xref: /titanic_50/usr/src/uts/common/io/scsi/targets/sd.c (revision df4628cb18cef0a7960608d573d5a9b6cc9e29d5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 #include <sys/cmlb.h>
67 
68 
69 /*
70  * Loadable module info.
71  */
72 #if (defined(__fibre))
73 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
75 #else
76 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
77 char _depends_on[]	= "misc/scsi misc/cmlb";
78 #endif
79 
80 /*
81  * Define the interconnect type, to allow the driver to distinguish
82  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
83  *
84  * This is really for backward compatibility. In the future, the driver
85  * should actually check the "interconnect-type" property as reported by
86  * the HBA; however at present this property is not defined by all HBAs,
87  * so we will use this #define (1) to permit the driver to run in
88  * backward-compatibility mode; and (2) to print a notification message
89  * if an FC HBA does not support the "interconnect-type" property.  The
90  * behavior of the driver will be to assume parallel SCSI behaviors unless
91  * the "interconnect-type" property is defined by the HBA **AND** has a
92  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
93  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
94  * Channel behaviors (as per the old ssd).  (Note that the
95  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
96  * will result in the driver assuming parallel SCSI behaviors.)
97  *
98  * (see common/sys/scsi/impl/services.h)
99  *
100  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
101  * since some FC HBAs may already support that, and there is some code in
102  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
103  * default would confuse that code, and besides things should work fine
104  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
105  * "interconnect_type" property.
106  *
107  */
108 #if (defined(__fibre))
109 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
110 #else
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
112 #endif
113 
114 /*
115  * The name of the driver, established from the module name in _init.
116  */
117 static	char *sd_label			= NULL;
118 
119 /*
120  * Driver name is unfortunately prefixed on some driver.conf properties.
121  */
122 #if (defined(__fibre))
123 #define	sd_max_xfer_size		ssd_max_xfer_size
124 #define	sd_config_list			ssd_config_list
125 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
126 static	char *sd_config_list		= "ssd-config-list";
127 #else
128 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
129 static	char *sd_config_list		= "sd-config-list";
130 #endif
131 
132 /*
133  * Driver global variables
134  */
135 
136 #if (defined(__fibre))
137 /*
138  * These #defines are to avoid namespace collisions that occur because this
139  * code is currently used to compile two separate driver modules: sd and ssd.
140  * All global variables need to be treated this way (even if declared static)
141  * in order to allow the debugger to resolve the names properly.
142  * It is anticipated that in the near future the ssd module will be obsoleted,
143  * at which time this namespace issue should go away.
144  */
145 #define	sd_state			ssd_state
146 #define	sd_io_time			ssd_io_time
147 #define	sd_failfast_enable		ssd_failfast_enable
148 #define	sd_ua_retry_count		ssd_ua_retry_count
149 #define	sd_report_pfa			ssd_report_pfa
150 #define	sd_max_throttle			ssd_max_throttle
151 #define	sd_min_throttle			ssd_min_throttle
152 #define	sd_rot_delay			ssd_rot_delay
153 
154 #define	sd_retry_on_reservation_conflict	\
155 					ssd_retry_on_reservation_conflict
156 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
157 #define	sd_resv_conflict_name		ssd_resv_conflict_name
158 
159 #define	sd_component_mask		ssd_component_mask
160 #define	sd_level_mask			ssd_level_mask
161 #define	sd_debug_un			ssd_debug_un
162 #define	sd_error_level			ssd_error_level
163 
164 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
165 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
166 
167 #define	sd_tr				ssd_tr
168 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
169 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
170 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
171 #define	sd_check_media_time		ssd_check_media_time
172 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
173 #define	sd_label_mutex			ssd_label_mutex
174 #define	sd_detach_mutex			ssd_detach_mutex
175 #define	sd_log_buf			ssd_log_buf
176 #define	sd_log_mutex			ssd_log_mutex
177 
178 #define	sd_disk_table			ssd_disk_table
179 #define	sd_disk_table_size		ssd_disk_table_size
180 #define	sd_sense_mutex			ssd_sense_mutex
181 #define	sd_cdbtab			ssd_cdbtab
182 
183 #define	sd_cb_ops			ssd_cb_ops
184 #define	sd_ops				ssd_ops
185 #define	sd_additional_codes		ssd_additional_codes
186 #define	sd_tgops			ssd_tgops
187 
188 #define	sd_minor_data			ssd_minor_data
189 #define	sd_minor_data_efi		ssd_minor_data_efi
190 
191 #define	sd_tq				ssd_tq
192 #define	sd_wmr_tq			ssd_wmr_tq
193 #define	sd_taskq_name			ssd_taskq_name
194 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
195 #define	sd_taskq_minalloc		ssd_taskq_minalloc
196 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
197 
198 #define	sd_dump_format_string		ssd_dump_format_string
199 
200 #define	sd_iostart_chain		ssd_iostart_chain
201 #define	sd_iodone_chain			ssd_iodone_chain
202 
203 #define	sd_pm_idletime			ssd_pm_idletime
204 
205 #define	sd_force_pm_supported		ssd_force_pm_supported
206 
207 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
208 
209 #endif
210 
211 
212 #ifdef	SDDEBUG
213 int	sd_force_pm_supported		= 0;
214 #endif	/* SDDEBUG */
215 
216 void *sd_state				= NULL;
217 int sd_io_time				= SD_IO_TIME;
218 int sd_failfast_enable			= 1;
219 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
220 int sd_report_pfa			= 1;
221 int sd_max_throttle			= SD_MAX_THROTTLE;
222 int sd_min_throttle			= SD_MIN_THROTTLE;
223 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
224 int sd_qfull_throttle_enable		= TRUE;
225 
226 int sd_retry_on_reservation_conflict	= 1;
227 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
228 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
229 
230 static int sd_dtype_optical_bind	= -1;
231 
232 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
233 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
234 
235 /*
236  * Global data for debug logging. To enable debug printing, sd_component_mask
237  * and sd_level_mask should be set to the desired bit patterns as outlined in
238  * sddef.h.
239  */
240 uint_t	sd_component_mask		= 0x0;
241 uint_t	sd_level_mask			= 0x0;
242 struct	sd_lun *sd_debug_un		= NULL;
243 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
244 
245 /* Note: these may go away in the future... */
246 static uint32_t	sd_xbuf_active_limit	= 512;
247 static uint32_t sd_xbuf_reserve_limit	= 16;
248 
249 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
250 
251 /*
252  * Timer value used to reset the throttle after it has been reduced
253  * (typically in response to TRAN_BUSY or STATUS_QFULL)
254  */
255 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
256 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
257 
258 /*
259  * Interval value associated with the media change scsi watch.
260  */
261 static int sd_check_media_time		= 3000000;
262 
263 /*
264  * Wait value used for in progress operations during a DDI_SUSPEND
265  */
266 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
267 
268 /*
269  * sd_label_mutex protects a static buffer used in the disk label
270  * component of the driver
271  */
272 static kmutex_t sd_label_mutex;
273 
274 /*
275  * sd_detach_mutex protects un_layer_count, un_detach_count, and
276  * un_opens_in_progress in the sd_lun structure.
277  */
278 static kmutex_t sd_detach_mutex;
279 
280 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
281 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
282 
283 /*
284  * Global buffer and mutex for debug logging
285  */
286 static char	sd_log_buf[1024];
287 static kmutex_t	sd_log_mutex;
288 
289 /*
290  * Structs and globals for recording attached lun information.
291  * This maintains a chain. Each node in the chain represents a SCSI controller.
292  * The structure records the number of luns attached to each target connected
293  * with the controller.
294  * For parallel scsi device only.
295  */
296 struct sd_scsi_hba_tgt_lun {
297 	struct sd_scsi_hba_tgt_lun	*next;
298 	dev_info_t			*pdip;
299 	int				nlun[NTARGETS_WIDE];
300 };
301 
302 /*
303  * Flag to indicate the lun is attached or detached
304  */
305 #define	SD_SCSI_LUN_ATTACH	0
306 #define	SD_SCSI_LUN_DETACH	1
307 
308 static kmutex_t	sd_scsi_target_lun_mutex;
309 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
312     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
313 
314 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
315     sd_scsi_target_lun_head))
316 
317 /*
318  * "Smart" Probe Caching structs, globals, #defines, etc.
319  * For parallel scsi and non-self-identify device only.
320  */
321 
322 /*
323  * The following resources and routines are implemented to support
324  * "smart" probing, which caches the scsi_probe() results in an array,
325  * in order to help avoid long probe times.
326  */
327 struct sd_scsi_probe_cache {
328 	struct	sd_scsi_probe_cache	*next;
329 	dev_info_t	*pdip;
330 	int		cache[NTARGETS_WIDE];
331 };
332 
333 static kmutex_t	sd_scsi_probe_cache_mutex;
334 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
335 
336 /*
337  * Really we only need protection on the head of the linked list, but
338  * better safe than sorry.
339  */
340 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
341     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
342 
343 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
344     sd_scsi_probe_cache_head))
345 
346 
347 /*
348  * Vendor specific data name property declarations
349  */
350 
351 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
352 
353 static sd_tunables seagate_properties = {
354 	SEAGATE_THROTTLE_VALUE,
355 	0,
356 	0,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0
363 };
364 
365 
366 static sd_tunables fujitsu_properties = {
367 	FUJITSU_THROTTLE_VALUE,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0,
374 	0,
375 	0
376 };
377 
378 static sd_tunables ibm_properties = {
379 	IBM_THROTTLE_VALUE,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0
388 };
389 
390 static sd_tunables purple_properties = {
391 	PURPLE_THROTTLE_VALUE,
392 	0,
393 	0,
394 	PURPLE_BUSY_RETRIES,
395 	PURPLE_RESET_RETRY_COUNT,
396 	PURPLE_RESERVE_RELEASE_TIME,
397 	0,
398 	0,
399 	0
400 };
401 
402 static sd_tunables sve_properties = {
403 	SVE_THROTTLE_VALUE,
404 	0,
405 	0,
406 	SVE_BUSY_RETRIES,
407 	SVE_RESET_RETRY_COUNT,
408 	SVE_RESERVE_RELEASE_TIME,
409 	SVE_MIN_THROTTLE_VALUE,
410 	SVE_DISKSORT_DISABLED_FLAG,
411 	0
412 };
413 
414 static sd_tunables maserati_properties = {
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	MASERATI_DISKSORT_DISABLED_FLAG,
423 	MASERATI_LUN_RESET_ENABLED_FLAG
424 };
425 
426 static sd_tunables pirus_properties = {
427 	PIRUS_THROTTLE_VALUE,
428 	0,
429 	PIRUS_NRR_COUNT,
430 	PIRUS_BUSY_RETRIES,
431 	PIRUS_RESET_RETRY_COUNT,
432 	0,
433 	PIRUS_MIN_THROTTLE_VALUE,
434 	PIRUS_DISKSORT_DISABLED_FLAG,
435 	PIRUS_LUN_RESET_ENABLED_FLAG
436 };
437 
438 #endif
439 
440 #if (defined(__sparc) && !defined(__fibre)) || \
441 	(defined(__i386) || defined(__amd64))
442 
443 
444 static sd_tunables elite_properties = {
445 	ELITE_THROTTLE_VALUE,
446 	0,
447 	0,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0
454 };
455 
456 static sd_tunables st31200n_properties = {
457 	ST31200N_THROTTLE_VALUE,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0
466 };
467 
468 #endif /* Fibre or not */
469 
470 static sd_tunables lsi_properties_scsi = {
471 	LSI_THROTTLE_VALUE,
472 	0,
473 	LSI_NOTREADY_RETRIES,
474 	0,
475 	0,
476 	0,
477 	0,
478 	0,
479 	0
480 };
481 
482 static sd_tunables symbios_properties = {
483 	SYMBIOS_THROTTLE_VALUE,
484 	0,
485 	SYMBIOS_NOTREADY_RETRIES,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0,
491 	0
492 };
493 
494 static sd_tunables lsi_properties = {
495 	0,
496 	0,
497 	LSI_NOTREADY_RETRIES,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0,
503 	0
504 };
505 
506 static sd_tunables lsi_oem_properties = {
507 	0,
508 	0,
509 	LSI_OEM_NOTREADY_RETRIES,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0,
515 	0
516 };
517 
518 
519 
520 #if (defined(SD_PROP_TST))
521 
522 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
523 #define	SD_TST_THROTTLE_VAL	16
524 #define	SD_TST_NOTREADY_VAL	12
525 #define	SD_TST_BUSY_VAL		60
526 #define	SD_TST_RST_RETRY_VAL	36
527 #define	SD_TST_RSV_REL_TIME	60
528 
529 static sd_tunables tst_properties = {
530 	SD_TST_THROTTLE_VAL,
531 	SD_TST_CTYPE_VAL,
532 	SD_TST_NOTREADY_VAL,
533 	SD_TST_BUSY_VAL,
534 	SD_TST_RST_RETRY_VAL,
535 	SD_TST_RSV_REL_TIME,
536 	0,
537 	0,
538 	0
539 };
540 #endif
541 
542 /* This is similar to the ANSI toupper implementation */
543 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
544 
545 /*
546  * Static Driver Configuration Table
547  *
548  * This is the table of disks which need throttle adjustment (or, perhaps
549  * something else as defined by the flags at a future time.)  device_id
550  * is a string consisting of concatenated vid (vendor), pid (product/model)
551  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
552  * the parts of the string are as defined by the sizes in the scsi_inquiry
553  * structure.  Device type is searched as far as the device_id string is
554  * defined.  Flags defines which values are to be set in the driver from the
555  * properties list.
556  *
557  * Entries below which begin and end with a "*" are a special case.
558  * These do not have a specific vendor, and the string which follows
559  * can appear anywhere in the 16 byte PID portion of the inquiry data.
560  *
561  * Entries below which begin and end with a " " (blank) are a special
562  * case. The comparison function will treat multiple consecutive blanks
563  * as equivalent to a single blank. For example, this causes a
564  * sd_disk_table entry of " NEC CDROM " to match a device's id string
565  * of  "NEC       CDROM".
566  *
567  * Note: The MD21 controller type has been obsoleted.
568  *	 ST318202F is a Legacy device
569  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
570  *	 made with an FC connection. The entries here are a legacy.
571  */
572 static sd_disk_config_t sd_disk_table[] = {
573 #if defined(__fibre) || defined(__i386) || defined(__amd64)
574 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
575 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
576 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
577 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
578 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
589 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
590 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
591 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
592 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
598 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
599 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
600 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
601 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
602 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
603 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
604 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
605 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
622 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
623 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
624 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
625 			SD_CONF_BSET_BSY_RETRY_COUNT|
626 			SD_CONF_BSET_RST_RETRIES|
627 			SD_CONF_BSET_RSV_REL_TIME,
628 		&purple_properties },
629 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
630 		SD_CONF_BSET_BSY_RETRY_COUNT|
631 		SD_CONF_BSET_RST_RETRIES|
632 		SD_CONF_BSET_RSV_REL_TIME|
633 		SD_CONF_BSET_MIN_THROTTLE|
634 		SD_CONF_BSET_DISKSORT_DISABLED,
635 		&sve_properties },
636 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
637 			SD_CONF_BSET_BSY_RETRY_COUNT|
638 			SD_CONF_BSET_RST_RETRIES|
639 			SD_CONF_BSET_RSV_REL_TIME,
640 		&purple_properties },
641 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
642 		SD_CONF_BSET_LUN_RESET_ENABLED,
643 		&maserati_properties },
644 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
645 		SD_CONF_BSET_NRR_COUNT|
646 		SD_CONF_BSET_BSY_RETRY_COUNT|
647 		SD_CONF_BSET_RST_RETRIES|
648 		SD_CONF_BSET_MIN_THROTTLE|
649 		SD_CONF_BSET_DISKSORT_DISABLED|
650 		SD_CONF_BSET_LUN_RESET_ENABLED,
651 		&pirus_properties },
652 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
653 		SD_CONF_BSET_NRR_COUNT|
654 		SD_CONF_BSET_BSY_RETRY_COUNT|
655 		SD_CONF_BSET_RST_RETRIES|
656 		SD_CONF_BSET_MIN_THROTTLE|
657 		SD_CONF_BSET_DISKSORT_DISABLED|
658 		SD_CONF_BSET_LUN_RESET_ENABLED,
659 		&pirus_properties },
660 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
661 		SD_CONF_BSET_NRR_COUNT|
662 		SD_CONF_BSET_BSY_RETRY_COUNT|
663 		SD_CONF_BSET_RST_RETRIES|
664 		SD_CONF_BSET_MIN_THROTTLE|
665 		SD_CONF_BSET_DISKSORT_DISABLED|
666 		SD_CONF_BSET_LUN_RESET_ENABLED,
667 		&pirus_properties },
668 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
669 		SD_CONF_BSET_NRR_COUNT|
670 		SD_CONF_BSET_BSY_RETRY_COUNT|
671 		SD_CONF_BSET_RST_RETRIES|
672 		SD_CONF_BSET_MIN_THROTTLE|
673 		SD_CONF_BSET_DISKSORT_DISABLED|
674 		SD_CONF_BSET_LUN_RESET_ENABLED,
675 		&pirus_properties },
676 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
677 		SD_CONF_BSET_NRR_COUNT|
678 		SD_CONF_BSET_BSY_RETRY_COUNT|
679 		SD_CONF_BSET_RST_RETRIES|
680 		SD_CONF_BSET_MIN_THROTTLE|
681 		SD_CONF_BSET_DISKSORT_DISABLED|
682 		SD_CONF_BSET_LUN_RESET_ENABLED,
683 		&pirus_properties },
684 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
685 		SD_CONF_BSET_NRR_COUNT|
686 		SD_CONF_BSET_BSY_RETRY_COUNT|
687 		SD_CONF_BSET_RST_RETRIES|
688 		SD_CONF_BSET_MIN_THROTTLE|
689 		SD_CONF_BSET_DISKSORT_DISABLED|
690 		SD_CONF_BSET_LUN_RESET_ENABLED,
691 		&pirus_properties },
692 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
693 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
694 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
695 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
696 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
697 #endif /* fibre or NON-sparc platforms */
698 #if ((defined(__sparc) && !defined(__fibre)) ||\
699 	(defined(__i386) || defined(__amd64)))
700 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
701 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
702 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
703 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
704 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
705 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
706 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
707 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
708 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
709 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
710 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
711 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
712 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
713 	    &symbios_properties },
714 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
715 	    &lsi_properties_scsi },
716 #if defined(__i386) || defined(__amd64)
717 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
718 				    | SD_CONF_BSET_READSUB_BCD
719 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
720 				    | SD_CONF_BSET_NO_READ_HEADER
721 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
722 
723 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
724 				    | SD_CONF_BSET_READSUB_BCD
725 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
726 				    | SD_CONF_BSET_NO_READ_HEADER
727 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
728 #endif /* __i386 || __amd64 */
729 #endif /* sparc NON-fibre or NON-sparc platforms */
730 
731 #if (defined(SD_PROP_TST))
732 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
733 				| SD_CONF_BSET_CTYPE
734 				| SD_CONF_BSET_NRR_COUNT
735 				| SD_CONF_BSET_FAB_DEVID
736 				| SD_CONF_BSET_NOCACHE
737 				| SD_CONF_BSET_BSY_RETRY_COUNT
738 				| SD_CONF_BSET_PLAYMSF_BCD
739 				| SD_CONF_BSET_READSUB_BCD
740 				| SD_CONF_BSET_READ_TOC_TRK_BCD
741 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
742 				| SD_CONF_BSET_NO_READ_HEADER
743 				| SD_CONF_BSET_READ_CD_XD4
744 				| SD_CONF_BSET_RST_RETRIES
745 				| SD_CONF_BSET_RSV_REL_TIME
746 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
747 #endif
748 };
749 
750 static const int sd_disk_table_size =
751 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
752 
753 
754 
755 #define	SD_INTERCONNECT_PARALLEL	0
756 #define	SD_INTERCONNECT_FABRIC		1
757 #define	SD_INTERCONNECT_FIBRE		2
758 #define	SD_INTERCONNECT_SSA		3
759 #define	SD_INTERCONNECT_SATA		4
760 #define	SD_IS_PARALLEL_SCSI(un)		\
761 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
762 #define	SD_IS_SERIAL(un)		\
763 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
764 
765 /*
766  * Definitions used by device id registration routines
767  */
768 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
769 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
770 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
771 
772 static kmutex_t sd_sense_mutex = {0};
773 
774 /*
775  * Macros for updates of the driver state
776  */
777 #define	New_state(un, s)        \
778 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
779 #define	Restore_state(un)	\
780 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
781 
782 static struct sd_cdbinfo sd_cdbtab[] = {
783 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
784 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
785 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
786 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
787 };
788 
789 /*
790  * Specifies the number of seconds that must have elapsed since the last
791  * cmd. has completed for a device to be declared idle to the PM framework.
792  */
793 static int sd_pm_idletime = 1;
794 
795 /*
796  * Internal function prototypes
797  */
798 
799 #if (defined(__fibre))
800 /*
801  * These #defines are to avoid namespace collisions that occur because this
802  * code is currently used to compile two separate driver modules: sd and ssd.
803  * All function names need to be treated this way (even if declared static)
804  * in order to allow the debugger to resolve the names properly.
805  * It is anticipated that in the near future the ssd module will be obsoleted,
806  * at which time this ugliness should go away.
807  */
808 #define	sd_log_trace			ssd_log_trace
809 #define	sd_log_info			ssd_log_info
810 #define	sd_log_err			ssd_log_err
811 #define	sdprobe				ssdprobe
812 #define	sdinfo				ssdinfo
813 #define	sd_prop_op			ssd_prop_op
814 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
815 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
816 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
817 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
818 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
819 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
820 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
821 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
822 #define	sd_spin_up_unit			ssd_spin_up_unit
823 #define	sd_enable_descr_sense		ssd_enable_descr_sense
824 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
825 #define	sd_set_mmc_caps			ssd_set_mmc_caps
826 #define	sd_read_unit_properties		ssd_read_unit_properties
827 #define	sd_process_sdconf_file		ssd_process_sdconf_file
828 #define	sd_process_sdconf_table		ssd_process_sdconf_table
829 #define	sd_sdconf_id_match		ssd_sdconf_id_match
830 #define	sd_blank_cmp			ssd_blank_cmp
831 #define	sd_chk_vers1_data		ssd_chk_vers1_data
832 #define	sd_set_vers1_properties		ssd_set_vers1_properties
833 
834 #define	sd_get_physical_geometry	ssd_get_physical_geometry
835 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
836 #define	sd_update_block_info		ssd_update_block_info
837 #define	sd_register_devid		ssd_register_devid
838 #define	sd_get_devid			ssd_get_devid
839 #define	sd_create_devid			ssd_create_devid
840 #define	sd_write_deviceid		ssd_write_deviceid
841 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
842 #define	sd_setup_pm			ssd_setup_pm
843 #define	sd_create_pm_components		ssd_create_pm_components
844 #define	sd_ddi_suspend			ssd_ddi_suspend
845 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
846 #define	sd_ddi_resume			ssd_ddi_resume
847 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
848 #define	sdpower				ssdpower
849 #define	sdattach			ssdattach
850 #define	sddetach			ssddetach
851 #define	sd_unit_attach			ssd_unit_attach
852 #define	sd_unit_detach			ssd_unit_detach
853 #define	sd_set_unit_attributes		ssd_set_unit_attributes
854 #define	sd_create_errstats		ssd_create_errstats
855 #define	sd_set_errstats			ssd_set_errstats
856 #define	sd_set_pstats			ssd_set_pstats
857 #define	sddump				ssddump
858 #define	sd_scsi_poll			ssd_scsi_poll
859 #define	sd_send_polled_RQS		ssd_send_polled_RQS
860 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
861 #define	sd_init_event_callbacks		ssd_init_event_callbacks
862 #define	sd_event_callback		ssd_event_callback
863 #define	sd_cache_control		ssd_cache_control
864 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
865 #define	sd_make_device			ssd_make_device
866 #define	sdopen				ssdopen
867 #define	sdclose				ssdclose
868 #define	sd_ready_and_valid		ssd_ready_and_valid
869 #define	sdmin				ssdmin
870 #define	sdread				ssdread
871 #define	sdwrite				ssdwrite
872 #define	sdaread				ssdaread
873 #define	sdawrite			ssdawrite
874 #define	sdstrategy			ssdstrategy
875 #define	sdioctl				ssdioctl
876 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
877 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
878 #define	sd_checksum_iostart		ssd_checksum_iostart
879 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
880 #define	sd_pm_iostart			ssd_pm_iostart
881 #define	sd_core_iostart			ssd_core_iostart
882 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
883 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
884 #define	sd_checksum_iodone		ssd_checksum_iodone
885 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
886 #define	sd_pm_iodone			ssd_pm_iodone
887 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
888 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
889 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
890 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
891 #define	sd_buf_iodone			ssd_buf_iodone
892 #define	sd_uscsi_strategy		ssd_uscsi_strategy
893 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
894 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
895 #define	sd_uscsi_iodone			ssd_uscsi_iodone
896 #define	sd_xbuf_strategy		ssd_xbuf_strategy
897 #define	sd_xbuf_init			ssd_xbuf_init
898 #define	sd_pm_entry			ssd_pm_entry
899 #define	sd_pm_exit			ssd_pm_exit
900 
901 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
902 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
903 
904 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
905 #define	sdintr				ssdintr
906 #define	sd_start_cmds			ssd_start_cmds
907 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
908 #define	sd_bioclone_alloc		ssd_bioclone_alloc
909 #define	sd_bioclone_free		ssd_bioclone_free
910 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
911 #define	sd_shadow_buf_free		ssd_shadow_buf_free
912 #define	sd_print_transport_rejected_message	\
913 					ssd_print_transport_rejected_message
914 #define	sd_retry_command		ssd_retry_command
915 #define	sd_set_retry_bp			ssd_set_retry_bp
916 #define	sd_send_request_sense_command	ssd_send_request_sense_command
917 #define	sd_start_retry_command		ssd_start_retry_command
918 #define	sd_start_direct_priority_command	\
919 					ssd_start_direct_priority_command
920 #define	sd_return_failed_command	ssd_return_failed_command
921 #define	sd_return_failed_command_no_restart	\
922 					ssd_return_failed_command_no_restart
923 #define	sd_return_command		ssd_return_command
924 #define	sd_sync_with_callback		ssd_sync_with_callback
925 #define	sdrunout			ssdrunout
926 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
927 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
928 #define	sd_reduce_throttle		ssd_reduce_throttle
929 #define	sd_restore_throttle		ssd_restore_throttle
930 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
931 #define	sd_init_cdb_limits		ssd_init_cdb_limits
932 #define	sd_pkt_status_good		ssd_pkt_status_good
933 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
934 #define	sd_pkt_status_busy		ssd_pkt_status_busy
935 #define	sd_pkt_status_reservation_conflict	\
936 					ssd_pkt_status_reservation_conflict
937 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
938 #define	sd_handle_request_sense		ssd_handle_request_sense
939 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
940 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
941 #define	sd_validate_sense_data		ssd_validate_sense_data
942 #define	sd_decode_sense			ssd_decode_sense
943 #define	sd_print_sense_msg		ssd_print_sense_msg
944 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
945 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
946 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
947 #define	sd_sense_key_medium_or_hardware_error	\
948 					ssd_sense_key_medium_or_hardware_error
949 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
950 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
951 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
952 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
953 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
954 #define	sd_sense_key_default		ssd_sense_key_default
955 #define	sd_print_retry_msg		ssd_print_retry_msg
956 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
957 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
958 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
959 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
960 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
961 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
962 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
963 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
964 #define	sd_pkt_reason_default		ssd_pkt_reason_default
965 #define	sd_reset_target			ssd_reset_target
966 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
967 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
968 #define	sd_taskq_create			ssd_taskq_create
969 #define	sd_taskq_delete			ssd_taskq_delete
970 #define	sd_media_change_task		ssd_media_change_task
971 #define	sd_handle_mchange		ssd_handle_mchange
972 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
973 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
974 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
975 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
976 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
977 					sd_send_scsi_feature_GET_CONFIGURATION
978 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
979 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
980 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
981 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
982 					ssd_send_scsi_PERSISTENT_RESERVE_IN
983 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
984 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
985 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
986 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
987 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
988 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
989 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
990 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
991 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
992 #define	sd_alloc_rqs			ssd_alloc_rqs
993 #define	sd_free_rqs			ssd_free_rqs
994 #define	sd_dump_memory			ssd_dump_memory
995 #define	sd_get_media_info		ssd_get_media_info
996 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
997 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
998 #define	sd_setup_next_xfer		ssd_setup_next_xfer
999 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1000 #define	sd_check_mhd			ssd_check_mhd
1001 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1002 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1003 #define	sd_sname			ssd_sname
1004 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1005 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1006 #define	sd_take_ownership		ssd_take_ownership
1007 #define	sd_reserve_release		ssd_reserve_release
1008 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1009 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1010 #define	sd_persistent_reservation_in_read_keys	\
1011 					ssd_persistent_reservation_in_read_keys
1012 #define	sd_persistent_reservation_in_read_resv	\
1013 					ssd_persistent_reservation_in_read_resv
1014 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1015 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1016 #define	sd_mhdioc_release		ssd_mhdioc_release
1017 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1018 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1019 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1020 #define	sr_change_blkmode		ssr_change_blkmode
1021 #define	sr_change_speed			ssr_change_speed
1022 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1023 #define	sr_pause_resume			ssr_pause_resume
1024 #define	sr_play_msf			ssr_play_msf
1025 #define	sr_play_trkind			ssr_play_trkind
1026 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1027 #define	sr_read_subchannel		ssr_read_subchannel
1028 #define	sr_read_tocentry		ssr_read_tocentry
1029 #define	sr_read_tochdr			ssr_read_tochdr
1030 #define	sr_read_cdda			ssr_read_cdda
1031 #define	sr_read_cdxa			ssr_read_cdxa
1032 #define	sr_read_mode1			ssr_read_mode1
1033 #define	sr_read_mode2			ssr_read_mode2
1034 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1035 #define	sr_sector_mode			ssr_sector_mode
1036 #define	sr_eject			ssr_eject
1037 #define	sr_ejected			ssr_ejected
1038 #define	sr_check_wp			ssr_check_wp
1039 #define	sd_check_media			ssd_check_media
1040 #define	sd_media_watch_cb		ssd_media_watch_cb
1041 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1042 #define	sr_volume_ctrl			ssr_volume_ctrl
1043 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1044 #define	sd_log_page_supported		ssd_log_page_supported
1045 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1046 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1047 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1048 #define	sd_range_lock			ssd_range_lock
1049 #define	sd_get_range			ssd_get_range
1050 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1051 #define	sd_range_unlock			ssd_range_unlock
1052 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1053 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1054 
1055 #define	sd_iostart_chain		ssd_iostart_chain
1056 #define	sd_iodone_chain			ssd_iodone_chain
1057 #define	sd_initpkt_map			ssd_initpkt_map
1058 #define	sd_destroypkt_map		ssd_destroypkt_map
1059 #define	sd_chain_type_map		ssd_chain_type_map
1060 #define	sd_chain_index_map		ssd_chain_index_map
1061 
1062 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1063 #define	sd_failfast_flushq		ssd_failfast_flushq
1064 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1065 
1066 #define	sd_is_lsi			ssd_is_lsi
1067 #define	sd_tg_rdwr			ssd_tg_rdwr
1068 #define	sd_tg_getinfo			ssd_tg_getinfo
1069 
1070 #endif	/* #if (defined(__fibre)) */
1071 
1072 
1073 int _init(void);
1074 int _fini(void);
1075 int _info(struct modinfo *modinfop);
1076 
1077 /*PRINTFLIKE3*/
1078 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1079 /*PRINTFLIKE3*/
1080 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1081 /*PRINTFLIKE3*/
1082 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1083 
1084 static int sdprobe(dev_info_t *devi);
1085 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1086     void **result);
1087 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1088     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1089 
1090 /*
1091  * Smart probe for parallel scsi
1092  */
1093 static void sd_scsi_probe_cache_init(void);
1094 static void sd_scsi_probe_cache_fini(void);
1095 static void sd_scsi_clear_probe_cache(void);
1096 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1097 
1098 /*
1099  * Attached luns on target for parallel scsi
1100  */
1101 static void sd_scsi_target_lun_init(void);
1102 static void sd_scsi_target_lun_fini(void);
1103 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1104 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1105 
1106 static int	sd_spin_up_unit(struct sd_lun *un);
1107 #ifdef _LP64
1108 static void	sd_enable_descr_sense(struct sd_lun *un);
1109 static void	sd_reenable_dsense_task(void *arg);
1110 #endif /* _LP64 */
1111 
1112 static void	sd_set_mmc_caps(struct sd_lun *un);
1113 
1114 static void sd_read_unit_properties(struct sd_lun *un);
1115 static int  sd_process_sdconf_file(struct sd_lun *un);
1116 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1117     int *data_list, sd_tunables *values);
1118 static void sd_process_sdconf_table(struct sd_lun *un);
1119 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1120 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1121 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1122 	int list_len, char *dataname_ptr);
1123 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1124     sd_tunables *prop_list);
1125 
1126 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1127     int reservation_flag);
1128 static int  sd_get_devid(struct sd_lun *un);
1129 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1130 static int  sd_write_deviceid(struct sd_lun *un);
1131 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1132 static int  sd_check_vpd_page_support(struct sd_lun *un);
1133 
1134 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1135 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1136 
1137 static int  sd_ddi_suspend(dev_info_t *devi);
1138 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1139 static int  sd_ddi_resume(dev_info_t *devi);
1140 static int  sd_ddi_pm_resume(struct sd_lun *un);
1141 static int  sdpower(dev_info_t *devi, int component, int level);
1142 
1143 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1144 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1145 static int  sd_unit_attach(dev_info_t *devi);
1146 static int  sd_unit_detach(dev_info_t *devi);
1147 
1148 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1149 static void sd_create_errstats(struct sd_lun *un, int instance);
1150 static void sd_set_errstats(struct sd_lun *un);
1151 static void sd_set_pstats(struct sd_lun *un);
1152 
1153 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1154 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1155 static int  sd_send_polled_RQS(struct sd_lun *un);
1156 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1157 
1158 #if (defined(__fibre))
1159 /*
1160  * Event callbacks (photon)
1161  */
1162 static void sd_init_event_callbacks(struct sd_lun *un);
1163 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1164 #endif
1165 
1166 /*
1167  * Defines for sd_cache_control
1168  */
1169 
1170 #define	SD_CACHE_ENABLE		1
1171 #define	SD_CACHE_DISABLE	0
1172 #define	SD_CACHE_NOCHANGE	-1
1173 
1174 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1175 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1176 static dev_t sd_make_device(dev_info_t *devi);
1177 
1178 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1179 	uint64_t capacity);
1180 
1181 /*
1182  * Driver entry point functions.
1183  */
1184 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1185 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1186 static int  sd_ready_and_valid(struct sd_lun *un);
1187 
1188 static void sdmin(struct buf *bp);
1189 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1190 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1191 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1192 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1193 
1194 static int sdstrategy(struct buf *bp);
1195 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1196 
1197 /*
1198  * Function prototypes for layering functions in the iostart chain.
1199  */
1200 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1201 	struct buf *bp);
1202 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1203 	struct buf *bp);
1204 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1205 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1206 	struct buf *bp);
1207 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1208 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1209 
1210 /*
1211  * Function prototypes for layering functions in the iodone chain.
1212  */
1213 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1214 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1215 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1216 	struct buf *bp);
1217 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1218 	struct buf *bp);
1219 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1220 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1221 	struct buf *bp);
1222 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1223 
1224 /*
1225  * Prototypes for functions to support buf(9S) based IO.
1226  */
1227 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1228 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1229 static void sd_destroypkt_for_buf(struct buf *);
1230 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1231 	struct buf *bp, int flags,
1232 	int (*callback)(caddr_t), caddr_t callback_arg,
1233 	diskaddr_t lba, uint32_t blockcount);
1234 #if defined(__i386) || defined(__amd64)
1235 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1236 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1237 #endif /* defined(__i386) || defined(__amd64) */
1238 
1239 /*
1240  * Prototypes for functions to support USCSI IO.
1241  */
1242 static int sd_uscsi_strategy(struct buf *bp);
1243 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1244 static void sd_destroypkt_for_uscsi(struct buf *);
1245 
1246 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1247 	uchar_t chain_type, void *pktinfop);
1248 
1249 static int  sd_pm_entry(struct sd_lun *un);
1250 static void sd_pm_exit(struct sd_lun *un);
1251 
1252 static void sd_pm_idletimeout_handler(void *arg);
1253 
1254 /*
1255  * sd_core internal functions (used at the sd_core_io layer).
1256  */
1257 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1258 static void sdintr(struct scsi_pkt *pktp);
1259 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1260 
1261 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1262 	enum uio_seg dataspace, int path_flag);
1263 
1264 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1265 	daddr_t blkno, int (*func)(struct buf *));
1266 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1267 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1268 static void sd_bioclone_free(struct buf *bp);
1269 static void sd_shadow_buf_free(struct buf *bp);
1270 
1271 static void sd_print_transport_rejected_message(struct sd_lun *un,
1272 	struct sd_xbuf *xp, int code);
1273 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1274     void *arg, int code);
1275 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1276     void *arg, int code);
1277 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1278     void *arg, int code);
1279 
1280 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1281 	int retry_check_flag,
1282 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1283 		int c),
1284 	void *user_arg, int failure_code,  clock_t retry_delay,
1285 	void (*statp)(kstat_io_t *));
1286 
1287 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1288 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1289 
1290 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1291 	struct scsi_pkt *pktp);
1292 static void sd_start_retry_command(void *arg);
1293 static void sd_start_direct_priority_command(void *arg);
1294 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1295 	int errcode);
1296 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1297 	struct buf *bp, int errcode);
1298 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1299 static void sd_sync_with_callback(struct sd_lun *un);
1300 static int sdrunout(caddr_t arg);
1301 
1302 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1303 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1304 
1305 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1306 static void sd_restore_throttle(void *arg);
1307 
1308 static void sd_init_cdb_limits(struct sd_lun *un);
1309 
1310 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1311 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1312 
1313 /*
1314  * Error handling functions
1315  */
1316 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1317 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1318 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1319 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1320 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1321 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1322 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1323 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1324 
1325 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1326 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1327 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1328 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1329 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1330 	struct sd_xbuf *xp);
1331 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1332 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1333 
1334 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1335 	void *arg, int code);
1336 
1337 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1338 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1339 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1340 	uint8_t *sense_datap,
1341 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1342 static void sd_sense_key_not_ready(struct sd_lun *un,
1343 	uint8_t *sense_datap,
1344 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1345 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1346 	uint8_t *sense_datap,
1347 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1348 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1349 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1350 static void sd_sense_key_unit_attention(struct sd_lun *un,
1351 	uint8_t *sense_datap,
1352 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1354 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1355 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1356 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1357 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1358 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1359 static void sd_sense_key_default(struct sd_lun *un,
1360 	uint8_t *sense_datap,
1361 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1362 
1363 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1364 	void *arg, int flag);
1365 
1366 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1367 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1368 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1369 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1370 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1371 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1372 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1373 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1374 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1375 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1376 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1377 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1378 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1379 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1380 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1381 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1382 
1383 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1384 
1385 static void sd_start_stop_unit_callback(void *arg);
1386 static void sd_start_stop_unit_task(void *arg);
1387 
1388 static void sd_taskq_create(void);
1389 static void sd_taskq_delete(void);
1390 static void sd_media_change_task(void *arg);
1391 
1392 static int sd_handle_mchange(struct sd_lun *un);
1393 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1394 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1395 	uint32_t *lbap, int path_flag);
1396 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1397 	uint32_t *lbap, int path_flag);
1398 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1399 	int path_flag);
1400 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1401 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1402 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1403 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1404 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1405 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1406 	uchar_t usr_cmd, uchar_t *usr_bufp);
1407 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1408 	struct dk_callback *dkc);
1409 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1410 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1411 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1412 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1413 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1414 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1415 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1416 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1417 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1418 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1419 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1420 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1421 	size_t buflen, daddr_t start_block, int path_flag);
1422 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1423 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1424 	path_flag)
1425 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1426 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1427 	path_flag)
1428 
1429 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1430 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1431 	uint16_t param_ptr, int path_flag);
1432 
1433 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1434 static void sd_free_rqs(struct sd_lun *un);
1435 
1436 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1437 	uchar_t *data, int len, int fmt);
1438 static void sd_panic_for_res_conflict(struct sd_lun *un);
1439 
1440 /*
1441  * Disk Ioctl Function Prototypes
1442  */
1443 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1444 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1445 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1446 
1447 /*
1448  * Multi-host Ioctl Prototypes
1449  */
1450 static int sd_check_mhd(dev_t dev, int interval);
1451 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1452 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1453 static char *sd_sname(uchar_t status);
1454 static void sd_mhd_resvd_recover(void *arg);
1455 static void sd_resv_reclaim_thread();
1456 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1457 static int sd_reserve_release(dev_t dev, int cmd);
1458 static void sd_rmv_resv_reclaim_req(dev_t dev);
1459 static void sd_mhd_reset_notify_cb(caddr_t arg);
1460 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1461 	mhioc_inkeys_t *usrp, int flag);
1462 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1463 	mhioc_inresvs_t *usrp, int flag);
1464 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1465 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1466 static int sd_mhdioc_release(dev_t dev);
1467 static int sd_mhdioc_register_devid(dev_t dev);
1468 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1469 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1470 
1471 /*
1472  * SCSI removable prototypes
1473  */
1474 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1475 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1476 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1477 static int sr_pause_resume(dev_t dev, int mode);
1478 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1479 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1480 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1481 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1482 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1483 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1484 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1485 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1486 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1487 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1488 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1489 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1490 static int sr_eject(dev_t dev);
1491 static void sr_ejected(register struct sd_lun *un);
1492 static int sr_check_wp(dev_t dev);
1493 static int sd_check_media(dev_t dev, enum dkio_state state);
1494 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1495 static void sd_delayed_cv_broadcast(void *arg);
1496 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1497 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1498 
1499 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1500 
1501 /*
1502  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1503  */
1504 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1505 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1506 static void sd_wm_cache_destructor(void *wm, void *un);
1507 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1508 	daddr_t endb, ushort_t typ);
1509 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1510 	daddr_t endb);
1511 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1512 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1513 static void sd_read_modify_write_task(void * arg);
1514 static int
1515 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1516 	struct buf **bpp);
1517 
1518 
1519 /*
1520  * Function prototypes for failfast support.
1521  */
1522 static void sd_failfast_flushq(struct sd_lun *un);
1523 static int sd_failfast_flushq_callback(struct buf *bp);
1524 
1525 /*
1526  * Function prototypes to check for lsi devices
1527  */
1528 static void sd_is_lsi(struct sd_lun *un);
1529 
1530 /*
1531  * Function prototypes for x86 support
1532  */
1533 #if defined(__i386) || defined(__amd64)
1534 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1535 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1536 #endif
1537 
1538 
1539 /* Function prototypes for cmlb */
1540 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1541     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1542 
1543 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1544 
1545 /*
1546  * Constants for failfast support:
1547  *
1548  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1549  * failfast processing being performed.
1550  *
1551  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1552  * failfast processing on all bufs with B_FAILFAST set.
1553  */
1554 
1555 #define	SD_FAILFAST_INACTIVE		0
1556 #define	SD_FAILFAST_ACTIVE		1
1557 
1558 /*
1559  * Bitmask to control behavior of buf(9S) flushes when a transition to
1560  * the failfast state occurs. Optional bits include:
1561  *
1562  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1563  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1564  * be flushed.
1565  *
1566  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1567  * driver, in addition to the regular wait queue. This includes the xbuf
1568  * queues. When clear, only the driver's wait queue will be flushed.
1569  */
1570 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1571 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1572 
1573 /*
1574  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1575  * to flush all queues within the driver.
1576  */
1577 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1578 
1579 
1580 /*
1581  * SD Testing Fault Injection
1582  */
1583 #ifdef SD_FAULT_INJECTION
1584 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1585 static void sd_faultinjection(struct scsi_pkt *pktp);
1586 static void sd_injection_log(char *buf, struct sd_lun *un);
1587 #endif
1588 
1589 /*
1590  * Device driver ops vector
1591  */
1592 static struct cb_ops sd_cb_ops = {
1593 	sdopen,			/* open */
1594 	sdclose,		/* close */
1595 	sdstrategy,		/* strategy */
1596 	nodev,			/* print */
1597 	sddump,			/* dump */
1598 	sdread,			/* read */
1599 	sdwrite,		/* write */
1600 	sdioctl,		/* ioctl */
1601 	nodev,			/* devmap */
1602 	nodev,			/* mmap */
1603 	nodev,			/* segmap */
1604 	nochpoll,		/* poll */
1605 	sd_prop_op,		/* cb_prop_op */
1606 	0,			/* streamtab  */
1607 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1608 	CB_REV,			/* cb_rev */
1609 	sdaread, 		/* async I/O read entry point */
1610 	sdawrite		/* async I/O write entry point */
1611 };
1612 
1613 static struct dev_ops sd_ops = {
1614 	DEVO_REV,		/* devo_rev, */
1615 	0,			/* refcnt  */
1616 	sdinfo,			/* info */
1617 	nulldev,		/* identify */
1618 	sdprobe,		/* probe */
1619 	sdattach,		/* attach */
1620 	sddetach,		/* detach */
1621 	nodev,			/* reset */
1622 	&sd_cb_ops,		/* driver operations */
1623 	NULL,			/* bus operations */
1624 	sdpower			/* power */
1625 };
1626 
1627 
1628 /*
1629  * This is the loadable module wrapper.
1630  */
1631 #include <sys/modctl.h>
1632 
1633 static struct modldrv modldrv = {
1634 	&mod_driverops,		/* Type of module. This one is a driver */
1635 	SD_MODULE_NAME,		/* Module name. */
1636 	&sd_ops			/* driver ops */
1637 };
1638 
1639 
1640 static struct modlinkage modlinkage = {
1641 	MODREV_1,
1642 	&modldrv,
1643 	NULL
1644 };
1645 
1646 static cmlb_tg_ops_t sd_tgops = {
1647 	TG_DK_OPS_VERSION_1,
1648 	sd_tg_rdwr,
1649 	sd_tg_getinfo
1650 	};
1651 
1652 static struct scsi_asq_key_strings sd_additional_codes[] = {
1653 	0x81, 0, "Logical Unit is Reserved",
1654 	0x85, 0, "Audio Address Not Valid",
1655 	0xb6, 0, "Media Load Mechanism Failed",
1656 	0xB9, 0, "Audio Play Operation Aborted",
1657 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1658 	0x53, 2, "Medium removal prevented",
1659 	0x6f, 0, "Authentication failed during key exchange",
1660 	0x6f, 1, "Key not present",
1661 	0x6f, 2, "Key not established",
1662 	0x6f, 3, "Read without proper authentication",
1663 	0x6f, 4, "Mismatched region to this logical unit",
1664 	0x6f, 5, "Region reset count error",
1665 	0xffff, 0x0, NULL
1666 };
1667 
1668 
1669 /*
1670  * Struct for passing printing information for sense data messages
1671  */
1672 struct sd_sense_info {
1673 	int	ssi_severity;
1674 	int	ssi_pfa_flag;
1675 };
1676 
1677 /*
1678  * Table of function pointers for iostart-side routines. Separate "chains"
1679  * of layered function calls are formed by placing the function pointers
1680  * sequentially in the desired order. Functions are called according to an
1681  * incrementing table index ordering. The last function in each chain must
1682  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1683  * in the sd_iodone_chain[] array.
1684  *
1685  * Note: It may seem more natural to organize both the iostart and iodone
1686  * functions together, into an array of structures (or some similar
1687  * organization) with a common index, rather than two separate arrays which
1688  * must be maintained in synchronization. The purpose of this division is
1689  * to achieve improved performance: individual arrays allows for more
1690  * effective cache line utilization on certain platforms.
1691  */
1692 
1693 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1694 
1695 
1696 static sd_chain_t sd_iostart_chain[] = {
1697 
1698 	/* Chain for buf IO for disk drive targets (PM enabled) */
1699 	sd_mapblockaddr_iostart,	/* Index: 0 */
1700 	sd_pm_iostart,			/* Index: 1 */
1701 	sd_core_iostart,		/* Index: 2 */
1702 
1703 	/* Chain for buf IO for disk drive targets (PM disabled) */
1704 	sd_mapblockaddr_iostart,	/* Index: 3 */
1705 	sd_core_iostart,		/* Index: 4 */
1706 
1707 	/* Chain for buf IO for removable-media targets (PM enabled) */
1708 	sd_mapblockaddr_iostart,	/* Index: 5 */
1709 	sd_mapblocksize_iostart,	/* Index: 6 */
1710 	sd_pm_iostart,			/* Index: 7 */
1711 	sd_core_iostart,		/* Index: 8 */
1712 
1713 	/* Chain for buf IO for removable-media targets (PM disabled) */
1714 	sd_mapblockaddr_iostart,	/* Index: 9 */
1715 	sd_mapblocksize_iostart,	/* Index: 10 */
1716 	sd_core_iostart,		/* Index: 11 */
1717 
1718 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1719 	sd_mapblockaddr_iostart,	/* Index: 12 */
1720 	sd_checksum_iostart,		/* Index: 13 */
1721 	sd_pm_iostart,			/* Index: 14 */
1722 	sd_core_iostart,		/* Index: 15 */
1723 
1724 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1725 	sd_mapblockaddr_iostart,	/* Index: 16 */
1726 	sd_checksum_iostart,		/* Index: 17 */
1727 	sd_core_iostart,		/* Index: 18 */
1728 
1729 	/* Chain for USCSI commands (all targets) */
1730 	sd_pm_iostart,			/* Index: 19 */
1731 	sd_core_iostart,		/* Index: 20 */
1732 
1733 	/* Chain for checksumming USCSI commands (all targets) */
1734 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1735 	sd_pm_iostart,			/* Index: 22 */
1736 	sd_core_iostart,		/* Index: 23 */
1737 
1738 	/* Chain for "direct" USCSI commands (all targets) */
1739 	sd_core_iostart,		/* Index: 24 */
1740 
1741 	/* Chain for "direct priority" USCSI commands (all targets) */
1742 	sd_core_iostart,		/* Index: 25 */
1743 };
1744 
1745 /*
1746  * Macros to locate the first function of each iostart chain in the
1747  * sd_iostart_chain[] array. These are located by the index in the array.
1748  */
1749 #define	SD_CHAIN_DISK_IOSTART			0
1750 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1751 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1752 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1753 #define	SD_CHAIN_CHKSUM_IOSTART			12
1754 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1755 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1756 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1757 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1758 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1759 
1760 
1761 /*
1762  * Table of function pointers for the iodone-side routines for the driver-
1763  * internal layering mechanism.  The calling sequence for iodone routines
1764  * uses a decrementing table index, so the last routine called in a chain
1765  * must be at the lowest array index location for that chain.  The last
1766  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1767  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1768  * of the functions in an iodone side chain must correspond to the ordering
1769  * of the iostart routines for that chain.  Note that there is no iodone
1770  * side routine that corresponds to sd_core_iostart(), so there is no
1771  * entry in the table for this.
1772  */
1773 
1774 static sd_chain_t sd_iodone_chain[] = {
1775 
1776 	/* Chain for buf IO for disk drive targets (PM enabled) */
1777 	sd_buf_iodone,			/* Index: 0 */
1778 	sd_mapblockaddr_iodone,		/* Index: 1 */
1779 	sd_pm_iodone,			/* Index: 2 */
1780 
1781 	/* Chain for buf IO for disk drive targets (PM disabled) */
1782 	sd_buf_iodone,			/* Index: 3 */
1783 	sd_mapblockaddr_iodone,		/* Index: 4 */
1784 
1785 	/* Chain for buf IO for removable-media targets (PM enabled) */
1786 	sd_buf_iodone,			/* Index: 5 */
1787 	sd_mapblockaddr_iodone,		/* Index: 6 */
1788 	sd_mapblocksize_iodone,		/* Index: 7 */
1789 	sd_pm_iodone,			/* Index: 8 */
1790 
1791 	/* Chain for buf IO for removable-media targets (PM disabled) */
1792 	sd_buf_iodone,			/* Index: 9 */
1793 	sd_mapblockaddr_iodone,		/* Index: 10 */
1794 	sd_mapblocksize_iodone,		/* Index: 11 */
1795 
1796 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1797 	sd_buf_iodone,			/* Index: 12 */
1798 	sd_mapblockaddr_iodone,		/* Index: 13 */
1799 	sd_checksum_iodone,		/* Index: 14 */
1800 	sd_pm_iodone,			/* Index: 15 */
1801 
1802 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1803 	sd_buf_iodone,			/* Index: 16 */
1804 	sd_mapblockaddr_iodone,		/* Index: 17 */
1805 	sd_checksum_iodone,		/* Index: 18 */
1806 
1807 	/* Chain for USCSI commands (non-checksum targets) */
1808 	sd_uscsi_iodone,		/* Index: 19 */
1809 	sd_pm_iodone,			/* Index: 20 */
1810 
1811 	/* Chain for USCSI commands (checksum targets) */
1812 	sd_uscsi_iodone,		/* Index: 21 */
1813 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1814 	sd_pm_iodone,			/* Index: 22 */
1815 
1816 	/* Chain for "direct" USCSI commands (all targets) */
1817 	sd_uscsi_iodone,		/* Index: 24 */
1818 
1819 	/* Chain for "direct priority" USCSI commands (all targets) */
1820 	sd_uscsi_iodone,		/* Index: 25 */
1821 };
1822 
1823 
1824 /*
1825  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1826  * each iodone-side chain. These are located by the array index, but as the
1827  * iodone side functions are called in a decrementing-index order, the
1828  * highest index number in each chain must be specified (as these correspond
1829  * to the first function in the iodone chain that will be called by the core
1830  * at IO completion time).
1831  */
1832 
1833 #define	SD_CHAIN_DISK_IODONE			2
1834 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1835 #define	SD_CHAIN_RMMEDIA_IODONE			8
1836 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1837 #define	SD_CHAIN_CHKSUM_IODONE			15
1838 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1839 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1840 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1841 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1842 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1843 
1844 
1845 
1846 
1847 /*
1848  * Array to map a layering chain index to the appropriate initpkt routine.
1849  * The redundant entries are present so that the index used for accessing
1850  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1851  * with this table as well.
1852  */
1853 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1854 
1855 static sd_initpkt_t	sd_initpkt_map[] = {
1856 
1857 	/* Chain for buf IO for disk drive targets (PM enabled) */
1858 	sd_initpkt_for_buf,		/* Index: 0 */
1859 	sd_initpkt_for_buf,		/* Index: 1 */
1860 	sd_initpkt_for_buf,		/* Index: 2 */
1861 
1862 	/* Chain for buf IO for disk drive targets (PM disabled) */
1863 	sd_initpkt_for_buf,		/* Index: 3 */
1864 	sd_initpkt_for_buf,		/* Index: 4 */
1865 
1866 	/* Chain for buf IO for removable-media targets (PM enabled) */
1867 	sd_initpkt_for_buf,		/* Index: 5 */
1868 	sd_initpkt_for_buf,		/* Index: 6 */
1869 	sd_initpkt_for_buf,		/* Index: 7 */
1870 	sd_initpkt_for_buf,		/* Index: 8 */
1871 
1872 	/* Chain for buf IO for removable-media targets (PM disabled) */
1873 	sd_initpkt_for_buf,		/* Index: 9 */
1874 	sd_initpkt_for_buf,		/* Index: 10 */
1875 	sd_initpkt_for_buf,		/* Index: 11 */
1876 
1877 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1878 	sd_initpkt_for_buf,		/* Index: 12 */
1879 	sd_initpkt_for_buf,		/* Index: 13 */
1880 	sd_initpkt_for_buf,		/* Index: 14 */
1881 	sd_initpkt_for_buf,		/* Index: 15 */
1882 
1883 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1884 	sd_initpkt_for_buf,		/* Index: 16 */
1885 	sd_initpkt_for_buf,		/* Index: 17 */
1886 	sd_initpkt_for_buf,		/* Index: 18 */
1887 
1888 	/* Chain for USCSI commands (non-checksum targets) */
1889 	sd_initpkt_for_uscsi,		/* Index: 19 */
1890 	sd_initpkt_for_uscsi,		/* Index: 20 */
1891 
1892 	/* Chain for USCSI commands (checksum targets) */
1893 	sd_initpkt_for_uscsi,		/* Index: 21 */
1894 	sd_initpkt_for_uscsi,		/* Index: 22 */
1895 	sd_initpkt_for_uscsi,		/* Index: 22 */
1896 
1897 	/* Chain for "direct" USCSI commands (all targets) */
1898 	sd_initpkt_for_uscsi,		/* Index: 24 */
1899 
1900 	/* Chain for "direct priority" USCSI commands (all targets) */
1901 	sd_initpkt_for_uscsi,		/* Index: 25 */
1902 
1903 };
1904 
1905 
1906 /*
1907  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1908  * The redundant entries are present so that the index used for accessing
1909  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1910  * with this table as well.
1911  */
1912 typedef void (*sd_destroypkt_t)(struct buf *);
1913 
1914 static sd_destroypkt_t	sd_destroypkt_map[] = {
1915 
1916 	/* Chain for buf IO for disk drive targets (PM enabled) */
1917 	sd_destroypkt_for_buf,		/* Index: 0 */
1918 	sd_destroypkt_for_buf,		/* Index: 1 */
1919 	sd_destroypkt_for_buf,		/* Index: 2 */
1920 
1921 	/* Chain for buf IO for disk drive targets (PM disabled) */
1922 	sd_destroypkt_for_buf,		/* Index: 3 */
1923 	sd_destroypkt_for_buf,		/* Index: 4 */
1924 
1925 	/* Chain for buf IO for removable-media targets (PM enabled) */
1926 	sd_destroypkt_for_buf,		/* Index: 5 */
1927 	sd_destroypkt_for_buf,		/* Index: 6 */
1928 	sd_destroypkt_for_buf,		/* Index: 7 */
1929 	sd_destroypkt_for_buf,		/* Index: 8 */
1930 
1931 	/* Chain for buf IO for removable-media targets (PM disabled) */
1932 	sd_destroypkt_for_buf,		/* Index: 9 */
1933 	sd_destroypkt_for_buf,		/* Index: 10 */
1934 	sd_destroypkt_for_buf,		/* Index: 11 */
1935 
1936 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1937 	sd_destroypkt_for_buf,		/* Index: 12 */
1938 	sd_destroypkt_for_buf,		/* Index: 13 */
1939 	sd_destroypkt_for_buf,		/* Index: 14 */
1940 	sd_destroypkt_for_buf,		/* Index: 15 */
1941 
1942 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1943 	sd_destroypkt_for_buf,		/* Index: 16 */
1944 	sd_destroypkt_for_buf,		/* Index: 17 */
1945 	sd_destroypkt_for_buf,		/* Index: 18 */
1946 
1947 	/* Chain for USCSI commands (non-checksum targets) */
1948 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1949 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1950 
1951 	/* Chain for USCSI commands (checksum targets) */
1952 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1953 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1954 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1955 
1956 	/* Chain for "direct" USCSI commands (all targets) */
1957 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1958 
1959 	/* Chain for "direct priority" USCSI commands (all targets) */
1960 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1961 
1962 };
1963 
1964 
1965 
1966 /*
1967  * Array to map a layering chain index to the appropriate chain "type".
1968  * The chain type indicates a specific property/usage of the chain.
1969  * The redundant entries are present so that the index used for accessing
1970  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1971  * with this table as well.
1972  */
1973 
1974 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1975 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1976 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1977 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1978 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1979 						/* (for error recovery) */
1980 
1981 static int sd_chain_type_map[] = {
1982 
1983 	/* Chain for buf IO for disk drive targets (PM enabled) */
1984 	SD_CHAIN_BUFIO,			/* Index: 0 */
1985 	SD_CHAIN_BUFIO,			/* Index: 1 */
1986 	SD_CHAIN_BUFIO,			/* Index: 2 */
1987 
1988 	/* Chain for buf IO for disk drive targets (PM disabled) */
1989 	SD_CHAIN_BUFIO,			/* Index: 3 */
1990 	SD_CHAIN_BUFIO,			/* Index: 4 */
1991 
1992 	/* Chain for buf IO for removable-media targets (PM enabled) */
1993 	SD_CHAIN_BUFIO,			/* Index: 5 */
1994 	SD_CHAIN_BUFIO,			/* Index: 6 */
1995 	SD_CHAIN_BUFIO,			/* Index: 7 */
1996 	SD_CHAIN_BUFIO,			/* Index: 8 */
1997 
1998 	/* Chain for buf IO for removable-media targets (PM disabled) */
1999 	SD_CHAIN_BUFIO,			/* Index: 9 */
2000 	SD_CHAIN_BUFIO,			/* Index: 10 */
2001 	SD_CHAIN_BUFIO,			/* Index: 11 */
2002 
2003 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2004 	SD_CHAIN_BUFIO,			/* Index: 12 */
2005 	SD_CHAIN_BUFIO,			/* Index: 13 */
2006 	SD_CHAIN_BUFIO,			/* Index: 14 */
2007 	SD_CHAIN_BUFIO,			/* Index: 15 */
2008 
2009 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2010 	SD_CHAIN_BUFIO,			/* Index: 16 */
2011 	SD_CHAIN_BUFIO,			/* Index: 17 */
2012 	SD_CHAIN_BUFIO,			/* Index: 18 */
2013 
2014 	/* Chain for USCSI commands (non-checksum targets) */
2015 	SD_CHAIN_USCSI,			/* Index: 19 */
2016 	SD_CHAIN_USCSI,			/* Index: 20 */
2017 
2018 	/* Chain for USCSI commands (checksum targets) */
2019 	SD_CHAIN_USCSI,			/* Index: 21 */
2020 	SD_CHAIN_USCSI,			/* Index: 22 */
2021 	SD_CHAIN_USCSI,			/* Index: 22 */
2022 
2023 	/* Chain for "direct" USCSI commands (all targets) */
2024 	SD_CHAIN_DIRECT,		/* Index: 24 */
2025 
2026 	/* Chain for "direct priority" USCSI commands (all targets) */
2027 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2028 };
2029 
2030 
2031 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2032 #define	SD_IS_BUFIO(xp)			\
2033 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2034 
2035 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2036 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2037 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2038 
2039 
2040 
2041 /*
2042  * Struct, array, and macros to map a specific chain to the appropriate
2043  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2044  *
2045  * The sd_chain_index_map[] array is used at attach time to set the various
2046  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2047  * chain to be used with the instance. This allows different instances to use
2048  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2049  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2050  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2051  * dynamically & without the use of locking; and (2) a layer may update the
2052  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2053  * to allow for deferred processing of an IO within the same chain from a
2054  * different execution context.
2055  */
2056 
2057 struct sd_chain_index {
2058 	int	sci_iostart_index;
2059 	int	sci_iodone_index;
2060 };
2061 
2062 static struct sd_chain_index	sd_chain_index_map[] = {
2063 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2064 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2065 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2066 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2067 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2068 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2069 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2070 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2071 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2072 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2073 };
2074 
2075 
2076 /*
2077  * The following are indexes into the sd_chain_index_map[] array.
2078  */
2079 
2080 /* un->un_buf_chain_type must be set to one of these */
2081 #define	SD_CHAIN_INFO_DISK		0
2082 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2083 #define	SD_CHAIN_INFO_RMMEDIA		2
2084 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2085 #define	SD_CHAIN_INFO_CHKSUM		4
2086 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2087 
2088 /* un->un_uscsi_chain_type must be set to one of these */
2089 #define	SD_CHAIN_INFO_USCSI_CMD		6
2090 /* USCSI with PM disabled is the same as DIRECT */
2091 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2092 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2093 
2094 /* un->un_direct_chain_type must be set to one of these */
2095 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2096 
2097 /* un->un_priority_chain_type must be set to one of these */
2098 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2099 
2100 /* size for devid inquiries */
2101 #define	MAX_INQUIRY_SIZE		0xF0
2102 
2103 /*
2104  * Macros used by functions to pass a given buf(9S) struct along to the
2105  * next function in the layering chain for further processing.
2106  *
2107  * In the following macros, passing more than three arguments to the called
2108  * routines causes the optimizer for the SPARC compiler to stop doing tail
2109  * call elimination which results in significant performance degradation.
2110  */
2111 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2112 	((*(sd_iostart_chain[index]))(index, un, bp))
2113 
2114 #define	SD_BEGIN_IODONE(index, un, bp)	\
2115 	((*(sd_iodone_chain[index]))(index, un, bp))
2116 
2117 #define	SD_NEXT_IOSTART(index, un, bp)				\
2118 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2119 
2120 #define	SD_NEXT_IODONE(index, un, bp)				\
2121 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2122 
2123 /*
2124  *    Function: _init
2125  *
2126  * Description: This is the driver _init(9E) entry point.
2127  *
2128  * Return Code: Returns the value from mod_install(9F) or
2129  *		ddi_soft_state_init(9F) as appropriate.
2130  *
2131  *     Context: Called when driver module loaded.
2132  */
2133 
2134 int
2135 _init(void)
2136 {
2137 	int	err;
2138 
2139 	/* establish driver name from module name */
2140 	sd_label = mod_modname(&modlinkage);
2141 
2142 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2143 	    SD_MAXUNIT);
2144 
2145 	if (err != 0) {
2146 		return (err);
2147 	}
2148 
2149 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2150 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2151 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2152 
2153 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2154 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2155 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2156 
2157 	/*
2158 	 * it's ok to init here even for fibre device
2159 	 */
2160 	sd_scsi_probe_cache_init();
2161 
2162 	sd_scsi_target_lun_init();
2163 
2164 	/*
2165 	 * Creating taskq before mod_install ensures that all callers (threads)
2166 	 * that enter the module after a successfull mod_install encounter
2167 	 * a valid taskq.
2168 	 */
2169 	sd_taskq_create();
2170 
2171 	err = mod_install(&modlinkage);
2172 	if (err != 0) {
2173 		/* delete taskq if install fails */
2174 		sd_taskq_delete();
2175 
2176 		mutex_destroy(&sd_detach_mutex);
2177 		mutex_destroy(&sd_log_mutex);
2178 		mutex_destroy(&sd_label_mutex);
2179 
2180 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2181 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2182 		cv_destroy(&sd_tr.srq_inprocess_cv);
2183 
2184 		sd_scsi_probe_cache_fini();
2185 
2186 		sd_scsi_target_lun_fini();
2187 
2188 		ddi_soft_state_fini(&sd_state);
2189 		return (err);
2190 	}
2191 
2192 	return (err);
2193 }
2194 
2195 
2196 /*
2197  *    Function: _fini
2198  *
2199  * Description: This is the driver _fini(9E) entry point.
2200  *
2201  * Return Code: Returns the value from mod_remove(9F)
2202  *
2203  *     Context: Called when driver module is unloaded.
2204  */
2205 
2206 int
2207 _fini(void)
2208 {
2209 	int err;
2210 
2211 	if ((err = mod_remove(&modlinkage)) != 0) {
2212 		return (err);
2213 	}
2214 
2215 	sd_taskq_delete();
2216 
2217 	mutex_destroy(&sd_detach_mutex);
2218 	mutex_destroy(&sd_log_mutex);
2219 	mutex_destroy(&sd_label_mutex);
2220 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2221 
2222 	sd_scsi_probe_cache_fini();
2223 
2224 	sd_scsi_target_lun_fini();
2225 
2226 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2227 	cv_destroy(&sd_tr.srq_inprocess_cv);
2228 
2229 	ddi_soft_state_fini(&sd_state);
2230 
2231 	return (err);
2232 }
2233 
2234 
2235 /*
2236  *    Function: _info
2237  *
2238  * Description: This is the driver _info(9E) entry point.
2239  *
2240  *   Arguments: modinfop - pointer to the driver modinfo structure
2241  *
2242  * Return Code: Returns the value from mod_info(9F).
2243  *
2244  *     Context: Kernel thread context
2245  */
2246 
2247 int
2248 _info(struct modinfo *modinfop)
2249 {
2250 	return (mod_info(&modlinkage, modinfop));
2251 }
2252 
2253 
2254 /*
2255  * The following routines implement the driver message logging facility.
2256  * They provide component- and level- based debug output filtering.
2257  * Output may also be restricted to messages for a single instance by
2258  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2259  * to NULL, then messages for all instances are printed.
2260  *
2261  * These routines have been cloned from each other due to the language
2262  * constraints of macros and variable argument list processing.
2263  */
2264 
2265 
2266 /*
2267  *    Function: sd_log_err
2268  *
2269  * Description: This routine is called by the SD_ERROR macro for debug
2270  *		logging of error conditions.
2271  *
2272  *   Arguments: comp - driver component being logged
2273  *		dev  - pointer to driver info structure
2274  *		fmt  - error string and format to be logged
2275  */
2276 
2277 static void
2278 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2279 {
2280 	va_list		ap;
2281 	dev_info_t	*dev;
2282 
2283 	ASSERT(un != NULL);
2284 	dev = SD_DEVINFO(un);
2285 	ASSERT(dev != NULL);
2286 
2287 	/*
2288 	 * Filter messages based on the global component and level masks.
2289 	 * Also print if un matches the value of sd_debug_un, or if
2290 	 * sd_debug_un is set to NULL.
2291 	 */
2292 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2293 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2294 		mutex_enter(&sd_log_mutex);
2295 		va_start(ap, fmt);
2296 		(void) vsprintf(sd_log_buf, fmt, ap);
2297 		va_end(ap);
2298 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2299 		mutex_exit(&sd_log_mutex);
2300 	}
2301 #ifdef SD_FAULT_INJECTION
2302 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2303 	if (un->sd_injection_mask & comp) {
2304 		mutex_enter(&sd_log_mutex);
2305 		va_start(ap, fmt);
2306 		(void) vsprintf(sd_log_buf, fmt, ap);
2307 		va_end(ap);
2308 		sd_injection_log(sd_log_buf, un);
2309 		mutex_exit(&sd_log_mutex);
2310 	}
2311 #endif
2312 }
2313 
2314 
2315 /*
2316  *    Function: sd_log_info
2317  *
2318  * Description: This routine is called by the SD_INFO macro for debug
2319  *		logging of general purpose informational conditions.
2320  *
2321  *   Arguments: comp - driver component being logged
2322  *		dev  - pointer to driver info structure
2323  *		fmt  - info string and format to be logged
2324  */
2325 
2326 static void
2327 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2328 {
2329 	va_list		ap;
2330 	dev_info_t	*dev;
2331 
2332 	ASSERT(un != NULL);
2333 	dev = SD_DEVINFO(un);
2334 	ASSERT(dev != NULL);
2335 
2336 	/*
2337 	 * Filter messages based on the global component and level masks.
2338 	 * Also print if un matches the value of sd_debug_un, or if
2339 	 * sd_debug_un is set to NULL.
2340 	 */
2341 	if ((sd_component_mask & component) &&
2342 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2343 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2344 		mutex_enter(&sd_log_mutex);
2345 		va_start(ap, fmt);
2346 		(void) vsprintf(sd_log_buf, fmt, ap);
2347 		va_end(ap);
2348 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2349 		mutex_exit(&sd_log_mutex);
2350 	}
2351 #ifdef SD_FAULT_INJECTION
2352 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2353 	if (un->sd_injection_mask & component) {
2354 		mutex_enter(&sd_log_mutex);
2355 		va_start(ap, fmt);
2356 		(void) vsprintf(sd_log_buf, fmt, ap);
2357 		va_end(ap);
2358 		sd_injection_log(sd_log_buf, un);
2359 		mutex_exit(&sd_log_mutex);
2360 	}
2361 #endif
2362 }
2363 
2364 
2365 /*
2366  *    Function: sd_log_trace
2367  *
2368  * Description: This routine is called by the SD_TRACE macro for debug
2369  *		logging of trace conditions (i.e. function entry/exit).
2370  *
2371  *   Arguments: comp - driver component being logged
2372  *		dev  - pointer to driver info structure
2373  *		fmt  - trace string and format to be logged
2374  */
2375 
2376 static void
2377 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2378 {
2379 	va_list		ap;
2380 	dev_info_t	*dev;
2381 
2382 	ASSERT(un != NULL);
2383 	dev = SD_DEVINFO(un);
2384 	ASSERT(dev != NULL);
2385 
2386 	/*
2387 	 * Filter messages based on the global component and level masks.
2388 	 * Also print if un matches the value of sd_debug_un, or if
2389 	 * sd_debug_un is set to NULL.
2390 	 */
2391 	if ((sd_component_mask & component) &&
2392 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2393 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2394 		mutex_enter(&sd_log_mutex);
2395 		va_start(ap, fmt);
2396 		(void) vsprintf(sd_log_buf, fmt, ap);
2397 		va_end(ap);
2398 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2399 		mutex_exit(&sd_log_mutex);
2400 	}
2401 #ifdef SD_FAULT_INJECTION
2402 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2403 	if (un->sd_injection_mask & component) {
2404 		mutex_enter(&sd_log_mutex);
2405 		va_start(ap, fmt);
2406 		(void) vsprintf(sd_log_buf, fmt, ap);
2407 		va_end(ap);
2408 		sd_injection_log(sd_log_buf, un);
2409 		mutex_exit(&sd_log_mutex);
2410 	}
2411 #endif
2412 }
2413 
2414 
2415 /*
2416  *    Function: sdprobe
2417  *
2418  * Description: This is the driver probe(9e) entry point function.
2419  *
2420  *   Arguments: devi - opaque device info handle
2421  *
2422  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2423  *              DDI_PROBE_FAILURE: If the probe failed.
2424  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2425  *				   but may be present in the future.
2426  */
2427 
2428 static int
2429 sdprobe(dev_info_t *devi)
2430 {
2431 	struct scsi_device	*devp;
2432 	int			rval;
2433 	int			instance;
2434 
2435 	/*
2436 	 * if it wasn't for pln, sdprobe could actually be nulldev
2437 	 * in the "__fibre" case.
2438 	 */
2439 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2440 		return (DDI_PROBE_DONTCARE);
2441 	}
2442 
2443 	devp = ddi_get_driver_private(devi);
2444 
2445 	if (devp == NULL) {
2446 		/* Ooops... nexus driver is mis-configured... */
2447 		return (DDI_PROBE_FAILURE);
2448 	}
2449 
2450 	instance = ddi_get_instance(devi);
2451 
2452 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2453 		return (DDI_PROBE_PARTIAL);
2454 	}
2455 
2456 	/*
2457 	 * Call the SCSA utility probe routine to see if we actually
2458 	 * have a target at this SCSI nexus.
2459 	 */
2460 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2461 	case SCSIPROBE_EXISTS:
2462 		switch (devp->sd_inq->inq_dtype) {
2463 		case DTYPE_DIRECT:
2464 			rval = DDI_PROBE_SUCCESS;
2465 			break;
2466 		case DTYPE_RODIRECT:
2467 			/* CDs etc. Can be removable media */
2468 			rval = DDI_PROBE_SUCCESS;
2469 			break;
2470 		case DTYPE_OPTICAL:
2471 			/*
2472 			 * Rewritable optical driver HP115AA
2473 			 * Can also be removable media
2474 			 */
2475 
2476 			/*
2477 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2478 			 * pre solaris 9 sparc sd behavior is required
2479 			 *
2480 			 * If first time through and sd_dtype_optical_bind
2481 			 * has not been set in /etc/system check properties
2482 			 */
2483 
2484 			if (sd_dtype_optical_bind  < 0) {
2485 				sd_dtype_optical_bind = ddi_prop_get_int
2486 				    (DDI_DEV_T_ANY, devi, 0,
2487 				    "optical-device-bind", 1);
2488 			}
2489 
2490 			if (sd_dtype_optical_bind == 0) {
2491 				rval = DDI_PROBE_FAILURE;
2492 			} else {
2493 				rval = DDI_PROBE_SUCCESS;
2494 			}
2495 			break;
2496 
2497 		case DTYPE_NOTPRESENT:
2498 		default:
2499 			rval = DDI_PROBE_FAILURE;
2500 			break;
2501 		}
2502 		break;
2503 	default:
2504 		rval = DDI_PROBE_PARTIAL;
2505 		break;
2506 	}
2507 
2508 	/*
2509 	 * This routine checks for resource allocation prior to freeing,
2510 	 * so it will take care of the "smart probing" case where a
2511 	 * scsi_probe() may or may not have been issued and will *not*
2512 	 * free previously-freed resources.
2513 	 */
2514 	scsi_unprobe(devp);
2515 	return (rval);
2516 }
2517 
2518 
2519 /*
2520  *    Function: sdinfo
2521  *
2522  * Description: This is the driver getinfo(9e) entry point function.
2523  * 		Given the device number, return the devinfo pointer from
2524  *		the scsi_device structure or the instance number
2525  *		associated with the dev_t.
2526  *
2527  *   Arguments: dip     - pointer to device info structure
2528  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2529  *			  DDI_INFO_DEVT2INSTANCE)
2530  *		arg     - driver dev_t
2531  *		resultp - user buffer for request response
2532  *
2533  * Return Code: DDI_SUCCESS
2534  *              DDI_FAILURE
2535  */
2536 /* ARGSUSED */
2537 static int
2538 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2539 {
2540 	struct sd_lun	*un;
2541 	dev_t		dev;
2542 	int		instance;
2543 	int		error;
2544 
2545 	switch (infocmd) {
2546 	case DDI_INFO_DEVT2DEVINFO:
2547 		dev = (dev_t)arg;
2548 		instance = SDUNIT(dev);
2549 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2550 			return (DDI_FAILURE);
2551 		}
2552 		*result = (void *) SD_DEVINFO(un);
2553 		error = DDI_SUCCESS;
2554 		break;
2555 	case DDI_INFO_DEVT2INSTANCE:
2556 		dev = (dev_t)arg;
2557 		instance = SDUNIT(dev);
2558 		*result = (void *)(uintptr_t)instance;
2559 		error = DDI_SUCCESS;
2560 		break;
2561 	default:
2562 		error = DDI_FAILURE;
2563 	}
2564 	return (error);
2565 }
2566 
2567 /*
2568  *    Function: sd_prop_op
2569  *
2570  * Description: This is the driver prop_op(9e) entry point function.
2571  *		Return the number of blocks for the partition in question
2572  *		or forward the request to the property facilities.
2573  *
2574  *   Arguments: dev       - device number
2575  *		dip       - pointer to device info structure
2576  *		prop_op   - property operator
2577  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2578  *		name      - pointer to property name
2579  *		valuep    - pointer or address of the user buffer
2580  *		lengthp   - property length
2581  *
2582  * Return Code: DDI_PROP_SUCCESS
2583  *              DDI_PROP_NOT_FOUND
2584  *              DDI_PROP_UNDEFINED
2585  *              DDI_PROP_NO_MEMORY
2586  *              DDI_PROP_BUF_TOO_SMALL
2587  */
2588 
2589 static int
2590 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2591 	char *name, caddr_t valuep, int *lengthp)
2592 {
2593 	int		instance = ddi_get_instance(dip);
2594 	struct sd_lun	*un;
2595 	uint64_t	nblocks64;
2596 	uint_t		dblk;
2597 
2598 	/*
2599 	 * Our dynamic properties are all device specific and size oriented.
2600 	 * Requests issued under conditions where size is valid are passed
2601 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2602 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2603 	 */
2604 	un = ddi_get_soft_state(sd_state, instance);
2605 	if ((dev == DDI_DEV_T_ANY) || (un == NULL)) {
2606 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2607 		    name, valuep, lengthp));
2608 	} else if (!SD_IS_VALID_LABEL(un)) {
2609 		return (ddi_prop_op(dev, dip, prop_op, mod_flags, name,
2610 		    valuep, lengthp));
2611 	}
2612 
2613 	/* get nblocks value */
2614 	ASSERT(!mutex_owned(SD_MUTEX(un)));
2615 
2616 	(void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev),
2617 	    (diskaddr_t *)&nblocks64, NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
2618 
2619 	/* report size in target size blocks */
2620 	dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
2621 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
2622 	    name, valuep, lengthp, nblocks64 / dblk, un->un_tgt_blocksize));
2623 }
2624 
2625 /*
2626  * The following functions are for smart probing:
2627  * sd_scsi_probe_cache_init()
2628  * sd_scsi_probe_cache_fini()
2629  * sd_scsi_clear_probe_cache()
2630  * sd_scsi_probe_with_cache()
2631  */
2632 
2633 /*
2634  *    Function: sd_scsi_probe_cache_init
2635  *
2636  * Description: Initializes the probe response cache mutex and head pointer.
2637  *
2638  *     Context: Kernel thread context
2639  */
2640 
2641 static void
2642 sd_scsi_probe_cache_init(void)
2643 {
2644 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2645 	sd_scsi_probe_cache_head = NULL;
2646 }
2647 
2648 
2649 /*
2650  *    Function: sd_scsi_probe_cache_fini
2651  *
2652  * Description: Frees all resources associated with the probe response cache.
2653  *
2654  *     Context: Kernel thread context
2655  */
2656 
2657 static void
2658 sd_scsi_probe_cache_fini(void)
2659 {
2660 	struct sd_scsi_probe_cache *cp;
2661 	struct sd_scsi_probe_cache *ncp;
2662 
2663 	/* Clean up our smart probing linked list */
2664 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2665 		ncp = cp->next;
2666 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2667 	}
2668 	sd_scsi_probe_cache_head = NULL;
2669 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2670 }
2671 
2672 
2673 /*
2674  *    Function: sd_scsi_clear_probe_cache
2675  *
2676  * Description: This routine clears the probe response cache. This is
2677  *		done when open() returns ENXIO so that when deferred
2678  *		attach is attempted (possibly after a device has been
2679  *		turned on) we will retry the probe. Since we don't know
2680  *		which target we failed to open, we just clear the
2681  *		entire cache.
2682  *
2683  *     Context: Kernel thread context
2684  */
2685 
2686 static void
2687 sd_scsi_clear_probe_cache(void)
2688 {
2689 	struct sd_scsi_probe_cache	*cp;
2690 	int				i;
2691 
2692 	mutex_enter(&sd_scsi_probe_cache_mutex);
2693 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2694 		/*
2695 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2696 		 * force probing to be performed the next time
2697 		 * sd_scsi_probe_with_cache is called.
2698 		 */
2699 		for (i = 0; i < NTARGETS_WIDE; i++) {
2700 			cp->cache[i] = SCSIPROBE_EXISTS;
2701 		}
2702 	}
2703 	mutex_exit(&sd_scsi_probe_cache_mutex);
2704 }
2705 
2706 
2707 /*
2708  *    Function: sd_scsi_probe_with_cache
2709  *
2710  * Description: This routine implements support for a scsi device probe
2711  *		with cache. The driver maintains a cache of the target
2712  *		responses to scsi probes. If we get no response from a
2713  *		target during a probe inquiry, we remember that, and we
2714  *		avoid additional calls to scsi_probe on non-zero LUNs
2715  *		on the same target until the cache is cleared. By doing
2716  *		so we avoid the 1/4 sec selection timeout for nonzero
2717  *		LUNs. lun0 of a target is always probed.
2718  *
2719  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2720  *              waitfunc - indicates what the allocator routines should
2721  *			   do when resources are not available. This value
2722  *			   is passed on to scsi_probe() when that routine
2723  *			   is called.
2724  *
2725  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2726  *		otherwise the value returned by scsi_probe(9F).
2727  *
2728  *     Context: Kernel thread context
2729  */
2730 
2731 static int
2732 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2733 {
2734 	struct sd_scsi_probe_cache	*cp;
2735 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2736 	int		lun, tgt;
2737 
2738 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2739 	    SCSI_ADDR_PROP_LUN, 0);
2740 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2741 	    SCSI_ADDR_PROP_TARGET, -1);
2742 
2743 	/* Make sure caching enabled and target in range */
2744 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2745 		/* do it the old way (no cache) */
2746 		return (scsi_probe(devp, waitfn));
2747 	}
2748 
2749 	mutex_enter(&sd_scsi_probe_cache_mutex);
2750 
2751 	/* Find the cache for this scsi bus instance */
2752 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2753 		if (cp->pdip == pdip) {
2754 			break;
2755 		}
2756 	}
2757 
2758 	/* If we can't find a cache for this pdip, create one */
2759 	if (cp == NULL) {
2760 		int i;
2761 
2762 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2763 		    KM_SLEEP);
2764 		cp->pdip = pdip;
2765 		cp->next = sd_scsi_probe_cache_head;
2766 		sd_scsi_probe_cache_head = cp;
2767 		for (i = 0; i < NTARGETS_WIDE; i++) {
2768 			cp->cache[i] = SCSIPROBE_EXISTS;
2769 		}
2770 	}
2771 
2772 	mutex_exit(&sd_scsi_probe_cache_mutex);
2773 
2774 	/* Recompute the cache for this target if LUN zero */
2775 	if (lun == 0) {
2776 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2777 	}
2778 
2779 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2780 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2781 		return (SCSIPROBE_NORESP);
2782 	}
2783 
2784 	/* Do the actual probe; save & return the result */
2785 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2786 }
2787 
2788 
2789 /*
2790  *    Function: sd_scsi_target_lun_init
2791  *
2792  * Description: Initializes the attached lun chain mutex and head pointer.
2793  *
2794  *     Context: Kernel thread context
2795  */
2796 
2797 static void
2798 sd_scsi_target_lun_init(void)
2799 {
2800 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2801 	sd_scsi_target_lun_head = NULL;
2802 }
2803 
2804 
2805 /*
2806  *    Function: sd_scsi_target_lun_fini
2807  *
2808  * Description: Frees all resources associated with the attached lun
2809  *              chain
2810  *
2811  *     Context: Kernel thread context
2812  */
2813 
2814 static void
2815 sd_scsi_target_lun_fini(void)
2816 {
2817 	struct sd_scsi_hba_tgt_lun	*cp;
2818 	struct sd_scsi_hba_tgt_lun	*ncp;
2819 
2820 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2821 		ncp = cp->next;
2822 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2823 	}
2824 	sd_scsi_target_lun_head = NULL;
2825 	mutex_destroy(&sd_scsi_target_lun_mutex);
2826 }
2827 
2828 
2829 /*
2830  *    Function: sd_scsi_get_target_lun_count
2831  *
2832  * Description: This routine will check in the attached lun chain to see
2833  * 		how many luns are attached on the required SCSI controller
2834  * 		and target. Currently, some capabilities like tagged queue
2835  *		are supported per target based by HBA. So all luns in a
2836  *		target have the same capabilities. Based on this assumption,
2837  * 		sd should only set these capabilities once per target. This
2838  *		function is called when sd needs to decide how many luns
2839  *		already attached on a target.
2840  *
2841  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2842  *			  controller device.
2843  *              target	- The target ID on the controller's SCSI bus.
2844  *
2845  * Return Code: The number of luns attached on the required target and
2846  *		controller.
2847  *		-1 if target ID is not in parallel SCSI scope or the given
2848  * 		dip is not in the chain.
2849  *
2850  *     Context: Kernel thread context
2851  */
2852 
2853 static int
2854 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2855 {
2856 	struct sd_scsi_hba_tgt_lun	*cp;
2857 
2858 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2859 		return (-1);
2860 	}
2861 
2862 	mutex_enter(&sd_scsi_target_lun_mutex);
2863 
2864 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2865 		if (cp->pdip == dip) {
2866 			break;
2867 		}
2868 	}
2869 
2870 	mutex_exit(&sd_scsi_target_lun_mutex);
2871 
2872 	if (cp == NULL) {
2873 		return (-1);
2874 	}
2875 
2876 	return (cp->nlun[target]);
2877 }
2878 
2879 
2880 /*
2881  *    Function: sd_scsi_update_lun_on_target
2882  *
2883  * Description: This routine is used to update the attached lun chain when a
2884  *		lun is attached or detached on a target.
2885  *
2886  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2887  *                        controller device.
2888  *              target  - The target ID on the controller's SCSI bus.
2889  *		flag	- Indicate the lun is attached or detached.
2890  *
2891  *     Context: Kernel thread context
2892  */
2893 
2894 static void
2895 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2896 {
2897 	struct sd_scsi_hba_tgt_lun	*cp;
2898 
2899 	mutex_enter(&sd_scsi_target_lun_mutex);
2900 
2901 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2902 		if (cp->pdip == dip) {
2903 			break;
2904 		}
2905 	}
2906 
2907 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2908 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2909 		    KM_SLEEP);
2910 		cp->pdip = dip;
2911 		cp->next = sd_scsi_target_lun_head;
2912 		sd_scsi_target_lun_head = cp;
2913 	}
2914 
2915 	mutex_exit(&sd_scsi_target_lun_mutex);
2916 
2917 	if (cp != NULL) {
2918 		if (flag == SD_SCSI_LUN_ATTACH) {
2919 			cp->nlun[target] ++;
2920 		} else {
2921 			cp->nlun[target] --;
2922 		}
2923 	}
2924 }
2925 
2926 
2927 /*
2928  *    Function: sd_spin_up_unit
2929  *
2930  * Description: Issues the following commands to spin-up the device:
2931  *		START STOP UNIT, and INQUIRY.
2932  *
2933  *   Arguments: un - driver soft state (unit) structure
2934  *
2935  * Return Code: 0 - success
2936  *		EIO - failure
2937  *		EACCES - reservation conflict
2938  *
2939  *     Context: Kernel thread context
2940  */
2941 
2942 static int
2943 sd_spin_up_unit(struct sd_lun *un)
2944 {
2945 	size_t	resid		= 0;
2946 	int	has_conflict	= FALSE;
2947 	uchar_t *bufaddr;
2948 
2949 	ASSERT(un != NULL);
2950 
2951 	/*
2952 	 * Send a throwaway START UNIT command.
2953 	 *
2954 	 * If we fail on this, we don't care presently what precisely
2955 	 * is wrong.  EMC's arrays will also fail this with a check
2956 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2957 	 * we don't want to fail the attach because it may become
2958 	 * "active" later.
2959 	 */
2960 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2961 	    == EACCES)
2962 		has_conflict = TRUE;
2963 
2964 	/*
2965 	 * Send another INQUIRY command to the target. This is necessary for
2966 	 * non-removable media direct access devices because their INQUIRY data
2967 	 * may not be fully qualified until they are spun up (perhaps via the
2968 	 * START command above).  Note: This seems to be needed for some
2969 	 * legacy devices only.) The INQUIRY command should succeed even if a
2970 	 * Reservation Conflict is present.
2971 	 */
2972 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2973 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2974 		kmem_free(bufaddr, SUN_INQSIZE);
2975 		return (EIO);
2976 	}
2977 
2978 	/*
2979 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2980 	 * Note that this routine does not return a failure here even if the
2981 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2982 	 */
2983 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2984 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2985 	}
2986 
2987 	kmem_free(bufaddr, SUN_INQSIZE);
2988 
2989 	/* If we hit a reservation conflict above, tell the caller. */
2990 	if (has_conflict == TRUE) {
2991 		return (EACCES);
2992 	}
2993 
2994 	return (0);
2995 }
2996 
2997 #ifdef _LP64
2998 /*
2999  *    Function: sd_enable_descr_sense
3000  *
3001  * Description: This routine attempts to select descriptor sense format
3002  *		using the Control mode page.  Devices that support 64 bit
3003  *		LBAs (for >2TB luns) should also implement descriptor
3004  *		sense data so we will call this function whenever we see
3005  *		a lun larger than 2TB.  If for some reason the device
3006  *		supports 64 bit LBAs but doesn't support descriptor sense
3007  *		presumably the mode select will fail.  Everything will
3008  *		continue to work normally except that we will not get
3009  *		complete sense data for commands that fail with an LBA
3010  *		larger than 32 bits.
3011  *
3012  *   Arguments: un - driver soft state (unit) structure
3013  *
3014  *     Context: Kernel thread context only
3015  */
3016 
3017 static void
3018 sd_enable_descr_sense(struct sd_lun *un)
3019 {
3020 	uchar_t			*header;
3021 	struct mode_control_scsi3 *ctrl_bufp;
3022 	size_t			buflen;
3023 	size_t			bd_len;
3024 
3025 	/*
3026 	 * Read MODE SENSE page 0xA, Control Mode Page
3027 	 */
3028 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3029 	    sizeof (struct mode_control_scsi3);
3030 	header = kmem_zalloc(buflen, KM_SLEEP);
3031 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3032 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3033 		SD_ERROR(SD_LOG_COMMON, un,
3034 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3035 		goto eds_exit;
3036 	}
3037 
3038 	/*
3039 	 * Determine size of Block Descriptors in order to locate
3040 	 * the mode page data. ATAPI devices return 0, SCSI devices
3041 	 * should return MODE_BLK_DESC_LENGTH.
3042 	 */
3043 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3044 
3045 	/* Clear the mode data length field for MODE SELECT */
3046 	((struct mode_header *)header)->length = 0;
3047 
3048 	ctrl_bufp = (struct mode_control_scsi3 *)
3049 	    (header + MODE_HEADER_LENGTH + bd_len);
3050 
3051 	/*
3052 	 * If the page length is smaller than the expected value,
3053 	 * the target device doesn't support D_SENSE. Bail out here.
3054 	 */
3055 	if (ctrl_bufp->mode_page.length <
3056 	    sizeof (struct mode_control_scsi3) - 2) {
3057 		SD_ERROR(SD_LOG_COMMON, un,
3058 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3059 		goto eds_exit;
3060 	}
3061 
3062 	/*
3063 	 * Clear PS bit for MODE SELECT
3064 	 */
3065 	ctrl_bufp->mode_page.ps = 0;
3066 
3067 	/*
3068 	 * Set D_SENSE to enable descriptor sense format.
3069 	 */
3070 	ctrl_bufp->d_sense = 1;
3071 
3072 	/*
3073 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3074 	 */
3075 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3076 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3077 		SD_INFO(SD_LOG_COMMON, un,
3078 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3079 		goto eds_exit;
3080 	}
3081 
3082 eds_exit:
3083 	kmem_free(header, buflen);
3084 }
3085 
3086 /*
3087  *    Function: sd_reenable_dsense_task
3088  *
3089  * Description: Re-enable descriptor sense after device or bus reset
3090  *
3091  *     Context: Executes in a taskq() thread context
3092  */
3093 static void
3094 sd_reenable_dsense_task(void *arg)
3095 {
3096 	struct	sd_lun	*un = arg;
3097 
3098 	ASSERT(un != NULL);
3099 	sd_enable_descr_sense(un);
3100 }
3101 #endif /* _LP64 */
3102 
3103 /*
3104  *    Function: sd_set_mmc_caps
3105  *
3106  * Description: This routine determines if the device is MMC compliant and if
3107  *		the device supports CDDA via a mode sense of the CDVD
3108  *		capabilities mode page. Also checks if the device is a
3109  *		dvdram writable device.
3110  *
3111  *   Arguments: un - driver soft state (unit) structure
3112  *
3113  *     Context: Kernel thread context only
3114  */
3115 
3116 static void
3117 sd_set_mmc_caps(struct sd_lun *un)
3118 {
3119 	struct mode_header_grp2		*sense_mhp;
3120 	uchar_t				*sense_page;
3121 	caddr_t				buf;
3122 	int				bd_len;
3123 	int				status;
3124 	struct uscsi_cmd		com;
3125 	int				rtn;
3126 	uchar_t				*out_data_rw, *out_data_hd;
3127 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3128 
3129 	ASSERT(un != NULL);
3130 
3131 	/*
3132 	 * The flags which will be set in this function are - mmc compliant,
3133 	 * dvdram writable device, cdda support. Initialize them to FALSE
3134 	 * and if a capability is detected - it will be set to TRUE.
3135 	 */
3136 	un->un_f_mmc_cap = FALSE;
3137 	un->un_f_dvdram_writable_device = FALSE;
3138 	un->un_f_cfg_cdda = FALSE;
3139 
3140 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3141 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3142 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3143 
3144 	if (status != 0) {
3145 		/* command failed; just return */
3146 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3147 		return;
3148 	}
3149 	/*
3150 	 * If the mode sense request for the CDROM CAPABILITIES
3151 	 * page (0x2A) succeeds the device is assumed to be MMC.
3152 	 */
3153 	un->un_f_mmc_cap = TRUE;
3154 
3155 	/* Get to the page data */
3156 	sense_mhp = (struct mode_header_grp2 *)buf;
3157 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3158 	    sense_mhp->bdesc_length_lo;
3159 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3160 		/*
3161 		 * We did not get back the expected block descriptor
3162 		 * length so we cannot determine if the device supports
3163 		 * CDDA. However, we still indicate the device is MMC
3164 		 * according to the successful response to the page
3165 		 * 0x2A mode sense request.
3166 		 */
3167 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3168 		    "sd_set_mmc_caps: Mode Sense returned "
3169 		    "invalid block descriptor length\n");
3170 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3171 		return;
3172 	}
3173 
3174 	/* See if read CDDA is supported */
3175 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3176 	    bd_len);
3177 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3178 
3179 	/* See if writing DVD RAM is supported. */
3180 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3181 	if (un->un_f_dvdram_writable_device == TRUE) {
3182 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3183 		return;
3184 	}
3185 
3186 	/*
3187 	 * If the device presents DVD or CD capabilities in the mode
3188 	 * page, we can return here since a RRD will not have
3189 	 * these capabilities.
3190 	 */
3191 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3192 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3193 		return;
3194 	}
3195 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3196 
3197 	/*
3198 	 * If un->un_f_dvdram_writable_device is still FALSE,
3199 	 * check for a Removable Rigid Disk (RRD).  A RRD
3200 	 * device is identified by the features RANDOM_WRITABLE and
3201 	 * HARDWARE_DEFECT_MANAGEMENT.
3202 	 */
3203 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3204 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3205 
3206 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3207 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3208 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3209 	if (rtn != 0) {
3210 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3211 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3212 		return;
3213 	}
3214 
3215 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3216 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3217 
3218 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3219 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3220 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3221 	if (rtn == 0) {
3222 		/*
3223 		 * We have good information, check for random writable
3224 		 * and hardware defect features.
3225 		 */
3226 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3227 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3228 			un->un_f_dvdram_writable_device = TRUE;
3229 		}
3230 	}
3231 
3232 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3233 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3234 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3235 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3236 }
3237 
3238 /*
3239  *    Function: sd_check_for_writable_cd
3240  *
3241  * Description: This routine determines if the media in the device is
3242  *		writable or not. It uses the get configuration command (0x46)
3243  *		to determine if the media is writable
3244  *
3245  *   Arguments: un - driver soft state (unit) structure
3246  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3247  *                           chain and the normal command waitq, or
3248  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3249  *                           "direct" chain and bypass the normal command
3250  *                           waitq.
3251  *
3252  *     Context: Never called at interrupt context.
3253  */
3254 
3255 static void
3256 sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3257 {
3258 	struct uscsi_cmd		com;
3259 	uchar_t				*out_data;
3260 	uchar_t				*rqbuf;
3261 	int				rtn;
3262 	uchar_t				*out_data_rw, *out_data_hd;
3263 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3264 	struct mode_header_grp2		*sense_mhp;
3265 	uchar_t				*sense_page;
3266 	caddr_t				buf;
3267 	int				bd_len;
3268 	int				status;
3269 
3270 	ASSERT(un != NULL);
3271 	ASSERT(mutex_owned(SD_MUTEX(un)));
3272 
3273 	/*
3274 	 * Initialize the writable media to false, if configuration info.
3275 	 * tells us otherwise then only we will set it.
3276 	 */
3277 	un->un_f_mmc_writable_media = FALSE;
3278 	mutex_exit(SD_MUTEX(un));
3279 
3280 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3281 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3282 
3283 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3284 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3285 
3286 	mutex_enter(SD_MUTEX(un));
3287 	if (rtn == 0) {
3288 		/*
3289 		 * We have good information, check for writable DVD.
3290 		 */
3291 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3292 			un->un_f_mmc_writable_media = TRUE;
3293 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3294 			kmem_free(rqbuf, SENSE_LENGTH);
3295 			return;
3296 		}
3297 	}
3298 
3299 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3300 	kmem_free(rqbuf, SENSE_LENGTH);
3301 
3302 	/*
3303 	 * Determine if this is a RRD type device.
3304 	 */
3305 	mutex_exit(SD_MUTEX(un));
3306 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3307 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3308 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3309 	mutex_enter(SD_MUTEX(un));
3310 	if (status != 0) {
3311 		/* command failed; just return */
3312 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3313 		return;
3314 	}
3315 
3316 	/* Get to the page data */
3317 	sense_mhp = (struct mode_header_grp2 *)buf;
3318 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3319 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3320 		/*
3321 		 * We did not get back the expected block descriptor length so
3322 		 * we cannot check the mode page.
3323 		 */
3324 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3325 		    "sd_check_for_writable_cd: Mode Sense returned "
3326 		    "invalid block descriptor length\n");
3327 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3328 		return;
3329 	}
3330 
3331 	/*
3332 	 * If the device presents DVD or CD capabilities in the mode
3333 	 * page, we can return here since a RRD device will not have
3334 	 * these capabilities.
3335 	 */
3336 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3337 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3338 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3339 		return;
3340 	}
3341 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3342 
3343 	/*
3344 	 * If un->un_f_mmc_writable_media is still FALSE,
3345 	 * check for RRD type media.  A RRD device is identified
3346 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3347 	 */
3348 	mutex_exit(SD_MUTEX(un));
3349 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3350 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3351 
3352 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3353 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3354 	    RANDOM_WRITABLE, path_flag);
3355 	if (rtn != 0) {
3356 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3357 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3358 		mutex_enter(SD_MUTEX(un));
3359 		return;
3360 	}
3361 
3362 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3363 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3364 
3365 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3366 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3367 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3368 	mutex_enter(SD_MUTEX(un));
3369 	if (rtn == 0) {
3370 		/*
3371 		 * We have good information, check for random writable
3372 		 * and hardware defect features as current.
3373 		 */
3374 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3375 		    (out_data_rw[10] & 0x1) &&
3376 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3377 		    (out_data_hd[10] & 0x1)) {
3378 			un->un_f_mmc_writable_media = TRUE;
3379 		}
3380 	}
3381 
3382 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3383 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3384 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3385 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3386 }
3387 
3388 /*
3389  *    Function: sd_read_unit_properties
3390  *
3391  * Description: The following implements a property lookup mechanism.
3392  *		Properties for particular disks (keyed on vendor, model
3393  *		and rev numbers) are sought in the sd.conf file via
3394  *		sd_process_sdconf_file(), and if not found there, are
3395  *		looked for in a list hardcoded in this driver via
3396  *		sd_process_sdconf_table() Once located the properties
3397  *		are used to update the driver unit structure.
3398  *
3399  *   Arguments: un - driver soft state (unit) structure
3400  */
3401 
3402 static void
3403 sd_read_unit_properties(struct sd_lun *un)
3404 {
3405 	/*
3406 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3407 	 * the "sd-config-list" property (from the sd.conf file) or if
3408 	 * there was not a match for the inquiry vid/pid. If this event
3409 	 * occurs the static driver configuration table is searched for
3410 	 * a match.
3411 	 */
3412 	ASSERT(un != NULL);
3413 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3414 		sd_process_sdconf_table(un);
3415 	}
3416 
3417 	/* check for LSI device */
3418 	sd_is_lsi(un);
3419 
3420 
3421 }
3422 
3423 
3424 /*
3425  *    Function: sd_process_sdconf_file
3426  *
3427  * Description: Use ddi_getlongprop to obtain the properties from the
3428  *		driver's config file (ie, sd.conf) and update the driver
3429  *		soft state structure accordingly.
3430  *
3431  *   Arguments: un - driver soft state (unit) structure
3432  *
3433  * Return Code: SD_SUCCESS - The properties were successfully set according
3434  *			     to the driver configuration file.
3435  *		SD_FAILURE - The driver config list was not obtained or
3436  *			     there was no vid/pid match. This indicates that
3437  *			     the static config table should be used.
3438  *
3439  * The config file has a property, "sd-config-list", which consists of
3440  * one or more duplets as follows:
3441  *
3442  *  sd-config-list=
3443  *	<duplet>,
3444  *	[<duplet>,]
3445  *	[<duplet>];
3446  *
3447  * The structure of each duplet is as follows:
3448  *
3449  *  <duplet>:= <vid+pid>,<data-property-name_list>
3450  *
3451  * The first entry of the duplet is the device ID string (the concatenated
3452  * vid & pid; not to be confused with a device_id).  This is defined in
3453  * the same way as in the sd_disk_table.
3454  *
3455  * The second part of the duplet is a string that identifies a
3456  * data-property-name-list. The data-property-name-list is defined as
3457  * follows:
3458  *
3459  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3460  *
3461  * The syntax of <data-property-name> depends on the <version> field.
3462  *
3463  * If version = SD_CONF_VERSION_1 we have the following syntax:
3464  *
3465  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3466  *
3467  * where the prop0 value will be used to set prop0 if bit0 set in the
3468  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3469  *
3470  */
3471 
3472 static int
3473 sd_process_sdconf_file(struct sd_lun *un)
3474 {
3475 	char	*config_list = NULL;
3476 	int	config_list_len;
3477 	int	len;
3478 	int	dupletlen = 0;
3479 	char	*vidptr;
3480 	int	vidlen;
3481 	char	*dnlist_ptr;
3482 	char	*dataname_ptr;
3483 	int	dnlist_len;
3484 	int	dataname_len;
3485 	int	*data_list;
3486 	int	data_list_len;
3487 	int	rval = SD_FAILURE;
3488 	int	i;
3489 
3490 	ASSERT(un != NULL);
3491 
3492 	/* Obtain the configuration list associated with the .conf file */
3493 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3494 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3495 	    != DDI_PROP_SUCCESS) {
3496 		return (SD_FAILURE);
3497 	}
3498 
3499 	/*
3500 	 * Compare vids in each duplet to the inquiry vid - if a match is
3501 	 * made, get the data value and update the soft state structure
3502 	 * accordingly.
3503 	 *
3504 	 * Note: This algorithm is complex and difficult to maintain. It should
3505 	 * be replaced with a more robust implementation.
3506 	 */
3507 	for (len = config_list_len, vidptr = config_list; len > 0;
3508 	    vidptr += dupletlen, len -= dupletlen) {
3509 		/*
3510 		 * Note: The assumption here is that each vid entry is on
3511 		 * a unique line from its associated duplet.
3512 		 */
3513 		vidlen = dupletlen = (int)strlen(vidptr);
3514 		if ((vidlen == 0) ||
3515 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3516 			dupletlen++;
3517 			continue;
3518 		}
3519 
3520 		/*
3521 		 * dnlist contains 1 or more blank separated
3522 		 * data-property-name entries
3523 		 */
3524 		dnlist_ptr = vidptr + vidlen + 1;
3525 		dnlist_len = (int)strlen(dnlist_ptr);
3526 		dupletlen += dnlist_len + 2;
3527 
3528 		/*
3529 		 * Set a pointer for the first data-property-name
3530 		 * entry in the list
3531 		 */
3532 		dataname_ptr = dnlist_ptr;
3533 		dataname_len = 0;
3534 
3535 		/*
3536 		 * Loop through all data-property-name entries in the
3537 		 * data-property-name-list setting the properties for each.
3538 		 */
3539 		while (dataname_len < dnlist_len) {
3540 			int version;
3541 
3542 			/*
3543 			 * Determine the length of the current
3544 			 * data-property-name entry by indexing until a
3545 			 * blank or NULL is encountered. When the space is
3546 			 * encountered reset it to a NULL for compliance
3547 			 * with ddi_getlongprop().
3548 			 */
3549 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3550 			    (dataname_ptr[i] != '\0')); i++) {
3551 				;
3552 			}
3553 
3554 			dataname_len += i;
3555 			/* If not null terminated, Make it so */
3556 			if (dataname_ptr[i] == ' ') {
3557 				dataname_ptr[i] = '\0';
3558 			}
3559 			dataname_len++;
3560 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3561 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3562 			    vidptr, dataname_ptr);
3563 
3564 			/* Get the data list */
3565 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3566 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3567 			    != DDI_PROP_SUCCESS) {
3568 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3569 				    "sd_process_sdconf_file: data property (%s)"
3570 				    " has no value\n", dataname_ptr);
3571 				dataname_ptr = dnlist_ptr + dataname_len;
3572 				continue;
3573 			}
3574 
3575 			version = data_list[0];
3576 
3577 			if (version == SD_CONF_VERSION_1) {
3578 				sd_tunables values;
3579 
3580 				/* Set the properties */
3581 				if (sd_chk_vers1_data(un, data_list[1],
3582 				    &data_list[2], data_list_len, dataname_ptr)
3583 				    == SD_SUCCESS) {
3584 					sd_get_tunables_from_conf(un,
3585 					    data_list[1], &data_list[2],
3586 					    &values);
3587 					sd_set_vers1_properties(un,
3588 					    data_list[1], &values);
3589 					rval = SD_SUCCESS;
3590 				} else {
3591 					rval = SD_FAILURE;
3592 				}
3593 			} else {
3594 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3595 				    "data property %s version 0x%x is invalid.",
3596 				    dataname_ptr, version);
3597 				rval = SD_FAILURE;
3598 			}
3599 			kmem_free(data_list, data_list_len);
3600 			dataname_ptr = dnlist_ptr + dataname_len;
3601 		}
3602 	}
3603 
3604 	/* free up the memory allocated by ddi_getlongprop */
3605 	if (config_list) {
3606 		kmem_free(config_list, config_list_len);
3607 	}
3608 
3609 	return (rval);
3610 }
3611 
3612 /*
3613  *    Function: sd_get_tunables_from_conf()
3614  *
3615  *
3616  *    This function reads the data list from the sd.conf file and pulls
3617  *    the values that can have numeric values as arguments and places
3618  *    the values in the appropriate sd_tunables member.
3619  *    Since the order of the data list members varies across platforms
3620  *    This function reads them from the data list in a platform specific
3621  *    order and places them into the correct sd_tunable member that is
3622  *    consistent across all platforms.
3623  */
3624 static void
3625 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3626     sd_tunables *values)
3627 {
3628 	int i;
3629 	int mask;
3630 
3631 	bzero(values, sizeof (sd_tunables));
3632 
3633 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3634 
3635 		mask = 1 << i;
3636 		if (mask > flags) {
3637 			break;
3638 		}
3639 
3640 		switch (mask & flags) {
3641 		case 0:	/* This mask bit not set in flags */
3642 			continue;
3643 		case SD_CONF_BSET_THROTTLE:
3644 			values->sdt_throttle = data_list[i];
3645 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3646 			    "sd_get_tunables_from_conf: throttle = %d\n",
3647 			    values->sdt_throttle);
3648 			break;
3649 		case SD_CONF_BSET_CTYPE:
3650 			values->sdt_ctype = data_list[i];
3651 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3652 			    "sd_get_tunables_from_conf: ctype = %d\n",
3653 			    values->sdt_ctype);
3654 			break;
3655 		case SD_CONF_BSET_NRR_COUNT:
3656 			values->sdt_not_rdy_retries = data_list[i];
3657 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3658 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3659 			    values->sdt_not_rdy_retries);
3660 			break;
3661 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3662 			values->sdt_busy_retries = data_list[i];
3663 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3664 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3665 			    values->sdt_busy_retries);
3666 			break;
3667 		case SD_CONF_BSET_RST_RETRIES:
3668 			values->sdt_reset_retries = data_list[i];
3669 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3670 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3671 			    values->sdt_reset_retries);
3672 			break;
3673 		case SD_CONF_BSET_RSV_REL_TIME:
3674 			values->sdt_reserv_rel_time = data_list[i];
3675 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3676 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3677 			    values->sdt_reserv_rel_time);
3678 			break;
3679 		case SD_CONF_BSET_MIN_THROTTLE:
3680 			values->sdt_min_throttle = data_list[i];
3681 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3682 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3683 			    values->sdt_min_throttle);
3684 			break;
3685 		case SD_CONF_BSET_DISKSORT_DISABLED:
3686 			values->sdt_disk_sort_dis = data_list[i];
3687 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3688 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3689 			    values->sdt_disk_sort_dis);
3690 			break;
3691 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3692 			values->sdt_lun_reset_enable = data_list[i];
3693 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3694 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3695 			    "\n", values->sdt_lun_reset_enable);
3696 			break;
3697 		}
3698 	}
3699 }
3700 
3701 /*
3702  *    Function: sd_process_sdconf_table
3703  *
3704  * Description: Search the static configuration table for a match on the
3705  *		inquiry vid/pid and update the driver soft state structure
3706  *		according to the table property values for the device.
3707  *
3708  *		The form of a configuration table entry is:
3709  *		  <vid+pid>,<flags>,<property-data>
3710  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3711  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3712  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3713  *
3714  *   Arguments: un - driver soft state (unit) structure
3715  */
3716 
3717 static void
3718 sd_process_sdconf_table(struct sd_lun *un)
3719 {
3720 	char	*id = NULL;
3721 	int	table_index;
3722 	int	idlen;
3723 
3724 	ASSERT(un != NULL);
3725 	for (table_index = 0; table_index < sd_disk_table_size;
3726 	    table_index++) {
3727 		id = sd_disk_table[table_index].device_id;
3728 		idlen = strlen(id);
3729 		if (idlen == 0) {
3730 			continue;
3731 		}
3732 
3733 		/*
3734 		 * The static configuration table currently does not
3735 		 * implement version 10 properties. Additionally,
3736 		 * multiple data-property-name entries are not
3737 		 * implemented in the static configuration table.
3738 		 */
3739 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3740 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3741 			    "sd_process_sdconf_table: disk %s\n", id);
3742 			sd_set_vers1_properties(un,
3743 			    sd_disk_table[table_index].flags,
3744 			    sd_disk_table[table_index].properties);
3745 			break;
3746 		}
3747 	}
3748 }
3749 
3750 
3751 /*
3752  *    Function: sd_sdconf_id_match
3753  *
3754  * Description: This local function implements a case sensitive vid/pid
3755  *		comparison as well as the boundary cases of wild card and
3756  *		multiple blanks.
3757  *
3758  *		Note: An implicit assumption made here is that the scsi
3759  *		inquiry structure will always keep the vid, pid and
3760  *		revision strings in consecutive sequence, so they can be
3761  *		read as a single string. If this assumption is not the
3762  *		case, a separate string, to be used for the check, needs
3763  *		to be built with these strings concatenated.
3764  *
3765  *   Arguments: un - driver soft state (unit) structure
3766  *		id - table or config file vid/pid
3767  *		idlen  - length of the vid/pid (bytes)
3768  *
3769  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3770  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3771  */
3772 
3773 static int
3774 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3775 {
3776 	struct scsi_inquiry	*sd_inq;
3777 	int 			rval = SD_SUCCESS;
3778 
3779 	ASSERT(un != NULL);
3780 	sd_inq = un->un_sd->sd_inq;
3781 	ASSERT(id != NULL);
3782 
3783 	/*
3784 	 * We use the inq_vid as a pointer to a buffer containing the
3785 	 * vid and pid and use the entire vid/pid length of the table
3786 	 * entry for the comparison. This works because the inq_pid
3787 	 * data member follows inq_vid in the scsi_inquiry structure.
3788 	 */
3789 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3790 		/*
3791 		 * The user id string is compared to the inquiry vid/pid
3792 		 * using a case insensitive comparison and ignoring
3793 		 * multiple spaces.
3794 		 */
3795 		rval = sd_blank_cmp(un, id, idlen);
3796 		if (rval != SD_SUCCESS) {
3797 			/*
3798 			 * User id strings that start and end with a "*"
3799 			 * are a special case. These do not have a
3800 			 * specific vendor, and the product string can
3801 			 * appear anywhere in the 16 byte PID portion of
3802 			 * the inquiry data. This is a simple strstr()
3803 			 * type search for the user id in the inquiry data.
3804 			 */
3805 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3806 				char	*pidptr = &id[1];
3807 				int	i;
3808 				int	j;
3809 				int	pidstrlen = idlen - 2;
3810 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3811 				    pidstrlen;
3812 
3813 				if (j < 0) {
3814 					return (SD_FAILURE);
3815 				}
3816 				for (i = 0; i < j; i++) {
3817 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3818 					    pidptr, pidstrlen) == 0) {
3819 						rval = SD_SUCCESS;
3820 						break;
3821 					}
3822 				}
3823 			}
3824 		}
3825 	}
3826 	return (rval);
3827 }
3828 
3829 
3830 /*
3831  *    Function: sd_blank_cmp
3832  *
3833  * Description: If the id string starts and ends with a space, treat
3834  *		multiple consecutive spaces as equivalent to a single
3835  *		space. For example, this causes a sd_disk_table entry
3836  *		of " NEC CDROM " to match a device's id string of
3837  *		"NEC       CDROM".
3838  *
3839  *		Note: The success exit condition for this routine is if
3840  *		the pointer to the table entry is '\0' and the cnt of
3841  *		the inquiry length is zero. This will happen if the inquiry
3842  *		string returned by the device is padded with spaces to be
3843  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3844  *		SCSI spec states that the inquiry string is to be padded with
3845  *		spaces.
3846  *
3847  *   Arguments: un - driver soft state (unit) structure
3848  *		id - table or config file vid/pid
3849  *		idlen  - length of the vid/pid (bytes)
3850  *
3851  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3852  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3853  */
3854 
3855 static int
3856 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3857 {
3858 	char		*p1;
3859 	char		*p2;
3860 	int		cnt;
3861 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3862 	    sizeof (SD_INQUIRY(un)->inq_pid);
3863 
3864 	ASSERT(un != NULL);
3865 	p2 = un->un_sd->sd_inq->inq_vid;
3866 	ASSERT(id != NULL);
3867 	p1 = id;
3868 
3869 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3870 		/*
3871 		 * Note: string p1 is terminated by a NUL but string p2
3872 		 * isn't.  The end of p2 is determined by cnt.
3873 		 */
3874 		for (;;) {
3875 			/* skip over any extra blanks in both strings */
3876 			while ((*p1 != '\0') && (*p1 == ' ')) {
3877 				p1++;
3878 			}
3879 			while ((cnt != 0) && (*p2 == ' ')) {
3880 				p2++;
3881 				cnt--;
3882 			}
3883 
3884 			/* compare the two strings */
3885 			if ((cnt == 0) ||
3886 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3887 				break;
3888 			}
3889 			while ((cnt > 0) &&
3890 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3891 				p1++;
3892 				p2++;
3893 				cnt--;
3894 			}
3895 		}
3896 	}
3897 
3898 	/* return SD_SUCCESS if both strings match */
3899 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3900 }
3901 
3902 
3903 /*
3904  *    Function: sd_chk_vers1_data
3905  *
3906  * Description: Verify the version 1 device properties provided by the
3907  *		user via the configuration file
3908  *
3909  *   Arguments: un	     - driver soft state (unit) structure
3910  *		flags	     - integer mask indicating properties to be set
3911  *		prop_list    - integer list of property values
3912  *		list_len     - length of user provided data
3913  *
3914  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3915  *		SD_FAILURE - Indicates the user provided data is invalid
3916  */
3917 
3918 static int
3919 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3920     int list_len, char *dataname_ptr)
3921 {
3922 	int i;
3923 	int mask = 1;
3924 	int index = 0;
3925 
3926 	ASSERT(un != NULL);
3927 
3928 	/* Check for a NULL property name and list */
3929 	if (dataname_ptr == NULL) {
3930 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3931 		    "sd_chk_vers1_data: NULL data property name.");
3932 		return (SD_FAILURE);
3933 	}
3934 	if (prop_list == NULL) {
3935 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3936 		    "sd_chk_vers1_data: %s NULL data property list.",
3937 		    dataname_ptr);
3938 		return (SD_FAILURE);
3939 	}
3940 
3941 	/* Display a warning if undefined bits are set in the flags */
3942 	if (flags & ~SD_CONF_BIT_MASK) {
3943 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3944 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3945 		    "Properties not set.",
3946 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3947 		return (SD_FAILURE);
3948 	}
3949 
3950 	/*
3951 	 * Verify the length of the list by identifying the highest bit set
3952 	 * in the flags and validating that the property list has a length
3953 	 * up to the index of this bit.
3954 	 */
3955 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3956 		if (flags & mask) {
3957 			index++;
3958 		}
3959 		mask = 1 << i;
3960 	}
3961 	if ((list_len / sizeof (int)) < (index + 2)) {
3962 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3963 		    "sd_chk_vers1_data: "
3964 		    "Data property list %s size is incorrect. "
3965 		    "Properties not set.", dataname_ptr);
3966 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3967 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3968 		return (SD_FAILURE);
3969 	}
3970 	return (SD_SUCCESS);
3971 }
3972 
3973 
3974 /*
3975  *    Function: sd_set_vers1_properties
3976  *
3977  * Description: Set version 1 device properties based on a property list
3978  *		retrieved from the driver configuration file or static
3979  *		configuration table. Version 1 properties have the format:
3980  *
3981  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3982  *
3983  *		where the prop0 value will be used to set prop0 if bit0
3984  *		is set in the flags
3985  *
3986  *   Arguments: un	     - driver soft state (unit) structure
3987  *		flags	     - integer mask indicating properties to be set
3988  *		prop_list    - integer list of property values
3989  */
3990 
3991 static void
3992 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3993 {
3994 	ASSERT(un != NULL);
3995 
3996 	/*
3997 	 * Set the flag to indicate cache is to be disabled. An attempt
3998 	 * to disable the cache via sd_cache_control() will be made
3999 	 * later during attach once the basic initialization is complete.
4000 	 */
4001 	if (flags & SD_CONF_BSET_NOCACHE) {
4002 		un->un_f_opt_disable_cache = TRUE;
4003 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4004 		    "sd_set_vers1_properties: caching disabled flag set\n");
4005 	}
4006 
4007 	/* CD-specific configuration parameters */
4008 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4009 		un->un_f_cfg_playmsf_bcd = TRUE;
4010 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4011 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4012 	}
4013 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4014 		un->un_f_cfg_readsub_bcd = TRUE;
4015 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4016 		    "sd_set_vers1_properties: readsub_bcd set\n");
4017 	}
4018 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4019 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4020 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4021 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4022 	}
4023 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4024 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4025 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4026 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4027 	}
4028 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4029 		un->un_f_cfg_no_read_header = TRUE;
4030 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4031 		    "sd_set_vers1_properties: no_read_header set\n");
4032 	}
4033 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4034 		un->un_f_cfg_read_cd_xd4 = TRUE;
4035 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4036 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4037 	}
4038 
4039 	/* Support for devices which do not have valid/unique serial numbers */
4040 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4041 		un->un_f_opt_fab_devid = TRUE;
4042 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4043 		    "sd_set_vers1_properties: fab_devid bit set\n");
4044 	}
4045 
4046 	/* Support for user throttle configuration */
4047 	if (flags & SD_CONF_BSET_THROTTLE) {
4048 		ASSERT(prop_list != NULL);
4049 		un->un_saved_throttle = un->un_throttle =
4050 		    prop_list->sdt_throttle;
4051 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4052 		    "sd_set_vers1_properties: throttle set to %d\n",
4053 		    prop_list->sdt_throttle);
4054 	}
4055 
4056 	/* Set the per disk retry count according to the conf file or table. */
4057 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4058 		ASSERT(prop_list != NULL);
4059 		if (prop_list->sdt_not_rdy_retries) {
4060 			un->un_notready_retry_count =
4061 			    prop_list->sdt_not_rdy_retries;
4062 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4063 			    "sd_set_vers1_properties: not ready retry count"
4064 			    " set to %d\n", un->un_notready_retry_count);
4065 		}
4066 	}
4067 
4068 	/* The controller type is reported for generic disk driver ioctls */
4069 	if (flags & SD_CONF_BSET_CTYPE) {
4070 		ASSERT(prop_list != NULL);
4071 		switch (prop_list->sdt_ctype) {
4072 		case CTYPE_CDROM:
4073 			un->un_ctype = prop_list->sdt_ctype;
4074 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4075 			    "sd_set_vers1_properties: ctype set to "
4076 			    "CTYPE_CDROM\n");
4077 			break;
4078 		case CTYPE_CCS:
4079 			un->un_ctype = prop_list->sdt_ctype;
4080 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4081 			    "sd_set_vers1_properties: ctype set to "
4082 			    "CTYPE_CCS\n");
4083 			break;
4084 		case CTYPE_ROD:		/* RW optical */
4085 			un->un_ctype = prop_list->sdt_ctype;
4086 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4087 			    "sd_set_vers1_properties: ctype set to "
4088 			    "CTYPE_ROD\n");
4089 			break;
4090 		default:
4091 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4092 			    "sd_set_vers1_properties: Could not set "
4093 			    "invalid ctype value (%d)",
4094 			    prop_list->sdt_ctype);
4095 		}
4096 	}
4097 
4098 	/* Purple failover timeout */
4099 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4100 		ASSERT(prop_list != NULL);
4101 		un->un_busy_retry_count =
4102 		    prop_list->sdt_busy_retries;
4103 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4104 		    "sd_set_vers1_properties: "
4105 		    "busy retry count set to %d\n",
4106 		    un->un_busy_retry_count);
4107 	}
4108 
4109 	/* Purple reset retry count */
4110 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4111 		ASSERT(prop_list != NULL);
4112 		un->un_reset_retry_count =
4113 		    prop_list->sdt_reset_retries;
4114 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4115 		    "sd_set_vers1_properties: "
4116 		    "reset retry count set to %d\n",
4117 		    un->un_reset_retry_count);
4118 	}
4119 
4120 	/* Purple reservation release timeout */
4121 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4122 		ASSERT(prop_list != NULL);
4123 		un->un_reserve_release_time =
4124 		    prop_list->sdt_reserv_rel_time;
4125 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4126 		    "sd_set_vers1_properties: "
4127 		    "reservation release timeout set to %d\n",
4128 		    un->un_reserve_release_time);
4129 	}
4130 
4131 	/*
4132 	 * Driver flag telling the driver to verify that no commands are pending
4133 	 * for a device before issuing a Test Unit Ready. This is a workaround
4134 	 * for a firmware bug in some Seagate eliteI drives.
4135 	 */
4136 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4137 		un->un_f_cfg_tur_check = TRUE;
4138 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4139 		    "sd_set_vers1_properties: tur queue check set\n");
4140 	}
4141 
4142 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4143 		un->un_min_throttle = prop_list->sdt_min_throttle;
4144 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4145 		    "sd_set_vers1_properties: min throttle set to %d\n",
4146 		    un->un_min_throttle);
4147 	}
4148 
4149 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4150 		un->un_f_disksort_disabled =
4151 		    (prop_list->sdt_disk_sort_dis != 0) ?
4152 		    TRUE : FALSE;
4153 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4154 		    "sd_set_vers1_properties: disksort disabled "
4155 		    "flag set to %d\n",
4156 		    prop_list->sdt_disk_sort_dis);
4157 	}
4158 
4159 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4160 		un->un_f_lun_reset_enabled =
4161 		    (prop_list->sdt_lun_reset_enable != 0) ?
4162 		    TRUE : FALSE;
4163 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4164 		    "sd_set_vers1_properties: lun reset enabled "
4165 		    "flag set to %d\n",
4166 		    prop_list->sdt_lun_reset_enable);
4167 	}
4168 
4169 	/*
4170 	 * Validate the throttle values.
4171 	 * If any of the numbers are invalid, set everything to defaults.
4172 	 */
4173 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4174 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4175 	    (un->un_min_throttle > un->un_throttle)) {
4176 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4177 		un->un_min_throttle = sd_min_throttle;
4178 	}
4179 }
4180 
4181 /*
4182  *   Function: sd_is_lsi()
4183  *
4184  *   Description: Check for lsi devices, step through the static device
4185  *	table to match vid/pid.
4186  *
4187  *   Args: un - ptr to sd_lun
4188  *
4189  *   Notes:  When creating new LSI property, need to add the new LSI property
4190  *		to this function.
4191  */
4192 static void
4193 sd_is_lsi(struct sd_lun *un)
4194 {
4195 	char	*id = NULL;
4196 	int	table_index;
4197 	int	idlen;
4198 	void	*prop;
4199 
4200 	ASSERT(un != NULL);
4201 	for (table_index = 0; table_index < sd_disk_table_size;
4202 	    table_index++) {
4203 		id = sd_disk_table[table_index].device_id;
4204 		idlen = strlen(id);
4205 		if (idlen == 0) {
4206 			continue;
4207 		}
4208 
4209 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4210 			prop = sd_disk_table[table_index].properties;
4211 			if (prop == &lsi_properties ||
4212 			    prop == &lsi_oem_properties ||
4213 			    prop == &lsi_properties_scsi ||
4214 			    prop == &symbios_properties) {
4215 				un->un_f_cfg_is_lsi = TRUE;
4216 			}
4217 			break;
4218 		}
4219 	}
4220 }
4221 
4222 /*
4223  *    Function: sd_get_physical_geometry
4224  *
4225  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4226  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4227  *		target, and use this information to initialize the physical
4228  *		geometry cache specified by pgeom_p.
4229  *
4230  *		MODE SENSE is an optional command, so failure in this case
4231  *		does not necessarily denote an error. We want to use the
4232  *		MODE SENSE commands to derive the physical geometry of the
4233  *		device, but if either command fails, the logical geometry is
4234  *		used as the fallback for disk label geometry in cmlb.
4235  *
4236  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4237  *		have already been initialized for the current target and
4238  *		that the current values be passed as args so that we don't
4239  *		end up ever trying to use -1 as a valid value. This could
4240  *		happen if either value is reset while we're not holding
4241  *		the mutex.
4242  *
4243  *   Arguments: un - driver soft state (unit) structure
4244  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4245  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4246  *			to use the USCSI "direct" chain and bypass the normal
4247  *			command waitq.
4248  *
4249  *     Context: Kernel thread only (can sleep).
4250  */
4251 
4252 static int
4253 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4254 	diskaddr_t capacity, int lbasize, int path_flag)
4255 {
4256 	struct	mode_format	*page3p;
4257 	struct	mode_geometry	*page4p;
4258 	struct	mode_header	*headerp;
4259 	int	sector_size;
4260 	int	nsect;
4261 	int	nhead;
4262 	int	ncyl;
4263 	int	intrlv;
4264 	int	spc;
4265 	diskaddr_t	modesense_capacity;
4266 	int	rpm;
4267 	int	bd_len;
4268 	int	mode_header_length;
4269 	uchar_t	*p3bufp;
4270 	uchar_t	*p4bufp;
4271 	int	cdbsize;
4272 	int 	ret = EIO;
4273 
4274 	ASSERT(un != NULL);
4275 
4276 	if (lbasize == 0) {
4277 		if (ISCD(un)) {
4278 			lbasize = 2048;
4279 		} else {
4280 			lbasize = un->un_sys_blocksize;
4281 		}
4282 	}
4283 	pgeom_p->g_secsize = (unsigned short)lbasize;
4284 
4285 	/*
4286 	 * If the unit is a cd/dvd drive MODE SENSE page three
4287 	 * and MODE SENSE page four are reserved (see SBC spec
4288 	 * and MMC spec). To prevent soft errors just return
4289 	 * using the default LBA size.
4290 	 */
4291 	if (ISCD(un))
4292 		return (ret);
4293 
4294 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4295 
4296 	/*
4297 	 * Retrieve MODE SENSE page 3 - Format Device Page
4298 	 */
4299 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4300 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4301 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4302 	    != 0) {
4303 		SD_ERROR(SD_LOG_COMMON, un,
4304 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4305 		goto page3_exit;
4306 	}
4307 
4308 	/*
4309 	 * Determine size of Block Descriptors in order to locate the mode
4310 	 * page data.  ATAPI devices return 0, SCSI devices should return
4311 	 * MODE_BLK_DESC_LENGTH.
4312 	 */
4313 	headerp = (struct mode_header *)p3bufp;
4314 	if (un->un_f_cfg_is_atapi == TRUE) {
4315 		struct mode_header_grp2 *mhp =
4316 		    (struct mode_header_grp2 *)headerp;
4317 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4318 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4319 	} else {
4320 		mode_header_length = MODE_HEADER_LENGTH;
4321 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4322 	}
4323 
4324 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4325 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4326 		    "received unexpected bd_len of %d, page3\n", bd_len);
4327 		goto page3_exit;
4328 	}
4329 
4330 	page3p = (struct mode_format *)
4331 	    ((caddr_t)headerp + mode_header_length + bd_len);
4332 
4333 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4334 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4335 		    "mode sense pg3 code mismatch %d\n",
4336 		    page3p->mode_page.code);
4337 		goto page3_exit;
4338 	}
4339 
4340 	/*
4341 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4342 	 * complete successfully; otherwise, revert to the logical geometry.
4343 	 * So, we need to save everything in temporary variables.
4344 	 */
4345 	sector_size = BE_16(page3p->data_bytes_sect);
4346 
4347 	/*
4348 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4349 	 */
4350 	if (sector_size == 0) {
4351 		sector_size = un->un_sys_blocksize;
4352 	} else {
4353 		sector_size &= ~(un->un_sys_blocksize - 1);
4354 	}
4355 
4356 	nsect  = BE_16(page3p->sect_track);
4357 	intrlv = BE_16(page3p->interleave);
4358 
4359 	SD_INFO(SD_LOG_COMMON, un,
4360 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4361 	SD_INFO(SD_LOG_COMMON, un,
4362 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4363 	    page3p->mode_page.code, nsect, sector_size);
4364 	SD_INFO(SD_LOG_COMMON, un,
4365 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4366 	    BE_16(page3p->track_skew),
4367 	    BE_16(page3p->cylinder_skew));
4368 
4369 
4370 	/*
4371 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4372 	 */
4373 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4374 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4375 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4376 	    != 0) {
4377 		SD_ERROR(SD_LOG_COMMON, un,
4378 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4379 		goto page4_exit;
4380 	}
4381 
4382 	/*
4383 	 * Determine size of Block Descriptors in order to locate the mode
4384 	 * page data.  ATAPI devices return 0, SCSI devices should return
4385 	 * MODE_BLK_DESC_LENGTH.
4386 	 */
4387 	headerp = (struct mode_header *)p4bufp;
4388 	if (un->un_f_cfg_is_atapi == TRUE) {
4389 		struct mode_header_grp2 *mhp =
4390 		    (struct mode_header_grp2 *)headerp;
4391 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4392 	} else {
4393 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4394 	}
4395 
4396 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4397 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4398 		    "received unexpected bd_len of %d, page4\n", bd_len);
4399 		goto page4_exit;
4400 	}
4401 
4402 	page4p = (struct mode_geometry *)
4403 	    ((caddr_t)headerp + mode_header_length + bd_len);
4404 
4405 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4406 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4407 		    "mode sense pg4 code mismatch %d\n",
4408 		    page4p->mode_page.code);
4409 		goto page4_exit;
4410 	}
4411 
4412 	/*
4413 	 * Stash the data now, after we know that both commands completed.
4414 	 */
4415 
4416 
4417 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4418 	spc   = nhead * nsect;
4419 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4420 	rpm   = BE_16(page4p->rpm);
4421 
4422 	modesense_capacity = spc * ncyl;
4423 
4424 	SD_INFO(SD_LOG_COMMON, un,
4425 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4426 	SD_INFO(SD_LOG_COMMON, un,
4427 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4428 	SD_INFO(SD_LOG_COMMON, un,
4429 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4430 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4431 	    (void *)pgeom_p, capacity);
4432 
4433 	/*
4434 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4435 	 * the product of C * H * S returned by MODE SENSE >= that returned
4436 	 * by read capacity. This is an idiosyncrasy of the original x86
4437 	 * disk subsystem.
4438 	 */
4439 	if (modesense_capacity >= capacity) {
4440 		SD_INFO(SD_LOG_COMMON, un,
4441 		    "sd_get_physical_geometry: adjusting acyl; "
4442 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4443 		    (modesense_capacity - capacity + spc - 1) / spc);
4444 		if (sector_size != 0) {
4445 			/* 1243403: NEC D38x7 drives don't support sec size */
4446 			pgeom_p->g_secsize = (unsigned short)sector_size;
4447 		}
4448 		pgeom_p->g_nsect    = (unsigned short)nsect;
4449 		pgeom_p->g_nhead    = (unsigned short)nhead;
4450 		pgeom_p->g_capacity = capacity;
4451 		pgeom_p->g_acyl	    =
4452 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4453 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4454 	}
4455 
4456 	pgeom_p->g_rpm    = (unsigned short)rpm;
4457 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4458 	ret = 0;
4459 
4460 	SD_INFO(SD_LOG_COMMON, un,
4461 	    "sd_get_physical_geometry: mode sense geometry:\n");
4462 	SD_INFO(SD_LOG_COMMON, un,
4463 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4464 	    nsect, sector_size, intrlv);
4465 	SD_INFO(SD_LOG_COMMON, un,
4466 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4467 	    nhead, ncyl, rpm, modesense_capacity);
4468 	SD_INFO(SD_LOG_COMMON, un,
4469 	    "sd_get_physical_geometry: (cached)\n");
4470 	SD_INFO(SD_LOG_COMMON, un,
4471 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4472 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4473 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4474 	SD_INFO(SD_LOG_COMMON, un,
4475 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4476 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4477 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4478 
4479 page4_exit:
4480 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4481 page3_exit:
4482 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4483 
4484 	return (ret);
4485 }
4486 
4487 /*
4488  *    Function: sd_get_virtual_geometry
4489  *
4490  * Description: Ask the controller to tell us about the target device.
4491  *
4492  *   Arguments: un - pointer to softstate
4493  *		capacity - disk capacity in #blocks
4494  *		lbasize - disk block size in bytes
4495  *
4496  *     Context: Kernel thread only
4497  */
4498 
4499 static int
4500 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4501     diskaddr_t capacity, int lbasize)
4502 {
4503 	uint_t	geombuf;
4504 	int	spc;
4505 
4506 	ASSERT(un != NULL);
4507 
4508 	/* Set sector size, and total number of sectors */
4509 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4510 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4511 
4512 	/* Let the HBA tell us its geometry */
4513 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4514 
4515 	/* A value of -1 indicates an undefined "geometry" property */
4516 	if (geombuf == (-1)) {
4517 		return (EINVAL);
4518 	}
4519 
4520 	/* Initialize the logical geometry cache. */
4521 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4522 	lgeom_p->g_nsect   = geombuf & 0xffff;
4523 	lgeom_p->g_secsize = un->un_sys_blocksize;
4524 
4525 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4526 
4527 	/*
4528 	 * Note: The driver originally converted the capacity value from
4529 	 * target blocks to system blocks. However, the capacity value passed
4530 	 * to this routine is already in terms of system blocks (this scaling
4531 	 * is done when the READ CAPACITY command is issued and processed).
4532 	 * This 'error' may have gone undetected because the usage of g_ncyl
4533 	 * (which is based upon g_capacity) is very limited within the driver
4534 	 */
4535 	lgeom_p->g_capacity = capacity;
4536 
4537 	/*
4538 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4539 	 * hba may return zero values if the device has been removed.
4540 	 */
4541 	if (spc == 0) {
4542 		lgeom_p->g_ncyl = 0;
4543 	} else {
4544 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4545 	}
4546 	lgeom_p->g_acyl = 0;
4547 
4548 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4549 	return (0);
4550 
4551 }
4552 /*
4553  *    Function: sd_update_block_info
4554  *
4555  * Description: Calculate a byte count to sector count bitshift value
4556  *		from sector size.
4557  *
4558  *   Arguments: un: unit struct.
4559  *		lbasize: new target sector size
4560  *		capacity: new target capacity, ie. block count
4561  *
4562  *     Context: Kernel thread context
4563  */
4564 
4565 static void
4566 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4567 {
4568 	uint_t		dblk;
4569 
4570 	if (lbasize != 0) {
4571 		un->un_tgt_blocksize = lbasize;
4572 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4573 	}
4574 
4575 	if (capacity != 0) {
4576 		un->un_blockcount		= capacity;
4577 		un->un_f_blockcount_is_valid	= TRUE;
4578 	}
4579 
4580 	/*
4581 	 * Update device capacity properties.
4582 	 *
4583 	 *   'device-nblocks'	number of blocks in target's units
4584 	 *   'device-blksize'	data bearing size of target's block
4585 	 *
4586 	 * NOTE: math is complicated by the fact that un_tgt_blocksize may
4587 	 * not be a power of two for checksumming disks with 520/528 byte
4588 	 * sectors.
4589 	 */
4590 	if (un->un_f_tgt_blocksize_is_valid &&
4591 	    un->un_f_blockcount_is_valid &&
4592 	    un->un_sys_blocksize) {
4593 		dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
4594 		(void) ddi_prop_update_int64(DDI_DEV_T_NONE, SD_DEVINFO(un),
4595 		    "device-nblocks", un->un_blockcount / dblk);
4596 		/*
4597 		 * To save memory, only define "device-blksize" when its
4598 		 * value is differnet than the default DEV_BSIZE value.
4599 		 */
4600 		if ((un->un_sys_blocksize * dblk) != DEV_BSIZE)
4601 			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
4602 			    SD_DEVINFO(un), "device-blksize",
4603 			    un->un_sys_blocksize * dblk);
4604 	}
4605 }
4606 
4607 
4608 /*
4609  *    Function: sd_register_devid
4610  *
4611  * Description: This routine will obtain the device id information from the
4612  *		target, obtain the serial number, and register the device
4613  *		id with the ddi framework.
4614  *
4615  *   Arguments: devi - the system's dev_info_t for the device.
4616  *		un - driver soft state (unit) structure
4617  *		reservation_flag - indicates if a reservation conflict
4618  *		occurred during attach
4619  *
4620  *     Context: Kernel Thread
4621  */
4622 static void
4623 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4624 {
4625 	int		rval		= 0;
4626 	uchar_t		*inq80		= NULL;
4627 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4628 	size_t		inq80_resid	= 0;
4629 	uchar_t		*inq83		= NULL;
4630 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4631 	size_t		inq83_resid	= 0;
4632 	int		dlen, len;
4633 	char		*sn;
4634 
4635 	ASSERT(un != NULL);
4636 	ASSERT(mutex_owned(SD_MUTEX(un)));
4637 	ASSERT((SD_DEVINFO(un)) == devi);
4638 
4639 	/*
4640 	 * If transport has already registered a devid for this target
4641 	 * then that takes precedence over the driver's determination
4642 	 * of the devid.
4643 	 */
4644 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
4645 		ASSERT(un->un_devid);
4646 		return; /* use devid registered by the transport */
4647 	}
4648 
4649 	/*
4650 	 * This is the case of antiquated Sun disk drives that have the
4651 	 * FAB_DEVID property set in the disk_table.  These drives
4652 	 * manage the devid's by storing them in last 2 available sectors
4653 	 * on the drive and have them fabricated by the ddi layer by calling
4654 	 * ddi_devid_init and passing the DEVID_FAB flag.
4655 	 */
4656 	if (un->un_f_opt_fab_devid == TRUE) {
4657 		/*
4658 		 * Depending on EINVAL isn't reliable, since a reserved disk
4659 		 * may result in invalid geometry, so check to make sure a
4660 		 * reservation conflict did not occur during attach.
4661 		 */
4662 		if ((sd_get_devid(un) == EINVAL) &&
4663 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4664 			/*
4665 			 * The devid is invalid AND there is no reservation
4666 			 * conflict.  Fabricate a new devid.
4667 			 */
4668 			(void) sd_create_devid(un);
4669 		}
4670 
4671 		/* Register the devid if it exists */
4672 		if (un->un_devid != NULL) {
4673 			(void) ddi_devid_register(SD_DEVINFO(un),
4674 			    un->un_devid);
4675 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4676 			    "sd_register_devid: Devid Fabricated\n");
4677 		}
4678 		return;
4679 	}
4680 
4681 	/*
4682 	 * We check the availibility of the World Wide Name (0x83) and Unit
4683 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4684 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4685 	 * 0x83 is availible, that is the best choice.  Our next choice is
4686 	 * 0x80.  If neither are availible, we munge the devid from the device
4687 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4688 	 * to fabricate a devid for non-Sun qualified disks.
4689 	 */
4690 	if (sd_check_vpd_page_support(un) == 0) {
4691 		/* collect page 80 data if available */
4692 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4693 
4694 			mutex_exit(SD_MUTEX(un));
4695 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4696 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4697 			    0x01, 0x80, &inq80_resid);
4698 
4699 			if (rval != 0) {
4700 				kmem_free(inq80, inq80_len);
4701 				inq80 = NULL;
4702 				inq80_len = 0;
4703 			} else if (ddi_prop_exists(
4704 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
4705 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
4706 			    INQUIRY_SERIAL_NO) == 0) {
4707 				/*
4708 				 * If we don't already have a serial number
4709 				 * property, do quick verify of data returned
4710 				 * and define property.
4711 				 */
4712 				dlen = inq80_len - inq80_resid;
4713 				len = (size_t)inq80[3];
4714 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
4715 					/*
4716 					 * Ensure sn termination, skip leading
4717 					 * blanks, and create property
4718 					 * 'inquiry-serial-no'.
4719 					 */
4720 					sn = (char *)&inq80[4];
4721 					sn[len] = 0;
4722 					while (*sn && (*sn == ' '))
4723 						sn++;
4724 					if (*sn) {
4725 						(void) ddi_prop_update_string(
4726 						    DDI_DEV_T_NONE,
4727 						    SD_DEVINFO(un),
4728 						    INQUIRY_SERIAL_NO, sn);
4729 					}
4730 				}
4731 			}
4732 			mutex_enter(SD_MUTEX(un));
4733 		}
4734 
4735 		/* collect page 83 data if available */
4736 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4737 			mutex_exit(SD_MUTEX(un));
4738 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4739 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4740 			    0x01, 0x83, &inq83_resid);
4741 
4742 			if (rval != 0) {
4743 				kmem_free(inq83, inq83_len);
4744 				inq83 = NULL;
4745 				inq83_len = 0;
4746 			}
4747 			mutex_enter(SD_MUTEX(un));
4748 		}
4749 	}
4750 
4751 	/* encode best devid possible based on data available */
4752 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4753 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4754 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4755 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4756 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4757 
4758 		/* devid successfully encoded, register devid */
4759 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4760 
4761 	} else {
4762 		/*
4763 		 * Unable to encode a devid based on data available.
4764 		 * This is not a Sun qualified disk.  Older Sun disk
4765 		 * drives that have the SD_FAB_DEVID property
4766 		 * set in the disk_table and non Sun qualified
4767 		 * disks are treated in the same manner.  These
4768 		 * drives manage the devid's by storing them in
4769 		 * last 2 available sectors on the drive and
4770 		 * have them fabricated by the ddi layer by
4771 		 * calling ddi_devid_init and passing the
4772 		 * DEVID_FAB flag.
4773 		 * Create a fabricate devid only if there's no
4774 		 * fabricate devid existed.
4775 		 */
4776 		if (sd_get_devid(un) == EINVAL) {
4777 			(void) sd_create_devid(un);
4778 		}
4779 		un->un_f_opt_fab_devid = TRUE;
4780 
4781 		/* Register the devid if it exists */
4782 		if (un->un_devid != NULL) {
4783 			(void) ddi_devid_register(SD_DEVINFO(un),
4784 			    un->un_devid);
4785 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4786 			    "sd_register_devid: devid fabricated using "
4787 			    "ddi framework\n");
4788 		}
4789 	}
4790 
4791 	/* clean up resources */
4792 	if (inq80 != NULL) {
4793 		kmem_free(inq80, inq80_len);
4794 	}
4795 	if (inq83 != NULL) {
4796 		kmem_free(inq83, inq83_len);
4797 	}
4798 }
4799 
4800 
4801 
4802 /*
4803  *    Function: sd_get_devid
4804  *
4805  * Description: This routine will return 0 if a valid device id has been
4806  *		obtained from the target and stored in the soft state. If a
4807  *		valid device id has not been previously read and stored, a
4808  *		read attempt will be made.
4809  *
4810  *   Arguments: un - driver soft state (unit) structure
4811  *
4812  * Return Code: 0 if we successfully get the device id
4813  *
4814  *     Context: Kernel Thread
4815  */
4816 
4817 static int
4818 sd_get_devid(struct sd_lun *un)
4819 {
4820 	struct dk_devid		*dkdevid;
4821 	ddi_devid_t		tmpid;
4822 	uint_t			*ip;
4823 	size_t			sz;
4824 	diskaddr_t		blk;
4825 	int			status;
4826 	int			chksum;
4827 	int			i;
4828 	size_t			buffer_size;
4829 
4830 	ASSERT(un != NULL);
4831 	ASSERT(mutex_owned(SD_MUTEX(un)));
4832 
4833 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4834 	    un);
4835 
4836 	if (un->un_devid != NULL) {
4837 		return (0);
4838 	}
4839 
4840 	mutex_exit(SD_MUTEX(un));
4841 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4842 	    (void *)SD_PATH_DIRECT) != 0) {
4843 		mutex_enter(SD_MUTEX(un));
4844 		return (EINVAL);
4845 	}
4846 
4847 	/*
4848 	 * Read and verify device id, stored in the reserved cylinders at the
4849 	 * end of the disk. Backup label is on the odd sectors of the last
4850 	 * track of the last cylinder. Device id will be on track of the next
4851 	 * to last cylinder.
4852 	 */
4853 	mutex_enter(SD_MUTEX(un));
4854 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4855 	mutex_exit(SD_MUTEX(un));
4856 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4857 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4858 	    SD_PATH_DIRECT);
4859 	if (status != 0) {
4860 		goto error;
4861 	}
4862 
4863 	/* Validate the revision */
4864 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4865 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4866 		status = EINVAL;
4867 		goto error;
4868 	}
4869 
4870 	/* Calculate the checksum */
4871 	chksum = 0;
4872 	ip = (uint_t *)dkdevid;
4873 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4874 	    i++) {
4875 		chksum ^= ip[i];
4876 	}
4877 
4878 	/* Compare the checksums */
4879 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4880 		status = EINVAL;
4881 		goto error;
4882 	}
4883 
4884 	/* Validate the device id */
4885 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4886 		status = EINVAL;
4887 		goto error;
4888 	}
4889 
4890 	/*
4891 	 * Store the device id in the driver soft state
4892 	 */
4893 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4894 	tmpid = kmem_alloc(sz, KM_SLEEP);
4895 
4896 	mutex_enter(SD_MUTEX(un));
4897 
4898 	un->un_devid = tmpid;
4899 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4900 
4901 	kmem_free(dkdevid, buffer_size);
4902 
4903 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4904 
4905 	return (status);
4906 error:
4907 	mutex_enter(SD_MUTEX(un));
4908 	kmem_free(dkdevid, buffer_size);
4909 	return (status);
4910 }
4911 
4912 
4913 /*
4914  *    Function: sd_create_devid
4915  *
4916  * Description: This routine will fabricate the device id and write it
4917  *		to the disk.
4918  *
4919  *   Arguments: un - driver soft state (unit) structure
4920  *
4921  * Return Code: value of the fabricated device id
4922  *
4923  *     Context: Kernel Thread
4924  */
4925 
4926 static ddi_devid_t
4927 sd_create_devid(struct sd_lun *un)
4928 {
4929 	ASSERT(un != NULL);
4930 
4931 	/* Fabricate the devid */
4932 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4933 	    == DDI_FAILURE) {
4934 		return (NULL);
4935 	}
4936 
4937 	/* Write the devid to disk */
4938 	if (sd_write_deviceid(un) != 0) {
4939 		ddi_devid_free(un->un_devid);
4940 		un->un_devid = NULL;
4941 	}
4942 
4943 	return (un->un_devid);
4944 }
4945 
4946 
4947 /*
4948  *    Function: sd_write_deviceid
4949  *
4950  * Description: This routine will write the device id to the disk
4951  *		reserved sector.
4952  *
4953  *   Arguments: un - driver soft state (unit) structure
4954  *
4955  * Return Code: EINVAL
4956  *		value returned by sd_send_scsi_cmd
4957  *
4958  *     Context: Kernel Thread
4959  */
4960 
4961 static int
4962 sd_write_deviceid(struct sd_lun *un)
4963 {
4964 	struct dk_devid		*dkdevid;
4965 	diskaddr_t		blk;
4966 	uint_t			*ip, chksum;
4967 	int			status;
4968 	int			i;
4969 
4970 	ASSERT(mutex_owned(SD_MUTEX(un)));
4971 
4972 	mutex_exit(SD_MUTEX(un));
4973 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4974 	    (void *)SD_PATH_DIRECT) != 0) {
4975 		mutex_enter(SD_MUTEX(un));
4976 		return (-1);
4977 	}
4978 
4979 
4980 	/* Allocate the buffer */
4981 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
4982 
4983 	/* Fill in the revision */
4984 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
4985 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
4986 
4987 	/* Copy in the device id */
4988 	mutex_enter(SD_MUTEX(un));
4989 	bcopy(un->un_devid, &dkdevid->dkd_devid,
4990 	    ddi_devid_sizeof(un->un_devid));
4991 	mutex_exit(SD_MUTEX(un));
4992 
4993 	/* Calculate the checksum */
4994 	chksum = 0;
4995 	ip = (uint_t *)dkdevid;
4996 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4997 	    i++) {
4998 		chksum ^= ip[i];
4999 	}
5000 
5001 	/* Fill-in checksum */
5002 	DKD_FORMCHKSUM(chksum, dkdevid);
5003 
5004 	/* Write the reserved sector */
5005 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
5006 	    SD_PATH_DIRECT);
5007 
5008 	kmem_free(dkdevid, un->un_sys_blocksize);
5009 
5010 	mutex_enter(SD_MUTEX(un));
5011 	return (status);
5012 }
5013 
5014 
5015 /*
5016  *    Function: sd_check_vpd_page_support
5017  *
5018  * Description: This routine sends an inquiry command with the EVPD bit set and
5019  *		a page code of 0x00 to the device. It is used to determine which
5020  *		vital product pages are availible to find the devid. We are
5021  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5022  *		device does not support that command.
5023  *
5024  *   Arguments: un  - driver soft state (unit) structure
5025  *
5026  * Return Code: 0 - success
5027  *		1 - check condition
5028  *
5029  *     Context: This routine can sleep.
5030  */
5031 
5032 static int
5033 sd_check_vpd_page_support(struct sd_lun *un)
5034 {
5035 	uchar_t	*page_list	= NULL;
5036 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5037 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5038 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5039 	int    	rval		= 0;
5040 	int	counter;
5041 
5042 	ASSERT(un != NULL);
5043 	ASSERT(mutex_owned(SD_MUTEX(un)));
5044 
5045 	mutex_exit(SD_MUTEX(un));
5046 
5047 	/*
5048 	 * We'll set the page length to the maximum to save figuring it out
5049 	 * with an additional call.
5050 	 */
5051 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5052 
5053 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
5054 	    page_code, NULL);
5055 
5056 	mutex_enter(SD_MUTEX(un));
5057 
5058 	/*
5059 	 * Now we must validate that the device accepted the command, as some
5060 	 * drives do not support it.  If the drive does support it, we will
5061 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5062 	 * not, we return -1.
5063 	 */
5064 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5065 		/* Loop to find one of the 2 pages we need */
5066 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5067 
5068 		/*
5069 		 * Pages are returned in ascending order, and 0x83 is what we
5070 		 * are hoping for.
5071 		 */
5072 		while ((page_list[counter] <= 0x83) &&
5073 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5074 		    VPD_HEAD_OFFSET))) {
5075 			/*
5076 			 * Add 3 because page_list[3] is the number of
5077 			 * pages minus 3
5078 			 */
5079 
5080 			switch (page_list[counter]) {
5081 			case 0x00:
5082 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5083 				break;
5084 			case 0x80:
5085 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5086 				break;
5087 			case 0x81:
5088 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5089 				break;
5090 			case 0x82:
5091 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5092 				break;
5093 			case 0x83:
5094 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5095 				break;
5096 			}
5097 			counter++;
5098 		}
5099 
5100 	} else {
5101 		rval = -1;
5102 
5103 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5104 		    "sd_check_vpd_page_support: This drive does not implement "
5105 		    "VPD pages.\n");
5106 	}
5107 
5108 	kmem_free(page_list, page_length);
5109 
5110 	return (rval);
5111 }
5112 
5113 
5114 /*
5115  *    Function: sd_setup_pm
5116  *
5117  * Description: Initialize Power Management on the device
5118  *
5119  *     Context: Kernel Thread
5120  */
5121 
5122 static void
5123 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5124 {
5125 	uint_t	log_page_size;
5126 	uchar_t	*log_page_data;
5127 	int	rval;
5128 
5129 	/*
5130 	 * Since we are called from attach, holding a mutex for
5131 	 * un is unnecessary. Because some of the routines called
5132 	 * from here require SD_MUTEX to not be held, assert this
5133 	 * right up front.
5134 	 */
5135 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5136 	/*
5137 	 * Since the sd device does not have the 'reg' property,
5138 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5139 	 * The following code is to tell cpr that this device
5140 	 * DOES need to be suspended and resumed.
5141 	 */
5142 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5143 	    "pm-hardware-state", "needs-suspend-resume");
5144 
5145 	/*
5146 	 * This complies with the new power management framework
5147 	 * for certain desktop machines. Create the pm_components
5148 	 * property as a string array property.
5149 	 */
5150 	if (un->un_f_pm_supported) {
5151 		/*
5152 		 * not all devices have a motor, try it first.
5153 		 * some devices may return ILLEGAL REQUEST, some
5154 		 * will hang
5155 		 * The following START_STOP_UNIT is used to check if target
5156 		 * device has a motor.
5157 		 */
5158 		un->un_f_start_stop_supported = TRUE;
5159 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5160 		    SD_PATH_DIRECT) != 0) {
5161 			un->un_f_start_stop_supported = FALSE;
5162 		}
5163 
5164 		/*
5165 		 * create pm properties anyways otherwise the parent can't
5166 		 * go to sleep
5167 		 */
5168 		(void) sd_create_pm_components(devi, un);
5169 		un->un_f_pm_is_enabled = TRUE;
5170 		return;
5171 	}
5172 
5173 	if (!un->un_f_log_sense_supported) {
5174 		un->un_power_level = SD_SPINDLE_ON;
5175 		un->un_f_pm_is_enabled = FALSE;
5176 		return;
5177 	}
5178 
5179 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5180 
5181 #ifdef	SDDEBUG
5182 	if (sd_force_pm_supported) {
5183 		/* Force a successful result */
5184 		rval = 1;
5185 	}
5186 #endif
5187 
5188 	/*
5189 	 * If the start-stop cycle counter log page is not supported
5190 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5191 	 * then we should not create the pm_components property.
5192 	 */
5193 	if (rval == -1) {
5194 		/*
5195 		 * Error.
5196 		 * Reading log sense failed, most likely this is
5197 		 * an older drive that does not support log sense.
5198 		 * If this fails auto-pm is not supported.
5199 		 */
5200 		un->un_power_level = SD_SPINDLE_ON;
5201 		un->un_f_pm_is_enabled = FALSE;
5202 
5203 	} else if (rval == 0) {
5204 		/*
5205 		 * Page not found.
5206 		 * The start stop cycle counter is implemented as page
5207 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5208 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5209 		 */
5210 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5211 			/*
5212 			 * Page found, use this one.
5213 			 */
5214 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5215 			un->un_f_pm_is_enabled = TRUE;
5216 		} else {
5217 			/*
5218 			 * Error or page not found.
5219 			 * auto-pm is not supported for this device.
5220 			 */
5221 			un->un_power_level = SD_SPINDLE_ON;
5222 			un->un_f_pm_is_enabled = FALSE;
5223 		}
5224 	} else {
5225 		/*
5226 		 * Page found, use it.
5227 		 */
5228 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5229 		un->un_f_pm_is_enabled = TRUE;
5230 	}
5231 
5232 
5233 	if (un->un_f_pm_is_enabled == TRUE) {
5234 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5235 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5236 
5237 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5238 		    log_page_size, un->un_start_stop_cycle_page,
5239 		    0x01, 0, SD_PATH_DIRECT);
5240 #ifdef	SDDEBUG
5241 		if (sd_force_pm_supported) {
5242 			/* Force a successful result */
5243 			rval = 0;
5244 		}
5245 #endif
5246 
5247 		/*
5248 		 * If the Log sense for Page( Start/stop cycle counter page)
5249 		 * succeeds, then power managment is supported and we can
5250 		 * enable auto-pm.
5251 		 */
5252 		if (rval == 0)  {
5253 			(void) sd_create_pm_components(devi, un);
5254 		} else {
5255 			un->un_power_level = SD_SPINDLE_ON;
5256 			un->un_f_pm_is_enabled = FALSE;
5257 		}
5258 
5259 		kmem_free(log_page_data, log_page_size);
5260 	}
5261 }
5262 
5263 
5264 /*
5265  *    Function: sd_create_pm_components
5266  *
5267  * Description: Initialize PM property.
5268  *
5269  *     Context: Kernel thread context
5270  */
5271 
5272 static void
5273 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5274 {
5275 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5276 
5277 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5278 
5279 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5280 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5281 		/*
5282 		 * When components are initially created they are idle,
5283 		 * power up any non-removables.
5284 		 * Note: the return value of pm_raise_power can't be used
5285 		 * for determining if PM should be enabled for this device.
5286 		 * Even if you check the return values and remove this
5287 		 * property created above, the PM framework will not honor the
5288 		 * change after the first call to pm_raise_power. Hence,
5289 		 * removal of that property does not help if pm_raise_power
5290 		 * fails. In the case of removable media, the start/stop
5291 		 * will fail if the media is not present.
5292 		 */
5293 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5294 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5295 			mutex_enter(SD_MUTEX(un));
5296 			un->un_power_level = SD_SPINDLE_ON;
5297 			mutex_enter(&un->un_pm_mutex);
5298 			/* Set to on and not busy. */
5299 			un->un_pm_count = 0;
5300 		} else {
5301 			mutex_enter(SD_MUTEX(un));
5302 			un->un_power_level = SD_SPINDLE_OFF;
5303 			mutex_enter(&un->un_pm_mutex);
5304 			/* Set to off. */
5305 			un->un_pm_count = -1;
5306 		}
5307 		mutex_exit(&un->un_pm_mutex);
5308 		mutex_exit(SD_MUTEX(un));
5309 	} else {
5310 		un->un_power_level = SD_SPINDLE_ON;
5311 		un->un_f_pm_is_enabled = FALSE;
5312 	}
5313 }
5314 
5315 
5316 /*
5317  *    Function: sd_ddi_suspend
5318  *
5319  * Description: Performs system power-down operations. This includes
5320  *		setting the drive state to indicate its suspended so
5321  *		that no new commands will be accepted. Also, wait for
5322  *		all commands that are in transport or queued to a timer
5323  *		for retry to complete. All timeout threads are cancelled.
5324  *
5325  * Return Code: DDI_FAILURE or DDI_SUCCESS
5326  *
5327  *     Context: Kernel thread context
5328  */
5329 
5330 static int
5331 sd_ddi_suspend(dev_info_t *devi)
5332 {
5333 	struct	sd_lun	*un;
5334 	clock_t		wait_cmds_complete;
5335 
5336 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5337 	if (un == NULL) {
5338 		return (DDI_FAILURE);
5339 	}
5340 
5341 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5342 
5343 	mutex_enter(SD_MUTEX(un));
5344 
5345 	/* Return success if the device is already suspended. */
5346 	if (un->un_state == SD_STATE_SUSPENDED) {
5347 		mutex_exit(SD_MUTEX(un));
5348 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5349 		    "device already suspended, exiting\n");
5350 		return (DDI_SUCCESS);
5351 	}
5352 
5353 	/* Return failure if the device is being used by HA */
5354 	if (un->un_resvd_status &
5355 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5356 		mutex_exit(SD_MUTEX(un));
5357 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5358 		    "device in use by HA, exiting\n");
5359 		return (DDI_FAILURE);
5360 	}
5361 
5362 	/*
5363 	 * Return failure if the device is in a resource wait
5364 	 * or power changing state.
5365 	 */
5366 	if ((un->un_state == SD_STATE_RWAIT) ||
5367 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5368 		mutex_exit(SD_MUTEX(un));
5369 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5370 		    "device in resource wait state, exiting\n");
5371 		return (DDI_FAILURE);
5372 	}
5373 
5374 
5375 	un->un_save_state = un->un_last_state;
5376 	New_state(un, SD_STATE_SUSPENDED);
5377 
5378 	/*
5379 	 * Wait for all commands that are in transport or queued to a timer
5380 	 * for retry to complete.
5381 	 *
5382 	 * While waiting, no new commands will be accepted or sent because of
5383 	 * the new state we set above.
5384 	 *
5385 	 * Wait till current operation has completed. If we are in the resource
5386 	 * wait state (with an intr outstanding) then we need to wait till the
5387 	 * intr completes and starts the next cmd. We want to wait for
5388 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5389 	 */
5390 	wait_cmds_complete = ddi_get_lbolt() +
5391 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5392 
5393 	while (un->un_ncmds_in_transport != 0) {
5394 		/*
5395 		 * Fail if commands do not finish in the specified time.
5396 		 */
5397 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5398 		    wait_cmds_complete) == -1) {
5399 			/*
5400 			 * Undo the state changes made above. Everything
5401 			 * must go back to it's original value.
5402 			 */
5403 			Restore_state(un);
5404 			un->un_last_state = un->un_save_state;
5405 			/* Wake up any threads that might be waiting. */
5406 			cv_broadcast(&un->un_suspend_cv);
5407 			mutex_exit(SD_MUTEX(un));
5408 			SD_ERROR(SD_LOG_IO_PM, un,
5409 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5410 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5411 			return (DDI_FAILURE);
5412 		}
5413 	}
5414 
5415 	/*
5416 	 * Cancel SCSI watch thread and timeouts, if any are active
5417 	 */
5418 
5419 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5420 		opaque_t temp_token = un->un_swr_token;
5421 		mutex_exit(SD_MUTEX(un));
5422 		scsi_watch_suspend(temp_token);
5423 		mutex_enter(SD_MUTEX(un));
5424 	}
5425 
5426 	if (un->un_reset_throttle_timeid != NULL) {
5427 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5428 		un->un_reset_throttle_timeid = NULL;
5429 		mutex_exit(SD_MUTEX(un));
5430 		(void) untimeout(temp_id);
5431 		mutex_enter(SD_MUTEX(un));
5432 	}
5433 
5434 	if (un->un_dcvb_timeid != NULL) {
5435 		timeout_id_t temp_id = un->un_dcvb_timeid;
5436 		un->un_dcvb_timeid = NULL;
5437 		mutex_exit(SD_MUTEX(un));
5438 		(void) untimeout(temp_id);
5439 		mutex_enter(SD_MUTEX(un));
5440 	}
5441 
5442 	mutex_enter(&un->un_pm_mutex);
5443 	if (un->un_pm_timeid != NULL) {
5444 		timeout_id_t temp_id = un->un_pm_timeid;
5445 		un->un_pm_timeid = NULL;
5446 		mutex_exit(&un->un_pm_mutex);
5447 		mutex_exit(SD_MUTEX(un));
5448 		(void) untimeout(temp_id);
5449 		mutex_enter(SD_MUTEX(un));
5450 	} else {
5451 		mutex_exit(&un->un_pm_mutex);
5452 	}
5453 
5454 	if (un->un_retry_timeid != NULL) {
5455 		timeout_id_t temp_id = un->un_retry_timeid;
5456 		un->un_retry_timeid = NULL;
5457 		mutex_exit(SD_MUTEX(un));
5458 		(void) untimeout(temp_id);
5459 		mutex_enter(SD_MUTEX(un));
5460 	}
5461 
5462 	if (un->un_direct_priority_timeid != NULL) {
5463 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5464 		un->un_direct_priority_timeid = NULL;
5465 		mutex_exit(SD_MUTEX(un));
5466 		(void) untimeout(temp_id);
5467 		mutex_enter(SD_MUTEX(un));
5468 	}
5469 
5470 	if (un->un_f_is_fibre == TRUE) {
5471 		/*
5472 		 * Remove callbacks for insert and remove events
5473 		 */
5474 		if (un->un_insert_event != NULL) {
5475 			mutex_exit(SD_MUTEX(un));
5476 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5477 			mutex_enter(SD_MUTEX(un));
5478 			un->un_insert_event = NULL;
5479 		}
5480 
5481 		if (un->un_remove_event != NULL) {
5482 			mutex_exit(SD_MUTEX(un));
5483 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5484 			mutex_enter(SD_MUTEX(un));
5485 			un->un_remove_event = NULL;
5486 		}
5487 	}
5488 
5489 	mutex_exit(SD_MUTEX(un));
5490 
5491 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5492 
5493 	return (DDI_SUCCESS);
5494 }
5495 
5496 
5497 /*
5498  *    Function: sd_ddi_pm_suspend
5499  *
5500  * Description: Set the drive state to low power.
5501  *		Someone else is required to actually change the drive
5502  *		power level.
5503  *
5504  *   Arguments: un - driver soft state (unit) structure
5505  *
5506  * Return Code: DDI_FAILURE or DDI_SUCCESS
5507  *
5508  *     Context: Kernel thread context
5509  */
5510 
5511 static int
5512 sd_ddi_pm_suspend(struct sd_lun *un)
5513 {
5514 	ASSERT(un != NULL);
5515 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5516 
5517 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5518 	mutex_enter(SD_MUTEX(un));
5519 
5520 	/*
5521 	 * Exit if power management is not enabled for this device, or if
5522 	 * the device is being used by HA.
5523 	 */
5524 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5525 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5526 		mutex_exit(SD_MUTEX(un));
5527 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5528 		return (DDI_SUCCESS);
5529 	}
5530 
5531 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5532 	    un->un_ncmds_in_driver);
5533 
5534 	/*
5535 	 * See if the device is not busy, ie.:
5536 	 *    - we have no commands in the driver for this device
5537 	 *    - not waiting for resources
5538 	 */
5539 	if ((un->un_ncmds_in_driver == 0) &&
5540 	    (un->un_state != SD_STATE_RWAIT)) {
5541 		/*
5542 		 * The device is not busy, so it is OK to go to low power state.
5543 		 * Indicate low power, but rely on someone else to actually
5544 		 * change it.
5545 		 */
5546 		mutex_enter(&un->un_pm_mutex);
5547 		un->un_pm_count = -1;
5548 		mutex_exit(&un->un_pm_mutex);
5549 		un->un_power_level = SD_SPINDLE_OFF;
5550 	}
5551 
5552 	mutex_exit(SD_MUTEX(un));
5553 
5554 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5555 
5556 	return (DDI_SUCCESS);
5557 }
5558 
5559 
5560 /*
5561  *    Function: sd_ddi_resume
5562  *
5563  * Description: Performs system power-up operations..
5564  *
5565  * Return Code: DDI_SUCCESS
5566  *		DDI_FAILURE
5567  *
5568  *     Context: Kernel thread context
5569  */
5570 
5571 static int
5572 sd_ddi_resume(dev_info_t *devi)
5573 {
5574 	struct	sd_lun	*un;
5575 
5576 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5577 	if (un == NULL) {
5578 		return (DDI_FAILURE);
5579 	}
5580 
5581 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5582 
5583 	mutex_enter(SD_MUTEX(un));
5584 	Restore_state(un);
5585 
5586 	/*
5587 	 * Restore the state which was saved to give the
5588 	 * the right state in un_last_state
5589 	 */
5590 	un->un_last_state = un->un_save_state;
5591 	/*
5592 	 * Note: throttle comes back at full.
5593 	 * Also note: this MUST be done before calling pm_raise_power
5594 	 * otherwise the system can get hung in biowait. The scenario where
5595 	 * this'll happen is under cpr suspend. Writing of the system
5596 	 * state goes through sddump, which writes 0 to un_throttle. If
5597 	 * writing the system state then fails, example if the partition is
5598 	 * too small, then cpr attempts a resume. If throttle isn't restored
5599 	 * from the saved value until after calling pm_raise_power then
5600 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5601 	 * in biowait.
5602 	 */
5603 	un->un_throttle = un->un_saved_throttle;
5604 
5605 	/*
5606 	 * The chance of failure is very rare as the only command done in power
5607 	 * entry point is START command when you transition from 0->1 or
5608 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5609 	 * which suspend was done. Ignore the return value as the resume should
5610 	 * not be failed. In the case of removable media the media need not be
5611 	 * inserted and hence there is a chance that raise power will fail with
5612 	 * media not present.
5613 	 */
5614 	if (un->un_f_attach_spinup) {
5615 		mutex_exit(SD_MUTEX(un));
5616 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5617 		mutex_enter(SD_MUTEX(un));
5618 	}
5619 
5620 	/*
5621 	 * Don't broadcast to the suspend cv and therefore possibly
5622 	 * start I/O until after power has been restored.
5623 	 */
5624 	cv_broadcast(&un->un_suspend_cv);
5625 	cv_broadcast(&un->un_state_cv);
5626 
5627 	/* restart thread */
5628 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5629 		scsi_watch_resume(un->un_swr_token);
5630 	}
5631 
5632 #if (defined(__fibre))
5633 	if (un->un_f_is_fibre == TRUE) {
5634 		/*
5635 		 * Add callbacks for insert and remove events
5636 		 */
5637 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5638 			sd_init_event_callbacks(un);
5639 		}
5640 	}
5641 #endif
5642 
5643 	/*
5644 	 * Transport any pending commands to the target.
5645 	 *
5646 	 * If this is a low-activity device commands in queue will have to wait
5647 	 * until new commands come in, which may take awhile. Also, we
5648 	 * specifically don't check un_ncmds_in_transport because we know that
5649 	 * there really are no commands in progress after the unit was
5650 	 * suspended and we could have reached the throttle level, been
5651 	 * suspended, and have no new commands coming in for awhile. Highly
5652 	 * unlikely, but so is the low-activity disk scenario.
5653 	 */
5654 	ddi_xbuf_dispatch(un->un_xbuf_attr);
5655 
5656 	sd_start_cmds(un, NULL);
5657 	mutex_exit(SD_MUTEX(un));
5658 
5659 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5660 
5661 	return (DDI_SUCCESS);
5662 }
5663 
5664 
5665 /*
5666  *    Function: sd_ddi_pm_resume
5667  *
5668  * Description: Set the drive state to powered on.
5669  *		Someone else is required to actually change the drive
5670  *		power level.
5671  *
5672  *   Arguments: un - driver soft state (unit) structure
5673  *
5674  * Return Code: DDI_SUCCESS
5675  *
5676  *     Context: Kernel thread context
5677  */
5678 
5679 static int
5680 sd_ddi_pm_resume(struct sd_lun *un)
5681 {
5682 	ASSERT(un != NULL);
5683 
5684 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5685 	mutex_enter(SD_MUTEX(un));
5686 	un->un_power_level = SD_SPINDLE_ON;
5687 
5688 	ASSERT(!mutex_owned(&un->un_pm_mutex));
5689 	mutex_enter(&un->un_pm_mutex);
5690 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5691 		un->un_pm_count++;
5692 		ASSERT(un->un_pm_count == 0);
5693 		/*
5694 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5695 		 * un_suspend_cv is for a system resume, not a power management
5696 		 * device resume. (4297749)
5697 		 *	 cv_broadcast(&un->un_suspend_cv);
5698 		 */
5699 	}
5700 	mutex_exit(&un->un_pm_mutex);
5701 	mutex_exit(SD_MUTEX(un));
5702 
5703 	return (DDI_SUCCESS);
5704 }
5705 
5706 
5707 /*
5708  *    Function: sd_pm_idletimeout_handler
5709  *
5710  * Description: A timer routine that's active only while a device is busy.
5711  *		The purpose is to extend slightly the pm framework's busy
5712  *		view of the device to prevent busy/idle thrashing for
5713  *		back-to-back commands. Do this by comparing the current time
5714  *		to the time at which the last command completed and when the
5715  *		difference is greater than sd_pm_idletime, call
5716  *		pm_idle_component. In addition to indicating idle to the pm
5717  *		framework, update the chain type to again use the internal pm
5718  *		layers of the driver.
5719  *
5720  *   Arguments: arg - driver soft state (unit) structure
5721  *
5722  *     Context: Executes in a timeout(9F) thread context
5723  */
5724 
5725 static void
5726 sd_pm_idletimeout_handler(void *arg)
5727 {
5728 	struct sd_lun *un = arg;
5729 
5730 	time_t	now;
5731 
5732 	mutex_enter(&sd_detach_mutex);
5733 	if (un->un_detach_count != 0) {
5734 		/* Abort if the instance is detaching */
5735 		mutex_exit(&sd_detach_mutex);
5736 		return;
5737 	}
5738 	mutex_exit(&sd_detach_mutex);
5739 
5740 	now = ddi_get_time();
5741 	/*
5742 	 * Grab both mutexes, in the proper order, since we're accessing
5743 	 * both PM and softstate variables.
5744 	 */
5745 	mutex_enter(SD_MUTEX(un));
5746 	mutex_enter(&un->un_pm_mutex);
5747 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5748 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5749 		/*
5750 		 * Update the chain types.
5751 		 * This takes affect on the next new command received.
5752 		 */
5753 		if (un->un_f_non_devbsize_supported) {
5754 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5755 		} else {
5756 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5757 		}
5758 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5759 
5760 		SD_TRACE(SD_LOG_IO_PM, un,
5761 		    "sd_pm_idletimeout_handler: idling device\n");
5762 		(void) pm_idle_component(SD_DEVINFO(un), 0);
5763 		un->un_pm_idle_timeid = NULL;
5764 	} else {
5765 		un->un_pm_idle_timeid =
5766 		    timeout(sd_pm_idletimeout_handler, un,
5767 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
5768 	}
5769 	mutex_exit(&un->un_pm_mutex);
5770 	mutex_exit(SD_MUTEX(un));
5771 }
5772 
5773 
5774 /*
5775  *    Function: sd_pm_timeout_handler
5776  *
5777  * Description: Callback to tell framework we are idle.
5778  *
5779  *     Context: timeout(9f) thread context.
5780  */
5781 
5782 static void
5783 sd_pm_timeout_handler(void *arg)
5784 {
5785 	struct sd_lun *un = arg;
5786 
5787 	(void) pm_idle_component(SD_DEVINFO(un), 0);
5788 	mutex_enter(&un->un_pm_mutex);
5789 	un->un_pm_timeid = NULL;
5790 	mutex_exit(&un->un_pm_mutex);
5791 }
5792 
5793 
5794 /*
5795  *    Function: sdpower
5796  *
5797  * Description: PM entry point.
5798  *
5799  * Return Code: DDI_SUCCESS
5800  *		DDI_FAILURE
5801  *
5802  *     Context: Kernel thread context
5803  */
5804 
5805 static int
5806 sdpower(dev_info_t *devi, int component, int level)
5807 {
5808 	struct sd_lun	*un;
5809 	int		instance;
5810 	int		rval = DDI_SUCCESS;
5811 	uint_t		i, log_page_size, maxcycles, ncycles;
5812 	uchar_t		*log_page_data;
5813 	int		log_sense_page;
5814 	int		medium_present;
5815 	time_t		intvlp;
5816 	dev_t		dev;
5817 	struct pm_trans_data	sd_pm_tran_data;
5818 	uchar_t		save_state;
5819 	int		sval;
5820 	uchar_t		state_before_pm;
5821 	int		got_semaphore_here;
5822 
5823 	instance = ddi_get_instance(devi);
5824 
5825 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5826 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5827 	    component != 0) {
5828 		return (DDI_FAILURE);
5829 	}
5830 
5831 	dev = sd_make_device(SD_DEVINFO(un));
5832 
5833 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5834 
5835 	/*
5836 	 * Must synchronize power down with close.
5837 	 * Attempt to decrement/acquire the open/close semaphore,
5838 	 * but do NOT wait on it. If it's not greater than zero,
5839 	 * ie. it can't be decremented without waiting, then
5840 	 * someone else, either open or close, already has it
5841 	 * and the try returns 0. Use that knowledge here to determine
5842 	 * if it's OK to change the device power level.
5843 	 * Also, only increment it on exit if it was decremented, ie. gotten,
5844 	 * here.
5845 	 */
5846 	got_semaphore_here = sema_tryp(&un->un_semoclose);
5847 
5848 	mutex_enter(SD_MUTEX(un));
5849 
5850 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5851 	    un->un_ncmds_in_driver);
5852 
5853 	/*
5854 	 * If un_ncmds_in_driver is non-zero it indicates commands are
5855 	 * already being processed in the driver, or if the semaphore was
5856 	 * not gotten here it indicates an open or close is being processed.
5857 	 * At the same time somebody is requesting to go low power which
5858 	 * can't happen, therefore we need to return failure.
5859 	 */
5860 	if ((level == SD_SPINDLE_OFF) &&
5861 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5862 		mutex_exit(SD_MUTEX(un));
5863 
5864 		if (got_semaphore_here != 0) {
5865 			sema_v(&un->un_semoclose);
5866 		}
5867 		SD_TRACE(SD_LOG_IO_PM, un,
5868 		    "sdpower: exit, device has queued cmds.\n");
5869 		return (DDI_FAILURE);
5870 	}
5871 
5872 	/*
5873 	 * if it is OFFLINE that means the disk is completely dead
5874 	 * in our case we have to put the disk in on or off by sending commands
5875 	 * Of course that will fail anyway so return back here.
5876 	 *
5877 	 * Power changes to a device that's OFFLINE or SUSPENDED
5878 	 * are not allowed.
5879 	 */
5880 	if ((un->un_state == SD_STATE_OFFLINE) ||
5881 	    (un->un_state == SD_STATE_SUSPENDED)) {
5882 		mutex_exit(SD_MUTEX(un));
5883 
5884 		if (got_semaphore_here != 0) {
5885 			sema_v(&un->un_semoclose);
5886 		}
5887 		SD_TRACE(SD_LOG_IO_PM, un,
5888 		    "sdpower: exit, device is off-line.\n");
5889 		return (DDI_FAILURE);
5890 	}
5891 
5892 	/*
5893 	 * Change the device's state to indicate it's power level
5894 	 * is being changed. Do this to prevent a power off in the
5895 	 * middle of commands, which is especially bad on devices
5896 	 * that are really powered off instead of just spun down.
5897 	 */
5898 	state_before_pm = un->un_state;
5899 	un->un_state = SD_STATE_PM_CHANGING;
5900 
5901 	mutex_exit(SD_MUTEX(un));
5902 
5903 	/*
5904 	 * If "pm-capable" property is set to TRUE by HBA drivers,
5905 	 * bypass the following checking, otherwise, check the log
5906 	 * sense information for this device
5907 	 */
5908 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5909 		/*
5910 		 * Get the log sense information to understand whether the
5911 		 * the powercycle counts have gone beyond the threshhold.
5912 		 */
5913 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5914 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5915 
5916 		mutex_enter(SD_MUTEX(un));
5917 		log_sense_page = un->un_start_stop_cycle_page;
5918 		mutex_exit(SD_MUTEX(un));
5919 
5920 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5921 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5922 #ifdef	SDDEBUG
5923 		if (sd_force_pm_supported) {
5924 			/* Force a successful result */
5925 			rval = 0;
5926 		}
5927 #endif
5928 		if (rval != 0) {
5929 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5930 			    "Log Sense Failed\n");
5931 			kmem_free(log_page_data, log_page_size);
5932 			/* Cannot support power management on those drives */
5933 
5934 			if (got_semaphore_here != 0) {
5935 				sema_v(&un->un_semoclose);
5936 			}
5937 			/*
5938 			 * On exit put the state back to it's original value
5939 			 * and broadcast to anyone waiting for the power
5940 			 * change completion.
5941 			 */
5942 			mutex_enter(SD_MUTEX(un));
5943 			un->un_state = state_before_pm;
5944 			cv_broadcast(&un->un_suspend_cv);
5945 			mutex_exit(SD_MUTEX(un));
5946 			SD_TRACE(SD_LOG_IO_PM, un,
5947 			    "sdpower: exit, Log Sense Failed.\n");
5948 			return (DDI_FAILURE);
5949 		}
5950 
5951 		/*
5952 		 * From the page data - Convert the essential information to
5953 		 * pm_trans_data
5954 		 */
5955 		maxcycles =
5956 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5957 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5958 
5959 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
5960 
5961 		ncycles =
5962 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
5963 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
5964 
5965 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
5966 
5967 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
5968 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
5969 			    log_page_data[8+i];
5970 		}
5971 
5972 		kmem_free(log_page_data, log_page_size);
5973 
5974 		/*
5975 		 * Call pm_trans_check routine to get the Ok from
5976 		 * the global policy
5977 		 */
5978 
5979 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
5980 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
5981 
5982 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
5983 #ifdef	SDDEBUG
5984 		if (sd_force_pm_supported) {
5985 			/* Force a successful result */
5986 			rval = 1;
5987 		}
5988 #endif
5989 		switch (rval) {
5990 		case 0:
5991 			/*
5992 			 * Not Ok to Power cycle or error in parameters passed
5993 			 * Would have given the advised time to consider power
5994 			 * cycle. Based on the new intvlp parameter we are
5995 			 * supposed to pretend we are busy so that pm framework
5996 			 * will never call our power entry point. Because of
5997 			 * that install a timeout handler and wait for the
5998 			 * recommended time to elapse so that power management
5999 			 * can be effective again.
6000 			 *
6001 			 * To effect this behavior, call pm_busy_component to
6002 			 * indicate to the framework this device is busy.
6003 			 * By not adjusting un_pm_count the rest of PM in
6004 			 * the driver will function normally, and independant
6005 			 * of this but because the framework is told the device
6006 			 * is busy it won't attempt powering down until it gets
6007 			 * a matching idle. The timeout handler sends this.
6008 			 * Note: sd_pm_entry can't be called here to do this
6009 			 * because sdpower may have been called as a result
6010 			 * of a call to pm_raise_power from within sd_pm_entry.
6011 			 *
6012 			 * If a timeout handler is already active then
6013 			 * don't install another.
6014 			 */
6015 			mutex_enter(&un->un_pm_mutex);
6016 			if (un->un_pm_timeid == NULL) {
6017 				un->un_pm_timeid =
6018 				    timeout(sd_pm_timeout_handler,
6019 				    un, intvlp * drv_usectohz(1000000));
6020 				mutex_exit(&un->un_pm_mutex);
6021 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6022 			} else {
6023 				mutex_exit(&un->un_pm_mutex);
6024 			}
6025 			if (got_semaphore_here != 0) {
6026 				sema_v(&un->un_semoclose);
6027 			}
6028 			/*
6029 			 * On exit put the state back to it's original value
6030 			 * and broadcast to anyone waiting for the power
6031 			 * change completion.
6032 			 */
6033 			mutex_enter(SD_MUTEX(un));
6034 			un->un_state = state_before_pm;
6035 			cv_broadcast(&un->un_suspend_cv);
6036 			mutex_exit(SD_MUTEX(un));
6037 
6038 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6039 			    "trans check Failed, not ok to power cycle.\n");
6040 			return (DDI_FAILURE);
6041 
6042 		case -1:
6043 			if (got_semaphore_here != 0) {
6044 				sema_v(&un->un_semoclose);
6045 			}
6046 			/*
6047 			 * On exit put the state back to it's original value
6048 			 * and broadcast to anyone waiting for the power
6049 			 * change completion.
6050 			 */
6051 			mutex_enter(SD_MUTEX(un));
6052 			un->un_state = state_before_pm;
6053 			cv_broadcast(&un->un_suspend_cv);
6054 			mutex_exit(SD_MUTEX(un));
6055 			SD_TRACE(SD_LOG_IO_PM, un,
6056 			    "sdpower: exit, trans check command Failed.\n");
6057 			return (DDI_FAILURE);
6058 		}
6059 	}
6060 
6061 	if (level == SD_SPINDLE_OFF) {
6062 		/*
6063 		 * Save the last state... if the STOP FAILS we need it
6064 		 * for restoring
6065 		 */
6066 		mutex_enter(SD_MUTEX(un));
6067 		save_state = un->un_last_state;
6068 		/*
6069 		 * There must not be any cmds. getting processed
6070 		 * in the driver when we get here. Power to the
6071 		 * device is potentially going off.
6072 		 */
6073 		ASSERT(un->un_ncmds_in_driver == 0);
6074 		mutex_exit(SD_MUTEX(un));
6075 
6076 		/*
6077 		 * For now suspend the device completely before spindle is
6078 		 * turned off
6079 		 */
6080 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6081 			if (got_semaphore_here != 0) {
6082 				sema_v(&un->un_semoclose);
6083 			}
6084 			/*
6085 			 * On exit put the state back to it's original value
6086 			 * and broadcast to anyone waiting for the power
6087 			 * change completion.
6088 			 */
6089 			mutex_enter(SD_MUTEX(un));
6090 			un->un_state = state_before_pm;
6091 			cv_broadcast(&un->un_suspend_cv);
6092 			mutex_exit(SD_MUTEX(un));
6093 			SD_TRACE(SD_LOG_IO_PM, un,
6094 			    "sdpower: exit, PM suspend Failed.\n");
6095 			return (DDI_FAILURE);
6096 		}
6097 	}
6098 
6099 	/*
6100 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6101 	 * close, or strategy. Dump no long uses this routine, it uses it's
6102 	 * own code so it can be done in polled mode.
6103 	 */
6104 
6105 	medium_present = TRUE;
6106 
6107 	/*
6108 	 * When powering up, issue a TUR in case the device is at unit
6109 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6110 	 * a deadlock on un_pm_busy_cv will occur.
6111 	 */
6112 	if (level == SD_SPINDLE_ON) {
6113 		(void) sd_send_scsi_TEST_UNIT_READY(un,
6114 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6115 	}
6116 
6117 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6118 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6119 
6120 	sval = sd_send_scsi_START_STOP_UNIT(un,
6121 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6122 	    SD_PATH_DIRECT);
6123 	/* Command failed, check for media present. */
6124 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6125 		medium_present = FALSE;
6126 	}
6127 
6128 	/*
6129 	 * The conditions of interest here are:
6130 	 *   if a spindle off with media present fails,
6131 	 *	then restore the state and return an error.
6132 	 *   else if a spindle on fails,
6133 	 *	then return an error (there's no state to restore).
6134 	 * In all other cases we setup for the new state
6135 	 * and return success.
6136 	 */
6137 	switch (level) {
6138 	case SD_SPINDLE_OFF:
6139 		if ((medium_present == TRUE) && (sval != 0)) {
6140 			/* The stop command from above failed */
6141 			rval = DDI_FAILURE;
6142 			/*
6143 			 * The stop command failed, and we have media
6144 			 * present. Put the level back by calling the
6145 			 * sd_pm_resume() and set the state back to
6146 			 * it's previous value.
6147 			 */
6148 			(void) sd_ddi_pm_resume(un);
6149 			mutex_enter(SD_MUTEX(un));
6150 			un->un_last_state = save_state;
6151 			mutex_exit(SD_MUTEX(un));
6152 			break;
6153 		}
6154 		/*
6155 		 * The stop command from above succeeded.
6156 		 */
6157 		if (un->un_f_monitor_media_state) {
6158 			/*
6159 			 * Terminate watch thread in case of removable media
6160 			 * devices going into low power state. This is as per
6161 			 * the requirements of pm framework, otherwise commands
6162 			 * will be generated for the device (through watch
6163 			 * thread), even when the device is in low power state.
6164 			 */
6165 			mutex_enter(SD_MUTEX(un));
6166 			un->un_f_watcht_stopped = FALSE;
6167 			if (un->un_swr_token != NULL) {
6168 				opaque_t temp_token = un->un_swr_token;
6169 				un->un_f_watcht_stopped = TRUE;
6170 				un->un_swr_token = NULL;
6171 				mutex_exit(SD_MUTEX(un));
6172 				(void) scsi_watch_request_terminate(temp_token,
6173 				    SCSI_WATCH_TERMINATE_WAIT);
6174 			} else {
6175 				mutex_exit(SD_MUTEX(un));
6176 			}
6177 		}
6178 		break;
6179 
6180 	default:	/* The level requested is spindle on... */
6181 		/*
6182 		 * Legacy behavior: return success on a failed spinup
6183 		 * if there is no media in the drive.
6184 		 * Do this by looking at medium_present here.
6185 		 */
6186 		if ((sval != 0) && medium_present) {
6187 			/* The start command from above failed */
6188 			rval = DDI_FAILURE;
6189 			break;
6190 		}
6191 		/*
6192 		 * The start command from above succeeded
6193 		 * Resume the devices now that we have
6194 		 * started the disks
6195 		 */
6196 		(void) sd_ddi_pm_resume(un);
6197 
6198 		/*
6199 		 * Resume the watch thread since it was suspended
6200 		 * when the device went into low power mode.
6201 		 */
6202 		if (un->un_f_monitor_media_state) {
6203 			mutex_enter(SD_MUTEX(un));
6204 			if (un->un_f_watcht_stopped == TRUE) {
6205 				opaque_t temp_token;
6206 
6207 				un->un_f_watcht_stopped = FALSE;
6208 				mutex_exit(SD_MUTEX(un));
6209 				temp_token = scsi_watch_request_submit(
6210 				    SD_SCSI_DEVP(un),
6211 				    sd_check_media_time,
6212 				    SENSE_LENGTH, sd_media_watch_cb,
6213 				    (caddr_t)dev);
6214 				mutex_enter(SD_MUTEX(un));
6215 				un->un_swr_token = temp_token;
6216 			}
6217 			mutex_exit(SD_MUTEX(un));
6218 		}
6219 	}
6220 	if (got_semaphore_here != 0) {
6221 		sema_v(&un->un_semoclose);
6222 	}
6223 	/*
6224 	 * On exit put the state back to it's original value
6225 	 * and broadcast to anyone waiting for the power
6226 	 * change completion.
6227 	 */
6228 	mutex_enter(SD_MUTEX(un));
6229 	un->un_state = state_before_pm;
6230 	cv_broadcast(&un->un_suspend_cv);
6231 	mutex_exit(SD_MUTEX(un));
6232 
6233 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6234 
6235 	return (rval);
6236 }
6237 
6238 
6239 
6240 /*
6241  *    Function: sdattach
6242  *
6243  * Description: Driver's attach(9e) entry point function.
6244  *
6245  *   Arguments: devi - opaque device info handle
6246  *		cmd  - attach  type
6247  *
6248  * Return Code: DDI_SUCCESS
6249  *		DDI_FAILURE
6250  *
6251  *     Context: Kernel thread context
6252  */
6253 
6254 static int
6255 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6256 {
6257 	switch (cmd) {
6258 	case DDI_ATTACH:
6259 		return (sd_unit_attach(devi));
6260 	case DDI_RESUME:
6261 		return (sd_ddi_resume(devi));
6262 	default:
6263 		break;
6264 	}
6265 	return (DDI_FAILURE);
6266 }
6267 
6268 
6269 /*
6270  *    Function: sddetach
6271  *
6272  * Description: Driver's detach(9E) entry point function.
6273  *
6274  *   Arguments: devi - opaque device info handle
6275  *		cmd  - detach  type
6276  *
6277  * Return Code: DDI_SUCCESS
6278  *		DDI_FAILURE
6279  *
6280  *     Context: Kernel thread context
6281  */
6282 
6283 static int
6284 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6285 {
6286 	switch (cmd) {
6287 	case DDI_DETACH:
6288 		return (sd_unit_detach(devi));
6289 	case DDI_SUSPEND:
6290 		return (sd_ddi_suspend(devi));
6291 	default:
6292 		break;
6293 	}
6294 	return (DDI_FAILURE);
6295 }
6296 
6297 
6298 /*
6299  *     Function: sd_sync_with_callback
6300  *
6301  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6302  *		 state while the callback routine is active.
6303  *
6304  *    Arguments: un: softstate structure for the instance
6305  *
6306  *	Context: Kernel thread context
6307  */
6308 
6309 static void
6310 sd_sync_with_callback(struct sd_lun *un)
6311 {
6312 	ASSERT(un != NULL);
6313 
6314 	mutex_enter(SD_MUTEX(un));
6315 
6316 	ASSERT(un->un_in_callback >= 0);
6317 
6318 	while (un->un_in_callback > 0) {
6319 		mutex_exit(SD_MUTEX(un));
6320 		delay(2);
6321 		mutex_enter(SD_MUTEX(un));
6322 	}
6323 
6324 	mutex_exit(SD_MUTEX(un));
6325 }
6326 
6327 /*
6328  *    Function: sd_unit_attach
6329  *
6330  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6331  *		the soft state structure for the device and performs
6332  *		all necessary structure and device initializations.
6333  *
6334  *   Arguments: devi: the system's dev_info_t for the device.
6335  *
6336  * Return Code: DDI_SUCCESS if attach is successful.
6337  *		DDI_FAILURE if any part of the attach fails.
6338  *
6339  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6340  *		Kernel thread context only.  Can sleep.
6341  */
6342 
6343 static int
6344 sd_unit_attach(dev_info_t *devi)
6345 {
6346 	struct	scsi_device	*devp;
6347 	struct	sd_lun		*un;
6348 	char			*variantp;
6349 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6350 	int	instance;
6351 	int	rval;
6352 	int	wc_enabled;
6353 	int	tgt;
6354 	uint64_t	capacity;
6355 	uint_t		lbasize = 0;
6356 	dev_info_t	*pdip = ddi_get_parent(devi);
6357 	int		offbyone = 0;
6358 	int		geom_label_valid = 0;
6359 
6360 	/*
6361 	 * Retrieve the target driver's private data area. This was set
6362 	 * up by the HBA.
6363 	 */
6364 	devp = ddi_get_driver_private(devi);
6365 
6366 	/*
6367 	 * Retrieve the target ID of the device.
6368 	 */
6369 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6370 	    SCSI_ADDR_PROP_TARGET, -1);
6371 
6372 	/*
6373 	 * Since we have no idea what state things were left in by the last
6374 	 * user of the device, set up some 'default' settings, ie. turn 'em
6375 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6376 	 * Do this before the scsi_probe, which sends an inquiry.
6377 	 * This is a fix for bug (4430280).
6378 	 * Of special importance is wide-xfer. The drive could have been left
6379 	 * in wide transfer mode by the last driver to communicate with it,
6380 	 * this includes us. If that's the case, and if the following is not
6381 	 * setup properly or we don't re-negotiate with the drive prior to
6382 	 * transferring data to/from the drive, it causes bus parity errors,
6383 	 * data overruns, and unexpected interrupts. This first occurred when
6384 	 * the fix for bug (4378686) was made.
6385 	 */
6386 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6387 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6388 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6389 
6390 	/*
6391 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6392 	 * on a target. Setting it per lun instance actually sets the
6393 	 * capability of this target, which affects those luns already
6394 	 * attached on the same target. So during attach, we can only disable
6395 	 * this capability only when no other lun has been attached on this
6396 	 * target. By doing this, we assume a target has the same tagged-qing
6397 	 * capability for every lun. The condition can be removed when HBA
6398 	 * is changed to support per lun based tagged-qing capability.
6399 	 */
6400 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6401 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6402 	}
6403 
6404 	/*
6405 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6406 	 * This call will allocate and fill in the scsi_inquiry structure
6407 	 * and point the sd_inq member of the scsi_device structure to it.
6408 	 * If the attach succeeds, then this memory will not be de-allocated
6409 	 * (via scsi_unprobe()) until the instance is detached.
6410 	 */
6411 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6412 		goto probe_failed;
6413 	}
6414 
6415 	/*
6416 	 * Check the device type as specified in the inquiry data and
6417 	 * claim it if it is of a type that we support.
6418 	 */
6419 	switch (devp->sd_inq->inq_dtype) {
6420 	case DTYPE_DIRECT:
6421 		break;
6422 	case DTYPE_RODIRECT:
6423 		break;
6424 	case DTYPE_OPTICAL:
6425 		break;
6426 	case DTYPE_NOTPRESENT:
6427 	default:
6428 		/* Unsupported device type; fail the attach. */
6429 		goto probe_failed;
6430 	}
6431 
6432 	/*
6433 	 * Allocate the soft state structure for this unit.
6434 	 *
6435 	 * We rely upon this memory being set to all zeroes by
6436 	 * ddi_soft_state_zalloc().  We assume that any member of the
6437 	 * soft state structure that is not explicitly initialized by
6438 	 * this routine will have a value of zero.
6439 	 */
6440 	instance = ddi_get_instance(devp->sd_dev);
6441 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6442 		goto probe_failed;
6443 	}
6444 
6445 	/*
6446 	 * Retrieve a pointer to the newly-allocated soft state.
6447 	 *
6448 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6449 	 * was successful, unless something has gone horribly wrong and the
6450 	 * ddi's soft state internals are corrupt (in which case it is
6451 	 * probably better to halt here than just fail the attach....)
6452 	 */
6453 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6454 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6455 		    instance);
6456 		/*NOTREACHED*/
6457 	}
6458 
6459 	/*
6460 	 * Link the back ptr of the driver soft state to the scsi_device
6461 	 * struct for this lun.
6462 	 * Save a pointer to the softstate in the driver-private area of
6463 	 * the scsi_device struct.
6464 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6465 	 * we first set un->un_sd below.
6466 	 */
6467 	un->un_sd = devp;
6468 	devp->sd_private = (opaque_t)un;
6469 
6470 	/*
6471 	 * The following must be after devp is stored in the soft state struct.
6472 	 */
6473 #ifdef SDDEBUG
6474 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6475 	    "%s_unit_attach: un:0x%p instance:%d\n",
6476 	    ddi_driver_name(devi), un, instance);
6477 #endif
6478 
6479 	/*
6480 	 * Set up the device type and node type (for the minor nodes).
6481 	 * By default we assume that the device can at least support the
6482 	 * Common Command Set. Call it a CD-ROM if it reports itself
6483 	 * as a RODIRECT device.
6484 	 */
6485 	switch (devp->sd_inq->inq_dtype) {
6486 	case DTYPE_RODIRECT:
6487 		un->un_node_type = DDI_NT_CD_CHAN;
6488 		un->un_ctype	 = CTYPE_CDROM;
6489 		break;
6490 	case DTYPE_OPTICAL:
6491 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6492 		un->un_ctype	 = CTYPE_ROD;
6493 		break;
6494 	default:
6495 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6496 		un->un_ctype	 = CTYPE_CCS;
6497 		break;
6498 	}
6499 
6500 	/*
6501 	 * Try to read the interconnect type from the HBA.
6502 	 *
6503 	 * Note: This driver is currently compiled as two binaries, a parallel
6504 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6505 	 * differences are determined at compile time. In the future a single
6506 	 * binary will be provided and the inteconnect type will be used to
6507 	 * differentiate between fibre and parallel scsi behaviors. At that time
6508 	 * it will be necessary for all fibre channel HBAs to support this
6509 	 * property.
6510 	 *
6511 	 * set un_f_is_fiber to TRUE ( default fiber )
6512 	 */
6513 	un->un_f_is_fibre = TRUE;
6514 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6515 	case INTERCONNECT_SSA:
6516 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6517 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6518 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6519 		break;
6520 	case INTERCONNECT_PARALLEL:
6521 		un->un_f_is_fibre = FALSE;
6522 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6523 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6524 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6525 		break;
6526 	case INTERCONNECT_SATA:
6527 		un->un_f_is_fibre = FALSE;
6528 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6529 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6530 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6531 		break;
6532 	case INTERCONNECT_FIBRE:
6533 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6534 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6535 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6536 		break;
6537 	case INTERCONNECT_FABRIC:
6538 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6539 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6540 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6541 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6542 		break;
6543 	default:
6544 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
6545 		/*
6546 		 * The HBA does not support the "interconnect-type" property
6547 		 * (or did not provide a recognized type).
6548 		 *
6549 		 * Note: This will be obsoleted when a single fibre channel
6550 		 * and parallel scsi driver is delivered. In the meantime the
6551 		 * interconnect type will be set to the platform default.If that
6552 		 * type is not parallel SCSI, it means that we should be
6553 		 * assuming "ssd" semantics. However, here this also means that
6554 		 * the FC HBA is not supporting the "interconnect-type" property
6555 		 * like we expect it to, so log this occurrence.
6556 		 */
6557 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6558 		if (!SD_IS_PARALLEL_SCSI(un)) {
6559 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6560 			    "sd_unit_attach: un:0x%p Assuming "
6561 			    "INTERCONNECT_FIBRE\n", un);
6562 		} else {
6563 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6564 			    "sd_unit_attach: un:0x%p Assuming "
6565 			    "INTERCONNECT_PARALLEL\n", un);
6566 			un->un_f_is_fibre = FALSE;
6567 		}
6568 #else
6569 		/*
6570 		 * Note: This source will be implemented when a single fibre
6571 		 * channel and parallel scsi driver is delivered. The default
6572 		 * will be to assume that if a device does not support the
6573 		 * "interconnect-type" property it is a parallel SCSI HBA and
6574 		 * we will set the interconnect type for parallel scsi.
6575 		 */
6576 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6577 		un->un_f_is_fibre = FALSE;
6578 #endif
6579 		break;
6580 	}
6581 
6582 	if (un->un_f_is_fibre == TRUE) {
6583 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6584 		    SCSI_VERSION_3) {
6585 			switch (un->un_interconnect_type) {
6586 			case SD_INTERCONNECT_FIBRE:
6587 			case SD_INTERCONNECT_SSA:
6588 				un->un_node_type = DDI_NT_BLOCK_WWN;
6589 				break;
6590 			default:
6591 				break;
6592 			}
6593 		}
6594 	}
6595 
6596 	/*
6597 	 * Initialize the Request Sense command for the target
6598 	 */
6599 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6600 		goto alloc_rqs_failed;
6601 	}
6602 
6603 	/*
6604 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6605 	 * with separate binary for sd and ssd.
6606 	 *
6607 	 * x86 has 1 binary, un_retry_count is set base on connection type.
6608 	 * The hardcoded values will go away when Sparc uses 1 binary
6609 	 * for sd and ssd.  This hardcoded values need to match
6610 	 * SD_RETRY_COUNT in sddef.h
6611 	 * The value used is base on interconnect type.
6612 	 * fibre = 3, parallel = 5
6613 	 */
6614 #if defined(__i386) || defined(__amd64)
6615 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6616 #else
6617 	un->un_retry_count = SD_RETRY_COUNT;
6618 #endif
6619 
6620 	/*
6621 	 * Set the per disk retry count to the default number of retries
6622 	 * for disks and CDROMs. This value can be overridden by the
6623 	 * disk property list or an entry in sd.conf.
6624 	 */
6625 	un->un_notready_retry_count =
6626 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6627 	    : DISK_NOT_READY_RETRY_COUNT(un);
6628 
6629 	/*
6630 	 * Set the busy retry count to the default value of un_retry_count.
6631 	 * This can be overridden by entries in sd.conf or the device
6632 	 * config table.
6633 	 */
6634 	un->un_busy_retry_count = un->un_retry_count;
6635 
6636 	/*
6637 	 * Init the reset threshold for retries.  This number determines
6638 	 * how many retries must be performed before a reset can be issued
6639 	 * (for certain error conditions). This can be overridden by entries
6640 	 * in sd.conf or the device config table.
6641 	 */
6642 	un->un_reset_retry_count = (un->un_retry_count / 2);
6643 
6644 	/*
6645 	 * Set the victim_retry_count to the default un_retry_count
6646 	 */
6647 	un->un_victim_retry_count = (2 * un->un_retry_count);
6648 
6649 	/*
6650 	 * Set the reservation release timeout to the default value of
6651 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6652 	 * device config table.
6653 	 */
6654 	un->un_reserve_release_time = 5;
6655 
6656 	/*
6657 	 * Set up the default maximum transfer size. Note that this may
6658 	 * get updated later in the attach, when setting up default wide
6659 	 * operations for disks.
6660 	 */
6661 #if defined(__i386) || defined(__amd64)
6662 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6663 #else
6664 	un->un_max_xfer_size = (uint_t)maxphys;
6665 #endif
6666 
6667 	/*
6668 	 * Get "allow bus device reset" property (defaults to "enabled" if
6669 	 * the property was not defined). This is to disable bus resets for
6670 	 * certain kinds of error recovery. Note: In the future when a run-time
6671 	 * fibre check is available the soft state flag should default to
6672 	 * enabled.
6673 	 */
6674 	if (un->un_f_is_fibre == TRUE) {
6675 		un->un_f_allow_bus_device_reset = TRUE;
6676 	} else {
6677 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6678 		    "allow-bus-device-reset", 1) != 0) {
6679 			un->un_f_allow_bus_device_reset = TRUE;
6680 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6681 			    "sd_unit_attach: un:0x%p Bus device reset "
6682 			    "enabled\n", un);
6683 		} else {
6684 			un->un_f_allow_bus_device_reset = FALSE;
6685 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6686 			    "sd_unit_attach: un:0x%p Bus device reset "
6687 			    "disabled\n", un);
6688 		}
6689 	}
6690 
6691 	/*
6692 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6693 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6694 	 *
6695 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6696 	 * property. The new "variant" property with a value of "atapi" has been
6697 	 * introduced so that future 'variants' of standard SCSI behavior (like
6698 	 * atapi) could be specified by the underlying HBA drivers by supplying
6699 	 * a new value for the "variant" property, instead of having to define a
6700 	 * new property.
6701 	 */
6702 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6703 		un->un_f_cfg_is_atapi = TRUE;
6704 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6705 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6706 	}
6707 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6708 	    &variantp) == DDI_PROP_SUCCESS) {
6709 		if (strcmp(variantp, "atapi") == 0) {
6710 			un->un_f_cfg_is_atapi = TRUE;
6711 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6712 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6713 		}
6714 		ddi_prop_free(variantp);
6715 	}
6716 
6717 	un->un_cmd_timeout	= SD_IO_TIME;
6718 
6719 	/* Info on current states, statuses, etc. (Updated frequently) */
6720 	un->un_state		= SD_STATE_NORMAL;
6721 	un->un_last_state	= SD_STATE_NORMAL;
6722 
6723 	/* Control & status info for command throttling */
6724 	un->un_throttle		= sd_max_throttle;
6725 	un->un_saved_throttle	= sd_max_throttle;
6726 	un->un_min_throttle	= sd_min_throttle;
6727 
6728 	if (un->un_f_is_fibre == TRUE) {
6729 		un->un_f_use_adaptive_throttle = TRUE;
6730 	} else {
6731 		un->un_f_use_adaptive_throttle = FALSE;
6732 	}
6733 
6734 	/* Removable media support. */
6735 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6736 	un->un_mediastate		= DKIO_NONE;
6737 	un->un_specified_mediastate	= DKIO_NONE;
6738 
6739 	/* CVs for suspend/resume (PM or DR) */
6740 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6741 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6742 
6743 	/* Power management support. */
6744 	un->un_power_level = SD_SPINDLE_UNINIT;
6745 
6746 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6747 	un->un_f_wcc_inprog = 0;
6748 
6749 	/*
6750 	 * The open/close semaphore is used to serialize threads executing
6751 	 * in the driver's open & close entry point routines for a given
6752 	 * instance.
6753 	 */
6754 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6755 
6756 	/*
6757 	 * The conf file entry and softstate variable is a forceful override,
6758 	 * meaning a non-zero value must be entered to change the default.
6759 	 */
6760 	un->un_f_disksort_disabled = FALSE;
6761 
6762 	/*
6763 	 * Retrieve the properties from the static driver table or the driver
6764 	 * configuration file (.conf) for this unit and update the soft state
6765 	 * for the device as needed for the indicated properties.
6766 	 * Note: the property configuration needs to occur here as some of the
6767 	 * following routines may have dependancies on soft state flags set
6768 	 * as part of the driver property configuration.
6769 	 */
6770 	sd_read_unit_properties(un);
6771 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6772 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6773 
6774 	/*
6775 	 * Only if a device has "hotpluggable" property, it is
6776 	 * treated as hotpluggable device. Otherwise, it is
6777 	 * regarded as non-hotpluggable one.
6778 	 */
6779 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6780 	    -1) != -1) {
6781 		un->un_f_is_hotpluggable = TRUE;
6782 	}
6783 
6784 	/*
6785 	 * set unit's attributes(flags) according to "hotpluggable" and
6786 	 * RMB bit in INQUIRY data.
6787 	 */
6788 	sd_set_unit_attributes(un, devi);
6789 
6790 	/*
6791 	 * By default, we mark the capacity, lbasize, and geometry
6792 	 * as invalid. Only if we successfully read a valid capacity
6793 	 * will we update the un_blockcount and un_tgt_blocksize with the
6794 	 * valid values (the geometry will be validated later).
6795 	 */
6796 	un->un_f_blockcount_is_valid	= FALSE;
6797 	un->un_f_tgt_blocksize_is_valid	= FALSE;
6798 
6799 	/*
6800 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6801 	 * otherwise.
6802 	 */
6803 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6804 	un->un_blockcount = 0;
6805 
6806 	/*
6807 	 * Set up the per-instance info needed to determine the correct
6808 	 * CDBs and other info for issuing commands to the target.
6809 	 */
6810 	sd_init_cdb_limits(un);
6811 
6812 	/*
6813 	 * Set up the IO chains to use, based upon the target type.
6814 	 */
6815 	if (un->un_f_non_devbsize_supported) {
6816 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6817 	} else {
6818 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6819 	}
6820 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6821 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6822 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6823 
6824 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6825 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6826 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6827 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6828 
6829 
6830 	if (ISCD(un)) {
6831 		un->un_additional_codes = sd_additional_codes;
6832 	} else {
6833 		un->un_additional_codes = NULL;
6834 	}
6835 
6836 	/*
6837 	 * Create the kstats here so they can be available for attach-time
6838 	 * routines that send commands to the unit (either polled or via
6839 	 * sd_send_scsi_cmd).
6840 	 *
6841 	 * Note: This is a critical sequence that needs to be maintained:
6842 	 *	1) Instantiate the kstats here, before any routines using the
6843 	 *	   iopath (i.e. sd_send_scsi_cmd).
6844 	 *	2) Instantiate and initialize the partition stats
6845 	 *	   (sd_set_pstats).
6846 	 *	3) Initialize the error stats (sd_set_errstats), following
6847 	 *	   sd_validate_geometry(),sd_register_devid(),
6848 	 *	   and sd_cache_control().
6849 	 */
6850 
6851 	un->un_stats = kstat_create(sd_label, instance,
6852 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6853 	if (un->un_stats != NULL) {
6854 		un->un_stats->ks_lock = SD_MUTEX(un);
6855 		kstat_install(un->un_stats);
6856 	}
6857 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6858 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6859 
6860 	sd_create_errstats(un, instance);
6861 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6862 	    "sd_unit_attach: un:0x%p errstats created\n", un);
6863 
6864 	/*
6865 	 * The following if/else code was relocated here from below as part
6866 	 * of the fix for bug (4430280). However with the default setup added
6867 	 * on entry to this routine, it's no longer absolutely necessary for
6868 	 * this to be before the call to sd_spin_up_unit.
6869 	 */
6870 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6871 		/*
6872 		 * If SCSI-2 tagged queueing is supported by the target
6873 		 * and by the host adapter then we will enable it.
6874 		 */
6875 		un->un_tagflags = 0;
6876 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6877 		    (devp->sd_inq->inq_cmdque) &&
6878 		    (un->un_f_arq_enabled == TRUE)) {
6879 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6880 			    1, 1) == 1) {
6881 				un->un_tagflags = FLAG_STAG;
6882 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6883 				    "sd_unit_attach: un:0x%p tag queueing "
6884 				    "enabled\n", un);
6885 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6886 			    "untagged-qing", 0) == 1) {
6887 				un->un_f_opt_queueing = TRUE;
6888 				un->un_saved_throttle = un->un_throttle =
6889 				    min(un->un_throttle, 3);
6890 			} else {
6891 				un->un_f_opt_queueing = FALSE;
6892 				un->un_saved_throttle = un->un_throttle = 1;
6893 			}
6894 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6895 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6896 			/* The Host Adapter supports internal queueing. */
6897 			un->un_f_opt_queueing = TRUE;
6898 			un->un_saved_throttle = un->un_throttle =
6899 			    min(un->un_throttle, 3);
6900 		} else {
6901 			un->un_f_opt_queueing = FALSE;
6902 			un->un_saved_throttle = un->un_throttle = 1;
6903 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6904 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6905 		}
6906 
6907 		/*
6908 		 * Enable large transfers for SATA/SAS drives
6909 		 */
6910 		if (SD_IS_SERIAL(un)) {
6911 			un->un_max_xfer_size =
6912 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6913 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6914 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6915 			    "sd_unit_attach: un:0x%p max transfer "
6916 			    "size=0x%x\n", un, un->un_max_xfer_size);
6917 
6918 		}
6919 
6920 		/* Setup or tear down default wide operations for disks */
6921 
6922 		/*
6923 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6924 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6925 		 * system and be set to different values. In the future this
6926 		 * code may need to be updated when the ssd module is
6927 		 * obsoleted and removed from the system. (4299588)
6928 		 */
6929 		if (SD_IS_PARALLEL_SCSI(un) &&
6930 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6931 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6932 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6933 			    1, 1) == 1) {
6934 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6935 				    "sd_unit_attach: un:0x%p Wide Transfer "
6936 				    "enabled\n", un);
6937 			}
6938 
6939 			/*
6940 			 * If tagged queuing has also been enabled, then
6941 			 * enable large xfers
6942 			 */
6943 			if (un->un_saved_throttle == sd_max_throttle) {
6944 				un->un_max_xfer_size =
6945 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6946 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6947 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6948 				    "sd_unit_attach: un:0x%p max transfer "
6949 				    "size=0x%x\n", un, un->un_max_xfer_size);
6950 			}
6951 		} else {
6952 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6953 			    0, 1) == 1) {
6954 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6955 				    "sd_unit_attach: un:0x%p "
6956 				    "Wide Transfer disabled\n", un);
6957 			}
6958 		}
6959 	} else {
6960 		un->un_tagflags = FLAG_STAG;
6961 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
6962 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
6963 	}
6964 
6965 	/*
6966 	 * If this target supports LUN reset, try to enable it.
6967 	 */
6968 	if (un->un_f_lun_reset_enabled) {
6969 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
6970 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6971 			    "un:0x%p lun_reset capability set\n", un);
6972 		} else {
6973 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6974 			    "un:0x%p lun-reset capability not set\n", un);
6975 		}
6976 	}
6977 
6978 	/*
6979 	 * At this point in the attach, we have enough info in the
6980 	 * soft state to be able to issue commands to the target.
6981 	 *
6982 	 * All command paths used below MUST issue their commands as
6983 	 * SD_PATH_DIRECT. This is important as intermediate layers
6984 	 * are not all initialized yet (such as PM).
6985 	 */
6986 
6987 	/*
6988 	 * Send a TEST UNIT READY command to the device. This should clear
6989 	 * any outstanding UNIT ATTENTION that may be present.
6990 	 *
6991 	 * Note: Don't check for success, just track if there is a reservation,
6992 	 * this is a throw away command to clear any unit attentions.
6993 	 *
6994 	 * Note: This MUST be the first command issued to the target during
6995 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
6996 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
6997 	 * with attempts at spinning up a device with no media.
6998 	 */
6999 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
7000 		reservation_flag = SD_TARGET_IS_RESERVED;
7001 	}
7002 
7003 	/*
7004 	 * If the device is NOT a removable media device, attempt to spin
7005 	 * it up (using the START_STOP_UNIT command) and read its capacity
7006 	 * (using the READ CAPACITY command).  Note, however, that either
7007 	 * of these could fail and in some cases we would continue with
7008 	 * the attach despite the failure (see below).
7009 	 */
7010 	if (un->un_f_descr_format_supported) {
7011 		switch (sd_spin_up_unit(un)) {
7012 		case 0:
7013 			/*
7014 			 * Spin-up was successful; now try to read the
7015 			 * capacity.  If successful then save the results
7016 			 * and mark the capacity & lbasize as valid.
7017 			 */
7018 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7019 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7020 
7021 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
7022 			    &lbasize, SD_PATH_DIRECT)) {
7023 			case 0: {
7024 				if (capacity > DK_MAX_BLOCKS) {
7025 #ifdef _LP64
7026 					if (capacity + 1 >
7027 					    SD_GROUP1_MAX_ADDRESS) {
7028 						/*
7029 						 * Enable descriptor format
7030 						 * sense data so that we can
7031 						 * get 64 bit sense data
7032 						 * fields.
7033 						 */
7034 						sd_enable_descr_sense(un);
7035 					}
7036 #else
7037 					/* 32-bit kernels can't handle this */
7038 					scsi_log(SD_DEVINFO(un),
7039 					    sd_label, CE_WARN,
7040 					    "disk has %llu blocks, which "
7041 					    "is too large for a 32-bit "
7042 					    "kernel", capacity);
7043 
7044 #if defined(__i386) || defined(__amd64)
7045 					/*
7046 					 * 1TB disk was treated as (1T - 512)B
7047 					 * in the past, so that it might have
7048 					 * valid VTOC and solaris partitions,
7049 					 * we have to allow it to continue to
7050 					 * work.
7051 					 */
7052 					if (capacity -1 > DK_MAX_BLOCKS)
7053 #endif
7054 					goto spinup_failed;
7055 #endif
7056 				}
7057 
7058 				/*
7059 				 * Here it's not necessary to check the case:
7060 				 * the capacity of the device is bigger than
7061 				 * what the max hba cdb can support. Because
7062 				 * sd_send_scsi_READ_CAPACITY will retrieve
7063 				 * the capacity by sending USCSI command, which
7064 				 * is constrained by the max hba cdb. Actually,
7065 				 * sd_send_scsi_READ_CAPACITY will return
7066 				 * EINVAL when using bigger cdb than required
7067 				 * cdb length. Will handle this case in
7068 				 * "case EINVAL".
7069 				 */
7070 
7071 				/*
7072 				 * The following relies on
7073 				 * sd_send_scsi_READ_CAPACITY never
7074 				 * returning 0 for capacity and/or lbasize.
7075 				 */
7076 				sd_update_block_info(un, lbasize, capacity);
7077 
7078 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7079 				    "sd_unit_attach: un:0x%p capacity = %ld "
7080 				    "blocks; lbasize= %ld.\n", un,
7081 				    un->un_blockcount, un->un_tgt_blocksize);
7082 
7083 				break;
7084 			}
7085 			case EINVAL:
7086 				/*
7087 				 * In the case where the max-cdb-length property
7088 				 * is smaller than the required CDB length for
7089 				 * a SCSI device, a target driver can fail to
7090 				 * attach to that device.
7091 				 */
7092 				scsi_log(SD_DEVINFO(un),
7093 				    sd_label, CE_WARN,
7094 				    "disk capacity is too large "
7095 				    "for current cdb length");
7096 				goto spinup_failed;
7097 			case EACCES:
7098 				/*
7099 				 * Should never get here if the spin-up
7100 				 * succeeded, but code it in anyway.
7101 				 * From here, just continue with the attach...
7102 				 */
7103 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7104 				    "sd_unit_attach: un:0x%p "
7105 				    "sd_send_scsi_READ_CAPACITY "
7106 				    "returned reservation conflict\n", un);
7107 				reservation_flag = SD_TARGET_IS_RESERVED;
7108 				break;
7109 			default:
7110 				/*
7111 				 * Likewise, should never get here if the
7112 				 * spin-up succeeded. Just continue with
7113 				 * the attach...
7114 				 */
7115 				break;
7116 			}
7117 			break;
7118 		case EACCES:
7119 			/*
7120 			 * Device is reserved by another host.  In this case
7121 			 * we could not spin it up or read the capacity, but
7122 			 * we continue with the attach anyway.
7123 			 */
7124 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7125 			    "sd_unit_attach: un:0x%p spin-up reservation "
7126 			    "conflict.\n", un);
7127 			reservation_flag = SD_TARGET_IS_RESERVED;
7128 			break;
7129 		default:
7130 			/* Fail the attach if the spin-up failed. */
7131 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7132 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7133 			goto spinup_failed;
7134 		}
7135 	}
7136 
7137 	/*
7138 	 * Check to see if this is a MMC drive
7139 	 */
7140 	if (ISCD(un)) {
7141 		sd_set_mmc_caps(un);
7142 	}
7143 
7144 
7145 	/*
7146 	 * Add a zero-length attribute to tell the world we support
7147 	 * kernel ioctls (for layered drivers)
7148 	 */
7149 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7150 	    DDI_KERNEL_IOCTL, NULL, 0);
7151 
7152 	/*
7153 	 * Add a boolean property to tell the world we support
7154 	 * the B_FAILFAST flag (for layered drivers)
7155 	 */
7156 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7157 	    "ddi-failfast-supported", NULL, 0);
7158 
7159 	/*
7160 	 * Initialize power management
7161 	 */
7162 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7163 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7164 	sd_setup_pm(un, devi);
7165 	if (un->un_f_pm_is_enabled == FALSE) {
7166 		/*
7167 		 * For performance, point to a jump table that does
7168 		 * not include pm.
7169 		 * The direct and priority chains don't change with PM.
7170 		 *
7171 		 * Note: this is currently done based on individual device
7172 		 * capabilities. When an interface for determining system
7173 		 * power enabled state becomes available, or when additional
7174 		 * layers are added to the command chain, these values will
7175 		 * have to be re-evaluated for correctness.
7176 		 */
7177 		if (un->un_f_non_devbsize_supported) {
7178 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7179 		} else {
7180 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7181 		}
7182 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7183 	}
7184 
7185 	/*
7186 	 * This property is set to 0 by HA software to avoid retries
7187 	 * on a reserved disk. (The preferred property name is
7188 	 * "retry-on-reservation-conflict") (1189689)
7189 	 *
7190 	 * Note: The use of a global here can have unintended consequences. A
7191 	 * per instance variable is preferrable to match the capabilities of
7192 	 * different underlying hba's (4402600)
7193 	 */
7194 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7195 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7196 	    sd_retry_on_reservation_conflict);
7197 	if (sd_retry_on_reservation_conflict != 0) {
7198 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7199 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7200 		    sd_retry_on_reservation_conflict);
7201 	}
7202 
7203 	/* Set up options for QFULL handling. */
7204 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7205 	    "qfull-retries", -1)) != -1) {
7206 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7207 		    rval, 1);
7208 	}
7209 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7210 	    "qfull-retry-interval", -1)) != -1) {
7211 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7212 		    rval, 1);
7213 	}
7214 
7215 	/*
7216 	 * This just prints a message that announces the existence of the
7217 	 * device. The message is always printed in the system logfile, but
7218 	 * only appears on the console if the system is booted with the
7219 	 * -v (verbose) argument.
7220 	 */
7221 	ddi_report_dev(devi);
7222 
7223 	un->un_mediastate = DKIO_NONE;
7224 
7225 	cmlb_alloc_handle(&un->un_cmlbhandle);
7226 
7227 #if defined(__i386) || defined(__amd64)
7228 	/*
7229 	 * On x86, compensate for off-by-1 legacy error
7230 	 */
7231 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7232 	    (lbasize == un->un_sys_blocksize))
7233 		offbyone = CMLB_OFF_BY_ONE;
7234 #endif
7235 
7236 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7237 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7238 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7239 	    (void *)SD_PATH_DIRECT) != 0) {
7240 		goto cmlb_attach_failed;
7241 	}
7242 
7243 
7244 	/*
7245 	 * Read and validate the device's geometry (ie, disk label)
7246 	 * A new unformatted drive will not have a valid geometry, but
7247 	 * the driver needs to successfully attach to this device so
7248 	 * the drive can be formatted via ioctls.
7249 	 */
7250 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7251 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7252 
7253 	mutex_enter(SD_MUTEX(un));
7254 
7255 	/*
7256 	 * Read and initialize the devid for the unit.
7257 	 */
7258 	ASSERT(un->un_errstats != NULL);
7259 	if (un->un_f_devid_supported) {
7260 		sd_register_devid(un, devi, reservation_flag);
7261 	}
7262 	mutex_exit(SD_MUTEX(un));
7263 
7264 #if (defined(__fibre))
7265 	/*
7266 	 * Register callbacks for fibre only.  You can't do this soley
7267 	 * on the basis of the devid_type because this is hba specific.
7268 	 * We need to query our hba capabilities to find out whether to
7269 	 * register or not.
7270 	 */
7271 	if (un->un_f_is_fibre) {
7272 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7273 			sd_init_event_callbacks(un);
7274 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7275 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7276 			    un);
7277 		}
7278 	}
7279 #endif
7280 
7281 	if (un->un_f_opt_disable_cache == TRUE) {
7282 		/*
7283 		 * Disable both read cache and write cache.  This is
7284 		 * the historic behavior of the keywords in the config file.
7285 		 */
7286 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7287 		    0) {
7288 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7289 			    "sd_unit_attach: un:0x%p Could not disable "
7290 			    "caching", un);
7291 			goto devid_failed;
7292 		}
7293 	}
7294 
7295 	/*
7296 	 * Check the value of the WCE bit now and
7297 	 * set un_f_write_cache_enabled accordingly.
7298 	 */
7299 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7300 	mutex_enter(SD_MUTEX(un));
7301 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7302 	mutex_exit(SD_MUTEX(un));
7303 
7304 	/*
7305 	 * Find out what type of reservation this disk supports.
7306 	 */
7307 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7308 	case 0:
7309 		/*
7310 		 * SCSI-3 reservations are supported.
7311 		 */
7312 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7313 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7314 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7315 		break;
7316 	case ENOTSUP:
7317 		/*
7318 		 * The PERSISTENT RESERVE IN command would not be recognized by
7319 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7320 		 */
7321 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7322 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7323 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7324 		break;
7325 	default:
7326 		/*
7327 		 * default to SCSI-3 reservations
7328 		 */
7329 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7330 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7331 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7332 		break;
7333 	}
7334 
7335 	/*
7336 	 * Set the pstat and error stat values here, so data obtained during the
7337 	 * previous attach-time routines is available.
7338 	 *
7339 	 * Note: This is a critical sequence that needs to be maintained:
7340 	 *	1) Instantiate the kstats before any routines using the iopath
7341 	 *	   (i.e. sd_send_scsi_cmd).
7342 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7343 	 *	   stats (sd_set_pstats)here, following
7344 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7345 	 *	   sd_cache_control().
7346 	 */
7347 
7348 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7349 		sd_set_pstats(un);
7350 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7351 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7352 	}
7353 
7354 	sd_set_errstats(un);
7355 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7356 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7357 
7358 
7359 	/*
7360 	 * After successfully attaching an instance, we record the information
7361 	 * of how many luns have been attached on the relative target and
7362 	 * controller for parallel SCSI. This information is used when sd tries
7363 	 * to set the tagged queuing capability in HBA.
7364 	 */
7365 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7366 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7367 	}
7368 
7369 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7370 	    "sd_unit_attach: un:0x%p exit success\n", un);
7371 
7372 	return (DDI_SUCCESS);
7373 
7374 	/*
7375 	 * An error occurred during the attach; clean up & return failure.
7376 	 */
7377 
7378 devid_failed:
7379 
7380 setup_pm_failed:
7381 	ddi_remove_minor_node(devi, NULL);
7382 
7383 cmlb_attach_failed:
7384 	/*
7385 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7386 	 */
7387 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7388 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7389 
7390 	/*
7391 	 * Refer to the comments of setting tagged-qing in the beginning of
7392 	 * sd_unit_attach. We can only disable tagged queuing when there is
7393 	 * no lun attached on the target.
7394 	 */
7395 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7396 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7397 	}
7398 
7399 	if (un->un_f_is_fibre == FALSE) {
7400 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7401 	}
7402 
7403 spinup_failed:
7404 
7405 	mutex_enter(SD_MUTEX(un));
7406 
7407 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7408 	if (un->un_direct_priority_timeid != NULL) {
7409 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7410 		un->un_direct_priority_timeid = NULL;
7411 		mutex_exit(SD_MUTEX(un));
7412 		(void) untimeout(temp_id);
7413 		mutex_enter(SD_MUTEX(un));
7414 	}
7415 
7416 	/* Cancel any pending start/stop timeouts */
7417 	if (un->un_startstop_timeid != NULL) {
7418 		timeout_id_t temp_id = un->un_startstop_timeid;
7419 		un->un_startstop_timeid = NULL;
7420 		mutex_exit(SD_MUTEX(un));
7421 		(void) untimeout(temp_id);
7422 		mutex_enter(SD_MUTEX(un));
7423 	}
7424 
7425 	/* Cancel any pending reset-throttle timeouts */
7426 	if (un->un_reset_throttle_timeid != NULL) {
7427 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7428 		un->un_reset_throttle_timeid = NULL;
7429 		mutex_exit(SD_MUTEX(un));
7430 		(void) untimeout(temp_id);
7431 		mutex_enter(SD_MUTEX(un));
7432 	}
7433 
7434 	/* Cancel any pending retry timeouts */
7435 	if (un->un_retry_timeid != NULL) {
7436 		timeout_id_t temp_id = un->un_retry_timeid;
7437 		un->un_retry_timeid = NULL;
7438 		mutex_exit(SD_MUTEX(un));
7439 		(void) untimeout(temp_id);
7440 		mutex_enter(SD_MUTEX(un));
7441 	}
7442 
7443 	/* Cancel any pending delayed cv broadcast timeouts */
7444 	if (un->un_dcvb_timeid != NULL) {
7445 		timeout_id_t temp_id = un->un_dcvb_timeid;
7446 		un->un_dcvb_timeid = NULL;
7447 		mutex_exit(SD_MUTEX(un));
7448 		(void) untimeout(temp_id);
7449 		mutex_enter(SD_MUTEX(un));
7450 	}
7451 
7452 	mutex_exit(SD_MUTEX(un));
7453 
7454 	/* There should not be any in-progress I/O so ASSERT this check */
7455 	ASSERT(un->un_ncmds_in_transport == 0);
7456 	ASSERT(un->un_ncmds_in_driver == 0);
7457 
7458 	/* Do not free the softstate if the callback routine is active */
7459 	sd_sync_with_callback(un);
7460 
7461 	/*
7462 	 * Partition stats apparently are not used with removables. These would
7463 	 * not have been created during attach, so no need to clean them up...
7464 	 */
7465 	if (un->un_stats != NULL) {
7466 		kstat_delete(un->un_stats);
7467 		un->un_stats = NULL;
7468 	}
7469 	if (un->un_errstats != NULL) {
7470 		kstat_delete(un->un_errstats);
7471 		un->un_errstats = NULL;
7472 	}
7473 
7474 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7475 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7476 
7477 	ddi_prop_remove_all(devi);
7478 	sema_destroy(&un->un_semoclose);
7479 	cv_destroy(&un->un_state_cv);
7480 
7481 getrbuf_failed:
7482 
7483 	sd_free_rqs(un);
7484 
7485 alloc_rqs_failed:
7486 
7487 	devp->sd_private = NULL;
7488 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7489 
7490 get_softstate_failed:
7491 	/*
7492 	 * Note: the man pages are unclear as to whether or not doing a
7493 	 * ddi_soft_state_free(sd_state, instance) is the right way to
7494 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7495 	 * ddi_get_soft_state() fails.  The implication seems to be
7496 	 * that the get_soft_state cannot fail if the zalloc succeeds.
7497 	 */
7498 	ddi_soft_state_free(sd_state, instance);
7499 
7500 probe_failed:
7501 	scsi_unprobe(devp);
7502 #ifdef SDDEBUG
7503 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
7504 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
7505 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
7506 		    (void *)un);
7507 	}
7508 #endif
7509 	return (DDI_FAILURE);
7510 }
7511 
7512 
7513 /*
7514  *    Function: sd_unit_detach
7515  *
7516  * Description: Performs DDI_DETACH processing for sddetach().
7517  *
7518  * Return Code: DDI_SUCCESS
7519  *		DDI_FAILURE
7520  *
7521  *     Context: Kernel thread context
7522  */
7523 
7524 static int
7525 sd_unit_detach(dev_info_t *devi)
7526 {
7527 	struct scsi_device	*devp;
7528 	struct sd_lun		*un;
7529 	int			i;
7530 	int			tgt;
7531 	dev_t			dev;
7532 	dev_info_t		*pdip = ddi_get_parent(devi);
7533 	int			instance = ddi_get_instance(devi);
7534 
7535 	mutex_enter(&sd_detach_mutex);
7536 
7537 	/*
7538 	 * Fail the detach for any of the following:
7539 	 *  - Unable to get the sd_lun struct for the instance
7540 	 *  - A layered driver has an outstanding open on the instance
7541 	 *  - Another thread is already detaching this instance
7542 	 *  - Another thread is currently performing an open
7543 	 */
7544 	devp = ddi_get_driver_private(devi);
7545 	if ((devp == NULL) ||
7546 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7547 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7548 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7549 		mutex_exit(&sd_detach_mutex);
7550 		return (DDI_FAILURE);
7551 	}
7552 
7553 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7554 
7555 	/*
7556 	 * Mark this instance as currently in a detach, to inhibit any
7557 	 * opens from a layered driver.
7558 	 */
7559 	un->un_detach_count++;
7560 	mutex_exit(&sd_detach_mutex);
7561 
7562 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7563 	    SCSI_ADDR_PROP_TARGET, -1);
7564 
7565 	dev = sd_make_device(SD_DEVINFO(un));
7566 
7567 #ifndef lint
7568 	_NOTE(COMPETING_THREADS_NOW);
7569 #endif
7570 
7571 	mutex_enter(SD_MUTEX(un));
7572 
7573 	/*
7574 	 * Fail the detach if there are any outstanding layered
7575 	 * opens on this device.
7576 	 */
7577 	for (i = 0; i < NDKMAP; i++) {
7578 		if (un->un_ocmap.lyropen[i] != 0) {
7579 			goto err_notclosed;
7580 		}
7581 	}
7582 
7583 	/*
7584 	 * Verify there are NO outstanding commands issued to this device.
7585 	 * ie, un_ncmds_in_transport == 0.
7586 	 * It's possible to have outstanding commands through the physio
7587 	 * code path, even though everything's closed.
7588 	 */
7589 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7590 	    (un->un_direct_priority_timeid != NULL) ||
7591 	    (un->un_state == SD_STATE_RWAIT)) {
7592 		mutex_exit(SD_MUTEX(un));
7593 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7594 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7595 		goto err_stillbusy;
7596 	}
7597 
7598 	/*
7599 	 * If we have the device reserved, release the reservation.
7600 	 */
7601 	if ((un->un_resvd_status & SD_RESERVE) &&
7602 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7603 		mutex_exit(SD_MUTEX(un));
7604 		/*
7605 		 * Note: sd_reserve_release sends a command to the device
7606 		 * via the sd_ioctlcmd() path, and can sleep.
7607 		 */
7608 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7609 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7610 			    "sd_dr_detach: Cannot release reservation \n");
7611 		}
7612 	} else {
7613 		mutex_exit(SD_MUTEX(un));
7614 	}
7615 
7616 	/*
7617 	 * Untimeout any reserve recover, throttle reset, restart unit
7618 	 * and delayed broadcast timeout threads. Protect the timeout pointer
7619 	 * from getting nulled by their callback functions.
7620 	 */
7621 	mutex_enter(SD_MUTEX(un));
7622 	if (un->un_resvd_timeid != NULL) {
7623 		timeout_id_t temp_id = un->un_resvd_timeid;
7624 		un->un_resvd_timeid = NULL;
7625 		mutex_exit(SD_MUTEX(un));
7626 		(void) untimeout(temp_id);
7627 		mutex_enter(SD_MUTEX(un));
7628 	}
7629 
7630 	if (un->un_reset_throttle_timeid != NULL) {
7631 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7632 		un->un_reset_throttle_timeid = NULL;
7633 		mutex_exit(SD_MUTEX(un));
7634 		(void) untimeout(temp_id);
7635 		mutex_enter(SD_MUTEX(un));
7636 	}
7637 
7638 	if (un->un_startstop_timeid != NULL) {
7639 		timeout_id_t temp_id = un->un_startstop_timeid;
7640 		un->un_startstop_timeid = NULL;
7641 		mutex_exit(SD_MUTEX(un));
7642 		(void) untimeout(temp_id);
7643 		mutex_enter(SD_MUTEX(un));
7644 	}
7645 
7646 	if (un->un_dcvb_timeid != NULL) {
7647 		timeout_id_t temp_id = un->un_dcvb_timeid;
7648 		un->un_dcvb_timeid = NULL;
7649 		mutex_exit(SD_MUTEX(un));
7650 		(void) untimeout(temp_id);
7651 	} else {
7652 		mutex_exit(SD_MUTEX(un));
7653 	}
7654 
7655 	/* Remove any pending reservation reclaim requests for this device */
7656 	sd_rmv_resv_reclaim_req(dev);
7657 
7658 	mutex_enter(SD_MUTEX(un));
7659 
7660 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7661 	if (un->un_direct_priority_timeid != NULL) {
7662 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7663 		un->un_direct_priority_timeid = NULL;
7664 		mutex_exit(SD_MUTEX(un));
7665 		(void) untimeout(temp_id);
7666 		mutex_enter(SD_MUTEX(un));
7667 	}
7668 
7669 	/* Cancel any active multi-host disk watch thread requests */
7670 	if (un->un_mhd_token != NULL) {
7671 		mutex_exit(SD_MUTEX(un));
7672 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7673 		if (scsi_watch_request_terminate(un->un_mhd_token,
7674 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7675 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7676 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7677 			/*
7678 			 * Note: We are returning here after having removed
7679 			 * some driver timeouts above. This is consistent with
7680 			 * the legacy implementation but perhaps the watch
7681 			 * terminate call should be made with the wait flag set.
7682 			 */
7683 			goto err_stillbusy;
7684 		}
7685 		mutex_enter(SD_MUTEX(un));
7686 		un->un_mhd_token = NULL;
7687 	}
7688 
7689 	if (un->un_swr_token != NULL) {
7690 		mutex_exit(SD_MUTEX(un));
7691 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7692 		if (scsi_watch_request_terminate(un->un_swr_token,
7693 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7694 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7695 			    "sd_dr_detach: Cannot cancel swr watch request\n");
7696 			/*
7697 			 * Note: We are returning here after having removed
7698 			 * some driver timeouts above. This is consistent with
7699 			 * the legacy implementation but perhaps the watch
7700 			 * terminate call should be made with the wait flag set.
7701 			 */
7702 			goto err_stillbusy;
7703 		}
7704 		mutex_enter(SD_MUTEX(un));
7705 		un->un_swr_token = NULL;
7706 	}
7707 
7708 	mutex_exit(SD_MUTEX(un));
7709 
7710 	/*
7711 	 * Clear any scsi_reset_notifies. We clear the reset notifies
7712 	 * if we have not registered one.
7713 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7714 	 */
7715 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7716 	    sd_mhd_reset_notify_cb, (caddr_t)un);
7717 
7718 	/*
7719 	 * protect the timeout pointers from getting nulled by
7720 	 * their callback functions during the cancellation process.
7721 	 * In such a scenario untimeout can be invoked with a null value.
7722 	 */
7723 	_NOTE(NO_COMPETING_THREADS_NOW);
7724 
7725 	mutex_enter(&un->un_pm_mutex);
7726 	if (un->un_pm_idle_timeid != NULL) {
7727 		timeout_id_t temp_id = un->un_pm_idle_timeid;
7728 		un->un_pm_idle_timeid = NULL;
7729 		mutex_exit(&un->un_pm_mutex);
7730 
7731 		/*
7732 		 * Timeout is active; cancel it.
7733 		 * Note that it'll never be active on a device
7734 		 * that does not support PM therefore we don't
7735 		 * have to check before calling pm_idle_component.
7736 		 */
7737 		(void) untimeout(temp_id);
7738 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7739 		mutex_enter(&un->un_pm_mutex);
7740 	}
7741 
7742 	/*
7743 	 * Check whether there is already a timeout scheduled for power
7744 	 * management. If yes then don't lower the power here, that's.
7745 	 * the timeout handler's job.
7746 	 */
7747 	if (un->un_pm_timeid != NULL) {
7748 		timeout_id_t temp_id = un->un_pm_timeid;
7749 		un->un_pm_timeid = NULL;
7750 		mutex_exit(&un->un_pm_mutex);
7751 		/*
7752 		 * Timeout is active; cancel it.
7753 		 * Note that it'll never be active on a device
7754 		 * that does not support PM therefore we don't
7755 		 * have to check before calling pm_idle_component.
7756 		 */
7757 		(void) untimeout(temp_id);
7758 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7759 
7760 	} else {
7761 		mutex_exit(&un->un_pm_mutex);
7762 		if ((un->un_f_pm_is_enabled == TRUE) &&
7763 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7764 		    DDI_SUCCESS)) {
7765 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7766 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7767 			/*
7768 			 * Fix for bug: 4297749, item # 13
7769 			 * The above test now includes a check to see if PM is
7770 			 * supported by this device before call
7771 			 * pm_lower_power().
7772 			 * Note, the following is not dead code. The call to
7773 			 * pm_lower_power above will generate a call back into
7774 			 * our sdpower routine which might result in a timeout
7775 			 * handler getting activated. Therefore the following
7776 			 * code is valid and necessary.
7777 			 */
7778 			mutex_enter(&un->un_pm_mutex);
7779 			if (un->un_pm_timeid != NULL) {
7780 				timeout_id_t temp_id = un->un_pm_timeid;
7781 				un->un_pm_timeid = NULL;
7782 				mutex_exit(&un->un_pm_mutex);
7783 				(void) untimeout(temp_id);
7784 				(void) pm_idle_component(SD_DEVINFO(un), 0);
7785 			} else {
7786 				mutex_exit(&un->un_pm_mutex);
7787 			}
7788 		}
7789 	}
7790 
7791 	/*
7792 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7793 	 * Relocated here from above to be after the call to
7794 	 * pm_lower_power, which was getting errors.
7795 	 */
7796 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7797 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7798 
7799 	/*
7800 	 * Currently, tagged queuing is supported per target based by HBA.
7801 	 * Setting this per lun instance actually sets the capability of this
7802 	 * target in HBA, which affects those luns already attached on the
7803 	 * same target. So during detach, we can only disable this capability
7804 	 * only when this is the only lun left on this target. By doing
7805 	 * this, we assume a target has the same tagged queuing capability
7806 	 * for every lun. The condition can be removed when HBA is changed to
7807 	 * support per lun based tagged queuing capability.
7808 	 */
7809 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7810 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7811 	}
7812 
7813 	if (un->un_f_is_fibre == FALSE) {
7814 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7815 	}
7816 
7817 	/*
7818 	 * Remove any event callbacks, fibre only
7819 	 */
7820 	if (un->un_f_is_fibre == TRUE) {
7821 		if ((un->un_insert_event != NULL) &&
7822 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
7823 		    DDI_SUCCESS)) {
7824 			/*
7825 			 * Note: We are returning here after having done
7826 			 * substantial cleanup above. This is consistent
7827 			 * with the legacy implementation but this may not
7828 			 * be the right thing to do.
7829 			 */
7830 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7831 			    "sd_dr_detach: Cannot cancel insert event\n");
7832 			goto err_remove_event;
7833 		}
7834 		un->un_insert_event = NULL;
7835 
7836 		if ((un->un_remove_event != NULL) &&
7837 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
7838 		    DDI_SUCCESS)) {
7839 			/*
7840 			 * Note: We are returning here after having done
7841 			 * substantial cleanup above. This is consistent
7842 			 * with the legacy implementation but this may not
7843 			 * be the right thing to do.
7844 			 */
7845 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7846 			    "sd_dr_detach: Cannot cancel remove event\n");
7847 			goto err_remove_event;
7848 		}
7849 		un->un_remove_event = NULL;
7850 	}
7851 
7852 	/* Do not free the softstate if the callback routine is active */
7853 	sd_sync_with_callback(un);
7854 
7855 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7856 	cmlb_free_handle(&un->un_cmlbhandle);
7857 
7858 	/*
7859 	 * Hold the detach mutex here, to make sure that no other threads ever
7860 	 * can access a (partially) freed soft state structure.
7861 	 */
7862 	mutex_enter(&sd_detach_mutex);
7863 
7864 	/*
7865 	 * Clean up the soft state struct.
7866 	 * Cleanup is done in reverse order of allocs/inits.
7867 	 * At this point there should be no competing threads anymore.
7868 	 */
7869 
7870 	/* Unregister and free device id. */
7871 	ddi_devid_unregister(devi);
7872 	if (un->un_devid) {
7873 		ddi_devid_free(un->un_devid);
7874 		un->un_devid = NULL;
7875 	}
7876 
7877 	/*
7878 	 * Destroy wmap cache if it exists.
7879 	 */
7880 	if (un->un_wm_cache != NULL) {
7881 		kmem_cache_destroy(un->un_wm_cache);
7882 		un->un_wm_cache = NULL;
7883 	}
7884 
7885 	/*
7886 	 * kstat cleanup is done in detach for all device types (4363169).
7887 	 * We do not want to fail detach if the device kstats are not deleted
7888 	 * since there is a confusion about the devo_refcnt for the device.
7889 	 * We just delete the kstats and let detach complete successfully.
7890 	 */
7891 	if (un->un_stats != NULL) {
7892 		kstat_delete(un->un_stats);
7893 		un->un_stats = NULL;
7894 	}
7895 	if (un->un_errstats != NULL) {
7896 		kstat_delete(un->un_errstats);
7897 		un->un_errstats = NULL;
7898 	}
7899 
7900 	/* Remove partition stats */
7901 	if (un->un_f_pkstats_enabled) {
7902 		for (i = 0; i < NSDMAP; i++) {
7903 			if (un->un_pstats[i] != NULL) {
7904 				kstat_delete(un->un_pstats[i]);
7905 				un->un_pstats[i] = NULL;
7906 			}
7907 		}
7908 	}
7909 
7910 	/* Remove xbuf registration */
7911 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7912 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7913 
7914 	/* Remove driver properties */
7915 	ddi_prop_remove_all(devi);
7916 
7917 	mutex_destroy(&un->un_pm_mutex);
7918 	cv_destroy(&un->un_pm_busy_cv);
7919 
7920 	cv_destroy(&un->un_wcc_cv);
7921 
7922 	/* Open/close semaphore */
7923 	sema_destroy(&un->un_semoclose);
7924 
7925 	/* Removable media condvar. */
7926 	cv_destroy(&un->un_state_cv);
7927 
7928 	/* Suspend/resume condvar. */
7929 	cv_destroy(&un->un_suspend_cv);
7930 	cv_destroy(&un->un_disk_busy_cv);
7931 
7932 	sd_free_rqs(un);
7933 
7934 	/* Free up soft state */
7935 	devp->sd_private = NULL;
7936 
7937 	bzero(un, sizeof (struct sd_lun));
7938 	ddi_soft_state_free(sd_state, instance);
7939 
7940 	mutex_exit(&sd_detach_mutex);
7941 
7942 	/* This frees up the INQUIRY data associated with the device. */
7943 	scsi_unprobe(devp);
7944 
7945 	/*
7946 	 * After successfully detaching an instance, we update the information
7947 	 * of how many luns have been attached in the relative target and
7948 	 * controller for parallel SCSI. This information is used when sd tries
7949 	 * to set the tagged queuing capability in HBA.
7950 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
7951 	 * check if the device is parallel SCSI. However, we don't need to
7952 	 * check here because we've already checked during attach. No device
7953 	 * that is not parallel SCSI is in the chain.
7954 	 */
7955 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7956 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
7957 	}
7958 
7959 	return (DDI_SUCCESS);
7960 
7961 err_notclosed:
7962 	mutex_exit(SD_MUTEX(un));
7963 
7964 err_stillbusy:
7965 	_NOTE(NO_COMPETING_THREADS_NOW);
7966 
7967 err_remove_event:
7968 	mutex_enter(&sd_detach_mutex);
7969 	un->un_detach_count--;
7970 	mutex_exit(&sd_detach_mutex);
7971 
7972 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
7973 	return (DDI_FAILURE);
7974 }
7975 
7976 
7977 /*
7978  *    Function: sd_create_errstats
7979  *
7980  * Description: This routine instantiates the device error stats.
7981  *
7982  *		Note: During attach the stats are instantiated first so they are
7983  *		available for attach-time routines that utilize the driver
7984  *		iopath to send commands to the device. The stats are initialized
7985  *		separately so data obtained during some attach-time routines is
7986  *		available. (4362483)
7987  *
7988  *   Arguments: un - driver soft state (unit) structure
7989  *		instance - driver instance
7990  *
7991  *     Context: Kernel thread context
7992  */
7993 
7994 static void
7995 sd_create_errstats(struct sd_lun *un, int instance)
7996 {
7997 	struct	sd_errstats	*stp;
7998 	char	kstatmodule_err[KSTAT_STRLEN];
7999 	char	kstatname[KSTAT_STRLEN];
8000 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8001 
8002 	ASSERT(un != NULL);
8003 
8004 	if (un->un_errstats != NULL) {
8005 		return;
8006 	}
8007 
8008 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8009 	    "%serr", sd_label);
8010 	(void) snprintf(kstatname, sizeof (kstatname),
8011 	    "%s%d,err", sd_label, instance);
8012 
8013 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8014 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8015 
8016 	if (un->un_errstats == NULL) {
8017 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8018 		    "sd_create_errstats: Failed kstat_create\n");
8019 		return;
8020 	}
8021 
8022 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8023 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8024 	    KSTAT_DATA_UINT32);
8025 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8026 	    KSTAT_DATA_UINT32);
8027 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8028 	    KSTAT_DATA_UINT32);
8029 	kstat_named_init(&stp->sd_vid,		"Vendor",
8030 	    KSTAT_DATA_CHAR);
8031 	kstat_named_init(&stp->sd_pid,		"Product",
8032 	    KSTAT_DATA_CHAR);
8033 	kstat_named_init(&stp->sd_revision,	"Revision",
8034 	    KSTAT_DATA_CHAR);
8035 	kstat_named_init(&stp->sd_serial,	"Serial No",
8036 	    KSTAT_DATA_CHAR);
8037 	kstat_named_init(&stp->sd_capacity,	"Size",
8038 	    KSTAT_DATA_ULONGLONG);
8039 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8040 	    KSTAT_DATA_UINT32);
8041 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8042 	    KSTAT_DATA_UINT32);
8043 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8044 	    KSTAT_DATA_UINT32);
8045 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8046 	    KSTAT_DATA_UINT32);
8047 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8048 	    KSTAT_DATA_UINT32);
8049 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8050 	    KSTAT_DATA_UINT32);
8051 
8052 	un->un_errstats->ks_private = un;
8053 	un->un_errstats->ks_update  = nulldev;
8054 
8055 	kstat_install(un->un_errstats);
8056 }
8057 
8058 
8059 /*
8060  *    Function: sd_set_errstats
8061  *
8062  * Description: This routine sets the value of the vendor id, product id,
8063  *		revision, serial number, and capacity device error stats.
8064  *
8065  *		Note: During attach the stats are instantiated first so they are
8066  *		available for attach-time routines that utilize the driver
8067  *		iopath to send commands to the device. The stats are initialized
8068  *		separately so data obtained during some attach-time routines is
8069  *		available. (4362483)
8070  *
8071  *   Arguments: un - driver soft state (unit) structure
8072  *
8073  *     Context: Kernel thread context
8074  */
8075 
8076 static void
8077 sd_set_errstats(struct sd_lun *un)
8078 {
8079 	struct	sd_errstats	*stp;
8080 
8081 	ASSERT(un != NULL);
8082 	ASSERT(un->un_errstats != NULL);
8083 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8084 	ASSERT(stp != NULL);
8085 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8086 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8087 	(void) strncpy(stp->sd_revision.value.c,
8088 	    un->un_sd->sd_inq->inq_revision, 4);
8089 
8090 	/*
8091 	 * All the errstats are persistent across detach/attach,
8092 	 * so reset all the errstats here in case of the hot
8093 	 * replacement of disk drives, except for not changed
8094 	 * Sun qualified drives.
8095 	 */
8096 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8097 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8098 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8099 		stp->sd_softerrs.value.ui32 = 0;
8100 		stp->sd_harderrs.value.ui32 = 0;
8101 		stp->sd_transerrs.value.ui32 = 0;
8102 		stp->sd_rq_media_err.value.ui32 = 0;
8103 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8104 		stp->sd_rq_nodev_err.value.ui32 = 0;
8105 		stp->sd_rq_recov_err.value.ui32 = 0;
8106 		stp->sd_rq_illrq_err.value.ui32 = 0;
8107 		stp->sd_rq_pfa_err.value.ui32 = 0;
8108 	}
8109 
8110 	/*
8111 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8112 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8113 	 * (4376302))
8114 	 */
8115 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8116 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8117 		    sizeof (SD_INQUIRY(un)->inq_serial));
8118 	}
8119 
8120 	if (un->un_f_blockcount_is_valid != TRUE) {
8121 		/*
8122 		 * Set capacity error stat to 0 for no media. This ensures
8123 		 * a valid capacity is displayed in response to 'iostat -E'
8124 		 * when no media is present in the device.
8125 		 */
8126 		stp->sd_capacity.value.ui64 = 0;
8127 	} else {
8128 		/*
8129 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8130 		 * capacity.
8131 		 *
8132 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8133 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8134 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8135 		 */
8136 		stp->sd_capacity.value.ui64 = (uint64_t)
8137 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8138 	}
8139 }
8140 
8141 
8142 /*
8143  *    Function: sd_set_pstats
8144  *
8145  * Description: This routine instantiates and initializes the partition
8146  *              stats for each partition with more than zero blocks.
8147  *		(4363169)
8148  *
8149  *   Arguments: un - driver soft state (unit) structure
8150  *
8151  *     Context: Kernel thread context
8152  */
8153 
8154 static void
8155 sd_set_pstats(struct sd_lun *un)
8156 {
8157 	char	kstatname[KSTAT_STRLEN];
8158 	int	instance;
8159 	int	i;
8160 	diskaddr_t	nblks = 0;
8161 	char	*partname = NULL;
8162 
8163 	ASSERT(un != NULL);
8164 
8165 	instance = ddi_get_instance(SD_DEVINFO(un));
8166 
8167 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8168 	for (i = 0; i < NSDMAP; i++) {
8169 
8170 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8171 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8172 			continue;
8173 		mutex_enter(SD_MUTEX(un));
8174 
8175 		if ((un->un_pstats[i] == NULL) &&
8176 		    (nblks != 0)) {
8177 
8178 			(void) snprintf(kstatname, sizeof (kstatname),
8179 			    "%s%d,%s", sd_label, instance,
8180 			    partname);
8181 
8182 			un->un_pstats[i] = kstat_create(sd_label,
8183 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8184 			    1, KSTAT_FLAG_PERSISTENT);
8185 			if (un->un_pstats[i] != NULL) {
8186 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8187 				kstat_install(un->un_pstats[i]);
8188 			}
8189 		}
8190 		mutex_exit(SD_MUTEX(un));
8191 	}
8192 }
8193 
8194 
8195 #if (defined(__fibre))
8196 /*
8197  *    Function: sd_init_event_callbacks
8198  *
8199  * Description: This routine initializes the insertion and removal event
8200  *		callbacks. (fibre only)
8201  *
8202  *   Arguments: un - driver soft state (unit) structure
8203  *
8204  *     Context: Kernel thread context
8205  */
8206 
8207 static void
8208 sd_init_event_callbacks(struct sd_lun *un)
8209 {
8210 	ASSERT(un != NULL);
8211 
8212 	if ((un->un_insert_event == NULL) &&
8213 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8214 	    &un->un_insert_event) == DDI_SUCCESS)) {
8215 		/*
8216 		 * Add the callback for an insertion event
8217 		 */
8218 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8219 		    un->un_insert_event, sd_event_callback, (void *)un,
8220 		    &(un->un_insert_cb_id));
8221 	}
8222 
8223 	if ((un->un_remove_event == NULL) &&
8224 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8225 	    &un->un_remove_event) == DDI_SUCCESS)) {
8226 		/*
8227 		 * Add the callback for a removal event
8228 		 */
8229 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8230 		    un->un_remove_event, sd_event_callback, (void *)un,
8231 		    &(un->un_remove_cb_id));
8232 	}
8233 }
8234 
8235 
8236 /*
8237  *    Function: sd_event_callback
8238  *
8239  * Description: This routine handles insert/remove events (photon). The
8240  *		state is changed to OFFLINE which can be used to supress
8241  *		error msgs. (fibre only)
8242  *
8243  *   Arguments: un - driver soft state (unit) structure
8244  *
8245  *     Context: Callout thread context
8246  */
8247 /* ARGSUSED */
8248 static void
8249 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8250     void *bus_impldata)
8251 {
8252 	struct sd_lun *un = (struct sd_lun *)arg;
8253 
8254 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8255 	if (event == un->un_insert_event) {
8256 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8257 		mutex_enter(SD_MUTEX(un));
8258 		if (un->un_state == SD_STATE_OFFLINE) {
8259 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8260 				un->un_state = un->un_last_state;
8261 			} else {
8262 				/*
8263 				 * We have gone through SUSPEND/RESUME while
8264 				 * we were offline. Restore the last state
8265 				 */
8266 				un->un_state = un->un_save_state;
8267 			}
8268 		}
8269 		mutex_exit(SD_MUTEX(un));
8270 
8271 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8272 	} else if (event == un->un_remove_event) {
8273 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8274 		mutex_enter(SD_MUTEX(un));
8275 		/*
8276 		 * We need to handle an event callback that occurs during
8277 		 * the suspend operation, since we don't prevent it.
8278 		 */
8279 		if (un->un_state != SD_STATE_OFFLINE) {
8280 			if (un->un_state != SD_STATE_SUSPENDED) {
8281 				New_state(un, SD_STATE_OFFLINE);
8282 			} else {
8283 				un->un_last_state = SD_STATE_OFFLINE;
8284 			}
8285 		}
8286 		mutex_exit(SD_MUTEX(un));
8287 	} else {
8288 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8289 		    "!Unknown event\n");
8290 	}
8291 
8292 }
8293 #endif
8294 
8295 /*
8296  *    Function: sd_cache_control()
8297  *
8298  * Description: This routine is the driver entry point for setting
8299  *		read and write caching by modifying the WCE (write cache
8300  *		enable) and RCD (read cache disable) bits of mode
8301  *		page 8 (MODEPAGE_CACHING).
8302  *
8303  *   Arguments: un - driver soft state (unit) structure
8304  *		rcd_flag - flag for controlling the read cache
8305  *		wce_flag - flag for controlling the write cache
8306  *
8307  * Return Code: EIO
8308  *		code returned by sd_send_scsi_MODE_SENSE and
8309  *		sd_send_scsi_MODE_SELECT
8310  *
8311  *     Context: Kernel Thread
8312  */
8313 
8314 static int
8315 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8316 {
8317 	struct mode_caching	*mode_caching_page;
8318 	uchar_t			*header;
8319 	size_t			buflen;
8320 	int			hdrlen;
8321 	int			bd_len;
8322 	int			rval = 0;
8323 	struct mode_header_grp2	*mhp;
8324 
8325 	ASSERT(un != NULL);
8326 
8327 	/*
8328 	 * Do a test unit ready, otherwise a mode sense may not work if this
8329 	 * is the first command sent to the device after boot.
8330 	 */
8331 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8332 
8333 	if (un->un_f_cfg_is_atapi == TRUE) {
8334 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8335 	} else {
8336 		hdrlen = MODE_HEADER_LENGTH;
8337 	}
8338 
8339 	/*
8340 	 * Allocate memory for the retrieved mode page and its headers.  Set
8341 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8342 	 * we get all of the mode sense data otherwise, the mode select
8343 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8344 	 */
8345 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8346 	    sizeof (struct mode_cache_scsi3);
8347 
8348 	header = kmem_zalloc(buflen, KM_SLEEP);
8349 
8350 	/* Get the information from the device. */
8351 	if (un->un_f_cfg_is_atapi == TRUE) {
8352 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8353 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8354 	} else {
8355 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8356 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8357 	}
8358 	if (rval != 0) {
8359 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8360 		    "sd_cache_control: Mode Sense Failed\n");
8361 		kmem_free(header, buflen);
8362 		return (rval);
8363 	}
8364 
8365 	/*
8366 	 * Determine size of Block Descriptors in order to locate
8367 	 * the mode page data. ATAPI devices return 0, SCSI devices
8368 	 * should return MODE_BLK_DESC_LENGTH.
8369 	 */
8370 	if (un->un_f_cfg_is_atapi == TRUE) {
8371 		mhp	= (struct mode_header_grp2 *)header;
8372 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8373 	} else {
8374 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8375 	}
8376 
8377 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8378 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8379 		    "sd_cache_control: Mode Sense returned invalid "
8380 		    "block descriptor length\n");
8381 		kmem_free(header, buflen);
8382 		return (EIO);
8383 	}
8384 
8385 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8386 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8387 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8388 		    " caching page code mismatch %d\n",
8389 		    mode_caching_page->mode_page.code);
8390 		kmem_free(header, buflen);
8391 		return (EIO);
8392 	}
8393 
8394 	/* Check the relevant bits on successful mode sense. */
8395 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8396 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8397 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8398 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8399 
8400 		size_t sbuflen;
8401 		uchar_t save_pg;
8402 
8403 		/*
8404 		 * Construct select buffer length based on the
8405 		 * length of the sense data returned.
8406 		 */
8407 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8408 		    sizeof (struct mode_page) +
8409 		    (int)mode_caching_page->mode_page.length;
8410 
8411 		/*
8412 		 * Set the caching bits as requested.
8413 		 */
8414 		if (rcd_flag == SD_CACHE_ENABLE)
8415 			mode_caching_page->rcd = 0;
8416 		else if (rcd_flag == SD_CACHE_DISABLE)
8417 			mode_caching_page->rcd = 1;
8418 
8419 		if (wce_flag == SD_CACHE_ENABLE)
8420 			mode_caching_page->wce = 1;
8421 		else if (wce_flag == SD_CACHE_DISABLE)
8422 			mode_caching_page->wce = 0;
8423 
8424 		/*
8425 		 * Save the page if the mode sense says the
8426 		 * drive supports it.
8427 		 */
8428 		save_pg = mode_caching_page->mode_page.ps ?
8429 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8430 
8431 		/* Clear reserved bits before mode select. */
8432 		mode_caching_page->mode_page.ps = 0;
8433 
8434 		/*
8435 		 * Clear out mode header for mode select.
8436 		 * The rest of the retrieved page will be reused.
8437 		 */
8438 		bzero(header, hdrlen);
8439 
8440 		if (un->un_f_cfg_is_atapi == TRUE) {
8441 			mhp = (struct mode_header_grp2 *)header;
8442 			mhp->bdesc_length_hi = bd_len >> 8;
8443 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8444 		} else {
8445 			((struct mode_header *)header)->bdesc_length = bd_len;
8446 		}
8447 
8448 		/* Issue mode select to change the cache settings */
8449 		if (un->un_f_cfg_is_atapi == TRUE) {
8450 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8451 			    sbuflen, save_pg, SD_PATH_DIRECT);
8452 		} else {
8453 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8454 			    sbuflen, save_pg, SD_PATH_DIRECT);
8455 		}
8456 	}
8457 
8458 	kmem_free(header, buflen);
8459 	return (rval);
8460 }
8461 
8462 
8463 /*
8464  *    Function: sd_get_write_cache_enabled()
8465  *
8466  * Description: This routine is the driver entry point for determining if
8467  *		write caching is enabled.  It examines the WCE (write cache
8468  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8469  *
8470  *   Arguments: un - driver soft state (unit) structure
8471  *		is_enabled - pointer to int where write cache enabled state
8472  *		is returned (non-zero -> write cache enabled)
8473  *
8474  *
8475  * Return Code: EIO
8476  *		code returned by sd_send_scsi_MODE_SENSE
8477  *
8478  *     Context: Kernel Thread
8479  *
8480  * NOTE: If ioctl is added to disable write cache, this sequence should
8481  * be followed so that no locking is required for accesses to
8482  * un->un_f_write_cache_enabled:
8483  * 	do mode select to clear wce
8484  * 	do synchronize cache to flush cache
8485  * 	set un->un_f_write_cache_enabled = FALSE
8486  *
8487  * Conversely, an ioctl to enable the write cache should be done
8488  * in this order:
8489  * 	set un->un_f_write_cache_enabled = TRUE
8490  * 	do mode select to set wce
8491  */
8492 
8493 static int
8494 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8495 {
8496 	struct mode_caching	*mode_caching_page;
8497 	uchar_t			*header;
8498 	size_t			buflen;
8499 	int			hdrlen;
8500 	int			bd_len;
8501 	int			rval = 0;
8502 
8503 	ASSERT(un != NULL);
8504 	ASSERT(is_enabled != NULL);
8505 
8506 	/* in case of error, flag as enabled */
8507 	*is_enabled = TRUE;
8508 
8509 	/*
8510 	 * Do a test unit ready, otherwise a mode sense may not work if this
8511 	 * is the first command sent to the device after boot.
8512 	 */
8513 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8514 
8515 	if (un->un_f_cfg_is_atapi == TRUE) {
8516 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8517 	} else {
8518 		hdrlen = MODE_HEADER_LENGTH;
8519 	}
8520 
8521 	/*
8522 	 * Allocate memory for the retrieved mode page and its headers.  Set
8523 	 * a pointer to the page itself.
8524 	 */
8525 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8526 	header = kmem_zalloc(buflen, KM_SLEEP);
8527 
8528 	/* Get the information from the device. */
8529 	if (un->un_f_cfg_is_atapi == TRUE) {
8530 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8531 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8532 	} else {
8533 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8534 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8535 	}
8536 	if (rval != 0) {
8537 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8538 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8539 		kmem_free(header, buflen);
8540 		return (rval);
8541 	}
8542 
8543 	/*
8544 	 * Determine size of Block Descriptors in order to locate
8545 	 * the mode page data. ATAPI devices return 0, SCSI devices
8546 	 * should return MODE_BLK_DESC_LENGTH.
8547 	 */
8548 	if (un->un_f_cfg_is_atapi == TRUE) {
8549 		struct mode_header_grp2	*mhp;
8550 		mhp	= (struct mode_header_grp2 *)header;
8551 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8552 	} else {
8553 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8554 	}
8555 
8556 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8557 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8558 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8559 		    "block descriptor length\n");
8560 		kmem_free(header, buflen);
8561 		return (EIO);
8562 	}
8563 
8564 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8565 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8566 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8567 		    " caching page code mismatch %d\n",
8568 		    mode_caching_page->mode_page.code);
8569 		kmem_free(header, buflen);
8570 		return (EIO);
8571 	}
8572 	*is_enabled = mode_caching_page->wce;
8573 
8574 	kmem_free(header, buflen);
8575 	return (0);
8576 }
8577 
8578 
8579 /*
8580  *    Function: sd_make_device
8581  *
8582  * Description: Utility routine to return the Solaris device number from
8583  *		the data in the device's dev_info structure.
8584  *
8585  * Return Code: The Solaris device number
8586  *
8587  *     Context: Any
8588  */
8589 
8590 static dev_t
8591 sd_make_device(dev_info_t *devi)
8592 {
8593 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8594 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8595 }
8596 
8597 
8598 /*
8599  *    Function: sd_pm_entry
8600  *
8601  * Description: Called at the start of a new command to manage power
8602  *		and busy status of a device. This includes determining whether
8603  *		the current power state of the device is sufficient for
8604  *		performing the command or whether it must be changed.
8605  *		The PM framework is notified appropriately.
8606  *		Only with a return status of DDI_SUCCESS will the
8607  *		component be busy to the framework.
8608  *
8609  *		All callers of sd_pm_entry must check the return status
8610  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8611  *		of DDI_FAILURE indicates the device failed to power up.
8612  *		In this case un_pm_count has been adjusted so the result
8613  *		on exit is still powered down, ie. count is less than 0.
8614  *		Calling sd_pm_exit with this count value hits an ASSERT.
8615  *
8616  * Return Code: DDI_SUCCESS or DDI_FAILURE
8617  *
8618  *     Context: Kernel thread context.
8619  */
8620 
8621 static int
8622 sd_pm_entry(struct sd_lun *un)
8623 {
8624 	int return_status = DDI_SUCCESS;
8625 
8626 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8627 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8628 
8629 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8630 
8631 	if (un->un_f_pm_is_enabled == FALSE) {
8632 		SD_TRACE(SD_LOG_IO_PM, un,
8633 		    "sd_pm_entry: exiting, PM not enabled\n");
8634 		return (return_status);
8635 	}
8636 
8637 	/*
8638 	 * Just increment a counter if PM is enabled. On the transition from
8639 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8640 	 * the count with each IO and mark the device as idle when the count
8641 	 * hits 0.
8642 	 *
8643 	 * If the count is less than 0 the device is powered down. If a powered
8644 	 * down device is successfully powered up then the count must be
8645 	 * incremented to reflect the power up. Note that it'll get incremented
8646 	 * a second time to become busy.
8647 	 *
8648 	 * Because the following has the potential to change the device state
8649 	 * and must release the un_pm_mutex to do so, only one thread can be
8650 	 * allowed through at a time.
8651 	 */
8652 
8653 	mutex_enter(&un->un_pm_mutex);
8654 	while (un->un_pm_busy == TRUE) {
8655 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8656 	}
8657 	un->un_pm_busy = TRUE;
8658 
8659 	if (un->un_pm_count < 1) {
8660 
8661 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8662 
8663 		/*
8664 		 * Indicate we are now busy so the framework won't attempt to
8665 		 * power down the device. This call will only fail if either
8666 		 * we passed a bad component number or the device has no
8667 		 * components. Neither of these should ever happen.
8668 		 */
8669 		mutex_exit(&un->un_pm_mutex);
8670 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8671 		ASSERT(return_status == DDI_SUCCESS);
8672 
8673 		mutex_enter(&un->un_pm_mutex);
8674 
8675 		if (un->un_pm_count < 0) {
8676 			mutex_exit(&un->un_pm_mutex);
8677 
8678 			SD_TRACE(SD_LOG_IO_PM, un,
8679 			    "sd_pm_entry: power up component\n");
8680 
8681 			/*
8682 			 * pm_raise_power will cause sdpower to be called
8683 			 * which brings the device power level to the
8684 			 * desired state, ON in this case. If successful,
8685 			 * un_pm_count and un_power_level will be updated
8686 			 * appropriately.
8687 			 */
8688 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8689 			    SD_SPINDLE_ON);
8690 
8691 			mutex_enter(&un->un_pm_mutex);
8692 
8693 			if (return_status != DDI_SUCCESS) {
8694 				/*
8695 				 * Power up failed.
8696 				 * Idle the device and adjust the count
8697 				 * so the result on exit is that we're
8698 				 * still powered down, ie. count is less than 0.
8699 				 */
8700 				SD_TRACE(SD_LOG_IO_PM, un,
8701 				    "sd_pm_entry: power up failed,"
8702 				    " idle the component\n");
8703 
8704 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8705 				un->un_pm_count--;
8706 			} else {
8707 				/*
8708 				 * Device is powered up, verify the
8709 				 * count is non-negative.
8710 				 * This is debug only.
8711 				 */
8712 				ASSERT(un->un_pm_count == 0);
8713 			}
8714 		}
8715 
8716 		if (return_status == DDI_SUCCESS) {
8717 			/*
8718 			 * For performance, now that the device has been tagged
8719 			 * as busy, and it's known to be powered up, update the
8720 			 * chain types to use jump tables that do not include
8721 			 * pm. This significantly lowers the overhead and
8722 			 * therefore improves performance.
8723 			 */
8724 
8725 			mutex_exit(&un->un_pm_mutex);
8726 			mutex_enter(SD_MUTEX(un));
8727 			SD_TRACE(SD_LOG_IO_PM, un,
8728 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8729 			    un->un_uscsi_chain_type);
8730 
8731 			if (un->un_f_non_devbsize_supported) {
8732 				un->un_buf_chain_type =
8733 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8734 			} else {
8735 				un->un_buf_chain_type =
8736 				    SD_CHAIN_INFO_DISK_NO_PM;
8737 			}
8738 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8739 
8740 			SD_TRACE(SD_LOG_IO_PM, un,
8741 			    "             changed  uscsi_chain_type to   %d\n",
8742 			    un->un_uscsi_chain_type);
8743 			mutex_exit(SD_MUTEX(un));
8744 			mutex_enter(&un->un_pm_mutex);
8745 
8746 			if (un->un_pm_idle_timeid == NULL) {
8747 				/* 300 ms. */
8748 				un->un_pm_idle_timeid =
8749 				    timeout(sd_pm_idletimeout_handler, un,
8750 				    (drv_usectohz((clock_t)300000)));
8751 				/*
8752 				 * Include an extra call to busy which keeps the
8753 				 * device busy with-respect-to the PM layer
8754 				 * until the timer fires, at which time it'll
8755 				 * get the extra idle call.
8756 				 */
8757 				(void) pm_busy_component(SD_DEVINFO(un), 0);
8758 			}
8759 		}
8760 	}
8761 	un->un_pm_busy = FALSE;
8762 	/* Next... */
8763 	cv_signal(&un->un_pm_busy_cv);
8764 
8765 	un->un_pm_count++;
8766 
8767 	SD_TRACE(SD_LOG_IO_PM, un,
8768 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8769 
8770 	mutex_exit(&un->un_pm_mutex);
8771 
8772 	return (return_status);
8773 }
8774 
8775 
8776 /*
8777  *    Function: sd_pm_exit
8778  *
8779  * Description: Called at the completion of a command to manage busy
8780  *		status for the device. If the device becomes idle the
8781  *		PM framework is notified.
8782  *
8783  *     Context: Kernel thread context
8784  */
8785 
8786 static void
8787 sd_pm_exit(struct sd_lun *un)
8788 {
8789 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8790 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8791 
8792 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8793 
8794 	/*
8795 	 * After attach the following flag is only read, so don't
8796 	 * take the penalty of acquiring a mutex for it.
8797 	 */
8798 	if (un->un_f_pm_is_enabled == TRUE) {
8799 
8800 		mutex_enter(&un->un_pm_mutex);
8801 		un->un_pm_count--;
8802 
8803 		SD_TRACE(SD_LOG_IO_PM, un,
8804 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
8805 
8806 		ASSERT(un->un_pm_count >= 0);
8807 		if (un->un_pm_count == 0) {
8808 			mutex_exit(&un->un_pm_mutex);
8809 
8810 			SD_TRACE(SD_LOG_IO_PM, un,
8811 			    "sd_pm_exit: idle component\n");
8812 
8813 			(void) pm_idle_component(SD_DEVINFO(un), 0);
8814 
8815 		} else {
8816 			mutex_exit(&un->un_pm_mutex);
8817 		}
8818 	}
8819 
8820 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
8821 }
8822 
8823 
8824 /*
8825  *    Function: sdopen
8826  *
8827  * Description: Driver's open(9e) entry point function.
8828  *
8829  *   Arguments: dev_i   - pointer to device number
8830  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
8831  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
8832  *		cred_p  - user credential pointer
8833  *
8834  * Return Code: EINVAL
8835  *		ENXIO
8836  *		EIO
8837  *		EROFS
8838  *		EBUSY
8839  *
8840  *     Context: Kernel thread context
8841  */
8842 /* ARGSUSED */
8843 static int
8844 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
8845 {
8846 	struct sd_lun	*un;
8847 	int		nodelay;
8848 	int		part;
8849 	uint64_t	partmask;
8850 	int		instance;
8851 	dev_t		dev;
8852 	int		rval = EIO;
8853 	diskaddr_t	nblks = 0;
8854 
8855 	/* Validate the open type */
8856 	if (otyp >= OTYPCNT) {
8857 		return (EINVAL);
8858 	}
8859 
8860 	dev = *dev_p;
8861 	instance = SDUNIT(dev);
8862 	mutex_enter(&sd_detach_mutex);
8863 
8864 	/*
8865 	 * Fail the open if there is no softstate for the instance, or
8866 	 * if another thread somewhere is trying to detach the instance.
8867 	 */
8868 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
8869 	    (un->un_detach_count != 0)) {
8870 		mutex_exit(&sd_detach_mutex);
8871 		/*
8872 		 * The probe cache only needs to be cleared when open (9e) fails
8873 		 * with ENXIO (4238046).
8874 		 */
8875 		/*
8876 		 * un-conditionally clearing probe cache is ok with
8877 		 * separate sd/ssd binaries
8878 		 * x86 platform can be an issue with both parallel
8879 		 * and fibre in 1 binary
8880 		 */
8881 		sd_scsi_clear_probe_cache();
8882 		return (ENXIO);
8883 	}
8884 
8885 	/*
8886 	 * The un_layer_count is to prevent another thread in specfs from
8887 	 * trying to detach the instance, which can happen when we are
8888 	 * called from a higher-layer driver instead of thru specfs.
8889 	 * This will not be needed when DDI provides a layered driver
8890 	 * interface that allows specfs to know that an instance is in
8891 	 * use by a layered driver & should not be detached.
8892 	 *
8893 	 * Note: the semantics for layered driver opens are exactly one
8894 	 * close for every open.
8895 	 */
8896 	if (otyp == OTYP_LYR) {
8897 		un->un_layer_count++;
8898 	}
8899 
8900 	/*
8901 	 * Keep a count of the current # of opens in progress. This is because
8902 	 * some layered drivers try to call us as a regular open. This can
8903 	 * cause problems that we cannot prevent, however by keeping this count
8904 	 * we can at least keep our open and detach routines from racing against
8905 	 * each other under such conditions.
8906 	 */
8907 	un->un_opens_in_progress++;
8908 	mutex_exit(&sd_detach_mutex);
8909 
8910 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
8911 	part	 = SDPART(dev);
8912 	partmask = 1 << part;
8913 
8914 	/*
8915 	 * We use a semaphore here in order to serialize
8916 	 * open and close requests on the device.
8917 	 */
8918 	sema_p(&un->un_semoclose);
8919 
8920 	mutex_enter(SD_MUTEX(un));
8921 
8922 	/*
8923 	 * All device accesses go thru sdstrategy() where we check
8924 	 * on suspend status but there could be a scsi_poll command,
8925 	 * which bypasses sdstrategy(), so we need to check pm
8926 	 * status.
8927 	 */
8928 
8929 	if (!nodelay) {
8930 		while ((un->un_state == SD_STATE_SUSPENDED) ||
8931 		    (un->un_state == SD_STATE_PM_CHANGING)) {
8932 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
8933 		}
8934 
8935 		mutex_exit(SD_MUTEX(un));
8936 		if (sd_pm_entry(un) != DDI_SUCCESS) {
8937 			rval = EIO;
8938 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
8939 			    "sdopen: sd_pm_entry failed\n");
8940 			goto open_failed_with_pm;
8941 		}
8942 		mutex_enter(SD_MUTEX(un));
8943 	}
8944 
8945 	/* check for previous exclusive open */
8946 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
8947 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
8948 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
8949 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
8950 
8951 	if (un->un_exclopen & (partmask)) {
8952 		goto excl_open_fail;
8953 	}
8954 
8955 	if (flag & FEXCL) {
8956 		int i;
8957 		if (un->un_ocmap.lyropen[part]) {
8958 			goto excl_open_fail;
8959 		}
8960 		for (i = 0; i < (OTYPCNT - 1); i++) {
8961 			if (un->un_ocmap.regopen[i] & (partmask)) {
8962 				goto excl_open_fail;
8963 			}
8964 		}
8965 	}
8966 
8967 	/*
8968 	 * Check the write permission if this is a removable media device,
8969 	 * NDELAY has not been set, and writable permission is requested.
8970 	 *
8971 	 * Note: If NDELAY was set and this is write-protected media the WRITE
8972 	 * attempt will fail with EIO as part of the I/O processing. This is a
8973 	 * more permissive implementation that allows the open to succeed and
8974 	 * WRITE attempts to fail when appropriate.
8975 	 */
8976 	if (un->un_f_chk_wp_open) {
8977 		if ((flag & FWRITE) && (!nodelay)) {
8978 			mutex_exit(SD_MUTEX(un));
8979 			/*
8980 			 * Defer the check for write permission on writable
8981 			 * DVD drive till sdstrategy and will not fail open even
8982 			 * if FWRITE is set as the device can be writable
8983 			 * depending upon the media and the media can change
8984 			 * after the call to open().
8985 			 */
8986 			if (un->un_f_dvdram_writable_device == FALSE) {
8987 				if (ISCD(un) || sr_check_wp(dev)) {
8988 				rval = EROFS;
8989 				mutex_enter(SD_MUTEX(un));
8990 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
8991 				    "write to cd or write protected media\n");
8992 				goto open_fail;
8993 				}
8994 			}
8995 			mutex_enter(SD_MUTEX(un));
8996 		}
8997 	}
8998 
8999 	/*
9000 	 * If opening in NDELAY/NONBLOCK mode, just return.
9001 	 * Check if disk is ready and has a valid geometry later.
9002 	 */
9003 	if (!nodelay) {
9004 		mutex_exit(SD_MUTEX(un));
9005 		rval = sd_ready_and_valid(un);
9006 		mutex_enter(SD_MUTEX(un));
9007 		/*
9008 		 * Fail if device is not ready or if the number of disk
9009 		 * blocks is zero or negative for non CD devices.
9010 		 */
9011 
9012 		nblks = 0;
9013 
9014 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9015 			/* if cmlb_partinfo fails, nblks remains 0 */
9016 			mutex_exit(SD_MUTEX(un));
9017 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9018 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9019 			mutex_enter(SD_MUTEX(un));
9020 		}
9021 
9022 		if ((rval != SD_READY_VALID) ||
9023 		    (!ISCD(un) && nblks <= 0)) {
9024 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9025 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9026 			    "device not ready or invalid disk block value\n");
9027 			goto open_fail;
9028 		}
9029 #if defined(__i386) || defined(__amd64)
9030 	} else {
9031 		uchar_t *cp;
9032 		/*
9033 		 * x86 requires special nodelay handling, so that p0 is
9034 		 * always defined and accessible.
9035 		 * Invalidate geometry only if device is not already open.
9036 		 */
9037 		cp = &un->un_ocmap.chkd[0];
9038 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9039 			if (*cp != (uchar_t)0) {
9040 				break;
9041 			}
9042 			cp++;
9043 		}
9044 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9045 			mutex_exit(SD_MUTEX(un));
9046 			cmlb_invalidate(un->un_cmlbhandle,
9047 			    (void *)SD_PATH_DIRECT);
9048 			mutex_enter(SD_MUTEX(un));
9049 		}
9050 
9051 #endif
9052 	}
9053 
9054 	if (otyp == OTYP_LYR) {
9055 		un->un_ocmap.lyropen[part]++;
9056 	} else {
9057 		un->un_ocmap.regopen[otyp] |= partmask;
9058 	}
9059 
9060 	/* Set up open and exclusive open flags */
9061 	if (flag & FEXCL) {
9062 		un->un_exclopen |= (partmask);
9063 	}
9064 
9065 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9066 	    "open of part %d type %d\n", part, otyp);
9067 
9068 	mutex_exit(SD_MUTEX(un));
9069 	if (!nodelay) {
9070 		sd_pm_exit(un);
9071 	}
9072 
9073 	sema_v(&un->un_semoclose);
9074 
9075 	mutex_enter(&sd_detach_mutex);
9076 	un->un_opens_in_progress--;
9077 	mutex_exit(&sd_detach_mutex);
9078 
9079 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9080 	return (DDI_SUCCESS);
9081 
9082 excl_open_fail:
9083 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9084 	rval = EBUSY;
9085 
9086 open_fail:
9087 	mutex_exit(SD_MUTEX(un));
9088 
9089 	/*
9090 	 * On a failed open we must exit the pm management.
9091 	 */
9092 	if (!nodelay) {
9093 		sd_pm_exit(un);
9094 	}
9095 open_failed_with_pm:
9096 	sema_v(&un->un_semoclose);
9097 
9098 	mutex_enter(&sd_detach_mutex);
9099 	un->un_opens_in_progress--;
9100 	if (otyp == OTYP_LYR) {
9101 		un->un_layer_count--;
9102 	}
9103 	mutex_exit(&sd_detach_mutex);
9104 
9105 	return (rval);
9106 }
9107 
9108 
9109 /*
9110  *    Function: sdclose
9111  *
9112  * Description: Driver's close(9e) entry point function.
9113  *
9114  *   Arguments: dev    - device number
9115  *		flag   - file status flag, informational only
9116  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9117  *		cred_p - user credential pointer
9118  *
9119  * Return Code: ENXIO
9120  *
9121  *     Context: Kernel thread context
9122  */
9123 /* ARGSUSED */
9124 static int
9125 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9126 {
9127 	struct sd_lun	*un;
9128 	uchar_t		*cp;
9129 	int		part;
9130 	int		nodelay;
9131 	int		rval = 0;
9132 
9133 	/* Validate the open type */
9134 	if (otyp >= OTYPCNT) {
9135 		return (ENXIO);
9136 	}
9137 
9138 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9139 		return (ENXIO);
9140 	}
9141 
9142 	part = SDPART(dev);
9143 	nodelay = flag & (FNDELAY | FNONBLOCK);
9144 
9145 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9146 	    "sdclose: close of part %d type %d\n", part, otyp);
9147 
9148 	/*
9149 	 * We use a semaphore here in order to serialize
9150 	 * open and close requests on the device.
9151 	 */
9152 	sema_p(&un->un_semoclose);
9153 
9154 	mutex_enter(SD_MUTEX(un));
9155 
9156 	/* Don't proceed if power is being changed. */
9157 	while (un->un_state == SD_STATE_PM_CHANGING) {
9158 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9159 	}
9160 
9161 	if (un->un_exclopen & (1 << part)) {
9162 		un->un_exclopen &= ~(1 << part);
9163 	}
9164 
9165 	/* Update the open partition map */
9166 	if (otyp == OTYP_LYR) {
9167 		un->un_ocmap.lyropen[part] -= 1;
9168 	} else {
9169 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9170 	}
9171 
9172 	cp = &un->un_ocmap.chkd[0];
9173 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9174 		if (*cp != NULL) {
9175 			break;
9176 		}
9177 		cp++;
9178 	}
9179 
9180 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9181 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9182 
9183 		/*
9184 		 * We avoid persistance upon the last close, and set
9185 		 * the throttle back to the maximum.
9186 		 */
9187 		un->un_throttle = un->un_saved_throttle;
9188 
9189 		if (un->un_state == SD_STATE_OFFLINE) {
9190 			if (un->un_f_is_fibre == FALSE) {
9191 				scsi_log(SD_DEVINFO(un), sd_label,
9192 				    CE_WARN, "offline\n");
9193 			}
9194 			mutex_exit(SD_MUTEX(un));
9195 			cmlb_invalidate(un->un_cmlbhandle,
9196 			    (void *)SD_PATH_DIRECT);
9197 			mutex_enter(SD_MUTEX(un));
9198 
9199 		} else {
9200 			/*
9201 			 * Flush any outstanding writes in NVRAM cache.
9202 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9203 			 * cmd, it may not work for non-Pluto devices.
9204 			 * SYNCHRONIZE CACHE is not required for removables,
9205 			 * except DVD-RAM drives.
9206 			 *
9207 			 * Also note: because SYNCHRONIZE CACHE is currently
9208 			 * the only command issued here that requires the
9209 			 * drive be powered up, only do the power up before
9210 			 * sending the Sync Cache command. If additional
9211 			 * commands are added which require a powered up
9212 			 * drive, the following sequence may have to change.
9213 			 *
9214 			 * And finally, note that parallel SCSI on SPARC
9215 			 * only issues a Sync Cache to DVD-RAM, a newly
9216 			 * supported device.
9217 			 */
9218 #if defined(__i386) || defined(__amd64)
9219 			if (un->un_f_sync_cache_supported ||
9220 			    un->un_f_dvdram_writable_device == TRUE) {
9221 #else
9222 			if (un->un_f_dvdram_writable_device == TRUE) {
9223 #endif
9224 				mutex_exit(SD_MUTEX(un));
9225 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9226 					rval =
9227 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9228 					    NULL);
9229 					/* ignore error if not supported */
9230 					if (rval == ENOTSUP) {
9231 						rval = 0;
9232 					} else if (rval != 0) {
9233 						rval = EIO;
9234 					}
9235 					sd_pm_exit(un);
9236 				} else {
9237 					rval = EIO;
9238 				}
9239 				mutex_enter(SD_MUTEX(un));
9240 			}
9241 
9242 			/*
9243 			 * For devices which supports DOOR_LOCK, send an ALLOW
9244 			 * MEDIA REMOVAL command, but don't get upset if it
9245 			 * fails. We need to raise the power of the drive before
9246 			 * we can call sd_send_scsi_DOORLOCK()
9247 			 */
9248 			if (un->un_f_doorlock_supported) {
9249 				mutex_exit(SD_MUTEX(un));
9250 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9251 					rval = sd_send_scsi_DOORLOCK(un,
9252 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9253 
9254 					sd_pm_exit(un);
9255 					if (ISCD(un) && (rval != 0) &&
9256 					    (nodelay != 0)) {
9257 						rval = ENXIO;
9258 					}
9259 				} else {
9260 					rval = EIO;
9261 				}
9262 				mutex_enter(SD_MUTEX(un));
9263 			}
9264 
9265 			/*
9266 			 * If a device has removable media, invalidate all
9267 			 * parameters related to media, such as geometry,
9268 			 * blocksize, and blockcount.
9269 			 */
9270 			if (un->un_f_has_removable_media) {
9271 				sr_ejected(un);
9272 			}
9273 
9274 			/*
9275 			 * Destroy the cache (if it exists) which was
9276 			 * allocated for the write maps since this is
9277 			 * the last close for this media.
9278 			 */
9279 			if (un->un_wm_cache) {
9280 				/*
9281 				 * Check if there are pending commands.
9282 				 * and if there are give a warning and
9283 				 * do not destroy the cache.
9284 				 */
9285 				if (un->un_ncmds_in_driver > 0) {
9286 					scsi_log(SD_DEVINFO(un),
9287 					    sd_label, CE_WARN,
9288 					    "Unable to clean up memory "
9289 					    "because of pending I/O\n");
9290 				} else {
9291 					kmem_cache_destroy(
9292 					    un->un_wm_cache);
9293 					un->un_wm_cache = NULL;
9294 				}
9295 			}
9296 		}
9297 	}
9298 
9299 	mutex_exit(SD_MUTEX(un));
9300 	sema_v(&un->un_semoclose);
9301 
9302 	if (otyp == OTYP_LYR) {
9303 		mutex_enter(&sd_detach_mutex);
9304 		/*
9305 		 * The detach routine may run when the layer count
9306 		 * drops to zero.
9307 		 */
9308 		un->un_layer_count--;
9309 		mutex_exit(&sd_detach_mutex);
9310 	}
9311 
9312 	return (rval);
9313 }
9314 
9315 
9316 /*
9317  *    Function: sd_ready_and_valid
9318  *
9319  * Description: Test if device is ready and has a valid geometry.
9320  *
9321  *   Arguments: dev - device number
9322  *		un  - driver soft state (unit) structure
9323  *
9324  * Return Code: SD_READY_VALID		ready and valid label
9325  *		SD_NOT_READY_VALID	not ready, no label
9326  *		SD_RESERVED_BY_OTHERS	reservation conflict
9327  *
9328  *     Context: Never called at interrupt context.
9329  */
9330 
9331 static int
9332 sd_ready_and_valid(struct sd_lun *un)
9333 {
9334 	struct sd_errstats	*stp;
9335 	uint64_t		capacity;
9336 	uint_t			lbasize;
9337 	int			rval = SD_READY_VALID;
9338 	char			name_str[48];
9339 	int			is_valid;
9340 
9341 	ASSERT(un != NULL);
9342 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9343 
9344 	mutex_enter(SD_MUTEX(un));
9345 	/*
9346 	 * If a device has removable media, we must check if media is
9347 	 * ready when checking if this device is ready and valid.
9348 	 */
9349 	if (un->un_f_has_removable_media) {
9350 		mutex_exit(SD_MUTEX(un));
9351 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9352 			rval = SD_NOT_READY_VALID;
9353 			mutex_enter(SD_MUTEX(un));
9354 			goto done;
9355 		}
9356 
9357 		is_valid = SD_IS_VALID_LABEL(un);
9358 		mutex_enter(SD_MUTEX(un));
9359 		if (!is_valid ||
9360 		    (un->un_f_blockcount_is_valid == FALSE) ||
9361 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9362 
9363 			/* capacity has to be read every open. */
9364 			mutex_exit(SD_MUTEX(un));
9365 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9366 			    &lbasize, SD_PATH_DIRECT) != 0) {
9367 				cmlb_invalidate(un->un_cmlbhandle,
9368 				    (void *)SD_PATH_DIRECT);
9369 				mutex_enter(SD_MUTEX(un));
9370 				rval = SD_NOT_READY_VALID;
9371 				goto done;
9372 			} else {
9373 				mutex_enter(SD_MUTEX(un));
9374 				sd_update_block_info(un, lbasize, capacity);
9375 			}
9376 		}
9377 
9378 		/*
9379 		 * Check if the media in the device is writable or not.
9380 		 */
9381 		if (!is_valid && ISCD(un)) {
9382 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9383 		}
9384 
9385 	} else {
9386 		/*
9387 		 * Do a test unit ready to clear any unit attention from non-cd
9388 		 * devices.
9389 		 */
9390 		mutex_exit(SD_MUTEX(un));
9391 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9392 		mutex_enter(SD_MUTEX(un));
9393 	}
9394 
9395 
9396 	/*
9397 	 * If this is a non 512 block device, allocate space for
9398 	 * the wmap cache. This is being done here since every time
9399 	 * a media is changed this routine will be called and the
9400 	 * block size is a function of media rather than device.
9401 	 */
9402 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9403 		if (!(un->un_wm_cache)) {
9404 			(void) snprintf(name_str, sizeof (name_str),
9405 			    "%s%d_cache",
9406 			    ddi_driver_name(SD_DEVINFO(un)),
9407 			    ddi_get_instance(SD_DEVINFO(un)));
9408 			un->un_wm_cache = kmem_cache_create(
9409 			    name_str, sizeof (struct sd_w_map),
9410 			    8, sd_wm_cache_constructor,
9411 			    sd_wm_cache_destructor, NULL,
9412 			    (void *)un, NULL, 0);
9413 			if (!(un->un_wm_cache)) {
9414 					rval = ENOMEM;
9415 					goto done;
9416 			}
9417 		}
9418 	}
9419 
9420 	if (un->un_state == SD_STATE_NORMAL) {
9421 		/*
9422 		 * If the target is not yet ready here (defined by a TUR
9423 		 * failure), invalidate the geometry and print an 'offline'
9424 		 * message. This is a legacy message, as the state of the
9425 		 * target is not actually changed to SD_STATE_OFFLINE.
9426 		 *
9427 		 * If the TUR fails for EACCES (Reservation Conflict),
9428 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9429 		 * reservation conflict. If the TUR fails for other
9430 		 * reasons, SD_NOT_READY_VALID will be returned.
9431 		 */
9432 		int err;
9433 
9434 		mutex_exit(SD_MUTEX(un));
9435 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9436 		mutex_enter(SD_MUTEX(un));
9437 
9438 		if (err != 0) {
9439 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9440 			    "offline or reservation conflict\n");
9441 			mutex_exit(SD_MUTEX(un));
9442 			cmlb_invalidate(un->un_cmlbhandle,
9443 			    (void *)SD_PATH_DIRECT);
9444 			mutex_enter(SD_MUTEX(un));
9445 			if (err == EACCES) {
9446 				rval = SD_RESERVED_BY_OTHERS;
9447 			} else {
9448 				rval = SD_NOT_READY_VALID;
9449 			}
9450 			goto done;
9451 		}
9452 	}
9453 
9454 	if (un->un_f_format_in_progress == FALSE) {
9455 		mutex_exit(SD_MUTEX(un));
9456 		if (cmlb_validate(un->un_cmlbhandle, 0,
9457 		    (void *)SD_PATH_DIRECT) != 0) {
9458 			rval = SD_NOT_READY_VALID;
9459 			mutex_enter(SD_MUTEX(un));
9460 			goto done;
9461 		}
9462 		if (un->un_f_pkstats_enabled) {
9463 			sd_set_pstats(un);
9464 			SD_TRACE(SD_LOG_IO_PARTITION, un,
9465 			    "sd_ready_and_valid: un:0x%p pstats created and "
9466 			    "set\n", un);
9467 		}
9468 		mutex_enter(SD_MUTEX(un));
9469 	}
9470 
9471 	/*
9472 	 * If this device supports DOOR_LOCK command, try and send
9473 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9474 	 * if it fails. For a CD, however, it is an error
9475 	 */
9476 	if (un->un_f_doorlock_supported) {
9477 		mutex_exit(SD_MUTEX(un));
9478 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9479 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9480 			rval = SD_NOT_READY_VALID;
9481 			mutex_enter(SD_MUTEX(un));
9482 			goto done;
9483 		}
9484 		mutex_enter(SD_MUTEX(un));
9485 	}
9486 
9487 	/* The state has changed, inform the media watch routines */
9488 	un->un_mediastate = DKIO_INSERTED;
9489 	cv_broadcast(&un->un_state_cv);
9490 	rval = SD_READY_VALID;
9491 
9492 done:
9493 
9494 	/*
9495 	 * Initialize the capacity kstat value, if no media previously
9496 	 * (capacity kstat is 0) and a media has been inserted
9497 	 * (un_blockcount > 0).
9498 	 */
9499 	if (un->un_errstats != NULL) {
9500 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9501 		if ((stp->sd_capacity.value.ui64 == 0) &&
9502 		    (un->un_f_blockcount_is_valid == TRUE)) {
9503 			stp->sd_capacity.value.ui64 =
9504 			    (uint64_t)((uint64_t)un->un_blockcount *
9505 			    un->un_sys_blocksize);
9506 		}
9507 	}
9508 
9509 	mutex_exit(SD_MUTEX(un));
9510 	return (rval);
9511 }
9512 
9513 
9514 /*
9515  *    Function: sdmin
9516  *
9517  * Description: Routine to limit the size of a data transfer. Used in
9518  *		conjunction with physio(9F).
9519  *
9520  *   Arguments: bp - pointer to the indicated buf(9S) struct.
9521  *
9522  *     Context: Kernel thread context.
9523  */
9524 
9525 static void
9526 sdmin(struct buf *bp)
9527 {
9528 	struct sd_lun	*un;
9529 	int		instance;
9530 
9531 	instance = SDUNIT(bp->b_edev);
9532 
9533 	un = ddi_get_soft_state(sd_state, instance);
9534 	ASSERT(un != NULL);
9535 
9536 	if (bp->b_bcount > un->un_max_xfer_size) {
9537 		bp->b_bcount = un->un_max_xfer_size;
9538 	}
9539 }
9540 
9541 
9542 /*
9543  *    Function: sdread
9544  *
9545  * Description: Driver's read(9e) entry point function.
9546  *
9547  *   Arguments: dev   - device number
9548  *		uio   - structure pointer describing where data is to be stored
9549  *			in user's space
9550  *		cred_p  - user credential pointer
9551  *
9552  * Return Code: ENXIO
9553  *		EIO
9554  *		EINVAL
9555  *		value returned by physio
9556  *
9557  *     Context: Kernel thread context.
9558  */
9559 /* ARGSUSED */
9560 static int
9561 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9562 {
9563 	struct sd_lun	*un = NULL;
9564 	int		secmask;
9565 	int		err;
9566 
9567 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9568 		return (ENXIO);
9569 	}
9570 
9571 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9572 
9573 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9574 		mutex_enter(SD_MUTEX(un));
9575 		/*
9576 		 * Because the call to sd_ready_and_valid will issue I/O we
9577 		 * must wait here if either the device is suspended or
9578 		 * if it's power level is changing.
9579 		 */
9580 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9581 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9582 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9583 		}
9584 		un->un_ncmds_in_driver++;
9585 		mutex_exit(SD_MUTEX(un));
9586 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9587 			mutex_enter(SD_MUTEX(un));
9588 			un->un_ncmds_in_driver--;
9589 			ASSERT(un->un_ncmds_in_driver >= 0);
9590 			mutex_exit(SD_MUTEX(un));
9591 			return (EIO);
9592 		}
9593 		mutex_enter(SD_MUTEX(un));
9594 		un->un_ncmds_in_driver--;
9595 		ASSERT(un->un_ncmds_in_driver >= 0);
9596 		mutex_exit(SD_MUTEX(un));
9597 	}
9598 
9599 	/*
9600 	 * Read requests are restricted to multiples of the system block size.
9601 	 */
9602 	secmask = un->un_sys_blocksize - 1;
9603 
9604 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9605 		SD_ERROR(SD_LOG_READ_WRITE, un,
9606 		    "sdread: file offset not modulo %d\n",
9607 		    un->un_sys_blocksize);
9608 		err = EINVAL;
9609 	} else if (uio->uio_iov->iov_len & (secmask)) {
9610 		SD_ERROR(SD_LOG_READ_WRITE, un,
9611 		    "sdread: transfer length not modulo %d\n",
9612 		    un->un_sys_blocksize);
9613 		err = EINVAL;
9614 	} else {
9615 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9616 	}
9617 	return (err);
9618 }
9619 
9620 
9621 /*
9622  *    Function: sdwrite
9623  *
9624  * Description: Driver's write(9e) entry point function.
9625  *
9626  *   Arguments: dev   - device number
9627  *		uio   - structure pointer describing where data is stored in
9628  *			user's space
9629  *		cred_p  - user credential pointer
9630  *
9631  * Return Code: ENXIO
9632  *		EIO
9633  *		EINVAL
9634  *		value returned by physio
9635  *
9636  *     Context: Kernel thread context.
9637  */
9638 /* ARGSUSED */
9639 static int
9640 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9641 {
9642 	struct sd_lun	*un = NULL;
9643 	int		secmask;
9644 	int		err;
9645 
9646 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9647 		return (ENXIO);
9648 	}
9649 
9650 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9651 
9652 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9653 		mutex_enter(SD_MUTEX(un));
9654 		/*
9655 		 * Because the call to sd_ready_and_valid will issue I/O we
9656 		 * must wait here if either the device is suspended or
9657 		 * if it's power level is changing.
9658 		 */
9659 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9660 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9661 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9662 		}
9663 		un->un_ncmds_in_driver++;
9664 		mutex_exit(SD_MUTEX(un));
9665 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9666 			mutex_enter(SD_MUTEX(un));
9667 			un->un_ncmds_in_driver--;
9668 			ASSERT(un->un_ncmds_in_driver >= 0);
9669 			mutex_exit(SD_MUTEX(un));
9670 			return (EIO);
9671 		}
9672 		mutex_enter(SD_MUTEX(un));
9673 		un->un_ncmds_in_driver--;
9674 		ASSERT(un->un_ncmds_in_driver >= 0);
9675 		mutex_exit(SD_MUTEX(un));
9676 	}
9677 
9678 	/*
9679 	 * Write requests are restricted to multiples of the system block size.
9680 	 */
9681 	secmask = un->un_sys_blocksize - 1;
9682 
9683 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9684 		SD_ERROR(SD_LOG_READ_WRITE, un,
9685 		    "sdwrite: file offset not modulo %d\n",
9686 		    un->un_sys_blocksize);
9687 		err = EINVAL;
9688 	} else if (uio->uio_iov->iov_len & (secmask)) {
9689 		SD_ERROR(SD_LOG_READ_WRITE, un,
9690 		    "sdwrite: transfer length not modulo %d\n",
9691 		    un->un_sys_blocksize);
9692 		err = EINVAL;
9693 	} else {
9694 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9695 	}
9696 	return (err);
9697 }
9698 
9699 
9700 /*
9701  *    Function: sdaread
9702  *
9703  * Description: Driver's aread(9e) entry point function.
9704  *
9705  *   Arguments: dev   - device number
9706  *		aio   - structure pointer describing where data is to be stored
9707  *		cred_p  - user credential pointer
9708  *
9709  * Return Code: ENXIO
9710  *		EIO
9711  *		EINVAL
9712  *		value returned by aphysio
9713  *
9714  *     Context: Kernel thread context.
9715  */
9716 /* ARGSUSED */
9717 static int
9718 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9719 {
9720 	struct sd_lun	*un = NULL;
9721 	struct uio	*uio = aio->aio_uio;
9722 	int		secmask;
9723 	int		err;
9724 
9725 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9726 		return (ENXIO);
9727 	}
9728 
9729 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9730 
9731 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9732 		mutex_enter(SD_MUTEX(un));
9733 		/*
9734 		 * Because the call to sd_ready_and_valid will issue I/O we
9735 		 * must wait here if either the device is suspended or
9736 		 * if it's power level is changing.
9737 		 */
9738 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9739 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9740 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9741 		}
9742 		un->un_ncmds_in_driver++;
9743 		mutex_exit(SD_MUTEX(un));
9744 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9745 			mutex_enter(SD_MUTEX(un));
9746 			un->un_ncmds_in_driver--;
9747 			ASSERT(un->un_ncmds_in_driver >= 0);
9748 			mutex_exit(SD_MUTEX(un));
9749 			return (EIO);
9750 		}
9751 		mutex_enter(SD_MUTEX(un));
9752 		un->un_ncmds_in_driver--;
9753 		ASSERT(un->un_ncmds_in_driver >= 0);
9754 		mutex_exit(SD_MUTEX(un));
9755 	}
9756 
9757 	/*
9758 	 * Read requests are restricted to multiples of the system block size.
9759 	 */
9760 	secmask = un->un_sys_blocksize - 1;
9761 
9762 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9763 		SD_ERROR(SD_LOG_READ_WRITE, un,
9764 		    "sdaread: file offset not modulo %d\n",
9765 		    un->un_sys_blocksize);
9766 		err = EINVAL;
9767 	} else if (uio->uio_iov->iov_len & (secmask)) {
9768 		SD_ERROR(SD_LOG_READ_WRITE, un,
9769 		    "sdaread: transfer length not modulo %d\n",
9770 		    un->un_sys_blocksize);
9771 		err = EINVAL;
9772 	} else {
9773 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
9774 	}
9775 	return (err);
9776 }
9777 
9778 
9779 /*
9780  *    Function: sdawrite
9781  *
9782  * Description: Driver's awrite(9e) entry point function.
9783  *
9784  *   Arguments: dev   - device number
9785  *		aio   - structure pointer describing where data is stored
9786  *		cred_p  - user credential pointer
9787  *
9788  * Return Code: ENXIO
9789  *		EIO
9790  *		EINVAL
9791  *		value returned by aphysio
9792  *
9793  *     Context: Kernel thread context.
9794  */
9795 /* ARGSUSED */
9796 static int
9797 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9798 {
9799 	struct sd_lun	*un = NULL;
9800 	struct uio	*uio = aio->aio_uio;
9801 	int		secmask;
9802 	int		err;
9803 
9804 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9805 		return (ENXIO);
9806 	}
9807 
9808 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9809 
9810 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9811 		mutex_enter(SD_MUTEX(un));
9812 		/*
9813 		 * Because the call to sd_ready_and_valid will issue I/O we
9814 		 * must wait here if either the device is suspended or
9815 		 * if it's power level is changing.
9816 		 */
9817 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9818 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9819 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9820 		}
9821 		un->un_ncmds_in_driver++;
9822 		mutex_exit(SD_MUTEX(un));
9823 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9824 			mutex_enter(SD_MUTEX(un));
9825 			un->un_ncmds_in_driver--;
9826 			ASSERT(un->un_ncmds_in_driver >= 0);
9827 			mutex_exit(SD_MUTEX(un));
9828 			return (EIO);
9829 		}
9830 		mutex_enter(SD_MUTEX(un));
9831 		un->un_ncmds_in_driver--;
9832 		ASSERT(un->un_ncmds_in_driver >= 0);
9833 		mutex_exit(SD_MUTEX(un));
9834 	}
9835 
9836 	/*
9837 	 * Write requests are restricted to multiples of the system block size.
9838 	 */
9839 	secmask = un->un_sys_blocksize - 1;
9840 
9841 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9842 		SD_ERROR(SD_LOG_READ_WRITE, un,
9843 		    "sdawrite: file offset not modulo %d\n",
9844 		    un->un_sys_blocksize);
9845 		err = EINVAL;
9846 	} else if (uio->uio_iov->iov_len & (secmask)) {
9847 		SD_ERROR(SD_LOG_READ_WRITE, un,
9848 		    "sdawrite: transfer length not modulo %d\n",
9849 		    un->un_sys_blocksize);
9850 		err = EINVAL;
9851 	} else {
9852 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
9853 	}
9854 	return (err);
9855 }
9856 
9857 
9858 
9859 
9860 
9861 /*
9862  * Driver IO processing follows the following sequence:
9863  *
9864  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
9865  *         |                |                     ^
9866  *         v                v                     |
9867  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
9868  *         |                |                     |                   |
9869  *         v                |                     |                   |
9870  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
9871  *         |                |                     ^                   ^
9872  *         v                v                     |                   |
9873  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
9874  *         |                |                     |                   |
9875  *     +---+                |                     +------------+      +-------+
9876  *     |                    |                                  |              |
9877  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9878  *     |                    v                                  |              |
9879  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
9880  *     |                    |                                  ^              |
9881  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9882  *     |                    v                                  |              |
9883  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
9884  *     |                    |                                  ^              |
9885  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
9886  *     |                    v                                  |              |
9887  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
9888  *     |                    |                                  ^              |
9889  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
9890  *     |                    v                                  |              |
9891  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
9892  *     |                    |                                  ^              |
9893  *     |                    |                                  |              |
9894  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
9895  *                          |                           ^
9896  *                          v                           |
9897  *                   sd_core_iostart()                  |
9898  *                          |                           |
9899  *                          |                           +------>(*destroypkt)()
9900  *                          +-> sd_start_cmds() <-+     |           |
9901  *                          |                     |     |           v
9902  *                          |                     |     |  scsi_destroy_pkt(9F)
9903  *                          |                     |     |
9904  *                          +->(*initpkt)()       +- sdintr()
9905  *                          |  |                        |  |
9906  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
9907  *                          |  +-> scsi_setup_cdb(9F)   |
9908  *                          |                           |
9909  *                          +--> scsi_transport(9F)     |
9910  *                                     |                |
9911  *                                     +----> SCSA ---->+
9912  *
9913  *
9914  * This code is based upon the following presumptions:
9915  *
9916  *   - iostart and iodone functions operate on buf(9S) structures. These
9917  *     functions perform the necessary operations on the buf(9S) and pass
9918  *     them along to the next function in the chain by using the macros
9919  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
9920  *     (for iodone side functions).
9921  *
9922  *   - The iostart side functions may sleep. The iodone side functions
9923  *     are called under interrupt context and may NOT sleep. Therefore
9924  *     iodone side functions also may not call iostart side functions.
9925  *     (NOTE: iostart side functions should NOT sleep for memory, as
9926  *     this could result in deadlock.)
9927  *
9928  *   - An iostart side function may call its corresponding iodone side
9929  *     function directly (if necessary).
9930  *
9931  *   - In the event of an error, an iostart side function can return a buf(9S)
9932  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
9933  *     b_error in the usual way of course).
9934  *
9935  *   - The taskq mechanism may be used by the iodone side functions to dispatch
9936  *     requests to the iostart side functions.  The iostart side functions in
9937  *     this case would be called under the context of a taskq thread, so it's
9938  *     OK for them to block/sleep/spin in this case.
9939  *
9940  *   - iostart side functions may allocate "shadow" buf(9S) structs and
9941  *     pass them along to the next function in the chain.  The corresponding
9942  *     iodone side functions must coalesce the "shadow" bufs and return
9943  *     the "original" buf to the next higher layer.
9944  *
9945  *   - The b_private field of the buf(9S) struct holds a pointer to
9946  *     an sd_xbuf struct, which contains information needed to
9947  *     construct the scsi_pkt for the command.
9948  *
9949  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
9950  *     layer must acquire & release the SD_MUTEX(un) as needed.
9951  */
9952 
9953 
9954 /*
9955  * Create taskq for all targets in the system. This is created at
9956  * _init(9E) and destroyed at _fini(9E).
9957  *
9958  * Note: here we set the minalloc to a reasonably high number to ensure that
9959  * we will have an adequate supply of task entries available at interrupt time.
9960  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
9961  * sd_create_taskq().  Since we do not want to sleep for allocations at
9962  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
9963  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
9964  * requests any one instant in time.
9965  */
9966 #define	SD_TASKQ_NUMTHREADS	8
9967 #define	SD_TASKQ_MINALLOC	256
9968 #define	SD_TASKQ_MAXALLOC	256
9969 
9970 static taskq_t	*sd_tq = NULL;
9971 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
9972 
9973 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
9974 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
9975 
9976 /*
9977  * The following task queue is being created for the write part of
9978  * read-modify-write of non-512 block size devices.
9979  * Limit the number of threads to 1 for now. This number has been chosen
9980  * considering the fact that it applies only to dvd ram drives/MO drives
9981  * currently. Performance for which is not main criteria at this stage.
9982  * Note: It needs to be explored if we can use a single taskq in future
9983  */
9984 #define	SD_WMR_TASKQ_NUMTHREADS	1
9985 static taskq_t	*sd_wmr_tq = NULL;
9986 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
9987 
9988 /*
9989  *    Function: sd_taskq_create
9990  *
9991  * Description: Create taskq thread(s) and preallocate task entries
9992  *
9993  * Return Code: Returns a pointer to the allocated taskq_t.
9994  *
9995  *     Context: Can sleep. Requires blockable context.
9996  *
9997  *       Notes: - The taskq() facility currently is NOT part of the DDI.
9998  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
9999  *		- taskq_create() will block for memory, also it will panic
10000  *		  if it cannot create the requested number of threads.
10001  *		- Currently taskq_create() creates threads that cannot be
10002  *		  swapped.
10003  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10004  *		  supply of taskq entries at interrupt time (ie, so that we
10005  *		  do not have to sleep for memory)
10006  */
10007 
10008 static void
10009 sd_taskq_create(void)
10010 {
10011 	char	taskq_name[TASKQ_NAMELEN];
10012 
10013 	ASSERT(sd_tq == NULL);
10014 	ASSERT(sd_wmr_tq == NULL);
10015 
10016 	(void) snprintf(taskq_name, sizeof (taskq_name),
10017 	    "%s_drv_taskq", sd_label);
10018 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10019 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10020 	    TASKQ_PREPOPULATE));
10021 
10022 	(void) snprintf(taskq_name, sizeof (taskq_name),
10023 	    "%s_rmw_taskq", sd_label);
10024 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10025 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10026 	    TASKQ_PREPOPULATE));
10027 }
10028 
10029 
10030 /*
10031  *    Function: sd_taskq_delete
10032  *
10033  * Description: Complementary cleanup routine for sd_taskq_create().
10034  *
10035  *     Context: Kernel thread context.
10036  */
10037 
10038 static void
10039 sd_taskq_delete(void)
10040 {
10041 	ASSERT(sd_tq != NULL);
10042 	ASSERT(sd_wmr_tq != NULL);
10043 	taskq_destroy(sd_tq);
10044 	taskq_destroy(sd_wmr_tq);
10045 	sd_tq = NULL;
10046 	sd_wmr_tq = NULL;
10047 }
10048 
10049 
10050 /*
10051  *    Function: sdstrategy
10052  *
10053  * Description: Driver's strategy (9E) entry point function.
10054  *
10055  *   Arguments: bp - pointer to buf(9S)
10056  *
10057  * Return Code: Always returns zero
10058  *
10059  *     Context: Kernel thread context.
10060  */
10061 
10062 static int
10063 sdstrategy(struct buf *bp)
10064 {
10065 	struct sd_lun *un;
10066 
10067 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10068 	if (un == NULL) {
10069 		bioerror(bp, EIO);
10070 		bp->b_resid = bp->b_bcount;
10071 		biodone(bp);
10072 		return (0);
10073 	}
10074 	/* As was done in the past, fail new cmds. if state is dumping. */
10075 	if (un->un_state == SD_STATE_DUMPING) {
10076 		bioerror(bp, ENXIO);
10077 		bp->b_resid = bp->b_bcount;
10078 		biodone(bp);
10079 		return (0);
10080 	}
10081 
10082 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10083 
10084 	/*
10085 	 * Commands may sneak in while we released the mutex in
10086 	 * DDI_SUSPEND, we should block new commands. However, old
10087 	 * commands that are still in the driver at this point should
10088 	 * still be allowed to drain.
10089 	 */
10090 	mutex_enter(SD_MUTEX(un));
10091 	/*
10092 	 * Must wait here if either the device is suspended or
10093 	 * if it's power level is changing.
10094 	 */
10095 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10096 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10097 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10098 	}
10099 
10100 	un->un_ncmds_in_driver++;
10101 
10102 	/*
10103 	 * atapi: Since we are running the CD for now in PIO mode we need to
10104 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10105 	 * the HBA's init_pkt routine.
10106 	 */
10107 	if (un->un_f_cfg_is_atapi == TRUE) {
10108 		mutex_exit(SD_MUTEX(un));
10109 		bp_mapin(bp);
10110 		mutex_enter(SD_MUTEX(un));
10111 	}
10112 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10113 	    un->un_ncmds_in_driver);
10114 
10115 	mutex_exit(SD_MUTEX(un));
10116 
10117 	/*
10118 	 * This will (eventually) allocate the sd_xbuf area and
10119 	 * call sd_xbuf_strategy().  We just want to return the
10120 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10121 	 * imized tail call which saves us a stack frame.
10122 	 */
10123 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10124 }
10125 
10126 
10127 /*
10128  *    Function: sd_xbuf_strategy
10129  *
10130  * Description: Function for initiating IO operations via the
10131  *		ddi_xbuf_qstrategy() mechanism.
10132  *
10133  *     Context: Kernel thread context.
10134  */
10135 
10136 static void
10137 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10138 {
10139 	struct sd_lun *un = arg;
10140 
10141 	ASSERT(bp != NULL);
10142 	ASSERT(xp != NULL);
10143 	ASSERT(un != NULL);
10144 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10145 
10146 	/*
10147 	 * Initialize the fields in the xbuf and save a pointer to the
10148 	 * xbuf in bp->b_private.
10149 	 */
10150 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10151 
10152 	/* Send the buf down the iostart chain */
10153 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10154 }
10155 
10156 
10157 /*
10158  *    Function: sd_xbuf_init
10159  *
10160  * Description: Prepare the given sd_xbuf struct for use.
10161  *
10162  *   Arguments: un - ptr to softstate
10163  *		bp - ptr to associated buf(9S)
10164  *		xp - ptr to associated sd_xbuf
10165  *		chain_type - IO chain type to use:
10166  *			SD_CHAIN_NULL
10167  *			SD_CHAIN_BUFIO
10168  *			SD_CHAIN_USCSI
10169  *			SD_CHAIN_DIRECT
10170  *			SD_CHAIN_DIRECT_PRIORITY
10171  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10172  *			initialization; may be NULL if none.
10173  *
10174  *     Context: Kernel thread context
10175  */
10176 
10177 static void
10178 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10179 	uchar_t chain_type, void *pktinfop)
10180 {
10181 	int index;
10182 
10183 	ASSERT(un != NULL);
10184 	ASSERT(bp != NULL);
10185 	ASSERT(xp != NULL);
10186 
10187 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10188 	    bp, chain_type);
10189 
10190 	xp->xb_un	= un;
10191 	xp->xb_pktp	= NULL;
10192 	xp->xb_pktinfo	= pktinfop;
10193 	xp->xb_private	= bp->b_private;
10194 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10195 
10196 	/*
10197 	 * Set up the iostart and iodone chain indexes in the xbuf, based
10198 	 * upon the specified chain type to use.
10199 	 */
10200 	switch (chain_type) {
10201 	case SD_CHAIN_NULL:
10202 		/*
10203 		 * Fall thru to just use the values for the buf type, even
10204 		 * tho for the NULL chain these values will never be used.
10205 		 */
10206 		/* FALLTHRU */
10207 	case SD_CHAIN_BUFIO:
10208 		index = un->un_buf_chain_type;
10209 		break;
10210 	case SD_CHAIN_USCSI:
10211 		index = un->un_uscsi_chain_type;
10212 		break;
10213 	case SD_CHAIN_DIRECT:
10214 		index = un->un_direct_chain_type;
10215 		break;
10216 	case SD_CHAIN_DIRECT_PRIORITY:
10217 		index = un->un_priority_chain_type;
10218 		break;
10219 	default:
10220 		/* We're really broken if we ever get here... */
10221 		panic("sd_xbuf_init: illegal chain type!");
10222 		/*NOTREACHED*/
10223 	}
10224 
10225 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10226 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10227 
10228 	/*
10229 	 * It might be a bit easier to simply bzero the entire xbuf above,
10230 	 * but it turns out that since we init a fair number of members anyway,
10231 	 * we save a fair number cycles by doing explicit assignment of zero.
10232 	 */
10233 	xp->xb_pkt_flags	= 0;
10234 	xp->xb_dma_resid	= 0;
10235 	xp->xb_retry_count	= 0;
10236 	xp->xb_victim_retry_count = 0;
10237 	xp->xb_ua_retry_count	= 0;
10238 	xp->xb_nr_retry_count	= 0;
10239 	xp->xb_sense_bp		= NULL;
10240 	xp->xb_sense_status	= 0;
10241 	xp->xb_sense_state	= 0;
10242 	xp->xb_sense_resid	= 0;
10243 
10244 	bp->b_private	= xp;
10245 	bp->b_flags	&= ~(B_DONE | B_ERROR);
10246 	bp->b_resid	= 0;
10247 	bp->av_forw	= NULL;
10248 	bp->av_back	= NULL;
10249 	bioerror(bp, 0);
10250 
10251 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10252 }
10253 
10254 
10255 /*
10256  *    Function: sd_uscsi_strategy
10257  *
10258  * Description: Wrapper for calling into the USCSI chain via physio(9F)
10259  *
10260  *   Arguments: bp - buf struct ptr
10261  *
10262  * Return Code: Always returns 0
10263  *
10264  *     Context: Kernel thread context
10265  */
10266 
10267 static int
10268 sd_uscsi_strategy(struct buf *bp)
10269 {
10270 	struct sd_lun		*un;
10271 	struct sd_uscsi_info	*uip;
10272 	struct sd_xbuf		*xp;
10273 	uchar_t			chain_type;
10274 
10275 	ASSERT(bp != NULL);
10276 
10277 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10278 	if (un == NULL) {
10279 		bioerror(bp, EIO);
10280 		bp->b_resid = bp->b_bcount;
10281 		biodone(bp);
10282 		return (0);
10283 	}
10284 
10285 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10286 
10287 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10288 
10289 	mutex_enter(SD_MUTEX(un));
10290 	/*
10291 	 * atapi: Since we are running the CD for now in PIO mode we need to
10292 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10293 	 * the HBA's init_pkt routine.
10294 	 */
10295 	if (un->un_f_cfg_is_atapi == TRUE) {
10296 		mutex_exit(SD_MUTEX(un));
10297 		bp_mapin(bp);
10298 		mutex_enter(SD_MUTEX(un));
10299 	}
10300 	un->un_ncmds_in_driver++;
10301 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10302 	    un->un_ncmds_in_driver);
10303 	mutex_exit(SD_MUTEX(un));
10304 
10305 	/*
10306 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10307 	 */
10308 	ASSERT(bp->b_private != NULL);
10309 	uip = (struct sd_uscsi_info *)bp->b_private;
10310 
10311 	switch (uip->ui_flags) {
10312 	case SD_PATH_DIRECT:
10313 		chain_type = SD_CHAIN_DIRECT;
10314 		break;
10315 	case SD_PATH_DIRECT_PRIORITY:
10316 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10317 		break;
10318 	default:
10319 		chain_type = SD_CHAIN_USCSI;
10320 		break;
10321 	}
10322 
10323 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
10324 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10325 
10326 	/* Use the index obtained within xbuf_init */
10327 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10328 
10329 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10330 
10331 	return (0);
10332 }
10333 
10334 /*
10335  *    Function: sd_send_scsi_cmd
10336  *
10337  * Description: Runs a USCSI command for user (when called thru sdioctl),
10338  *		or for the driver
10339  *
10340  *   Arguments: dev - the dev_t for the device
10341  *		incmd - ptr to a valid uscsi_cmd struct
10342  *		flag - bit flag, indicating open settings, 32/64 bit type
10343  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10344  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10345  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10346  *			to use the USCSI "direct" chain and bypass the normal
10347  *			command waitq.
10348  *
10349  * Return Code: 0 -  successful completion of the given command
10350  *		EIO - scsi_uscsi_handle_command() failed
10351  *		ENXIO  - soft state not found for specified dev
10352  *		EINVAL
10353  *		EFAULT - copyin/copyout error
10354  *		return code of scsi_uscsi_handle_command():
10355  *			EIO
10356  *			ENXIO
10357  *			EACCES
10358  *
10359  *     Context: Waits for command to complete. Can sleep.
10360  */
10361 
10362 static int
10363 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10364 	enum uio_seg dataspace, int path_flag)
10365 {
10366 	struct sd_uscsi_info	*uip;
10367 	struct uscsi_cmd	*uscmd;
10368 	struct sd_lun	*un;
10369 	int	format = 0;
10370 	int	rval;
10371 
10372 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10373 	if (un == NULL) {
10374 		return (ENXIO);
10375 	}
10376 
10377 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10378 
10379 #ifdef SDDEBUG
10380 	switch (dataspace) {
10381 	case UIO_USERSPACE:
10382 		SD_TRACE(SD_LOG_IO, un,
10383 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10384 		break;
10385 	case UIO_SYSSPACE:
10386 		SD_TRACE(SD_LOG_IO, un,
10387 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10388 		break;
10389 	default:
10390 		SD_TRACE(SD_LOG_IO, un,
10391 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10392 		break;
10393 	}
10394 #endif
10395 
10396 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10397 	    SD_ADDRESS(un), &uscmd);
10398 	if (rval != 0) {
10399 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10400 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10401 		return (rval);
10402 	}
10403 
10404 	if ((uscmd->uscsi_cdb != NULL) &&
10405 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10406 		mutex_enter(SD_MUTEX(un));
10407 		un->un_f_format_in_progress = TRUE;
10408 		mutex_exit(SD_MUTEX(un));
10409 		format = 1;
10410 	}
10411 
10412 	/*
10413 	 * Allocate an sd_uscsi_info struct and fill it with the info
10414 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10415 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10416 	 * since we allocate the buf here in this function, we do not
10417 	 * need to preserve the prior contents of b_private.
10418 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10419 	 */
10420 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10421 	uip->ui_flags = path_flag;
10422 	uip->ui_cmdp = uscmd;
10423 
10424 	/*
10425 	 * Commands sent with priority are intended for error recovery
10426 	 * situations, and do not have retries performed.
10427 	 */
10428 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10429 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10430 	}
10431 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10432 
10433 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10434 	    sd_uscsi_strategy, NULL, uip);
10435 
10436 #ifdef SDDEBUG
10437 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10438 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10439 	    uscmd->uscsi_status, uscmd->uscsi_resid);
10440 	if (uscmd->uscsi_bufaddr != NULL) {
10441 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10442 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10443 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10444 		if (dataspace == UIO_SYSSPACE) {
10445 			SD_DUMP_MEMORY(un, SD_LOG_IO,
10446 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10447 			    uscmd->uscsi_buflen, SD_LOG_HEX);
10448 		}
10449 	}
10450 #endif
10451 
10452 	if (format == 1) {
10453 		mutex_enter(SD_MUTEX(un));
10454 		un->un_f_format_in_progress = FALSE;
10455 		mutex_exit(SD_MUTEX(un));
10456 	}
10457 
10458 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10459 	kmem_free(uip, sizeof (struct sd_uscsi_info));
10460 
10461 	return (rval);
10462 }
10463 
10464 
10465 /*
10466  *    Function: sd_buf_iodone
10467  *
10468  * Description: Frees the sd_xbuf & returns the buf to its originator.
10469  *
10470  *     Context: May be called from interrupt context.
10471  */
10472 /* ARGSUSED */
10473 static void
10474 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10475 {
10476 	struct sd_xbuf *xp;
10477 
10478 	ASSERT(un != NULL);
10479 	ASSERT(bp != NULL);
10480 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10481 
10482 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10483 
10484 	xp = SD_GET_XBUF(bp);
10485 	ASSERT(xp != NULL);
10486 
10487 	mutex_enter(SD_MUTEX(un));
10488 
10489 	/*
10490 	 * Grab time when the cmd completed.
10491 	 * This is used for determining if the system has been
10492 	 * idle long enough to make it idle to the PM framework.
10493 	 * This is for lowering the overhead, and therefore improving
10494 	 * performance per I/O operation.
10495 	 */
10496 	un->un_pm_idle_time = ddi_get_time();
10497 
10498 	un->un_ncmds_in_driver--;
10499 	ASSERT(un->un_ncmds_in_driver >= 0);
10500 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10501 	    un->un_ncmds_in_driver);
10502 
10503 	mutex_exit(SD_MUTEX(un));
10504 
10505 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10506 	biodone(bp);				/* bp is gone after this */
10507 
10508 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10509 }
10510 
10511 
10512 /*
10513  *    Function: sd_uscsi_iodone
10514  *
10515  * Description: Frees the sd_xbuf & returns the buf to its originator.
10516  *
10517  *     Context: May be called from interrupt context.
10518  */
10519 /* ARGSUSED */
10520 static void
10521 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10522 {
10523 	struct sd_xbuf *xp;
10524 
10525 	ASSERT(un != NULL);
10526 	ASSERT(bp != NULL);
10527 
10528 	xp = SD_GET_XBUF(bp);
10529 	ASSERT(xp != NULL);
10530 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10531 
10532 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10533 
10534 	bp->b_private = xp->xb_private;
10535 
10536 	mutex_enter(SD_MUTEX(un));
10537 
10538 	/*
10539 	 * Grab time when the cmd completed.
10540 	 * This is used for determining if the system has been
10541 	 * idle long enough to make it idle to the PM framework.
10542 	 * This is for lowering the overhead, and therefore improving
10543 	 * performance per I/O operation.
10544 	 */
10545 	un->un_pm_idle_time = ddi_get_time();
10546 
10547 	un->un_ncmds_in_driver--;
10548 	ASSERT(un->un_ncmds_in_driver >= 0);
10549 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10550 	    un->un_ncmds_in_driver);
10551 
10552 	mutex_exit(SD_MUTEX(un));
10553 
10554 	kmem_free(xp, sizeof (struct sd_xbuf));
10555 	biodone(bp);
10556 
10557 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10558 }
10559 
10560 
10561 /*
10562  *    Function: sd_mapblockaddr_iostart
10563  *
10564  * Description: Verify request lies within the partition limits for
10565  *		the indicated minor device.  Issue "overrun" buf if
10566  *		request would exceed partition range.  Converts
10567  *		partition-relative block address to absolute.
10568  *
10569  *     Context: Can sleep
10570  *
10571  *      Issues: This follows what the old code did, in terms of accessing
10572  *		some of the partition info in the unit struct without holding
10573  *		the mutext.  This is a general issue, if the partition info
10574  *		can be altered while IO is in progress... as soon as we send
10575  *		a buf, its partitioning can be invalid before it gets to the
10576  *		device.  Probably the right fix is to move partitioning out
10577  *		of the driver entirely.
10578  */
10579 
10580 static void
10581 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10582 {
10583 	diskaddr_t	nblocks;	/* #blocks in the given partition */
10584 	daddr_t	blocknum;	/* Block number specified by the buf */
10585 	size_t	requested_nblocks;
10586 	size_t	available_nblocks;
10587 	int	partition;
10588 	diskaddr_t	partition_offset;
10589 	struct sd_xbuf *xp;
10590 
10591 
10592 	ASSERT(un != NULL);
10593 	ASSERT(bp != NULL);
10594 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10595 
10596 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10597 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10598 
10599 	xp = SD_GET_XBUF(bp);
10600 	ASSERT(xp != NULL);
10601 
10602 	/*
10603 	 * If the geometry is not indicated as valid, attempt to access
10604 	 * the unit & verify the geometry/label. This can be the case for
10605 	 * removable-media devices, of if the device was opened in
10606 	 * NDELAY/NONBLOCK mode.
10607 	 */
10608 	if (!SD_IS_VALID_LABEL(un) &&
10609 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10610 		/*
10611 		 * For removable devices it is possible to start an I/O
10612 		 * without a media by opening the device in nodelay mode.
10613 		 * Also for writable CDs there can be many scenarios where
10614 		 * there is no geometry yet but volume manager is trying to
10615 		 * issue a read() just because it can see TOC on the CD. So
10616 		 * do not print a message for removables.
10617 		 */
10618 		if (!un->un_f_has_removable_media) {
10619 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10620 			    "i/o to invalid geometry\n");
10621 		}
10622 		bioerror(bp, EIO);
10623 		bp->b_resid = bp->b_bcount;
10624 		SD_BEGIN_IODONE(index, un, bp);
10625 		return;
10626 	}
10627 
10628 	partition = SDPART(bp->b_edev);
10629 
10630 	nblocks = 0;
10631 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10632 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10633 
10634 	/*
10635 	 * blocknum is the starting block number of the request. At this
10636 	 * point it is still relative to the start of the minor device.
10637 	 */
10638 	blocknum = xp->xb_blkno;
10639 
10640 	/*
10641 	 * Legacy: If the starting block number is one past the last block
10642 	 * in the partition, do not set B_ERROR in the buf.
10643 	 */
10644 	if (blocknum == nblocks)  {
10645 		goto error_exit;
10646 	}
10647 
10648 	/*
10649 	 * Confirm that the first block of the request lies within the
10650 	 * partition limits. Also the requested number of bytes must be
10651 	 * a multiple of the system block size.
10652 	 */
10653 	if ((blocknum < 0) || (blocknum >= nblocks) ||
10654 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10655 		bp->b_flags |= B_ERROR;
10656 		goto error_exit;
10657 	}
10658 
10659 	/*
10660 	 * If the requsted # blocks exceeds the available # blocks, that
10661 	 * is an overrun of the partition.
10662 	 */
10663 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10664 	available_nblocks = (size_t)(nblocks - blocknum);
10665 	ASSERT(nblocks >= blocknum);
10666 
10667 	if (requested_nblocks > available_nblocks) {
10668 		/*
10669 		 * Allocate an "overrun" buf to allow the request to proceed
10670 		 * for the amount of space available in the partition. The
10671 		 * amount not transferred will be added into the b_resid
10672 		 * when the operation is complete. The overrun buf
10673 		 * replaces the original buf here, and the original buf
10674 		 * is saved inside the overrun buf, for later use.
10675 		 */
10676 		size_t resid = SD_SYSBLOCKS2BYTES(un,
10677 		    (offset_t)(requested_nblocks - available_nblocks));
10678 		size_t count = bp->b_bcount - resid;
10679 		/*
10680 		 * Note: count is an unsigned entity thus it'll NEVER
10681 		 * be less than 0 so ASSERT the original values are
10682 		 * correct.
10683 		 */
10684 		ASSERT(bp->b_bcount >= resid);
10685 
10686 		bp = sd_bioclone_alloc(bp, count, blocknum,
10687 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
10688 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10689 		ASSERT(xp != NULL);
10690 	}
10691 
10692 	/* At this point there should be no residual for this buf. */
10693 	ASSERT(bp->b_resid == 0);
10694 
10695 	/* Convert the block number to an absolute address. */
10696 	xp->xb_blkno += partition_offset;
10697 
10698 	SD_NEXT_IOSTART(index, un, bp);
10699 
10700 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10701 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10702 
10703 	return;
10704 
10705 error_exit:
10706 	bp->b_resid = bp->b_bcount;
10707 	SD_BEGIN_IODONE(index, un, bp);
10708 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10709 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10710 }
10711 
10712 
10713 /*
10714  *    Function: sd_mapblockaddr_iodone
10715  *
10716  * Description: Completion-side processing for partition management.
10717  *
10718  *     Context: May be called under interrupt context
10719  */
10720 
10721 static void
10722 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10723 {
10724 	/* int	partition; */	/* Not used, see below. */
10725 	ASSERT(un != NULL);
10726 	ASSERT(bp != NULL);
10727 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10728 
10729 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10730 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10731 
10732 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10733 		/*
10734 		 * We have an "overrun" buf to deal with...
10735 		 */
10736 		struct sd_xbuf	*xp;
10737 		struct buf	*obp;	/* ptr to the original buf */
10738 
10739 		xp = SD_GET_XBUF(bp);
10740 		ASSERT(xp != NULL);
10741 
10742 		/* Retrieve the pointer to the original buf */
10743 		obp = (struct buf *)xp->xb_private;
10744 		ASSERT(obp != NULL);
10745 
10746 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10747 		bioerror(obp, bp->b_error);
10748 
10749 		sd_bioclone_free(bp);
10750 
10751 		/*
10752 		 * Get back the original buf.
10753 		 * Note that since the restoration of xb_blkno below
10754 		 * was removed, the sd_xbuf is not needed.
10755 		 */
10756 		bp = obp;
10757 		/*
10758 		 * xp = SD_GET_XBUF(bp);
10759 		 * ASSERT(xp != NULL);
10760 		 */
10761 	}
10762 
10763 	/*
10764 	 * Convert sd->xb_blkno back to a minor-device relative value.
10765 	 * Note: this has been commented out, as it is not needed in the
10766 	 * current implementation of the driver (ie, since this function
10767 	 * is at the top of the layering chains, so the info will be
10768 	 * discarded) and it is in the "hot" IO path.
10769 	 *
10770 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
10771 	 * xp->xb_blkno -= un->un_offset[partition];
10772 	 */
10773 
10774 	SD_NEXT_IODONE(index, un, bp);
10775 
10776 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10777 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
10778 }
10779 
10780 
10781 /*
10782  *    Function: sd_mapblocksize_iostart
10783  *
10784  * Description: Convert between system block size (un->un_sys_blocksize)
10785  *		and target block size (un->un_tgt_blocksize).
10786  *
10787  *     Context: Can sleep to allocate resources.
10788  *
10789  * Assumptions: A higher layer has already performed any partition validation,
10790  *		and converted the xp->xb_blkno to an absolute value relative
10791  *		to the start of the device.
10792  *
10793  *		It is also assumed that the higher layer has implemented
10794  *		an "overrun" mechanism for the case where the request would
10795  *		read/write beyond the end of a partition.  In this case we
10796  *		assume (and ASSERT) that bp->b_resid == 0.
10797  *
10798  *		Note: The implementation for this routine assumes the target
10799  *		block size remains constant between allocation and transport.
10800  */
10801 
10802 static void
10803 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
10804 {
10805 	struct sd_mapblocksize_info	*bsp;
10806 	struct sd_xbuf			*xp;
10807 	offset_t first_byte;
10808 	daddr_t	start_block, end_block;
10809 	daddr_t	request_bytes;
10810 	ushort_t is_aligned = FALSE;
10811 
10812 	ASSERT(un != NULL);
10813 	ASSERT(bp != NULL);
10814 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10815 	ASSERT(bp->b_resid == 0);
10816 
10817 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10818 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
10819 
10820 	/*
10821 	 * For a non-writable CD, a write request is an error
10822 	 */
10823 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
10824 	    (un->un_f_mmc_writable_media == FALSE)) {
10825 		bioerror(bp, EIO);
10826 		bp->b_resid = bp->b_bcount;
10827 		SD_BEGIN_IODONE(index, un, bp);
10828 		return;
10829 	}
10830 
10831 	/*
10832 	 * We do not need a shadow buf if the device is using
10833 	 * un->un_sys_blocksize as its block size or if bcount == 0.
10834 	 * In this case there is no layer-private data block allocated.
10835 	 */
10836 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
10837 	    (bp->b_bcount == 0)) {
10838 		goto done;
10839 	}
10840 
10841 #if defined(__i386) || defined(__amd64)
10842 	/* We do not support non-block-aligned transfers for ROD devices */
10843 	ASSERT(!ISROD(un));
10844 #endif
10845 
10846 	xp = SD_GET_XBUF(bp);
10847 	ASSERT(xp != NULL);
10848 
10849 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10850 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
10851 	    un->un_tgt_blocksize, un->un_sys_blocksize);
10852 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10853 	    "request start block:0x%x\n", xp->xb_blkno);
10854 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
10855 	    "request len:0x%x\n", bp->b_bcount);
10856 
10857 	/*
10858 	 * Allocate the layer-private data area for the mapblocksize layer.
10859 	 * Layers are allowed to use the xp_private member of the sd_xbuf
10860 	 * struct to store the pointer to their layer-private data block, but
10861 	 * each layer also has the responsibility of restoring the prior
10862 	 * contents of xb_private before returning the buf/xbuf to the
10863 	 * higher layer that sent it.
10864 	 *
10865 	 * Here we save the prior contents of xp->xb_private into the
10866 	 * bsp->mbs_oprivate field of our layer-private data area. This value
10867 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
10868 	 * the layer-private area and returning the buf/xbuf to the layer
10869 	 * that sent it.
10870 	 *
10871 	 * Note that here we use kmem_zalloc for the allocation as there are
10872 	 * parts of the mapblocksize code that expect certain fields to be
10873 	 * zero unless explicitly set to a required value.
10874 	 */
10875 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
10876 	bsp->mbs_oprivate = xp->xb_private;
10877 	xp->xb_private = bsp;
10878 
10879 	/*
10880 	 * This treats the data on the disk (target) as an array of bytes.
10881 	 * first_byte is the byte offset, from the beginning of the device,
10882 	 * to the location of the request. This is converted from a
10883 	 * un->un_sys_blocksize block address to a byte offset, and then back
10884 	 * to a block address based upon a un->un_tgt_blocksize block size.
10885 	 *
10886 	 * xp->xb_blkno should be absolute upon entry into this function,
10887 	 * but, but it is based upon partitions that use the "system"
10888 	 * block size. It must be adjusted to reflect the block size of
10889 	 * the target.
10890 	 *
10891 	 * Note that end_block is actually the block that follows the last
10892 	 * block of the request, but that's what is needed for the computation.
10893 	 */
10894 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
10895 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
10896 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
10897 	    un->un_tgt_blocksize;
10898 
10899 	/* request_bytes is rounded up to a multiple of the target block size */
10900 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
10901 
10902 	/*
10903 	 * See if the starting address of the request and the request
10904 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
10905 	 * then we do not need to allocate a shadow buf to handle the request.
10906 	 */
10907 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
10908 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
10909 		is_aligned = TRUE;
10910 	}
10911 
10912 	if ((bp->b_flags & B_READ) == 0) {
10913 		/*
10914 		 * Lock the range for a write operation. An aligned request is
10915 		 * considered a simple write; otherwise the request must be a
10916 		 * read-modify-write.
10917 		 */
10918 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
10919 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
10920 	}
10921 
10922 	/*
10923 	 * Alloc a shadow buf if the request is not aligned. Also, this is
10924 	 * where the READ command is generated for a read-modify-write. (The
10925 	 * write phase is deferred until after the read completes.)
10926 	 */
10927 	if (is_aligned == FALSE) {
10928 
10929 		struct sd_mapblocksize_info	*shadow_bsp;
10930 		struct sd_xbuf	*shadow_xp;
10931 		struct buf	*shadow_bp;
10932 
10933 		/*
10934 		 * Allocate the shadow buf and it associated xbuf. Note that
10935 		 * after this call the xb_blkno value in both the original
10936 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
10937 		 * same: absolute relative to the start of the device, and
10938 		 * adjusted for the target block size. The b_blkno in the
10939 		 * shadow buf will also be set to this value. We should never
10940 		 * change b_blkno in the original bp however.
10941 		 *
10942 		 * Note also that the shadow buf will always need to be a
10943 		 * READ command, regardless of whether the incoming command
10944 		 * is a READ or a WRITE.
10945 		 */
10946 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
10947 		    xp->xb_blkno,
10948 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
10949 
10950 		shadow_xp = SD_GET_XBUF(shadow_bp);
10951 
10952 		/*
10953 		 * Allocate the layer-private data for the shadow buf.
10954 		 * (No need to preserve xb_private in the shadow xbuf.)
10955 		 */
10956 		shadow_xp->xb_private = shadow_bsp =
10957 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
10958 
10959 		/*
10960 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
10961 		 * to figure out where the start of the user data is (based upon
10962 		 * the system block size) in the data returned by the READ
10963 		 * command (which will be based upon the target blocksize). Note
10964 		 * that this is only really used if the request is unaligned.
10965 		 */
10966 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
10967 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
10968 		ASSERT((bsp->mbs_copy_offset >= 0) &&
10969 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
10970 
10971 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
10972 
10973 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
10974 
10975 		/* Transfer the wmap (if any) to the shadow buf */
10976 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
10977 		bsp->mbs_wmp = NULL;
10978 
10979 		/*
10980 		 * The shadow buf goes on from here in place of the
10981 		 * original buf.
10982 		 */
10983 		shadow_bsp->mbs_orig_bp = bp;
10984 		bp = shadow_bp;
10985 	}
10986 
10987 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10988 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
10989 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10990 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
10991 	    request_bytes);
10992 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
10993 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
10994 
10995 done:
10996 	SD_NEXT_IOSTART(index, un, bp);
10997 
10998 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
10999 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
11000 }
11001 
11002 
11003 /*
11004  *    Function: sd_mapblocksize_iodone
11005  *
11006  * Description: Completion side processing for block-size mapping.
11007  *
11008  *     Context: May be called under interrupt context
11009  */
11010 
11011 static void
11012 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
11013 {
11014 	struct sd_mapblocksize_info	*bsp;
11015 	struct sd_xbuf	*xp;
11016 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
11017 	struct buf	*orig_bp;	/* ptr to the original buf */
11018 	offset_t	shadow_end;
11019 	offset_t	request_end;
11020 	offset_t	shadow_start;
11021 	ssize_t		copy_offset;
11022 	size_t		copy_length;
11023 	size_t		shortfall;
11024 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
11025 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
11026 
11027 	ASSERT(un != NULL);
11028 	ASSERT(bp != NULL);
11029 
11030 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11031 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
11032 
11033 	/*
11034 	 * There is no shadow buf or layer-private data if the target is
11035 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
11036 	 */
11037 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11038 	    (bp->b_bcount == 0)) {
11039 		goto exit;
11040 	}
11041 
11042 	xp = SD_GET_XBUF(bp);
11043 	ASSERT(xp != NULL);
11044 
11045 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
11046 	bsp = xp->xb_private;
11047 
11048 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
11049 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
11050 
11051 	if (is_write) {
11052 		/*
11053 		 * For a WRITE request we must free up the block range that
11054 		 * we have locked up.  This holds regardless of whether this is
11055 		 * an aligned write request or a read-modify-write request.
11056 		 */
11057 		sd_range_unlock(un, bsp->mbs_wmp);
11058 		bsp->mbs_wmp = NULL;
11059 	}
11060 
11061 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
11062 		/*
11063 		 * An aligned read or write command will have no shadow buf;
11064 		 * there is not much else to do with it.
11065 		 */
11066 		goto done;
11067 	}
11068 
11069 	orig_bp = bsp->mbs_orig_bp;
11070 	ASSERT(orig_bp != NULL);
11071 	orig_xp = SD_GET_XBUF(orig_bp);
11072 	ASSERT(orig_xp != NULL);
11073 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11074 
11075 	if (!is_write && has_wmap) {
11076 		/*
11077 		 * A READ with a wmap means this is the READ phase of a
11078 		 * read-modify-write. If an error occurred on the READ then
11079 		 * we do not proceed with the WRITE phase or copy any data.
11080 		 * Just release the write maps and return with an error.
11081 		 */
11082 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
11083 			orig_bp->b_resid = orig_bp->b_bcount;
11084 			bioerror(orig_bp, bp->b_error);
11085 			sd_range_unlock(un, bsp->mbs_wmp);
11086 			goto freebuf_done;
11087 		}
11088 	}
11089 
11090 	/*
11091 	 * Here is where we set up to copy the data from the shadow buf
11092 	 * into the space associated with the original buf.
11093 	 *
11094 	 * To deal with the conversion between block sizes, these
11095 	 * computations treat the data as an array of bytes, with the
11096 	 * first byte (byte 0) corresponding to the first byte in the
11097 	 * first block on the disk.
11098 	 */
11099 
11100 	/*
11101 	 * shadow_start and shadow_len indicate the location and size of
11102 	 * the data returned with the shadow IO request.
11103 	 */
11104 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11105 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11106 
11107 	/*
11108 	 * copy_offset gives the offset (in bytes) from the start of the first
11109 	 * block of the READ request to the beginning of the data.  We retrieve
11110 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11111 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11112 	 * data to be copied (in bytes).
11113 	 */
11114 	copy_offset  = bsp->mbs_copy_offset;
11115 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11116 	copy_length  = orig_bp->b_bcount;
11117 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11118 
11119 	/*
11120 	 * Set up the resid and error fields of orig_bp as appropriate.
11121 	 */
11122 	if (shadow_end >= request_end) {
11123 		/* We got all the requested data; set resid to zero */
11124 		orig_bp->b_resid = 0;
11125 	} else {
11126 		/*
11127 		 * We failed to get enough data to fully satisfy the original
11128 		 * request. Just copy back whatever data we got and set
11129 		 * up the residual and error code as required.
11130 		 *
11131 		 * 'shortfall' is the amount by which the data received with the
11132 		 * shadow buf has "fallen short" of the requested amount.
11133 		 */
11134 		shortfall = (size_t)(request_end - shadow_end);
11135 
11136 		if (shortfall > orig_bp->b_bcount) {
11137 			/*
11138 			 * We did not get enough data to even partially
11139 			 * fulfill the original request.  The residual is
11140 			 * equal to the amount requested.
11141 			 */
11142 			orig_bp->b_resid = orig_bp->b_bcount;
11143 		} else {
11144 			/*
11145 			 * We did not get all the data that we requested
11146 			 * from the device, but we will try to return what
11147 			 * portion we did get.
11148 			 */
11149 			orig_bp->b_resid = shortfall;
11150 		}
11151 		ASSERT(copy_length >= orig_bp->b_resid);
11152 		copy_length  -= orig_bp->b_resid;
11153 	}
11154 
11155 	/* Propagate the error code from the shadow buf to the original buf */
11156 	bioerror(orig_bp, bp->b_error);
11157 
11158 	if (is_write) {
11159 		goto freebuf_done;	/* No data copying for a WRITE */
11160 	}
11161 
11162 	if (has_wmap) {
11163 		/*
11164 		 * This is a READ command from the READ phase of a
11165 		 * read-modify-write request. We have to copy the data given
11166 		 * by the user OVER the data returned by the READ command,
11167 		 * then convert the command from a READ to a WRITE and send
11168 		 * it back to the target.
11169 		 */
11170 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11171 		    copy_length);
11172 
11173 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11174 
11175 		/*
11176 		 * Dispatch the WRITE command to the taskq thread, which
11177 		 * will in turn send the command to the target. When the
11178 		 * WRITE command completes, we (sd_mapblocksize_iodone())
11179 		 * will get called again as part of the iodone chain
11180 		 * processing for it. Note that we will still be dealing
11181 		 * with the shadow buf at that point.
11182 		 */
11183 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11184 		    KM_NOSLEEP) != 0) {
11185 			/*
11186 			 * Dispatch was successful so we are done. Return
11187 			 * without going any higher up the iodone chain. Do
11188 			 * not free up any layer-private data until after the
11189 			 * WRITE completes.
11190 			 */
11191 			return;
11192 		}
11193 
11194 		/*
11195 		 * Dispatch of the WRITE command failed; set up the error
11196 		 * condition and send this IO back up the iodone chain.
11197 		 */
11198 		bioerror(orig_bp, EIO);
11199 		orig_bp->b_resid = orig_bp->b_bcount;
11200 
11201 	} else {
11202 		/*
11203 		 * This is a regular READ request (ie, not a RMW). Copy the
11204 		 * data from the shadow buf into the original buf. The
11205 		 * copy_offset compensates for any "misalignment" between the
11206 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11207 		 * original buf (with its un->un_sys_blocksize blocks).
11208 		 */
11209 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11210 		    copy_length);
11211 	}
11212 
11213 freebuf_done:
11214 
11215 	/*
11216 	 * At this point we still have both the shadow buf AND the original
11217 	 * buf to deal with, as well as the layer-private data area in each.
11218 	 * Local variables are as follows:
11219 	 *
11220 	 * bp -- points to shadow buf
11221 	 * xp -- points to xbuf of shadow buf
11222 	 * bsp -- points to layer-private data area of shadow buf
11223 	 * orig_bp -- points to original buf
11224 	 *
11225 	 * First free the shadow buf and its associated xbuf, then free the
11226 	 * layer-private data area from the shadow buf. There is no need to
11227 	 * restore xb_private in the shadow xbuf.
11228 	 */
11229 	sd_shadow_buf_free(bp);
11230 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11231 
11232 	/*
11233 	 * Now update the local variables to point to the original buf, xbuf,
11234 	 * and layer-private area.
11235 	 */
11236 	bp = orig_bp;
11237 	xp = SD_GET_XBUF(bp);
11238 	ASSERT(xp != NULL);
11239 	ASSERT(xp == orig_xp);
11240 	bsp = xp->xb_private;
11241 	ASSERT(bsp != NULL);
11242 
11243 done:
11244 	/*
11245 	 * Restore xb_private to whatever it was set to by the next higher
11246 	 * layer in the chain, then free the layer-private data area.
11247 	 */
11248 	xp->xb_private = bsp->mbs_oprivate;
11249 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11250 
11251 exit:
11252 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11253 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11254 
11255 	SD_NEXT_IODONE(index, un, bp);
11256 }
11257 
11258 
11259 /*
11260  *    Function: sd_checksum_iostart
11261  *
11262  * Description: A stub function for a layer that's currently not used.
11263  *		For now just a placeholder.
11264  *
11265  *     Context: Kernel thread context
11266  */
11267 
11268 static void
11269 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11270 {
11271 	ASSERT(un != NULL);
11272 	ASSERT(bp != NULL);
11273 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11274 	SD_NEXT_IOSTART(index, un, bp);
11275 }
11276 
11277 
11278 /*
11279  *    Function: sd_checksum_iodone
11280  *
11281  * Description: A stub function for a layer that's currently not used.
11282  *		For now just a placeholder.
11283  *
11284  *     Context: May be called under interrupt context
11285  */
11286 
11287 static void
11288 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11289 {
11290 	ASSERT(un != NULL);
11291 	ASSERT(bp != NULL);
11292 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11293 	SD_NEXT_IODONE(index, un, bp);
11294 }
11295 
11296 
11297 /*
11298  *    Function: sd_checksum_uscsi_iostart
11299  *
11300  * Description: A stub function for a layer that's currently not used.
11301  *		For now just a placeholder.
11302  *
11303  *     Context: Kernel thread context
11304  */
11305 
11306 static void
11307 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11308 {
11309 	ASSERT(un != NULL);
11310 	ASSERT(bp != NULL);
11311 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11312 	SD_NEXT_IOSTART(index, un, bp);
11313 }
11314 
11315 
11316 /*
11317  *    Function: sd_checksum_uscsi_iodone
11318  *
11319  * Description: A stub function for a layer that's currently not used.
11320  *		For now just a placeholder.
11321  *
11322  *     Context: May be called under interrupt context
11323  */
11324 
11325 static void
11326 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11327 {
11328 	ASSERT(un != NULL);
11329 	ASSERT(bp != NULL);
11330 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11331 	SD_NEXT_IODONE(index, un, bp);
11332 }
11333 
11334 
11335 /*
11336  *    Function: sd_pm_iostart
11337  *
11338  * Description: iostart-side routine for Power mangement.
11339  *
11340  *     Context: Kernel thread context
11341  */
11342 
11343 static void
11344 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11345 {
11346 	ASSERT(un != NULL);
11347 	ASSERT(bp != NULL);
11348 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11349 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11350 
11351 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11352 
11353 	if (sd_pm_entry(un) != DDI_SUCCESS) {
11354 		/*
11355 		 * Set up to return the failed buf back up the 'iodone'
11356 		 * side of the calling chain.
11357 		 */
11358 		bioerror(bp, EIO);
11359 		bp->b_resid = bp->b_bcount;
11360 
11361 		SD_BEGIN_IODONE(index, un, bp);
11362 
11363 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11364 		return;
11365 	}
11366 
11367 	SD_NEXT_IOSTART(index, un, bp);
11368 
11369 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11370 }
11371 
11372 
11373 /*
11374  *    Function: sd_pm_iodone
11375  *
11376  * Description: iodone-side routine for power mangement.
11377  *
11378  *     Context: may be called from interrupt context
11379  */
11380 
11381 static void
11382 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11383 {
11384 	ASSERT(un != NULL);
11385 	ASSERT(bp != NULL);
11386 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11387 
11388 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11389 
11390 	/*
11391 	 * After attach the following flag is only read, so don't
11392 	 * take the penalty of acquiring a mutex for it.
11393 	 */
11394 	if (un->un_f_pm_is_enabled == TRUE) {
11395 		sd_pm_exit(un);
11396 	}
11397 
11398 	SD_NEXT_IODONE(index, un, bp);
11399 
11400 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11401 }
11402 
11403 
11404 /*
11405  *    Function: sd_core_iostart
11406  *
11407  * Description: Primary driver function for enqueuing buf(9S) structs from
11408  *		the system and initiating IO to the target device
11409  *
11410  *     Context: Kernel thread context. Can sleep.
11411  *
11412  * Assumptions:  - The given xp->xb_blkno is absolute
11413  *		   (ie, relative to the start of the device).
11414  *		 - The IO is to be done using the native blocksize of
11415  *		   the device, as specified in un->un_tgt_blocksize.
11416  */
11417 /* ARGSUSED */
11418 static void
11419 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11420 {
11421 	struct sd_xbuf *xp;
11422 
11423 	ASSERT(un != NULL);
11424 	ASSERT(bp != NULL);
11425 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11426 	ASSERT(bp->b_resid == 0);
11427 
11428 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11429 
11430 	xp = SD_GET_XBUF(bp);
11431 	ASSERT(xp != NULL);
11432 
11433 	mutex_enter(SD_MUTEX(un));
11434 
11435 	/*
11436 	 * If we are currently in the failfast state, fail any new IO
11437 	 * that has B_FAILFAST set, then return.
11438 	 */
11439 	if ((bp->b_flags & B_FAILFAST) &&
11440 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11441 		mutex_exit(SD_MUTEX(un));
11442 		bioerror(bp, EIO);
11443 		bp->b_resid = bp->b_bcount;
11444 		SD_BEGIN_IODONE(index, un, bp);
11445 		return;
11446 	}
11447 
11448 	if (SD_IS_DIRECT_PRIORITY(xp)) {
11449 		/*
11450 		 * Priority command -- transport it immediately.
11451 		 *
11452 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11453 		 * because all direct priority commands should be associated
11454 		 * with error recovery actions which we don't want to retry.
11455 		 */
11456 		sd_start_cmds(un, bp);
11457 	} else {
11458 		/*
11459 		 * Normal command -- add it to the wait queue, then start
11460 		 * transporting commands from the wait queue.
11461 		 */
11462 		sd_add_buf_to_waitq(un, bp);
11463 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11464 		sd_start_cmds(un, NULL);
11465 	}
11466 
11467 	mutex_exit(SD_MUTEX(un));
11468 
11469 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11470 }
11471 
11472 
11473 /*
11474  *    Function: sd_init_cdb_limits
11475  *
11476  * Description: This is to handle scsi_pkt initialization differences
11477  *		between the driver platforms.
11478  *
11479  *		Legacy behaviors:
11480  *
11481  *		If the block number or the sector count exceeds the
11482  *		capabilities of a Group 0 command, shift over to a
11483  *		Group 1 command. We don't blindly use Group 1
11484  *		commands because a) some drives (CDC Wren IVs) get a
11485  *		bit confused, and b) there is probably a fair amount
11486  *		of speed difference for a target to receive and decode
11487  *		a 10 byte command instead of a 6 byte command.
11488  *
11489  *		The xfer time difference of 6 vs 10 byte CDBs is
11490  *		still significant so this code is still worthwhile.
11491  *		10 byte CDBs are very inefficient with the fas HBA driver
11492  *		and older disks. Each CDB byte took 1 usec with some
11493  *		popular disks.
11494  *
11495  *     Context: Must be called at attach time
11496  */
11497 
11498 static void
11499 sd_init_cdb_limits(struct sd_lun *un)
11500 {
11501 	int hba_cdb_limit;
11502 
11503 	/*
11504 	 * Use CDB_GROUP1 commands for most devices except for
11505 	 * parallel SCSI fixed drives in which case we get better
11506 	 * performance using CDB_GROUP0 commands (where applicable).
11507 	 */
11508 	un->un_mincdb = SD_CDB_GROUP1;
11509 #if !defined(__fibre)
11510 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11511 	    !un->un_f_has_removable_media) {
11512 		un->un_mincdb = SD_CDB_GROUP0;
11513 	}
11514 #endif
11515 
11516 	/*
11517 	 * Try to read the max-cdb-length supported by HBA.
11518 	 */
11519 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11520 	if (0 >= un->un_max_hba_cdb) {
11521 		un->un_max_hba_cdb = CDB_GROUP4;
11522 		hba_cdb_limit = SD_CDB_GROUP4;
11523 	} else if (0 < un->un_max_hba_cdb &&
11524 	    un->un_max_hba_cdb < CDB_GROUP1) {
11525 		hba_cdb_limit = SD_CDB_GROUP0;
11526 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11527 	    un->un_max_hba_cdb < CDB_GROUP5) {
11528 		hba_cdb_limit = SD_CDB_GROUP1;
11529 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11530 	    un->un_max_hba_cdb < CDB_GROUP4) {
11531 		hba_cdb_limit = SD_CDB_GROUP5;
11532 	} else {
11533 		hba_cdb_limit = SD_CDB_GROUP4;
11534 	}
11535 
11536 	/*
11537 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11538 	 * commands for fixed disks unless we are building for a 32 bit
11539 	 * kernel.
11540 	 */
11541 #ifdef _LP64
11542 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11543 	    min(hba_cdb_limit, SD_CDB_GROUP4);
11544 #else
11545 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11546 	    min(hba_cdb_limit, SD_CDB_GROUP1);
11547 #endif
11548 
11549 	/*
11550 	 * x86 systems require the PKT_DMA_PARTIAL flag
11551 	 */
11552 #if defined(__x86)
11553 	un->un_pkt_flags = PKT_DMA_PARTIAL;
11554 #else
11555 	un->un_pkt_flags = 0;
11556 #endif
11557 
11558 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11559 	    ? sizeof (struct scsi_arq_status) : 1);
11560 	un->un_cmd_timeout = (ushort_t)sd_io_time;
11561 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11562 }
11563 
11564 
11565 /*
11566  *    Function: sd_initpkt_for_buf
11567  *
11568  * Description: Allocate and initialize for transport a scsi_pkt struct,
11569  *		based upon the info specified in the given buf struct.
11570  *
11571  *		Assumes the xb_blkno in the request is absolute (ie,
11572  *		relative to the start of the device (NOT partition!).
11573  *		Also assumes that the request is using the native block
11574  *		size of the device (as returned by the READ CAPACITY
11575  *		command).
11576  *
11577  * Return Code: SD_PKT_ALLOC_SUCCESS
11578  *		SD_PKT_ALLOC_FAILURE
11579  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11580  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11581  *
11582  *     Context: Kernel thread and may be called from software interrupt context
11583  *		as part of a sdrunout callback. This function may not block or
11584  *		call routines that block
11585  */
11586 
11587 static int
11588 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11589 {
11590 	struct sd_xbuf	*xp;
11591 	struct scsi_pkt *pktp = NULL;
11592 	struct sd_lun	*un;
11593 	size_t		blockcount;
11594 	daddr_t		startblock;
11595 	int		rval;
11596 	int		cmd_flags;
11597 
11598 	ASSERT(bp != NULL);
11599 	ASSERT(pktpp != NULL);
11600 	xp = SD_GET_XBUF(bp);
11601 	ASSERT(xp != NULL);
11602 	un = SD_GET_UN(bp);
11603 	ASSERT(un != NULL);
11604 	ASSERT(mutex_owned(SD_MUTEX(un)));
11605 	ASSERT(bp->b_resid == 0);
11606 
11607 	SD_TRACE(SD_LOG_IO_CORE, un,
11608 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11609 
11610 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11611 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11612 		/*
11613 		 * Already have a scsi_pkt -- just need DMA resources.
11614 		 * We must recompute the CDB in case the mapping returns
11615 		 * a nonzero pkt_resid.
11616 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11617 		 * that is being retried, the unmap/remap of the DMA resouces
11618 		 * will result in the entire transfer starting over again
11619 		 * from the very first block.
11620 		 */
11621 		ASSERT(xp->xb_pktp != NULL);
11622 		pktp = xp->xb_pktp;
11623 	} else {
11624 		pktp = NULL;
11625 	}
11626 #endif /* __i386 || __amd64 */
11627 
11628 	startblock = xp->xb_blkno;	/* Absolute block num. */
11629 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11630 
11631 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11632 
11633 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11634 
11635 #else
11636 
11637 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
11638 
11639 #endif
11640 
11641 	/*
11642 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11643 	 * call scsi_init_pkt, and build the CDB.
11644 	 */
11645 	rval = sd_setup_rw_pkt(un, &pktp, bp,
11646 	    cmd_flags, sdrunout, (caddr_t)un,
11647 	    startblock, blockcount);
11648 
11649 	if (rval == 0) {
11650 		/*
11651 		 * Success.
11652 		 *
11653 		 * If partial DMA is being used and required for this transfer.
11654 		 * set it up here.
11655 		 */
11656 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11657 		    (pktp->pkt_resid != 0)) {
11658 
11659 			/*
11660 			 * Save the CDB length and pkt_resid for the
11661 			 * next xfer
11662 			 */
11663 			xp->xb_dma_resid = pktp->pkt_resid;
11664 
11665 			/* rezero resid */
11666 			pktp->pkt_resid = 0;
11667 
11668 		} else {
11669 			xp->xb_dma_resid = 0;
11670 		}
11671 
11672 		pktp->pkt_flags = un->un_tagflags;
11673 		pktp->pkt_time  = un->un_cmd_timeout;
11674 		pktp->pkt_comp  = sdintr;
11675 
11676 		pktp->pkt_private = bp;
11677 		*pktpp = pktp;
11678 
11679 		SD_TRACE(SD_LOG_IO_CORE, un,
11680 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11681 
11682 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11683 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11684 #endif
11685 
11686 		return (SD_PKT_ALLOC_SUCCESS);
11687 
11688 	}
11689 
11690 	/*
11691 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11692 	 * from sd_setup_rw_pkt.
11693 	 */
11694 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11695 
11696 	if (rval == SD_PKT_ALLOC_FAILURE) {
11697 		*pktpp = NULL;
11698 		/*
11699 		 * Set the driver state to RWAIT to indicate the driver
11700 		 * is waiting on resource allocations. The driver will not
11701 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11702 		 */
11703 		New_state(un, SD_STATE_RWAIT);
11704 
11705 		SD_ERROR(SD_LOG_IO_CORE, un,
11706 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11707 
11708 		if ((bp->b_flags & B_ERROR) != 0) {
11709 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11710 		}
11711 		return (SD_PKT_ALLOC_FAILURE);
11712 	} else {
11713 		/*
11714 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11715 		 *
11716 		 * This should never happen.  Maybe someone messed with the
11717 		 * kernel's minphys?
11718 		 */
11719 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11720 		    "Request rejected: too large for CDB: "
11721 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11722 		SD_ERROR(SD_LOG_IO_CORE, un,
11723 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11724 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11725 
11726 	}
11727 }
11728 
11729 
11730 /*
11731  *    Function: sd_destroypkt_for_buf
11732  *
11733  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11734  *
11735  *     Context: Kernel thread or interrupt context
11736  */
11737 
11738 static void
11739 sd_destroypkt_for_buf(struct buf *bp)
11740 {
11741 	ASSERT(bp != NULL);
11742 	ASSERT(SD_GET_UN(bp) != NULL);
11743 
11744 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11745 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11746 
11747 	ASSERT(SD_GET_PKTP(bp) != NULL);
11748 	scsi_destroy_pkt(SD_GET_PKTP(bp));
11749 
11750 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11751 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11752 }
11753 
11754 /*
11755  *    Function: sd_setup_rw_pkt
11756  *
11757  * Description: Determines appropriate CDB group for the requested LBA
11758  *		and transfer length, calls scsi_init_pkt, and builds
11759  *		the CDB.  Do not use for partial DMA transfers except
11760  *		for the initial transfer since the CDB size must
11761  *		remain constant.
11762  *
11763  *     Context: Kernel thread and may be called from software interrupt
11764  *		context as part of a sdrunout callback. This function may not
11765  *		block or call routines that block
11766  */
11767 
11768 
11769 int
11770 sd_setup_rw_pkt(struct sd_lun *un,
11771     struct scsi_pkt **pktpp, struct buf *bp, int flags,
11772     int (*callback)(caddr_t), caddr_t callback_arg,
11773     diskaddr_t lba, uint32_t blockcount)
11774 {
11775 	struct scsi_pkt *return_pktp;
11776 	union scsi_cdb *cdbp;
11777 	struct sd_cdbinfo *cp = NULL;
11778 	int i;
11779 
11780 	/*
11781 	 * See which size CDB to use, based upon the request.
11782 	 */
11783 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
11784 
11785 		/*
11786 		 * Check lba and block count against sd_cdbtab limits.
11787 		 * In the partial DMA case, we have to use the same size
11788 		 * CDB for all the transfers.  Check lba + blockcount
11789 		 * against the max LBA so we know that segment of the
11790 		 * transfer can use the CDB we select.
11791 		 */
11792 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
11793 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
11794 
11795 			/*
11796 			 * The command will fit into the CDB type
11797 			 * specified by sd_cdbtab[i].
11798 			 */
11799 			cp = sd_cdbtab + i;
11800 
11801 			/*
11802 			 * Call scsi_init_pkt so we can fill in the
11803 			 * CDB.
11804 			 */
11805 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
11806 			    bp, cp->sc_grpcode, un->un_status_len, 0,
11807 			    flags, callback, callback_arg);
11808 
11809 			if (return_pktp != NULL) {
11810 
11811 				/*
11812 				 * Return new value of pkt
11813 				 */
11814 				*pktpp = return_pktp;
11815 
11816 				/*
11817 				 * To be safe, zero the CDB insuring there is
11818 				 * no leftover data from a previous command.
11819 				 */
11820 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
11821 
11822 				/*
11823 				 * Handle partial DMA mapping
11824 				 */
11825 				if (return_pktp->pkt_resid != 0) {
11826 
11827 					/*
11828 					 * Not going to xfer as many blocks as
11829 					 * originally expected
11830 					 */
11831 					blockcount -=
11832 					    SD_BYTES2TGTBLOCKS(un,
11833 					    return_pktp->pkt_resid);
11834 				}
11835 
11836 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
11837 
11838 				/*
11839 				 * Set command byte based on the CDB
11840 				 * type we matched.
11841 				 */
11842 				cdbp->scc_cmd = cp->sc_grpmask |
11843 				    ((bp->b_flags & B_READ) ?
11844 				    SCMD_READ : SCMD_WRITE);
11845 
11846 				SD_FILL_SCSI1_LUN(un, return_pktp);
11847 
11848 				/*
11849 				 * Fill in LBA and length
11850 				 */
11851 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
11852 				    (cp->sc_grpcode == CDB_GROUP4) ||
11853 				    (cp->sc_grpcode == CDB_GROUP0) ||
11854 				    (cp->sc_grpcode == CDB_GROUP5));
11855 
11856 				if (cp->sc_grpcode == CDB_GROUP1) {
11857 					FORMG1ADDR(cdbp, lba);
11858 					FORMG1COUNT(cdbp, blockcount);
11859 					return (0);
11860 				} else if (cp->sc_grpcode == CDB_GROUP4) {
11861 					FORMG4LONGADDR(cdbp, lba);
11862 					FORMG4COUNT(cdbp, blockcount);
11863 					return (0);
11864 				} else if (cp->sc_grpcode == CDB_GROUP0) {
11865 					FORMG0ADDR(cdbp, lba);
11866 					FORMG0COUNT(cdbp, blockcount);
11867 					return (0);
11868 				} else if (cp->sc_grpcode == CDB_GROUP5) {
11869 					FORMG5ADDR(cdbp, lba);
11870 					FORMG5COUNT(cdbp, blockcount);
11871 					return (0);
11872 				}
11873 
11874 				/*
11875 				 * It should be impossible to not match one
11876 				 * of the CDB types above, so we should never
11877 				 * reach this point.  Set the CDB command byte
11878 				 * to test-unit-ready to avoid writing
11879 				 * to somewhere we don't intend.
11880 				 */
11881 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
11882 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11883 			} else {
11884 				/*
11885 				 * Couldn't get scsi_pkt
11886 				 */
11887 				return (SD_PKT_ALLOC_FAILURE);
11888 			}
11889 		}
11890 	}
11891 
11892 	/*
11893 	 * None of the available CDB types were suitable.  This really
11894 	 * should never happen:  on a 64 bit system we support
11895 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
11896 	 * and on a 32 bit system we will refuse to bind to a device
11897 	 * larger than 2TB so addresses will never be larger than 32 bits.
11898 	 */
11899 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11900 }
11901 
11902 #if defined(__i386) || defined(__amd64)
11903 /*
11904  *    Function: sd_setup_next_rw_pkt
11905  *
11906  * Description: Setup packet for partial DMA transfers, except for the
11907  * 		initial transfer.  sd_setup_rw_pkt should be used for
11908  *		the initial transfer.
11909  *
11910  *     Context: Kernel thread and may be called from interrupt context.
11911  */
11912 
11913 int
11914 sd_setup_next_rw_pkt(struct sd_lun *un,
11915     struct scsi_pkt *pktp, struct buf *bp,
11916     diskaddr_t lba, uint32_t blockcount)
11917 {
11918 	uchar_t com;
11919 	union scsi_cdb *cdbp;
11920 	uchar_t cdb_group_id;
11921 
11922 	ASSERT(pktp != NULL);
11923 	ASSERT(pktp->pkt_cdbp != NULL);
11924 
11925 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
11926 	com = cdbp->scc_cmd;
11927 	cdb_group_id = CDB_GROUPID(com);
11928 
11929 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
11930 	    (cdb_group_id == CDB_GROUPID_1) ||
11931 	    (cdb_group_id == CDB_GROUPID_4) ||
11932 	    (cdb_group_id == CDB_GROUPID_5));
11933 
11934 	/*
11935 	 * Move pkt to the next portion of the xfer.
11936 	 * func is NULL_FUNC so we do not have to release
11937 	 * the disk mutex here.
11938 	 */
11939 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
11940 	    NULL_FUNC, NULL) == pktp) {
11941 		/* Success.  Handle partial DMA */
11942 		if (pktp->pkt_resid != 0) {
11943 			blockcount -=
11944 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
11945 		}
11946 
11947 		cdbp->scc_cmd = com;
11948 		SD_FILL_SCSI1_LUN(un, pktp);
11949 		if (cdb_group_id == CDB_GROUPID_1) {
11950 			FORMG1ADDR(cdbp, lba);
11951 			FORMG1COUNT(cdbp, blockcount);
11952 			return (0);
11953 		} else if (cdb_group_id == CDB_GROUPID_4) {
11954 			FORMG4LONGADDR(cdbp, lba);
11955 			FORMG4COUNT(cdbp, blockcount);
11956 			return (0);
11957 		} else if (cdb_group_id == CDB_GROUPID_0) {
11958 			FORMG0ADDR(cdbp, lba);
11959 			FORMG0COUNT(cdbp, blockcount);
11960 			return (0);
11961 		} else if (cdb_group_id == CDB_GROUPID_5) {
11962 			FORMG5ADDR(cdbp, lba);
11963 			FORMG5COUNT(cdbp, blockcount);
11964 			return (0);
11965 		}
11966 
11967 		/* Unreachable */
11968 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11969 	}
11970 
11971 	/*
11972 	 * Error setting up next portion of cmd transfer.
11973 	 * Something is definitely very wrong and this
11974 	 * should not happen.
11975 	 */
11976 	return (SD_PKT_ALLOC_FAILURE);
11977 }
11978 #endif /* defined(__i386) || defined(__amd64) */
11979 
11980 /*
11981  *    Function: sd_initpkt_for_uscsi
11982  *
11983  * Description: Allocate and initialize for transport a scsi_pkt struct,
11984  *		based upon the info specified in the given uscsi_cmd struct.
11985  *
11986  * Return Code: SD_PKT_ALLOC_SUCCESS
11987  *		SD_PKT_ALLOC_FAILURE
11988  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11989  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11990  *
11991  *     Context: Kernel thread and may be called from software interrupt context
11992  *		as part of a sdrunout callback. This function may not block or
11993  *		call routines that block
11994  */
11995 
11996 static int
11997 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
11998 {
11999 	struct uscsi_cmd *uscmd;
12000 	struct sd_xbuf	*xp;
12001 	struct scsi_pkt	*pktp;
12002 	struct sd_lun	*un;
12003 	uint32_t	flags = 0;
12004 
12005 	ASSERT(bp != NULL);
12006 	ASSERT(pktpp != NULL);
12007 	xp = SD_GET_XBUF(bp);
12008 	ASSERT(xp != NULL);
12009 	un = SD_GET_UN(bp);
12010 	ASSERT(un != NULL);
12011 	ASSERT(mutex_owned(SD_MUTEX(un)));
12012 
12013 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12014 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12015 	ASSERT(uscmd != NULL);
12016 
12017 	SD_TRACE(SD_LOG_IO_CORE, un,
12018 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
12019 
12020 	/*
12021 	 * Allocate the scsi_pkt for the command.
12022 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
12023 	 *	 during scsi_init_pkt time and will continue to use the
12024 	 *	 same path as long as the same scsi_pkt is used without
12025 	 *	 intervening scsi_dma_free(). Since uscsi command does
12026 	 *	 not call scsi_dmafree() before retry failed command, it
12027 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
12028 	 *	 set such that scsi_vhci can use other available path for
12029 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
12030 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
12031 	 */
12032 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12033 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12034 	    sizeof (struct scsi_arq_status), 0,
12035 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
12036 	    sdrunout, (caddr_t)un);
12037 
12038 	if (pktp == NULL) {
12039 		*pktpp = NULL;
12040 		/*
12041 		 * Set the driver state to RWAIT to indicate the driver
12042 		 * is waiting on resource allocations. The driver will not
12043 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12044 		 */
12045 		New_state(un, SD_STATE_RWAIT);
12046 
12047 		SD_ERROR(SD_LOG_IO_CORE, un,
12048 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
12049 
12050 		if ((bp->b_flags & B_ERROR) != 0) {
12051 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
12052 		}
12053 		return (SD_PKT_ALLOC_FAILURE);
12054 	}
12055 
12056 	/*
12057 	 * We do not do DMA breakup for USCSI commands, so return failure
12058 	 * here if all the needed DMA resources were not allocated.
12059 	 */
12060 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
12061 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
12062 		scsi_destroy_pkt(pktp);
12063 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
12064 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
12065 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
12066 	}
12067 
12068 	/* Init the cdb from the given uscsi struct */
12069 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
12070 	    uscmd->uscsi_cdb[0], 0, 0, 0);
12071 
12072 	SD_FILL_SCSI1_LUN(un, pktp);
12073 
12074 	/*
12075 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
12076 	 * for listing of the supported flags.
12077 	 */
12078 
12079 	if (uscmd->uscsi_flags & USCSI_SILENT) {
12080 		flags |= FLAG_SILENT;
12081 	}
12082 
12083 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
12084 		flags |= FLAG_DIAGNOSE;
12085 	}
12086 
12087 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
12088 		flags |= FLAG_ISOLATE;
12089 	}
12090 
12091 	if (un->un_f_is_fibre == FALSE) {
12092 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
12093 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
12094 		}
12095 	}
12096 
12097 	/*
12098 	 * Set the pkt flags here so we save time later.
12099 	 * Note: These flags are NOT in the uscsi man page!!!
12100 	 */
12101 	if (uscmd->uscsi_flags & USCSI_HEAD) {
12102 		flags |= FLAG_HEAD;
12103 	}
12104 
12105 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12106 		flags |= FLAG_NOINTR;
12107 	}
12108 
12109 	/*
12110 	 * For tagged queueing, things get a bit complicated.
12111 	 * Check first for head of queue and last for ordered queue.
12112 	 * If neither head nor order, use the default driver tag flags.
12113 	 */
12114 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12115 		if (uscmd->uscsi_flags & USCSI_HTAG) {
12116 			flags |= FLAG_HTAG;
12117 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12118 			flags |= FLAG_OTAG;
12119 		} else {
12120 			flags |= un->un_tagflags & FLAG_TAGMASK;
12121 		}
12122 	}
12123 
12124 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12125 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12126 	}
12127 
12128 	pktp->pkt_flags = flags;
12129 
12130 	/* Copy the caller's CDB into the pkt... */
12131 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12132 
12133 	if (uscmd->uscsi_timeout == 0) {
12134 		pktp->pkt_time = un->un_uscsi_timeout;
12135 	} else {
12136 		pktp->pkt_time = uscmd->uscsi_timeout;
12137 	}
12138 
12139 	/* need it later to identify USCSI request in sdintr */
12140 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12141 
12142 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12143 
12144 	pktp->pkt_private = bp;
12145 	pktp->pkt_comp = sdintr;
12146 	*pktpp = pktp;
12147 
12148 	SD_TRACE(SD_LOG_IO_CORE, un,
12149 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12150 
12151 	return (SD_PKT_ALLOC_SUCCESS);
12152 }
12153 
12154 
12155 /*
12156  *    Function: sd_destroypkt_for_uscsi
12157  *
12158  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12159  *		IOs.. Also saves relevant info into the associated uscsi_cmd
12160  *		struct.
12161  *
12162  *     Context: May be called under interrupt context
12163  */
12164 
12165 static void
12166 sd_destroypkt_for_uscsi(struct buf *bp)
12167 {
12168 	struct uscsi_cmd *uscmd;
12169 	struct sd_xbuf	*xp;
12170 	struct scsi_pkt	*pktp;
12171 	struct sd_lun	*un;
12172 
12173 	ASSERT(bp != NULL);
12174 	xp = SD_GET_XBUF(bp);
12175 	ASSERT(xp != NULL);
12176 	un = SD_GET_UN(bp);
12177 	ASSERT(un != NULL);
12178 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12179 	pktp = SD_GET_PKTP(bp);
12180 	ASSERT(pktp != NULL);
12181 
12182 	SD_TRACE(SD_LOG_IO_CORE, un,
12183 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12184 
12185 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12186 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12187 	ASSERT(uscmd != NULL);
12188 
12189 	/* Save the status and the residual into the uscsi_cmd struct */
12190 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12191 	uscmd->uscsi_resid  = bp->b_resid;
12192 
12193 	/*
12194 	 * If enabled, copy any saved sense data into the area specified
12195 	 * by the uscsi command.
12196 	 */
12197 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12198 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12199 		/*
12200 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12201 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12202 		 */
12203 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12204 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12205 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
12206 	}
12207 
12208 	/* We are done with the scsi_pkt; free it now */
12209 	ASSERT(SD_GET_PKTP(bp) != NULL);
12210 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12211 
12212 	SD_TRACE(SD_LOG_IO_CORE, un,
12213 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12214 }
12215 
12216 
12217 /*
12218  *    Function: sd_bioclone_alloc
12219  *
12220  * Description: Allocate a buf(9S) and init it as per the given buf
12221  *		and the various arguments.  The associated sd_xbuf
12222  *		struct is (nearly) duplicated.  The struct buf *bp
12223  *		argument is saved in new_xp->xb_private.
12224  *
12225  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12226  *		datalen - size of data area for the shadow bp
12227  *		blkno - starting LBA
12228  *		func - function pointer for b_iodone in the shadow buf. (May
12229  *			be NULL if none.)
12230  *
12231  * Return Code: Pointer to allocates buf(9S) struct
12232  *
12233  *     Context: Can sleep.
12234  */
12235 
12236 static struct buf *
12237 sd_bioclone_alloc(struct buf *bp, size_t datalen,
12238 	daddr_t blkno, int (*func)(struct buf *))
12239 {
12240 	struct	sd_lun	*un;
12241 	struct	sd_xbuf	*xp;
12242 	struct	sd_xbuf	*new_xp;
12243 	struct	buf	*new_bp;
12244 
12245 	ASSERT(bp != NULL);
12246 	xp = SD_GET_XBUF(bp);
12247 	ASSERT(xp != NULL);
12248 	un = SD_GET_UN(bp);
12249 	ASSERT(un != NULL);
12250 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12251 
12252 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12253 	    NULL, KM_SLEEP);
12254 
12255 	new_bp->b_lblkno	= blkno;
12256 
12257 	/*
12258 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12259 	 * original xbuf into it.
12260 	 */
12261 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12262 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12263 
12264 	/*
12265 	 * The given bp is automatically saved in the xb_private member
12266 	 * of the new xbuf.  Callers are allowed to depend on this.
12267 	 */
12268 	new_xp->xb_private = bp;
12269 
12270 	new_bp->b_private  = new_xp;
12271 
12272 	return (new_bp);
12273 }
12274 
12275 /*
12276  *    Function: sd_shadow_buf_alloc
12277  *
12278  * Description: Allocate a buf(9S) and init it as per the given buf
12279  *		and the various arguments.  The associated sd_xbuf
12280  *		struct is (nearly) duplicated.  The struct buf *bp
12281  *		argument is saved in new_xp->xb_private.
12282  *
12283  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12284  *		datalen - size of data area for the shadow bp
12285  *		bflags - B_READ or B_WRITE (pseudo flag)
12286  *		blkno - starting LBA
12287  *		func - function pointer for b_iodone in the shadow buf. (May
12288  *			be NULL if none.)
12289  *
12290  * Return Code: Pointer to allocates buf(9S) struct
12291  *
12292  *     Context: Can sleep.
12293  */
12294 
12295 static struct buf *
12296 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12297 	daddr_t blkno, int (*func)(struct buf *))
12298 {
12299 	struct	sd_lun	*un;
12300 	struct	sd_xbuf	*xp;
12301 	struct	sd_xbuf	*new_xp;
12302 	struct	buf	*new_bp;
12303 
12304 	ASSERT(bp != NULL);
12305 	xp = SD_GET_XBUF(bp);
12306 	ASSERT(xp != NULL);
12307 	un = SD_GET_UN(bp);
12308 	ASSERT(un != NULL);
12309 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12310 
12311 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12312 		bp_mapin(bp);
12313 	}
12314 
12315 	bflags &= (B_READ | B_WRITE);
12316 #if defined(__i386) || defined(__amd64)
12317 	new_bp = getrbuf(KM_SLEEP);
12318 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12319 	new_bp->b_bcount = datalen;
12320 	new_bp->b_flags = bflags |
12321 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12322 #else
12323 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12324 	    datalen, bflags, SLEEP_FUNC, NULL);
12325 #endif
12326 	new_bp->av_forw	= NULL;
12327 	new_bp->av_back	= NULL;
12328 	new_bp->b_dev	= bp->b_dev;
12329 	new_bp->b_blkno	= blkno;
12330 	new_bp->b_iodone = func;
12331 	new_bp->b_edev	= bp->b_edev;
12332 	new_bp->b_resid	= 0;
12333 
12334 	/* We need to preserve the B_FAILFAST flag */
12335 	if (bp->b_flags & B_FAILFAST) {
12336 		new_bp->b_flags |= B_FAILFAST;
12337 	}
12338 
12339 	/*
12340 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12341 	 * original xbuf into it.
12342 	 */
12343 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12344 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12345 
12346 	/* Need later to copy data between the shadow buf & original buf! */
12347 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12348 
12349 	/*
12350 	 * The given bp is automatically saved in the xb_private member
12351 	 * of the new xbuf.  Callers are allowed to depend on this.
12352 	 */
12353 	new_xp->xb_private = bp;
12354 
12355 	new_bp->b_private  = new_xp;
12356 
12357 	return (new_bp);
12358 }
12359 
12360 /*
12361  *    Function: sd_bioclone_free
12362  *
12363  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12364  *		in the larger than partition operation.
12365  *
12366  *     Context: May be called under interrupt context
12367  */
12368 
12369 static void
12370 sd_bioclone_free(struct buf *bp)
12371 {
12372 	struct sd_xbuf	*xp;
12373 
12374 	ASSERT(bp != NULL);
12375 	xp = SD_GET_XBUF(bp);
12376 	ASSERT(xp != NULL);
12377 
12378 	/*
12379 	 * Call bp_mapout() before freeing the buf,  in case a lower
12380 	 * layer or HBA  had done a bp_mapin().  we must do this here
12381 	 * as we are the "originator" of the shadow buf.
12382 	 */
12383 	bp_mapout(bp);
12384 
12385 	/*
12386 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12387 	 * never gets confused by a stale value in this field. (Just a little
12388 	 * extra defensiveness here.)
12389 	 */
12390 	bp->b_iodone = NULL;
12391 
12392 	freerbuf(bp);
12393 
12394 	kmem_free(xp, sizeof (struct sd_xbuf));
12395 }
12396 
12397 /*
12398  *    Function: sd_shadow_buf_free
12399  *
12400  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12401  *
12402  *     Context: May be called under interrupt context
12403  */
12404 
12405 static void
12406 sd_shadow_buf_free(struct buf *bp)
12407 {
12408 	struct sd_xbuf	*xp;
12409 
12410 	ASSERT(bp != NULL);
12411 	xp = SD_GET_XBUF(bp);
12412 	ASSERT(xp != NULL);
12413 
12414 #if defined(__sparc)
12415 	/*
12416 	 * Call bp_mapout() before freeing the buf,  in case a lower
12417 	 * layer or HBA  had done a bp_mapin().  we must do this here
12418 	 * as we are the "originator" of the shadow buf.
12419 	 */
12420 	bp_mapout(bp);
12421 #endif
12422 
12423 	/*
12424 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12425 	 * never gets confused by a stale value in this field. (Just a little
12426 	 * extra defensiveness here.)
12427 	 */
12428 	bp->b_iodone = NULL;
12429 
12430 #if defined(__i386) || defined(__amd64)
12431 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12432 	freerbuf(bp);
12433 #else
12434 	scsi_free_consistent_buf(bp);
12435 #endif
12436 
12437 	kmem_free(xp, sizeof (struct sd_xbuf));
12438 }
12439 
12440 
12441 /*
12442  *    Function: sd_print_transport_rejected_message
12443  *
12444  * Description: This implements the ludicrously complex rules for printing
12445  *		a "transport rejected" message.  This is to address the
12446  *		specific problem of having a flood of this error message
12447  *		produced when a failover occurs.
12448  *
12449  *     Context: Any.
12450  */
12451 
12452 static void
12453 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12454 	int code)
12455 {
12456 	ASSERT(un != NULL);
12457 	ASSERT(mutex_owned(SD_MUTEX(un)));
12458 	ASSERT(xp != NULL);
12459 
12460 	/*
12461 	 * Print the "transport rejected" message under the following
12462 	 * conditions:
12463 	 *
12464 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12465 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12466 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12467 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12468 	 *   scsi_transport(9F) (which indicates that the target might have
12469 	 *   gone off-line).  This uses the un->un_tran_fatal_count
12470 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12471 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12472 	 *   from scsi_transport().
12473 	 *
12474 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12475 	 * the preceeding cases in order for the message to be printed.
12476 	 */
12477 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12478 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12479 		    (code != TRAN_FATAL_ERROR) ||
12480 		    (un->un_tran_fatal_count == 1)) {
12481 			switch (code) {
12482 			case TRAN_BADPKT:
12483 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12484 				    "transport rejected bad packet\n");
12485 				break;
12486 			case TRAN_FATAL_ERROR:
12487 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12488 				    "transport rejected fatal error\n");
12489 				break;
12490 			default:
12491 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12492 				    "transport rejected (%d)\n", code);
12493 				break;
12494 			}
12495 		}
12496 	}
12497 }
12498 
12499 
12500 /*
12501  *    Function: sd_add_buf_to_waitq
12502  *
12503  * Description: Add the given buf(9S) struct to the wait queue for the
12504  *		instance.  If sorting is enabled, then the buf is added
12505  *		to the queue via an elevator sort algorithm (a la
12506  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12507  *		If sorting is not enabled, then the buf is just added
12508  *		to the end of the wait queue.
12509  *
12510  * Return Code: void
12511  *
12512  *     Context: Does not sleep/block, therefore technically can be called
12513  *		from any context.  However if sorting is enabled then the
12514  *		execution time is indeterminate, and may take long if
12515  *		the wait queue grows large.
12516  */
12517 
12518 static void
12519 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12520 {
12521 	struct buf *ap;
12522 
12523 	ASSERT(bp != NULL);
12524 	ASSERT(un != NULL);
12525 	ASSERT(mutex_owned(SD_MUTEX(un)));
12526 
12527 	/* If the queue is empty, add the buf as the only entry & return. */
12528 	if (un->un_waitq_headp == NULL) {
12529 		ASSERT(un->un_waitq_tailp == NULL);
12530 		un->un_waitq_headp = un->un_waitq_tailp = bp;
12531 		bp->av_forw = NULL;
12532 		return;
12533 	}
12534 
12535 	ASSERT(un->un_waitq_tailp != NULL);
12536 
12537 	/*
12538 	 * If sorting is disabled, just add the buf to the tail end of
12539 	 * the wait queue and return.
12540 	 */
12541 	if (un->un_f_disksort_disabled) {
12542 		un->un_waitq_tailp->av_forw = bp;
12543 		un->un_waitq_tailp = bp;
12544 		bp->av_forw = NULL;
12545 		return;
12546 	}
12547 
12548 	/*
12549 	 * Sort thru the list of requests currently on the wait queue
12550 	 * and add the new buf request at the appropriate position.
12551 	 *
12552 	 * The un->un_waitq_headp is an activity chain pointer on which
12553 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12554 	 * first queue holds those requests which are positioned after
12555 	 * the current SD_GET_BLKNO() (in the first request); the second holds
12556 	 * requests which came in after their SD_GET_BLKNO() number was passed.
12557 	 * Thus we implement a one way scan, retracting after reaching
12558 	 * the end of the drive to the first request on the second
12559 	 * queue, at which time it becomes the first queue.
12560 	 * A one-way scan is natural because of the way UNIX read-ahead
12561 	 * blocks are allocated.
12562 	 *
12563 	 * If we lie after the first request, then we must locate the
12564 	 * second request list and add ourselves to it.
12565 	 */
12566 	ap = un->un_waitq_headp;
12567 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12568 		while (ap->av_forw != NULL) {
12569 			/*
12570 			 * Look for an "inversion" in the (normally
12571 			 * ascending) block numbers. This indicates
12572 			 * the start of the second request list.
12573 			 */
12574 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12575 				/*
12576 				 * Search the second request list for the
12577 				 * first request at a larger block number.
12578 				 * We go before that; however if there is
12579 				 * no such request, we go at the end.
12580 				 */
12581 				do {
12582 					if (SD_GET_BLKNO(bp) <
12583 					    SD_GET_BLKNO(ap->av_forw)) {
12584 						goto insert;
12585 					}
12586 					ap = ap->av_forw;
12587 				} while (ap->av_forw != NULL);
12588 				goto insert;		/* after last */
12589 			}
12590 			ap = ap->av_forw;
12591 		}
12592 
12593 		/*
12594 		 * No inversions... we will go after the last, and
12595 		 * be the first request in the second request list.
12596 		 */
12597 		goto insert;
12598 	}
12599 
12600 	/*
12601 	 * Request is at/after the current request...
12602 	 * sort in the first request list.
12603 	 */
12604 	while (ap->av_forw != NULL) {
12605 		/*
12606 		 * We want to go after the current request (1) if
12607 		 * there is an inversion after it (i.e. it is the end
12608 		 * of the first request list), or (2) if the next
12609 		 * request is a larger block no. than our request.
12610 		 */
12611 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12612 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12613 			goto insert;
12614 		}
12615 		ap = ap->av_forw;
12616 	}
12617 
12618 	/*
12619 	 * Neither a second list nor a larger request, therefore
12620 	 * we go at the end of the first list (which is the same
12621 	 * as the end of the whole schebang).
12622 	 */
12623 insert:
12624 	bp->av_forw = ap->av_forw;
12625 	ap->av_forw = bp;
12626 
12627 	/*
12628 	 * If we inserted onto the tail end of the waitq, make sure the
12629 	 * tail pointer is updated.
12630 	 */
12631 	if (ap == un->un_waitq_tailp) {
12632 		un->un_waitq_tailp = bp;
12633 	}
12634 }
12635 
12636 
12637 /*
12638  *    Function: sd_start_cmds
12639  *
12640  * Description: Remove and transport cmds from the driver queues.
12641  *
12642  *   Arguments: un - pointer to the unit (soft state) struct for the target.
12643  *
12644  *		immed_bp - ptr to a buf to be transported immediately. Only
12645  *		the immed_bp is transported; bufs on the waitq are not
12646  *		processed and the un_retry_bp is not checked.  If immed_bp is
12647  *		NULL, then normal queue processing is performed.
12648  *
12649  *     Context: May be called from kernel thread context, interrupt context,
12650  *		or runout callback context. This function may not block or
12651  *		call routines that block.
12652  */
12653 
12654 static void
12655 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12656 {
12657 	struct	sd_xbuf	*xp;
12658 	struct	buf	*bp;
12659 	void	(*statp)(kstat_io_t *);
12660 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12661 	void	(*saved_statp)(kstat_io_t *);
12662 #endif
12663 	int	rval;
12664 
12665 	ASSERT(un != NULL);
12666 	ASSERT(mutex_owned(SD_MUTEX(un)));
12667 	ASSERT(un->un_ncmds_in_transport >= 0);
12668 	ASSERT(un->un_throttle >= 0);
12669 
12670 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12671 
12672 	do {
12673 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12674 		saved_statp = NULL;
12675 #endif
12676 
12677 		/*
12678 		 * If we are syncing or dumping, fail the command to
12679 		 * avoid recursively calling back into scsi_transport().
12680 		 * The dump I/O itself uses a separate code path so this
12681 		 * only prevents non-dump I/O from being sent while dumping.
12682 		 * File system sync takes place before dumping begins.
12683 		 * During panic, filesystem I/O is allowed provided
12684 		 * un_in_callback is <= 1.  This is to prevent recursion
12685 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12686 		 * sd_start_cmds and so on.  See panic.c for more information
12687 		 * about the states the system can be in during panic.
12688 		 */
12689 		if ((un->un_state == SD_STATE_DUMPING) ||
12690 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12691 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12692 			    "sd_start_cmds: panicking\n");
12693 			goto exit;
12694 		}
12695 
12696 		if ((bp = immed_bp) != NULL) {
12697 			/*
12698 			 * We have a bp that must be transported immediately.
12699 			 * It's OK to transport the immed_bp here without doing
12700 			 * the throttle limit check because the immed_bp is
12701 			 * always used in a retry/recovery case. This means
12702 			 * that we know we are not at the throttle limit by
12703 			 * virtue of the fact that to get here we must have
12704 			 * already gotten a command back via sdintr(). This also
12705 			 * relies on (1) the command on un_retry_bp preventing
12706 			 * further commands from the waitq from being issued;
12707 			 * and (2) the code in sd_retry_command checking the
12708 			 * throttle limit before issuing a delayed or immediate
12709 			 * retry. This holds even if the throttle limit is
12710 			 * currently ratcheted down from its maximum value.
12711 			 */
12712 			statp = kstat_runq_enter;
12713 			if (bp == un->un_retry_bp) {
12714 				ASSERT((un->un_retry_statp == NULL) ||
12715 				    (un->un_retry_statp == kstat_waitq_enter) ||
12716 				    (un->un_retry_statp ==
12717 				    kstat_runq_back_to_waitq));
12718 				/*
12719 				 * If the waitq kstat was incremented when
12720 				 * sd_set_retry_bp() queued this bp for a retry,
12721 				 * then we must set up statp so that the waitq
12722 				 * count will get decremented correctly below.
12723 				 * Also we must clear un->un_retry_statp to
12724 				 * ensure that we do not act on a stale value
12725 				 * in this field.
12726 				 */
12727 				if ((un->un_retry_statp == kstat_waitq_enter) ||
12728 				    (un->un_retry_statp ==
12729 				    kstat_runq_back_to_waitq)) {
12730 					statp = kstat_waitq_to_runq;
12731 				}
12732 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12733 				saved_statp = un->un_retry_statp;
12734 #endif
12735 				un->un_retry_statp = NULL;
12736 
12737 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12738 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12739 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12740 				    un, un->un_retry_bp, un->un_throttle,
12741 				    un->un_ncmds_in_transport);
12742 			} else {
12743 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
12744 				    "processing priority bp:0x%p\n", bp);
12745 			}
12746 
12747 		} else if ((bp = un->un_waitq_headp) != NULL) {
12748 			/*
12749 			 * A command on the waitq is ready to go, but do not
12750 			 * send it if:
12751 			 *
12752 			 * (1) the throttle limit has been reached, or
12753 			 * (2) a retry is pending, or
12754 			 * (3) a START_STOP_UNIT callback pending, or
12755 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
12756 			 *	command is pending.
12757 			 *
12758 			 * For all of these conditions, IO processing will
12759 			 * restart after the condition is cleared.
12760 			 */
12761 			if (un->un_ncmds_in_transport >= un->un_throttle) {
12762 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12763 				    "sd_start_cmds: exiting, "
12764 				    "throttle limit reached!\n");
12765 				goto exit;
12766 			}
12767 			if (un->un_retry_bp != NULL) {
12768 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12769 				    "sd_start_cmds: exiting, retry pending!\n");
12770 				goto exit;
12771 			}
12772 			if (un->un_startstop_timeid != NULL) {
12773 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12774 				    "sd_start_cmds: exiting, "
12775 				    "START_STOP pending!\n");
12776 				goto exit;
12777 			}
12778 			if (un->un_direct_priority_timeid != NULL) {
12779 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12780 				    "sd_start_cmds: exiting, "
12781 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
12782 				goto exit;
12783 			}
12784 
12785 			/* Dequeue the command */
12786 			un->un_waitq_headp = bp->av_forw;
12787 			if (un->un_waitq_headp == NULL) {
12788 				un->un_waitq_tailp = NULL;
12789 			}
12790 			bp->av_forw = NULL;
12791 			statp = kstat_waitq_to_runq;
12792 			SD_TRACE(SD_LOG_IO_CORE, un,
12793 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
12794 
12795 		} else {
12796 			/* No work to do so bail out now */
12797 			SD_TRACE(SD_LOG_IO_CORE, un,
12798 			    "sd_start_cmds: no more work, exiting!\n");
12799 			goto exit;
12800 		}
12801 
12802 		/*
12803 		 * Reset the state to normal. This is the mechanism by which
12804 		 * the state transitions from either SD_STATE_RWAIT or
12805 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
12806 		 * If state is SD_STATE_PM_CHANGING then this command is
12807 		 * part of the device power control and the state must
12808 		 * not be put back to normal. Doing so would would
12809 		 * allow new commands to proceed when they shouldn't,
12810 		 * the device may be going off.
12811 		 */
12812 		if ((un->un_state != SD_STATE_SUSPENDED) &&
12813 		    (un->un_state != SD_STATE_PM_CHANGING)) {
12814 			New_state(un, SD_STATE_NORMAL);
12815 		}
12816 
12817 		xp = SD_GET_XBUF(bp);
12818 		ASSERT(xp != NULL);
12819 
12820 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12821 		/*
12822 		 * Allocate the scsi_pkt if we need one, or attach DMA
12823 		 * resources if we have a scsi_pkt that needs them. The
12824 		 * latter should only occur for commands that are being
12825 		 * retried.
12826 		 */
12827 		if ((xp->xb_pktp == NULL) ||
12828 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
12829 #else
12830 		if (xp->xb_pktp == NULL) {
12831 #endif
12832 			/*
12833 			 * There is no scsi_pkt allocated for this buf. Call
12834 			 * the initpkt function to allocate & init one.
12835 			 *
12836 			 * The scsi_init_pkt runout callback functionality is
12837 			 * implemented as follows:
12838 			 *
12839 			 * 1) The initpkt function always calls
12840 			 *    scsi_init_pkt(9F) with sdrunout specified as the
12841 			 *    callback routine.
12842 			 * 2) A successful packet allocation is initialized and
12843 			 *    the I/O is transported.
12844 			 * 3) The I/O associated with an allocation resource
12845 			 *    failure is left on its queue to be retried via
12846 			 *    runout or the next I/O.
12847 			 * 4) The I/O associated with a DMA error is removed
12848 			 *    from the queue and failed with EIO. Processing of
12849 			 *    the transport queues is also halted to be
12850 			 *    restarted via runout or the next I/O.
12851 			 * 5) The I/O associated with a CDB size or packet
12852 			 *    size error is removed from the queue and failed
12853 			 *    with EIO. Processing of the transport queues is
12854 			 *    continued.
12855 			 *
12856 			 * Note: there is no interface for canceling a runout
12857 			 * callback. To prevent the driver from detaching or
12858 			 * suspending while a runout is pending the driver
12859 			 * state is set to SD_STATE_RWAIT
12860 			 *
12861 			 * Note: using the scsi_init_pkt callback facility can
12862 			 * result in an I/O request persisting at the head of
12863 			 * the list which cannot be satisfied even after
12864 			 * multiple retries. In the future the driver may
12865 			 * implement some kind of maximum runout count before
12866 			 * failing an I/O.
12867 			 *
12868 			 * Note: the use of funcp below may seem superfluous,
12869 			 * but it helps warlock figure out the correct
12870 			 * initpkt function calls (see [s]sd.wlcmd).
12871 			 */
12872 			struct scsi_pkt	*pktp;
12873 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
12874 
12875 			ASSERT(bp != un->un_rqs_bp);
12876 
12877 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
12878 			switch ((*funcp)(bp, &pktp)) {
12879 			case  SD_PKT_ALLOC_SUCCESS:
12880 				xp->xb_pktp = pktp;
12881 				SD_TRACE(SD_LOG_IO_CORE, un,
12882 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
12883 				    pktp);
12884 				goto got_pkt;
12885 
12886 			case SD_PKT_ALLOC_FAILURE:
12887 				/*
12888 				 * Temporary (hopefully) resource depletion.
12889 				 * Since retries and RQS commands always have a
12890 				 * scsi_pkt allocated, these cases should never
12891 				 * get here. So the only cases this needs to
12892 				 * handle is a bp from the waitq (which we put
12893 				 * back onto the waitq for sdrunout), or a bp
12894 				 * sent as an immed_bp (which we just fail).
12895 				 */
12896 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12897 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
12898 
12899 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12900 
12901 				if (bp == immed_bp) {
12902 					/*
12903 					 * If SD_XB_DMA_FREED is clear, then
12904 					 * this is a failure to allocate a
12905 					 * scsi_pkt, and we must fail the
12906 					 * command.
12907 					 */
12908 					if ((xp->xb_pkt_flags &
12909 					    SD_XB_DMA_FREED) == 0) {
12910 						break;
12911 					}
12912 
12913 					/*
12914 					 * If this immediate command is NOT our
12915 					 * un_retry_bp, then we must fail it.
12916 					 */
12917 					if (bp != un->un_retry_bp) {
12918 						break;
12919 					}
12920 
12921 					/*
12922 					 * We get here if this cmd is our
12923 					 * un_retry_bp that was DMAFREED, but
12924 					 * scsi_init_pkt() failed to reallocate
12925 					 * DMA resources when we attempted to
12926 					 * retry it. This can happen when an
12927 					 * mpxio failover is in progress, but
12928 					 * we don't want to just fail the
12929 					 * command in this case.
12930 					 *
12931 					 * Use timeout(9F) to restart it after
12932 					 * a 100ms delay.  We don't want to
12933 					 * let sdrunout() restart it, because
12934 					 * sdrunout() is just supposed to start
12935 					 * commands that are sitting on the
12936 					 * wait queue.  The un_retry_bp stays
12937 					 * set until the command completes, but
12938 					 * sdrunout can be called many times
12939 					 * before that happens.  Since sdrunout
12940 					 * cannot tell if the un_retry_bp is
12941 					 * already in the transport, it could
12942 					 * end up calling scsi_transport() for
12943 					 * the un_retry_bp multiple times.
12944 					 *
12945 					 * Also: don't schedule the callback
12946 					 * if some other callback is already
12947 					 * pending.
12948 					 */
12949 					if (un->un_retry_statp == NULL) {
12950 						/*
12951 						 * restore the kstat pointer to
12952 						 * keep kstat counts coherent
12953 						 * when we do retry the command.
12954 						 */
12955 						un->un_retry_statp =
12956 						    saved_statp;
12957 					}
12958 
12959 					if ((un->un_startstop_timeid == NULL) &&
12960 					    (un->un_retry_timeid == NULL) &&
12961 					    (un->un_direct_priority_timeid ==
12962 					    NULL)) {
12963 
12964 						un->un_retry_timeid =
12965 						    timeout(
12966 						    sd_start_retry_command,
12967 						    un, SD_RESTART_TIMEOUT);
12968 					}
12969 					goto exit;
12970 				}
12971 
12972 #else
12973 				if (bp == immed_bp) {
12974 					break;	/* Just fail the command */
12975 				}
12976 #endif
12977 
12978 				/* Add the buf back to the head of the waitq */
12979 				bp->av_forw = un->un_waitq_headp;
12980 				un->un_waitq_headp = bp;
12981 				if (un->un_waitq_tailp == NULL) {
12982 					un->un_waitq_tailp = bp;
12983 				}
12984 				goto exit;
12985 
12986 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
12987 				/*
12988 				 * HBA DMA resource failure. Fail the command
12989 				 * and continue processing of the queues.
12990 				 */
12991 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12992 				    "sd_start_cmds: "
12993 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
12994 				break;
12995 
12996 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
12997 				/*
12998 				 * Note:x86: Partial DMA mapping not supported
12999 				 * for USCSI commands, and all the needed DMA
13000 				 * resources were not allocated.
13001 				 */
13002 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13003 				    "sd_start_cmds: "
13004 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
13005 				break;
13006 
13007 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
13008 				/*
13009 				 * Note:x86: Request cannot fit into CDB based
13010 				 * on lba and len.
13011 				 */
13012 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13013 				    "sd_start_cmds: "
13014 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
13015 				break;
13016 
13017 			default:
13018 				/* Should NEVER get here! */
13019 				panic("scsi_initpkt error");
13020 				/*NOTREACHED*/
13021 			}
13022 
13023 			/*
13024 			 * Fatal error in allocating a scsi_pkt for this buf.
13025 			 * Update kstats & return the buf with an error code.
13026 			 * We must use sd_return_failed_command_no_restart() to
13027 			 * avoid a recursive call back into sd_start_cmds().
13028 			 * However this also means that we must keep processing
13029 			 * the waitq here in order to avoid stalling.
13030 			 */
13031 			if (statp == kstat_waitq_to_runq) {
13032 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
13033 			}
13034 			sd_return_failed_command_no_restart(un, bp, EIO);
13035 			if (bp == immed_bp) {
13036 				/* immed_bp is gone by now, so clear this */
13037 				immed_bp = NULL;
13038 			}
13039 			continue;
13040 		}
13041 got_pkt:
13042 		if (bp == immed_bp) {
13043 			/* goto the head of the class.... */
13044 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13045 		}
13046 
13047 		un->un_ncmds_in_transport++;
13048 		SD_UPDATE_KSTATS(un, statp, bp);
13049 
13050 		/*
13051 		 * Call scsi_transport() to send the command to the target.
13052 		 * According to SCSA architecture, we must drop the mutex here
13053 		 * before calling scsi_transport() in order to avoid deadlock.
13054 		 * Note that the scsi_pkt's completion routine can be executed
13055 		 * (from interrupt context) even before the call to
13056 		 * scsi_transport() returns.
13057 		 */
13058 		SD_TRACE(SD_LOG_IO_CORE, un,
13059 		    "sd_start_cmds: calling scsi_transport()\n");
13060 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
13061 
13062 		mutex_exit(SD_MUTEX(un));
13063 		rval = scsi_transport(xp->xb_pktp);
13064 		mutex_enter(SD_MUTEX(un));
13065 
13066 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13067 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
13068 
13069 		switch (rval) {
13070 		case TRAN_ACCEPT:
13071 			/* Clear this with every pkt accepted by the HBA */
13072 			un->un_tran_fatal_count = 0;
13073 			break;	/* Success; try the next cmd (if any) */
13074 
13075 		case TRAN_BUSY:
13076 			un->un_ncmds_in_transport--;
13077 			ASSERT(un->un_ncmds_in_transport >= 0);
13078 
13079 			/*
13080 			 * Don't retry request sense, the sense data
13081 			 * is lost when another request is sent.
13082 			 * Free up the rqs buf and retry
13083 			 * the original failed cmd.  Update kstat.
13084 			 */
13085 			if (bp == un->un_rqs_bp) {
13086 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13087 				bp = sd_mark_rqs_idle(un, xp);
13088 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
13089 				    NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
13090 				    kstat_waitq_enter);
13091 				goto exit;
13092 			}
13093 
13094 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13095 			/*
13096 			 * Free the DMA resources for the  scsi_pkt. This will
13097 			 * allow mpxio to select another path the next time
13098 			 * we call scsi_transport() with this scsi_pkt.
13099 			 * See sdintr() for the rationalization behind this.
13100 			 */
13101 			if ((un->un_f_is_fibre == TRUE) &&
13102 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13103 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13104 				scsi_dmafree(xp->xb_pktp);
13105 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13106 			}
13107 #endif
13108 
13109 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13110 				/*
13111 				 * Commands that are SD_PATH_DIRECT_PRIORITY
13112 				 * are for error recovery situations. These do
13113 				 * not use the normal command waitq, so if they
13114 				 * get a TRAN_BUSY we cannot put them back onto
13115 				 * the waitq for later retry. One possible
13116 				 * problem is that there could already be some
13117 				 * other command on un_retry_bp that is waiting
13118 				 * for this one to complete, so we would be
13119 				 * deadlocked if we put this command back onto
13120 				 * the waitq for later retry (since un_retry_bp
13121 				 * must complete before the driver gets back to
13122 				 * commands on the waitq).
13123 				 *
13124 				 * To avoid deadlock we must schedule a callback
13125 				 * that will restart this command after a set
13126 				 * interval.  This should keep retrying for as
13127 				 * long as the underlying transport keeps
13128 				 * returning TRAN_BUSY (just like for other
13129 				 * commands).  Use the same timeout interval as
13130 				 * for the ordinary TRAN_BUSY retry.
13131 				 */
13132 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13133 				    "sd_start_cmds: scsi_transport() returned "
13134 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13135 
13136 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13137 				un->un_direct_priority_timeid =
13138 				    timeout(sd_start_direct_priority_command,
13139 				    bp, SD_BSY_TIMEOUT / 500);
13140 
13141 				goto exit;
13142 			}
13143 
13144 			/*
13145 			 * For TRAN_BUSY, we want to reduce the throttle value,
13146 			 * unless we are retrying a command.
13147 			 */
13148 			if (bp != un->un_retry_bp) {
13149 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13150 			}
13151 
13152 			/*
13153 			 * Set up the bp to be tried again 10 ms later.
13154 			 * Note:x86: Is there a timeout value in the sd_lun
13155 			 * for this condition?
13156 			 */
13157 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13158 			    kstat_runq_back_to_waitq);
13159 			goto exit;
13160 
13161 		case TRAN_FATAL_ERROR:
13162 			un->un_tran_fatal_count++;
13163 			/* FALLTHRU */
13164 
13165 		case TRAN_BADPKT:
13166 		default:
13167 			un->un_ncmds_in_transport--;
13168 			ASSERT(un->un_ncmds_in_transport >= 0);
13169 
13170 			/*
13171 			 * If this is our REQUEST SENSE command with a
13172 			 * transport error, we must get back the pointers
13173 			 * to the original buf, and mark the REQUEST
13174 			 * SENSE command as "available".
13175 			 */
13176 			if (bp == un->un_rqs_bp) {
13177 				bp = sd_mark_rqs_idle(un, xp);
13178 				xp = SD_GET_XBUF(bp);
13179 			} else {
13180 				/*
13181 				 * Legacy behavior: do not update transport
13182 				 * error count for request sense commands.
13183 				 */
13184 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13185 			}
13186 
13187 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13188 			sd_print_transport_rejected_message(un, xp, rval);
13189 
13190 			/*
13191 			 * We must use sd_return_failed_command_no_restart() to
13192 			 * avoid a recursive call back into sd_start_cmds().
13193 			 * However this also means that we must keep processing
13194 			 * the waitq here in order to avoid stalling.
13195 			 */
13196 			sd_return_failed_command_no_restart(un, bp, EIO);
13197 
13198 			/*
13199 			 * Notify any threads waiting in sd_ddi_suspend() that
13200 			 * a command completion has occurred.
13201 			 */
13202 			if (un->un_state == SD_STATE_SUSPENDED) {
13203 				cv_broadcast(&un->un_disk_busy_cv);
13204 			}
13205 
13206 			if (bp == immed_bp) {
13207 				/* immed_bp is gone by now, so clear this */
13208 				immed_bp = NULL;
13209 			}
13210 			break;
13211 		}
13212 
13213 	} while (immed_bp == NULL);
13214 
13215 exit:
13216 	ASSERT(mutex_owned(SD_MUTEX(un)));
13217 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13218 }
13219 
13220 
13221 /*
13222  *    Function: sd_return_command
13223  *
13224  * Description: Returns a command to its originator (with or without an
13225  *		error).  Also starts commands waiting to be transported
13226  *		to the target.
13227  *
13228  *     Context: May be called from interrupt, kernel, or timeout context
13229  */
13230 
13231 static void
13232 sd_return_command(struct sd_lun *un, struct buf *bp)
13233 {
13234 	struct sd_xbuf *xp;
13235 #if defined(__i386) || defined(__amd64)
13236 	struct scsi_pkt *pktp;
13237 #endif
13238 
13239 	ASSERT(bp != NULL);
13240 	ASSERT(un != NULL);
13241 	ASSERT(mutex_owned(SD_MUTEX(un)));
13242 	ASSERT(bp != un->un_rqs_bp);
13243 	xp = SD_GET_XBUF(bp);
13244 	ASSERT(xp != NULL);
13245 
13246 #if defined(__i386) || defined(__amd64)
13247 	pktp = SD_GET_PKTP(bp);
13248 #endif
13249 
13250 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13251 
13252 #if defined(__i386) || defined(__amd64)
13253 	/*
13254 	 * Note:x86: check for the "sdrestart failed" case.
13255 	 */
13256 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13257 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13258 	    (xp->xb_pktp->pkt_resid == 0)) {
13259 
13260 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13261 			/*
13262 			 * Successfully set up next portion of cmd
13263 			 * transfer, try sending it
13264 			 */
13265 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13266 			    NULL, NULL, 0, (clock_t)0, NULL);
13267 			sd_start_cmds(un, NULL);
13268 			return;	/* Note:x86: need a return here? */
13269 		}
13270 	}
13271 #endif
13272 
13273 	/*
13274 	 * If this is the failfast bp, clear it from un_failfast_bp. This
13275 	 * can happen if upon being re-tried the failfast bp either
13276 	 * succeeded or encountered another error (possibly even a different
13277 	 * error than the one that precipitated the failfast state, but in
13278 	 * that case it would have had to exhaust retries as well). Regardless,
13279 	 * this should not occur whenever the instance is in the active
13280 	 * failfast state.
13281 	 */
13282 	if (bp == un->un_failfast_bp) {
13283 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13284 		un->un_failfast_bp = NULL;
13285 	}
13286 
13287 	/*
13288 	 * Clear the failfast state upon successful completion of ANY cmd.
13289 	 */
13290 	if (bp->b_error == 0) {
13291 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13292 	}
13293 
13294 	/*
13295 	 * This is used if the command was retried one or more times. Show that
13296 	 * we are done with it, and allow processing of the waitq to resume.
13297 	 */
13298 	if (bp == un->un_retry_bp) {
13299 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13300 		    "sd_return_command: un:0x%p: "
13301 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13302 		un->un_retry_bp = NULL;
13303 		un->un_retry_statp = NULL;
13304 	}
13305 
13306 	SD_UPDATE_RDWR_STATS(un, bp);
13307 	SD_UPDATE_PARTITION_STATS(un, bp);
13308 
13309 	switch (un->un_state) {
13310 	case SD_STATE_SUSPENDED:
13311 		/*
13312 		 * Notify any threads waiting in sd_ddi_suspend() that
13313 		 * a command completion has occurred.
13314 		 */
13315 		cv_broadcast(&un->un_disk_busy_cv);
13316 		break;
13317 	default:
13318 		sd_start_cmds(un, NULL);
13319 		break;
13320 	}
13321 
13322 	/* Return this command up the iodone chain to its originator. */
13323 	mutex_exit(SD_MUTEX(un));
13324 
13325 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13326 	xp->xb_pktp = NULL;
13327 
13328 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13329 
13330 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13331 	mutex_enter(SD_MUTEX(un));
13332 
13333 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13334 }
13335 
13336 
13337 /*
13338  *    Function: sd_return_failed_command
13339  *
13340  * Description: Command completion when an error occurred.
13341  *
13342  *     Context: May be called from interrupt context
13343  */
13344 
13345 static void
13346 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13347 {
13348 	ASSERT(bp != NULL);
13349 	ASSERT(un != NULL);
13350 	ASSERT(mutex_owned(SD_MUTEX(un)));
13351 
13352 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13353 	    "sd_return_failed_command: entry\n");
13354 
13355 	/*
13356 	 * b_resid could already be nonzero due to a partial data
13357 	 * transfer, so do not change it here.
13358 	 */
13359 	SD_BIOERROR(bp, errcode);
13360 
13361 	sd_return_command(un, bp);
13362 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13363 	    "sd_return_failed_command: exit\n");
13364 }
13365 
13366 
13367 /*
13368  *    Function: sd_return_failed_command_no_restart
13369  *
13370  * Description: Same as sd_return_failed_command, but ensures that no
13371  *		call back into sd_start_cmds will be issued.
13372  *
13373  *     Context: May be called from interrupt context
13374  */
13375 
13376 static void
13377 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13378 	int errcode)
13379 {
13380 	struct sd_xbuf *xp;
13381 
13382 	ASSERT(bp != NULL);
13383 	ASSERT(un != NULL);
13384 	ASSERT(mutex_owned(SD_MUTEX(un)));
13385 	xp = SD_GET_XBUF(bp);
13386 	ASSERT(xp != NULL);
13387 	ASSERT(errcode != 0);
13388 
13389 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13390 	    "sd_return_failed_command_no_restart: entry\n");
13391 
13392 	/*
13393 	 * b_resid could already be nonzero due to a partial data
13394 	 * transfer, so do not change it here.
13395 	 */
13396 	SD_BIOERROR(bp, errcode);
13397 
13398 	/*
13399 	 * If this is the failfast bp, clear it. This can happen if the
13400 	 * failfast bp encounterd a fatal error when we attempted to
13401 	 * re-try it (such as a scsi_transport(9F) failure).  However
13402 	 * we should NOT be in an active failfast state if the failfast
13403 	 * bp is not NULL.
13404 	 */
13405 	if (bp == un->un_failfast_bp) {
13406 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13407 		un->un_failfast_bp = NULL;
13408 	}
13409 
13410 	if (bp == un->un_retry_bp) {
13411 		/*
13412 		 * This command was retried one or more times. Show that we are
13413 		 * done with it, and allow processing of the waitq to resume.
13414 		 */
13415 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13416 		    "sd_return_failed_command_no_restart: "
13417 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13418 		un->un_retry_bp = NULL;
13419 		un->un_retry_statp = NULL;
13420 	}
13421 
13422 	SD_UPDATE_RDWR_STATS(un, bp);
13423 	SD_UPDATE_PARTITION_STATS(un, bp);
13424 
13425 	mutex_exit(SD_MUTEX(un));
13426 
13427 	if (xp->xb_pktp != NULL) {
13428 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13429 		xp->xb_pktp = NULL;
13430 	}
13431 
13432 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13433 
13434 	mutex_enter(SD_MUTEX(un));
13435 
13436 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13437 	    "sd_return_failed_command_no_restart: exit\n");
13438 }
13439 
13440 
13441 /*
13442  *    Function: sd_retry_command
13443  *
13444  * Description: queue up a command for retry, or (optionally) fail it
13445  *		if retry counts are exhausted.
13446  *
13447  *   Arguments: un - Pointer to the sd_lun struct for the target.
13448  *
13449  *		bp - Pointer to the buf for the command to be retried.
13450  *
13451  *		retry_check_flag - Flag to see which (if any) of the retry
13452  *		   counts should be decremented/checked. If the indicated
13453  *		   retry count is exhausted, then the command will not be
13454  *		   retried; it will be failed instead. This should use a
13455  *		   value equal to one of the following:
13456  *
13457  *			SD_RETRIES_NOCHECK
13458  *			SD_RESD_RETRIES_STANDARD
13459  *			SD_RETRIES_VICTIM
13460  *
13461  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13462  *		   if the check should be made to see of FLAG_ISOLATE is set
13463  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13464  *		   not retried, it is simply failed.
13465  *
13466  *		user_funcp - Ptr to function to call before dispatching the
13467  *		   command. May be NULL if no action needs to be performed.
13468  *		   (Primarily intended for printing messages.)
13469  *
13470  *		user_arg - Optional argument to be passed along to
13471  *		   the user_funcp call.
13472  *
13473  *		failure_code - errno return code to set in the bp if the
13474  *		   command is going to be failed.
13475  *
13476  *		retry_delay - Retry delay interval in (clock_t) units. May
13477  *		   be zero which indicates that the retry should be retried
13478  *		   immediately (ie, without an intervening delay).
13479  *
13480  *		statp - Ptr to kstat function to be updated if the command
13481  *		   is queued for a delayed retry. May be NULL if no kstat
13482  *		   update is desired.
13483  *
13484  *     Context: May be called from interrupt context.
13485  */
13486 
13487 static void
13488 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13489 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13490 	code), void *user_arg, int failure_code,  clock_t retry_delay,
13491 	void (*statp)(kstat_io_t *))
13492 {
13493 	struct sd_xbuf	*xp;
13494 	struct scsi_pkt	*pktp;
13495 
13496 	ASSERT(un != NULL);
13497 	ASSERT(mutex_owned(SD_MUTEX(un)));
13498 	ASSERT(bp != NULL);
13499 	xp = SD_GET_XBUF(bp);
13500 	ASSERT(xp != NULL);
13501 	pktp = SD_GET_PKTP(bp);
13502 	ASSERT(pktp != NULL);
13503 
13504 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13505 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13506 
13507 	/*
13508 	 * If we are syncing or dumping, fail the command to avoid
13509 	 * recursively calling back into scsi_transport().
13510 	 */
13511 	if (ddi_in_panic()) {
13512 		goto fail_command_no_log;
13513 	}
13514 
13515 	/*
13516 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13517 	 * log an error and fail the command.
13518 	 */
13519 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13520 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13521 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13522 		sd_dump_memory(un, SD_LOG_IO, "CDB",
13523 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13524 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13525 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13526 		goto fail_command;
13527 	}
13528 
13529 	/*
13530 	 * If we are suspended, then put the command onto head of the
13531 	 * wait queue since we don't want to start more commands, and
13532 	 * clear the un_retry_bp. Next time when we are resumed, will
13533 	 * handle the command in the wait queue.
13534 	 */
13535 	switch (un->un_state) {
13536 	case SD_STATE_SUSPENDED:
13537 	case SD_STATE_DUMPING:
13538 		bp->av_forw = un->un_waitq_headp;
13539 		un->un_waitq_headp = bp;
13540 		if (un->un_waitq_tailp == NULL) {
13541 			un->un_waitq_tailp = bp;
13542 		}
13543 		if (bp == un->un_retry_bp) {
13544 			un->un_retry_bp = NULL;
13545 			un->un_retry_statp = NULL;
13546 		}
13547 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13548 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13549 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13550 		return;
13551 	default:
13552 		break;
13553 	}
13554 
13555 	/*
13556 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13557 	 * is set; if it is then we do not want to retry the command.
13558 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13559 	 */
13560 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13561 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13562 			goto fail_command;
13563 		}
13564 	}
13565 
13566 
13567 	/*
13568 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13569 	 * command timeout or a selection timeout has occurred. This means
13570 	 * that we were unable to establish an kind of communication with
13571 	 * the target, and subsequent retries and/or commands are likely
13572 	 * to encounter similar results and take a long time to complete.
13573 	 *
13574 	 * If this is a failfast error condition, we need to update the
13575 	 * failfast state, even if this bp does not have B_FAILFAST set.
13576 	 */
13577 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13578 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13579 			ASSERT(un->un_failfast_bp == NULL);
13580 			/*
13581 			 * If we are already in the active failfast state, and
13582 			 * another failfast error condition has been detected,
13583 			 * then fail this command if it has B_FAILFAST set.
13584 			 * If B_FAILFAST is clear, then maintain the legacy
13585 			 * behavior of retrying heroically, even tho this will
13586 			 * take a lot more time to fail the command.
13587 			 */
13588 			if (bp->b_flags & B_FAILFAST) {
13589 				goto fail_command;
13590 			}
13591 		} else {
13592 			/*
13593 			 * We're not in the active failfast state, but we
13594 			 * have a failfast error condition, so we must begin
13595 			 * transition to the next state. We do this regardless
13596 			 * of whether or not this bp has B_FAILFAST set.
13597 			 */
13598 			if (un->un_failfast_bp == NULL) {
13599 				/*
13600 				 * This is the first bp to meet a failfast
13601 				 * condition so save it on un_failfast_bp &
13602 				 * do normal retry processing. Do not enter
13603 				 * active failfast state yet. This marks
13604 				 * entry into the "failfast pending" state.
13605 				 */
13606 				un->un_failfast_bp = bp;
13607 
13608 			} else if (un->un_failfast_bp == bp) {
13609 				/*
13610 				 * This is the second time *this* bp has
13611 				 * encountered a failfast error condition,
13612 				 * so enter active failfast state & flush
13613 				 * queues as appropriate.
13614 				 */
13615 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13616 				un->un_failfast_bp = NULL;
13617 				sd_failfast_flushq(un);
13618 
13619 				/*
13620 				 * Fail this bp now if B_FAILFAST set;
13621 				 * otherwise continue with retries. (It would
13622 				 * be pretty ironic if this bp succeeded on a
13623 				 * subsequent retry after we just flushed all
13624 				 * the queues).
13625 				 */
13626 				if (bp->b_flags & B_FAILFAST) {
13627 					goto fail_command;
13628 				}
13629 
13630 #if !defined(lint) && !defined(__lint)
13631 			} else {
13632 				/*
13633 				 * If neither of the preceeding conditionals
13634 				 * was true, it means that there is some
13635 				 * *other* bp that has met an inital failfast
13636 				 * condition and is currently either being
13637 				 * retried or is waiting to be retried. In
13638 				 * that case we should perform normal retry
13639 				 * processing on *this* bp, since there is a
13640 				 * chance that the current failfast condition
13641 				 * is transient and recoverable. If that does
13642 				 * not turn out to be the case, then retries
13643 				 * will be cleared when the wait queue is
13644 				 * flushed anyway.
13645 				 */
13646 #endif
13647 			}
13648 		}
13649 	} else {
13650 		/*
13651 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13652 		 * likely were able to at least establish some level of
13653 		 * communication with the target and subsequent commands
13654 		 * and/or retries are likely to get through to the target,
13655 		 * In this case we want to be aggressive about clearing
13656 		 * the failfast state. Note that this does not affect
13657 		 * the "failfast pending" condition.
13658 		 */
13659 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13660 	}
13661 
13662 
13663 	/*
13664 	 * Check the specified retry count to see if we can still do
13665 	 * any retries with this pkt before we should fail it.
13666 	 */
13667 	switch (retry_check_flag & SD_RETRIES_MASK) {
13668 	case SD_RETRIES_VICTIM:
13669 		/*
13670 		 * Check the victim retry count. If exhausted, then fall
13671 		 * thru & check against the standard retry count.
13672 		 */
13673 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13674 			/* Increment count & proceed with the retry */
13675 			xp->xb_victim_retry_count++;
13676 			break;
13677 		}
13678 		/* Victim retries exhausted, fall back to std. retries... */
13679 		/* FALLTHRU */
13680 
13681 	case SD_RETRIES_STANDARD:
13682 		if (xp->xb_retry_count >= un->un_retry_count) {
13683 			/* Retries exhausted, fail the command */
13684 			SD_TRACE(SD_LOG_IO_CORE, un,
13685 			    "sd_retry_command: retries exhausted!\n");
13686 			/*
13687 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13688 			 * commands with nonzero pkt_resid.
13689 			 */
13690 			if ((pktp->pkt_reason == CMD_CMPLT) &&
13691 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13692 			    (pktp->pkt_resid != 0)) {
13693 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13694 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13695 					SD_UPDATE_B_RESID(bp, pktp);
13696 				}
13697 			}
13698 			goto fail_command;
13699 		}
13700 		xp->xb_retry_count++;
13701 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13702 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13703 		break;
13704 
13705 	case SD_RETRIES_UA:
13706 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13707 			/* Retries exhausted, fail the command */
13708 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13709 			    "Unit Attention retries exhausted. "
13710 			    "Check the target.\n");
13711 			goto fail_command;
13712 		}
13713 		xp->xb_ua_retry_count++;
13714 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13715 		    "sd_retry_command: retry count:%d\n",
13716 		    xp->xb_ua_retry_count);
13717 		break;
13718 
13719 	case SD_RETRIES_BUSY:
13720 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13721 			/* Retries exhausted, fail the command */
13722 			SD_TRACE(SD_LOG_IO_CORE, un,
13723 			    "sd_retry_command: retries exhausted!\n");
13724 			goto fail_command;
13725 		}
13726 		xp->xb_retry_count++;
13727 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13728 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13729 		break;
13730 
13731 	case SD_RETRIES_NOCHECK:
13732 	default:
13733 		/* No retry count to check. Just proceed with the retry */
13734 		break;
13735 	}
13736 
13737 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13738 
13739 	/*
13740 	 * If we were given a zero timeout, we must attempt to retry the
13741 	 * command immediately (ie, without a delay).
13742 	 */
13743 	if (retry_delay == 0) {
13744 		/*
13745 		 * Check some limiting conditions to see if we can actually
13746 		 * do the immediate retry.  If we cannot, then we must
13747 		 * fall back to queueing up a delayed retry.
13748 		 */
13749 		if (un->un_ncmds_in_transport >= un->un_throttle) {
13750 			/*
13751 			 * We are at the throttle limit for the target,
13752 			 * fall back to delayed retry.
13753 			 */
13754 			retry_delay = SD_BSY_TIMEOUT;
13755 			statp = kstat_waitq_enter;
13756 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13757 			    "sd_retry_command: immed. retry hit "
13758 			    "throttle!\n");
13759 		} else {
13760 			/*
13761 			 * We're clear to proceed with the immediate retry.
13762 			 * First call the user-provided function (if any)
13763 			 */
13764 			if (user_funcp != NULL) {
13765 				(*user_funcp)(un, bp, user_arg,
13766 				    SD_IMMEDIATE_RETRY_ISSUED);
13767 #ifdef __lock_lint
13768 				sd_print_incomplete_msg(un, bp, user_arg,
13769 				    SD_IMMEDIATE_RETRY_ISSUED);
13770 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
13771 				    SD_IMMEDIATE_RETRY_ISSUED);
13772 				sd_print_sense_failed_msg(un, bp, user_arg,
13773 				    SD_IMMEDIATE_RETRY_ISSUED);
13774 #endif
13775 			}
13776 
13777 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13778 			    "sd_retry_command: issuing immediate retry\n");
13779 
13780 			/*
13781 			 * Call sd_start_cmds() to transport the command to
13782 			 * the target.
13783 			 */
13784 			sd_start_cmds(un, bp);
13785 
13786 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13787 			    "sd_retry_command exit\n");
13788 			return;
13789 		}
13790 	}
13791 
13792 	/*
13793 	 * Set up to retry the command after a delay.
13794 	 * First call the user-provided function (if any)
13795 	 */
13796 	if (user_funcp != NULL) {
13797 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
13798 	}
13799 
13800 	sd_set_retry_bp(un, bp, retry_delay, statp);
13801 
13802 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13803 	return;
13804 
13805 fail_command:
13806 
13807 	if (user_funcp != NULL) {
13808 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
13809 	}
13810 
13811 fail_command_no_log:
13812 
13813 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13814 	    "sd_retry_command: returning failed command\n");
13815 
13816 	sd_return_failed_command(un, bp, failure_code);
13817 
13818 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13819 }
13820 
13821 
13822 /*
13823  *    Function: sd_set_retry_bp
13824  *
13825  * Description: Set up the given bp for retry.
13826  *
13827  *   Arguments: un - ptr to associated softstate
13828  *		bp - ptr to buf(9S) for the command
13829  *		retry_delay - time interval before issuing retry (may be 0)
13830  *		statp - optional pointer to kstat function
13831  *
13832  *     Context: May be called under interrupt context
13833  */
13834 
13835 static void
13836 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
13837 	void (*statp)(kstat_io_t *))
13838 {
13839 	ASSERT(un != NULL);
13840 	ASSERT(mutex_owned(SD_MUTEX(un)));
13841 	ASSERT(bp != NULL);
13842 
13843 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13844 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
13845 
13846 	/*
13847 	 * Indicate that the command is being retried. This will not allow any
13848 	 * other commands on the wait queue to be transported to the target
13849 	 * until this command has been completed (success or failure). The
13850 	 * "retry command" is not transported to the target until the given
13851 	 * time delay expires, unless the user specified a 0 retry_delay.
13852 	 *
13853 	 * Note: the timeout(9F) callback routine is what actually calls
13854 	 * sd_start_cmds() to transport the command, with the exception of a
13855 	 * zero retry_delay. The only current implementor of a zero retry delay
13856 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
13857 	 */
13858 	if (un->un_retry_bp == NULL) {
13859 		ASSERT(un->un_retry_statp == NULL);
13860 		un->un_retry_bp = bp;
13861 
13862 		/*
13863 		 * If the user has not specified a delay the command should
13864 		 * be queued and no timeout should be scheduled.
13865 		 */
13866 		if (retry_delay == 0) {
13867 			/*
13868 			 * Save the kstat pointer that will be used in the
13869 			 * call to SD_UPDATE_KSTATS() below, so that
13870 			 * sd_start_cmds() can correctly decrement the waitq
13871 			 * count when it is time to transport this command.
13872 			 */
13873 			un->un_retry_statp = statp;
13874 			goto done;
13875 		}
13876 	}
13877 
13878 	if (un->un_retry_bp == bp) {
13879 		/*
13880 		 * Save the kstat pointer that will be used in the call to
13881 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
13882 		 * correctly decrement the waitq count when it is time to
13883 		 * transport this command.
13884 		 */
13885 		un->un_retry_statp = statp;
13886 
13887 		/*
13888 		 * Schedule a timeout if:
13889 		 *   1) The user has specified a delay.
13890 		 *   2) There is not a START_STOP_UNIT callback pending.
13891 		 *
13892 		 * If no delay has been specified, then it is up to the caller
13893 		 * to ensure that IO processing continues without stalling.
13894 		 * Effectively, this means that the caller will issue the
13895 		 * required call to sd_start_cmds(). The START_STOP_UNIT
13896 		 * callback does this after the START STOP UNIT command has
13897 		 * completed. In either of these cases we should not schedule
13898 		 * a timeout callback here.  Also don't schedule the timeout if
13899 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
13900 		 */
13901 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
13902 		    (un->un_direct_priority_timeid == NULL)) {
13903 			un->un_retry_timeid =
13904 			    timeout(sd_start_retry_command, un, retry_delay);
13905 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13906 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
13907 			    " bp:0x%p un_retry_timeid:0x%p\n",
13908 			    un, bp, un->un_retry_timeid);
13909 		}
13910 	} else {
13911 		/*
13912 		 * We only get in here if there is already another command
13913 		 * waiting to be retried.  In this case, we just put the
13914 		 * given command onto the wait queue, so it can be transported
13915 		 * after the current retry command has completed.
13916 		 *
13917 		 * Also we have to make sure that if the command at the head
13918 		 * of the wait queue is the un_failfast_bp, that we do not
13919 		 * put ahead of it any other commands that are to be retried.
13920 		 */
13921 		if ((un->un_failfast_bp != NULL) &&
13922 		    (un->un_failfast_bp == un->un_waitq_headp)) {
13923 			/*
13924 			 * Enqueue this command AFTER the first command on
13925 			 * the wait queue (which is also un_failfast_bp).
13926 			 */
13927 			bp->av_forw = un->un_waitq_headp->av_forw;
13928 			un->un_waitq_headp->av_forw = bp;
13929 			if (un->un_waitq_headp == un->un_waitq_tailp) {
13930 				un->un_waitq_tailp = bp;
13931 			}
13932 		} else {
13933 			/* Enqueue this command at the head of the waitq. */
13934 			bp->av_forw = un->un_waitq_headp;
13935 			un->un_waitq_headp = bp;
13936 			if (un->un_waitq_tailp == NULL) {
13937 				un->un_waitq_tailp = bp;
13938 			}
13939 		}
13940 
13941 		if (statp == NULL) {
13942 			statp = kstat_waitq_enter;
13943 		}
13944 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13945 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
13946 	}
13947 
13948 done:
13949 	if (statp != NULL) {
13950 		SD_UPDATE_KSTATS(un, statp, bp);
13951 	}
13952 
13953 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13954 	    "sd_set_retry_bp: exit un:0x%p\n", un);
13955 }
13956 
13957 
13958 /*
13959  *    Function: sd_start_retry_command
13960  *
13961  * Description: Start the command that has been waiting on the target's
13962  *		retry queue.  Called from timeout(9F) context after the
13963  *		retry delay interval has expired.
13964  *
13965  *   Arguments: arg - pointer to associated softstate for the device.
13966  *
13967  *     Context: timeout(9F) thread context.  May not sleep.
13968  */
13969 
13970 static void
13971 sd_start_retry_command(void *arg)
13972 {
13973 	struct sd_lun *un = arg;
13974 
13975 	ASSERT(un != NULL);
13976 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13977 
13978 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13979 	    "sd_start_retry_command: entry\n");
13980 
13981 	mutex_enter(SD_MUTEX(un));
13982 
13983 	un->un_retry_timeid = NULL;
13984 
13985 	if (un->un_retry_bp != NULL) {
13986 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13987 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
13988 		    un, un->un_retry_bp);
13989 		sd_start_cmds(un, un->un_retry_bp);
13990 	}
13991 
13992 	mutex_exit(SD_MUTEX(un));
13993 
13994 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13995 	    "sd_start_retry_command: exit\n");
13996 }
13997 
13998 
13999 /*
14000  *    Function: sd_start_direct_priority_command
14001  *
14002  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
14003  *		received TRAN_BUSY when we called scsi_transport() to send it
14004  *		to the underlying HBA. This function is called from timeout(9F)
14005  *		context after the delay interval has expired.
14006  *
14007  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
14008  *
14009  *     Context: timeout(9F) thread context.  May not sleep.
14010  */
14011 
14012 static void
14013 sd_start_direct_priority_command(void *arg)
14014 {
14015 	struct buf	*priority_bp = arg;
14016 	struct sd_lun	*un;
14017 
14018 	ASSERT(priority_bp != NULL);
14019 	un = SD_GET_UN(priority_bp);
14020 	ASSERT(un != NULL);
14021 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14022 
14023 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14024 	    "sd_start_direct_priority_command: entry\n");
14025 
14026 	mutex_enter(SD_MUTEX(un));
14027 	un->un_direct_priority_timeid = NULL;
14028 	sd_start_cmds(un, priority_bp);
14029 	mutex_exit(SD_MUTEX(un));
14030 
14031 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14032 	    "sd_start_direct_priority_command: exit\n");
14033 }
14034 
14035 
14036 /*
14037  *    Function: sd_send_request_sense_command
14038  *
14039  * Description: Sends a REQUEST SENSE command to the target
14040  *
14041  *     Context: May be called from interrupt context.
14042  */
14043 
14044 static void
14045 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
14046 	struct scsi_pkt *pktp)
14047 {
14048 	ASSERT(bp != NULL);
14049 	ASSERT(un != NULL);
14050 	ASSERT(mutex_owned(SD_MUTEX(un)));
14051 
14052 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
14053 	    "entry: buf:0x%p\n", bp);
14054 
14055 	/*
14056 	 * If we are syncing or dumping, then fail the command to avoid a
14057 	 * recursive callback into scsi_transport(). Also fail the command
14058 	 * if we are suspended (legacy behavior).
14059 	 */
14060 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
14061 	    (un->un_state == SD_STATE_DUMPING)) {
14062 		sd_return_failed_command(un, bp, EIO);
14063 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14064 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
14065 		return;
14066 	}
14067 
14068 	/*
14069 	 * Retry the failed command and don't issue the request sense if:
14070 	 *    1) the sense buf is busy
14071 	 *    2) we have 1 or more outstanding commands on the target
14072 	 *    (the sense data will be cleared or invalidated any way)
14073 	 *
14074 	 * Note: There could be an issue with not checking a retry limit here,
14075 	 * the problem is determining which retry limit to check.
14076 	 */
14077 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
14078 		/* Don't retry if the command is flagged as non-retryable */
14079 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
14080 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14081 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
14082 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14083 			    "sd_send_request_sense_command: "
14084 			    "at full throttle, retrying exit\n");
14085 		} else {
14086 			sd_return_failed_command(un, bp, EIO);
14087 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14088 			    "sd_send_request_sense_command: "
14089 			    "at full throttle, non-retryable exit\n");
14090 		}
14091 		return;
14092 	}
14093 
14094 	sd_mark_rqs_busy(un, bp);
14095 	sd_start_cmds(un, un->un_rqs_bp);
14096 
14097 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14098 	    "sd_send_request_sense_command: exit\n");
14099 }
14100 
14101 
14102 /*
14103  *    Function: sd_mark_rqs_busy
14104  *
14105  * Description: Indicate that the request sense bp for this instance is
14106  *		in use.
14107  *
14108  *     Context: May be called under interrupt context
14109  */
14110 
14111 static void
14112 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14113 {
14114 	struct sd_xbuf	*sense_xp;
14115 
14116 	ASSERT(un != NULL);
14117 	ASSERT(bp != NULL);
14118 	ASSERT(mutex_owned(SD_MUTEX(un)));
14119 	ASSERT(un->un_sense_isbusy == 0);
14120 
14121 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14122 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14123 
14124 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14125 	ASSERT(sense_xp != NULL);
14126 
14127 	SD_INFO(SD_LOG_IO, un,
14128 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14129 
14130 	ASSERT(sense_xp->xb_pktp != NULL);
14131 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14132 	    == (FLAG_SENSING | FLAG_HEAD));
14133 
14134 	un->un_sense_isbusy = 1;
14135 	un->un_rqs_bp->b_resid = 0;
14136 	sense_xp->xb_pktp->pkt_resid  = 0;
14137 	sense_xp->xb_pktp->pkt_reason = 0;
14138 
14139 	/* So we can get back the bp at interrupt time! */
14140 	sense_xp->xb_sense_bp = bp;
14141 
14142 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14143 
14144 	/*
14145 	 * Mark this buf as awaiting sense data. (This is already set in
14146 	 * the pkt_flags for the RQS packet.)
14147 	 */
14148 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14149 
14150 	sense_xp->xb_retry_count	= 0;
14151 	sense_xp->xb_victim_retry_count = 0;
14152 	sense_xp->xb_ua_retry_count	= 0;
14153 	sense_xp->xb_nr_retry_count 	= 0;
14154 	sense_xp->xb_dma_resid  = 0;
14155 
14156 	/* Clean up the fields for auto-request sense */
14157 	sense_xp->xb_sense_status = 0;
14158 	sense_xp->xb_sense_state  = 0;
14159 	sense_xp->xb_sense_resid  = 0;
14160 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14161 
14162 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14163 }
14164 
14165 
14166 /*
14167  *    Function: sd_mark_rqs_idle
14168  *
14169  * Description: SD_MUTEX must be held continuously through this routine
14170  *		to prevent reuse of the rqs struct before the caller can
14171  *		complete it's processing.
14172  *
14173  * Return Code: Pointer to the RQS buf
14174  *
14175  *     Context: May be called under interrupt context
14176  */
14177 
14178 static struct buf *
14179 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14180 {
14181 	struct buf *bp;
14182 	ASSERT(un != NULL);
14183 	ASSERT(sense_xp != NULL);
14184 	ASSERT(mutex_owned(SD_MUTEX(un)));
14185 	ASSERT(un->un_sense_isbusy != 0);
14186 
14187 	un->un_sense_isbusy = 0;
14188 	bp = sense_xp->xb_sense_bp;
14189 	sense_xp->xb_sense_bp = NULL;
14190 
14191 	/* This pkt is no longer interested in getting sense data */
14192 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14193 
14194 	return (bp);
14195 }
14196 
14197 
14198 
14199 /*
14200  *    Function: sd_alloc_rqs
14201  *
14202  * Description: Set up the unit to receive auto request sense data
14203  *
14204  * Return Code: DDI_SUCCESS or DDI_FAILURE
14205  *
14206  *     Context: Called under attach(9E) context
14207  */
14208 
14209 static int
14210 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14211 {
14212 	struct sd_xbuf *xp;
14213 
14214 	ASSERT(un != NULL);
14215 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14216 	ASSERT(un->un_rqs_bp == NULL);
14217 	ASSERT(un->un_rqs_pktp == NULL);
14218 
14219 	/*
14220 	 * First allocate the required buf and scsi_pkt structs, then set up
14221 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14222 	 */
14223 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14224 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14225 	if (un->un_rqs_bp == NULL) {
14226 		return (DDI_FAILURE);
14227 	}
14228 
14229 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14230 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14231 
14232 	if (un->un_rqs_pktp == NULL) {
14233 		sd_free_rqs(un);
14234 		return (DDI_FAILURE);
14235 	}
14236 
14237 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14238 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14239 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
14240 
14241 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14242 
14243 	/* Set up the other needed members in the ARQ scsi_pkt. */
14244 	un->un_rqs_pktp->pkt_comp   = sdintr;
14245 	un->un_rqs_pktp->pkt_time   = sd_io_time;
14246 	un->un_rqs_pktp->pkt_flags |=
14247 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14248 
14249 	/*
14250 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14251 	 * provide any intpkt, destroypkt routines as we take care of
14252 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14253 	 */
14254 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14255 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14256 	xp->xb_pktp = un->un_rqs_pktp;
14257 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14258 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14259 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14260 
14261 	/*
14262 	 * Save the pointer to the request sense private bp so it can
14263 	 * be retrieved in sdintr.
14264 	 */
14265 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14266 	ASSERT(un->un_rqs_bp->b_private == xp);
14267 
14268 	/*
14269 	 * See if the HBA supports auto-request sense for the specified
14270 	 * target/lun. If it does, then try to enable it (if not already
14271 	 * enabled).
14272 	 *
14273 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14274 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14275 	 * return success.  However, in both of these cases ARQ is always
14276 	 * enabled and scsi_ifgetcap will always return true. The best approach
14277 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14278 	 *
14279 	 * The 3rd case is the HBA (adp) always return enabled on
14280 	 * scsi_ifgetgetcap even when it's not enable, the best approach
14281 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14282 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14283 	 */
14284 
14285 	if (un->un_f_is_fibre == TRUE) {
14286 		un->un_f_arq_enabled = TRUE;
14287 	} else {
14288 #if defined(__i386) || defined(__amd64)
14289 		/*
14290 		 * Circumvent the Adaptec bug, remove this code when
14291 		 * the bug is fixed
14292 		 */
14293 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14294 #endif
14295 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14296 		case 0:
14297 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14298 			    "sd_alloc_rqs: HBA supports ARQ\n");
14299 			/*
14300 			 * ARQ is supported by this HBA but currently is not
14301 			 * enabled. Attempt to enable it and if successful then
14302 			 * mark this instance as ARQ enabled.
14303 			 */
14304 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14305 			    == 1) {
14306 				/* Successfully enabled ARQ in the HBA */
14307 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14308 				    "sd_alloc_rqs: ARQ enabled\n");
14309 				un->un_f_arq_enabled = TRUE;
14310 			} else {
14311 				/* Could not enable ARQ in the HBA */
14312 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14313 				    "sd_alloc_rqs: failed ARQ enable\n");
14314 				un->un_f_arq_enabled = FALSE;
14315 			}
14316 			break;
14317 		case 1:
14318 			/*
14319 			 * ARQ is supported by this HBA and is already enabled.
14320 			 * Just mark ARQ as enabled for this instance.
14321 			 */
14322 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14323 			    "sd_alloc_rqs: ARQ already enabled\n");
14324 			un->un_f_arq_enabled = TRUE;
14325 			break;
14326 		default:
14327 			/*
14328 			 * ARQ is not supported by this HBA; disable it for this
14329 			 * instance.
14330 			 */
14331 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14332 			    "sd_alloc_rqs: HBA does not support ARQ\n");
14333 			un->un_f_arq_enabled = FALSE;
14334 			break;
14335 		}
14336 	}
14337 
14338 	return (DDI_SUCCESS);
14339 }
14340 
14341 
14342 /*
14343  *    Function: sd_free_rqs
14344  *
14345  * Description: Cleanup for the pre-instance RQS command.
14346  *
14347  *     Context: Kernel thread context
14348  */
14349 
14350 static void
14351 sd_free_rqs(struct sd_lun *un)
14352 {
14353 	ASSERT(un != NULL);
14354 
14355 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14356 
14357 	/*
14358 	 * If consistent memory is bound to a scsi_pkt, the pkt
14359 	 * has to be destroyed *before* freeing the consistent memory.
14360 	 * Don't change the sequence of this operations.
14361 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14362 	 * after it was freed in scsi_free_consistent_buf().
14363 	 */
14364 	if (un->un_rqs_pktp != NULL) {
14365 		scsi_destroy_pkt(un->un_rqs_pktp);
14366 		un->un_rqs_pktp = NULL;
14367 	}
14368 
14369 	if (un->un_rqs_bp != NULL) {
14370 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
14371 		scsi_free_consistent_buf(un->un_rqs_bp);
14372 		un->un_rqs_bp = NULL;
14373 	}
14374 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14375 }
14376 
14377 
14378 
14379 /*
14380  *    Function: sd_reduce_throttle
14381  *
14382  * Description: Reduces the maximum # of outstanding commands on a
14383  *		target to the current number of outstanding commands.
14384  *		Queues a tiemout(9F) callback to restore the limit
14385  *		after a specified interval has elapsed.
14386  *		Typically used when we get a TRAN_BUSY return code
14387  *		back from scsi_transport().
14388  *
14389  *   Arguments: un - ptr to the sd_lun softstate struct
14390  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14391  *
14392  *     Context: May be called from interrupt context
14393  */
14394 
14395 static void
14396 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14397 {
14398 	ASSERT(un != NULL);
14399 	ASSERT(mutex_owned(SD_MUTEX(un)));
14400 	ASSERT(un->un_ncmds_in_transport >= 0);
14401 
14402 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14403 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14404 	    un, un->un_throttle, un->un_ncmds_in_transport);
14405 
14406 	if (un->un_throttle > 1) {
14407 		if (un->un_f_use_adaptive_throttle == TRUE) {
14408 			switch (throttle_type) {
14409 			case SD_THROTTLE_TRAN_BUSY:
14410 				if (un->un_busy_throttle == 0) {
14411 					un->un_busy_throttle = un->un_throttle;
14412 				}
14413 				break;
14414 			case SD_THROTTLE_QFULL:
14415 				un->un_busy_throttle = 0;
14416 				break;
14417 			default:
14418 				ASSERT(FALSE);
14419 			}
14420 
14421 			if (un->un_ncmds_in_transport > 0) {
14422 				un->un_throttle = un->un_ncmds_in_transport;
14423 			}
14424 
14425 		} else {
14426 			if (un->un_ncmds_in_transport == 0) {
14427 				un->un_throttle = 1;
14428 			} else {
14429 				un->un_throttle = un->un_ncmds_in_transport;
14430 			}
14431 		}
14432 	}
14433 
14434 	/* Reschedule the timeout if none is currently active */
14435 	if (un->un_reset_throttle_timeid == NULL) {
14436 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14437 		    un, SD_THROTTLE_RESET_INTERVAL);
14438 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14439 		    "sd_reduce_throttle: timeout scheduled!\n");
14440 	}
14441 
14442 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14443 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14444 }
14445 
14446 
14447 
14448 /*
14449  *    Function: sd_restore_throttle
14450  *
14451  * Description: Callback function for timeout(9F).  Resets the current
14452  *		value of un->un_throttle to its default.
14453  *
14454  *   Arguments: arg - pointer to associated softstate for the device.
14455  *
14456  *     Context: May be called from interrupt context
14457  */
14458 
14459 static void
14460 sd_restore_throttle(void *arg)
14461 {
14462 	struct sd_lun	*un = arg;
14463 
14464 	ASSERT(un != NULL);
14465 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14466 
14467 	mutex_enter(SD_MUTEX(un));
14468 
14469 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14470 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14471 
14472 	un->un_reset_throttle_timeid = NULL;
14473 
14474 	if (un->un_f_use_adaptive_throttle == TRUE) {
14475 		/*
14476 		 * If un_busy_throttle is nonzero, then it contains the
14477 		 * value that un_throttle was when we got a TRAN_BUSY back
14478 		 * from scsi_transport(). We want to revert back to this
14479 		 * value.
14480 		 *
14481 		 * In the QFULL case, the throttle limit will incrementally
14482 		 * increase until it reaches max throttle.
14483 		 */
14484 		if (un->un_busy_throttle > 0) {
14485 			un->un_throttle = un->un_busy_throttle;
14486 			un->un_busy_throttle = 0;
14487 		} else {
14488 			/*
14489 			 * increase throttle by 10% open gate slowly, schedule
14490 			 * another restore if saved throttle has not been
14491 			 * reached
14492 			 */
14493 			short throttle;
14494 			if (sd_qfull_throttle_enable) {
14495 				throttle = un->un_throttle +
14496 				    max((un->un_throttle / 10), 1);
14497 				un->un_throttle =
14498 				    (throttle < un->un_saved_throttle) ?
14499 				    throttle : un->un_saved_throttle;
14500 				if (un->un_throttle < un->un_saved_throttle) {
14501 					un->un_reset_throttle_timeid =
14502 					    timeout(sd_restore_throttle,
14503 					    un,
14504 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
14505 				}
14506 			}
14507 		}
14508 
14509 		/*
14510 		 * If un_throttle has fallen below the low-water mark, we
14511 		 * restore the maximum value here (and allow it to ratchet
14512 		 * down again if necessary).
14513 		 */
14514 		if (un->un_throttle < un->un_min_throttle) {
14515 			un->un_throttle = un->un_saved_throttle;
14516 		}
14517 	} else {
14518 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14519 		    "restoring limit from 0x%x to 0x%x\n",
14520 		    un->un_throttle, un->un_saved_throttle);
14521 		un->un_throttle = un->un_saved_throttle;
14522 	}
14523 
14524 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14525 	    "sd_restore_throttle: calling sd_start_cmds!\n");
14526 
14527 	sd_start_cmds(un, NULL);
14528 
14529 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14530 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14531 	    un, un->un_throttle);
14532 
14533 	mutex_exit(SD_MUTEX(un));
14534 
14535 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14536 }
14537 
14538 /*
14539  *    Function: sdrunout
14540  *
14541  * Description: Callback routine for scsi_init_pkt when a resource allocation
14542  *		fails.
14543  *
14544  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14545  *		soft state instance.
14546  *
14547  * Return Code: The scsi_init_pkt routine allows for the callback function to
14548  *		return a 0 indicating the callback should be rescheduled or a 1
14549  *		indicating not to reschedule. This routine always returns 1
14550  *		because the driver always provides a callback function to
14551  *		scsi_init_pkt. This results in a callback always being scheduled
14552  *		(via the scsi_init_pkt callback implementation) if a resource
14553  *		failure occurs.
14554  *
14555  *     Context: This callback function may not block or call routines that block
14556  *
14557  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14558  *		request persisting at the head of the list which cannot be
14559  *		satisfied even after multiple retries. In the future the driver
14560  *		may implement some time of maximum runout count before failing
14561  *		an I/O.
14562  */
14563 
14564 static int
14565 sdrunout(caddr_t arg)
14566 {
14567 	struct sd_lun	*un = (struct sd_lun *)arg;
14568 
14569 	ASSERT(un != NULL);
14570 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14571 
14572 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14573 
14574 	mutex_enter(SD_MUTEX(un));
14575 	sd_start_cmds(un, NULL);
14576 	mutex_exit(SD_MUTEX(un));
14577 	/*
14578 	 * This callback routine always returns 1 (i.e. do not reschedule)
14579 	 * because we always specify sdrunout as the callback handler for
14580 	 * scsi_init_pkt inside the call to sd_start_cmds.
14581 	 */
14582 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14583 	return (1);
14584 }
14585 
14586 
14587 /*
14588  *    Function: sdintr
14589  *
14590  * Description: Completion callback routine for scsi_pkt(9S) structs
14591  *		sent to the HBA driver via scsi_transport(9F).
14592  *
14593  *     Context: Interrupt context
14594  */
14595 
14596 static void
14597 sdintr(struct scsi_pkt *pktp)
14598 {
14599 	struct buf	*bp;
14600 	struct sd_xbuf	*xp;
14601 	struct sd_lun	*un;
14602 
14603 	ASSERT(pktp != NULL);
14604 	bp = (struct buf *)pktp->pkt_private;
14605 	ASSERT(bp != NULL);
14606 	xp = SD_GET_XBUF(bp);
14607 	ASSERT(xp != NULL);
14608 	ASSERT(xp->xb_pktp != NULL);
14609 	un = SD_GET_UN(bp);
14610 	ASSERT(un != NULL);
14611 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14612 
14613 #ifdef SD_FAULT_INJECTION
14614 
14615 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14616 	/* SD FaultInjection */
14617 	sd_faultinjection(pktp);
14618 
14619 #endif /* SD_FAULT_INJECTION */
14620 
14621 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14622 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14623 
14624 	mutex_enter(SD_MUTEX(un));
14625 
14626 	/* Reduce the count of the #commands currently in transport */
14627 	un->un_ncmds_in_transport--;
14628 	ASSERT(un->un_ncmds_in_transport >= 0);
14629 
14630 	/* Increment counter to indicate that the callback routine is active */
14631 	un->un_in_callback++;
14632 
14633 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14634 
14635 #ifdef	SDDEBUG
14636 	if (bp == un->un_retry_bp) {
14637 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14638 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14639 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14640 	}
14641 #endif
14642 
14643 	/*
14644 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
14645 	 * state if needed.
14646 	 */
14647 	if (pktp->pkt_reason == CMD_DEV_GONE) {
14648 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14649 		    "Device is gone\n");
14650 		if (un->un_mediastate != DKIO_DEV_GONE) {
14651 			un->un_mediastate = DKIO_DEV_GONE;
14652 			cv_broadcast(&un->un_state_cv);
14653 		}
14654 		sd_return_failed_command(un, bp, EIO);
14655 		goto exit;
14656 	}
14657 
14658 	/*
14659 	 * First see if the pkt has auto-request sense data with it....
14660 	 * Look at the packet state first so we don't take a performance
14661 	 * hit looking at the arq enabled flag unless absolutely necessary.
14662 	 */
14663 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14664 	    (un->un_f_arq_enabled == TRUE)) {
14665 		/*
14666 		 * The HBA did an auto request sense for this command so check
14667 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14668 		 * driver command that should not be retried.
14669 		 */
14670 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14671 			/*
14672 			 * Save the relevant sense info into the xp for the
14673 			 * original cmd.
14674 			 */
14675 			struct scsi_arq_status *asp;
14676 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14677 			xp->xb_sense_status =
14678 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14679 			xp->xb_sense_state  = asp->sts_rqpkt_state;
14680 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14681 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14682 			    min(sizeof (struct scsi_extended_sense),
14683 			    SENSE_LENGTH));
14684 
14685 			/* fail the command */
14686 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14687 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14688 			sd_return_failed_command(un, bp, EIO);
14689 			goto exit;
14690 		}
14691 
14692 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14693 		/*
14694 		 * We want to either retry or fail this command, so free
14695 		 * the DMA resources here.  If we retry the command then
14696 		 * the DMA resources will be reallocated in sd_start_cmds().
14697 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14698 		 * causes the *entire* transfer to start over again from the
14699 		 * beginning of the request, even for PARTIAL chunks that
14700 		 * have already transferred successfully.
14701 		 */
14702 		if ((un->un_f_is_fibre == TRUE) &&
14703 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14704 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14705 			scsi_dmafree(pktp);
14706 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14707 		}
14708 #endif
14709 
14710 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14711 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14712 
14713 		sd_handle_auto_request_sense(un, bp, xp, pktp);
14714 		goto exit;
14715 	}
14716 
14717 	/* Next see if this is the REQUEST SENSE pkt for the instance */
14718 	if (pktp->pkt_flags & FLAG_SENSING)  {
14719 		/* This pktp is from the unit's REQUEST_SENSE command */
14720 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14721 		    "sdintr: sd_handle_request_sense\n");
14722 		sd_handle_request_sense(un, bp, xp, pktp);
14723 		goto exit;
14724 	}
14725 
14726 	/*
14727 	 * Check to see if the command successfully completed as requested;
14728 	 * this is the most common case (and also the hot performance path).
14729 	 *
14730 	 * Requirements for successful completion are:
14731 	 * pkt_reason is CMD_CMPLT and packet status is status good.
14732 	 * In addition:
14733 	 * - A residual of zero indicates successful completion no matter what
14734 	 *   the command is.
14735 	 * - If the residual is not zero and the command is not a read or
14736 	 *   write, then it's still defined as successful completion. In other
14737 	 *   words, if the command is a read or write the residual must be
14738 	 *   zero for successful completion.
14739 	 * - If the residual is not zero and the command is a read or
14740 	 *   write, and it's a USCSICMD, then it's still defined as
14741 	 *   successful completion.
14742 	 */
14743 	if ((pktp->pkt_reason == CMD_CMPLT) &&
14744 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
14745 
14746 		/*
14747 		 * Since this command is returned with a good status, we
14748 		 * can reset the count for Sonoma failover.
14749 		 */
14750 		un->un_sonoma_failure_count = 0;
14751 
14752 		/*
14753 		 * Return all USCSI commands on good status
14754 		 */
14755 		if (pktp->pkt_resid == 0) {
14756 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14757 			    "sdintr: returning command for resid == 0\n");
14758 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
14759 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
14760 			SD_UPDATE_B_RESID(bp, pktp);
14761 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14762 			    "sdintr: returning command for resid != 0\n");
14763 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14764 			SD_UPDATE_B_RESID(bp, pktp);
14765 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14766 			    "sdintr: returning uscsi command\n");
14767 		} else {
14768 			goto not_successful;
14769 		}
14770 		sd_return_command(un, bp);
14771 
14772 		/*
14773 		 * Decrement counter to indicate that the callback routine
14774 		 * is done.
14775 		 */
14776 		un->un_in_callback--;
14777 		ASSERT(un->un_in_callback >= 0);
14778 		mutex_exit(SD_MUTEX(un));
14779 
14780 		return;
14781 	}
14782 
14783 not_successful:
14784 
14785 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14786 	/*
14787 	 * The following is based upon knowledge of the underlying transport
14788 	 * and its use of DMA resources.  This code should be removed when
14789 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
14790 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
14791 	 * and sd_start_cmds().
14792 	 *
14793 	 * Free any DMA resources associated with this command if there
14794 	 * is a chance it could be retried or enqueued for later retry.
14795 	 * If we keep the DMA binding then mpxio cannot reissue the
14796 	 * command on another path whenever a path failure occurs.
14797 	 *
14798 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
14799 	 * causes the *entire* transfer to start over again from the
14800 	 * beginning of the request, even for PARTIAL chunks that
14801 	 * have already transferred successfully.
14802 	 *
14803 	 * This is only done for non-uscsi commands (and also skipped for the
14804 	 * driver's internal RQS command). Also just do this for Fibre Channel
14805 	 * devices as these are the only ones that support mpxio.
14806 	 */
14807 	if ((un->un_f_is_fibre == TRUE) &&
14808 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14809 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14810 		scsi_dmafree(pktp);
14811 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14812 	}
14813 #endif
14814 
14815 	/*
14816 	 * The command did not successfully complete as requested so check
14817 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14818 	 * driver command that should not be retried so just return. If
14819 	 * FLAG_DIAGNOSE is not set the error will be processed below.
14820 	 */
14821 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14822 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14823 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
14824 		/*
14825 		 * Issue a request sense if a check condition caused the error
14826 		 * (we handle the auto request sense case above), otherwise
14827 		 * just fail the command.
14828 		 */
14829 		if ((pktp->pkt_reason == CMD_CMPLT) &&
14830 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
14831 			sd_send_request_sense_command(un, bp, pktp);
14832 		} else {
14833 			sd_return_failed_command(un, bp, EIO);
14834 		}
14835 		goto exit;
14836 	}
14837 
14838 	/*
14839 	 * The command did not successfully complete as requested so process
14840 	 * the error, retry, and/or attempt recovery.
14841 	 */
14842 	switch (pktp->pkt_reason) {
14843 	case CMD_CMPLT:
14844 		switch (SD_GET_PKT_STATUS(pktp)) {
14845 		case STATUS_GOOD:
14846 			/*
14847 			 * The command completed successfully with a non-zero
14848 			 * residual
14849 			 */
14850 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14851 			    "sdintr: STATUS_GOOD \n");
14852 			sd_pkt_status_good(un, bp, xp, pktp);
14853 			break;
14854 
14855 		case STATUS_CHECK:
14856 		case STATUS_TERMINATED:
14857 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14858 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
14859 			sd_pkt_status_check_condition(un, bp, xp, pktp);
14860 			break;
14861 
14862 		case STATUS_BUSY:
14863 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14864 			    "sdintr: STATUS_BUSY\n");
14865 			sd_pkt_status_busy(un, bp, xp, pktp);
14866 			break;
14867 
14868 		case STATUS_RESERVATION_CONFLICT:
14869 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14870 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
14871 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
14872 			break;
14873 
14874 		case STATUS_QFULL:
14875 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14876 			    "sdintr: STATUS_QFULL\n");
14877 			sd_pkt_status_qfull(un, bp, xp, pktp);
14878 			break;
14879 
14880 		case STATUS_MET:
14881 		case STATUS_INTERMEDIATE:
14882 		case STATUS_SCSI2:
14883 		case STATUS_INTERMEDIATE_MET:
14884 		case STATUS_ACA_ACTIVE:
14885 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14886 			    "Unexpected SCSI status received: 0x%x\n",
14887 			    SD_GET_PKT_STATUS(pktp));
14888 			sd_return_failed_command(un, bp, EIO);
14889 			break;
14890 
14891 		default:
14892 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
14893 			    "Invalid SCSI status received: 0x%x\n",
14894 			    SD_GET_PKT_STATUS(pktp));
14895 			sd_return_failed_command(un, bp, EIO);
14896 			break;
14897 
14898 		}
14899 		break;
14900 
14901 	case CMD_INCOMPLETE:
14902 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14903 		    "sdintr:  CMD_INCOMPLETE\n");
14904 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
14905 		break;
14906 	case CMD_TRAN_ERR:
14907 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14908 		    "sdintr: CMD_TRAN_ERR\n");
14909 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
14910 		break;
14911 	case CMD_RESET:
14912 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14913 		    "sdintr: CMD_RESET \n");
14914 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
14915 		break;
14916 	case CMD_ABORTED:
14917 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14918 		    "sdintr: CMD_ABORTED \n");
14919 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
14920 		break;
14921 	case CMD_TIMEOUT:
14922 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14923 		    "sdintr: CMD_TIMEOUT\n");
14924 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
14925 		break;
14926 	case CMD_UNX_BUS_FREE:
14927 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14928 		    "sdintr: CMD_UNX_BUS_FREE \n");
14929 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
14930 		break;
14931 	case CMD_TAG_REJECT:
14932 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14933 		    "sdintr: CMD_TAG_REJECT\n");
14934 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
14935 		break;
14936 	default:
14937 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14938 		    "sdintr: default\n");
14939 		sd_pkt_reason_default(un, bp, xp, pktp);
14940 		break;
14941 	}
14942 
14943 exit:
14944 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
14945 
14946 	/* Decrement counter to indicate that the callback routine is done. */
14947 	un->un_in_callback--;
14948 	ASSERT(un->un_in_callback >= 0);
14949 
14950 	/*
14951 	 * At this point, the pkt has been dispatched, ie, it is either
14952 	 * being re-tried or has been returned to its caller and should
14953 	 * not be referenced.
14954 	 */
14955 
14956 	mutex_exit(SD_MUTEX(un));
14957 }
14958 
14959 
14960 /*
14961  *    Function: sd_print_incomplete_msg
14962  *
14963  * Description: Prints the error message for a CMD_INCOMPLETE error.
14964  *
14965  *   Arguments: un - ptr to associated softstate for the device.
14966  *		bp - ptr to the buf(9S) for the command.
14967  *		arg - message string ptr
14968  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
14969  *			or SD_NO_RETRY_ISSUED.
14970  *
14971  *     Context: May be called under interrupt context
14972  */
14973 
14974 static void
14975 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
14976 {
14977 	struct scsi_pkt	*pktp;
14978 	char	*msgp;
14979 	char	*cmdp = arg;
14980 
14981 	ASSERT(un != NULL);
14982 	ASSERT(mutex_owned(SD_MUTEX(un)));
14983 	ASSERT(bp != NULL);
14984 	ASSERT(arg != NULL);
14985 	pktp = SD_GET_PKTP(bp);
14986 	ASSERT(pktp != NULL);
14987 
14988 	switch (code) {
14989 	case SD_DELAYED_RETRY_ISSUED:
14990 	case SD_IMMEDIATE_RETRY_ISSUED:
14991 		msgp = "retrying";
14992 		break;
14993 	case SD_NO_RETRY_ISSUED:
14994 	default:
14995 		msgp = "giving up";
14996 		break;
14997 	}
14998 
14999 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15000 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15001 		    "incomplete %s- %s\n", cmdp, msgp);
15002 	}
15003 }
15004 
15005 
15006 
15007 /*
15008  *    Function: sd_pkt_status_good
15009  *
15010  * Description: Processing for a STATUS_GOOD code in pkt_status.
15011  *
15012  *     Context: May be called under interrupt context
15013  */
15014 
15015 static void
15016 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
15017 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15018 {
15019 	char	*cmdp;
15020 
15021 	ASSERT(un != NULL);
15022 	ASSERT(mutex_owned(SD_MUTEX(un)));
15023 	ASSERT(bp != NULL);
15024 	ASSERT(xp != NULL);
15025 	ASSERT(pktp != NULL);
15026 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
15027 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
15028 	ASSERT(pktp->pkt_resid != 0);
15029 
15030 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
15031 
15032 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
15033 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
15034 	case SCMD_READ:
15035 		cmdp = "read";
15036 		break;
15037 	case SCMD_WRITE:
15038 		cmdp = "write";
15039 		break;
15040 	default:
15041 		SD_UPDATE_B_RESID(bp, pktp);
15042 		sd_return_command(un, bp);
15043 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15044 		return;
15045 	}
15046 
15047 	/*
15048 	 * See if we can retry the read/write, preferrably immediately.
15049 	 * If retries are exhaused, then sd_retry_command() will update
15050 	 * the b_resid count.
15051 	 */
15052 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
15053 	    cmdp, EIO, (clock_t)0, NULL);
15054 
15055 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15056 }
15057 
15058 
15059 
15060 
15061 
15062 /*
15063  *    Function: sd_handle_request_sense
15064  *
15065  * Description: Processing for non-auto Request Sense command.
15066  *
15067  *   Arguments: un - ptr to associated softstate
15068  *		sense_bp - ptr to buf(9S) for the RQS command
15069  *		sense_xp - ptr to the sd_xbuf for the RQS command
15070  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
15071  *
15072  *     Context: May be called under interrupt context
15073  */
15074 
15075 static void
15076 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
15077 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
15078 {
15079 	struct buf	*cmd_bp;	/* buf for the original command */
15080 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
15081 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
15082 
15083 	ASSERT(un != NULL);
15084 	ASSERT(mutex_owned(SD_MUTEX(un)));
15085 	ASSERT(sense_bp != NULL);
15086 	ASSERT(sense_xp != NULL);
15087 	ASSERT(sense_pktp != NULL);
15088 
15089 	/*
15090 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
15091 	 * RQS command and not the original command.
15092 	 */
15093 	ASSERT(sense_pktp == un->un_rqs_pktp);
15094 	ASSERT(sense_bp   == un->un_rqs_bp);
15095 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
15096 	    (FLAG_SENSING | FLAG_HEAD));
15097 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
15098 	    FLAG_SENSING) == FLAG_SENSING);
15099 
15100 	/* These are the bp, xp, and pktp for the original command */
15101 	cmd_bp = sense_xp->xb_sense_bp;
15102 	cmd_xp = SD_GET_XBUF(cmd_bp);
15103 	cmd_pktp = SD_GET_PKTP(cmd_bp);
15104 
15105 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
15106 		/*
15107 		 * The REQUEST SENSE command failed.  Release the REQUEST
15108 		 * SENSE command for re-use, get back the bp for the original
15109 		 * command, and attempt to re-try the original command if
15110 		 * FLAG_DIAGNOSE is not set in the original packet.
15111 		 */
15112 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15113 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15114 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15115 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15116 			    NULL, NULL, EIO, (clock_t)0, NULL);
15117 			return;
15118 		}
15119 	}
15120 
15121 	/*
15122 	 * Save the relevant sense info into the xp for the original cmd.
15123 	 *
15124 	 * Note: if the request sense failed the state info will be zero
15125 	 * as set in sd_mark_rqs_busy()
15126 	 */
15127 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15128 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15129 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
15130 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
15131 
15132 	/*
15133 	 *  Free up the RQS command....
15134 	 *  NOTE:
15135 	 *	Must do this BEFORE calling sd_validate_sense_data!
15136 	 *	sd_validate_sense_data may return the original command in
15137 	 *	which case the pkt will be freed and the flags can no
15138 	 *	longer be touched.
15139 	 *	SD_MUTEX is held through this process until the command
15140 	 *	is dispatched based upon the sense data, so there are
15141 	 *	no race conditions.
15142 	 */
15143 	(void) sd_mark_rqs_idle(un, sense_xp);
15144 
15145 	/*
15146 	 * For a retryable command see if we have valid sense data, if so then
15147 	 * turn it over to sd_decode_sense() to figure out the right course of
15148 	 * action. Just fail a non-retryable command.
15149 	 */
15150 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15151 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
15152 		    SD_SENSE_DATA_IS_VALID) {
15153 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15154 		}
15155 	} else {
15156 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15157 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15158 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15159 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15160 		sd_return_failed_command(un, cmd_bp, EIO);
15161 	}
15162 }
15163 
15164 
15165 
15166 
15167 /*
15168  *    Function: sd_handle_auto_request_sense
15169  *
15170  * Description: Processing for auto-request sense information.
15171  *
15172  *   Arguments: un - ptr to associated softstate
15173  *		bp - ptr to buf(9S) for the command
15174  *		xp - ptr to the sd_xbuf for the command
15175  *		pktp - ptr to the scsi_pkt(9S) for the command
15176  *
15177  *     Context: May be called under interrupt context
15178  */
15179 
15180 static void
15181 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15182 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15183 {
15184 	struct scsi_arq_status *asp;
15185 
15186 	ASSERT(un != NULL);
15187 	ASSERT(mutex_owned(SD_MUTEX(un)));
15188 	ASSERT(bp != NULL);
15189 	ASSERT(xp != NULL);
15190 	ASSERT(pktp != NULL);
15191 	ASSERT(pktp != un->un_rqs_pktp);
15192 	ASSERT(bp   != un->un_rqs_bp);
15193 
15194 	/*
15195 	 * For auto-request sense, we get a scsi_arq_status back from
15196 	 * the HBA, with the sense data in the sts_sensedata member.
15197 	 * The pkt_scbp of the packet points to this scsi_arq_status.
15198 	 */
15199 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15200 
15201 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15202 		/*
15203 		 * The auto REQUEST SENSE failed; see if we can re-try
15204 		 * the original command.
15205 		 */
15206 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15207 		    "auto request sense failed (reason=%s)\n",
15208 		    scsi_rname(asp->sts_rqpkt_reason));
15209 
15210 		sd_reset_target(un, pktp);
15211 
15212 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15213 		    NULL, NULL, EIO, (clock_t)0, NULL);
15214 		return;
15215 	}
15216 
15217 	/* Save the relevant sense info into the xp for the original cmd. */
15218 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15219 	xp->xb_sense_state  = asp->sts_rqpkt_state;
15220 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15221 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15222 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
15223 
15224 	/*
15225 	 * See if we have valid sense data, if so then turn it over to
15226 	 * sd_decode_sense() to figure out the right course of action.
15227 	 */
15228 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
15229 		sd_decode_sense(un, bp, xp, pktp);
15230 	}
15231 }
15232 
15233 
15234 /*
15235  *    Function: sd_print_sense_failed_msg
15236  *
15237  * Description: Print log message when RQS has failed.
15238  *
15239  *   Arguments: un - ptr to associated softstate
15240  *		bp - ptr to buf(9S) for the command
15241  *		arg - generic message string ptr
15242  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15243  *			or SD_NO_RETRY_ISSUED
15244  *
15245  *     Context: May be called from interrupt context
15246  */
15247 
15248 static void
15249 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15250 	int code)
15251 {
15252 	char	*msgp = arg;
15253 
15254 	ASSERT(un != NULL);
15255 	ASSERT(mutex_owned(SD_MUTEX(un)));
15256 	ASSERT(bp != NULL);
15257 
15258 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15259 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15260 	}
15261 }
15262 
15263 
15264 /*
15265  *    Function: sd_validate_sense_data
15266  *
15267  * Description: Check the given sense data for validity.
15268  *		If the sense data is not valid, the command will
15269  *		be either failed or retried!
15270  *
15271  * Return Code: SD_SENSE_DATA_IS_INVALID
15272  *		SD_SENSE_DATA_IS_VALID
15273  *
15274  *     Context: May be called from interrupt context
15275  */
15276 
15277 static int
15278 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
15279 {
15280 	struct scsi_extended_sense *esp;
15281 	struct	scsi_pkt *pktp;
15282 	size_t	actual_len;
15283 	char	*msgp = NULL;
15284 
15285 	ASSERT(un != NULL);
15286 	ASSERT(mutex_owned(SD_MUTEX(un)));
15287 	ASSERT(bp != NULL);
15288 	ASSERT(bp != un->un_rqs_bp);
15289 	ASSERT(xp != NULL);
15290 
15291 	pktp = SD_GET_PKTP(bp);
15292 	ASSERT(pktp != NULL);
15293 
15294 	/*
15295 	 * Check the status of the RQS command (auto or manual).
15296 	 */
15297 	switch (xp->xb_sense_status & STATUS_MASK) {
15298 	case STATUS_GOOD:
15299 		break;
15300 
15301 	case STATUS_RESERVATION_CONFLICT:
15302 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15303 		return (SD_SENSE_DATA_IS_INVALID);
15304 
15305 	case STATUS_BUSY:
15306 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15307 		    "Busy Status on REQUEST SENSE\n");
15308 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15309 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15310 		return (SD_SENSE_DATA_IS_INVALID);
15311 
15312 	case STATUS_QFULL:
15313 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15314 		    "QFULL Status on REQUEST SENSE\n");
15315 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15316 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15317 		return (SD_SENSE_DATA_IS_INVALID);
15318 
15319 	case STATUS_CHECK:
15320 	case STATUS_TERMINATED:
15321 		msgp = "Check Condition on REQUEST SENSE\n";
15322 		goto sense_failed;
15323 
15324 	default:
15325 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15326 		goto sense_failed;
15327 	}
15328 
15329 	/*
15330 	 * See if we got the minimum required amount of sense data.
15331 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15332 	 * or less.
15333 	 */
15334 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
15335 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15336 	    (actual_len == 0)) {
15337 		msgp = "Request Sense couldn't get sense data\n";
15338 		goto sense_failed;
15339 	}
15340 
15341 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15342 		msgp = "Not enough sense information\n";
15343 		goto sense_failed;
15344 	}
15345 
15346 	/*
15347 	 * We require the extended sense data
15348 	 */
15349 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15350 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15351 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15352 			static char tmp[8];
15353 			static char buf[148];
15354 			char *p = (char *)(xp->xb_sense_data);
15355 			int i;
15356 
15357 			mutex_enter(&sd_sense_mutex);
15358 			(void) strcpy(buf, "undecodable sense information:");
15359 			for (i = 0; i < actual_len; i++) {
15360 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15361 				(void) strcpy(&buf[strlen(buf)], tmp);
15362 			}
15363 			i = strlen(buf);
15364 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15365 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15366 			mutex_exit(&sd_sense_mutex);
15367 		}
15368 		/* Note: Legacy behavior, fail the command with no retry */
15369 		sd_return_failed_command(un, bp, EIO);
15370 		return (SD_SENSE_DATA_IS_INVALID);
15371 	}
15372 
15373 	/*
15374 	 * Check that es_code is valid (es_class concatenated with es_code
15375 	 * make up the "response code" field.  es_class will always be 7, so
15376 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15377 	 * format.
15378 	 */
15379 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15380 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15381 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15382 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15383 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15384 		goto sense_failed;
15385 	}
15386 
15387 	return (SD_SENSE_DATA_IS_VALID);
15388 
15389 sense_failed:
15390 	/*
15391 	 * If the request sense failed (for whatever reason), attempt
15392 	 * to retry the original command.
15393 	 */
15394 #if defined(__i386) || defined(__amd64)
15395 	/*
15396 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15397 	 * sddef.h for Sparc platform, and x86 uses 1 binary
15398 	 * for both SCSI/FC.
15399 	 * The SD_RETRY_DELAY value need to be adjusted here
15400 	 * when SD_RETRY_DELAY change in sddef.h
15401 	 */
15402 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15403 	    sd_print_sense_failed_msg, msgp, EIO,
15404 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15405 #else
15406 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15407 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15408 #endif
15409 
15410 	return (SD_SENSE_DATA_IS_INVALID);
15411 }
15412 
15413 
15414 
15415 /*
15416  *    Function: sd_decode_sense
15417  *
15418  * Description: Take recovery action(s) when SCSI Sense Data is received.
15419  *
15420  *     Context: Interrupt context.
15421  */
15422 
15423 static void
15424 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15425 	struct scsi_pkt *pktp)
15426 {
15427 	uint8_t sense_key;
15428 
15429 	ASSERT(un != NULL);
15430 	ASSERT(mutex_owned(SD_MUTEX(un)));
15431 	ASSERT(bp != NULL);
15432 	ASSERT(bp != un->un_rqs_bp);
15433 	ASSERT(xp != NULL);
15434 	ASSERT(pktp != NULL);
15435 
15436 	sense_key = scsi_sense_key(xp->xb_sense_data);
15437 
15438 	switch (sense_key) {
15439 	case KEY_NO_SENSE:
15440 		sd_sense_key_no_sense(un, bp, xp, pktp);
15441 		break;
15442 	case KEY_RECOVERABLE_ERROR:
15443 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15444 		    bp, xp, pktp);
15445 		break;
15446 	case KEY_NOT_READY:
15447 		sd_sense_key_not_ready(un, xp->xb_sense_data,
15448 		    bp, xp, pktp);
15449 		break;
15450 	case KEY_MEDIUM_ERROR:
15451 	case KEY_HARDWARE_ERROR:
15452 		sd_sense_key_medium_or_hardware_error(un,
15453 		    xp->xb_sense_data, bp, xp, pktp);
15454 		break;
15455 	case KEY_ILLEGAL_REQUEST:
15456 		sd_sense_key_illegal_request(un, bp, xp, pktp);
15457 		break;
15458 	case KEY_UNIT_ATTENTION:
15459 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15460 		    bp, xp, pktp);
15461 		break;
15462 	case KEY_WRITE_PROTECT:
15463 	case KEY_VOLUME_OVERFLOW:
15464 	case KEY_MISCOMPARE:
15465 		sd_sense_key_fail_command(un, bp, xp, pktp);
15466 		break;
15467 	case KEY_BLANK_CHECK:
15468 		sd_sense_key_blank_check(un, bp, xp, pktp);
15469 		break;
15470 	case KEY_ABORTED_COMMAND:
15471 		sd_sense_key_aborted_command(un, bp, xp, pktp);
15472 		break;
15473 	case KEY_VENDOR_UNIQUE:
15474 	case KEY_COPY_ABORTED:
15475 	case KEY_EQUAL:
15476 	case KEY_RESERVED:
15477 	default:
15478 		sd_sense_key_default(un, xp->xb_sense_data,
15479 		    bp, xp, pktp);
15480 		break;
15481 	}
15482 }
15483 
15484 
15485 /*
15486  *    Function: sd_dump_memory
15487  *
15488  * Description: Debug logging routine to print the contents of a user provided
15489  *		buffer. The output of the buffer is broken up into 256 byte
15490  *		segments due to a size constraint of the scsi_log.
15491  *		implementation.
15492  *
15493  *   Arguments: un - ptr to softstate
15494  *		comp - component mask
15495  *		title - "title" string to preceed data when printed
15496  *		data - ptr to data block to be printed
15497  *		len - size of data block to be printed
15498  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15499  *
15500  *     Context: May be called from interrupt context
15501  */
15502 
15503 #define	SD_DUMP_MEMORY_BUF_SIZE	256
15504 
15505 static char *sd_dump_format_string[] = {
15506 		" 0x%02x",
15507 		" %c"
15508 };
15509 
15510 static void
15511 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15512     int len, int fmt)
15513 {
15514 	int	i, j;
15515 	int	avail_count;
15516 	int	start_offset;
15517 	int	end_offset;
15518 	size_t	entry_len;
15519 	char	*bufp;
15520 	char	*local_buf;
15521 	char	*format_string;
15522 
15523 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15524 
15525 	/*
15526 	 * In the debug version of the driver, this function is called from a
15527 	 * number of places which are NOPs in the release driver.
15528 	 * The debug driver therefore has additional methods of filtering
15529 	 * debug output.
15530 	 */
15531 #ifdef SDDEBUG
15532 	/*
15533 	 * In the debug version of the driver we can reduce the amount of debug
15534 	 * messages by setting sd_error_level to something other than
15535 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15536 	 * sd_component_mask.
15537 	 */
15538 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15539 	    (sd_error_level != SCSI_ERR_ALL)) {
15540 		return;
15541 	}
15542 	if (((sd_component_mask & comp) == 0) ||
15543 	    (sd_error_level != SCSI_ERR_ALL)) {
15544 		return;
15545 	}
15546 #else
15547 	if (sd_error_level != SCSI_ERR_ALL) {
15548 		return;
15549 	}
15550 #endif
15551 
15552 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15553 	bufp = local_buf;
15554 	/*
15555 	 * Available length is the length of local_buf[], minus the
15556 	 * length of the title string, minus one for the ":", minus
15557 	 * one for the newline, minus one for the NULL terminator.
15558 	 * This gives the #bytes available for holding the printed
15559 	 * values from the given data buffer.
15560 	 */
15561 	if (fmt == SD_LOG_HEX) {
15562 		format_string = sd_dump_format_string[0];
15563 	} else /* SD_LOG_CHAR */ {
15564 		format_string = sd_dump_format_string[1];
15565 	}
15566 	/*
15567 	 * Available count is the number of elements from the given
15568 	 * data buffer that we can fit into the available length.
15569 	 * This is based upon the size of the format string used.
15570 	 * Make one entry and find it's size.
15571 	 */
15572 	(void) sprintf(bufp, format_string, data[0]);
15573 	entry_len = strlen(bufp);
15574 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15575 
15576 	j = 0;
15577 	while (j < len) {
15578 		bufp = local_buf;
15579 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15580 		start_offset = j;
15581 
15582 		end_offset = start_offset + avail_count;
15583 
15584 		(void) sprintf(bufp, "%s:", title);
15585 		bufp += strlen(bufp);
15586 		for (i = start_offset; ((i < end_offset) && (j < len));
15587 		    i++, j++) {
15588 			(void) sprintf(bufp, format_string, data[i]);
15589 			bufp += entry_len;
15590 		}
15591 		(void) sprintf(bufp, "\n");
15592 
15593 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15594 	}
15595 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15596 }
15597 
15598 /*
15599  *    Function: sd_print_sense_msg
15600  *
15601  * Description: Log a message based upon the given sense data.
15602  *
15603  *   Arguments: un - ptr to associated softstate
15604  *		bp - ptr to buf(9S) for the command
15605  *		arg - ptr to associate sd_sense_info struct
15606  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15607  *			or SD_NO_RETRY_ISSUED
15608  *
15609  *     Context: May be called from interrupt context
15610  */
15611 
15612 static void
15613 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15614 {
15615 	struct sd_xbuf	*xp;
15616 	struct scsi_pkt	*pktp;
15617 	uint8_t *sensep;
15618 	daddr_t request_blkno;
15619 	diskaddr_t err_blkno;
15620 	int severity;
15621 	int pfa_flag;
15622 	extern struct scsi_key_strings scsi_cmds[];
15623 
15624 	ASSERT(un != NULL);
15625 	ASSERT(mutex_owned(SD_MUTEX(un)));
15626 	ASSERT(bp != NULL);
15627 	xp = SD_GET_XBUF(bp);
15628 	ASSERT(xp != NULL);
15629 	pktp = SD_GET_PKTP(bp);
15630 	ASSERT(pktp != NULL);
15631 	ASSERT(arg != NULL);
15632 
15633 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15634 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15635 
15636 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15637 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15638 		severity = SCSI_ERR_RETRYABLE;
15639 	}
15640 
15641 	/* Use absolute block number for the request block number */
15642 	request_blkno = xp->xb_blkno;
15643 
15644 	/*
15645 	 * Now try to get the error block number from the sense data
15646 	 */
15647 	sensep = xp->xb_sense_data;
15648 
15649 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15650 	    (uint64_t *)&err_blkno)) {
15651 		/*
15652 		 * We retrieved the error block number from the information
15653 		 * portion of the sense data.
15654 		 *
15655 		 * For USCSI commands we are better off using the error
15656 		 * block no. as the requested block no. (This is the best
15657 		 * we can estimate.)
15658 		 */
15659 		if ((SD_IS_BUFIO(xp) == FALSE) &&
15660 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15661 			request_blkno = err_blkno;
15662 		}
15663 	} else {
15664 		/*
15665 		 * Without the es_valid bit set (for fixed format) or an
15666 		 * information descriptor (for descriptor format) we cannot
15667 		 * be certain of the error blkno, so just use the
15668 		 * request_blkno.
15669 		 */
15670 		err_blkno = (diskaddr_t)request_blkno;
15671 	}
15672 
15673 	/*
15674 	 * The following will log the buffer contents for the release driver
15675 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15676 	 * level is set to verbose.
15677 	 */
15678 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
15679 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15680 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15681 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
15682 
15683 	if (pfa_flag == FALSE) {
15684 		/* This is normally only set for USCSI */
15685 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
15686 			return;
15687 		}
15688 
15689 		if ((SD_IS_BUFIO(xp) == TRUE) &&
15690 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
15691 		    (severity < sd_error_level))) {
15692 			return;
15693 		}
15694 	}
15695 
15696 	/*
15697 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
15698 	 */
15699 	if ((SD_IS_LSI(un)) &&
15700 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
15701 	    (scsi_sense_asc(sensep) == 0x94) &&
15702 	    (scsi_sense_ascq(sensep) == 0x01)) {
15703 		un->un_sonoma_failure_count++;
15704 		if (un->un_sonoma_failure_count > 1) {
15705 			return;
15706 		}
15707 	}
15708 
15709 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
15710 	    request_blkno, err_blkno, scsi_cmds,
15711 	    (struct scsi_extended_sense *)sensep,
15712 	    un->un_additional_codes, NULL);
15713 }
15714 
15715 /*
15716  *    Function: sd_sense_key_no_sense
15717  *
15718  * Description: Recovery action when sense data was not received.
15719  *
15720  *     Context: May be called from interrupt context
15721  */
15722 
15723 static void
15724 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
15725 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15726 {
15727 	struct sd_sense_info	si;
15728 
15729 	ASSERT(un != NULL);
15730 	ASSERT(mutex_owned(SD_MUTEX(un)));
15731 	ASSERT(bp != NULL);
15732 	ASSERT(xp != NULL);
15733 	ASSERT(pktp != NULL);
15734 
15735 	si.ssi_severity = SCSI_ERR_FATAL;
15736 	si.ssi_pfa_flag = FALSE;
15737 
15738 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
15739 
15740 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15741 	    &si, EIO, (clock_t)0, NULL);
15742 }
15743 
15744 
15745 /*
15746  *    Function: sd_sense_key_recoverable_error
15747  *
15748  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
15749  *
15750  *     Context: May be called from interrupt context
15751  */
15752 
15753 static void
15754 sd_sense_key_recoverable_error(struct sd_lun *un,
15755 	uint8_t *sense_datap,
15756 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15757 {
15758 	struct sd_sense_info	si;
15759 	uint8_t asc = scsi_sense_asc(sense_datap);
15760 
15761 	ASSERT(un != NULL);
15762 	ASSERT(mutex_owned(SD_MUTEX(un)));
15763 	ASSERT(bp != NULL);
15764 	ASSERT(xp != NULL);
15765 	ASSERT(pktp != NULL);
15766 
15767 	/*
15768 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
15769 	 */
15770 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
15771 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
15772 		si.ssi_severity = SCSI_ERR_INFO;
15773 		si.ssi_pfa_flag = TRUE;
15774 	} else {
15775 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
15776 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
15777 		si.ssi_severity = SCSI_ERR_RECOVERED;
15778 		si.ssi_pfa_flag = FALSE;
15779 	}
15780 
15781 	if (pktp->pkt_resid == 0) {
15782 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
15783 		sd_return_command(un, bp);
15784 		return;
15785 	}
15786 
15787 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15788 	    &si, EIO, (clock_t)0, NULL);
15789 }
15790 
15791 
15792 
15793 
15794 /*
15795  *    Function: sd_sense_key_not_ready
15796  *
15797  * Description: Recovery actions for a SCSI "Not Ready" sense key.
15798  *
15799  *     Context: May be called from interrupt context
15800  */
15801 
15802 static void
15803 sd_sense_key_not_ready(struct sd_lun *un,
15804 	uint8_t *sense_datap,
15805 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
15806 {
15807 	struct sd_sense_info	si;
15808 	uint8_t asc = scsi_sense_asc(sense_datap);
15809 	uint8_t ascq = scsi_sense_ascq(sense_datap);
15810 
15811 	ASSERT(un != NULL);
15812 	ASSERT(mutex_owned(SD_MUTEX(un)));
15813 	ASSERT(bp != NULL);
15814 	ASSERT(xp != NULL);
15815 	ASSERT(pktp != NULL);
15816 
15817 	si.ssi_severity = SCSI_ERR_FATAL;
15818 	si.ssi_pfa_flag = FALSE;
15819 
15820 	/*
15821 	 * Update error stats after first NOT READY error. Disks may have
15822 	 * been powered down and may need to be restarted.  For CDROMs,
15823 	 * report NOT READY errors only if media is present.
15824 	 */
15825 	if ((ISCD(un) && (asc == 0x3A)) ||
15826 	    (xp->xb_nr_retry_count > 0)) {
15827 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15828 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
15829 	}
15830 
15831 	/*
15832 	 * Just fail if the "not ready" retry limit has been reached.
15833 	 */
15834 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
15835 		/* Special check for error message printing for removables. */
15836 		if (un->un_f_has_removable_media && (asc == 0x04) &&
15837 		    (ascq >= 0x04)) {
15838 			si.ssi_severity = SCSI_ERR_ALL;
15839 		}
15840 		goto fail_command;
15841 	}
15842 
15843 	/*
15844 	 * Check the ASC and ASCQ in the sense data as needed, to determine
15845 	 * what to do.
15846 	 */
15847 	switch (asc) {
15848 	case 0x04:	/* LOGICAL UNIT NOT READY */
15849 		/*
15850 		 * disk drives that don't spin up result in a very long delay
15851 		 * in format without warning messages. We will log a message
15852 		 * if the error level is set to verbose.
15853 		 */
15854 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
15855 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15856 			    "logical unit not ready, resetting disk\n");
15857 		}
15858 
15859 		/*
15860 		 * There are different requirements for CDROMs and disks for
15861 		 * the number of retries.  If a CD-ROM is giving this, it is
15862 		 * probably reading TOC and is in the process of getting
15863 		 * ready, so we should keep on trying for a long time to make
15864 		 * sure that all types of media are taken in account (for
15865 		 * some media the drive takes a long time to read TOC).  For
15866 		 * disks we do not want to retry this too many times as this
15867 		 * can cause a long hang in format when the drive refuses to
15868 		 * spin up (a very common failure).
15869 		 */
15870 		switch (ascq) {
15871 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
15872 			/*
15873 			 * Disk drives frequently refuse to spin up which
15874 			 * results in a very long hang in format without
15875 			 * warning messages.
15876 			 *
15877 			 * Note: This code preserves the legacy behavior of
15878 			 * comparing xb_nr_retry_count against zero for fibre
15879 			 * channel targets instead of comparing against the
15880 			 * un_reset_retry_count value.  The reason for this
15881 			 * discrepancy has been so utterly lost beneath the
15882 			 * Sands of Time that even Indiana Jones could not
15883 			 * find it.
15884 			 */
15885 			if (un->un_f_is_fibre == TRUE) {
15886 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
15887 				    (xp->xb_nr_retry_count > 0)) &&
15888 				    (un->un_startstop_timeid == NULL)) {
15889 					scsi_log(SD_DEVINFO(un), sd_label,
15890 					    CE_WARN, "logical unit not ready, "
15891 					    "resetting disk\n");
15892 					sd_reset_target(un, pktp);
15893 				}
15894 			} else {
15895 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
15896 				    (xp->xb_nr_retry_count >
15897 				    un->un_reset_retry_count)) &&
15898 				    (un->un_startstop_timeid == NULL)) {
15899 					scsi_log(SD_DEVINFO(un), sd_label,
15900 					    CE_WARN, "logical unit not ready, "
15901 					    "resetting disk\n");
15902 					sd_reset_target(un, pktp);
15903 				}
15904 			}
15905 			break;
15906 
15907 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
15908 			/*
15909 			 * If the target is in the process of becoming
15910 			 * ready, just proceed with the retry. This can
15911 			 * happen with CD-ROMs that take a long time to
15912 			 * read TOC after a power cycle or reset.
15913 			 */
15914 			goto do_retry;
15915 
15916 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
15917 			break;
15918 
15919 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
15920 			/*
15921 			 * Retries cannot help here so just fail right away.
15922 			 */
15923 			goto fail_command;
15924 
15925 		case 0x88:
15926 			/*
15927 			 * Vendor-unique code for T3/T4: it indicates a
15928 			 * path problem in a mutipathed config, but as far as
15929 			 * the target driver is concerned it equates to a fatal
15930 			 * error, so we should just fail the command right away
15931 			 * (without printing anything to the console). If this
15932 			 * is not a T3/T4, fall thru to the default recovery
15933 			 * action.
15934 			 * T3/T4 is FC only, don't need to check is_fibre
15935 			 */
15936 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
15937 				sd_return_failed_command(un, bp, EIO);
15938 				return;
15939 			}
15940 			/* FALLTHRU */
15941 
15942 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
15943 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
15944 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
15945 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
15946 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
15947 		default:    /* Possible future codes in SCSI spec? */
15948 			/*
15949 			 * For removable-media devices, do not retry if
15950 			 * ASCQ > 2 as these result mostly from USCSI commands
15951 			 * on MMC devices issued to check status of an
15952 			 * operation initiated in immediate mode.  Also for
15953 			 * ASCQ >= 4 do not print console messages as these
15954 			 * mainly represent a user-initiated operation
15955 			 * instead of a system failure.
15956 			 */
15957 			if (un->un_f_has_removable_media) {
15958 				si.ssi_severity = SCSI_ERR_ALL;
15959 				goto fail_command;
15960 			}
15961 			break;
15962 		}
15963 
15964 		/*
15965 		 * As part of our recovery attempt for the NOT READY
15966 		 * condition, we issue a START STOP UNIT command. However
15967 		 * we want to wait for a short delay before attempting this
15968 		 * as there may still be more commands coming back from the
15969 		 * target with the check condition. To do this we use
15970 		 * timeout(9F) to call sd_start_stop_unit_callback() after
15971 		 * the delay interval expires. (sd_start_stop_unit_callback()
15972 		 * dispatches sd_start_stop_unit_task(), which will issue
15973 		 * the actual START STOP UNIT command. The delay interval
15974 		 * is one-half of the delay that we will use to retry the
15975 		 * command that generated the NOT READY condition.
15976 		 *
15977 		 * Note that we could just dispatch sd_start_stop_unit_task()
15978 		 * from here and allow it to sleep for the delay interval,
15979 		 * but then we would be tying up the taskq thread
15980 		 * uncesessarily for the duration of the delay.
15981 		 *
15982 		 * Do not issue the START STOP UNIT if the current command
15983 		 * is already a START STOP UNIT.
15984 		 */
15985 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
15986 			break;
15987 		}
15988 
15989 		/*
15990 		 * Do not schedule the timeout if one is already pending.
15991 		 */
15992 		if (un->un_startstop_timeid != NULL) {
15993 			SD_INFO(SD_LOG_ERROR, un,
15994 			    "sd_sense_key_not_ready: restart already issued to"
15995 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
15996 			    ddi_get_instance(SD_DEVINFO(un)));
15997 			break;
15998 		}
15999 
16000 		/*
16001 		 * Schedule the START STOP UNIT command, then queue the command
16002 		 * for a retry.
16003 		 *
16004 		 * Note: A timeout is not scheduled for this retry because we
16005 		 * want the retry to be serial with the START_STOP_UNIT. The
16006 		 * retry will be started when the START_STOP_UNIT is completed
16007 		 * in sd_start_stop_unit_task.
16008 		 */
16009 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
16010 		    un, SD_BSY_TIMEOUT / 2);
16011 		xp->xb_nr_retry_count++;
16012 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
16013 		return;
16014 
16015 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
16016 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16017 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16018 			    "unit does not respond to selection\n");
16019 		}
16020 		break;
16021 
16022 	case 0x3A:	/* MEDIUM NOT PRESENT */
16023 		if (sd_error_level >= SCSI_ERR_FATAL) {
16024 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16025 			    "Caddy not inserted in drive\n");
16026 		}
16027 
16028 		sr_ejected(un);
16029 		un->un_mediastate = DKIO_EJECTED;
16030 		/* The state has changed, inform the media watch routines */
16031 		cv_broadcast(&un->un_state_cv);
16032 		/* Just fail if no media is present in the drive. */
16033 		goto fail_command;
16034 
16035 	default:
16036 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16037 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
16038 			    "Unit not Ready. Additional sense code 0x%x\n",
16039 			    asc);
16040 		}
16041 		break;
16042 	}
16043 
16044 do_retry:
16045 
16046 	/*
16047 	 * Retry the command, as some targets may report NOT READY for
16048 	 * several seconds after being reset.
16049 	 */
16050 	xp->xb_nr_retry_count++;
16051 	si.ssi_severity = SCSI_ERR_RETRYABLE;
16052 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
16053 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
16054 
16055 	return;
16056 
16057 fail_command:
16058 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16059 	sd_return_failed_command(un, bp, EIO);
16060 }
16061 
16062 
16063 
16064 /*
16065  *    Function: sd_sense_key_medium_or_hardware_error
16066  *
16067  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
16068  *		sense key.
16069  *
16070  *     Context: May be called from interrupt context
16071  */
16072 
16073 static void
16074 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
16075 	uint8_t *sense_datap,
16076 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16077 {
16078 	struct sd_sense_info	si;
16079 	uint8_t sense_key = scsi_sense_key(sense_datap);
16080 	uint8_t asc = scsi_sense_asc(sense_datap);
16081 
16082 	ASSERT(un != NULL);
16083 	ASSERT(mutex_owned(SD_MUTEX(un)));
16084 	ASSERT(bp != NULL);
16085 	ASSERT(xp != NULL);
16086 	ASSERT(pktp != NULL);
16087 
16088 	si.ssi_severity = SCSI_ERR_FATAL;
16089 	si.ssi_pfa_flag = FALSE;
16090 
16091 	if (sense_key == KEY_MEDIUM_ERROR) {
16092 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
16093 	}
16094 
16095 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16096 
16097 	if ((un->un_reset_retry_count != 0) &&
16098 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
16099 		mutex_exit(SD_MUTEX(un));
16100 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
16101 		if (un->un_f_allow_bus_device_reset == TRUE) {
16102 
16103 			boolean_t try_resetting_target = B_TRUE;
16104 
16105 			/*
16106 			 * We need to be able to handle specific ASC when we are
16107 			 * handling a KEY_HARDWARE_ERROR. In particular
16108 			 * taking the default action of resetting the target may
16109 			 * not be the appropriate way to attempt recovery.
16110 			 * Resetting a target because of a single LUN failure
16111 			 * victimizes all LUNs on that target.
16112 			 *
16113 			 * This is true for the LSI arrays, if an LSI
16114 			 * array controller returns an ASC of 0x84 (LUN Dead) we
16115 			 * should trust it.
16116 			 */
16117 
16118 			if (sense_key == KEY_HARDWARE_ERROR) {
16119 				switch (asc) {
16120 				case 0x84:
16121 					if (SD_IS_LSI(un)) {
16122 						try_resetting_target = B_FALSE;
16123 					}
16124 					break;
16125 				default:
16126 					break;
16127 				}
16128 			}
16129 
16130 			if (try_resetting_target == B_TRUE) {
16131 				int reset_retval = 0;
16132 				if (un->un_f_lun_reset_enabled == TRUE) {
16133 					SD_TRACE(SD_LOG_IO_CORE, un,
16134 					    "sd_sense_key_medium_or_hardware_"
16135 					    "error: issuing RESET_LUN\n");
16136 					reset_retval =
16137 					    scsi_reset(SD_ADDRESS(un),
16138 					    RESET_LUN);
16139 				}
16140 				if (reset_retval == 0) {
16141 					SD_TRACE(SD_LOG_IO_CORE, un,
16142 					    "sd_sense_key_medium_or_hardware_"
16143 					    "error: issuing RESET_TARGET\n");
16144 					(void) scsi_reset(SD_ADDRESS(un),
16145 					    RESET_TARGET);
16146 				}
16147 			}
16148 		}
16149 		mutex_enter(SD_MUTEX(un));
16150 	}
16151 
16152 	/*
16153 	 * This really ought to be a fatal error, but we will retry anyway
16154 	 * as some drives report this as a spurious error.
16155 	 */
16156 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16157 	    &si, EIO, (clock_t)0, NULL);
16158 }
16159 
16160 
16161 
16162 /*
16163  *    Function: sd_sense_key_illegal_request
16164  *
16165  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16166  *
16167  *     Context: May be called from interrupt context
16168  */
16169 
16170 static void
16171 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16172 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16173 {
16174 	struct sd_sense_info	si;
16175 
16176 	ASSERT(un != NULL);
16177 	ASSERT(mutex_owned(SD_MUTEX(un)));
16178 	ASSERT(bp != NULL);
16179 	ASSERT(xp != NULL);
16180 	ASSERT(pktp != NULL);
16181 
16182 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16183 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16184 
16185 	si.ssi_severity = SCSI_ERR_INFO;
16186 	si.ssi_pfa_flag = FALSE;
16187 
16188 	/* Pointless to retry if the target thinks it's an illegal request */
16189 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16190 	sd_return_failed_command(un, bp, EIO);
16191 }
16192 
16193 
16194 
16195 
16196 /*
16197  *    Function: sd_sense_key_unit_attention
16198  *
16199  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16200  *
16201  *     Context: May be called from interrupt context
16202  */
16203 
16204 static void
16205 sd_sense_key_unit_attention(struct sd_lun *un,
16206 	uint8_t *sense_datap,
16207 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16208 {
16209 	/*
16210 	 * For UNIT ATTENTION we allow retries for one minute. Devices
16211 	 * like Sonoma can return UNIT ATTENTION close to a minute
16212 	 * under certain conditions.
16213 	 */
16214 	int	retry_check_flag = SD_RETRIES_UA;
16215 	boolean_t	kstat_updated = B_FALSE;
16216 	struct	sd_sense_info		si;
16217 	uint8_t asc = scsi_sense_asc(sense_datap);
16218 
16219 	ASSERT(un != NULL);
16220 	ASSERT(mutex_owned(SD_MUTEX(un)));
16221 	ASSERT(bp != NULL);
16222 	ASSERT(xp != NULL);
16223 	ASSERT(pktp != NULL);
16224 
16225 	si.ssi_severity = SCSI_ERR_INFO;
16226 	si.ssi_pfa_flag = FALSE;
16227 
16228 
16229 	switch (asc) {
16230 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16231 		if (sd_report_pfa != 0) {
16232 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16233 			si.ssi_pfa_flag = TRUE;
16234 			retry_check_flag = SD_RETRIES_STANDARD;
16235 			goto do_retry;
16236 		}
16237 
16238 		break;
16239 
16240 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16241 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16242 			un->un_resvd_status |=
16243 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16244 		}
16245 #ifdef _LP64
16246 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16247 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16248 			    un, KM_NOSLEEP) == 0) {
16249 				/*
16250 				 * If we can't dispatch the task we'll just
16251 				 * live without descriptor sense.  We can
16252 				 * try again on the next "unit attention"
16253 				 */
16254 				SD_ERROR(SD_LOG_ERROR, un,
16255 				    "sd_sense_key_unit_attention: "
16256 				    "Could not dispatch "
16257 				    "sd_reenable_dsense_task\n");
16258 			}
16259 		}
16260 #endif /* _LP64 */
16261 		/* FALLTHRU */
16262 
16263 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16264 		if (!un->un_f_has_removable_media) {
16265 			break;
16266 		}
16267 
16268 		/*
16269 		 * When we get a unit attention from a removable-media device,
16270 		 * it may be in a state that will take a long time to recover
16271 		 * (e.g., from a reset).  Since we are executing in interrupt
16272 		 * context here, we cannot wait around for the device to come
16273 		 * back. So hand this command off to sd_media_change_task()
16274 		 * for deferred processing under taskq thread context. (Note
16275 		 * that the command still may be failed if a problem is
16276 		 * encountered at a later time.)
16277 		 */
16278 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16279 		    KM_NOSLEEP) == 0) {
16280 			/*
16281 			 * Cannot dispatch the request so fail the command.
16282 			 */
16283 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16284 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16285 			si.ssi_severity = SCSI_ERR_FATAL;
16286 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16287 			sd_return_failed_command(un, bp, EIO);
16288 		}
16289 
16290 		/*
16291 		 * If failed to dispatch sd_media_change_task(), we already
16292 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16293 		 * we should update kstat later if it encounters an error. So,
16294 		 * we update kstat_updated flag here.
16295 		 */
16296 		kstat_updated = B_TRUE;
16297 
16298 		/*
16299 		 * Either the command has been successfully dispatched to a
16300 		 * task Q for retrying, or the dispatch failed. In either case
16301 		 * do NOT retry again by calling sd_retry_command. This sets up
16302 		 * two retries of the same command and when one completes and
16303 		 * frees the resources the other will access freed memory,
16304 		 * a bad thing.
16305 		 */
16306 		return;
16307 
16308 	default:
16309 		break;
16310 	}
16311 
16312 	/*
16313 	 * Update kstat if we haven't done that.
16314 	 */
16315 	if (!kstat_updated) {
16316 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16317 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16318 	}
16319 
16320 do_retry:
16321 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16322 	    EIO, SD_UA_RETRY_DELAY, NULL);
16323 }
16324 
16325 
16326 
16327 /*
16328  *    Function: sd_sense_key_fail_command
16329  *
16330  * Description: Use to fail a command when we don't like the sense key that
16331  *		was returned.
16332  *
16333  *     Context: May be called from interrupt context
16334  */
16335 
16336 static void
16337 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16338 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16339 {
16340 	struct sd_sense_info	si;
16341 
16342 	ASSERT(un != NULL);
16343 	ASSERT(mutex_owned(SD_MUTEX(un)));
16344 	ASSERT(bp != NULL);
16345 	ASSERT(xp != NULL);
16346 	ASSERT(pktp != NULL);
16347 
16348 	si.ssi_severity = SCSI_ERR_FATAL;
16349 	si.ssi_pfa_flag = FALSE;
16350 
16351 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16352 	sd_return_failed_command(un, bp, EIO);
16353 }
16354 
16355 
16356 
16357 /*
16358  *    Function: sd_sense_key_blank_check
16359  *
16360  * Description: Recovery actions for a SCSI "Blank Check" sense key.
16361  *		Has no monetary connotation.
16362  *
16363  *     Context: May be called from interrupt context
16364  */
16365 
16366 static void
16367 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16368 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16369 {
16370 	struct sd_sense_info	si;
16371 
16372 	ASSERT(un != NULL);
16373 	ASSERT(mutex_owned(SD_MUTEX(un)));
16374 	ASSERT(bp != NULL);
16375 	ASSERT(xp != NULL);
16376 	ASSERT(pktp != NULL);
16377 
16378 	/*
16379 	 * Blank check is not fatal for removable devices, therefore
16380 	 * it does not require a console message.
16381 	 */
16382 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16383 	    SCSI_ERR_FATAL;
16384 	si.ssi_pfa_flag = FALSE;
16385 
16386 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16387 	sd_return_failed_command(un, bp, EIO);
16388 }
16389 
16390 
16391 
16392 
16393 /*
16394  *    Function: sd_sense_key_aborted_command
16395  *
16396  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16397  *
16398  *     Context: May be called from interrupt context
16399  */
16400 
16401 static void
16402 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16403 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16404 {
16405 	struct sd_sense_info	si;
16406 
16407 	ASSERT(un != NULL);
16408 	ASSERT(mutex_owned(SD_MUTEX(un)));
16409 	ASSERT(bp != NULL);
16410 	ASSERT(xp != NULL);
16411 	ASSERT(pktp != NULL);
16412 
16413 	si.ssi_severity = SCSI_ERR_FATAL;
16414 	si.ssi_pfa_flag = FALSE;
16415 
16416 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16417 
16418 	/*
16419 	 * This really ought to be a fatal error, but we will retry anyway
16420 	 * as some drives report this as a spurious error.
16421 	 */
16422 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16423 	    &si, EIO, drv_usectohz(100000), NULL);
16424 }
16425 
16426 
16427 
16428 /*
16429  *    Function: sd_sense_key_default
16430  *
16431  * Description: Default recovery action for several SCSI sense keys (basically
16432  *		attempts a retry).
16433  *
16434  *     Context: May be called from interrupt context
16435  */
16436 
16437 static void
16438 sd_sense_key_default(struct sd_lun *un,
16439 	uint8_t *sense_datap,
16440 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16441 {
16442 	struct sd_sense_info	si;
16443 	uint8_t sense_key = scsi_sense_key(sense_datap);
16444 
16445 	ASSERT(un != NULL);
16446 	ASSERT(mutex_owned(SD_MUTEX(un)));
16447 	ASSERT(bp != NULL);
16448 	ASSERT(xp != NULL);
16449 	ASSERT(pktp != NULL);
16450 
16451 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16452 
16453 	/*
16454 	 * Undecoded sense key.	Attempt retries and hope that will fix
16455 	 * the problem.  Otherwise, we're dead.
16456 	 */
16457 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16458 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16459 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16460 	}
16461 
16462 	si.ssi_severity = SCSI_ERR_FATAL;
16463 	si.ssi_pfa_flag = FALSE;
16464 
16465 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16466 	    &si, EIO, (clock_t)0, NULL);
16467 }
16468 
16469 
16470 
16471 /*
16472  *    Function: sd_print_retry_msg
16473  *
16474  * Description: Print a message indicating the retry action being taken.
16475  *
16476  *   Arguments: un - ptr to associated softstate
16477  *		bp - ptr to buf(9S) for the command
16478  *		arg - not used.
16479  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16480  *			or SD_NO_RETRY_ISSUED
16481  *
16482  *     Context: May be called from interrupt context
16483  */
16484 /* ARGSUSED */
16485 static void
16486 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16487 {
16488 	struct sd_xbuf	*xp;
16489 	struct scsi_pkt *pktp;
16490 	char *reasonp;
16491 	char *msgp;
16492 
16493 	ASSERT(un != NULL);
16494 	ASSERT(mutex_owned(SD_MUTEX(un)));
16495 	ASSERT(bp != NULL);
16496 	pktp = SD_GET_PKTP(bp);
16497 	ASSERT(pktp != NULL);
16498 	xp = SD_GET_XBUF(bp);
16499 	ASSERT(xp != NULL);
16500 
16501 	ASSERT(!mutex_owned(&un->un_pm_mutex));
16502 	mutex_enter(&un->un_pm_mutex);
16503 	if ((un->un_state == SD_STATE_SUSPENDED) ||
16504 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16505 	    (pktp->pkt_flags & FLAG_SILENT)) {
16506 		mutex_exit(&un->un_pm_mutex);
16507 		goto update_pkt_reason;
16508 	}
16509 	mutex_exit(&un->un_pm_mutex);
16510 
16511 	/*
16512 	 * Suppress messages if they are all the same pkt_reason; with
16513 	 * TQ, many (up to 256) are returned with the same pkt_reason.
16514 	 * If we are in panic, then suppress the retry messages.
16515 	 */
16516 	switch (flag) {
16517 	case SD_NO_RETRY_ISSUED:
16518 		msgp = "giving up";
16519 		break;
16520 	case SD_IMMEDIATE_RETRY_ISSUED:
16521 	case SD_DELAYED_RETRY_ISSUED:
16522 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16523 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16524 		    (sd_error_level != SCSI_ERR_ALL))) {
16525 			return;
16526 		}
16527 		msgp = "retrying command";
16528 		break;
16529 	default:
16530 		goto update_pkt_reason;
16531 	}
16532 
16533 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16534 	    scsi_rname(pktp->pkt_reason));
16535 
16536 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16537 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16538 
16539 update_pkt_reason:
16540 	/*
16541 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16542 	 * This is to prevent multiple console messages for the same failure
16543 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16544 	 * when the command is retried successfully because there still may be
16545 	 * more commands coming back with the same value of pktp->pkt_reason.
16546 	 */
16547 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16548 		un->un_last_pkt_reason = pktp->pkt_reason;
16549 	}
16550 }
16551 
16552 
16553 /*
16554  *    Function: sd_print_cmd_incomplete_msg
16555  *
16556  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16557  *
16558  *   Arguments: un - ptr to associated softstate
16559  *		bp - ptr to buf(9S) for the command
16560  *		arg - passed to sd_print_retry_msg()
16561  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16562  *			or SD_NO_RETRY_ISSUED
16563  *
16564  *     Context: May be called from interrupt context
16565  */
16566 
16567 static void
16568 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16569 	int code)
16570 {
16571 	dev_info_t	*dip;
16572 
16573 	ASSERT(un != NULL);
16574 	ASSERT(mutex_owned(SD_MUTEX(un)));
16575 	ASSERT(bp != NULL);
16576 
16577 	switch (code) {
16578 	case SD_NO_RETRY_ISSUED:
16579 		/* Command was failed. Someone turned off this target? */
16580 		if (un->un_state != SD_STATE_OFFLINE) {
16581 			/*
16582 			 * Suppress message if we are detaching and
16583 			 * device has been disconnected
16584 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16585 			 * private interface and not part of the DDI
16586 			 */
16587 			dip = un->un_sd->sd_dev;
16588 			if (!(DEVI_IS_DETACHING(dip) &&
16589 			    DEVI_IS_DEVICE_REMOVED(dip))) {
16590 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16591 				"disk not responding to selection\n");
16592 			}
16593 			New_state(un, SD_STATE_OFFLINE);
16594 		}
16595 		break;
16596 
16597 	case SD_DELAYED_RETRY_ISSUED:
16598 	case SD_IMMEDIATE_RETRY_ISSUED:
16599 	default:
16600 		/* Command was successfully queued for retry */
16601 		sd_print_retry_msg(un, bp, arg, code);
16602 		break;
16603 	}
16604 }
16605 
16606 
16607 /*
16608  *    Function: sd_pkt_reason_cmd_incomplete
16609  *
16610  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16611  *
16612  *     Context: May be called from interrupt context
16613  */
16614 
16615 static void
16616 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16617 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16618 {
16619 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16620 
16621 	ASSERT(un != NULL);
16622 	ASSERT(mutex_owned(SD_MUTEX(un)));
16623 	ASSERT(bp != NULL);
16624 	ASSERT(xp != NULL);
16625 	ASSERT(pktp != NULL);
16626 
16627 	/* Do not do a reset if selection did not complete */
16628 	/* Note: Should this not just check the bit? */
16629 	if (pktp->pkt_state != STATE_GOT_BUS) {
16630 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16631 		sd_reset_target(un, pktp);
16632 	}
16633 
16634 	/*
16635 	 * If the target was not successfully selected, then set
16636 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16637 	 * with the target, and further retries and/or commands are
16638 	 * likely to take a long time.
16639 	 */
16640 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16641 		flag |= SD_RETRIES_FAILFAST;
16642 	}
16643 
16644 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16645 
16646 	sd_retry_command(un, bp, flag,
16647 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16648 }
16649 
16650 
16651 
16652 /*
16653  *    Function: sd_pkt_reason_cmd_tran_err
16654  *
16655  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16656  *
16657  *     Context: May be called from interrupt context
16658  */
16659 
16660 static void
16661 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
16662 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16663 {
16664 	ASSERT(un != NULL);
16665 	ASSERT(mutex_owned(SD_MUTEX(un)));
16666 	ASSERT(bp != NULL);
16667 	ASSERT(xp != NULL);
16668 	ASSERT(pktp != NULL);
16669 
16670 	/*
16671 	 * Do not reset if we got a parity error, or if
16672 	 * selection did not complete.
16673 	 */
16674 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16675 	/* Note: Should this not just check the bit for pkt_state? */
16676 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
16677 	    (pktp->pkt_state != STATE_GOT_BUS)) {
16678 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16679 		sd_reset_target(un, pktp);
16680 	}
16681 
16682 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16683 
16684 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16685 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16686 }
16687 
16688 
16689 
16690 /*
16691  *    Function: sd_pkt_reason_cmd_reset
16692  *
16693  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
16694  *
16695  *     Context: May be called from interrupt context
16696  */
16697 
16698 static void
16699 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
16700 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16701 {
16702 	ASSERT(un != NULL);
16703 	ASSERT(mutex_owned(SD_MUTEX(un)));
16704 	ASSERT(bp != NULL);
16705 	ASSERT(xp != NULL);
16706 	ASSERT(pktp != NULL);
16707 
16708 	/* The target may still be running the command, so try to reset. */
16709 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16710 	sd_reset_target(un, pktp);
16711 
16712 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16713 
16714 	/*
16715 	 * If pkt_reason is CMD_RESET chances are that this pkt got
16716 	 * reset because another target on this bus caused it. The target
16717 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16718 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16719 	 */
16720 
16721 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16722 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16723 }
16724 
16725 
16726 
16727 
16728 /*
16729  *    Function: sd_pkt_reason_cmd_aborted
16730  *
16731  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
16732  *
16733  *     Context: May be called from interrupt context
16734  */
16735 
16736 static void
16737 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
16738 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16739 {
16740 	ASSERT(un != NULL);
16741 	ASSERT(mutex_owned(SD_MUTEX(un)));
16742 	ASSERT(bp != NULL);
16743 	ASSERT(xp != NULL);
16744 	ASSERT(pktp != NULL);
16745 
16746 	/* The target may still be running the command, so try to reset. */
16747 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16748 	sd_reset_target(un, pktp);
16749 
16750 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16751 
16752 	/*
16753 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
16754 	 * aborted because another target on this bus caused it. The target
16755 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16756 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16757 	 */
16758 
16759 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16760 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16761 }
16762 
16763 
16764 
16765 /*
16766  *    Function: sd_pkt_reason_cmd_timeout
16767  *
16768  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
16769  *
16770  *     Context: May be called from interrupt context
16771  */
16772 
16773 static void
16774 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
16775 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16776 {
16777 	ASSERT(un != NULL);
16778 	ASSERT(mutex_owned(SD_MUTEX(un)));
16779 	ASSERT(bp != NULL);
16780 	ASSERT(xp != NULL);
16781 	ASSERT(pktp != NULL);
16782 
16783 
16784 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16785 	sd_reset_target(un, pktp);
16786 
16787 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16788 
16789 	/*
16790 	 * A command timeout indicates that we could not establish
16791 	 * communication with the target, so set SD_RETRIES_FAILFAST
16792 	 * as further retries/commands are likely to take a long time.
16793 	 */
16794 	sd_retry_command(un, bp,
16795 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
16796 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16797 }
16798 
16799 
16800 
16801 /*
16802  *    Function: sd_pkt_reason_cmd_unx_bus_free
16803  *
16804  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
16805  *
16806  *     Context: May be called from interrupt context
16807  */
16808 
16809 static void
16810 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
16811 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16812 {
16813 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
16814 
16815 	ASSERT(un != NULL);
16816 	ASSERT(mutex_owned(SD_MUTEX(un)));
16817 	ASSERT(bp != NULL);
16818 	ASSERT(xp != NULL);
16819 	ASSERT(pktp != NULL);
16820 
16821 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16822 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16823 
16824 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
16825 	    sd_print_retry_msg : NULL;
16826 
16827 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16828 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16829 }
16830 
16831 
16832 /*
16833  *    Function: sd_pkt_reason_cmd_tag_reject
16834  *
16835  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
16836  *
16837  *     Context: May be called from interrupt context
16838  */
16839 
16840 static void
16841 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
16842 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16843 {
16844 	ASSERT(un != NULL);
16845 	ASSERT(mutex_owned(SD_MUTEX(un)));
16846 	ASSERT(bp != NULL);
16847 	ASSERT(xp != NULL);
16848 	ASSERT(pktp != NULL);
16849 
16850 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16851 	pktp->pkt_flags = 0;
16852 	un->un_tagflags = 0;
16853 	if (un->un_f_opt_queueing == TRUE) {
16854 		un->un_throttle = min(un->un_throttle, 3);
16855 	} else {
16856 		un->un_throttle = 1;
16857 	}
16858 	mutex_exit(SD_MUTEX(un));
16859 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
16860 	mutex_enter(SD_MUTEX(un));
16861 
16862 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16863 
16864 	/* Legacy behavior not to check retry counts here. */
16865 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
16866 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16867 }
16868 
16869 
16870 /*
16871  *    Function: sd_pkt_reason_default
16872  *
16873  * Description: Default recovery actions for SCSA pkt_reason values that
16874  *		do not have more explicit recovery actions.
16875  *
16876  *     Context: May be called from interrupt context
16877  */
16878 
16879 static void
16880 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
16881 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16882 {
16883 	ASSERT(un != NULL);
16884 	ASSERT(mutex_owned(SD_MUTEX(un)));
16885 	ASSERT(bp != NULL);
16886 	ASSERT(xp != NULL);
16887 	ASSERT(pktp != NULL);
16888 
16889 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16890 	sd_reset_target(un, pktp);
16891 
16892 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16893 
16894 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16895 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16896 }
16897 
16898 
16899 
16900 /*
16901  *    Function: sd_pkt_status_check_condition
16902  *
16903  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
16904  *
16905  *     Context: May be called from interrupt context
16906  */
16907 
16908 static void
16909 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
16910 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16911 {
16912 	ASSERT(un != NULL);
16913 	ASSERT(mutex_owned(SD_MUTEX(un)));
16914 	ASSERT(bp != NULL);
16915 	ASSERT(xp != NULL);
16916 	ASSERT(pktp != NULL);
16917 
16918 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
16919 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
16920 
16921 	/*
16922 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
16923 	 * command will be retried after the request sense). Otherwise, retry
16924 	 * the command. Note: we are issuing the request sense even though the
16925 	 * retry limit may have been reached for the failed command.
16926 	 */
16927 	if (un->un_f_arq_enabled == FALSE) {
16928 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
16929 		    "no ARQ, sending request sense command\n");
16930 		sd_send_request_sense_command(un, bp, pktp);
16931 	} else {
16932 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
16933 		    "ARQ,retrying request sense command\n");
16934 #if defined(__i386) || defined(__amd64)
16935 		/*
16936 		 * The SD_RETRY_DELAY value need to be adjusted here
16937 		 * when SD_RETRY_DELAY change in sddef.h
16938 		 */
16939 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
16940 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
16941 		    NULL);
16942 #else
16943 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
16944 		    EIO, SD_RETRY_DELAY, NULL);
16945 #endif
16946 	}
16947 
16948 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
16949 }
16950 
16951 
16952 /*
16953  *    Function: sd_pkt_status_busy
16954  *
16955  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
16956  *
16957  *     Context: May be called from interrupt context
16958  */
16959 
16960 static void
16961 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16962 	struct scsi_pkt *pktp)
16963 {
16964 	ASSERT(un != NULL);
16965 	ASSERT(mutex_owned(SD_MUTEX(un)));
16966 	ASSERT(bp != NULL);
16967 	ASSERT(xp != NULL);
16968 	ASSERT(pktp != NULL);
16969 
16970 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16971 	    "sd_pkt_status_busy: entry\n");
16972 
16973 	/* If retries are exhausted, just fail the command. */
16974 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
16975 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16976 		    "device busy too long\n");
16977 		sd_return_failed_command(un, bp, EIO);
16978 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16979 		    "sd_pkt_status_busy: exit\n");
16980 		return;
16981 	}
16982 	xp->xb_retry_count++;
16983 
16984 	/*
16985 	 * Try to reset the target. However, we do not want to perform
16986 	 * more than one reset if the device continues to fail. The reset
16987 	 * will be performed when the retry count reaches the reset
16988 	 * threshold.  This threshold should be set such that at least
16989 	 * one retry is issued before the reset is performed.
16990 	 */
16991 	if (xp->xb_retry_count ==
16992 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
16993 		int rval = 0;
16994 		mutex_exit(SD_MUTEX(un));
16995 		if (un->un_f_allow_bus_device_reset == TRUE) {
16996 			/*
16997 			 * First try to reset the LUN; if we cannot then
16998 			 * try to reset the target.
16999 			 */
17000 			if (un->un_f_lun_reset_enabled == TRUE) {
17001 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17002 				    "sd_pkt_status_busy: RESET_LUN\n");
17003 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17004 			}
17005 			if (rval == 0) {
17006 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17007 				    "sd_pkt_status_busy: RESET_TARGET\n");
17008 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17009 			}
17010 		}
17011 		if (rval == 0) {
17012 			/*
17013 			 * If the RESET_LUN and/or RESET_TARGET failed,
17014 			 * try RESET_ALL
17015 			 */
17016 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17017 			    "sd_pkt_status_busy: RESET_ALL\n");
17018 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
17019 		}
17020 		mutex_enter(SD_MUTEX(un));
17021 		if (rval == 0) {
17022 			/*
17023 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
17024 			 * At this point we give up & fail the command.
17025 			 */
17026 			sd_return_failed_command(un, bp, EIO);
17027 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17028 			    "sd_pkt_status_busy: exit (failed cmd)\n");
17029 			return;
17030 		}
17031 	}
17032 
17033 	/*
17034 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
17035 	 * we have already checked the retry counts above.
17036 	 */
17037 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
17038 	    EIO, SD_BSY_TIMEOUT, NULL);
17039 
17040 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17041 	    "sd_pkt_status_busy: exit\n");
17042 }
17043 
17044 
17045 /*
17046  *    Function: sd_pkt_status_reservation_conflict
17047  *
17048  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
17049  *		command status.
17050  *
17051  *     Context: May be called from interrupt context
17052  */
17053 
17054 static void
17055 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
17056 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17057 {
17058 	ASSERT(un != NULL);
17059 	ASSERT(mutex_owned(SD_MUTEX(un)));
17060 	ASSERT(bp != NULL);
17061 	ASSERT(xp != NULL);
17062 	ASSERT(pktp != NULL);
17063 
17064 	/*
17065 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
17066 	 * conflict could be due to various reasons like incorrect keys, not
17067 	 * registered or not reserved etc. So, we return EACCES to the caller.
17068 	 */
17069 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
17070 		int cmd = SD_GET_PKT_OPCODE(pktp);
17071 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
17072 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
17073 			sd_return_failed_command(un, bp, EACCES);
17074 			return;
17075 		}
17076 	}
17077 
17078 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
17079 
17080 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
17081 		if (sd_failfast_enable != 0) {
17082 			/* By definition, we must panic here.... */
17083 			sd_panic_for_res_conflict(un);
17084 			/*NOTREACHED*/
17085 		}
17086 		SD_ERROR(SD_LOG_IO, un,
17087 		    "sd_handle_resv_conflict: Disk Reserved\n");
17088 		sd_return_failed_command(un, bp, EACCES);
17089 		return;
17090 	}
17091 
17092 	/*
17093 	 * 1147670: retry only if sd_retry_on_reservation_conflict
17094 	 * property is set (default is 1). Retries will not succeed
17095 	 * on a disk reserved by another initiator. HA systems
17096 	 * may reset this via sd.conf to avoid these retries.
17097 	 *
17098 	 * Note: The legacy return code for this failure is EIO, however EACCES
17099 	 * seems more appropriate for a reservation conflict.
17100 	 */
17101 	if (sd_retry_on_reservation_conflict == 0) {
17102 		SD_ERROR(SD_LOG_IO, un,
17103 		    "sd_handle_resv_conflict: Device Reserved\n");
17104 		sd_return_failed_command(un, bp, EIO);
17105 		return;
17106 	}
17107 
17108 	/*
17109 	 * Retry the command if we can.
17110 	 *
17111 	 * Note: The legacy return code for this failure is EIO, however EACCES
17112 	 * seems more appropriate for a reservation conflict.
17113 	 */
17114 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17115 	    (clock_t)2, NULL);
17116 }
17117 
17118 
17119 
17120 /*
17121  *    Function: sd_pkt_status_qfull
17122  *
17123  * Description: Handle a QUEUE FULL condition from the target.  This can
17124  *		occur if the HBA does not handle the queue full condition.
17125  *		(Basically this means third-party HBAs as Sun HBAs will
17126  *		handle the queue full condition.)  Note that if there are
17127  *		some commands already in the transport, then the queue full
17128  *		has occurred because the queue for this nexus is actually
17129  *		full. If there are no commands in the transport, then the
17130  *		queue full is resulting from some other initiator or lun
17131  *		consuming all the resources at the target.
17132  *
17133  *     Context: May be called from interrupt context
17134  */
17135 
17136 static void
17137 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17138 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17139 {
17140 	ASSERT(un != NULL);
17141 	ASSERT(mutex_owned(SD_MUTEX(un)));
17142 	ASSERT(bp != NULL);
17143 	ASSERT(xp != NULL);
17144 	ASSERT(pktp != NULL);
17145 
17146 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17147 	    "sd_pkt_status_qfull: entry\n");
17148 
17149 	/*
17150 	 * Just lower the QFULL throttle and retry the command.  Note that
17151 	 * we do not limit the number of retries here.
17152 	 */
17153 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17154 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17155 	    SD_RESTART_TIMEOUT, NULL);
17156 
17157 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17158 	    "sd_pkt_status_qfull: exit\n");
17159 }
17160 
17161 
17162 /*
17163  *    Function: sd_reset_target
17164  *
17165  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17166  *		RESET_TARGET, or RESET_ALL.
17167  *
17168  *     Context: May be called under interrupt context.
17169  */
17170 
17171 static void
17172 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17173 {
17174 	int rval = 0;
17175 
17176 	ASSERT(un != NULL);
17177 	ASSERT(mutex_owned(SD_MUTEX(un)));
17178 	ASSERT(pktp != NULL);
17179 
17180 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17181 
17182 	/*
17183 	 * No need to reset if the transport layer has already done so.
17184 	 */
17185 	if ((pktp->pkt_statistics &
17186 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17187 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17188 		    "sd_reset_target: no reset\n");
17189 		return;
17190 	}
17191 
17192 	mutex_exit(SD_MUTEX(un));
17193 
17194 	if (un->un_f_allow_bus_device_reset == TRUE) {
17195 		if (un->un_f_lun_reset_enabled == TRUE) {
17196 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17197 			    "sd_reset_target: RESET_LUN\n");
17198 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17199 		}
17200 		if (rval == 0) {
17201 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17202 			    "sd_reset_target: RESET_TARGET\n");
17203 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17204 		}
17205 	}
17206 
17207 	if (rval == 0) {
17208 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17209 		    "sd_reset_target: RESET_ALL\n");
17210 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17211 	}
17212 
17213 	mutex_enter(SD_MUTEX(un));
17214 
17215 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17216 }
17217 
17218 
17219 /*
17220  *    Function: sd_media_change_task
17221  *
17222  * Description: Recovery action for CDROM to become available.
17223  *
17224  *     Context: Executes in a taskq() thread context
17225  */
17226 
17227 static void
17228 sd_media_change_task(void *arg)
17229 {
17230 	struct	scsi_pkt	*pktp = arg;
17231 	struct	sd_lun		*un;
17232 	struct	buf		*bp;
17233 	struct	sd_xbuf		*xp;
17234 	int	err		= 0;
17235 	int	retry_count	= 0;
17236 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17237 	struct	sd_sense_info	si;
17238 
17239 	ASSERT(pktp != NULL);
17240 	bp = (struct buf *)pktp->pkt_private;
17241 	ASSERT(bp != NULL);
17242 	xp = SD_GET_XBUF(bp);
17243 	ASSERT(xp != NULL);
17244 	un = SD_GET_UN(bp);
17245 	ASSERT(un != NULL);
17246 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17247 	ASSERT(un->un_f_monitor_media_state);
17248 
17249 	si.ssi_severity = SCSI_ERR_INFO;
17250 	si.ssi_pfa_flag = FALSE;
17251 
17252 	/*
17253 	 * When a reset is issued on a CDROM, it takes a long time to
17254 	 * recover. First few attempts to read capacity and other things
17255 	 * related to handling unit attention fail (with a ASC 0x4 and
17256 	 * ASCQ 0x1). In that case we want to do enough retries and we want
17257 	 * to limit the retries in other cases of genuine failures like
17258 	 * no media in drive.
17259 	 */
17260 	while (retry_count++ < retry_limit) {
17261 		if ((err = sd_handle_mchange(un)) == 0) {
17262 			break;
17263 		}
17264 		if (err == EAGAIN) {
17265 			retry_limit = SD_UNIT_ATTENTION_RETRY;
17266 		}
17267 		/* Sleep for 0.5 sec. & try again */
17268 		delay(drv_usectohz(500000));
17269 	}
17270 
17271 	/*
17272 	 * Dispatch (retry or fail) the original command here,
17273 	 * along with appropriate console messages....
17274 	 *
17275 	 * Must grab the mutex before calling sd_retry_command,
17276 	 * sd_print_sense_msg and sd_return_failed_command.
17277 	 */
17278 	mutex_enter(SD_MUTEX(un));
17279 	if (err != SD_CMD_SUCCESS) {
17280 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17281 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17282 		si.ssi_severity = SCSI_ERR_FATAL;
17283 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17284 		sd_return_failed_command(un, bp, EIO);
17285 	} else {
17286 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17287 		    &si, EIO, (clock_t)0, NULL);
17288 	}
17289 	mutex_exit(SD_MUTEX(un));
17290 }
17291 
17292 
17293 
17294 /*
17295  *    Function: sd_handle_mchange
17296  *
17297  * Description: Perform geometry validation & other recovery when CDROM
17298  *		has been removed from drive.
17299  *
17300  * Return Code: 0 for success
17301  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17302  *		sd_send_scsi_READ_CAPACITY()
17303  *
17304  *     Context: Executes in a taskq() thread context
17305  */
17306 
17307 static int
17308 sd_handle_mchange(struct sd_lun *un)
17309 {
17310 	uint64_t	capacity;
17311 	uint32_t	lbasize;
17312 	int		rval;
17313 
17314 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17315 	ASSERT(un->un_f_monitor_media_state);
17316 
17317 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17318 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17319 		return (rval);
17320 	}
17321 
17322 	mutex_enter(SD_MUTEX(un));
17323 	sd_update_block_info(un, lbasize, capacity);
17324 
17325 	if (un->un_errstats != NULL) {
17326 		struct	sd_errstats *stp =
17327 		    (struct sd_errstats *)un->un_errstats->ks_data;
17328 		stp->sd_capacity.value.ui64 = (uint64_t)
17329 		    ((uint64_t)un->un_blockcount *
17330 		    (uint64_t)un->un_tgt_blocksize);
17331 	}
17332 
17333 
17334 	/*
17335 	 * Check if the media in the device is writable or not
17336 	 */
17337 	if (ISCD(un))
17338 		sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17339 
17340 	/*
17341 	 * Note: Maybe let the strategy/partitioning chain worry about getting
17342 	 * valid geometry.
17343 	 */
17344 	mutex_exit(SD_MUTEX(un));
17345 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17346 
17347 
17348 	if (cmlb_validate(un->un_cmlbhandle, 0,
17349 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17350 		return (EIO);
17351 	} else {
17352 		if (un->un_f_pkstats_enabled) {
17353 			sd_set_pstats(un);
17354 			SD_TRACE(SD_LOG_IO_PARTITION, un,
17355 			    "sd_handle_mchange: un:0x%p pstats created and "
17356 			    "set\n", un);
17357 		}
17358 	}
17359 
17360 
17361 	/*
17362 	 * Try to lock the door
17363 	 */
17364 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17365 	    SD_PATH_DIRECT_PRIORITY));
17366 }
17367 
17368 
17369 /*
17370  *    Function: sd_send_scsi_DOORLOCK
17371  *
17372  * Description: Issue the scsi DOOR LOCK command
17373  *
17374  *   Arguments: un    - pointer to driver soft state (unit) structure for
17375  *			this target.
17376  *		flag  - SD_REMOVAL_ALLOW
17377  *			SD_REMOVAL_PREVENT
17378  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17379  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17380  *			to use the USCSI "direct" chain and bypass the normal
17381  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17382  *			command is issued as part of an error recovery action.
17383  *
17384  * Return Code: 0   - Success
17385  *		errno return code from sd_send_scsi_cmd()
17386  *
17387  *     Context: Can sleep.
17388  */
17389 
17390 static int
17391 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17392 {
17393 	union scsi_cdb		cdb;
17394 	struct uscsi_cmd	ucmd_buf;
17395 	struct scsi_extended_sense	sense_buf;
17396 	int			status;
17397 
17398 	ASSERT(un != NULL);
17399 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17400 
17401 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17402 
17403 	/* already determined doorlock is not supported, fake success */
17404 	if (un->un_f_doorlock_supported == FALSE) {
17405 		return (0);
17406 	}
17407 
17408 	/*
17409 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17410 	 * ignore the command so we can complete the eject
17411 	 * operation.
17412 	 */
17413 	if (flag == SD_REMOVAL_PREVENT) {
17414 		mutex_enter(SD_MUTEX(un));
17415 		if (un->un_f_ejecting == TRUE) {
17416 			mutex_exit(SD_MUTEX(un));
17417 			return (EAGAIN);
17418 		}
17419 		mutex_exit(SD_MUTEX(un));
17420 	}
17421 
17422 	bzero(&cdb, sizeof (cdb));
17423 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17424 
17425 	cdb.scc_cmd = SCMD_DOORLOCK;
17426 	cdb.cdb_opaque[4] = (uchar_t)flag;
17427 
17428 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17429 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17430 	ucmd_buf.uscsi_bufaddr	= NULL;
17431 	ucmd_buf.uscsi_buflen	= 0;
17432 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17433 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17434 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17435 	ucmd_buf.uscsi_timeout	= 15;
17436 
17437 	SD_TRACE(SD_LOG_IO, un,
17438 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17439 
17440 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17441 	    UIO_SYSSPACE, path_flag);
17442 
17443 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17444 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17445 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17446 		/* fake success and skip subsequent doorlock commands */
17447 		un->un_f_doorlock_supported = FALSE;
17448 		return (0);
17449 	}
17450 
17451 	return (status);
17452 }
17453 
17454 /*
17455  *    Function: sd_send_scsi_READ_CAPACITY
17456  *
17457  * Description: This routine uses the scsi READ CAPACITY command to determine
17458  *		the device capacity in number of blocks and the device native
17459  *		block size. If this function returns a failure, then the
17460  *		values in *capp and *lbap are undefined.  If the capacity
17461  *		returned is 0xffffffff then the lun is too large for a
17462  *		normal READ CAPACITY command and the results of a
17463  *		READ CAPACITY 16 will be used instead.
17464  *
17465  *   Arguments: un   - ptr to soft state struct for the target
17466  *		capp - ptr to unsigned 64-bit variable to receive the
17467  *			capacity value from the command.
17468  *		lbap - ptr to unsigned 32-bit varaible to receive the
17469  *			block size value from the command
17470  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17471  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17472  *			to use the USCSI "direct" chain and bypass the normal
17473  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17474  *			command is issued as part of an error recovery action.
17475  *
17476  * Return Code: 0   - Success
17477  *		EIO - IO error
17478  *		EACCES - Reservation conflict detected
17479  *		EAGAIN - Device is becoming ready
17480  *		errno return code from sd_send_scsi_cmd()
17481  *
17482  *     Context: Can sleep.  Blocks until command completes.
17483  */
17484 
17485 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17486 
17487 static int
17488 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17489 	int path_flag)
17490 {
17491 	struct	scsi_extended_sense	sense_buf;
17492 	struct	uscsi_cmd	ucmd_buf;
17493 	union	scsi_cdb	cdb;
17494 	uint32_t		*capacity_buf;
17495 	uint64_t		capacity;
17496 	uint32_t		lbasize;
17497 	int			status;
17498 
17499 	ASSERT(un != NULL);
17500 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17501 	ASSERT(capp != NULL);
17502 	ASSERT(lbap != NULL);
17503 
17504 	SD_TRACE(SD_LOG_IO, un,
17505 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17506 
17507 	/*
17508 	 * First send a READ_CAPACITY command to the target.
17509 	 * (This command is mandatory under SCSI-2.)
17510 	 *
17511 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17512 	 * Medium Indicator bit is cleared.  The address field must be
17513 	 * zero if the PMI bit is zero.
17514 	 */
17515 	bzero(&cdb, sizeof (cdb));
17516 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17517 
17518 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17519 
17520 	cdb.scc_cmd = SCMD_READ_CAPACITY;
17521 
17522 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17523 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17524 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17525 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17526 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17527 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17528 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17529 	ucmd_buf.uscsi_timeout	= 60;
17530 
17531 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17532 	    UIO_SYSSPACE, path_flag);
17533 
17534 	switch (status) {
17535 	case 0:
17536 		/* Return failure if we did not get valid capacity data. */
17537 		if (ucmd_buf.uscsi_resid != 0) {
17538 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17539 			return (EIO);
17540 		}
17541 
17542 		/*
17543 		 * Read capacity and block size from the READ CAPACITY 10 data.
17544 		 * This data may be adjusted later due to device specific
17545 		 * issues.
17546 		 *
17547 		 * According to the SCSI spec, the READ CAPACITY 10
17548 		 * command returns the following:
17549 		 *
17550 		 *  bytes 0-3: Maximum logical block address available.
17551 		 *		(MSB in byte:0 & LSB in byte:3)
17552 		 *
17553 		 *  bytes 4-7: Block length in bytes
17554 		 *		(MSB in byte:4 & LSB in byte:7)
17555 		 *
17556 		 */
17557 		capacity = BE_32(capacity_buf[0]);
17558 		lbasize = BE_32(capacity_buf[1]);
17559 
17560 		/*
17561 		 * Done with capacity_buf
17562 		 */
17563 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17564 
17565 		/*
17566 		 * if the reported capacity is set to all 0xf's, then
17567 		 * this disk is too large and requires SBC-2 commands.
17568 		 * Reissue the request using READ CAPACITY 16.
17569 		 */
17570 		if (capacity == 0xffffffff) {
17571 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
17572 			    &lbasize, path_flag);
17573 			if (status != 0) {
17574 				return (status);
17575 			}
17576 		}
17577 		break;	/* Success! */
17578 	case EIO:
17579 		switch (ucmd_buf.uscsi_status) {
17580 		case STATUS_RESERVATION_CONFLICT:
17581 			status = EACCES;
17582 			break;
17583 		case STATUS_CHECK:
17584 			/*
17585 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17586 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17587 			 */
17588 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17589 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17590 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17591 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17592 				return (EAGAIN);
17593 			}
17594 			break;
17595 		default:
17596 			break;
17597 		}
17598 		/* FALLTHRU */
17599 	default:
17600 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17601 		return (status);
17602 	}
17603 
17604 	/*
17605 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
17606 	 * (2352 and 0 are common) so for these devices always force the value
17607 	 * to 2048 as required by the ATAPI specs.
17608 	 */
17609 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
17610 		lbasize = 2048;
17611 	}
17612 
17613 	/*
17614 	 * Get the maximum LBA value from the READ CAPACITY data.
17615 	 * Here we assume that the Partial Medium Indicator (PMI) bit
17616 	 * was cleared when issuing the command. This means that the LBA
17617 	 * returned from the device is the LBA of the last logical block
17618 	 * on the logical unit.  The actual logical block count will be
17619 	 * this value plus one.
17620 	 *
17621 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
17622 	 * so scale the capacity value to reflect this.
17623 	 */
17624 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
17625 
17626 	/*
17627 	 * Copy the values from the READ CAPACITY command into the space
17628 	 * provided by the caller.
17629 	 */
17630 	*capp = capacity;
17631 	*lbap = lbasize;
17632 
17633 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
17634 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17635 
17636 	/*
17637 	 * Both the lbasize and capacity from the device must be nonzero,
17638 	 * otherwise we assume that the values are not valid and return
17639 	 * failure to the caller. (4203735)
17640 	 */
17641 	if ((capacity == 0) || (lbasize == 0)) {
17642 		return (EIO);
17643 	}
17644 
17645 	return (0);
17646 }
17647 
17648 /*
17649  *    Function: sd_send_scsi_READ_CAPACITY_16
17650  *
17651  * Description: This routine uses the scsi READ CAPACITY 16 command to
17652  *		determine the device capacity in number of blocks and the
17653  *		device native block size.  If this function returns a failure,
17654  *		then the values in *capp and *lbap are undefined.
17655  *		This routine should always be called by
17656  *		sd_send_scsi_READ_CAPACITY which will appy any device
17657  *		specific adjustments to capacity and lbasize.
17658  *
17659  *   Arguments: un   - ptr to soft state struct for the target
17660  *		capp - ptr to unsigned 64-bit variable to receive the
17661  *			capacity value from the command.
17662  *		lbap - ptr to unsigned 32-bit varaible to receive the
17663  *			block size value from the command
17664  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17665  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17666  *			to use the USCSI "direct" chain and bypass the normal
17667  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
17668  *			this command is issued as part of an error recovery
17669  *			action.
17670  *
17671  * Return Code: 0   - Success
17672  *		EIO - IO error
17673  *		EACCES - Reservation conflict detected
17674  *		EAGAIN - Device is becoming ready
17675  *		errno return code from sd_send_scsi_cmd()
17676  *
17677  *     Context: Can sleep.  Blocks until command completes.
17678  */
17679 
17680 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
17681 
17682 static int
17683 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
17684 	uint32_t *lbap, int path_flag)
17685 {
17686 	struct	scsi_extended_sense	sense_buf;
17687 	struct	uscsi_cmd	ucmd_buf;
17688 	union	scsi_cdb	cdb;
17689 	uint64_t		*capacity16_buf;
17690 	uint64_t		capacity;
17691 	uint32_t		lbasize;
17692 	int			status;
17693 
17694 	ASSERT(un != NULL);
17695 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17696 	ASSERT(capp != NULL);
17697 	ASSERT(lbap != NULL);
17698 
17699 	SD_TRACE(SD_LOG_IO, un,
17700 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17701 
17702 	/*
17703 	 * First send a READ_CAPACITY_16 command to the target.
17704 	 *
17705 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
17706 	 * Medium Indicator bit is cleared.  The address field must be
17707 	 * zero if the PMI bit is zero.
17708 	 */
17709 	bzero(&cdb, sizeof (cdb));
17710 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17711 
17712 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
17713 
17714 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17715 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
17716 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
17717 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
17718 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17719 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17720 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17721 	ucmd_buf.uscsi_timeout	= 60;
17722 
17723 	/*
17724 	 * Read Capacity (16) is a Service Action In command.  One
17725 	 * command byte (0x9E) is overloaded for multiple operations,
17726 	 * with the second CDB byte specifying the desired operation
17727 	 */
17728 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
17729 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
17730 
17731 	/*
17732 	 * Fill in allocation length field
17733 	 */
17734 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
17735 
17736 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17737 	    UIO_SYSSPACE, path_flag);
17738 
17739 	switch (status) {
17740 	case 0:
17741 		/* Return failure if we did not get valid capacity data. */
17742 		if (ucmd_buf.uscsi_resid > 20) {
17743 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17744 			return (EIO);
17745 		}
17746 
17747 		/*
17748 		 * Read capacity and block size from the READ CAPACITY 10 data.
17749 		 * This data may be adjusted later due to device specific
17750 		 * issues.
17751 		 *
17752 		 * According to the SCSI spec, the READ CAPACITY 10
17753 		 * command returns the following:
17754 		 *
17755 		 *  bytes 0-7: Maximum logical block address available.
17756 		 *		(MSB in byte:0 & LSB in byte:7)
17757 		 *
17758 		 *  bytes 8-11: Block length in bytes
17759 		 *		(MSB in byte:8 & LSB in byte:11)
17760 		 *
17761 		 */
17762 		capacity = BE_64(capacity16_buf[0]);
17763 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
17764 
17765 		/*
17766 		 * Done with capacity16_buf
17767 		 */
17768 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17769 
17770 		/*
17771 		 * if the reported capacity is set to all 0xf's, then
17772 		 * this disk is too large.  This could only happen with
17773 		 * a device that supports LBAs larger than 64 bits which
17774 		 * are not defined by any current T10 standards.
17775 		 */
17776 		if (capacity == 0xffffffffffffffff) {
17777 			return (EIO);
17778 		}
17779 		break;	/* Success! */
17780 	case EIO:
17781 		switch (ucmd_buf.uscsi_status) {
17782 		case STATUS_RESERVATION_CONFLICT:
17783 			status = EACCES;
17784 			break;
17785 		case STATUS_CHECK:
17786 			/*
17787 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17788 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17789 			 */
17790 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17791 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17792 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17793 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17794 				return (EAGAIN);
17795 			}
17796 			break;
17797 		default:
17798 			break;
17799 		}
17800 		/* FALLTHRU */
17801 	default:
17802 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17803 		return (status);
17804 	}
17805 
17806 	*capp = capacity;
17807 	*lbap = lbasize;
17808 
17809 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
17810 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17811 
17812 	return (0);
17813 }
17814 
17815 
17816 /*
17817  *    Function: sd_send_scsi_START_STOP_UNIT
17818  *
17819  * Description: Issue a scsi START STOP UNIT command to the target.
17820  *
17821  *   Arguments: un    - pointer to driver soft state (unit) structure for
17822  *			this target.
17823  *		flag  - SD_TARGET_START
17824  *			SD_TARGET_STOP
17825  *			SD_TARGET_EJECT
17826  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17827  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17828  *			to use the USCSI "direct" chain and bypass the normal
17829  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17830  *			command is issued as part of an error recovery action.
17831  *
17832  * Return Code: 0   - Success
17833  *		EIO - IO error
17834  *		EACCES - Reservation conflict detected
17835  *		ENXIO  - Not Ready, medium not present
17836  *		errno return code from sd_send_scsi_cmd()
17837  *
17838  *     Context: Can sleep.
17839  */
17840 
17841 static int
17842 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
17843 {
17844 	struct	scsi_extended_sense	sense_buf;
17845 	union scsi_cdb		cdb;
17846 	struct uscsi_cmd	ucmd_buf;
17847 	int			status;
17848 
17849 	ASSERT(un != NULL);
17850 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17851 
17852 	SD_TRACE(SD_LOG_IO, un,
17853 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
17854 
17855 	if (un->un_f_check_start_stop &&
17856 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
17857 	    (un->un_f_start_stop_supported != TRUE)) {
17858 		return (0);
17859 	}
17860 
17861 	/*
17862 	 * If we are performing an eject operation and
17863 	 * we receive any command other than SD_TARGET_EJECT
17864 	 * we should immediately return.
17865 	 */
17866 	if (flag != SD_TARGET_EJECT) {
17867 		mutex_enter(SD_MUTEX(un));
17868 		if (un->un_f_ejecting == TRUE) {
17869 			mutex_exit(SD_MUTEX(un));
17870 			return (EAGAIN);
17871 		}
17872 		mutex_exit(SD_MUTEX(un));
17873 	}
17874 
17875 	bzero(&cdb, sizeof (cdb));
17876 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17877 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
17878 
17879 	cdb.scc_cmd = SCMD_START_STOP;
17880 	cdb.cdb_opaque[4] = (uchar_t)flag;
17881 
17882 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17883 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17884 	ucmd_buf.uscsi_bufaddr	= NULL;
17885 	ucmd_buf.uscsi_buflen	= 0;
17886 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17887 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
17888 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17889 	ucmd_buf.uscsi_timeout	= 200;
17890 
17891 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17892 	    UIO_SYSSPACE, path_flag);
17893 
17894 	switch (status) {
17895 	case 0:
17896 		break;	/* Success! */
17897 	case EIO:
17898 		switch (ucmd_buf.uscsi_status) {
17899 		case STATUS_RESERVATION_CONFLICT:
17900 			status = EACCES;
17901 			break;
17902 		case STATUS_CHECK:
17903 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
17904 				switch (scsi_sense_key(
17905 				    (uint8_t *)&sense_buf)) {
17906 				case KEY_ILLEGAL_REQUEST:
17907 					status = ENOTSUP;
17908 					break;
17909 				case KEY_NOT_READY:
17910 					if (scsi_sense_asc(
17911 					    (uint8_t *)&sense_buf)
17912 					    == 0x3A) {
17913 						status = ENXIO;
17914 					}
17915 					break;
17916 				default:
17917 					break;
17918 				}
17919 			}
17920 			break;
17921 		default:
17922 			break;
17923 		}
17924 		break;
17925 	default:
17926 		break;
17927 	}
17928 
17929 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
17930 
17931 	return (status);
17932 }
17933 
17934 
17935 /*
17936  *    Function: sd_start_stop_unit_callback
17937  *
17938  * Description: timeout(9F) callback to begin recovery process for a
17939  *		device that has spun down.
17940  *
17941  *   Arguments: arg - pointer to associated softstate struct.
17942  *
17943  *     Context: Executes in a timeout(9F) thread context
17944  */
17945 
17946 static void
17947 sd_start_stop_unit_callback(void *arg)
17948 {
17949 	struct sd_lun	*un = arg;
17950 	ASSERT(un != NULL);
17951 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17952 
17953 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
17954 
17955 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
17956 }
17957 
17958 
17959 /*
17960  *    Function: sd_start_stop_unit_task
17961  *
17962  * Description: Recovery procedure when a drive is spun down.
17963  *
17964  *   Arguments: arg - pointer to associated softstate struct.
17965  *
17966  *     Context: Executes in a taskq() thread context
17967  */
17968 
17969 static void
17970 sd_start_stop_unit_task(void *arg)
17971 {
17972 	struct sd_lun	*un = arg;
17973 
17974 	ASSERT(un != NULL);
17975 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17976 
17977 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
17978 
17979 	/*
17980 	 * Some unformatted drives report not ready error, no need to
17981 	 * restart if format has been initiated.
17982 	 */
17983 	mutex_enter(SD_MUTEX(un));
17984 	if (un->un_f_format_in_progress == TRUE) {
17985 		mutex_exit(SD_MUTEX(un));
17986 		return;
17987 	}
17988 	mutex_exit(SD_MUTEX(un));
17989 
17990 	/*
17991 	 * When a START STOP command is issued from here, it is part of a
17992 	 * failure recovery operation and must be issued before any other
17993 	 * commands, including any pending retries. Thus it must be sent
17994 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
17995 	 * succeeds or not, we will start I/O after the attempt.
17996 	 */
17997 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
17998 	    SD_PATH_DIRECT_PRIORITY);
17999 
18000 	/*
18001 	 * The above call blocks until the START_STOP_UNIT command completes.
18002 	 * Now that it has completed, we must re-try the original IO that
18003 	 * received the NOT READY condition in the first place. There are
18004 	 * three possible conditions here:
18005 	 *
18006 	 *  (1) The original IO is on un_retry_bp.
18007 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
18008 	 *	is NULL.
18009 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
18010 	 *	points to some other, unrelated bp.
18011 	 *
18012 	 * For each case, we must call sd_start_cmds() with un_retry_bp
18013 	 * as the argument. If un_retry_bp is NULL, this will initiate
18014 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
18015 	 * then this will process the bp on un_retry_bp. That may or may not
18016 	 * be the original IO, but that does not matter: the important thing
18017 	 * is to keep the IO processing going at this point.
18018 	 *
18019 	 * Note: This is a very specific error recovery sequence associated
18020 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
18021 	 * serialize the I/O with completion of the spin-up.
18022 	 */
18023 	mutex_enter(SD_MUTEX(un));
18024 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18025 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
18026 	    un, un->un_retry_bp);
18027 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
18028 	sd_start_cmds(un, un->un_retry_bp);
18029 	mutex_exit(SD_MUTEX(un));
18030 
18031 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
18032 }
18033 
18034 
18035 /*
18036  *    Function: sd_send_scsi_INQUIRY
18037  *
18038  * Description: Issue the scsi INQUIRY command.
18039  *
18040  *   Arguments: un
18041  *		bufaddr
18042  *		buflen
18043  *		evpd
18044  *		page_code
18045  *		page_length
18046  *
18047  * Return Code: 0   - Success
18048  *		errno return code from sd_send_scsi_cmd()
18049  *
18050  *     Context: Can sleep. Does not return until command is completed.
18051  */
18052 
18053 static int
18054 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
18055 	uchar_t evpd, uchar_t page_code, size_t *residp)
18056 {
18057 	union scsi_cdb		cdb;
18058 	struct uscsi_cmd	ucmd_buf;
18059 	int			status;
18060 
18061 	ASSERT(un != NULL);
18062 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18063 	ASSERT(bufaddr != NULL);
18064 
18065 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
18066 
18067 	bzero(&cdb, sizeof (cdb));
18068 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18069 	bzero(bufaddr, buflen);
18070 
18071 	cdb.scc_cmd = SCMD_INQUIRY;
18072 	cdb.cdb_opaque[1] = evpd;
18073 	cdb.cdb_opaque[2] = page_code;
18074 	FORMG0COUNT(&cdb, buflen);
18075 
18076 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18077 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18078 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18079 	ucmd_buf.uscsi_buflen	= buflen;
18080 	ucmd_buf.uscsi_rqbuf	= NULL;
18081 	ucmd_buf.uscsi_rqlen	= 0;
18082 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
18083 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
18084 
18085 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18086 	    UIO_SYSSPACE, SD_PATH_DIRECT);
18087 
18088 	if ((status == 0) && (residp != NULL)) {
18089 		*residp = ucmd_buf.uscsi_resid;
18090 	}
18091 
18092 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
18093 
18094 	return (status);
18095 }
18096 
18097 
18098 /*
18099  *    Function: sd_send_scsi_TEST_UNIT_READY
18100  *
18101  * Description: Issue the scsi TEST UNIT READY command.
18102  *		This routine can be told to set the flag USCSI_DIAGNOSE to
18103  *		prevent retrying failed commands. Use this when the intent
18104  *		is either to check for device readiness, to clear a Unit
18105  *		Attention, or to clear any outstanding sense data.
18106  *		However under specific conditions the expected behavior
18107  *		is for retries to bring a device ready, so use the flag
18108  *		with caution.
18109  *
18110  *   Arguments: un
18111  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18112  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18113  *			0: dont check for media present, do retries on cmd.
18114  *
18115  * Return Code: 0   - Success
18116  *		EIO - IO error
18117  *		EACCES - Reservation conflict detected
18118  *		ENXIO  - Not Ready, medium not present
18119  *		errno return code from sd_send_scsi_cmd()
18120  *
18121  *     Context: Can sleep. Does not return until command is completed.
18122  */
18123 
18124 static int
18125 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18126 {
18127 	struct	scsi_extended_sense	sense_buf;
18128 	union scsi_cdb		cdb;
18129 	struct uscsi_cmd	ucmd_buf;
18130 	int			status;
18131 
18132 	ASSERT(un != NULL);
18133 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18134 
18135 	SD_TRACE(SD_LOG_IO, un,
18136 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18137 
18138 	/*
18139 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18140 	 * timeouts when they receive a TUR and the queue is not empty. Check
18141 	 * the configuration flag set during attach (indicating the drive has
18142 	 * this firmware bug) and un_ncmds_in_transport before issuing the
18143 	 * TUR. If there are
18144 	 * pending commands return success, this is a bit arbitrary but is ok
18145 	 * for non-removables (i.e. the eliteI disks) and non-clustering
18146 	 * configurations.
18147 	 */
18148 	if (un->un_f_cfg_tur_check == TRUE) {
18149 		mutex_enter(SD_MUTEX(un));
18150 		if (un->un_ncmds_in_transport != 0) {
18151 			mutex_exit(SD_MUTEX(un));
18152 			return (0);
18153 		}
18154 		mutex_exit(SD_MUTEX(un));
18155 	}
18156 
18157 	bzero(&cdb, sizeof (cdb));
18158 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18159 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18160 
18161 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18162 
18163 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18164 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18165 	ucmd_buf.uscsi_bufaddr	= NULL;
18166 	ucmd_buf.uscsi_buflen	= 0;
18167 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18168 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18169 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18170 
18171 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18172 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18173 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18174 	}
18175 	ucmd_buf.uscsi_timeout	= 60;
18176 
18177 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18178 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18179 	    SD_PATH_STANDARD));
18180 
18181 	switch (status) {
18182 	case 0:
18183 		break;	/* Success! */
18184 	case EIO:
18185 		switch (ucmd_buf.uscsi_status) {
18186 		case STATUS_RESERVATION_CONFLICT:
18187 			status = EACCES;
18188 			break;
18189 		case STATUS_CHECK:
18190 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18191 				break;
18192 			}
18193 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18194 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18195 			    KEY_NOT_READY) &&
18196 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18197 				status = ENXIO;
18198 			}
18199 			break;
18200 		default:
18201 			break;
18202 		}
18203 		break;
18204 	default:
18205 		break;
18206 	}
18207 
18208 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18209 
18210 	return (status);
18211 }
18212 
18213 
18214 /*
18215  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18216  *
18217  * Description: Issue the scsi PERSISTENT RESERVE IN command.
18218  *
18219  *   Arguments: un
18220  *
18221  * Return Code: 0   - Success
18222  *		EACCES
18223  *		ENOTSUP
18224  *		errno return code from sd_send_scsi_cmd()
18225  *
18226  *     Context: Can sleep. Does not return until command is completed.
18227  */
18228 
18229 static int
18230 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18231 	uint16_t data_len, uchar_t *data_bufp)
18232 {
18233 	struct scsi_extended_sense	sense_buf;
18234 	union scsi_cdb		cdb;
18235 	struct uscsi_cmd	ucmd_buf;
18236 	int			status;
18237 	int			no_caller_buf = FALSE;
18238 
18239 	ASSERT(un != NULL);
18240 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18241 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18242 
18243 	SD_TRACE(SD_LOG_IO, un,
18244 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18245 
18246 	bzero(&cdb, sizeof (cdb));
18247 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18248 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18249 	if (data_bufp == NULL) {
18250 		/* Allocate a default buf if the caller did not give one */
18251 		ASSERT(data_len == 0);
18252 		data_len  = MHIOC_RESV_KEY_SIZE;
18253 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18254 		no_caller_buf = TRUE;
18255 	}
18256 
18257 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18258 	cdb.cdb_opaque[1] = usr_cmd;
18259 	FORMG1COUNT(&cdb, data_len);
18260 
18261 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18262 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18263 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18264 	ucmd_buf.uscsi_buflen	= data_len;
18265 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18266 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18267 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18268 	ucmd_buf.uscsi_timeout	= 60;
18269 
18270 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18271 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18272 
18273 	switch (status) {
18274 	case 0:
18275 		break;	/* Success! */
18276 	case EIO:
18277 		switch (ucmd_buf.uscsi_status) {
18278 		case STATUS_RESERVATION_CONFLICT:
18279 			status = EACCES;
18280 			break;
18281 		case STATUS_CHECK:
18282 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18283 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18284 			    KEY_ILLEGAL_REQUEST)) {
18285 				status = ENOTSUP;
18286 			}
18287 			break;
18288 		default:
18289 			break;
18290 		}
18291 		break;
18292 	default:
18293 		break;
18294 	}
18295 
18296 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18297 
18298 	if (no_caller_buf == TRUE) {
18299 		kmem_free(data_bufp, data_len);
18300 	}
18301 
18302 	return (status);
18303 }
18304 
18305 
18306 /*
18307  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18308  *
18309  * Description: This routine is the driver entry point for handling CD-ROM
18310  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18311  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18312  *		device.
18313  *
18314  *   Arguments: un  -   Pointer to soft state struct for the target.
18315  *		usr_cmd SCSI-3 reservation facility command (one of
18316  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18317  *			SD_SCSI3_PREEMPTANDABORT)
18318  *		usr_bufp - user provided pointer register, reserve descriptor or
18319  *			preempt and abort structure (mhioc_register_t,
18320  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18321  *
18322  * Return Code: 0   - Success
18323  *		EACCES
18324  *		ENOTSUP
18325  *		errno return code from sd_send_scsi_cmd()
18326  *
18327  *     Context: Can sleep. Does not return until command is completed.
18328  */
18329 
18330 static int
18331 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18332 	uchar_t	*usr_bufp)
18333 {
18334 	struct scsi_extended_sense	sense_buf;
18335 	union scsi_cdb		cdb;
18336 	struct uscsi_cmd	ucmd_buf;
18337 	int			status;
18338 	uchar_t			data_len = sizeof (sd_prout_t);
18339 	sd_prout_t		*prp;
18340 
18341 	ASSERT(un != NULL);
18342 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18343 	ASSERT(data_len == 24);	/* required by scsi spec */
18344 
18345 	SD_TRACE(SD_LOG_IO, un,
18346 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18347 
18348 	if (usr_bufp == NULL) {
18349 		return (EINVAL);
18350 	}
18351 
18352 	bzero(&cdb, sizeof (cdb));
18353 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18354 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18355 	prp = kmem_zalloc(data_len, KM_SLEEP);
18356 
18357 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18358 	cdb.cdb_opaque[1] = usr_cmd;
18359 	FORMG1COUNT(&cdb, data_len);
18360 
18361 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18362 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18363 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18364 	ucmd_buf.uscsi_buflen	= data_len;
18365 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18366 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18367 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18368 	ucmd_buf.uscsi_timeout	= 60;
18369 
18370 	switch (usr_cmd) {
18371 	case SD_SCSI3_REGISTER: {
18372 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18373 
18374 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18375 		bcopy(ptr->newkey.key, prp->service_key,
18376 		    MHIOC_RESV_KEY_SIZE);
18377 		prp->aptpl = ptr->aptpl;
18378 		break;
18379 	}
18380 	case SD_SCSI3_RESERVE:
18381 	case SD_SCSI3_RELEASE: {
18382 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18383 
18384 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18385 		prp->scope_address = BE_32(ptr->scope_specific_addr);
18386 		cdb.cdb_opaque[2] = ptr->type;
18387 		break;
18388 	}
18389 	case SD_SCSI3_PREEMPTANDABORT: {
18390 		mhioc_preemptandabort_t *ptr =
18391 		    (mhioc_preemptandabort_t *)usr_bufp;
18392 
18393 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18394 		bcopy(ptr->victim_key.key, prp->service_key,
18395 		    MHIOC_RESV_KEY_SIZE);
18396 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18397 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18398 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18399 		break;
18400 	}
18401 	case SD_SCSI3_REGISTERANDIGNOREKEY:
18402 	{
18403 		mhioc_registerandignorekey_t *ptr;
18404 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18405 		bcopy(ptr->newkey.key,
18406 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18407 		prp->aptpl = ptr->aptpl;
18408 		break;
18409 	}
18410 	default:
18411 		ASSERT(FALSE);
18412 		break;
18413 	}
18414 
18415 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18416 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18417 
18418 	switch (status) {
18419 	case 0:
18420 		break;	/* Success! */
18421 	case EIO:
18422 		switch (ucmd_buf.uscsi_status) {
18423 		case STATUS_RESERVATION_CONFLICT:
18424 			status = EACCES;
18425 			break;
18426 		case STATUS_CHECK:
18427 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18428 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18429 			    KEY_ILLEGAL_REQUEST)) {
18430 				status = ENOTSUP;
18431 			}
18432 			break;
18433 		default:
18434 			break;
18435 		}
18436 		break;
18437 	default:
18438 		break;
18439 	}
18440 
18441 	kmem_free(prp, data_len);
18442 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18443 	return (status);
18444 }
18445 
18446 
18447 /*
18448  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18449  *
18450  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18451  *
18452  *   Arguments: un - pointer to the target's soft state struct
18453  *
18454  * Return Code: 0 - success
18455  *		errno-type error code
18456  *
18457  *     Context: kernel thread context only.
18458  */
18459 
18460 static int
18461 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18462 {
18463 	struct sd_uscsi_info	*uip;
18464 	struct uscsi_cmd	*uscmd;
18465 	union scsi_cdb		*cdb;
18466 	struct buf		*bp;
18467 	int			rval = 0;
18468 
18469 	SD_TRACE(SD_LOG_IO, un,
18470 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18471 
18472 	ASSERT(un != NULL);
18473 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18474 
18475 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18476 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18477 
18478 	/*
18479 	 * First get some memory for the uscsi_cmd struct and cdb
18480 	 * and initialize for SYNCHRONIZE_CACHE cmd.
18481 	 */
18482 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
18483 	uscmd->uscsi_cdblen = CDB_GROUP1;
18484 	uscmd->uscsi_cdb = (caddr_t)cdb;
18485 	uscmd->uscsi_bufaddr = NULL;
18486 	uscmd->uscsi_buflen = 0;
18487 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
18488 	uscmd->uscsi_rqlen = SENSE_LENGTH;
18489 	uscmd->uscsi_rqresid = SENSE_LENGTH;
18490 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
18491 	uscmd->uscsi_timeout = sd_io_time;
18492 
18493 	/*
18494 	 * Allocate an sd_uscsi_info struct and fill it with the info
18495 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
18496 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
18497 	 * since we allocate the buf here in this function, we do not
18498 	 * need to preserve the prior contents of b_private.
18499 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
18500 	 */
18501 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
18502 	uip->ui_flags = SD_PATH_DIRECT;
18503 	uip->ui_cmdp  = uscmd;
18504 
18505 	bp = getrbuf(KM_SLEEP);
18506 	bp->b_private = uip;
18507 
18508 	/*
18509 	 * Setup buffer to carry uscsi request.
18510 	 */
18511 	bp->b_flags  = B_BUSY;
18512 	bp->b_bcount = 0;
18513 	bp->b_blkno  = 0;
18514 
18515 	if (dkc != NULL) {
18516 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
18517 		uip->ui_dkc = *dkc;
18518 	}
18519 
18520 	bp->b_edev = SD_GET_DEV(un);
18521 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
18522 
18523 	(void) sd_uscsi_strategy(bp);
18524 
18525 	/*
18526 	 * If synchronous request, wait for completion
18527 	 * If async just return and let b_iodone callback
18528 	 * cleanup.
18529 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
18530 	 * but it was also incremented in sd_uscsi_strategy(), so
18531 	 * we should be ok.
18532 	 */
18533 	if (dkc == NULL) {
18534 		(void) biowait(bp);
18535 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
18536 	}
18537 
18538 	return (rval);
18539 }
18540 
18541 
18542 static int
18543 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
18544 {
18545 	struct sd_uscsi_info *uip;
18546 	struct uscsi_cmd *uscmd;
18547 	uint8_t *sense_buf;
18548 	struct sd_lun *un;
18549 	int status;
18550 
18551 	uip = (struct sd_uscsi_info *)(bp->b_private);
18552 	ASSERT(uip != NULL);
18553 
18554 	uscmd = uip->ui_cmdp;
18555 	ASSERT(uscmd != NULL);
18556 
18557 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
18558 	ASSERT(sense_buf != NULL);
18559 
18560 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
18561 	ASSERT(un != NULL);
18562 
18563 	status = geterror(bp);
18564 	switch (status) {
18565 	case 0:
18566 		break;	/* Success! */
18567 	case EIO:
18568 		switch (uscmd->uscsi_status) {
18569 		case STATUS_RESERVATION_CONFLICT:
18570 			/* Ignore reservation conflict */
18571 			status = 0;
18572 			goto done;
18573 
18574 		case STATUS_CHECK:
18575 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
18576 			    (scsi_sense_key(sense_buf) ==
18577 			    KEY_ILLEGAL_REQUEST)) {
18578 				/* Ignore Illegal Request error */
18579 				mutex_enter(SD_MUTEX(un));
18580 				un->un_f_sync_cache_supported = FALSE;
18581 				mutex_exit(SD_MUTEX(un));
18582 				status = ENOTSUP;
18583 				goto done;
18584 			}
18585 			break;
18586 		default:
18587 			break;
18588 		}
18589 		/* FALLTHRU */
18590 	default:
18591 		/*
18592 		 * Don't log an error message if this device
18593 		 * has removable media.
18594 		 */
18595 		if (!un->un_f_has_removable_media) {
18596 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18597 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
18598 		}
18599 		break;
18600 	}
18601 
18602 done:
18603 	if (uip->ui_dkc.dkc_callback != NULL) {
18604 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
18605 	}
18606 
18607 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
18608 	freerbuf(bp);
18609 	kmem_free(uip, sizeof (struct sd_uscsi_info));
18610 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
18611 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
18612 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
18613 
18614 	return (status);
18615 }
18616 
18617 
18618 /*
18619  *    Function: sd_send_scsi_GET_CONFIGURATION
18620  *
18621  * Description: Issues the get configuration command to the device.
18622  *		Called from sd_check_for_writable_cd & sd_get_media_info
18623  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
18624  *   Arguments: un
18625  *		ucmdbuf
18626  *		rqbuf
18627  *		rqbuflen
18628  *		bufaddr
18629  *		buflen
18630  *		path_flag
18631  *
18632  * Return Code: 0   - Success
18633  *		errno return code from sd_send_scsi_cmd()
18634  *
18635  *     Context: Can sleep. Does not return until command is completed.
18636  *
18637  */
18638 
18639 static int
18640 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
18641 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
18642 	int path_flag)
18643 {
18644 	char	cdb[CDB_GROUP1];
18645 	int	status;
18646 
18647 	ASSERT(un != NULL);
18648 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18649 	ASSERT(bufaddr != NULL);
18650 	ASSERT(ucmdbuf != NULL);
18651 	ASSERT(rqbuf != NULL);
18652 
18653 	SD_TRACE(SD_LOG_IO, un,
18654 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
18655 
18656 	bzero(cdb, sizeof (cdb));
18657 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18658 	bzero(rqbuf, rqbuflen);
18659 	bzero(bufaddr, buflen);
18660 
18661 	/*
18662 	 * Set up cdb field for the get configuration command.
18663 	 */
18664 	cdb[0] = SCMD_GET_CONFIGURATION;
18665 	cdb[1] = 0x02;  /* Requested Type */
18666 	cdb[8] = SD_PROFILE_HEADER_LEN;
18667 	ucmdbuf->uscsi_cdb = cdb;
18668 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
18669 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
18670 	ucmdbuf->uscsi_buflen = buflen;
18671 	ucmdbuf->uscsi_timeout = sd_io_time;
18672 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
18673 	ucmdbuf->uscsi_rqlen = rqbuflen;
18674 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
18675 
18676 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
18677 	    UIO_SYSSPACE, path_flag);
18678 
18679 	switch (status) {
18680 	case 0:
18681 		break;  /* Success! */
18682 	case EIO:
18683 		switch (ucmdbuf->uscsi_status) {
18684 		case STATUS_RESERVATION_CONFLICT:
18685 			status = EACCES;
18686 			break;
18687 		default:
18688 			break;
18689 		}
18690 		break;
18691 	default:
18692 		break;
18693 	}
18694 
18695 	if (status == 0) {
18696 		SD_DUMP_MEMORY(un, SD_LOG_IO,
18697 		    "sd_send_scsi_GET_CONFIGURATION: data",
18698 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
18699 	}
18700 
18701 	SD_TRACE(SD_LOG_IO, un,
18702 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
18703 
18704 	return (status);
18705 }
18706 
18707 /*
18708  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
18709  *
18710  * Description: Issues the get configuration command to the device to
18711  *              retrieve a specific feature. Called from
18712  *		sd_check_for_writable_cd & sd_set_mmc_caps.
18713  *   Arguments: un
18714  *              ucmdbuf
18715  *              rqbuf
18716  *              rqbuflen
18717  *              bufaddr
18718  *              buflen
18719  *		feature
18720  *
18721  * Return Code: 0   - Success
18722  *              errno return code from sd_send_scsi_cmd()
18723  *
18724  *     Context: Can sleep. Does not return until command is completed.
18725  *
18726  */
18727 static int
18728 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
18729 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
18730 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
18731 {
18732 	char    cdb[CDB_GROUP1];
18733 	int	status;
18734 
18735 	ASSERT(un != NULL);
18736 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18737 	ASSERT(bufaddr != NULL);
18738 	ASSERT(ucmdbuf != NULL);
18739 	ASSERT(rqbuf != NULL);
18740 
18741 	SD_TRACE(SD_LOG_IO, un,
18742 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
18743 
18744 	bzero(cdb, sizeof (cdb));
18745 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18746 	bzero(rqbuf, rqbuflen);
18747 	bzero(bufaddr, buflen);
18748 
18749 	/*
18750 	 * Set up cdb field for the get configuration command.
18751 	 */
18752 	cdb[0] = SCMD_GET_CONFIGURATION;
18753 	cdb[1] = 0x02;  /* Requested Type */
18754 	cdb[3] = feature;
18755 	cdb[8] = buflen;
18756 	ucmdbuf->uscsi_cdb = cdb;
18757 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
18758 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
18759 	ucmdbuf->uscsi_buflen = buflen;
18760 	ucmdbuf->uscsi_timeout = sd_io_time;
18761 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
18762 	ucmdbuf->uscsi_rqlen = rqbuflen;
18763 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
18764 
18765 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
18766 	    UIO_SYSSPACE, path_flag);
18767 
18768 	switch (status) {
18769 	case 0:
18770 		break;  /* Success! */
18771 	case EIO:
18772 		switch (ucmdbuf->uscsi_status) {
18773 		case STATUS_RESERVATION_CONFLICT:
18774 			status = EACCES;
18775 			break;
18776 		default:
18777 			break;
18778 		}
18779 		break;
18780 	default:
18781 		break;
18782 	}
18783 
18784 	if (status == 0) {
18785 		SD_DUMP_MEMORY(un, SD_LOG_IO,
18786 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
18787 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
18788 	}
18789 
18790 	SD_TRACE(SD_LOG_IO, un,
18791 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
18792 
18793 	return (status);
18794 }
18795 
18796 
18797 /*
18798  *    Function: sd_send_scsi_MODE_SENSE
18799  *
18800  * Description: Utility function for issuing a scsi MODE SENSE command.
18801  *		Note: This routine uses a consistent implementation for Group0,
18802  *		Group1, and Group2 commands across all platforms. ATAPI devices
18803  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
18804  *
18805  *   Arguments: un - pointer to the softstate struct for the target.
18806  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
18807  *			  CDB_GROUP[1|2] (10 byte).
18808  *		bufaddr - buffer for page data retrieved from the target.
18809  *		buflen - size of page to be retrieved.
18810  *		page_code - page code of data to be retrieved from the target.
18811  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18812  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18813  *			to use the USCSI "direct" chain and bypass the normal
18814  *			command waitq.
18815  *
18816  * Return Code: 0   - Success
18817  *		errno return code from sd_send_scsi_cmd()
18818  *
18819  *     Context: Can sleep. Does not return until command is completed.
18820  */
18821 
18822 static int
18823 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
18824 	size_t buflen,  uchar_t page_code, int path_flag)
18825 {
18826 	struct	scsi_extended_sense	sense_buf;
18827 	union scsi_cdb		cdb;
18828 	struct uscsi_cmd	ucmd_buf;
18829 	int			status;
18830 	int			headlen;
18831 
18832 	ASSERT(un != NULL);
18833 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18834 	ASSERT(bufaddr != NULL);
18835 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
18836 	    (cdbsize == CDB_GROUP2));
18837 
18838 	SD_TRACE(SD_LOG_IO, un,
18839 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
18840 
18841 	bzero(&cdb, sizeof (cdb));
18842 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18843 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18844 	bzero(bufaddr, buflen);
18845 
18846 	if (cdbsize == CDB_GROUP0) {
18847 		cdb.scc_cmd = SCMD_MODE_SENSE;
18848 		cdb.cdb_opaque[2] = page_code;
18849 		FORMG0COUNT(&cdb, buflen);
18850 		headlen = MODE_HEADER_LENGTH;
18851 	} else {
18852 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
18853 		cdb.cdb_opaque[2] = page_code;
18854 		FORMG1COUNT(&cdb, buflen);
18855 		headlen = MODE_HEADER_LENGTH_GRP2;
18856 	}
18857 
18858 	ASSERT(headlen <= buflen);
18859 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
18860 
18861 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18862 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
18863 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18864 	ucmd_buf.uscsi_buflen	= buflen;
18865 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18866 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18867 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18868 	ucmd_buf.uscsi_timeout	= 60;
18869 
18870 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18871 	    UIO_SYSSPACE, path_flag);
18872 
18873 	switch (status) {
18874 	case 0:
18875 		/*
18876 		 * sr_check_wp() uses 0x3f page code and check the header of
18877 		 * mode page to determine if target device is write-protected.
18878 		 * But some USB devices return 0 bytes for 0x3f page code. For
18879 		 * this case, make sure that mode page header is returned at
18880 		 * least.
18881 		 */
18882 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
18883 			status = EIO;
18884 		break;	/* Success! */
18885 	case EIO:
18886 		switch (ucmd_buf.uscsi_status) {
18887 		case STATUS_RESERVATION_CONFLICT:
18888 			status = EACCES;
18889 			break;
18890 		default:
18891 			break;
18892 		}
18893 		break;
18894 	default:
18895 		break;
18896 	}
18897 
18898 	if (status == 0) {
18899 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
18900 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
18901 	}
18902 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
18903 
18904 	return (status);
18905 }
18906 
18907 
18908 /*
18909  *    Function: sd_send_scsi_MODE_SELECT
18910  *
18911  * Description: Utility function for issuing a scsi MODE SELECT command.
18912  *		Note: This routine uses a consistent implementation for Group0,
18913  *		Group1, and Group2 commands across all platforms. ATAPI devices
18914  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
18915  *
18916  *   Arguments: un - pointer to the softstate struct for the target.
18917  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
18918  *			  CDB_GROUP[1|2] (10 byte).
18919  *		bufaddr - buffer for page data retrieved from the target.
18920  *		buflen - size of page to be retrieved.
18921  *		save_page - boolean to determin if SP bit should be set.
18922  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18923  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18924  *			to use the USCSI "direct" chain and bypass the normal
18925  *			command waitq.
18926  *
18927  * Return Code: 0   - Success
18928  *		errno return code from sd_send_scsi_cmd()
18929  *
18930  *     Context: Can sleep. Does not return until command is completed.
18931  */
18932 
18933 static int
18934 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
18935 	size_t buflen,  uchar_t save_page, int path_flag)
18936 {
18937 	struct	scsi_extended_sense	sense_buf;
18938 	union scsi_cdb		cdb;
18939 	struct uscsi_cmd	ucmd_buf;
18940 	int			status;
18941 
18942 	ASSERT(un != NULL);
18943 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18944 	ASSERT(bufaddr != NULL);
18945 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
18946 	    (cdbsize == CDB_GROUP2));
18947 
18948 	SD_TRACE(SD_LOG_IO, un,
18949 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
18950 
18951 	bzero(&cdb, sizeof (cdb));
18952 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18953 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18954 
18955 	/* Set the PF bit for many third party drives */
18956 	cdb.cdb_opaque[1] = 0x10;
18957 
18958 	/* Set the savepage(SP) bit if given */
18959 	if (save_page == SD_SAVE_PAGE) {
18960 		cdb.cdb_opaque[1] |= 0x01;
18961 	}
18962 
18963 	if (cdbsize == CDB_GROUP0) {
18964 		cdb.scc_cmd = SCMD_MODE_SELECT;
18965 		FORMG0COUNT(&cdb, buflen);
18966 	} else {
18967 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
18968 		FORMG1COUNT(&cdb, buflen);
18969 	}
18970 
18971 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
18972 
18973 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18974 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
18975 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18976 	ucmd_buf.uscsi_buflen	= buflen;
18977 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18978 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18979 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18980 	ucmd_buf.uscsi_timeout	= 60;
18981 
18982 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18983 	    UIO_SYSSPACE, path_flag);
18984 
18985 	switch (status) {
18986 	case 0:
18987 		break;	/* Success! */
18988 	case EIO:
18989 		switch (ucmd_buf.uscsi_status) {
18990 		case STATUS_RESERVATION_CONFLICT:
18991 			status = EACCES;
18992 			break;
18993 		default:
18994 			break;
18995 		}
18996 		break;
18997 	default:
18998 		break;
18999 	}
19000 
19001 	if (status == 0) {
19002 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
19003 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19004 	}
19005 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
19006 
19007 	return (status);
19008 }
19009 
19010 
19011 /*
19012  *    Function: sd_send_scsi_RDWR
19013  *
19014  * Description: Issue a scsi READ or WRITE command with the given parameters.
19015  *
19016  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19017  *		cmd:	 SCMD_READ or SCMD_WRITE
19018  *		bufaddr: Address of caller's buffer to receive the RDWR data
19019  *		buflen:  Length of caller's buffer receive the RDWR data.
19020  *		start_block: Block number for the start of the RDWR operation.
19021  *			 (Assumes target-native block size.)
19022  *		residp:  Pointer to variable to receive the redisual of the
19023  *			 RDWR operation (may be NULL of no residual requested).
19024  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19025  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19026  *			to use the USCSI "direct" chain and bypass the normal
19027  *			command waitq.
19028  *
19029  * Return Code: 0   - Success
19030  *		errno return code from sd_send_scsi_cmd()
19031  *
19032  *     Context: Can sleep. Does not return until command is completed.
19033  */
19034 
19035 static int
19036 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
19037 	size_t buflen, daddr_t start_block, int path_flag)
19038 {
19039 	struct	scsi_extended_sense	sense_buf;
19040 	union scsi_cdb		cdb;
19041 	struct uscsi_cmd	ucmd_buf;
19042 	uint32_t		block_count;
19043 	int			status;
19044 	int			cdbsize;
19045 	uchar_t			flag;
19046 
19047 	ASSERT(un != NULL);
19048 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19049 	ASSERT(bufaddr != NULL);
19050 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
19051 
19052 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
19053 
19054 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
19055 		return (EINVAL);
19056 	}
19057 
19058 	mutex_enter(SD_MUTEX(un));
19059 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
19060 	mutex_exit(SD_MUTEX(un));
19061 
19062 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
19063 
19064 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
19065 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
19066 	    bufaddr, buflen, start_block, block_count);
19067 
19068 	bzero(&cdb, sizeof (cdb));
19069 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19070 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19071 
19072 	/* Compute CDB size to use */
19073 	if (start_block > 0xffffffff)
19074 		cdbsize = CDB_GROUP4;
19075 	else if ((start_block & 0xFFE00000) ||
19076 	    (un->un_f_cfg_is_atapi == TRUE))
19077 		cdbsize = CDB_GROUP1;
19078 	else
19079 		cdbsize = CDB_GROUP0;
19080 
19081 	switch (cdbsize) {
19082 	case CDB_GROUP0:	/* 6-byte CDBs */
19083 		cdb.scc_cmd = cmd;
19084 		FORMG0ADDR(&cdb, start_block);
19085 		FORMG0COUNT(&cdb, block_count);
19086 		break;
19087 	case CDB_GROUP1:	/* 10-byte CDBs */
19088 		cdb.scc_cmd = cmd | SCMD_GROUP1;
19089 		FORMG1ADDR(&cdb, start_block);
19090 		FORMG1COUNT(&cdb, block_count);
19091 		break;
19092 	case CDB_GROUP4:	/* 16-byte CDBs */
19093 		cdb.scc_cmd = cmd | SCMD_GROUP4;
19094 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
19095 		FORMG4COUNT(&cdb, block_count);
19096 		break;
19097 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
19098 	default:
19099 		/* All others reserved */
19100 		return (EINVAL);
19101 	}
19102 
19103 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
19104 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19105 
19106 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19107 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19108 	ucmd_buf.uscsi_bufaddr	= bufaddr;
19109 	ucmd_buf.uscsi_buflen	= buflen;
19110 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19111 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19112 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19113 	ucmd_buf.uscsi_timeout	= 60;
19114 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19115 	    UIO_SYSSPACE, path_flag);
19116 	switch (status) {
19117 	case 0:
19118 		break;	/* Success! */
19119 	case EIO:
19120 		switch (ucmd_buf.uscsi_status) {
19121 		case STATUS_RESERVATION_CONFLICT:
19122 			status = EACCES;
19123 			break;
19124 		default:
19125 			break;
19126 		}
19127 		break;
19128 	default:
19129 		break;
19130 	}
19131 
19132 	if (status == 0) {
19133 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19134 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19135 	}
19136 
19137 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19138 
19139 	return (status);
19140 }
19141 
19142 
19143 /*
19144  *    Function: sd_send_scsi_LOG_SENSE
19145  *
19146  * Description: Issue a scsi LOG_SENSE command with the given parameters.
19147  *
19148  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19149  *
19150  * Return Code: 0   - Success
19151  *		errno return code from sd_send_scsi_cmd()
19152  *
19153  *     Context: Can sleep. Does not return until command is completed.
19154  */
19155 
19156 static int
19157 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19158 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19159 	int path_flag)
19160 
19161 {
19162 	struct	scsi_extended_sense	sense_buf;
19163 	union scsi_cdb		cdb;
19164 	struct uscsi_cmd	ucmd_buf;
19165 	int			status;
19166 
19167 	ASSERT(un != NULL);
19168 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19169 
19170 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19171 
19172 	bzero(&cdb, sizeof (cdb));
19173 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19174 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19175 
19176 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19177 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19178 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19179 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19180 	FORMG1COUNT(&cdb, buflen);
19181 
19182 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19183 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19184 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19185 	ucmd_buf.uscsi_buflen	= buflen;
19186 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19187 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19188 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19189 	ucmd_buf.uscsi_timeout	= 60;
19190 
19191 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19192 	    UIO_SYSSPACE, path_flag);
19193 
19194 	switch (status) {
19195 	case 0:
19196 		break;
19197 	case EIO:
19198 		switch (ucmd_buf.uscsi_status) {
19199 		case STATUS_RESERVATION_CONFLICT:
19200 			status = EACCES;
19201 			break;
19202 		case STATUS_CHECK:
19203 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19204 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19205 				KEY_ILLEGAL_REQUEST) &&
19206 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19207 				/*
19208 				 * ASC 0x24: INVALID FIELD IN CDB
19209 				 */
19210 				switch (page_code) {
19211 				case START_STOP_CYCLE_PAGE:
19212 					/*
19213 					 * The start stop cycle counter is
19214 					 * implemented as page 0x31 in earlier
19215 					 * generation disks. In new generation
19216 					 * disks the start stop cycle counter is
19217 					 * implemented as page 0xE. To properly
19218 					 * handle this case if an attempt for
19219 					 * log page 0xE is made and fails we
19220 					 * will try again using page 0x31.
19221 					 *
19222 					 * Network storage BU committed to
19223 					 * maintain the page 0x31 for this
19224 					 * purpose and will not have any other
19225 					 * page implemented with page code 0x31
19226 					 * until all disks transition to the
19227 					 * standard page.
19228 					 */
19229 					mutex_enter(SD_MUTEX(un));
19230 					un->un_start_stop_cycle_page =
19231 					    START_STOP_CYCLE_VU_PAGE;
19232 					cdb.cdb_opaque[2] =
19233 					    (char)(page_control << 6) |
19234 					    un->un_start_stop_cycle_page;
19235 					mutex_exit(SD_MUTEX(un));
19236 					status = sd_send_scsi_cmd(
19237 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19238 					    UIO_SYSSPACE, path_flag);
19239 
19240 					break;
19241 				case TEMPERATURE_PAGE:
19242 					status = ENOTTY;
19243 					break;
19244 				default:
19245 					break;
19246 				}
19247 			}
19248 			break;
19249 		default:
19250 			break;
19251 		}
19252 		break;
19253 	default:
19254 		break;
19255 	}
19256 
19257 	if (status == 0) {
19258 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19259 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19260 	}
19261 
19262 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19263 
19264 	return (status);
19265 }
19266 
19267 
19268 /*
19269  *    Function: sdioctl
19270  *
19271  * Description: Driver's ioctl(9e) entry point function.
19272  *
19273  *   Arguments: dev     - device number
19274  *		cmd     - ioctl operation to be performed
19275  *		arg     - user argument, contains data to be set or reference
19276  *			  parameter for get
19277  *		flag    - bit flag, indicating open settings, 32/64 bit type
19278  *		cred_p  - user credential pointer
19279  *		rval_p  - calling process return value (OPT)
19280  *
19281  * Return Code: EINVAL
19282  *		ENOTTY
19283  *		ENXIO
19284  *		EIO
19285  *		EFAULT
19286  *		ENOTSUP
19287  *		EPERM
19288  *
19289  *     Context: Called from the device switch at normal priority.
19290  */
19291 
19292 static int
19293 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19294 {
19295 	struct sd_lun	*un = NULL;
19296 	int		err = 0;
19297 	int		i = 0;
19298 	cred_t		*cr;
19299 	int		tmprval = EINVAL;
19300 	int 		is_valid;
19301 
19302 	/*
19303 	 * All device accesses go thru sdstrategy where we check on suspend
19304 	 * status
19305 	 */
19306 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19307 		return (ENXIO);
19308 	}
19309 
19310 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19311 
19312 
19313 	is_valid = SD_IS_VALID_LABEL(un);
19314 
19315 	/*
19316 	 * Moved this wait from sd_uscsi_strategy to here for
19317 	 * reasons of deadlock prevention. Internal driver commands,
19318 	 * specifically those to change a devices power level, result
19319 	 * in a call to sd_uscsi_strategy.
19320 	 */
19321 	mutex_enter(SD_MUTEX(un));
19322 	while ((un->un_state == SD_STATE_SUSPENDED) ||
19323 	    (un->un_state == SD_STATE_PM_CHANGING)) {
19324 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19325 	}
19326 	/*
19327 	 * Twiddling the counter here protects commands from now
19328 	 * through to the top of sd_uscsi_strategy. Without the
19329 	 * counter inc. a power down, for example, could get in
19330 	 * after the above check for state is made and before
19331 	 * execution gets to the top of sd_uscsi_strategy.
19332 	 * That would cause problems.
19333 	 */
19334 	un->un_ncmds_in_driver++;
19335 
19336 	if (!is_valid &&
19337 	    (flag & (FNDELAY | FNONBLOCK))) {
19338 		switch (cmd) {
19339 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19340 		case DKIOCGVTOC:
19341 		case DKIOCGAPART:
19342 		case DKIOCPARTINFO:
19343 		case DKIOCSGEOM:
19344 		case DKIOCSAPART:
19345 		case DKIOCGETEFI:
19346 		case DKIOCPARTITION:
19347 		case DKIOCSVTOC:
19348 		case DKIOCSETEFI:
19349 		case DKIOCGMBOOT:
19350 		case DKIOCSMBOOT:
19351 		case DKIOCG_PHYGEOM:
19352 		case DKIOCG_VIRTGEOM:
19353 			/* let cmlb handle it */
19354 			goto skip_ready_valid;
19355 
19356 		case CDROMPAUSE:
19357 		case CDROMRESUME:
19358 		case CDROMPLAYMSF:
19359 		case CDROMPLAYTRKIND:
19360 		case CDROMREADTOCHDR:
19361 		case CDROMREADTOCENTRY:
19362 		case CDROMSTOP:
19363 		case CDROMSTART:
19364 		case CDROMVOLCTRL:
19365 		case CDROMSUBCHNL:
19366 		case CDROMREADMODE2:
19367 		case CDROMREADMODE1:
19368 		case CDROMREADOFFSET:
19369 		case CDROMSBLKMODE:
19370 		case CDROMGBLKMODE:
19371 		case CDROMGDRVSPEED:
19372 		case CDROMSDRVSPEED:
19373 		case CDROMCDDA:
19374 		case CDROMCDXA:
19375 		case CDROMSUBCODE:
19376 			if (!ISCD(un)) {
19377 				un->un_ncmds_in_driver--;
19378 				ASSERT(un->un_ncmds_in_driver >= 0);
19379 				mutex_exit(SD_MUTEX(un));
19380 				return (ENOTTY);
19381 			}
19382 			break;
19383 		case FDEJECT:
19384 		case DKIOCEJECT:
19385 		case CDROMEJECT:
19386 			if (!un->un_f_eject_media_supported) {
19387 				un->un_ncmds_in_driver--;
19388 				ASSERT(un->un_ncmds_in_driver >= 0);
19389 				mutex_exit(SD_MUTEX(un));
19390 				return (ENOTTY);
19391 			}
19392 			break;
19393 		case DKIOCFLUSHWRITECACHE:
19394 			mutex_exit(SD_MUTEX(un));
19395 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19396 			if (err != 0) {
19397 				mutex_enter(SD_MUTEX(un));
19398 				un->un_ncmds_in_driver--;
19399 				ASSERT(un->un_ncmds_in_driver >= 0);
19400 				mutex_exit(SD_MUTEX(un));
19401 				return (EIO);
19402 			}
19403 			mutex_enter(SD_MUTEX(un));
19404 			/* FALLTHROUGH */
19405 		case DKIOCREMOVABLE:
19406 		case DKIOCHOTPLUGGABLE:
19407 		case DKIOCINFO:
19408 		case DKIOCGMEDIAINFO:
19409 		case MHIOCENFAILFAST:
19410 		case MHIOCSTATUS:
19411 		case MHIOCTKOWN:
19412 		case MHIOCRELEASE:
19413 		case MHIOCGRP_INKEYS:
19414 		case MHIOCGRP_INRESV:
19415 		case MHIOCGRP_REGISTER:
19416 		case MHIOCGRP_RESERVE:
19417 		case MHIOCGRP_PREEMPTANDABORT:
19418 		case MHIOCGRP_REGISTERANDIGNOREKEY:
19419 		case CDROMCLOSETRAY:
19420 		case USCSICMD:
19421 			goto skip_ready_valid;
19422 		default:
19423 			break;
19424 		}
19425 
19426 		mutex_exit(SD_MUTEX(un));
19427 		err = sd_ready_and_valid(un);
19428 		mutex_enter(SD_MUTEX(un));
19429 
19430 		if (err != SD_READY_VALID) {
19431 			switch (cmd) {
19432 			case DKIOCSTATE:
19433 			case CDROMGDRVSPEED:
19434 			case CDROMSDRVSPEED:
19435 			case FDEJECT:	/* for eject command */
19436 			case DKIOCEJECT:
19437 			case CDROMEJECT:
19438 			case DKIOCREMOVABLE:
19439 			case DKIOCHOTPLUGGABLE:
19440 				break;
19441 			default:
19442 				if (un->un_f_has_removable_media) {
19443 					err = ENXIO;
19444 				} else {
19445 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19446 					if (err == SD_RESERVED_BY_OTHERS) {
19447 						err = EACCES;
19448 					} else {
19449 						err = EIO;
19450 					}
19451 				}
19452 				un->un_ncmds_in_driver--;
19453 				ASSERT(un->un_ncmds_in_driver >= 0);
19454 				mutex_exit(SD_MUTEX(un));
19455 				return (err);
19456 			}
19457 		}
19458 	}
19459 
19460 skip_ready_valid:
19461 	mutex_exit(SD_MUTEX(un));
19462 
19463 	switch (cmd) {
19464 	case DKIOCINFO:
19465 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
19466 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
19467 		break;
19468 
19469 	case DKIOCGMEDIAINFO:
19470 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
19471 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
19472 		break;
19473 
19474 	case DKIOCGGEOM:
19475 	case DKIOCGVTOC:
19476 	case DKIOCGAPART:
19477 	case DKIOCPARTINFO:
19478 	case DKIOCSGEOM:
19479 	case DKIOCSAPART:
19480 	case DKIOCGETEFI:
19481 	case DKIOCPARTITION:
19482 	case DKIOCSVTOC:
19483 	case DKIOCSETEFI:
19484 	case DKIOCGMBOOT:
19485 	case DKIOCSMBOOT:
19486 	case DKIOCG_PHYGEOM:
19487 	case DKIOCG_VIRTGEOM:
19488 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
19489 
19490 		/* TUR should spin up */
19491 
19492 		if (un->un_f_has_removable_media)
19493 			err = sd_send_scsi_TEST_UNIT_READY(un,
19494 			    SD_CHECK_FOR_MEDIA);
19495 		else
19496 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19497 
19498 		if (err != 0)
19499 			break;
19500 
19501 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
19502 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
19503 
19504 		if ((err == 0) &&
19505 		    ((cmd == DKIOCSETEFI) ||
19506 		    (un->un_f_pkstats_enabled) &&
19507 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
19508 
19509 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
19510 			    (void *)SD_PATH_DIRECT);
19511 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
19512 				sd_set_pstats(un);
19513 				SD_TRACE(SD_LOG_IO_PARTITION, un,
19514 				    "sd_ioctl: un:0x%p pstats created and "
19515 				    "set\n", un);
19516 			}
19517 		}
19518 
19519 		if ((cmd == DKIOCSVTOC) ||
19520 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
19521 
19522 			mutex_enter(SD_MUTEX(un));
19523 			if (un->un_f_devid_supported &&
19524 			    (un->un_f_opt_fab_devid == TRUE)) {
19525 				if (un->un_devid == NULL) {
19526 					sd_register_devid(un, SD_DEVINFO(un),
19527 					    SD_TARGET_IS_UNRESERVED);
19528 				} else {
19529 					/*
19530 					 * The device id for this disk
19531 					 * has been fabricated. The
19532 					 * device id must be preserved
19533 					 * by writing it back out to
19534 					 * disk.
19535 					 */
19536 					if (sd_write_deviceid(un) != 0) {
19537 						ddi_devid_free(un->un_devid);
19538 						un->un_devid = NULL;
19539 					}
19540 				}
19541 			}
19542 			mutex_exit(SD_MUTEX(un));
19543 		}
19544 
19545 		break;
19546 
19547 	case DKIOCLOCK:
19548 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
19549 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19550 		    SD_PATH_STANDARD);
19551 		break;
19552 
19553 	case DKIOCUNLOCK:
19554 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
19555 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
19556 		    SD_PATH_STANDARD);
19557 		break;
19558 
19559 	case DKIOCSTATE: {
19560 		enum dkio_state		state;
19561 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
19562 
19563 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
19564 			err = EFAULT;
19565 		} else {
19566 			err = sd_check_media(dev, state);
19567 			if (err == 0) {
19568 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
19569 				    sizeof (int), flag) != 0)
19570 					err = EFAULT;
19571 			}
19572 		}
19573 		break;
19574 	}
19575 
19576 	case DKIOCREMOVABLE:
19577 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
19578 		i = un->un_f_has_removable_media ? 1 : 0;
19579 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19580 			err = EFAULT;
19581 		} else {
19582 			err = 0;
19583 		}
19584 		break;
19585 
19586 	case DKIOCHOTPLUGGABLE:
19587 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
19588 		i = un->un_f_is_hotpluggable ? 1 : 0;
19589 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19590 			err = EFAULT;
19591 		} else {
19592 			err = 0;
19593 		}
19594 		break;
19595 
19596 	case DKIOCGTEMPERATURE:
19597 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
19598 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
19599 		break;
19600 
19601 	case MHIOCENFAILFAST:
19602 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
19603 		if ((err = drv_priv(cred_p)) == 0) {
19604 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
19605 		}
19606 		break;
19607 
19608 	case MHIOCTKOWN:
19609 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
19610 		if ((err = drv_priv(cred_p)) == 0) {
19611 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
19612 		}
19613 		break;
19614 
19615 	case MHIOCRELEASE:
19616 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
19617 		if ((err = drv_priv(cred_p)) == 0) {
19618 			err = sd_mhdioc_release(dev);
19619 		}
19620 		break;
19621 
19622 	case MHIOCSTATUS:
19623 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
19624 		if ((err = drv_priv(cred_p)) == 0) {
19625 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
19626 			case 0:
19627 				err = 0;
19628 				break;
19629 			case EACCES:
19630 				*rval_p = 1;
19631 				err = 0;
19632 				break;
19633 			default:
19634 				err = EIO;
19635 				break;
19636 			}
19637 		}
19638 		break;
19639 
19640 	case MHIOCQRESERVE:
19641 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
19642 		if ((err = drv_priv(cred_p)) == 0) {
19643 			err = sd_reserve_release(dev, SD_RESERVE);
19644 		}
19645 		break;
19646 
19647 	case MHIOCREREGISTERDEVID:
19648 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
19649 		if (drv_priv(cred_p) == EPERM) {
19650 			err = EPERM;
19651 		} else if (!un->un_f_devid_supported) {
19652 			err = ENOTTY;
19653 		} else {
19654 			err = sd_mhdioc_register_devid(dev);
19655 		}
19656 		break;
19657 
19658 	case MHIOCGRP_INKEYS:
19659 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
19660 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19661 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19662 				err = ENOTSUP;
19663 			} else {
19664 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
19665 				    flag);
19666 			}
19667 		}
19668 		break;
19669 
19670 	case MHIOCGRP_INRESV:
19671 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
19672 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19673 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19674 				err = ENOTSUP;
19675 			} else {
19676 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
19677 			}
19678 		}
19679 		break;
19680 
19681 	case MHIOCGRP_REGISTER:
19682 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
19683 		if ((err = drv_priv(cred_p)) != EPERM) {
19684 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19685 				err = ENOTSUP;
19686 			} else if (arg != NULL) {
19687 				mhioc_register_t reg;
19688 				if (ddi_copyin((void *)arg, &reg,
19689 				    sizeof (mhioc_register_t), flag) != 0) {
19690 					err = EFAULT;
19691 				} else {
19692 					err =
19693 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19694 					    un, SD_SCSI3_REGISTER,
19695 					    (uchar_t *)&reg);
19696 				}
19697 			}
19698 		}
19699 		break;
19700 
19701 	case MHIOCGRP_RESERVE:
19702 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
19703 		if ((err = drv_priv(cred_p)) != EPERM) {
19704 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19705 				err = ENOTSUP;
19706 			} else if (arg != NULL) {
19707 				mhioc_resv_desc_t resv_desc;
19708 				if (ddi_copyin((void *)arg, &resv_desc,
19709 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
19710 					err = EFAULT;
19711 				} else {
19712 					err =
19713 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19714 					    un, SD_SCSI3_RESERVE,
19715 					    (uchar_t *)&resv_desc);
19716 				}
19717 			}
19718 		}
19719 		break;
19720 
19721 	case MHIOCGRP_PREEMPTANDABORT:
19722 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
19723 		if ((err = drv_priv(cred_p)) != EPERM) {
19724 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19725 				err = ENOTSUP;
19726 			} else if (arg != NULL) {
19727 				mhioc_preemptandabort_t preempt_abort;
19728 				if (ddi_copyin((void *)arg, &preempt_abort,
19729 				    sizeof (mhioc_preemptandabort_t),
19730 				    flag) != 0) {
19731 					err = EFAULT;
19732 				} else {
19733 					err =
19734 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19735 					    un, SD_SCSI3_PREEMPTANDABORT,
19736 					    (uchar_t *)&preempt_abort);
19737 				}
19738 			}
19739 		}
19740 		break;
19741 
19742 	case MHIOCGRP_REGISTERANDIGNOREKEY:
19743 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
19744 		if ((err = drv_priv(cred_p)) != EPERM) {
19745 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19746 				err = ENOTSUP;
19747 			} else if (arg != NULL) {
19748 				mhioc_registerandignorekey_t r_and_i;
19749 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
19750 				    sizeof (mhioc_registerandignorekey_t),
19751 				    flag) != 0) {
19752 					err = EFAULT;
19753 				} else {
19754 					err =
19755 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
19756 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
19757 					    (uchar_t *)&r_and_i);
19758 				}
19759 			}
19760 		}
19761 		break;
19762 
19763 	case USCSICMD:
19764 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
19765 		cr = ddi_get_cred();
19766 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
19767 			err = EPERM;
19768 		} else {
19769 			enum uio_seg	uioseg;
19770 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
19771 			    UIO_USERSPACE;
19772 			if (un->un_f_format_in_progress == TRUE) {
19773 				err = EAGAIN;
19774 				break;
19775 			}
19776 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
19777 			    flag, uioseg, SD_PATH_STANDARD);
19778 		}
19779 		break;
19780 
19781 	case CDROMPAUSE:
19782 	case CDROMRESUME:
19783 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
19784 		if (!ISCD(un)) {
19785 			err = ENOTTY;
19786 		} else {
19787 			err = sr_pause_resume(dev, cmd);
19788 		}
19789 		break;
19790 
19791 	case CDROMPLAYMSF:
19792 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
19793 		if (!ISCD(un)) {
19794 			err = ENOTTY;
19795 		} else {
19796 			err = sr_play_msf(dev, (caddr_t)arg, flag);
19797 		}
19798 		break;
19799 
19800 	case CDROMPLAYTRKIND:
19801 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
19802 #if defined(__i386) || defined(__amd64)
19803 		/*
19804 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
19805 		 */
19806 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
19807 #else
19808 		if (!ISCD(un)) {
19809 #endif
19810 			err = ENOTTY;
19811 		} else {
19812 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
19813 		}
19814 		break;
19815 
19816 	case CDROMREADTOCHDR:
19817 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
19818 		if (!ISCD(un)) {
19819 			err = ENOTTY;
19820 		} else {
19821 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
19822 		}
19823 		break;
19824 
19825 	case CDROMREADTOCENTRY:
19826 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
19827 		if (!ISCD(un)) {
19828 			err = ENOTTY;
19829 		} else {
19830 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
19831 		}
19832 		break;
19833 
19834 	case CDROMSTOP:
19835 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
19836 		if (!ISCD(un)) {
19837 			err = ENOTTY;
19838 		} else {
19839 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
19840 			    SD_PATH_STANDARD);
19841 		}
19842 		break;
19843 
19844 	case CDROMSTART:
19845 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
19846 		if (!ISCD(un)) {
19847 			err = ENOTTY;
19848 		} else {
19849 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19850 			    SD_PATH_STANDARD);
19851 		}
19852 		break;
19853 
19854 	case CDROMCLOSETRAY:
19855 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
19856 		if (!ISCD(un)) {
19857 			err = ENOTTY;
19858 		} else {
19859 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
19860 			    SD_PATH_STANDARD);
19861 		}
19862 		break;
19863 
19864 	case FDEJECT:	/* for eject command */
19865 	case DKIOCEJECT:
19866 	case CDROMEJECT:
19867 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
19868 		if (!un->un_f_eject_media_supported) {
19869 			err = ENOTTY;
19870 		} else {
19871 			err = sr_eject(dev);
19872 		}
19873 		break;
19874 
19875 	case CDROMVOLCTRL:
19876 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
19877 		if (!ISCD(un)) {
19878 			err = ENOTTY;
19879 		} else {
19880 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
19881 		}
19882 		break;
19883 
19884 	case CDROMSUBCHNL:
19885 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
19886 		if (!ISCD(un)) {
19887 			err = ENOTTY;
19888 		} else {
19889 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
19890 		}
19891 		break;
19892 
19893 	case CDROMREADMODE2:
19894 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
19895 		if (!ISCD(un)) {
19896 			err = ENOTTY;
19897 		} else if (un->un_f_cfg_is_atapi == TRUE) {
19898 			/*
19899 			 * If the drive supports READ CD, use that instead of
19900 			 * switching the LBA size via a MODE SELECT
19901 			 * Block Descriptor
19902 			 */
19903 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
19904 		} else {
19905 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
19906 		}
19907 		break;
19908 
19909 	case CDROMREADMODE1:
19910 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
19911 		if (!ISCD(un)) {
19912 			err = ENOTTY;
19913 		} else {
19914 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
19915 		}
19916 		break;
19917 
19918 	case CDROMREADOFFSET:
19919 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
19920 		if (!ISCD(un)) {
19921 			err = ENOTTY;
19922 		} else {
19923 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
19924 			    flag);
19925 		}
19926 		break;
19927 
19928 	case CDROMSBLKMODE:
19929 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
19930 		/*
19931 		 * There is no means of changing block size in case of atapi
19932 		 * drives, thus return ENOTTY if drive type is atapi
19933 		 */
19934 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
19935 			err = ENOTTY;
19936 		} else if (un->un_f_mmc_cap == TRUE) {
19937 
19938 			/*
19939 			 * MMC Devices do not support changing the
19940 			 * logical block size
19941 			 *
19942 			 * Note: EINVAL is being returned instead of ENOTTY to
19943 			 * maintain consistancy with the original mmc
19944 			 * driver update.
19945 			 */
19946 			err = EINVAL;
19947 		} else {
19948 			mutex_enter(SD_MUTEX(un));
19949 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
19950 			    (un->un_ncmds_in_transport > 0)) {
19951 				mutex_exit(SD_MUTEX(un));
19952 				err = EINVAL;
19953 			} else {
19954 				mutex_exit(SD_MUTEX(un));
19955 				err = sr_change_blkmode(dev, cmd, arg, flag);
19956 			}
19957 		}
19958 		break;
19959 
19960 	case CDROMGBLKMODE:
19961 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
19962 		if (!ISCD(un)) {
19963 			err = ENOTTY;
19964 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
19965 		    (un->un_f_blockcount_is_valid != FALSE)) {
19966 			/*
19967 			 * Drive is an ATAPI drive so return target block
19968 			 * size for ATAPI drives since we cannot change the
19969 			 * blocksize on ATAPI drives. Used primarily to detect
19970 			 * if an ATAPI cdrom is present.
19971 			 */
19972 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
19973 			    sizeof (int), flag) != 0) {
19974 				err = EFAULT;
19975 			} else {
19976 				err = 0;
19977 			}
19978 
19979 		} else {
19980 			/*
19981 			 * Drive supports changing block sizes via a Mode
19982 			 * Select.
19983 			 */
19984 			err = sr_change_blkmode(dev, cmd, arg, flag);
19985 		}
19986 		break;
19987 
19988 	case CDROMGDRVSPEED:
19989 	case CDROMSDRVSPEED:
19990 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
19991 		if (!ISCD(un)) {
19992 			err = ENOTTY;
19993 		} else if (un->un_f_mmc_cap == TRUE) {
19994 			/*
19995 			 * Note: In the future the driver implementation
19996 			 * for getting and
19997 			 * setting cd speed should entail:
19998 			 * 1) If non-mmc try the Toshiba mode page
19999 			 *    (sr_change_speed)
20000 			 * 2) If mmc but no support for Real Time Streaming try
20001 			 *    the SET CD SPEED (0xBB) command
20002 			 *   (sr_atapi_change_speed)
20003 			 * 3) If mmc and support for Real Time Streaming
20004 			 *    try the GET PERFORMANCE and SET STREAMING
20005 			 *    commands (not yet implemented, 4380808)
20006 			 */
20007 			/*
20008 			 * As per recent MMC spec, CD-ROM speed is variable
20009 			 * and changes with LBA. Since there is no such
20010 			 * things as drive speed now, fail this ioctl.
20011 			 *
20012 			 * Note: EINVAL is returned for consistancy of original
20013 			 * implementation which included support for getting
20014 			 * the drive speed of mmc devices but not setting
20015 			 * the drive speed. Thus EINVAL would be returned
20016 			 * if a set request was made for an mmc device.
20017 			 * We no longer support get or set speed for
20018 			 * mmc but need to remain consistent with regard
20019 			 * to the error code returned.
20020 			 */
20021 			err = EINVAL;
20022 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20023 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
20024 		} else {
20025 			err = sr_change_speed(dev, cmd, arg, flag);
20026 		}
20027 		break;
20028 
20029 	case CDROMCDDA:
20030 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
20031 		if (!ISCD(un)) {
20032 			err = ENOTTY;
20033 		} else {
20034 			err = sr_read_cdda(dev, (void *)arg, flag);
20035 		}
20036 		break;
20037 
20038 	case CDROMCDXA:
20039 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
20040 		if (!ISCD(un)) {
20041 			err = ENOTTY;
20042 		} else {
20043 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
20044 		}
20045 		break;
20046 
20047 	case CDROMSUBCODE:
20048 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
20049 		if (!ISCD(un)) {
20050 			err = ENOTTY;
20051 		} else {
20052 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
20053 		}
20054 		break;
20055 
20056 
20057 #ifdef SDDEBUG
20058 /* RESET/ABORTS testing ioctls */
20059 	case DKIOCRESET: {
20060 		int	reset_level;
20061 
20062 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
20063 			err = EFAULT;
20064 		} else {
20065 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
20066 			    "reset_level = 0x%lx\n", reset_level);
20067 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
20068 				err = 0;
20069 			} else {
20070 				err = EIO;
20071 			}
20072 		}
20073 		break;
20074 	}
20075 
20076 	case DKIOCABORT:
20077 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
20078 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
20079 			err = 0;
20080 		} else {
20081 			err = EIO;
20082 		}
20083 		break;
20084 #endif
20085 
20086 #ifdef SD_FAULT_INJECTION
20087 /* SDIOC FaultInjection testing ioctls */
20088 	case SDIOCSTART:
20089 	case SDIOCSTOP:
20090 	case SDIOCINSERTPKT:
20091 	case SDIOCINSERTXB:
20092 	case SDIOCINSERTUN:
20093 	case SDIOCINSERTARQ:
20094 	case SDIOCPUSH:
20095 	case SDIOCRETRIEVE:
20096 	case SDIOCRUN:
20097 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
20098 		    "SDIOC detected cmd:0x%X:\n", cmd);
20099 		/* call error generator */
20100 		sd_faultinjection_ioctl(cmd, arg, un);
20101 		err = 0;
20102 		break;
20103 
20104 #endif /* SD_FAULT_INJECTION */
20105 
20106 	case DKIOCFLUSHWRITECACHE:
20107 		{
20108 			struct dk_callback *dkc = (struct dk_callback *)arg;
20109 
20110 			mutex_enter(SD_MUTEX(un));
20111 			if (!un->un_f_sync_cache_supported ||
20112 			    !un->un_f_write_cache_enabled) {
20113 				err = un->un_f_sync_cache_supported ?
20114 				    0 : ENOTSUP;
20115 				mutex_exit(SD_MUTEX(un));
20116 				if ((flag & FKIOCTL) && dkc != NULL &&
20117 				    dkc->dkc_callback != NULL) {
20118 					(*dkc->dkc_callback)(dkc->dkc_cookie,
20119 					    err);
20120 					/*
20121 					 * Did callback and reported error.
20122 					 * Since we did a callback, ioctl
20123 					 * should return 0.
20124 					 */
20125 					err = 0;
20126 				}
20127 				break;
20128 			}
20129 			mutex_exit(SD_MUTEX(un));
20130 
20131 			if ((flag & FKIOCTL) && dkc != NULL &&
20132 			    dkc->dkc_callback != NULL) {
20133 				/* async SYNC CACHE request */
20134 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20135 			} else {
20136 				/* synchronous SYNC CACHE request */
20137 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20138 			}
20139 		}
20140 		break;
20141 
20142 	case DKIOCGETWCE: {
20143 
20144 		int wce;
20145 
20146 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20147 			break;
20148 		}
20149 
20150 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20151 			err = EFAULT;
20152 		}
20153 		break;
20154 	}
20155 
20156 	case DKIOCSETWCE: {
20157 
20158 		int wce, sync_supported;
20159 
20160 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20161 			err = EFAULT;
20162 			break;
20163 		}
20164 
20165 		/*
20166 		 * Synchronize multiple threads trying to enable
20167 		 * or disable the cache via the un_f_wcc_cv
20168 		 * condition variable.
20169 		 */
20170 		mutex_enter(SD_MUTEX(un));
20171 
20172 		/*
20173 		 * Don't allow the cache to be enabled if the
20174 		 * config file has it disabled.
20175 		 */
20176 		if (un->un_f_opt_disable_cache && wce) {
20177 			mutex_exit(SD_MUTEX(un));
20178 			err = EINVAL;
20179 			break;
20180 		}
20181 
20182 		/*
20183 		 * Wait for write cache change in progress
20184 		 * bit to be clear before proceeding.
20185 		 */
20186 		while (un->un_f_wcc_inprog)
20187 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20188 
20189 		un->un_f_wcc_inprog = 1;
20190 
20191 		if (un->un_f_write_cache_enabled && wce == 0) {
20192 			/*
20193 			 * Disable the write cache.  Don't clear
20194 			 * un_f_write_cache_enabled until after
20195 			 * the mode select and flush are complete.
20196 			 */
20197 			sync_supported = un->un_f_sync_cache_supported;
20198 			mutex_exit(SD_MUTEX(un));
20199 			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20200 			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
20201 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20202 			}
20203 
20204 			mutex_enter(SD_MUTEX(un));
20205 			if (err == 0) {
20206 				un->un_f_write_cache_enabled = 0;
20207 			}
20208 
20209 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20210 			/*
20211 			 * Set un_f_write_cache_enabled first, so there is
20212 			 * no window where the cache is enabled, but the
20213 			 * bit says it isn't.
20214 			 */
20215 			un->un_f_write_cache_enabled = 1;
20216 			mutex_exit(SD_MUTEX(un));
20217 
20218 			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20219 			    SD_CACHE_ENABLE);
20220 
20221 			mutex_enter(SD_MUTEX(un));
20222 
20223 			if (err) {
20224 				un->un_f_write_cache_enabled = 0;
20225 			}
20226 		}
20227 
20228 		un->un_f_wcc_inprog = 0;
20229 		cv_broadcast(&un->un_wcc_cv);
20230 		mutex_exit(SD_MUTEX(un));
20231 		break;
20232 	}
20233 
20234 	default:
20235 		err = ENOTTY;
20236 		break;
20237 	}
20238 	mutex_enter(SD_MUTEX(un));
20239 	un->un_ncmds_in_driver--;
20240 	ASSERT(un->un_ncmds_in_driver >= 0);
20241 	mutex_exit(SD_MUTEX(un));
20242 
20243 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20244 	return (err);
20245 }
20246 
20247 
20248 /*
20249  *    Function: sd_dkio_ctrl_info
20250  *
20251  * Description: This routine is the driver entry point for handling controller
20252  *		information ioctl requests (DKIOCINFO).
20253  *
20254  *   Arguments: dev  - the device number
20255  *		arg  - pointer to user provided dk_cinfo structure
20256  *		       specifying the controller type and attributes.
20257  *		flag - this argument is a pass through to ddi_copyxxx()
20258  *		       directly from the mode argument of ioctl().
20259  *
20260  * Return Code: 0
20261  *		EFAULT
20262  *		ENXIO
20263  */
20264 
20265 static int
20266 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20267 {
20268 	struct sd_lun	*un = NULL;
20269 	struct dk_cinfo	*info;
20270 	dev_info_t	*pdip;
20271 	int		lun, tgt;
20272 
20273 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20274 		return (ENXIO);
20275 	}
20276 
20277 	info = (struct dk_cinfo *)
20278 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20279 
20280 	switch (un->un_ctype) {
20281 	case CTYPE_CDROM:
20282 		info->dki_ctype = DKC_CDROM;
20283 		break;
20284 	default:
20285 		info->dki_ctype = DKC_SCSI_CCS;
20286 		break;
20287 	}
20288 	pdip = ddi_get_parent(SD_DEVINFO(un));
20289 	info->dki_cnum = ddi_get_instance(pdip);
20290 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20291 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20292 	} else {
20293 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20294 		    DK_DEVLEN - 1);
20295 	}
20296 
20297 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20298 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20299 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20300 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20301 
20302 	/* Unit Information */
20303 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20304 	info->dki_slave = ((tgt << 3) | lun);
20305 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20306 	    DK_DEVLEN - 1);
20307 	info->dki_flags = DKI_FMTVOL;
20308 	info->dki_partition = SDPART(dev);
20309 
20310 	/* Max Transfer size of this device in blocks */
20311 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20312 	info->dki_addr = 0;
20313 	info->dki_space = 0;
20314 	info->dki_prio = 0;
20315 	info->dki_vec = 0;
20316 
20317 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20318 		kmem_free(info, sizeof (struct dk_cinfo));
20319 		return (EFAULT);
20320 	} else {
20321 		kmem_free(info, sizeof (struct dk_cinfo));
20322 		return (0);
20323 	}
20324 }
20325 
20326 
20327 /*
20328  *    Function: sd_get_media_info
20329  *
20330  * Description: This routine is the driver entry point for handling ioctl
20331  *		requests for the media type or command set profile used by the
20332  *		drive to operate on the media (DKIOCGMEDIAINFO).
20333  *
20334  *   Arguments: dev	- the device number
20335  *		arg	- pointer to user provided dk_minfo structure
20336  *			  specifying the media type, logical block size and
20337  *			  drive capacity.
20338  *		flag	- this argument is a pass through to ddi_copyxxx()
20339  *			  directly from the mode argument of ioctl().
20340  *
20341  * Return Code: 0
20342  *		EACCESS
20343  *		EFAULT
20344  *		ENXIO
20345  *		EIO
20346  */
20347 
20348 static int
20349 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20350 {
20351 	struct sd_lun		*un = NULL;
20352 	struct uscsi_cmd	com;
20353 	struct scsi_inquiry	*sinq;
20354 	struct dk_minfo		media_info;
20355 	u_longlong_t		media_capacity;
20356 	uint64_t		capacity;
20357 	uint_t			lbasize;
20358 	uchar_t			*out_data;
20359 	uchar_t			*rqbuf;
20360 	int			rval = 0;
20361 	int			rtn;
20362 
20363 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20364 	    (un->un_state == SD_STATE_OFFLINE)) {
20365 		return (ENXIO);
20366 	}
20367 
20368 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20369 
20370 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20371 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20372 
20373 	/* Issue a TUR to determine if the drive is ready with media present */
20374 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20375 	if (rval == ENXIO) {
20376 		goto done;
20377 	}
20378 
20379 	/* Now get configuration data */
20380 	if (ISCD(un)) {
20381 		media_info.dki_media_type = DK_CDROM;
20382 
20383 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20384 		if (un->un_f_mmc_cap == TRUE) {
20385 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20386 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20387 			    SD_PATH_STANDARD);
20388 
20389 			if (rtn) {
20390 				/*
20391 				 * Failed for other than an illegal request
20392 				 * or command not supported
20393 				 */
20394 				if ((com.uscsi_status == STATUS_CHECK) &&
20395 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20396 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20397 					    (rqbuf[12] != 0x20)) {
20398 						rval = EIO;
20399 						goto done;
20400 					}
20401 				}
20402 			} else {
20403 				/*
20404 				 * The GET CONFIGURATION command succeeded
20405 				 * so set the media type according to the
20406 				 * returned data
20407 				 */
20408 				media_info.dki_media_type = out_data[6];
20409 				media_info.dki_media_type <<= 8;
20410 				media_info.dki_media_type |= out_data[7];
20411 			}
20412 		}
20413 	} else {
20414 		/*
20415 		 * The profile list is not available, so we attempt to identify
20416 		 * the media type based on the inquiry data
20417 		 */
20418 		sinq = un->un_sd->sd_inq;
20419 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20420 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20421 			/* This is a direct access device  or optical disk */
20422 			media_info.dki_media_type = DK_FIXED_DISK;
20423 
20424 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20425 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20426 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20427 					media_info.dki_media_type = DK_ZIP;
20428 				} else if (
20429 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20430 					media_info.dki_media_type = DK_JAZ;
20431 				}
20432 			}
20433 		} else {
20434 			/*
20435 			 * Not a CD, direct access or optical disk so return
20436 			 * unknown media
20437 			 */
20438 			media_info.dki_media_type = DK_UNKNOWN;
20439 		}
20440 	}
20441 
20442 	/* Now read the capacity so we can provide the lbasize and capacity */
20443 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
20444 	    SD_PATH_DIRECT)) {
20445 	case 0:
20446 		break;
20447 	case EACCES:
20448 		rval = EACCES;
20449 		goto done;
20450 	default:
20451 		rval = EIO;
20452 		goto done;
20453 	}
20454 
20455 	media_info.dki_lbsize = lbasize;
20456 	media_capacity = capacity;
20457 
20458 	/*
20459 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
20460 	 * un->un_sys_blocksize chunks. So we need to convert it into
20461 	 * cap.lbasize chunks.
20462 	 */
20463 	media_capacity *= un->un_sys_blocksize;
20464 	media_capacity /= lbasize;
20465 	media_info.dki_capacity = media_capacity;
20466 
20467 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
20468 		rval = EFAULT;
20469 		/* Put goto. Anybody might add some code below in future */
20470 		goto done;
20471 	}
20472 done:
20473 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
20474 	kmem_free(rqbuf, SENSE_LENGTH);
20475 	return (rval);
20476 }
20477 
20478 
20479 /*
20480  *    Function: sd_check_media
20481  *
20482  * Description: This utility routine implements the functionality for the
20483  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
20484  *		driver state changes from that specified by the user
20485  *		(inserted or ejected). For example, if the user specifies
20486  *		DKIO_EJECTED and the current media state is inserted this
20487  *		routine will immediately return DKIO_INSERTED. However, if the
20488  *		current media state is not inserted the user thread will be
20489  *		blocked until the drive state changes. If DKIO_NONE is specified
20490  *		the user thread will block until a drive state change occurs.
20491  *
20492  *   Arguments: dev  - the device number
20493  *		state  - user pointer to a dkio_state, updated with the current
20494  *			drive state at return.
20495  *
20496  * Return Code: ENXIO
20497  *		EIO
20498  *		EAGAIN
20499  *		EINTR
20500  */
20501 
20502 static int
20503 sd_check_media(dev_t dev, enum dkio_state state)
20504 {
20505 	struct sd_lun		*un = NULL;
20506 	enum dkio_state		prev_state;
20507 	opaque_t		token = NULL;
20508 	int			rval = 0;
20509 
20510 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20511 		return (ENXIO);
20512 	}
20513 
20514 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
20515 
20516 	mutex_enter(SD_MUTEX(un));
20517 
20518 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
20519 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
20520 
20521 	prev_state = un->un_mediastate;
20522 
20523 	/* is there anything to do? */
20524 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
20525 		/*
20526 		 * submit the request to the scsi_watch service;
20527 		 * scsi_media_watch_cb() does the real work
20528 		 */
20529 		mutex_exit(SD_MUTEX(un));
20530 
20531 		/*
20532 		 * This change handles the case where a scsi watch request is
20533 		 * added to a device that is powered down. To accomplish this
20534 		 * we power up the device before adding the scsi watch request,
20535 		 * since the scsi watch sends a TUR directly to the device
20536 		 * which the device cannot handle if it is powered down.
20537 		 */
20538 		if (sd_pm_entry(un) != DDI_SUCCESS) {
20539 			mutex_enter(SD_MUTEX(un));
20540 			goto done;
20541 		}
20542 
20543 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
20544 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
20545 		    (caddr_t)dev);
20546 
20547 		sd_pm_exit(un);
20548 
20549 		mutex_enter(SD_MUTEX(un));
20550 		if (token == NULL) {
20551 			rval = EAGAIN;
20552 			goto done;
20553 		}
20554 
20555 		/*
20556 		 * This is a special case IOCTL that doesn't return
20557 		 * until the media state changes. Routine sdpower
20558 		 * knows about and handles this so don't count it
20559 		 * as an active cmd in the driver, which would
20560 		 * keep the device busy to the pm framework.
20561 		 * If the count isn't decremented the device can't
20562 		 * be powered down.
20563 		 */
20564 		un->un_ncmds_in_driver--;
20565 		ASSERT(un->un_ncmds_in_driver >= 0);
20566 
20567 		/*
20568 		 * if a prior request had been made, this will be the same
20569 		 * token, as scsi_watch was designed that way.
20570 		 */
20571 		un->un_swr_token = token;
20572 		un->un_specified_mediastate = state;
20573 
20574 		/*
20575 		 * now wait for media change
20576 		 * we will not be signalled unless mediastate == state but it is
20577 		 * still better to test for this condition, since there is a
20578 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
20579 		 */
20580 		SD_TRACE(SD_LOG_COMMON, un,
20581 		    "sd_check_media: waiting for media state change\n");
20582 		while (un->un_mediastate == state) {
20583 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
20584 				SD_TRACE(SD_LOG_COMMON, un,
20585 				    "sd_check_media: waiting for media state "
20586 				    "was interrupted\n");
20587 				un->un_ncmds_in_driver++;
20588 				rval = EINTR;
20589 				goto done;
20590 			}
20591 			SD_TRACE(SD_LOG_COMMON, un,
20592 			    "sd_check_media: received signal, state=%x\n",
20593 			    un->un_mediastate);
20594 		}
20595 		/*
20596 		 * Inc the counter to indicate the device once again
20597 		 * has an active outstanding cmd.
20598 		 */
20599 		un->un_ncmds_in_driver++;
20600 	}
20601 
20602 	/* invalidate geometry */
20603 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
20604 		sr_ejected(un);
20605 	}
20606 
20607 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
20608 		uint64_t	capacity;
20609 		uint_t		lbasize;
20610 
20611 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
20612 		mutex_exit(SD_MUTEX(un));
20613 		/*
20614 		 * Since the following routines use SD_PATH_DIRECT, we must
20615 		 * call PM directly before the upcoming disk accesses. This
20616 		 * may cause the disk to be power/spin up.
20617 		 */
20618 
20619 		if (sd_pm_entry(un) == DDI_SUCCESS) {
20620 			rval = sd_send_scsi_READ_CAPACITY(un,
20621 			    &capacity,
20622 			    &lbasize, SD_PATH_DIRECT);
20623 			if (rval != 0) {
20624 				sd_pm_exit(un);
20625 				mutex_enter(SD_MUTEX(un));
20626 				goto done;
20627 			}
20628 		} else {
20629 			rval = EIO;
20630 			mutex_enter(SD_MUTEX(un));
20631 			goto done;
20632 		}
20633 		mutex_enter(SD_MUTEX(un));
20634 
20635 		sd_update_block_info(un, lbasize, capacity);
20636 
20637 		/*
20638 		 *  Check if the media in the device is writable or not
20639 		 */
20640 		if (ISCD(un))
20641 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
20642 
20643 		mutex_exit(SD_MUTEX(un));
20644 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
20645 		if ((cmlb_validate(un->un_cmlbhandle, 0,
20646 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
20647 			sd_set_pstats(un);
20648 			SD_TRACE(SD_LOG_IO_PARTITION, un,
20649 			    "sd_check_media: un:0x%p pstats created and "
20650 			    "set\n", un);
20651 		}
20652 
20653 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
20654 		    SD_PATH_DIRECT);
20655 		sd_pm_exit(un);
20656 
20657 		mutex_enter(SD_MUTEX(un));
20658 	}
20659 done:
20660 	un->un_f_watcht_stopped = FALSE;
20661 	if (un->un_swr_token) {
20662 		/*
20663 		 * Use of this local token and the mutex ensures that we avoid
20664 		 * some race conditions associated with terminating the
20665 		 * scsi watch.
20666 		 */
20667 		token = un->un_swr_token;
20668 		un->un_swr_token = (opaque_t)NULL;
20669 		mutex_exit(SD_MUTEX(un));
20670 		(void) scsi_watch_request_terminate(token,
20671 		    SCSI_WATCH_TERMINATE_WAIT);
20672 		mutex_enter(SD_MUTEX(un));
20673 	}
20674 
20675 	/*
20676 	 * Update the capacity kstat value, if no media previously
20677 	 * (capacity kstat is 0) and a media has been inserted
20678 	 * (un_f_blockcount_is_valid == TRUE)
20679 	 */
20680 	if (un->un_errstats) {
20681 		struct sd_errstats	*stp = NULL;
20682 
20683 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
20684 		if ((stp->sd_capacity.value.ui64 == 0) &&
20685 		    (un->un_f_blockcount_is_valid == TRUE)) {
20686 			stp->sd_capacity.value.ui64 =
20687 			    (uint64_t)((uint64_t)un->un_blockcount *
20688 			    un->un_sys_blocksize);
20689 		}
20690 	}
20691 	mutex_exit(SD_MUTEX(un));
20692 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
20693 	return (rval);
20694 }
20695 
20696 
20697 /*
20698  *    Function: sd_delayed_cv_broadcast
20699  *
20700  * Description: Delayed cv_broadcast to allow for target to recover from media
20701  *		insertion.
20702  *
20703  *   Arguments: arg - driver soft state (unit) structure
20704  */
20705 
20706 static void
20707 sd_delayed_cv_broadcast(void *arg)
20708 {
20709 	struct sd_lun *un = arg;
20710 
20711 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
20712 
20713 	mutex_enter(SD_MUTEX(un));
20714 	un->un_dcvb_timeid = NULL;
20715 	cv_broadcast(&un->un_state_cv);
20716 	mutex_exit(SD_MUTEX(un));
20717 }
20718 
20719 
20720 /*
20721  *    Function: sd_media_watch_cb
20722  *
20723  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
20724  *		routine processes the TUR sense data and updates the driver
20725  *		state if a transition has occurred. The user thread
20726  *		(sd_check_media) is then signalled.
20727  *
20728  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
20729  *			among multiple watches that share this callback function
20730  *		resultp - scsi watch facility result packet containing scsi
20731  *			  packet, status byte and sense data
20732  *
20733  * Return Code: 0 for success, -1 for failure
20734  */
20735 
20736 static int
20737 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
20738 {
20739 	struct sd_lun			*un;
20740 	struct scsi_status		*statusp = resultp->statusp;
20741 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
20742 	enum dkio_state			state = DKIO_NONE;
20743 	dev_t				dev = (dev_t)arg;
20744 	uchar_t				actual_sense_length;
20745 	uint8_t				skey, asc, ascq;
20746 
20747 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20748 		return (-1);
20749 	}
20750 	actual_sense_length = resultp->actual_sense_length;
20751 
20752 	mutex_enter(SD_MUTEX(un));
20753 	SD_TRACE(SD_LOG_COMMON, un,
20754 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
20755 	    *((char *)statusp), (void *)sensep, actual_sense_length);
20756 
20757 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
20758 		un->un_mediastate = DKIO_DEV_GONE;
20759 		cv_broadcast(&un->un_state_cv);
20760 		mutex_exit(SD_MUTEX(un));
20761 
20762 		return (0);
20763 	}
20764 
20765 	/*
20766 	 * If there was a check condition then sensep points to valid sense data
20767 	 * If status was not a check condition but a reservation or busy status
20768 	 * then the new state is DKIO_NONE
20769 	 */
20770 	if (sensep != NULL) {
20771 		skey = scsi_sense_key(sensep);
20772 		asc = scsi_sense_asc(sensep);
20773 		ascq = scsi_sense_ascq(sensep);
20774 
20775 		SD_INFO(SD_LOG_COMMON, un,
20776 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
20777 		    skey, asc, ascq);
20778 		/* This routine only uses up to 13 bytes of sense data. */
20779 		if (actual_sense_length >= 13) {
20780 			if (skey == KEY_UNIT_ATTENTION) {
20781 				if (asc == 0x28) {
20782 					state = DKIO_INSERTED;
20783 				}
20784 			} else if (skey == KEY_NOT_READY) {
20785 				/*
20786 				 * if 02/04/02  means that the host
20787 				 * should send start command. Explicitly
20788 				 * leave the media state as is
20789 				 * (inserted) as the media is inserted
20790 				 * and host has stopped device for PM
20791 				 * reasons. Upon next true read/write
20792 				 * to this media will bring the
20793 				 * device to the right state good for
20794 				 * media access.
20795 				 */
20796 				if (asc == 0x3a) {
20797 					state = DKIO_EJECTED;
20798 				} else {
20799 					/*
20800 					 * If the drive is busy with an
20801 					 * operation or long write, keep the
20802 					 * media in an inserted state.
20803 					 */
20804 
20805 					if ((asc == 0x04) &&
20806 					    ((ascq == 0x02) ||
20807 					    (ascq == 0x07) ||
20808 					    (ascq == 0x08))) {
20809 						state = DKIO_INSERTED;
20810 					}
20811 				}
20812 			} else if (skey == KEY_NO_SENSE) {
20813 				if ((asc == 0x00) && (ascq == 0x00)) {
20814 					/*
20815 					 * Sense Data 00/00/00 does not provide
20816 					 * any information about the state of
20817 					 * the media. Ignore it.
20818 					 */
20819 					mutex_exit(SD_MUTEX(un));
20820 					return (0);
20821 				}
20822 			}
20823 		}
20824 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
20825 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
20826 		state = DKIO_INSERTED;
20827 	}
20828 
20829 	SD_TRACE(SD_LOG_COMMON, un,
20830 	    "sd_media_watch_cb: state=%x, specified=%x\n",
20831 	    state, un->un_specified_mediastate);
20832 
20833 	/*
20834 	 * now signal the waiting thread if this is *not* the specified state;
20835 	 * delay the signal if the state is DKIO_INSERTED to allow the target
20836 	 * to recover
20837 	 */
20838 	if (state != un->un_specified_mediastate) {
20839 		un->un_mediastate = state;
20840 		if (state == DKIO_INSERTED) {
20841 			/*
20842 			 * delay the signal to give the drive a chance
20843 			 * to do what it apparently needs to do
20844 			 */
20845 			SD_TRACE(SD_LOG_COMMON, un,
20846 			    "sd_media_watch_cb: delayed cv_broadcast\n");
20847 			if (un->un_dcvb_timeid == NULL) {
20848 				un->un_dcvb_timeid =
20849 				    timeout(sd_delayed_cv_broadcast, un,
20850 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
20851 			}
20852 		} else {
20853 			SD_TRACE(SD_LOG_COMMON, un,
20854 			    "sd_media_watch_cb: immediate cv_broadcast\n");
20855 			cv_broadcast(&un->un_state_cv);
20856 		}
20857 	}
20858 	mutex_exit(SD_MUTEX(un));
20859 	return (0);
20860 }
20861 
20862 
20863 /*
20864  *    Function: sd_dkio_get_temp
20865  *
20866  * Description: This routine is the driver entry point for handling ioctl
20867  *		requests to get the disk temperature.
20868  *
20869  *   Arguments: dev  - the device number
20870  *		arg  - pointer to user provided dk_temperature structure.
20871  *		flag - this argument is a pass through to ddi_copyxxx()
20872  *		       directly from the mode argument of ioctl().
20873  *
20874  * Return Code: 0
20875  *		EFAULT
20876  *		ENXIO
20877  *		EAGAIN
20878  */
20879 
20880 static int
20881 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
20882 {
20883 	struct sd_lun		*un = NULL;
20884 	struct dk_temperature	*dktemp = NULL;
20885 	uchar_t			*temperature_page;
20886 	int			rval = 0;
20887 	int			path_flag = SD_PATH_STANDARD;
20888 
20889 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20890 		return (ENXIO);
20891 	}
20892 
20893 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
20894 
20895 	/* copyin the disk temp argument to get the user flags */
20896 	if (ddi_copyin((void *)arg, dktemp,
20897 	    sizeof (struct dk_temperature), flag) != 0) {
20898 		rval = EFAULT;
20899 		goto done;
20900 	}
20901 
20902 	/* Initialize the temperature to invalid. */
20903 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
20904 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
20905 
20906 	/*
20907 	 * Note: Investigate removing the "bypass pm" semantic.
20908 	 * Can we just bypass PM always?
20909 	 */
20910 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
20911 		path_flag = SD_PATH_DIRECT;
20912 		ASSERT(!mutex_owned(&un->un_pm_mutex));
20913 		mutex_enter(&un->un_pm_mutex);
20914 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
20915 			/*
20916 			 * If DKT_BYPASS_PM is set, and the drive happens to be
20917 			 * in low power mode, we can not wake it up, Need to
20918 			 * return EAGAIN.
20919 			 */
20920 			mutex_exit(&un->un_pm_mutex);
20921 			rval = EAGAIN;
20922 			goto done;
20923 		} else {
20924 			/*
20925 			 * Indicate to PM the device is busy. This is required
20926 			 * to avoid a race - i.e. the ioctl is issuing a
20927 			 * command and the pm framework brings down the device
20928 			 * to low power mode (possible power cut-off on some
20929 			 * platforms).
20930 			 */
20931 			mutex_exit(&un->un_pm_mutex);
20932 			if (sd_pm_entry(un) != DDI_SUCCESS) {
20933 				rval = EAGAIN;
20934 				goto done;
20935 			}
20936 		}
20937 	}
20938 
20939 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
20940 
20941 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
20942 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
20943 		goto done2;
20944 	}
20945 
20946 	/*
20947 	 * For the current temperature verify that the parameter length is 0x02
20948 	 * and the parameter code is 0x00
20949 	 */
20950 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
20951 	    (temperature_page[5] == 0x00)) {
20952 		if (temperature_page[9] == 0xFF) {
20953 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
20954 		} else {
20955 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
20956 		}
20957 	}
20958 
20959 	/*
20960 	 * For the reference temperature verify that the parameter
20961 	 * length is 0x02 and the parameter code is 0x01
20962 	 */
20963 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
20964 	    (temperature_page[11] == 0x01)) {
20965 		if (temperature_page[15] == 0xFF) {
20966 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
20967 		} else {
20968 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
20969 		}
20970 	}
20971 
20972 	/* Do the copyout regardless of the temperature commands status. */
20973 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
20974 	    flag) != 0) {
20975 		rval = EFAULT;
20976 	}
20977 
20978 done2:
20979 	if (path_flag == SD_PATH_DIRECT) {
20980 		sd_pm_exit(un);
20981 	}
20982 
20983 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
20984 done:
20985 	if (dktemp != NULL) {
20986 		kmem_free(dktemp, sizeof (struct dk_temperature));
20987 	}
20988 
20989 	return (rval);
20990 }
20991 
20992 
20993 /*
20994  *    Function: sd_log_page_supported
20995  *
20996  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
20997  *		supported log pages.
20998  *
20999  *   Arguments: un -
21000  *		log_page -
21001  *
21002  * Return Code: -1 - on error (log sense is optional and may not be supported).
21003  *		0  - log page not found.
21004  *  		1  - log page found.
21005  */
21006 
21007 static int
21008 sd_log_page_supported(struct sd_lun *un, int log_page)
21009 {
21010 	uchar_t *log_page_data;
21011 	int	i;
21012 	int	match = 0;
21013 	int	log_size;
21014 
21015 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
21016 
21017 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
21018 	    SD_PATH_DIRECT) != 0) {
21019 		SD_ERROR(SD_LOG_COMMON, un,
21020 		    "sd_log_page_supported: failed log page retrieval\n");
21021 		kmem_free(log_page_data, 0xFF);
21022 		return (-1);
21023 	}
21024 	log_size = log_page_data[3];
21025 
21026 	/*
21027 	 * The list of supported log pages start from the fourth byte. Check
21028 	 * until we run out of log pages or a match is found.
21029 	 */
21030 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
21031 		if (log_page_data[i] == log_page) {
21032 			match++;
21033 		}
21034 	}
21035 	kmem_free(log_page_data, 0xFF);
21036 	return (match);
21037 }
21038 
21039 
21040 /*
21041  *    Function: sd_mhdioc_failfast
21042  *
21043  * Description: This routine is the driver entry point for handling ioctl
21044  *		requests to enable/disable the multihost failfast option.
21045  *		(MHIOCENFAILFAST)
21046  *
21047  *   Arguments: dev	- the device number
21048  *		arg	- user specified probing interval.
21049  *		flag	- this argument is a pass through to ddi_copyxxx()
21050  *			  directly from the mode argument of ioctl().
21051  *
21052  * Return Code: 0
21053  *		EFAULT
21054  *		ENXIO
21055  */
21056 
21057 static int
21058 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
21059 {
21060 	struct sd_lun	*un = NULL;
21061 	int		mh_time;
21062 	int		rval = 0;
21063 
21064 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21065 		return (ENXIO);
21066 	}
21067 
21068 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
21069 		return (EFAULT);
21070 
21071 	if (mh_time) {
21072 		mutex_enter(SD_MUTEX(un));
21073 		un->un_resvd_status |= SD_FAILFAST;
21074 		mutex_exit(SD_MUTEX(un));
21075 		/*
21076 		 * If mh_time is INT_MAX, then this ioctl is being used for
21077 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
21078 		 */
21079 		if (mh_time != INT_MAX) {
21080 			rval = sd_check_mhd(dev, mh_time);
21081 		}
21082 	} else {
21083 		(void) sd_check_mhd(dev, 0);
21084 		mutex_enter(SD_MUTEX(un));
21085 		un->un_resvd_status &= ~SD_FAILFAST;
21086 		mutex_exit(SD_MUTEX(un));
21087 	}
21088 	return (rval);
21089 }
21090 
21091 
21092 /*
21093  *    Function: sd_mhdioc_takeown
21094  *
21095  * Description: This routine is the driver entry point for handling ioctl
21096  *		requests to forcefully acquire exclusive access rights to the
21097  *		multihost disk (MHIOCTKOWN).
21098  *
21099  *   Arguments: dev	- the device number
21100  *		arg	- user provided structure specifying the delay
21101  *			  parameters in milliseconds
21102  *		flag	- this argument is a pass through to ddi_copyxxx()
21103  *			  directly from the mode argument of ioctl().
21104  *
21105  * Return Code: 0
21106  *		EFAULT
21107  *		ENXIO
21108  */
21109 
21110 static int
21111 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
21112 {
21113 	struct sd_lun		*un = NULL;
21114 	struct mhioctkown	*tkown = NULL;
21115 	int			rval = 0;
21116 
21117 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21118 		return (ENXIO);
21119 	}
21120 
21121 	if (arg != NULL) {
21122 		tkown = (struct mhioctkown *)
21123 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21124 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21125 		if (rval != 0) {
21126 			rval = EFAULT;
21127 			goto error;
21128 		}
21129 	}
21130 
21131 	rval = sd_take_ownership(dev, tkown);
21132 	mutex_enter(SD_MUTEX(un));
21133 	if (rval == 0) {
21134 		un->un_resvd_status |= SD_RESERVE;
21135 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21136 			sd_reinstate_resv_delay =
21137 			    tkown->reinstate_resv_delay * 1000;
21138 		} else {
21139 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21140 		}
21141 		/*
21142 		 * Give the scsi_watch routine interval set by
21143 		 * the MHIOCENFAILFAST ioctl precedence here.
21144 		 */
21145 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21146 			mutex_exit(SD_MUTEX(un));
21147 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21148 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21149 			    "sd_mhdioc_takeown : %d\n",
21150 			    sd_reinstate_resv_delay);
21151 		} else {
21152 			mutex_exit(SD_MUTEX(un));
21153 		}
21154 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21155 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21156 	} else {
21157 		un->un_resvd_status &= ~SD_RESERVE;
21158 		mutex_exit(SD_MUTEX(un));
21159 	}
21160 
21161 error:
21162 	if (tkown != NULL) {
21163 		kmem_free(tkown, sizeof (struct mhioctkown));
21164 	}
21165 	return (rval);
21166 }
21167 
21168 
21169 /*
21170  *    Function: sd_mhdioc_release
21171  *
21172  * Description: This routine is the driver entry point for handling ioctl
21173  *		requests to release exclusive access rights to the multihost
21174  *		disk (MHIOCRELEASE).
21175  *
21176  *   Arguments: dev	- the device number
21177  *
21178  * Return Code: 0
21179  *		ENXIO
21180  */
21181 
21182 static int
21183 sd_mhdioc_release(dev_t dev)
21184 {
21185 	struct sd_lun		*un = NULL;
21186 	timeout_id_t		resvd_timeid_save;
21187 	int			resvd_status_save;
21188 	int			rval = 0;
21189 
21190 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21191 		return (ENXIO);
21192 	}
21193 
21194 	mutex_enter(SD_MUTEX(un));
21195 	resvd_status_save = un->un_resvd_status;
21196 	un->un_resvd_status &=
21197 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21198 	if (un->un_resvd_timeid) {
21199 		resvd_timeid_save = un->un_resvd_timeid;
21200 		un->un_resvd_timeid = NULL;
21201 		mutex_exit(SD_MUTEX(un));
21202 		(void) untimeout(resvd_timeid_save);
21203 	} else {
21204 		mutex_exit(SD_MUTEX(un));
21205 	}
21206 
21207 	/*
21208 	 * destroy any pending timeout thread that may be attempting to
21209 	 * reinstate reservation on this device.
21210 	 */
21211 	sd_rmv_resv_reclaim_req(dev);
21212 
21213 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21214 		mutex_enter(SD_MUTEX(un));
21215 		if ((un->un_mhd_token) &&
21216 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21217 			mutex_exit(SD_MUTEX(un));
21218 			(void) sd_check_mhd(dev, 0);
21219 		} else {
21220 			mutex_exit(SD_MUTEX(un));
21221 		}
21222 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21223 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21224 	} else {
21225 		/*
21226 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21227 		 */
21228 		mutex_enter(SD_MUTEX(un));
21229 		un->un_resvd_status = resvd_status_save;
21230 		mutex_exit(SD_MUTEX(un));
21231 	}
21232 	return (rval);
21233 }
21234 
21235 
21236 /*
21237  *    Function: sd_mhdioc_register_devid
21238  *
21239  * Description: This routine is the driver entry point for handling ioctl
21240  *		requests to register the device id (MHIOCREREGISTERDEVID).
21241  *
21242  *		Note: The implementation for this ioctl has been updated to
21243  *		be consistent with the original PSARC case (1999/357)
21244  *		(4375899, 4241671, 4220005)
21245  *
21246  *   Arguments: dev	- the device number
21247  *
21248  * Return Code: 0
21249  *		ENXIO
21250  */
21251 
21252 static int
21253 sd_mhdioc_register_devid(dev_t dev)
21254 {
21255 	struct sd_lun	*un = NULL;
21256 	int		rval = 0;
21257 
21258 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21259 		return (ENXIO);
21260 	}
21261 
21262 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21263 
21264 	mutex_enter(SD_MUTEX(un));
21265 
21266 	/* If a devid already exists, de-register it */
21267 	if (un->un_devid != NULL) {
21268 		ddi_devid_unregister(SD_DEVINFO(un));
21269 		/*
21270 		 * After unregister devid, needs to free devid memory
21271 		 */
21272 		ddi_devid_free(un->un_devid);
21273 		un->un_devid = NULL;
21274 	}
21275 
21276 	/* Check for reservation conflict */
21277 	mutex_exit(SD_MUTEX(un));
21278 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21279 	mutex_enter(SD_MUTEX(un));
21280 
21281 	switch (rval) {
21282 	case 0:
21283 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21284 		break;
21285 	case EACCES:
21286 		break;
21287 	default:
21288 		rval = EIO;
21289 	}
21290 
21291 	mutex_exit(SD_MUTEX(un));
21292 	return (rval);
21293 }
21294 
21295 
21296 /*
21297  *    Function: sd_mhdioc_inkeys
21298  *
21299  * Description: This routine is the driver entry point for handling ioctl
21300  *		requests to issue the SCSI-3 Persistent In Read Keys command
21301  *		to the device (MHIOCGRP_INKEYS).
21302  *
21303  *   Arguments: dev	- the device number
21304  *		arg	- user provided in_keys structure
21305  *		flag	- this argument is a pass through to ddi_copyxxx()
21306  *			  directly from the mode argument of ioctl().
21307  *
21308  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21309  *		ENXIO
21310  *		EFAULT
21311  */
21312 
21313 static int
21314 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21315 {
21316 	struct sd_lun		*un;
21317 	mhioc_inkeys_t		inkeys;
21318 	int			rval = 0;
21319 
21320 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21321 		return (ENXIO);
21322 	}
21323 
21324 #ifdef _MULTI_DATAMODEL
21325 	switch (ddi_model_convert_from(flag & FMODELS)) {
21326 	case DDI_MODEL_ILP32: {
21327 		struct mhioc_inkeys32	inkeys32;
21328 
21329 		if (ddi_copyin(arg, &inkeys32,
21330 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21331 			return (EFAULT);
21332 		}
21333 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21334 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21335 		    &inkeys, flag)) != 0) {
21336 			return (rval);
21337 		}
21338 		inkeys32.generation = inkeys.generation;
21339 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21340 		    flag) != 0) {
21341 			return (EFAULT);
21342 		}
21343 		break;
21344 	}
21345 	case DDI_MODEL_NONE:
21346 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21347 		    flag) != 0) {
21348 			return (EFAULT);
21349 		}
21350 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21351 		    &inkeys, flag)) != 0) {
21352 			return (rval);
21353 		}
21354 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21355 		    flag) != 0) {
21356 			return (EFAULT);
21357 		}
21358 		break;
21359 	}
21360 
21361 #else /* ! _MULTI_DATAMODEL */
21362 
21363 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21364 		return (EFAULT);
21365 	}
21366 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21367 	if (rval != 0) {
21368 		return (rval);
21369 	}
21370 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21371 		return (EFAULT);
21372 	}
21373 
21374 #endif /* _MULTI_DATAMODEL */
21375 
21376 	return (rval);
21377 }
21378 
21379 
21380 /*
21381  *    Function: sd_mhdioc_inresv
21382  *
21383  * Description: This routine is the driver entry point for handling ioctl
21384  *		requests to issue the SCSI-3 Persistent In Read Reservations
21385  *		command to the device (MHIOCGRP_INKEYS).
21386  *
21387  *   Arguments: dev	- the device number
21388  *		arg	- user provided in_resv structure
21389  *		flag	- this argument is a pass through to ddi_copyxxx()
21390  *			  directly from the mode argument of ioctl().
21391  *
21392  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21393  *		ENXIO
21394  *		EFAULT
21395  */
21396 
21397 static int
21398 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21399 {
21400 	struct sd_lun		*un;
21401 	mhioc_inresvs_t		inresvs;
21402 	int			rval = 0;
21403 
21404 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21405 		return (ENXIO);
21406 	}
21407 
21408 #ifdef _MULTI_DATAMODEL
21409 
21410 	switch (ddi_model_convert_from(flag & FMODELS)) {
21411 	case DDI_MODEL_ILP32: {
21412 		struct mhioc_inresvs32	inresvs32;
21413 
21414 		if (ddi_copyin(arg, &inresvs32,
21415 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21416 			return (EFAULT);
21417 		}
21418 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21419 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21420 		    &inresvs, flag)) != 0) {
21421 			return (rval);
21422 		}
21423 		inresvs32.generation = inresvs.generation;
21424 		if (ddi_copyout(&inresvs32, arg,
21425 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21426 			return (EFAULT);
21427 		}
21428 		break;
21429 	}
21430 	case DDI_MODEL_NONE:
21431 		if (ddi_copyin(arg, &inresvs,
21432 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21433 			return (EFAULT);
21434 		}
21435 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21436 		    &inresvs, flag)) != 0) {
21437 			return (rval);
21438 		}
21439 		if (ddi_copyout(&inresvs, arg,
21440 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21441 			return (EFAULT);
21442 		}
21443 		break;
21444 	}
21445 
21446 #else /* ! _MULTI_DATAMODEL */
21447 
21448 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
21449 		return (EFAULT);
21450 	}
21451 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
21452 	if (rval != 0) {
21453 		return (rval);
21454 	}
21455 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
21456 		return (EFAULT);
21457 	}
21458 
21459 #endif /* ! _MULTI_DATAMODEL */
21460 
21461 	return (rval);
21462 }
21463 
21464 
21465 /*
21466  * The following routines support the clustering functionality described below
21467  * and implement lost reservation reclaim functionality.
21468  *
21469  * Clustering
21470  * ----------
21471  * The clustering code uses two different, independent forms of SCSI
21472  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
21473  * Persistent Group Reservations. For any particular disk, it will use either
21474  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
21475  *
21476  * SCSI-2
21477  * The cluster software takes ownership of a multi-hosted disk by issuing the
21478  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
21479  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
21480  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
21481  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
21482  * driver. The meaning of failfast is that if the driver (on this host) ever
21483  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
21484  * it should immediately panic the host. The motivation for this ioctl is that
21485  * if this host does encounter reservation conflict, the underlying cause is
21486  * that some other host of the cluster has decided that this host is no longer
21487  * in the cluster and has seized control of the disks for itself. Since this
21488  * host is no longer in the cluster, it ought to panic itself. The
21489  * MHIOCENFAILFAST ioctl does two things:
21490  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
21491  *      error to panic the host
21492  *      (b) it sets up a periodic timer to test whether this host still has
21493  *      "access" (in that no other host has reserved the device):  if the
21494  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
21495  *      purpose of that periodic timer is to handle scenarios where the host is
21496  *      otherwise temporarily quiescent, temporarily doing no real i/o.
21497  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
21498  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
21499  * the device itself.
21500  *
21501  * SCSI-3 PGR
21502  * A direct semantic implementation of the SCSI-3 Persistent Reservation
21503  * facility is supported through the shared multihost disk ioctls
21504  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
21505  * MHIOCGRP_PREEMPTANDABORT)
21506  *
21507  * Reservation Reclaim:
21508  * --------------------
21509  * To support the lost reservation reclaim operations this driver creates a
21510  * single thread to handle reinstating reservations on all devices that have
21511  * lost reservations sd_resv_reclaim_requests are logged for all devices that
21512  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
21513  * and the reservation reclaim thread loops through the requests to regain the
21514  * lost reservations.
21515  */
21516 
21517 /*
21518  *    Function: sd_check_mhd()
21519  *
21520  * Description: This function sets up and submits a scsi watch request or
21521  *		terminates an existing watch request. This routine is used in
21522  *		support of reservation reclaim.
21523  *
21524  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
21525  *			 among multiple watches that share the callback function
21526  *		interval - the number of microseconds specifying the watch
21527  *			   interval for issuing TEST UNIT READY commands. If
21528  *			   set to 0 the watch should be terminated. If the
21529  *			   interval is set to 0 and if the device is required
21530  *			   to hold reservation while disabling failfast, the
21531  *			   watch is restarted with an interval of
21532  *			   reinstate_resv_delay.
21533  *
21534  * Return Code: 0	   - Successful submit/terminate of scsi watch request
21535  *		ENXIO      - Indicates an invalid device was specified
21536  *		EAGAIN     - Unable to submit the scsi watch request
21537  */
21538 
21539 static int
21540 sd_check_mhd(dev_t dev, int interval)
21541 {
21542 	struct sd_lun	*un;
21543 	opaque_t	token;
21544 
21545 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21546 		return (ENXIO);
21547 	}
21548 
21549 	/* is this a watch termination request? */
21550 	if (interval == 0) {
21551 		mutex_enter(SD_MUTEX(un));
21552 		/* if there is an existing watch task then terminate it */
21553 		if (un->un_mhd_token) {
21554 			token = un->un_mhd_token;
21555 			un->un_mhd_token = NULL;
21556 			mutex_exit(SD_MUTEX(un));
21557 			(void) scsi_watch_request_terminate(token,
21558 			    SCSI_WATCH_TERMINATE_WAIT);
21559 			mutex_enter(SD_MUTEX(un));
21560 		} else {
21561 			mutex_exit(SD_MUTEX(un));
21562 			/*
21563 			 * Note: If we return here we don't check for the
21564 			 * failfast case. This is the original legacy
21565 			 * implementation but perhaps we should be checking
21566 			 * the failfast case.
21567 			 */
21568 			return (0);
21569 		}
21570 		/*
21571 		 * If the device is required to hold reservation while
21572 		 * disabling failfast, we need to restart the scsi_watch
21573 		 * routine with an interval of reinstate_resv_delay.
21574 		 */
21575 		if (un->un_resvd_status & SD_RESERVE) {
21576 			interval = sd_reinstate_resv_delay/1000;
21577 		} else {
21578 			/* no failfast so bail */
21579 			mutex_exit(SD_MUTEX(un));
21580 			return (0);
21581 		}
21582 		mutex_exit(SD_MUTEX(un));
21583 	}
21584 
21585 	/*
21586 	 * adjust minimum time interval to 1 second,
21587 	 * and convert from msecs to usecs
21588 	 */
21589 	if (interval > 0 && interval < 1000) {
21590 		interval = 1000;
21591 	}
21592 	interval *= 1000;
21593 
21594 	/*
21595 	 * submit the request to the scsi_watch service
21596 	 */
21597 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
21598 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
21599 	if (token == NULL) {
21600 		return (EAGAIN);
21601 	}
21602 
21603 	/*
21604 	 * save token for termination later on
21605 	 */
21606 	mutex_enter(SD_MUTEX(un));
21607 	un->un_mhd_token = token;
21608 	mutex_exit(SD_MUTEX(un));
21609 	return (0);
21610 }
21611 
21612 
21613 /*
21614  *    Function: sd_mhd_watch_cb()
21615  *
21616  * Description: This function is the call back function used by the scsi watch
21617  *		facility. The scsi watch facility sends the "Test Unit Ready"
21618  *		and processes the status. If applicable (i.e. a "Unit Attention"
21619  *		status and automatic "Request Sense" not used) the scsi watch
21620  *		facility will send a "Request Sense" and retrieve the sense data
21621  *		to be passed to this callback function. In either case the
21622  *		automatic "Request Sense" or the facility submitting one, this
21623  *		callback is passed the status and sense data.
21624  *
21625  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21626  *			among multiple watches that share this callback function
21627  *		resultp - scsi watch facility result packet containing scsi
21628  *			  packet, status byte and sense data
21629  *
21630  * Return Code: 0 - continue the watch task
21631  *		non-zero - terminate the watch task
21632  */
21633 
21634 static int
21635 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21636 {
21637 	struct sd_lun			*un;
21638 	struct scsi_status		*statusp;
21639 	uint8_t				*sensep;
21640 	struct scsi_pkt			*pkt;
21641 	uchar_t				actual_sense_length;
21642 	dev_t  				dev = (dev_t)arg;
21643 
21644 	ASSERT(resultp != NULL);
21645 	statusp			= resultp->statusp;
21646 	sensep			= (uint8_t *)resultp->sensep;
21647 	pkt			= resultp->pkt;
21648 	actual_sense_length	= resultp->actual_sense_length;
21649 
21650 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21651 		return (ENXIO);
21652 	}
21653 
21654 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
21655 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
21656 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
21657 
21658 	/* Begin processing of the status and/or sense data */
21659 	if (pkt->pkt_reason != CMD_CMPLT) {
21660 		/* Handle the incomplete packet */
21661 		sd_mhd_watch_incomplete(un, pkt);
21662 		return (0);
21663 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
21664 		if (*((unsigned char *)statusp)
21665 		    == STATUS_RESERVATION_CONFLICT) {
21666 			/*
21667 			 * Handle a reservation conflict by panicking if
21668 			 * configured for failfast or by logging the conflict
21669 			 * and updating the reservation status
21670 			 */
21671 			mutex_enter(SD_MUTEX(un));
21672 			if ((un->un_resvd_status & SD_FAILFAST) &&
21673 			    (sd_failfast_enable)) {
21674 				sd_panic_for_res_conflict(un);
21675 				/*NOTREACHED*/
21676 			}
21677 			SD_INFO(SD_LOG_IOCTL_MHD, un,
21678 			    "sd_mhd_watch_cb: Reservation Conflict\n");
21679 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
21680 			mutex_exit(SD_MUTEX(un));
21681 		}
21682 	}
21683 
21684 	if (sensep != NULL) {
21685 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
21686 			mutex_enter(SD_MUTEX(un));
21687 			if ((scsi_sense_asc(sensep) ==
21688 			    SD_SCSI_RESET_SENSE_CODE) &&
21689 			    (un->un_resvd_status & SD_RESERVE)) {
21690 				/*
21691 				 * The additional sense code indicates a power
21692 				 * on or bus device reset has occurred; update
21693 				 * the reservation status.
21694 				 */
21695 				un->un_resvd_status |=
21696 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
21697 				SD_INFO(SD_LOG_IOCTL_MHD, un,
21698 				    "sd_mhd_watch_cb: Lost Reservation\n");
21699 			}
21700 		} else {
21701 			return (0);
21702 		}
21703 	} else {
21704 		mutex_enter(SD_MUTEX(un));
21705 	}
21706 
21707 	if ((un->un_resvd_status & SD_RESERVE) &&
21708 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
21709 		if (un->un_resvd_status & SD_WANT_RESERVE) {
21710 			/*
21711 			 * A reset occurred in between the last probe and this
21712 			 * one so if a timeout is pending cancel it.
21713 			 */
21714 			if (un->un_resvd_timeid) {
21715 				timeout_id_t temp_id = un->un_resvd_timeid;
21716 				un->un_resvd_timeid = NULL;
21717 				mutex_exit(SD_MUTEX(un));
21718 				(void) untimeout(temp_id);
21719 				mutex_enter(SD_MUTEX(un));
21720 			}
21721 			un->un_resvd_status &= ~SD_WANT_RESERVE;
21722 		}
21723 		if (un->un_resvd_timeid == 0) {
21724 			/* Schedule a timeout to handle the lost reservation */
21725 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
21726 			    (void *)dev,
21727 			    drv_usectohz(sd_reinstate_resv_delay));
21728 		}
21729 	}
21730 	mutex_exit(SD_MUTEX(un));
21731 	return (0);
21732 }
21733 
21734 
21735 /*
21736  *    Function: sd_mhd_watch_incomplete()
21737  *
21738  * Description: This function is used to find out why a scsi pkt sent by the
21739  *		scsi watch facility was not completed. Under some scenarios this
21740  *		routine will return. Otherwise it will send a bus reset to see
21741  *		if the drive is still online.
21742  *
21743  *   Arguments: un  - driver soft state (unit) structure
21744  *		pkt - incomplete scsi pkt
21745  */
21746 
21747 static void
21748 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
21749 {
21750 	int	be_chatty;
21751 	int	perr;
21752 
21753 	ASSERT(pkt != NULL);
21754 	ASSERT(un != NULL);
21755 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
21756 	perr		= (pkt->pkt_statistics & STAT_PERR);
21757 
21758 	mutex_enter(SD_MUTEX(un));
21759 	if (un->un_state == SD_STATE_DUMPING) {
21760 		mutex_exit(SD_MUTEX(un));
21761 		return;
21762 	}
21763 
21764 	switch (pkt->pkt_reason) {
21765 	case CMD_UNX_BUS_FREE:
21766 		/*
21767 		 * If we had a parity error that caused the target to drop BSY*,
21768 		 * don't be chatty about it.
21769 		 */
21770 		if (perr && be_chatty) {
21771 			be_chatty = 0;
21772 		}
21773 		break;
21774 	case CMD_TAG_REJECT:
21775 		/*
21776 		 * The SCSI-2 spec states that a tag reject will be sent by the
21777 		 * target if tagged queuing is not supported. A tag reject may
21778 		 * also be sent during certain initialization periods or to
21779 		 * control internal resources. For the latter case the target
21780 		 * may also return Queue Full.
21781 		 *
21782 		 * If this driver receives a tag reject from a target that is
21783 		 * going through an init period or controlling internal
21784 		 * resources tagged queuing will be disabled. This is a less
21785 		 * than optimal behavior but the driver is unable to determine
21786 		 * the target state and assumes tagged queueing is not supported
21787 		 */
21788 		pkt->pkt_flags = 0;
21789 		un->un_tagflags = 0;
21790 
21791 		if (un->un_f_opt_queueing == TRUE) {
21792 			un->un_throttle = min(un->un_throttle, 3);
21793 		} else {
21794 			un->un_throttle = 1;
21795 		}
21796 		mutex_exit(SD_MUTEX(un));
21797 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
21798 		mutex_enter(SD_MUTEX(un));
21799 		break;
21800 	case CMD_INCOMPLETE:
21801 		/*
21802 		 * The transport stopped with an abnormal state, fallthrough and
21803 		 * reset the target and/or bus unless selection did not complete
21804 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
21805 		 * go through a target/bus reset
21806 		 */
21807 		if (pkt->pkt_state == STATE_GOT_BUS) {
21808 			break;
21809 		}
21810 		/*FALLTHROUGH*/
21811 
21812 	case CMD_TIMEOUT:
21813 	default:
21814 		/*
21815 		 * The lun may still be running the command, so a lun reset
21816 		 * should be attempted. If the lun reset fails or cannot be
21817 		 * issued, than try a target reset. Lastly try a bus reset.
21818 		 */
21819 		if ((pkt->pkt_statistics &
21820 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
21821 			int reset_retval = 0;
21822 			mutex_exit(SD_MUTEX(un));
21823 			if (un->un_f_allow_bus_device_reset == TRUE) {
21824 				if (un->un_f_lun_reset_enabled == TRUE) {
21825 					reset_retval =
21826 					    scsi_reset(SD_ADDRESS(un),
21827 					    RESET_LUN);
21828 				}
21829 				if (reset_retval == 0) {
21830 					reset_retval =
21831 					    scsi_reset(SD_ADDRESS(un),
21832 					    RESET_TARGET);
21833 				}
21834 			}
21835 			if (reset_retval == 0) {
21836 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
21837 			}
21838 			mutex_enter(SD_MUTEX(un));
21839 		}
21840 		break;
21841 	}
21842 
21843 	/* A device/bus reset has occurred; update the reservation status. */
21844 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
21845 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
21846 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
21847 			un->un_resvd_status |=
21848 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
21849 			SD_INFO(SD_LOG_IOCTL_MHD, un,
21850 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
21851 		}
21852 	}
21853 
21854 	/*
21855 	 * The disk has been turned off; Update the device state.
21856 	 *
21857 	 * Note: Should we be offlining the disk here?
21858 	 */
21859 	if (pkt->pkt_state == STATE_GOT_BUS) {
21860 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
21861 		    "Disk not responding to selection\n");
21862 		if (un->un_state != SD_STATE_OFFLINE) {
21863 			New_state(un, SD_STATE_OFFLINE);
21864 		}
21865 	} else if (be_chatty) {
21866 		/*
21867 		 * suppress messages if they are all the same pkt reason;
21868 		 * with TQ, many (up to 256) are returned with the same
21869 		 * pkt_reason
21870 		 */
21871 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
21872 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
21873 			    "sd_mhd_watch_incomplete: "
21874 			    "SCSI transport failed: reason '%s'\n",
21875 			    scsi_rname(pkt->pkt_reason));
21876 		}
21877 	}
21878 	un->un_last_pkt_reason = pkt->pkt_reason;
21879 	mutex_exit(SD_MUTEX(un));
21880 }
21881 
21882 
21883 /*
21884  *    Function: sd_sname()
21885  *
21886  * Description: This is a simple little routine to return a string containing
21887  *		a printable description of command status byte for use in
21888  *		logging.
21889  *
21890  *   Arguments: status - pointer to a status byte
21891  *
21892  * Return Code: char * - string containing status description.
21893  */
21894 
21895 static char *
21896 sd_sname(uchar_t status)
21897 {
21898 	switch (status & STATUS_MASK) {
21899 	case STATUS_GOOD:
21900 		return ("good status");
21901 	case STATUS_CHECK:
21902 		return ("check condition");
21903 	case STATUS_MET:
21904 		return ("condition met");
21905 	case STATUS_BUSY:
21906 		return ("busy");
21907 	case STATUS_INTERMEDIATE:
21908 		return ("intermediate");
21909 	case STATUS_INTERMEDIATE_MET:
21910 		return ("intermediate - condition met");
21911 	case STATUS_RESERVATION_CONFLICT:
21912 		return ("reservation_conflict");
21913 	case STATUS_TERMINATED:
21914 		return ("command terminated");
21915 	case STATUS_QFULL:
21916 		return ("queue full");
21917 	default:
21918 		return ("<unknown status>");
21919 	}
21920 }
21921 
21922 
21923 /*
21924  *    Function: sd_mhd_resvd_recover()
21925  *
21926  * Description: This function adds a reservation entry to the
21927  *		sd_resv_reclaim_request list and signals the reservation
21928  *		reclaim thread that there is work pending. If the reservation
21929  *		reclaim thread has not been previously created this function
21930  *		will kick it off.
21931  *
21932  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21933  *			among multiple watches that share this callback function
21934  *
21935  *     Context: This routine is called by timeout() and is run in interrupt
21936  *		context. It must not sleep or call other functions which may
21937  *		sleep.
21938  */
21939 
21940 static void
21941 sd_mhd_resvd_recover(void *arg)
21942 {
21943 	dev_t			dev = (dev_t)arg;
21944 	struct sd_lun		*un;
21945 	struct sd_thr_request	*sd_treq = NULL;
21946 	struct sd_thr_request	*sd_cur = NULL;
21947 	struct sd_thr_request	*sd_prev = NULL;
21948 	int			already_there = 0;
21949 
21950 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21951 		return;
21952 	}
21953 
21954 	mutex_enter(SD_MUTEX(un));
21955 	un->un_resvd_timeid = NULL;
21956 	if (un->un_resvd_status & SD_WANT_RESERVE) {
21957 		/*
21958 		 * There was a reset so don't issue the reserve, allow the
21959 		 * sd_mhd_watch_cb callback function to notice this and
21960 		 * reschedule the timeout for reservation.
21961 		 */
21962 		mutex_exit(SD_MUTEX(un));
21963 		return;
21964 	}
21965 	mutex_exit(SD_MUTEX(un));
21966 
21967 	/*
21968 	 * Add this device to the sd_resv_reclaim_request list and the
21969 	 * sd_resv_reclaim_thread should take care of the rest.
21970 	 *
21971 	 * Note: We can't sleep in this context so if the memory allocation
21972 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
21973 	 * reschedule the timeout for reservation.  (4378460)
21974 	 */
21975 	sd_treq = (struct sd_thr_request *)
21976 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
21977 	if (sd_treq == NULL) {
21978 		return;
21979 	}
21980 
21981 	sd_treq->sd_thr_req_next = NULL;
21982 	sd_treq->dev = dev;
21983 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
21984 	if (sd_tr.srq_thr_req_head == NULL) {
21985 		sd_tr.srq_thr_req_head = sd_treq;
21986 	} else {
21987 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
21988 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
21989 			if (sd_cur->dev == dev) {
21990 				/*
21991 				 * already in Queue so don't log
21992 				 * another request for the device
21993 				 */
21994 				already_there = 1;
21995 				break;
21996 			}
21997 			sd_prev = sd_cur;
21998 		}
21999 		if (!already_there) {
22000 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
22001 			    "logging request for %lx\n", dev);
22002 			sd_prev->sd_thr_req_next = sd_treq;
22003 		} else {
22004 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
22005 		}
22006 	}
22007 
22008 	/*
22009 	 * Create a kernel thread to do the reservation reclaim and free up this
22010 	 * thread. We cannot block this thread while we go away to do the
22011 	 * reservation reclaim
22012 	 */
22013 	if (sd_tr.srq_resv_reclaim_thread == NULL)
22014 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
22015 		    sd_resv_reclaim_thread, NULL,
22016 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
22017 
22018 	/* Tell the reservation reclaim thread that it has work to do */
22019 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
22020 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22021 }
22022 
22023 /*
22024  *    Function: sd_resv_reclaim_thread()
22025  *
22026  * Description: This function implements the reservation reclaim operations
22027  *
22028  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
22029  *		      among multiple watches that share this callback function
22030  */
22031 
22032 static void
22033 sd_resv_reclaim_thread()
22034 {
22035 	struct sd_lun		*un;
22036 	struct sd_thr_request	*sd_mhreq;
22037 
22038 	/* Wait for work */
22039 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22040 	if (sd_tr.srq_thr_req_head == NULL) {
22041 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
22042 		    &sd_tr.srq_resv_reclaim_mutex);
22043 	}
22044 
22045 	/* Loop while we have work */
22046 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
22047 		un = ddi_get_soft_state(sd_state,
22048 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
22049 		if (un == NULL) {
22050 			/*
22051 			 * softstate structure is NULL so just
22052 			 * dequeue the request and continue
22053 			 */
22054 			sd_tr.srq_thr_req_head =
22055 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22056 			kmem_free(sd_tr.srq_thr_cur_req,
22057 			    sizeof (struct sd_thr_request));
22058 			continue;
22059 		}
22060 
22061 		/* dequeue the request */
22062 		sd_mhreq = sd_tr.srq_thr_cur_req;
22063 		sd_tr.srq_thr_req_head =
22064 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22065 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22066 
22067 		/*
22068 		 * Reclaim reservation only if SD_RESERVE is still set. There
22069 		 * may have been a call to MHIOCRELEASE before we got here.
22070 		 */
22071 		mutex_enter(SD_MUTEX(un));
22072 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22073 			/*
22074 			 * Note: The SD_LOST_RESERVE flag is cleared before
22075 			 * reclaiming the reservation. If this is done after the
22076 			 * call to sd_reserve_release a reservation loss in the
22077 			 * window between pkt completion of reserve cmd and
22078 			 * mutex_enter below may not be recognized
22079 			 */
22080 			un->un_resvd_status &= ~SD_LOST_RESERVE;
22081 			mutex_exit(SD_MUTEX(un));
22082 
22083 			if (sd_reserve_release(sd_mhreq->dev,
22084 			    SD_RESERVE) == 0) {
22085 				mutex_enter(SD_MUTEX(un));
22086 				un->un_resvd_status |= SD_RESERVE;
22087 				mutex_exit(SD_MUTEX(un));
22088 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22089 				    "sd_resv_reclaim_thread: "
22090 				    "Reservation Recovered\n");
22091 			} else {
22092 				mutex_enter(SD_MUTEX(un));
22093 				un->un_resvd_status |= SD_LOST_RESERVE;
22094 				mutex_exit(SD_MUTEX(un));
22095 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22096 				    "sd_resv_reclaim_thread: Failed "
22097 				    "Reservation Recovery\n");
22098 			}
22099 		} else {
22100 			mutex_exit(SD_MUTEX(un));
22101 		}
22102 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22103 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
22104 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22105 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
22106 		/*
22107 		 * wakeup the destroy thread if anyone is waiting on
22108 		 * us to complete.
22109 		 */
22110 		cv_signal(&sd_tr.srq_inprocess_cv);
22111 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
22112 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
22113 	}
22114 
22115 	/*
22116 	 * cleanup the sd_tr structure now that this thread will not exist
22117 	 */
22118 	ASSERT(sd_tr.srq_thr_req_head == NULL);
22119 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22120 	sd_tr.srq_resv_reclaim_thread = NULL;
22121 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22122 	thread_exit();
22123 }
22124 
22125 
22126 /*
22127  *    Function: sd_rmv_resv_reclaim_req()
22128  *
22129  * Description: This function removes any pending reservation reclaim requests
22130  *		for the specified device.
22131  *
22132  *   Arguments: dev - the device 'dev_t'
22133  */
22134 
22135 static void
22136 sd_rmv_resv_reclaim_req(dev_t dev)
22137 {
22138 	struct sd_thr_request *sd_mhreq;
22139 	struct sd_thr_request *sd_prev;
22140 
22141 	/* Remove a reservation reclaim request from the list */
22142 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22143 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22144 		/*
22145 		 * We are attempting to reinstate reservation for
22146 		 * this device. We wait for sd_reserve_release()
22147 		 * to return before we return.
22148 		 */
22149 		cv_wait(&sd_tr.srq_inprocess_cv,
22150 		    &sd_tr.srq_resv_reclaim_mutex);
22151 	} else {
22152 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22153 		if (sd_mhreq && sd_mhreq->dev == dev) {
22154 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22155 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22156 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22157 			return;
22158 		}
22159 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22160 			if (sd_mhreq && sd_mhreq->dev == dev) {
22161 				break;
22162 			}
22163 			sd_prev = sd_mhreq;
22164 		}
22165 		if (sd_mhreq != NULL) {
22166 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22167 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22168 		}
22169 	}
22170 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22171 }
22172 
22173 
22174 /*
22175  *    Function: sd_mhd_reset_notify_cb()
22176  *
22177  * Description: This is a call back function for scsi_reset_notify. This
22178  *		function updates the softstate reserved status and logs the
22179  *		reset. The driver scsi watch facility callback function
22180  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22181  *		will reclaim the reservation.
22182  *
22183  *   Arguments: arg  - driver soft state (unit) structure
22184  */
22185 
22186 static void
22187 sd_mhd_reset_notify_cb(caddr_t arg)
22188 {
22189 	struct sd_lun *un = (struct sd_lun *)arg;
22190 
22191 	mutex_enter(SD_MUTEX(un));
22192 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22193 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22194 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22195 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22196 	}
22197 	mutex_exit(SD_MUTEX(un));
22198 }
22199 
22200 
22201 /*
22202  *    Function: sd_take_ownership()
22203  *
22204  * Description: This routine implements an algorithm to achieve a stable
22205  *		reservation on disks which don't implement priority reserve,
22206  *		and makes sure that other host lose re-reservation attempts.
22207  *		This algorithm contains of a loop that keeps issuing the RESERVE
22208  *		for some period of time (min_ownership_delay, default 6 seconds)
22209  *		During that loop, it looks to see if there has been a bus device
22210  *		reset or bus reset (both of which cause an existing reservation
22211  *		to be lost). If the reservation is lost issue RESERVE until a
22212  *		period of min_ownership_delay with no resets has gone by, or
22213  *		until max_ownership_delay has expired. This loop ensures that
22214  *		the host really did manage to reserve the device, in spite of
22215  *		resets. The looping for min_ownership_delay (default six
22216  *		seconds) is important to early generation clustering products,
22217  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22218  *		MHIOCENFAILFAST periodic timer of two seconds. By having
22219  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22220  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22221  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22222  *		have already noticed, via the MHIOCENFAILFAST polling, that it
22223  *		no longer "owns" the disk and will have panicked itself.  Thus,
22224  *		the host issuing the MHIOCTKOWN is assured (with timing
22225  *		dependencies) that by the time it actually starts to use the
22226  *		disk for real work, the old owner is no longer accessing it.
22227  *
22228  *		min_ownership_delay is the minimum amount of time for which the
22229  *		disk must be reserved continuously devoid of resets before the
22230  *		MHIOCTKOWN ioctl will return success.
22231  *
22232  *		max_ownership_delay indicates the amount of time by which the
22233  *		take ownership should succeed or timeout with an error.
22234  *
22235  *   Arguments: dev - the device 'dev_t'
22236  *		*p  - struct containing timing info.
22237  *
22238  * Return Code: 0 for success or error code
22239  */
22240 
22241 static int
22242 sd_take_ownership(dev_t dev, struct mhioctkown *p)
22243 {
22244 	struct sd_lun	*un;
22245 	int		rval;
22246 	int		err;
22247 	int		reservation_count   = 0;
22248 	int		min_ownership_delay =  6000000; /* in usec */
22249 	int		max_ownership_delay = 30000000; /* in usec */
22250 	clock_t		start_time;	/* starting time of this algorithm */
22251 	clock_t		end_time;	/* time limit for giving up */
22252 	clock_t		ownership_time;	/* time limit for stable ownership */
22253 	clock_t		current_time;
22254 	clock_t		previous_current_time;
22255 
22256 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22257 		return (ENXIO);
22258 	}
22259 
22260 	/*
22261 	 * Attempt a device reservation. A priority reservation is requested.
22262 	 */
22263 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22264 	    != SD_SUCCESS) {
22265 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22266 		    "sd_take_ownership: return(1)=%d\n", rval);
22267 		return (rval);
22268 	}
22269 
22270 	/* Update the softstate reserved status to indicate the reservation */
22271 	mutex_enter(SD_MUTEX(un));
22272 	un->un_resvd_status |= SD_RESERVE;
22273 	un->un_resvd_status &=
22274 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22275 	mutex_exit(SD_MUTEX(un));
22276 
22277 	if (p != NULL) {
22278 		if (p->min_ownership_delay != 0) {
22279 			min_ownership_delay = p->min_ownership_delay * 1000;
22280 		}
22281 		if (p->max_ownership_delay != 0) {
22282 			max_ownership_delay = p->max_ownership_delay * 1000;
22283 		}
22284 	}
22285 	SD_INFO(SD_LOG_IOCTL_MHD, un,
22286 	    "sd_take_ownership: min, max delays: %d, %d\n",
22287 	    min_ownership_delay, max_ownership_delay);
22288 
22289 	start_time = ddi_get_lbolt();
22290 	current_time	= start_time;
22291 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22292 	end_time	= start_time + drv_usectohz(max_ownership_delay);
22293 
22294 	while (current_time - end_time < 0) {
22295 		delay(drv_usectohz(500000));
22296 
22297 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22298 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22299 				mutex_enter(SD_MUTEX(un));
22300 				rval = (un->un_resvd_status &
22301 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22302 				mutex_exit(SD_MUTEX(un));
22303 				break;
22304 			}
22305 		}
22306 		previous_current_time = current_time;
22307 		current_time = ddi_get_lbolt();
22308 		mutex_enter(SD_MUTEX(un));
22309 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22310 			ownership_time = ddi_get_lbolt() +
22311 			    drv_usectohz(min_ownership_delay);
22312 			reservation_count = 0;
22313 		} else {
22314 			reservation_count++;
22315 		}
22316 		un->un_resvd_status |= SD_RESERVE;
22317 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22318 		mutex_exit(SD_MUTEX(un));
22319 
22320 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22321 		    "sd_take_ownership: ticks for loop iteration=%ld, "
22322 		    "reservation=%s\n", (current_time - previous_current_time),
22323 		    reservation_count ? "ok" : "reclaimed");
22324 
22325 		if (current_time - ownership_time >= 0 &&
22326 		    reservation_count >= 4) {
22327 			rval = 0; /* Achieved a stable ownership */
22328 			break;
22329 		}
22330 		if (current_time - end_time >= 0) {
22331 			rval = EACCES; /* No ownership in max possible time */
22332 			break;
22333 		}
22334 	}
22335 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22336 	    "sd_take_ownership: return(2)=%d\n", rval);
22337 	return (rval);
22338 }
22339 
22340 
22341 /*
22342  *    Function: sd_reserve_release()
22343  *
22344  * Description: This function builds and sends scsi RESERVE, RELEASE, and
22345  *		PRIORITY RESERVE commands based on a user specified command type
22346  *
22347  *   Arguments: dev - the device 'dev_t'
22348  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22349  *		      SD_RESERVE, SD_RELEASE
22350  *
22351  * Return Code: 0 or Error Code
22352  */
22353 
22354 static int
22355 sd_reserve_release(dev_t dev, int cmd)
22356 {
22357 	struct uscsi_cmd	*com = NULL;
22358 	struct sd_lun		*un = NULL;
22359 	char			cdb[CDB_GROUP0];
22360 	int			rval;
22361 
22362 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22363 	    (cmd == SD_PRIORITY_RESERVE));
22364 
22365 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22366 		return (ENXIO);
22367 	}
22368 
22369 	/* instantiate and initialize the command and cdb */
22370 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22371 	bzero(cdb, CDB_GROUP0);
22372 	com->uscsi_flags   = USCSI_SILENT;
22373 	com->uscsi_timeout = un->un_reserve_release_time;
22374 	com->uscsi_cdblen  = CDB_GROUP0;
22375 	com->uscsi_cdb	   = cdb;
22376 	if (cmd == SD_RELEASE) {
22377 		cdb[0] = SCMD_RELEASE;
22378 	} else {
22379 		cdb[0] = SCMD_RESERVE;
22380 	}
22381 
22382 	/* Send the command. */
22383 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22384 	    SD_PATH_STANDARD);
22385 
22386 	/*
22387 	 * "break" a reservation that is held by another host, by issuing a
22388 	 * reset if priority reserve is desired, and we could not get the
22389 	 * device.
22390 	 */
22391 	if ((cmd == SD_PRIORITY_RESERVE) &&
22392 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22393 		/*
22394 		 * First try to reset the LUN. If we cannot, then try a target
22395 		 * reset, followed by a bus reset if the target reset fails.
22396 		 */
22397 		int reset_retval = 0;
22398 		if (un->un_f_lun_reset_enabled == TRUE) {
22399 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22400 		}
22401 		if (reset_retval == 0) {
22402 			/* The LUN reset either failed or was not issued */
22403 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22404 		}
22405 		if ((reset_retval == 0) &&
22406 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22407 			rval = EIO;
22408 			kmem_free(com, sizeof (*com));
22409 			return (rval);
22410 		}
22411 
22412 		bzero(com, sizeof (struct uscsi_cmd));
22413 		com->uscsi_flags   = USCSI_SILENT;
22414 		com->uscsi_cdb	   = cdb;
22415 		com->uscsi_cdblen  = CDB_GROUP0;
22416 		com->uscsi_timeout = 5;
22417 
22418 		/*
22419 		 * Reissue the last reserve command, this time without request
22420 		 * sense.  Assume that it is just a regular reserve command.
22421 		 */
22422 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22423 		    SD_PATH_STANDARD);
22424 	}
22425 
22426 	/* Return an error if still getting a reservation conflict. */
22427 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22428 		rval = EACCES;
22429 	}
22430 
22431 	kmem_free(com, sizeof (*com));
22432 	return (rval);
22433 }
22434 
22435 
22436 #define	SD_NDUMP_RETRIES	12
22437 /*
22438  *	System Crash Dump routine
22439  */
22440 
22441 static int
22442 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
22443 {
22444 	int		instance;
22445 	int		partition;
22446 	int		i;
22447 	int		err;
22448 	struct sd_lun	*un;
22449 	struct scsi_pkt *wr_pktp;
22450 	struct buf	*wr_bp;
22451 	struct buf	wr_buf;
22452 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
22453 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
22454 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
22455 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
22456 	size_t		io_start_offset;
22457 	int		doing_rmw = FALSE;
22458 	int		rval;
22459 #if defined(__i386) || defined(__amd64)
22460 	ssize_t dma_resid;
22461 	daddr_t oblkno;
22462 #endif
22463 	diskaddr_t	nblks = 0;
22464 	diskaddr_t	start_block;
22465 
22466 	instance = SDUNIT(dev);
22467 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
22468 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
22469 		return (ENXIO);
22470 	}
22471 
22472 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
22473 
22474 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
22475 
22476 	partition = SDPART(dev);
22477 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
22478 
22479 	/* Validate blocks to dump at against partition size. */
22480 
22481 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
22482 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
22483 
22484 	if ((blkno + nblk) > nblks) {
22485 		SD_TRACE(SD_LOG_DUMP, un,
22486 		    "sddump: dump range larger than partition: "
22487 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
22488 		    blkno, nblk, nblks);
22489 		return (EINVAL);
22490 	}
22491 
22492 	mutex_enter(&un->un_pm_mutex);
22493 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
22494 		struct scsi_pkt *start_pktp;
22495 
22496 		mutex_exit(&un->un_pm_mutex);
22497 
22498 		/*
22499 		 * use pm framework to power on HBA 1st
22500 		 */
22501 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
22502 
22503 		/*
22504 		 * Dump no long uses sdpower to power on a device, it's
22505 		 * in-line here so it can be done in polled mode.
22506 		 */
22507 
22508 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
22509 
22510 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
22511 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
22512 
22513 		if (start_pktp == NULL) {
22514 			/* We were not given a SCSI packet, fail. */
22515 			return (EIO);
22516 		}
22517 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
22518 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
22519 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
22520 		start_pktp->pkt_flags = FLAG_NOINTR;
22521 
22522 		mutex_enter(SD_MUTEX(un));
22523 		SD_FILL_SCSI1_LUN(un, start_pktp);
22524 		mutex_exit(SD_MUTEX(un));
22525 		/*
22526 		 * Scsi_poll returns 0 (success) if the command completes and
22527 		 * the status block is STATUS_GOOD.
22528 		 */
22529 		if (sd_scsi_poll(un, start_pktp) != 0) {
22530 			scsi_destroy_pkt(start_pktp);
22531 			return (EIO);
22532 		}
22533 		scsi_destroy_pkt(start_pktp);
22534 		(void) sd_ddi_pm_resume(un);
22535 	} else {
22536 		mutex_exit(&un->un_pm_mutex);
22537 	}
22538 
22539 	mutex_enter(SD_MUTEX(un));
22540 	un->un_throttle = 0;
22541 
22542 	/*
22543 	 * The first time through, reset the specific target device.
22544 	 * However, when cpr calls sddump we know that sd is in a
22545 	 * a good state so no bus reset is required.
22546 	 * Clear sense data via Request Sense cmd.
22547 	 * In sddump we don't care about allow_bus_device_reset anymore
22548 	 */
22549 
22550 	if ((un->un_state != SD_STATE_SUSPENDED) &&
22551 	    (un->un_state != SD_STATE_DUMPING)) {
22552 
22553 		New_state(un, SD_STATE_DUMPING);
22554 
22555 		if (un->un_f_is_fibre == FALSE) {
22556 			mutex_exit(SD_MUTEX(un));
22557 			/*
22558 			 * Attempt a bus reset for parallel scsi.
22559 			 *
22560 			 * Note: A bus reset is required because on some host
22561 			 * systems (i.e. E420R) a bus device reset is
22562 			 * insufficient to reset the state of the target.
22563 			 *
22564 			 * Note: Don't issue the reset for fibre-channel,
22565 			 * because this tends to hang the bus (loop) for
22566 			 * too long while everyone is logging out and in
22567 			 * and the deadman timer for dumping will fire
22568 			 * before the dump is complete.
22569 			 */
22570 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
22571 				mutex_enter(SD_MUTEX(un));
22572 				Restore_state(un);
22573 				mutex_exit(SD_MUTEX(un));
22574 				return (EIO);
22575 			}
22576 
22577 			/* Delay to give the device some recovery time. */
22578 			drv_usecwait(10000);
22579 
22580 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
22581 				SD_INFO(SD_LOG_DUMP, un,
22582 				    "sddump: sd_send_polled_RQS failed\n");
22583 			}
22584 			mutex_enter(SD_MUTEX(un));
22585 		}
22586 	}
22587 
22588 	/*
22589 	 * Convert the partition-relative block number to a
22590 	 * disk physical block number.
22591 	 */
22592 	blkno += start_block;
22593 
22594 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
22595 
22596 
22597 	/*
22598 	 * Check if the device has a non-512 block size.
22599 	 */
22600 	wr_bp = NULL;
22601 	if (NOT_DEVBSIZE(un)) {
22602 		tgt_byte_offset = blkno * un->un_sys_blocksize;
22603 		tgt_byte_count = nblk * un->un_sys_blocksize;
22604 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
22605 		    (tgt_byte_count % un->un_tgt_blocksize)) {
22606 			doing_rmw = TRUE;
22607 			/*
22608 			 * Calculate the block number and number of block
22609 			 * in terms of the media block size.
22610 			 */
22611 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22612 			tgt_nblk =
22613 			    ((tgt_byte_offset + tgt_byte_count +
22614 			    (un->un_tgt_blocksize - 1)) /
22615 			    un->un_tgt_blocksize) - tgt_blkno;
22616 
22617 			/*
22618 			 * Invoke the routine which is going to do read part
22619 			 * of read-modify-write.
22620 			 * Note that this routine returns a pointer to
22621 			 * a valid bp in wr_bp.
22622 			 */
22623 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
22624 			    &wr_bp);
22625 			if (err) {
22626 				mutex_exit(SD_MUTEX(un));
22627 				return (err);
22628 			}
22629 			/*
22630 			 * Offset is being calculated as -
22631 			 * (original block # * system block size) -
22632 			 * (new block # * target block size)
22633 			 */
22634 			io_start_offset =
22635 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
22636 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
22637 
22638 			ASSERT((io_start_offset >= 0) &&
22639 			    (io_start_offset < un->un_tgt_blocksize));
22640 			/*
22641 			 * Do the modify portion of read modify write.
22642 			 */
22643 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
22644 			    (size_t)nblk * un->un_sys_blocksize);
22645 		} else {
22646 			doing_rmw = FALSE;
22647 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22648 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
22649 		}
22650 
22651 		/* Convert blkno and nblk to target blocks */
22652 		blkno = tgt_blkno;
22653 		nblk = tgt_nblk;
22654 	} else {
22655 		wr_bp = &wr_buf;
22656 		bzero(wr_bp, sizeof (struct buf));
22657 		wr_bp->b_flags		= B_BUSY;
22658 		wr_bp->b_un.b_addr	= addr;
22659 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
22660 		wr_bp->b_resid		= 0;
22661 	}
22662 
22663 	mutex_exit(SD_MUTEX(un));
22664 
22665 	/*
22666 	 * Obtain a SCSI packet for the write command.
22667 	 * It should be safe to call the allocator here without
22668 	 * worrying about being locked for DVMA mapping because
22669 	 * the address we're passed is already a DVMA mapping
22670 	 *
22671 	 * We are also not going to worry about semaphore ownership
22672 	 * in the dump buffer. Dumping is single threaded at present.
22673 	 */
22674 
22675 	wr_pktp = NULL;
22676 
22677 #if defined(__i386) || defined(__amd64)
22678 	dma_resid = wr_bp->b_bcount;
22679 	oblkno = blkno;
22680 	while (dma_resid != 0) {
22681 #endif
22682 
22683 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
22684 		wr_bp->b_flags &= ~B_ERROR;
22685 
22686 #if defined(__i386) || defined(__amd64)
22687 		blkno = oblkno +
22688 		    ((wr_bp->b_bcount - dma_resid) /
22689 		    un->un_tgt_blocksize);
22690 		nblk = dma_resid / un->un_tgt_blocksize;
22691 
22692 		if (wr_pktp) {
22693 			/* Partial DMA transfers after initial transfer */
22694 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
22695 			    blkno, nblk);
22696 		} else {
22697 			/* Initial transfer */
22698 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
22699 			    un->un_pkt_flags, NULL_FUNC, NULL,
22700 			    blkno, nblk);
22701 		}
22702 #else
22703 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
22704 		    0, NULL_FUNC, NULL, blkno, nblk);
22705 #endif
22706 
22707 		if (rval == 0) {
22708 			/* We were given a SCSI packet, continue. */
22709 			break;
22710 		}
22711 
22712 		if (i == 0) {
22713 			if (wr_bp->b_flags & B_ERROR) {
22714 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
22715 				    "no resources for dumping; "
22716 				    "error code: 0x%x, retrying",
22717 				    geterror(wr_bp));
22718 			} else {
22719 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
22720 				    "no resources for dumping; retrying");
22721 			}
22722 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
22723 			if (wr_bp->b_flags & B_ERROR) {
22724 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22725 				    "no resources for dumping; error code: "
22726 				    "0x%x, retrying\n", geterror(wr_bp));
22727 			}
22728 		} else {
22729 			if (wr_bp->b_flags & B_ERROR) {
22730 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22731 				    "no resources for dumping; "
22732 				    "error code: 0x%x, retries failed, "
22733 				    "giving up.\n", geterror(wr_bp));
22734 			} else {
22735 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22736 				    "no resources for dumping; "
22737 				    "retries failed, giving up.\n");
22738 			}
22739 			mutex_enter(SD_MUTEX(un));
22740 			Restore_state(un);
22741 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
22742 				mutex_exit(SD_MUTEX(un));
22743 				scsi_free_consistent_buf(wr_bp);
22744 			} else {
22745 				mutex_exit(SD_MUTEX(un));
22746 			}
22747 			return (EIO);
22748 		}
22749 		drv_usecwait(10000);
22750 	}
22751 
22752 #if defined(__i386) || defined(__amd64)
22753 	/*
22754 	 * save the resid from PARTIAL_DMA
22755 	 */
22756 	dma_resid = wr_pktp->pkt_resid;
22757 	if (dma_resid != 0)
22758 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
22759 	wr_pktp->pkt_resid = 0;
22760 #endif
22761 
22762 	/* SunBug 1222170 */
22763 	wr_pktp->pkt_flags = FLAG_NOINTR;
22764 
22765 	err = EIO;
22766 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
22767 
22768 		/*
22769 		 * Scsi_poll returns 0 (success) if the command completes and
22770 		 * the status block is STATUS_GOOD.  We should only check
22771 		 * errors if this condition is not true.  Even then we should
22772 		 * send our own request sense packet only if we have a check
22773 		 * condition and auto request sense has not been performed by
22774 		 * the hba.
22775 		 */
22776 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
22777 
22778 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
22779 		    (wr_pktp->pkt_resid == 0)) {
22780 			err = SD_SUCCESS;
22781 			break;
22782 		}
22783 
22784 		/*
22785 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
22786 		 */
22787 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
22788 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
22789 			    "Device is gone\n");
22790 			break;
22791 		}
22792 
22793 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
22794 			SD_INFO(SD_LOG_DUMP, un,
22795 			    "sddump: write failed with CHECK, try # %d\n", i);
22796 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
22797 				(void) sd_send_polled_RQS(un);
22798 			}
22799 
22800 			continue;
22801 		}
22802 
22803 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
22804 			int reset_retval = 0;
22805 
22806 			SD_INFO(SD_LOG_DUMP, un,
22807 			    "sddump: write failed with BUSY, try # %d\n", i);
22808 
22809 			if (un->un_f_lun_reset_enabled == TRUE) {
22810 				reset_retval = scsi_reset(SD_ADDRESS(un),
22811 				    RESET_LUN);
22812 			}
22813 			if (reset_retval == 0) {
22814 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22815 			}
22816 			(void) sd_send_polled_RQS(un);
22817 
22818 		} else {
22819 			SD_INFO(SD_LOG_DUMP, un,
22820 			    "sddump: write failed with 0x%x, try # %d\n",
22821 			    SD_GET_PKT_STATUS(wr_pktp), i);
22822 			mutex_enter(SD_MUTEX(un));
22823 			sd_reset_target(un, wr_pktp);
22824 			mutex_exit(SD_MUTEX(un));
22825 		}
22826 
22827 		/*
22828 		 * If we are not getting anywhere with lun/target resets,
22829 		 * let's reset the bus.
22830 		 */
22831 		if (i == SD_NDUMP_RETRIES/2) {
22832 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22833 			(void) sd_send_polled_RQS(un);
22834 		}
22835 
22836 	}
22837 #if defined(__i386) || defined(__amd64)
22838 	}	/* dma_resid */
22839 #endif
22840 
22841 	scsi_destroy_pkt(wr_pktp);
22842 	mutex_enter(SD_MUTEX(un));
22843 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
22844 		mutex_exit(SD_MUTEX(un));
22845 		scsi_free_consistent_buf(wr_bp);
22846 	} else {
22847 		mutex_exit(SD_MUTEX(un));
22848 	}
22849 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
22850 	return (err);
22851 }
22852 
22853 /*
22854  *    Function: sd_scsi_poll()
22855  *
22856  * Description: This is a wrapper for the scsi_poll call.
22857  *
22858  *   Arguments: sd_lun - The unit structure
22859  *              scsi_pkt - The scsi packet being sent to the device.
22860  *
22861  * Return Code: 0 - Command completed successfully with good status
22862  *             -1 - Command failed.  This could indicate a check condition
22863  *                  or other status value requiring recovery action.
22864  *
22865  */
22866 
22867 static int
22868 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
22869 {
22870 	int status;
22871 
22872 	ASSERT(un != NULL);
22873 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22874 	ASSERT(pktp != NULL);
22875 
22876 	status = SD_SUCCESS;
22877 
22878 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
22879 		pktp->pkt_flags |= un->un_tagflags;
22880 		pktp->pkt_flags &= ~FLAG_NODISCON;
22881 	}
22882 
22883 	status = sd_ddi_scsi_poll(pktp);
22884 	/*
22885 	 * Scsi_poll returns 0 (success) if the command completes and the
22886 	 * status block is STATUS_GOOD.  We should only check errors if this
22887 	 * condition is not true.  Even then we should send our own request
22888 	 * sense packet only if we have a check condition and auto
22889 	 * request sense has not been performed by the hba.
22890 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
22891 	 */
22892 	if ((status != SD_SUCCESS) &&
22893 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
22894 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
22895 	    (pktp->pkt_reason != CMD_DEV_GONE))
22896 		(void) sd_send_polled_RQS(un);
22897 
22898 	return (status);
22899 }
22900 
22901 /*
22902  *    Function: sd_send_polled_RQS()
22903  *
22904  * Description: This sends the request sense command to a device.
22905  *
22906  *   Arguments: sd_lun - The unit structure
22907  *
22908  * Return Code: 0 - Command completed successfully with good status
22909  *             -1 - Command failed.
22910  *
22911  */
22912 
22913 static int
22914 sd_send_polled_RQS(struct sd_lun *un)
22915 {
22916 	int	ret_val;
22917 	struct	scsi_pkt	*rqs_pktp;
22918 	struct	buf		*rqs_bp;
22919 
22920 	ASSERT(un != NULL);
22921 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22922 
22923 	ret_val = SD_SUCCESS;
22924 
22925 	rqs_pktp = un->un_rqs_pktp;
22926 	rqs_bp	 = un->un_rqs_bp;
22927 
22928 	mutex_enter(SD_MUTEX(un));
22929 
22930 	if (un->un_sense_isbusy) {
22931 		ret_val = SD_FAILURE;
22932 		mutex_exit(SD_MUTEX(un));
22933 		return (ret_val);
22934 	}
22935 
22936 	/*
22937 	 * If the request sense buffer (and packet) is not in use,
22938 	 * let's set the un_sense_isbusy and send our packet
22939 	 */
22940 	un->un_sense_isbusy 	= 1;
22941 	rqs_pktp->pkt_resid  	= 0;
22942 	rqs_pktp->pkt_reason 	= 0;
22943 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
22944 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
22945 
22946 	mutex_exit(SD_MUTEX(un));
22947 
22948 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
22949 	    " 0x%p\n", rqs_bp->b_un.b_addr);
22950 
22951 	/*
22952 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
22953 	 * axle - it has a call into us!
22954 	 */
22955 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
22956 		SD_INFO(SD_LOG_COMMON, un,
22957 		    "sd_send_polled_RQS: RQS failed\n");
22958 	}
22959 
22960 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
22961 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
22962 
22963 	mutex_enter(SD_MUTEX(un));
22964 	un->un_sense_isbusy = 0;
22965 	mutex_exit(SD_MUTEX(un));
22966 
22967 	return (ret_val);
22968 }
22969 
22970 /*
22971  * Defines needed for localized version of the scsi_poll routine.
22972  */
22973 #define	SD_CSEC		10000			/* usecs */
22974 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
22975 
22976 
22977 /*
22978  *    Function: sd_ddi_scsi_poll()
22979  *
22980  * Description: Localized version of the scsi_poll routine.  The purpose is to
22981  *		send a scsi_pkt to a device as a polled command.  This version
22982  *		is to ensure more robust handling of transport errors.
22983  *		Specifically this routine cures not ready, coming ready
22984  *		transition for power up and reset of sonoma's.  This can take
22985  *		up to 45 seconds for power-on and 20 seconds for reset of a
22986  * 		sonoma lun.
22987  *
22988  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
22989  *
22990  * Return Code: 0 - Command completed successfully with good status
22991  *             -1 - Command failed.
22992  *
22993  */
22994 
22995 static int
22996 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
22997 {
22998 	int busy_count;
22999 	int timeout;
23000 	int rval = SD_FAILURE;
23001 	int savef;
23002 	uint8_t *sensep;
23003 	long savet;
23004 	void (*savec)();
23005 	/*
23006 	 * The following is defined in machdep.c and is used in determining if
23007 	 * the scsi transport system will do polled I/O instead of interrupt
23008 	 * I/O when called from xx_dump().
23009 	 */
23010 	extern int do_polled_io;
23011 
23012 	/*
23013 	 * save old flags in pkt, to restore at end
23014 	 */
23015 	savef = pkt->pkt_flags;
23016 	savec = pkt->pkt_comp;
23017 	savet = pkt->pkt_time;
23018 
23019 	pkt->pkt_flags |= FLAG_NOINTR;
23020 
23021 	/*
23022 	 * XXX there is nothing in the SCSA spec that states that we should not
23023 	 * do a callback for polled cmds; however, removing this will break sd
23024 	 * and probably other target drivers
23025 	 */
23026 	pkt->pkt_comp = NULL;
23027 
23028 	/*
23029 	 * we don't like a polled command without timeout.
23030 	 * 60 seconds seems long enough.
23031 	 */
23032 	if (pkt->pkt_time == 0) {
23033 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
23034 	}
23035 
23036 	/*
23037 	 * Send polled cmd.
23038 	 *
23039 	 * We do some error recovery for various errors.  Tran_busy,
23040 	 * queue full, and non-dispatched commands are retried every 10 msec.
23041 	 * as they are typically transient failures.  Busy status and Not
23042 	 * Ready are retried every second as this status takes a while to
23043 	 * change.  Unit attention is retried for pkt_time (60) times
23044 	 * with no delay.
23045 	 */
23046 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
23047 
23048 	for (busy_count = 0; busy_count < timeout; busy_count++) {
23049 		int rc;
23050 		int poll_delay;
23051 
23052 		/*
23053 		 * Initialize pkt status variables.
23054 		 */
23055 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
23056 
23057 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
23058 			if (rc != TRAN_BUSY) {
23059 				/* Transport failed - give up. */
23060 				break;
23061 			} else {
23062 				/* Transport busy - try again. */
23063 				poll_delay = 1 * SD_CSEC; /* 10 msec */
23064 			}
23065 		} else {
23066 			/*
23067 			 * Transport accepted - check pkt status.
23068 			 */
23069 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
23070 			if (pkt->pkt_reason == CMD_CMPLT &&
23071 			    rc == STATUS_CHECK &&
23072 			    pkt->pkt_state & STATE_ARQ_DONE) {
23073 				struct scsi_arq_status *arqstat =
23074 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
23075 
23076 				sensep = (uint8_t *)&arqstat->sts_sensedata;
23077 			} else {
23078 				sensep = NULL;
23079 			}
23080 
23081 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23082 			    (rc == STATUS_GOOD)) {
23083 				/* No error - we're done */
23084 				rval = SD_SUCCESS;
23085 				break;
23086 
23087 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
23088 				/* Lost connection - give up */
23089 				break;
23090 
23091 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
23092 			    (pkt->pkt_state == 0)) {
23093 				/* Pkt not dispatched - try again. */
23094 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
23095 
23096 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23097 			    (rc == STATUS_QFULL)) {
23098 				/* Queue full - try again. */
23099 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
23100 
23101 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23102 			    (rc == STATUS_BUSY)) {
23103 				/* Busy - try again. */
23104 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23105 				busy_count += (SD_SEC_TO_CSEC - 1);
23106 
23107 			} else if ((sensep != NULL) &&
23108 			    (scsi_sense_key(sensep) ==
23109 			    KEY_UNIT_ATTENTION)) {
23110 				/* Unit Attention - try again */
23111 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
23112 				continue;
23113 
23114 			} else if ((sensep != NULL) &&
23115 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
23116 			    (scsi_sense_asc(sensep) == 0x04) &&
23117 			    (scsi_sense_ascq(sensep) == 0x01)) {
23118 				/* Not ready -> ready - try again. */
23119 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23120 				busy_count += (SD_SEC_TO_CSEC - 1);
23121 
23122 			} else {
23123 				/* BAD status - give up. */
23124 				break;
23125 			}
23126 		}
23127 
23128 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
23129 		    !do_polled_io) {
23130 			delay(drv_usectohz(poll_delay));
23131 		} else {
23132 			/* we busy wait during cpr_dump or interrupt threads */
23133 			drv_usecwait(poll_delay);
23134 		}
23135 	}
23136 
23137 	pkt->pkt_flags = savef;
23138 	pkt->pkt_comp = savec;
23139 	pkt->pkt_time = savet;
23140 	return (rval);
23141 }
23142 
23143 
23144 /*
23145  *    Function: sd_persistent_reservation_in_read_keys
23146  *
23147  * Description: This routine is the driver entry point for handling CD-ROM
23148  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23149  *		by sending the SCSI-3 PRIN commands to the device.
23150  *		Processes the read keys command response by copying the
23151  *		reservation key information into the user provided buffer.
23152  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23153  *
23154  *   Arguments: un   -  Pointer to soft state struct for the target.
23155  *		usrp -	user provided pointer to multihost Persistent In Read
23156  *			Keys structure (mhioc_inkeys_t)
23157  *		flag -	this argument is a pass through to ddi_copyxxx()
23158  *			directly from the mode argument of ioctl().
23159  *
23160  * Return Code: 0   - Success
23161  *		EACCES
23162  *		ENOTSUP
23163  *		errno return code from sd_send_scsi_cmd()
23164  *
23165  *     Context: Can sleep. Does not return until command is completed.
23166  */
23167 
23168 static int
23169 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23170     mhioc_inkeys_t *usrp, int flag)
23171 {
23172 #ifdef _MULTI_DATAMODEL
23173 	struct mhioc_key_list32	li32;
23174 #endif
23175 	sd_prin_readkeys_t	*in;
23176 	mhioc_inkeys_t		*ptr;
23177 	mhioc_key_list_t	li;
23178 	uchar_t			*data_bufp;
23179 	int 			data_len;
23180 	int			rval;
23181 	size_t			copysz;
23182 
23183 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23184 		return (EINVAL);
23185 	}
23186 	bzero(&li, sizeof (mhioc_key_list_t));
23187 
23188 	/*
23189 	 * Get the listsize from user
23190 	 */
23191 #ifdef _MULTI_DATAMODEL
23192 
23193 	switch (ddi_model_convert_from(flag & FMODELS)) {
23194 	case DDI_MODEL_ILP32:
23195 		copysz = sizeof (struct mhioc_key_list32);
23196 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23197 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23198 			    "sd_persistent_reservation_in_read_keys: "
23199 			    "failed ddi_copyin: mhioc_key_list32_t\n");
23200 			rval = EFAULT;
23201 			goto done;
23202 		}
23203 		li.listsize = li32.listsize;
23204 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23205 		break;
23206 
23207 	case DDI_MODEL_NONE:
23208 		copysz = sizeof (mhioc_key_list_t);
23209 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23210 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23211 			    "sd_persistent_reservation_in_read_keys: "
23212 			    "failed ddi_copyin: mhioc_key_list_t\n");
23213 			rval = EFAULT;
23214 			goto done;
23215 		}
23216 		break;
23217 	}
23218 
23219 #else /* ! _MULTI_DATAMODEL */
23220 	copysz = sizeof (mhioc_key_list_t);
23221 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23222 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23223 		    "sd_persistent_reservation_in_read_keys: "
23224 		    "failed ddi_copyin: mhioc_key_list_t\n");
23225 		rval = EFAULT;
23226 		goto done;
23227 	}
23228 #endif
23229 
23230 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23231 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23232 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23233 
23234 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23235 	    data_len, data_bufp)) != 0) {
23236 		goto done;
23237 	}
23238 	in = (sd_prin_readkeys_t *)data_bufp;
23239 	ptr->generation = BE_32(in->generation);
23240 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23241 
23242 	/*
23243 	 * Return the min(listsize, listlen) keys
23244 	 */
23245 #ifdef _MULTI_DATAMODEL
23246 
23247 	switch (ddi_model_convert_from(flag & FMODELS)) {
23248 	case DDI_MODEL_ILP32:
23249 		li32.listlen = li.listlen;
23250 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23251 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23252 			    "sd_persistent_reservation_in_read_keys: "
23253 			    "failed ddi_copyout: mhioc_key_list32_t\n");
23254 			rval = EFAULT;
23255 			goto done;
23256 		}
23257 		break;
23258 
23259 	case DDI_MODEL_NONE:
23260 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23261 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23262 			    "sd_persistent_reservation_in_read_keys: "
23263 			    "failed ddi_copyout: mhioc_key_list_t\n");
23264 			rval = EFAULT;
23265 			goto done;
23266 		}
23267 		break;
23268 	}
23269 
23270 #else /* ! _MULTI_DATAMODEL */
23271 
23272 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23273 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23274 		    "sd_persistent_reservation_in_read_keys: "
23275 		    "failed ddi_copyout: mhioc_key_list_t\n");
23276 		rval = EFAULT;
23277 		goto done;
23278 	}
23279 
23280 #endif /* _MULTI_DATAMODEL */
23281 
23282 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23283 	    li.listsize * MHIOC_RESV_KEY_SIZE);
23284 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23285 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23286 		    "sd_persistent_reservation_in_read_keys: "
23287 		    "failed ddi_copyout: keylist\n");
23288 		rval = EFAULT;
23289 	}
23290 done:
23291 	kmem_free(data_bufp, data_len);
23292 	return (rval);
23293 }
23294 
23295 
23296 /*
23297  *    Function: sd_persistent_reservation_in_read_resv
23298  *
23299  * Description: This routine is the driver entry point for handling CD-ROM
23300  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23301  *		by sending the SCSI-3 PRIN commands to the device.
23302  *		Process the read persistent reservations command response by
23303  *		copying the reservation information into the user provided
23304  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23305  *
23306  *   Arguments: un   -  Pointer to soft state struct for the target.
23307  *		usrp -	user provided pointer to multihost Persistent In Read
23308  *			Keys structure (mhioc_inkeys_t)
23309  *		flag -	this argument is a pass through to ddi_copyxxx()
23310  *			directly from the mode argument of ioctl().
23311  *
23312  * Return Code: 0   - Success
23313  *		EACCES
23314  *		ENOTSUP
23315  *		errno return code from sd_send_scsi_cmd()
23316  *
23317  *     Context: Can sleep. Does not return until command is completed.
23318  */
23319 
23320 static int
23321 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23322     mhioc_inresvs_t *usrp, int flag)
23323 {
23324 #ifdef _MULTI_DATAMODEL
23325 	struct mhioc_resv_desc_list32 resvlist32;
23326 #endif
23327 	sd_prin_readresv_t	*in;
23328 	mhioc_inresvs_t		*ptr;
23329 	sd_readresv_desc_t	*readresv_ptr;
23330 	mhioc_resv_desc_list_t	resvlist;
23331 	mhioc_resv_desc_t 	resvdesc;
23332 	uchar_t			*data_bufp;
23333 	int 			data_len;
23334 	int			rval;
23335 	int			i;
23336 	size_t			copysz;
23337 	mhioc_resv_desc_t	*bufp;
23338 
23339 	if ((ptr = usrp) == NULL) {
23340 		return (EINVAL);
23341 	}
23342 
23343 	/*
23344 	 * Get the listsize from user
23345 	 */
23346 #ifdef _MULTI_DATAMODEL
23347 	switch (ddi_model_convert_from(flag & FMODELS)) {
23348 	case DDI_MODEL_ILP32:
23349 		copysz = sizeof (struct mhioc_resv_desc_list32);
23350 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23351 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23352 			    "sd_persistent_reservation_in_read_resv: "
23353 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23354 			rval = EFAULT;
23355 			goto done;
23356 		}
23357 		resvlist.listsize = resvlist32.listsize;
23358 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23359 		break;
23360 
23361 	case DDI_MODEL_NONE:
23362 		copysz = sizeof (mhioc_resv_desc_list_t);
23363 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23364 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23365 			    "sd_persistent_reservation_in_read_resv: "
23366 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23367 			rval = EFAULT;
23368 			goto done;
23369 		}
23370 		break;
23371 	}
23372 #else /* ! _MULTI_DATAMODEL */
23373 	copysz = sizeof (mhioc_resv_desc_list_t);
23374 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23375 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23376 		    "sd_persistent_reservation_in_read_resv: "
23377 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23378 		rval = EFAULT;
23379 		goto done;
23380 	}
23381 #endif /* ! _MULTI_DATAMODEL */
23382 
23383 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23384 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23385 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23386 
23387 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23388 	    data_len, data_bufp)) != 0) {
23389 		goto done;
23390 	}
23391 	in = (sd_prin_readresv_t *)data_bufp;
23392 	ptr->generation = BE_32(in->generation);
23393 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23394 
23395 	/*
23396 	 * Return the min(listsize, listlen( keys
23397 	 */
23398 #ifdef _MULTI_DATAMODEL
23399 
23400 	switch (ddi_model_convert_from(flag & FMODELS)) {
23401 	case DDI_MODEL_ILP32:
23402 		resvlist32.listlen = resvlist.listlen;
23403 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23404 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23405 			    "sd_persistent_reservation_in_read_resv: "
23406 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23407 			rval = EFAULT;
23408 			goto done;
23409 		}
23410 		break;
23411 
23412 	case DDI_MODEL_NONE:
23413 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23414 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23415 			    "sd_persistent_reservation_in_read_resv: "
23416 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23417 			rval = EFAULT;
23418 			goto done;
23419 		}
23420 		break;
23421 	}
23422 
23423 #else /* ! _MULTI_DATAMODEL */
23424 
23425 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23426 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23427 		    "sd_persistent_reservation_in_read_resv: "
23428 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23429 		rval = EFAULT;
23430 		goto done;
23431 	}
23432 
23433 #endif /* ! _MULTI_DATAMODEL */
23434 
23435 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
23436 	bufp = resvlist.list;
23437 	copysz = sizeof (mhioc_resv_desc_t);
23438 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
23439 	    i++, readresv_ptr++, bufp++) {
23440 
23441 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
23442 		    MHIOC_RESV_KEY_SIZE);
23443 		resvdesc.type  = readresv_ptr->type;
23444 		resvdesc.scope = readresv_ptr->scope;
23445 		resvdesc.scope_specific_addr =
23446 		    BE_32(readresv_ptr->scope_specific_addr);
23447 
23448 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
23449 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23450 			    "sd_persistent_reservation_in_read_resv: "
23451 			    "failed ddi_copyout: resvlist\n");
23452 			rval = EFAULT;
23453 			goto done;
23454 		}
23455 	}
23456 done:
23457 	kmem_free(data_bufp, data_len);
23458 	return (rval);
23459 }
23460 
23461 
23462 /*
23463  *    Function: sr_change_blkmode()
23464  *
23465  * Description: This routine is the driver entry point for handling CD-ROM
23466  *		block mode ioctl requests. Support for returning and changing
23467  *		the current block size in use by the device is implemented. The
23468  *		LBA size is changed via a MODE SELECT Block Descriptor.
23469  *
23470  *		This routine issues a mode sense with an allocation length of
23471  *		12 bytes for the mode page header and a single block descriptor.
23472  *
23473  *   Arguments: dev - the device 'dev_t'
23474  *		cmd - the request type; one of CDROMGBLKMODE (get) or
23475  *		      CDROMSBLKMODE (set)
23476  *		data - current block size or requested block size
23477  *		flag - this argument is a pass through to ddi_copyxxx() directly
23478  *		       from the mode argument of ioctl().
23479  *
23480  * Return Code: the code returned by sd_send_scsi_cmd()
23481  *		EINVAL if invalid arguments are provided
23482  *		EFAULT if ddi_copyxxx() fails
23483  *		ENXIO if fail ddi_get_soft_state
23484  *		EIO if invalid mode sense block descriptor length
23485  *
23486  */
23487 
23488 static int
23489 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
23490 {
23491 	struct sd_lun			*un = NULL;
23492 	struct mode_header		*sense_mhp, *select_mhp;
23493 	struct block_descriptor		*sense_desc, *select_desc;
23494 	int				current_bsize;
23495 	int				rval = EINVAL;
23496 	uchar_t				*sense = NULL;
23497 	uchar_t				*select = NULL;
23498 
23499 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
23500 
23501 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23502 		return (ENXIO);
23503 	}
23504 
23505 	/*
23506 	 * The block length is changed via the Mode Select block descriptor, the
23507 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
23508 	 * required as part of this routine. Therefore the mode sense allocation
23509 	 * length is specified to be the length of a mode page header and a
23510 	 * block descriptor.
23511 	 */
23512 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23513 
23514 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23515 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
23516 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23517 		    "sr_change_blkmode: Mode Sense Failed\n");
23518 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23519 		return (rval);
23520 	}
23521 
23522 	/* Check the block descriptor len to handle only 1 block descriptor */
23523 	sense_mhp = (struct mode_header *)sense;
23524 	if ((sense_mhp->bdesc_length == 0) ||
23525 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
23526 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23527 		    "sr_change_blkmode: Mode Sense returned invalid block"
23528 		    " descriptor length\n");
23529 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23530 		return (EIO);
23531 	}
23532 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
23533 	current_bsize = ((sense_desc->blksize_hi << 16) |
23534 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
23535 
23536 	/* Process command */
23537 	switch (cmd) {
23538 	case CDROMGBLKMODE:
23539 		/* Return the block size obtained during the mode sense */
23540 		if (ddi_copyout(&current_bsize, (void *)data,
23541 		    sizeof (int), flag) != 0)
23542 			rval = EFAULT;
23543 		break;
23544 	case CDROMSBLKMODE:
23545 		/* Validate the requested block size */
23546 		switch (data) {
23547 		case CDROM_BLK_512:
23548 		case CDROM_BLK_1024:
23549 		case CDROM_BLK_2048:
23550 		case CDROM_BLK_2056:
23551 		case CDROM_BLK_2336:
23552 		case CDROM_BLK_2340:
23553 		case CDROM_BLK_2352:
23554 		case CDROM_BLK_2368:
23555 		case CDROM_BLK_2448:
23556 		case CDROM_BLK_2646:
23557 		case CDROM_BLK_2647:
23558 			break;
23559 		default:
23560 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23561 			    "sr_change_blkmode: "
23562 			    "Block Size '%ld' Not Supported\n", data);
23563 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23564 			return (EINVAL);
23565 		}
23566 
23567 		/*
23568 		 * The current block size matches the requested block size so
23569 		 * there is no need to send the mode select to change the size
23570 		 */
23571 		if (current_bsize == data) {
23572 			break;
23573 		}
23574 
23575 		/* Build the select data for the requested block size */
23576 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23577 		select_mhp = (struct mode_header *)select;
23578 		select_desc =
23579 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
23580 		/*
23581 		 * The LBA size is changed via the block descriptor, so the
23582 		 * descriptor is built according to the user data
23583 		 */
23584 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
23585 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
23586 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
23587 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
23588 
23589 		/* Send the mode select for the requested block size */
23590 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23591 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23592 		    SD_PATH_STANDARD)) != 0) {
23593 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23594 			    "sr_change_blkmode: Mode Select Failed\n");
23595 			/*
23596 			 * The mode select failed for the requested block size,
23597 			 * so reset the data for the original block size and
23598 			 * send it to the target. The error is indicated by the
23599 			 * return value for the failed mode select.
23600 			 */
23601 			select_desc->blksize_hi  = sense_desc->blksize_hi;
23602 			select_desc->blksize_mid = sense_desc->blksize_mid;
23603 			select_desc->blksize_lo  = sense_desc->blksize_lo;
23604 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23605 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23606 			    SD_PATH_STANDARD);
23607 		} else {
23608 			ASSERT(!mutex_owned(SD_MUTEX(un)));
23609 			mutex_enter(SD_MUTEX(un));
23610 			sd_update_block_info(un, (uint32_t)data, 0);
23611 			mutex_exit(SD_MUTEX(un));
23612 		}
23613 		break;
23614 	default:
23615 		/* should not reach here, but check anyway */
23616 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23617 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
23618 		rval = EINVAL;
23619 		break;
23620 	}
23621 
23622 	if (select) {
23623 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
23624 	}
23625 	if (sense) {
23626 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23627 	}
23628 	return (rval);
23629 }
23630 
23631 
23632 /*
23633  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
23634  * implement driver support for getting and setting the CD speed. The command
23635  * set used will be based on the device type. If the device has not been
23636  * identified as MMC the Toshiba vendor specific mode page will be used. If
23637  * the device is MMC but does not support the Real Time Streaming feature
23638  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
23639  * be used to read the speed.
23640  */
23641 
23642 /*
23643  *    Function: sr_change_speed()
23644  *
23645  * Description: This routine is the driver entry point for handling CD-ROM
23646  *		drive speed ioctl requests for devices supporting the Toshiba
23647  *		vendor specific drive speed mode page. Support for returning
23648  *		and changing the current drive speed in use by the device is
23649  *		implemented.
23650  *
23651  *   Arguments: dev - the device 'dev_t'
23652  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
23653  *		      CDROMSDRVSPEED (set)
23654  *		data - current drive speed or requested drive speed
23655  *		flag - this argument is a pass through to ddi_copyxxx() directly
23656  *		       from the mode argument of ioctl().
23657  *
23658  * Return Code: the code returned by sd_send_scsi_cmd()
23659  *		EINVAL if invalid arguments are provided
23660  *		EFAULT if ddi_copyxxx() fails
23661  *		ENXIO if fail ddi_get_soft_state
23662  *		EIO if invalid mode sense block descriptor length
23663  */
23664 
23665 static int
23666 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
23667 {
23668 	struct sd_lun			*un = NULL;
23669 	struct mode_header		*sense_mhp, *select_mhp;
23670 	struct mode_speed		*sense_page, *select_page;
23671 	int				current_speed;
23672 	int				rval = EINVAL;
23673 	int				bd_len;
23674 	uchar_t				*sense = NULL;
23675 	uchar_t				*select = NULL;
23676 
23677 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
23678 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23679 		return (ENXIO);
23680 	}
23681 
23682 	/*
23683 	 * Note: The drive speed is being modified here according to a Toshiba
23684 	 * vendor specific mode page (0x31).
23685 	 */
23686 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
23687 
23688 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23689 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
23690 	    SD_PATH_STANDARD)) != 0) {
23691 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23692 		    "sr_change_speed: Mode Sense Failed\n");
23693 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23694 		return (rval);
23695 	}
23696 	sense_mhp  = (struct mode_header *)sense;
23697 
23698 	/* Check the block descriptor len to handle only 1 block descriptor */
23699 	bd_len = sense_mhp->bdesc_length;
23700 	if (bd_len > MODE_BLK_DESC_LENGTH) {
23701 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23702 		    "sr_change_speed: Mode Sense returned invalid block "
23703 		    "descriptor length\n");
23704 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23705 		return (EIO);
23706 	}
23707 
23708 	sense_page = (struct mode_speed *)
23709 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
23710 	current_speed = sense_page->speed;
23711 
23712 	/* Process command */
23713 	switch (cmd) {
23714 	case CDROMGDRVSPEED:
23715 		/* Return the drive speed obtained during the mode sense */
23716 		if (current_speed == 0x2) {
23717 			current_speed = CDROM_TWELVE_SPEED;
23718 		}
23719 		if (ddi_copyout(&current_speed, (void *)data,
23720 		    sizeof (int), flag) != 0) {
23721 			rval = EFAULT;
23722 		}
23723 		break;
23724 	case CDROMSDRVSPEED:
23725 		/* Validate the requested drive speed */
23726 		switch ((uchar_t)data) {
23727 		case CDROM_TWELVE_SPEED:
23728 			data = 0x2;
23729 			/*FALLTHROUGH*/
23730 		case CDROM_NORMAL_SPEED:
23731 		case CDROM_DOUBLE_SPEED:
23732 		case CDROM_QUAD_SPEED:
23733 		case CDROM_MAXIMUM_SPEED:
23734 			break;
23735 		default:
23736 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23737 			    "sr_change_speed: "
23738 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
23739 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23740 			return (EINVAL);
23741 		}
23742 
23743 		/*
23744 		 * The current drive speed matches the requested drive speed so
23745 		 * there is no need to send the mode select to change the speed
23746 		 */
23747 		if (current_speed == data) {
23748 			break;
23749 		}
23750 
23751 		/* Build the select data for the requested drive speed */
23752 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
23753 		select_mhp = (struct mode_header *)select;
23754 		select_mhp->bdesc_length = 0;
23755 		select_page =
23756 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
23757 		select_page =
23758 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
23759 		select_page->mode_page.code = CDROM_MODE_SPEED;
23760 		select_page->mode_page.length = 2;
23761 		select_page->speed = (uchar_t)data;
23762 
23763 		/* Send the mode select for the requested block size */
23764 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
23765 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
23766 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
23767 			/*
23768 			 * The mode select failed for the requested drive speed,
23769 			 * so reset the data for the original drive speed and
23770 			 * send it to the target. The error is indicated by the
23771 			 * return value for the failed mode select.
23772 			 */
23773 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23774 			    "sr_drive_speed: Mode Select Failed\n");
23775 			select_page->speed = sense_page->speed;
23776 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
23777 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
23778 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
23779 		}
23780 		break;
23781 	default:
23782 		/* should not reach here, but check anyway */
23783 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23784 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
23785 		rval = EINVAL;
23786 		break;
23787 	}
23788 
23789 	if (select) {
23790 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
23791 	}
23792 	if (sense) {
23793 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
23794 	}
23795 
23796 	return (rval);
23797 }
23798 
23799 
23800 /*
23801  *    Function: sr_atapi_change_speed()
23802  *
23803  * Description: This routine is the driver entry point for handling CD-ROM
23804  *		drive speed ioctl requests for MMC devices that do not support
23805  *		the Real Time Streaming feature (0x107).
23806  *
23807  *		Note: This routine will use the SET SPEED command which may not
23808  *		be supported by all devices.
23809  *
23810  *   Arguments: dev- the device 'dev_t'
23811  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
23812  *		     CDROMSDRVSPEED (set)
23813  *		data- current drive speed or requested drive speed
23814  *		flag- this argument is a pass through to ddi_copyxxx() directly
23815  *		      from the mode argument of ioctl().
23816  *
23817  * Return Code: the code returned by sd_send_scsi_cmd()
23818  *		EINVAL if invalid arguments are provided
23819  *		EFAULT if ddi_copyxxx() fails
23820  *		ENXIO if fail ddi_get_soft_state
23821  *		EIO if invalid mode sense block descriptor length
23822  */
23823 
23824 static int
23825 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
23826 {
23827 	struct sd_lun			*un;
23828 	struct uscsi_cmd		*com = NULL;
23829 	struct mode_header_grp2		*sense_mhp;
23830 	uchar_t				*sense_page;
23831 	uchar_t				*sense = NULL;
23832 	char				cdb[CDB_GROUP5];
23833 	int				bd_len;
23834 	int				current_speed = 0;
23835 	int				max_speed = 0;
23836 	int				rval;
23837 
23838 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
23839 
23840 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23841 		return (ENXIO);
23842 	}
23843 
23844 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
23845 
23846 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
23847 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
23848 	    SD_PATH_STANDARD)) != 0) {
23849 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23850 		    "sr_atapi_change_speed: Mode Sense Failed\n");
23851 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23852 		return (rval);
23853 	}
23854 
23855 	/* Check the block descriptor len to handle only 1 block descriptor */
23856 	sense_mhp = (struct mode_header_grp2 *)sense;
23857 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
23858 	if (bd_len > MODE_BLK_DESC_LENGTH) {
23859 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23860 		    "sr_atapi_change_speed: Mode Sense returned invalid "
23861 		    "block descriptor length\n");
23862 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23863 		return (EIO);
23864 	}
23865 
23866 	/* Calculate the current and maximum drive speeds */
23867 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
23868 	current_speed = (sense_page[14] << 8) | sense_page[15];
23869 	max_speed = (sense_page[8] << 8) | sense_page[9];
23870 
23871 	/* Process the command */
23872 	switch (cmd) {
23873 	case CDROMGDRVSPEED:
23874 		current_speed /= SD_SPEED_1X;
23875 		if (ddi_copyout(&current_speed, (void *)data,
23876 		    sizeof (int), flag) != 0)
23877 			rval = EFAULT;
23878 		break;
23879 	case CDROMSDRVSPEED:
23880 		/* Convert the speed code to KB/sec */
23881 		switch ((uchar_t)data) {
23882 		case CDROM_NORMAL_SPEED:
23883 			current_speed = SD_SPEED_1X;
23884 			break;
23885 		case CDROM_DOUBLE_SPEED:
23886 			current_speed = 2 * SD_SPEED_1X;
23887 			break;
23888 		case CDROM_QUAD_SPEED:
23889 			current_speed = 4 * SD_SPEED_1X;
23890 			break;
23891 		case CDROM_TWELVE_SPEED:
23892 			current_speed = 12 * SD_SPEED_1X;
23893 			break;
23894 		case CDROM_MAXIMUM_SPEED:
23895 			current_speed = 0xffff;
23896 			break;
23897 		default:
23898 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23899 			    "sr_atapi_change_speed: invalid drive speed %d\n",
23900 			    (uchar_t)data);
23901 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23902 			return (EINVAL);
23903 		}
23904 
23905 		/* Check the request against the drive's max speed. */
23906 		if (current_speed != 0xffff) {
23907 			if (current_speed > max_speed) {
23908 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23909 				return (EINVAL);
23910 			}
23911 		}
23912 
23913 		/*
23914 		 * Build and send the SET SPEED command
23915 		 *
23916 		 * Note: The SET SPEED (0xBB) command used in this routine is
23917 		 * obsolete per the SCSI MMC spec but still supported in the
23918 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
23919 		 * therefore the command is still implemented in this routine.
23920 		 */
23921 		bzero(cdb, sizeof (cdb));
23922 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
23923 		cdb[2] = (uchar_t)(current_speed >> 8);
23924 		cdb[3] = (uchar_t)current_speed;
23925 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23926 		com->uscsi_cdb	   = (caddr_t)cdb;
23927 		com->uscsi_cdblen  = CDB_GROUP5;
23928 		com->uscsi_bufaddr = NULL;
23929 		com->uscsi_buflen  = 0;
23930 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
23931 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
23932 		break;
23933 	default:
23934 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23935 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
23936 		rval = EINVAL;
23937 	}
23938 
23939 	if (sense) {
23940 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
23941 	}
23942 	if (com) {
23943 		kmem_free(com, sizeof (*com));
23944 	}
23945 	return (rval);
23946 }
23947 
23948 
23949 /*
23950  *    Function: sr_pause_resume()
23951  *
23952  * Description: This routine is the driver entry point for handling CD-ROM
23953  *		pause/resume ioctl requests. This only affects the audio play
23954  *		operation.
23955  *
23956  *   Arguments: dev - the device 'dev_t'
23957  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
23958  *		      for setting the resume bit of the cdb.
23959  *
23960  * Return Code: the code returned by sd_send_scsi_cmd()
23961  *		EINVAL if invalid mode specified
23962  *
23963  */
23964 
23965 static int
23966 sr_pause_resume(dev_t dev, int cmd)
23967 {
23968 	struct sd_lun		*un;
23969 	struct uscsi_cmd	*com;
23970 	char			cdb[CDB_GROUP1];
23971 	int			rval;
23972 
23973 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23974 		return (ENXIO);
23975 	}
23976 
23977 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
23978 	bzero(cdb, CDB_GROUP1);
23979 	cdb[0] = SCMD_PAUSE_RESUME;
23980 	switch (cmd) {
23981 	case CDROMRESUME:
23982 		cdb[8] = 1;
23983 		break;
23984 	case CDROMPAUSE:
23985 		cdb[8] = 0;
23986 		break;
23987 	default:
23988 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
23989 		    " Command '%x' Not Supported\n", cmd);
23990 		rval = EINVAL;
23991 		goto done;
23992 	}
23993 
23994 	com->uscsi_cdb    = cdb;
23995 	com->uscsi_cdblen = CDB_GROUP1;
23996 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
23997 
23998 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
23999 	    SD_PATH_STANDARD);
24000 
24001 done:
24002 	kmem_free(com, sizeof (*com));
24003 	return (rval);
24004 }
24005 
24006 
24007 /*
24008  *    Function: sr_play_msf()
24009  *
24010  * Description: This routine is the driver entry point for handling CD-ROM
24011  *		ioctl requests to output the audio signals at the specified
24012  *		starting address and continue the audio play until the specified
24013  *		ending address (CDROMPLAYMSF) The address is in Minute Second
24014  *		Frame (MSF) format.
24015  *
24016  *   Arguments: dev	- the device 'dev_t'
24017  *		data	- pointer to user provided audio msf structure,
24018  *		          specifying start/end addresses.
24019  *		flag	- this argument is a pass through to ddi_copyxxx()
24020  *		          directly from the mode argument of ioctl().
24021  *
24022  * Return Code: the code returned by sd_send_scsi_cmd()
24023  *		EFAULT if ddi_copyxxx() fails
24024  *		ENXIO if fail ddi_get_soft_state
24025  *		EINVAL if data pointer is NULL
24026  */
24027 
24028 static int
24029 sr_play_msf(dev_t dev, caddr_t data, int flag)
24030 {
24031 	struct sd_lun		*un;
24032 	struct uscsi_cmd	*com;
24033 	struct cdrom_msf	msf_struct;
24034 	struct cdrom_msf	*msf = &msf_struct;
24035 	char			cdb[CDB_GROUP1];
24036 	int			rval;
24037 
24038 	if (data == NULL) {
24039 		return (EINVAL);
24040 	}
24041 
24042 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24043 		return (ENXIO);
24044 	}
24045 
24046 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
24047 		return (EFAULT);
24048 	}
24049 
24050 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24051 	bzero(cdb, CDB_GROUP1);
24052 	cdb[0] = SCMD_PLAYAUDIO_MSF;
24053 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
24054 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
24055 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
24056 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
24057 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
24058 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
24059 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
24060 	} else {
24061 		cdb[3] = msf->cdmsf_min0;
24062 		cdb[4] = msf->cdmsf_sec0;
24063 		cdb[5] = msf->cdmsf_frame0;
24064 		cdb[6] = msf->cdmsf_min1;
24065 		cdb[7] = msf->cdmsf_sec1;
24066 		cdb[8] = msf->cdmsf_frame1;
24067 	}
24068 	com->uscsi_cdb    = cdb;
24069 	com->uscsi_cdblen = CDB_GROUP1;
24070 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24071 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24072 	    SD_PATH_STANDARD);
24073 	kmem_free(com, sizeof (*com));
24074 	return (rval);
24075 }
24076 
24077 
24078 /*
24079  *    Function: sr_play_trkind()
24080  *
24081  * Description: This routine is the driver entry point for handling CD-ROM
24082  *		ioctl requests to output the audio signals at the specified
24083  *		starting address and continue the audio play until the specified
24084  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
24085  *		format.
24086  *
24087  *   Arguments: dev	- the device 'dev_t'
24088  *		data	- pointer to user provided audio track/index structure,
24089  *		          specifying start/end addresses.
24090  *		flag	- this argument is a pass through to ddi_copyxxx()
24091  *		          directly from the mode argument of ioctl().
24092  *
24093  * Return Code: the code returned by sd_send_scsi_cmd()
24094  *		EFAULT if ddi_copyxxx() fails
24095  *		ENXIO if fail ddi_get_soft_state
24096  *		EINVAL if data pointer is NULL
24097  */
24098 
24099 static int
24100 sr_play_trkind(dev_t dev, caddr_t data, int flag)
24101 {
24102 	struct cdrom_ti		ti_struct;
24103 	struct cdrom_ti		*ti = &ti_struct;
24104 	struct uscsi_cmd	*com = NULL;
24105 	char			cdb[CDB_GROUP1];
24106 	int			rval;
24107 
24108 	if (data == NULL) {
24109 		return (EINVAL);
24110 	}
24111 
24112 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
24113 		return (EFAULT);
24114 	}
24115 
24116 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24117 	bzero(cdb, CDB_GROUP1);
24118 	cdb[0] = SCMD_PLAYAUDIO_TI;
24119 	cdb[4] = ti->cdti_trk0;
24120 	cdb[5] = ti->cdti_ind0;
24121 	cdb[7] = ti->cdti_trk1;
24122 	cdb[8] = ti->cdti_ind1;
24123 	com->uscsi_cdb    = cdb;
24124 	com->uscsi_cdblen = CDB_GROUP1;
24125 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24126 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24127 	    SD_PATH_STANDARD);
24128 	kmem_free(com, sizeof (*com));
24129 	return (rval);
24130 }
24131 
24132 
24133 /*
24134  *    Function: sr_read_all_subcodes()
24135  *
24136  * Description: This routine is the driver entry point for handling CD-ROM
24137  *		ioctl requests to return raw subcode data while the target is
24138  *		playing audio (CDROMSUBCODE).
24139  *
24140  *   Arguments: dev	- the device 'dev_t'
24141  *		data	- pointer to user provided cdrom subcode structure,
24142  *		          specifying the transfer length and address.
24143  *		flag	- this argument is a pass through to ddi_copyxxx()
24144  *		          directly from the mode argument of ioctl().
24145  *
24146  * Return Code: the code returned by sd_send_scsi_cmd()
24147  *		EFAULT if ddi_copyxxx() fails
24148  *		ENXIO if fail ddi_get_soft_state
24149  *		EINVAL if data pointer is NULL
24150  */
24151 
24152 static int
24153 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24154 {
24155 	struct sd_lun		*un = NULL;
24156 	struct uscsi_cmd	*com = NULL;
24157 	struct cdrom_subcode	*subcode = NULL;
24158 	int			rval;
24159 	size_t			buflen;
24160 	char			cdb[CDB_GROUP5];
24161 
24162 #ifdef _MULTI_DATAMODEL
24163 	/* To support ILP32 applications in an LP64 world */
24164 	struct cdrom_subcode32		cdrom_subcode32;
24165 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24166 #endif
24167 	if (data == NULL) {
24168 		return (EINVAL);
24169 	}
24170 
24171 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24172 		return (ENXIO);
24173 	}
24174 
24175 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24176 
24177 #ifdef _MULTI_DATAMODEL
24178 	switch (ddi_model_convert_from(flag & FMODELS)) {
24179 	case DDI_MODEL_ILP32:
24180 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24181 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24182 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24183 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24184 			return (EFAULT);
24185 		}
24186 		/* Convert the ILP32 uscsi data from the application to LP64 */
24187 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24188 		break;
24189 	case DDI_MODEL_NONE:
24190 		if (ddi_copyin(data, subcode,
24191 		    sizeof (struct cdrom_subcode), flag)) {
24192 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24193 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24194 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24195 			return (EFAULT);
24196 		}
24197 		break;
24198 	}
24199 #else /* ! _MULTI_DATAMODEL */
24200 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24201 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24202 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24203 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24204 		return (EFAULT);
24205 	}
24206 #endif /* _MULTI_DATAMODEL */
24207 
24208 	/*
24209 	 * Since MMC-2 expects max 3 bytes for length, check if the
24210 	 * length input is greater than 3 bytes
24211 	 */
24212 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24213 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24214 		    "sr_read_all_subcodes: "
24215 		    "cdrom transfer length too large: %d (limit %d)\n",
24216 		    subcode->cdsc_length, 0xFFFFFF);
24217 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24218 		return (EINVAL);
24219 	}
24220 
24221 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24222 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24223 	bzero(cdb, CDB_GROUP5);
24224 
24225 	if (un->un_f_mmc_cap == TRUE) {
24226 		cdb[0] = (char)SCMD_READ_CD;
24227 		cdb[2] = (char)0xff;
24228 		cdb[3] = (char)0xff;
24229 		cdb[4] = (char)0xff;
24230 		cdb[5] = (char)0xff;
24231 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24232 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24233 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24234 		cdb[10] = 1;
24235 	} else {
24236 		/*
24237 		 * Note: A vendor specific command (0xDF) is being used her to
24238 		 * request a read of all subcodes.
24239 		 */
24240 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24241 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24242 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24243 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24244 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24245 	}
24246 	com->uscsi_cdb	   = cdb;
24247 	com->uscsi_cdblen  = CDB_GROUP5;
24248 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24249 	com->uscsi_buflen  = buflen;
24250 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24251 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24252 	    SD_PATH_STANDARD);
24253 	kmem_free(subcode, sizeof (struct cdrom_subcode));
24254 	kmem_free(com, sizeof (*com));
24255 	return (rval);
24256 }
24257 
24258 
24259 /*
24260  *    Function: sr_read_subchannel()
24261  *
24262  * Description: This routine is the driver entry point for handling CD-ROM
24263  *		ioctl requests to return the Q sub-channel data of the CD
24264  *		current position block. (CDROMSUBCHNL) The data includes the
24265  *		track number, index number, absolute CD-ROM address (LBA or MSF
24266  *		format per the user) , track relative CD-ROM address (LBA or MSF
24267  *		format per the user), control data and audio status.
24268  *
24269  *   Arguments: dev	- the device 'dev_t'
24270  *		data	- pointer to user provided cdrom sub-channel structure
24271  *		flag	- this argument is a pass through to ddi_copyxxx()
24272  *		          directly from the mode argument of ioctl().
24273  *
24274  * Return Code: the code returned by sd_send_scsi_cmd()
24275  *		EFAULT if ddi_copyxxx() fails
24276  *		ENXIO if fail ddi_get_soft_state
24277  *		EINVAL if data pointer is NULL
24278  */
24279 
24280 static int
24281 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24282 {
24283 	struct sd_lun		*un;
24284 	struct uscsi_cmd	*com;
24285 	struct cdrom_subchnl	subchanel;
24286 	struct cdrom_subchnl	*subchnl = &subchanel;
24287 	char			cdb[CDB_GROUP1];
24288 	caddr_t			buffer;
24289 	int			rval;
24290 
24291 	if (data == NULL) {
24292 		return (EINVAL);
24293 	}
24294 
24295 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24296 	    (un->un_state == SD_STATE_OFFLINE)) {
24297 		return (ENXIO);
24298 	}
24299 
24300 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24301 		return (EFAULT);
24302 	}
24303 
24304 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24305 	bzero(cdb, CDB_GROUP1);
24306 	cdb[0] = SCMD_READ_SUBCHANNEL;
24307 	/* Set the MSF bit based on the user requested address format */
24308 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24309 	/*
24310 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24311 	 * returned
24312 	 */
24313 	cdb[2] = 0x40;
24314 	/*
24315 	 * Set byte 3 to specify the return data format. A value of 0x01
24316 	 * indicates that the CD-ROM current position should be returned.
24317 	 */
24318 	cdb[3] = 0x01;
24319 	cdb[8] = 0x10;
24320 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24321 	com->uscsi_cdb	   = cdb;
24322 	com->uscsi_cdblen  = CDB_GROUP1;
24323 	com->uscsi_bufaddr = buffer;
24324 	com->uscsi_buflen  = 16;
24325 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24326 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24327 	    SD_PATH_STANDARD);
24328 	if (rval != 0) {
24329 		kmem_free(buffer, 16);
24330 		kmem_free(com, sizeof (*com));
24331 		return (rval);
24332 	}
24333 
24334 	/* Process the returned Q sub-channel data */
24335 	subchnl->cdsc_audiostatus = buffer[1];
24336 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24337 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24338 	subchnl->cdsc_trk	= buffer[6];
24339 	subchnl->cdsc_ind	= buffer[7];
24340 	if (subchnl->cdsc_format & CDROM_LBA) {
24341 		subchnl->cdsc_absaddr.lba =
24342 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24343 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24344 		subchnl->cdsc_reladdr.lba =
24345 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24346 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24347 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24348 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24349 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24350 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24351 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24352 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24353 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24354 	} else {
24355 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24356 		subchnl->cdsc_absaddr.msf.second = buffer[10];
24357 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24358 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24359 		subchnl->cdsc_reladdr.msf.second = buffer[14];
24360 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24361 	}
24362 	kmem_free(buffer, 16);
24363 	kmem_free(com, sizeof (*com));
24364 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24365 	    != 0) {
24366 		return (EFAULT);
24367 	}
24368 	return (rval);
24369 }
24370 
24371 
24372 /*
24373  *    Function: sr_read_tocentry()
24374  *
24375  * Description: This routine is the driver entry point for handling CD-ROM
24376  *		ioctl requests to read from the Table of Contents (TOC)
24377  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24378  *		fields, the starting address (LBA or MSF format per the user)
24379  *		and the data mode if the user specified track is a data track.
24380  *
24381  *		Note: The READ HEADER (0x44) command used in this routine is
24382  *		obsolete per the SCSI MMC spec but still supported in the
24383  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24384  *		therefore the command is still implemented in this routine.
24385  *
24386  *   Arguments: dev	- the device 'dev_t'
24387  *		data	- pointer to user provided toc entry structure,
24388  *			  specifying the track # and the address format
24389  *			  (LBA or MSF).
24390  *		flag	- this argument is a pass through to ddi_copyxxx()
24391  *		          directly from the mode argument of ioctl().
24392  *
24393  * Return Code: the code returned by sd_send_scsi_cmd()
24394  *		EFAULT if ddi_copyxxx() fails
24395  *		ENXIO if fail ddi_get_soft_state
24396  *		EINVAL if data pointer is NULL
24397  */
24398 
24399 static int
24400 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24401 {
24402 	struct sd_lun		*un = NULL;
24403 	struct uscsi_cmd	*com;
24404 	struct cdrom_tocentry	toc_entry;
24405 	struct cdrom_tocentry	*entry = &toc_entry;
24406 	caddr_t			buffer;
24407 	int			rval;
24408 	char			cdb[CDB_GROUP1];
24409 
24410 	if (data == NULL) {
24411 		return (EINVAL);
24412 	}
24413 
24414 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24415 	    (un->un_state == SD_STATE_OFFLINE)) {
24416 		return (ENXIO);
24417 	}
24418 
24419 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
24420 		return (EFAULT);
24421 	}
24422 
24423 	/* Validate the requested track and address format */
24424 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
24425 		return (EINVAL);
24426 	}
24427 
24428 	if (entry->cdte_track == 0) {
24429 		return (EINVAL);
24430 	}
24431 
24432 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
24433 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24434 	bzero(cdb, CDB_GROUP1);
24435 
24436 	cdb[0] = SCMD_READ_TOC;
24437 	/* Set the MSF bit based on the user requested address format  */
24438 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
24439 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24440 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
24441 	} else {
24442 		cdb[6] = entry->cdte_track;
24443 	}
24444 
24445 	/*
24446 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
24447 	 * (4 byte TOC response header + 8 byte track descriptor)
24448 	 */
24449 	cdb[8] = 12;
24450 	com->uscsi_cdb	   = cdb;
24451 	com->uscsi_cdblen  = CDB_GROUP1;
24452 	com->uscsi_bufaddr = buffer;
24453 	com->uscsi_buflen  = 0x0C;
24454 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
24455 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24456 	    SD_PATH_STANDARD);
24457 	if (rval != 0) {
24458 		kmem_free(buffer, 12);
24459 		kmem_free(com, sizeof (*com));
24460 		return (rval);
24461 	}
24462 
24463 	/* Process the toc entry */
24464 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
24465 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
24466 	if (entry->cdte_format & CDROM_LBA) {
24467 		entry->cdte_addr.lba =
24468 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24469 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24470 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
24471 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
24472 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
24473 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
24474 		/*
24475 		 * Send a READ TOC command using the LBA address format to get
24476 		 * the LBA for the track requested so it can be used in the
24477 		 * READ HEADER request
24478 		 *
24479 		 * Note: The MSF bit of the READ HEADER command specifies the
24480 		 * output format. The block address specified in that command
24481 		 * must be in LBA format.
24482 		 */
24483 		cdb[1] = 0;
24484 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24485 		    SD_PATH_STANDARD);
24486 		if (rval != 0) {
24487 			kmem_free(buffer, 12);
24488 			kmem_free(com, sizeof (*com));
24489 			return (rval);
24490 		}
24491 	} else {
24492 		entry->cdte_addr.msf.minute	= buffer[9];
24493 		entry->cdte_addr.msf.second	= buffer[10];
24494 		entry->cdte_addr.msf.frame	= buffer[11];
24495 		/*
24496 		 * Send a READ TOC command using the LBA address format to get
24497 		 * the LBA for the track requested so it can be used in the
24498 		 * READ HEADER request
24499 		 *
24500 		 * Note: The MSF bit of the READ HEADER command specifies the
24501 		 * output format. The block address specified in that command
24502 		 * must be in LBA format.
24503 		 */
24504 		cdb[1] = 0;
24505 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24506 		    SD_PATH_STANDARD);
24507 		if (rval != 0) {
24508 			kmem_free(buffer, 12);
24509 			kmem_free(com, sizeof (*com));
24510 			return (rval);
24511 		}
24512 	}
24513 
24514 	/*
24515 	 * Build and send the READ HEADER command to determine the data mode of
24516 	 * the user specified track.
24517 	 */
24518 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
24519 	    (entry->cdte_track != CDROM_LEADOUT)) {
24520 		bzero(cdb, CDB_GROUP1);
24521 		cdb[0] = SCMD_READ_HEADER;
24522 		cdb[2] = buffer[8];
24523 		cdb[3] = buffer[9];
24524 		cdb[4] = buffer[10];
24525 		cdb[5] = buffer[11];
24526 		cdb[8] = 0x08;
24527 		com->uscsi_buflen = 0x08;
24528 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24529 		    SD_PATH_STANDARD);
24530 		if (rval == 0) {
24531 			entry->cdte_datamode = buffer[0];
24532 		} else {
24533 			/*
24534 			 * READ HEADER command failed, since this is
24535 			 * obsoleted in one spec, its better to return
24536 			 * -1 for an invlid track so that we can still
24537 			 * receive the rest of the TOC data.
24538 			 */
24539 			entry->cdte_datamode = (uchar_t)-1;
24540 		}
24541 	} else {
24542 		entry->cdte_datamode = (uchar_t)-1;
24543 	}
24544 
24545 	kmem_free(buffer, 12);
24546 	kmem_free(com, sizeof (*com));
24547 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
24548 		return (EFAULT);
24549 
24550 	return (rval);
24551 }
24552 
24553 
24554 /*
24555  *    Function: sr_read_tochdr()
24556  *
24557  * Description: This routine is the driver entry point for handling CD-ROM
24558  * 		ioctl requests to read the Table of Contents (TOC) header
24559  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
24560  *		and ending track numbers
24561  *
24562  *   Arguments: dev	- the device 'dev_t'
24563  *		data	- pointer to user provided toc header structure,
24564  *			  specifying the starting and ending track numbers.
24565  *		flag	- this argument is a pass through to ddi_copyxxx()
24566  *			  directly from the mode argument of ioctl().
24567  *
24568  * Return Code: the code returned by sd_send_scsi_cmd()
24569  *		EFAULT if ddi_copyxxx() fails
24570  *		ENXIO if fail ddi_get_soft_state
24571  *		EINVAL if data pointer is NULL
24572  */
24573 
24574 static int
24575 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
24576 {
24577 	struct sd_lun		*un;
24578 	struct uscsi_cmd	*com;
24579 	struct cdrom_tochdr	toc_header;
24580 	struct cdrom_tochdr	*hdr = &toc_header;
24581 	char			cdb[CDB_GROUP1];
24582 	int			rval;
24583 	caddr_t			buffer;
24584 
24585 	if (data == NULL) {
24586 		return (EINVAL);
24587 	}
24588 
24589 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24590 	    (un->un_state == SD_STATE_OFFLINE)) {
24591 		return (ENXIO);
24592 	}
24593 
24594 	buffer = kmem_zalloc(4, KM_SLEEP);
24595 	bzero(cdb, CDB_GROUP1);
24596 	cdb[0] = SCMD_READ_TOC;
24597 	/*
24598 	 * Specifying a track number of 0x00 in the READ TOC command indicates
24599 	 * that the TOC header should be returned
24600 	 */
24601 	cdb[6] = 0x00;
24602 	/*
24603 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
24604 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
24605 	 */
24606 	cdb[8] = 0x04;
24607 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24608 	com->uscsi_cdb	   = cdb;
24609 	com->uscsi_cdblen  = CDB_GROUP1;
24610 	com->uscsi_bufaddr = buffer;
24611 	com->uscsi_buflen  = 0x04;
24612 	com->uscsi_timeout = 300;
24613 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24614 
24615 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24616 	    SD_PATH_STANDARD);
24617 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24618 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
24619 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
24620 	} else {
24621 		hdr->cdth_trk0 = buffer[2];
24622 		hdr->cdth_trk1 = buffer[3];
24623 	}
24624 	kmem_free(buffer, 4);
24625 	kmem_free(com, sizeof (*com));
24626 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
24627 		return (EFAULT);
24628 	}
24629 	return (rval);
24630 }
24631 
24632 
24633 /*
24634  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
24635  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
24636  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
24637  * digital audio and extended architecture digital audio. These modes are
24638  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
24639  * MMC specs.
24640  *
24641  * In addition to support for the various data formats these routines also
24642  * include support for devices that implement only the direct access READ
24643  * commands (0x08, 0x28), devices that implement the READ_CD commands
24644  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
24645  * READ CDXA commands (0xD8, 0xDB)
24646  */
24647 
24648 /*
24649  *    Function: sr_read_mode1()
24650  *
24651  * Description: This routine is the driver entry point for handling CD-ROM
24652  *		ioctl read mode1 requests (CDROMREADMODE1).
24653  *
24654  *   Arguments: dev	- the device 'dev_t'
24655  *		data	- pointer to user provided cd read structure specifying
24656  *			  the lba buffer address and length.
24657  *		flag	- this argument is a pass through to ddi_copyxxx()
24658  *			  directly from the mode argument of ioctl().
24659  *
24660  * Return Code: the code returned by sd_send_scsi_cmd()
24661  *		EFAULT if ddi_copyxxx() fails
24662  *		ENXIO if fail ddi_get_soft_state
24663  *		EINVAL if data pointer is NULL
24664  */
24665 
24666 static int
24667 sr_read_mode1(dev_t dev, caddr_t data, int flag)
24668 {
24669 	struct sd_lun		*un;
24670 	struct cdrom_read	mode1_struct;
24671 	struct cdrom_read	*mode1 = &mode1_struct;
24672 	int			rval;
24673 #ifdef _MULTI_DATAMODEL
24674 	/* To support ILP32 applications in an LP64 world */
24675 	struct cdrom_read32	cdrom_read32;
24676 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24677 #endif /* _MULTI_DATAMODEL */
24678 
24679 	if (data == NULL) {
24680 		return (EINVAL);
24681 	}
24682 
24683 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24684 	    (un->un_state == SD_STATE_OFFLINE)) {
24685 		return (ENXIO);
24686 	}
24687 
24688 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24689 	    "sd_read_mode1: entry: un:0x%p\n", un);
24690 
24691 #ifdef _MULTI_DATAMODEL
24692 	switch (ddi_model_convert_from(flag & FMODELS)) {
24693 	case DDI_MODEL_ILP32:
24694 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24695 			return (EFAULT);
24696 		}
24697 		/* Convert the ILP32 uscsi data from the application to LP64 */
24698 		cdrom_read32tocdrom_read(cdrd32, mode1);
24699 		break;
24700 	case DDI_MODEL_NONE:
24701 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
24702 			return (EFAULT);
24703 		}
24704 	}
24705 #else /* ! _MULTI_DATAMODEL */
24706 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
24707 		return (EFAULT);
24708 	}
24709 #endif /* _MULTI_DATAMODEL */
24710 
24711 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
24712 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
24713 
24714 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24715 	    "sd_read_mode1: exit: un:0x%p\n", un);
24716 
24717 	return (rval);
24718 }
24719 
24720 
24721 /*
24722  *    Function: sr_read_cd_mode2()
24723  *
24724  * Description: This routine is the driver entry point for handling CD-ROM
24725  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
24726  *		support the READ CD (0xBE) command or the 1st generation
24727  *		READ CD (0xD4) command.
24728  *
24729  *   Arguments: dev	- the device 'dev_t'
24730  *		data	- pointer to user provided cd read structure specifying
24731  *			  the lba buffer address and length.
24732  *		flag	- this argument is a pass through to ddi_copyxxx()
24733  *			  directly from the mode argument of ioctl().
24734  *
24735  * Return Code: the code returned by sd_send_scsi_cmd()
24736  *		EFAULT if ddi_copyxxx() fails
24737  *		ENXIO if fail ddi_get_soft_state
24738  *		EINVAL if data pointer is NULL
24739  */
24740 
24741 static int
24742 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
24743 {
24744 	struct sd_lun		*un;
24745 	struct uscsi_cmd	*com;
24746 	struct cdrom_read	mode2_struct;
24747 	struct cdrom_read	*mode2 = &mode2_struct;
24748 	uchar_t			cdb[CDB_GROUP5];
24749 	int			nblocks;
24750 	int			rval;
24751 #ifdef _MULTI_DATAMODEL
24752 	/*  To support ILP32 applications in an LP64 world */
24753 	struct cdrom_read32	cdrom_read32;
24754 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24755 #endif /* _MULTI_DATAMODEL */
24756 
24757 	if (data == NULL) {
24758 		return (EINVAL);
24759 	}
24760 
24761 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24762 	    (un->un_state == SD_STATE_OFFLINE)) {
24763 		return (ENXIO);
24764 	}
24765 
24766 #ifdef _MULTI_DATAMODEL
24767 	switch (ddi_model_convert_from(flag & FMODELS)) {
24768 	case DDI_MODEL_ILP32:
24769 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24770 			return (EFAULT);
24771 		}
24772 		/* Convert the ILP32 uscsi data from the application to LP64 */
24773 		cdrom_read32tocdrom_read(cdrd32, mode2);
24774 		break;
24775 	case DDI_MODEL_NONE:
24776 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24777 			return (EFAULT);
24778 		}
24779 		break;
24780 	}
24781 
24782 #else /* ! _MULTI_DATAMODEL */
24783 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24784 		return (EFAULT);
24785 	}
24786 #endif /* _MULTI_DATAMODEL */
24787 
24788 	bzero(cdb, sizeof (cdb));
24789 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
24790 		/* Read command supported by 1st generation atapi drives */
24791 		cdb[0] = SCMD_READ_CDD4;
24792 	} else {
24793 		/* Universal CD Access Command */
24794 		cdb[0] = SCMD_READ_CD;
24795 	}
24796 
24797 	/*
24798 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
24799 	 */
24800 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
24801 
24802 	/* set the start address */
24803 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
24804 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
24805 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
24806 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
24807 
24808 	/* set the transfer length */
24809 	nblocks = mode2->cdread_buflen / 2336;
24810 	cdb[6] = (uchar_t)(nblocks >> 16);
24811 	cdb[7] = (uchar_t)(nblocks >> 8);
24812 	cdb[8] = (uchar_t)nblocks;
24813 
24814 	/* set the filter bits */
24815 	cdb[9] = CDROM_READ_CD_USERDATA;
24816 
24817 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24818 	com->uscsi_cdb = (caddr_t)cdb;
24819 	com->uscsi_cdblen = sizeof (cdb);
24820 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
24821 	com->uscsi_buflen = mode2->cdread_buflen;
24822 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24823 
24824 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24825 	    SD_PATH_STANDARD);
24826 	kmem_free(com, sizeof (*com));
24827 	return (rval);
24828 }
24829 
24830 
24831 /*
24832  *    Function: sr_read_mode2()
24833  *
24834  * Description: This routine is the driver entry point for handling CD-ROM
24835  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
24836  *		do not support the READ CD (0xBE) command.
24837  *
24838  *   Arguments: dev	- the device 'dev_t'
24839  *		data	- pointer to user provided cd read structure specifying
24840  *			  the lba buffer address and length.
24841  *		flag	- this argument is a pass through to ddi_copyxxx()
24842  *			  directly from the mode argument of ioctl().
24843  *
24844  * Return Code: the code returned by sd_send_scsi_cmd()
24845  *		EFAULT if ddi_copyxxx() fails
24846  *		ENXIO if fail ddi_get_soft_state
24847  *		EINVAL if data pointer is NULL
24848  *		EIO if fail to reset block size
24849  *		EAGAIN if commands are in progress in the driver
24850  */
24851 
24852 static int
24853 sr_read_mode2(dev_t dev, caddr_t data, int flag)
24854 {
24855 	struct sd_lun		*un;
24856 	struct cdrom_read	mode2_struct;
24857 	struct cdrom_read	*mode2 = &mode2_struct;
24858 	int			rval;
24859 	uint32_t		restore_blksize;
24860 	struct uscsi_cmd	*com;
24861 	uchar_t			cdb[CDB_GROUP0];
24862 	int			nblocks;
24863 
24864 #ifdef _MULTI_DATAMODEL
24865 	/* To support ILP32 applications in an LP64 world */
24866 	struct cdrom_read32	cdrom_read32;
24867 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
24868 #endif /* _MULTI_DATAMODEL */
24869 
24870 	if (data == NULL) {
24871 		return (EINVAL);
24872 	}
24873 
24874 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24875 	    (un->un_state == SD_STATE_OFFLINE)) {
24876 		return (ENXIO);
24877 	}
24878 
24879 	/*
24880 	 * Because this routine will update the device and driver block size
24881 	 * being used we want to make sure there are no commands in progress.
24882 	 * If commands are in progress the user will have to try again.
24883 	 *
24884 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
24885 	 * in sdioctl to protect commands from sdioctl through to the top of
24886 	 * sd_uscsi_strategy. See sdioctl for details.
24887 	 */
24888 	mutex_enter(SD_MUTEX(un));
24889 	if (un->un_ncmds_in_driver != 1) {
24890 		mutex_exit(SD_MUTEX(un));
24891 		return (EAGAIN);
24892 	}
24893 	mutex_exit(SD_MUTEX(un));
24894 
24895 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24896 	    "sd_read_mode2: entry: un:0x%p\n", un);
24897 
24898 #ifdef _MULTI_DATAMODEL
24899 	switch (ddi_model_convert_from(flag & FMODELS)) {
24900 	case DDI_MODEL_ILP32:
24901 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
24902 			return (EFAULT);
24903 		}
24904 		/* Convert the ILP32 uscsi data from the application to LP64 */
24905 		cdrom_read32tocdrom_read(cdrd32, mode2);
24906 		break;
24907 	case DDI_MODEL_NONE:
24908 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
24909 			return (EFAULT);
24910 		}
24911 		break;
24912 	}
24913 #else /* ! _MULTI_DATAMODEL */
24914 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
24915 		return (EFAULT);
24916 	}
24917 #endif /* _MULTI_DATAMODEL */
24918 
24919 	/* Store the current target block size for restoration later */
24920 	restore_blksize = un->un_tgt_blocksize;
24921 
24922 	/* Change the device and soft state target block size to 2336 */
24923 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
24924 		rval = EIO;
24925 		goto done;
24926 	}
24927 
24928 
24929 	bzero(cdb, sizeof (cdb));
24930 
24931 	/* set READ operation */
24932 	cdb[0] = SCMD_READ;
24933 
24934 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
24935 	mode2->cdread_lba >>= 2;
24936 
24937 	/* set the start address */
24938 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
24939 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
24940 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
24941 
24942 	/* set the transfer length */
24943 	nblocks = mode2->cdread_buflen / 2336;
24944 	cdb[4] = (uchar_t)nblocks & 0xFF;
24945 
24946 	/* build command */
24947 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24948 	com->uscsi_cdb = (caddr_t)cdb;
24949 	com->uscsi_cdblen = sizeof (cdb);
24950 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
24951 	com->uscsi_buflen = mode2->cdread_buflen;
24952 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24953 
24954 	/*
24955 	 * Issue SCSI command with user space address for read buffer.
24956 	 *
24957 	 * This sends the command through main channel in the driver.
24958 	 *
24959 	 * Since this is accessed via an IOCTL call, we go through the
24960 	 * standard path, so that if the device was powered down, then
24961 	 * it would be 'awakened' to handle the command.
24962 	 */
24963 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24964 	    SD_PATH_STANDARD);
24965 
24966 	kmem_free(com, sizeof (*com));
24967 
24968 	/* Restore the device and soft state target block size */
24969 	if (sr_sector_mode(dev, restore_blksize) != 0) {
24970 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24971 		    "can't do switch back to mode 1\n");
24972 		/*
24973 		 * If sd_send_scsi_READ succeeded we still need to report
24974 		 * an error because we failed to reset the block size
24975 		 */
24976 		if (rval == 0) {
24977 			rval = EIO;
24978 		}
24979 	}
24980 
24981 done:
24982 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
24983 	    "sd_read_mode2: exit: un:0x%p\n", un);
24984 
24985 	return (rval);
24986 }
24987 
24988 
24989 /*
24990  *    Function: sr_sector_mode()
24991  *
24992  * Description: This utility function is used by sr_read_mode2 to set the target
24993  *		block size based on the user specified size. This is a legacy
24994  *		implementation based upon a vendor specific mode page
24995  *
24996  *   Arguments: dev	- the device 'dev_t'
24997  *		data	- flag indicating if block size is being set to 2336 or
24998  *			  512.
24999  *
25000  * Return Code: the code returned by sd_send_scsi_cmd()
25001  *		EFAULT if ddi_copyxxx() fails
25002  *		ENXIO if fail ddi_get_soft_state
25003  *		EINVAL if data pointer is NULL
25004  */
25005 
25006 static int
25007 sr_sector_mode(dev_t dev, uint32_t blksize)
25008 {
25009 	struct sd_lun	*un;
25010 	uchar_t		*sense;
25011 	uchar_t		*select;
25012 	int		rval;
25013 
25014 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25015 	    (un->un_state == SD_STATE_OFFLINE)) {
25016 		return (ENXIO);
25017 	}
25018 
25019 	sense = kmem_zalloc(20, KM_SLEEP);
25020 
25021 	/* Note: This is a vendor specific mode page (0x81) */
25022 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
25023 	    SD_PATH_STANDARD)) != 0) {
25024 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25025 		    "sr_sector_mode: Mode Sense failed\n");
25026 		kmem_free(sense, 20);
25027 		return (rval);
25028 	}
25029 	select = kmem_zalloc(20, KM_SLEEP);
25030 	select[3] = 0x08;
25031 	select[10] = ((blksize >> 8) & 0xff);
25032 	select[11] = (blksize & 0xff);
25033 	select[12] = 0x01;
25034 	select[13] = 0x06;
25035 	select[14] = sense[14];
25036 	select[15] = sense[15];
25037 	if (blksize == SD_MODE2_BLKSIZE) {
25038 		select[14] |= 0x01;
25039 	}
25040 
25041 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
25042 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
25043 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25044 		    "sr_sector_mode: Mode Select failed\n");
25045 	} else {
25046 		/*
25047 		 * Only update the softstate block size if we successfully
25048 		 * changed the device block mode.
25049 		 */
25050 		mutex_enter(SD_MUTEX(un));
25051 		sd_update_block_info(un, blksize, 0);
25052 		mutex_exit(SD_MUTEX(un));
25053 	}
25054 	kmem_free(sense, 20);
25055 	kmem_free(select, 20);
25056 	return (rval);
25057 }
25058 
25059 
25060 /*
25061  *    Function: sr_read_cdda()
25062  *
25063  * Description: This routine is the driver entry point for handling CD-ROM
25064  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
25065  *		the target supports CDDA these requests are handled via a vendor
25066  *		specific command (0xD8) If the target does not support CDDA
25067  *		these requests are handled via the READ CD command (0xBE).
25068  *
25069  *   Arguments: dev	- the device 'dev_t'
25070  *		data	- pointer to user provided CD-DA structure specifying
25071  *			  the track starting address, transfer length, and
25072  *			  subcode options.
25073  *		flag	- this argument is a pass through to ddi_copyxxx()
25074  *			  directly from the mode argument of ioctl().
25075  *
25076  * Return Code: the code returned by sd_send_scsi_cmd()
25077  *		EFAULT if ddi_copyxxx() fails
25078  *		ENXIO if fail ddi_get_soft_state
25079  *		EINVAL if invalid arguments are provided
25080  *		ENOTTY
25081  */
25082 
25083 static int
25084 sr_read_cdda(dev_t dev, caddr_t data, int flag)
25085 {
25086 	struct sd_lun			*un;
25087 	struct uscsi_cmd		*com;
25088 	struct cdrom_cdda		*cdda;
25089 	int				rval;
25090 	size_t				buflen;
25091 	char				cdb[CDB_GROUP5];
25092 
25093 #ifdef _MULTI_DATAMODEL
25094 	/* To support ILP32 applications in an LP64 world */
25095 	struct cdrom_cdda32	cdrom_cdda32;
25096 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
25097 #endif /* _MULTI_DATAMODEL */
25098 
25099 	if (data == NULL) {
25100 		return (EINVAL);
25101 	}
25102 
25103 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25104 		return (ENXIO);
25105 	}
25106 
25107 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
25108 
25109 #ifdef _MULTI_DATAMODEL
25110 	switch (ddi_model_convert_from(flag & FMODELS)) {
25111 	case DDI_MODEL_ILP32:
25112 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
25113 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25114 			    "sr_read_cdda: ddi_copyin Failed\n");
25115 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25116 			return (EFAULT);
25117 		}
25118 		/* Convert the ILP32 uscsi data from the application to LP64 */
25119 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25120 		break;
25121 	case DDI_MODEL_NONE:
25122 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25123 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25124 			    "sr_read_cdda: ddi_copyin Failed\n");
25125 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25126 			return (EFAULT);
25127 		}
25128 		break;
25129 	}
25130 #else /* ! _MULTI_DATAMODEL */
25131 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25132 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25133 		    "sr_read_cdda: ddi_copyin Failed\n");
25134 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25135 		return (EFAULT);
25136 	}
25137 #endif /* _MULTI_DATAMODEL */
25138 
25139 	/*
25140 	 * Since MMC-2 expects max 3 bytes for length, check if the
25141 	 * length input is greater than 3 bytes
25142 	 */
25143 	if ((cdda->cdda_length & 0xFF000000) != 0) {
25144 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25145 		    "cdrom transfer length too large: %d (limit %d)\n",
25146 		    cdda->cdda_length, 0xFFFFFF);
25147 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25148 		return (EINVAL);
25149 	}
25150 
25151 	switch (cdda->cdda_subcode) {
25152 	case CDROM_DA_NO_SUBCODE:
25153 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25154 		break;
25155 	case CDROM_DA_SUBQ:
25156 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25157 		break;
25158 	case CDROM_DA_ALL_SUBCODE:
25159 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25160 		break;
25161 	case CDROM_DA_SUBCODE_ONLY:
25162 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25163 		break;
25164 	default:
25165 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25166 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25167 		    cdda->cdda_subcode);
25168 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25169 		return (EINVAL);
25170 	}
25171 
25172 	/* Build and send the command */
25173 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25174 	bzero(cdb, CDB_GROUP5);
25175 
25176 	if (un->un_f_cfg_cdda == TRUE) {
25177 		cdb[0] = (char)SCMD_READ_CD;
25178 		cdb[1] = 0x04;
25179 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25180 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25181 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25182 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25183 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25184 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25185 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25186 		cdb[9] = 0x10;
25187 		switch (cdda->cdda_subcode) {
25188 		case CDROM_DA_NO_SUBCODE :
25189 			cdb[10] = 0x0;
25190 			break;
25191 		case CDROM_DA_SUBQ :
25192 			cdb[10] = 0x2;
25193 			break;
25194 		case CDROM_DA_ALL_SUBCODE :
25195 			cdb[10] = 0x1;
25196 			break;
25197 		case CDROM_DA_SUBCODE_ONLY :
25198 			/* FALLTHROUGH */
25199 		default :
25200 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25201 			kmem_free(com, sizeof (*com));
25202 			return (ENOTTY);
25203 		}
25204 	} else {
25205 		cdb[0] = (char)SCMD_READ_CDDA;
25206 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25207 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25208 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25209 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25210 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25211 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25212 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25213 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25214 		cdb[10] = cdda->cdda_subcode;
25215 	}
25216 
25217 	com->uscsi_cdb = cdb;
25218 	com->uscsi_cdblen = CDB_GROUP5;
25219 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25220 	com->uscsi_buflen = buflen;
25221 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25222 
25223 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25224 	    SD_PATH_STANDARD);
25225 
25226 	kmem_free(cdda, sizeof (struct cdrom_cdda));
25227 	kmem_free(com, sizeof (*com));
25228 	return (rval);
25229 }
25230 
25231 
25232 /*
25233  *    Function: sr_read_cdxa()
25234  *
25235  * Description: This routine is the driver entry point for handling CD-ROM
25236  *		ioctl requests to return CD-XA (Extended Architecture) data.
25237  *		(CDROMCDXA).
25238  *
25239  *   Arguments: dev	- the device 'dev_t'
25240  *		data	- pointer to user provided CD-XA structure specifying
25241  *			  the data starting address, transfer length, and format
25242  *		flag	- this argument is a pass through to ddi_copyxxx()
25243  *			  directly from the mode argument of ioctl().
25244  *
25245  * Return Code: the code returned by sd_send_scsi_cmd()
25246  *		EFAULT if ddi_copyxxx() fails
25247  *		ENXIO if fail ddi_get_soft_state
25248  *		EINVAL if data pointer is NULL
25249  */
25250 
25251 static int
25252 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25253 {
25254 	struct sd_lun		*un;
25255 	struct uscsi_cmd	*com;
25256 	struct cdrom_cdxa	*cdxa;
25257 	int			rval;
25258 	size_t			buflen;
25259 	char			cdb[CDB_GROUP5];
25260 	uchar_t			read_flags;
25261 
25262 #ifdef _MULTI_DATAMODEL
25263 	/* To support ILP32 applications in an LP64 world */
25264 	struct cdrom_cdxa32		cdrom_cdxa32;
25265 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25266 #endif /* _MULTI_DATAMODEL */
25267 
25268 	if (data == NULL) {
25269 		return (EINVAL);
25270 	}
25271 
25272 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25273 		return (ENXIO);
25274 	}
25275 
25276 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25277 
25278 #ifdef _MULTI_DATAMODEL
25279 	switch (ddi_model_convert_from(flag & FMODELS)) {
25280 	case DDI_MODEL_ILP32:
25281 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25282 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25283 			return (EFAULT);
25284 		}
25285 		/*
25286 		 * Convert the ILP32 uscsi data from the
25287 		 * application to LP64 for internal use.
25288 		 */
25289 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25290 		break;
25291 	case DDI_MODEL_NONE:
25292 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25293 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25294 			return (EFAULT);
25295 		}
25296 		break;
25297 	}
25298 #else /* ! _MULTI_DATAMODEL */
25299 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25300 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25301 		return (EFAULT);
25302 	}
25303 #endif /* _MULTI_DATAMODEL */
25304 
25305 	/*
25306 	 * Since MMC-2 expects max 3 bytes for length, check if the
25307 	 * length input is greater than 3 bytes
25308 	 */
25309 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25310 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25311 		    "cdrom transfer length too large: %d (limit %d)\n",
25312 		    cdxa->cdxa_length, 0xFFFFFF);
25313 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25314 		return (EINVAL);
25315 	}
25316 
25317 	switch (cdxa->cdxa_format) {
25318 	case CDROM_XA_DATA:
25319 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25320 		read_flags = 0x10;
25321 		break;
25322 	case CDROM_XA_SECTOR_DATA:
25323 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25324 		read_flags = 0xf8;
25325 		break;
25326 	case CDROM_XA_DATA_W_ERROR:
25327 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25328 		read_flags = 0xfc;
25329 		break;
25330 	default:
25331 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25332 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25333 		    cdxa->cdxa_format);
25334 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25335 		return (EINVAL);
25336 	}
25337 
25338 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25339 	bzero(cdb, CDB_GROUP5);
25340 	if (un->un_f_mmc_cap == TRUE) {
25341 		cdb[0] = (char)SCMD_READ_CD;
25342 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25343 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25344 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25345 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25346 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25347 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25348 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25349 		cdb[9] = (char)read_flags;
25350 	} else {
25351 		/*
25352 		 * Note: A vendor specific command (0xDB) is being used her to
25353 		 * request a read of all subcodes.
25354 		 */
25355 		cdb[0] = (char)SCMD_READ_CDXA;
25356 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25357 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25358 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25359 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25360 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25361 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25362 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25363 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25364 		cdb[10] = cdxa->cdxa_format;
25365 	}
25366 	com->uscsi_cdb	   = cdb;
25367 	com->uscsi_cdblen  = CDB_GROUP5;
25368 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25369 	com->uscsi_buflen  = buflen;
25370 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25371 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25372 	    SD_PATH_STANDARD);
25373 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25374 	kmem_free(com, sizeof (*com));
25375 	return (rval);
25376 }
25377 
25378 
25379 /*
25380  *    Function: sr_eject()
25381  *
25382  * Description: This routine is the driver entry point for handling CD-ROM
25383  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25384  *
25385  *   Arguments: dev	- the device 'dev_t'
25386  *
25387  * Return Code: the code returned by sd_send_scsi_cmd()
25388  */
25389 
25390 static int
25391 sr_eject(dev_t dev)
25392 {
25393 	struct sd_lun	*un;
25394 	int		rval;
25395 
25396 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25397 	    (un->un_state == SD_STATE_OFFLINE)) {
25398 		return (ENXIO);
25399 	}
25400 
25401 	/*
25402 	 * To prevent race conditions with the eject
25403 	 * command, keep track of an eject command as
25404 	 * it progresses. If we are already handling
25405 	 * an eject command in the driver for the given
25406 	 * unit and another request to eject is received
25407 	 * immediately return EAGAIN so we don't lose
25408 	 * the command if the current eject command fails.
25409 	 */
25410 	mutex_enter(SD_MUTEX(un));
25411 	if (un->un_f_ejecting == TRUE) {
25412 		mutex_exit(SD_MUTEX(un));
25413 		return (EAGAIN);
25414 	}
25415 	un->un_f_ejecting = TRUE;
25416 	mutex_exit(SD_MUTEX(un));
25417 
25418 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
25419 	    SD_PATH_STANDARD)) != 0) {
25420 		mutex_enter(SD_MUTEX(un));
25421 		un->un_f_ejecting = FALSE;
25422 		mutex_exit(SD_MUTEX(un));
25423 		return (rval);
25424 	}
25425 
25426 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
25427 	    SD_PATH_STANDARD);
25428 
25429 	if (rval == 0) {
25430 		mutex_enter(SD_MUTEX(un));
25431 		sr_ejected(un);
25432 		un->un_mediastate = DKIO_EJECTED;
25433 		un->un_f_ejecting = FALSE;
25434 		cv_broadcast(&un->un_state_cv);
25435 		mutex_exit(SD_MUTEX(un));
25436 	} else {
25437 		mutex_enter(SD_MUTEX(un));
25438 		un->un_f_ejecting = FALSE;
25439 		mutex_exit(SD_MUTEX(un));
25440 	}
25441 	return (rval);
25442 }
25443 
25444 
25445 /*
25446  *    Function: sr_ejected()
25447  *
25448  * Description: This routine updates the soft state structure to invalidate the
25449  *		geometry information after the media has been ejected or a
25450  *		media eject has been detected.
25451  *
25452  *   Arguments: un - driver soft state (unit) structure
25453  */
25454 
25455 static void
25456 sr_ejected(struct sd_lun *un)
25457 {
25458 	struct sd_errstats *stp;
25459 
25460 	ASSERT(un != NULL);
25461 	ASSERT(mutex_owned(SD_MUTEX(un)));
25462 
25463 	un->un_f_blockcount_is_valid	= FALSE;
25464 	un->un_f_tgt_blocksize_is_valid	= FALSE;
25465 	mutex_exit(SD_MUTEX(un));
25466 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
25467 	mutex_enter(SD_MUTEX(un));
25468 
25469 	if (un->un_errstats != NULL) {
25470 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
25471 		stp->sd_capacity.value.ui64 = 0;
25472 	}
25473 
25474 	/* remove "capacity-of-device" properties */
25475 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
25476 	    "device-nblocks");
25477 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
25478 	    "device-blksize");
25479 }
25480 
25481 
25482 /*
25483  *    Function: sr_check_wp()
25484  *
25485  * Description: This routine checks the write protection of a removable
25486  *      media disk and hotpluggable devices via the write protect bit of
25487  *      the Mode Page Header device specific field. Some devices choke
25488  *      on unsupported mode page. In order to workaround this issue,
25489  *      this routine has been implemented to use 0x3f mode page(request
25490  *      for all pages) for all device types.
25491  *
25492  *   Arguments: dev		- the device 'dev_t'
25493  *
25494  * Return Code: int indicating if the device is write protected (1) or not (0)
25495  *
25496  *     Context: Kernel thread.
25497  *
25498  */
25499 
25500 static int
25501 sr_check_wp(dev_t dev)
25502 {
25503 	struct sd_lun	*un;
25504 	uchar_t		device_specific;
25505 	uchar_t		*sense;
25506 	int		hdrlen;
25507 	int		rval = FALSE;
25508 
25509 	/*
25510 	 * Note: The return codes for this routine should be reworked to
25511 	 * properly handle the case of a NULL softstate.
25512 	 */
25513 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25514 		return (FALSE);
25515 	}
25516 
25517 	if (un->un_f_cfg_is_atapi == TRUE) {
25518 		/*
25519 		 * The mode page contents are not required; set the allocation
25520 		 * length for the mode page header only
25521 		 */
25522 		hdrlen = MODE_HEADER_LENGTH_GRP2;
25523 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25524 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
25525 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25526 			goto err_exit;
25527 		device_specific =
25528 		    ((struct mode_header_grp2 *)sense)->device_specific;
25529 	} else {
25530 		hdrlen = MODE_HEADER_LENGTH;
25531 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25532 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
25533 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25534 			goto err_exit;
25535 		device_specific =
25536 		    ((struct mode_header *)sense)->device_specific;
25537 	}
25538 
25539 	/*
25540 	 * Write protect mode sense failed; not all disks
25541 	 * understand this query. Return FALSE assuming that
25542 	 * these devices are not writable.
25543 	 */
25544 	if (device_specific & WRITE_PROTECT) {
25545 		rval = TRUE;
25546 	}
25547 
25548 err_exit:
25549 	kmem_free(sense, hdrlen);
25550 	return (rval);
25551 }
25552 
25553 /*
25554  *    Function: sr_volume_ctrl()
25555  *
25556  * Description: This routine is the driver entry point for handling CD-ROM
25557  *		audio output volume ioctl requests. (CDROMVOLCTRL)
25558  *
25559  *   Arguments: dev	- the device 'dev_t'
25560  *		data	- pointer to user audio volume control structure
25561  *		flag	- this argument is a pass through to ddi_copyxxx()
25562  *			  directly from the mode argument of ioctl().
25563  *
25564  * Return Code: the code returned by sd_send_scsi_cmd()
25565  *		EFAULT if ddi_copyxxx() fails
25566  *		ENXIO if fail ddi_get_soft_state
25567  *		EINVAL if data pointer is NULL
25568  *
25569  */
25570 
25571 static int
25572 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
25573 {
25574 	struct sd_lun		*un;
25575 	struct cdrom_volctrl    volume;
25576 	struct cdrom_volctrl    *vol = &volume;
25577 	uchar_t			*sense_page;
25578 	uchar_t			*select_page;
25579 	uchar_t			*sense;
25580 	uchar_t			*select;
25581 	int			sense_buflen;
25582 	int			select_buflen;
25583 	int			rval;
25584 
25585 	if (data == NULL) {
25586 		return (EINVAL);
25587 	}
25588 
25589 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25590 	    (un->un_state == SD_STATE_OFFLINE)) {
25591 		return (ENXIO);
25592 	}
25593 
25594 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
25595 		return (EFAULT);
25596 	}
25597 
25598 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25599 		struct mode_header_grp2		*sense_mhp;
25600 		struct mode_header_grp2		*select_mhp;
25601 		int				bd_len;
25602 
25603 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
25604 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
25605 		    MODEPAGE_AUDIO_CTRL_LEN;
25606 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25607 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25608 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
25609 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25610 		    SD_PATH_STANDARD)) != 0) {
25611 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25612 			    "sr_volume_ctrl: Mode Sense Failed\n");
25613 			kmem_free(sense, sense_buflen);
25614 			kmem_free(select, select_buflen);
25615 			return (rval);
25616 		}
25617 		sense_mhp = (struct mode_header_grp2 *)sense;
25618 		select_mhp = (struct mode_header_grp2 *)select;
25619 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
25620 		    sense_mhp->bdesc_length_lo;
25621 		if (bd_len > MODE_BLK_DESC_LENGTH) {
25622 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25623 			    "sr_volume_ctrl: Mode Sense returned invalid "
25624 			    "block descriptor length\n");
25625 			kmem_free(sense, sense_buflen);
25626 			kmem_free(select, select_buflen);
25627 			return (EIO);
25628 		}
25629 		sense_page = (uchar_t *)
25630 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
25631 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
25632 		select_mhp->length_msb = 0;
25633 		select_mhp->length_lsb = 0;
25634 		select_mhp->bdesc_length_hi = 0;
25635 		select_mhp->bdesc_length_lo = 0;
25636 	} else {
25637 		struct mode_header		*sense_mhp, *select_mhp;
25638 
25639 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25640 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25641 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25642 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25643 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
25644 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25645 		    SD_PATH_STANDARD)) != 0) {
25646 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25647 			    "sr_volume_ctrl: Mode Sense Failed\n");
25648 			kmem_free(sense, sense_buflen);
25649 			kmem_free(select, select_buflen);
25650 			return (rval);
25651 		}
25652 		sense_mhp  = (struct mode_header *)sense;
25653 		select_mhp = (struct mode_header *)select;
25654 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
25655 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25656 			    "sr_volume_ctrl: Mode Sense returned invalid "
25657 			    "block descriptor length\n");
25658 			kmem_free(sense, sense_buflen);
25659 			kmem_free(select, select_buflen);
25660 			return (EIO);
25661 		}
25662 		sense_page = (uchar_t *)
25663 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
25664 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
25665 		select_mhp->length = 0;
25666 		select_mhp->bdesc_length = 0;
25667 	}
25668 	/*
25669 	 * Note: An audio control data structure could be created and overlayed
25670 	 * on the following in place of the array indexing method implemented.
25671 	 */
25672 
25673 	/* Build the select data for the user volume data */
25674 	select_page[0] = MODEPAGE_AUDIO_CTRL;
25675 	select_page[1] = 0xE;
25676 	/* Set the immediate bit */
25677 	select_page[2] = 0x04;
25678 	/* Zero out reserved fields */
25679 	select_page[3] = 0x00;
25680 	select_page[4] = 0x00;
25681 	/* Return sense data for fields not to be modified */
25682 	select_page[5] = sense_page[5];
25683 	select_page[6] = sense_page[6];
25684 	select_page[7] = sense_page[7];
25685 	/* Set the user specified volume levels for channel 0 and 1 */
25686 	select_page[8] = 0x01;
25687 	select_page[9] = vol->channel0;
25688 	select_page[10] = 0x02;
25689 	select_page[11] = vol->channel1;
25690 	/* Channel 2 and 3 are currently unsupported so return the sense data */
25691 	select_page[12] = sense_page[12];
25692 	select_page[13] = sense_page[13];
25693 	select_page[14] = sense_page[14];
25694 	select_page[15] = sense_page[15];
25695 
25696 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25697 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
25698 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25699 	} else {
25700 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
25701 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
25702 	}
25703 
25704 	kmem_free(sense, sense_buflen);
25705 	kmem_free(select, select_buflen);
25706 	return (rval);
25707 }
25708 
25709 
25710 /*
25711  *    Function: sr_read_sony_session_offset()
25712  *
25713  * Description: This routine is the driver entry point for handling CD-ROM
25714  *		ioctl requests for session offset information. (CDROMREADOFFSET)
25715  *		The address of the first track in the last session of a
25716  *		multi-session CD-ROM is returned
25717  *
25718  *		Note: This routine uses a vendor specific key value in the
25719  *		command control field without implementing any vendor check here
25720  *		or in the ioctl routine.
25721  *
25722  *   Arguments: dev	- the device 'dev_t'
25723  *		data	- pointer to an int to hold the requested address
25724  *		flag	- this argument is a pass through to ddi_copyxxx()
25725  *			  directly from the mode argument of ioctl().
25726  *
25727  * Return Code: the code returned by sd_send_scsi_cmd()
25728  *		EFAULT if ddi_copyxxx() fails
25729  *		ENXIO if fail ddi_get_soft_state
25730  *		EINVAL if data pointer is NULL
25731  */
25732 
25733 static int
25734 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
25735 {
25736 	struct sd_lun		*un;
25737 	struct uscsi_cmd	*com;
25738 	caddr_t			buffer;
25739 	char			cdb[CDB_GROUP1];
25740 	int			session_offset = 0;
25741 	int			rval;
25742 
25743 	if (data == NULL) {
25744 		return (EINVAL);
25745 	}
25746 
25747 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25748 	    (un->un_state == SD_STATE_OFFLINE)) {
25749 		return (ENXIO);
25750 	}
25751 
25752 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
25753 	bzero(cdb, CDB_GROUP1);
25754 	cdb[0] = SCMD_READ_TOC;
25755 	/*
25756 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
25757 	 * (4 byte TOC response header + 8 byte response data)
25758 	 */
25759 	cdb[8] = SONY_SESSION_OFFSET_LEN;
25760 	/* Byte 9 is the control byte. A vendor specific value is used */
25761 	cdb[9] = SONY_SESSION_OFFSET_KEY;
25762 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25763 	com->uscsi_cdb = cdb;
25764 	com->uscsi_cdblen = CDB_GROUP1;
25765 	com->uscsi_bufaddr = buffer;
25766 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
25767 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25768 
25769 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25770 	    SD_PATH_STANDARD);
25771 	if (rval != 0) {
25772 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
25773 		kmem_free(com, sizeof (*com));
25774 		return (rval);
25775 	}
25776 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
25777 		session_offset =
25778 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
25779 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
25780 		/*
25781 		 * Offset returned offset in current lbasize block's. Convert to
25782 		 * 2k block's to return to the user
25783 		 */
25784 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
25785 			session_offset >>= 2;
25786 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
25787 			session_offset >>= 1;
25788 		}
25789 	}
25790 
25791 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
25792 		rval = EFAULT;
25793 	}
25794 
25795 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
25796 	kmem_free(com, sizeof (*com));
25797 	return (rval);
25798 }
25799 
25800 
25801 /*
25802  *    Function: sd_wm_cache_constructor()
25803  *
25804  * Description: Cache Constructor for the wmap cache for the read/modify/write
25805  * 		devices.
25806  *
25807  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
25808  *		un	- sd_lun structure for the device.
25809  *		flag	- the km flags passed to constructor
25810  *
25811  * Return Code: 0 on success.
25812  *		-1 on failure.
25813  */
25814 
25815 /*ARGSUSED*/
25816 static int
25817 sd_wm_cache_constructor(void *wm, void *un, int flags)
25818 {
25819 	bzero(wm, sizeof (struct sd_w_map));
25820 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
25821 	return (0);
25822 }
25823 
25824 
25825 /*
25826  *    Function: sd_wm_cache_destructor()
25827  *
25828  * Description: Cache destructor for the wmap cache for the read/modify/write
25829  * 		devices.
25830  *
25831  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
25832  *		un	- sd_lun structure for the device.
25833  */
25834 /*ARGSUSED*/
25835 static void
25836 sd_wm_cache_destructor(void *wm, void *un)
25837 {
25838 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
25839 }
25840 
25841 
25842 /*
25843  *    Function: sd_range_lock()
25844  *
25845  * Description: Lock the range of blocks specified as parameter to ensure
25846  *		that read, modify write is atomic and no other i/o writes
25847  *		to the same location. The range is specified in terms
25848  *		of start and end blocks. Block numbers are the actual
25849  *		media block numbers and not system.
25850  *
25851  *   Arguments: un	- sd_lun structure for the device.
25852  *		startb - The starting block number
25853  *		endb - The end block number
25854  *		typ - type of i/o - simple/read_modify_write
25855  *
25856  * Return Code: wm  - pointer to the wmap structure.
25857  *
25858  *     Context: This routine can sleep.
25859  */
25860 
25861 static struct sd_w_map *
25862 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
25863 {
25864 	struct sd_w_map *wmp = NULL;
25865 	struct sd_w_map *sl_wmp = NULL;
25866 	struct sd_w_map *tmp_wmp;
25867 	wm_state state = SD_WM_CHK_LIST;
25868 
25869 
25870 	ASSERT(un != NULL);
25871 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25872 
25873 	mutex_enter(SD_MUTEX(un));
25874 
25875 	while (state != SD_WM_DONE) {
25876 
25877 		switch (state) {
25878 		case SD_WM_CHK_LIST:
25879 			/*
25880 			 * This is the starting state. Check the wmap list
25881 			 * to see if the range is currently available.
25882 			 */
25883 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
25884 				/*
25885 				 * If this is a simple write and no rmw
25886 				 * i/o is pending then try to lock the
25887 				 * range as the range should be available.
25888 				 */
25889 				state = SD_WM_LOCK_RANGE;
25890 			} else {
25891 				tmp_wmp = sd_get_range(un, startb, endb);
25892 				if (tmp_wmp != NULL) {
25893 					if ((wmp != NULL) && ONLIST(un, wmp)) {
25894 						/*
25895 						 * Should not keep onlist wmps
25896 						 * while waiting this macro
25897 						 * will also do wmp = NULL;
25898 						 */
25899 						FREE_ONLIST_WMAP(un, wmp);
25900 					}
25901 					/*
25902 					 * sl_wmp is the wmap on which wait
25903 					 * is done, since the tmp_wmp points
25904 					 * to the inuse wmap, set sl_wmp to
25905 					 * tmp_wmp and change the state to sleep
25906 					 */
25907 					sl_wmp = tmp_wmp;
25908 					state = SD_WM_WAIT_MAP;
25909 				} else {
25910 					state = SD_WM_LOCK_RANGE;
25911 				}
25912 
25913 			}
25914 			break;
25915 
25916 		case SD_WM_LOCK_RANGE:
25917 			ASSERT(un->un_wm_cache);
25918 			/*
25919 			 * The range need to be locked, try to get a wmap.
25920 			 * First attempt it with NO_SLEEP, want to avoid a sleep
25921 			 * if possible as we will have to release the sd mutex
25922 			 * if we have to sleep.
25923 			 */
25924 			if (wmp == NULL)
25925 				wmp = kmem_cache_alloc(un->un_wm_cache,
25926 				    KM_NOSLEEP);
25927 			if (wmp == NULL) {
25928 				mutex_exit(SD_MUTEX(un));
25929 				_NOTE(DATA_READABLE_WITHOUT_LOCK
25930 				    (sd_lun::un_wm_cache))
25931 				wmp = kmem_cache_alloc(un->un_wm_cache,
25932 				    KM_SLEEP);
25933 				mutex_enter(SD_MUTEX(un));
25934 				/*
25935 				 * we released the mutex so recheck and go to
25936 				 * check list state.
25937 				 */
25938 				state = SD_WM_CHK_LIST;
25939 			} else {
25940 				/*
25941 				 * We exit out of state machine since we
25942 				 * have the wmap. Do the housekeeping first.
25943 				 * place the wmap on the wmap list if it is not
25944 				 * on it already and then set the state to done.
25945 				 */
25946 				wmp->wm_start = startb;
25947 				wmp->wm_end = endb;
25948 				wmp->wm_flags = typ | SD_WM_BUSY;
25949 				if (typ & SD_WTYPE_RMW) {
25950 					un->un_rmw_count++;
25951 				}
25952 				/*
25953 				 * If not already on the list then link
25954 				 */
25955 				if (!ONLIST(un, wmp)) {
25956 					wmp->wm_next = un->un_wm;
25957 					wmp->wm_prev = NULL;
25958 					if (wmp->wm_next)
25959 						wmp->wm_next->wm_prev = wmp;
25960 					un->un_wm = wmp;
25961 				}
25962 				state = SD_WM_DONE;
25963 			}
25964 			break;
25965 
25966 		case SD_WM_WAIT_MAP:
25967 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
25968 			/*
25969 			 * Wait is done on sl_wmp, which is set in the
25970 			 * check_list state.
25971 			 */
25972 			sl_wmp->wm_wanted_count++;
25973 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
25974 			sl_wmp->wm_wanted_count--;
25975 			/*
25976 			 * We can reuse the memory from the completed sl_wmp
25977 			 * lock range for our new lock, but only if noone is
25978 			 * waiting for it.
25979 			 */
25980 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
25981 			if (sl_wmp->wm_wanted_count == 0) {
25982 				if (wmp != NULL)
25983 					CHK_N_FREEWMP(un, wmp);
25984 				wmp = sl_wmp;
25985 			}
25986 			sl_wmp = NULL;
25987 			/*
25988 			 * After waking up, need to recheck for availability of
25989 			 * range.
25990 			 */
25991 			state = SD_WM_CHK_LIST;
25992 			break;
25993 
25994 		default:
25995 			panic("sd_range_lock: "
25996 			    "Unknown state %d in sd_range_lock", state);
25997 			/*NOTREACHED*/
25998 		} /* switch(state) */
25999 
26000 	} /* while(state != SD_WM_DONE) */
26001 
26002 	mutex_exit(SD_MUTEX(un));
26003 
26004 	ASSERT(wmp != NULL);
26005 
26006 	return (wmp);
26007 }
26008 
26009 
26010 /*
26011  *    Function: sd_get_range()
26012  *
26013  * Description: Find if there any overlapping I/O to this one
26014  *		Returns the write-map of 1st such I/O, NULL otherwise.
26015  *
26016  *   Arguments: un	- sd_lun structure for the device.
26017  *		startb - The starting block number
26018  *		endb - The end block number
26019  *
26020  * Return Code: wm  - pointer to the wmap structure.
26021  */
26022 
26023 static struct sd_w_map *
26024 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
26025 {
26026 	struct sd_w_map *wmp;
26027 
26028 	ASSERT(un != NULL);
26029 
26030 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
26031 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
26032 			continue;
26033 		}
26034 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
26035 			break;
26036 		}
26037 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
26038 			break;
26039 		}
26040 	}
26041 
26042 	return (wmp);
26043 }
26044 
26045 
26046 /*
26047  *    Function: sd_free_inlist_wmap()
26048  *
26049  * Description: Unlink and free a write map struct.
26050  *
26051  *   Arguments: un      - sd_lun structure for the device.
26052  *		wmp	- sd_w_map which needs to be unlinked.
26053  */
26054 
26055 static void
26056 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
26057 {
26058 	ASSERT(un != NULL);
26059 
26060 	if (un->un_wm == wmp) {
26061 		un->un_wm = wmp->wm_next;
26062 	} else {
26063 		wmp->wm_prev->wm_next = wmp->wm_next;
26064 	}
26065 
26066 	if (wmp->wm_next) {
26067 		wmp->wm_next->wm_prev = wmp->wm_prev;
26068 	}
26069 
26070 	wmp->wm_next = wmp->wm_prev = NULL;
26071 
26072 	kmem_cache_free(un->un_wm_cache, wmp);
26073 }
26074 
26075 
26076 /*
26077  *    Function: sd_range_unlock()
26078  *
26079  * Description: Unlock the range locked by wm.
26080  *		Free write map if nobody else is waiting on it.
26081  *
26082  *   Arguments: un      - sd_lun structure for the device.
26083  *              wmp     - sd_w_map which needs to be unlinked.
26084  */
26085 
26086 static void
26087 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
26088 {
26089 	ASSERT(un != NULL);
26090 	ASSERT(wm != NULL);
26091 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26092 
26093 	mutex_enter(SD_MUTEX(un));
26094 
26095 	if (wm->wm_flags & SD_WTYPE_RMW) {
26096 		un->un_rmw_count--;
26097 	}
26098 
26099 	if (wm->wm_wanted_count) {
26100 		wm->wm_flags = 0;
26101 		/*
26102 		 * Broadcast that the wmap is available now.
26103 		 */
26104 		cv_broadcast(&wm->wm_avail);
26105 	} else {
26106 		/*
26107 		 * If no one is waiting on the map, it should be free'ed.
26108 		 */
26109 		sd_free_inlist_wmap(un, wm);
26110 	}
26111 
26112 	mutex_exit(SD_MUTEX(un));
26113 }
26114 
26115 
26116 /*
26117  *    Function: sd_read_modify_write_task
26118  *
26119  * Description: Called from a taskq thread to initiate the write phase of
26120  *		a read-modify-write request.  This is used for targets where
26121  *		un->un_sys_blocksize != un->un_tgt_blocksize.
26122  *
26123  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26124  *
26125  *     Context: Called under taskq thread context.
26126  */
26127 
26128 static void
26129 sd_read_modify_write_task(void *arg)
26130 {
26131 	struct sd_mapblocksize_info	*bsp;
26132 	struct buf	*bp;
26133 	struct sd_xbuf	*xp;
26134 	struct sd_lun	*un;
26135 
26136 	bp = arg;	/* The bp is given in arg */
26137 	ASSERT(bp != NULL);
26138 
26139 	/* Get the pointer to the layer-private data struct */
26140 	xp = SD_GET_XBUF(bp);
26141 	ASSERT(xp != NULL);
26142 	bsp = xp->xb_private;
26143 	ASSERT(bsp != NULL);
26144 
26145 	un = SD_GET_UN(bp);
26146 	ASSERT(un != NULL);
26147 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26148 
26149 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26150 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26151 
26152 	/*
26153 	 * This is the write phase of a read-modify-write request, called
26154 	 * under the context of a taskq thread in response to the completion
26155 	 * of the read portion of the rmw request completing under interrupt
26156 	 * context. The write request must be sent from here down the iostart
26157 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26158 	 * we use the layer index saved in the layer-private data area.
26159 	 */
26160 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26161 
26162 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26163 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26164 }
26165 
26166 
26167 /*
26168  *    Function: sddump_do_read_of_rmw()
26169  *
26170  * Description: This routine will be called from sddump, If sddump is called
26171  *		with an I/O which not aligned on device blocksize boundary
26172  *		then the write has to be converted to read-modify-write.
26173  *		Do the read part here in order to keep sddump simple.
26174  *		Note - That the sd_mutex is held across the call to this
26175  *		routine.
26176  *
26177  *   Arguments: un	- sd_lun
26178  *		blkno	- block number in terms of media block size.
26179  *		nblk	- number of blocks.
26180  *		bpp	- pointer to pointer to the buf structure. On return
26181  *			from this function, *bpp points to the valid buffer
26182  *			to which the write has to be done.
26183  *
26184  * Return Code: 0 for success or errno-type return code
26185  */
26186 
26187 static int
26188 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26189 	struct buf **bpp)
26190 {
26191 	int err;
26192 	int i;
26193 	int rval;
26194 	struct buf *bp;
26195 	struct scsi_pkt *pkt = NULL;
26196 	uint32_t target_blocksize;
26197 
26198 	ASSERT(un != NULL);
26199 	ASSERT(mutex_owned(SD_MUTEX(un)));
26200 
26201 	target_blocksize = un->un_tgt_blocksize;
26202 
26203 	mutex_exit(SD_MUTEX(un));
26204 
26205 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26206 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26207 	if (bp == NULL) {
26208 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26209 		    "no resources for dumping; giving up");
26210 		err = ENOMEM;
26211 		goto done;
26212 	}
26213 
26214 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26215 	    blkno, nblk);
26216 	if (rval != 0) {
26217 		scsi_free_consistent_buf(bp);
26218 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26219 		    "no resources for dumping; giving up");
26220 		err = ENOMEM;
26221 		goto done;
26222 	}
26223 
26224 	pkt->pkt_flags |= FLAG_NOINTR;
26225 
26226 	err = EIO;
26227 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26228 
26229 		/*
26230 		 * Scsi_poll returns 0 (success) if the command completes and
26231 		 * the status block is STATUS_GOOD.  We should only check
26232 		 * errors if this condition is not true.  Even then we should
26233 		 * send our own request sense packet only if we have a check
26234 		 * condition and auto request sense has not been performed by
26235 		 * the hba.
26236 		 */
26237 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26238 
26239 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26240 			err = 0;
26241 			break;
26242 		}
26243 
26244 		/*
26245 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26246 		 * no need to read RQS data.
26247 		 */
26248 		if (pkt->pkt_reason == CMD_DEV_GONE) {
26249 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26250 			    "Device is gone\n");
26251 			break;
26252 		}
26253 
26254 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26255 			SD_INFO(SD_LOG_DUMP, un,
26256 			    "sddump: read failed with CHECK, try # %d\n", i);
26257 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26258 				(void) sd_send_polled_RQS(un);
26259 			}
26260 
26261 			continue;
26262 		}
26263 
26264 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26265 			int reset_retval = 0;
26266 
26267 			SD_INFO(SD_LOG_DUMP, un,
26268 			    "sddump: read failed with BUSY, try # %d\n", i);
26269 
26270 			if (un->un_f_lun_reset_enabled == TRUE) {
26271 				reset_retval = scsi_reset(SD_ADDRESS(un),
26272 				    RESET_LUN);
26273 			}
26274 			if (reset_retval == 0) {
26275 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26276 			}
26277 			(void) sd_send_polled_RQS(un);
26278 
26279 		} else {
26280 			SD_INFO(SD_LOG_DUMP, un,
26281 			    "sddump: read failed with 0x%x, try # %d\n",
26282 			    SD_GET_PKT_STATUS(pkt), i);
26283 			mutex_enter(SD_MUTEX(un));
26284 			sd_reset_target(un, pkt);
26285 			mutex_exit(SD_MUTEX(un));
26286 		}
26287 
26288 		/*
26289 		 * If we are not getting anywhere with lun/target resets,
26290 		 * let's reset the bus.
26291 		 */
26292 		if (i > SD_NDUMP_RETRIES/2) {
26293 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26294 			(void) sd_send_polled_RQS(un);
26295 		}
26296 
26297 	}
26298 	scsi_destroy_pkt(pkt);
26299 
26300 	if (err != 0) {
26301 		scsi_free_consistent_buf(bp);
26302 		*bpp = NULL;
26303 	} else {
26304 		*bpp = bp;
26305 	}
26306 
26307 done:
26308 	mutex_enter(SD_MUTEX(un));
26309 	return (err);
26310 }
26311 
26312 
26313 /*
26314  *    Function: sd_failfast_flushq
26315  *
26316  * Description: Take all bp's on the wait queue that have B_FAILFAST set
26317  *		in b_flags and move them onto the failfast queue, then kick
26318  *		off a thread to return all bp's on the failfast queue to
26319  *		their owners with an error set.
26320  *
26321  *   Arguments: un - pointer to the soft state struct for the instance.
26322  *
26323  *     Context: may execute in interrupt context.
26324  */
26325 
26326 static void
26327 sd_failfast_flushq(struct sd_lun *un)
26328 {
26329 	struct buf *bp;
26330 	struct buf *next_waitq_bp;
26331 	struct buf *prev_waitq_bp = NULL;
26332 
26333 	ASSERT(un != NULL);
26334 	ASSERT(mutex_owned(SD_MUTEX(un)));
26335 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26336 	ASSERT(un->un_failfast_bp == NULL);
26337 
26338 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26339 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26340 
26341 	/*
26342 	 * Check if we should flush all bufs when entering failfast state, or
26343 	 * just those with B_FAILFAST set.
26344 	 */
26345 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26346 		/*
26347 		 * Move *all* bp's on the wait queue to the failfast flush
26348 		 * queue, including those that do NOT have B_FAILFAST set.
26349 		 */
26350 		if (un->un_failfast_headp == NULL) {
26351 			ASSERT(un->un_failfast_tailp == NULL);
26352 			un->un_failfast_headp = un->un_waitq_headp;
26353 		} else {
26354 			ASSERT(un->un_failfast_tailp != NULL);
26355 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26356 		}
26357 
26358 		un->un_failfast_tailp = un->un_waitq_tailp;
26359 
26360 		/* update kstat for each bp moved out of the waitq */
26361 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26362 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26363 		}
26364 
26365 		/* empty the waitq */
26366 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26367 
26368 	} else {
26369 		/*
26370 		 * Go thru the wait queue, pick off all entries with
26371 		 * B_FAILFAST set, and move these onto the failfast queue.
26372 		 */
26373 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26374 			/*
26375 			 * Save the pointer to the next bp on the wait queue,
26376 			 * so we get to it on the next iteration of this loop.
26377 			 */
26378 			next_waitq_bp = bp->av_forw;
26379 
26380 			/*
26381 			 * If this bp from the wait queue does NOT have
26382 			 * B_FAILFAST set, just move on to the next element
26383 			 * in the wait queue. Note, this is the only place
26384 			 * where it is correct to set prev_waitq_bp.
26385 			 */
26386 			if ((bp->b_flags & B_FAILFAST) == 0) {
26387 				prev_waitq_bp = bp;
26388 				continue;
26389 			}
26390 
26391 			/*
26392 			 * Remove the bp from the wait queue.
26393 			 */
26394 			if (bp == un->un_waitq_headp) {
26395 				/* The bp is the first element of the waitq. */
26396 				un->un_waitq_headp = next_waitq_bp;
26397 				if (un->un_waitq_headp == NULL) {
26398 					/* The wait queue is now empty */
26399 					un->un_waitq_tailp = NULL;
26400 				}
26401 			} else {
26402 				/*
26403 				 * The bp is either somewhere in the middle
26404 				 * or at the end of the wait queue.
26405 				 */
26406 				ASSERT(un->un_waitq_headp != NULL);
26407 				ASSERT(prev_waitq_bp != NULL);
26408 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
26409 				    == 0);
26410 				if (bp == un->un_waitq_tailp) {
26411 					/* bp is the last entry on the waitq. */
26412 					ASSERT(next_waitq_bp == NULL);
26413 					un->un_waitq_tailp = prev_waitq_bp;
26414 				}
26415 				prev_waitq_bp->av_forw = next_waitq_bp;
26416 			}
26417 			bp->av_forw = NULL;
26418 
26419 			/*
26420 			 * update kstat since the bp is moved out of
26421 			 * the waitq
26422 			 */
26423 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26424 
26425 			/*
26426 			 * Now put the bp onto the failfast queue.
26427 			 */
26428 			if (un->un_failfast_headp == NULL) {
26429 				/* failfast queue is currently empty */
26430 				ASSERT(un->un_failfast_tailp == NULL);
26431 				un->un_failfast_headp =
26432 				    un->un_failfast_tailp = bp;
26433 			} else {
26434 				/* Add the bp to the end of the failfast q */
26435 				ASSERT(un->un_failfast_tailp != NULL);
26436 				ASSERT(un->un_failfast_tailp->b_flags &
26437 				    B_FAILFAST);
26438 				un->un_failfast_tailp->av_forw = bp;
26439 				un->un_failfast_tailp = bp;
26440 			}
26441 		}
26442 	}
26443 
26444 	/*
26445 	 * Now return all bp's on the failfast queue to their owners.
26446 	 */
26447 	while ((bp = un->un_failfast_headp) != NULL) {
26448 
26449 		un->un_failfast_headp = bp->av_forw;
26450 		if (un->un_failfast_headp == NULL) {
26451 			un->un_failfast_tailp = NULL;
26452 		}
26453 
26454 		/*
26455 		 * We want to return the bp with a failure error code, but
26456 		 * we do not want a call to sd_start_cmds() to occur here,
26457 		 * so use sd_return_failed_command_no_restart() instead of
26458 		 * sd_return_failed_command().
26459 		 */
26460 		sd_return_failed_command_no_restart(un, bp, EIO);
26461 	}
26462 
26463 	/* Flush the xbuf queues if required. */
26464 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
26465 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
26466 	}
26467 
26468 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26469 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
26470 }
26471 
26472 
26473 /*
26474  *    Function: sd_failfast_flushq_callback
26475  *
26476  * Description: Return TRUE if the given bp meets the criteria for failfast
26477  *		flushing. Used with ddi_xbuf_flushq(9F).
26478  *
26479  *   Arguments: bp - ptr to buf struct to be examined.
26480  *
26481  *     Context: Any
26482  */
26483 
26484 static int
26485 sd_failfast_flushq_callback(struct buf *bp)
26486 {
26487 	/*
26488 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
26489 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
26490 	 */
26491 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
26492 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
26493 }
26494 
26495 
26496 
26497 #if defined(__i386) || defined(__amd64)
26498 /*
26499  * Function: sd_setup_next_xfer
26500  *
26501  * Description: Prepare next I/O operation using DMA_PARTIAL
26502  *
26503  */
26504 
26505 static int
26506 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
26507     struct scsi_pkt *pkt, struct sd_xbuf *xp)
26508 {
26509 	ssize_t	num_blks_not_xfered;
26510 	daddr_t	strt_blk_num;
26511 	ssize_t	bytes_not_xfered;
26512 	int	rval;
26513 
26514 	ASSERT(pkt->pkt_resid == 0);
26515 
26516 	/*
26517 	 * Calculate next block number and amount to be transferred.
26518 	 *
26519 	 * How much data NOT transfered to the HBA yet.
26520 	 */
26521 	bytes_not_xfered = xp->xb_dma_resid;
26522 
26523 	/*
26524 	 * figure how many blocks NOT transfered to the HBA yet.
26525 	 */
26526 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
26527 
26528 	/*
26529 	 * set starting block number to the end of what WAS transfered.
26530 	 */
26531 	strt_blk_num = xp->xb_blkno +
26532 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
26533 
26534 	/*
26535 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
26536 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
26537 	 * the disk mutex here.
26538 	 */
26539 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
26540 	    strt_blk_num, num_blks_not_xfered);
26541 
26542 	if (rval == 0) {
26543 
26544 		/*
26545 		 * Success.
26546 		 *
26547 		 * Adjust things if there are still more blocks to be
26548 		 * transfered.
26549 		 */
26550 		xp->xb_dma_resid = pkt->pkt_resid;
26551 		pkt->pkt_resid = 0;
26552 
26553 		return (1);
26554 	}
26555 
26556 	/*
26557 	 * There's really only one possible return value from
26558 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
26559 	 * returns NULL.
26560 	 */
26561 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
26562 
26563 	bp->b_resid = bp->b_bcount;
26564 	bp->b_flags |= B_ERROR;
26565 
26566 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26567 	    "Error setting up next portion of DMA transfer\n");
26568 
26569 	return (0);
26570 }
26571 #endif
26572 
26573 /*
26574  *    Function: sd_panic_for_res_conflict
26575  *
26576  * Description: Call panic with a string formatted with "Reservation Conflict"
26577  *		and a human readable identifier indicating the SD instance
26578  *		that experienced the reservation conflict.
26579  *
26580  *   Arguments: un - pointer to the soft state struct for the instance.
26581  *
26582  *     Context: may execute in interrupt context.
26583  */
26584 
26585 #define	SD_RESV_CONFLICT_FMT_LEN 40
26586 void
26587 sd_panic_for_res_conflict(struct sd_lun *un)
26588 {
26589 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
26590 	char path_str[MAXPATHLEN];
26591 
26592 	(void) snprintf(panic_str, sizeof (panic_str),
26593 	    "Reservation Conflict\nDisk: %s",
26594 	    ddi_pathname(SD_DEVINFO(un), path_str));
26595 
26596 	panic(panic_str);
26597 }
26598 
26599 /*
26600  * Note: The following sd_faultinjection_ioctl( ) routines implement
26601  * driver support for handling fault injection for error analysis
26602  * causing faults in multiple layers of the driver.
26603  *
26604  */
26605 
26606 #ifdef SD_FAULT_INJECTION
26607 static uint_t   sd_fault_injection_on = 0;
26608 
26609 /*
26610  *    Function: sd_faultinjection_ioctl()
26611  *
26612  * Description: This routine is the driver entry point for handling
26613  *              faultinjection ioctls to inject errors into the
26614  *              layer model
26615  *
26616  *   Arguments: cmd	- the ioctl cmd received
26617  *		arg	- the arguments from user and returns
26618  */
26619 
26620 static void
26621 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
26622 
26623 	uint_t i;
26624 	uint_t rval;
26625 
26626 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
26627 
26628 	mutex_enter(SD_MUTEX(un));
26629 
26630 	switch (cmd) {
26631 	case SDIOCRUN:
26632 		/* Allow pushed faults to be injected */
26633 		SD_INFO(SD_LOG_SDTEST, un,
26634 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
26635 
26636 		sd_fault_injection_on = 1;
26637 
26638 		SD_INFO(SD_LOG_IOERR, un,
26639 		    "sd_faultinjection_ioctl: run finished\n");
26640 		break;
26641 
26642 	case SDIOCSTART:
26643 		/* Start Injection Session */
26644 		SD_INFO(SD_LOG_SDTEST, un,
26645 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
26646 
26647 		sd_fault_injection_on = 0;
26648 		un->sd_injection_mask = 0xFFFFFFFF;
26649 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
26650 			un->sd_fi_fifo_pkt[i] = NULL;
26651 			un->sd_fi_fifo_xb[i] = NULL;
26652 			un->sd_fi_fifo_un[i] = NULL;
26653 			un->sd_fi_fifo_arq[i] = NULL;
26654 		}
26655 		un->sd_fi_fifo_start = 0;
26656 		un->sd_fi_fifo_end = 0;
26657 
26658 		mutex_enter(&(un->un_fi_mutex));
26659 		un->sd_fi_log[0] = '\0';
26660 		un->sd_fi_buf_len = 0;
26661 		mutex_exit(&(un->un_fi_mutex));
26662 
26663 		SD_INFO(SD_LOG_IOERR, un,
26664 		    "sd_faultinjection_ioctl: start finished\n");
26665 		break;
26666 
26667 	case SDIOCSTOP:
26668 		/* Stop Injection Session */
26669 		SD_INFO(SD_LOG_SDTEST, un,
26670 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
26671 		sd_fault_injection_on = 0;
26672 		un->sd_injection_mask = 0x0;
26673 
26674 		/* Empty stray or unuseds structs from fifo */
26675 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
26676 			if (un->sd_fi_fifo_pkt[i] != NULL) {
26677 				kmem_free(un->sd_fi_fifo_pkt[i],
26678 				    sizeof (struct sd_fi_pkt));
26679 			}
26680 			if (un->sd_fi_fifo_xb[i] != NULL) {
26681 				kmem_free(un->sd_fi_fifo_xb[i],
26682 				    sizeof (struct sd_fi_xb));
26683 			}
26684 			if (un->sd_fi_fifo_un[i] != NULL) {
26685 				kmem_free(un->sd_fi_fifo_un[i],
26686 				    sizeof (struct sd_fi_un));
26687 			}
26688 			if (un->sd_fi_fifo_arq[i] != NULL) {
26689 				kmem_free(un->sd_fi_fifo_arq[i],
26690 				    sizeof (struct sd_fi_arq));
26691 			}
26692 			un->sd_fi_fifo_pkt[i] = NULL;
26693 			un->sd_fi_fifo_un[i] = NULL;
26694 			un->sd_fi_fifo_xb[i] = NULL;
26695 			un->sd_fi_fifo_arq[i] = NULL;
26696 		}
26697 		un->sd_fi_fifo_start = 0;
26698 		un->sd_fi_fifo_end = 0;
26699 
26700 		SD_INFO(SD_LOG_IOERR, un,
26701 		    "sd_faultinjection_ioctl: stop finished\n");
26702 		break;
26703 
26704 	case SDIOCINSERTPKT:
26705 		/* Store a packet struct to be pushed onto fifo */
26706 		SD_INFO(SD_LOG_SDTEST, un,
26707 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
26708 
26709 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26710 
26711 		sd_fault_injection_on = 0;
26712 
26713 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
26714 		if (un->sd_fi_fifo_pkt[i] != NULL) {
26715 			kmem_free(un->sd_fi_fifo_pkt[i],
26716 			    sizeof (struct sd_fi_pkt));
26717 		}
26718 		if (arg != NULL) {
26719 			un->sd_fi_fifo_pkt[i] =
26720 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
26721 			if (un->sd_fi_fifo_pkt[i] == NULL) {
26722 				/* Alloc failed don't store anything */
26723 				break;
26724 			}
26725 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
26726 			    sizeof (struct sd_fi_pkt), 0);
26727 			if (rval == -1) {
26728 				kmem_free(un->sd_fi_fifo_pkt[i],
26729 				    sizeof (struct sd_fi_pkt));
26730 				un->sd_fi_fifo_pkt[i] = NULL;
26731 			}
26732 		} else {
26733 			SD_INFO(SD_LOG_IOERR, un,
26734 			    "sd_faultinjection_ioctl: pkt null\n");
26735 		}
26736 		break;
26737 
26738 	case SDIOCINSERTXB:
26739 		/* Store a xb struct to be pushed onto fifo */
26740 		SD_INFO(SD_LOG_SDTEST, un,
26741 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
26742 
26743 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26744 
26745 		sd_fault_injection_on = 0;
26746 
26747 		if (un->sd_fi_fifo_xb[i] != NULL) {
26748 			kmem_free(un->sd_fi_fifo_xb[i],
26749 			    sizeof (struct sd_fi_xb));
26750 			un->sd_fi_fifo_xb[i] = NULL;
26751 		}
26752 		if (arg != NULL) {
26753 			un->sd_fi_fifo_xb[i] =
26754 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
26755 			if (un->sd_fi_fifo_xb[i] == NULL) {
26756 				/* Alloc failed don't store anything */
26757 				break;
26758 			}
26759 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
26760 			    sizeof (struct sd_fi_xb), 0);
26761 
26762 			if (rval == -1) {
26763 				kmem_free(un->sd_fi_fifo_xb[i],
26764 				    sizeof (struct sd_fi_xb));
26765 				un->sd_fi_fifo_xb[i] = NULL;
26766 			}
26767 		} else {
26768 			SD_INFO(SD_LOG_IOERR, un,
26769 			    "sd_faultinjection_ioctl: xb null\n");
26770 		}
26771 		break;
26772 
26773 	case SDIOCINSERTUN:
26774 		/* Store a un struct to be pushed onto fifo */
26775 		SD_INFO(SD_LOG_SDTEST, un,
26776 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
26777 
26778 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26779 
26780 		sd_fault_injection_on = 0;
26781 
26782 		if (un->sd_fi_fifo_un[i] != NULL) {
26783 			kmem_free(un->sd_fi_fifo_un[i],
26784 			    sizeof (struct sd_fi_un));
26785 			un->sd_fi_fifo_un[i] = NULL;
26786 		}
26787 		if (arg != NULL) {
26788 			un->sd_fi_fifo_un[i] =
26789 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
26790 			if (un->sd_fi_fifo_un[i] == NULL) {
26791 				/* Alloc failed don't store anything */
26792 				break;
26793 			}
26794 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
26795 			    sizeof (struct sd_fi_un), 0);
26796 			if (rval == -1) {
26797 				kmem_free(un->sd_fi_fifo_un[i],
26798 				    sizeof (struct sd_fi_un));
26799 				un->sd_fi_fifo_un[i] = NULL;
26800 			}
26801 
26802 		} else {
26803 			SD_INFO(SD_LOG_IOERR, un,
26804 			    "sd_faultinjection_ioctl: un null\n");
26805 		}
26806 
26807 		break;
26808 
26809 	case SDIOCINSERTARQ:
26810 		/* Store a arq struct to be pushed onto fifo */
26811 		SD_INFO(SD_LOG_SDTEST, un,
26812 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
26813 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
26814 
26815 		sd_fault_injection_on = 0;
26816 
26817 		if (un->sd_fi_fifo_arq[i] != NULL) {
26818 			kmem_free(un->sd_fi_fifo_arq[i],
26819 			    sizeof (struct sd_fi_arq));
26820 			un->sd_fi_fifo_arq[i] = NULL;
26821 		}
26822 		if (arg != NULL) {
26823 			un->sd_fi_fifo_arq[i] =
26824 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
26825 			if (un->sd_fi_fifo_arq[i] == NULL) {
26826 				/* Alloc failed don't store anything */
26827 				break;
26828 			}
26829 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
26830 			    sizeof (struct sd_fi_arq), 0);
26831 			if (rval == -1) {
26832 				kmem_free(un->sd_fi_fifo_arq[i],
26833 				    sizeof (struct sd_fi_arq));
26834 				un->sd_fi_fifo_arq[i] = NULL;
26835 			}
26836 
26837 		} else {
26838 			SD_INFO(SD_LOG_IOERR, un,
26839 			    "sd_faultinjection_ioctl: arq null\n");
26840 		}
26841 
26842 		break;
26843 
26844 	case SDIOCPUSH:
26845 		/* Push stored xb, pkt, un, and arq onto fifo */
26846 		sd_fault_injection_on = 0;
26847 
26848 		if (arg != NULL) {
26849 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
26850 			if (rval != -1 &&
26851 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
26852 				un->sd_fi_fifo_end += i;
26853 			}
26854 		} else {
26855 			SD_INFO(SD_LOG_IOERR, un,
26856 			    "sd_faultinjection_ioctl: push arg null\n");
26857 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
26858 				un->sd_fi_fifo_end++;
26859 			}
26860 		}
26861 		SD_INFO(SD_LOG_IOERR, un,
26862 		    "sd_faultinjection_ioctl: push to end=%d\n",
26863 		    un->sd_fi_fifo_end);
26864 		break;
26865 
26866 	case SDIOCRETRIEVE:
26867 		/* Return buffer of log from Injection session */
26868 		SD_INFO(SD_LOG_SDTEST, un,
26869 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
26870 
26871 		sd_fault_injection_on = 0;
26872 
26873 		mutex_enter(&(un->un_fi_mutex));
26874 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
26875 		    un->sd_fi_buf_len+1, 0);
26876 		mutex_exit(&(un->un_fi_mutex));
26877 
26878 		if (rval == -1) {
26879 			/*
26880 			 * arg is possibly invalid setting
26881 			 * it to NULL for return
26882 			 */
26883 			arg = NULL;
26884 		}
26885 		break;
26886 	}
26887 
26888 	mutex_exit(SD_MUTEX(un));
26889 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
26890 			    " exit\n");
26891 }
26892 
26893 
26894 /*
26895  *    Function: sd_injection_log()
26896  *
26897  * Description: This routine adds buff to the already existing injection log
26898  *              for retrieval via faultinjection_ioctl for use in fault
26899  *              detection and recovery
26900  *
26901  *   Arguments: buf - the string to add to the log
26902  */
26903 
26904 static void
26905 sd_injection_log(char *buf, struct sd_lun *un)
26906 {
26907 	uint_t len;
26908 
26909 	ASSERT(un != NULL);
26910 	ASSERT(buf != NULL);
26911 
26912 	mutex_enter(&(un->un_fi_mutex));
26913 
26914 	len = min(strlen(buf), 255);
26915 	/* Add logged value to Injection log to be returned later */
26916 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
26917 		uint_t	offset = strlen((char *)un->sd_fi_log);
26918 		char *destp = (char *)un->sd_fi_log + offset;
26919 		int i;
26920 		for (i = 0; i < len; i++) {
26921 			*destp++ = *buf++;
26922 		}
26923 		un->sd_fi_buf_len += len;
26924 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
26925 	}
26926 
26927 	mutex_exit(&(un->un_fi_mutex));
26928 }
26929 
26930 
26931 /*
26932  *    Function: sd_faultinjection()
26933  *
26934  * Description: This routine takes the pkt and changes its
26935  *		content based on error injection scenerio.
26936  *
26937  *   Arguments: pktp	- packet to be changed
26938  */
26939 
26940 static void
26941 sd_faultinjection(struct scsi_pkt *pktp)
26942 {
26943 	uint_t i;
26944 	struct sd_fi_pkt *fi_pkt;
26945 	struct sd_fi_xb *fi_xb;
26946 	struct sd_fi_un *fi_un;
26947 	struct sd_fi_arq *fi_arq;
26948 	struct buf *bp;
26949 	struct sd_xbuf *xb;
26950 	struct sd_lun *un;
26951 
26952 	ASSERT(pktp != NULL);
26953 
26954 	/* pull bp xb and un from pktp */
26955 	bp = (struct buf *)pktp->pkt_private;
26956 	xb = SD_GET_XBUF(bp);
26957 	un = SD_GET_UN(bp);
26958 
26959 	ASSERT(un != NULL);
26960 
26961 	mutex_enter(SD_MUTEX(un));
26962 
26963 	SD_TRACE(SD_LOG_SDTEST, un,
26964 	    "sd_faultinjection: entry Injection from sdintr\n");
26965 
26966 	/* if injection is off return */
26967 	if (sd_fault_injection_on == 0 ||
26968 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
26969 		mutex_exit(SD_MUTEX(un));
26970 		return;
26971 	}
26972 
26973 
26974 	/* take next set off fifo */
26975 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
26976 
26977 	fi_pkt = un->sd_fi_fifo_pkt[i];
26978 	fi_xb = un->sd_fi_fifo_xb[i];
26979 	fi_un = un->sd_fi_fifo_un[i];
26980 	fi_arq = un->sd_fi_fifo_arq[i];
26981 
26982 
26983 	/* set variables accordingly */
26984 	/* set pkt if it was on fifo */
26985 	if (fi_pkt != NULL) {
26986 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
26987 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
26988 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
26989 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
26990 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
26991 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
26992 
26993 	}
26994 
26995 	/* set xb if it was on fifo */
26996 	if (fi_xb != NULL) {
26997 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
26998 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
26999 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
27000 		SD_CONDSET(xb, xb, xb_victim_retry_count,
27001 		    "xb_victim_retry_count");
27002 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
27003 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
27004 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
27005 
27006 		/* copy in block data from sense */
27007 		if (fi_xb->xb_sense_data[0] != -1) {
27008 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
27009 			    SENSE_LENGTH);
27010 		}
27011 
27012 		/* copy in extended sense codes */
27013 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
27014 		    "es_code");
27015 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
27016 		    "es_key");
27017 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
27018 		    "es_add_code");
27019 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
27020 		    es_qual_code, "es_qual_code");
27021 	}
27022 
27023 	/* set un if it was on fifo */
27024 	if (fi_un != NULL) {
27025 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
27026 		SD_CONDSET(un, un, un_ctype, "un_ctype");
27027 		SD_CONDSET(un, un, un_reset_retry_count,
27028 		    "un_reset_retry_count");
27029 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
27030 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
27031 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
27032 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
27033 		    "un_f_allow_bus_device_reset");
27034 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
27035 
27036 	}
27037 
27038 	/* copy in auto request sense if it was on fifo */
27039 	if (fi_arq != NULL) {
27040 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
27041 	}
27042 
27043 	/* free structs */
27044 	if (un->sd_fi_fifo_pkt[i] != NULL) {
27045 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
27046 	}
27047 	if (un->sd_fi_fifo_xb[i] != NULL) {
27048 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
27049 	}
27050 	if (un->sd_fi_fifo_un[i] != NULL) {
27051 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
27052 	}
27053 	if (un->sd_fi_fifo_arq[i] != NULL) {
27054 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
27055 	}
27056 
27057 	/*
27058 	 * kmem_free does not gurantee to set to NULL
27059 	 * since we uses these to determine if we set
27060 	 * values or not lets confirm they are always
27061 	 * NULL after free
27062 	 */
27063 	un->sd_fi_fifo_pkt[i] = NULL;
27064 	un->sd_fi_fifo_un[i] = NULL;
27065 	un->sd_fi_fifo_xb[i] = NULL;
27066 	un->sd_fi_fifo_arq[i] = NULL;
27067 
27068 	un->sd_fi_fifo_start++;
27069 
27070 	mutex_exit(SD_MUTEX(un));
27071 
27072 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
27073 }
27074 
27075 #endif /* SD_FAULT_INJECTION */
27076 
27077 /*
27078  * This routine is invoked in sd_unit_attach(). Before calling it, the
27079  * properties in conf file should be processed already, and "hotpluggable"
27080  * property was processed also.
27081  *
27082  * The sd driver distinguishes 3 different type of devices: removable media,
27083  * non-removable media, and hotpluggable. Below the differences are defined:
27084  *
27085  * 1. Device ID
27086  *
27087  *     The device ID of a device is used to identify this device. Refer to
27088  *     ddi_devid_register(9F).
27089  *
27090  *     For a non-removable media disk device which can provide 0x80 or 0x83
27091  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
27092  *     device ID is created to identify this device. For other non-removable
27093  *     media devices, a default device ID is created only if this device has
27094  *     at least 2 alter cylinders. Otherwise, this device has no devid.
27095  *
27096  *     -------------------------------------------------------
27097  *     removable media   hotpluggable  | Can Have Device ID
27098  *     -------------------------------------------------------
27099  *         false             false     |     Yes
27100  *         false             true      |     Yes
27101  *         true                x       |     No
27102  *     ------------------------------------------------------
27103  *
27104  *
27105  * 2. SCSI group 4 commands
27106  *
27107  *     In SCSI specs, only some commands in group 4 command set can use
27108  *     8-byte addresses that can be used to access >2TB storage spaces.
27109  *     Other commands have no such capability. Without supporting group4,
27110  *     it is impossible to make full use of storage spaces of a disk with
27111  *     capacity larger than 2TB.
27112  *
27113  *     -----------------------------------------------
27114  *     removable media   hotpluggable   LP64  |  Group
27115  *     -----------------------------------------------
27116  *           false          false       false |   1
27117  *           false          false       true  |   4
27118  *           false          true        false |   1
27119  *           false          true        true  |   4
27120  *           true             x           x   |   5
27121  *     -----------------------------------------------
27122  *
27123  *
27124  * 3. Check for VTOC Label
27125  *
27126  *     If a direct-access disk has no EFI label, sd will check if it has a
27127  *     valid VTOC label. Now, sd also does that check for removable media
27128  *     and hotpluggable devices.
27129  *
27130  *     --------------------------------------------------------------
27131  *     Direct-Access   removable media    hotpluggable |  Check Label
27132  *     -------------------------------------------------------------
27133  *         false          false           false        |   No
27134  *         false          false           true         |   No
27135  *         false          true            false        |   Yes
27136  *         false          true            true         |   Yes
27137  *         true            x                x          |   Yes
27138  *     --------------------------------------------------------------
27139  *
27140  *
27141  * 4. Building default VTOC label
27142  *
27143  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27144  *     If those devices have no valid VTOC label, sd(7d) will attempt to
27145  *     create default VTOC for them. Currently sd creates default VTOC label
27146  *     for all devices on x86 platform (VTOC_16), but only for removable
27147  *     media devices on SPARC (VTOC_8).
27148  *
27149  *     -----------------------------------------------------------
27150  *       removable media hotpluggable platform   |   Default Label
27151  *     -----------------------------------------------------------
27152  *             false          false    sparc     |     No
27153  *             false          true      x86      |     Yes
27154  *             false          true     sparc     |     Yes
27155  *             true             x        x       |     Yes
27156  *     ----------------------------------------------------------
27157  *
27158  *
27159  * 5. Supported blocksizes of target devices
27160  *
27161  *     Sd supports non-512-byte blocksize for removable media devices only.
27162  *     For other devices, only 512-byte blocksize is supported. This may be
27163  *     changed in near future because some RAID devices require non-512-byte
27164  *     blocksize
27165  *
27166  *     -----------------------------------------------------------
27167  *     removable media    hotpluggable    | non-512-byte blocksize
27168  *     -----------------------------------------------------------
27169  *           false          false         |   No
27170  *           false          true          |   No
27171  *           true             x           |   Yes
27172  *     -----------------------------------------------------------
27173  *
27174  *
27175  * 6. Automatic mount & unmount
27176  *
27177  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27178  *     if a device is removable media device. It return 1 for removable media
27179  *     devices, and 0 for others.
27180  *
27181  *     The automatic mounting subsystem should distinguish between the types
27182  *     of devices and apply automounting policies to each.
27183  *
27184  *
27185  * 7. fdisk partition management
27186  *
27187  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27188  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27189  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27190  *     fdisk partitions on both x86 and SPARC platform.
27191  *
27192  *     -----------------------------------------------------------
27193  *       platform   removable media  USB/1394  |  fdisk supported
27194  *     -----------------------------------------------------------
27195  *        x86         X               X        |       true
27196  *     ------------------------------------------------------------
27197  *        sparc       X               X        |       false
27198  *     ------------------------------------------------------------
27199  *
27200  *
27201  * 8. MBOOT/MBR
27202  *
27203  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27204  *     read/write mboot for removable media devices on sparc platform.
27205  *
27206  *     -----------------------------------------------------------
27207  *       platform   removable media  USB/1394  |  mboot supported
27208  *     -----------------------------------------------------------
27209  *        x86         X               X        |       true
27210  *     ------------------------------------------------------------
27211  *        sparc      false           false     |       false
27212  *        sparc      false           true      |       true
27213  *        sparc      true            false     |       true
27214  *        sparc      true            true      |       true
27215  *     ------------------------------------------------------------
27216  *
27217  *
27218  * 9.  error handling during opening device
27219  *
27220  *     If failed to open a disk device, an errno is returned. For some kinds
27221  *     of errors, different errno is returned depending on if this device is
27222  *     a removable media device. This brings USB/1394 hard disks in line with
27223  *     expected hard disk behavior. It is not expected that this breaks any
27224  *     application.
27225  *
27226  *     ------------------------------------------------------
27227  *       removable media    hotpluggable   |  errno
27228  *     ------------------------------------------------------
27229  *             false          false        |   EIO
27230  *             false          true         |   EIO
27231  *             true             x          |   ENXIO
27232  *     ------------------------------------------------------
27233  *
27234  *
27235  * 11. ioctls: DKIOCEJECT, CDROMEJECT
27236  *
27237  *     These IOCTLs are applicable only to removable media devices.
27238  *
27239  *     -----------------------------------------------------------
27240  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27241  *     -----------------------------------------------------------
27242  *             false          false        |     No
27243  *             false          true         |     No
27244  *             true            x           |     Yes
27245  *     -----------------------------------------------------------
27246  *
27247  *
27248  * 12. Kstats for partitions
27249  *
27250  *     sd creates partition kstat for non-removable media devices. USB and
27251  *     Firewire hard disks now have partition kstats
27252  *
27253  *      ------------------------------------------------------
27254  *       removable media    hotpluggable   |   kstat
27255  *      ------------------------------------------------------
27256  *             false          false        |    Yes
27257  *             false          true         |    Yes
27258  *             true             x          |    No
27259  *       ------------------------------------------------------
27260  *
27261  *
27262  * 13. Removable media & hotpluggable properties
27263  *
27264  *     Sd driver creates a "removable-media" property for removable media
27265  *     devices. Parent nexus drivers create a "hotpluggable" property if
27266  *     it supports hotplugging.
27267  *
27268  *     ---------------------------------------------------------------------
27269  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27270  *     ---------------------------------------------------------------------
27271  *       false            false       |    No                   No
27272  *       false            true        |    No                   Yes
27273  *       true             false       |    Yes                  No
27274  *       true             true        |    Yes                  Yes
27275  *     ---------------------------------------------------------------------
27276  *
27277  *
27278  * 14. Power Management
27279  *
27280  *     sd only power manages removable media devices or devices that support
27281  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27282  *
27283  *     A parent nexus that supports hotplugging can also set "pm-capable"
27284  *     if the disk can be power managed.
27285  *
27286  *     ------------------------------------------------------------
27287  *       removable media hotpluggable pm-capable  |   power manage
27288  *     ------------------------------------------------------------
27289  *             false          false     false     |     No
27290  *             false          false     true      |     Yes
27291  *             false          true      false     |     No
27292  *             false          true      true      |     Yes
27293  *             true             x        x        |     Yes
27294  *     ------------------------------------------------------------
27295  *
27296  *      USB and firewire hard disks can now be power managed independently
27297  *      of the framebuffer
27298  *
27299  *
27300  * 15. Support for USB disks with capacity larger than 1TB
27301  *
27302  *     Currently, sd doesn't permit a fixed disk device with capacity
27303  *     larger than 1TB to be used in a 32-bit operating system environment.
27304  *     However, sd doesn't do that for removable media devices. Instead, it
27305  *     assumes that removable media devices cannot have a capacity larger
27306  *     than 1TB. Therefore, using those devices on 32-bit system is partially
27307  *     supported, which can cause some unexpected results.
27308  *
27309  *     ---------------------------------------------------------------------
27310  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27311  *     ---------------------------------------------------------------------
27312  *             false          false  |   true         |     no
27313  *             false          true   |   true         |     no
27314  *             true           false  |   true         |     Yes
27315  *             true           true   |   true         |     Yes
27316  *     ---------------------------------------------------------------------
27317  *
27318  *
27319  * 16. Check write-protection at open time
27320  *
27321  *     When a removable media device is being opened for writing without NDELAY
27322  *     flag, sd will check if this device is writable. If attempting to open
27323  *     without NDELAY flag a write-protected device, this operation will abort.
27324  *
27325  *     ------------------------------------------------------------
27326  *       removable media    USB/1394   |   WP Check
27327  *     ------------------------------------------------------------
27328  *             false          false    |     No
27329  *             false          true     |     No
27330  *             true           false    |     Yes
27331  *             true           true     |     Yes
27332  *     ------------------------------------------------------------
27333  *
27334  *
27335  * 17. syslog when corrupted VTOC is encountered
27336  *
27337  *      Currently, if an invalid VTOC is encountered, sd only print syslog
27338  *      for fixed SCSI disks.
27339  *     ------------------------------------------------------------
27340  *       removable media    USB/1394   |   print syslog
27341  *     ------------------------------------------------------------
27342  *             false          false    |     Yes
27343  *             false          true     |     No
27344  *             true           false    |     No
27345  *             true           true     |     No
27346  *     ------------------------------------------------------------
27347  */
27348 static void
27349 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27350 {
27351 	int	pm_capable_prop;
27352 
27353 	ASSERT(un->un_sd);
27354 	ASSERT(un->un_sd->sd_inq);
27355 
27356 	/*
27357 	 * Enable SYNC CACHE support for all devices.
27358 	 */
27359 	un->un_f_sync_cache_supported = TRUE;
27360 
27361 	if (un->un_sd->sd_inq->inq_rmb) {
27362 		/*
27363 		 * The media of this device is removable. And for this kind
27364 		 * of devices, it is possible to change medium after opening
27365 		 * devices. Thus we should support this operation.
27366 		 */
27367 		un->un_f_has_removable_media = TRUE;
27368 
27369 		/*
27370 		 * support non-512-byte blocksize of removable media devices
27371 		 */
27372 		un->un_f_non_devbsize_supported = TRUE;
27373 
27374 		/*
27375 		 * Assume that all removable media devices support DOOR_LOCK
27376 		 */
27377 		un->un_f_doorlock_supported = TRUE;
27378 
27379 		/*
27380 		 * For a removable media device, it is possible to be opened
27381 		 * with NDELAY flag when there is no media in drive, in this
27382 		 * case we don't care if device is writable. But if without
27383 		 * NDELAY flag, we need to check if media is write-protected.
27384 		 */
27385 		un->un_f_chk_wp_open = TRUE;
27386 
27387 		/*
27388 		 * need to start a SCSI watch thread to monitor media state,
27389 		 * when media is being inserted or ejected, notify syseventd.
27390 		 */
27391 		un->un_f_monitor_media_state = TRUE;
27392 
27393 		/*
27394 		 * Some devices don't support START_STOP_UNIT command.
27395 		 * Therefore, we'd better check if a device supports it
27396 		 * before sending it.
27397 		 */
27398 		un->un_f_check_start_stop = TRUE;
27399 
27400 		/*
27401 		 * support eject media ioctl:
27402 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27403 		 */
27404 		un->un_f_eject_media_supported = TRUE;
27405 
27406 		/*
27407 		 * Because many removable-media devices don't support
27408 		 * LOG_SENSE, we couldn't use this command to check if
27409 		 * a removable media device support power-management.
27410 		 * We assume that they support power-management via
27411 		 * START_STOP_UNIT command and can be spun up and down
27412 		 * without limitations.
27413 		 */
27414 		un->un_f_pm_supported = TRUE;
27415 
27416 		/*
27417 		 * Need to create a zero length (Boolean) property
27418 		 * removable-media for the removable media devices.
27419 		 * Note that the return value of the property is not being
27420 		 * checked, since if unable to create the property
27421 		 * then do not want the attach to fail altogether. Consistent
27422 		 * with other property creation in attach.
27423 		 */
27424 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
27425 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
27426 
27427 	} else {
27428 		/*
27429 		 * create device ID for device
27430 		 */
27431 		un->un_f_devid_supported = TRUE;
27432 
27433 		/*
27434 		 * Spin up non-removable-media devices once it is attached
27435 		 */
27436 		un->un_f_attach_spinup = TRUE;
27437 
27438 		/*
27439 		 * According to SCSI specification, Sense data has two kinds of
27440 		 * format: fixed format, and descriptor format. At present, we
27441 		 * don't support descriptor format sense data for removable
27442 		 * media.
27443 		 */
27444 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
27445 			un->un_f_descr_format_supported = TRUE;
27446 		}
27447 
27448 		/*
27449 		 * kstats are created only for non-removable media devices.
27450 		 *
27451 		 * Set this in sd.conf to 0 in order to disable kstats.  The
27452 		 * default is 1, so they are enabled by default.
27453 		 */
27454 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
27455 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
27456 		    "enable-partition-kstats", 1));
27457 
27458 		/*
27459 		 * Check if HBA has set the "pm-capable" property.
27460 		 * If "pm-capable" exists and is non-zero then we can
27461 		 * power manage the device without checking the start/stop
27462 		 * cycle count log sense page.
27463 		 *
27464 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
27465 		 * then we should not power manage the device.
27466 		 *
27467 		 * If "pm-capable" doesn't exist then pm_capable_prop will
27468 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
27469 		 * sd will check the start/stop cycle count log sense page
27470 		 * and power manage the device if the cycle count limit has
27471 		 * not been exceeded.
27472 		 */
27473 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
27474 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
27475 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
27476 			un->un_f_log_sense_supported = TRUE;
27477 		} else {
27478 			/*
27479 			 * pm-capable property exists.
27480 			 *
27481 			 * Convert "TRUE" values for pm_capable_prop to
27482 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
27483 			 * later. "TRUE" values are any values except
27484 			 * SD_PM_CAPABLE_FALSE (0) and
27485 			 * SD_PM_CAPABLE_UNDEFINED (-1)
27486 			 */
27487 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
27488 				un->un_f_log_sense_supported = FALSE;
27489 			} else {
27490 				un->un_f_pm_supported = TRUE;
27491 			}
27492 
27493 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
27494 			    "sd_unit_attach: un:0x%p pm-capable "
27495 			    "property set to %d.\n", un, un->un_f_pm_supported);
27496 		}
27497 	}
27498 
27499 	if (un->un_f_is_hotpluggable) {
27500 
27501 		/*
27502 		 * Have to watch hotpluggable devices as well, since
27503 		 * that's the only way for userland applications to
27504 		 * detect hot removal while device is busy/mounted.
27505 		 */
27506 		un->un_f_monitor_media_state = TRUE;
27507 
27508 		un->un_f_check_start_stop = TRUE;
27509 
27510 	}
27511 }
27512 
27513 /*
27514  * sd_tg_rdwr:
27515  * Provides rdwr access for cmlb via sd_tgops. The start_block is
27516  * in sys block size, req_length in bytes.
27517  *
27518  */
27519 static int
27520 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
27521     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
27522 {
27523 	struct sd_lun *un;
27524 	int path_flag = (int)(uintptr_t)tg_cookie;
27525 	char *dkl = NULL;
27526 	diskaddr_t real_addr = start_block;
27527 	diskaddr_t first_byte, end_block;
27528 
27529 	size_t	buffer_size = reqlength;
27530 	int rval;
27531 	diskaddr_t	cap;
27532 	uint32_t	lbasize;
27533 
27534 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27535 	if (un == NULL)
27536 		return (ENXIO);
27537 
27538 	if (cmd != TG_READ && cmd != TG_WRITE)
27539 		return (EINVAL);
27540 
27541 	mutex_enter(SD_MUTEX(un));
27542 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
27543 		mutex_exit(SD_MUTEX(un));
27544 		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27545 		    &lbasize, path_flag);
27546 		if (rval != 0)
27547 			return (rval);
27548 		mutex_enter(SD_MUTEX(un));
27549 		sd_update_block_info(un, lbasize, cap);
27550 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
27551 			mutex_exit(SD_MUTEX(un));
27552 			return (EIO);
27553 		}
27554 	}
27555 
27556 	if (NOT_DEVBSIZE(un)) {
27557 		/*
27558 		 * sys_blocksize != tgt_blocksize, need to re-adjust
27559 		 * blkno and save the index to beginning of dk_label
27560 		 */
27561 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
27562 		real_addr = first_byte / un->un_tgt_blocksize;
27563 
27564 		end_block = (first_byte + reqlength +
27565 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
27566 
27567 		/* round up buffer size to multiple of target block size */
27568 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
27569 
27570 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
27571 		    "label_addr: 0x%x allocation size: 0x%x\n",
27572 		    real_addr, buffer_size);
27573 
27574 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
27575 		    (reqlength % un->un_tgt_blocksize) != 0)
27576 			/* the request is not aligned */
27577 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
27578 	}
27579 
27580 	/*
27581 	 * The MMC standard allows READ CAPACITY to be
27582 	 * inaccurate by a bounded amount (in the interest of
27583 	 * response latency).  As a result, failed READs are
27584 	 * commonplace (due to the reading of metadata and not
27585 	 * data). Depending on the per-Vendor/drive Sense data,
27586 	 * the failed READ can cause many (unnecessary) retries.
27587 	 */
27588 
27589 	if (ISCD(un) && (cmd == TG_READ) &&
27590 	    (un->un_f_blockcount_is_valid == TRUE) &&
27591 	    ((start_block == (un->un_blockcount - 1))||
27592 	    (start_block == (un->un_blockcount - 2)))) {
27593 			path_flag = SD_PATH_DIRECT_PRIORITY;
27594 	}
27595 
27596 	mutex_exit(SD_MUTEX(un));
27597 	if (cmd == TG_READ) {
27598 		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
27599 		    buffer_size, real_addr, path_flag);
27600 		if (dkl != NULL)
27601 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
27602 			    real_addr), bufaddr, reqlength);
27603 	} else {
27604 		if (dkl) {
27605 			rval = sd_send_scsi_READ(un, dkl, buffer_size,
27606 			    real_addr, path_flag);
27607 			if (rval) {
27608 				kmem_free(dkl, buffer_size);
27609 				return (rval);
27610 			}
27611 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
27612 			    real_addr), reqlength);
27613 		}
27614 		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
27615 		    buffer_size, real_addr, path_flag);
27616 	}
27617 
27618 	if (dkl != NULL)
27619 		kmem_free(dkl, buffer_size);
27620 
27621 	return (rval);
27622 }
27623 
27624 
27625 static int
27626 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
27627 {
27628 
27629 	struct sd_lun *un;
27630 	diskaddr_t	cap;
27631 	uint32_t	lbasize;
27632 	int		path_flag = (int)(uintptr_t)tg_cookie;
27633 	int		ret = 0;
27634 
27635 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27636 	if (un == NULL)
27637 		return (ENXIO);
27638 
27639 	switch (cmd) {
27640 	case TG_GETPHYGEOM:
27641 	case TG_GETVIRTGEOM:
27642 	case TG_GETCAPACITY:
27643 	case  TG_GETBLOCKSIZE:
27644 		mutex_enter(SD_MUTEX(un));
27645 
27646 		if ((un->un_f_blockcount_is_valid == TRUE) &&
27647 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
27648 			cap = un->un_blockcount;
27649 			lbasize = un->un_tgt_blocksize;
27650 			mutex_exit(SD_MUTEX(un));
27651 		} else {
27652 			mutex_exit(SD_MUTEX(un));
27653 			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27654 			    &lbasize, path_flag);
27655 			if (ret != 0)
27656 				return (ret);
27657 			mutex_enter(SD_MUTEX(un));
27658 			sd_update_block_info(un, lbasize, cap);
27659 			if ((un->un_f_blockcount_is_valid == FALSE) ||
27660 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
27661 				mutex_exit(SD_MUTEX(un));
27662 				return (EIO);
27663 			}
27664 			mutex_exit(SD_MUTEX(un));
27665 		}
27666 
27667 		if (cmd == TG_GETCAPACITY) {
27668 			*(diskaddr_t *)arg = cap;
27669 			return (0);
27670 		}
27671 
27672 		if (cmd == TG_GETBLOCKSIZE) {
27673 			*(uint32_t *)arg = lbasize;
27674 			return (0);
27675 		}
27676 
27677 		if (cmd == TG_GETPHYGEOM)
27678 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
27679 			    cap, lbasize, path_flag);
27680 		else
27681 			/* TG_GETVIRTGEOM */
27682 			ret = sd_get_virtual_geometry(un,
27683 			    (cmlb_geom_t *)arg, cap, lbasize);
27684 
27685 		return (ret);
27686 
27687 	case TG_GETATTR:
27688 		mutex_enter(SD_MUTEX(un));
27689 		((tg_attribute_t *)arg)->media_is_writable =
27690 		    un->un_f_mmc_writable_media;
27691 		mutex_exit(SD_MUTEX(un));
27692 		return (0);
27693 	default:
27694 		return (ENOTTY);
27695 
27696 	}
27697 
27698 }
27699