbp->ioc_count;
2773 	}
2774 
2775 	TILOG("iosendreply: ioc_cmd = %d, ", iocbp->ioc_cmd);
2776 	putnext(RD(q), ioc_mp);
2777 }
2778 
2779 /*
2780  * Send M_IOCACK for errors.
2781  */
2782 static void
2783 tim_send_ioc_error_ack(queue_t *q, struct tim_tim *tp, mblk_t *mp)
2784 {
2785 	struct T_error_ack *tea = (struct T_error_ack *)mp->b_rptr;
2786 	t_scalar_t error_prim;
2787 
2788 	mp->b_wptr = mp->b_rptr + sizeof (struct T_error_ack);
2789 	ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
2790 	error_prim = tea->ERROR_prim;
2791 
2792 	ASSERT(tp->tim_iocsave != NULL);
2793 	ASSERT(tp->tim_iocsave->b_cont != mp);
2794 
2795 	/* Always send this to the read side of the queue */
2796 	q = RD(q);
2797 
2798 	TILOG("tim_send_ioc_error_ack: prim = %d\n", tp->tim_saved_prim);
2799 
2800 	if (tp->tim_saved_prim != error_prim) {
2801 		putnext(q, mp);
2802 	} else if (error_prim == T_CAPABILITY_REQ) {
2803 		TILOG("timodrproc: T_ERROR_ACK/T_CAPABILITY_REQ\n", 0);
2804 		ASSERT(tp->tim_iocsave->b_cont == NULL);
2805 
2806 		tim_tcap_genreply(q, tp);
2807 		freemsg(mp);
2808 	} else {
2809 		struct iocblk *iocbp = (struct iocblk *)tp->tim_iocsave->b_rptr;
2810 
2811 		TILOG("tim_send_ioc_error_ack: T_ERROR_ACK: prim %d\n",
2812 		    error_prim);
2813 		ASSERT(tp->tim_iocsave->b_cont == NULL);
2814 
2815 		switch (error_prim) {
2816 		default:
2817 			TILOG("timodrproc: Unknown T_ERROR_ACK:  tlierror %d\n",
2818 			    tea->TLI_error);
2819 
2820 			putnext(q, mp);
2821 			break;
2822 
2823 		case T_INFO_REQ:
2824 		case T_SVR4_OPTMGMT_REQ:
2825 		case T_OPTMGMT_REQ:
2826 		case O_T_BIND_REQ:
2827 		case T_BIND_REQ:
2828 		case T_UNBIND_REQ:
2829 		case T_ADDR_REQ:
2830 		case T_CAPABILITY_REQ:
2831 
2832 			TILOG("ioc_err_ack: T_ERROR_ACK: tlierror %x\n",
2833 			    tea->TLI_error);
2834 
2835 			/* get saved ioctl msg and set values */
2836 			iocbp->ioc_count = 0;
2837 			iocbp->ioc_error = 0;
2838 			iocbp->ioc_rval = tea->TLI_error;
2839 			if (iocbp->ioc_rval == TSYSERR)
2840 				iocbp->ioc_rval |= tea->UNIX_error << 8;
2841 			tp->tim_iocsave->b_datap->db_type = M_IOCACK;
2842 			freemsg(mp);
2843 			putnext(q, tp->tim_iocsave);
2844 			tp->tim_iocsave = NULL;
2845 			tp->tim_saved_prim = -1;
2846 			tp->tim_flags &= ~(WAITIOCACK | TI_CAP_RECVD |
2847 			    CAP_WANTS_INFO | WAIT_IOCINFOACK);
2848 			break;
2849 		}
2850 	}
2851 }
2852 
2853 /*
2854  * Send reply to a usual message or ioctl message upstream.
2855  * Should be called from the read side only.
2856  */
2857 static void
2858 tim_send_reply(queue_t *q, mblk_t *mp, struct tim_tim *tp, t_scalar_t prim)
2859 {
2860 	ASSERT(mp != NULL && q != NULL && tp != NULL);
2861 	ASSERT(q == RD(q));
2862 
2863 	/* Restore db_type - recover() might have changed it */
2864 	mp->b_datap->db_type = M_PCPROTO;
2865 
2866 	if (((tp->tim_flags & WAITIOCACK) == 0) || (tp->tim_saved_prim != prim))
2867 		putnext(q, mp);
2868 	else {
2869 		ASSERT(tp->tim_iocsave != NULL);
2870 		tim_ioctl_send_reply(q, tp->tim_iocsave, mp);
2871 		tp->tim_iocsave = NULL;
2872 		tp->tim_saved_prim = -1;
2873 		tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
2874 		    TI_CAP_RECVD | CAP_WANTS_INFO);
2875 	}
2876 }
2877 
2878 /*
2879  * Reply to TI_SYNC reequest without sending anything downstream.
2880  */
2881 static void
2882 tim_answer_ti_sync(queue_t *q, mblk_t *mp, struct tim_tim *tp,
2883     mblk_t *ackmp, uint32_t tsr_flags)
2884 {
2885 	struct ti_sync_ack *tsap;
2886 
2887 	ASSERT(q != NULL && q == WR(q) && ackmp != NULL);
2888 
2889 	tsap = (struct ti_sync_ack *)ackmp->b_rptr;
2890 	bzero(tsap, sizeof (struct ti_sync_ack));
2891 	ackmp->b_wptr = ackmp->b_rptr + sizeof (struct ti_sync_ack);
2892 
2893 	if (tsr_flags == 0 ||
2894 	    (tsr_flags & ~(TSRF_QLEN_REQ | TSRF_IS_EXP_IN_RCVBUF)) != 0) {
2895 		/*
2896 		 * unsupported/bad flag setting
2897 		 * or no flag set.
2898 		 */
2899 		TILOG("timodwproc: unsupported/bad flag setting %x\n",
2900 		    tsr_flags);
2901 		freemsg(ackmp);
2902 		miocnak(q, mp, 0, EINVAL);
2903 		return;
2904 	}
2905 
2906 	if ((tsr_flags & TSRF_QLEN_REQ) != 0)
2907 		tsap->tsa_qlen = tp->tim_backlog;
2908 
2909 	if ((tsr_flags & TSRF_IS_EXP_IN_RCVBUF) != 0 &&
2910 	    ti_expind_on_rdqueues(RD(q))) {
2911 		/*
2912 		 * Expedited data is queued on
2913 		 * the stream read side
2914 		 */
2915 		tsap->tsa_flags |= TSAF_EXP_QUEUED;
2916 	}
2917 
2918 	tim_ioctl_send_reply(q, mp, ackmp);
2919 	tp->tim_iocsave = NULL;
2920 	tp->tim_saved_prim = -1;
2921 	tp->tim_flags &= ~(WAITIOCACK | WAIT_IOCINFOACK |
2922 	    TI_CAP_RECVD | CAP_WANTS_INFO);
2923 }
2924 
2925 /*
2926  * Send TPI message from IOCTL message, ssave original ioctl header and TPI
2927  * message type. Should be called from write side only.
2928  */
2929 static void
2930 tim_send_ioctl_tpi_msg(queue_t *q, mblk_t *mp, struct tim_tim *tp,
2931 	struct iocblk *iocb)
2932 {
2933 	mblk_t *tmp;
2934 	int ioc_cmd = iocb->ioc_cmd;
2935 
2936 	ASSERT(q != NULL && mp != NULL && tp != NULL);
2937 	ASSERT(q == WR(q));
2938 	ASSERT(mp->b_cont != NULL);
2939 
2940 	tp->tim_iocsave = mp;
2941 	tmp = mp->b_cont;
2942 
2943 	mp->b_cont = NULL;
2944 	tp->tim_flags |= WAITIOCACK;
2945 	tp->tim_saved_prim = ((union T_primitives *)tmp->b_rptr)->type;
2946 
2947 	/*
2948 	 * For TI_GETINFO, the attached message is a T_INFO_REQ
2949 	 * For TI_SYNC, we generate the T_INFO_REQ message above
2950 	 * For TI_CAPABILITY the attached message is either
2951 	 * T_CAPABILITY_REQ or T_INFO_REQ.
2952 	 * Among TPI request messages possible,
2953 	 *	T_INFO_REQ/T_CAPABILITY_ACK messages are a M_PCPROTO, rest
2954 	 *	are M_PROTO
2955 	 */
2956 	if (ioc_cmd == TI_GETINFO || ioc_cmd == TI_SYNC ||
2957 	    ioc_cmd == TI_CAPABILITY) {
2958 		tmp->b_datap->db_type = M_PCPROTO;
2959 	} else {
2960 		tmp->b_datap->db_type = M_PROTO;
2961 	}
2962 
2963 	/* Verify credentials in STREAM */
2964 	ASSERT(iocb->ioc_cr == NULL || iocb->ioc_cr == DB_CRED(tmp));
2965 
2966 	ASSERT(DB_CRED(tmp) != NULL);
2967 
2968 	TILOG("timodwproc: sending down %d\n", tp->tim_saved_prim);
2969 	putnext(q, tmp);
2970 }
2971 
2972 static void
2973 tim_clear_peer(struct tim_tim *tp)
2974 {
2975 	mutex_enter(&tp->tim_mutex);
2976 	if (tp->tim_peercred != NULL) {
2977 		crfree(tp->tim_peercred);
2978 		tp->tim_peercred = NULL;
2979 	}
2980 	tp->tim_peerlen = 0;
2981 	mutex_exit(&tp->tim_mutex);
2982 }
2983