xref: /titanic_50/usr/src/uts/common/io/scsi/targets/sd.c (revision dc20a3024900c47dd2ee44b9707e6df38f7d62a5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/kstat.h>
41 #include <sys/vtrace.h>
42 #include <sys/note.h>
43 #include <sys/thread.h>
44 #include <sys/proc.h>
45 #include <sys/efi_partition.h>
46 #include <sys/var.h>
47 #include <sys/aio_req.h>
48 
49 #ifdef __lock_lint
50 #define	_LP64
51 #define	__amd64
52 #endif
53 
54 #if (defined(__fibre))
55 /* Note: is there a leadville version of the following? */
56 #include <sys/fc4/fcal_linkapp.h>
57 #endif
58 #include <sys/taskq.h>
59 #include <sys/uuid.h>
60 #include <sys/byteorder.h>
61 #include <sys/sdt.h>
62 
63 #include "sd_xbuf.h"
64 
65 #include <sys/scsi/targets/sddef.h>
66 #include <sys/cmlb.h>
67 
68 
69 /*
70  * Loadable module info.
71  */
72 #if (defined(__fibre))
73 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
74 char _depends_on[]	= "misc/scsi misc/cmlb drv/fcp";
75 #else
76 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
77 char _depends_on[]	= "misc/scsi misc/cmlb";
78 #endif
79 
80 /*
81  * Define the interconnect type, to allow the driver to distinguish
82  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
83  *
84  * This is really for backward compatibility. In the future, the driver
85  * should actually check the "interconnect-type" property as reported by
86  * the HBA; however at present this property is not defined by all HBAs,
87  * so we will use this #define (1) to permit the driver to run in
88  * backward-compatibility mode; and (2) to print a notification message
89  * if an FC HBA does not support the "interconnect-type" property.  The
90  * behavior of the driver will be to assume parallel SCSI behaviors unless
91  * the "interconnect-type" property is defined by the HBA **AND** has a
92  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
93  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
94  * Channel behaviors (as per the old ssd).  (Note that the
95  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
96  * will result in the driver assuming parallel SCSI behaviors.)
97  *
98  * (see common/sys/scsi/impl/services.h)
99  *
100  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
101  * since some FC HBAs may already support that, and there is some code in
102  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
103  * default would confuse that code, and besides things should work fine
104  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
105  * "interconnect_type" property.
106  *
107  */
108 #if (defined(__fibre))
109 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
110 #else
111 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
112 #endif
113 
114 /*
115  * The name of the driver, established from the module name in _init.
116  */
117 static	char *sd_label			= NULL;
118 
119 /*
120  * Driver name is unfortunately prefixed on some driver.conf properties.
121  */
122 #if (defined(__fibre))
123 #define	sd_max_xfer_size		ssd_max_xfer_size
124 #define	sd_config_list			ssd_config_list
125 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
126 static	char *sd_config_list		= "ssd-config-list";
127 #else
128 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
129 static	char *sd_config_list		= "sd-config-list";
130 #endif
131 
132 /*
133  * Driver global variables
134  */
135 
136 #if (defined(__fibre))
137 /*
138  * These #defines are to avoid namespace collisions that occur because this
139  * code is currently used to compile two separate driver modules: sd and ssd.
140  * All global variables need to be treated this way (even if declared static)
141  * in order to allow the debugger to resolve the names properly.
142  * It is anticipated that in the near future the ssd module will be obsoleted,
143  * at which time this namespace issue should go away.
144  */
145 #define	sd_state			ssd_state
146 #define	sd_io_time			ssd_io_time
147 #define	sd_failfast_enable		ssd_failfast_enable
148 #define	sd_ua_retry_count		ssd_ua_retry_count
149 #define	sd_report_pfa			ssd_report_pfa
150 #define	sd_max_throttle			ssd_max_throttle
151 #define	sd_min_throttle			ssd_min_throttle
152 #define	sd_rot_delay			ssd_rot_delay
153 
154 #define	sd_retry_on_reservation_conflict	\
155 					ssd_retry_on_reservation_conflict
156 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
157 #define	sd_resv_conflict_name		ssd_resv_conflict_name
158 
159 #define	sd_component_mask		ssd_component_mask
160 #define	sd_level_mask			ssd_level_mask
161 #define	sd_debug_un			ssd_debug_un
162 #define	sd_error_level			ssd_error_level
163 
164 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
165 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
166 
167 #define	sd_tr				ssd_tr
168 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
169 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
170 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
171 #define	sd_check_media_time		ssd_check_media_time
172 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
173 #define	sd_label_mutex			ssd_label_mutex
174 #define	sd_detach_mutex			ssd_detach_mutex
175 #define	sd_log_buf			ssd_log_buf
176 #define	sd_log_mutex			ssd_log_mutex
177 
178 #define	sd_disk_table			ssd_disk_table
179 #define	sd_disk_table_size		ssd_disk_table_size
180 #define	sd_sense_mutex			ssd_sense_mutex
181 #define	sd_cdbtab			ssd_cdbtab
182 
183 #define	sd_cb_ops			ssd_cb_ops
184 #define	sd_ops				ssd_ops
185 #define	sd_additional_codes		ssd_additional_codes
186 #define	sd_tgops			ssd_tgops
187 
188 #define	sd_minor_data			ssd_minor_data
189 #define	sd_minor_data_efi		ssd_minor_data_efi
190 
191 #define	sd_tq				ssd_tq
192 #define	sd_wmr_tq			ssd_wmr_tq
193 #define	sd_taskq_name			ssd_taskq_name
194 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
195 #define	sd_taskq_minalloc		ssd_taskq_minalloc
196 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
197 
198 #define	sd_dump_format_string		ssd_dump_format_string
199 
200 #define	sd_iostart_chain		ssd_iostart_chain
201 #define	sd_iodone_chain			ssd_iodone_chain
202 
203 #define	sd_pm_idletime			ssd_pm_idletime
204 
205 #define	sd_force_pm_supported		ssd_force_pm_supported
206 
207 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
208 
209 #endif
210 
211 
212 #ifdef	SDDEBUG
213 int	sd_force_pm_supported		= 0;
214 #endif	/* SDDEBUG */
215 
216 void *sd_state				= NULL;
217 int sd_io_time				= SD_IO_TIME;
218 int sd_failfast_enable			= 1;
219 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
220 int sd_report_pfa			= 1;
221 int sd_max_throttle			= SD_MAX_THROTTLE;
222 int sd_min_throttle			= SD_MIN_THROTTLE;
223 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
224 int sd_qfull_throttle_enable		= TRUE;
225 
226 int sd_retry_on_reservation_conflict	= 1;
227 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
228 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
229 
230 static int sd_dtype_optical_bind	= -1;
231 
232 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
233 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
234 
235 /*
236  * Global data for debug logging. To enable debug printing, sd_component_mask
237  * and sd_level_mask should be set to the desired bit patterns as outlined in
238  * sddef.h.
239  */
240 uint_t	sd_component_mask		= 0x0;
241 uint_t	sd_level_mask			= 0x0;
242 struct	sd_lun *sd_debug_un		= NULL;
243 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
244 
245 /* Note: these may go away in the future... */
246 static uint32_t	sd_xbuf_active_limit	= 512;
247 static uint32_t sd_xbuf_reserve_limit	= 16;
248 
249 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
250 
251 /*
252  * Timer value used to reset the throttle after it has been reduced
253  * (typically in response to TRAN_BUSY or STATUS_QFULL)
254  */
255 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
256 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
257 
258 /*
259  * Interval value associated with the media change scsi watch.
260  */
261 static int sd_check_media_time		= 3000000;
262 
263 /*
264  * Wait value used for in progress operations during a DDI_SUSPEND
265  */
266 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
267 
268 /*
269  * sd_label_mutex protects a static buffer used in the disk label
270  * component of the driver
271  */
272 static kmutex_t sd_label_mutex;
273 
274 /*
275  * sd_detach_mutex protects un_layer_count, un_detach_count, and
276  * un_opens_in_progress in the sd_lun structure.
277  */
278 static kmutex_t sd_detach_mutex;
279 
280 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
281 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
282 
283 /*
284  * Global buffer and mutex for debug logging
285  */
286 static char	sd_log_buf[1024];
287 static kmutex_t	sd_log_mutex;
288 
289 /*
290  * Structs and globals for recording attached lun information.
291  * This maintains a chain. Each node in the chain represents a SCSI controller.
292  * The structure records the number of luns attached to each target connected
293  * with the controller.
294  * For parallel scsi device only.
295  */
296 struct sd_scsi_hba_tgt_lun {
297 	struct sd_scsi_hba_tgt_lun	*next;
298 	dev_info_t			*pdip;
299 	int				nlun[NTARGETS_WIDE];
300 };
301 
302 /*
303  * Flag to indicate the lun is attached or detached
304  */
305 #define	SD_SCSI_LUN_ATTACH	0
306 #define	SD_SCSI_LUN_DETACH	1
307 
308 static kmutex_t	sd_scsi_target_lun_mutex;
309 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
312     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
313 
314 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
315     sd_scsi_target_lun_head))
316 
317 /*
318  * "Smart" Probe Caching structs, globals, #defines, etc.
319  * For parallel scsi and non-self-identify device only.
320  */
321 
322 /*
323  * The following resources and routines are implemented to support
324  * "smart" probing, which caches the scsi_probe() results in an array,
325  * in order to help avoid long probe times.
326  */
327 struct sd_scsi_probe_cache {
328 	struct	sd_scsi_probe_cache	*next;
329 	dev_info_t	*pdip;
330 	int		cache[NTARGETS_WIDE];
331 };
332 
333 static kmutex_t	sd_scsi_probe_cache_mutex;
334 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
335 
336 /*
337  * Really we only need protection on the head of the linked list, but
338  * better safe than sorry.
339  */
340 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
341     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
342 
343 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
344     sd_scsi_probe_cache_head))
345 
346 
347 /*
348  * Vendor specific data name property declarations
349  */
350 
351 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
352 
353 static sd_tunables seagate_properties = {
354 	SEAGATE_THROTTLE_VALUE,
355 	0,
356 	0,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0
363 };
364 
365 
366 static sd_tunables fujitsu_properties = {
367 	FUJITSU_THROTTLE_VALUE,
368 	0,
369 	0,
370 	0,
371 	0,
372 	0,
373 	0,
374 	0,
375 	0
376 };
377 
378 static sd_tunables ibm_properties = {
379 	IBM_THROTTLE_VALUE,
380 	0,
381 	0,
382 	0,
383 	0,
384 	0,
385 	0,
386 	0,
387 	0
388 };
389 
390 static sd_tunables purple_properties = {
391 	PURPLE_THROTTLE_VALUE,
392 	0,
393 	0,
394 	PURPLE_BUSY_RETRIES,
395 	PURPLE_RESET_RETRY_COUNT,
396 	PURPLE_RESERVE_RELEASE_TIME,
397 	0,
398 	0,
399 	0
400 };
401 
402 static sd_tunables sve_properties = {
403 	SVE_THROTTLE_VALUE,
404 	0,
405 	0,
406 	SVE_BUSY_RETRIES,
407 	SVE_RESET_RETRY_COUNT,
408 	SVE_RESERVE_RELEASE_TIME,
409 	SVE_MIN_THROTTLE_VALUE,
410 	SVE_DISKSORT_DISABLED_FLAG,
411 	0
412 };
413 
414 static sd_tunables maserati_properties = {
415 	0,
416 	0,
417 	0,
418 	0,
419 	0,
420 	0,
421 	0,
422 	MASERATI_DISKSORT_DISABLED_FLAG,
423 	MASERATI_LUN_RESET_ENABLED_FLAG
424 };
425 
426 static sd_tunables pirus_properties = {
427 	PIRUS_THROTTLE_VALUE,
428 	0,
429 	PIRUS_NRR_COUNT,
430 	PIRUS_BUSY_RETRIES,
431 	PIRUS_RESET_RETRY_COUNT,
432 	0,
433 	PIRUS_MIN_THROTTLE_VALUE,
434 	PIRUS_DISKSORT_DISABLED_FLAG,
435 	PIRUS_LUN_RESET_ENABLED_FLAG
436 };
437 
438 #endif
439 
440 #if (defined(__sparc) && !defined(__fibre)) || \
441 	(defined(__i386) || defined(__amd64))
442 
443 
444 static sd_tunables elite_properties = {
445 	ELITE_THROTTLE_VALUE,
446 	0,
447 	0,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	0
454 };
455 
456 static sd_tunables st31200n_properties = {
457 	ST31200N_THROTTLE_VALUE,
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	0
466 };
467 
468 #endif /* Fibre or not */
469 
470 static sd_tunables lsi_properties_scsi = {
471 	LSI_THROTTLE_VALUE,
472 	0,
473 	LSI_NOTREADY_RETRIES,
474 	0,
475 	0,
476 	0,
477 	0,
478 	0,
479 	0
480 };
481 
482 static sd_tunables symbios_properties = {
483 	SYMBIOS_THROTTLE_VALUE,
484 	0,
485 	SYMBIOS_NOTREADY_RETRIES,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0,
491 	0
492 };
493 
494 static sd_tunables lsi_properties = {
495 	0,
496 	0,
497 	LSI_NOTREADY_RETRIES,
498 	0,
499 	0,
500 	0,
501 	0,
502 	0,
503 	0
504 };
505 
506 static sd_tunables lsi_oem_properties = {
507 	0,
508 	0,
509 	LSI_OEM_NOTREADY_RETRIES,
510 	0,
511 	0,
512 	0,
513 	0,
514 	0,
515 	0,
516 	1
517 };
518 
519 
520 
521 #if (defined(SD_PROP_TST))
522 
523 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
524 #define	SD_TST_THROTTLE_VAL	16
525 #define	SD_TST_NOTREADY_VAL	12
526 #define	SD_TST_BUSY_VAL		60
527 #define	SD_TST_RST_RETRY_VAL	36
528 #define	SD_TST_RSV_REL_TIME	60
529 
530 static sd_tunables tst_properties = {
531 	SD_TST_THROTTLE_VAL,
532 	SD_TST_CTYPE_VAL,
533 	SD_TST_NOTREADY_VAL,
534 	SD_TST_BUSY_VAL,
535 	SD_TST_RST_RETRY_VAL,
536 	SD_TST_RSV_REL_TIME,
537 	0,
538 	0,
539 	0
540 };
541 #endif
542 
543 /* This is similar to the ANSI toupper implementation */
544 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
545 
546 /*
547  * Static Driver Configuration Table
548  *
549  * This is the table of disks which need throttle adjustment (or, perhaps
550  * something else as defined by the flags at a future time.)  device_id
551  * is a string consisting of concatenated vid (vendor), pid (product/model)
552  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
553  * the parts of the string are as defined by the sizes in the scsi_inquiry
554  * structure.  Device type is searched as far as the device_id string is
555  * defined.  Flags defines which values are to be set in the driver from the
556  * properties list.
557  *
558  * Entries below which begin and end with a "*" are a special case.
559  * These do not have a specific vendor, and the string which follows
560  * can appear anywhere in the 16 byte PID portion of the inquiry data.
561  *
562  * Entries below which begin and end with a " " (blank) are a special
563  * case. The comparison function will treat multiple consecutive blanks
564  * as equivalent to a single blank. For example, this causes a
565  * sd_disk_table entry of " NEC CDROM " to match a device's id string
566  * of  "NEC       CDROM".
567  *
568  * Note: The MD21 controller type has been obsoleted.
569  *	 ST318202F is a Legacy device
570  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
571  *	 made with an FC connection. The entries here are a legacy.
572  */
573 static sd_disk_config_t sd_disk_table[] = {
574 #if defined(__fibre) || defined(__i386) || defined(__amd64)
575 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
576 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
577 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
578 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
579 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
580 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
581 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
582 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
583 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
584 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
585 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
586 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
587 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
588 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
589 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
590 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
591 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
592 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
593 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
594 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
595 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
596 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
597 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
598 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
599 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
600 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
601 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
602 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
603 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
604 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
605 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
606 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
607 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
608 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
609 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
610 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
611 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
612 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
613 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
614 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
615 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
616 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
617 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
618 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
619 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
620 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
621 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
622 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
623 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
624 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
625 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
626 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
627 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
628 			SD_CONF_BSET_BSY_RETRY_COUNT|
629 			SD_CONF_BSET_RST_RETRIES|
630 			SD_CONF_BSET_RSV_REL_TIME,
631 		&purple_properties },
632 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
633 		SD_CONF_BSET_BSY_RETRY_COUNT|
634 		SD_CONF_BSET_RST_RETRIES|
635 		SD_CONF_BSET_RSV_REL_TIME|
636 		SD_CONF_BSET_MIN_THROTTLE|
637 		SD_CONF_BSET_DISKSORT_DISABLED,
638 		&sve_properties },
639 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
640 			SD_CONF_BSET_BSY_RETRY_COUNT|
641 			SD_CONF_BSET_RST_RETRIES|
642 			SD_CONF_BSET_RSV_REL_TIME,
643 		&purple_properties },
644 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
645 		SD_CONF_BSET_LUN_RESET_ENABLED,
646 		&maserati_properties },
647 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
648 		SD_CONF_BSET_NRR_COUNT|
649 		SD_CONF_BSET_BSY_RETRY_COUNT|
650 		SD_CONF_BSET_RST_RETRIES|
651 		SD_CONF_BSET_MIN_THROTTLE|
652 		SD_CONF_BSET_DISKSORT_DISABLED|
653 		SD_CONF_BSET_LUN_RESET_ENABLED,
654 		&pirus_properties },
655 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
656 		SD_CONF_BSET_NRR_COUNT|
657 		SD_CONF_BSET_BSY_RETRY_COUNT|
658 		SD_CONF_BSET_RST_RETRIES|
659 		SD_CONF_BSET_MIN_THROTTLE|
660 		SD_CONF_BSET_DISKSORT_DISABLED|
661 		SD_CONF_BSET_LUN_RESET_ENABLED,
662 		&pirus_properties },
663 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
664 		SD_CONF_BSET_NRR_COUNT|
665 		SD_CONF_BSET_BSY_RETRY_COUNT|
666 		SD_CONF_BSET_RST_RETRIES|
667 		SD_CONF_BSET_MIN_THROTTLE|
668 		SD_CONF_BSET_DISKSORT_DISABLED|
669 		SD_CONF_BSET_LUN_RESET_ENABLED,
670 		&pirus_properties },
671 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
672 		SD_CONF_BSET_NRR_COUNT|
673 		SD_CONF_BSET_BSY_RETRY_COUNT|
674 		SD_CONF_BSET_RST_RETRIES|
675 		SD_CONF_BSET_MIN_THROTTLE|
676 		SD_CONF_BSET_DISKSORT_DISABLED|
677 		SD_CONF_BSET_LUN_RESET_ENABLED,
678 		&pirus_properties },
679 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
680 		SD_CONF_BSET_NRR_COUNT|
681 		SD_CONF_BSET_BSY_RETRY_COUNT|
682 		SD_CONF_BSET_RST_RETRIES|
683 		SD_CONF_BSET_MIN_THROTTLE|
684 		SD_CONF_BSET_DISKSORT_DISABLED|
685 		SD_CONF_BSET_LUN_RESET_ENABLED,
686 		&pirus_properties },
687 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
688 		SD_CONF_BSET_NRR_COUNT|
689 		SD_CONF_BSET_BSY_RETRY_COUNT|
690 		SD_CONF_BSET_RST_RETRIES|
691 		SD_CONF_BSET_MIN_THROTTLE|
692 		SD_CONF_BSET_DISKSORT_DISABLED|
693 		SD_CONF_BSET_LUN_RESET_ENABLED,
694 		&pirus_properties },
695 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
696 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
697 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
698 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
699 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
700 #endif /* fibre or NON-sparc platforms */
701 #if ((defined(__sparc) && !defined(__fibre)) ||\
702 	(defined(__i386) || defined(__amd64)))
703 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
704 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
705 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
706 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
707 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
708 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
709 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
710 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
711 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
712 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
713 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
714 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
715 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
716 	    &symbios_properties },
717 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
718 	    &lsi_properties_scsi },
719 #if defined(__i386) || defined(__amd64)
720 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
721 				    | SD_CONF_BSET_READSUB_BCD
722 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
723 				    | SD_CONF_BSET_NO_READ_HEADER
724 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
725 
726 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
727 				    | SD_CONF_BSET_READSUB_BCD
728 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
729 				    | SD_CONF_BSET_NO_READ_HEADER
730 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
731 #endif /* __i386 || __amd64 */
732 #endif /* sparc NON-fibre or NON-sparc platforms */
733 
734 #if (defined(SD_PROP_TST))
735 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
736 				| SD_CONF_BSET_CTYPE
737 				| SD_CONF_BSET_NRR_COUNT
738 				| SD_CONF_BSET_FAB_DEVID
739 				| SD_CONF_BSET_NOCACHE
740 				| SD_CONF_BSET_BSY_RETRY_COUNT
741 				| SD_CONF_BSET_PLAYMSF_BCD
742 				| SD_CONF_BSET_READSUB_BCD
743 				| SD_CONF_BSET_READ_TOC_TRK_BCD
744 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
745 				| SD_CONF_BSET_NO_READ_HEADER
746 				| SD_CONF_BSET_READ_CD_XD4
747 				| SD_CONF_BSET_RST_RETRIES
748 				| SD_CONF_BSET_RSV_REL_TIME
749 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
750 #endif
751 };
752 
753 static const int sd_disk_table_size =
754 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
755 
756 
757 
758 #define	SD_INTERCONNECT_PARALLEL	0
759 #define	SD_INTERCONNECT_FABRIC		1
760 #define	SD_INTERCONNECT_FIBRE		2
761 #define	SD_INTERCONNECT_SSA		3
762 #define	SD_INTERCONNECT_SATA		4
763 #define	SD_IS_PARALLEL_SCSI(un)		\
764 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
765 #define	SD_IS_SERIAL(un)		\
766 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
767 
768 /*
769  * Definitions used by device id registration routines
770  */
771 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
772 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
773 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
774 
775 static kmutex_t sd_sense_mutex = {0};
776 
777 /*
778  * Macros for updates of the driver state
779  */
780 #define	New_state(un, s)        \
781 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
782 #define	Restore_state(un)	\
783 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
784 
785 static struct sd_cdbinfo sd_cdbtab[] = {
786 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
787 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
788 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
789 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
790 };
791 
792 /*
793  * Specifies the number of seconds that must have elapsed since the last
794  * cmd. has completed for a device to be declared idle to the PM framework.
795  */
796 static int sd_pm_idletime = 1;
797 
798 /*
799  * Internal function prototypes
800  */
801 
802 #if (defined(__fibre))
803 /*
804  * These #defines are to avoid namespace collisions that occur because this
805  * code is currently used to compile two separate driver modules: sd and ssd.
806  * All function names need to be treated this way (even if declared static)
807  * in order to allow the debugger to resolve the names properly.
808  * It is anticipated that in the near future the ssd module will be obsoleted,
809  * at which time this ugliness should go away.
810  */
811 #define	sd_log_trace			ssd_log_trace
812 #define	sd_log_info			ssd_log_info
813 #define	sd_log_err			ssd_log_err
814 #define	sdprobe				ssdprobe
815 #define	sdinfo				ssdinfo
816 #define	sd_prop_op			ssd_prop_op
817 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
818 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
819 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
820 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
821 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
822 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
823 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
824 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
825 #define	sd_spin_up_unit			ssd_spin_up_unit
826 #define	sd_enable_descr_sense		ssd_enable_descr_sense
827 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
828 #define	sd_set_mmc_caps			ssd_set_mmc_caps
829 #define	sd_read_unit_properties		ssd_read_unit_properties
830 #define	sd_process_sdconf_file		ssd_process_sdconf_file
831 #define	sd_process_sdconf_table		ssd_process_sdconf_table
832 #define	sd_sdconf_id_match		ssd_sdconf_id_match
833 #define	sd_blank_cmp			ssd_blank_cmp
834 #define	sd_chk_vers1_data		ssd_chk_vers1_data
835 #define	sd_set_vers1_properties		ssd_set_vers1_properties
836 
837 #define	sd_get_physical_geometry	ssd_get_physical_geometry
838 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
839 #define	sd_update_block_info		ssd_update_block_info
840 #define	sd_register_devid		ssd_register_devid
841 #define	sd_get_devid			ssd_get_devid
842 #define	sd_create_devid			ssd_create_devid
843 #define	sd_write_deviceid		ssd_write_deviceid
844 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
845 #define	sd_setup_pm			ssd_setup_pm
846 #define	sd_create_pm_components		ssd_create_pm_components
847 #define	sd_ddi_suspend			ssd_ddi_suspend
848 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
849 #define	sd_ddi_resume			ssd_ddi_resume
850 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
851 #define	sdpower				ssdpower
852 #define	sdattach			ssdattach
853 #define	sddetach			ssddetach
854 #define	sd_unit_attach			ssd_unit_attach
855 #define	sd_unit_detach			ssd_unit_detach
856 #define	sd_set_unit_attributes		ssd_set_unit_attributes
857 #define	sd_create_errstats		ssd_create_errstats
858 #define	sd_set_errstats			ssd_set_errstats
859 #define	sd_set_pstats			ssd_set_pstats
860 #define	sddump				ssddump
861 #define	sd_scsi_poll			ssd_scsi_poll
862 #define	sd_send_polled_RQS		ssd_send_polled_RQS
863 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
864 #define	sd_init_event_callbacks		ssd_init_event_callbacks
865 #define	sd_event_callback		ssd_event_callback
866 #define	sd_cache_control		ssd_cache_control
867 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
868 #define	sd_get_nv_sup			ssd_get_nv_sup
869 #define	sd_make_device			ssd_make_device
870 #define	sdopen				ssdopen
871 #define	sdclose				ssdclose
872 #define	sd_ready_and_valid		ssd_ready_and_valid
873 #define	sdmin				ssdmin
874 #define	sdread				ssdread
875 #define	sdwrite				ssdwrite
876 #define	sdaread				ssdaread
877 #define	sdawrite			ssdawrite
878 #define	sdstrategy			ssdstrategy
879 #define	sdioctl				ssdioctl
880 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
881 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
882 #define	sd_checksum_iostart		ssd_checksum_iostart
883 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
884 #define	sd_pm_iostart			ssd_pm_iostart
885 #define	sd_core_iostart			ssd_core_iostart
886 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
887 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
888 #define	sd_checksum_iodone		ssd_checksum_iodone
889 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
890 #define	sd_pm_iodone			ssd_pm_iodone
891 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
892 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
893 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
894 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
895 #define	sd_buf_iodone			ssd_buf_iodone
896 #define	sd_uscsi_strategy		ssd_uscsi_strategy
897 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
898 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
899 #define	sd_uscsi_iodone			ssd_uscsi_iodone
900 #define	sd_xbuf_strategy		ssd_xbuf_strategy
901 #define	sd_xbuf_init			ssd_xbuf_init
902 #define	sd_pm_entry			ssd_pm_entry
903 #define	sd_pm_exit			ssd_pm_exit
904 
905 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
906 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
907 
908 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
909 #define	sdintr				ssdintr
910 #define	sd_start_cmds			ssd_start_cmds
911 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
912 #define	sd_bioclone_alloc		ssd_bioclone_alloc
913 #define	sd_bioclone_free		ssd_bioclone_free
914 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
915 #define	sd_shadow_buf_free		ssd_shadow_buf_free
916 #define	sd_print_transport_rejected_message	\
917 					ssd_print_transport_rejected_message
918 #define	sd_retry_command		ssd_retry_command
919 #define	sd_set_retry_bp			ssd_set_retry_bp
920 #define	sd_send_request_sense_command	ssd_send_request_sense_command
921 #define	sd_start_retry_command		ssd_start_retry_command
922 #define	sd_start_direct_priority_command	\
923 					ssd_start_direct_priority_command
924 #define	sd_return_failed_command	ssd_return_failed_command
925 #define	sd_return_failed_command_no_restart	\
926 					ssd_return_failed_command_no_restart
927 #define	sd_return_command		ssd_return_command
928 #define	sd_sync_with_callback		ssd_sync_with_callback
929 #define	sdrunout			ssdrunout
930 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
931 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
932 #define	sd_reduce_throttle		ssd_reduce_throttle
933 #define	sd_restore_throttle		ssd_restore_throttle
934 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
935 #define	sd_init_cdb_limits		ssd_init_cdb_limits
936 #define	sd_pkt_status_good		ssd_pkt_status_good
937 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
938 #define	sd_pkt_status_busy		ssd_pkt_status_busy
939 #define	sd_pkt_status_reservation_conflict	\
940 					ssd_pkt_status_reservation_conflict
941 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
942 #define	sd_handle_request_sense		ssd_handle_request_sense
943 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
944 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
945 #define	sd_validate_sense_data		ssd_validate_sense_data
946 #define	sd_decode_sense			ssd_decode_sense
947 #define	sd_print_sense_msg		ssd_print_sense_msg
948 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
949 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
950 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
951 #define	sd_sense_key_medium_or_hardware_error	\
952 					ssd_sense_key_medium_or_hardware_error
953 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
954 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
955 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
956 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
957 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
958 #define	sd_sense_key_default		ssd_sense_key_default
959 #define	sd_print_retry_msg		ssd_print_retry_msg
960 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
961 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
962 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
963 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
964 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
965 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
966 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
967 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
968 #define	sd_pkt_reason_default		ssd_pkt_reason_default
969 #define	sd_reset_target			ssd_reset_target
970 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
971 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
972 #define	sd_taskq_create			ssd_taskq_create
973 #define	sd_taskq_delete			ssd_taskq_delete
974 #define	sd_media_change_task		ssd_media_change_task
975 #define	sd_handle_mchange		ssd_handle_mchange
976 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
977 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
978 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
979 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
980 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
981 					sd_send_scsi_feature_GET_CONFIGURATION
982 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
983 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
984 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
985 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
986 					ssd_send_scsi_PERSISTENT_RESERVE_IN
987 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
988 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
989 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
990 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
991 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
992 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
993 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
994 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
995 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
996 #define	sd_alloc_rqs			ssd_alloc_rqs
997 #define	sd_free_rqs			ssd_free_rqs
998 #define	sd_dump_memory			ssd_dump_memory
999 #define	sd_get_media_info		ssd_get_media_info
1000 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1001 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1002 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1003 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1004 #define	sd_check_mhd			ssd_check_mhd
1005 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1006 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1007 #define	sd_sname			ssd_sname
1008 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1009 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1010 #define	sd_take_ownership		ssd_take_ownership
1011 #define	sd_reserve_release		ssd_reserve_release
1012 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1013 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1014 #define	sd_persistent_reservation_in_read_keys	\
1015 					ssd_persistent_reservation_in_read_keys
1016 #define	sd_persistent_reservation_in_read_resv	\
1017 					ssd_persistent_reservation_in_read_resv
1018 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1019 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1020 #define	sd_mhdioc_release		ssd_mhdioc_release
1021 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1022 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1023 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1024 #define	sr_change_blkmode		ssr_change_blkmode
1025 #define	sr_change_speed			ssr_change_speed
1026 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1027 #define	sr_pause_resume			ssr_pause_resume
1028 #define	sr_play_msf			ssr_play_msf
1029 #define	sr_play_trkind			ssr_play_trkind
1030 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1031 #define	sr_read_subchannel		ssr_read_subchannel
1032 #define	sr_read_tocentry		ssr_read_tocentry
1033 #define	sr_read_tochdr			ssr_read_tochdr
1034 #define	sr_read_cdda			ssr_read_cdda
1035 #define	sr_read_cdxa			ssr_read_cdxa
1036 #define	sr_read_mode1			ssr_read_mode1
1037 #define	sr_read_mode2			ssr_read_mode2
1038 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1039 #define	sr_sector_mode			ssr_sector_mode
1040 #define	sr_eject			ssr_eject
1041 #define	sr_ejected			ssr_ejected
1042 #define	sr_check_wp			ssr_check_wp
1043 #define	sd_check_media			ssd_check_media
1044 #define	sd_media_watch_cb		ssd_media_watch_cb
1045 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1046 #define	sr_volume_ctrl			ssr_volume_ctrl
1047 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1048 #define	sd_log_page_supported		ssd_log_page_supported
1049 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1050 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1051 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1052 #define	sd_range_lock			ssd_range_lock
1053 #define	sd_get_range			ssd_get_range
1054 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1055 #define	sd_range_unlock			ssd_range_unlock
1056 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1057 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1058 
1059 #define	sd_iostart_chain		ssd_iostart_chain
1060 #define	sd_iodone_chain			ssd_iodone_chain
1061 #define	sd_initpkt_map			ssd_initpkt_map
1062 #define	sd_destroypkt_map		ssd_destroypkt_map
1063 #define	sd_chain_type_map		ssd_chain_type_map
1064 #define	sd_chain_index_map		ssd_chain_index_map
1065 
1066 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1067 #define	sd_failfast_flushq		ssd_failfast_flushq
1068 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1069 
1070 #define	sd_is_lsi			ssd_is_lsi
1071 #define	sd_tg_rdwr			ssd_tg_rdwr
1072 #define	sd_tg_getinfo			ssd_tg_getinfo
1073 
1074 #endif	/* #if (defined(__fibre)) */
1075 
1076 
1077 int _init(void);
1078 int _fini(void);
1079 int _info(struct modinfo *modinfop);
1080 
1081 /*PRINTFLIKE3*/
1082 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1083 /*PRINTFLIKE3*/
1084 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1085 /*PRINTFLIKE3*/
1086 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1087 
1088 static int sdprobe(dev_info_t *devi);
1089 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1090     void **result);
1091 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1092     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1093 
1094 /*
1095  * Smart probe for parallel scsi
1096  */
1097 static void sd_scsi_probe_cache_init(void);
1098 static void sd_scsi_probe_cache_fini(void);
1099 static void sd_scsi_clear_probe_cache(void);
1100 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1101 
1102 /*
1103  * Attached luns on target for parallel scsi
1104  */
1105 static void sd_scsi_target_lun_init(void);
1106 static void sd_scsi_target_lun_fini(void);
1107 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1108 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1109 
1110 static int	sd_spin_up_unit(struct sd_lun *un);
1111 #ifdef _LP64
1112 static void	sd_enable_descr_sense(struct sd_lun *un);
1113 static void	sd_reenable_dsense_task(void *arg);
1114 #endif /* _LP64 */
1115 
1116 static void	sd_set_mmc_caps(struct sd_lun *un);
1117 
1118 static void sd_read_unit_properties(struct sd_lun *un);
1119 static int  sd_process_sdconf_file(struct sd_lun *un);
1120 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1121     int *data_list, sd_tunables *values);
1122 static void sd_process_sdconf_table(struct sd_lun *un);
1123 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1124 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1125 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1126 	int list_len, char *dataname_ptr);
1127 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1128     sd_tunables *prop_list);
1129 
1130 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1131     int reservation_flag);
1132 static int  sd_get_devid(struct sd_lun *un);
1133 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1134 static int  sd_write_deviceid(struct sd_lun *un);
1135 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1136 static int  sd_check_vpd_page_support(struct sd_lun *un);
1137 
1138 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1139 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1140 
1141 static int  sd_ddi_suspend(dev_info_t *devi);
1142 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1143 static int  sd_ddi_resume(dev_info_t *devi);
1144 static int  sd_ddi_pm_resume(struct sd_lun *un);
1145 static int  sdpower(dev_info_t *devi, int component, int level);
1146 
1147 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1148 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1149 static int  sd_unit_attach(dev_info_t *devi);
1150 static int  sd_unit_detach(dev_info_t *devi);
1151 
1152 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1153 static void sd_create_errstats(struct sd_lun *un, int instance);
1154 static void sd_set_errstats(struct sd_lun *un);
1155 static void sd_set_pstats(struct sd_lun *un);
1156 
1157 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1158 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1159 static int  sd_send_polled_RQS(struct sd_lun *un);
1160 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1161 
1162 #if (defined(__fibre))
1163 /*
1164  * Event callbacks (photon)
1165  */
1166 static void sd_init_event_callbacks(struct sd_lun *un);
1167 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1168 #endif
1169 
1170 /*
1171  * Defines for sd_cache_control
1172  */
1173 
1174 #define	SD_CACHE_ENABLE		1
1175 #define	SD_CACHE_DISABLE	0
1176 #define	SD_CACHE_NOCHANGE	-1
1177 
1178 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1179 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1180 static void  sd_get_nv_sup(struct sd_lun *un);
1181 static dev_t sd_make_device(dev_info_t *devi);
1182 
1183 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1184 	uint64_t capacity);
1185 
1186 /*
1187  * Driver entry point functions.
1188  */
1189 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1190 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1191 static int  sd_ready_and_valid(struct sd_lun *un);
1192 
1193 static void sdmin(struct buf *bp);
1194 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1195 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1196 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1197 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1198 
1199 static int sdstrategy(struct buf *bp);
1200 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1201 
1202 /*
1203  * Function prototypes for layering functions in the iostart chain.
1204  */
1205 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1206 	struct buf *bp);
1207 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1208 	struct buf *bp);
1209 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1210 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1211 	struct buf *bp);
1212 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1213 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1214 
1215 /*
1216  * Function prototypes for layering functions in the iodone chain.
1217  */
1218 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1219 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1220 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1221 	struct buf *bp);
1222 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1223 	struct buf *bp);
1224 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1225 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1226 	struct buf *bp);
1227 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1228 
1229 /*
1230  * Prototypes for functions to support buf(9S) based IO.
1231  */
1232 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1233 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1234 static void sd_destroypkt_for_buf(struct buf *);
1235 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1236 	struct buf *bp, int flags,
1237 	int (*callback)(caddr_t), caddr_t callback_arg,
1238 	diskaddr_t lba, uint32_t blockcount);
1239 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1240 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1241 
1242 /*
1243  * Prototypes for functions to support USCSI IO.
1244  */
1245 static int sd_uscsi_strategy(struct buf *bp);
1246 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1247 static void sd_destroypkt_for_uscsi(struct buf *);
1248 
1249 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1250 	uchar_t chain_type, void *pktinfop);
1251 
1252 static int  sd_pm_entry(struct sd_lun *un);
1253 static void sd_pm_exit(struct sd_lun *un);
1254 
1255 static void sd_pm_idletimeout_handler(void *arg);
1256 
1257 /*
1258  * sd_core internal functions (used at the sd_core_io layer).
1259  */
1260 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1261 static void sdintr(struct scsi_pkt *pktp);
1262 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1263 
1264 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1265 	enum uio_seg dataspace, int path_flag);
1266 
1267 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1268 	daddr_t blkno, int (*func)(struct buf *));
1269 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1270 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1271 static void sd_bioclone_free(struct buf *bp);
1272 static void sd_shadow_buf_free(struct buf *bp);
1273 
1274 static void sd_print_transport_rejected_message(struct sd_lun *un,
1275 	struct sd_xbuf *xp, int code);
1276 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1277     void *arg, int code);
1278 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1279     void *arg, int code);
1280 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1281     void *arg, int code);
1282 
1283 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1284 	int retry_check_flag,
1285 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1286 		int c),
1287 	void *user_arg, int failure_code,  clock_t retry_delay,
1288 	void (*statp)(kstat_io_t *));
1289 
1290 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1291 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1292 
1293 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1294 	struct scsi_pkt *pktp);
1295 static void sd_start_retry_command(void *arg);
1296 static void sd_start_direct_priority_command(void *arg);
1297 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1298 	int errcode);
1299 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1300 	struct buf *bp, int errcode);
1301 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1302 static void sd_sync_with_callback(struct sd_lun *un);
1303 static int sdrunout(caddr_t arg);
1304 
1305 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1306 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1307 
1308 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1309 static void sd_restore_throttle(void *arg);
1310 
1311 static void sd_init_cdb_limits(struct sd_lun *un);
1312 
1313 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1314 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1315 
1316 /*
1317  * Error handling functions
1318  */
1319 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1320 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1321 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1322 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1323 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1324 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1325 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1326 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1327 
1328 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1329 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1330 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1331 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1332 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1333 	struct sd_xbuf *xp, size_t actual_len);
1334 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1335 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1336 
1337 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1338 	void *arg, int code);
1339 
1340 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1341 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1342 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1343 	uint8_t *sense_datap,
1344 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1345 static void sd_sense_key_not_ready(struct sd_lun *un,
1346 	uint8_t *sense_datap,
1347 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1348 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1349 	uint8_t *sense_datap,
1350 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1351 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1352 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 static void sd_sense_key_unit_attention(struct sd_lun *un,
1354 	uint8_t *sense_datap,
1355 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1356 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1357 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1358 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1359 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1360 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1361 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1362 static void sd_sense_key_default(struct sd_lun *un,
1363 	uint8_t *sense_datap,
1364 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1365 
1366 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1367 	void *arg, int flag);
1368 
1369 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1370 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1371 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1372 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1373 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1374 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1375 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1376 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1377 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1378 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1379 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1380 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1381 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1382 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1383 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1384 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1385 
1386 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1387 
1388 static void sd_start_stop_unit_callback(void *arg);
1389 static void sd_start_stop_unit_task(void *arg);
1390 
1391 static void sd_taskq_create(void);
1392 static void sd_taskq_delete(void);
1393 static void sd_media_change_task(void *arg);
1394 
1395 static int sd_handle_mchange(struct sd_lun *un);
1396 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1397 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1398 	uint32_t *lbap, int path_flag);
1399 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1400 	uint32_t *lbap, int path_flag);
1401 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1402 	int path_flag);
1403 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1404 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1405 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1406 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1407 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1408 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1409 	uchar_t usr_cmd, uchar_t *usr_bufp);
1410 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1411 	struct dk_callback *dkc);
1412 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1413 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1414 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1415 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1416 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1417 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1418 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1419 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1420 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1421 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1422 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1423 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1424 	size_t buflen, daddr_t start_block, int path_flag);
1425 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1426 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1427 	path_flag)
1428 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1429 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1430 	path_flag)
1431 
1432 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1433 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1434 	uint16_t param_ptr, int path_flag);
1435 
1436 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1437 static void sd_free_rqs(struct sd_lun *un);
1438 
1439 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1440 	uchar_t *data, int len, int fmt);
1441 static void sd_panic_for_res_conflict(struct sd_lun *un);
1442 
1443 /*
1444  * Disk Ioctl Function Prototypes
1445  */
1446 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1447 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1448 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1449 
1450 /*
1451  * Multi-host Ioctl Prototypes
1452  */
1453 static int sd_check_mhd(dev_t dev, int interval);
1454 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1455 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1456 static char *sd_sname(uchar_t status);
1457 static void sd_mhd_resvd_recover(void *arg);
1458 static void sd_resv_reclaim_thread();
1459 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1460 static int sd_reserve_release(dev_t dev, int cmd);
1461 static void sd_rmv_resv_reclaim_req(dev_t dev);
1462 static void sd_mhd_reset_notify_cb(caddr_t arg);
1463 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1464 	mhioc_inkeys_t *usrp, int flag);
1465 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1466 	mhioc_inresvs_t *usrp, int flag);
1467 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1468 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1469 static int sd_mhdioc_release(dev_t dev);
1470 static int sd_mhdioc_register_devid(dev_t dev);
1471 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1472 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1473 
1474 /*
1475  * SCSI removable prototypes
1476  */
1477 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1478 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1479 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1480 static int sr_pause_resume(dev_t dev, int mode);
1481 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1482 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1483 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1484 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1485 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1486 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1487 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1488 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1489 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1490 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1491 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1492 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1493 static int sr_eject(dev_t dev);
1494 static void sr_ejected(register struct sd_lun *un);
1495 static int sr_check_wp(dev_t dev);
1496 static int sd_check_media(dev_t dev, enum dkio_state state);
1497 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1498 static void sd_delayed_cv_broadcast(void *arg);
1499 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1500 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1501 
1502 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1503 
1504 /*
1505  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1506  */
1507 static void sd_check_for_writable_cd(struct sd_lun *un, int path_flag);
1508 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1509 static void sd_wm_cache_destructor(void *wm, void *un);
1510 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1511 	daddr_t endb, ushort_t typ);
1512 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1513 	daddr_t endb);
1514 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1515 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1516 static void sd_read_modify_write_task(void * arg);
1517 static int
1518 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1519 	struct buf **bpp);
1520 
1521 
1522 /*
1523  * Function prototypes for failfast support.
1524  */
1525 static void sd_failfast_flushq(struct sd_lun *un);
1526 static int sd_failfast_flushq_callback(struct buf *bp);
1527 
1528 /*
1529  * Function prototypes to check for lsi devices
1530  */
1531 static void sd_is_lsi(struct sd_lun *un);
1532 
1533 /*
1534  * Function prototypes for partial DMA support
1535  */
1536 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1537 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1538 
1539 
1540 /* Function prototypes for cmlb */
1541 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1542     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1543 
1544 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1545 
1546 /*
1547  * Constants for failfast support:
1548  *
1549  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1550  * failfast processing being performed.
1551  *
1552  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1553  * failfast processing on all bufs with B_FAILFAST set.
1554  */
1555 
1556 #define	SD_FAILFAST_INACTIVE		0
1557 #define	SD_FAILFAST_ACTIVE		1
1558 
1559 /*
1560  * Bitmask to control behavior of buf(9S) flushes when a transition to
1561  * the failfast state occurs. Optional bits include:
1562  *
1563  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1564  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1565  * be flushed.
1566  *
1567  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1568  * driver, in addition to the regular wait queue. This includes the xbuf
1569  * queues. When clear, only the driver's wait queue will be flushed.
1570  */
1571 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1572 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1573 
1574 /*
1575  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1576  * to flush all queues within the driver.
1577  */
1578 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1579 
1580 
1581 /*
1582  * SD Testing Fault Injection
1583  */
1584 #ifdef SD_FAULT_INJECTION
1585 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1586 static void sd_faultinjection(struct scsi_pkt *pktp);
1587 static void sd_injection_log(char *buf, struct sd_lun *un);
1588 #endif
1589 
1590 /*
1591  * Device driver ops vector
1592  */
1593 static struct cb_ops sd_cb_ops = {
1594 	sdopen,			/* open */
1595 	sdclose,		/* close */
1596 	sdstrategy,		/* strategy */
1597 	nodev,			/* print */
1598 	sddump,			/* dump */
1599 	sdread,			/* read */
1600 	sdwrite,		/* write */
1601 	sdioctl,		/* ioctl */
1602 	nodev,			/* devmap */
1603 	nodev,			/* mmap */
1604 	nodev,			/* segmap */
1605 	nochpoll,		/* poll */
1606 	sd_prop_op,		/* cb_prop_op */
1607 	0,			/* streamtab  */
1608 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1609 	CB_REV,			/* cb_rev */
1610 	sdaread, 		/* async I/O read entry point */
1611 	sdawrite		/* async I/O write entry point */
1612 };
1613 
1614 static struct dev_ops sd_ops = {
1615 	DEVO_REV,		/* devo_rev, */
1616 	0,			/* refcnt  */
1617 	sdinfo,			/* info */
1618 	nulldev,		/* identify */
1619 	sdprobe,		/* probe */
1620 	sdattach,		/* attach */
1621 	sddetach,		/* detach */
1622 	nodev,			/* reset */
1623 	&sd_cb_ops,		/* driver operations */
1624 	NULL,			/* bus operations */
1625 	sdpower			/* power */
1626 };
1627 
1628 
1629 /*
1630  * This is the loadable module wrapper.
1631  */
1632 #include <sys/modctl.h>
1633 
1634 static struct modldrv modldrv = {
1635 	&mod_driverops,		/* Type of module. This one is a driver */
1636 	SD_MODULE_NAME,		/* Module name. */
1637 	&sd_ops			/* driver ops */
1638 };
1639 
1640 
1641 static struct modlinkage modlinkage = {
1642 	MODREV_1,
1643 	&modldrv,
1644 	NULL
1645 };
1646 
1647 static cmlb_tg_ops_t sd_tgops = {
1648 	TG_DK_OPS_VERSION_1,
1649 	sd_tg_rdwr,
1650 	sd_tg_getinfo
1651 	};
1652 
1653 static struct scsi_asq_key_strings sd_additional_codes[] = {
1654 	0x81, 0, "Logical Unit is Reserved",
1655 	0x85, 0, "Audio Address Not Valid",
1656 	0xb6, 0, "Media Load Mechanism Failed",
1657 	0xB9, 0, "Audio Play Operation Aborted",
1658 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1659 	0x53, 2, "Medium removal prevented",
1660 	0x6f, 0, "Authentication failed during key exchange",
1661 	0x6f, 1, "Key not present",
1662 	0x6f, 2, "Key not established",
1663 	0x6f, 3, "Read without proper authentication",
1664 	0x6f, 4, "Mismatched region to this logical unit",
1665 	0x6f, 5, "Region reset count error",
1666 	0xffff, 0x0, NULL
1667 };
1668 
1669 
1670 /*
1671  * Struct for passing printing information for sense data messages
1672  */
1673 struct sd_sense_info {
1674 	int	ssi_severity;
1675 	int	ssi_pfa_flag;
1676 };
1677 
1678 /*
1679  * Table of function pointers for iostart-side routines. Separate "chains"
1680  * of layered function calls are formed by placing the function pointers
1681  * sequentially in the desired order. Functions are called according to an
1682  * incrementing table index ordering. The last function in each chain must
1683  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1684  * in the sd_iodone_chain[] array.
1685  *
1686  * Note: It may seem more natural to organize both the iostart and iodone
1687  * functions together, into an array of structures (or some similar
1688  * organization) with a common index, rather than two separate arrays which
1689  * must be maintained in synchronization. The purpose of this division is
1690  * to achieve improved performance: individual arrays allows for more
1691  * effective cache line utilization on certain platforms.
1692  */
1693 
1694 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1695 
1696 
1697 static sd_chain_t sd_iostart_chain[] = {
1698 
1699 	/* Chain for buf IO for disk drive targets (PM enabled) */
1700 	sd_mapblockaddr_iostart,	/* Index: 0 */
1701 	sd_pm_iostart,			/* Index: 1 */
1702 	sd_core_iostart,		/* Index: 2 */
1703 
1704 	/* Chain for buf IO for disk drive targets (PM disabled) */
1705 	sd_mapblockaddr_iostart,	/* Index: 3 */
1706 	sd_core_iostart,		/* Index: 4 */
1707 
1708 	/* Chain for buf IO for removable-media targets (PM enabled) */
1709 	sd_mapblockaddr_iostart,	/* Index: 5 */
1710 	sd_mapblocksize_iostart,	/* Index: 6 */
1711 	sd_pm_iostart,			/* Index: 7 */
1712 	sd_core_iostart,		/* Index: 8 */
1713 
1714 	/* Chain for buf IO for removable-media targets (PM disabled) */
1715 	sd_mapblockaddr_iostart,	/* Index: 9 */
1716 	sd_mapblocksize_iostart,	/* Index: 10 */
1717 	sd_core_iostart,		/* Index: 11 */
1718 
1719 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1720 	sd_mapblockaddr_iostart,	/* Index: 12 */
1721 	sd_checksum_iostart,		/* Index: 13 */
1722 	sd_pm_iostart,			/* Index: 14 */
1723 	sd_core_iostart,		/* Index: 15 */
1724 
1725 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1726 	sd_mapblockaddr_iostart,	/* Index: 16 */
1727 	sd_checksum_iostart,		/* Index: 17 */
1728 	sd_core_iostart,		/* Index: 18 */
1729 
1730 	/* Chain for USCSI commands (all targets) */
1731 	sd_pm_iostart,			/* Index: 19 */
1732 	sd_core_iostart,		/* Index: 20 */
1733 
1734 	/* Chain for checksumming USCSI commands (all targets) */
1735 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1736 	sd_pm_iostart,			/* Index: 22 */
1737 	sd_core_iostart,		/* Index: 23 */
1738 
1739 	/* Chain for "direct" USCSI commands (all targets) */
1740 	sd_core_iostart,		/* Index: 24 */
1741 
1742 	/* Chain for "direct priority" USCSI commands (all targets) */
1743 	sd_core_iostart,		/* Index: 25 */
1744 };
1745 
1746 /*
1747  * Macros to locate the first function of each iostart chain in the
1748  * sd_iostart_chain[] array. These are located by the index in the array.
1749  */
1750 #define	SD_CHAIN_DISK_IOSTART			0
1751 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1752 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1753 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1754 #define	SD_CHAIN_CHKSUM_IOSTART			12
1755 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1756 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1757 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1758 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1759 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1760 
1761 
1762 /*
1763  * Table of function pointers for the iodone-side routines for the driver-
1764  * internal layering mechanism.  The calling sequence for iodone routines
1765  * uses a decrementing table index, so the last routine called in a chain
1766  * must be at the lowest array index location for that chain.  The last
1767  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1768  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1769  * of the functions in an iodone side chain must correspond to the ordering
1770  * of the iostart routines for that chain.  Note that there is no iodone
1771  * side routine that corresponds to sd_core_iostart(), so there is no
1772  * entry in the table for this.
1773  */
1774 
1775 static sd_chain_t sd_iodone_chain[] = {
1776 
1777 	/* Chain for buf IO for disk drive targets (PM enabled) */
1778 	sd_buf_iodone,			/* Index: 0 */
1779 	sd_mapblockaddr_iodone,		/* Index: 1 */
1780 	sd_pm_iodone,			/* Index: 2 */
1781 
1782 	/* Chain for buf IO for disk drive targets (PM disabled) */
1783 	sd_buf_iodone,			/* Index: 3 */
1784 	sd_mapblockaddr_iodone,		/* Index: 4 */
1785 
1786 	/* Chain for buf IO for removable-media targets (PM enabled) */
1787 	sd_buf_iodone,			/* Index: 5 */
1788 	sd_mapblockaddr_iodone,		/* Index: 6 */
1789 	sd_mapblocksize_iodone,		/* Index: 7 */
1790 	sd_pm_iodone,			/* Index: 8 */
1791 
1792 	/* Chain for buf IO for removable-media targets (PM disabled) */
1793 	sd_buf_iodone,			/* Index: 9 */
1794 	sd_mapblockaddr_iodone,		/* Index: 10 */
1795 	sd_mapblocksize_iodone,		/* Index: 11 */
1796 
1797 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1798 	sd_buf_iodone,			/* Index: 12 */
1799 	sd_mapblockaddr_iodone,		/* Index: 13 */
1800 	sd_checksum_iodone,		/* Index: 14 */
1801 	sd_pm_iodone,			/* Index: 15 */
1802 
1803 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1804 	sd_buf_iodone,			/* Index: 16 */
1805 	sd_mapblockaddr_iodone,		/* Index: 17 */
1806 	sd_checksum_iodone,		/* Index: 18 */
1807 
1808 	/* Chain for USCSI commands (non-checksum targets) */
1809 	sd_uscsi_iodone,		/* Index: 19 */
1810 	sd_pm_iodone,			/* Index: 20 */
1811 
1812 	/* Chain for USCSI commands (checksum targets) */
1813 	sd_uscsi_iodone,		/* Index: 21 */
1814 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1815 	sd_pm_iodone,			/* Index: 22 */
1816 
1817 	/* Chain for "direct" USCSI commands (all targets) */
1818 	sd_uscsi_iodone,		/* Index: 24 */
1819 
1820 	/* Chain for "direct priority" USCSI commands (all targets) */
1821 	sd_uscsi_iodone,		/* Index: 25 */
1822 };
1823 
1824 
1825 /*
1826  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1827  * each iodone-side chain. These are located by the array index, but as the
1828  * iodone side functions are called in a decrementing-index order, the
1829  * highest index number in each chain must be specified (as these correspond
1830  * to the first function in the iodone chain that will be called by the core
1831  * at IO completion time).
1832  */
1833 
1834 #define	SD_CHAIN_DISK_IODONE			2
1835 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1836 #define	SD_CHAIN_RMMEDIA_IODONE			8
1837 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1838 #define	SD_CHAIN_CHKSUM_IODONE			15
1839 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1840 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1841 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1842 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1843 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1844 
1845 
1846 
1847 
1848 /*
1849  * Array to map a layering chain index to the appropriate initpkt routine.
1850  * The redundant entries are present so that the index used for accessing
1851  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1852  * with this table as well.
1853  */
1854 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1855 
1856 static sd_initpkt_t	sd_initpkt_map[] = {
1857 
1858 	/* Chain for buf IO for disk drive targets (PM enabled) */
1859 	sd_initpkt_for_buf,		/* Index: 0 */
1860 	sd_initpkt_for_buf,		/* Index: 1 */
1861 	sd_initpkt_for_buf,		/* Index: 2 */
1862 
1863 	/* Chain for buf IO for disk drive targets (PM disabled) */
1864 	sd_initpkt_for_buf,		/* Index: 3 */
1865 	sd_initpkt_for_buf,		/* Index: 4 */
1866 
1867 	/* Chain for buf IO for removable-media targets (PM enabled) */
1868 	sd_initpkt_for_buf,		/* Index: 5 */
1869 	sd_initpkt_for_buf,		/* Index: 6 */
1870 	sd_initpkt_for_buf,		/* Index: 7 */
1871 	sd_initpkt_for_buf,		/* Index: 8 */
1872 
1873 	/* Chain for buf IO for removable-media targets (PM disabled) */
1874 	sd_initpkt_for_buf,		/* Index: 9 */
1875 	sd_initpkt_for_buf,		/* Index: 10 */
1876 	sd_initpkt_for_buf,		/* Index: 11 */
1877 
1878 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1879 	sd_initpkt_for_buf,		/* Index: 12 */
1880 	sd_initpkt_for_buf,		/* Index: 13 */
1881 	sd_initpkt_for_buf,		/* Index: 14 */
1882 	sd_initpkt_for_buf,		/* Index: 15 */
1883 
1884 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1885 	sd_initpkt_for_buf,		/* Index: 16 */
1886 	sd_initpkt_for_buf,		/* Index: 17 */
1887 	sd_initpkt_for_buf,		/* Index: 18 */
1888 
1889 	/* Chain for USCSI commands (non-checksum targets) */
1890 	sd_initpkt_for_uscsi,		/* Index: 19 */
1891 	sd_initpkt_for_uscsi,		/* Index: 20 */
1892 
1893 	/* Chain for USCSI commands (checksum targets) */
1894 	sd_initpkt_for_uscsi,		/* Index: 21 */
1895 	sd_initpkt_for_uscsi,		/* Index: 22 */
1896 	sd_initpkt_for_uscsi,		/* Index: 22 */
1897 
1898 	/* Chain for "direct" USCSI commands (all targets) */
1899 	sd_initpkt_for_uscsi,		/* Index: 24 */
1900 
1901 	/* Chain for "direct priority" USCSI commands (all targets) */
1902 	sd_initpkt_for_uscsi,		/* Index: 25 */
1903 
1904 };
1905 
1906 
1907 /*
1908  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1909  * The redundant entries are present so that the index used for accessing
1910  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1911  * with this table as well.
1912  */
1913 typedef void (*sd_destroypkt_t)(struct buf *);
1914 
1915 static sd_destroypkt_t	sd_destroypkt_map[] = {
1916 
1917 	/* Chain for buf IO for disk drive targets (PM enabled) */
1918 	sd_destroypkt_for_buf,		/* Index: 0 */
1919 	sd_destroypkt_for_buf,		/* Index: 1 */
1920 	sd_destroypkt_for_buf,		/* Index: 2 */
1921 
1922 	/* Chain for buf IO for disk drive targets (PM disabled) */
1923 	sd_destroypkt_for_buf,		/* Index: 3 */
1924 	sd_destroypkt_for_buf,		/* Index: 4 */
1925 
1926 	/* Chain for buf IO for removable-media targets (PM enabled) */
1927 	sd_destroypkt_for_buf,		/* Index: 5 */
1928 	sd_destroypkt_for_buf,		/* Index: 6 */
1929 	sd_destroypkt_for_buf,		/* Index: 7 */
1930 	sd_destroypkt_for_buf,		/* Index: 8 */
1931 
1932 	/* Chain for buf IO for removable-media targets (PM disabled) */
1933 	sd_destroypkt_for_buf,		/* Index: 9 */
1934 	sd_destroypkt_for_buf,		/* Index: 10 */
1935 	sd_destroypkt_for_buf,		/* Index: 11 */
1936 
1937 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1938 	sd_destroypkt_for_buf,		/* Index: 12 */
1939 	sd_destroypkt_for_buf,		/* Index: 13 */
1940 	sd_destroypkt_for_buf,		/* Index: 14 */
1941 	sd_destroypkt_for_buf,		/* Index: 15 */
1942 
1943 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1944 	sd_destroypkt_for_buf,		/* Index: 16 */
1945 	sd_destroypkt_for_buf,		/* Index: 17 */
1946 	sd_destroypkt_for_buf,		/* Index: 18 */
1947 
1948 	/* Chain for USCSI commands (non-checksum targets) */
1949 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1950 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1951 
1952 	/* Chain for USCSI commands (checksum targets) */
1953 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1954 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1955 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1956 
1957 	/* Chain for "direct" USCSI commands (all targets) */
1958 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1959 
1960 	/* Chain for "direct priority" USCSI commands (all targets) */
1961 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1962 
1963 };
1964 
1965 
1966 
1967 /*
1968  * Array to map a layering chain index to the appropriate chain "type".
1969  * The chain type indicates a specific property/usage of the chain.
1970  * The redundant entries are present so that the index used for accessing
1971  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1972  * with this table as well.
1973  */
1974 
1975 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
1976 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
1977 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
1978 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
1979 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
1980 						/* (for error recovery) */
1981 
1982 static int sd_chain_type_map[] = {
1983 
1984 	/* Chain for buf IO for disk drive targets (PM enabled) */
1985 	SD_CHAIN_BUFIO,			/* Index: 0 */
1986 	SD_CHAIN_BUFIO,			/* Index: 1 */
1987 	SD_CHAIN_BUFIO,			/* Index: 2 */
1988 
1989 	/* Chain for buf IO for disk drive targets (PM disabled) */
1990 	SD_CHAIN_BUFIO,			/* Index: 3 */
1991 	SD_CHAIN_BUFIO,			/* Index: 4 */
1992 
1993 	/* Chain for buf IO for removable-media targets (PM enabled) */
1994 	SD_CHAIN_BUFIO,			/* Index: 5 */
1995 	SD_CHAIN_BUFIO,			/* Index: 6 */
1996 	SD_CHAIN_BUFIO,			/* Index: 7 */
1997 	SD_CHAIN_BUFIO,			/* Index: 8 */
1998 
1999 	/* Chain for buf IO for removable-media targets (PM disabled) */
2000 	SD_CHAIN_BUFIO,			/* Index: 9 */
2001 	SD_CHAIN_BUFIO,			/* Index: 10 */
2002 	SD_CHAIN_BUFIO,			/* Index: 11 */
2003 
2004 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2005 	SD_CHAIN_BUFIO,			/* Index: 12 */
2006 	SD_CHAIN_BUFIO,			/* Index: 13 */
2007 	SD_CHAIN_BUFIO,			/* Index: 14 */
2008 	SD_CHAIN_BUFIO,			/* Index: 15 */
2009 
2010 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2011 	SD_CHAIN_BUFIO,			/* Index: 16 */
2012 	SD_CHAIN_BUFIO,			/* Index: 17 */
2013 	SD_CHAIN_BUFIO,			/* Index: 18 */
2014 
2015 	/* Chain for USCSI commands (non-checksum targets) */
2016 	SD_CHAIN_USCSI,			/* Index: 19 */
2017 	SD_CHAIN_USCSI,			/* Index: 20 */
2018 
2019 	/* Chain for USCSI commands (checksum targets) */
2020 	SD_CHAIN_USCSI,			/* Index: 21 */
2021 	SD_CHAIN_USCSI,			/* Index: 22 */
2022 	SD_CHAIN_USCSI,			/* Index: 22 */
2023 
2024 	/* Chain for "direct" USCSI commands (all targets) */
2025 	SD_CHAIN_DIRECT,		/* Index: 24 */
2026 
2027 	/* Chain for "direct priority" USCSI commands (all targets) */
2028 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2029 };
2030 
2031 
2032 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2033 #define	SD_IS_BUFIO(xp)			\
2034 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2035 
2036 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2037 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2038 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2039 
2040 
2041 
2042 /*
2043  * Struct, array, and macros to map a specific chain to the appropriate
2044  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2045  *
2046  * The sd_chain_index_map[] array is used at attach time to set the various
2047  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2048  * chain to be used with the instance. This allows different instances to use
2049  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2050  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2051  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2052  * dynamically & without the use of locking; and (2) a layer may update the
2053  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2054  * to allow for deferred processing of an IO within the same chain from a
2055  * different execution context.
2056  */
2057 
2058 struct sd_chain_index {
2059 	int	sci_iostart_index;
2060 	int	sci_iodone_index;
2061 };
2062 
2063 static struct sd_chain_index	sd_chain_index_map[] = {
2064 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2065 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2066 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2067 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2068 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2069 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2070 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2071 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2072 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2073 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2074 };
2075 
2076 
2077 /*
2078  * The following are indexes into the sd_chain_index_map[] array.
2079  */
2080 
2081 /* un->un_buf_chain_type must be set to one of these */
2082 #define	SD_CHAIN_INFO_DISK		0
2083 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2084 #define	SD_CHAIN_INFO_RMMEDIA		2
2085 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2086 #define	SD_CHAIN_INFO_CHKSUM		4
2087 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2088 
2089 /* un->un_uscsi_chain_type must be set to one of these */
2090 #define	SD_CHAIN_INFO_USCSI_CMD		6
2091 /* USCSI with PM disabled is the same as DIRECT */
2092 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2093 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2094 
2095 /* un->un_direct_chain_type must be set to one of these */
2096 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2097 
2098 /* un->un_priority_chain_type must be set to one of these */
2099 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2100 
2101 /* size for devid inquiries */
2102 #define	MAX_INQUIRY_SIZE		0xF0
2103 
2104 /*
2105  * Macros used by functions to pass a given buf(9S) struct along to the
2106  * next function in the layering chain for further processing.
2107  *
2108  * In the following macros, passing more than three arguments to the called
2109  * routines causes the optimizer for the SPARC compiler to stop doing tail
2110  * call elimination which results in significant performance degradation.
2111  */
2112 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2113 	((*(sd_iostart_chain[index]))(index, un, bp))
2114 
2115 #define	SD_BEGIN_IODONE(index, un, bp)	\
2116 	((*(sd_iodone_chain[index]))(index, un, bp))
2117 
2118 #define	SD_NEXT_IOSTART(index, un, bp)				\
2119 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2120 
2121 #define	SD_NEXT_IODONE(index, un, bp)				\
2122 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2123 
2124 /*
2125  *    Function: _init
2126  *
2127  * Description: This is the driver _init(9E) entry point.
2128  *
2129  * Return Code: Returns the value from mod_install(9F) or
2130  *		ddi_soft_state_init(9F) as appropriate.
2131  *
2132  *     Context: Called when driver module loaded.
2133  */
2134 
2135 int
2136 _init(void)
2137 {
2138 	int	err;
2139 
2140 	/* establish driver name from module name */
2141 	sd_label = mod_modname(&modlinkage);
2142 
2143 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2144 	    SD_MAXUNIT);
2145 
2146 	if (err != 0) {
2147 		return (err);
2148 	}
2149 
2150 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2151 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2152 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2153 
2154 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2155 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2156 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2157 
2158 	/*
2159 	 * it's ok to init here even for fibre device
2160 	 */
2161 	sd_scsi_probe_cache_init();
2162 
2163 	sd_scsi_target_lun_init();
2164 
2165 	/*
2166 	 * Creating taskq before mod_install ensures that all callers (threads)
2167 	 * that enter the module after a successfull mod_install encounter
2168 	 * a valid taskq.
2169 	 */
2170 	sd_taskq_create();
2171 
2172 	err = mod_install(&modlinkage);
2173 	if (err != 0) {
2174 		/* delete taskq if install fails */
2175 		sd_taskq_delete();
2176 
2177 		mutex_destroy(&sd_detach_mutex);
2178 		mutex_destroy(&sd_log_mutex);
2179 		mutex_destroy(&sd_label_mutex);
2180 
2181 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2182 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2183 		cv_destroy(&sd_tr.srq_inprocess_cv);
2184 
2185 		sd_scsi_probe_cache_fini();
2186 
2187 		sd_scsi_target_lun_fini();
2188 
2189 		ddi_soft_state_fini(&sd_state);
2190 		return (err);
2191 	}
2192 
2193 	return (err);
2194 }
2195 
2196 
2197 /*
2198  *    Function: _fini
2199  *
2200  * Description: This is the driver _fini(9E) entry point.
2201  *
2202  * Return Code: Returns the value from mod_remove(9F)
2203  *
2204  *     Context: Called when driver module is unloaded.
2205  */
2206 
2207 int
2208 _fini(void)
2209 {
2210 	int err;
2211 
2212 	if ((err = mod_remove(&modlinkage)) != 0) {
2213 		return (err);
2214 	}
2215 
2216 	sd_taskq_delete();
2217 
2218 	mutex_destroy(&sd_detach_mutex);
2219 	mutex_destroy(&sd_log_mutex);
2220 	mutex_destroy(&sd_label_mutex);
2221 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2222 
2223 	sd_scsi_probe_cache_fini();
2224 
2225 	sd_scsi_target_lun_fini();
2226 
2227 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2228 	cv_destroy(&sd_tr.srq_inprocess_cv);
2229 
2230 	ddi_soft_state_fini(&sd_state);
2231 
2232 	return (err);
2233 }
2234 
2235 
2236 /*
2237  *    Function: _info
2238  *
2239  * Description: This is the driver _info(9E) entry point.
2240  *
2241  *   Arguments: modinfop - pointer to the driver modinfo structure
2242  *
2243  * Return Code: Returns the value from mod_info(9F).
2244  *
2245  *     Context: Kernel thread context
2246  */
2247 
2248 int
2249 _info(struct modinfo *modinfop)
2250 {
2251 	return (mod_info(&modlinkage, modinfop));
2252 }
2253 
2254 
2255 /*
2256  * The following routines implement the driver message logging facility.
2257  * They provide component- and level- based debug output filtering.
2258  * Output may also be restricted to messages for a single instance by
2259  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2260  * to NULL, then messages for all instances are printed.
2261  *
2262  * These routines have been cloned from each other due to the language
2263  * constraints of macros and variable argument list processing.
2264  */
2265 
2266 
2267 /*
2268  *    Function: sd_log_err
2269  *
2270  * Description: This routine is called by the SD_ERROR macro for debug
2271  *		logging of error conditions.
2272  *
2273  *   Arguments: comp - driver component being logged
2274  *		dev  - pointer to driver info structure
2275  *		fmt  - error string and format to be logged
2276  */
2277 
2278 static void
2279 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2280 {
2281 	va_list		ap;
2282 	dev_info_t	*dev;
2283 
2284 	ASSERT(un != NULL);
2285 	dev = SD_DEVINFO(un);
2286 	ASSERT(dev != NULL);
2287 
2288 	/*
2289 	 * Filter messages based on the global component and level masks.
2290 	 * Also print if un matches the value of sd_debug_un, or if
2291 	 * sd_debug_un is set to NULL.
2292 	 */
2293 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2294 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2295 		mutex_enter(&sd_log_mutex);
2296 		va_start(ap, fmt);
2297 		(void) vsprintf(sd_log_buf, fmt, ap);
2298 		va_end(ap);
2299 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2300 		mutex_exit(&sd_log_mutex);
2301 	}
2302 #ifdef SD_FAULT_INJECTION
2303 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2304 	if (un->sd_injection_mask & comp) {
2305 		mutex_enter(&sd_log_mutex);
2306 		va_start(ap, fmt);
2307 		(void) vsprintf(sd_log_buf, fmt, ap);
2308 		va_end(ap);
2309 		sd_injection_log(sd_log_buf, un);
2310 		mutex_exit(&sd_log_mutex);
2311 	}
2312 #endif
2313 }
2314 
2315 
2316 /*
2317  *    Function: sd_log_info
2318  *
2319  * Description: This routine is called by the SD_INFO macro for debug
2320  *		logging of general purpose informational conditions.
2321  *
2322  *   Arguments: comp - driver component being logged
2323  *		dev  - pointer to driver info structure
2324  *		fmt  - info string and format to be logged
2325  */
2326 
2327 static void
2328 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2329 {
2330 	va_list		ap;
2331 	dev_info_t	*dev;
2332 
2333 	ASSERT(un != NULL);
2334 	dev = SD_DEVINFO(un);
2335 	ASSERT(dev != NULL);
2336 
2337 	/*
2338 	 * Filter messages based on the global component and level masks.
2339 	 * Also print if un matches the value of sd_debug_un, or if
2340 	 * sd_debug_un is set to NULL.
2341 	 */
2342 	if ((sd_component_mask & component) &&
2343 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2344 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2345 		mutex_enter(&sd_log_mutex);
2346 		va_start(ap, fmt);
2347 		(void) vsprintf(sd_log_buf, fmt, ap);
2348 		va_end(ap);
2349 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2350 		mutex_exit(&sd_log_mutex);
2351 	}
2352 #ifdef SD_FAULT_INJECTION
2353 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2354 	if (un->sd_injection_mask & component) {
2355 		mutex_enter(&sd_log_mutex);
2356 		va_start(ap, fmt);
2357 		(void) vsprintf(sd_log_buf, fmt, ap);
2358 		va_end(ap);
2359 		sd_injection_log(sd_log_buf, un);
2360 		mutex_exit(&sd_log_mutex);
2361 	}
2362 #endif
2363 }
2364 
2365 
2366 /*
2367  *    Function: sd_log_trace
2368  *
2369  * Description: This routine is called by the SD_TRACE macro for debug
2370  *		logging of trace conditions (i.e. function entry/exit).
2371  *
2372  *   Arguments: comp - driver component being logged
2373  *		dev  - pointer to driver info structure
2374  *		fmt  - trace string and format to be logged
2375  */
2376 
2377 static void
2378 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2379 {
2380 	va_list		ap;
2381 	dev_info_t	*dev;
2382 
2383 	ASSERT(un != NULL);
2384 	dev = SD_DEVINFO(un);
2385 	ASSERT(dev != NULL);
2386 
2387 	/*
2388 	 * Filter messages based on the global component and level masks.
2389 	 * Also print if un matches the value of sd_debug_un, or if
2390 	 * sd_debug_un is set to NULL.
2391 	 */
2392 	if ((sd_component_mask & component) &&
2393 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2394 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2395 		mutex_enter(&sd_log_mutex);
2396 		va_start(ap, fmt);
2397 		(void) vsprintf(sd_log_buf, fmt, ap);
2398 		va_end(ap);
2399 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2400 		mutex_exit(&sd_log_mutex);
2401 	}
2402 #ifdef SD_FAULT_INJECTION
2403 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2404 	if (un->sd_injection_mask & component) {
2405 		mutex_enter(&sd_log_mutex);
2406 		va_start(ap, fmt);
2407 		(void) vsprintf(sd_log_buf, fmt, ap);
2408 		va_end(ap);
2409 		sd_injection_log(sd_log_buf, un);
2410 		mutex_exit(&sd_log_mutex);
2411 	}
2412 #endif
2413 }
2414 
2415 
2416 /*
2417  *    Function: sdprobe
2418  *
2419  * Description: This is the driver probe(9e) entry point function.
2420  *
2421  *   Arguments: devi - opaque device info handle
2422  *
2423  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2424  *              DDI_PROBE_FAILURE: If the probe failed.
2425  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2426  *				   but may be present in the future.
2427  */
2428 
2429 static int
2430 sdprobe(dev_info_t *devi)
2431 {
2432 	struct scsi_device	*devp;
2433 	int			rval;
2434 	int			instance;
2435 
2436 	/*
2437 	 * if it wasn't for pln, sdprobe could actually be nulldev
2438 	 * in the "__fibre" case.
2439 	 */
2440 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2441 		return (DDI_PROBE_DONTCARE);
2442 	}
2443 
2444 	devp = ddi_get_driver_private(devi);
2445 
2446 	if (devp == NULL) {
2447 		/* Ooops... nexus driver is mis-configured... */
2448 		return (DDI_PROBE_FAILURE);
2449 	}
2450 
2451 	instance = ddi_get_instance(devi);
2452 
2453 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2454 		return (DDI_PROBE_PARTIAL);
2455 	}
2456 
2457 	/*
2458 	 * Call the SCSA utility probe routine to see if we actually
2459 	 * have a target at this SCSI nexus.
2460 	 */
2461 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2462 	case SCSIPROBE_EXISTS:
2463 		switch (devp->sd_inq->inq_dtype) {
2464 		case DTYPE_DIRECT:
2465 			rval = DDI_PROBE_SUCCESS;
2466 			break;
2467 		case DTYPE_RODIRECT:
2468 			/* CDs etc. Can be removable media */
2469 			rval = DDI_PROBE_SUCCESS;
2470 			break;
2471 		case DTYPE_OPTICAL:
2472 			/*
2473 			 * Rewritable optical driver HP115AA
2474 			 * Can also be removable media
2475 			 */
2476 
2477 			/*
2478 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2479 			 * pre solaris 9 sparc sd behavior is required
2480 			 *
2481 			 * If first time through and sd_dtype_optical_bind
2482 			 * has not been set in /etc/system check properties
2483 			 */
2484 
2485 			if (sd_dtype_optical_bind  < 0) {
2486 				sd_dtype_optical_bind = ddi_prop_get_int
2487 				    (DDI_DEV_T_ANY, devi, 0,
2488 				    "optical-device-bind", 1);
2489 			}
2490 
2491 			if (sd_dtype_optical_bind == 0) {
2492 				rval = DDI_PROBE_FAILURE;
2493 			} else {
2494 				rval = DDI_PROBE_SUCCESS;
2495 			}
2496 			break;
2497 
2498 		case DTYPE_NOTPRESENT:
2499 		default:
2500 			rval = DDI_PROBE_FAILURE;
2501 			break;
2502 		}
2503 		break;
2504 	default:
2505 		rval = DDI_PROBE_PARTIAL;
2506 		break;
2507 	}
2508 
2509 	/*
2510 	 * This routine checks for resource allocation prior to freeing,
2511 	 * so it will take care of the "smart probing" case where a
2512 	 * scsi_probe() may or may not have been issued and will *not*
2513 	 * free previously-freed resources.
2514 	 */
2515 	scsi_unprobe(devp);
2516 	return (rval);
2517 }
2518 
2519 
2520 /*
2521  *    Function: sdinfo
2522  *
2523  * Description: This is the driver getinfo(9e) entry point function.
2524  * 		Given the device number, return the devinfo pointer from
2525  *		the scsi_device structure or the instance number
2526  *		associated with the dev_t.
2527  *
2528  *   Arguments: dip     - pointer to device info structure
2529  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2530  *			  DDI_INFO_DEVT2INSTANCE)
2531  *		arg     - driver dev_t
2532  *		resultp - user buffer for request response
2533  *
2534  * Return Code: DDI_SUCCESS
2535  *              DDI_FAILURE
2536  */
2537 /* ARGSUSED */
2538 static int
2539 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2540 {
2541 	struct sd_lun	*un;
2542 	dev_t		dev;
2543 	int		instance;
2544 	int		error;
2545 
2546 	switch (infocmd) {
2547 	case DDI_INFO_DEVT2DEVINFO:
2548 		dev = (dev_t)arg;
2549 		instance = SDUNIT(dev);
2550 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2551 			return (DDI_FAILURE);
2552 		}
2553 		*result = (void *) SD_DEVINFO(un);
2554 		error = DDI_SUCCESS;
2555 		break;
2556 	case DDI_INFO_DEVT2INSTANCE:
2557 		dev = (dev_t)arg;
2558 		instance = SDUNIT(dev);
2559 		*result = (void *)(uintptr_t)instance;
2560 		error = DDI_SUCCESS;
2561 		break;
2562 	default:
2563 		error = DDI_FAILURE;
2564 	}
2565 	return (error);
2566 }
2567 
2568 /*
2569  *    Function: sd_prop_op
2570  *
2571  * Description: This is the driver prop_op(9e) entry point function.
2572  *		Return the number of blocks for the partition in question
2573  *		or forward the request to the property facilities.
2574  *
2575  *   Arguments: dev       - device number
2576  *		dip       - pointer to device info structure
2577  *		prop_op   - property operator
2578  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2579  *		name      - pointer to property name
2580  *		valuep    - pointer or address of the user buffer
2581  *		lengthp   - property length
2582  *
2583  * Return Code: DDI_PROP_SUCCESS
2584  *              DDI_PROP_NOT_FOUND
2585  *              DDI_PROP_UNDEFINED
2586  *              DDI_PROP_NO_MEMORY
2587  *              DDI_PROP_BUF_TOO_SMALL
2588  */
2589 
2590 static int
2591 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2592 	char *name, caddr_t valuep, int *lengthp)
2593 {
2594 	int		instance = ddi_get_instance(dip);
2595 	struct sd_lun	*un;
2596 	uint64_t	nblocks64;
2597 	uint_t		dblk;
2598 
2599 	/*
2600 	 * Our dynamic properties are all device specific and size oriented.
2601 	 * Requests issued under conditions where size is valid are passed
2602 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2603 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2604 	 */
2605 	un = ddi_get_soft_state(sd_state, instance);
2606 	if ((dev == DDI_DEV_T_ANY) || (un == NULL)) {
2607 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2608 		    name, valuep, lengthp));
2609 	} else if (!SD_IS_VALID_LABEL(un)) {
2610 		return (ddi_prop_op(dev, dip, prop_op, mod_flags, name,
2611 		    valuep, lengthp));
2612 	}
2613 
2614 	/* get nblocks value */
2615 	ASSERT(!mutex_owned(SD_MUTEX(un)));
2616 
2617 	(void) cmlb_partinfo(un->un_cmlbhandle, SDPART(dev),
2618 	    (diskaddr_t *)&nblocks64, NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
2619 
2620 	/* report size in target size blocks */
2621 	dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
2622 	return (ddi_prop_op_nblocks_blksize(dev, dip, prop_op, mod_flags,
2623 	    name, valuep, lengthp, nblocks64 / dblk, un->un_tgt_blocksize));
2624 }
2625 
2626 /*
2627  * The following functions are for smart probing:
2628  * sd_scsi_probe_cache_init()
2629  * sd_scsi_probe_cache_fini()
2630  * sd_scsi_clear_probe_cache()
2631  * sd_scsi_probe_with_cache()
2632  */
2633 
2634 /*
2635  *    Function: sd_scsi_probe_cache_init
2636  *
2637  * Description: Initializes the probe response cache mutex and head pointer.
2638  *
2639  *     Context: Kernel thread context
2640  */
2641 
2642 static void
2643 sd_scsi_probe_cache_init(void)
2644 {
2645 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2646 	sd_scsi_probe_cache_head = NULL;
2647 }
2648 
2649 
2650 /*
2651  *    Function: sd_scsi_probe_cache_fini
2652  *
2653  * Description: Frees all resources associated with the probe response cache.
2654  *
2655  *     Context: Kernel thread context
2656  */
2657 
2658 static void
2659 sd_scsi_probe_cache_fini(void)
2660 {
2661 	struct sd_scsi_probe_cache *cp;
2662 	struct sd_scsi_probe_cache *ncp;
2663 
2664 	/* Clean up our smart probing linked list */
2665 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2666 		ncp = cp->next;
2667 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2668 	}
2669 	sd_scsi_probe_cache_head = NULL;
2670 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2671 }
2672 
2673 
2674 /*
2675  *    Function: sd_scsi_clear_probe_cache
2676  *
2677  * Description: This routine clears the probe response cache. This is
2678  *		done when open() returns ENXIO so that when deferred
2679  *		attach is attempted (possibly after a device has been
2680  *		turned on) we will retry the probe. Since we don't know
2681  *		which target we failed to open, we just clear the
2682  *		entire cache.
2683  *
2684  *     Context: Kernel thread context
2685  */
2686 
2687 static void
2688 sd_scsi_clear_probe_cache(void)
2689 {
2690 	struct sd_scsi_probe_cache	*cp;
2691 	int				i;
2692 
2693 	mutex_enter(&sd_scsi_probe_cache_mutex);
2694 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2695 		/*
2696 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2697 		 * force probing to be performed the next time
2698 		 * sd_scsi_probe_with_cache is called.
2699 		 */
2700 		for (i = 0; i < NTARGETS_WIDE; i++) {
2701 			cp->cache[i] = SCSIPROBE_EXISTS;
2702 		}
2703 	}
2704 	mutex_exit(&sd_scsi_probe_cache_mutex);
2705 }
2706 
2707 
2708 /*
2709  *    Function: sd_scsi_probe_with_cache
2710  *
2711  * Description: This routine implements support for a scsi device probe
2712  *		with cache. The driver maintains a cache of the target
2713  *		responses to scsi probes. If we get no response from a
2714  *		target during a probe inquiry, we remember that, and we
2715  *		avoid additional calls to scsi_probe on non-zero LUNs
2716  *		on the same target until the cache is cleared. By doing
2717  *		so we avoid the 1/4 sec selection timeout for nonzero
2718  *		LUNs. lun0 of a target is always probed.
2719  *
2720  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2721  *              waitfunc - indicates what the allocator routines should
2722  *			   do when resources are not available. This value
2723  *			   is passed on to scsi_probe() when that routine
2724  *			   is called.
2725  *
2726  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2727  *		otherwise the value returned by scsi_probe(9F).
2728  *
2729  *     Context: Kernel thread context
2730  */
2731 
2732 static int
2733 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2734 {
2735 	struct sd_scsi_probe_cache	*cp;
2736 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2737 	int		lun, tgt;
2738 
2739 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2740 	    SCSI_ADDR_PROP_LUN, 0);
2741 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2742 	    SCSI_ADDR_PROP_TARGET, -1);
2743 
2744 	/* Make sure caching enabled and target in range */
2745 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2746 		/* do it the old way (no cache) */
2747 		return (scsi_probe(devp, waitfn));
2748 	}
2749 
2750 	mutex_enter(&sd_scsi_probe_cache_mutex);
2751 
2752 	/* Find the cache for this scsi bus instance */
2753 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2754 		if (cp->pdip == pdip) {
2755 			break;
2756 		}
2757 	}
2758 
2759 	/* If we can't find a cache for this pdip, create one */
2760 	if (cp == NULL) {
2761 		int i;
2762 
2763 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2764 		    KM_SLEEP);
2765 		cp->pdip = pdip;
2766 		cp->next = sd_scsi_probe_cache_head;
2767 		sd_scsi_probe_cache_head = cp;
2768 		for (i = 0; i < NTARGETS_WIDE; i++) {
2769 			cp->cache[i] = SCSIPROBE_EXISTS;
2770 		}
2771 	}
2772 
2773 	mutex_exit(&sd_scsi_probe_cache_mutex);
2774 
2775 	/* Recompute the cache for this target if LUN zero */
2776 	if (lun == 0) {
2777 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2778 	}
2779 
2780 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2781 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2782 		return (SCSIPROBE_NORESP);
2783 	}
2784 
2785 	/* Do the actual probe; save & return the result */
2786 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2787 }
2788 
2789 
2790 /*
2791  *    Function: sd_scsi_target_lun_init
2792  *
2793  * Description: Initializes the attached lun chain mutex and head pointer.
2794  *
2795  *     Context: Kernel thread context
2796  */
2797 
2798 static void
2799 sd_scsi_target_lun_init(void)
2800 {
2801 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2802 	sd_scsi_target_lun_head = NULL;
2803 }
2804 
2805 
2806 /*
2807  *    Function: sd_scsi_target_lun_fini
2808  *
2809  * Description: Frees all resources associated with the attached lun
2810  *              chain
2811  *
2812  *     Context: Kernel thread context
2813  */
2814 
2815 static void
2816 sd_scsi_target_lun_fini(void)
2817 {
2818 	struct sd_scsi_hba_tgt_lun	*cp;
2819 	struct sd_scsi_hba_tgt_lun	*ncp;
2820 
2821 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2822 		ncp = cp->next;
2823 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2824 	}
2825 	sd_scsi_target_lun_head = NULL;
2826 	mutex_destroy(&sd_scsi_target_lun_mutex);
2827 }
2828 
2829 
2830 /*
2831  *    Function: sd_scsi_get_target_lun_count
2832  *
2833  * Description: This routine will check in the attached lun chain to see
2834  * 		how many luns are attached on the required SCSI controller
2835  * 		and target. Currently, some capabilities like tagged queue
2836  *		are supported per target based by HBA. So all luns in a
2837  *		target have the same capabilities. Based on this assumption,
2838  * 		sd should only set these capabilities once per target. This
2839  *		function is called when sd needs to decide how many luns
2840  *		already attached on a target.
2841  *
2842  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2843  *			  controller device.
2844  *              target	- The target ID on the controller's SCSI bus.
2845  *
2846  * Return Code: The number of luns attached on the required target and
2847  *		controller.
2848  *		-1 if target ID is not in parallel SCSI scope or the given
2849  * 		dip is not in the chain.
2850  *
2851  *     Context: Kernel thread context
2852  */
2853 
2854 static int
2855 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2856 {
2857 	struct sd_scsi_hba_tgt_lun	*cp;
2858 
2859 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2860 		return (-1);
2861 	}
2862 
2863 	mutex_enter(&sd_scsi_target_lun_mutex);
2864 
2865 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2866 		if (cp->pdip == dip) {
2867 			break;
2868 		}
2869 	}
2870 
2871 	mutex_exit(&sd_scsi_target_lun_mutex);
2872 
2873 	if (cp == NULL) {
2874 		return (-1);
2875 	}
2876 
2877 	return (cp->nlun[target]);
2878 }
2879 
2880 
2881 /*
2882  *    Function: sd_scsi_update_lun_on_target
2883  *
2884  * Description: This routine is used to update the attached lun chain when a
2885  *		lun is attached or detached on a target.
2886  *
2887  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2888  *                        controller device.
2889  *              target  - The target ID on the controller's SCSI bus.
2890  *		flag	- Indicate the lun is attached or detached.
2891  *
2892  *     Context: Kernel thread context
2893  */
2894 
2895 static void
2896 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2897 {
2898 	struct sd_scsi_hba_tgt_lun	*cp;
2899 
2900 	mutex_enter(&sd_scsi_target_lun_mutex);
2901 
2902 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2903 		if (cp->pdip == dip) {
2904 			break;
2905 		}
2906 	}
2907 
2908 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
2909 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
2910 		    KM_SLEEP);
2911 		cp->pdip = dip;
2912 		cp->next = sd_scsi_target_lun_head;
2913 		sd_scsi_target_lun_head = cp;
2914 	}
2915 
2916 	mutex_exit(&sd_scsi_target_lun_mutex);
2917 
2918 	if (cp != NULL) {
2919 		if (flag == SD_SCSI_LUN_ATTACH) {
2920 			cp->nlun[target] ++;
2921 		} else {
2922 			cp->nlun[target] --;
2923 		}
2924 	}
2925 }
2926 
2927 
2928 /*
2929  *    Function: sd_spin_up_unit
2930  *
2931  * Description: Issues the following commands to spin-up the device:
2932  *		START STOP UNIT, and INQUIRY.
2933  *
2934  *   Arguments: un - driver soft state (unit) structure
2935  *
2936  * Return Code: 0 - success
2937  *		EIO - failure
2938  *		EACCES - reservation conflict
2939  *
2940  *     Context: Kernel thread context
2941  */
2942 
2943 static int
2944 sd_spin_up_unit(struct sd_lun *un)
2945 {
2946 	size_t	resid		= 0;
2947 	int	has_conflict	= FALSE;
2948 	uchar_t *bufaddr;
2949 
2950 	ASSERT(un != NULL);
2951 
2952 	/*
2953 	 * Send a throwaway START UNIT command.
2954 	 *
2955 	 * If we fail on this, we don't care presently what precisely
2956 	 * is wrong.  EMC's arrays will also fail this with a check
2957 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2958 	 * we don't want to fail the attach because it may become
2959 	 * "active" later.
2960 	 */
2961 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2962 	    == EACCES)
2963 		has_conflict = TRUE;
2964 
2965 	/*
2966 	 * Send another INQUIRY command to the target. This is necessary for
2967 	 * non-removable media direct access devices because their INQUIRY data
2968 	 * may not be fully qualified until they are spun up (perhaps via the
2969 	 * START command above).  Note: This seems to be needed for some
2970 	 * legacy devices only.) The INQUIRY command should succeed even if a
2971 	 * Reservation Conflict is present.
2972 	 */
2973 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2974 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2975 		kmem_free(bufaddr, SUN_INQSIZE);
2976 		return (EIO);
2977 	}
2978 
2979 	/*
2980 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2981 	 * Note that this routine does not return a failure here even if the
2982 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2983 	 */
2984 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2985 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2986 	}
2987 
2988 	kmem_free(bufaddr, SUN_INQSIZE);
2989 
2990 	/* If we hit a reservation conflict above, tell the caller. */
2991 	if (has_conflict == TRUE) {
2992 		return (EACCES);
2993 	}
2994 
2995 	return (0);
2996 }
2997 
2998 #ifdef _LP64
2999 /*
3000  *    Function: sd_enable_descr_sense
3001  *
3002  * Description: This routine attempts to select descriptor sense format
3003  *		using the Control mode page.  Devices that support 64 bit
3004  *		LBAs (for >2TB luns) should also implement descriptor
3005  *		sense data so we will call this function whenever we see
3006  *		a lun larger than 2TB.  If for some reason the device
3007  *		supports 64 bit LBAs but doesn't support descriptor sense
3008  *		presumably the mode select will fail.  Everything will
3009  *		continue to work normally except that we will not get
3010  *		complete sense data for commands that fail with an LBA
3011  *		larger than 32 bits.
3012  *
3013  *   Arguments: un - driver soft state (unit) structure
3014  *
3015  *     Context: Kernel thread context only
3016  */
3017 
3018 static void
3019 sd_enable_descr_sense(struct sd_lun *un)
3020 {
3021 	uchar_t			*header;
3022 	struct mode_control_scsi3 *ctrl_bufp;
3023 	size_t			buflen;
3024 	size_t			bd_len;
3025 
3026 	/*
3027 	 * Read MODE SENSE page 0xA, Control Mode Page
3028 	 */
3029 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3030 	    sizeof (struct mode_control_scsi3);
3031 	header = kmem_zalloc(buflen, KM_SLEEP);
3032 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3033 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3034 		SD_ERROR(SD_LOG_COMMON, un,
3035 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3036 		goto eds_exit;
3037 	}
3038 
3039 	/*
3040 	 * Determine size of Block Descriptors in order to locate
3041 	 * the mode page data. ATAPI devices return 0, SCSI devices
3042 	 * should return MODE_BLK_DESC_LENGTH.
3043 	 */
3044 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3045 
3046 	/* Clear the mode data length field for MODE SELECT */
3047 	((struct mode_header *)header)->length = 0;
3048 
3049 	ctrl_bufp = (struct mode_control_scsi3 *)
3050 	    (header + MODE_HEADER_LENGTH + bd_len);
3051 
3052 	/*
3053 	 * If the page length is smaller than the expected value,
3054 	 * the target device doesn't support D_SENSE. Bail out here.
3055 	 */
3056 	if (ctrl_bufp->mode_page.length <
3057 	    sizeof (struct mode_control_scsi3) - 2) {
3058 		SD_ERROR(SD_LOG_COMMON, un,
3059 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3060 		goto eds_exit;
3061 	}
3062 
3063 	/*
3064 	 * Clear PS bit for MODE SELECT
3065 	 */
3066 	ctrl_bufp->mode_page.ps = 0;
3067 
3068 	/*
3069 	 * Set D_SENSE to enable descriptor sense format.
3070 	 */
3071 	ctrl_bufp->d_sense = 1;
3072 
3073 	/*
3074 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3075 	 */
3076 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3077 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3078 		SD_INFO(SD_LOG_COMMON, un,
3079 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3080 		goto eds_exit;
3081 	}
3082 
3083 eds_exit:
3084 	kmem_free(header, buflen);
3085 }
3086 
3087 /*
3088  *    Function: sd_reenable_dsense_task
3089  *
3090  * Description: Re-enable descriptor sense after device or bus reset
3091  *
3092  *     Context: Executes in a taskq() thread context
3093  */
3094 static void
3095 sd_reenable_dsense_task(void *arg)
3096 {
3097 	struct	sd_lun	*un = arg;
3098 
3099 	ASSERT(un != NULL);
3100 	sd_enable_descr_sense(un);
3101 }
3102 #endif /* _LP64 */
3103 
3104 /*
3105  *    Function: sd_set_mmc_caps
3106  *
3107  * Description: This routine determines if the device is MMC compliant and if
3108  *		the device supports CDDA via a mode sense of the CDVD
3109  *		capabilities mode page. Also checks if the device is a
3110  *		dvdram writable device.
3111  *
3112  *   Arguments: un - driver soft state (unit) structure
3113  *
3114  *     Context: Kernel thread context only
3115  */
3116 
3117 static void
3118 sd_set_mmc_caps(struct sd_lun *un)
3119 {
3120 	struct mode_header_grp2		*sense_mhp;
3121 	uchar_t				*sense_page;
3122 	caddr_t				buf;
3123 	int				bd_len;
3124 	int				status;
3125 	struct uscsi_cmd		com;
3126 	int				rtn;
3127 	uchar_t				*out_data_rw, *out_data_hd;
3128 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3129 
3130 	ASSERT(un != NULL);
3131 
3132 	/*
3133 	 * The flags which will be set in this function are - mmc compliant,
3134 	 * dvdram writable device, cdda support. Initialize them to FALSE
3135 	 * and if a capability is detected - it will be set to TRUE.
3136 	 */
3137 	un->un_f_mmc_cap = FALSE;
3138 	un->un_f_dvdram_writable_device = FALSE;
3139 	un->un_f_cfg_cdda = FALSE;
3140 
3141 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3142 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3143 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3144 
3145 	if (status != 0) {
3146 		/* command failed; just return */
3147 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3148 		return;
3149 	}
3150 	/*
3151 	 * If the mode sense request for the CDROM CAPABILITIES
3152 	 * page (0x2A) succeeds the device is assumed to be MMC.
3153 	 */
3154 	un->un_f_mmc_cap = TRUE;
3155 
3156 	/* Get to the page data */
3157 	sense_mhp = (struct mode_header_grp2 *)buf;
3158 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3159 	    sense_mhp->bdesc_length_lo;
3160 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3161 		/*
3162 		 * We did not get back the expected block descriptor
3163 		 * length so we cannot determine if the device supports
3164 		 * CDDA. However, we still indicate the device is MMC
3165 		 * according to the successful response to the page
3166 		 * 0x2A mode sense request.
3167 		 */
3168 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3169 		    "sd_set_mmc_caps: Mode Sense returned "
3170 		    "invalid block descriptor length\n");
3171 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3172 		return;
3173 	}
3174 
3175 	/* See if read CDDA is supported */
3176 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3177 	    bd_len);
3178 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3179 
3180 	/* See if writing DVD RAM is supported. */
3181 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3182 	if (un->un_f_dvdram_writable_device == TRUE) {
3183 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3184 		return;
3185 	}
3186 
3187 	/*
3188 	 * If the device presents DVD or CD capabilities in the mode
3189 	 * page, we can return here since a RRD will not have
3190 	 * these capabilities.
3191 	 */
3192 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3193 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3194 		return;
3195 	}
3196 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3197 
3198 	/*
3199 	 * If un->un_f_dvdram_writable_device is still FALSE,
3200 	 * check for a Removable Rigid Disk (RRD).  A RRD
3201 	 * device is identified by the features RANDOM_WRITABLE and
3202 	 * HARDWARE_DEFECT_MANAGEMENT.
3203 	 */
3204 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3205 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3206 
3207 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3208 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3209 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3210 	if (rtn != 0) {
3211 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3212 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3213 		return;
3214 	}
3215 
3216 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3217 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3218 
3219 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3220 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3221 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3222 	if (rtn == 0) {
3223 		/*
3224 		 * We have good information, check for random writable
3225 		 * and hardware defect features.
3226 		 */
3227 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3228 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3229 			un->un_f_dvdram_writable_device = TRUE;
3230 		}
3231 	}
3232 
3233 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3234 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3235 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3236 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3237 }
3238 
3239 /*
3240  *    Function: sd_check_for_writable_cd
3241  *
3242  * Description: This routine determines if the media in the device is
3243  *		writable or not. It uses the get configuration command (0x46)
3244  *		to determine if the media is writable
3245  *
3246  *   Arguments: un - driver soft state (unit) structure
3247  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3248  *                           chain and the normal command waitq, or
3249  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3250  *                           "direct" chain and bypass the normal command
3251  *                           waitq.
3252  *
3253  *     Context: Never called at interrupt context.
3254  */
3255 
3256 static void
3257 sd_check_for_writable_cd(struct sd_lun *un, int path_flag)
3258 {
3259 	struct uscsi_cmd		com;
3260 	uchar_t				*out_data;
3261 	uchar_t				*rqbuf;
3262 	int				rtn;
3263 	uchar_t				*out_data_rw, *out_data_hd;
3264 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3265 	struct mode_header_grp2		*sense_mhp;
3266 	uchar_t				*sense_page;
3267 	caddr_t				buf;
3268 	int				bd_len;
3269 	int				status;
3270 
3271 	ASSERT(un != NULL);
3272 	ASSERT(mutex_owned(SD_MUTEX(un)));
3273 
3274 	/*
3275 	 * Initialize the writable media to false, if configuration info.
3276 	 * tells us otherwise then only we will set it.
3277 	 */
3278 	un->un_f_mmc_writable_media = FALSE;
3279 	mutex_exit(SD_MUTEX(un));
3280 
3281 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3282 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3283 
3284 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3285 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3286 
3287 	mutex_enter(SD_MUTEX(un));
3288 	if (rtn == 0) {
3289 		/*
3290 		 * We have good information, check for writable DVD.
3291 		 */
3292 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3293 			un->un_f_mmc_writable_media = TRUE;
3294 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3295 			kmem_free(rqbuf, SENSE_LENGTH);
3296 			return;
3297 		}
3298 	}
3299 
3300 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3301 	kmem_free(rqbuf, SENSE_LENGTH);
3302 
3303 	/*
3304 	 * Determine if this is a RRD type device.
3305 	 */
3306 	mutex_exit(SD_MUTEX(un));
3307 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3308 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3309 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3310 	mutex_enter(SD_MUTEX(un));
3311 	if (status != 0) {
3312 		/* command failed; just return */
3313 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3314 		return;
3315 	}
3316 
3317 	/* Get to the page data */
3318 	sense_mhp = (struct mode_header_grp2 *)buf;
3319 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3320 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3321 		/*
3322 		 * We did not get back the expected block descriptor length so
3323 		 * we cannot check the mode page.
3324 		 */
3325 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3326 		    "sd_check_for_writable_cd: Mode Sense returned "
3327 		    "invalid block descriptor length\n");
3328 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3329 		return;
3330 	}
3331 
3332 	/*
3333 	 * If the device presents DVD or CD capabilities in the mode
3334 	 * page, we can return here since a RRD device will not have
3335 	 * these capabilities.
3336 	 */
3337 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3338 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3339 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3340 		return;
3341 	}
3342 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3343 
3344 	/*
3345 	 * If un->un_f_mmc_writable_media is still FALSE,
3346 	 * check for RRD type media.  A RRD device is identified
3347 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3348 	 */
3349 	mutex_exit(SD_MUTEX(un));
3350 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3351 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3352 
3353 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3354 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3355 	    RANDOM_WRITABLE, path_flag);
3356 	if (rtn != 0) {
3357 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3358 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3359 		mutex_enter(SD_MUTEX(un));
3360 		return;
3361 	}
3362 
3363 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3364 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3365 
3366 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3367 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3368 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3369 	mutex_enter(SD_MUTEX(un));
3370 	if (rtn == 0) {
3371 		/*
3372 		 * We have good information, check for random writable
3373 		 * and hardware defect features as current.
3374 		 */
3375 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3376 		    (out_data_rw[10] & 0x1) &&
3377 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3378 		    (out_data_hd[10] & 0x1)) {
3379 			un->un_f_mmc_writable_media = TRUE;
3380 		}
3381 	}
3382 
3383 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3384 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3385 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3386 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3387 }
3388 
3389 /*
3390  *    Function: sd_read_unit_properties
3391  *
3392  * Description: The following implements a property lookup mechanism.
3393  *		Properties for particular disks (keyed on vendor, model
3394  *		and rev numbers) are sought in the sd.conf file via
3395  *		sd_process_sdconf_file(), and if not found there, are
3396  *		looked for in a list hardcoded in this driver via
3397  *		sd_process_sdconf_table() Once located the properties
3398  *		are used to update the driver unit structure.
3399  *
3400  *   Arguments: un - driver soft state (unit) structure
3401  */
3402 
3403 static void
3404 sd_read_unit_properties(struct sd_lun *un)
3405 {
3406 	/*
3407 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3408 	 * the "sd-config-list" property (from the sd.conf file) or if
3409 	 * there was not a match for the inquiry vid/pid. If this event
3410 	 * occurs the static driver configuration table is searched for
3411 	 * a match.
3412 	 */
3413 	ASSERT(un != NULL);
3414 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3415 		sd_process_sdconf_table(un);
3416 	}
3417 
3418 	/* check for LSI device */
3419 	sd_is_lsi(un);
3420 
3421 
3422 }
3423 
3424 
3425 /*
3426  *    Function: sd_process_sdconf_file
3427  *
3428  * Description: Use ddi_getlongprop to obtain the properties from the
3429  *		driver's config file (ie, sd.conf) and update the driver
3430  *		soft state structure accordingly.
3431  *
3432  *   Arguments: un - driver soft state (unit) structure
3433  *
3434  * Return Code: SD_SUCCESS - The properties were successfully set according
3435  *			     to the driver configuration file.
3436  *		SD_FAILURE - The driver config list was not obtained or
3437  *			     there was no vid/pid match. This indicates that
3438  *			     the static config table should be used.
3439  *
3440  * The config file has a property, "sd-config-list", which consists of
3441  * one or more duplets as follows:
3442  *
3443  *  sd-config-list=
3444  *	<duplet>,
3445  *	[<duplet>,]
3446  *	[<duplet>];
3447  *
3448  * The structure of each duplet is as follows:
3449  *
3450  *  <duplet>:= <vid+pid>,<data-property-name_list>
3451  *
3452  * The first entry of the duplet is the device ID string (the concatenated
3453  * vid & pid; not to be confused with a device_id).  This is defined in
3454  * the same way as in the sd_disk_table.
3455  *
3456  * The second part of the duplet is a string that identifies a
3457  * data-property-name-list. The data-property-name-list is defined as
3458  * follows:
3459  *
3460  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3461  *
3462  * The syntax of <data-property-name> depends on the <version> field.
3463  *
3464  * If version = SD_CONF_VERSION_1 we have the following syntax:
3465  *
3466  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3467  *
3468  * where the prop0 value will be used to set prop0 if bit0 set in the
3469  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3470  *
3471  */
3472 
3473 static int
3474 sd_process_sdconf_file(struct sd_lun *un)
3475 {
3476 	char	*config_list = NULL;
3477 	int	config_list_len;
3478 	int	len;
3479 	int	dupletlen = 0;
3480 	char	*vidptr;
3481 	int	vidlen;
3482 	char	*dnlist_ptr;
3483 	char	*dataname_ptr;
3484 	int	dnlist_len;
3485 	int	dataname_len;
3486 	int	*data_list;
3487 	int	data_list_len;
3488 	int	rval = SD_FAILURE;
3489 	int	i;
3490 
3491 	ASSERT(un != NULL);
3492 
3493 	/* Obtain the configuration list associated with the .conf file */
3494 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3495 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3496 	    != DDI_PROP_SUCCESS) {
3497 		return (SD_FAILURE);
3498 	}
3499 
3500 	/*
3501 	 * Compare vids in each duplet to the inquiry vid - if a match is
3502 	 * made, get the data value and update the soft state structure
3503 	 * accordingly.
3504 	 *
3505 	 * Note: This algorithm is complex and difficult to maintain. It should
3506 	 * be replaced with a more robust implementation.
3507 	 */
3508 	for (len = config_list_len, vidptr = config_list; len > 0;
3509 	    vidptr += dupletlen, len -= dupletlen) {
3510 		/*
3511 		 * Note: The assumption here is that each vid entry is on
3512 		 * a unique line from its associated duplet.
3513 		 */
3514 		vidlen = dupletlen = (int)strlen(vidptr);
3515 		if ((vidlen == 0) ||
3516 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3517 			dupletlen++;
3518 			continue;
3519 		}
3520 
3521 		/*
3522 		 * dnlist contains 1 or more blank separated
3523 		 * data-property-name entries
3524 		 */
3525 		dnlist_ptr = vidptr + vidlen + 1;
3526 		dnlist_len = (int)strlen(dnlist_ptr);
3527 		dupletlen += dnlist_len + 2;
3528 
3529 		/*
3530 		 * Set a pointer for the first data-property-name
3531 		 * entry in the list
3532 		 */
3533 		dataname_ptr = dnlist_ptr;
3534 		dataname_len = 0;
3535 
3536 		/*
3537 		 * Loop through all data-property-name entries in the
3538 		 * data-property-name-list setting the properties for each.
3539 		 */
3540 		while (dataname_len < dnlist_len) {
3541 			int version;
3542 
3543 			/*
3544 			 * Determine the length of the current
3545 			 * data-property-name entry by indexing until a
3546 			 * blank or NULL is encountered. When the space is
3547 			 * encountered reset it to a NULL for compliance
3548 			 * with ddi_getlongprop().
3549 			 */
3550 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3551 			    (dataname_ptr[i] != '\0')); i++) {
3552 				;
3553 			}
3554 
3555 			dataname_len += i;
3556 			/* If not null terminated, Make it so */
3557 			if (dataname_ptr[i] == ' ') {
3558 				dataname_ptr[i] = '\0';
3559 			}
3560 			dataname_len++;
3561 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3562 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3563 			    vidptr, dataname_ptr);
3564 
3565 			/* Get the data list */
3566 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3567 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3568 			    != DDI_PROP_SUCCESS) {
3569 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3570 				    "sd_process_sdconf_file: data property (%s)"
3571 				    " has no value\n", dataname_ptr);
3572 				dataname_ptr = dnlist_ptr + dataname_len;
3573 				continue;
3574 			}
3575 
3576 			version = data_list[0];
3577 
3578 			if (version == SD_CONF_VERSION_1) {
3579 				sd_tunables values;
3580 
3581 				/* Set the properties */
3582 				if (sd_chk_vers1_data(un, data_list[1],
3583 				    &data_list[2], data_list_len, dataname_ptr)
3584 				    == SD_SUCCESS) {
3585 					sd_get_tunables_from_conf(un,
3586 					    data_list[1], &data_list[2],
3587 					    &values);
3588 					sd_set_vers1_properties(un,
3589 					    data_list[1], &values);
3590 					rval = SD_SUCCESS;
3591 				} else {
3592 					rval = SD_FAILURE;
3593 				}
3594 			} else {
3595 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3596 				    "data property %s version 0x%x is invalid.",
3597 				    dataname_ptr, version);
3598 				rval = SD_FAILURE;
3599 			}
3600 			kmem_free(data_list, data_list_len);
3601 			dataname_ptr = dnlist_ptr + dataname_len;
3602 		}
3603 	}
3604 
3605 	/* free up the memory allocated by ddi_getlongprop */
3606 	if (config_list) {
3607 		kmem_free(config_list, config_list_len);
3608 	}
3609 
3610 	return (rval);
3611 }
3612 
3613 /*
3614  *    Function: sd_get_tunables_from_conf()
3615  *
3616  *
3617  *    This function reads the data list from the sd.conf file and pulls
3618  *    the values that can have numeric values as arguments and places
3619  *    the values in the appropriate sd_tunables member.
3620  *    Since the order of the data list members varies across platforms
3621  *    This function reads them from the data list in a platform specific
3622  *    order and places them into the correct sd_tunable member that is
3623  *    consistent across all platforms.
3624  */
3625 static void
3626 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3627     sd_tunables *values)
3628 {
3629 	int i;
3630 	int mask;
3631 
3632 	bzero(values, sizeof (sd_tunables));
3633 
3634 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3635 
3636 		mask = 1 << i;
3637 		if (mask > flags) {
3638 			break;
3639 		}
3640 
3641 		switch (mask & flags) {
3642 		case 0:	/* This mask bit not set in flags */
3643 			continue;
3644 		case SD_CONF_BSET_THROTTLE:
3645 			values->sdt_throttle = data_list[i];
3646 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3647 			    "sd_get_tunables_from_conf: throttle = %d\n",
3648 			    values->sdt_throttle);
3649 			break;
3650 		case SD_CONF_BSET_CTYPE:
3651 			values->sdt_ctype = data_list[i];
3652 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3653 			    "sd_get_tunables_from_conf: ctype = %d\n",
3654 			    values->sdt_ctype);
3655 			break;
3656 		case SD_CONF_BSET_NRR_COUNT:
3657 			values->sdt_not_rdy_retries = data_list[i];
3658 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3659 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3660 			    values->sdt_not_rdy_retries);
3661 			break;
3662 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3663 			values->sdt_busy_retries = data_list[i];
3664 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3665 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3666 			    values->sdt_busy_retries);
3667 			break;
3668 		case SD_CONF_BSET_RST_RETRIES:
3669 			values->sdt_reset_retries = data_list[i];
3670 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3671 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3672 			    values->sdt_reset_retries);
3673 			break;
3674 		case SD_CONF_BSET_RSV_REL_TIME:
3675 			values->sdt_reserv_rel_time = data_list[i];
3676 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3677 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3678 			    values->sdt_reserv_rel_time);
3679 			break;
3680 		case SD_CONF_BSET_MIN_THROTTLE:
3681 			values->sdt_min_throttle = data_list[i];
3682 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3683 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3684 			    values->sdt_min_throttle);
3685 			break;
3686 		case SD_CONF_BSET_DISKSORT_DISABLED:
3687 			values->sdt_disk_sort_dis = data_list[i];
3688 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3689 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3690 			    values->sdt_disk_sort_dis);
3691 			break;
3692 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3693 			values->sdt_lun_reset_enable = data_list[i];
3694 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3695 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3696 			    "\n", values->sdt_lun_reset_enable);
3697 			break;
3698 		case SD_CONF_BSET_CACHE_IS_NV:
3699 			values->sdt_suppress_cache_flush = data_list[i];
3700 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3701 			    "sd_get_tunables_from_conf: \
3702 			    suppress_cache_flush = %d"
3703 			    "\n", values->sdt_suppress_cache_flush);
3704 			break;
3705 		}
3706 	}
3707 }
3708 
3709 /*
3710  *    Function: sd_process_sdconf_table
3711  *
3712  * Description: Search the static configuration table for a match on the
3713  *		inquiry vid/pid and update the driver soft state structure
3714  *		according to the table property values for the device.
3715  *
3716  *		The form of a configuration table entry is:
3717  *		  <vid+pid>,<flags>,<property-data>
3718  *		  "SEAGATE ST42400N",1,0x40000,
3719  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
3720  *
3721  *   Arguments: un - driver soft state (unit) structure
3722  */
3723 
3724 static void
3725 sd_process_sdconf_table(struct sd_lun *un)
3726 {
3727 	char	*id = NULL;
3728 	int	table_index;
3729 	int	idlen;
3730 
3731 	ASSERT(un != NULL);
3732 	for (table_index = 0; table_index < sd_disk_table_size;
3733 	    table_index++) {
3734 		id = sd_disk_table[table_index].device_id;
3735 		idlen = strlen(id);
3736 		if (idlen == 0) {
3737 			continue;
3738 		}
3739 
3740 		/*
3741 		 * The static configuration table currently does not
3742 		 * implement version 10 properties. Additionally,
3743 		 * multiple data-property-name entries are not
3744 		 * implemented in the static configuration table.
3745 		 */
3746 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3747 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3748 			    "sd_process_sdconf_table: disk %s\n", id);
3749 			sd_set_vers1_properties(un,
3750 			    sd_disk_table[table_index].flags,
3751 			    sd_disk_table[table_index].properties);
3752 			break;
3753 		}
3754 	}
3755 }
3756 
3757 
3758 /*
3759  *    Function: sd_sdconf_id_match
3760  *
3761  * Description: This local function implements a case sensitive vid/pid
3762  *		comparison as well as the boundary cases of wild card and
3763  *		multiple blanks.
3764  *
3765  *		Note: An implicit assumption made here is that the scsi
3766  *		inquiry structure will always keep the vid, pid and
3767  *		revision strings in consecutive sequence, so they can be
3768  *		read as a single string. If this assumption is not the
3769  *		case, a separate string, to be used for the check, needs
3770  *		to be built with these strings concatenated.
3771  *
3772  *   Arguments: un - driver soft state (unit) structure
3773  *		id - table or config file vid/pid
3774  *		idlen  - length of the vid/pid (bytes)
3775  *
3776  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3777  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3778  */
3779 
3780 static int
3781 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3782 {
3783 	struct scsi_inquiry	*sd_inq;
3784 	int 			rval = SD_SUCCESS;
3785 
3786 	ASSERT(un != NULL);
3787 	sd_inq = un->un_sd->sd_inq;
3788 	ASSERT(id != NULL);
3789 
3790 	/*
3791 	 * We use the inq_vid as a pointer to a buffer containing the
3792 	 * vid and pid and use the entire vid/pid length of the table
3793 	 * entry for the comparison. This works because the inq_pid
3794 	 * data member follows inq_vid in the scsi_inquiry structure.
3795 	 */
3796 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3797 		/*
3798 		 * The user id string is compared to the inquiry vid/pid
3799 		 * using a case insensitive comparison and ignoring
3800 		 * multiple spaces.
3801 		 */
3802 		rval = sd_blank_cmp(un, id, idlen);
3803 		if (rval != SD_SUCCESS) {
3804 			/*
3805 			 * User id strings that start and end with a "*"
3806 			 * are a special case. These do not have a
3807 			 * specific vendor, and the product string can
3808 			 * appear anywhere in the 16 byte PID portion of
3809 			 * the inquiry data. This is a simple strstr()
3810 			 * type search for the user id in the inquiry data.
3811 			 */
3812 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3813 				char	*pidptr = &id[1];
3814 				int	i;
3815 				int	j;
3816 				int	pidstrlen = idlen - 2;
3817 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3818 				    pidstrlen;
3819 
3820 				if (j < 0) {
3821 					return (SD_FAILURE);
3822 				}
3823 				for (i = 0; i < j; i++) {
3824 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3825 					    pidptr, pidstrlen) == 0) {
3826 						rval = SD_SUCCESS;
3827 						break;
3828 					}
3829 				}
3830 			}
3831 		}
3832 	}
3833 	return (rval);
3834 }
3835 
3836 
3837 /*
3838  *    Function: sd_blank_cmp
3839  *
3840  * Description: If the id string starts and ends with a space, treat
3841  *		multiple consecutive spaces as equivalent to a single
3842  *		space. For example, this causes a sd_disk_table entry
3843  *		of " NEC CDROM " to match a device's id string of
3844  *		"NEC       CDROM".
3845  *
3846  *		Note: The success exit condition for this routine is if
3847  *		the pointer to the table entry is '\0' and the cnt of
3848  *		the inquiry length is zero. This will happen if the inquiry
3849  *		string returned by the device is padded with spaces to be
3850  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3851  *		SCSI spec states that the inquiry string is to be padded with
3852  *		spaces.
3853  *
3854  *   Arguments: un - driver soft state (unit) structure
3855  *		id - table or config file vid/pid
3856  *		idlen  - length of the vid/pid (bytes)
3857  *
3858  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3859  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3860  */
3861 
3862 static int
3863 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3864 {
3865 	char		*p1;
3866 	char		*p2;
3867 	int		cnt;
3868 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3869 	    sizeof (SD_INQUIRY(un)->inq_pid);
3870 
3871 	ASSERT(un != NULL);
3872 	p2 = un->un_sd->sd_inq->inq_vid;
3873 	ASSERT(id != NULL);
3874 	p1 = id;
3875 
3876 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3877 		/*
3878 		 * Note: string p1 is terminated by a NUL but string p2
3879 		 * isn't.  The end of p2 is determined by cnt.
3880 		 */
3881 		for (;;) {
3882 			/* skip over any extra blanks in both strings */
3883 			while ((*p1 != '\0') && (*p1 == ' ')) {
3884 				p1++;
3885 			}
3886 			while ((cnt != 0) && (*p2 == ' ')) {
3887 				p2++;
3888 				cnt--;
3889 			}
3890 
3891 			/* compare the two strings */
3892 			if ((cnt == 0) ||
3893 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3894 				break;
3895 			}
3896 			while ((cnt > 0) &&
3897 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3898 				p1++;
3899 				p2++;
3900 				cnt--;
3901 			}
3902 		}
3903 	}
3904 
3905 	/* return SD_SUCCESS if both strings match */
3906 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3907 }
3908 
3909 
3910 /*
3911  *    Function: sd_chk_vers1_data
3912  *
3913  * Description: Verify the version 1 device properties provided by the
3914  *		user via the configuration file
3915  *
3916  *   Arguments: un	     - driver soft state (unit) structure
3917  *		flags	     - integer mask indicating properties to be set
3918  *		prop_list    - integer list of property values
3919  *		list_len     - length of user provided data
3920  *
3921  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3922  *		SD_FAILURE - Indicates the user provided data is invalid
3923  */
3924 
3925 static int
3926 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3927     int list_len, char *dataname_ptr)
3928 {
3929 	int i;
3930 	int mask = 1;
3931 	int index = 0;
3932 
3933 	ASSERT(un != NULL);
3934 
3935 	/* Check for a NULL property name and list */
3936 	if (dataname_ptr == NULL) {
3937 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3938 		    "sd_chk_vers1_data: NULL data property name.");
3939 		return (SD_FAILURE);
3940 	}
3941 	if (prop_list == NULL) {
3942 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3943 		    "sd_chk_vers1_data: %s NULL data property list.",
3944 		    dataname_ptr);
3945 		return (SD_FAILURE);
3946 	}
3947 
3948 	/* Display a warning if undefined bits are set in the flags */
3949 	if (flags & ~SD_CONF_BIT_MASK) {
3950 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3951 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3952 		    "Properties not set.",
3953 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3954 		return (SD_FAILURE);
3955 	}
3956 
3957 	/*
3958 	 * Verify the length of the list by identifying the highest bit set
3959 	 * in the flags and validating that the property list has a length
3960 	 * up to the index of this bit.
3961 	 */
3962 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3963 		if (flags & mask) {
3964 			index++;
3965 		}
3966 		mask = 1 << i;
3967 	}
3968 	if ((list_len / sizeof (int)) < (index + 2)) {
3969 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3970 		    "sd_chk_vers1_data: "
3971 		    "Data property list %s size is incorrect. "
3972 		    "Properties not set.", dataname_ptr);
3973 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3974 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3975 		return (SD_FAILURE);
3976 	}
3977 	return (SD_SUCCESS);
3978 }
3979 
3980 
3981 /*
3982  *    Function: sd_set_vers1_properties
3983  *
3984  * Description: Set version 1 device properties based on a property list
3985  *		retrieved from the driver configuration file or static
3986  *		configuration table. Version 1 properties have the format:
3987  *
3988  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3989  *
3990  *		where the prop0 value will be used to set prop0 if bit0
3991  *		is set in the flags
3992  *
3993  *   Arguments: un	     - driver soft state (unit) structure
3994  *		flags	     - integer mask indicating properties to be set
3995  *		prop_list    - integer list of property values
3996  */
3997 
3998 static void
3999 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4000 {
4001 	ASSERT(un != NULL);
4002 
4003 	/*
4004 	 * Set the flag to indicate cache is to be disabled. An attempt
4005 	 * to disable the cache via sd_cache_control() will be made
4006 	 * later during attach once the basic initialization is complete.
4007 	 */
4008 	if (flags & SD_CONF_BSET_NOCACHE) {
4009 		un->un_f_opt_disable_cache = TRUE;
4010 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4011 		    "sd_set_vers1_properties: caching disabled flag set\n");
4012 	}
4013 
4014 	/* CD-specific configuration parameters */
4015 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4016 		un->un_f_cfg_playmsf_bcd = TRUE;
4017 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4018 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4019 	}
4020 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4021 		un->un_f_cfg_readsub_bcd = TRUE;
4022 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4023 		    "sd_set_vers1_properties: readsub_bcd set\n");
4024 	}
4025 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4026 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4027 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4028 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4029 	}
4030 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4031 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4032 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4033 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4034 	}
4035 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4036 		un->un_f_cfg_no_read_header = TRUE;
4037 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4038 		    "sd_set_vers1_properties: no_read_header set\n");
4039 	}
4040 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4041 		un->un_f_cfg_read_cd_xd4 = TRUE;
4042 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4043 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4044 	}
4045 
4046 	/* Support for devices which do not have valid/unique serial numbers */
4047 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4048 		un->un_f_opt_fab_devid = TRUE;
4049 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4050 		    "sd_set_vers1_properties: fab_devid bit set\n");
4051 	}
4052 
4053 	/* Support for user throttle configuration */
4054 	if (flags & SD_CONF_BSET_THROTTLE) {
4055 		ASSERT(prop_list != NULL);
4056 		un->un_saved_throttle = un->un_throttle =
4057 		    prop_list->sdt_throttle;
4058 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4059 		    "sd_set_vers1_properties: throttle set to %d\n",
4060 		    prop_list->sdt_throttle);
4061 	}
4062 
4063 	/* Set the per disk retry count according to the conf file or table. */
4064 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4065 		ASSERT(prop_list != NULL);
4066 		if (prop_list->sdt_not_rdy_retries) {
4067 			un->un_notready_retry_count =
4068 			    prop_list->sdt_not_rdy_retries;
4069 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4070 			    "sd_set_vers1_properties: not ready retry count"
4071 			    " set to %d\n", un->un_notready_retry_count);
4072 		}
4073 	}
4074 
4075 	/* The controller type is reported for generic disk driver ioctls */
4076 	if (flags & SD_CONF_BSET_CTYPE) {
4077 		ASSERT(prop_list != NULL);
4078 		switch (prop_list->sdt_ctype) {
4079 		case CTYPE_CDROM:
4080 			un->un_ctype = prop_list->sdt_ctype;
4081 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4082 			    "sd_set_vers1_properties: ctype set to "
4083 			    "CTYPE_CDROM\n");
4084 			break;
4085 		case CTYPE_CCS:
4086 			un->un_ctype = prop_list->sdt_ctype;
4087 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4088 			    "sd_set_vers1_properties: ctype set to "
4089 			    "CTYPE_CCS\n");
4090 			break;
4091 		case CTYPE_ROD:		/* RW optical */
4092 			un->un_ctype = prop_list->sdt_ctype;
4093 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4094 			    "sd_set_vers1_properties: ctype set to "
4095 			    "CTYPE_ROD\n");
4096 			break;
4097 		default:
4098 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4099 			    "sd_set_vers1_properties: Could not set "
4100 			    "invalid ctype value (%d)",
4101 			    prop_list->sdt_ctype);
4102 		}
4103 	}
4104 
4105 	/* Purple failover timeout */
4106 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4107 		ASSERT(prop_list != NULL);
4108 		un->un_busy_retry_count =
4109 		    prop_list->sdt_busy_retries;
4110 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4111 		    "sd_set_vers1_properties: "
4112 		    "busy retry count set to %d\n",
4113 		    un->un_busy_retry_count);
4114 	}
4115 
4116 	/* Purple reset retry count */
4117 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4118 		ASSERT(prop_list != NULL);
4119 		un->un_reset_retry_count =
4120 		    prop_list->sdt_reset_retries;
4121 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4122 		    "sd_set_vers1_properties: "
4123 		    "reset retry count set to %d\n",
4124 		    un->un_reset_retry_count);
4125 	}
4126 
4127 	/* Purple reservation release timeout */
4128 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4129 		ASSERT(prop_list != NULL);
4130 		un->un_reserve_release_time =
4131 		    prop_list->sdt_reserv_rel_time;
4132 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4133 		    "sd_set_vers1_properties: "
4134 		    "reservation release timeout set to %d\n",
4135 		    un->un_reserve_release_time);
4136 	}
4137 
4138 	/*
4139 	 * Driver flag telling the driver to verify that no commands are pending
4140 	 * for a device before issuing a Test Unit Ready. This is a workaround
4141 	 * for a firmware bug in some Seagate eliteI drives.
4142 	 */
4143 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4144 		un->un_f_cfg_tur_check = TRUE;
4145 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4146 		    "sd_set_vers1_properties: tur queue check set\n");
4147 	}
4148 
4149 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4150 		un->un_min_throttle = prop_list->sdt_min_throttle;
4151 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4152 		    "sd_set_vers1_properties: min throttle set to %d\n",
4153 		    un->un_min_throttle);
4154 	}
4155 
4156 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4157 		un->un_f_disksort_disabled =
4158 		    (prop_list->sdt_disk_sort_dis != 0) ?
4159 		    TRUE : FALSE;
4160 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4161 		    "sd_set_vers1_properties: disksort disabled "
4162 		    "flag set to %d\n",
4163 		    prop_list->sdt_disk_sort_dis);
4164 	}
4165 
4166 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4167 		un->un_f_lun_reset_enabled =
4168 		    (prop_list->sdt_lun_reset_enable != 0) ?
4169 		    TRUE : FALSE;
4170 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4171 		    "sd_set_vers1_properties: lun reset enabled "
4172 		    "flag set to %d\n",
4173 		    prop_list->sdt_lun_reset_enable);
4174 	}
4175 
4176 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4177 		un->un_f_suppress_cache_flush =
4178 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4179 		    TRUE : FALSE;
4180 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4181 		    "sd_set_vers1_properties: suppress_cache_flush "
4182 		    "flag set to %d\n",
4183 		    prop_list->sdt_suppress_cache_flush);
4184 	}
4185 
4186 	/*
4187 	 * Validate the throttle values.
4188 	 * If any of the numbers are invalid, set everything to defaults.
4189 	 */
4190 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4191 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4192 	    (un->un_min_throttle > un->un_throttle)) {
4193 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4194 		un->un_min_throttle = sd_min_throttle;
4195 	}
4196 }
4197 
4198 /*
4199  *   Function: sd_is_lsi()
4200  *
4201  *   Description: Check for lsi devices, step through the static device
4202  *	table to match vid/pid.
4203  *
4204  *   Args: un - ptr to sd_lun
4205  *
4206  *   Notes:  When creating new LSI property, need to add the new LSI property
4207  *		to this function.
4208  */
4209 static void
4210 sd_is_lsi(struct sd_lun *un)
4211 {
4212 	char	*id = NULL;
4213 	int	table_index;
4214 	int	idlen;
4215 	void	*prop;
4216 
4217 	ASSERT(un != NULL);
4218 	for (table_index = 0; table_index < sd_disk_table_size;
4219 	    table_index++) {
4220 		id = sd_disk_table[table_index].device_id;
4221 		idlen = strlen(id);
4222 		if (idlen == 0) {
4223 			continue;
4224 		}
4225 
4226 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4227 			prop = sd_disk_table[table_index].properties;
4228 			if (prop == &lsi_properties ||
4229 			    prop == &lsi_oem_properties ||
4230 			    prop == &lsi_properties_scsi ||
4231 			    prop == &symbios_properties) {
4232 				un->un_f_cfg_is_lsi = TRUE;
4233 			}
4234 			break;
4235 		}
4236 	}
4237 }
4238 
4239 /*
4240  *    Function: sd_get_physical_geometry
4241  *
4242  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4243  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4244  *		target, and use this information to initialize the physical
4245  *		geometry cache specified by pgeom_p.
4246  *
4247  *		MODE SENSE is an optional command, so failure in this case
4248  *		does not necessarily denote an error. We want to use the
4249  *		MODE SENSE commands to derive the physical geometry of the
4250  *		device, but if either command fails, the logical geometry is
4251  *		used as the fallback for disk label geometry in cmlb.
4252  *
4253  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4254  *		have already been initialized for the current target and
4255  *		that the current values be passed as args so that we don't
4256  *		end up ever trying to use -1 as a valid value. This could
4257  *		happen if either value is reset while we're not holding
4258  *		the mutex.
4259  *
4260  *   Arguments: un - driver soft state (unit) structure
4261  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4262  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4263  *			to use the USCSI "direct" chain and bypass the normal
4264  *			command waitq.
4265  *
4266  *     Context: Kernel thread only (can sleep).
4267  */
4268 
4269 static int
4270 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4271 	diskaddr_t capacity, int lbasize, int path_flag)
4272 {
4273 	struct	mode_format	*page3p;
4274 	struct	mode_geometry	*page4p;
4275 	struct	mode_header	*headerp;
4276 	int	sector_size;
4277 	int	nsect;
4278 	int	nhead;
4279 	int	ncyl;
4280 	int	intrlv;
4281 	int	spc;
4282 	diskaddr_t	modesense_capacity;
4283 	int	rpm;
4284 	int	bd_len;
4285 	int	mode_header_length;
4286 	uchar_t	*p3bufp;
4287 	uchar_t	*p4bufp;
4288 	int	cdbsize;
4289 	int 	ret = EIO;
4290 
4291 	ASSERT(un != NULL);
4292 
4293 	if (lbasize == 0) {
4294 		if (ISCD(un)) {
4295 			lbasize = 2048;
4296 		} else {
4297 			lbasize = un->un_sys_blocksize;
4298 		}
4299 	}
4300 	pgeom_p->g_secsize = (unsigned short)lbasize;
4301 
4302 	/*
4303 	 * If the unit is a cd/dvd drive MODE SENSE page three
4304 	 * and MODE SENSE page four are reserved (see SBC spec
4305 	 * and MMC spec). To prevent soft errors just return
4306 	 * using the default LBA size.
4307 	 */
4308 	if (ISCD(un))
4309 		return (ret);
4310 
4311 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4312 
4313 	/*
4314 	 * Retrieve MODE SENSE page 3 - Format Device Page
4315 	 */
4316 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4317 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4318 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4319 	    != 0) {
4320 		SD_ERROR(SD_LOG_COMMON, un,
4321 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4322 		goto page3_exit;
4323 	}
4324 
4325 	/*
4326 	 * Determine size of Block Descriptors in order to locate the mode
4327 	 * page data.  ATAPI devices return 0, SCSI devices should return
4328 	 * MODE_BLK_DESC_LENGTH.
4329 	 */
4330 	headerp = (struct mode_header *)p3bufp;
4331 	if (un->un_f_cfg_is_atapi == TRUE) {
4332 		struct mode_header_grp2 *mhp =
4333 		    (struct mode_header_grp2 *)headerp;
4334 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4335 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4336 	} else {
4337 		mode_header_length = MODE_HEADER_LENGTH;
4338 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4339 	}
4340 
4341 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4342 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4343 		    "received unexpected bd_len of %d, page3\n", bd_len);
4344 		goto page3_exit;
4345 	}
4346 
4347 	page3p = (struct mode_format *)
4348 	    ((caddr_t)headerp + mode_header_length + bd_len);
4349 
4350 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4351 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4352 		    "mode sense pg3 code mismatch %d\n",
4353 		    page3p->mode_page.code);
4354 		goto page3_exit;
4355 	}
4356 
4357 	/*
4358 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4359 	 * complete successfully; otherwise, revert to the logical geometry.
4360 	 * So, we need to save everything in temporary variables.
4361 	 */
4362 	sector_size = BE_16(page3p->data_bytes_sect);
4363 
4364 	/*
4365 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4366 	 */
4367 	if (sector_size == 0) {
4368 		sector_size = un->un_sys_blocksize;
4369 	} else {
4370 		sector_size &= ~(un->un_sys_blocksize - 1);
4371 	}
4372 
4373 	nsect  = BE_16(page3p->sect_track);
4374 	intrlv = BE_16(page3p->interleave);
4375 
4376 	SD_INFO(SD_LOG_COMMON, un,
4377 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4378 	SD_INFO(SD_LOG_COMMON, un,
4379 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4380 	    page3p->mode_page.code, nsect, sector_size);
4381 	SD_INFO(SD_LOG_COMMON, un,
4382 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4383 	    BE_16(page3p->track_skew),
4384 	    BE_16(page3p->cylinder_skew));
4385 
4386 
4387 	/*
4388 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4389 	 */
4390 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4391 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4392 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4393 	    != 0) {
4394 		SD_ERROR(SD_LOG_COMMON, un,
4395 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4396 		goto page4_exit;
4397 	}
4398 
4399 	/*
4400 	 * Determine size of Block Descriptors in order to locate the mode
4401 	 * page data.  ATAPI devices return 0, SCSI devices should return
4402 	 * MODE_BLK_DESC_LENGTH.
4403 	 */
4404 	headerp = (struct mode_header *)p4bufp;
4405 	if (un->un_f_cfg_is_atapi == TRUE) {
4406 		struct mode_header_grp2 *mhp =
4407 		    (struct mode_header_grp2 *)headerp;
4408 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4409 	} else {
4410 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4411 	}
4412 
4413 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4414 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4415 		    "received unexpected bd_len of %d, page4\n", bd_len);
4416 		goto page4_exit;
4417 	}
4418 
4419 	page4p = (struct mode_geometry *)
4420 	    ((caddr_t)headerp + mode_header_length + bd_len);
4421 
4422 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4423 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4424 		    "mode sense pg4 code mismatch %d\n",
4425 		    page4p->mode_page.code);
4426 		goto page4_exit;
4427 	}
4428 
4429 	/*
4430 	 * Stash the data now, after we know that both commands completed.
4431 	 */
4432 
4433 
4434 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4435 	spc   = nhead * nsect;
4436 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4437 	rpm   = BE_16(page4p->rpm);
4438 
4439 	modesense_capacity = spc * ncyl;
4440 
4441 	SD_INFO(SD_LOG_COMMON, un,
4442 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4443 	SD_INFO(SD_LOG_COMMON, un,
4444 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4445 	SD_INFO(SD_LOG_COMMON, un,
4446 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4447 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4448 	    (void *)pgeom_p, capacity);
4449 
4450 	/*
4451 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4452 	 * the product of C * H * S returned by MODE SENSE >= that returned
4453 	 * by read capacity. This is an idiosyncrasy of the original x86
4454 	 * disk subsystem.
4455 	 */
4456 	if (modesense_capacity >= capacity) {
4457 		SD_INFO(SD_LOG_COMMON, un,
4458 		    "sd_get_physical_geometry: adjusting acyl; "
4459 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
4460 		    (modesense_capacity - capacity + spc - 1) / spc);
4461 		if (sector_size != 0) {
4462 			/* 1243403: NEC D38x7 drives don't support sec size */
4463 			pgeom_p->g_secsize = (unsigned short)sector_size;
4464 		}
4465 		pgeom_p->g_nsect    = (unsigned short)nsect;
4466 		pgeom_p->g_nhead    = (unsigned short)nhead;
4467 		pgeom_p->g_capacity = capacity;
4468 		pgeom_p->g_acyl	    =
4469 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
4470 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
4471 	}
4472 
4473 	pgeom_p->g_rpm    = (unsigned short)rpm;
4474 	pgeom_p->g_intrlv = (unsigned short)intrlv;
4475 	ret = 0;
4476 
4477 	SD_INFO(SD_LOG_COMMON, un,
4478 	    "sd_get_physical_geometry: mode sense geometry:\n");
4479 	SD_INFO(SD_LOG_COMMON, un,
4480 	    "   nsect: %d; sector size: %d; interlv: %d\n",
4481 	    nsect, sector_size, intrlv);
4482 	SD_INFO(SD_LOG_COMMON, un,
4483 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
4484 	    nhead, ncyl, rpm, modesense_capacity);
4485 	SD_INFO(SD_LOG_COMMON, un,
4486 	    "sd_get_physical_geometry: (cached)\n");
4487 	SD_INFO(SD_LOG_COMMON, un,
4488 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4489 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
4490 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
4491 	SD_INFO(SD_LOG_COMMON, un,
4492 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
4493 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
4494 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
4495 
4496 page4_exit:
4497 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
4498 page3_exit:
4499 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
4500 
4501 	return (ret);
4502 }
4503 
4504 /*
4505  *    Function: sd_get_virtual_geometry
4506  *
4507  * Description: Ask the controller to tell us about the target device.
4508  *
4509  *   Arguments: un - pointer to softstate
4510  *		capacity - disk capacity in #blocks
4511  *		lbasize - disk block size in bytes
4512  *
4513  *     Context: Kernel thread only
4514  */
4515 
4516 static int
4517 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
4518     diskaddr_t capacity, int lbasize)
4519 {
4520 	uint_t	geombuf;
4521 	int	spc;
4522 
4523 	ASSERT(un != NULL);
4524 
4525 	/* Set sector size, and total number of sectors */
4526 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
4527 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
4528 
4529 	/* Let the HBA tell us its geometry */
4530 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
4531 
4532 	/* A value of -1 indicates an undefined "geometry" property */
4533 	if (geombuf == (-1)) {
4534 		return (EINVAL);
4535 	}
4536 
4537 	/* Initialize the logical geometry cache. */
4538 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
4539 	lgeom_p->g_nsect   = geombuf & 0xffff;
4540 	lgeom_p->g_secsize = un->un_sys_blocksize;
4541 
4542 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
4543 
4544 	/*
4545 	 * Note: The driver originally converted the capacity value from
4546 	 * target blocks to system blocks. However, the capacity value passed
4547 	 * to this routine is already in terms of system blocks (this scaling
4548 	 * is done when the READ CAPACITY command is issued and processed).
4549 	 * This 'error' may have gone undetected because the usage of g_ncyl
4550 	 * (which is based upon g_capacity) is very limited within the driver
4551 	 */
4552 	lgeom_p->g_capacity = capacity;
4553 
4554 	/*
4555 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
4556 	 * hba may return zero values if the device has been removed.
4557 	 */
4558 	if (spc == 0) {
4559 		lgeom_p->g_ncyl = 0;
4560 	} else {
4561 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
4562 	}
4563 	lgeom_p->g_acyl = 0;
4564 
4565 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
4566 	return (0);
4567 
4568 }
4569 /*
4570  *    Function: sd_update_block_info
4571  *
4572  * Description: Calculate a byte count to sector count bitshift value
4573  *		from sector size.
4574  *
4575  *   Arguments: un: unit struct.
4576  *		lbasize: new target sector size
4577  *		capacity: new target capacity, ie. block count
4578  *
4579  *     Context: Kernel thread context
4580  */
4581 
4582 static void
4583 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
4584 {
4585 	uint_t		dblk;
4586 
4587 	if (lbasize != 0) {
4588 		un->un_tgt_blocksize = lbasize;
4589 		un->un_f_tgt_blocksize_is_valid	= TRUE;
4590 	}
4591 
4592 	if (capacity != 0) {
4593 		un->un_blockcount		= capacity;
4594 		un->un_f_blockcount_is_valid	= TRUE;
4595 	}
4596 
4597 	/*
4598 	 * Update device capacity properties.
4599 	 *
4600 	 *   'device-nblocks'	number of blocks in target's units
4601 	 *   'device-blksize'	data bearing size of target's block
4602 	 *
4603 	 * NOTE: math is complicated by the fact that un_tgt_blocksize may
4604 	 * not be a power of two for checksumming disks with 520/528 byte
4605 	 * sectors.
4606 	 */
4607 	if (un->un_f_tgt_blocksize_is_valid &&
4608 	    un->un_f_blockcount_is_valid &&
4609 	    un->un_sys_blocksize) {
4610 		dblk = un->un_tgt_blocksize / un->un_sys_blocksize;
4611 		(void) ddi_prop_update_int64(DDI_DEV_T_NONE, SD_DEVINFO(un),
4612 		    "device-nblocks", un->un_blockcount / dblk);
4613 		/*
4614 		 * To save memory, only define "device-blksize" when its
4615 		 * value is differnet than the default DEV_BSIZE value.
4616 		 */
4617 		if ((un->un_sys_blocksize * dblk) != DEV_BSIZE)
4618 			(void) ddi_prop_update_int(DDI_DEV_T_NONE,
4619 			    SD_DEVINFO(un), "device-blksize",
4620 			    un->un_sys_blocksize * dblk);
4621 	}
4622 }
4623 
4624 
4625 /*
4626  *    Function: sd_register_devid
4627  *
4628  * Description: This routine will obtain the device id information from the
4629  *		target, obtain the serial number, and register the device
4630  *		id with the ddi framework.
4631  *
4632  *   Arguments: devi - the system's dev_info_t for the device.
4633  *		un - driver soft state (unit) structure
4634  *		reservation_flag - indicates if a reservation conflict
4635  *		occurred during attach
4636  *
4637  *     Context: Kernel Thread
4638  */
4639 static void
4640 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
4641 {
4642 	int		rval		= 0;
4643 	uchar_t		*inq80		= NULL;
4644 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
4645 	size_t		inq80_resid	= 0;
4646 	uchar_t		*inq83		= NULL;
4647 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
4648 	size_t		inq83_resid	= 0;
4649 	int		dlen, len;
4650 	char		*sn;
4651 
4652 	ASSERT(un != NULL);
4653 	ASSERT(mutex_owned(SD_MUTEX(un)));
4654 	ASSERT((SD_DEVINFO(un)) == devi);
4655 
4656 	/*
4657 	 * If transport has already registered a devid for this target
4658 	 * then that takes precedence over the driver's determination
4659 	 * of the devid.
4660 	 */
4661 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
4662 		ASSERT(un->un_devid);
4663 		return; /* use devid registered by the transport */
4664 	}
4665 
4666 	/*
4667 	 * This is the case of antiquated Sun disk drives that have the
4668 	 * FAB_DEVID property set in the disk_table.  These drives
4669 	 * manage the devid's by storing them in last 2 available sectors
4670 	 * on the drive and have them fabricated by the ddi layer by calling
4671 	 * ddi_devid_init and passing the DEVID_FAB flag.
4672 	 */
4673 	if (un->un_f_opt_fab_devid == TRUE) {
4674 		/*
4675 		 * Depending on EINVAL isn't reliable, since a reserved disk
4676 		 * may result in invalid geometry, so check to make sure a
4677 		 * reservation conflict did not occur during attach.
4678 		 */
4679 		if ((sd_get_devid(un) == EINVAL) &&
4680 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
4681 			/*
4682 			 * The devid is invalid AND there is no reservation
4683 			 * conflict.  Fabricate a new devid.
4684 			 */
4685 			(void) sd_create_devid(un);
4686 		}
4687 
4688 		/* Register the devid if it exists */
4689 		if (un->un_devid != NULL) {
4690 			(void) ddi_devid_register(SD_DEVINFO(un),
4691 			    un->un_devid);
4692 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4693 			    "sd_register_devid: Devid Fabricated\n");
4694 		}
4695 		return;
4696 	}
4697 
4698 	/*
4699 	 * We check the availibility of the World Wide Name (0x83) and Unit
4700 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
4701 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
4702 	 * 0x83 is availible, that is the best choice.  Our next choice is
4703 	 * 0x80.  If neither are availible, we munge the devid from the device
4704 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
4705 	 * to fabricate a devid for non-Sun qualified disks.
4706 	 */
4707 	if (sd_check_vpd_page_support(un) == 0) {
4708 		/* collect page 80 data if available */
4709 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
4710 
4711 			mutex_exit(SD_MUTEX(un));
4712 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
4713 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
4714 			    0x01, 0x80, &inq80_resid);
4715 
4716 			if (rval != 0) {
4717 				kmem_free(inq80, inq80_len);
4718 				inq80 = NULL;
4719 				inq80_len = 0;
4720 			} else if (ddi_prop_exists(
4721 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
4722 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
4723 			    INQUIRY_SERIAL_NO) == 0) {
4724 				/*
4725 				 * If we don't already have a serial number
4726 				 * property, do quick verify of data returned
4727 				 * and define property.
4728 				 */
4729 				dlen = inq80_len - inq80_resid;
4730 				len = (size_t)inq80[3];
4731 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
4732 					/*
4733 					 * Ensure sn termination, skip leading
4734 					 * blanks, and create property
4735 					 * 'inquiry-serial-no'.
4736 					 */
4737 					sn = (char *)&inq80[4];
4738 					sn[len] = 0;
4739 					while (*sn && (*sn == ' '))
4740 						sn++;
4741 					if (*sn) {
4742 						(void) ddi_prop_update_string(
4743 						    DDI_DEV_T_NONE,
4744 						    SD_DEVINFO(un),
4745 						    INQUIRY_SERIAL_NO, sn);
4746 					}
4747 				}
4748 			}
4749 			mutex_enter(SD_MUTEX(un));
4750 		}
4751 
4752 		/* collect page 83 data if available */
4753 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
4754 			mutex_exit(SD_MUTEX(un));
4755 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
4756 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
4757 			    0x01, 0x83, &inq83_resid);
4758 
4759 			if (rval != 0) {
4760 				kmem_free(inq83, inq83_len);
4761 				inq83 = NULL;
4762 				inq83_len = 0;
4763 			}
4764 			mutex_enter(SD_MUTEX(un));
4765 		}
4766 	}
4767 
4768 	/* encode best devid possible based on data available */
4769 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
4770 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
4771 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
4772 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
4773 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
4774 
4775 		/* devid successfully encoded, register devid */
4776 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
4777 
4778 	} else {
4779 		/*
4780 		 * Unable to encode a devid based on data available.
4781 		 * This is not a Sun qualified disk.  Older Sun disk
4782 		 * drives that have the SD_FAB_DEVID property
4783 		 * set in the disk_table and non Sun qualified
4784 		 * disks are treated in the same manner.  These
4785 		 * drives manage the devid's by storing them in
4786 		 * last 2 available sectors on the drive and
4787 		 * have them fabricated by the ddi layer by
4788 		 * calling ddi_devid_init and passing the
4789 		 * DEVID_FAB flag.
4790 		 * Create a fabricate devid only if there's no
4791 		 * fabricate devid existed.
4792 		 */
4793 		if (sd_get_devid(un) == EINVAL) {
4794 			(void) sd_create_devid(un);
4795 		}
4796 		un->un_f_opt_fab_devid = TRUE;
4797 
4798 		/* Register the devid if it exists */
4799 		if (un->un_devid != NULL) {
4800 			(void) ddi_devid_register(SD_DEVINFO(un),
4801 			    un->un_devid);
4802 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4803 			    "sd_register_devid: devid fabricated using "
4804 			    "ddi framework\n");
4805 		}
4806 	}
4807 
4808 	/* clean up resources */
4809 	if (inq80 != NULL) {
4810 		kmem_free(inq80, inq80_len);
4811 	}
4812 	if (inq83 != NULL) {
4813 		kmem_free(inq83, inq83_len);
4814 	}
4815 }
4816 
4817 
4818 
4819 /*
4820  *    Function: sd_get_devid
4821  *
4822  * Description: This routine will return 0 if a valid device id has been
4823  *		obtained from the target and stored in the soft state. If a
4824  *		valid device id has not been previously read and stored, a
4825  *		read attempt will be made.
4826  *
4827  *   Arguments: un - driver soft state (unit) structure
4828  *
4829  * Return Code: 0 if we successfully get the device id
4830  *
4831  *     Context: Kernel Thread
4832  */
4833 
4834 static int
4835 sd_get_devid(struct sd_lun *un)
4836 {
4837 	struct dk_devid		*dkdevid;
4838 	ddi_devid_t		tmpid;
4839 	uint_t			*ip;
4840 	size_t			sz;
4841 	diskaddr_t		blk;
4842 	int			status;
4843 	int			chksum;
4844 	int			i;
4845 	size_t			buffer_size;
4846 
4847 	ASSERT(un != NULL);
4848 	ASSERT(mutex_owned(SD_MUTEX(un)));
4849 
4850 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
4851 	    un);
4852 
4853 	if (un->un_devid != NULL) {
4854 		return (0);
4855 	}
4856 
4857 	mutex_exit(SD_MUTEX(un));
4858 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4859 	    (void *)SD_PATH_DIRECT) != 0) {
4860 		mutex_enter(SD_MUTEX(un));
4861 		return (EINVAL);
4862 	}
4863 
4864 	/*
4865 	 * Read and verify device id, stored in the reserved cylinders at the
4866 	 * end of the disk. Backup label is on the odd sectors of the last
4867 	 * track of the last cylinder. Device id will be on track of the next
4868 	 * to last cylinder.
4869 	 */
4870 	mutex_enter(SD_MUTEX(un));
4871 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
4872 	mutex_exit(SD_MUTEX(un));
4873 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
4874 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
4875 	    SD_PATH_DIRECT);
4876 	if (status != 0) {
4877 		goto error;
4878 	}
4879 
4880 	/* Validate the revision */
4881 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
4882 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
4883 		status = EINVAL;
4884 		goto error;
4885 	}
4886 
4887 	/* Calculate the checksum */
4888 	chksum = 0;
4889 	ip = (uint_t *)dkdevid;
4890 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
4891 	    i++) {
4892 		chksum ^= ip[i];
4893 	}
4894 
4895 	/* Compare the checksums */
4896 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
4897 		status = EINVAL;
4898 		goto error;
4899 	}
4900 
4901 	/* Validate the device id */
4902 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
4903 		status = EINVAL;
4904 		goto error;
4905 	}
4906 
4907 	/*
4908 	 * Store the device id in the driver soft state
4909 	 */
4910 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
4911 	tmpid = kmem_alloc(sz, KM_SLEEP);
4912 
4913 	mutex_enter(SD_MUTEX(un));
4914 
4915 	un->un_devid = tmpid;
4916 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
4917 
4918 	kmem_free(dkdevid, buffer_size);
4919 
4920 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
4921 
4922 	return (status);
4923 error:
4924 	mutex_enter(SD_MUTEX(un));
4925 	kmem_free(dkdevid, buffer_size);
4926 	return (status);
4927 }
4928 
4929 
4930 /*
4931  *    Function: sd_create_devid
4932  *
4933  * Description: This routine will fabricate the device id and write it
4934  *		to the disk.
4935  *
4936  *   Arguments: un - driver soft state (unit) structure
4937  *
4938  * Return Code: value of the fabricated device id
4939  *
4940  *     Context: Kernel Thread
4941  */
4942 
4943 static ddi_devid_t
4944 sd_create_devid(struct sd_lun *un)
4945 {
4946 	ASSERT(un != NULL);
4947 
4948 	/* Fabricate the devid */
4949 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
4950 	    == DDI_FAILURE) {
4951 		return (NULL);
4952 	}
4953 
4954 	/* Write the devid to disk */
4955 	if (sd_write_deviceid(un) != 0) {
4956 		ddi_devid_free(un->un_devid);
4957 		un->un_devid = NULL;
4958 	}
4959 
4960 	return (un->un_devid);
4961 }
4962 
4963 
4964 /*
4965  *    Function: sd_write_deviceid
4966  *
4967  * Description: This routine will write the device id to the disk
4968  *		reserved sector.
4969  *
4970  *   Arguments: un - driver soft state (unit) structure
4971  *
4972  * Return Code: EINVAL
4973  *		value returned by sd_send_scsi_cmd
4974  *
4975  *     Context: Kernel Thread
4976  */
4977 
4978 static int
4979 sd_write_deviceid(struct sd_lun *un)
4980 {
4981 	struct dk_devid		*dkdevid;
4982 	diskaddr_t		blk;
4983 	uint_t			*ip, chksum;
4984 	int			status;
4985 	int			i;
4986 
4987 	ASSERT(mutex_owned(SD_MUTEX(un)));
4988 
4989 	mutex_exit(SD_MUTEX(un));
4990 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
4991 	    (void *)SD_PATH_DIRECT) != 0) {
4992 		mutex_enter(SD_MUTEX(un));
4993 		return (-1);
4994 	}
4995 
4996 
4997 	/* Allocate the buffer */
4998 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
4999 
5000 	/* Fill in the revision */
5001 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5002 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5003 
5004 	/* Copy in the device id */
5005 	mutex_enter(SD_MUTEX(un));
5006 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5007 	    ddi_devid_sizeof(un->un_devid));
5008 	mutex_exit(SD_MUTEX(un));
5009 
5010 	/* Calculate the checksum */
5011 	chksum = 0;
5012 	ip = (uint_t *)dkdevid;
5013 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
5014 	    i++) {
5015 		chksum ^= ip[i];
5016 	}
5017 
5018 	/* Fill-in checksum */
5019 	DKD_FORMCHKSUM(chksum, dkdevid);
5020 
5021 	/* Write the reserved sector */
5022 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
5023 	    SD_PATH_DIRECT);
5024 
5025 	kmem_free(dkdevid, un->un_sys_blocksize);
5026 
5027 	mutex_enter(SD_MUTEX(un));
5028 	return (status);
5029 }
5030 
5031 
5032 /*
5033  *    Function: sd_check_vpd_page_support
5034  *
5035  * Description: This routine sends an inquiry command with the EVPD bit set and
5036  *		a page code of 0x00 to the device. It is used to determine which
5037  *		vital product pages are availible to find the devid. We are
5038  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
5039  *		device does not support that command.
5040  *
5041  *   Arguments: un  - driver soft state (unit) structure
5042  *
5043  * Return Code: 0 - success
5044  *		1 - check condition
5045  *
5046  *     Context: This routine can sleep.
5047  */
5048 
5049 static int
5050 sd_check_vpd_page_support(struct sd_lun *un)
5051 {
5052 	uchar_t	*page_list	= NULL;
5053 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5054 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5055 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5056 	int    	rval		= 0;
5057 	int	counter;
5058 
5059 	ASSERT(un != NULL);
5060 	ASSERT(mutex_owned(SD_MUTEX(un)));
5061 
5062 	mutex_exit(SD_MUTEX(un));
5063 
5064 	/*
5065 	 * We'll set the page length to the maximum to save figuring it out
5066 	 * with an additional call.
5067 	 */
5068 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5069 
5070 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
5071 	    page_code, NULL);
5072 
5073 	mutex_enter(SD_MUTEX(un));
5074 
5075 	/*
5076 	 * Now we must validate that the device accepted the command, as some
5077 	 * drives do not support it.  If the drive does support it, we will
5078 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5079 	 * not, we return -1.
5080 	 */
5081 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5082 		/* Loop to find one of the 2 pages we need */
5083 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5084 
5085 		/*
5086 		 * Pages are returned in ascending order, and 0x83 is what we
5087 		 * are hoping for.
5088 		 */
5089 		while ((page_list[counter] <= 0x86) &&
5090 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5091 		    VPD_HEAD_OFFSET))) {
5092 			/*
5093 			 * Add 3 because page_list[3] is the number of
5094 			 * pages minus 3
5095 			 */
5096 
5097 			switch (page_list[counter]) {
5098 			case 0x00:
5099 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5100 				break;
5101 			case 0x80:
5102 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5103 				break;
5104 			case 0x81:
5105 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5106 				break;
5107 			case 0x82:
5108 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5109 				break;
5110 			case 0x83:
5111 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5112 				break;
5113 			case 0x86:
5114 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5115 				break;
5116 			}
5117 			counter++;
5118 		}
5119 
5120 	} else {
5121 		rval = -1;
5122 
5123 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5124 		    "sd_check_vpd_page_support: This drive does not implement "
5125 		    "VPD pages.\n");
5126 	}
5127 
5128 	kmem_free(page_list, page_length);
5129 
5130 	return (rval);
5131 }
5132 
5133 
5134 /*
5135  *    Function: sd_setup_pm
5136  *
5137  * Description: Initialize Power Management on the device
5138  *
5139  *     Context: Kernel Thread
5140  */
5141 
5142 static void
5143 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
5144 {
5145 	uint_t	log_page_size;
5146 	uchar_t	*log_page_data;
5147 	int	rval;
5148 
5149 	/*
5150 	 * Since we are called from attach, holding a mutex for
5151 	 * un is unnecessary. Because some of the routines called
5152 	 * from here require SD_MUTEX to not be held, assert this
5153 	 * right up front.
5154 	 */
5155 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5156 	/*
5157 	 * Since the sd device does not have the 'reg' property,
5158 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5159 	 * The following code is to tell cpr that this device
5160 	 * DOES need to be suspended and resumed.
5161 	 */
5162 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5163 	    "pm-hardware-state", "needs-suspend-resume");
5164 
5165 	/*
5166 	 * This complies with the new power management framework
5167 	 * for certain desktop machines. Create the pm_components
5168 	 * property as a string array property.
5169 	 */
5170 	if (un->un_f_pm_supported) {
5171 		/*
5172 		 * not all devices have a motor, try it first.
5173 		 * some devices may return ILLEGAL REQUEST, some
5174 		 * will hang
5175 		 * The following START_STOP_UNIT is used to check if target
5176 		 * device has a motor.
5177 		 */
5178 		un->un_f_start_stop_supported = TRUE;
5179 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
5180 		    SD_PATH_DIRECT) != 0) {
5181 			un->un_f_start_stop_supported = FALSE;
5182 		}
5183 
5184 		/*
5185 		 * create pm properties anyways otherwise the parent can't
5186 		 * go to sleep
5187 		 */
5188 		(void) sd_create_pm_components(devi, un);
5189 		un->un_f_pm_is_enabled = TRUE;
5190 		return;
5191 	}
5192 
5193 	if (!un->un_f_log_sense_supported) {
5194 		un->un_power_level = SD_SPINDLE_ON;
5195 		un->un_f_pm_is_enabled = FALSE;
5196 		return;
5197 	}
5198 
5199 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
5200 
5201 #ifdef	SDDEBUG
5202 	if (sd_force_pm_supported) {
5203 		/* Force a successful result */
5204 		rval = 1;
5205 	}
5206 #endif
5207 
5208 	/*
5209 	 * If the start-stop cycle counter log page is not supported
5210 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
5211 	 * then we should not create the pm_components property.
5212 	 */
5213 	if (rval == -1) {
5214 		/*
5215 		 * Error.
5216 		 * Reading log sense failed, most likely this is
5217 		 * an older drive that does not support log sense.
5218 		 * If this fails auto-pm is not supported.
5219 		 */
5220 		un->un_power_level = SD_SPINDLE_ON;
5221 		un->un_f_pm_is_enabled = FALSE;
5222 
5223 	} else if (rval == 0) {
5224 		/*
5225 		 * Page not found.
5226 		 * The start stop cycle counter is implemented as page
5227 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
5228 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
5229 		 */
5230 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
5231 			/*
5232 			 * Page found, use this one.
5233 			 */
5234 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
5235 			un->un_f_pm_is_enabled = TRUE;
5236 		} else {
5237 			/*
5238 			 * Error or page not found.
5239 			 * auto-pm is not supported for this device.
5240 			 */
5241 			un->un_power_level = SD_SPINDLE_ON;
5242 			un->un_f_pm_is_enabled = FALSE;
5243 		}
5244 	} else {
5245 		/*
5246 		 * Page found, use it.
5247 		 */
5248 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
5249 		un->un_f_pm_is_enabled = TRUE;
5250 	}
5251 
5252 
5253 	if (un->un_f_pm_is_enabled == TRUE) {
5254 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5255 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5256 
5257 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5258 		    log_page_size, un->un_start_stop_cycle_page,
5259 		    0x01, 0, SD_PATH_DIRECT);
5260 #ifdef	SDDEBUG
5261 		if (sd_force_pm_supported) {
5262 			/* Force a successful result */
5263 			rval = 0;
5264 		}
5265 #endif
5266 
5267 		/*
5268 		 * If the Log sense for Page( Start/stop cycle counter page)
5269 		 * succeeds, then power managment is supported and we can
5270 		 * enable auto-pm.
5271 		 */
5272 		if (rval == 0)  {
5273 			(void) sd_create_pm_components(devi, un);
5274 		} else {
5275 			un->un_power_level = SD_SPINDLE_ON;
5276 			un->un_f_pm_is_enabled = FALSE;
5277 		}
5278 
5279 		kmem_free(log_page_data, log_page_size);
5280 	}
5281 }
5282 
5283 
5284 /*
5285  *    Function: sd_create_pm_components
5286  *
5287  * Description: Initialize PM property.
5288  *
5289  *     Context: Kernel thread context
5290  */
5291 
5292 static void
5293 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
5294 {
5295 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
5296 
5297 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5298 
5299 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
5300 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
5301 		/*
5302 		 * When components are initially created they are idle,
5303 		 * power up any non-removables.
5304 		 * Note: the return value of pm_raise_power can't be used
5305 		 * for determining if PM should be enabled for this device.
5306 		 * Even if you check the return values and remove this
5307 		 * property created above, the PM framework will not honor the
5308 		 * change after the first call to pm_raise_power. Hence,
5309 		 * removal of that property does not help if pm_raise_power
5310 		 * fails. In the case of removable media, the start/stop
5311 		 * will fail if the media is not present.
5312 		 */
5313 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
5314 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
5315 			mutex_enter(SD_MUTEX(un));
5316 			un->un_power_level = SD_SPINDLE_ON;
5317 			mutex_enter(&un->un_pm_mutex);
5318 			/* Set to on and not busy. */
5319 			un->un_pm_count = 0;
5320 		} else {
5321 			mutex_enter(SD_MUTEX(un));
5322 			un->un_power_level = SD_SPINDLE_OFF;
5323 			mutex_enter(&un->un_pm_mutex);
5324 			/* Set to off. */
5325 			un->un_pm_count = -1;
5326 		}
5327 		mutex_exit(&un->un_pm_mutex);
5328 		mutex_exit(SD_MUTEX(un));
5329 	} else {
5330 		un->un_power_level = SD_SPINDLE_ON;
5331 		un->un_f_pm_is_enabled = FALSE;
5332 	}
5333 }
5334 
5335 
5336 /*
5337  *    Function: sd_ddi_suspend
5338  *
5339  * Description: Performs system power-down operations. This includes
5340  *		setting the drive state to indicate its suspended so
5341  *		that no new commands will be accepted. Also, wait for
5342  *		all commands that are in transport or queued to a timer
5343  *		for retry to complete. All timeout threads are cancelled.
5344  *
5345  * Return Code: DDI_FAILURE or DDI_SUCCESS
5346  *
5347  *     Context: Kernel thread context
5348  */
5349 
5350 static int
5351 sd_ddi_suspend(dev_info_t *devi)
5352 {
5353 	struct	sd_lun	*un;
5354 	clock_t		wait_cmds_complete;
5355 
5356 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5357 	if (un == NULL) {
5358 		return (DDI_FAILURE);
5359 	}
5360 
5361 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
5362 
5363 	mutex_enter(SD_MUTEX(un));
5364 
5365 	/* Return success if the device is already suspended. */
5366 	if (un->un_state == SD_STATE_SUSPENDED) {
5367 		mutex_exit(SD_MUTEX(un));
5368 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5369 		    "device already suspended, exiting\n");
5370 		return (DDI_SUCCESS);
5371 	}
5372 
5373 	/* Return failure if the device is being used by HA */
5374 	if (un->un_resvd_status &
5375 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
5376 		mutex_exit(SD_MUTEX(un));
5377 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5378 		    "device in use by HA, exiting\n");
5379 		return (DDI_FAILURE);
5380 	}
5381 
5382 	/*
5383 	 * Return failure if the device is in a resource wait
5384 	 * or power changing state.
5385 	 */
5386 	if ((un->un_state == SD_STATE_RWAIT) ||
5387 	    (un->un_state == SD_STATE_PM_CHANGING)) {
5388 		mutex_exit(SD_MUTEX(un));
5389 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
5390 		    "device in resource wait state, exiting\n");
5391 		return (DDI_FAILURE);
5392 	}
5393 
5394 
5395 	un->un_save_state = un->un_last_state;
5396 	New_state(un, SD_STATE_SUSPENDED);
5397 
5398 	/*
5399 	 * Wait for all commands that are in transport or queued to a timer
5400 	 * for retry to complete.
5401 	 *
5402 	 * While waiting, no new commands will be accepted or sent because of
5403 	 * the new state we set above.
5404 	 *
5405 	 * Wait till current operation has completed. If we are in the resource
5406 	 * wait state (with an intr outstanding) then we need to wait till the
5407 	 * intr completes and starts the next cmd. We want to wait for
5408 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
5409 	 */
5410 	wait_cmds_complete = ddi_get_lbolt() +
5411 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
5412 
5413 	while (un->un_ncmds_in_transport != 0) {
5414 		/*
5415 		 * Fail if commands do not finish in the specified time.
5416 		 */
5417 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
5418 		    wait_cmds_complete) == -1) {
5419 			/*
5420 			 * Undo the state changes made above. Everything
5421 			 * must go back to it's original value.
5422 			 */
5423 			Restore_state(un);
5424 			un->un_last_state = un->un_save_state;
5425 			/* Wake up any threads that might be waiting. */
5426 			cv_broadcast(&un->un_suspend_cv);
5427 			mutex_exit(SD_MUTEX(un));
5428 			SD_ERROR(SD_LOG_IO_PM, un,
5429 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
5430 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
5431 			return (DDI_FAILURE);
5432 		}
5433 	}
5434 
5435 	/*
5436 	 * Cancel SCSI watch thread and timeouts, if any are active
5437 	 */
5438 
5439 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
5440 		opaque_t temp_token = un->un_swr_token;
5441 		mutex_exit(SD_MUTEX(un));
5442 		scsi_watch_suspend(temp_token);
5443 		mutex_enter(SD_MUTEX(un));
5444 	}
5445 
5446 	if (un->un_reset_throttle_timeid != NULL) {
5447 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
5448 		un->un_reset_throttle_timeid = NULL;
5449 		mutex_exit(SD_MUTEX(un));
5450 		(void) untimeout(temp_id);
5451 		mutex_enter(SD_MUTEX(un));
5452 	}
5453 
5454 	if (un->un_dcvb_timeid != NULL) {
5455 		timeout_id_t temp_id = un->un_dcvb_timeid;
5456 		un->un_dcvb_timeid = NULL;
5457 		mutex_exit(SD_MUTEX(un));
5458 		(void) untimeout(temp_id);
5459 		mutex_enter(SD_MUTEX(un));
5460 	}
5461 
5462 	mutex_enter(&un->un_pm_mutex);
5463 	if (un->un_pm_timeid != NULL) {
5464 		timeout_id_t temp_id = un->un_pm_timeid;
5465 		un->un_pm_timeid = NULL;
5466 		mutex_exit(&un->un_pm_mutex);
5467 		mutex_exit(SD_MUTEX(un));
5468 		(void) untimeout(temp_id);
5469 		mutex_enter(SD_MUTEX(un));
5470 	} else {
5471 		mutex_exit(&un->un_pm_mutex);
5472 	}
5473 
5474 	if (un->un_retry_timeid != NULL) {
5475 		timeout_id_t temp_id = un->un_retry_timeid;
5476 		un->un_retry_timeid = NULL;
5477 		mutex_exit(SD_MUTEX(un));
5478 		(void) untimeout(temp_id);
5479 		mutex_enter(SD_MUTEX(un));
5480 	}
5481 
5482 	if (un->un_direct_priority_timeid != NULL) {
5483 		timeout_id_t temp_id = un->un_direct_priority_timeid;
5484 		un->un_direct_priority_timeid = NULL;
5485 		mutex_exit(SD_MUTEX(un));
5486 		(void) untimeout(temp_id);
5487 		mutex_enter(SD_MUTEX(un));
5488 	}
5489 
5490 	if (un->un_f_is_fibre == TRUE) {
5491 		/*
5492 		 * Remove callbacks for insert and remove events
5493 		 */
5494 		if (un->un_insert_event != NULL) {
5495 			mutex_exit(SD_MUTEX(un));
5496 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
5497 			mutex_enter(SD_MUTEX(un));
5498 			un->un_insert_event = NULL;
5499 		}
5500 
5501 		if (un->un_remove_event != NULL) {
5502 			mutex_exit(SD_MUTEX(un));
5503 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
5504 			mutex_enter(SD_MUTEX(un));
5505 			un->un_remove_event = NULL;
5506 		}
5507 	}
5508 
5509 	mutex_exit(SD_MUTEX(un));
5510 
5511 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
5512 
5513 	return (DDI_SUCCESS);
5514 }
5515 
5516 
5517 /*
5518  *    Function: sd_ddi_pm_suspend
5519  *
5520  * Description: Set the drive state to low power.
5521  *		Someone else is required to actually change the drive
5522  *		power level.
5523  *
5524  *   Arguments: un - driver soft state (unit) structure
5525  *
5526  * Return Code: DDI_FAILURE or DDI_SUCCESS
5527  *
5528  *     Context: Kernel thread context
5529  */
5530 
5531 static int
5532 sd_ddi_pm_suspend(struct sd_lun *un)
5533 {
5534 	ASSERT(un != NULL);
5535 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
5536 
5537 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5538 	mutex_enter(SD_MUTEX(un));
5539 
5540 	/*
5541 	 * Exit if power management is not enabled for this device, or if
5542 	 * the device is being used by HA.
5543 	 */
5544 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
5545 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
5546 		mutex_exit(SD_MUTEX(un));
5547 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
5548 		return (DDI_SUCCESS);
5549 	}
5550 
5551 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
5552 	    un->un_ncmds_in_driver);
5553 
5554 	/*
5555 	 * See if the device is not busy, ie.:
5556 	 *    - we have no commands in the driver for this device
5557 	 *    - not waiting for resources
5558 	 */
5559 	if ((un->un_ncmds_in_driver == 0) &&
5560 	    (un->un_state != SD_STATE_RWAIT)) {
5561 		/*
5562 		 * The device is not busy, so it is OK to go to low power state.
5563 		 * Indicate low power, but rely on someone else to actually
5564 		 * change it.
5565 		 */
5566 		mutex_enter(&un->un_pm_mutex);
5567 		un->un_pm_count = -1;
5568 		mutex_exit(&un->un_pm_mutex);
5569 		un->un_power_level = SD_SPINDLE_OFF;
5570 	}
5571 
5572 	mutex_exit(SD_MUTEX(un));
5573 
5574 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
5575 
5576 	return (DDI_SUCCESS);
5577 }
5578 
5579 
5580 /*
5581  *    Function: sd_ddi_resume
5582  *
5583  * Description: Performs system power-up operations..
5584  *
5585  * Return Code: DDI_SUCCESS
5586  *		DDI_FAILURE
5587  *
5588  *     Context: Kernel thread context
5589  */
5590 
5591 static int
5592 sd_ddi_resume(dev_info_t *devi)
5593 {
5594 	struct	sd_lun	*un;
5595 
5596 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
5597 	if (un == NULL) {
5598 		return (DDI_FAILURE);
5599 	}
5600 
5601 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
5602 
5603 	mutex_enter(SD_MUTEX(un));
5604 	Restore_state(un);
5605 
5606 	/*
5607 	 * Restore the state which was saved to give the
5608 	 * the right state in un_last_state
5609 	 */
5610 	un->un_last_state = un->un_save_state;
5611 	/*
5612 	 * Note: throttle comes back at full.
5613 	 * Also note: this MUST be done before calling pm_raise_power
5614 	 * otherwise the system can get hung in biowait. The scenario where
5615 	 * this'll happen is under cpr suspend. Writing of the system
5616 	 * state goes through sddump, which writes 0 to un_throttle. If
5617 	 * writing the system state then fails, example if the partition is
5618 	 * too small, then cpr attempts a resume. If throttle isn't restored
5619 	 * from the saved value until after calling pm_raise_power then
5620 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
5621 	 * in biowait.
5622 	 */
5623 	un->un_throttle = un->un_saved_throttle;
5624 
5625 	/*
5626 	 * The chance of failure is very rare as the only command done in power
5627 	 * entry point is START command when you transition from 0->1 or
5628 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
5629 	 * which suspend was done. Ignore the return value as the resume should
5630 	 * not be failed. In the case of removable media the media need not be
5631 	 * inserted and hence there is a chance that raise power will fail with
5632 	 * media not present.
5633 	 */
5634 	if (un->un_f_attach_spinup) {
5635 		mutex_exit(SD_MUTEX(un));
5636 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
5637 		mutex_enter(SD_MUTEX(un));
5638 	}
5639 
5640 	/*
5641 	 * Don't broadcast to the suspend cv and therefore possibly
5642 	 * start I/O until after power has been restored.
5643 	 */
5644 	cv_broadcast(&un->un_suspend_cv);
5645 	cv_broadcast(&un->un_state_cv);
5646 
5647 	/* restart thread */
5648 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
5649 		scsi_watch_resume(un->un_swr_token);
5650 	}
5651 
5652 #if (defined(__fibre))
5653 	if (un->un_f_is_fibre == TRUE) {
5654 		/*
5655 		 * Add callbacks for insert and remove events
5656 		 */
5657 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
5658 			sd_init_event_callbacks(un);
5659 		}
5660 	}
5661 #endif
5662 
5663 	/*
5664 	 * Transport any pending commands to the target.
5665 	 *
5666 	 * If this is a low-activity device commands in queue will have to wait
5667 	 * until new commands come in, which may take awhile. Also, we
5668 	 * specifically don't check un_ncmds_in_transport because we know that
5669 	 * there really are no commands in progress after the unit was
5670 	 * suspended and we could have reached the throttle level, been
5671 	 * suspended, and have no new commands coming in for awhile. Highly
5672 	 * unlikely, but so is the low-activity disk scenario.
5673 	 */
5674 	ddi_xbuf_dispatch(un->un_xbuf_attr);
5675 
5676 	sd_start_cmds(un, NULL);
5677 	mutex_exit(SD_MUTEX(un));
5678 
5679 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
5680 
5681 	return (DDI_SUCCESS);
5682 }
5683 
5684 
5685 /*
5686  *    Function: sd_ddi_pm_resume
5687  *
5688  * Description: Set the drive state to powered on.
5689  *		Someone else is required to actually change the drive
5690  *		power level.
5691  *
5692  *   Arguments: un - driver soft state (unit) structure
5693  *
5694  * Return Code: DDI_SUCCESS
5695  *
5696  *     Context: Kernel thread context
5697  */
5698 
5699 static int
5700 sd_ddi_pm_resume(struct sd_lun *un)
5701 {
5702 	ASSERT(un != NULL);
5703 
5704 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5705 	mutex_enter(SD_MUTEX(un));
5706 	un->un_power_level = SD_SPINDLE_ON;
5707 
5708 	ASSERT(!mutex_owned(&un->un_pm_mutex));
5709 	mutex_enter(&un->un_pm_mutex);
5710 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
5711 		un->un_pm_count++;
5712 		ASSERT(un->un_pm_count == 0);
5713 		/*
5714 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
5715 		 * un_suspend_cv is for a system resume, not a power management
5716 		 * device resume. (4297749)
5717 		 *	 cv_broadcast(&un->un_suspend_cv);
5718 		 */
5719 	}
5720 	mutex_exit(&un->un_pm_mutex);
5721 	mutex_exit(SD_MUTEX(un));
5722 
5723 	return (DDI_SUCCESS);
5724 }
5725 
5726 
5727 /*
5728  *    Function: sd_pm_idletimeout_handler
5729  *
5730  * Description: A timer routine that's active only while a device is busy.
5731  *		The purpose is to extend slightly the pm framework's busy
5732  *		view of the device to prevent busy/idle thrashing for
5733  *		back-to-back commands. Do this by comparing the current time
5734  *		to the time at which the last command completed and when the
5735  *		difference is greater than sd_pm_idletime, call
5736  *		pm_idle_component. In addition to indicating idle to the pm
5737  *		framework, update the chain type to again use the internal pm
5738  *		layers of the driver.
5739  *
5740  *   Arguments: arg - driver soft state (unit) structure
5741  *
5742  *     Context: Executes in a timeout(9F) thread context
5743  */
5744 
5745 static void
5746 sd_pm_idletimeout_handler(void *arg)
5747 {
5748 	struct sd_lun *un = arg;
5749 
5750 	time_t	now;
5751 
5752 	mutex_enter(&sd_detach_mutex);
5753 	if (un->un_detach_count != 0) {
5754 		/* Abort if the instance is detaching */
5755 		mutex_exit(&sd_detach_mutex);
5756 		return;
5757 	}
5758 	mutex_exit(&sd_detach_mutex);
5759 
5760 	now = ddi_get_time();
5761 	/*
5762 	 * Grab both mutexes, in the proper order, since we're accessing
5763 	 * both PM and softstate variables.
5764 	 */
5765 	mutex_enter(SD_MUTEX(un));
5766 	mutex_enter(&un->un_pm_mutex);
5767 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
5768 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
5769 		/*
5770 		 * Update the chain types.
5771 		 * This takes affect on the next new command received.
5772 		 */
5773 		if (un->un_f_non_devbsize_supported) {
5774 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
5775 		} else {
5776 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
5777 		}
5778 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
5779 
5780 		SD_TRACE(SD_LOG_IO_PM, un,
5781 		    "sd_pm_idletimeout_handler: idling device\n");
5782 		(void) pm_idle_component(SD_DEVINFO(un), 0);
5783 		un->un_pm_idle_timeid = NULL;
5784 	} else {
5785 		un->un_pm_idle_timeid =
5786 		    timeout(sd_pm_idletimeout_handler, un,
5787 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
5788 	}
5789 	mutex_exit(&un->un_pm_mutex);
5790 	mutex_exit(SD_MUTEX(un));
5791 }
5792 
5793 
5794 /*
5795  *    Function: sd_pm_timeout_handler
5796  *
5797  * Description: Callback to tell framework we are idle.
5798  *
5799  *     Context: timeout(9f) thread context.
5800  */
5801 
5802 static void
5803 sd_pm_timeout_handler(void *arg)
5804 {
5805 	struct sd_lun *un = arg;
5806 
5807 	(void) pm_idle_component(SD_DEVINFO(un), 0);
5808 	mutex_enter(&un->un_pm_mutex);
5809 	un->un_pm_timeid = NULL;
5810 	mutex_exit(&un->un_pm_mutex);
5811 }
5812 
5813 
5814 /*
5815  *    Function: sdpower
5816  *
5817  * Description: PM entry point.
5818  *
5819  * Return Code: DDI_SUCCESS
5820  *		DDI_FAILURE
5821  *
5822  *     Context: Kernel thread context
5823  */
5824 
5825 static int
5826 sdpower(dev_info_t *devi, int component, int level)
5827 {
5828 	struct sd_lun	*un;
5829 	int		instance;
5830 	int		rval = DDI_SUCCESS;
5831 	uint_t		i, log_page_size, maxcycles, ncycles;
5832 	uchar_t		*log_page_data;
5833 	int		log_sense_page;
5834 	int		medium_present;
5835 	time_t		intvlp;
5836 	dev_t		dev;
5837 	struct pm_trans_data	sd_pm_tran_data;
5838 	uchar_t		save_state;
5839 	int		sval;
5840 	uchar_t		state_before_pm;
5841 	int		got_semaphore_here;
5842 
5843 	instance = ddi_get_instance(devi);
5844 
5845 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
5846 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
5847 	    component != 0) {
5848 		return (DDI_FAILURE);
5849 	}
5850 
5851 	dev = sd_make_device(SD_DEVINFO(un));
5852 
5853 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
5854 
5855 	/*
5856 	 * Must synchronize power down with close.
5857 	 * Attempt to decrement/acquire the open/close semaphore,
5858 	 * but do NOT wait on it. If it's not greater than zero,
5859 	 * ie. it can't be decremented without waiting, then
5860 	 * someone else, either open or close, already has it
5861 	 * and the try returns 0. Use that knowledge here to determine
5862 	 * if it's OK to change the device power level.
5863 	 * Also, only increment it on exit if it was decremented, ie. gotten,
5864 	 * here.
5865 	 */
5866 	got_semaphore_here = sema_tryp(&un->un_semoclose);
5867 
5868 	mutex_enter(SD_MUTEX(un));
5869 
5870 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
5871 	    un->un_ncmds_in_driver);
5872 
5873 	/*
5874 	 * If un_ncmds_in_driver is non-zero it indicates commands are
5875 	 * already being processed in the driver, or if the semaphore was
5876 	 * not gotten here it indicates an open or close is being processed.
5877 	 * At the same time somebody is requesting to go low power which
5878 	 * can't happen, therefore we need to return failure.
5879 	 */
5880 	if ((level == SD_SPINDLE_OFF) &&
5881 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
5882 		mutex_exit(SD_MUTEX(un));
5883 
5884 		if (got_semaphore_here != 0) {
5885 			sema_v(&un->un_semoclose);
5886 		}
5887 		SD_TRACE(SD_LOG_IO_PM, un,
5888 		    "sdpower: exit, device has queued cmds.\n");
5889 		return (DDI_FAILURE);
5890 	}
5891 
5892 	/*
5893 	 * if it is OFFLINE that means the disk is completely dead
5894 	 * in our case we have to put the disk in on or off by sending commands
5895 	 * Of course that will fail anyway so return back here.
5896 	 *
5897 	 * Power changes to a device that's OFFLINE or SUSPENDED
5898 	 * are not allowed.
5899 	 */
5900 	if ((un->un_state == SD_STATE_OFFLINE) ||
5901 	    (un->un_state == SD_STATE_SUSPENDED)) {
5902 		mutex_exit(SD_MUTEX(un));
5903 
5904 		if (got_semaphore_here != 0) {
5905 			sema_v(&un->un_semoclose);
5906 		}
5907 		SD_TRACE(SD_LOG_IO_PM, un,
5908 		    "sdpower: exit, device is off-line.\n");
5909 		return (DDI_FAILURE);
5910 	}
5911 
5912 	/*
5913 	 * Change the device's state to indicate it's power level
5914 	 * is being changed. Do this to prevent a power off in the
5915 	 * middle of commands, which is especially bad on devices
5916 	 * that are really powered off instead of just spun down.
5917 	 */
5918 	state_before_pm = un->un_state;
5919 	un->un_state = SD_STATE_PM_CHANGING;
5920 
5921 	mutex_exit(SD_MUTEX(un));
5922 
5923 	/*
5924 	 * If "pm-capable" property is set to TRUE by HBA drivers,
5925 	 * bypass the following checking, otherwise, check the log
5926 	 * sense information for this device
5927 	 */
5928 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
5929 		/*
5930 		 * Get the log sense information to understand whether the
5931 		 * the powercycle counts have gone beyond the threshhold.
5932 		 */
5933 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
5934 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
5935 
5936 		mutex_enter(SD_MUTEX(un));
5937 		log_sense_page = un->un_start_stop_cycle_page;
5938 		mutex_exit(SD_MUTEX(un));
5939 
5940 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
5941 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
5942 #ifdef	SDDEBUG
5943 		if (sd_force_pm_supported) {
5944 			/* Force a successful result */
5945 			rval = 0;
5946 		}
5947 #endif
5948 		if (rval != 0) {
5949 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5950 			    "Log Sense Failed\n");
5951 			kmem_free(log_page_data, log_page_size);
5952 			/* Cannot support power management on those drives */
5953 
5954 			if (got_semaphore_here != 0) {
5955 				sema_v(&un->un_semoclose);
5956 			}
5957 			/*
5958 			 * On exit put the state back to it's original value
5959 			 * and broadcast to anyone waiting for the power
5960 			 * change completion.
5961 			 */
5962 			mutex_enter(SD_MUTEX(un));
5963 			un->un_state = state_before_pm;
5964 			cv_broadcast(&un->un_suspend_cv);
5965 			mutex_exit(SD_MUTEX(un));
5966 			SD_TRACE(SD_LOG_IO_PM, un,
5967 			    "sdpower: exit, Log Sense Failed.\n");
5968 			return (DDI_FAILURE);
5969 		}
5970 
5971 		/*
5972 		 * From the page data - Convert the essential information to
5973 		 * pm_trans_data
5974 		 */
5975 		maxcycles =
5976 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
5977 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
5978 
5979 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
5980 
5981 		ncycles =
5982 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
5983 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
5984 
5985 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
5986 
5987 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
5988 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
5989 			    log_page_data[8+i];
5990 		}
5991 
5992 		kmem_free(log_page_data, log_page_size);
5993 
5994 		/*
5995 		 * Call pm_trans_check routine to get the Ok from
5996 		 * the global policy
5997 		 */
5998 
5999 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
6000 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
6001 
6002 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6003 #ifdef	SDDEBUG
6004 		if (sd_force_pm_supported) {
6005 			/* Force a successful result */
6006 			rval = 1;
6007 		}
6008 #endif
6009 		switch (rval) {
6010 		case 0:
6011 			/*
6012 			 * Not Ok to Power cycle or error in parameters passed
6013 			 * Would have given the advised time to consider power
6014 			 * cycle. Based on the new intvlp parameter we are
6015 			 * supposed to pretend we are busy so that pm framework
6016 			 * will never call our power entry point. Because of
6017 			 * that install a timeout handler and wait for the
6018 			 * recommended time to elapse so that power management
6019 			 * can be effective again.
6020 			 *
6021 			 * To effect this behavior, call pm_busy_component to
6022 			 * indicate to the framework this device is busy.
6023 			 * By not adjusting un_pm_count the rest of PM in
6024 			 * the driver will function normally, and independant
6025 			 * of this but because the framework is told the device
6026 			 * is busy it won't attempt powering down until it gets
6027 			 * a matching idle. The timeout handler sends this.
6028 			 * Note: sd_pm_entry can't be called here to do this
6029 			 * because sdpower may have been called as a result
6030 			 * of a call to pm_raise_power from within sd_pm_entry.
6031 			 *
6032 			 * If a timeout handler is already active then
6033 			 * don't install another.
6034 			 */
6035 			mutex_enter(&un->un_pm_mutex);
6036 			if (un->un_pm_timeid == NULL) {
6037 				un->un_pm_timeid =
6038 				    timeout(sd_pm_timeout_handler,
6039 				    un, intvlp * drv_usectohz(1000000));
6040 				mutex_exit(&un->un_pm_mutex);
6041 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6042 			} else {
6043 				mutex_exit(&un->un_pm_mutex);
6044 			}
6045 			if (got_semaphore_here != 0) {
6046 				sema_v(&un->un_semoclose);
6047 			}
6048 			/*
6049 			 * On exit put the state back to it's original value
6050 			 * and broadcast to anyone waiting for the power
6051 			 * change completion.
6052 			 */
6053 			mutex_enter(SD_MUTEX(un));
6054 			un->un_state = state_before_pm;
6055 			cv_broadcast(&un->un_suspend_cv);
6056 			mutex_exit(SD_MUTEX(un));
6057 
6058 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6059 			    "trans check Failed, not ok to power cycle.\n");
6060 			return (DDI_FAILURE);
6061 
6062 		case -1:
6063 			if (got_semaphore_here != 0) {
6064 				sema_v(&un->un_semoclose);
6065 			}
6066 			/*
6067 			 * On exit put the state back to it's original value
6068 			 * and broadcast to anyone waiting for the power
6069 			 * change completion.
6070 			 */
6071 			mutex_enter(SD_MUTEX(un));
6072 			un->un_state = state_before_pm;
6073 			cv_broadcast(&un->un_suspend_cv);
6074 			mutex_exit(SD_MUTEX(un));
6075 			SD_TRACE(SD_LOG_IO_PM, un,
6076 			    "sdpower: exit, trans check command Failed.\n");
6077 			return (DDI_FAILURE);
6078 		}
6079 	}
6080 
6081 	if (level == SD_SPINDLE_OFF) {
6082 		/*
6083 		 * Save the last state... if the STOP FAILS we need it
6084 		 * for restoring
6085 		 */
6086 		mutex_enter(SD_MUTEX(un));
6087 		save_state = un->un_last_state;
6088 		/*
6089 		 * There must not be any cmds. getting processed
6090 		 * in the driver when we get here. Power to the
6091 		 * device is potentially going off.
6092 		 */
6093 		ASSERT(un->un_ncmds_in_driver == 0);
6094 		mutex_exit(SD_MUTEX(un));
6095 
6096 		/*
6097 		 * For now suspend the device completely before spindle is
6098 		 * turned off
6099 		 */
6100 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
6101 			if (got_semaphore_here != 0) {
6102 				sema_v(&un->un_semoclose);
6103 			}
6104 			/*
6105 			 * On exit put the state back to it's original value
6106 			 * and broadcast to anyone waiting for the power
6107 			 * change completion.
6108 			 */
6109 			mutex_enter(SD_MUTEX(un));
6110 			un->un_state = state_before_pm;
6111 			cv_broadcast(&un->un_suspend_cv);
6112 			mutex_exit(SD_MUTEX(un));
6113 			SD_TRACE(SD_LOG_IO_PM, un,
6114 			    "sdpower: exit, PM suspend Failed.\n");
6115 			return (DDI_FAILURE);
6116 		}
6117 	}
6118 
6119 	/*
6120 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6121 	 * close, or strategy. Dump no long uses this routine, it uses it's
6122 	 * own code so it can be done in polled mode.
6123 	 */
6124 
6125 	medium_present = TRUE;
6126 
6127 	/*
6128 	 * When powering up, issue a TUR in case the device is at unit
6129 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6130 	 * a deadlock on un_pm_busy_cv will occur.
6131 	 */
6132 	if (level == SD_SPINDLE_ON) {
6133 		(void) sd_send_scsi_TEST_UNIT_READY(un,
6134 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6135 	}
6136 
6137 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6138 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6139 
6140 	sval = sd_send_scsi_START_STOP_UNIT(un,
6141 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
6142 	    SD_PATH_DIRECT);
6143 	/* Command failed, check for media present. */
6144 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6145 		medium_present = FALSE;
6146 	}
6147 
6148 	/*
6149 	 * The conditions of interest here are:
6150 	 *   if a spindle off with media present fails,
6151 	 *	then restore the state and return an error.
6152 	 *   else if a spindle on fails,
6153 	 *	then return an error (there's no state to restore).
6154 	 * In all other cases we setup for the new state
6155 	 * and return success.
6156 	 */
6157 	switch (level) {
6158 	case SD_SPINDLE_OFF:
6159 		if ((medium_present == TRUE) && (sval != 0)) {
6160 			/* The stop command from above failed */
6161 			rval = DDI_FAILURE;
6162 			/*
6163 			 * The stop command failed, and we have media
6164 			 * present. Put the level back by calling the
6165 			 * sd_pm_resume() and set the state back to
6166 			 * it's previous value.
6167 			 */
6168 			(void) sd_ddi_pm_resume(un);
6169 			mutex_enter(SD_MUTEX(un));
6170 			un->un_last_state = save_state;
6171 			mutex_exit(SD_MUTEX(un));
6172 			break;
6173 		}
6174 		/*
6175 		 * The stop command from above succeeded.
6176 		 */
6177 		if (un->un_f_monitor_media_state) {
6178 			/*
6179 			 * Terminate watch thread in case of removable media
6180 			 * devices going into low power state. This is as per
6181 			 * the requirements of pm framework, otherwise commands
6182 			 * will be generated for the device (through watch
6183 			 * thread), even when the device is in low power state.
6184 			 */
6185 			mutex_enter(SD_MUTEX(un));
6186 			un->un_f_watcht_stopped = FALSE;
6187 			if (un->un_swr_token != NULL) {
6188 				opaque_t temp_token = un->un_swr_token;
6189 				un->un_f_watcht_stopped = TRUE;
6190 				un->un_swr_token = NULL;
6191 				mutex_exit(SD_MUTEX(un));
6192 				(void) scsi_watch_request_terminate(temp_token,
6193 				    SCSI_WATCH_TERMINATE_WAIT);
6194 			} else {
6195 				mutex_exit(SD_MUTEX(un));
6196 			}
6197 		}
6198 		break;
6199 
6200 	default:	/* The level requested is spindle on... */
6201 		/*
6202 		 * Legacy behavior: return success on a failed spinup
6203 		 * if there is no media in the drive.
6204 		 * Do this by looking at medium_present here.
6205 		 */
6206 		if ((sval != 0) && medium_present) {
6207 			/* The start command from above failed */
6208 			rval = DDI_FAILURE;
6209 			break;
6210 		}
6211 		/*
6212 		 * The start command from above succeeded
6213 		 * Resume the devices now that we have
6214 		 * started the disks
6215 		 */
6216 		(void) sd_ddi_pm_resume(un);
6217 
6218 		/*
6219 		 * Resume the watch thread since it was suspended
6220 		 * when the device went into low power mode.
6221 		 */
6222 		if (un->un_f_monitor_media_state) {
6223 			mutex_enter(SD_MUTEX(un));
6224 			if (un->un_f_watcht_stopped == TRUE) {
6225 				opaque_t temp_token;
6226 
6227 				un->un_f_watcht_stopped = FALSE;
6228 				mutex_exit(SD_MUTEX(un));
6229 				temp_token = scsi_watch_request_submit(
6230 				    SD_SCSI_DEVP(un),
6231 				    sd_check_media_time,
6232 				    SENSE_LENGTH, sd_media_watch_cb,
6233 				    (caddr_t)dev);
6234 				mutex_enter(SD_MUTEX(un));
6235 				un->un_swr_token = temp_token;
6236 			}
6237 			mutex_exit(SD_MUTEX(un));
6238 		}
6239 	}
6240 	if (got_semaphore_here != 0) {
6241 		sema_v(&un->un_semoclose);
6242 	}
6243 	/*
6244 	 * On exit put the state back to it's original value
6245 	 * and broadcast to anyone waiting for the power
6246 	 * change completion.
6247 	 */
6248 	mutex_enter(SD_MUTEX(un));
6249 	un->un_state = state_before_pm;
6250 	cv_broadcast(&un->un_suspend_cv);
6251 	mutex_exit(SD_MUTEX(un));
6252 
6253 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
6254 
6255 	return (rval);
6256 }
6257 
6258 
6259 
6260 /*
6261  *    Function: sdattach
6262  *
6263  * Description: Driver's attach(9e) entry point function.
6264  *
6265  *   Arguments: devi - opaque device info handle
6266  *		cmd  - attach  type
6267  *
6268  * Return Code: DDI_SUCCESS
6269  *		DDI_FAILURE
6270  *
6271  *     Context: Kernel thread context
6272  */
6273 
6274 static int
6275 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
6276 {
6277 	switch (cmd) {
6278 	case DDI_ATTACH:
6279 		return (sd_unit_attach(devi));
6280 	case DDI_RESUME:
6281 		return (sd_ddi_resume(devi));
6282 	default:
6283 		break;
6284 	}
6285 	return (DDI_FAILURE);
6286 }
6287 
6288 
6289 /*
6290  *    Function: sddetach
6291  *
6292  * Description: Driver's detach(9E) entry point function.
6293  *
6294  *   Arguments: devi - opaque device info handle
6295  *		cmd  - detach  type
6296  *
6297  * Return Code: DDI_SUCCESS
6298  *		DDI_FAILURE
6299  *
6300  *     Context: Kernel thread context
6301  */
6302 
6303 static int
6304 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
6305 {
6306 	switch (cmd) {
6307 	case DDI_DETACH:
6308 		return (sd_unit_detach(devi));
6309 	case DDI_SUSPEND:
6310 		return (sd_ddi_suspend(devi));
6311 	default:
6312 		break;
6313 	}
6314 	return (DDI_FAILURE);
6315 }
6316 
6317 
6318 /*
6319  *     Function: sd_sync_with_callback
6320  *
6321  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
6322  *		 state while the callback routine is active.
6323  *
6324  *    Arguments: un: softstate structure for the instance
6325  *
6326  *	Context: Kernel thread context
6327  */
6328 
6329 static void
6330 sd_sync_with_callback(struct sd_lun *un)
6331 {
6332 	ASSERT(un != NULL);
6333 
6334 	mutex_enter(SD_MUTEX(un));
6335 
6336 	ASSERT(un->un_in_callback >= 0);
6337 
6338 	while (un->un_in_callback > 0) {
6339 		mutex_exit(SD_MUTEX(un));
6340 		delay(2);
6341 		mutex_enter(SD_MUTEX(un));
6342 	}
6343 
6344 	mutex_exit(SD_MUTEX(un));
6345 }
6346 
6347 /*
6348  *    Function: sd_unit_attach
6349  *
6350  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
6351  *		the soft state structure for the device and performs
6352  *		all necessary structure and device initializations.
6353  *
6354  *   Arguments: devi: the system's dev_info_t for the device.
6355  *
6356  * Return Code: DDI_SUCCESS if attach is successful.
6357  *		DDI_FAILURE if any part of the attach fails.
6358  *
6359  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
6360  *		Kernel thread context only.  Can sleep.
6361  */
6362 
6363 static int
6364 sd_unit_attach(dev_info_t *devi)
6365 {
6366 	struct	scsi_device	*devp;
6367 	struct	sd_lun		*un;
6368 	char			*variantp;
6369 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
6370 	int	instance;
6371 	int	rval;
6372 	int	wc_enabled;
6373 	int	tgt;
6374 	uint64_t	capacity;
6375 	uint_t		lbasize = 0;
6376 	dev_info_t	*pdip = ddi_get_parent(devi);
6377 	int		offbyone = 0;
6378 	int		geom_label_valid = 0;
6379 #if defined(__sparc)
6380 	int		max_xfer_size;
6381 #endif
6382 
6383 	/*
6384 	 * Retrieve the target driver's private data area. This was set
6385 	 * up by the HBA.
6386 	 */
6387 	devp = ddi_get_driver_private(devi);
6388 
6389 	/*
6390 	 * Retrieve the target ID of the device.
6391 	 */
6392 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6393 	    SCSI_ADDR_PROP_TARGET, -1);
6394 
6395 	/*
6396 	 * Since we have no idea what state things were left in by the last
6397 	 * user of the device, set up some 'default' settings, ie. turn 'em
6398 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
6399 	 * Do this before the scsi_probe, which sends an inquiry.
6400 	 * This is a fix for bug (4430280).
6401 	 * Of special importance is wide-xfer. The drive could have been left
6402 	 * in wide transfer mode by the last driver to communicate with it,
6403 	 * this includes us. If that's the case, and if the following is not
6404 	 * setup properly or we don't re-negotiate with the drive prior to
6405 	 * transferring data to/from the drive, it causes bus parity errors,
6406 	 * data overruns, and unexpected interrupts. This first occurred when
6407 	 * the fix for bug (4378686) was made.
6408 	 */
6409 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
6410 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
6411 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
6412 
6413 	/*
6414 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
6415 	 * on a target. Setting it per lun instance actually sets the
6416 	 * capability of this target, which affects those luns already
6417 	 * attached on the same target. So during attach, we can only disable
6418 	 * this capability only when no other lun has been attached on this
6419 	 * target. By doing this, we assume a target has the same tagged-qing
6420 	 * capability for every lun. The condition can be removed when HBA
6421 	 * is changed to support per lun based tagged-qing capability.
6422 	 */
6423 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
6424 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
6425 	}
6426 
6427 	/*
6428 	 * Use scsi_probe() to issue an INQUIRY command to the device.
6429 	 * This call will allocate and fill in the scsi_inquiry structure
6430 	 * and point the sd_inq member of the scsi_device structure to it.
6431 	 * If the attach succeeds, then this memory will not be de-allocated
6432 	 * (via scsi_unprobe()) until the instance is detached.
6433 	 */
6434 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
6435 		goto probe_failed;
6436 	}
6437 
6438 	/*
6439 	 * Check the device type as specified in the inquiry data and
6440 	 * claim it if it is of a type that we support.
6441 	 */
6442 	switch (devp->sd_inq->inq_dtype) {
6443 	case DTYPE_DIRECT:
6444 		break;
6445 	case DTYPE_RODIRECT:
6446 		break;
6447 	case DTYPE_OPTICAL:
6448 		break;
6449 	case DTYPE_NOTPRESENT:
6450 	default:
6451 		/* Unsupported device type; fail the attach. */
6452 		goto probe_failed;
6453 	}
6454 
6455 	/*
6456 	 * Allocate the soft state structure for this unit.
6457 	 *
6458 	 * We rely upon this memory being set to all zeroes by
6459 	 * ddi_soft_state_zalloc().  We assume that any member of the
6460 	 * soft state structure that is not explicitly initialized by
6461 	 * this routine will have a value of zero.
6462 	 */
6463 	instance = ddi_get_instance(devp->sd_dev);
6464 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
6465 		goto probe_failed;
6466 	}
6467 
6468 	/*
6469 	 * Retrieve a pointer to the newly-allocated soft state.
6470 	 *
6471 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
6472 	 * was successful, unless something has gone horribly wrong and the
6473 	 * ddi's soft state internals are corrupt (in which case it is
6474 	 * probably better to halt here than just fail the attach....)
6475 	 */
6476 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
6477 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
6478 		    instance);
6479 		/*NOTREACHED*/
6480 	}
6481 
6482 	/*
6483 	 * Link the back ptr of the driver soft state to the scsi_device
6484 	 * struct for this lun.
6485 	 * Save a pointer to the softstate in the driver-private area of
6486 	 * the scsi_device struct.
6487 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
6488 	 * we first set un->un_sd below.
6489 	 */
6490 	un->un_sd = devp;
6491 	devp->sd_private = (opaque_t)un;
6492 
6493 	/*
6494 	 * The following must be after devp is stored in the soft state struct.
6495 	 */
6496 #ifdef SDDEBUG
6497 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6498 	    "%s_unit_attach: un:0x%p instance:%d\n",
6499 	    ddi_driver_name(devi), un, instance);
6500 #endif
6501 
6502 	/*
6503 	 * Set up the device type and node type (for the minor nodes).
6504 	 * By default we assume that the device can at least support the
6505 	 * Common Command Set. Call it a CD-ROM if it reports itself
6506 	 * as a RODIRECT device.
6507 	 */
6508 	switch (devp->sd_inq->inq_dtype) {
6509 	case DTYPE_RODIRECT:
6510 		un->un_node_type = DDI_NT_CD_CHAN;
6511 		un->un_ctype	 = CTYPE_CDROM;
6512 		break;
6513 	case DTYPE_OPTICAL:
6514 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6515 		un->un_ctype	 = CTYPE_ROD;
6516 		break;
6517 	default:
6518 		un->un_node_type = DDI_NT_BLOCK_CHAN;
6519 		un->un_ctype	 = CTYPE_CCS;
6520 		break;
6521 	}
6522 
6523 	/*
6524 	 * Try to read the interconnect type from the HBA.
6525 	 *
6526 	 * Note: This driver is currently compiled as two binaries, a parallel
6527 	 * scsi version (sd) and a fibre channel version (ssd). All functional
6528 	 * differences are determined at compile time. In the future a single
6529 	 * binary will be provided and the inteconnect type will be used to
6530 	 * differentiate between fibre and parallel scsi behaviors. At that time
6531 	 * it will be necessary for all fibre channel HBAs to support this
6532 	 * property.
6533 	 *
6534 	 * set un_f_is_fiber to TRUE ( default fiber )
6535 	 */
6536 	un->un_f_is_fibre = TRUE;
6537 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
6538 	case INTERCONNECT_SSA:
6539 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
6540 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6541 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
6542 		break;
6543 	case INTERCONNECT_PARALLEL:
6544 		un->un_f_is_fibre = FALSE;
6545 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6546 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6547 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
6548 		break;
6549 	case INTERCONNECT_SATA:
6550 		un->un_f_is_fibre = FALSE;
6551 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
6552 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6553 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
6554 		break;
6555 	case INTERCONNECT_FIBRE:
6556 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
6557 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6558 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
6559 		break;
6560 	case INTERCONNECT_FABRIC:
6561 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
6562 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
6563 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6564 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
6565 		break;
6566 	default:
6567 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
6568 		/*
6569 		 * The HBA does not support the "interconnect-type" property
6570 		 * (or did not provide a recognized type).
6571 		 *
6572 		 * Note: This will be obsoleted when a single fibre channel
6573 		 * and parallel scsi driver is delivered. In the meantime the
6574 		 * interconnect type will be set to the platform default.If that
6575 		 * type is not parallel SCSI, it means that we should be
6576 		 * assuming "ssd" semantics. However, here this also means that
6577 		 * the FC HBA is not supporting the "interconnect-type" property
6578 		 * like we expect it to, so log this occurrence.
6579 		 */
6580 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
6581 		if (!SD_IS_PARALLEL_SCSI(un)) {
6582 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6583 			    "sd_unit_attach: un:0x%p Assuming "
6584 			    "INTERCONNECT_FIBRE\n", un);
6585 		} else {
6586 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6587 			    "sd_unit_attach: un:0x%p Assuming "
6588 			    "INTERCONNECT_PARALLEL\n", un);
6589 			un->un_f_is_fibre = FALSE;
6590 		}
6591 #else
6592 		/*
6593 		 * Note: This source will be implemented when a single fibre
6594 		 * channel and parallel scsi driver is delivered. The default
6595 		 * will be to assume that if a device does not support the
6596 		 * "interconnect-type" property it is a parallel SCSI HBA and
6597 		 * we will set the interconnect type for parallel scsi.
6598 		 */
6599 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
6600 		un->un_f_is_fibre = FALSE;
6601 #endif
6602 		break;
6603 	}
6604 
6605 	if (un->un_f_is_fibre == TRUE) {
6606 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
6607 		    SCSI_VERSION_3) {
6608 			switch (un->un_interconnect_type) {
6609 			case SD_INTERCONNECT_FIBRE:
6610 			case SD_INTERCONNECT_SSA:
6611 				un->un_node_type = DDI_NT_BLOCK_WWN;
6612 				break;
6613 			default:
6614 				break;
6615 			}
6616 		}
6617 	}
6618 
6619 	/*
6620 	 * Initialize the Request Sense command for the target
6621 	 */
6622 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
6623 		goto alloc_rqs_failed;
6624 	}
6625 
6626 	/*
6627 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
6628 	 * with separate binary for sd and ssd.
6629 	 *
6630 	 * x86 has 1 binary, un_retry_count is set base on connection type.
6631 	 * The hardcoded values will go away when Sparc uses 1 binary
6632 	 * for sd and ssd.  This hardcoded values need to match
6633 	 * SD_RETRY_COUNT in sddef.h
6634 	 * The value used is base on interconnect type.
6635 	 * fibre = 3, parallel = 5
6636 	 */
6637 #if defined(__i386) || defined(__amd64)
6638 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
6639 #else
6640 	un->un_retry_count = SD_RETRY_COUNT;
6641 #endif
6642 
6643 	/*
6644 	 * Set the per disk retry count to the default number of retries
6645 	 * for disks and CDROMs. This value can be overridden by the
6646 	 * disk property list or an entry in sd.conf.
6647 	 */
6648 	un->un_notready_retry_count =
6649 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
6650 	    : DISK_NOT_READY_RETRY_COUNT(un);
6651 
6652 	/*
6653 	 * Set the busy retry count to the default value of un_retry_count.
6654 	 * This can be overridden by entries in sd.conf or the device
6655 	 * config table.
6656 	 */
6657 	un->un_busy_retry_count = un->un_retry_count;
6658 
6659 	/*
6660 	 * Init the reset threshold for retries.  This number determines
6661 	 * how many retries must be performed before a reset can be issued
6662 	 * (for certain error conditions). This can be overridden by entries
6663 	 * in sd.conf or the device config table.
6664 	 */
6665 	un->un_reset_retry_count = (un->un_retry_count / 2);
6666 
6667 	/*
6668 	 * Set the victim_retry_count to the default un_retry_count
6669 	 */
6670 	un->un_victim_retry_count = (2 * un->un_retry_count);
6671 
6672 	/*
6673 	 * Set the reservation release timeout to the default value of
6674 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
6675 	 * device config table.
6676 	 */
6677 	un->un_reserve_release_time = 5;
6678 
6679 	/*
6680 	 * Set up the default maximum transfer size. Note that this may
6681 	 * get updated later in the attach, when setting up default wide
6682 	 * operations for disks.
6683 	 */
6684 #if defined(__i386) || defined(__amd64)
6685 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
6686 	un->un_partial_dma_supported = 1;
6687 #else
6688 	un->un_max_xfer_size = (uint_t)maxphys;
6689 #endif
6690 
6691 	/*
6692 	 * Get "allow bus device reset" property (defaults to "enabled" if
6693 	 * the property was not defined). This is to disable bus resets for
6694 	 * certain kinds of error recovery. Note: In the future when a run-time
6695 	 * fibre check is available the soft state flag should default to
6696 	 * enabled.
6697 	 */
6698 	if (un->un_f_is_fibre == TRUE) {
6699 		un->un_f_allow_bus_device_reset = TRUE;
6700 	} else {
6701 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
6702 		    "allow-bus-device-reset", 1) != 0) {
6703 			un->un_f_allow_bus_device_reset = TRUE;
6704 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6705 			    "sd_unit_attach: un:0x%p Bus device reset "
6706 			    "enabled\n", un);
6707 		} else {
6708 			un->un_f_allow_bus_device_reset = FALSE;
6709 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6710 			    "sd_unit_attach: un:0x%p Bus device reset "
6711 			    "disabled\n", un);
6712 		}
6713 	}
6714 
6715 	/*
6716 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
6717 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
6718 	 *
6719 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
6720 	 * property. The new "variant" property with a value of "atapi" has been
6721 	 * introduced so that future 'variants' of standard SCSI behavior (like
6722 	 * atapi) could be specified by the underlying HBA drivers by supplying
6723 	 * a new value for the "variant" property, instead of having to define a
6724 	 * new property.
6725 	 */
6726 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
6727 		un->un_f_cfg_is_atapi = TRUE;
6728 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6729 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
6730 	}
6731 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
6732 	    &variantp) == DDI_PROP_SUCCESS) {
6733 		if (strcmp(variantp, "atapi") == 0) {
6734 			un->un_f_cfg_is_atapi = TRUE;
6735 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6736 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
6737 		}
6738 		ddi_prop_free(variantp);
6739 	}
6740 
6741 	un->un_cmd_timeout	= SD_IO_TIME;
6742 
6743 	/* Info on current states, statuses, etc. (Updated frequently) */
6744 	un->un_state		= SD_STATE_NORMAL;
6745 	un->un_last_state	= SD_STATE_NORMAL;
6746 
6747 	/* Control & status info for command throttling */
6748 	un->un_throttle		= sd_max_throttle;
6749 	un->un_saved_throttle	= sd_max_throttle;
6750 	un->un_min_throttle	= sd_min_throttle;
6751 
6752 	if (un->un_f_is_fibre == TRUE) {
6753 		un->un_f_use_adaptive_throttle = TRUE;
6754 	} else {
6755 		un->un_f_use_adaptive_throttle = FALSE;
6756 	}
6757 
6758 	/* Removable media support. */
6759 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
6760 	un->un_mediastate		= DKIO_NONE;
6761 	un->un_specified_mediastate	= DKIO_NONE;
6762 
6763 	/* CVs for suspend/resume (PM or DR) */
6764 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
6765 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
6766 
6767 	/* Power management support. */
6768 	un->un_power_level = SD_SPINDLE_UNINIT;
6769 
6770 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
6771 	un->un_f_wcc_inprog = 0;
6772 
6773 	/*
6774 	 * The open/close semaphore is used to serialize threads executing
6775 	 * in the driver's open & close entry point routines for a given
6776 	 * instance.
6777 	 */
6778 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
6779 
6780 	/*
6781 	 * The conf file entry and softstate variable is a forceful override,
6782 	 * meaning a non-zero value must be entered to change the default.
6783 	 */
6784 	un->un_f_disksort_disabled = FALSE;
6785 
6786 	/*
6787 	 * Retrieve the properties from the static driver table or the driver
6788 	 * configuration file (.conf) for this unit and update the soft state
6789 	 * for the device as needed for the indicated properties.
6790 	 * Note: the property configuration needs to occur here as some of the
6791 	 * following routines may have dependancies on soft state flags set
6792 	 * as part of the driver property configuration.
6793 	 */
6794 	sd_read_unit_properties(un);
6795 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6796 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
6797 
6798 	/*
6799 	 * Only if a device has "hotpluggable" property, it is
6800 	 * treated as hotpluggable device. Otherwise, it is
6801 	 * regarded as non-hotpluggable one.
6802 	 */
6803 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
6804 	    -1) != -1) {
6805 		un->un_f_is_hotpluggable = TRUE;
6806 	}
6807 
6808 	/*
6809 	 * set unit's attributes(flags) according to "hotpluggable" and
6810 	 * RMB bit in INQUIRY data.
6811 	 */
6812 	sd_set_unit_attributes(un, devi);
6813 
6814 	/*
6815 	 * By default, we mark the capacity, lbasize, and geometry
6816 	 * as invalid. Only if we successfully read a valid capacity
6817 	 * will we update the un_blockcount and un_tgt_blocksize with the
6818 	 * valid values (the geometry will be validated later).
6819 	 */
6820 	un->un_f_blockcount_is_valid	= FALSE;
6821 	un->un_f_tgt_blocksize_is_valid	= FALSE;
6822 
6823 	/*
6824 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
6825 	 * otherwise.
6826 	 */
6827 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
6828 	un->un_blockcount = 0;
6829 
6830 	/*
6831 	 * Set up the per-instance info needed to determine the correct
6832 	 * CDBs and other info for issuing commands to the target.
6833 	 */
6834 	sd_init_cdb_limits(un);
6835 
6836 	/*
6837 	 * Set up the IO chains to use, based upon the target type.
6838 	 */
6839 	if (un->un_f_non_devbsize_supported) {
6840 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6841 	} else {
6842 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6843 	}
6844 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
6845 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
6846 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
6847 
6848 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
6849 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
6850 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
6851 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
6852 
6853 
6854 	if (ISCD(un)) {
6855 		un->un_additional_codes = sd_additional_codes;
6856 	} else {
6857 		un->un_additional_codes = NULL;
6858 	}
6859 
6860 	/*
6861 	 * Create the kstats here so they can be available for attach-time
6862 	 * routines that send commands to the unit (either polled or via
6863 	 * sd_send_scsi_cmd).
6864 	 *
6865 	 * Note: This is a critical sequence that needs to be maintained:
6866 	 *	1) Instantiate the kstats here, before any routines using the
6867 	 *	   iopath (i.e. sd_send_scsi_cmd).
6868 	 *	2) Instantiate and initialize the partition stats
6869 	 *	   (sd_set_pstats).
6870 	 *	3) Initialize the error stats (sd_set_errstats), following
6871 	 *	   sd_validate_geometry(),sd_register_devid(),
6872 	 *	   and sd_cache_control().
6873 	 */
6874 
6875 	un->un_stats = kstat_create(sd_label, instance,
6876 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
6877 	if (un->un_stats != NULL) {
6878 		un->un_stats->ks_lock = SD_MUTEX(un);
6879 		kstat_install(un->un_stats);
6880 	}
6881 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6882 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
6883 
6884 	sd_create_errstats(un, instance);
6885 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
6886 	    "sd_unit_attach: un:0x%p errstats created\n", un);
6887 
6888 	/*
6889 	 * The following if/else code was relocated here from below as part
6890 	 * of the fix for bug (4430280). However with the default setup added
6891 	 * on entry to this routine, it's no longer absolutely necessary for
6892 	 * this to be before the call to sd_spin_up_unit.
6893 	 */
6894 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
6895 		/*
6896 		 * If SCSI-2 tagged queueing is supported by the target
6897 		 * and by the host adapter then we will enable it.
6898 		 */
6899 		un->un_tagflags = 0;
6900 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6901 		    (devp->sd_inq->inq_cmdque) &&
6902 		    (un->un_f_arq_enabled == TRUE)) {
6903 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
6904 			    1, 1) == 1) {
6905 				un->un_tagflags = FLAG_STAG;
6906 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6907 				    "sd_unit_attach: un:0x%p tag queueing "
6908 				    "enabled\n", un);
6909 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
6910 			    "untagged-qing", 0) == 1) {
6911 				un->un_f_opt_queueing = TRUE;
6912 				un->un_saved_throttle = un->un_throttle =
6913 				    min(un->un_throttle, 3);
6914 			} else {
6915 				un->un_f_opt_queueing = FALSE;
6916 				un->un_saved_throttle = un->un_throttle = 1;
6917 			}
6918 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
6919 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
6920 			/* The Host Adapter supports internal queueing. */
6921 			un->un_f_opt_queueing = TRUE;
6922 			un->un_saved_throttle = un->un_throttle =
6923 			    min(un->un_throttle, 3);
6924 		} else {
6925 			un->un_f_opt_queueing = FALSE;
6926 			un->un_saved_throttle = un->un_throttle = 1;
6927 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6928 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
6929 		}
6930 
6931 		/*
6932 		 * Enable large transfers for SATA/SAS drives
6933 		 */
6934 		if (SD_IS_SERIAL(un)) {
6935 			un->un_max_xfer_size =
6936 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6937 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6938 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6939 			    "sd_unit_attach: un:0x%p max transfer "
6940 			    "size=0x%x\n", un, un->un_max_xfer_size);
6941 
6942 		}
6943 
6944 		/* Setup or tear down default wide operations for disks */
6945 
6946 		/*
6947 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
6948 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
6949 		 * system and be set to different values. In the future this
6950 		 * code may need to be updated when the ssd module is
6951 		 * obsoleted and removed from the system. (4299588)
6952 		 */
6953 		if (SD_IS_PARALLEL_SCSI(un) &&
6954 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
6955 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
6956 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6957 			    1, 1) == 1) {
6958 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6959 				    "sd_unit_attach: un:0x%p Wide Transfer "
6960 				    "enabled\n", un);
6961 			}
6962 
6963 			/*
6964 			 * If tagged queuing has also been enabled, then
6965 			 * enable large xfers
6966 			 */
6967 			if (un->un_saved_throttle == sd_max_throttle) {
6968 				un->un_max_xfer_size =
6969 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
6970 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
6971 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6972 				    "sd_unit_attach: un:0x%p max transfer "
6973 				    "size=0x%x\n", un, un->un_max_xfer_size);
6974 			}
6975 		} else {
6976 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
6977 			    0, 1) == 1) {
6978 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
6979 				    "sd_unit_attach: un:0x%p "
6980 				    "Wide Transfer disabled\n", un);
6981 			}
6982 		}
6983 	} else {
6984 		un->un_tagflags = FLAG_STAG;
6985 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
6986 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
6987 	}
6988 
6989 	/*
6990 	 * If this target supports LUN reset, try to enable it.
6991 	 */
6992 	if (un->un_f_lun_reset_enabled) {
6993 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
6994 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6995 			    "un:0x%p lun_reset capability set\n", un);
6996 		} else {
6997 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
6998 			    "un:0x%p lun-reset capability not set\n", un);
6999 		}
7000 	}
7001 
7002 	/*
7003 	 * Adjust the maximum transfer size. This is to fix
7004 	 * the problem of partial DMA support on SPARC. Some
7005 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7006 	 * size, which requires partial DMA support on SPARC.
7007 	 * In the future the SPARC pci nexus driver may solve
7008 	 * the problem instead of this fix.
7009 	 */
7010 #if defined(__sparc)
7011 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7012 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7013 		un->un_max_xfer_size = max_xfer_size;
7014 		un->un_partial_dma_supported = 1;
7015 	}
7016 #endif
7017 
7018 	/*
7019 	 * Set PKT_DMA_PARTIAL flag.
7020 	 */
7021 	if (un->un_partial_dma_supported == 1) {
7022 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7023 	} else {
7024 		un->un_pkt_flags = 0;
7025 	}
7026 
7027 	/*
7028 	 * At this point in the attach, we have enough info in the
7029 	 * soft state to be able to issue commands to the target.
7030 	 *
7031 	 * All command paths used below MUST issue their commands as
7032 	 * SD_PATH_DIRECT. This is important as intermediate layers
7033 	 * are not all initialized yet (such as PM).
7034 	 */
7035 
7036 	/*
7037 	 * Send a TEST UNIT READY command to the device. This should clear
7038 	 * any outstanding UNIT ATTENTION that may be present.
7039 	 *
7040 	 * Note: Don't check for success, just track if there is a reservation,
7041 	 * this is a throw away command to clear any unit attentions.
7042 	 *
7043 	 * Note: This MUST be the first command issued to the target during
7044 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7045 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7046 	 * with attempts at spinning up a device with no media.
7047 	 */
7048 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
7049 		reservation_flag = SD_TARGET_IS_RESERVED;
7050 	}
7051 
7052 	/*
7053 	 * If the device is NOT a removable media device, attempt to spin
7054 	 * it up (using the START_STOP_UNIT command) and read its capacity
7055 	 * (using the READ CAPACITY command).  Note, however, that either
7056 	 * of these could fail and in some cases we would continue with
7057 	 * the attach despite the failure (see below).
7058 	 */
7059 	if (un->un_f_descr_format_supported) {
7060 		switch (sd_spin_up_unit(un)) {
7061 		case 0:
7062 			/*
7063 			 * Spin-up was successful; now try to read the
7064 			 * capacity.  If successful then save the results
7065 			 * and mark the capacity & lbasize as valid.
7066 			 */
7067 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7068 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7069 
7070 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
7071 			    &lbasize, SD_PATH_DIRECT)) {
7072 			case 0: {
7073 				if (capacity > DK_MAX_BLOCKS) {
7074 #ifdef _LP64
7075 					if (capacity + 1 >
7076 					    SD_GROUP1_MAX_ADDRESS) {
7077 						/*
7078 						 * Enable descriptor format
7079 						 * sense data so that we can
7080 						 * get 64 bit sense data
7081 						 * fields.
7082 						 */
7083 						sd_enable_descr_sense(un);
7084 					}
7085 #else
7086 					/* 32-bit kernels can't handle this */
7087 					scsi_log(SD_DEVINFO(un),
7088 					    sd_label, CE_WARN,
7089 					    "disk has %llu blocks, which "
7090 					    "is too large for a 32-bit "
7091 					    "kernel", capacity);
7092 
7093 #if defined(__i386) || defined(__amd64)
7094 					/*
7095 					 * 1TB disk was treated as (1T - 512)B
7096 					 * in the past, so that it might have
7097 					 * valid VTOC and solaris partitions,
7098 					 * we have to allow it to continue to
7099 					 * work.
7100 					 */
7101 					if (capacity -1 > DK_MAX_BLOCKS)
7102 #endif
7103 					goto spinup_failed;
7104 #endif
7105 				}
7106 
7107 				/*
7108 				 * Here it's not necessary to check the case:
7109 				 * the capacity of the device is bigger than
7110 				 * what the max hba cdb can support. Because
7111 				 * sd_send_scsi_READ_CAPACITY will retrieve
7112 				 * the capacity by sending USCSI command, which
7113 				 * is constrained by the max hba cdb. Actually,
7114 				 * sd_send_scsi_READ_CAPACITY will return
7115 				 * EINVAL when using bigger cdb than required
7116 				 * cdb length. Will handle this case in
7117 				 * "case EINVAL".
7118 				 */
7119 
7120 				/*
7121 				 * The following relies on
7122 				 * sd_send_scsi_READ_CAPACITY never
7123 				 * returning 0 for capacity and/or lbasize.
7124 				 */
7125 				sd_update_block_info(un, lbasize, capacity);
7126 
7127 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7128 				    "sd_unit_attach: un:0x%p capacity = %ld "
7129 				    "blocks; lbasize= %ld.\n", un,
7130 				    un->un_blockcount, un->un_tgt_blocksize);
7131 
7132 				break;
7133 			}
7134 			case EINVAL:
7135 				/*
7136 				 * In the case where the max-cdb-length property
7137 				 * is smaller than the required CDB length for
7138 				 * a SCSI device, a target driver can fail to
7139 				 * attach to that device.
7140 				 */
7141 				scsi_log(SD_DEVINFO(un),
7142 				    sd_label, CE_WARN,
7143 				    "disk capacity is too large "
7144 				    "for current cdb length");
7145 				goto spinup_failed;
7146 			case EACCES:
7147 				/*
7148 				 * Should never get here if the spin-up
7149 				 * succeeded, but code it in anyway.
7150 				 * From here, just continue with the attach...
7151 				 */
7152 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7153 				    "sd_unit_attach: un:0x%p "
7154 				    "sd_send_scsi_READ_CAPACITY "
7155 				    "returned reservation conflict\n", un);
7156 				reservation_flag = SD_TARGET_IS_RESERVED;
7157 				break;
7158 			default:
7159 				/*
7160 				 * Likewise, should never get here if the
7161 				 * spin-up succeeded. Just continue with
7162 				 * the attach...
7163 				 */
7164 				break;
7165 			}
7166 			break;
7167 		case EACCES:
7168 			/*
7169 			 * Device is reserved by another host.  In this case
7170 			 * we could not spin it up or read the capacity, but
7171 			 * we continue with the attach anyway.
7172 			 */
7173 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7174 			    "sd_unit_attach: un:0x%p spin-up reservation "
7175 			    "conflict.\n", un);
7176 			reservation_flag = SD_TARGET_IS_RESERVED;
7177 			break;
7178 		default:
7179 			/* Fail the attach if the spin-up failed. */
7180 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7181 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
7182 			goto spinup_failed;
7183 		}
7184 	}
7185 
7186 	/*
7187 	 * Check to see if this is a MMC drive
7188 	 */
7189 	if (ISCD(un)) {
7190 		sd_set_mmc_caps(un);
7191 	}
7192 
7193 
7194 	/*
7195 	 * Add a zero-length attribute to tell the world we support
7196 	 * kernel ioctls (for layered drivers)
7197 	 */
7198 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7199 	    DDI_KERNEL_IOCTL, NULL, 0);
7200 
7201 	/*
7202 	 * Add a boolean property to tell the world we support
7203 	 * the B_FAILFAST flag (for layered drivers)
7204 	 */
7205 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
7206 	    "ddi-failfast-supported", NULL, 0);
7207 
7208 	/*
7209 	 * Initialize power management
7210 	 */
7211 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
7212 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
7213 	sd_setup_pm(un, devi);
7214 	if (un->un_f_pm_is_enabled == FALSE) {
7215 		/*
7216 		 * For performance, point to a jump table that does
7217 		 * not include pm.
7218 		 * The direct and priority chains don't change with PM.
7219 		 *
7220 		 * Note: this is currently done based on individual device
7221 		 * capabilities. When an interface for determining system
7222 		 * power enabled state becomes available, or when additional
7223 		 * layers are added to the command chain, these values will
7224 		 * have to be re-evaluated for correctness.
7225 		 */
7226 		if (un->un_f_non_devbsize_supported) {
7227 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
7228 		} else {
7229 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
7230 		}
7231 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
7232 	}
7233 
7234 	/*
7235 	 * This property is set to 0 by HA software to avoid retries
7236 	 * on a reserved disk. (The preferred property name is
7237 	 * "retry-on-reservation-conflict") (1189689)
7238 	 *
7239 	 * Note: The use of a global here can have unintended consequences. A
7240 	 * per instance variable is preferrable to match the capabilities of
7241 	 * different underlying hba's (4402600)
7242 	 */
7243 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
7244 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
7245 	    sd_retry_on_reservation_conflict);
7246 	if (sd_retry_on_reservation_conflict != 0) {
7247 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
7248 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
7249 		    sd_retry_on_reservation_conflict);
7250 	}
7251 
7252 	/* Set up options for QFULL handling. */
7253 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7254 	    "qfull-retries", -1)) != -1) {
7255 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
7256 		    rval, 1);
7257 	}
7258 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7259 	    "qfull-retry-interval", -1)) != -1) {
7260 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
7261 		    rval, 1);
7262 	}
7263 
7264 	/*
7265 	 * This just prints a message that announces the existence of the
7266 	 * device. The message is always printed in the system logfile, but
7267 	 * only appears on the console if the system is booted with the
7268 	 * -v (verbose) argument.
7269 	 */
7270 	ddi_report_dev(devi);
7271 
7272 	un->un_mediastate = DKIO_NONE;
7273 
7274 	cmlb_alloc_handle(&un->un_cmlbhandle);
7275 
7276 #if defined(__i386) || defined(__amd64)
7277 	/*
7278 	 * On x86, compensate for off-by-1 legacy error
7279 	 */
7280 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
7281 	    (lbasize == un->un_sys_blocksize))
7282 		offbyone = CMLB_OFF_BY_ONE;
7283 #endif
7284 
7285 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
7286 	    un->un_f_has_removable_media, un->un_f_is_hotpluggable,
7287 	    un->un_node_type, offbyone, un->un_cmlbhandle,
7288 	    (void *)SD_PATH_DIRECT) != 0) {
7289 		goto cmlb_attach_failed;
7290 	}
7291 
7292 
7293 	/*
7294 	 * Read and validate the device's geometry (ie, disk label)
7295 	 * A new unformatted drive will not have a valid geometry, but
7296 	 * the driver needs to successfully attach to this device so
7297 	 * the drive can be formatted via ioctls.
7298 	 */
7299 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
7300 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
7301 
7302 	mutex_enter(SD_MUTEX(un));
7303 
7304 	/*
7305 	 * Read and initialize the devid for the unit.
7306 	 */
7307 	ASSERT(un->un_errstats != NULL);
7308 	if (un->un_f_devid_supported) {
7309 		sd_register_devid(un, devi, reservation_flag);
7310 	}
7311 	mutex_exit(SD_MUTEX(un));
7312 
7313 #if (defined(__fibre))
7314 	/*
7315 	 * Register callbacks for fibre only.  You can't do this soley
7316 	 * on the basis of the devid_type because this is hba specific.
7317 	 * We need to query our hba capabilities to find out whether to
7318 	 * register or not.
7319 	 */
7320 	if (un->un_f_is_fibre) {
7321 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7322 			sd_init_event_callbacks(un);
7323 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7324 			    "sd_unit_attach: un:0x%p event callbacks inserted",
7325 			    un);
7326 		}
7327 	}
7328 #endif
7329 
7330 	if (un->un_f_opt_disable_cache == TRUE) {
7331 		/*
7332 		 * Disable both read cache and write cache.  This is
7333 		 * the historic behavior of the keywords in the config file.
7334 		 */
7335 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
7336 		    0) {
7337 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7338 			    "sd_unit_attach: un:0x%p Could not disable "
7339 			    "caching", un);
7340 			goto devid_failed;
7341 		}
7342 	}
7343 
7344 	/*
7345 	 * Check the value of the WCE bit now and
7346 	 * set un_f_write_cache_enabled accordingly.
7347 	 */
7348 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
7349 	mutex_enter(SD_MUTEX(un));
7350 	un->un_f_write_cache_enabled = (wc_enabled != 0);
7351 	mutex_exit(SD_MUTEX(un));
7352 
7353 	/*
7354 	 * Check the value of the NV_SUP bit and set
7355 	 * un_f_suppress_cache_flush accordingly.
7356 	 */
7357 	sd_get_nv_sup(un);
7358 
7359 	/*
7360 	 * Find out what type of reservation this disk supports.
7361 	 */
7362 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
7363 	case 0:
7364 		/*
7365 		 * SCSI-3 reservations are supported.
7366 		 */
7367 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7368 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7369 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
7370 		break;
7371 	case ENOTSUP:
7372 		/*
7373 		 * The PERSISTENT RESERVE IN command would not be recognized by
7374 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
7375 		 */
7376 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7377 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
7378 		un->un_reservation_type = SD_SCSI2_RESERVATION;
7379 		break;
7380 	default:
7381 		/*
7382 		 * default to SCSI-3 reservations
7383 		 */
7384 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7385 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
7386 		un->un_reservation_type = SD_SCSI3_RESERVATION;
7387 		break;
7388 	}
7389 
7390 	/*
7391 	 * Set the pstat and error stat values here, so data obtained during the
7392 	 * previous attach-time routines is available.
7393 	 *
7394 	 * Note: This is a critical sequence that needs to be maintained:
7395 	 *	1) Instantiate the kstats before any routines using the iopath
7396 	 *	   (i.e. sd_send_scsi_cmd).
7397 	 *	2) Initialize the error stats (sd_set_errstats) and partition
7398 	 *	   stats (sd_set_pstats)here, following
7399 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
7400 	 *	   sd_cache_control().
7401 	 */
7402 
7403 	if (un->un_f_pkstats_enabled && geom_label_valid) {
7404 		sd_set_pstats(un);
7405 		SD_TRACE(SD_LOG_IO_PARTITION, un,
7406 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
7407 	}
7408 
7409 	sd_set_errstats(un);
7410 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7411 	    "sd_unit_attach: un:0x%p errstats set\n", un);
7412 
7413 
7414 	/*
7415 	 * After successfully attaching an instance, we record the information
7416 	 * of how many luns have been attached on the relative target and
7417 	 * controller for parallel SCSI. This information is used when sd tries
7418 	 * to set the tagged queuing capability in HBA.
7419 	 */
7420 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
7421 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
7422 	}
7423 
7424 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7425 	    "sd_unit_attach: un:0x%p exit success\n", un);
7426 
7427 	return (DDI_SUCCESS);
7428 
7429 	/*
7430 	 * An error occurred during the attach; clean up & return failure.
7431 	 */
7432 
7433 devid_failed:
7434 
7435 setup_pm_failed:
7436 	ddi_remove_minor_node(devi, NULL);
7437 
7438 cmlb_attach_failed:
7439 	/*
7440 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7441 	 */
7442 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7443 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7444 
7445 	/*
7446 	 * Refer to the comments of setting tagged-qing in the beginning of
7447 	 * sd_unit_attach. We can only disable tagged queuing when there is
7448 	 * no lun attached on the target.
7449 	 */
7450 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7451 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7452 	}
7453 
7454 	if (un->un_f_is_fibre == FALSE) {
7455 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7456 	}
7457 
7458 spinup_failed:
7459 
7460 	mutex_enter(SD_MUTEX(un));
7461 
7462 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
7463 	if (un->un_direct_priority_timeid != NULL) {
7464 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7465 		un->un_direct_priority_timeid = NULL;
7466 		mutex_exit(SD_MUTEX(un));
7467 		(void) untimeout(temp_id);
7468 		mutex_enter(SD_MUTEX(un));
7469 	}
7470 
7471 	/* Cancel any pending start/stop timeouts */
7472 	if (un->un_startstop_timeid != NULL) {
7473 		timeout_id_t temp_id = un->un_startstop_timeid;
7474 		un->un_startstop_timeid = NULL;
7475 		mutex_exit(SD_MUTEX(un));
7476 		(void) untimeout(temp_id);
7477 		mutex_enter(SD_MUTEX(un));
7478 	}
7479 
7480 	/* Cancel any pending reset-throttle timeouts */
7481 	if (un->un_reset_throttle_timeid != NULL) {
7482 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7483 		un->un_reset_throttle_timeid = NULL;
7484 		mutex_exit(SD_MUTEX(un));
7485 		(void) untimeout(temp_id);
7486 		mutex_enter(SD_MUTEX(un));
7487 	}
7488 
7489 	/* Cancel any pending retry timeouts */
7490 	if (un->un_retry_timeid != NULL) {
7491 		timeout_id_t temp_id = un->un_retry_timeid;
7492 		un->un_retry_timeid = NULL;
7493 		mutex_exit(SD_MUTEX(un));
7494 		(void) untimeout(temp_id);
7495 		mutex_enter(SD_MUTEX(un));
7496 	}
7497 
7498 	/* Cancel any pending delayed cv broadcast timeouts */
7499 	if (un->un_dcvb_timeid != NULL) {
7500 		timeout_id_t temp_id = un->un_dcvb_timeid;
7501 		un->un_dcvb_timeid = NULL;
7502 		mutex_exit(SD_MUTEX(un));
7503 		(void) untimeout(temp_id);
7504 		mutex_enter(SD_MUTEX(un));
7505 	}
7506 
7507 	mutex_exit(SD_MUTEX(un));
7508 
7509 	/* There should not be any in-progress I/O so ASSERT this check */
7510 	ASSERT(un->un_ncmds_in_transport == 0);
7511 	ASSERT(un->un_ncmds_in_driver == 0);
7512 
7513 	/* Do not free the softstate if the callback routine is active */
7514 	sd_sync_with_callback(un);
7515 
7516 	/*
7517 	 * Partition stats apparently are not used with removables. These would
7518 	 * not have been created during attach, so no need to clean them up...
7519 	 */
7520 	if (un->un_stats != NULL) {
7521 		kstat_delete(un->un_stats);
7522 		un->un_stats = NULL;
7523 	}
7524 	if (un->un_errstats != NULL) {
7525 		kstat_delete(un->un_errstats);
7526 		un->un_errstats = NULL;
7527 	}
7528 
7529 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7530 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7531 
7532 	ddi_prop_remove_all(devi);
7533 	sema_destroy(&un->un_semoclose);
7534 	cv_destroy(&un->un_state_cv);
7535 
7536 getrbuf_failed:
7537 
7538 	sd_free_rqs(un);
7539 
7540 alloc_rqs_failed:
7541 
7542 	devp->sd_private = NULL;
7543 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
7544 
7545 get_softstate_failed:
7546 	/*
7547 	 * Note: the man pages are unclear as to whether or not doing a
7548 	 * ddi_soft_state_free(sd_state, instance) is the right way to
7549 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
7550 	 * ddi_get_soft_state() fails.  The implication seems to be
7551 	 * that the get_soft_state cannot fail if the zalloc succeeds.
7552 	 */
7553 	ddi_soft_state_free(sd_state, instance);
7554 
7555 probe_failed:
7556 	scsi_unprobe(devp);
7557 
7558 	return (DDI_FAILURE);
7559 }
7560 
7561 
7562 /*
7563  *    Function: sd_unit_detach
7564  *
7565  * Description: Performs DDI_DETACH processing for sddetach().
7566  *
7567  * Return Code: DDI_SUCCESS
7568  *		DDI_FAILURE
7569  *
7570  *     Context: Kernel thread context
7571  */
7572 
7573 static int
7574 sd_unit_detach(dev_info_t *devi)
7575 {
7576 	struct scsi_device	*devp;
7577 	struct sd_lun		*un;
7578 	int			i;
7579 	int			tgt;
7580 	dev_t			dev;
7581 	dev_info_t		*pdip = ddi_get_parent(devi);
7582 	int			instance = ddi_get_instance(devi);
7583 
7584 	mutex_enter(&sd_detach_mutex);
7585 
7586 	/*
7587 	 * Fail the detach for any of the following:
7588 	 *  - Unable to get the sd_lun struct for the instance
7589 	 *  - A layered driver has an outstanding open on the instance
7590 	 *  - Another thread is already detaching this instance
7591 	 *  - Another thread is currently performing an open
7592 	 */
7593 	devp = ddi_get_driver_private(devi);
7594 	if ((devp == NULL) ||
7595 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
7596 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
7597 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
7598 		mutex_exit(&sd_detach_mutex);
7599 		return (DDI_FAILURE);
7600 	}
7601 
7602 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
7603 
7604 	/*
7605 	 * Mark this instance as currently in a detach, to inhibit any
7606 	 * opens from a layered driver.
7607 	 */
7608 	un->un_detach_count++;
7609 	mutex_exit(&sd_detach_mutex);
7610 
7611 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7612 	    SCSI_ADDR_PROP_TARGET, -1);
7613 
7614 	dev = sd_make_device(SD_DEVINFO(un));
7615 
7616 #ifndef lint
7617 	_NOTE(COMPETING_THREADS_NOW);
7618 #endif
7619 
7620 	mutex_enter(SD_MUTEX(un));
7621 
7622 	/*
7623 	 * Fail the detach if there are any outstanding layered
7624 	 * opens on this device.
7625 	 */
7626 	for (i = 0; i < NDKMAP; i++) {
7627 		if (un->un_ocmap.lyropen[i] != 0) {
7628 			goto err_notclosed;
7629 		}
7630 	}
7631 
7632 	/*
7633 	 * Verify there are NO outstanding commands issued to this device.
7634 	 * ie, un_ncmds_in_transport == 0.
7635 	 * It's possible to have outstanding commands through the physio
7636 	 * code path, even though everything's closed.
7637 	 */
7638 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
7639 	    (un->un_direct_priority_timeid != NULL) ||
7640 	    (un->un_state == SD_STATE_RWAIT)) {
7641 		mutex_exit(SD_MUTEX(un));
7642 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7643 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
7644 		goto err_stillbusy;
7645 	}
7646 
7647 	/*
7648 	 * If we have the device reserved, release the reservation.
7649 	 */
7650 	if ((un->un_resvd_status & SD_RESERVE) &&
7651 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
7652 		mutex_exit(SD_MUTEX(un));
7653 		/*
7654 		 * Note: sd_reserve_release sends a command to the device
7655 		 * via the sd_ioctlcmd() path, and can sleep.
7656 		 */
7657 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
7658 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7659 			    "sd_dr_detach: Cannot release reservation \n");
7660 		}
7661 	} else {
7662 		mutex_exit(SD_MUTEX(un));
7663 	}
7664 
7665 	/*
7666 	 * Untimeout any reserve recover, throttle reset, restart unit
7667 	 * and delayed broadcast timeout threads. Protect the timeout pointer
7668 	 * from getting nulled by their callback functions.
7669 	 */
7670 	mutex_enter(SD_MUTEX(un));
7671 	if (un->un_resvd_timeid != NULL) {
7672 		timeout_id_t temp_id = un->un_resvd_timeid;
7673 		un->un_resvd_timeid = NULL;
7674 		mutex_exit(SD_MUTEX(un));
7675 		(void) untimeout(temp_id);
7676 		mutex_enter(SD_MUTEX(un));
7677 	}
7678 
7679 	if (un->un_reset_throttle_timeid != NULL) {
7680 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7681 		un->un_reset_throttle_timeid = NULL;
7682 		mutex_exit(SD_MUTEX(un));
7683 		(void) untimeout(temp_id);
7684 		mutex_enter(SD_MUTEX(un));
7685 	}
7686 
7687 	if (un->un_startstop_timeid != NULL) {
7688 		timeout_id_t temp_id = un->un_startstop_timeid;
7689 		un->un_startstop_timeid = NULL;
7690 		mutex_exit(SD_MUTEX(un));
7691 		(void) untimeout(temp_id);
7692 		mutex_enter(SD_MUTEX(un));
7693 	}
7694 
7695 	if (un->un_dcvb_timeid != NULL) {
7696 		timeout_id_t temp_id = un->un_dcvb_timeid;
7697 		un->un_dcvb_timeid = NULL;
7698 		mutex_exit(SD_MUTEX(un));
7699 		(void) untimeout(temp_id);
7700 	} else {
7701 		mutex_exit(SD_MUTEX(un));
7702 	}
7703 
7704 	/* Remove any pending reservation reclaim requests for this device */
7705 	sd_rmv_resv_reclaim_req(dev);
7706 
7707 	mutex_enter(SD_MUTEX(un));
7708 
7709 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
7710 	if (un->un_direct_priority_timeid != NULL) {
7711 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7712 		un->un_direct_priority_timeid = NULL;
7713 		mutex_exit(SD_MUTEX(un));
7714 		(void) untimeout(temp_id);
7715 		mutex_enter(SD_MUTEX(un));
7716 	}
7717 
7718 	/* Cancel any active multi-host disk watch thread requests */
7719 	if (un->un_mhd_token != NULL) {
7720 		mutex_exit(SD_MUTEX(un));
7721 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
7722 		if (scsi_watch_request_terminate(un->un_mhd_token,
7723 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7724 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7725 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
7726 			/*
7727 			 * Note: We are returning here after having removed
7728 			 * some driver timeouts above. This is consistent with
7729 			 * the legacy implementation but perhaps the watch
7730 			 * terminate call should be made with the wait flag set.
7731 			 */
7732 			goto err_stillbusy;
7733 		}
7734 		mutex_enter(SD_MUTEX(un));
7735 		un->un_mhd_token = NULL;
7736 	}
7737 
7738 	if (un->un_swr_token != NULL) {
7739 		mutex_exit(SD_MUTEX(un));
7740 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
7741 		if (scsi_watch_request_terminate(un->un_swr_token,
7742 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
7743 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7744 			    "sd_dr_detach: Cannot cancel swr watch request\n");
7745 			/*
7746 			 * Note: We are returning here after having removed
7747 			 * some driver timeouts above. This is consistent with
7748 			 * the legacy implementation but perhaps the watch
7749 			 * terminate call should be made with the wait flag set.
7750 			 */
7751 			goto err_stillbusy;
7752 		}
7753 		mutex_enter(SD_MUTEX(un));
7754 		un->un_swr_token = NULL;
7755 	}
7756 
7757 	mutex_exit(SD_MUTEX(un));
7758 
7759 	/*
7760 	 * Clear any scsi_reset_notifies. We clear the reset notifies
7761 	 * if we have not registered one.
7762 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
7763 	 */
7764 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
7765 	    sd_mhd_reset_notify_cb, (caddr_t)un);
7766 
7767 	/*
7768 	 * protect the timeout pointers from getting nulled by
7769 	 * their callback functions during the cancellation process.
7770 	 * In such a scenario untimeout can be invoked with a null value.
7771 	 */
7772 	_NOTE(NO_COMPETING_THREADS_NOW);
7773 
7774 	mutex_enter(&un->un_pm_mutex);
7775 	if (un->un_pm_idle_timeid != NULL) {
7776 		timeout_id_t temp_id = un->un_pm_idle_timeid;
7777 		un->un_pm_idle_timeid = NULL;
7778 		mutex_exit(&un->un_pm_mutex);
7779 
7780 		/*
7781 		 * Timeout is active; cancel it.
7782 		 * Note that it'll never be active on a device
7783 		 * that does not support PM therefore we don't
7784 		 * have to check before calling pm_idle_component.
7785 		 */
7786 		(void) untimeout(temp_id);
7787 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7788 		mutex_enter(&un->un_pm_mutex);
7789 	}
7790 
7791 	/*
7792 	 * Check whether there is already a timeout scheduled for power
7793 	 * management. If yes then don't lower the power here, that's.
7794 	 * the timeout handler's job.
7795 	 */
7796 	if (un->un_pm_timeid != NULL) {
7797 		timeout_id_t temp_id = un->un_pm_timeid;
7798 		un->un_pm_timeid = NULL;
7799 		mutex_exit(&un->un_pm_mutex);
7800 		/*
7801 		 * Timeout is active; cancel it.
7802 		 * Note that it'll never be active on a device
7803 		 * that does not support PM therefore we don't
7804 		 * have to check before calling pm_idle_component.
7805 		 */
7806 		(void) untimeout(temp_id);
7807 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7808 
7809 	} else {
7810 		mutex_exit(&un->un_pm_mutex);
7811 		if ((un->un_f_pm_is_enabled == TRUE) &&
7812 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
7813 		    DDI_SUCCESS)) {
7814 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7815 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
7816 			/*
7817 			 * Fix for bug: 4297749, item # 13
7818 			 * The above test now includes a check to see if PM is
7819 			 * supported by this device before call
7820 			 * pm_lower_power().
7821 			 * Note, the following is not dead code. The call to
7822 			 * pm_lower_power above will generate a call back into
7823 			 * our sdpower routine which might result in a timeout
7824 			 * handler getting activated. Therefore the following
7825 			 * code is valid and necessary.
7826 			 */
7827 			mutex_enter(&un->un_pm_mutex);
7828 			if (un->un_pm_timeid != NULL) {
7829 				timeout_id_t temp_id = un->un_pm_timeid;
7830 				un->un_pm_timeid = NULL;
7831 				mutex_exit(&un->un_pm_mutex);
7832 				(void) untimeout(temp_id);
7833 				(void) pm_idle_component(SD_DEVINFO(un), 0);
7834 			} else {
7835 				mutex_exit(&un->un_pm_mutex);
7836 			}
7837 		}
7838 	}
7839 
7840 	/*
7841 	 * Cleanup from the scsi_ifsetcap() calls (437868)
7842 	 * Relocated here from above to be after the call to
7843 	 * pm_lower_power, which was getting errors.
7844 	 */
7845 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
7846 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
7847 
7848 	/*
7849 	 * Currently, tagged queuing is supported per target based by HBA.
7850 	 * Setting this per lun instance actually sets the capability of this
7851 	 * target in HBA, which affects those luns already attached on the
7852 	 * same target. So during detach, we can only disable this capability
7853 	 * only when this is the only lun left on this target. By doing
7854 	 * this, we assume a target has the same tagged queuing capability
7855 	 * for every lun. The condition can be removed when HBA is changed to
7856 	 * support per lun based tagged queuing capability.
7857 	 */
7858 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
7859 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
7860 	}
7861 
7862 	if (un->un_f_is_fibre == FALSE) {
7863 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
7864 	}
7865 
7866 	/*
7867 	 * Remove any event callbacks, fibre only
7868 	 */
7869 	if (un->un_f_is_fibre == TRUE) {
7870 		if ((un->un_insert_event != NULL) &&
7871 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
7872 		    DDI_SUCCESS)) {
7873 			/*
7874 			 * Note: We are returning here after having done
7875 			 * substantial cleanup above. This is consistent
7876 			 * with the legacy implementation but this may not
7877 			 * be the right thing to do.
7878 			 */
7879 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7880 			    "sd_dr_detach: Cannot cancel insert event\n");
7881 			goto err_remove_event;
7882 		}
7883 		un->un_insert_event = NULL;
7884 
7885 		if ((un->un_remove_event != NULL) &&
7886 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
7887 		    DDI_SUCCESS)) {
7888 			/*
7889 			 * Note: We are returning here after having done
7890 			 * substantial cleanup above. This is consistent
7891 			 * with the legacy implementation but this may not
7892 			 * be the right thing to do.
7893 			 */
7894 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
7895 			    "sd_dr_detach: Cannot cancel remove event\n");
7896 			goto err_remove_event;
7897 		}
7898 		un->un_remove_event = NULL;
7899 	}
7900 
7901 	/* Do not free the softstate if the callback routine is active */
7902 	sd_sync_with_callback(un);
7903 
7904 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
7905 	cmlb_free_handle(&un->un_cmlbhandle);
7906 
7907 	/*
7908 	 * Hold the detach mutex here, to make sure that no other threads ever
7909 	 * can access a (partially) freed soft state structure.
7910 	 */
7911 	mutex_enter(&sd_detach_mutex);
7912 
7913 	/*
7914 	 * Clean up the soft state struct.
7915 	 * Cleanup is done in reverse order of allocs/inits.
7916 	 * At this point there should be no competing threads anymore.
7917 	 */
7918 
7919 	/* Unregister and free device id. */
7920 	ddi_devid_unregister(devi);
7921 	if (un->un_devid) {
7922 		ddi_devid_free(un->un_devid);
7923 		un->un_devid = NULL;
7924 	}
7925 
7926 	/*
7927 	 * Destroy wmap cache if it exists.
7928 	 */
7929 	if (un->un_wm_cache != NULL) {
7930 		kmem_cache_destroy(un->un_wm_cache);
7931 		un->un_wm_cache = NULL;
7932 	}
7933 
7934 	/*
7935 	 * kstat cleanup is done in detach for all device types (4363169).
7936 	 * We do not want to fail detach if the device kstats are not deleted
7937 	 * since there is a confusion about the devo_refcnt for the device.
7938 	 * We just delete the kstats and let detach complete successfully.
7939 	 */
7940 	if (un->un_stats != NULL) {
7941 		kstat_delete(un->un_stats);
7942 		un->un_stats = NULL;
7943 	}
7944 	if (un->un_errstats != NULL) {
7945 		kstat_delete(un->un_errstats);
7946 		un->un_errstats = NULL;
7947 	}
7948 
7949 	/* Remove partition stats */
7950 	if (un->un_f_pkstats_enabled) {
7951 		for (i = 0; i < NSDMAP; i++) {
7952 			if (un->un_pstats[i] != NULL) {
7953 				kstat_delete(un->un_pstats[i]);
7954 				un->un_pstats[i] = NULL;
7955 			}
7956 		}
7957 	}
7958 
7959 	/* Remove xbuf registration */
7960 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
7961 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
7962 
7963 	/* Remove driver properties */
7964 	ddi_prop_remove_all(devi);
7965 
7966 	mutex_destroy(&un->un_pm_mutex);
7967 	cv_destroy(&un->un_pm_busy_cv);
7968 
7969 	cv_destroy(&un->un_wcc_cv);
7970 
7971 	/* Open/close semaphore */
7972 	sema_destroy(&un->un_semoclose);
7973 
7974 	/* Removable media condvar. */
7975 	cv_destroy(&un->un_state_cv);
7976 
7977 	/* Suspend/resume condvar. */
7978 	cv_destroy(&un->un_suspend_cv);
7979 	cv_destroy(&un->un_disk_busy_cv);
7980 
7981 	sd_free_rqs(un);
7982 
7983 	/* Free up soft state */
7984 	devp->sd_private = NULL;
7985 
7986 	bzero(un, sizeof (struct sd_lun));
7987 	ddi_soft_state_free(sd_state, instance);
7988 
7989 	mutex_exit(&sd_detach_mutex);
7990 
7991 	/* This frees up the INQUIRY data associated with the device. */
7992 	scsi_unprobe(devp);
7993 
7994 	/*
7995 	 * After successfully detaching an instance, we update the information
7996 	 * of how many luns have been attached in the relative target and
7997 	 * controller for parallel SCSI. This information is used when sd tries
7998 	 * to set the tagged queuing capability in HBA.
7999 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
8000 	 * check if the device is parallel SCSI. However, we don't need to
8001 	 * check here because we've already checked during attach. No device
8002 	 * that is not parallel SCSI is in the chain.
8003 	 */
8004 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8005 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
8006 	}
8007 
8008 	return (DDI_SUCCESS);
8009 
8010 err_notclosed:
8011 	mutex_exit(SD_MUTEX(un));
8012 
8013 err_stillbusy:
8014 	_NOTE(NO_COMPETING_THREADS_NOW);
8015 
8016 err_remove_event:
8017 	mutex_enter(&sd_detach_mutex);
8018 	un->un_detach_count--;
8019 	mutex_exit(&sd_detach_mutex);
8020 
8021 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
8022 	return (DDI_FAILURE);
8023 }
8024 
8025 
8026 /*
8027  *    Function: sd_create_errstats
8028  *
8029  * Description: This routine instantiates the device error stats.
8030  *
8031  *		Note: During attach the stats are instantiated first so they are
8032  *		available for attach-time routines that utilize the driver
8033  *		iopath to send commands to the device. The stats are initialized
8034  *		separately so data obtained during some attach-time routines is
8035  *		available. (4362483)
8036  *
8037  *   Arguments: un - driver soft state (unit) structure
8038  *		instance - driver instance
8039  *
8040  *     Context: Kernel thread context
8041  */
8042 
8043 static void
8044 sd_create_errstats(struct sd_lun *un, int instance)
8045 {
8046 	struct	sd_errstats	*stp;
8047 	char	kstatmodule_err[KSTAT_STRLEN];
8048 	char	kstatname[KSTAT_STRLEN];
8049 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
8050 
8051 	ASSERT(un != NULL);
8052 
8053 	if (un->un_errstats != NULL) {
8054 		return;
8055 	}
8056 
8057 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
8058 	    "%serr", sd_label);
8059 	(void) snprintf(kstatname, sizeof (kstatname),
8060 	    "%s%d,err", sd_label, instance);
8061 
8062 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
8063 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
8064 
8065 	if (un->un_errstats == NULL) {
8066 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8067 		    "sd_create_errstats: Failed kstat_create\n");
8068 		return;
8069 	}
8070 
8071 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8072 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
8073 	    KSTAT_DATA_UINT32);
8074 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
8075 	    KSTAT_DATA_UINT32);
8076 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
8077 	    KSTAT_DATA_UINT32);
8078 	kstat_named_init(&stp->sd_vid,		"Vendor",
8079 	    KSTAT_DATA_CHAR);
8080 	kstat_named_init(&stp->sd_pid,		"Product",
8081 	    KSTAT_DATA_CHAR);
8082 	kstat_named_init(&stp->sd_revision,	"Revision",
8083 	    KSTAT_DATA_CHAR);
8084 	kstat_named_init(&stp->sd_serial,	"Serial No",
8085 	    KSTAT_DATA_CHAR);
8086 	kstat_named_init(&stp->sd_capacity,	"Size",
8087 	    KSTAT_DATA_ULONGLONG);
8088 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
8089 	    KSTAT_DATA_UINT32);
8090 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
8091 	    KSTAT_DATA_UINT32);
8092 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
8093 	    KSTAT_DATA_UINT32);
8094 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
8095 	    KSTAT_DATA_UINT32);
8096 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
8097 	    KSTAT_DATA_UINT32);
8098 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
8099 	    KSTAT_DATA_UINT32);
8100 
8101 	un->un_errstats->ks_private = un;
8102 	un->un_errstats->ks_update  = nulldev;
8103 
8104 	kstat_install(un->un_errstats);
8105 }
8106 
8107 
8108 /*
8109  *    Function: sd_set_errstats
8110  *
8111  * Description: This routine sets the value of the vendor id, product id,
8112  *		revision, serial number, and capacity device error stats.
8113  *
8114  *		Note: During attach the stats are instantiated first so they are
8115  *		available for attach-time routines that utilize the driver
8116  *		iopath to send commands to the device. The stats are initialized
8117  *		separately so data obtained during some attach-time routines is
8118  *		available. (4362483)
8119  *
8120  *   Arguments: un - driver soft state (unit) structure
8121  *
8122  *     Context: Kernel thread context
8123  */
8124 
8125 static void
8126 sd_set_errstats(struct sd_lun *un)
8127 {
8128 	struct	sd_errstats	*stp;
8129 
8130 	ASSERT(un != NULL);
8131 	ASSERT(un->un_errstats != NULL);
8132 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
8133 	ASSERT(stp != NULL);
8134 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
8135 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
8136 	(void) strncpy(stp->sd_revision.value.c,
8137 	    un->un_sd->sd_inq->inq_revision, 4);
8138 
8139 	/*
8140 	 * All the errstats are persistent across detach/attach,
8141 	 * so reset all the errstats here in case of the hot
8142 	 * replacement of disk drives, except for not changed
8143 	 * Sun qualified drives.
8144 	 */
8145 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
8146 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8147 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
8148 		stp->sd_softerrs.value.ui32 = 0;
8149 		stp->sd_harderrs.value.ui32 = 0;
8150 		stp->sd_transerrs.value.ui32 = 0;
8151 		stp->sd_rq_media_err.value.ui32 = 0;
8152 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
8153 		stp->sd_rq_nodev_err.value.ui32 = 0;
8154 		stp->sd_rq_recov_err.value.ui32 = 0;
8155 		stp->sd_rq_illrq_err.value.ui32 = 0;
8156 		stp->sd_rq_pfa_err.value.ui32 = 0;
8157 	}
8158 
8159 	/*
8160 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
8161 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
8162 	 * (4376302))
8163 	 */
8164 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
8165 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
8166 		    sizeof (SD_INQUIRY(un)->inq_serial));
8167 	}
8168 
8169 	if (un->un_f_blockcount_is_valid != TRUE) {
8170 		/*
8171 		 * Set capacity error stat to 0 for no media. This ensures
8172 		 * a valid capacity is displayed in response to 'iostat -E'
8173 		 * when no media is present in the device.
8174 		 */
8175 		stp->sd_capacity.value.ui64 = 0;
8176 	} else {
8177 		/*
8178 		 * Multiply un_blockcount by un->un_sys_blocksize to get
8179 		 * capacity.
8180 		 *
8181 		 * Note: for non-512 blocksize devices "un_blockcount" has been
8182 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
8183 		 * (un_tgt_blocksize / un->un_sys_blocksize).
8184 		 */
8185 		stp->sd_capacity.value.ui64 = (uint64_t)
8186 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
8187 	}
8188 }
8189 
8190 
8191 /*
8192  *    Function: sd_set_pstats
8193  *
8194  * Description: This routine instantiates and initializes the partition
8195  *              stats for each partition with more than zero blocks.
8196  *		(4363169)
8197  *
8198  *   Arguments: un - driver soft state (unit) structure
8199  *
8200  *     Context: Kernel thread context
8201  */
8202 
8203 static void
8204 sd_set_pstats(struct sd_lun *un)
8205 {
8206 	char	kstatname[KSTAT_STRLEN];
8207 	int	instance;
8208 	int	i;
8209 	diskaddr_t	nblks = 0;
8210 	char	*partname = NULL;
8211 
8212 	ASSERT(un != NULL);
8213 
8214 	instance = ddi_get_instance(SD_DEVINFO(un));
8215 
8216 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
8217 	for (i = 0; i < NSDMAP; i++) {
8218 
8219 		if (cmlb_partinfo(un->un_cmlbhandle, i,
8220 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
8221 			continue;
8222 		mutex_enter(SD_MUTEX(un));
8223 
8224 		if ((un->un_pstats[i] == NULL) &&
8225 		    (nblks != 0)) {
8226 
8227 			(void) snprintf(kstatname, sizeof (kstatname),
8228 			    "%s%d,%s", sd_label, instance,
8229 			    partname);
8230 
8231 			un->un_pstats[i] = kstat_create(sd_label,
8232 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
8233 			    1, KSTAT_FLAG_PERSISTENT);
8234 			if (un->un_pstats[i] != NULL) {
8235 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
8236 				kstat_install(un->un_pstats[i]);
8237 			}
8238 		}
8239 		mutex_exit(SD_MUTEX(un));
8240 	}
8241 }
8242 
8243 
8244 #if (defined(__fibre))
8245 /*
8246  *    Function: sd_init_event_callbacks
8247  *
8248  * Description: This routine initializes the insertion and removal event
8249  *		callbacks. (fibre only)
8250  *
8251  *   Arguments: un - driver soft state (unit) structure
8252  *
8253  *     Context: Kernel thread context
8254  */
8255 
8256 static void
8257 sd_init_event_callbacks(struct sd_lun *un)
8258 {
8259 	ASSERT(un != NULL);
8260 
8261 	if ((un->un_insert_event == NULL) &&
8262 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
8263 	    &un->un_insert_event) == DDI_SUCCESS)) {
8264 		/*
8265 		 * Add the callback for an insertion event
8266 		 */
8267 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8268 		    un->un_insert_event, sd_event_callback, (void *)un,
8269 		    &(un->un_insert_cb_id));
8270 	}
8271 
8272 	if ((un->un_remove_event == NULL) &&
8273 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
8274 	    &un->un_remove_event) == DDI_SUCCESS)) {
8275 		/*
8276 		 * Add the callback for a removal event
8277 		 */
8278 		(void) ddi_add_event_handler(SD_DEVINFO(un),
8279 		    un->un_remove_event, sd_event_callback, (void *)un,
8280 		    &(un->un_remove_cb_id));
8281 	}
8282 }
8283 
8284 
8285 /*
8286  *    Function: sd_event_callback
8287  *
8288  * Description: This routine handles insert/remove events (photon). The
8289  *		state is changed to OFFLINE which can be used to supress
8290  *		error msgs. (fibre only)
8291  *
8292  *   Arguments: un - driver soft state (unit) structure
8293  *
8294  *     Context: Callout thread context
8295  */
8296 /* ARGSUSED */
8297 static void
8298 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
8299     void *bus_impldata)
8300 {
8301 	struct sd_lun *un = (struct sd_lun *)arg;
8302 
8303 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
8304 	if (event == un->un_insert_event) {
8305 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
8306 		mutex_enter(SD_MUTEX(un));
8307 		if (un->un_state == SD_STATE_OFFLINE) {
8308 			if (un->un_last_state != SD_STATE_SUSPENDED) {
8309 				un->un_state = un->un_last_state;
8310 			} else {
8311 				/*
8312 				 * We have gone through SUSPEND/RESUME while
8313 				 * we were offline. Restore the last state
8314 				 */
8315 				un->un_state = un->un_save_state;
8316 			}
8317 		}
8318 		mutex_exit(SD_MUTEX(un));
8319 
8320 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
8321 	} else if (event == un->un_remove_event) {
8322 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
8323 		mutex_enter(SD_MUTEX(un));
8324 		/*
8325 		 * We need to handle an event callback that occurs during
8326 		 * the suspend operation, since we don't prevent it.
8327 		 */
8328 		if (un->un_state != SD_STATE_OFFLINE) {
8329 			if (un->un_state != SD_STATE_SUSPENDED) {
8330 				New_state(un, SD_STATE_OFFLINE);
8331 			} else {
8332 				un->un_last_state = SD_STATE_OFFLINE;
8333 			}
8334 		}
8335 		mutex_exit(SD_MUTEX(un));
8336 	} else {
8337 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
8338 		    "!Unknown event\n");
8339 	}
8340 
8341 }
8342 #endif
8343 
8344 /*
8345  *    Function: sd_cache_control()
8346  *
8347  * Description: This routine is the driver entry point for setting
8348  *		read and write caching by modifying the WCE (write cache
8349  *		enable) and RCD (read cache disable) bits of mode
8350  *		page 8 (MODEPAGE_CACHING).
8351  *
8352  *   Arguments: un - driver soft state (unit) structure
8353  *		rcd_flag - flag for controlling the read cache
8354  *		wce_flag - flag for controlling the write cache
8355  *
8356  * Return Code: EIO
8357  *		code returned by sd_send_scsi_MODE_SENSE and
8358  *		sd_send_scsi_MODE_SELECT
8359  *
8360  *     Context: Kernel Thread
8361  */
8362 
8363 static int
8364 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
8365 {
8366 	struct mode_caching	*mode_caching_page;
8367 	uchar_t			*header;
8368 	size_t			buflen;
8369 	int			hdrlen;
8370 	int			bd_len;
8371 	int			rval = 0;
8372 	struct mode_header_grp2	*mhp;
8373 
8374 	ASSERT(un != NULL);
8375 
8376 	/*
8377 	 * Do a test unit ready, otherwise a mode sense may not work if this
8378 	 * is the first command sent to the device after boot.
8379 	 */
8380 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8381 
8382 	if (un->un_f_cfg_is_atapi == TRUE) {
8383 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8384 	} else {
8385 		hdrlen = MODE_HEADER_LENGTH;
8386 	}
8387 
8388 	/*
8389 	 * Allocate memory for the retrieved mode page and its headers.  Set
8390 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
8391 	 * we get all of the mode sense data otherwise, the mode select
8392 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
8393 	 */
8394 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
8395 	    sizeof (struct mode_cache_scsi3);
8396 
8397 	header = kmem_zalloc(buflen, KM_SLEEP);
8398 
8399 	/* Get the information from the device. */
8400 	if (un->un_f_cfg_is_atapi == TRUE) {
8401 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8402 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8403 	} else {
8404 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8405 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8406 	}
8407 	if (rval != 0) {
8408 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8409 		    "sd_cache_control: Mode Sense Failed\n");
8410 		kmem_free(header, buflen);
8411 		return (rval);
8412 	}
8413 
8414 	/*
8415 	 * Determine size of Block Descriptors in order to locate
8416 	 * the mode page data. ATAPI devices return 0, SCSI devices
8417 	 * should return MODE_BLK_DESC_LENGTH.
8418 	 */
8419 	if (un->un_f_cfg_is_atapi == TRUE) {
8420 		mhp	= (struct mode_header_grp2 *)header;
8421 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8422 	} else {
8423 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8424 	}
8425 
8426 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8427 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8428 		    "sd_cache_control: Mode Sense returned invalid "
8429 		    "block descriptor length\n");
8430 		kmem_free(header, buflen);
8431 		return (EIO);
8432 	}
8433 
8434 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8435 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8436 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8437 		    " caching page code mismatch %d\n",
8438 		    mode_caching_page->mode_page.code);
8439 		kmem_free(header, buflen);
8440 		return (EIO);
8441 	}
8442 
8443 	/* Check the relevant bits on successful mode sense. */
8444 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
8445 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
8446 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
8447 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
8448 
8449 		size_t sbuflen;
8450 		uchar_t save_pg;
8451 
8452 		/*
8453 		 * Construct select buffer length based on the
8454 		 * length of the sense data returned.
8455 		 */
8456 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
8457 		    sizeof (struct mode_page) +
8458 		    (int)mode_caching_page->mode_page.length;
8459 
8460 		/*
8461 		 * Set the caching bits as requested.
8462 		 */
8463 		if (rcd_flag == SD_CACHE_ENABLE)
8464 			mode_caching_page->rcd = 0;
8465 		else if (rcd_flag == SD_CACHE_DISABLE)
8466 			mode_caching_page->rcd = 1;
8467 
8468 		if (wce_flag == SD_CACHE_ENABLE)
8469 			mode_caching_page->wce = 1;
8470 		else if (wce_flag == SD_CACHE_DISABLE)
8471 			mode_caching_page->wce = 0;
8472 
8473 		/*
8474 		 * Save the page if the mode sense says the
8475 		 * drive supports it.
8476 		 */
8477 		save_pg = mode_caching_page->mode_page.ps ?
8478 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
8479 
8480 		/* Clear reserved bits before mode select. */
8481 		mode_caching_page->mode_page.ps = 0;
8482 
8483 		/*
8484 		 * Clear out mode header for mode select.
8485 		 * The rest of the retrieved page will be reused.
8486 		 */
8487 		bzero(header, hdrlen);
8488 
8489 		if (un->un_f_cfg_is_atapi == TRUE) {
8490 			mhp = (struct mode_header_grp2 *)header;
8491 			mhp->bdesc_length_hi = bd_len >> 8;
8492 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
8493 		} else {
8494 			((struct mode_header *)header)->bdesc_length = bd_len;
8495 		}
8496 
8497 		/* Issue mode select to change the cache settings */
8498 		if (un->un_f_cfg_is_atapi == TRUE) {
8499 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
8500 			    sbuflen, save_pg, SD_PATH_DIRECT);
8501 		} else {
8502 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
8503 			    sbuflen, save_pg, SD_PATH_DIRECT);
8504 		}
8505 	}
8506 
8507 	kmem_free(header, buflen);
8508 	return (rval);
8509 }
8510 
8511 
8512 /*
8513  *    Function: sd_get_write_cache_enabled()
8514  *
8515  * Description: This routine is the driver entry point for determining if
8516  *		write caching is enabled.  It examines the WCE (write cache
8517  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
8518  *
8519  *   Arguments: un - driver soft state (unit) structure
8520  *		is_enabled - pointer to int where write cache enabled state
8521  *		is returned (non-zero -> write cache enabled)
8522  *
8523  *
8524  * Return Code: EIO
8525  *		code returned by sd_send_scsi_MODE_SENSE
8526  *
8527  *     Context: Kernel Thread
8528  *
8529  * NOTE: If ioctl is added to disable write cache, this sequence should
8530  * be followed so that no locking is required for accesses to
8531  * un->un_f_write_cache_enabled:
8532  * 	do mode select to clear wce
8533  * 	do synchronize cache to flush cache
8534  * 	set un->un_f_write_cache_enabled = FALSE
8535  *
8536  * Conversely, an ioctl to enable the write cache should be done
8537  * in this order:
8538  * 	set un->un_f_write_cache_enabled = TRUE
8539  * 	do mode select to set wce
8540  */
8541 
8542 static int
8543 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
8544 {
8545 	struct mode_caching	*mode_caching_page;
8546 	uchar_t			*header;
8547 	size_t			buflen;
8548 	int			hdrlen;
8549 	int			bd_len;
8550 	int			rval = 0;
8551 
8552 	ASSERT(un != NULL);
8553 	ASSERT(is_enabled != NULL);
8554 
8555 	/* in case of error, flag as enabled */
8556 	*is_enabled = TRUE;
8557 
8558 	/*
8559 	 * Do a test unit ready, otherwise a mode sense may not work if this
8560 	 * is the first command sent to the device after boot.
8561 	 */
8562 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
8563 
8564 	if (un->un_f_cfg_is_atapi == TRUE) {
8565 		hdrlen = MODE_HEADER_LENGTH_GRP2;
8566 	} else {
8567 		hdrlen = MODE_HEADER_LENGTH;
8568 	}
8569 
8570 	/*
8571 	 * Allocate memory for the retrieved mode page and its headers.  Set
8572 	 * a pointer to the page itself.
8573 	 */
8574 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
8575 	header = kmem_zalloc(buflen, KM_SLEEP);
8576 
8577 	/* Get the information from the device. */
8578 	if (un->un_f_cfg_is_atapi == TRUE) {
8579 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
8580 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8581 	} else {
8582 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
8583 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
8584 	}
8585 	if (rval != 0) {
8586 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
8587 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
8588 		kmem_free(header, buflen);
8589 		return (rval);
8590 	}
8591 
8592 	/*
8593 	 * Determine size of Block Descriptors in order to locate
8594 	 * the mode page data. ATAPI devices return 0, SCSI devices
8595 	 * should return MODE_BLK_DESC_LENGTH.
8596 	 */
8597 	if (un->un_f_cfg_is_atapi == TRUE) {
8598 		struct mode_header_grp2	*mhp;
8599 		mhp	= (struct mode_header_grp2 *)header;
8600 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
8601 	} else {
8602 		bd_len  = ((struct mode_header *)header)->bdesc_length;
8603 	}
8604 
8605 	if (bd_len > MODE_BLK_DESC_LENGTH) {
8606 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
8607 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
8608 		    "block descriptor length\n");
8609 		kmem_free(header, buflen);
8610 		return (EIO);
8611 	}
8612 
8613 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
8614 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
8615 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
8616 		    " caching page code mismatch %d\n",
8617 		    mode_caching_page->mode_page.code);
8618 		kmem_free(header, buflen);
8619 		return (EIO);
8620 	}
8621 	*is_enabled = mode_caching_page->wce;
8622 
8623 	kmem_free(header, buflen);
8624 	return (0);
8625 }
8626 
8627 /*
8628  *    Function: sd_get_nv_sup()
8629  *
8630  * Description: This routine is the driver entry point for
8631  * determining whether non-volatile cache is supported. This
8632  * determination process works as follows:
8633  *
8634  * 1. sd first queries sd.conf on whether
8635  * suppress_cache_flush bit is set for this device.
8636  *
8637  * 2. if not there, then queries the internal disk table.
8638  *
8639  * 3. if either sd.conf or internal disk table specifies
8640  * cache flush be suppressed, we don't bother checking
8641  * NV_SUP bit.
8642  *
8643  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
8644  * the optional INQUIRY VPD page 0x86. If the device
8645  * supports VPD page 0x86, sd examines the NV_SUP
8646  * (non-volatile cache support) bit in the INQUIRY VPD page
8647  * 0x86:
8648  *   o If NV_SUP bit is set, sd assumes the device has a
8649  *   non-volatile cache and set the
8650  *   un_f_sync_nv_supported to TRUE.
8651  *   o Otherwise cache is not non-volatile,
8652  *   un_f_sync_nv_supported is set to FALSE.
8653  *
8654  * Arguments: un - driver soft state (unit) structure
8655  *
8656  * Return Code:
8657  *
8658  *     Context: Kernel Thread
8659  */
8660 
8661 static void
8662 sd_get_nv_sup(struct sd_lun *un)
8663 {
8664 	int		rval		= 0;
8665 	uchar_t		*inq86		= NULL;
8666 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
8667 	size_t		inq86_resid	= 0;
8668 	struct		dk_callback *dkc;
8669 
8670 	ASSERT(un != NULL);
8671 
8672 	mutex_enter(SD_MUTEX(un));
8673 
8674 	/*
8675 	 * Be conservative on the device's support of
8676 	 * SYNC_NV bit: un_f_sync_nv_supported is
8677 	 * initialized to be false.
8678 	 */
8679 	un->un_f_sync_nv_supported = FALSE;
8680 
8681 	/*
8682 	 * If either sd.conf or internal disk table
8683 	 * specifies cache flush be suppressed, then
8684 	 * we don't bother checking NV_SUP bit.
8685 	 */
8686 	if (un->un_f_suppress_cache_flush == TRUE) {
8687 		mutex_exit(SD_MUTEX(un));
8688 		return;
8689 	}
8690 
8691 	if (sd_check_vpd_page_support(un) == 0 &&
8692 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
8693 		mutex_exit(SD_MUTEX(un));
8694 		/* collect page 86 data if available */
8695 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
8696 		rval = sd_send_scsi_INQUIRY(un, inq86, inq86_len,
8697 		    0x01, 0x86, &inq86_resid);
8698 
8699 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
8700 			SD_TRACE(SD_LOG_COMMON, un,
8701 			    "sd_get_nv_sup: \
8702 			    successfully get VPD page: %x \
8703 			    PAGE LENGTH: %x BYTE 6: %x\n",
8704 			    inq86[1], inq86[3], inq86[6]);
8705 
8706 			mutex_enter(SD_MUTEX(un));
8707 			/*
8708 			 * check the value of NV_SUP bit: only if the device
8709 			 * reports NV_SUP bit to be 1, the
8710 			 * un_f_sync_nv_supported bit will be set to true.
8711 			 */
8712 			if (inq86[6] & SD_VPD_NV_SUP) {
8713 				un->un_f_sync_nv_supported = TRUE;
8714 			}
8715 			mutex_exit(SD_MUTEX(un));
8716 		}
8717 		kmem_free(inq86, inq86_len);
8718 	} else {
8719 		mutex_exit(SD_MUTEX(un));
8720 	}
8721 
8722 	/*
8723 	 * Send a SYNC CACHE command to check whether
8724 	 * SYNC_NV bit is supported. This command should have
8725 	 * un_f_sync_nv_supported set to correct value.
8726 	 */
8727 	mutex_enter(SD_MUTEX(un));
8728 	if (un->un_f_sync_nv_supported) {
8729 		mutex_exit(SD_MUTEX(un));
8730 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
8731 		dkc->dkc_flag = FLUSH_VOLATILE;
8732 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
8733 
8734 		/*
8735 		 * Send a TEST UNIT READY command to the device. This should
8736 		 * clear any outstanding UNIT ATTENTION that may be present.
8737 		 */
8738 		(void) sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR);
8739 
8740 		kmem_free(dkc, sizeof (struct dk_callback));
8741 	} else {
8742 		mutex_exit(SD_MUTEX(un));
8743 	}
8744 
8745 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
8746 	    un_f_suppress_cache_flush is set to %d\n",
8747 	    un->un_f_suppress_cache_flush);
8748 }
8749 
8750 /*
8751  *    Function: sd_make_device
8752  *
8753  * Description: Utility routine to return the Solaris device number from
8754  *		the data in the device's dev_info structure.
8755  *
8756  * Return Code: The Solaris device number
8757  *
8758  *     Context: Any
8759  */
8760 
8761 static dev_t
8762 sd_make_device(dev_info_t *devi)
8763 {
8764 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
8765 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
8766 }
8767 
8768 
8769 /*
8770  *    Function: sd_pm_entry
8771  *
8772  * Description: Called at the start of a new command to manage power
8773  *		and busy status of a device. This includes determining whether
8774  *		the current power state of the device is sufficient for
8775  *		performing the command or whether it must be changed.
8776  *		The PM framework is notified appropriately.
8777  *		Only with a return status of DDI_SUCCESS will the
8778  *		component be busy to the framework.
8779  *
8780  *		All callers of sd_pm_entry must check the return status
8781  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
8782  *		of DDI_FAILURE indicates the device failed to power up.
8783  *		In this case un_pm_count has been adjusted so the result
8784  *		on exit is still powered down, ie. count is less than 0.
8785  *		Calling sd_pm_exit with this count value hits an ASSERT.
8786  *
8787  * Return Code: DDI_SUCCESS or DDI_FAILURE
8788  *
8789  *     Context: Kernel thread context.
8790  */
8791 
8792 static int
8793 sd_pm_entry(struct sd_lun *un)
8794 {
8795 	int return_status = DDI_SUCCESS;
8796 
8797 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8798 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8799 
8800 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
8801 
8802 	if (un->un_f_pm_is_enabled == FALSE) {
8803 		SD_TRACE(SD_LOG_IO_PM, un,
8804 		    "sd_pm_entry: exiting, PM not enabled\n");
8805 		return (return_status);
8806 	}
8807 
8808 	/*
8809 	 * Just increment a counter if PM is enabled. On the transition from
8810 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
8811 	 * the count with each IO and mark the device as idle when the count
8812 	 * hits 0.
8813 	 *
8814 	 * If the count is less than 0 the device is powered down. If a powered
8815 	 * down device is successfully powered up then the count must be
8816 	 * incremented to reflect the power up. Note that it'll get incremented
8817 	 * a second time to become busy.
8818 	 *
8819 	 * Because the following has the potential to change the device state
8820 	 * and must release the un_pm_mutex to do so, only one thread can be
8821 	 * allowed through at a time.
8822 	 */
8823 
8824 	mutex_enter(&un->un_pm_mutex);
8825 	while (un->un_pm_busy == TRUE) {
8826 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
8827 	}
8828 	un->un_pm_busy = TRUE;
8829 
8830 	if (un->un_pm_count < 1) {
8831 
8832 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
8833 
8834 		/*
8835 		 * Indicate we are now busy so the framework won't attempt to
8836 		 * power down the device. This call will only fail if either
8837 		 * we passed a bad component number or the device has no
8838 		 * components. Neither of these should ever happen.
8839 		 */
8840 		mutex_exit(&un->un_pm_mutex);
8841 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
8842 		ASSERT(return_status == DDI_SUCCESS);
8843 
8844 		mutex_enter(&un->un_pm_mutex);
8845 
8846 		if (un->un_pm_count < 0) {
8847 			mutex_exit(&un->un_pm_mutex);
8848 
8849 			SD_TRACE(SD_LOG_IO_PM, un,
8850 			    "sd_pm_entry: power up component\n");
8851 
8852 			/*
8853 			 * pm_raise_power will cause sdpower to be called
8854 			 * which brings the device power level to the
8855 			 * desired state, ON in this case. If successful,
8856 			 * un_pm_count and un_power_level will be updated
8857 			 * appropriately.
8858 			 */
8859 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
8860 			    SD_SPINDLE_ON);
8861 
8862 			mutex_enter(&un->un_pm_mutex);
8863 
8864 			if (return_status != DDI_SUCCESS) {
8865 				/*
8866 				 * Power up failed.
8867 				 * Idle the device and adjust the count
8868 				 * so the result on exit is that we're
8869 				 * still powered down, ie. count is less than 0.
8870 				 */
8871 				SD_TRACE(SD_LOG_IO_PM, un,
8872 				    "sd_pm_entry: power up failed,"
8873 				    " idle the component\n");
8874 
8875 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8876 				un->un_pm_count--;
8877 			} else {
8878 				/*
8879 				 * Device is powered up, verify the
8880 				 * count is non-negative.
8881 				 * This is debug only.
8882 				 */
8883 				ASSERT(un->un_pm_count == 0);
8884 			}
8885 		}
8886 
8887 		if (return_status == DDI_SUCCESS) {
8888 			/*
8889 			 * For performance, now that the device has been tagged
8890 			 * as busy, and it's known to be powered up, update the
8891 			 * chain types to use jump tables that do not include
8892 			 * pm. This significantly lowers the overhead and
8893 			 * therefore improves performance.
8894 			 */
8895 
8896 			mutex_exit(&un->un_pm_mutex);
8897 			mutex_enter(SD_MUTEX(un));
8898 			SD_TRACE(SD_LOG_IO_PM, un,
8899 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
8900 			    un->un_uscsi_chain_type);
8901 
8902 			if (un->un_f_non_devbsize_supported) {
8903 				un->un_buf_chain_type =
8904 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
8905 			} else {
8906 				un->un_buf_chain_type =
8907 				    SD_CHAIN_INFO_DISK_NO_PM;
8908 			}
8909 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8910 
8911 			SD_TRACE(SD_LOG_IO_PM, un,
8912 			    "             changed  uscsi_chain_type to   %d\n",
8913 			    un->un_uscsi_chain_type);
8914 			mutex_exit(SD_MUTEX(un));
8915 			mutex_enter(&un->un_pm_mutex);
8916 
8917 			if (un->un_pm_idle_timeid == NULL) {
8918 				/* 300 ms. */
8919 				un->un_pm_idle_timeid =
8920 				    timeout(sd_pm_idletimeout_handler, un,
8921 				    (drv_usectohz((clock_t)300000)));
8922 				/*
8923 				 * Include an extra call to busy which keeps the
8924 				 * device busy with-respect-to the PM layer
8925 				 * until the timer fires, at which time it'll
8926 				 * get the extra idle call.
8927 				 */
8928 				(void) pm_busy_component(SD_DEVINFO(un), 0);
8929 			}
8930 		}
8931 	}
8932 	un->un_pm_busy = FALSE;
8933 	/* Next... */
8934 	cv_signal(&un->un_pm_busy_cv);
8935 
8936 	un->un_pm_count++;
8937 
8938 	SD_TRACE(SD_LOG_IO_PM, un,
8939 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
8940 
8941 	mutex_exit(&un->un_pm_mutex);
8942 
8943 	return (return_status);
8944 }
8945 
8946 
8947 /*
8948  *    Function: sd_pm_exit
8949  *
8950  * Description: Called at the completion of a command to manage busy
8951  *		status for the device. If the device becomes idle the
8952  *		PM framework is notified.
8953  *
8954  *     Context: Kernel thread context
8955  */
8956 
8957 static void
8958 sd_pm_exit(struct sd_lun *un)
8959 {
8960 	ASSERT(!mutex_owned(SD_MUTEX(un)));
8961 	ASSERT(!mutex_owned(&un->un_pm_mutex));
8962 
8963 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
8964 
8965 	/*
8966 	 * After attach the following flag is only read, so don't
8967 	 * take the penalty of acquiring a mutex for it.
8968 	 */
8969 	if (un->un_f_pm_is_enabled == TRUE) {
8970 
8971 		mutex_enter(&un->un_pm_mutex);
8972 		un->un_pm_count--;
8973 
8974 		SD_TRACE(SD_LOG_IO_PM, un,
8975 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
8976 
8977 		ASSERT(un->un_pm_count >= 0);
8978 		if (un->un_pm_count == 0) {
8979 			mutex_exit(&un->un_pm_mutex);
8980 
8981 			SD_TRACE(SD_LOG_IO_PM, un,
8982 			    "sd_pm_exit: idle component\n");
8983 
8984 			(void) pm_idle_component(SD_DEVINFO(un), 0);
8985 
8986 		} else {
8987 			mutex_exit(&un->un_pm_mutex);
8988 		}
8989 	}
8990 
8991 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
8992 }
8993 
8994 
8995 /*
8996  *    Function: sdopen
8997  *
8998  * Description: Driver's open(9e) entry point function.
8999  *
9000  *   Arguments: dev_i   - pointer to device number
9001  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
9002  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9003  *		cred_p  - user credential pointer
9004  *
9005  * Return Code: EINVAL
9006  *		ENXIO
9007  *		EIO
9008  *		EROFS
9009  *		EBUSY
9010  *
9011  *     Context: Kernel thread context
9012  */
9013 /* ARGSUSED */
9014 static int
9015 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
9016 {
9017 	struct sd_lun	*un;
9018 	int		nodelay;
9019 	int		part;
9020 	uint64_t	partmask;
9021 	int		instance;
9022 	dev_t		dev;
9023 	int		rval = EIO;
9024 	diskaddr_t	nblks = 0;
9025 
9026 	/* Validate the open type */
9027 	if (otyp >= OTYPCNT) {
9028 		return (EINVAL);
9029 	}
9030 
9031 	dev = *dev_p;
9032 	instance = SDUNIT(dev);
9033 	mutex_enter(&sd_detach_mutex);
9034 
9035 	/*
9036 	 * Fail the open if there is no softstate for the instance, or
9037 	 * if another thread somewhere is trying to detach the instance.
9038 	 */
9039 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
9040 	    (un->un_detach_count != 0)) {
9041 		mutex_exit(&sd_detach_mutex);
9042 		/*
9043 		 * The probe cache only needs to be cleared when open (9e) fails
9044 		 * with ENXIO (4238046).
9045 		 */
9046 		/*
9047 		 * un-conditionally clearing probe cache is ok with
9048 		 * separate sd/ssd binaries
9049 		 * x86 platform can be an issue with both parallel
9050 		 * and fibre in 1 binary
9051 		 */
9052 		sd_scsi_clear_probe_cache();
9053 		return (ENXIO);
9054 	}
9055 
9056 	/*
9057 	 * The un_layer_count is to prevent another thread in specfs from
9058 	 * trying to detach the instance, which can happen when we are
9059 	 * called from a higher-layer driver instead of thru specfs.
9060 	 * This will not be needed when DDI provides a layered driver
9061 	 * interface that allows specfs to know that an instance is in
9062 	 * use by a layered driver & should not be detached.
9063 	 *
9064 	 * Note: the semantics for layered driver opens are exactly one
9065 	 * close for every open.
9066 	 */
9067 	if (otyp == OTYP_LYR) {
9068 		un->un_layer_count++;
9069 	}
9070 
9071 	/*
9072 	 * Keep a count of the current # of opens in progress. This is because
9073 	 * some layered drivers try to call us as a regular open. This can
9074 	 * cause problems that we cannot prevent, however by keeping this count
9075 	 * we can at least keep our open and detach routines from racing against
9076 	 * each other under such conditions.
9077 	 */
9078 	un->un_opens_in_progress++;
9079 	mutex_exit(&sd_detach_mutex);
9080 
9081 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
9082 	part	 = SDPART(dev);
9083 	partmask = 1 << part;
9084 
9085 	/*
9086 	 * We use a semaphore here in order to serialize
9087 	 * open and close requests on the device.
9088 	 */
9089 	sema_p(&un->un_semoclose);
9090 
9091 	mutex_enter(SD_MUTEX(un));
9092 
9093 	/*
9094 	 * All device accesses go thru sdstrategy() where we check
9095 	 * on suspend status but there could be a scsi_poll command,
9096 	 * which bypasses sdstrategy(), so we need to check pm
9097 	 * status.
9098 	 */
9099 
9100 	if (!nodelay) {
9101 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9102 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9103 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9104 		}
9105 
9106 		mutex_exit(SD_MUTEX(un));
9107 		if (sd_pm_entry(un) != DDI_SUCCESS) {
9108 			rval = EIO;
9109 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
9110 			    "sdopen: sd_pm_entry failed\n");
9111 			goto open_failed_with_pm;
9112 		}
9113 		mutex_enter(SD_MUTEX(un));
9114 	}
9115 
9116 	/* check for previous exclusive open */
9117 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
9118 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9119 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
9120 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
9121 
9122 	if (un->un_exclopen & (partmask)) {
9123 		goto excl_open_fail;
9124 	}
9125 
9126 	if (flag & FEXCL) {
9127 		int i;
9128 		if (un->un_ocmap.lyropen[part]) {
9129 			goto excl_open_fail;
9130 		}
9131 		for (i = 0; i < (OTYPCNT - 1); i++) {
9132 			if (un->un_ocmap.regopen[i] & (partmask)) {
9133 				goto excl_open_fail;
9134 			}
9135 		}
9136 	}
9137 
9138 	/*
9139 	 * Check the write permission if this is a removable media device,
9140 	 * NDELAY has not been set, and writable permission is requested.
9141 	 *
9142 	 * Note: If NDELAY was set and this is write-protected media the WRITE
9143 	 * attempt will fail with EIO as part of the I/O processing. This is a
9144 	 * more permissive implementation that allows the open to succeed and
9145 	 * WRITE attempts to fail when appropriate.
9146 	 */
9147 	if (un->un_f_chk_wp_open) {
9148 		if ((flag & FWRITE) && (!nodelay)) {
9149 			mutex_exit(SD_MUTEX(un));
9150 			/*
9151 			 * Defer the check for write permission on writable
9152 			 * DVD drive till sdstrategy and will not fail open even
9153 			 * if FWRITE is set as the device can be writable
9154 			 * depending upon the media and the media can change
9155 			 * after the call to open().
9156 			 */
9157 			if (un->un_f_dvdram_writable_device == FALSE) {
9158 				if (ISCD(un) || sr_check_wp(dev)) {
9159 				rval = EROFS;
9160 				mutex_enter(SD_MUTEX(un));
9161 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9162 				    "write to cd or write protected media\n");
9163 				goto open_fail;
9164 				}
9165 			}
9166 			mutex_enter(SD_MUTEX(un));
9167 		}
9168 	}
9169 
9170 	/*
9171 	 * If opening in NDELAY/NONBLOCK mode, just return.
9172 	 * Check if disk is ready and has a valid geometry later.
9173 	 */
9174 	if (!nodelay) {
9175 		mutex_exit(SD_MUTEX(un));
9176 		rval = sd_ready_and_valid(un);
9177 		mutex_enter(SD_MUTEX(un));
9178 		/*
9179 		 * Fail if device is not ready or if the number of disk
9180 		 * blocks is zero or negative for non CD devices.
9181 		 */
9182 
9183 		nblks = 0;
9184 
9185 		if (rval == SD_READY_VALID && (!ISCD(un))) {
9186 			/* if cmlb_partinfo fails, nblks remains 0 */
9187 			mutex_exit(SD_MUTEX(un));
9188 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
9189 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
9190 			mutex_enter(SD_MUTEX(un));
9191 		}
9192 
9193 		if ((rval != SD_READY_VALID) ||
9194 		    (!ISCD(un) && nblks <= 0)) {
9195 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
9196 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9197 			    "device not ready or invalid disk block value\n");
9198 			goto open_fail;
9199 		}
9200 #if defined(__i386) || defined(__amd64)
9201 	} else {
9202 		uchar_t *cp;
9203 		/*
9204 		 * x86 requires special nodelay handling, so that p0 is
9205 		 * always defined and accessible.
9206 		 * Invalidate geometry only if device is not already open.
9207 		 */
9208 		cp = &un->un_ocmap.chkd[0];
9209 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9210 			if (*cp != (uchar_t)0) {
9211 				break;
9212 			}
9213 			cp++;
9214 		}
9215 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9216 			mutex_exit(SD_MUTEX(un));
9217 			cmlb_invalidate(un->un_cmlbhandle,
9218 			    (void *)SD_PATH_DIRECT);
9219 			mutex_enter(SD_MUTEX(un));
9220 		}
9221 
9222 #endif
9223 	}
9224 
9225 	if (otyp == OTYP_LYR) {
9226 		un->un_ocmap.lyropen[part]++;
9227 	} else {
9228 		un->un_ocmap.regopen[otyp] |= partmask;
9229 	}
9230 
9231 	/* Set up open and exclusive open flags */
9232 	if (flag & FEXCL) {
9233 		un->un_exclopen |= (partmask);
9234 	}
9235 
9236 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
9237 	    "open of part %d type %d\n", part, otyp);
9238 
9239 	mutex_exit(SD_MUTEX(un));
9240 	if (!nodelay) {
9241 		sd_pm_exit(un);
9242 	}
9243 
9244 	sema_v(&un->un_semoclose);
9245 
9246 	mutex_enter(&sd_detach_mutex);
9247 	un->un_opens_in_progress--;
9248 	mutex_exit(&sd_detach_mutex);
9249 
9250 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
9251 	return (DDI_SUCCESS);
9252 
9253 excl_open_fail:
9254 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
9255 	rval = EBUSY;
9256 
9257 open_fail:
9258 	mutex_exit(SD_MUTEX(un));
9259 
9260 	/*
9261 	 * On a failed open we must exit the pm management.
9262 	 */
9263 	if (!nodelay) {
9264 		sd_pm_exit(un);
9265 	}
9266 open_failed_with_pm:
9267 	sema_v(&un->un_semoclose);
9268 
9269 	mutex_enter(&sd_detach_mutex);
9270 	un->un_opens_in_progress--;
9271 	if (otyp == OTYP_LYR) {
9272 		un->un_layer_count--;
9273 	}
9274 	mutex_exit(&sd_detach_mutex);
9275 
9276 	return (rval);
9277 }
9278 
9279 
9280 /*
9281  *    Function: sdclose
9282  *
9283  * Description: Driver's close(9e) entry point function.
9284  *
9285  *   Arguments: dev    - device number
9286  *		flag   - file status flag, informational only
9287  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
9288  *		cred_p - user credential pointer
9289  *
9290  * Return Code: ENXIO
9291  *
9292  *     Context: Kernel thread context
9293  */
9294 /* ARGSUSED */
9295 static int
9296 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
9297 {
9298 	struct sd_lun	*un;
9299 	uchar_t		*cp;
9300 	int		part;
9301 	int		nodelay;
9302 	int		rval = 0;
9303 
9304 	/* Validate the open type */
9305 	if (otyp >= OTYPCNT) {
9306 		return (ENXIO);
9307 	}
9308 
9309 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9310 		return (ENXIO);
9311 	}
9312 
9313 	part = SDPART(dev);
9314 	nodelay = flag & (FNDELAY | FNONBLOCK);
9315 
9316 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
9317 	    "sdclose: close of part %d type %d\n", part, otyp);
9318 
9319 	/*
9320 	 * We use a semaphore here in order to serialize
9321 	 * open and close requests on the device.
9322 	 */
9323 	sema_p(&un->un_semoclose);
9324 
9325 	mutex_enter(SD_MUTEX(un));
9326 
9327 	/* Don't proceed if power is being changed. */
9328 	while (un->un_state == SD_STATE_PM_CHANGING) {
9329 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9330 	}
9331 
9332 	if (un->un_exclopen & (1 << part)) {
9333 		un->un_exclopen &= ~(1 << part);
9334 	}
9335 
9336 	/* Update the open partition map */
9337 	if (otyp == OTYP_LYR) {
9338 		un->un_ocmap.lyropen[part] -= 1;
9339 	} else {
9340 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
9341 	}
9342 
9343 	cp = &un->un_ocmap.chkd[0];
9344 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
9345 		if (*cp != NULL) {
9346 			break;
9347 		}
9348 		cp++;
9349 	}
9350 
9351 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
9352 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
9353 
9354 		/*
9355 		 * We avoid persistance upon the last close, and set
9356 		 * the throttle back to the maximum.
9357 		 */
9358 		un->un_throttle = un->un_saved_throttle;
9359 
9360 		if (un->un_state == SD_STATE_OFFLINE) {
9361 			if (un->un_f_is_fibre == FALSE) {
9362 				scsi_log(SD_DEVINFO(un), sd_label,
9363 				    CE_WARN, "offline\n");
9364 			}
9365 			mutex_exit(SD_MUTEX(un));
9366 			cmlb_invalidate(un->un_cmlbhandle,
9367 			    (void *)SD_PATH_DIRECT);
9368 			mutex_enter(SD_MUTEX(un));
9369 
9370 		} else {
9371 			/*
9372 			 * Flush any outstanding writes in NVRAM cache.
9373 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
9374 			 * cmd, it may not work for non-Pluto devices.
9375 			 * SYNCHRONIZE CACHE is not required for removables,
9376 			 * except DVD-RAM drives.
9377 			 *
9378 			 * Also note: because SYNCHRONIZE CACHE is currently
9379 			 * the only command issued here that requires the
9380 			 * drive be powered up, only do the power up before
9381 			 * sending the Sync Cache command. If additional
9382 			 * commands are added which require a powered up
9383 			 * drive, the following sequence may have to change.
9384 			 *
9385 			 * And finally, note that parallel SCSI on SPARC
9386 			 * only issues a Sync Cache to DVD-RAM, a newly
9387 			 * supported device.
9388 			 */
9389 #if defined(__i386) || defined(__amd64)
9390 			if (un->un_f_sync_cache_supported ||
9391 			    un->un_f_dvdram_writable_device == TRUE) {
9392 #else
9393 			if (un->un_f_dvdram_writable_device == TRUE) {
9394 #endif
9395 				mutex_exit(SD_MUTEX(un));
9396 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9397 					rval =
9398 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
9399 					    NULL);
9400 					/* ignore error if not supported */
9401 					if (rval == ENOTSUP) {
9402 						rval = 0;
9403 					} else if (rval != 0) {
9404 						rval = EIO;
9405 					}
9406 					sd_pm_exit(un);
9407 				} else {
9408 					rval = EIO;
9409 				}
9410 				mutex_enter(SD_MUTEX(un));
9411 			}
9412 
9413 			/*
9414 			 * For devices which supports DOOR_LOCK, send an ALLOW
9415 			 * MEDIA REMOVAL command, but don't get upset if it
9416 			 * fails. We need to raise the power of the drive before
9417 			 * we can call sd_send_scsi_DOORLOCK()
9418 			 */
9419 			if (un->un_f_doorlock_supported) {
9420 				mutex_exit(SD_MUTEX(un));
9421 				if (sd_pm_entry(un) == DDI_SUCCESS) {
9422 					rval = sd_send_scsi_DOORLOCK(un,
9423 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
9424 
9425 					sd_pm_exit(un);
9426 					if (ISCD(un) && (rval != 0) &&
9427 					    (nodelay != 0)) {
9428 						rval = ENXIO;
9429 					}
9430 				} else {
9431 					rval = EIO;
9432 				}
9433 				mutex_enter(SD_MUTEX(un));
9434 			}
9435 
9436 			/*
9437 			 * If a device has removable media, invalidate all
9438 			 * parameters related to media, such as geometry,
9439 			 * blocksize, and blockcount.
9440 			 */
9441 			if (un->un_f_has_removable_media) {
9442 				sr_ejected(un);
9443 			}
9444 
9445 			/*
9446 			 * Destroy the cache (if it exists) which was
9447 			 * allocated for the write maps since this is
9448 			 * the last close for this media.
9449 			 */
9450 			if (un->un_wm_cache) {
9451 				/*
9452 				 * Check if there are pending commands.
9453 				 * and if there are give a warning and
9454 				 * do not destroy the cache.
9455 				 */
9456 				if (un->un_ncmds_in_driver > 0) {
9457 					scsi_log(SD_DEVINFO(un),
9458 					    sd_label, CE_WARN,
9459 					    "Unable to clean up memory "
9460 					    "because of pending I/O\n");
9461 				} else {
9462 					kmem_cache_destroy(
9463 					    un->un_wm_cache);
9464 					un->un_wm_cache = NULL;
9465 				}
9466 			}
9467 		}
9468 	}
9469 
9470 	mutex_exit(SD_MUTEX(un));
9471 	sema_v(&un->un_semoclose);
9472 
9473 	if (otyp == OTYP_LYR) {
9474 		mutex_enter(&sd_detach_mutex);
9475 		/*
9476 		 * The detach routine may run when the layer count
9477 		 * drops to zero.
9478 		 */
9479 		un->un_layer_count--;
9480 		mutex_exit(&sd_detach_mutex);
9481 	}
9482 
9483 	return (rval);
9484 }
9485 
9486 
9487 /*
9488  *    Function: sd_ready_and_valid
9489  *
9490  * Description: Test if device is ready and has a valid geometry.
9491  *
9492  *   Arguments: dev - device number
9493  *		un  - driver soft state (unit) structure
9494  *
9495  * Return Code: SD_READY_VALID		ready and valid label
9496  *		SD_NOT_READY_VALID	not ready, no label
9497  *		SD_RESERVED_BY_OTHERS	reservation conflict
9498  *
9499  *     Context: Never called at interrupt context.
9500  */
9501 
9502 static int
9503 sd_ready_and_valid(struct sd_lun *un)
9504 {
9505 	struct sd_errstats	*stp;
9506 	uint64_t		capacity;
9507 	uint_t			lbasize;
9508 	int			rval = SD_READY_VALID;
9509 	char			name_str[48];
9510 	int			is_valid;
9511 
9512 	ASSERT(un != NULL);
9513 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9514 
9515 	mutex_enter(SD_MUTEX(un));
9516 	/*
9517 	 * If a device has removable media, we must check if media is
9518 	 * ready when checking if this device is ready and valid.
9519 	 */
9520 	if (un->un_f_has_removable_media) {
9521 		mutex_exit(SD_MUTEX(un));
9522 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
9523 			rval = SD_NOT_READY_VALID;
9524 			mutex_enter(SD_MUTEX(un));
9525 			goto done;
9526 		}
9527 
9528 		is_valid = SD_IS_VALID_LABEL(un);
9529 		mutex_enter(SD_MUTEX(un));
9530 		if (!is_valid ||
9531 		    (un->un_f_blockcount_is_valid == FALSE) ||
9532 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
9533 
9534 			/* capacity has to be read every open. */
9535 			mutex_exit(SD_MUTEX(un));
9536 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
9537 			    &lbasize, SD_PATH_DIRECT) != 0) {
9538 				cmlb_invalidate(un->un_cmlbhandle,
9539 				    (void *)SD_PATH_DIRECT);
9540 				mutex_enter(SD_MUTEX(un));
9541 				rval = SD_NOT_READY_VALID;
9542 				goto done;
9543 			} else {
9544 				mutex_enter(SD_MUTEX(un));
9545 				sd_update_block_info(un, lbasize, capacity);
9546 			}
9547 		}
9548 
9549 		/*
9550 		 * Check if the media in the device is writable or not.
9551 		 */
9552 		if (!is_valid && ISCD(un)) {
9553 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
9554 		}
9555 
9556 	} else {
9557 		/*
9558 		 * Do a test unit ready to clear any unit attention from non-cd
9559 		 * devices.
9560 		 */
9561 		mutex_exit(SD_MUTEX(un));
9562 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9563 		mutex_enter(SD_MUTEX(un));
9564 	}
9565 
9566 
9567 	/*
9568 	 * If this is a non 512 block device, allocate space for
9569 	 * the wmap cache. This is being done here since every time
9570 	 * a media is changed this routine will be called and the
9571 	 * block size is a function of media rather than device.
9572 	 */
9573 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
9574 		if (!(un->un_wm_cache)) {
9575 			(void) snprintf(name_str, sizeof (name_str),
9576 			    "%s%d_cache",
9577 			    ddi_driver_name(SD_DEVINFO(un)),
9578 			    ddi_get_instance(SD_DEVINFO(un)));
9579 			un->un_wm_cache = kmem_cache_create(
9580 			    name_str, sizeof (struct sd_w_map),
9581 			    8, sd_wm_cache_constructor,
9582 			    sd_wm_cache_destructor, NULL,
9583 			    (void *)un, NULL, 0);
9584 			if (!(un->un_wm_cache)) {
9585 					rval = ENOMEM;
9586 					goto done;
9587 			}
9588 		}
9589 	}
9590 
9591 	if (un->un_state == SD_STATE_NORMAL) {
9592 		/*
9593 		 * If the target is not yet ready here (defined by a TUR
9594 		 * failure), invalidate the geometry and print an 'offline'
9595 		 * message. This is a legacy message, as the state of the
9596 		 * target is not actually changed to SD_STATE_OFFLINE.
9597 		 *
9598 		 * If the TUR fails for EACCES (Reservation Conflict),
9599 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
9600 		 * reservation conflict. If the TUR fails for other
9601 		 * reasons, SD_NOT_READY_VALID will be returned.
9602 		 */
9603 		int err;
9604 
9605 		mutex_exit(SD_MUTEX(un));
9606 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
9607 		mutex_enter(SD_MUTEX(un));
9608 
9609 		if (err != 0) {
9610 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9611 			    "offline or reservation conflict\n");
9612 			mutex_exit(SD_MUTEX(un));
9613 			cmlb_invalidate(un->un_cmlbhandle,
9614 			    (void *)SD_PATH_DIRECT);
9615 			mutex_enter(SD_MUTEX(un));
9616 			if (err == EACCES) {
9617 				rval = SD_RESERVED_BY_OTHERS;
9618 			} else {
9619 				rval = SD_NOT_READY_VALID;
9620 			}
9621 			goto done;
9622 		}
9623 	}
9624 
9625 	if (un->un_f_format_in_progress == FALSE) {
9626 		mutex_exit(SD_MUTEX(un));
9627 		if (cmlb_validate(un->un_cmlbhandle, 0,
9628 		    (void *)SD_PATH_DIRECT) != 0) {
9629 			rval = SD_NOT_READY_VALID;
9630 			mutex_enter(SD_MUTEX(un));
9631 			goto done;
9632 		}
9633 		if (un->un_f_pkstats_enabled) {
9634 			sd_set_pstats(un);
9635 			SD_TRACE(SD_LOG_IO_PARTITION, un,
9636 			    "sd_ready_and_valid: un:0x%p pstats created and "
9637 			    "set\n", un);
9638 		}
9639 		mutex_enter(SD_MUTEX(un));
9640 	}
9641 
9642 	/*
9643 	 * If this device supports DOOR_LOCK command, try and send
9644 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
9645 	 * if it fails. For a CD, however, it is an error
9646 	 */
9647 	if (un->un_f_doorlock_supported) {
9648 		mutex_exit(SD_MUTEX(un));
9649 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
9650 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
9651 			rval = SD_NOT_READY_VALID;
9652 			mutex_enter(SD_MUTEX(un));
9653 			goto done;
9654 		}
9655 		mutex_enter(SD_MUTEX(un));
9656 	}
9657 
9658 	/* The state has changed, inform the media watch routines */
9659 	un->un_mediastate = DKIO_INSERTED;
9660 	cv_broadcast(&un->un_state_cv);
9661 	rval = SD_READY_VALID;
9662 
9663 done:
9664 
9665 	/*
9666 	 * Initialize the capacity kstat value, if no media previously
9667 	 * (capacity kstat is 0) and a media has been inserted
9668 	 * (un_blockcount > 0).
9669 	 */
9670 	if (un->un_errstats != NULL) {
9671 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
9672 		if ((stp->sd_capacity.value.ui64 == 0) &&
9673 		    (un->un_f_blockcount_is_valid == TRUE)) {
9674 			stp->sd_capacity.value.ui64 =
9675 			    (uint64_t)((uint64_t)un->un_blockcount *
9676 			    un->un_sys_blocksize);
9677 		}
9678 	}
9679 
9680 	mutex_exit(SD_MUTEX(un));
9681 	return (rval);
9682 }
9683 
9684 
9685 /*
9686  *    Function: sdmin
9687  *
9688  * Description: Routine to limit the size of a data transfer. Used in
9689  *		conjunction with physio(9F).
9690  *
9691  *   Arguments: bp - pointer to the indicated buf(9S) struct.
9692  *
9693  *     Context: Kernel thread context.
9694  */
9695 
9696 static void
9697 sdmin(struct buf *bp)
9698 {
9699 	struct sd_lun	*un;
9700 	int		instance;
9701 
9702 	instance = SDUNIT(bp->b_edev);
9703 
9704 	un = ddi_get_soft_state(sd_state, instance);
9705 	ASSERT(un != NULL);
9706 
9707 	if (bp->b_bcount > un->un_max_xfer_size) {
9708 		bp->b_bcount = un->un_max_xfer_size;
9709 	}
9710 }
9711 
9712 
9713 /*
9714  *    Function: sdread
9715  *
9716  * Description: Driver's read(9e) entry point function.
9717  *
9718  *   Arguments: dev   - device number
9719  *		uio   - structure pointer describing where data is to be stored
9720  *			in user's space
9721  *		cred_p  - user credential pointer
9722  *
9723  * Return Code: ENXIO
9724  *		EIO
9725  *		EINVAL
9726  *		value returned by physio
9727  *
9728  *     Context: Kernel thread context.
9729  */
9730 /* ARGSUSED */
9731 static int
9732 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
9733 {
9734 	struct sd_lun	*un = NULL;
9735 	int		secmask;
9736 	int		err;
9737 
9738 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9739 		return (ENXIO);
9740 	}
9741 
9742 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9743 
9744 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9745 		mutex_enter(SD_MUTEX(un));
9746 		/*
9747 		 * Because the call to sd_ready_and_valid will issue I/O we
9748 		 * must wait here if either the device is suspended or
9749 		 * if it's power level is changing.
9750 		 */
9751 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9752 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9753 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9754 		}
9755 		un->un_ncmds_in_driver++;
9756 		mutex_exit(SD_MUTEX(un));
9757 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9758 			mutex_enter(SD_MUTEX(un));
9759 			un->un_ncmds_in_driver--;
9760 			ASSERT(un->un_ncmds_in_driver >= 0);
9761 			mutex_exit(SD_MUTEX(un));
9762 			return (EIO);
9763 		}
9764 		mutex_enter(SD_MUTEX(un));
9765 		un->un_ncmds_in_driver--;
9766 		ASSERT(un->un_ncmds_in_driver >= 0);
9767 		mutex_exit(SD_MUTEX(un));
9768 	}
9769 
9770 	/*
9771 	 * Read requests are restricted to multiples of the system block size.
9772 	 */
9773 	secmask = un->un_sys_blocksize - 1;
9774 
9775 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9776 		SD_ERROR(SD_LOG_READ_WRITE, un,
9777 		    "sdread: file offset not modulo %d\n",
9778 		    un->un_sys_blocksize);
9779 		err = EINVAL;
9780 	} else if (uio->uio_iov->iov_len & (secmask)) {
9781 		SD_ERROR(SD_LOG_READ_WRITE, un,
9782 		    "sdread: transfer length not modulo %d\n",
9783 		    un->un_sys_blocksize);
9784 		err = EINVAL;
9785 	} else {
9786 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
9787 	}
9788 	return (err);
9789 }
9790 
9791 
9792 /*
9793  *    Function: sdwrite
9794  *
9795  * Description: Driver's write(9e) entry point function.
9796  *
9797  *   Arguments: dev   - device number
9798  *		uio   - structure pointer describing where data is stored in
9799  *			user's space
9800  *		cred_p  - user credential pointer
9801  *
9802  * Return Code: ENXIO
9803  *		EIO
9804  *		EINVAL
9805  *		value returned by physio
9806  *
9807  *     Context: Kernel thread context.
9808  */
9809 /* ARGSUSED */
9810 static int
9811 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
9812 {
9813 	struct sd_lun	*un = NULL;
9814 	int		secmask;
9815 	int		err;
9816 
9817 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9818 		return (ENXIO);
9819 	}
9820 
9821 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9822 
9823 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9824 		mutex_enter(SD_MUTEX(un));
9825 		/*
9826 		 * Because the call to sd_ready_and_valid will issue I/O we
9827 		 * must wait here if either the device is suspended or
9828 		 * if it's power level is changing.
9829 		 */
9830 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9831 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9832 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9833 		}
9834 		un->un_ncmds_in_driver++;
9835 		mutex_exit(SD_MUTEX(un));
9836 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9837 			mutex_enter(SD_MUTEX(un));
9838 			un->un_ncmds_in_driver--;
9839 			ASSERT(un->un_ncmds_in_driver >= 0);
9840 			mutex_exit(SD_MUTEX(un));
9841 			return (EIO);
9842 		}
9843 		mutex_enter(SD_MUTEX(un));
9844 		un->un_ncmds_in_driver--;
9845 		ASSERT(un->un_ncmds_in_driver >= 0);
9846 		mutex_exit(SD_MUTEX(un));
9847 	}
9848 
9849 	/*
9850 	 * Write requests are restricted to multiples of the system block size.
9851 	 */
9852 	secmask = un->un_sys_blocksize - 1;
9853 
9854 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9855 		SD_ERROR(SD_LOG_READ_WRITE, un,
9856 		    "sdwrite: file offset not modulo %d\n",
9857 		    un->un_sys_blocksize);
9858 		err = EINVAL;
9859 	} else if (uio->uio_iov->iov_len & (secmask)) {
9860 		SD_ERROR(SD_LOG_READ_WRITE, un,
9861 		    "sdwrite: transfer length not modulo %d\n",
9862 		    un->un_sys_blocksize);
9863 		err = EINVAL;
9864 	} else {
9865 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
9866 	}
9867 	return (err);
9868 }
9869 
9870 
9871 /*
9872  *    Function: sdaread
9873  *
9874  * Description: Driver's aread(9e) entry point function.
9875  *
9876  *   Arguments: dev   - device number
9877  *		aio   - structure pointer describing where data is to be stored
9878  *		cred_p  - user credential pointer
9879  *
9880  * Return Code: ENXIO
9881  *		EIO
9882  *		EINVAL
9883  *		value returned by aphysio
9884  *
9885  *     Context: Kernel thread context.
9886  */
9887 /* ARGSUSED */
9888 static int
9889 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9890 {
9891 	struct sd_lun	*un = NULL;
9892 	struct uio	*uio = aio->aio_uio;
9893 	int		secmask;
9894 	int		err;
9895 
9896 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9897 		return (ENXIO);
9898 	}
9899 
9900 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9901 
9902 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9903 		mutex_enter(SD_MUTEX(un));
9904 		/*
9905 		 * Because the call to sd_ready_and_valid will issue I/O we
9906 		 * must wait here if either the device is suspended or
9907 		 * if it's power level is changing.
9908 		 */
9909 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9910 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9911 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9912 		}
9913 		un->un_ncmds_in_driver++;
9914 		mutex_exit(SD_MUTEX(un));
9915 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9916 			mutex_enter(SD_MUTEX(un));
9917 			un->un_ncmds_in_driver--;
9918 			ASSERT(un->un_ncmds_in_driver >= 0);
9919 			mutex_exit(SD_MUTEX(un));
9920 			return (EIO);
9921 		}
9922 		mutex_enter(SD_MUTEX(un));
9923 		un->un_ncmds_in_driver--;
9924 		ASSERT(un->un_ncmds_in_driver >= 0);
9925 		mutex_exit(SD_MUTEX(un));
9926 	}
9927 
9928 	/*
9929 	 * Read requests are restricted to multiples of the system block size.
9930 	 */
9931 	secmask = un->un_sys_blocksize - 1;
9932 
9933 	if (uio->uio_loffset & ((offset_t)(secmask))) {
9934 		SD_ERROR(SD_LOG_READ_WRITE, un,
9935 		    "sdaread: file offset not modulo %d\n",
9936 		    un->un_sys_blocksize);
9937 		err = EINVAL;
9938 	} else if (uio->uio_iov->iov_len & (secmask)) {
9939 		SD_ERROR(SD_LOG_READ_WRITE, un,
9940 		    "sdaread: transfer length not modulo %d\n",
9941 		    un->un_sys_blocksize);
9942 		err = EINVAL;
9943 	} else {
9944 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
9945 	}
9946 	return (err);
9947 }
9948 
9949 
9950 /*
9951  *    Function: sdawrite
9952  *
9953  * Description: Driver's awrite(9e) entry point function.
9954  *
9955  *   Arguments: dev   - device number
9956  *		aio   - structure pointer describing where data is stored
9957  *		cred_p  - user credential pointer
9958  *
9959  * Return Code: ENXIO
9960  *		EIO
9961  *		EINVAL
9962  *		value returned by aphysio
9963  *
9964  *     Context: Kernel thread context.
9965  */
9966 /* ARGSUSED */
9967 static int
9968 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
9969 {
9970 	struct sd_lun	*un = NULL;
9971 	struct uio	*uio = aio->aio_uio;
9972 	int		secmask;
9973 	int		err;
9974 
9975 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
9976 		return (ENXIO);
9977 	}
9978 
9979 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9980 
9981 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
9982 		mutex_enter(SD_MUTEX(un));
9983 		/*
9984 		 * Because the call to sd_ready_and_valid will issue I/O we
9985 		 * must wait here if either the device is suspended or
9986 		 * if it's power level is changing.
9987 		 */
9988 		while ((un->un_state == SD_STATE_SUSPENDED) ||
9989 		    (un->un_state == SD_STATE_PM_CHANGING)) {
9990 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
9991 		}
9992 		un->un_ncmds_in_driver++;
9993 		mutex_exit(SD_MUTEX(un));
9994 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
9995 			mutex_enter(SD_MUTEX(un));
9996 			un->un_ncmds_in_driver--;
9997 			ASSERT(un->un_ncmds_in_driver >= 0);
9998 			mutex_exit(SD_MUTEX(un));
9999 			return (EIO);
10000 		}
10001 		mutex_enter(SD_MUTEX(un));
10002 		un->un_ncmds_in_driver--;
10003 		ASSERT(un->un_ncmds_in_driver >= 0);
10004 		mutex_exit(SD_MUTEX(un));
10005 	}
10006 
10007 	/*
10008 	 * Write requests are restricted to multiples of the system block size.
10009 	 */
10010 	secmask = un->un_sys_blocksize - 1;
10011 
10012 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10013 		SD_ERROR(SD_LOG_READ_WRITE, un,
10014 		    "sdawrite: file offset not modulo %d\n",
10015 		    un->un_sys_blocksize);
10016 		err = EINVAL;
10017 	} else if (uio->uio_iov->iov_len & (secmask)) {
10018 		SD_ERROR(SD_LOG_READ_WRITE, un,
10019 		    "sdawrite: transfer length not modulo %d\n",
10020 		    un->un_sys_blocksize);
10021 		err = EINVAL;
10022 	} else {
10023 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
10024 	}
10025 	return (err);
10026 }
10027 
10028 
10029 
10030 
10031 
10032 /*
10033  * Driver IO processing follows the following sequence:
10034  *
10035  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
10036  *         |                |                     ^
10037  *         v                v                     |
10038  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
10039  *         |                |                     |                   |
10040  *         v                |                     |                   |
10041  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
10042  *         |                |                     ^                   ^
10043  *         v                v                     |                   |
10044  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
10045  *         |                |                     |                   |
10046  *     +---+                |                     +------------+      +-------+
10047  *     |                    |                                  |              |
10048  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10049  *     |                    v                                  |              |
10050  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
10051  *     |                    |                                  ^              |
10052  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10053  *     |                    v                                  |              |
10054  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
10055  *     |                    |                                  ^              |
10056  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
10057  *     |                    v                                  |              |
10058  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
10059  *     |                    |                                  ^              |
10060  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
10061  *     |                    v                                  |              |
10062  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
10063  *     |                    |                                  ^              |
10064  *     |                    |                                  |              |
10065  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
10066  *                          |                           ^
10067  *                          v                           |
10068  *                   sd_core_iostart()                  |
10069  *                          |                           |
10070  *                          |                           +------>(*destroypkt)()
10071  *                          +-> sd_start_cmds() <-+     |           |
10072  *                          |                     |     |           v
10073  *                          |                     |     |  scsi_destroy_pkt(9F)
10074  *                          |                     |     |
10075  *                          +->(*initpkt)()       +- sdintr()
10076  *                          |  |                        |  |
10077  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
10078  *                          |  +-> scsi_setup_cdb(9F)   |
10079  *                          |                           |
10080  *                          +--> scsi_transport(9F)     |
10081  *                                     |                |
10082  *                                     +----> SCSA ---->+
10083  *
10084  *
10085  * This code is based upon the following presumptions:
10086  *
10087  *   - iostart and iodone functions operate on buf(9S) structures. These
10088  *     functions perform the necessary operations on the buf(9S) and pass
10089  *     them along to the next function in the chain by using the macros
10090  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
10091  *     (for iodone side functions).
10092  *
10093  *   - The iostart side functions may sleep. The iodone side functions
10094  *     are called under interrupt context and may NOT sleep. Therefore
10095  *     iodone side functions also may not call iostart side functions.
10096  *     (NOTE: iostart side functions should NOT sleep for memory, as
10097  *     this could result in deadlock.)
10098  *
10099  *   - An iostart side function may call its corresponding iodone side
10100  *     function directly (if necessary).
10101  *
10102  *   - In the event of an error, an iostart side function can return a buf(9S)
10103  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
10104  *     b_error in the usual way of course).
10105  *
10106  *   - The taskq mechanism may be used by the iodone side functions to dispatch
10107  *     requests to the iostart side functions.  The iostart side functions in
10108  *     this case would be called under the context of a taskq thread, so it's
10109  *     OK for them to block/sleep/spin in this case.
10110  *
10111  *   - iostart side functions may allocate "shadow" buf(9S) structs and
10112  *     pass them along to the next function in the chain.  The corresponding
10113  *     iodone side functions must coalesce the "shadow" bufs and return
10114  *     the "original" buf to the next higher layer.
10115  *
10116  *   - The b_private field of the buf(9S) struct holds a pointer to
10117  *     an sd_xbuf struct, which contains information needed to
10118  *     construct the scsi_pkt for the command.
10119  *
10120  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
10121  *     layer must acquire & release the SD_MUTEX(un) as needed.
10122  */
10123 
10124 
10125 /*
10126  * Create taskq for all targets in the system. This is created at
10127  * _init(9E) and destroyed at _fini(9E).
10128  *
10129  * Note: here we set the minalloc to a reasonably high number to ensure that
10130  * we will have an adequate supply of task entries available at interrupt time.
10131  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
10132  * sd_create_taskq().  Since we do not want to sleep for allocations at
10133  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
10134  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
10135  * requests any one instant in time.
10136  */
10137 #define	SD_TASKQ_NUMTHREADS	8
10138 #define	SD_TASKQ_MINALLOC	256
10139 #define	SD_TASKQ_MAXALLOC	256
10140 
10141 static taskq_t	*sd_tq = NULL;
10142 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
10143 
10144 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
10145 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
10146 
10147 /*
10148  * The following task queue is being created for the write part of
10149  * read-modify-write of non-512 block size devices.
10150  * Limit the number of threads to 1 for now. This number has been chosen
10151  * considering the fact that it applies only to dvd ram drives/MO drives
10152  * currently. Performance for which is not main criteria at this stage.
10153  * Note: It needs to be explored if we can use a single taskq in future
10154  */
10155 #define	SD_WMR_TASKQ_NUMTHREADS	1
10156 static taskq_t	*sd_wmr_tq = NULL;
10157 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
10158 
10159 /*
10160  *    Function: sd_taskq_create
10161  *
10162  * Description: Create taskq thread(s) and preallocate task entries
10163  *
10164  * Return Code: Returns a pointer to the allocated taskq_t.
10165  *
10166  *     Context: Can sleep. Requires blockable context.
10167  *
10168  *       Notes: - The taskq() facility currently is NOT part of the DDI.
10169  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
10170  *		- taskq_create() will block for memory, also it will panic
10171  *		  if it cannot create the requested number of threads.
10172  *		- Currently taskq_create() creates threads that cannot be
10173  *		  swapped.
10174  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
10175  *		  supply of taskq entries at interrupt time (ie, so that we
10176  *		  do not have to sleep for memory)
10177  */
10178 
10179 static void
10180 sd_taskq_create(void)
10181 {
10182 	char	taskq_name[TASKQ_NAMELEN];
10183 
10184 	ASSERT(sd_tq == NULL);
10185 	ASSERT(sd_wmr_tq == NULL);
10186 
10187 	(void) snprintf(taskq_name, sizeof (taskq_name),
10188 	    "%s_drv_taskq", sd_label);
10189 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
10190 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10191 	    TASKQ_PREPOPULATE));
10192 
10193 	(void) snprintf(taskq_name, sizeof (taskq_name),
10194 	    "%s_rmw_taskq", sd_label);
10195 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
10196 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
10197 	    TASKQ_PREPOPULATE));
10198 }
10199 
10200 
10201 /*
10202  *    Function: sd_taskq_delete
10203  *
10204  * Description: Complementary cleanup routine for sd_taskq_create().
10205  *
10206  *     Context: Kernel thread context.
10207  */
10208 
10209 static void
10210 sd_taskq_delete(void)
10211 {
10212 	ASSERT(sd_tq != NULL);
10213 	ASSERT(sd_wmr_tq != NULL);
10214 	taskq_destroy(sd_tq);
10215 	taskq_destroy(sd_wmr_tq);
10216 	sd_tq = NULL;
10217 	sd_wmr_tq = NULL;
10218 }
10219 
10220 
10221 /*
10222  *    Function: sdstrategy
10223  *
10224  * Description: Driver's strategy (9E) entry point function.
10225  *
10226  *   Arguments: bp - pointer to buf(9S)
10227  *
10228  * Return Code: Always returns zero
10229  *
10230  *     Context: Kernel thread context.
10231  */
10232 
10233 static int
10234 sdstrategy(struct buf *bp)
10235 {
10236 	struct sd_lun *un;
10237 
10238 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10239 	if (un == NULL) {
10240 		bioerror(bp, EIO);
10241 		bp->b_resid = bp->b_bcount;
10242 		biodone(bp);
10243 		return (0);
10244 	}
10245 	/* As was done in the past, fail new cmds. if state is dumping. */
10246 	if (un->un_state == SD_STATE_DUMPING) {
10247 		bioerror(bp, ENXIO);
10248 		bp->b_resid = bp->b_bcount;
10249 		biodone(bp);
10250 		return (0);
10251 	}
10252 
10253 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10254 
10255 	/*
10256 	 * Commands may sneak in while we released the mutex in
10257 	 * DDI_SUSPEND, we should block new commands. However, old
10258 	 * commands that are still in the driver at this point should
10259 	 * still be allowed to drain.
10260 	 */
10261 	mutex_enter(SD_MUTEX(un));
10262 	/*
10263 	 * Must wait here if either the device is suspended or
10264 	 * if it's power level is changing.
10265 	 */
10266 	while ((un->un_state == SD_STATE_SUSPENDED) ||
10267 	    (un->un_state == SD_STATE_PM_CHANGING)) {
10268 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10269 	}
10270 
10271 	un->un_ncmds_in_driver++;
10272 
10273 	/*
10274 	 * atapi: Since we are running the CD for now in PIO mode we need to
10275 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10276 	 * the HBA's init_pkt routine.
10277 	 */
10278 	if (un->un_f_cfg_is_atapi == TRUE) {
10279 		mutex_exit(SD_MUTEX(un));
10280 		bp_mapin(bp);
10281 		mutex_enter(SD_MUTEX(un));
10282 	}
10283 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
10284 	    un->un_ncmds_in_driver);
10285 
10286 	mutex_exit(SD_MUTEX(un));
10287 
10288 	/*
10289 	 * This will (eventually) allocate the sd_xbuf area and
10290 	 * call sd_xbuf_strategy().  We just want to return the
10291 	 * result of ddi_xbuf_qstrategy so that we have an opt-
10292 	 * imized tail call which saves us a stack frame.
10293 	 */
10294 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
10295 }
10296 
10297 
10298 /*
10299  *    Function: sd_xbuf_strategy
10300  *
10301  * Description: Function for initiating IO operations via the
10302  *		ddi_xbuf_qstrategy() mechanism.
10303  *
10304  *     Context: Kernel thread context.
10305  */
10306 
10307 static void
10308 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
10309 {
10310 	struct sd_lun *un = arg;
10311 
10312 	ASSERT(bp != NULL);
10313 	ASSERT(xp != NULL);
10314 	ASSERT(un != NULL);
10315 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10316 
10317 	/*
10318 	 * Initialize the fields in the xbuf and save a pointer to the
10319 	 * xbuf in bp->b_private.
10320 	 */
10321 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
10322 
10323 	/* Send the buf down the iostart chain */
10324 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
10325 }
10326 
10327 
10328 /*
10329  *    Function: sd_xbuf_init
10330  *
10331  * Description: Prepare the given sd_xbuf struct for use.
10332  *
10333  *   Arguments: un - ptr to softstate
10334  *		bp - ptr to associated buf(9S)
10335  *		xp - ptr to associated sd_xbuf
10336  *		chain_type - IO chain type to use:
10337  *			SD_CHAIN_NULL
10338  *			SD_CHAIN_BUFIO
10339  *			SD_CHAIN_USCSI
10340  *			SD_CHAIN_DIRECT
10341  *			SD_CHAIN_DIRECT_PRIORITY
10342  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
10343  *			initialization; may be NULL if none.
10344  *
10345  *     Context: Kernel thread context
10346  */
10347 
10348 static void
10349 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
10350 	uchar_t chain_type, void *pktinfop)
10351 {
10352 	int index;
10353 
10354 	ASSERT(un != NULL);
10355 	ASSERT(bp != NULL);
10356 	ASSERT(xp != NULL);
10357 
10358 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
10359 	    bp, chain_type);
10360 
10361 	xp->xb_un	= un;
10362 	xp->xb_pktp	= NULL;
10363 	xp->xb_pktinfo	= pktinfop;
10364 	xp->xb_private	= bp->b_private;
10365 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
10366 
10367 	/*
10368 	 * Set up the iostart and iodone chain indexes in the xbuf, based
10369 	 * upon the specified chain type to use.
10370 	 */
10371 	switch (chain_type) {
10372 	case SD_CHAIN_NULL:
10373 		/*
10374 		 * Fall thru to just use the values for the buf type, even
10375 		 * tho for the NULL chain these values will never be used.
10376 		 */
10377 		/* FALLTHRU */
10378 	case SD_CHAIN_BUFIO:
10379 		index = un->un_buf_chain_type;
10380 		break;
10381 	case SD_CHAIN_USCSI:
10382 		index = un->un_uscsi_chain_type;
10383 		break;
10384 	case SD_CHAIN_DIRECT:
10385 		index = un->un_direct_chain_type;
10386 		break;
10387 	case SD_CHAIN_DIRECT_PRIORITY:
10388 		index = un->un_priority_chain_type;
10389 		break;
10390 	default:
10391 		/* We're really broken if we ever get here... */
10392 		panic("sd_xbuf_init: illegal chain type!");
10393 		/*NOTREACHED*/
10394 	}
10395 
10396 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
10397 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
10398 
10399 	/*
10400 	 * It might be a bit easier to simply bzero the entire xbuf above,
10401 	 * but it turns out that since we init a fair number of members anyway,
10402 	 * we save a fair number cycles by doing explicit assignment of zero.
10403 	 */
10404 	xp->xb_pkt_flags	= 0;
10405 	xp->xb_dma_resid	= 0;
10406 	xp->xb_retry_count	= 0;
10407 	xp->xb_victim_retry_count = 0;
10408 	xp->xb_ua_retry_count	= 0;
10409 	xp->xb_nr_retry_count	= 0;
10410 	xp->xb_sense_bp		= NULL;
10411 	xp->xb_sense_status	= 0;
10412 	xp->xb_sense_state	= 0;
10413 	xp->xb_sense_resid	= 0;
10414 
10415 	bp->b_private	= xp;
10416 	bp->b_flags	&= ~(B_DONE | B_ERROR);
10417 	bp->b_resid	= 0;
10418 	bp->av_forw	= NULL;
10419 	bp->av_back	= NULL;
10420 	bioerror(bp, 0);
10421 
10422 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
10423 }
10424 
10425 
10426 /*
10427  *    Function: sd_uscsi_strategy
10428  *
10429  * Description: Wrapper for calling into the USCSI chain via physio(9F)
10430  *
10431  *   Arguments: bp - buf struct ptr
10432  *
10433  * Return Code: Always returns 0
10434  *
10435  *     Context: Kernel thread context
10436  */
10437 
10438 static int
10439 sd_uscsi_strategy(struct buf *bp)
10440 {
10441 	struct sd_lun		*un;
10442 	struct sd_uscsi_info	*uip;
10443 	struct sd_xbuf		*xp;
10444 	uchar_t			chain_type;
10445 
10446 	ASSERT(bp != NULL);
10447 
10448 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
10449 	if (un == NULL) {
10450 		bioerror(bp, EIO);
10451 		bp->b_resid = bp->b_bcount;
10452 		biodone(bp);
10453 		return (0);
10454 	}
10455 
10456 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10457 
10458 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
10459 
10460 	mutex_enter(SD_MUTEX(un));
10461 	/*
10462 	 * atapi: Since we are running the CD for now in PIO mode we need to
10463 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
10464 	 * the HBA's init_pkt routine.
10465 	 */
10466 	if (un->un_f_cfg_is_atapi == TRUE) {
10467 		mutex_exit(SD_MUTEX(un));
10468 		bp_mapin(bp);
10469 		mutex_enter(SD_MUTEX(un));
10470 	}
10471 	un->un_ncmds_in_driver++;
10472 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
10473 	    un->un_ncmds_in_driver);
10474 	mutex_exit(SD_MUTEX(un));
10475 
10476 	/*
10477 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
10478 	 */
10479 	ASSERT(bp->b_private != NULL);
10480 	uip = (struct sd_uscsi_info *)bp->b_private;
10481 
10482 	switch (uip->ui_flags) {
10483 	case SD_PATH_DIRECT:
10484 		chain_type = SD_CHAIN_DIRECT;
10485 		break;
10486 	case SD_PATH_DIRECT_PRIORITY:
10487 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
10488 		break;
10489 	default:
10490 		chain_type = SD_CHAIN_USCSI;
10491 		break;
10492 	}
10493 
10494 	/*
10495 	 * We may allocate extra buf for external USCSI commands. If the
10496 	 * application asks for bigger than 20-byte sense data via USCSI,
10497 	 * SCSA layer will allocate 252 bytes sense buf for that command.
10498 	 */
10499 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
10500 	    SENSE_LENGTH) {
10501 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
10502 		    MAX_SENSE_LENGTH, KM_SLEEP);
10503 	} else {
10504 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
10505 	}
10506 
10507 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
10508 
10509 	/* Use the index obtained within xbuf_init */
10510 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
10511 
10512 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
10513 
10514 	return (0);
10515 }
10516 
10517 /*
10518  *    Function: sd_send_scsi_cmd
10519  *
10520  * Description: Runs a USCSI command for user (when called thru sdioctl),
10521  *		or for the driver
10522  *
10523  *   Arguments: dev - the dev_t for the device
10524  *		incmd - ptr to a valid uscsi_cmd struct
10525  *		flag - bit flag, indicating open settings, 32/64 bit type
10526  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
10527  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
10528  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
10529  *			to use the USCSI "direct" chain and bypass the normal
10530  *			command waitq.
10531  *
10532  * Return Code: 0 -  successful completion of the given command
10533  *		EIO - scsi_uscsi_handle_command() failed
10534  *		ENXIO  - soft state not found for specified dev
10535  *		EINVAL
10536  *		EFAULT - copyin/copyout error
10537  *		return code of scsi_uscsi_handle_command():
10538  *			EIO
10539  *			ENXIO
10540  *			EACCES
10541  *
10542  *     Context: Waits for command to complete. Can sleep.
10543  */
10544 
10545 static int
10546 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
10547 	enum uio_seg dataspace, int path_flag)
10548 {
10549 	struct sd_uscsi_info	*uip;
10550 	struct uscsi_cmd	*uscmd;
10551 	struct sd_lun	*un;
10552 	int	format = 0;
10553 	int	rval;
10554 
10555 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
10556 	if (un == NULL) {
10557 		return (ENXIO);
10558 	}
10559 
10560 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10561 
10562 #ifdef SDDEBUG
10563 	switch (dataspace) {
10564 	case UIO_USERSPACE:
10565 		SD_TRACE(SD_LOG_IO, un,
10566 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
10567 		break;
10568 	case UIO_SYSSPACE:
10569 		SD_TRACE(SD_LOG_IO, un,
10570 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
10571 		break;
10572 	default:
10573 		SD_TRACE(SD_LOG_IO, un,
10574 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
10575 		break;
10576 	}
10577 #endif
10578 
10579 	rval = scsi_uscsi_alloc_and_copyin((intptr_t)incmd, flag,
10580 	    SD_ADDRESS(un), &uscmd);
10581 	if (rval != 0) {
10582 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
10583 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
10584 		return (rval);
10585 	}
10586 
10587 	if ((uscmd->uscsi_cdb != NULL) &&
10588 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
10589 		mutex_enter(SD_MUTEX(un));
10590 		un->un_f_format_in_progress = TRUE;
10591 		mutex_exit(SD_MUTEX(un));
10592 		format = 1;
10593 	}
10594 
10595 	/*
10596 	 * Allocate an sd_uscsi_info struct and fill it with the info
10597 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
10598 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
10599 	 * since we allocate the buf here in this function, we do not
10600 	 * need to preserve the prior contents of b_private.
10601 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
10602 	 */
10603 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
10604 	uip->ui_flags = path_flag;
10605 	uip->ui_cmdp = uscmd;
10606 
10607 	/*
10608 	 * Commands sent with priority are intended for error recovery
10609 	 * situations, and do not have retries performed.
10610 	 */
10611 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
10612 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
10613 	}
10614 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
10615 
10616 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
10617 	    sd_uscsi_strategy, NULL, uip);
10618 
10619 #ifdef SDDEBUG
10620 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10621 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
10622 	    uscmd->uscsi_status, uscmd->uscsi_resid);
10623 	if (uscmd->uscsi_bufaddr != NULL) {
10624 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
10625 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
10626 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
10627 		if (dataspace == UIO_SYSSPACE) {
10628 			SD_DUMP_MEMORY(un, SD_LOG_IO,
10629 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
10630 			    uscmd->uscsi_buflen, SD_LOG_HEX);
10631 		}
10632 	}
10633 #endif
10634 
10635 	if (format == 1) {
10636 		mutex_enter(SD_MUTEX(un));
10637 		un->un_f_format_in_progress = FALSE;
10638 		mutex_exit(SD_MUTEX(un));
10639 	}
10640 
10641 	(void) scsi_uscsi_copyout_and_free((intptr_t)incmd, uscmd);
10642 	kmem_free(uip, sizeof (struct sd_uscsi_info));
10643 
10644 	return (rval);
10645 }
10646 
10647 
10648 /*
10649  *    Function: sd_buf_iodone
10650  *
10651  * Description: Frees the sd_xbuf & returns the buf to its originator.
10652  *
10653  *     Context: May be called from interrupt context.
10654  */
10655 /* ARGSUSED */
10656 static void
10657 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
10658 {
10659 	struct sd_xbuf *xp;
10660 
10661 	ASSERT(un != NULL);
10662 	ASSERT(bp != NULL);
10663 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10664 
10665 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
10666 
10667 	xp = SD_GET_XBUF(bp);
10668 	ASSERT(xp != NULL);
10669 
10670 	mutex_enter(SD_MUTEX(un));
10671 
10672 	/*
10673 	 * Grab time when the cmd completed.
10674 	 * This is used for determining if the system has been
10675 	 * idle long enough to make it idle to the PM framework.
10676 	 * This is for lowering the overhead, and therefore improving
10677 	 * performance per I/O operation.
10678 	 */
10679 	un->un_pm_idle_time = ddi_get_time();
10680 
10681 	un->un_ncmds_in_driver--;
10682 	ASSERT(un->un_ncmds_in_driver >= 0);
10683 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
10684 	    un->un_ncmds_in_driver);
10685 
10686 	mutex_exit(SD_MUTEX(un));
10687 
10688 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
10689 	biodone(bp);				/* bp is gone after this */
10690 
10691 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
10692 }
10693 
10694 
10695 /*
10696  *    Function: sd_uscsi_iodone
10697  *
10698  * Description: Frees the sd_xbuf & returns the buf to its originator.
10699  *
10700  *     Context: May be called from interrupt context.
10701  */
10702 /* ARGSUSED */
10703 static void
10704 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
10705 {
10706 	struct sd_xbuf *xp;
10707 
10708 	ASSERT(un != NULL);
10709 	ASSERT(bp != NULL);
10710 
10711 	xp = SD_GET_XBUF(bp);
10712 	ASSERT(xp != NULL);
10713 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10714 
10715 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
10716 
10717 	bp->b_private = xp->xb_private;
10718 
10719 	mutex_enter(SD_MUTEX(un));
10720 
10721 	/*
10722 	 * Grab time when the cmd completed.
10723 	 * This is used for determining if the system has been
10724 	 * idle long enough to make it idle to the PM framework.
10725 	 * This is for lowering the overhead, and therefore improving
10726 	 * performance per I/O operation.
10727 	 */
10728 	un->un_pm_idle_time = ddi_get_time();
10729 
10730 	un->un_ncmds_in_driver--;
10731 	ASSERT(un->un_ncmds_in_driver >= 0);
10732 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
10733 	    un->un_ncmds_in_driver);
10734 
10735 	mutex_exit(SD_MUTEX(un));
10736 
10737 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
10738 	    SENSE_LENGTH) {
10739 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
10740 		    MAX_SENSE_LENGTH);
10741 	} else {
10742 		kmem_free(xp, sizeof (struct sd_xbuf));
10743 	}
10744 
10745 	biodone(bp);
10746 
10747 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
10748 }
10749 
10750 
10751 /*
10752  *    Function: sd_mapblockaddr_iostart
10753  *
10754  * Description: Verify request lies within the partition limits for
10755  *		the indicated minor device.  Issue "overrun" buf if
10756  *		request would exceed partition range.  Converts
10757  *		partition-relative block address to absolute.
10758  *
10759  *     Context: Can sleep
10760  *
10761  *      Issues: This follows what the old code did, in terms of accessing
10762  *		some of the partition info in the unit struct without holding
10763  *		the mutext.  This is a general issue, if the partition info
10764  *		can be altered while IO is in progress... as soon as we send
10765  *		a buf, its partitioning can be invalid before it gets to the
10766  *		device.  Probably the right fix is to move partitioning out
10767  *		of the driver entirely.
10768  */
10769 
10770 static void
10771 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
10772 {
10773 	diskaddr_t	nblocks;	/* #blocks in the given partition */
10774 	daddr_t	blocknum;	/* Block number specified by the buf */
10775 	size_t	requested_nblocks;
10776 	size_t	available_nblocks;
10777 	int	partition;
10778 	diskaddr_t	partition_offset;
10779 	struct sd_xbuf *xp;
10780 
10781 
10782 	ASSERT(un != NULL);
10783 	ASSERT(bp != NULL);
10784 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10785 
10786 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10787 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
10788 
10789 	xp = SD_GET_XBUF(bp);
10790 	ASSERT(xp != NULL);
10791 
10792 	/*
10793 	 * If the geometry is not indicated as valid, attempt to access
10794 	 * the unit & verify the geometry/label. This can be the case for
10795 	 * removable-media devices, of if the device was opened in
10796 	 * NDELAY/NONBLOCK mode.
10797 	 */
10798 	if (!SD_IS_VALID_LABEL(un) &&
10799 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
10800 		/*
10801 		 * For removable devices it is possible to start an I/O
10802 		 * without a media by opening the device in nodelay mode.
10803 		 * Also for writable CDs there can be many scenarios where
10804 		 * there is no geometry yet but volume manager is trying to
10805 		 * issue a read() just because it can see TOC on the CD. So
10806 		 * do not print a message for removables.
10807 		 */
10808 		if (!un->un_f_has_removable_media) {
10809 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10810 			    "i/o to invalid geometry\n");
10811 		}
10812 		bioerror(bp, EIO);
10813 		bp->b_resid = bp->b_bcount;
10814 		SD_BEGIN_IODONE(index, un, bp);
10815 		return;
10816 	}
10817 
10818 	partition = SDPART(bp->b_edev);
10819 
10820 	nblocks = 0;
10821 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
10822 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
10823 
10824 	/*
10825 	 * blocknum is the starting block number of the request. At this
10826 	 * point it is still relative to the start of the minor device.
10827 	 */
10828 	blocknum = xp->xb_blkno;
10829 
10830 	/*
10831 	 * Legacy: If the starting block number is one past the last block
10832 	 * in the partition, do not set B_ERROR in the buf.
10833 	 */
10834 	if (blocknum == nblocks)  {
10835 		goto error_exit;
10836 	}
10837 
10838 	/*
10839 	 * Confirm that the first block of the request lies within the
10840 	 * partition limits. Also the requested number of bytes must be
10841 	 * a multiple of the system block size.
10842 	 */
10843 	if ((blocknum < 0) || (blocknum >= nblocks) ||
10844 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
10845 		bp->b_flags |= B_ERROR;
10846 		goto error_exit;
10847 	}
10848 
10849 	/*
10850 	 * If the requsted # blocks exceeds the available # blocks, that
10851 	 * is an overrun of the partition.
10852 	 */
10853 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
10854 	available_nblocks = (size_t)(nblocks - blocknum);
10855 	ASSERT(nblocks >= blocknum);
10856 
10857 	if (requested_nblocks > available_nblocks) {
10858 		/*
10859 		 * Allocate an "overrun" buf to allow the request to proceed
10860 		 * for the amount of space available in the partition. The
10861 		 * amount not transferred will be added into the b_resid
10862 		 * when the operation is complete. The overrun buf
10863 		 * replaces the original buf here, and the original buf
10864 		 * is saved inside the overrun buf, for later use.
10865 		 */
10866 		size_t resid = SD_SYSBLOCKS2BYTES(un,
10867 		    (offset_t)(requested_nblocks - available_nblocks));
10868 		size_t count = bp->b_bcount - resid;
10869 		/*
10870 		 * Note: count is an unsigned entity thus it'll NEVER
10871 		 * be less than 0 so ASSERT the original values are
10872 		 * correct.
10873 		 */
10874 		ASSERT(bp->b_bcount >= resid);
10875 
10876 		bp = sd_bioclone_alloc(bp, count, blocknum,
10877 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
10878 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
10879 		ASSERT(xp != NULL);
10880 	}
10881 
10882 	/* At this point there should be no residual for this buf. */
10883 	ASSERT(bp->b_resid == 0);
10884 
10885 	/* Convert the block number to an absolute address. */
10886 	xp->xb_blkno += partition_offset;
10887 
10888 	SD_NEXT_IOSTART(index, un, bp);
10889 
10890 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10891 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
10892 
10893 	return;
10894 
10895 error_exit:
10896 	bp->b_resid = bp->b_bcount;
10897 	SD_BEGIN_IODONE(index, un, bp);
10898 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10899 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
10900 }
10901 
10902 
10903 /*
10904  *    Function: sd_mapblockaddr_iodone
10905  *
10906  * Description: Completion-side processing for partition management.
10907  *
10908  *     Context: May be called under interrupt context
10909  */
10910 
10911 static void
10912 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
10913 {
10914 	/* int	partition; */	/* Not used, see below. */
10915 	ASSERT(un != NULL);
10916 	ASSERT(bp != NULL);
10917 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10918 
10919 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10920 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
10921 
10922 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
10923 		/*
10924 		 * We have an "overrun" buf to deal with...
10925 		 */
10926 		struct sd_xbuf	*xp;
10927 		struct buf	*obp;	/* ptr to the original buf */
10928 
10929 		xp = SD_GET_XBUF(bp);
10930 		ASSERT(xp != NULL);
10931 
10932 		/* Retrieve the pointer to the original buf */
10933 		obp = (struct buf *)xp->xb_private;
10934 		ASSERT(obp != NULL);
10935 
10936 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
10937 		bioerror(obp, bp->b_error);
10938 
10939 		sd_bioclone_free(bp);
10940 
10941 		/*
10942 		 * Get back the original buf.
10943 		 * Note that since the restoration of xb_blkno below
10944 		 * was removed, the sd_xbuf is not needed.
10945 		 */
10946 		bp = obp;
10947 		/*
10948 		 * xp = SD_GET_XBUF(bp);
10949 		 * ASSERT(xp != NULL);
10950 		 */
10951 	}
10952 
10953 	/*
10954 	 * Convert sd->xb_blkno back to a minor-device relative value.
10955 	 * Note: this has been commented out, as it is not needed in the
10956 	 * current implementation of the driver (ie, since this function
10957 	 * is at the top of the layering chains, so the info will be
10958 	 * discarded) and it is in the "hot" IO path.
10959 	 *
10960 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
10961 	 * xp->xb_blkno -= un->un_offset[partition];
10962 	 */
10963 
10964 	SD_NEXT_IODONE(index, un, bp);
10965 
10966 	SD_TRACE(SD_LOG_IO_PARTITION, un,
10967 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
10968 }
10969 
10970 
10971 /*
10972  *    Function: sd_mapblocksize_iostart
10973  *
10974  * Description: Convert between system block size (un->un_sys_blocksize)
10975  *		and target block size (un->un_tgt_blocksize).
10976  *
10977  *     Context: Can sleep to allocate resources.
10978  *
10979  * Assumptions: A higher layer has already performed any partition validation,
10980  *		and converted the xp->xb_blkno to an absolute value relative
10981  *		to the start of the device.
10982  *
10983  *		It is also assumed that the higher layer has implemented
10984  *		an "overrun" mechanism for the case where the request would
10985  *		read/write beyond the end of a partition.  In this case we
10986  *		assume (and ASSERT) that bp->b_resid == 0.
10987  *
10988  *		Note: The implementation for this routine assumes the target
10989  *		block size remains constant between allocation and transport.
10990  */
10991 
10992 static void
10993 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
10994 {
10995 	struct sd_mapblocksize_info	*bsp;
10996 	struct sd_xbuf			*xp;
10997 	offset_t first_byte;
10998 	daddr_t	start_block, end_block;
10999 	daddr_t	request_bytes;
11000 	ushort_t is_aligned = FALSE;
11001 
11002 	ASSERT(un != NULL);
11003 	ASSERT(bp != NULL);
11004 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11005 	ASSERT(bp->b_resid == 0);
11006 
11007 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11008 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
11009 
11010 	/*
11011 	 * For a non-writable CD, a write request is an error
11012 	 */
11013 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
11014 	    (un->un_f_mmc_writable_media == FALSE)) {
11015 		bioerror(bp, EIO);
11016 		bp->b_resid = bp->b_bcount;
11017 		SD_BEGIN_IODONE(index, un, bp);
11018 		return;
11019 	}
11020 
11021 	/*
11022 	 * We do not need a shadow buf if the device is using
11023 	 * un->un_sys_blocksize as its block size or if bcount == 0.
11024 	 * In this case there is no layer-private data block allocated.
11025 	 */
11026 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11027 	    (bp->b_bcount == 0)) {
11028 		goto done;
11029 	}
11030 
11031 #if defined(__i386) || defined(__amd64)
11032 	/* We do not support non-block-aligned transfers for ROD devices */
11033 	ASSERT(!ISROD(un));
11034 #endif
11035 
11036 	xp = SD_GET_XBUF(bp);
11037 	ASSERT(xp != NULL);
11038 
11039 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11040 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
11041 	    un->un_tgt_blocksize, un->un_sys_blocksize);
11042 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11043 	    "request start block:0x%x\n", xp->xb_blkno);
11044 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
11045 	    "request len:0x%x\n", bp->b_bcount);
11046 
11047 	/*
11048 	 * Allocate the layer-private data area for the mapblocksize layer.
11049 	 * Layers are allowed to use the xp_private member of the sd_xbuf
11050 	 * struct to store the pointer to their layer-private data block, but
11051 	 * each layer also has the responsibility of restoring the prior
11052 	 * contents of xb_private before returning the buf/xbuf to the
11053 	 * higher layer that sent it.
11054 	 *
11055 	 * Here we save the prior contents of xp->xb_private into the
11056 	 * bsp->mbs_oprivate field of our layer-private data area. This value
11057 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
11058 	 * the layer-private area and returning the buf/xbuf to the layer
11059 	 * that sent it.
11060 	 *
11061 	 * Note that here we use kmem_zalloc for the allocation as there are
11062 	 * parts of the mapblocksize code that expect certain fields to be
11063 	 * zero unless explicitly set to a required value.
11064 	 */
11065 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11066 	bsp->mbs_oprivate = xp->xb_private;
11067 	xp->xb_private = bsp;
11068 
11069 	/*
11070 	 * This treats the data on the disk (target) as an array of bytes.
11071 	 * first_byte is the byte offset, from the beginning of the device,
11072 	 * to the location of the request. This is converted from a
11073 	 * un->un_sys_blocksize block address to a byte offset, and then back
11074 	 * to a block address based upon a un->un_tgt_blocksize block size.
11075 	 *
11076 	 * xp->xb_blkno should be absolute upon entry into this function,
11077 	 * but, but it is based upon partitions that use the "system"
11078 	 * block size. It must be adjusted to reflect the block size of
11079 	 * the target.
11080 	 *
11081 	 * Note that end_block is actually the block that follows the last
11082 	 * block of the request, but that's what is needed for the computation.
11083 	 */
11084 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11085 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
11086 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
11087 	    un->un_tgt_blocksize;
11088 
11089 	/* request_bytes is rounded up to a multiple of the target block size */
11090 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
11091 
11092 	/*
11093 	 * See if the starting address of the request and the request
11094 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
11095 	 * then we do not need to allocate a shadow buf to handle the request.
11096 	 */
11097 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
11098 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
11099 		is_aligned = TRUE;
11100 	}
11101 
11102 	if ((bp->b_flags & B_READ) == 0) {
11103 		/*
11104 		 * Lock the range for a write operation. An aligned request is
11105 		 * considered a simple write; otherwise the request must be a
11106 		 * read-modify-write.
11107 		 */
11108 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
11109 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
11110 	}
11111 
11112 	/*
11113 	 * Alloc a shadow buf if the request is not aligned. Also, this is
11114 	 * where the READ command is generated for a read-modify-write. (The
11115 	 * write phase is deferred until after the read completes.)
11116 	 */
11117 	if (is_aligned == FALSE) {
11118 
11119 		struct sd_mapblocksize_info	*shadow_bsp;
11120 		struct sd_xbuf	*shadow_xp;
11121 		struct buf	*shadow_bp;
11122 
11123 		/*
11124 		 * Allocate the shadow buf and it associated xbuf. Note that
11125 		 * after this call the xb_blkno value in both the original
11126 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
11127 		 * same: absolute relative to the start of the device, and
11128 		 * adjusted for the target block size. The b_blkno in the
11129 		 * shadow buf will also be set to this value. We should never
11130 		 * change b_blkno in the original bp however.
11131 		 *
11132 		 * Note also that the shadow buf will always need to be a
11133 		 * READ command, regardless of whether the incoming command
11134 		 * is a READ or a WRITE.
11135 		 */
11136 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
11137 		    xp->xb_blkno,
11138 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
11139 
11140 		shadow_xp = SD_GET_XBUF(shadow_bp);
11141 
11142 		/*
11143 		 * Allocate the layer-private data for the shadow buf.
11144 		 * (No need to preserve xb_private in the shadow xbuf.)
11145 		 */
11146 		shadow_xp->xb_private = shadow_bsp =
11147 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
11148 
11149 		/*
11150 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
11151 		 * to figure out where the start of the user data is (based upon
11152 		 * the system block size) in the data returned by the READ
11153 		 * command (which will be based upon the target blocksize). Note
11154 		 * that this is only really used if the request is unaligned.
11155 		 */
11156 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
11157 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
11158 		ASSERT((bsp->mbs_copy_offset >= 0) &&
11159 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
11160 
11161 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
11162 
11163 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
11164 
11165 		/* Transfer the wmap (if any) to the shadow buf */
11166 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
11167 		bsp->mbs_wmp = NULL;
11168 
11169 		/*
11170 		 * The shadow buf goes on from here in place of the
11171 		 * original buf.
11172 		 */
11173 		shadow_bsp->mbs_orig_bp = bp;
11174 		bp = shadow_bp;
11175 	}
11176 
11177 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11178 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
11179 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11180 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
11181 	    request_bytes);
11182 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
11183 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
11184 
11185 done:
11186 	SD_NEXT_IOSTART(index, un, bp);
11187 
11188 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11189 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
11190 }
11191 
11192 
11193 /*
11194  *    Function: sd_mapblocksize_iodone
11195  *
11196  * Description: Completion side processing for block-size mapping.
11197  *
11198  *     Context: May be called under interrupt context
11199  */
11200 
11201 static void
11202 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
11203 {
11204 	struct sd_mapblocksize_info	*bsp;
11205 	struct sd_xbuf	*xp;
11206 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
11207 	struct buf	*orig_bp;	/* ptr to the original buf */
11208 	offset_t	shadow_end;
11209 	offset_t	request_end;
11210 	offset_t	shadow_start;
11211 	ssize_t		copy_offset;
11212 	size_t		copy_length;
11213 	size_t		shortfall;
11214 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
11215 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
11216 
11217 	ASSERT(un != NULL);
11218 	ASSERT(bp != NULL);
11219 
11220 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
11221 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
11222 
11223 	/*
11224 	 * There is no shadow buf or layer-private data if the target is
11225 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
11226 	 */
11227 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
11228 	    (bp->b_bcount == 0)) {
11229 		goto exit;
11230 	}
11231 
11232 	xp = SD_GET_XBUF(bp);
11233 	ASSERT(xp != NULL);
11234 
11235 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
11236 	bsp = xp->xb_private;
11237 
11238 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
11239 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
11240 
11241 	if (is_write) {
11242 		/*
11243 		 * For a WRITE request we must free up the block range that
11244 		 * we have locked up.  This holds regardless of whether this is
11245 		 * an aligned write request or a read-modify-write request.
11246 		 */
11247 		sd_range_unlock(un, bsp->mbs_wmp);
11248 		bsp->mbs_wmp = NULL;
11249 	}
11250 
11251 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
11252 		/*
11253 		 * An aligned read or write command will have no shadow buf;
11254 		 * there is not much else to do with it.
11255 		 */
11256 		goto done;
11257 	}
11258 
11259 	orig_bp = bsp->mbs_orig_bp;
11260 	ASSERT(orig_bp != NULL);
11261 	orig_xp = SD_GET_XBUF(orig_bp);
11262 	ASSERT(orig_xp != NULL);
11263 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11264 
11265 	if (!is_write && has_wmap) {
11266 		/*
11267 		 * A READ with a wmap means this is the READ phase of a
11268 		 * read-modify-write. If an error occurred on the READ then
11269 		 * we do not proceed with the WRITE phase or copy any data.
11270 		 * Just release the write maps and return with an error.
11271 		 */
11272 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
11273 			orig_bp->b_resid = orig_bp->b_bcount;
11274 			bioerror(orig_bp, bp->b_error);
11275 			sd_range_unlock(un, bsp->mbs_wmp);
11276 			goto freebuf_done;
11277 		}
11278 	}
11279 
11280 	/*
11281 	 * Here is where we set up to copy the data from the shadow buf
11282 	 * into the space associated with the original buf.
11283 	 *
11284 	 * To deal with the conversion between block sizes, these
11285 	 * computations treat the data as an array of bytes, with the
11286 	 * first byte (byte 0) corresponding to the first byte in the
11287 	 * first block on the disk.
11288 	 */
11289 
11290 	/*
11291 	 * shadow_start and shadow_len indicate the location and size of
11292 	 * the data returned with the shadow IO request.
11293 	 */
11294 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
11295 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
11296 
11297 	/*
11298 	 * copy_offset gives the offset (in bytes) from the start of the first
11299 	 * block of the READ request to the beginning of the data.  We retrieve
11300 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
11301 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
11302 	 * data to be copied (in bytes).
11303 	 */
11304 	copy_offset  = bsp->mbs_copy_offset;
11305 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
11306 	copy_length  = orig_bp->b_bcount;
11307 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
11308 
11309 	/*
11310 	 * Set up the resid and error fields of orig_bp as appropriate.
11311 	 */
11312 	if (shadow_end >= request_end) {
11313 		/* We got all the requested data; set resid to zero */
11314 		orig_bp->b_resid = 0;
11315 	} else {
11316 		/*
11317 		 * We failed to get enough data to fully satisfy the original
11318 		 * request. Just copy back whatever data we got and set
11319 		 * up the residual and error code as required.
11320 		 *
11321 		 * 'shortfall' is the amount by which the data received with the
11322 		 * shadow buf has "fallen short" of the requested amount.
11323 		 */
11324 		shortfall = (size_t)(request_end - shadow_end);
11325 
11326 		if (shortfall > orig_bp->b_bcount) {
11327 			/*
11328 			 * We did not get enough data to even partially
11329 			 * fulfill the original request.  The residual is
11330 			 * equal to the amount requested.
11331 			 */
11332 			orig_bp->b_resid = orig_bp->b_bcount;
11333 		} else {
11334 			/*
11335 			 * We did not get all the data that we requested
11336 			 * from the device, but we will try to return what
11337 			 * portion we did get.
11338 			 */
11339 			orig_bp->b_resid = shortfall;
11340 		}
11341 		ASSERT(copy_length >= orig_bp->b_resid);
11342 		copy_length  -= orig_bp->b_resid;
11343 	}
11344 
11345 	/* Propagate the error code from the shadow buf to the original buf */
11346 	bioerror(orig_bp, bp->b_error);
11347 
11348 	if (is_write) {
11349 		goto freebuf_done;	/* No data copying for a WRITE */
11350 	}
11351 
11352 	if (has_wmap) {
11353 		/*
11354 		 * This is a READ command from the READ phase of a
11355 		 * read-modify-write request. We have to copy the data given
11356 		 * by the user OVER the data returned by the READ command,
11357 		 * then convert the command from a READ to a WRITE and send
11358 		 * it back to the target.
11359 		 */
11360 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
11361 		    copy_length);
11362 
11363 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
11364 
11365 		/*
11366 		 * Dispatch the WRITE command to the taskq thread, which
11367 		 * will in turn send the command to the target. When the
11368 		 * WRITE command completes, we (sd_mapblocksize_iodone())
11369 		 * will get called again as part of the iodone chain
11370 		 * processing for it. Note that we will still be dealing
11371 		 * with the shadow buf at that point.
11372 		 */
11373 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
11374 		    KM_NOSLEEP) != 0) {
11375 			/*
11376 			 * Dispatch was successful so we are done. Return
11377 			 * without going any higher up the iodone chain. Do
11378 			 * not free up any layer-private data until after the
11379 			 * WRITE completes.
11380 			 */
11381 			return;
11382 		}
11383 
11384 		/*
11385 		 * Dispatch of the WRITE command failed; set up the error
11386 		 * condition and send this IO back up the iodone chain.
11387 		 */
11388 		bioerror(orig_bp, EIO);
11389 		orig_bp->b_resid = orig_bp->b_bcount;
11390 
11391 	} else {
11392 		/*
11393 		 * This is a regular READ request (ie, not a RMW). Copy the
11394 		 * data from the shadow buf into the original buf. The
11395 		 * copy_offset compensates for any "misalignment" between the
11396 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
11397 		 * original buf (with its un->un_sys_blocksize blocks).
11398 		 */
11399 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
11400 		    copy_length);
11401 	}
11402 
11403 freebuf_done:
11404 
11405 	/*
11406 	 * At this point we still have both the shadow buf AND the original
11407 	 * buf to deal with, as well as the layer-private data area in each.
11408 	 * Local variables are as follows:
11409 	 *
11410 	 * bp -- points to shadow buf
11411 	 * xp -- points to xbuf of shadow buf
11412 	 * bsp -- points to layer-private data area of shadow buf
11413 	 * orig_bp -- points to original buf
11414 	 *
11415 	 * First free the shadow buf and its associated xbuf, then free the
11416 	 * layer-private data area from the shadow buf. There is no need to
11417 	 * restore xb_private in the shadow xbuf.
11418 	 */
11419 	sd_shadow_buf_free(bp);
11420 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11421 
11422 	/*
11423 	 * Now update the local variables to point to the original buf, xbuf,
11424 	 * and layer-private area.
11425 	 */
11426 	bp = orig_bp;
11427 	xp = SD_GET_XBUF(bp);
11428 	ASSERT(xp != NULL);
11429 	ASSERT(xp == orig_xp);
11430 	bsp = xp->xb_private;
11431 	ASSERT(bsp != NULL);
11432 
11433 done:
11434 	/*
11435 	 * Restore xb_private to whatever it was set to by the next higher
11436 	 * layer in the chain, then free the layer-private data area.
11437 	 */
11438 	xp->xb_private = bsp->mbs_oprivate;
11439 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
11440 
11441 exit:
11442 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
11443 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
11444 
11445 	SD_NEXT_IODONE(index, un, bp);
11446 }
11447 
11448 
11449 /*
11450  *    Function: sd_checksum_iostart
11451  *
11452  * Description: A stub function for a layer that's currently not used.
11453  *		For now just a placeholder.
11454  *
11455  *     Context: Kernel thread context
11456  */
11457 
11458 static void
11459 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
11460 {
11461 	ASSERT(un != NULL);
11462 	ASSERT(bp != NULL);
11463 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11464 	SD_NEXT_IOSTART(index, un, bp);
11465 }
11466 
11467 
11468 /*
11469  *    Function: sd_checksum_iodone
11470  *
11471  * Description: A stub function for a layer that's currently not used.
11472  *		For now just a placeholder.
11473  *
11474  *     Context: May be called under interrupt context
11475  */
11476 
11477 static void
11478 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
11479 {
11480 	ASSERT(un != NULL);
11481 	ASSERT(bp != NULL);
11482 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11483 	SD_NEXT_IODONE(index, un, bp);
11484 }
11485 
11486 
11487 /*
11488  *    Function: sd_checksum_uscsi_iostart
11489  *
11490  * Description: A stub function for a layer that's currently not used.
11491  *		For now just a placeholder.
11492  *
11493  *     Context: Kernel thread context
11494  */
11495 
11496 static void
11497 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
11498 {
11499 	ASSERT(un != NULL);
11500 	ASSERT(bp != NULL);
11501 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11502 	SD_NEXT_IOSTART(index, un, bp);
11503 }
11504 
11505 
11506 /*
11507  *    Function: sd_checksum_uscsi_iodone
11508  *
11509  * Description: A stub function for a layer that's currently not used.
11510  *		For now just a placeholder.
11511  *
11512  *     Context: May be called under interrupt context
11513  */
11514 
11515 static void
11516 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
11517 {
11518 	ASSERT(un != NULL);
11519 	ASSERT(bp != NULL);
11520 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11521 	SD_NEXT_IODONE(index, un, bp);
11522 }
11523 
11524 
11525 /*
11526  *    Function: sd_pm_iostart
11527  *
11528  * Description: iostart-side routine for Power mangement.
11529  *
11530  *     Context: Kernel thread context
11531  */
11532 
11533 static void
11534 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
11535 {
11536 	ASSERT(un != NULL);
11537 	ASSERT(bp != NULL);
11538 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11539 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11540 
11541 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
11542 
11543 	if (sd_pm_entry(un) != DDI_SUCCESS) {
11544 		/*
11545 		 * Set up to return the failed buf back up the 'iodone'
11546 		 * side of the calling chain.
11547 		 */
11548 		bioerror(bp, EIO);
11549 		bp->b_resid = bp->b_bcount;
11550 
11551 		SD_BEGIN_IODONE(index, un, bp);
11552 
11553 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11554 		return;
11555 	}
11556 
11557 	SD_NEXT_IOSTART(index, un, bp);
11558 
11559 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
11560 }
11561 
11562 
11563 /*
11564  *    Function: sd_pm_iodone
11565  *
11566  * Description: iodone-side routine for power mangement.
11567  *
11568  *     Context: may be called from interrupt context
11569  */
11570 
11571 static void
11572 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
11573 {
11574 	ASSERT(un != NULL);
11575 	ASSERT(bp != NULL);
11576 	ASSERT(!mutex_owned(&un->un_pm_mutex));
11577 
11578 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
11579 
11580 	/*
11581 	 * After attach the following flag is only read, so don't
11582 	 * take the penalty of acquiring a mutex for it.
11583 	 */
11584 	if (un->un_f_pm_is_enabled == TRUE) {
11585 		sd_pm_exit(un);
11586 	}
11587 
11588 	SD_NEXT_IODONE(index, un, bp);
11589 
11590 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
11591 }
11592 
11593 
11594 /*
11595  *    Function: sd_core_iostart
11596  *
11597  * Description: Primary driver function for enqueuing buf(9S) structs from
11598  *		the system and initiating IO to the target device
11599  *
11600  *     Context: Kernel thread context. Can sleep.
11601  *
11602  * Assumptions:  - The given xp->xb_blkno is absolute
11603  *		   (ie, relative to the start of the device).
11604  *		 - The IO is to be done using the native blocksize of
11605  *		   the device, as specified in un->un_tgt_blocksize.
11606  */
11607 /* ARGSUSED */
11608 static void
11609 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
11610 {
11611 	struct sd_xbuf *xp;
11612 
11613 	ASSERT(un != NULL);
11614 	ASSERT(bp != NULL);
11615 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11616 	ASSERT(bp->b_resid == 0);
11617 
11618 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
11619 
11620 	xp = SD_GET_XBUF(bp);
11621 	ASSERT(xp != NULL);
11622 
11623 	mutex_enter(SD_MUTEX(un));
11624 
11625 	/*
11626 	 * If we are currently in the failfast state, fail any new IO
11627 	 * that has B_FAILFAST set, then return.
11628 	 */
11629 	if ((bp->b_flags & B_FAILFAST) &&
11630 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
11631 		mutex_exit(SD_MUTEX(un));
11632 		bioerror(bp, EIO);
11633 		bp->b_resid = bp->b_bcount;
11634 		SD_BEGIN_IODONE(index, un, bp);
11635 		return;
11636 	}
11637 
11638 	if (SD_IS_DIRECT_PRIORITY(xp)) {
11639 		/*
11640 		 * Priority command -- transport it immediately.
11641 		 *
11642 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
11643 		 * because all direct priority commands should be associated
11644 		 * with error recovery actions which we don't want to retry.
11645 		 */
11646 		sd_start_cmds(un, bp);
11647 	} else {
11648 		/*
11649 		 * Normal command -- add it to the wait queue, then start
11650 		 * transporting commands from the wait queue.
11651 		 */
11652 		sd_add_buf_to_waitq(un, bp);
11653 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
11654 		sd_start_cmds(un, NULL);
11655 	}
11656 
11657 	mutex_exit(SD_MUTEX(un));
11658 
11659 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
11660 }
11661 
11662 
11663 /*
11664  *    Function: sd_init_cdb_limits
11665  *
11666  * Description: This is to handle scsi_pkt initialization differences
11667  *		between the driver platforms.
11668  *
11669  *		Legacy behaviors:
11670  *
11671  *		If the block number or the sector count exceeds the
11672  *		capabilities of a Group 0 command, shift over to a
11673  *		Group 1 command. We don't blindly use Group 1
11674  *		commands because a) some drives (CDC Wren IVs) get a
11675  *		bit confused, and b) there is probably a fair amount
11676  *		of speed difference for a target to receive and decode
11677  *		a 10 byte command instead of a 6 byte command.
11678  *
11679  *		The xfer time difference of 6 vs 10 byte CDBs is
11680  *		still significant so this code is still worthwhile.
11681  *		10 byte CDBs are very inefficient with the fas HBA driver
11682  *		and older disks. Each CDB byte took 1 usec with some
11683  *		popular disks.
11684  *
11685  *     Context: Must be called at attach time
11686  */
11687 
11688 static void
11689 sd_init_cdb_limits(struct sd_lun *un)
11690 {
11691 	int hba_cdb_limit;
11692 
11693 	/*
11694 	 * Use CDB_GROUP1 commands for most devices except for
11695 	 * parallel SCSI fixed drives in which case we get better
11696 	 * performance using CDB_GROUP0 commands (where applicable).
11697 	 */
11698 	un->un_mincdb = SD_CDB_GROUP1;
11699 #if !defined(__fibre)
11700 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
11701 	    !un->un_f_has_removable_media) {
11702 		un->un_mincdb = SD_CDB_GROUP0;
11703 	}
11704 #endif
11705 
11706 	/*
11707 	 * Try to read the max-cdb-length supported by HBA.
11708 	 */
11709 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
11710 	if (0 >= un->un_max_hba_cdb) {
11711 		un->un_max_hba_cdb = CDB_GROUP4;
11712 		hba_cdb_limit = SD_CDB_GROUP4;
11713 	} else if (0 < un->un_max_hba_cdb &&
11714 	    un->un_max_hba_cdb < CDB_GROUP1) {
11715 		hba_cdb_limit = SD_CDB_GROUP0;
11716 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
11717 	    un->un_max_hba_cdb < CDB_GROUP5) {
11718 		hba_cdb_limit = SD_CDB_GROUP1;
11719 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
11720 	    un->un_max_hba_cdb < CDB_GROUP4) {
11721 		hba_cdb_limit = SD_CDB_GROUP5;
11722 	} else {
11723 		hba_cdb_limit = SD_CDB_GROUP4;
11724 	}
11725 
11726 	/*
11727 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
11728 	 * commands for fixed disks unless we are building for a 32 bit
11729 	 * kernel.
11730 	 */
11731 #ifdef _LP64
11732 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11733 	    min(hba_cdb_limit, SD_CDB_GROUP4);
11734 #else
11735 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
11736 	    min(hba_cdb_limit, SD_CDB_GROUP1);
11737 #endif
11738 
11739 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
11740 	    ? sizeof (struct scsi_arq_status) : 1);
11741 	un->un_cmd_timeout = (ushort_t)sd_io_time;
11742 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
11743 }
11744 
11745 
11746 /*
11747  *    Function: sd_initpkt_for_buf
11748  *
11749  * Description: Allocate and initialize for transport a scsi_pkt struct,
11750  *		based upon the info specified in the given buf struct.
11751  *
11752  *		Assumes the xb_blkno in the request is absolute (ie,
11753  *		relative to the start of the device (NOT partition!).
11754  *		Also assumes that the request is using the native block
11755  *		size of the device (as returned by the READ CAPACITY
11756  *		command).
11757  *
11758  * Return Code: SD_PKT_ALLOC_SUCCESS
11759  *		SD_PKT_ALLOC_FAILURE
11760  *		SD_PKT_ALLOC_FAILURE_NO_DMA
11761  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11762  *
11763  *     Context: Kernel thread and may be called from software interrupt context
11764  *		as part of a sdrunout callback. This function may not block or
11765  *		call routines that block
11766  */
11767 
11768 static int
11769 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
11770 {
11771 	struct sd_xbuf	*xp;
11772 	struct scsi_pkt *pktp = NULL;
11773 	struct sd_lun	*un;
11774 	size_t		blockcount;
11775 	daddr_t		startblock;
11776 	int		rval;
11777 	int		cmd_flags;
11778 
11779 	ASSERT(bp != NULL);
11780 	ASSERT(pktpp != NULL);
11781 	xp = SD_GET_XBUF(bp);
11782 	ASSERT(xp != NULL);
11783 	un = SD_GET_UN(bp);
11784 	ASSERT(un != NULL);
11785 	ASSERT(mutex_owned(SD_MUTEX(un)));
11786 	ASSERT(bp->b_resid == 0);
11787 
11788 	SD_TRACE(SD_LOG_IO_CORE, un,
11789 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
11790 
11791 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11792 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
11793 		/*
11794 		 * Already have a scsi_pkt -- just need DMA resources.
11795 		 * We must recompute the CDB in case the mapping returns
11796 		 * a nonzero pkt_resid.
11797 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
11798 		 * that is being retried, the unmap/remap of the DMA resouces
11799 		 * will result in the entire transfer starting over again
11800 		 * from the very first block.
11801 		 */
11802 		ASSERT(xp->xb_pktp != NULL);
11803 		pktp = xp->xb_pktp;
11804 	} else {
11805 		pktp = NULL;
11806 	}
11807 #endif /* __i386 || __amd64 */
11808 
11809 	startblock = xp->xb_blkno;	/* Absolute block num. */
11810 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
11811 
11812 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11813 
11814 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
11815 
11816 #else
11817 
11818 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
11819 
11820 #endif
11821 
11822 	/*
11823 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
11824 	 * call scsi_init_pkt, and build the CDB.
11825 	 */
11826 	rval = sd_setup_rw_pkt(un, &pktp, bp,
11827 	    cmd_flags, sdrunout, (caddr_t)un,
11828 	    startblock, blockcount);
11829 
11830 	if (rval == 0) {
11831 		/*
11832 		 * Success.
11833 		 *
11834 		 * If partial DMA is being used and required for this transfer.
11835 		 * set it up here.
11836 		 */
11837 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
11838 		    (pktp->pkt_resid != 0)) {
11839 
11840 			/*
11841 			 * Save the CDB length and pkt_resid for the
11842 			 * next xfer
11843 			 */
11844 			xp->xb_dma_resid = pktp->pkt_resid;
11845 
11846 			/* rezero resid */
11847 			pktp->pkt_resid = 0;
11848 
11849 		} else {
11850 			xp->xb_dma_resid = 0;
11851 		}
11852 
11853 		pktp->pkt_flags = un->un_tagflags;
11854 		pktp->pkt_time  = un->un_cmd_timeout;
11855 		pktp->pkt_comp  = sdintr;
11856 
11857 		pktp->pkt_private = bp;
11858 		*pktpp = pktp;
11859 
11860 		SD_TRACE(SD_LOG_IO_CORE, un,
11861 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
11862 
11863 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
11864 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
11865 #endif
11866 
11867 		return (SD_PKT_ALLOC_SUCCESS);
11868 
11869 	}
11870 
11871 	/*
11872 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
11873 	 * from sd_setup_rw_pkt.
11874 	 */
11875 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
11876 
11877 	if (rval == SD_PKT_ALLOC_FAILURE) {
11878 		*pktpp = NULL;
11879 		/*
11880 		 * Set the driver state to RWAIT to indicate the driver
11881 		 * is waiting on resource allocations. The driver will not
11882 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
11883 		 */
11884 		New_state(un, SD_STATE_RWAIT);
11885 
11886 		SD_ERROR(SD_LOG_IO_CORE, un,
11887 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
11888 
11889 		if ((bp->b_flags & B_ERROR) != 0) {
11890 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
11891 		}
11892 		return (SD_PKT_ALLOC_FAILURE);
11893 	} else {
11894 		/*
11895 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
11896 		 *
11897 		 * This should never happen.  Maybe someone messed with the
11898 		 * kernel's minphys?
11899 		 */
11900 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11901 		    "Request rejected: too large for CDB: "
11902 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
11903 		SD_ERROR(SD_LOG_IO_CORE, un,
11904 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
11905 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
11906 
11907 	}
11908 }
11909 
11910 
11911 /*
11912  *    Function: sd_destroypkt_for_buf
11913  *
11914  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
11915  *
11916  *     Context: Kernel thread or interrupt context
11917  */
11918 
11919 static void
11920 sd_destroypkt_for_buf(struct buf *bp)
11921 {
11922 	ASSERT(bp != NULL);
11923 	ASSERT(SD_GET_UN(bp) != NULL);
11924 
11925 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11926 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
11927 
11928 	ASSERT(SD_GET_PKTP(bp) != NULL);
11929 	scsi_destroy_pkt(SD_GET_PKTP(bp));
11930 
11931 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
11932 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
11933 }
11934 
11935 /*
11936  *    Function: sd_setup_rw_pkt
11937  *
11938  * Description: Determines appropriate CDB group for the requested LBA
11939  *		and transfer length, calls scsi_init_pkt, and builds
11940  *		the CDB.  Do not use for partial DMA transfers except
11941  *		for the initial transfer since the CDB size must
11942  *		remain constant.
11943  *
11944  *     Context: Kernel thread and may be called from software interrupt
11945  *		context as part of a sdrunout callback. This function may not
11946  *		block or call routines that block
11947  */
11948 
11949 
11950 int
11951 sd_setup_rw_pkt(struct sd_lun *un,
11952     struct scsi_pkt **pktpp, struct buf *bp, int flags,
11953     int (*callback)(caddr_t), caddr_t callback_arg,
11954     diskaddr_t lba, uint32_t blockcount)
11955 {
11956 	struct scsi_pkt *return_pktp;
11957 	union scsi_cdb *cdbp;
11958 	struct sd_cdbinfo *cp = NULL;
11959 	int i;
11960 
11961 	/*
11962 	 * See which size CDB to use, based upon the request.
11963 	 */
11964 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
11965 
11966 		/*
11967 		 * Check lba and block count against sd_cdbtab limits.
11968 		 * In the partial DMA case, we have to use the same size
11969 		 * CDB for all the transfers.  Check lba + blockcount
11970 		 * against the max LBA so we know that segment of the
11971 		 * transfer can use the CDB we select.
11972 		 */
11973 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
11974 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
11975 
11976 			/*
11977 			 * The command will fit into the CDB type
11978 			 * specified by sd_cdbtab[i].
11979 			 */
11980 			cp = sd_cdbtab + i;
11981 
11982 			/*
11983 			 * Call scsi_init_pkt so we can fill in the
11984 			 * CDB.
11985 			 */
11986 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
11987 			    bp, cp->sc_grpcode, un->un_status_len, 0,
11988 			    flags, callback, callback_arg);
11989 
11990 			if (return_pktp != NULL) {
11991 
11992 				/*
11993 				 * Return new value of pkt
11994 				 */
11995 				*pktpp = return_pktp;
11996 
11997 				/*
11998 				 * To be safe, zero the CDB insuring there is
11999 				 * no leftover data from a previous command.
12000 				 */
12001 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
12002 
12003 				/*
12004 				 * Handle partial DMA mapping
12005 				 */
12006 				if (return_pktp->pkt_resid != 0) {
12007 
12008 					/*
12009 					 * Not going to xfer as many blocks as
12010 					 * originally expected
12011 					 */
12012 					blockcount -=
12013 					    SD_BYTES2TGTBLOCKS(un,
12014 					    return_pktp->pkt_resid);
12015 				}
12016 
12017 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
12018 
12019 				/*
12020 				 * Set command byte based on the CDB
12021 				 * type we matched.
12022 				 */
12023 				cdbp->scc_cmd = cp->sc_grpmask |
12024 				    ((bp->b_flags & B_READ) ?
12025 				    SCMD_READ : SCMD_WRITE);
12026 
12027 				SD_FILL_SCSI1_LUN(un, return_pktp);
12028 
12029 				/*
12030 				 * Fill in LBA and length
12031 				 */
12032 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
12033 				    (cp->sc_grpcode == CDB_GROUP4) ||
12034 				    (cp->sc_grpcode == CDB_GROUP0) ||
12035 				    (cp->sc_grpcode == CDB_GROUP5));
12036 
12037 				if (cp->sc_grpcode == CDB_GROUP1) {
12038 					FORMG1ADDR(cdbp, lba);
12039 					FORMG1COUNT(cdbp, blockcount);
12040 					return (0);
12041 				} else if (cp->sc_grpcode == CDB_GROUP4) {
12042 					FORMG4LONGADDR(cdbp, lba);
12043 					FORMG4COUNT(cdbp, blockcount);
12044 					return (0);
12045 				} else if (cp->sc_grpcode == CDB_GROUP0) {
12046 					FORMG0ADDR(cdbp, lba);
12047 					FORMG0COUNT(cdbp, blockcount);
12048 					return (0);
12049 				} else if (cp->sc_grpcode == CDB_GROUP5) {
12050 					FORMG5ADDR(cdbp, lba);
12051 					FORMG5COUNT(cdbp, blockcount);
12052 					return (0);
12053 				}
12054 
12055 				/*
12056 				 * It should be impossible to not match one
12057 				 * of the CDB types above, so we should never
12058 				 * reach this point.  Set the CDB command byte
12059 				 * to test-unit-ready to avoid writing
12060 				 * to somewhere we don't intend.
12061 				 */
12062 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
12063 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12064 			} else {
12065 				/*
12066 				 * Couldn't get scsi_pkt
12067 				 */
12068 				return (SD_PKT_ALLOC_FAILURE);
12069 			}
12070 		}
12071 	}
12072 
12073 	/*
12074 	 * None of the available CDB types were suitable.  This really
12075 	 * should never happen:  on a 64 bit system we support
12076 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
12077 	 * and on a 32 bit system we will refuse to bind to a device
12078 	 * larger than 2TB so addresses will never be larger than 32 bits.
12079 	 */
12080 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12081 }
12082 
12083 /*
12084  *    Function: sd_setup_next_rw_pkt
12085  *
12086  * Description: Setup packet for partial DMA transfers, except for the
12087  * 		initial transfer.  sd_setup_rw_pkt should be used for
12088  *		the initial transfer.
12089  *
12090  *     Context: Kernel thread and may be called from interrupt context.
12091  */
12092 
12093 int
12094 sd_setup_next_rw_pkt(struct sd_lun *un,
12095     struct scsi_pkt *pktp, struct buf *bp,
12096     diskaddr_t lba, uint32_t blockcount)
12097 {
12098 	uchar_t com;
12099 	union scsi_cdb *cdbp;
12100 	uchar_t cdb_group_id;
12101 
12102 	ASSERT(pktp != NULL);
12103 	ASSERT(pktp->pkt_cdbp != NULL);
12104 
12105 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
12106 	com = cdbp->scc_cmd;
12107 	cdb_group_id = CDB_GROUPID(com);
12108 
12109 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
12110 	    (cdb_group_id == CDB_GROUPID_1) ||
12111 	    (cdb_group_id == CDB_GROUPID_4) ||
12112 	    (cdb_group_id == CDB_GROUPID_5));
12113 
12114 	/*
12115 	 * Move pkt to the next portion of the xfer.
12116 	 * func is NULL_FUNC so we do not have to release
12117 	 * the disk mutex here.
12118 	 */
12119 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
12120 	    NULL_FUNC, NULL) == pktp) {
12121 		/* Success.  Handle partial DMA */
12122 		if (pktp->pkt_resid != 0) {
12123 			blockcount -=
12124 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
12125 		}
12126 
12127 		cdbp->scc_cmd = com;
12128 		SD_FILL_SCSI1_LUN(un, pktp);
12129 		if (cdb_group_id == CDB_GROUPID_1) {
12130 			FORMG1ADDR(cdbp, lba);
12131 			FORMG1COUNT(cdbp, blockcount);
12132 			return (0);
12133 		} else if (cdb_group_id == CDB_GROUPID_4) {
12134 			FORMG4LONGADDR(cdbp, lba);
12135 			FORMG4COUNT(cdbp, blockcount);
12136 			return (0);
12137 		} else if (cdb_group_id == CDB_GROUPID_0) {
12138 			FORMG0ADDR(cdbp, lba);
12139 			FORMG0COUNT(cdbp, blockcount);
12140 			return (0);
12141 		} else if (cdb_group_id == CDB_GROUPID_5) {
12142 			FORMG5ADDR(cdbp, lba);
12143 			FORMG5COUNT(cdbp, blockcount);
12144 			return (0);
12145 		}
12146 
12147 		/* Unreachable */
12148 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
12149 	}
12150 
12151 	/*
12152 	 * Error setting up next portion of cmd transfer.
12153 	 * Something is definitely very wrong and this
12154 	 * should not happen.
12155 	 */
12156 	return (SD_PKT_ALLOC_FAILURE);
12157 }
12158 
12159 /*
12160  *    Function: sd_initpkt_for_uscsi
12161  *
12162  * Description: Allocate and initialize for transport a scsi_pkt struct,
12163  *		based upon the info specified in the given uscsi_cmd struct.
12164  *
12165  * Return Code: SD_PKT_ALLOC_SUCCESS
12166  *		SD_PKT_ALLOC_FAILURE
12167  *		SD_PKT_ALLOC_FAILURE_NO_DMA
12168  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
12169  *
12170  *     Context: Kernel thread and may be called from software interrupt context
12171  *		as part of a sdrunout callback. This function may not block or
12172  *		call routines that block
12173  */
12174 
12175 static int
12176 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
12177 {
12178 	struct uscsi_cmd *uscmd;
12179 	struct sd_xbuf	*xp;
12180 	struct scsi_pkt	*pktp;
12181 	struct sd_lun	*un;
12182 	uint32_t	flags = 0;
12183 
12184 	ASSERT(bp != NULL);
12185 	ASSERT(pktpp != NULL);
12186 	xp = SD_GET_XBUF(bp);
12187 	ASSERT(xp != NULL);
12188 	un = SD_GET_UN(bp);
12189 	ASSERT(un != NULL);
12190 	ASSERT(mutex_owned(SD_MUTEX(un)));
12191 
12192 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12193 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12194 	ASSERT(uscmd != NULL);
12195 
12196 	SD_TRACE(SD_LOG_IO_CORE, un,
12197 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
12198 
12199 	/*
12200 	 * Allocate the scsi_pkt for the command.
12201 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
12202 	 *	 during scsi_init_pkt time and will continue to use the
12203 	 *	 same path as long as the same scsi_pkt is used without
12204 	 *	 intervening scsi_dma_free(). Since uscsi command does
12205 	 *	 not call scsi_dmafree() before retry failed command, it
12206 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
12207 	 *	 set such that scsi_vhci can use other available path for
12208 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
12209 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
12210 	 */
12211 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12212 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12213 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12214 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
12215 		    - sizeof (struct scsi_extended_sense)), 0,
12216 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
12217 		    sdrunout, (caddr_t)un);
12218 	} else {
12219 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
12220 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
12221 		    sizeof (struct scsi_arq_status), 0,
12222 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
12223 		    sdrunout, (caddr_t)un);
12224 	}
12225 
12226 	if (pktp == NULL) {
12227 		*pktpp = NULL;
12228 		/*
12229 		 * Set the driver state to RWAIT to indicate the driver
12230 		 * is waiting on resource allocations. The driver will not
12231 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
12232 		 */
12233 		New_state(un, SD_STATE_RWAIT);
12234 
12235 		SD_ERROR(SD_LOG_IO_CORE, un,
12236 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
12237 
12238 		if ((bp->b_flags & B_ERROR) != 0) {
12239 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
12240 		}
12241 		return (SD_PKT_ALLOC_FAILURE);
12242 	}
12243 
12244 	/*
12245 	 * We do not do DMA breakup for USCSI commands, so return failure
12246 	 * here if all the needed DMA resources were not allocated.
12247 	 */
12248 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
12249 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
12250 		scsi_destroy_pkt(pktp);
12251 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
12252 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
12253 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
12254 	}
12255 
12256 	/* Init the cdb from the given uscsi struct */
12257 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
12258 	    uscmd->uscsi_cdb[0], 0, 0, 0);
12259 
12260 	SD_FILL_SCSI1_LUN(un, pktp);
12261 
12262 	/*
12263 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
12264 	 * for listing of the supported flags.
12265 	 */
12266 
12267 	if (uscmd->uscsi_flags & USCSI_SILENT) {
12268 		flags |= FLAG_SILENT;
12269 	}
12270 
12271 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
12272 		flags |= FLAG_DIAGNOSE;
12273 	}
12274 
12275 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
12276 		flags |= FLAG_ISOLATE;
12277 	}
12278 
12279 	if (un->un_f_is_fibre == FALSE) {
12280 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
12281 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
12282 		}
12283 	}
12284 
12285 	/*
12286 	 * Set the pkt flags here so we save time later.
12287 	 * Note: These flags are NOT in the uscsi man page!!!
12288 	 */
12289 	if (uscmd->uscsi_flags & USCSI_HEAD) {
12290 		flags |= FLAG_HEAD;
12291 	}
12292 
12293 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
12294 		flags |= FLAG_NOINTR;
12295 	}
12296 
12297 	/*
12298 	 * For tagged queueing, things get a bit complicated.
12299 	 * Check first for head of queue and last for ordered queue.
12300 	 * If neither head nor order, use the default driver tag flags.
12301 	 */
12302 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
12303 		if (uscmd->uscsi_flags & USCSI_HTAG) {
12304 			flags |= FLAG_HTAG;
12305 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
12306 			flags |= FLAG_OTAG;
12307 		} else {
12308 			flags |= un->un_tagflags & FLAG_TAGMASK;
12309 		}
12310 	}
12311 
12312 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
12313 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
12314 	}
12315 
12316 	pktp->pkt_flags = flags;
12317 
12318 	/* Copy the caller's CDB into the pkt... */
12319 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
12320 
12321 	if (uscmd->uscsi_timeout == 0) {
12322 		pktp->pkt_time = un->un_uscsi_timeout;
12323 	} else {
12324 		pktp->pkt_time = uscmd->uscsi_timeout;
12325 	}
12326 
12327 	/* need it later to identify USCSI request in sdintr */
12328 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
12329 
12330 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
12331 
12332 	pktp->pkt_private = bp;
12333 	pktp->pkt_comp = sdintr;
12334 	*pktpp = pktp;
12335 
12336 	SD_TRACE(SD_LOG_IO_CORE, un,
12337 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
12338 
12339 	return (SD_PKT_ALLOC_SUCCESS);
12340 }
12341 
12342 
12343 /*
12344  *    Function: sd_destroypkt_for_uscsi
12345  *
12346  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
12347  *		IOs.. Also saves relevant info into the associated uscsi_cmd
12348  *		struct.
12349  *
12350  *     Context: May be called under interrupt context
12351  */
12352 
12353 static void
12354 sd_destroypkt_for_uscsi(struct buf *bp)
12355 {
12356 	struct uscsi_cmd *uscmd;
12357 	struct sd_xbuf	*xp;
12358 	struct scsi_pkt	*pktp;
12359 	struct sd_lun	*un;
12360 
12361 	ASSERT(bp != NULL);
12362 	xp = SD_GET_XBUF(bp);
12363 	ASSERT(xp != NULL);
12364 	un = SD_GET_UN(bp);
12365 	ASSERT(un != NULL);
12366 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12367 	pktp = SD_GET_PKTP(bp);
12368 	ASSERT(pktp != NULL);
12369 
12370 	SD_TRACE(SD_LOG_IO_CORE, un,
12371 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
12372 
12373 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
12374 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
12375 	ASSERT(uscmd != NULL);
12376 
12377 	/* Save the status and the residual into the uscsi_cmd struct */
12378 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
12379 	uscmd->uscsi_resid  = bp->b_resid;
12380 
12381 	/*
12382 	 * If enabled, copy any saved sense data into the area specified
12383 	 * by the uscsi command.
12384 	 */
12385 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12386 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12387 		/*
12388 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
12389 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
12390 		 */
12391 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
12392 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
12393 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
12394 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12395 			    MAX_SENSE_LENGTH);
12396 		} else {
12397 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
12398 			    SENSE_LENGTH);
12399 		}
12400 	}
12401 
12402 	/* We are done with the scsi_pkt; free it now */
12403 	ASSERT(SD_GET_PKTP(bp) != NULL);
12404 	scsi_destroy_pkt(SD_GET_PKTP(bp));
12405 
12406 	SD_TRACE(SD_LOG_IO_CORE, un,
12407 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
12408 }
12409 
12410 
12411 /*
12412  *    Function: sd_bioclone_alloc
12413  *
12414  * Description: Allocate a buf(9S) and init it as per the given buf
12415  *		and the various arguments.  The associated sd_xbuf
12416  *		struct is (nearly) duplicated.  The struct buf *bp
12417  *		argument is saved in new_xp->xb_private.
12418  *
12419  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12420  *		datalen - size of data area for the shadow bp
12421  *		blkno - starting LBA
12422  *		func - function pointer for b_iodone in the shadow buf. (May
12423  *			be NULL if none.)
12424  *
12425  * Return Code: Pointer to allocates buf(9S) struct
12426  *
12427  *     Context: Can sleep.
12428  */
12429 
12430 static struct buf *
12431 sd_bioclone_alloc(struct buf *bp, size_t datalen,
12432 	daddr_t blkno, int (*func)(struct buf *))
12433 {
12434 	struct	sd_lun	*un;
12435 	struct	sd_xbuf	*xp;
12436 	struct	sd_xbuf	*new_xp;
12437 	struct	buf	*new_bp;
12438 
12439 	ASSERT(bp != NULL);
12440 	xp = SD_GET_XBUF(bp);
12441 	ASSERT(xp != NULL);
12442 	un = SD_GET_UN(bp);
12443 	ASSERT(un != NULL);
12444 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12445 
12446 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
12447 	    NULL, KM_SLEEP);
12448 
12449 	new_bp->b_lblkno	= blkno;
12450 
12451 	/*
12452 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12453 	 * original xbuf into it.
12454 	 */
12455 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12456 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12457 
12458 	/*
12459 	 * The given bp is automatically saved in the xb_private member
12460 	 * of the new xbuf.  Callers are allowed to depend on this.
12461 	 */
12462 	new_xp->xb_private = bp;
12463 
12464 	new_bp->b_private  = new_xp;
12465 
12466 	return (new_bp);
12467 }
12468 
12469 /*
12470  *    Function: sd_shadow_buf_alloc
12471  *
12472  * Description: Allocate a buf(9S) and init it as per the given buf
12473  *		and the various arguments.  The associated sd_xbuf
12474  *		struct is (nearly) duplicated.  The struct buf *bp
12475  *		argument is saved in new_xp->xb_private.
12476  *
12477  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
12478  *		datalen - size of data area for the shadow bp
12479  *		bflags - B_READ or B_WRITE (pseudo flag)
12480  *		blkno - starting LBA
12481  *		func - function pointer for b_iodone in the shadow buf. (May
12482  *			be NULL if none.)
12483  *
12484  * Return Code: Pointer to allocates buf(9S) struct
12485  *
12486  *     Context: Can sleep.
12487  */
12488 
12489 static struct buf *
12490 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
12491 	daddr_t blkno, int (*func)(struct buf *))
12492 {
12493 	struct	sd_lun	*un;
12494 	struct	sd_xbuf	*xp;
12495 	struct	sd_xbuf	*new_xp;
12496 	struct	buf	*new_bp;
12497 
12498 	ASSERT(bp != NULL);
12499 	xp = SD_GET_XBUF(bp);
12500 	ASSERT(xp != NULL);
12501 	un = SD_GET_UN(bp);
12502 	ASSERT(un != NULL);
12503 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12504 
12505 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
12506 		bp_mapin(bp);
12507 	}
12508 
12509 	bflags &= (B_READ | B_WRITE);
12510 #if defined(__i386) || defined(__amd64)
12511 	new_bp = getrbuf(KM_SLEEP);
12512 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
12513 	new_bp->b_bcount = datalen;
12514 	new_bp->b_flags = bflags |
12515 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
12516 #else
12517 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
12518 	    datalen, bflags, SLEEP_FUNC, NULL);
12519 #endif
12520 	new_bp->av_forw	= NULL;
12521 	new_bp->av_back	= NULL;
12522 	new_bp->b_dev	= bp->b_dev;
12523 	new_bp->b_blkno	= blkno;
12524 	new_bp->b_iodone = func;
12525 	new_bp->b_edev	= bp->b_edev;
12526 	new_bp->b_resid	= 0;
12527 
12528 	/* We need to preserve the B_FAILFAST flag */
12529 	if (bp->b_flags & B_FAILFAST) {
12530 		new_bp->b_flags |= B_FAILFAST;
12531 	}
12532 
12533 	/*
12534 	 * Allocate an xbuf for the shadow bp and copy the contents of the
12535 	 * original xbuf into it.
12536 	 */
12537 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12538 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
12539 
12540 	/* Need later to copy data between the shadow buf & original buf! */
12541 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
12542 
12543 	/*
12544 	 * The given bp is automatically saved in the xb_private member
12545 	 * of the new xbuf.  Callers are allowed to depend on this.
12546 	 */
12547 	new_xp->xb_private = bp;
12548 
12549 	new_bp->b_private  = new_xp;
12550 
12551 	return (new_bp);
12552 }
12553 
12554 /*
12555  *    Function: sd_bioclone_free
12556  *
12557  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
12558  *		in the larger than partition operation.
12559  *
12560  *     Context: May be called under interrupt context
12561  */
12562 
12563 static void
12564 sd_bioclone_free(struct buf *bp)
12565 {
12566 	struct sd_xbuf	*xp;
12567 
12568 	ASSERT(bp != NULL);
12569 	xp = SD_GET_XBUF(bp);
12570 	ASSERT(xp != NULL);
12571 
12572 	/*
12573 	 * Call bp_mapout() before freeing the buf,  in case a lower
12574 	 * layer or HBA  had done a bp_mapin().  we must do this here
12575 	 * as we are the "originator" of the shadow buf.
12576 	 */
12577 	bp_mapout(bp);
12578 
12579 	/*
12580 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12581 	 * never gets confused by a stale value in this field. (Just a little
12582 	 * extra defensiveness here.)
12583 	 */
12584 	bp->b_iodone = NULL;
12585 
12586 	freerbuf(bp);
12587 
12588 	kmem_free(xp, sizeof (struct sd_xbuf));
12589 }
12590 
12591 /*
12592  *    Function: sd_shadow_buf_free
12593  *
12594  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
12595  *
12596  *     Context: May be called under interrupt context
12597  */
12598 
12599 static void
12600 sd_shadow_buf_free(struct buf *bp)
12601 {
12602 	struct sd_xbuf	*xp;
12603 
12604 	ASSERT(bp != NULL);
12605 	xp = SD_GET_XBUF(bp);
12606 	ASSERT(xp != NULL);
12607 
12608 #if defined(__sparc)
12609 	/*
12610 	 * Call bp_mapout() before freeing the buf,  in case a lower
12611 	 * layer or HBA  had done a bp_mapin().  we must do this here
12612 	 * as we are the "originator" of the shadow buf.
12613 	 */
12614 	bp_mapout(bp);
12615 #endif
12616 
12617 	/*
12618 	 * Null out b_iodone before freeing the bp, to ensure that the driver
12619 	 * never gets confused by a stale value in this field. (Just a little
12620 	 * extra defensiveness here.)
12621 	 */
12622 	bp->b_iodone = NULL;
12623 
12624 #if defined(__i386) || defined(__amd64)
12625 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
12626 	freerbuf(bp);
12627 #else
12628 	scsi_free_consistent_buf(bp);
12629 #endif
12630 
12631 	kmem_free(xp, sizeof (struct sd_xbuf));
12632 }
12633 
12634 
12635 /*
12636  *    Function: sd_print_transport_rejected_message
12637  *
12638  * Description: This implements the ludicrously complex rules for printing
12639  *		a "transport rejected" message.  This is to address the
12640  *		specific problem of having a flood of this error message
12641  *		produced when a failover occurs.
12642  *
12643  *     Context: Any.
12644  */
12645 
12646 static void
12647 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
12648 	int code)
12649 {
12650 	ASSERT(un != NULL);
12651 	ASSERT(mutex_owned(SD_MUTEX(un)));
12652 	ASSERT(xp != NULL);
12653 
12654 	/*
12655 	 * Print the "transport rejected" message under the following
12656 	 * conditions:
12657 	 *
12658 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
12659 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
12660 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
12661 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
12662 	 *   scsi_transport(9F) (which indicates that the target might have
12663 	 *   gone off-line).  This uses the un->un_tran_fatal_count
12664 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
12665 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
12666 	 *   from scsi_transport().
12667 	 *
12668 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
12669 	 * the preceeding cases in order for the message to be printed.
12670 	 */
12671 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
12672 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
12673 		    (code != TRAN_FATAL_ERROR) ||
12674 		    (un->un_tran_fatal_count == 1)) {
12675 			switch (code) {
12676 			case TRAN_BADPKT:
12677 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12678 				    "transport rejected bad packet\n");
12679 				break;
12680 			case TRAN_FATAL_ERROR:
12681 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12682 				    "transport rejected fatal error\n");
12683 				break;
12684 			default:
12685 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12686 				    "transport rejected (%d)\n", code);
12687 				break;
12688 			}
12689 		}
12690 	}
12691 }
12692 
12693 
12694 /*
12695  *    Function: sd_add_buf_to_waitq
12696  *
12697  * Description: Add the given buf(9S) struct to the wait queue for the
12698  *		instance.  If sorting is enabled, then the buf is added
12699  *		to the queue via an elevator sort algorithm (a la
12700  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
12701  *		If sorting is not enabled, then the buf is just added
12702  *		to the end of the wait queue.
12703  *
12704  * Return Code: void
12705  *
12706  *     Context: Does not sleep/block, therefore technically can be called
12707  *		from any context.  However if sorting is enabled then the
12708  *		execution time is indeterminate, and may take long if
12709  *		the wait queue grows large.
12710  */
12711 
12712 static void
12713 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
12714 {
12715 	struct buf *ap;
12716 
12717 	ASSERT(bp != NULL);
12718 	ASSERT(un != NULL);
12719 	ASSERT(mutex_owned(SD_MUTEX(un)));
12720 
12721 	/* If the queue is empty, add the buf as the only entry & return. */
12722 	if (un->un_waitq_headp == NULL) {
12723 		ASSERT(un->un_waitq_tailp == NULL);
12724 		un->un_waitq_headp = un->un_waitq_tailp = bp;
12725 		bp->av_forw = NULL;
12726 		return;
12727 	}
12728 
12729 	ASSERT(un->un_waitq_tailp != NULL);
12730 
12731 	/*
12732 	 * If sorting is disabled, just add the buf to the tail end of
12733 	 * the wait queue and return.
12734 	 */
12735 	if (un->un_f_disksort_disabled) {
12736 		un->un_waitq_tailp->av_forw = bp;
12737 		un->un_waitq_tailp = bp;
12738 		bp->av_forw = NULL;
12739 		return;
12740 	}
12741 
12742 	/*
12743 	 * Sort thru the list of requests currently on the wait queue
12744 	 * and add the new buf request at the appropriate position.
12745 	 *
12746 	 * The un->un_waitq_headp is an activity chain pointer on which
12747 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
12748 	 * first queue holds those requests which are positioned after
12749 	 * the current SD_GET_BLKNO() (in the first request); the second holds
12750 	 * requests which came in after their SD_GET_BLKNO() number was passed.
12751 	 * Thus we implement a one way scan, retracting after reaching
12752 	 * the end of the drive to the first request on the second
12753 	 * queue, at which time it becomes the first queue.
12754 	 * A one-way scan is natural because of the way UNIX read-ahead
12755 	 * blocks are allocated.
12756 	 *
12757 	 * If we lie after the first request, then we must locate the
12758 	 * second request list and add ourselves to it.
12759 	 */
12760 	ap = un->un_waitq_headp;
12761 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
12762 		while (ap->av_forw != NULL) {
12763 			/*
12764 			 * Look for an "inversion" in the (normally
12765 			 * ascending) block numbers. This indicates
12766 			 * the start of the second request list.
12767 			 */
12768 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
12769 				/*
12770 				 * Search the second request list for the
12771 				 * first request at a larger block number.
12772 				 * We go before that; however if there is
12773 				 * no such request, we go at the end.
12774 				 */
12775 				do {
12776 					if (SD_GET_BLKNO(bp) <
12777 					    SD_GET_BLKNO(ap->av_forw)) {
12778 						goto insert;
12779 					}
12780 					ap = ap->av_forw;
12781 				} while (ap->av_forw != NULL);
12782 				goto insert;		/* after last */
12783 			}
12784 			ap = ap->av_forw;
12785 		}
12786 
12787 		/*
12788 		 * No inversions... we will go after the last, and
12789 		 * be the first request in the second request list.
12790 		 */
12791 		goto insert;
12792 	}
12793 
12794 	/*
12795 	 * Request is at/after the current request...
12796 	 * sort in the first request list.
12797 	 */
12798 	while (ap->av_forw != NULL) {
12799 		/*
12800 		 * We want to go after the current request (1) if
12801 		 * there is an inversion after it (i.e. it is the end
12802 		 * of the first request list), or (2) if the next
12803 		 * request is a larger block no. than our request.
12804 		 */
12805 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
12806 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
12807 			goto insert;
12808 		}
12809 		ap = ap->av_forw;
12810 	}
12811 
12812 	/*
12813 	 * Neither a second list nor a larger request, therefore
12814 	 * we go at the end of the first list (which is the same
12815 	 * as the end of the whole schebang).
12816 	 */
12817 insert:
12818 	bp->av_forw = ap->av_forw;
12819 	ap->av_forw = bp;
12820 
12821 	/*
12822 	 * If we inserted onto the tail end of the waitq, make sure the
12823 	 * tail pointer is updated.
12824 	 */
12825 	if (ap == un->un_waitq_tailp) {
12826 		un->un_waitq_tailp = bp;
12827 	}
12828 }
12829 
12830 
12831 /*
12832  *    Function: sd_start_cmds
12833  *
12834  * Description: Remove and transport cmds from the driver queues.
12835  *
12836  *   Arguments: un - pointer to the unit (soft state) struct for the target.
12837  *
12838  *		immed_bp - ptr to a buf to be transported immediately. Only
12839  *		the immed_bp is transported; bufs on the waitq are not
12840  *		processed and the un_retry_bp is not checked.  If immed_bp is
12841  *		NULL, then normal queue processing is performed.
12842  *
12843  *     Context: May be called from kernel thread context, interrupt context,
12844  *		or runout callback context. This function may not block or
12845  *		call routines that block.
12846  */
12847 
12848 static void
12849 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
12850 {
12851 	struct	sd_xbuf	*xp;
12852 	struct	buf	*bp;
12853 	void	(*statp)(kstat_io_t *);
12854 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12855 	void	(*saved_statp)(kstat_io_t *);
12856 #endif
12857 	int	rval;
12858 
12859 	ASSERT(un != NULL);
12860 	ASSERT(mutex_owned(SD_MUTEX(un)));
12861 	ASSERT(un->un_ncmds_in_transport >= 0);
12862 	ASSERT(un->un_throttle >= 0);
12863 
12864 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
12865 
12866 	do {
12867 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12868 		saved_statp = NULL;
12869 #endif
12870 
12871 		/*
12872 		 * If we are syncing or dumping, fail the command to
12873 		 * avoid recursively calling back into scsi_transport().
12874 		 * The dump I/O itself uses a separate code path so this
12875 		 * only prevents non-dump I/O from being sent while dumping.
12876 		 * File system sync takes place before dumping begins.
12877 		 * During panic, filesystem I/O is allowed provided
12878 		 * un_in_callback is <= 1.  This is to prevent recursion
12879 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
12880 		 * sd_start_cmds and so on.  See panic.c for more information
12881 		 * about the states the system can be in during panic.
12882 		 */
12883 		if ((un->un_state == SD_STATE_DUMPING) ||
12884 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
12885 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12886 			    "sd_start_cmds: panicking\n");
12887 			goto exit;
12888 		}
12889 
12890 		if ((bp = immed_bp) != NULL) {
12891 			/*
12892 			 * We have a bp that must be transported immediately.
12893 			 * It's OK to transport the immed_bp here without doing
12894 			 * the throttle limit check because the immed_bp is
12895 			 * always used in a retry/recovery case. This means
12896 			 * that we know we are not at the throttle limit by
12897 			 * virtue of the fact that to get here we must have
12898 			 * already gotten a command back via sdintr(). This also
12899 			 * relies on (1) the command on un_retry_bp preventing
12900 			 * further commands from the waitq from being issued;
12901 			 * and (2) the code in sd_retry_command checking the
12902 			 * throttle limit before issuing a delayed or immediate
12903 			 * retry. This holds even if the throttle limit is
12904 			 * currently ratcheted down from its maximum value.
12905 			 */
12906 			statp = kstat_runq_enter;
12907 			if (bp == un->un_retry_bp) {
12908 				ASSERT((un->un_retry_statp == NULL) ||
12909 				    (un->un_retry_statp == kstat_waitq_enter) ||
12910 				    (un->un_retry_statp ==
12911 				    kstat_runq_back_to_waitq));
12912 				/*
12913 				 * If the waitq kstat was incremented when
12914 				 * sd_set_retry_bp() queued this bp for a retry,
12915 				 * then we must set up statp so that the waitq
12916 				 * count will get decremented correctly below.
12917 				 * Also we must clear un->un_retry_statp to
12918 				 * ensure that we do not act on a stale value
12919 				 * in this field.
12920 				 */
12921 				if ((un->un_retry_statp == kstat_waitq_enter) ||
12922 				    (un->un_retry_statp ==
12923 				    kstat_runq_back_to_waitq)) {
12924 					statp = kstat_waitq_to_runq;
12925 				}
12926 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
12927 				saved_statp = un->un_retry_statp;
12928 #endif
12929 				un->un_retry_statp = NULL;
12930 
12931 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
12932 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
12933 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
12934 				    un, un->un_retry_bp, un->un_throttle,
12935 				    un->un_ncmds_in_transport);
12936 			} else {
12937 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
12938 				    "processing priority bp:0x%p\n", bp);
12939 			}
12940 
12941 		} else if ((bp = un->un_waitq_headp) != NULL) {
12942 			/*
12943 			 * A command on the waitq is ready to go, but do not
12944 			 * send it if:
12945 			 *
12946 			 * (1) the throttle limit has been reached, or
12947 			 * (2) a retry is pending, or
12948 			 * (3) a START_STOP_UNIT callback pending, or
12949 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
12950 			 *	command is pending.
12951 			 *
12952 			 * For all of these conditions, IO processing will
12953 			 * restart after the condition is cleared.
12954 			 */
12955 			if (un->un_ncmds_in_transport >= un->un_throttle) {
12956 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12957 				    "sd_start_cmds: exiting, "
12958 				    "throttle limit reached!\n");
12959 				goto exit;
12960 			}
12961 			if (un->un_retry_bp != NULL) {
12962 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12963 				    "sd_start_cmds: exiting, retry pending!\n");
12964 				goto exit;
12965 			}
12966 			if (un->un_startstop_timeid != NULL) {
12967 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12968 				    "sd_start_cmds: exiting, "
12969 				    "START_STOP pending!\n");
12970 				goto exit;
12971 			}
12972 			if (un->un_direct_priority_timeid != NULL) {
12973 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
12974 				    "sd_start_cmds: exiting, "
12975 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
12976 				goto exit;
12977 			}
12978 
12979 			/* Dequeue the command */
12980 			un->un_waitq_headp = bp->av_forw;
12981 			if (un->un_waitq_headp == NULL) {
12982 				un->un_waitq_tailp = NULL;
12983 			}
12984 			bp->av_forw = NULL;
12985 			statp = kstat_waitq_to_runq;
12986 			SD_TRACE(SD_LOG_IO_CORE, un,
12987 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
12988 
12989 		} else {
12990 			/* No work to do so bail out now */
12991 			SD_TRACE(SD_LOG_IO_CORE, un,
12992 			    "sd_start_cmds: no more work, exiting!\n");
12993 			goto exit;
12994 		}
12995 
12996 		/*
12997 		 * Reset the state to normal. This is the mechanism by which
12998 		 * the state transitions from either SD_STATE_RWAIT or
12999 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
13000 		 * If state is SD_STATE_PM_CHANGING then this command is
13001 		 * part of the device power control and the state must
13002 		 * not be put back to normal. Doing so would would
13003 		 * allow new commands to proceed when they shouldn't,
13004 		 * the device may be going off.
13005 		 */
13006 		if ((un->un_state != SD_STATE_SUSPENDED) &&
13007 		    (un->un_state != SD_STATE_PM_CHANGING)) {
13008 			New_state(un, SD_STATE_NORMAL);
13009 		}
13010 
13011 		xp = SD_GET_XBUF(bp);
13012 		ASSERT(xp != NULL);
13013 
13014 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13015 		/*
13016 		 * Allocate the scsi_pkt if we need one, or attach DMA
13017 		 * resources if we have a scsi_pkt that needs them. The
13018 		 * latter should only occur for commands that are being
13019 		 * retried.
13020 		 */
13021 		if ((xp->xb_pktp == NULL) ||
13022 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
13023 #else
13024 		if (xp->xb_pktp == NULL) {
13025 #endif
13026 			/*
13027 			 * There is no scsi_pkt allocated for this buf. Call
13028 			 * the initpkt function to allocate & init one.
13029 			 *
13030 			 * The scsi_init_pkt runout callback functionality is
13031 			 * implemented as follows:
13032 			 *
13033 			 * 1) The initpkt function always calls
13034 			 *    scsi_init_pkt(9F) with sdrunout specified as the
13035 			 *    callback routine.
13036 			 * 2) A successful packet allocation is initialized and
13037 			 *    the I/O is transported.
13038 			 * 3) The I/O associated with an allocation resource
13039 			 *    failure is left on its queue to be retried via
13040 			 *    runout or the next I/O.
13041 			 * 4) The I/O associated with a DMA error is removed
13042 			 *    from the queue and failed with EIO. Processing of
13043 			 *    the transport queues is also halted to be
13044 			 *    restarted via runout or the next I/O.
13045 			 * 5) The I/O associated with a CDB size or packet
13046 			 *    size error is removed from the queue and failed
13047 			 *    with EIO. Processing of the transport queues is
13048 			 *    continued.
13049 			 *
13050 			 * Note: there is no interface for canceling a runout
13051 			 * callback. To prevent the driver from detaching or
13052 			 * suspending while a runout is pending the driver
13053 			 * state is set to SD_STATE_RWAIT
13054 			 *
13055 			 * Note: using the scsi_init_pkt callback facility can
13056 			 * result in an I/O request persisting at the head of
13057 			 * the list which cannot be satisfied even after
13058 			 * multiple retries. In the future the driver may
13059 			 * implement some kind of maximum runout count before
13060 			 * failing an I/O.
13061 			 *
13062 			 * Note: the use of funcp below may seem superfluous,
13063 			 * but it helps warlock figure out the correct
13064 			 * initpkt function calls (see [s]sd.wlcmd).
13065 			 */
13066 			struct scsi_pkt	*pktp;
13067 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
13068 
13069 			ASSERT(bp != un->un_rqs_bp);
13070 
13071 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
13072 			switch ((*funcp)(bp, &pktp)) {
13073 			case  SD_PKT_ALLOC_SUCCESS:
13074 				xp->xb_pktp = pktp;
13075 				SD_TRACE(SD_LOG_IO_CORE, un,
13076 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
13077 				    pktp);
13078 				goto got_pkt;
13079 
13080 			case SD_PKT_ALLOC_FAILURE:
13081 				/*
13082 				 * Temporary (hopefully) resource depletion.
13083 				 * Since retries and RQS commands always have a
13084 				 * scsi_pkt allocated, these cases should never
13085 				 * get here. So the only cases this needs to
13086 				 * handle is a bp from the waitq (which we put
13087 				 * back onto the waitq for sdrunout), or a bp
13088 				 * sent as an immed_bp (which we just fail).
13089 				 */
13090 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13091 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
13092 
13093 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13094 
13095 				if (bp == immed_bp) {
13096 					/*
13097 					 * If SD_XB_DMA_FREED is clear, then
13098 					 * this is a failure to allocate a
13099 					 * scsi_pkt, and we must fail the
13100 					 * command.
13101 					 */
13102 					if ((xp->xb_pkt_flags &
13103 					    SD_XB_DMA_FREED) == 0) {
13104 						break;
13105 					}
13106 
13107 					/*
13108 					 * If this immediate command is NOT our
13109 					 * un_retry_bp, then we must fail it.
13110 					 */
13111 					if (bp != un->un_retry_bp) {
13112 						break;
13113 					}
13114 
13115 					/*
13116 					 * We get here if this cmd is our
13117 					 * un_retry_bp that was DMAFREED, but
13118 					 * scsi_init_pkt() failed to reallocate
13119 					 * DMA resources when we attempted to
13120 					 * retry it. This can happen when an
13121 					 * mpxio failover is in progress, but
13122 					 * we don't want to just fail the
13123 					 * command in this case.
13124 					 *
13125 					 * Use timeout(9F) to restart it after
13126 					 * a 100ms delay.  We don't want to
13127 					 * let sdrunout() restart it, because
13128 					 * sdrunout() is just supposed to start
13129 					 * commands that are sitting on the
13130 					 * wait queue.  The un_retry_bp stays
13131 					 * set until the command completes, but
13132 					 * sdrunout can be called many times
13133 					 * before that happens.  Since sdrunout
13134 					 * cannot tell if the un_retry_bp is
13135 					 * already in the transport, it could
13136 					 * end up calling scsi_transport() for
13137 					 * the un_retry_bp multiple times.
13138 					 *
13139 					 * Also: don't schedule the callback
13140 					 * if some other callback is already
13141 					 * pending.
13142 					 */
13143 					if (un->un_retry_statp == NULL) {
13144 						/*
13145 						 * restore the kstat pointer to
13146 						 * keep kstat counts coherent
13147 						 * when we do retry the command.
13148 						 */
13149 						un->un_retry_statp =
13150 						    saved_statp;
13151 					}
13152 
13153 					if ((un->un_startstop_timeid == NULL) &&
13154 					    (un->un_retry_timeid == NULL) &&
13155 					    (un->un_direct_priority_timeid ==
13156 					    NULL)) {
13157 
13158 						un->un_retry_timeid =
13159 						    timeout(
13160 						    sd_start_retry_command,
13161 						    un, SD_RESTART_TIMEOUT);
13162 					}
13163 					goto exit;
13164 				}
13165 
13166 #else
13167 				if (bp == immed_bp) {
13168 					break;	/* Just fail the command */
13169 				}
13170 #endif
13171 
13172 				/* Add the buf back to the head of the waitq */
13173 				bp->av_forw = un->un_waitq_headp;
13174 				un->un_waitq_headp = bp;
13175 				if (un->un_waitq_tailp == NULL) {
13176 					un->un_waitq_tailp = bp;
13177 				}
13178 				goto exit;
13179 
13180 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
13181 				/*
13182 				 * HBA DMA resource failure. Fail the command
13183 				 * and continue processing of the queues.
13184 				 */
13185 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13186 				    "sd_start_cmds: "
13187 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
13188 				break;
13189 
13190 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
13191 				/*
13192 				 * Note:x86: Partial DMA mapping not supported
13193 				 * for USCSI commands, and all the needed DMA
13194 				 * resources were not allocated.
13195 				 */
13196 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13197 				    "sd_start_cmds: "
13198 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
13199 				break;
13200 
13201 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
13202 				/*
13203 				 * Note:x86: Request cannot fit into CDB based
13204 				 * on lba and len.
13205 				 */
13206 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13207 				    "sd_start_cmds: "
13208 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
13209 				break;
13210 
13211 			default:
13212 				/* Should NEVER get here! */
13213 				panic("scsi_initpkt error");
13214 				/*NOTREACHED*/
13215 			}
13216 
13217 			/*
13218 			 * Fatal error in allocating a scsi_pkt for this buf.
13219 			 * Update kstats & return the buf with an error code.
13220 			 * We must use sd_return_failed_command_no_restart() to
13221 			 * avoid a recursive call back into sd_start_cmds().
13222 			 * However this also means that we must keep processing
13223 			 * the waitq here in order to avoid stalling.
13224 			 */
13225 			if (statp == kstat_waitq_to_runq) {
13226 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
13227 			}
13228 			sd_return_failed_command_no_restart(un, bp, EIO);
13229 			if (bp == immed_bp) {
13230 				/* immed_bp is gone by now, so clear this */
13231 				immed_bp = NULL;
13232 			}
13233 			continue;
13234 		}
13235 got_pkt:
13236 		if (bp == immed_bp) {
13237 			/* goto the head of the class.... */
13238 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13239 		}
13240 
13241 		un->un_ncmds_in_transport++;
13242 		SD_UPDATE_KSTATS(un, statp, bp);
13243 
13244 		/*
13245 		 * Call scsi_transport() to send the command to the target.
13246 		 * According to SCSA architecture, we must drop the mutex here
13247 		 * before calling scsi_transport() in order to avoid deadlock.
13248 		 * Note that the scsi_pkt's completion routine can be executed
13249 		 * (from interrupt context) even before the call to
13250 		 * scsi_transport() returns.
13251 		 */
13252 		SD_TRACE(SD_LOG_IO_CORE, un,
13253 		    "sd_start_cmds: calling scsi_transport()\n");
13254 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
13255 
13256 		mutex_exit(SD_MUTEX(un));
13257 		rval = scsi_transport(xp->xb_pktp);
13258 		mutex_enter(SD_MUTEX(un));
13259 
13260 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13261 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
13262 
13263 		switch (rval) {
13264 		case TRAN_ACCEPT:
13265 			/* Clear this with every pkt accepted by the HBA */
13266 			un->un_tran_fatal_count = 0;
13267 			break;	/* Success; try the next cmd (if any) */
13268 
13269 		case TRAN_BUSY:
13270 			un->un_ncmds_in_transport--;
13271 			ASSERT(un->un_ncmds_in_transport >= 0);
13272 
13273 			/*
13274 			 * Don't retry request sense, the sense data
13275 			 * is lost when another request is sent.
13276 			 * Free up the rqs buf and retry
13277 			 * the original failed cmd.  Update kstat.
13278 			 */
13279 			if (bp == un->un_rqs_bp) {
13280 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13281 				bp = sd_mark_rqs_idle(un, xp);
13282 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
13283 				    NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
13284 				    kstat_waitq_enter);
13285 				goto exit;
13286 			}
13287 
13288 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13289 			/*
13290 			 * Free the DMA resources for the  scsi_pkt. This will
13291 			 * allow mpxio to select another path the next time
13292 			 * we call scsi_transport() with this scsi_pkt.
13293 			 * See sdintr() for the rationalization behind this.
13294 			 */
13295 			if ((un->un_f_is_fibre == TRUE) &&
13296 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
13297 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
13298 				scsi_dmafree(xp->xb_pktp);
13299 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
13300 			}
13301 #endif
13302 
13303 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
13304 				/*
13305 				 * Commands that are SD_PATH_DIRECT_PRIORITY
13306 				 * are for error recovery situations. These do
13307 				 * not use the normal command waitq, so if they
13308 				 * get a TRAN_BUSY we cannot put them back onto
13309 				 * the waitq for later retry. One possible
13310 				 * problem is that there could already be some
13311 				 * other command on un_retry_bp that is waiting
13312 				 * for this one to complete, so we would be
13313 				 * deadlocked if we put this command back onto
13314 				 * the waitq for later retry (since un_retry_bp
13315 				 * must complete before the driver gets back to
13316 				 * commands on the waitq).
13317 				 *
13318 				 * To avoid deadlock we must schedule a callback
13319 				 * that will restart this command after a set
13320 				 * interval.  This should keep retrying for as
13321 				 * long as the underlying transport keeps
13322 				 * returning TRAN_BUSY (just like for other
13323 				 * commands).  Use the same timeout interval as
13324 				 * for the ordinary TRAN_BUSY retry.
13325 				 */
13326 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13327 				    "sd_start_cmds: scsi_transport() returned "
13328 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
13329 
13330 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13331 				un->un_direct_priority_timeid =
13332 				    timeout(sd_start_direct_priority_command,
13333 				    bp, SD_BSY_TIMEOUT / 500);
13334 
13335 				goto exit;
13336 			}
13337 
13338 			/*
13339 			 * For TRAN_BUSY, we want to reduce the throttle value,
13340 			 * unless we are retrying a command.
13341 			 */
13342 			if (bp != un->un_retry_bp) {
13343 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
13344 			}
13345 
13346 			/*
13347 			 * Set up the bp to be tried again 10 ms later.
13348 			 * Note:x86: Is there a timeout value in the sd_lun
13349 			 * for this condition?
13350 			 */
13351 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
13352 			    kstat_runq_back_to_waitq);
13353 			goto exit;
13354 
13355 		case TRAN_FATAL_ERROR:
13356 			un->un_tran_fatal_count++;
13357 			/* FALLTHRU */
13358 
13359 		case TRAN_BADPKT:
13360 		default:
13361 			un->un_ncmds_in_transport--;
13362 			ASSERT(un->un_ncmds_in_transport >= 0);
13363 
13364 			/*
13365 			 * If this is our REQUEST SENSE command with a
13366 			 * transport error, we must get back the pointers
13367 			 * to the original buf, and mark the REQUEST
13368 			 * SENSE command as "available".
13369 			 */
13370 			if (bp == un->un_rqs_bp) {
13371 				bp = sd_mark_rqs_idle(un, xp);
13372 				xp = SD_GET_XBUF(bp);
13373 			} else {
13374 				/*
13375 				 * Legacy behavior: do not update transport
13376 				 * error count for request sense commands.
13377 				 */
13378 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
13379 			}
13380 
13381 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
13382 			sd_print_transport_rejected_message(un, xp, rval);
13383 
13384 			/*
13385 			 * We must use sd_return_failed_command_no_restart() to
13386 			 * avoid a recursive call back into sd_start_cmds().
13387 			 * However this also means that we must keep processing
13388 			 * the waitq here in order to avoid stalling.
13389 			 */
13390 			sd_return_failed_command_no_restart(un, bp, EIO);
13391 
13392 			/*
13393 			 * Notify any threads waiting in sd_ddi_suspend() that
13394 			 * a command completion has occurred.
13395 			 */
13396 			if (un->un_state == SD_STATE_SUSPENDED) {
13397 				cv_broadcast(&un->un_disk_busy_cv);
13398 			}
13399 
13400 			if (bp == immed_bp) {
13401 				/* immed_bp is gone by now, so clear this */
13402 				immed_bp = NULL;
13403 			}
13404 			break;
13405 		}
13406 
13407 	} while (immed_bp == NULL);
13408 
13409 exit:
13410 	ASSERT(mutex_owned(SD_MUTEX(un)));
13411 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
13412 }
13413 
13414 
13415 /*
13416  *    Function: sd_return_command
13417  *
13418  * Description: Returns a command to its originator (with or without an
13419  *		error).  Also starts commands waiting to be transported
13420  *		to the target.
13421  *
13422  *     Context: May be called from interrupt, kernel, or timeout context
13423  */
13424 
13425 static void
13426 sd_return_command(struct sd_lun *un, struct buf *bp)
13427 {
13428 	struct sd_xbuf *xp;
13429 	struct scsi_pkt *pktp;
13430 
13431 	ASSERT(bp != NULL);
13432 	ASSERT(un != NULL);
13433 	ASSERT(mutex_owned(SD_MUTEX(un)));
13434 	ASSERT(bp != un->un_rqs_bp);
13435 	xp = SD_GET_XBUF(bp);
13436 	ASSERT(xp != NULL);
13437 
13438 	pktp = SD_GET_PKTP(bp);
13439 
13440 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
13441 
13442 	/*
13443 	 * Note: check for the "sdrestart failed" case.
13444 	 */
13445 	if ((un->un_partial_dma_supported == 1) &&
13446 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
13447 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
13448 	    (xp->xb_pktp->pkt_resid == 0)) {
13449 
13450 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
13451 			/*
13452 			 * Successfully set up next portion of cmd
13453 			 * transfer, try sending it
13454 			 */
13455 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
13456 			    NULL, NULL, 0, (clock_t)0, NULL);
13457 			sd_start_cmds(un, NULL);
13458 			return;	/* Note:x86: need a return here? */
13459 		}
13460 	}
13461 
13462 	/*
13463 	 * If this is the failfast bp, clear it from un_failfast_bp. This
13464 	 * can happen if upon being re-tried the failfast bp either
13465 	 * succeeded or encountered another error (possibly even a different
13466 	 * error than the one that precipitated the failfast state, but in
13467 	 * that case it would have had to exhaust retries as well). Regardless,
13468 	 * this should not occur whenever the instance is in the active
13469 	 * failfast state.
13470 	 */
13471 	if (bp == un->un_failfast_bp) {
13472 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13473 		un->un_failfast_bp = NULL;
13474 	}
13475 
13476 	/*
13477 	 * Clear the failfast state upon successful completion of ANY cmd.
13478 	 */
13479 	if (bp->b_error == 0) {
13480 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13481 	}
13482 
13483 	/*
13484 	 * This is used if the command was retried one or more times. Show that
13485 	 * we are done with it, and allow processing of the waitq to resume.
13486 	 */
13487 	if (bp == un->un_retry_bp) {
13488 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13489 		    "sd_return_command: un:0x%p: "
13490 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13491 		un->un_retry_bp = NULL;
13492 		un->un_retry_statp = NULL;
13493 	}
13494 
13495 	SD_UPDATE_RDWR_STATS(un, bp);
13496 	SD_UPDATE_PARTITION_STATS(un, bp);
13497 
13498 	switch (un->un_state) {
13499 	case SD_STATE_SUSPENDED:
13500 		/*
13501 		 * Notify any threads waiting in sd_ddi_suspend() that
13502 		 * a command completion has occurred.
13503 		 */
13504 		cv_broadcast(&un->un_disk_busy_cv);
13505 		break;
13506 	default:
13507 		sd_start_cmds(un, NULL);
13508 		break;
13509 	}
13510 
13511 	/* Return this command up the iodone chain to its originator. */
13512 	mutex_exit(SD_MUTEX(un));
13513 
13514 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13515 	xp->xb_pktp = NULL;
13516 
13517 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13518 
13519 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13520 	mutex_enter(SD_MUTEX(un));
13521 
13522 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
13523 }
13524 
13525 
13526 /*
13527  *    Function: sd_return_failed_command
13528  *
13529  * Description: Command completion when an error occurred.
13530  *
13531  *     Context: May be called from interrupt context
13532  */
13533 
13534 static void
13535 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
13536 {
13537 	ASSERT(bp != NULL);
13538 	ASSERT(un != NULL);
13539 	ASSERT(mutex_owned(SD_MUTEX(un)));
13540 
13541 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13542 	    "sd_return_failed_command: entry\n");
13543 
13544 	/*
13545 	 * b_resid could already be nonzero due to a partial data
13546 	 * transfer, so do not change it here.
13547 	 */
13548 	SD_BIOERROR(bp, errcode);
13549 
13550 	sd_return_command(un, bp);
13551 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13552 	    "sd_return_failed_command: exit\n");
13553 }
13554 
13555 
13556 /*
13557  *    Function: sd_return_failed_command_no_restart
13558  *
13559  * Description: Same as sd_return_failed_command, but ensures that no
13560  *		call back into sd_start_cmds will be issued.
13561  *
13562  *     Context: May be called from interrupt context
13563  */
13564 
13565 static void
13566 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
13567 	int errcode)
13568 {
13569 	struct sd_xbuf *xp;
13570 
13571 	ASSERT(bp != NULL);
13572 	ASSERT(un != NULL);
13573 	ASSERT(mutex_owned(SD_MUTEX(un)));
13574 	xp = SD_GET_XBUF(bp);
13575 	ASSERT(xp != NULL);
13576 	ASSERT(errcode != 0);
13577 
13578 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13579 	    "sd_return_failed_command_no_restart: entry\n");
13580 
13581 	/*
13582 	 * b_resid could already be nonzero due to a partial data
13583 	 * transfer, so do not change it here.
13584 	 */
13585 	SD_BIOERROR(bp, errcode);
13586 
13587 	/*
13588 	 * If this is the failfast bp, clear it. This can happen if the
13589 	 * failfast bp encounterd a fatal error when we attempted to
13590 	 * re-try it (such as a scsi_transport(9F) failure).  However
13591 	 * we should NOT be in an active failfast state if the failfast
13592 	 * bp is not NULL.
13593 	 */
13594 	if (bp == un->un_failfast_bp) {
13595 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
13596 		un->un_failfast_bp = NULL;
13597 	}
13598 
13599 	if (bp == un->un_retry_bp) {
13600 		/*
13601 		 * This command was retried one or more times. Show that we are
13602 		 * done with it, and allow processing of the waitq to resume.
13603 		 */
13604 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13605 		    "sd_return_failed_command_no_restart: "
13606 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
13607 		un->un_retry_bp = NULL;
13608 		un->un_retry_statp = NULL;
13609 	}
13610 
13611 	SD_UPDATE_RDWR_STATS(un, bp);
13612 	SD_UPDATE_PARTITION_STATS(un, bp);
13613 
13614 	mutex_exit(SD_MUTEX(un));
13615 
13616 	if (xp->xb_pktp != NULL) {
13617 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
13618 		xp->xb_pktp = NULL;
13619 	}
13620 
13621 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
13622 
13623 	mutex_enter(SD_MUTEX(un));
13624 
13625 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13626 	    "sd_return_failed_command_no_restart: exit\n");
13627 }
13628 
13629 
13630 /*
13631  *    Function: sd_retry_command
13632  *
13633  * Description: queue up a command for retry, or (optionally) fail it
13634  *		if retry counts are exhausted.
13635  *
13636  *   Arguments: un - Pointer to the sd_lun struct for the target.
13637  *
13638  *		bp - Pointer to the buf for the command to be retried.
13639  *
13640  *		retry_check_flag - Flag to see which (if any) of the retry
13641  *		   counts should be decremented/checked. If the indicated
13642  *		   retry count is exhausted, then the command will not be
13643  *		   retried; it will be failed instead. This should use a
13644  *		   value equal to one of the following:
13645  *
13646  *			SD_RETRIES_NOCHECK
13647  *			SD_RESD_RETRIES_STANDARD
13648  *			SD_RETRIES_VICTIM
13649  *
13650  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
13651  *		   if the check should be made to see of FLAG_ISOLATE is set
13652  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
13653  *		   not retried, it is simply failed.
13654  *
13655  *		user_funcp - Ptr to function to call before dispatching the
13656  *		   command. May be NULL if no action needs to be performed.
13657  *		   (Primarily intended for printing messages.)
13658  *
13659  *		user_arg - Optional argument to be passed along to
13660  *		   the user_funcp call.
13661  *
13662  *		failure_code - errno return code to set in the bp if the
13663  *		   command is going to be failed.
13664  *
13665  *		retry_delay - Retry delay interval in (clock_t) units. May
13666  *		   be zero which indicates that the retry should be retried
13667  *		   immediately (ie, without an intervening delay).
13668  *
13669  *		statp - Ptr to kstat function to be updated if the command
13670  *		   is queued for a delayed retry. May be NULL if no kstat
13671  *		   update is desired.
13672  *
13673  *     Context: May be called from interrupt context.
13674  */
13675 
13676 static void
13677 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
13678 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
13679 	code), void *user_arg, int failure_code,  clock_t retry_delay,
13680 	void (*statp)(kstat_io_t *))
13681 {
13682 	struct sd_xbuf	*xp;
13683 	struct scsi_pkt	*pktp;
13684 
13685 	ASSERT(un != NULL);
13686 	ASSERT(mutex_owned(SD_MUTEX(un)));
13687 	ASSERT(bp != NULL);
13688 	xp = SD_GET_XBUF(bp);
13689 	ASSERT(xp != NULL);
13690 	pktp = SD_GET_PKTP(bp);
13691 	ASSERT(pktp != NULL);
13692 
13693 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
13694 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
13695 
13696 	/*
13697 	 * If we are syncing or dumping, fail the command to avoid
13698 	 * recursively calling back into scsi_transport().
13699 	 */
13700 	if (ddi_in_panic()) {
13701 		goto fail_command_no_log;
13702 	}
13703 
13704 	/*
13705 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
13706 	 * log an error and fail the command.
13707 	 */
13708 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
13709 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
13710 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
13711 		sd_dump_memory(un, SD_LOG_IO, "CDB",
13712 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
13713 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
13714 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
13715 		goto fail_command;
13716 	}
13717 
13718 	/*
13719 	 * If we are suspended, then put the command onto head of the
13720 	 * wait queue since we don't want to start more commands, and
13721 	 * clear the un_retry_bp. Next time when we are resumed, will
13722 	 * handle the command in the wait queue.
13723 	 */
13724 	switch (un->un_state) {
13725 	case SD_STATE_SUSPENDED:
13726 	case SD_STATE_DUMPING:
13727 		bp->av_forw = un->un_waitq_headp;
13728 		un->un_waitq_headp = bp;
13729 		if (un->un_waitq_tailp == NULL) {
13730 			un->un_waitq_tailp = bp;
13731 		}
13732 		if (bp == un->un_retry_bp) {
13733 			un->un_retry_bp = NULL;
13734 			un->un_retry_statp = NULL;
13735 		}
13736 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13737 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
13738 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
13739 		return;
13740 	default:
13741 		break;
13742 	}
13743 
13744 	/*
13745 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
13746 	 * is set; if it is then we do not want to retry the command.
13747 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
13748 	 */
13749 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
13750 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
13751 			goto fail_command;
13752 		}
13753 	}
13754 
13755 
13756 	/*
13757 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
13758 	 * command timeout or a selection timeout has occurred. This means
13759 	 * that we were unable to establish an kind of communication with
13760 	 * the target, and subsequent retries and/or commands are likely
13761 	 * to encounter similar results and take a long time to complete.
13762 	 *
13763 	 * If this is a failfast error condition, we need to update the
13764 	 * failfast state, even if this bp does not have B_FAILFAST set.
13765 	 */
13766 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
13767 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
13768 			ASSERT(un->un_failfast_bp == NULL);
13769 			/*
13770 			 * If we are already in the active failfast state, and
13771 			 * another failfast error condition has been detected,
13772 			 * then fail this command if it has B_FAILFAST set.
13773 			 * If B_FAILFAST is clear, then maintain the legacy
13774 			 * behavior of retrying heroically, even tho this will
13775 			 * take a lot more time to fail the command.
13776 			 */
13777 			if (bp->b_flags & B_FAILFAST) {
13778 				goto fail_command;
13779 			}
13780 		} else {
13781 			/*
13782 			 * We're not in the active failfast state, but we
13783 			 * have a failfast error condition, so we must begin
13784 			 * transition to the next state. We do this regardless
13785 			 * of whether or not this bp has B_FAILFAST set.
13786 			 */
13787 			if (un->un_failfast_bp == NULL) {
13788 				/*
13789 				 * This is the first bp to meet a failfast
13790 				 * condition so save it on un_failfast_bp &
13791 				 * do normal retry processing. Do not enter
13792 				 * active failfast state yet. This marks
13793 				 * entry into the "failfast pending" state.
13794 				 */
13795 				un->un_failfast_bp = bp;
13796 
13797 			} else if (un->un_failfast_bp == bp) {
13798 				/*
13799 				 * This is the second time *this* bp has
13800 				 * encountered a failfast error condition,
13801 				 * so enter active failfast state & flush
13802 				 * queues as appropriate.
13803 				 */
13804 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
13805 				un->un_failfast_bp = NULL;
13806 				sd_failfast_flushq(un);
13807 
13808 				/*
13809 				 * Fail this bp now if B_FAILFAST set;
13810 				 * otherwise continue with retries. (It would
13811 				 * be pretty ironic if this bp succeeded on a
13812 				 * subsequent retry after we just flushed all
13813 				 * the queues).
13814 				 */
13815 				if (bp->b_flags & B_FAILFAST) {
13816 					goto fail_command;
13817 				}
13818 
13819 #if !defined(lint) && !defined(__lint)
13820 			} else {
13821 				/*
13822 				 * If neither of the preceeding conditionals
13823 				 * was true, it means that there is some
13824 				 * *other* bp that has met an inital failfast
13825 				 * condition and is currently either being
13826 				 * retried or is waiting to be retried. In
13827 				 * that case we should perform normal retry
13828 				 * processing on *this* bp, since there is a
13829 				 * chance that the current failfast condition
13830 				 * is transient and recoverable. If that does
13831 				 * not turn out to be the case, then retries
13832 				 * will be cleared when the wait queue is
13833 				 * flushed anyway.
13834 				 */
13835 #endif
13836 			}
13837 		}
13838 	} else {
13839 		/*
13840 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
13841 		 * likely were able to at least establish some level of
13842 		 * communication with the target and subsequent commands
13843 		 * and/or retries are likely to get through to the target,
13844 		 * In this case we want to be aggressive about clearing
13845 		 * the failfast state. Note that this does not affect
13846 		 * the "failfast pending" condition.
13847 		 */
13848 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
13849 	}
13850 
13851 
13852 	/*
13853 	 * Check the specified retry count to see if we can still do
13854 	 * any retries with this pkt before we should fail it.
13855 	 */
13856 	switch (retry_check_flag & SD_RETRIES_MASK) {
13857 	case SD_RETRIES_VICTIM:
13858 		/*
13859 		 * Check the victim retry count. If exhausted, then fall
13860 		 * thru & check against the standard retry count.
13861 		 */
13862 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
13863 			/* Increment count & proceed with the retry */
13864 			xp->xb_victim_retry_count++;
13865 			break;
13866 		}
13867 		/* Victim retries exhausted, fall back to std. retries... */
13868 		/* FALLTHRU */
13869 
13870 	case SD_RETRIES_STANDARD:
13871 		if (xp->xb_retry_count >= un->un_retry_count) {
13872 			/* Retries exhausted, fail the command */
13873 			SD_TRACE(SD_LOG_IO_CORE, un,
13874 			    "sd_retry_command: retries exhausted!\n");
13875 			/*
13876 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
13877 			 * commands with nonzero pkt_resid.
13878 			 */
13879 			if ((pktp->pkt_reason == CMD_CMPLT) &&
13880 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
13881 			    (pktp->pkt_resid != 0)) {
13882 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
13883 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
13884 					SD_UPDATE_B_RESID(bp, pktp);
13885 				}
13886 			}
13887 			goto fail_command;
13888 		}
13889 		xp->xb_retry_count++;
13890 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13891 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13892 		break;
13893 
13894 	case SD_RETRIES_UA:
13895 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
13896 			/* Retries exhausted, fail the command */
13897 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13898 			    "Unit Attention retries exhausted. "
13899 			    "Check the target.\n");
13900 			goto fail_command;
13901 		}
13902 		xp->xb_ua_retry_count++;
13903 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13904 		    "sd_retry_command: retry count:%d\n",
13905 		    xp->xb_ua_retry_count);
13906 		break;
13907 
13908 	case SD_RETRIES_BUSY:
13909 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
13910 			/* Retries exhausted, fail the command */
13911 			SD_TRACE(SD_LOG_IO_CORE, un,
13912 			    "sd_retry_command: retries exhausted!\n");
13913 			goto fail_command;
13914 		}
13915 		xp->xb_retry_count++;
13916 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13917 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
13918 		break;
13919 
13920 	case SD_RETRIES_NOCHECK:
13921 	default:
13922 		/* No retry count to check. Just proceed with the retry */
13923 		break;
13924 	}
13925 
13926 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
13927 
13928 	/*
13929 	 * If we were given a zero timeout, we must attempt to retry the
13930 	 * command immediately (ie, without a delay).
13931 	 */
13932 	if (retry_delay == 0) {
13933 		/*
13934 		 * Check some limiting conditions to see if we can actually
13935 		 * do the immediate retry.  If we cannot, then we must
13936 		 * fall back to queueing up a delayed retry.
13937 		 */
13938 		if (un->un_ncmds_in_transport >= un->un_throttle) {
13939 			/*
13940 			 * We are at the throttle limit for the target,
13941 			 * fall back to delayed retry.
13942 			 */
13943 			retry_delay = SD_BSY_TIMEOUT;
13944 			statp = kstat_waitq_enter;
13945 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13946 			    "sd_retry_command: immed. retry hit "
13947 			    "throttle!\n");
13948 		} else {
13949 			/*
13950 			 * We're clear to proceed with the immediate retry.
13951 			 * First call the user-provided function (if any)
13952 			 */
13953 			if (user_funcp != NULL) {
13954 				(*user_funcp)(un, bp, user_arg,
13955 				    SD_IMMEDIATE_RETRY_ISSUED);
13956 #ifdef __lock_lint
13957 				sd_print_incomplete_msg(un, bp, user_arg,
13958 				    SD_IMMEDIATE_RETRY_ISSUED);
13959 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
13960 				    SD_IMMEDIATE_RETRY_ISSUED);
13961 				sd_print_sense_failed_msg(un, bp, user_arg,
13962 				    SD_IMMEDIATE_RETRY_ISSUED);
13963 #endif
13964 			}
13965 
13966 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13967 			    "sd_retry_command: issuing immediate retry\n");
13968 
13969 			/*
13970 			 * Call sd_start_cmds() to transport the command to
13971 			 * the target.
13972 			 */
13973 			sd_start_cmds(un, bp);
13974 
13975 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
13976 			    "sd_retry_command exit\n");
13977 			return;
13978 		}
13979 	}
13980 
13981 	/*
13982 	 * Set up to retry the command after a delay.
13983 	 * First call the user-provided function (if any)
13984 	 */
13985 	if (user_funcp != NULL) {
13986 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
13987 	}
13988 
13989 	sd_set_retry_bp(un, bp, retry_delay, statp);
13990 
13991 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
13992 	return;
13993 
13994 fail_command:
13995 
13996 	if (user_funcp != NULL) {
13997 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
13998 	}
13999 
14000 fail_command_no_log:
14001 
14002 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14003 	    "sd_retry_command: returning failed command\n");
14004 
14005 	sd_return_failed_command(un, bp, failure_code);
14006 
14007 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
14008 }
14009 
14010 
14011 /*
14012  *    Function: sd_set_retry_bp
14013  *
14014  * Description: Set up the given bp for retry.
14015  *
14016  *   Arguments: un - ptr to associated softstate
14017  *		bp - ptr to buf(9S) for the command
14018  *		retry_delay - time interval before issuing retry (may be 0)
14019  *		statp - optional pointer to kstat function
14020  *
14021  *     Context: May be called under interrupt context
14022  */
14023 
14024 static void
14025 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
14026 	void (*statp)(kstat_io_t *))
14027 {
14028 	ASSERT(un != NULL);
14029 	ASSERT(mutex_owned(SD_MUTEX(un)));
14030 	ASSERT(bp != NULL);
14031 
14032 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14033 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
14034 
14035 	/*
14036 	 * Indicate that the command is being retried. This will not allow any
14037 	 * other commands on the wait queue to be transported to the target
14038 	 * until this command has been completed (success or failure). The
14039 	 * "retry command" is not transported to the target until the given
14040 	 * time delay expires, unless the user specified a 0 retry_delay.
14041 	 *
14042 	 * Note: the timeout(9F) callback routine is what actually calls
14043 	 * sd_start_cmds() to transport the command, with the exception of a
14044 	 * zero retry_delay. The only current implementor of a zero retry delay
14045 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
14046 	 */
14047 	if (un->un_retry_bp == NULL) {
14048 		ASSERT(un->un_retry_statp == NULL);
14049 		un->un_retry_bp = bp;
14050 
14051 		/*
14052 		 * If the user has not specified a delay the command should
14053 		 * be queued and no timeout should be scheduled.
14054 		 */
14055 		if (retry_delay == 0) {
14056 			/*
14057 			 * Save the kstat pointer that will be used in the
14058 			 * call to SD_UPDATE_KSTATS() below, so that
14059 			 * sd_start_cmds() can correctly decrement the waitq
14060 			 * count when it is time to transport this command.
14061 			 */
14062 			un->un_retry_statp = statp;
14063 			goto done;
14064 		}
14065 	}
14066 
14067 	if (un->un_retry_bp == bp) {
14068 		/*
14069 		 * Save the kstat pointer that will be used in the call to
14070 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
14071 		 * correctly decrement the waitq count when it is time to
14072 		 * transport this command.
14073 		 */
14074 		un->un_retry_statp = statp;
14075 
14076 		/*
14077 		 * Schedule a timeout if:
14078 		 *   1) The user has specified a delay.
14079 		 *   2) There is not a START_STOP_UNIT callback pending.
14080 		 *
14081 		 * If no delay has been specified, then it is up to the caller
14082 		 * to ensure that IO processing continues without stalling.
14083 		 * Effectively, this means that the caller will issue the
14084 		 * required call to sd_start_cmds(). The START_STOP_UNIT
14085 		 * callback does this after the START STOP UNIT command has
14086 		 * completed. In either of these cases we should not schedule
14087 		 * a timeout callback here.  Also don't schedule the timeout if
14088 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
14089 		 */
14090 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
14091 		    (un->un_direct_priority_timeid == NULL)) {
14092 			un->un_retry_timeid =
14093 			    timeout(sd_start_retry_command, un, retry_delay);
14094 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14095 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
14096 			    " bp:0x%p un_retry_timeid:0x%p\n",
14097 			    un, bp, un->un_retry_timeid);
14098 		}
14099 	} else {
14100 		/*
14101 		 * We only get in here if there is already another command
14102 		 * waiting to be retried.  In this case, we just put the
14103 		 * given command onto the wait queue, so it can be transported
14104 		 * after the current retry command has completed.
14105 		 *
14106 		 * Also we have to make sure that if the command at the head
14107 		 * of the wait queue is the un_failfast_bp, that we do not
14108 		 * put ahead of it any other commands that are to be retried.
14109 		 */
14110 		if ((un->un_failfast_bp != NULL) &&
14111 		    (un->un_failfast_bp == un->un_waitq_headp)) {
14112 			/*
14113 			 * Enqueue this command AFTER the first command on
14114 			 * the wait queue (which is also un_failfast_bp).
14115 			 */
14116 			bp->av_forw = un->un_waitq_headp->av_forw;
14117 			un->un_waitq_headp->av_forw = bp;
14118 			if (un->un_waitq_headp == un->un_waitq_tailp) {
14119 				un->un_waitq_tailp = bp;
14120 			}
14121 		} else {
14122 			/* Enqueue this command at the head of the waitq. */
14123 			bp->av_forw = un->un_waitq_headp;
14124 			un->un_waitq_headp = bp;
14125 			if (un->un_waitq_tailp == NULL) {
14126 				un->un_waitq_tailp = bp;
14127 			}
14128 		}
14129 
14130 		if (statp == NULL) {
14131 			statp = kstat_waitq_enter;
14132 		}
14133 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14134 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
14135 	}
14136 
14137 done:
14138 	if (statp != NULL) {
14139 		SD_UPDATE_KSTATS(un, statp, bp);
14140 	}
14141 
14142 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14143 	    "sd_set_retry_bp: exit un:0x%p\n", un);
14144 }
14145 
14146 
14147 /*
14148  *    Function: sd_start_retry_command
14149  *
14150  * Description: Start the command that has been waiting on the target's
14151  *		retry queue.  Called from timeout(9F) context after the
14152  *		retry delay interval has expired.
14153  *
14154  *   Arguments: arg - pointer to associated softstate for the device.
14155  *
14156  *     Context: timeout(9F) thread context.  May not sleep.
14157  */
14158 
14159 static void
14160 sd_start_retry_command(void *arg)
14161 {
14162 	struct sd_lun *un = arg;
14163 
14164 	ASSERT(un != NULL);
14165 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14166 
14167 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14168 	    "sd_start_retry_command: entry\n");
14169 
14170 	mutex_enter(SD_MUTEX(un));
14171 
14172 	un->un_retry_timeid = NULL;
14173 
14174 	if (un->un_retry_bp != NULL) {
14175 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14176 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
14177 		    un, un->un_retry_bp);
14178 		sd_start_cmds(un, un->un_retry_bp);
14179 	}
14180 
14181 	mutex_exit(SD_MUTEX(un));
14182 
14183 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14184 	    "sd_start_retry_command: exit\n");
14185 }
14186 
14187 
14188 /*
14189  *    Function: sd_start_direct_priority_command
14190  *
14191  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
14192  *		received TRAN_BUSY when we called scsi_transport() to send it
14193  *		to the underlying HBA. This function is called from timeout(9F)
14194  *		context after the delay interval has expired.
14195  *
14196  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
14197  *
14198  *     Context: timeout(9F) thread context.  May not sleep.
14199  */
14200 
14201 static void
14202 sd_start_direct_priority_command(void *arg)
14203 {
14204 	struct buf	*priority_bp = arg;
14205 	struct sd_lun	*un;
14206 
14207 	ASSERT(priority_bp != NULL);
14208 	un = SD_GET_UN(priority_bp);
14209 	ASSERT(un != NULL);
14210 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14211 
14212 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14213 	    "sd_start_direct_priority_command: entry\n");
14214 
14215 	mutex_enter(SD_MUTEX(un));
14216 	un->un_direct_priority_timeid = NULL;
14217 	sd_start_cmds(un, priority_bp);
14218 	mutex_exit(SD_MUTEX(un));
14219 
14220 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14221 	    "sd_start_direct_priority_command: exit\n");
14222 }
14223 
14224 
14225 /*
14226  *    Function: sd_send_request_sense_command
14227  *
14228  * Description: Sends a REQUEST SENSE command to the target
14229  *
14230  *     Context: May be called from interrupt context.
14231  */
14232 
14233 static void
14234 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
14235 	struct scsi_pkt *pktp)
14236 {
14237 	ASSERT(bp != NULL);
14238 	ASSERT(un != NULL);
14239 	ASSERT(mutex_owned(SD_MUTEX(un)));
14240 
14241 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
14242 	    "entry: buf:0x%p\n", bp);
14243 
14244 	/*
14245 	 * If we are syncing or dumping, then fail the command to avoid a
14246 	 * recursive callback into scsi_transport(). Also fail the command
14247 	 * if we are suspended (legacy behavior).
14248 	 */
14249 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
14250 	    (un->un_state == SD_STATE_DUMPING)) {
14251 		sd_return_failed_command(un, bp, EIO);
14252 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14253 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
14254 		return;
14255 	}
14256 
14257 	/*
14258 	 * Retry the failed command and don't issue the request sense if:
14259 	 *    1) the sense buf is busy
14260 	 *    2) we have 1 or more outstanding commands on the target
14261 	 *    (the sense data will be cleared or invalidated any way)
14262 	 *
14263 	 * Note: There could be an issue with not checking a retry limit here,
14264 	 * the problem is determining which retry limit to check.
14265 	 */
14266 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
14267 		/* Don't retry if the command is flagged as non-retryable */
14268 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
14269 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14270 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
14271 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14272 			    "sd_send_request_sense_command: "
14273 			    "at full throttle, retrying exit\n");
14274 		} else {
14275 			sd_return_failed_command(un, bp, EIO);
14276 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14277 			    "sd_send_request_sense_command: "
14278 			    "at full throttle, non-retryable exit\n");
14279 		}
14280 		return;
14281 	}
14282 
14283 	sd_mark_rqs_busy(un, bp);
14284 	sd_start_cmds(un, un->un_rqs_bp);
14285 
14286 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14287 	    "sd_send_request_sense_command: exit\n");
14288 }
14289 
14290 
14291 /*
14292  *    Function: sd_mark_rqs_busy
14293  *
14294  * Description: Indicate that the request sense bp for this instance is
14295  *		in use.
14296  *
14297  *     Context: May be called under interrupt context
14298  */
14299 
14300 static void
14301 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
14302 {
14303 	struct sd_xbuf	*sense_xp;
14304 
14305 	ASSERT(un != NULL);
14306 	ASSERT(bp != NULL);
14307 	ASSERT(mutex_owned(SD_MUTEX(un)));
14308 	ASSERT(un->un_sense_isbusy == 0);
14309 
14310 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
14311 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
14312 
14313 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
14314 	ASSERT(sense_xp != NULL);
14315 
14316 	SD_INFO(SD_LOG_IO, un,
14317 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
14318 
14319 	ASSERT(sense_xp->xb_pktp != NULL);
14320 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
14321 	    == (FLAG_SENSING | FLAG_HEAD));
14322 
14323 	un->un_sense_isbusy = 1;
14324 	un->un_rqs_bp->b_resid = 0;
14325 	sense_xp->xb_pktp->pkt_resid  = 0;
14326 	sense_xp->xb_pktp->pkt_reason = 0;
14327 
14328 	/* So we can get back the bp at interrupt time! */
14329 	sense_xp->xb_sense_bp = bp;
14330 
14331 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
14332 
14333 	/*
14334 	 * Mark this buf as awaiting sense data. (This is already set in
14335 	 * the pkt_flags for the RQS packet.)
14336 	 */
14337 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
14338 
14339 	sense_xp->xb_retry_count	= 0;
14340 	sense_xp->xb_victim_retry_count = 0;
14341 	sense_xp->xb_ua_retry_count	= 0;
14342 	sense_xp->xb_nr_retry_count 	= 0;
14343 	sense_xp->xb_dma_resid  = 0;
14344 
14345 	/* Clean up the fields for auto-request sense */
14346 	sense_xp->xb_sense_status = 0;
14347 	sense_xp->xb_sense_state  = 0;
14348 	sense_xp->xb_sense_resid  = 0;
14349 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
14350 
14351 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
14352 }
14353 
14354 
14355 /*
14356  *    Function: sd_mark_rqs_idle
14357  *
14358  * Description: SD_MUTEX must be held continuously through this routine
14359  *		to prevent reuse of the rqs struct before the caller can
14360  *		complete it's processing.
14361  *
14362  * Return Code: Pointer to the RQS buf
14363  *
14364  *     Context: May be called under interrupt context
14365  */
14366 
14367 static struct buf *
14368 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
14369 {
14370 	struct buf *bp;
14371 	ASSERT(un != NULL);
14372 	ASSERT(sense_xp != NULL);
14373 	ASSERT(mutex_owned(SD_MUTEX(un)));
14374 	ASSERT(un->un_sense_isbusy != 0);
14375 
14376 	un->un_sense_isbusy = 0;
14377 	bp = sense_xp->xb_sense_bp;
14378 	sense_xp->xb_sense_bp = NULL;
14379 
14380 	/* This pkt is no longer interested in getting sense data */
14381 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
14382 
14383 	return (bp);
14384 }
14385 
14386 
14387 
14388 /*
14389  *    Function: sd_alloc_rqs
14390  *
14391  * Description: Set up the unit to receive auto request sense data
14392  *
14393  * Return Code: DDI_SUCCESS or DDI_FAILURE
14394  *
14395  *     Context: Called under attach(9E) context
14396  */
14397 
14398 static int
14399 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
14400 {
14401 	struct sd_xbuf *xp;
14402 
14403 	ASSERT(un != NULL);
14404 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14405 	ASSERT(un->un_rqs_bp == NULL);
14406 	ASSERT(un->un_rqs_pktp == NULL);
14407 
14408 	/*
14409 	 * First allocate the required buf and scsi_pkt structs, then set up
14410 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
14411 	 */
14412 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
14413 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
14414 	if (un->un_rqs_bp == NULL) {
14415 		return (DDI_FAILURE);
14416 	}
14417 
14418 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
14419 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
14420 
14421 	if (un->un_rqs_pktp == NULL) {
14422 		sd_free_rqs(un);
14423 		return (DDI_FAILURE);
14424 	}
14425 
14426 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
14427 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
14428 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
14429 
14430 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
14431 
14432 	/* Set up the other needed members in the ARQ scsi_pkt. */
14433 	un->un_rqs_pktp->pkt_comp   = sdintr;
14434 	un->un_rqs_pktp->pkt_time   = sd_io_time;
14435 	un->un_rqs_pktp->pkt_flags |=
14436 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
14437 
14438 	/*
14439 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
14440 	 * provide any intpkt, destroypkt routines as we take care of
14441 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
14442 	 */
14443 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14444 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
14445 	xp->xb_pktp = un->un_rqs_pktp;
14446 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
14447 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
14448 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
14449 
14450 	/*
14451 	 * Save the pointer to the request sense private bp so it can
14452 	 * be retrieved in sdintr.
14453 	 */
14454 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
14455 	ASSERT(un->un_rqs_bp->b_private == xp);
14456 
14457 	/*
14458 	 * See if the HBA supports auto-request sense for the specified
14459 	 * target/lun. If it does, then try to enable it (if not already
14460 	 * enabled).
14461 	 *
14462 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
14463 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
14464 	 * return success.  However, in both of these cases ARQ is always
14465 	 * enabled and scsi_ifgetcap will always return true. The best approach
14466 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
14467 	 *
14468 	 * The 3rd case is the HBA (adp) always return enabled on
14469 	 * scsi_ifgetgetcap even when it's not enable, the best approach
14470 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
14471 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
14472 	 */
14473 
14474 	if (un->un_f_is_fibre == TRUE) {
14475 		un->un_f_arq_enabled = TRUE;
14476 	} else {
14477 #if defined(__i386) || defined(__amd64)
14478 		/*
14479 		 * Circumvent the Adaptec bug, remove this code when
14480 		 * the bug is fixed
14481 		 */
14482 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
14483 #endif
14484 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
14485 		case 0:
14486 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14487 			    "sd_alloc_rqs: HBA supports ARQ\n");
14488 			/*
14489 			 * ARQ is supported by this HBA but currently is not
14490 			 * enabled. Attempt to enable it and if successful then
14491 			 * mark this instance as ARQ enabled.
14492 			 */
14493 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
14494 			    == 1) {
14495 				/* Successfully enabled ARQ in the HBA */
14496 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14497 				    "sd_alloc_rqs: ARQ enabled\n");
14498 				un->un_f_arq_enabled = TRUE;
14499 			} else {
14500 				/* Could not enable ARQ in the HBA */
14501 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
14502 				    "sd_alloc_rqs: failed ARQ enable\n");
14503 				un->un_f_arq_enabled = FALSE;
14504 			}
14505 			break;
14506 		case 1:
14507 			/*
14508 			 * ARQ is supported by this HBA and is already enabled.
14509 			 * Just mark ARQ as enabled for this instance.
14510 			 */
14511 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14512 			    "sd_alloc_rqs: ARQ already enabled\n");
14513 			un->un_f_arq_enabled = TRUE;
14514 			break;
14515 		default:
14516 			/*
14517 			 * ARQ is not supported by this HBA; disable it for this
14518 			 * instance.
14519 			 */
14520 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
14521 			    "sd_alloc_rqs: HBA does not support ARQ\n");
14522 			un->un_f_arq_enabled = FALSE;
14523 			break;
14524 		}
14525 	}
14526 
14527 	return (DDI_SUCCESS);
14528 }
14529 
14530 
14531 /*
14532  *    Function: sd_free_rqs
14533  *
14534  * Description: Cleanup for the pre-instance RQS command.
14535  *
14536  *     Context: Kernel thread context
14537  */
14538 
14539 static void
14540 sd_free_rqs(struct sd_lun *un)
14541 {
14542 	ASSERT(un != NULL);
14543 
14544 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
14545 
14546 	/*
14547 	 * If consistent memory is bound to a scsi_pkt, the pkt
14548 	 * has to be destroyed *before* freeing the consistent memory.
14549 	 * Don't change the sequence of this operations.
14550 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
14551 	 * after it was freed in scsi_free_consistent_buf().
14552 	 */
14553 	if (un->un_rqs_pktp != NULL) {
14554 		scsi_destroy_pkt(un->un_rqs_pktp);
14555 		un->un_rqs_pktp = NULL;
14556 	}
14557 
14558 	if (un->un_rqs_bp != NULL) {
14559 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
14560 		if (xp != NULL) {
14561 			kmem_free(xp, sizeof (struct sd_xbuf));
14562 		}
14563 		scsi_free_consistent_buf(un->un_rqs_bp);
14564 		un->un_rqs_bp = NULL;
14565 	}
14566 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
14567 }
14568 
14569 
14570 
14571 /*
14572  *    Function: sd_reduce_throttle
14573  *
14574  * Description: Reduces the maximum # of outstanding commands on a
14575  *		target to the current number of outstanding commands.
14576  *		Queues a tiemout(9F) callback to restore the limit
14577  *		after a specified interval has elapsed.
14578  *		Typically used when we get a TRAN_BUSY return code
14579  *		back from scsi_transport().
14580  *
14581  *   Arguments: un - ptr to the sd_lun softstate struct
14582  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
14583  *
14584  *     Context: May be called from interrupt context
14585  */
14586 
14587 static void
14588 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
14589 {
14590 	ASSERT(un != NULL);
14591 	ASSERT(mutex_owned(SD_MUTEX(un)));
14592 	ASSERT(un->un_ncmds_in_transport >= 0);
14593 
14594 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14595 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
14596 	    un, un->un_throttle, un->un_ncmds_in_transport);
14597 
14598 	if (un->un_throttle > 1) {
14599 		if (un->un_f_use_adaptive_throttle == TRUE) {
14600 			switch (throttle_type) {
14601 			case SD_THROTTLE_TRAN_BUSY:
14602 				if (un->un_busy_throttle == 0) {
14603 					un->un_busy_throttle = un->un_throttle;
14604 				}
14605 				break;
14606 			case SD_THROTTLE_QFULL:
14607 				un->un_busy_throttle = 0;
14608 				break;
14609 			default:
14610 				ASSERT(FALSE);
14611 			}
14612 
14613 			if (un->un_ncmds_in_transport > 0) {
14614 				un->un_throttle = un->un_ncmds_in_transport;
14615 			}
14616 
14617 		} else {
14618 			if (un->un_ncmds_in_transport == 0) {
14619 				un->un_throttle = 1;
14620 			} else {
14621 				un->un_throttle = un->un_ncmds_in_transport;
14622 			}
14623 		}
14624 	}
14625 
14626 	/* Reschedule the timeout if none is currently active */
14627 	if (un->un_reset_throttle_timeid == NULL) {
14628 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
14629 		    un, SD_THROTTLE_RESET_INTERVAL);
14630 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14631 		    "sd_reduce_throttle: timeout scheduled!\n");
14632 	}
14633 
14634 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
14635 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14636 }
14637 
14638 
14639 
14640 /*
14641  *    Function: sd_restore_throttle
14642  *
14643  * Description: Callback function for timeout(9F).  Resets the current
14644  *		value of un->un_throttle to its default.
14645  *
14646  *   Arguments: arg - pointer to associated softstate for the device.
14647  *
14648  *     Context: May be called from interrupt context
14649  */
14650 
14651 static void
14652 sd_restore_throttle(void *arg)
14653 {
14654 	struct sd_lun	*un = arg;
14655 
14656 	ASSERT(un != NULL);
14657 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14658 
14659 	mutex_enter(SD_MUTEX(un));
14660 
14661 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14662 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
14663 
14664 	un->un_reset_throttle_timeid = NULL;
14665 
14666 	if (un->un_f_use_adaptive_throttle == TRUE) {
14667 		/*
14668 		 * If un_busy_throttle is nonzero, then it contains the
14669 		 * value that un_throttle was when we got a TRAN_BUSY back
14670 		 * from scsi_transport(). We want to revert back to this
14671 		 * value.
14672 		 *
14673 		 * In the QFULL case, the throttle limit will incrementally
14674 		 * increase until it reaches max throttle.
14675 		 */
14676 		if (un->un_busy_throttle > 0) {
14677 			un->un_throttle = un->un_busy_throttle;
14678 			un->un_busy_throttle = 0;
14679 		} else {
14680 			/*
14681 			 * increase throttle by 10% open gate slowly, schedule
14682 			 * another restore if saved throttle has not been
14683 			 * reached
14684 			 */
14685 			short throttle;
14686 			if (sd_qfull_throttle_enable) {
14687 				throttle = un->un_throttle +
14688 				    max((un->un_throttle / 10), 1);
14689 				un->un_throttle =
14690 				    (throttle < un->un_saved_throttle) ?
14691 				    throttle : un->un_saved_throttle;
14692 				if (un->un_throttle < un->un_saved_throttle) {
14693 					un->un_reset_throttle_timeid =
14694 					    timeout(sd_restore_throttle,
14695 					    un,
14696 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
14697 				}
14698 			}
14699 		}
14700 
14701 		/*
14702 		 * If un_throttle has fallen below the low-water mark, we
14703 		 * restore the maximum value here (and allow it to ratchet
14704 		 * down again if necessary).
14705 		 */
14706 		if (un->un_throttle < un->un_min_throttle) {
14707 			un->un_throttle = un->un_saved_throttle;
14708 		}
14709 	} else {
14710 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
14711 		    "restoring limit from 0x%x to 0x%x\n",
14712 		    un->un_throttle, un->un_saved_throttle);
14713 		un->un_throttle = un->un_saved_throttle;
14714 	}
14715 
14716 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14717 	    "sd_restore_throttle: calling sd_start_cmds!\n");
14718 
14719 	sd_start_cmds(un, NULL);
14720 
14721 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14722 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
14723 	    un, un->un_throttle);
14724 
14725 	mutex_exit(SD_MUTEX(un));
14726 
14727 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
14728 }
14729 
14730 /*
14731  *    Function: sdrunout
14732  *
14733  * Description: Callback routine for scsi_init_pkt when a resource allocation
14734  *		fails.
14735  *
14736  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
14737  *		soft state instance.
14738  *
14739  * Return Code: The scsi_init_pkt routine allows for the callback function to
14740  *		return a 0 indicating the callback should be rescheduled or a 1
14741  *		indicating not to reschedule. This routine always returns 1
14742  *		because the driver always provides a callback function to
14743  *		scsi_init_pkt. This results in a callback always being scheduled
14744  *		(via the scsi_init_pkt callback implementation) if a resource
14745  *		failure occurs.
14746  *
14747  *     Context: This callback function may not block or call routines that block
14748  *
14749  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
14750  *		request persisting at the head of the list which cannot be
14751  *		satisfied even after multiple retries. In the future the driver
14752  *		may implement some time of maximum runout count before failing
14753  *		an I/O.
14754  */
14755 
14756 static int
14757 sdrunout(caddr_t arg)
14758 {
14759 	struct sd_lun	*un = (struct sd_lun *)arg;
14760 
14761 	ASSERT(un != NULL);
14762 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14763 
14764 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
14765 
14766 	mutex_enter(SD_MUTEX(un));
14767 	sd_start_cmds(un, NULL);
14768 	mutex_exit(SD_MUTEX(un));
14769 	/*
14770 	 * This callback routine always returns 1 (i.e. do not reschedule)
14771 	 * because we always specify sdrunout as the callback handler for
14772 	 * scsi_init_pkt inside the call to sd_start_cmds.
14773 	 */
14774 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
14775 	return (1);
14776 }
14777 
14778 
14779 /*
14780  *    Function: sdintr
14781  *
14782  * Description: Completion callback routine for scsi_pkt(9S) structs
14783  *		sent to the HBA driver via scsi_transport(9F).
14784  *
14785  *     Context: Interrupt context
14786  */
14787 
14788 static void
14789 sdintr(struct scsi_pkt *pktp)
14790 {
14791 	struct buf	*bp;
14792 	struct sd_xbuf	*xp;
14793 	struct sd_lun	*un;
14794 	size_t		actual_len;
14795 
14796 	ASSERT(pktp != NULL);
14797 	bp = (struct buf *)pktp->pkt_private;
14798 	ASSERT(bp != NULL);
14799 	xp = SD_GET_XBUF(bp);
14800 	ASSERT(xp != NULL);
14801 	ASSERT(xp->xb_pktp != NULL);
14802 	un = SD_GET_UN(bp);
14803 	ASSERT(un != NULL);
14804 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14805 
14806 #ifdef SD_FAULT_INJECTION
14807 
14808 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
14809 	/* SD FaultInjection */
14810 	sd_faultinjection(pktp);
14811 
14812 #endif /* SD_FAULT_INJECTION */
14813 
14814 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
14815 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
14816 
14817 	mutex_enter(SD_MUTEX(un));
14818 
14819 	/* Reduce the count of the #commands currently in transport */
14820 	un->un_ncmds_in_transport--;
14821 	ASSERT(un->un_ncmds_in_transport >= 0);
14822 
14823 	/* Increment counter to indicate that the callback routine is active */
14824 	un->un_in_callback++;
14825 
14826 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14827 
14828 #ifdef	SDDEBUG
14829 	if (bp == un->un_retry_bp) {
14830 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
14831 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
14832 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
14833 	}
14834 #endif
14835 
14836 	/*
14837 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
14838 	 * state if needed.
14839 	 */
14840 	if (pktp->pkt_reason == CMD_DEV_GONE) {
14841 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14842 		    "Command failed to complete...Device is gone\n");
14843 		if (un->un_mediastate != DKIO_DEV_GONE) {
14844 			un->un_mediastate = DKIO_DEV_GONE;
14845 			cv_broadcast(&un->un_state_cv);
14846 		}
14847 		sd_return_failed_command(un, bp, EIO);
14848 		goto exit;
14849 	}
14850 
14851 	if (pktp->pkt_state & STATE_XARQ_DONE) {
14852 		SD_TRACE(SD_LOG_COMMON, un,
14853 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
14854 	}
14855 
14856 	/*
14857 	 * First see if the pkt has auto-request sense data with it....
14858 	 * Look at the packet state first so we don't take a performance
14859 	 * hit looking at the arq enabled flag unless absolutely necessary.
14860 	 */
14861 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
14862 	    (un->un_f_arq_enabled == TRUE)) {
14863 		/*
14864 		 * The HBA did an auto request sense for this command so check
14865 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
14866 		 * driver command that should not be retried.
14867 		 */
14868 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14869 			/*
14870 			 * Save the relevant sense info into the xp for the
14871 			 * original cmd.
14872 			 */
14873 			struct scsi_arq_status *asp;
14874 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
14875 			xp->xb_sense_status =
14876 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
14877 			xp->xb_sense_state  = asp->sts_rqpkt_state;
14878 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
14879 			if (pktp->pkt_state & STATE_XARQ_DONE) {
14880 				actual_len = MAX_SENSE_LENGTH -
14881 				    xp->xb_sense_resid;
14882 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14883 				    MAX_SENSE_LENGTH);
14884 			} else {
14885 				if (xp->xb_sense_resid > SENSE_LENGTH) {
14886 					actual_len = MAX_SENSE_LENGTH -
14887 					    xp->xb_sense_resid;
14888 				} else {
14889 					actual_len = SENSE_LENGTH -
14890 					    xp->xb_sense_resid;
14891 				}
14892 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14893 					xp->xb_sense_resid =
14894 					    (int)(((struct uscsi_cmd *)
14895 					    (xp->xb_pktinfo))->
14896 					    uscsi_rqlen) - actual_len;
14897 				}
14898 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
14899 				    SENSE_LENGTH);
14900 			}
14901 
14902 			/* fail the command */
14903 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14904 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
14905 			sd_return_failed_command(un, bp, EIO);
14906 			goto exit;
14907 		}
14908 
14909 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
14910 		/*
14911 		 * We want to either retry or fail this command, so free
14912 		 * the DMA resources here.  If we retry the command then
14913 		 * the DMA resources will be reallocated in sd_start_cmds().
14914 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
14915 		 * causes the *entire* transfer to start over again from the
14916 		 * beginning of the request, even for PARTIAL chunks that
14917 		 * have already transferred successfully.
14918 		 */
14919 		if ((un->un_f_is_fibre == TRUE) &&
14920 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14921 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
14922 			scsi_dmafree(pktp);
14923 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14924 		}
14925 #endif
14926 
14927 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14928 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
14929 
14930 		sd_handle_auto_request_sense(un, bp, xp, pktp);
14931 		goto exit;
14932 	}
14933 
14934 	/* Next see if this is the REQUEST SENSE pkt for the instance */
14935 	if (pktp->pkt_flags & FLAG_SENSING)  {
14936 		/* This pktp is from the unit's REQUEST_SENSE command */
14937 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14938 		    "sdintr: sd_handle_request_sense\n");
14939 		sd_handle_request_sense(un, bp, xp, pktp);
14940 		goto exit;
14941 	}
14942 
14943 	/*
14944 	 * Check to see if the command successfully completed as requested;
14945 	 * this is the most common case (and also the hot performance path).
14946 	 *
14947 	 * Requirements for successful completion are:
14948 	 * pkt_reason is CMD_CMPLT and packet status is status good.
14949 	 * In addition:
14950 	 * - A residual of zero indicates successful completion no matter what
14951 	 *   the command is.
14952 	 * - If the residual is not zero and the command is not a read or
14953 	 *   write, then it's still defined as successful completion. In other
14954 	 *   words, if the command is a read or write the residual must be
14955 	 *   zero for successful completion.
14956 	 * - If the residual is not zero and the command is a read or
14957 	 *   write, and it's a USCSICMD, then it's still defined as
14958 	 *   successful completion.
14959 	 */
14960 	if ((pktp->pkt_reason == CMD_CMPLT) &&
14961 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
14962 
14963 		/*
14964 		 * Since this command is returned with a good status, we
14965 		 * can reset the count for Sonoma failover.
14966 		 */
14967 		un->un_sonoma_failure_count = 0;
14968 
14969 		/*
14970 		 * Return all USCSI commands on good status
14971 		 */
14972 		if (pktp->pkt_resid == 0) {
14973 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14974 			    "sdintr: returning command for resid == 0\n");
14975 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
14976 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
14977 			SD_UPDATE_B_RESID(bp, pktp);
14978 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14979 			    "sdintr: returning command for resid != 0\n");
14980 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
14981 			SD_UPDATE_B_RESID(bp, pktp);
14982 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14983 			    "sdintr: returning uscsi command\n");
14984 		} else {
14985 			goto not_successful;
14986 		}
14987 		sd_return_command(un, bp);
14988 
14989 		/*
14990 		 * Decrement counter to indicate that the callback routine
14991 		 * is done.
14992 		 */
14993 		un->un_in_callback--;
14994 		ASSERT(un->un_in_callback >= 0);
14995 		mutex_exit(SD_MUTEX(un));
14996 
14997 		return;
14998 	}
14999 
15000 not_successful:
15001 
15002 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
15003 	/*
15004 	 * The following is based upon knowledge of the underlying transport
15005 	 * and its use of DMA resources.  This code should be removed when
15006 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
15007 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
15008 	 * and sd_start_cmds().
15009 	 *
15010 	 * Free any DMA resources associated with this command if there
15011 	 * is a chance it could be retried or enqueued for later retry.
15012 	 * If we keep the DMA binding then mpxio cannot reissue the
15013 	 * command on another path whenever a path failure occurs.
15014 	 *
15015 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
15016 	 * causes the *entire* transfer to start over again from the
15017 	 * beginning of the request, even for PARTIAL chunks that
15018 	 * have already transferred successfully.
15019 	 *
15020 	 * This is only done for non-uscsi commands (and also skipped for the
15021 	 * driver's internal RQS command). Also just do this for Fibre Channel
15022 	 * devices as these are the only ones that support mpxio.
15023 	 */
15024 	if ((un->un_f_is_fibre == TRUE) &&
15025 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15026 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
15027 		scsi_dmafree(pktp);
15028 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15029 	}
15030 #endif
15031 
15032 	/*
15033 	 * The command did not successfully complete as requested so check
15034 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
15035 	 * driver command that should not be retried so just return. If
15036 	 * FLAG_DIAGNOSE is not set the error will be processed below.
15037 	 */
15038 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15039 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15040 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
15041 		/*
15042 		 * Issue a request sense if a check condition caused the error
15043 		 * (we handle the auto request sense case above), otherwise
15044 		 * just fail the command.
15045 		 */
15046 		if ((pktp->pkt_reason == CMD_CMPLT) &&
15047 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
15048 			sd_send_request_sense_command(un, bp, pktp);
15049 		} else {
15050 			sd_return_failed_command(un, bp, EIO);
15051 		}
15052 		goto exit;
15053 	}
15054 
15055 	/*
15056 	 * The command did not successfully complete as requested so process
15057 	 * the error, retry, and/or attempt recovery.
15058 	 */
15059 	switch (pktp->pkt_reason) {
15060 	case CMD_CMPLT:
15061 		switch (SD_GET_PKT_STATUS(pktp)) {
15062 		case STATUS_GOOD:
15063 			/*
15064 			 * The command completed successfully with a non-zero
15065 			 * residual
15066 			 */
15067 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15068 			    "sdintr: STATUS_GOOD \n");
15069 			sd_pkt_status_good(un, bp, xp, pktp);
15070 			break;
15071 
15072 		case STATUS_CHECK:
15073 		case STATUS_TERMINATED:
15074 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15075 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
15076 			sd_pkt_status_check_condition(un, bp, xp, pktp);
15077 			break;
15078 
15079 		case STATUS_BUSY:
15080 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15081 			    "sdintr: STATUS_BUSY\n");
15082 			sd_pkt_status_busy(un, bp, xp, pktp);
15083 			break;
15084 
15085 		case STATUS_RESERVATION_CONFLICT:
15086 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15087 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
15088 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15089 			break;
15090 
15091 		case STATUS_QFULL:
15092 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15093 			    "sdintr: STATUS_QFULL\n");
15094 			sd_pkt_status_qfull(un, bp, xp, pktp);
15095 			break;
15096 
15097 		case STATUS_MET:
15098 		case STATUS_INTERMEDIATE:
15099 		case STATUS_SCSI2:
15100 		case STATUS_INTERMEDIATE_MET:
15101 		case STATUS_ACA_ACTIVE:
15102 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15103 			    "Unexpected SCSI status received: 0x%x\n",
15104 			    SD_GET_PKT_STATUS(pktp));
15105 			sd_return_failed_command(un, bp, EIO);
15106 			break;
15107 
15108 		default:
15109 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
15110 			    "Invalid SCSI status received: 0x%x\n",
15111 			    SD_GET_PKT_STATUS(pktp));
15112 			sd_return_failed_command(un, bp, EIO);
15113 			break;
15114 
15115 		}
15116 		break;
15117 
15118 	case CMD_INCOMPLETE:
15119 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15120 		    "sdintr:  CMD_INCOMPLETE\n");
15121 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
15122 		break;
15123 	case CMD_TRAN_ERR:
15124 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15125 		    "sdintr: CMD_TRAN_ERR\n");
15126 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
15127 		break;
15128 	case CMD_RESET:
15129 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15130 		    "sdintr: CMD_RESET \n");
15131 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
15132 		break;
15133 	case CMD_ABORTED:
15134 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15135 		    "sdintr: CMD_ABORTED \n");
15136 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
15137 		break;
15138 	case CMD_TIMEOUT:
15139 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15140 		    "sdintr: CMD_TIMEOUT\n");
15141 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
15142 		break;
15143 	case CMD_UNX_BUS_FREE:
15144 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15145 		    "sdintr: CMD_UNX_BUS_FREE \n");
15146 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
15147 		break;
15148 	case CMD_TAG_REJECT:
15149 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15150 		    "sdintr: CMD_TAG_REJECT\n");
15151 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
15152 		break;
15153 	default:
15154 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15155 		    "sdintr: default\n");
15156 		sd_pkt_reason_default(un, bp, xp, pktp);
15157 		break;
15158 	}
15159 
15160 exit:
15161 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
15162 
15163 	/* Decrement counter to indicate that the callback routine is done. */
15164 	un->un_in_callback--;
15165 	ASSERT(un->un_in_callback >= 0);
15166 
15167 	/*
15168 	 * At this point, the pkt has been dispatched, ie, it is either
15169 	 * being re-tried or has been returned to its caller and should
15170 	 * not be referenced.
15171 	 */
15172 
15173 	mutex_exit(SD_MUTEX(un));
15174 }
15175 
15176 
15177 /*
15178  *    Function: sd_print_incomplete_msg
15179  *
15180  * Description: Prints the error message for a CMD_INCOMPLETE error.
15181  *
15182  *   Arguments: un - ptr to associated softstate for the device.
15183  *		bp - ptr to the buf(9S) for the command.
15184  *		arg - message string ptr
15185  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
15186  *			or SD_NO_RETRY_ISSUED.
15187  *
15188  *     Context: May be called under interrupt context
15189  */
15190 
15191 static void
15192 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15193 {
15194 	struct scsi_pkt	*pktp;
15195 	char	*msgp;
15196 	char	*cmdp = arg;
15197 
15198 	ASSERT(un != NULL);
15199 	ASSERT(mutex_owned(SD_MUTEX(un)));
15200 	ASSERT(bp != NULL);
15201 	ASSERT(arg != NULL);
15202 	pktp = SD_GET_PKTP(bp);
15203 	ASSERT(pktp != NULL);
15204 
15205 	switch (code) {
15206 	case SD_DELAYED_RETRY_ISSUED:
15207 	case SD_IMMEDIATE_RETRY_ISSUED:
15208 		msgp = "retrying";
15209 		break;
15210 	case SD_NO_RETRY_ISSUED:
15211 	default:
15212 		msgp = "giving up";
15213 		break;
15214 	}
15215 
15216 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15217 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15218 		    "incomplete %s- %s\n", cmdp, msgp);
15219 	}
15220 }
15221 
15222 
15223 
15224 /*
15225  *    Function: sd_pkt_status_good
15226  *
15227  * Description: Processing for a STATUS_GOOD code in pkt_status.
15228  *
15229  *     Context: May be called under interrupt context
15230  */
15231 
15232 static void
15233 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
15234 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15235 {
15236 	char	*cmdp;
15237 
15238 	ASSERT(un != NULL);
15239 	ASSERT(mutex_owned(SD_MUTEX(un)));
15240 	ASSERT(bp != NULL);
15241 	ASSERT(xp != NULL);
15242 	ASSERT(pktp != NULL);
15243 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
15244 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
15245 	ASSERT(pktp->pkt_resid != 0);
15246 
15247 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
15248 
15249 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
15250 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
15251 	case SCMD_READ:
15252 		cmdp = "read";
15253 		break;
15254 	case SCMD_WRITE:
15255 		cmdp = "write";
15256 		break;
15257 	default:
15258 		SD_UPDATE_B_RESID(bp, pktp);
15259 		sd_return_command(un, bp);
15260 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15261 		return;
15262 	}
15263 
15264 	/*
15265 	 * See if we can retry the read/write, preferrably immediately.
15266 	 * If retries are exhaused, then sd_retry_command() will update
15267 	 * the b_resid count.
15268 	 */
15269 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
15270 	    cmdp, EIO, (clock_t)0, NULL);
15271 
15272 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
15273 }
15274 
15275 
15276 
15277 
15278 
15279 /*
15280  *    Function: sd_handle_request_sense
15281  *
15282  * Description: Processing for non-auto Request Sense command.
15283  *
15284  *   Arguments: un - ptr to associated softstate
15285  *		sense_bp - ptr to buf(9S) for the RQS command
15286  *		sense_xp - ptr to the sd_xbuf for the RQS command
15287  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
15288  *
15289  *     Context: May be called under interrupt context
15290  */
15291 
15292 static void
15293 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
15294 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
15295 {
15296 	struct buf	*cmd_bp;	/* buf for the original command */
15297 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
15298 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
15299 	size_t		actual_len;	/* actual sense data length */
15300 
15301 	ASSERT(un != NULL);
15302 	ASSERT(mutex_owned(SD_MUTEX(un)));
15303 	ASSERT(sense_bp != NULL);
15304 	ASSERT(sense_xp != NULL);
15305 	ASSERT(sense_pktp != NULL);
15306 
15307 	/*
15308 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
15309 	 * RQS command and not the original command.
15310 	 */
15311 	ASSERT(sense_pktp == un->un_rqs_pktp);
15312 	ASSERT(sense_bp   == un->un_rqs_bp);
15313 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
15314 	    (FLAG_SENSING | FLAG_HEAD));
15315 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
15316 	    FLAG_SENSING) == FLAG_SENSING);
15317 
15318 	/* These are the bp, xp, and pktp for the original command */
15319 	cmd_bp = sense_xp->xb_sense_bp;
15320 	cmd_xp = SD_GET_XBUF(cmd_bp);
15321 	cmd_pktp = SD_GET_PKTP(cmd_bp);
15322 
15323 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
15324 		/*
15325 		 * The REQUEST SENSE command failed.  Release the REQUEST
15326 		 * SENSE command for re-use, get back the bp for the original
15327 		 * command, and attempt to re-try the original command if
15328 		 * FLAG_DIAGNOSE is not set in the original packet.
15329 		 */
15330 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
15331 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15332 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
15333 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
15334 			    NULL, NULL, EIO, (clock_t)0, NULL);
15335 			return;
15336 		}
15337 	}
15338 
15339 	/*
15340 	 * Save the relevant sense info into the xp for the original cmd.
15341 	 *
15342 	 * Note: if the request sense failed the state info will be zero
15343 	 * as set in sd_mark_rqs_busy()
15344 	 */
15345 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
15346 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
15347 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
15348 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
15349 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
15350 	    SENSE_LENGTH)) {
15351 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15352 		    MAX_SENSE_LENGTH);
15353 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
15354 	} else {
15355 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
15356 		    SENSE_LENGTH);
15357 		if (actual_len < SENSE_LENGTH) {
15358 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
15359 		} else {
15360 			cmd_xp->xb_sense_resid = 0;
15361 		}
15362 	}
15363 
15364 	/*
15365 	 *  Free up the RQS command....
15366 	 *  NOTE:
15367 	 *	Must do this BEFORE calling sd_validate_sense_data!
15368 	 *	sd_validate_sense_data may return the original command in
15369 	 *	which case the pkt will be freed and the flags can no
15370 	 *	longer be touched.
15371 	 *	SD_MUTEX is held through this process until the command
15372 	 *	is dispatched based upon the sense data, so there are
15373 	 *	no race conditions.
15374 	 */
15375 	(void) sd_mark_rqs_idle(un, sense_xp);
15376 
15377 	/*
15378 	 * For a retryable command see if we have valid sense data, if so then
15379 	 * turn it over to sd_decode_sense() to figure out the right course of
15380 	 * action. Just fail a non-retryable command.
15381 	 */
15382 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15383 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
15384 		    SD_SENSE_DATA_IS_VALID) {
15385 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
15386 		}
15387 	} else {
15388 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
15389 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15390 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
15391 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15392 		sd_return_failed_command(un, cmd_bp, EIO);
15393 	}
15394 }
15395 
15396 
15397 
15398 
15399 /*
15400  *    Function: sd_handle_auto_request_sense
15401  *
15402  * Description: Processing for auto-request sense information.
15403  *
15404  *   Arguments: un - ptr to associated softstate
15405  *		bp - ptr to buf(9S) for the command
15406  *		xp - ptr to the sd_xbuf for the command
15407  *		pktp - ptr to the scsi_pkt(9S) for the command
15408  *
15409  *     Context: May be called under interrupt context
15410  */
15411 
15412 static void
15413 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
15414 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15415 {
15416 	struct scsi_arq_status *asp;
15417 	size_t actual_len;
15418 
15419 	ASSERT(un != NULL);
15420 	ASSERT(mutex_owned(SD_MUTEX(un)));
15421 	ASSERT(bp != NULL);
15422 	ASSERT(xp != NULL);
15423 	ASSERT(pktp != NULL);
15424 	ASSERT(pktp != un->un_rqs_pktp);
15425 	ASSERT(bp   != un->un_rqs_bp);
15426 
15427 	/*
15428 	 * For auto-request sense, we get a scsi_arq_status back from
15429 	 * the HBA, with the sense data in the sts_sensedata member.
15430 	 * The pkt_scbp of the packet points to this scsi_arq_status.
15431 	 */
15432 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
15433 
15434 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
15435 		/*
15436 		 * The auto REQUEST SENSE failed; see if we can re-try
15437 		 * the original command.
15438 		 */
15439 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15440 		    "auto request sense failed (reason=%s)\n",
15441 		    scsi_rname(asp->sts_rqpkt_reason));
15442 
15443 		sd_reset_target(un, pktp);
15444 
15445 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15446 		    NULL, NULL, EIO, (clock_t)0, NULL);
15447 		return;
15448 	}
15449 
15450 	/* Save the relevant sense info into the xp for the original cmd. */
15451 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
15452 	xp->xb_sense_state  = asp->sts_rqpkt_state;
15453 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
15454 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
15455 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15456 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
15457 		    MAX_SENSE_LENGTH);
15458 	} else {
15459 		if (xp->xb_sense_resid > SENSE_LENGTH) {
15460 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
15461 		} else {
15462 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
15463 		}
15464 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
15465 			xp->xb_sense_resid = (int)(((struct uscsi_cmd *)
15466 			    (xp->xb_pktinfo))->uscsi_rqlen) - actual_len;
15467 		}
15468 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
15469 	}
15470 
15471 	/*
15472 	 * See if we have valid sense data, if so then turn it over to
15473 	 * sd_decode_sense() to figure out the right course of action.
15474 	 */
15475 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
15476 	    SD_SENSE_DATA_IS_VALID) {
15477 		sd_decode_sense(un, bp, xp, pktp);
15478 	}
15479 }
15480 
15481 
15482 /*
15483  *    Function: sd_print_sense_failed_msg
15484  *
15485  * Description: Print log message when RQS has failed.
15486  *
15487  *   Arguments: un - ptr to associated softstate
15488  *		bp - ptr to buf(9S) for the command
15489  *		arg - generic message string ptr
15490  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15491  *			or SD_NO_RETRY_ISSUED
15492  *
15493  *     Context: May be called from interrupt context
15494  */
15495 
15496 static void
15497 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
15498 	int code)
15499 {
15500 	char	*msgp = arg;
15501 
15502 	ASSERT(un != NULL);
15503 	ASSERT(mutex_owned(SD_MUTEX(un)));
15504 	ASSERT(bp != NULL);
15505 
15506 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
15507 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
15508 	}
15509 }
15510 
15511 
15512 /*
15513  *    Function: sd_validate_sense_data
15514  *
15515  * Description: Check the given sense data for validity.
15516  *		If the sense data is not valid, the command will
15517  *		be either failed or retried!
15518  *
15519  * Return Code: SD_SENSE_DATA_IS_INVALID
15520  *		SD_SENSE_DATA_IS_VALID
15521  *
15522  *     Context: May be called from interrupt context
15523  */
15524 
15525 static int
15526 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15527 	size_t actual_len)
15528 {
15529 	struct scsi_extended_sense *esp;
15530 	struct	scsi_pkt *pktp;
15531 	char	*msgp = NULL;
15532 
15533 	ASSERT(un != NULL);
15534 	ASSERT(mutex_owned(SD_MUTEX(un)));
15535 	ASSERT(bp != NULL);
15536 	ASSERT(bp != un->un_rqs_bp);
15537 	ASSERT(xp != NULL);
15538 
15539 	pktp = SD_GET_PKTP(bp);
15540 	ASSERT(pktp != NULL);
15541 
15542 	/*
15543 	 * Check the status of the RQS command (auto or manual).
15544 	 */
15545 	switch (xp->xb_sense_status & STATUS_MASK) {
15546 	case STATUS_GOOD:
15547 		break;
15548 
15549 	case STATUS_RESERVATION_CONFLICT:
15550 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
15551 		return (SD_SENSE_DATA_IS_INVALID);
15552 
15553 	case STATUS_BUSY:
15554 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15555 		    "Busy Status on REQUEST SENSE\n");
15556 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
15557 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15558 		return (SD_SENSE_DATA_IS_INVALID);
15559 
15560 	case STATUS_QFULL:
15561 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15562 		    "QFULL Status on REQUEST SENSE\n");
15563 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
15564 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
15565 		return (SD_SENSE_DATA_IS_INVALID);
15566 
15567 	case STATUS_CHECK:
15568 	case STATUS_TERMINATED:
15569 		msgp = "Check Condition on REQUEST SENSE\n";
15570 		goto sense_failed;
15571 
15572 	default:
15573 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
15574 		goto sense_failed;
15575 	}
15576 
15577 	/*
15578 	 * See if we got the minimum required amount of sense data.
15579 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
15580 	 * or less.
15581 	 */
15582 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
15583 	    (actual_len == 0)) {
15584 		msgp = "Request Sense couldn't get sense data\n";
15585 		goto sense_failed;
15586 	}
15587 
15588 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
15589 		msgp = "Not enough sense information\n";
15590 		goto sense_failed;
15591 	}
15592 
15593 	/*
15594 	 * We require the extended sense data
15595 	 */
15596 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
15597 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
15598 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
15599 			static char tmp[8];
15600 			static char buf[148];
15601 			char *p = (char *)(xp->xb_sense_data);
15602 			int i;
15603 
15604 			mutex_enter(&sd_sense_mutex);
15605 			(void) strcpy(buf, "undecodable sense information:");
15606 			for (i = 0; i < actual_len; i++) {
15607 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
15608 				(void) strcpy(&buf[strlen(buf)], tmp);
15609 			}
15610 			i = strlen(buf);
15611 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
15612 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
15613 			mutex_exit(&sd_sense_mutex);
15614 		}
15615 		/* Note: Legacy behavior, fail the command with no retry */
15616 		sd_return_failed_command(un, bp, EIO);
15617 		return (SD_SENSE_DATA_IS_INVALID);
15618 	}
15619 
15620 	/*
15621 	 * Check that es_code is valid (es_class concatenated with es_code
15622 	 * make up the "response code" field.  es_class will always be 7, so
15623 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
15624 	 * format.
15625 	 */
15626 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
15627 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
15628 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
15629 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
15630 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
15631 		goto sense_failed;
15632 	}
15633 
15634 	return (SD_SENSE_DATA_IS_VALID);
15635 
15636 sense_failed:
15637 	/*
15638 	 * If the request sense failed (for whatever reason), attempt
15639 	 * to retry the original command.
15640 	 */
15641 #if defined(__i386) || defined(__amd64)
15642 	/*
15643 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
15644 	 * sddef.h for Sparc platform, and x86 uses 1 binary
15645 	 * for both SCSI/FC.
15646 	 * The SD_RETRY_DELAY value need to be adjusted here
15647 	 * when SD_RETRY_DELAY change in sddef.h
15648 	 */
15649 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15650 	    sd_print_sense_failed_msg, msgp, EIO,
15651 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
15652 #else
15653 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15654 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
15655 #endif
15656 
15657 	return (SD_SENSE_DATA_IS_INVALID);
15658 }
15659 
15660 
15661 
15662 /*
15663  *    Function: sd_decode_sense
15664  *
15665  * Description: Take recovery action(s) when SCSI Sense Data is received.
15666  *
15667  *     Context: Interrupt context.
15668  */
15669 
15670 static void
15671 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
15672 	struct scsi_pkt *pktp)
15673 {
15674 	uint8_t sense_key;
15675 
15676 	ASSERT(un != NULL);
15677 	ASSERT(mutex_owned(SD_MUTEX(un)));
15678 	ASSERT(bp != NULL);
15679 	ASSERT(bp != un->un_rqs_bp);
15680 	ASSERT(xp != NULL);
15681 	ASSERT(pktp != NULL);
15682 
15683 	sense_key = scsi_sense_key(xp->xb_sense_data);
15684 
15685 	switch (sense_key) {
15686 	case KEY_NO_SENSE:
15687 		sd_sense_key_no_sense(un, bp, xp, pktp);
15688 		break;
15689 	case KEY_RECOVERABLE_ERROR:
15690 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
15691 		    bp, xp, pktp);
15692 		break;
15693 	case KEY_NOT_READY:
15694 		sd_sense_key_not_ready(un, xp->xb_sense_data,
15695 		    bp, xp, pktp);
15696 		break;
15697 	case KEY_MEDIUM_ERROR:
15698 	case KEY_HARDWARE_ERROR:
15699 		sd_sense_key_medium_or_hardware_error(un,
15700 		    xp->xb_sense_data, bp, xp, pktp);
15701 		break;
15702 	case KEY_ILLEGAL_REQUEST:
15703 		sd_sense_key_illegal_request(un, bp, xp, pktp);
15704 		break;
15705 	case KEY_UNIT_ATTENTION:
15706 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
15707 		    bp, xp, pktp);
15708 		break;
15709 	case KEY_WRITE_PROTECT:
15710 	case KEY_VOLUME_OVERFLOW:
15711 	case KEY_MISCOMPARE:
15712 		sd_sense_key_fail_command(un, bp, xp, pktp);
15713 		break;
15714 	case KEY_BLANK_CHECK:
15715 		sd_sense_key_blank_check(un, bp, xp, pktp);
15716 		break;
15717 	case KEY_ABORTED_COMMAND:
15718 		sd_sense_key_aborted_command(un, bp, xp, pktp);
15719 		break;
15720 	case KEY_VENDOR_UNIQUE:
15721 	case KEY_COPY_ABORTED:
15722 	case KEY_EQUAL:
15723 	case KEY_RESERVED:
15724 	default:
15725 		sd_sense_key_default(un, xp->xb_sense_data,
15726 		    bp, xp, pktp);
15727 		break;
15728 	}
15729 }
15730 
15731 
15732 /*
15733  *    Function: sd_dump_memory
15734  *
15735  * Description: Debug logging routine to print the contents of a user provided
15736  *		buffer. The output of the buffer is broken up into 256 byte
15737  *		segments due to a size constraint of the scsi_log.
15738  *		implementation.
15739  *
15740  *   Arguments: un - ptr to softstate
15741  *		comp - component mask
15742  *		title - "title" string to preceed data when printed
15743  *		data - ptr to data block to be printed
15744  *		len - size of data block to be printed
15745  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
15746  *
15747  *     Context: May be called from interrupt context
15748  */
15749 
15750 #define	SD_DUMP_MEMORY_BUF_SIZE	256
15751 
15752 static char *sd_dump_format_string[] = {
15753 		" 0x%02x",
15754 		" %c"
15755 };
15756 
15757 static void
15758 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
15759     int len, int fmt)
15760 {
15761 	int	i, j;
15762 	int	avail_count;
15763 	int	start_offset;
15764 	int	end_offset;
15765 	size_t	entry_len;
15766 	char	*bufp;
15767 	char	*local_buf;
15768 	char	*format_string;
15769 
15770 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
15771 
15772 	/*
15773 	 * In the debug version of the driver, this function is called from a
15774 	 * number of places which are NOPs in the release driver.
15775 	 * The debug driver therefore has additional methods of filtering
15776 	 * debug output.
15777 	 */
15778 #ifdef SDDEBUG
15779 	/*
15780 	 * In the debug version of the driver we can reduce the amount of debug
15781 	 * messages by setting sd_error_level to something other than
15782 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
15783 	 * sd_component_mask.
15784 	 */
15785 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
15786 	    (sd_error_level != SCSI_ERR_ALL)) {
15787 		return;
15788 	}
15789 	if (((sd_component_mask & comp) == 0) ||
15790 	    (sd_error_level != SCSI_ERR_ALL)) {
15791 		return;
15792 	}
15793 #else
15794 	if (sd_error_level != SCSI_ERR_ALL) {
15795 		return;
15796 	}
15797 #endif
15798 
15799 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
15800 	bufp = local_buf;
15801 	/*
15802 	 * Available length is the length of local_buf[], minus the
15803 	 * length of the title string, minus one for the ":", minus
15804 	 * one for the newline, minus one for the NULL terminator.
15805 	 * This gives the #bytes available for holding the printed
15806 	 * values from the given data buffer.
15807 	 */
15808 	if (fmt == SD_LOG_HEX) {
15809 		format_string = sd_dump_format_string[0];
15810 	} else /* SD_LOG_CHAR */ {
15811 		format_string = sd_dump_format_string[1];
15812 	}
15813 	/*
15814 	 * Available count is the number of elements from the given
15815 	 * data buffer that we can fit into the available length.
15816 	 * This is based upon the size of the format string used.
15817 	 * Make one entry and find it's size.
15818 	 */
15819 	(void) sprintf(bufp, format_string, data[0]);
15820 	entry_len = strlen(bufp);
15821 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
15822 
15823 	j = 0;
15824 	while (j < len) {
15825 		bufp = local_buf;
15826 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
15827 		start_offset = j;
15828 
15829 		end_offset = start_offset + avail_count;
15830 
15831 		(void) sprintf(bufp, "%s:", title);
15832 		bufp += strlen(bufp);
15833 		for (i = start_offset; ((i < end_offset) && (j < len));
15834 		    i++, j++) {
15835 			(void) sprintf(bufp, format_string, data[i]);
15836 			bufp += entry_len;
15837 		}
15838 		(void) sprintf(bufp, "\n");
15839 
15840 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
15841 	}
15842 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
15843 }
15844 
15845 /*
15846  *    Function: sd_print_sense_msg
15847  *
15848  * Description: Log a message based upon the given sense data.
15849  *
15850  *   Arguments: un - ptr to associated softstate
15851  *		bp - ptr to buf(9S) for the command
15852  *		arg - ptr to associate sd_sense_info struct
15853  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
15854  *			or SD_NO_RETRY_ISSUED
15855  *
15856  *     Context: May be called from interrupt context
15857  */
15858 
15859 static void
15860 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
15861 {
15862 	struct sd_xbuf	*xp;
15863 	struct scsi_pkt	*pktp;
15864 	uint8_t *sensep;
15865 	daddr_t request_blkno;
15866 	diskaddr_t err_blkno;
15867 	int severity;
15868 	int pfa_flag;
15869 	extern struct scsi_key_strings scsi_cmds[];
15870 
15871 	ASSERT(un != NULL);
15872 	ASSERT(mutex_owned(SD_MUTEX(un)));
15873 	ASSERT(bp != NULL);
15874 	xp = SD_GET_XBUF(bp);
15875 	ASSERT(xp != NULL);
15876 	pktp = SD_GET_PKTP(bp);
15877 	ASSERT(pktp != NULL);
15878 	ASSERT(arg != NULL);
15879 
15880 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
15881 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
15882 
15883 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
15884 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
15885 		severity = SCSI_ERR_RETRYABLE;
15886 	}
15887 
15888 	/* Use absolute block number for the request block number */
15889 	request_blkno = xp->xb_blkno;
15890 
15891 	/*
15892 	 * Now try to get the error block number from the sense data
15893 	 */
15894 	sensep = xp->xb_sense_data;
15895 
15896 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
15897 	    (uint64_t *)&err_blkno)) {
15898 		/*
15899 		 * We retrieved the error block number from the information
15900 		 * portion of the sense data.
15901 		 *
15902 		 * For USCSI commands we are better off using the error
15903 		 * block no. as the requested block no. (This is the best
15904 		 * we can estimate.)
15905 		 */
15906 		if ((SD_IS_BUFIO(xp) == FALSE) &&
15907 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
15908 			request_blkno = err_blkno;
15909 		}
15910 	} else {
15911 		/*
15912 		 * Without the es_valid bit set (for fixed format) or an
15913 		 * information descriptor (for descriptor format) we cannot
15914 		 * be certain of the error blkno, so just use the
15915 		 * request_blkno.
15916 		 */
15917 		err_blkno = (diskaddr_t)request_blkno;
15918 	}
15919 
15920 	/*
15921 	 * The following will log the buffer contents for the release driver
15922 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
15923 	 * level is set to verbose.
15924 	 */
15925 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
15926 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15927 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15928 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
15929 
15930 	if (pfa_flag == FALSE) {
15931 		/* This is normally only set for USCSI */
15932 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
15933 			return;
15934 		}
15935 
15936 		if ((SD_IS_BUFIO(xp) == TRUE) &&
15937 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
15938 		    (severity < sd_error_level))) {
15939 			return;
15940 		}
15941 	}
15942 
15943 	/*
15944 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
15945 	 */
15946 	if ((SD_IS_LSI(un)) &&
15947 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
15948 	    (scsi_sense_asc(sensep) == 0x94) &&
15949 	    (scsi_sense_ascq(sensep) == 0x01)) {
15950 		un->un_sonoma_failure_count++;
15951 		if (un->un_sonoma_failure_count > 1) {
15952 			return;
15953 		}
15954 	}
15955 
15956 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
15957 	    request_blkno, err_blkno, scsi_cmds,
15958 	    (struct scsi_extended_sense *)sensep,
15959 	    un->un_additional_codes, NULL);
15960 }
15961 
15962 /*
15963  *    Function: sd_sense_key_no_sense
15964  *
15965  * Description: Recovery action when sense data was not received.
15966  *
15967  *     Context: May be called from interrupt context
15968  */
15969 
15970 static void
15971 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
15972 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
15973 {
15974 	struct sd_sense_info	si;
15975 
15976 	ASSERT(un != NULL);
15977 	ASSERT(mutex_owned(SD_MUTEX(un)));
15978 	ASSERT(bp != NULL);
15979 	ASSERT(xp != NULL);
15980 	ASSERT(pktp != NULL);
15981 
15982 	si.ssi_severity = SCSI_ERR_FATAL;
15983 	si.ssi_pfa_flag = FALSE;
15984 
15985 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
15986 
15987 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
15988 	    &si, EIO, (clock_t)0, NULL);
15989 }
15990 
15991 
15992 /*
15993  *    Function: sd_sense_key_recoverable_error
15994  *
15995  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
15996  *
15997  *     Context: May be called from interrupt context
15998  */
15999 
16000 static void
16001 sd_sense_key_recoverable_error(struct sd_lun *un,
16002 	uint8_t *sense_datap,
16003 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16004 {
16005 	struct sd_sense_info	si;
16006 	uint8_t asc = scsi_sense_asc(sense_datap);
16007 
16008 	ASSERT(un != NULL);
16009 	ASSERT(mutex_owned(SD_MUTEX(un)));
16010 	ASSERT(bp != NULL);
16011 	ASSERT(xp != NULL);
16012 	ASSERT(pktp != NULL);
16013 
16014 	/*
16015 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
16016 	 */
16017 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
16018 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16019 		si.ssi_severity = SCSI_ERR_INFO;
16020 		si.ssi_pfa_flag = TRUE;
16021 	} else {
16022 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
16023 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
16024 		si.ssi_severity = SCSI_ERR_RECOVERED;
16025 		si.ssi_pfa_flag = FALSE;
16026 	}
16027 
16028 	if (pktp->pkt_resid == 0) {
16029 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16030 		sd_return_command(un, bp);
16031 		return;
16032 	}
16033 
16034 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16035 	    &si, EIO, (clock_t)0, NULL);
16036 }
16037 
16038 
16039 
16040 
16041 /*
16042  *    Function: sd_sense_key_not_ready
16043  *
16044  * Description: Recovery actions for a SCSI "Not Ready" sense key.
16045  *
16046  *     Context: May be called from interrupt context
16047  */
16048 
16049 static void
16050 sd_sense_key_not_ready(struct sd_lun *un,
16051 	uint8_t *sense_datap,
16052 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16053 {
16054 	struct sd_sense_info	si;
16055 	uint8_t asc = scsi_sense_asc(sense_datap);
16056 	uint8_t ascq = scsi_sense_ascq(sense_datap);
16057 
16058 	ASSERT(un != NULL);
16059 	ASSERT(mutex_owned(SD_MUTEX(un)));
16060 	ASSERT(bp != NULL);
16061 	ASSERT(xp != NULL);
16062 	ASSERT(pktp != NULL);
16063 
16064 	si.ssi_severity = SCSI_ERR_FATAL;
16065 	si.ssi_pfa_flag = FALSE;
16066 
16067 	/*
16068 	 * Update error stats after first NOT READY error. Disks may have
16069 	 * been powered down and may need to be restarted.  For CDROMs,
16070 	 * report NOT READY errors only if media is present.
16071 	 */
16072 	if ((ISCD(un) && (asc == 0x3A)) ||
16073 	    (xp->xb_nr_retry_count > 0)) {
16074 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16075 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
16076 	}
16077 
16078 	/*
16079 	 * Just fail if the "not ready" retry limit has been reached.
16080 	 */
16081 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
16082 		/* Special check for error message printing for removables. */
16083 		if (un->un_f_has_removable_media && (asc == 0x04) &&
16084 		    (ascq >= 0x04)) {
16085 			si.ssi_severity = SCSI_ERR_ALL;
16086 		}
16087 		goto fail_command;
16088 	}
16089 
16090 	/*
16091 	 * Check the ASC and ASCQ in the sense data as needed, to determine
16092 	 * what to do.
16093 	 */
16094 	switch (asc) {
16095 	case 0x04:	/* LOGICAL UNIT NOT READY */
16096 		/*
16097 		 * disk drives that don't spin up result in a very long delay
16098 		 * in format without warning messages. We will log a message
16099 		 * if the error level is set to verbose.
16100 		 */
16101 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16102 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16103 			    "logical unit not ready, resetting disk\n");
16104 		}
16105 
16106 		/*
16107 		 * There are different requirements for CDROMs and disks for
16108 		 * the number of retries.  If a CD-ROM is giving this, it is
16109 		 * probably reading TOC and is in the process of getting
16110 		 * ready, so we should keep on trying for a long time to make
16111 		 * sure that all types of media are taken in account (for
16112 		 * some media the drive takes a long time to read TOC).  For
16113 		 * disks we do not want to retry this too many times as this
16114 		 * can cause a long hang in format when the drive refuses to
16115 		 * spin up (a very common failure).
16116 		 */
16117 		switch (ascq) {
16118 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
16119 			/*
16120 			 * Disk drives frequently refuse to spin up which
16121 			 * results in a very long hang in format without
16122 			 * warning messages.
16123 			 *
16124 			 * Note: This code preserves the legacy behavior of
16125 			 * comparing xb_nr_retry_count against zero for fibre
16126 			 * channel targets instead of comparing against the
16127 			 * un_reset_retry_count value.  The reason for this
16128 			 * discrepancy has been so utterly lost beneath the
16129 			 * Sands of Time that even Indiana Jones could not
16130 			 * find it.
16131 			 */
16132 			if (un->un_f_is_fibre == TRUE) {
16133 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16134 				    (xp->xb_nr_retry_count > 0)) &&
16135 				    (un->un_startstop_timeid == NULL)) {
16136 					scsi_log(SD_DEVINFO(un), sd_label,
16137 					    CE_WARN, "logical unit not ready, "
16138 					    "resetting disk\n");
16139 					sd_reset_target(un, pktp);
16140 				}
16141 			} else {
16142 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
16143 				    (xp->xb_nr_retry_count >
16144 				    un->un_reset_retry_count)) &&
16145 				    (un->un_startstop_timeid == NULL)) {
16146 					scsi_log(SD_DEVINFO(un), sd_label,
16147 					    CE_WARN, "logical unit not ready, "
16148 					    "resetting disk\n");
16149 					sd_reset_target(un, pktp);
16150 				}
16151 			}
16152 			break;
16153 
16154 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
16155 			/*
16156 			 * If the target is in the process of becoming
16157 			 * ready, just proceed with the retry. This can
16158 			 * happen with CD-ROMs that take a long time to
16159 			 * read TOC after a power cycle or reset.
16160 			 */
16161 			goto do_retry;
16162 
16163 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
16164 			break;
16165 
16166 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
16167 			/*
16168 			 * Retries cannot help here so just fail right away.
16169 			 */
16170 			goto fail_command;
16171 
16172 		case 0x88:
16173 			/*
16174 			 * Vendor-unique code for T3/T4: it indicates a
16175 			 * path problem in a mutipathed config, but as far as
16176 			 * the target driver is concerned it equates to a fatal
16177 			 * error, so we should just fail the command right away
16178 			 * (without printing anything to the console). If this
16179 			 * is not a T3/T4, fall thru to the default recovery
16180 			 * action.
16181 			 * T3/T4 is FC only, don't need to check is_fibre
16182 			 */
16183 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
16184 				sd_return_failed_command(un, bp, EIO);
16185 				return;
16186 			}
16187 			/* FALLTHRU */
16188 
16189 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
16190 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
16191 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
16192 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
16193 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
16194 		default:    /* Possible future codes in SCSI spec? */
16195 			/*
16196 			 * For removable-media devices, do not retry if
16197 			 * ASCQ > 2 as these result mostly from USCSI commands
16198 			 * on MMC devices issued to check status of an
16199 			 * operation initiated in immediate mode.  Also for
16200 			 * ASCQ >= 4 do not print console messages as these
16201 			 * mainly represent a user-initiated operation
16202 			 * instead of a system failure.
16203 			 */
16204 			if (un->un_f_has_removable_media) {
16205 				si.ssi_severity = SCSI_ERR_ALL;
16206 				goto fail_command;
16207 			}
16208 			break;
16209 		}
16210 
16211 		/*
16212 		 * As part of our recovery attempt for the NOT READY
16213 		 * condition, we issue a START STOP UNIT command. However
16214 		 * we want to wait for a short delay before attempting this
16215 		 * as there may still be more commands coming back from the
16216 		 * target with the check condition. To do this we use
16217 		 * timeout(9F) to call sd_start_stop_unit_callback() after
16218 		 * the delay interval expires. (sd_start_stop_unit_callback()
16219 		 * dispatches sd_start_stop_unit_task(), which will issue
16220 		 * the actual START STOP UNIT command. The delay interval
16221 		 * is one-half of the delay that we will use to retry the
16222 		 * command that generated the NOT READY condition.
16223 		 *
16224 		 * Note that we could just dispatch sd_start_stop_unit_task()
16225 		 * from here and allow it to sleep for the delay interval,
16226 		 * but then we would be tying up the taskq thread
16227 		 * uncesessarily for the duration of the delay.
16228 		 *
16229 		 * Do not issue the START STOP UNIT if the current command
16230 		 * is already a START STOP UNIT.
16231 		 */
16232 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
16233 			break;
16234 		}
16235 
16236 		/*
16237 		 * Do not schedule the timeout if one is already pending.
16238 		 */
16239 		if (un->un_startstop_timeid != NULL) {
16240 			SD_INFO(SD_LOG_ERROR, un,
16241 			    "sd_sense_key_not_ready: restart already issued to"
16242 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
16243 			    ddi_get_instance(SD_DEVINFO(un)));
16244 			break;
16245 		}
16246 
16247 		/*
16248 		 * Schedule the START STOP UNIT command, then queue the command
16249 		 * for a retry.
16250 		 *
16251 		 * Note: A timeout is not scheduled for this retry because we
16252 		 * want the retry to be serial with the START_STOP_UNIT. The
16253 		 * retry will be started when the START_STOP_UNIT is completed
16254 		 * in sd_start_stop_unit_task.
16255 		 */
16256 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
16257 		    un, SD_BSY_TIMEOUT / 2);
16258 		xp->xb_nr_retry_count++;
16259 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
16260 		return;
16261 
16262 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
16263 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16264 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16265 			    "unit does not respond to selection\n");
16266 		}
16267 		break;
16268 
16269 	case 0x3A:	/* MEDIUM NOT PRESENT */
16270 		if (sd_error_level >= SCSI_ERR_FATAL) {
16271 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16272 			    "Caddy not inserted in drive\n");
16273 		}
16274 
16275 		sr_ejected(un);
16276 		un->un_mediastate = DKIO_EJECTED;
16277 		/* The state has changed, inform the media watch routines */
16278 		cv_broadcast(&un->un_state_cv);
16279 		/* Just fail if no media is present in the drive. */
16280 		goto fail_command;
16281 
16282 	default:
16283 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
16284 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
16285 			    "Unit not Ready. Additional sense code 0x%x\n",
16286 			    asc);
16287 		}
16288 		break;
16289 	}
16290 
16291 do_retry:
16292 
16293 	/*
16294 	 * Retry the command, as some targets may report NOT READY for
16295 	 * several seconds after being reset.
16296 	 */
16297 	xp->xb_nr_retry_count++;
16298 	si.ssi_severity = SCSI_ERR_RETRYABLE;
16299 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
16300 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
16301 
16302 	return;
16303 
16304 fail_command:
16305 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16306 	sd_return_failed_command(un, bp, EIO);
16307 }
16308 
16309 
16310 
16311 /*
16312  *    Function: sd_sense_key_medium_or_hardware_error
16313  *
16314  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
16315  *		sense key.
16316  *
16317  *     Context: May be called from interrupt context
16318  */
16319 
16320 static void
16321 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
16322 	uint8_t *sense_datap,
16323 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16324 {
16325 	struct sd_sense_info	si;
16326 	uint8_t sense_key = scsi_sense_key(sense_datap);
16327 	uint8_t asc = scsi_sense_asc(sense_datap);
16328 
16329 	ASSERT(un != NULL);
16330 	ASSERT(mutex_owned(SD_MUTEX(un)));
16331 	ASSERT(bp != NULL);
16332 	ASSERT(xp != NULL);
16333 	ASSERT(pktp != NULL);
16334 
16335 	si.ssi_severity = SCSI_ERR_FATAL;
16336 	si.ssi_pfa_flag = FALSE;
16337 
16338 	if (sense_key == KEY_MEDIUM_ERROR) {
16339 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
16340 	}
16341 
16342 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16343 
16344 	if ((un->un_reset_retry_count != 0) &&
16345 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
16346 		mutex_exit(SD_MUTEX(un));
16347 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
16348 		if (un->un_f_allow_bus_device_reset == TRUE) {
16349 
16350 			boolean_t try_resetting_target = B_TRUE;
16351 
16352 			/*
16353 			 * We need to be able to handle specific ASC when we are
16354 			 * handling a KEY_HARDWARE_ERROR. In particular
16355 			 * taking the default action of resetting the target may
16356 			 * not be the appropriate way to attempt recovery.
16357 			 * Resetting a target because of a single LUN failure
16358 			 * victimizes all LUNs on that target.
16359 			 *
16360 			 * This is true for the LSI arrays, if an LSI
16361 			 * array controller returns an ASC of 0x84 (LUN Dead) we
16362 			 * should trust it.
16363 			 */
16364 
16365 			if (sense_key == KEY_HARDWARE_ERROR) {
16366 				switch (asc) {
16367 				case 0x84:
16368 					if (SD_IS_LSI(un)) {
16369 						try_resetting_target = B_FALSE;
16370 					}
16371 					break;
16372 				default:
16373 					break;
16374 				}
16375 			}
16376 
16377 			if (try_resetting_target == B_TRUE) {
16378 				int reset_retval = 0;
16379 				if (un->un_f_lun_reset_enabled == TRUE) {
16380 					SD_TRACE(SD_LOG_IO_CORE, un,
16381 					    "sd_sense_key_medium_or_hardware_"
16382 					    "error: issuing RESET_LUN\n");
16383 					reset_retval =
16384 					    scsi_reset(SD_ADDRESS(un),
16385 					    RESET_LUN);
16386 				}
16387 				if (reset_retval == 0) {
16388 					SD_TRACE(SD_LOG_IO_CORE, un,
16389 					    "sd_sense_key_medium_or_hardware_"
16390 					    "error: issuing RESET_TARGET\n");
16391 					(void) scsi_reset(SD_ADDRESS(un),
16392 					    RESET_TARGET);
16393 				}
16394 			}
16395 		}
16396 		mutex_enter(SD_MUTEX(un));
16397 	}
16398 
16399 	/*
16400 	 * This really ought to be a fatal error, but we will retry anyway
16401 	 * as some drives report this as a spurious error.
16402 	 */
16403 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16404 	    &si, EIO, (clock_t)0, NULL);
16405 }
16406 
16407 
16408 
16409 /*
16410  *    Function: sd_sense_key_illegal_request
16411  *
16412  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
16413  *
16414  *     Context: May be called from interrupt context
16415  */
16416 
16417 static void
16418 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
16419 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16420 {
16421 	struct sd_sense_info	si;
16422 
16423 	ASSERT(un != NULL);
16424 	ASSERT(mutex_owned(SD_MUTEX(un)));
16425 	ASSERT(bp != NULL);
16426 	ASSERT(xp != NULL);
16427 	ASSERT(pktp != NULL);
16428 
16429 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
16430 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
16431 
16432 	si.ssi_severity = SCSI_ERR_INFO;
16433 	si.ssi_pfa_flag = FALSE;
16434 
16435 	/* Pointless to retry if the target thinks it's an illegal request */
16436 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16437 	sd_return_failed_command(un, bp, EIO);
16438 }
16439 
16440 
16441 
16442 
16443 /*
16444  *    Function: sd_sense_key_unit_attention
16445  *
16446  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
16447  *
16448  *     Context: May be called from interrupt context
16449  */
16450 
16451 static void
16452 sd_sense_key_unit_attention(struct sd_lun *un,
16453 	uint8_t *sense_datap,
16454 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16455 {
16456 	/*
16457 	 * For UNIT ATTENTION we allow retries for one minute. Devices
16458 	 * like Sonoma can return UNIT ATTENTION close to a minute
16459 	 * under certain conditions.
16460 	 */
16461 	int	retry_check_flag = SD_RETRIES_UA;
16462 	boolean_t	kstat_updated = B_FALSE;
16463 	struct	sd_sense_info		si;
16464 	uint8_t asc = scsi_sense_asc(sense_datap);
16465 
16466 	ASSERT(un != NULL);
16467 	ASSERT(mutex_owned(SD_MUTEX(un)));
16468 	ASSERT(bp != NULL);
16469 	ASSERT(xp != NULL);
16470 	ASSERT(pktp != NULL);
16471 
16472 	si.ssi_severity = SCSI_ERR_INFO;
16473 	si.ssi_pfa_flag = FALSE;
16474 
16475 
16476 	switch (asc) {
16477 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
16478 		if (sd_report_pfa != 0) {
16479 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
16480 			si.ssi_pfa_flag = TRUE;
16481 			retry_check_flag = SD_RETRIES_STANDARD;
16482 			goto do_retry;
16483 		}
16484 
16485 		break;
16486 
16487 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
16488 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
16489 			un->un_resvd_status |=
16490 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
16491 		}
16492 #ifdef _LP64
16493 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
16494 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
16495 			    un, KM_NOSLEEP) == 0) {
16496 				/*
16497 				 * If we can't dispatch the task we'll just
16498 				 * live without descriptor sense.  We can
16499 				 * try again on the next "unit attention"
16500 				 */
16501 				SD_ERROR(SD_LOG_ERROR, un,
16502 				    "sd_sense_key_unit_attention: "
16503 				    "Could not dispatch "
16504 				    "sd_reenable_dsense_task\n");
16505 			}
16506 		}
16507 #endif /* _LP64 */
16508 		/* FALLTHRU */
16509 
16510 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
16511 		if (!un->un_f_has_removable_media) {
16512 			break;
16513 		}
16514 
16515 		/*
16516 		 * When we get a unit attention from a removable-media device,
16517 		 * it may be in a state that will take a long time to recover
16518 		 * (e.g., from a reset).  Since we are executing in interrupt
16519 		 * context here, we cannot wait around for the device to come
16520 		 * back. So hand this command off to sd_media_change_task()
16521 		 * for deferred processing under taskq thread context. (Note
16522 		 * that the command still may be failed if a problem is
16523 		 * encountered at a later time.)
16524 		 */
16525 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
16526 		    KM_NOSLEEP) == 0) {
16527 			/*
16528 			 * Cannot dispatch the request so fail the command.
16529 			 */
16530 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
16531 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16532 			si.ssi_severity = SCSI_ERR_FATAL;
16533 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16534 			sd_return_failed_command(un, bp, EIO);
16535 		}
16536 
16537 		/*
16538 		 * If failed to dispatch sd_media_change_task(), we already
16539 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
16540 		 * we should update kstat later if it encounters an error. So,
16541 		 * we update kstat_updated flag here.
16542 		 */
16543 		kstat_updated = B_TRUE;
16544 
16545 		/*
16546 		 * Either the command has been successfully dispatched to a
16547 		 * task Q for retrying, or the dispatch failed. In either case
16548 		 * do NOT retry again by calling sd_retry_command. This sets up
16549 		 * two retries of the same command and when one completes and
16550 		 * frees the resources the other will access freed memory,
16551 		 * a bad thing.
16552 		 */
16553 		return;
16554 
16555 	default:
16556 		break;
16557 	}
16558 
16559 	/*
16560 	 * Update kstat if we haven't done that.
16561 	 */
16562 	if (!kstat_updated) {
16563 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16564 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
16565 	}
16566 
16567 do_retry:
16568 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
16569 	    EIO, SD_UA_RETRY_DELAY, NULL);
16570 }
16571 
16572 
16573 
16574 /*
16575  *    Function: sd_sense_key_fail_command
16576  *
16577  * Description: Use to fail a command when we don't like the sense key that
16578  *		was returned.
16579  *
16580  *     Context: May be called from interrupt context
16581  */
16582 
16583 static void
16584 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
16585 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16586 {
16587 	struct sd_sense_info	si;
16588 
16589 	ASSERT(un != NULL);
16590 	ASSERT(mutex_owned(SD_MUTEX(un)));
16591 	ASSERT(bp != NULL);
16592 	ASSERT(xp != NULL);
16593 	ASSERT(pktp != NULL);
16594 
16595 	si.ssi_severity = SCSI_ERR_FATAL;
16596 	si.ssi_pfa_flag = FALSE;
16597 
16598 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16599 	sd_return_failed_command(un, bp, EIO);
16600 }
16601 
16602 
16603 
16604 /*
16605  *    Function: sd_sense_key_blank_check
16606  *
16607  * Description: Recovery actions for a SCSI "Blank Check" sense key.
16608  *		Has no monetary connotation.
16609  *
16610  *     Context: May be called from interrupt context
16611  */
16612 
16613 static void
16614 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
16615 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16616 {
16617 	struct sd_sense_info	si;
16618 
16619 	ASSERT(un != NULL);
16620 	ASSERT(mutex_owned(SD_MUTEX(un)));
16621 	ASSERT(bp != NULL);
16622 	ASSERT(xp != NULL);
16623 	ASSERT(pktp != NULL);
16624 
16625 	/*
16626 	 * Blank check is not fatal for removable devices, therefore
16627 	 * it does not require a console message.
16628 	 */
16629 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
16630 	    SCSI_ERR_FATAL;
16631 	si.ssi_pfa_flag = FALSE;
16632 
16633 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
16634 	sd_return_failed_command(un, bp, EIO);
16635 }
16636 
16637 
16638 
16639 
16640 /*
16641  *    Function: sd_sense_key_aborted_command
16642  *
16643  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
16644  *
16645  *     Context: May be called from interrupt context
16646  */
16647 
16648 static void
16649 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
16650 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16651 {
16652 	struct sd_sense_info	si;
16653 
16654 	ASSERT(un != NULL);
16655 	ASSERT(mutex_owned(SD_MUTEX(un)));
16656 	ASSERT(bp != NULL);
16657 	ASSERT(xp != NULL);
16658 	ASSERT(pktp != NULL);
16659 
16660 	si.ssi_severity = SCSI_ERR_FATAL;
16661 	si.ssi_pfa_flag = FALSE;
16662 
16663 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16664 
16665 	/*
16666 	 * This really ought to be a fatal error, but we will retry anyway
16667 	 * as some drives report this as a spurious error.
16668 	 */
16669 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16670 	    &si, EIO, drv_usectohz(100000), NULL);
16671 }
16672 
16673 
16674 
16675 /*
16676  *    Function: sd_sense_key_default
16677  *
16678  * Description: Default recovery action for several SCSI sense keys (basically
16679  *		attempts a retry).
16680  *
16681  *     Context: May be called from interrupt context
16682  */
16683 
16684 static void
16685 sd_sense_key_default(struct sd_lun *un,
16686 	uint8_t *sense_datap,
16687 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
16688 {
16689 	struct sd_sense_info	si;
16690 	uint8_t sense_key = scsi_sense_key(sense_datap);
16691 
16692 	ASSERT(un != NULL);
16693 	ASSERT(mutex_owned(SD_MUTEX(un)));
16694 	ASSERT(bp != NULL);
16695 	ASSERT(xp != NULL);
16696 	ASSERT(pktp != NULL);
16697 
16698 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16699 
16700 	/*
16701 	 * Undecoded sense key.	Attempt retries and hope that will fix
16702 	 * the problem.  Otherwise, we're dead.
16703 	 */
16704 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16705 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16706 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
16707 	}
16708 
16709 	si.ssi_severity = SCSI_ERR_FATAL;
16710 	si.ssi_pfa_flag = FALSE;
16711 
16712 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
16713 	    &si, EIO, (clock_t)0, NULL);
16714 }
16715 
16716 
16717 
16718 /*
16719  *    Function: sd_print_retry_msg
16720  *
16721  * Description: Print a message indicating the retry action being taken.
16722  *
16723  *   Arguments: un - ptr to associated softstate
16724  *		bp - ptr to buf(9S) for the command
16725  *		arg - not used.
16726  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16727  *			or SD_NO_RETRY_ISSUED
16728  *
16729  *     Context: May be called from interrupt context
16730  */
16731 /* ARGSUSED */
16732 static void
16733 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
16734 {
16735 	struct sd_xbuf	*xp;
16736 	struct scsi_pkt *pktp;
16737 	char *reasonp;
16738 	char *msgp;
16739 
16740 	ASSERT(un != NULL);
16741 	ASSERT(mutex_owned(SD_MUTEX(un)));
16742 	ASSERT(bp != NULL);
16743 	pktp = SD_GET_PKTP(bp);
16744 	ASSERT(pktp != NULL);
16745 	xp = SD_GET_XBUF(bp);
16746 	ASSERT(xp != NULL);
16747 
16748 	ASSERT(!mutex_owned(&un->un_pm_mutex));
16749 	mutex_enter(&un->un_pm_mutex);
16750 	if ((un->un_state == SD_STATE_SUSPENDED) ||
16751 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
16752 	    (pktp->pkt_flags & FLAG_SILENT)) {
16753 		mutex_exit(&un->un_pm_mutex);
16754 		goto update_pkt_reason;
16755 	}
16756 	mutex_exit(&un->un_pm_mutex);
16757 
16758 	/*
16759 	 * Suppress messages if they are all the same pkt_reason; with
16760 	 * TQ, many (up to 256) are returned with the same pkt_reason.
16761 	 * If we are in panic, then suppress the retry messages.
16762 	 */
16763 	switch (flag) {
16764 	case SD_NO_RETRY_ISSUED:
16765 		msgp = "giving up";
16766 		break;
16767 	case SD_IMMEDIATE_RETRY_ISSUED:
16768 	case SD_DELAYED_RETRY_ISSUED:
16769 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
16770 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
16771 		    (sd_error_level != SCSI_ERR_ALL))) {
16772 			return;
16773 		}
16774 		msgp = "retrying command";
16775 		break;
16776 	default:
16777 		goto update_pkt_reason;
16778 	}
16779 
16780 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
16781 	    scsi_rname(pktp->pkt_reason));
16782 
16783 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16784 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
16785 
16786 update_pkt_reason:
16787 	/*
16788 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
16789 	 * This is to prevent multiple console messages for the same failure
16790 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
16791 	 * when the command is retried successfully because there still may be
16792 	 * more commands coming back with the same value of pktp->pkt_reason.
16793 	 */
16794 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
16795 		un->un_last_pkt_reason = pktp->pkt_reason;
16796 	}
16797 }
16798 
16799 
16800 /*
16801  *    Function: sd_print_cmd_incomplete_msg
16802  *
16803  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
16804  *
16805  *   Arguments: un - ptr to associated softstate
16806  *		bp - ptr to buf(9S) for the command
16807  *		arg - passed to sd_print_retry_msg()
16808  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16809  *			or SD_NO_RETRY_ISSUED
16810  *
16811  *     Context: May be called from interrupt context
16812  */
16813 
16814 static void
16815 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
16816 	int code)
16817 {
16818 	dev_info_t	*dip;
16819 
16820 	ASSERT(un != NULL);
16821 	ASSERT(mutex_owned(SD_MUTEX(un)));
16822 	ASSERT(bp != NULL);
16823 
16824 	switch (code) {
16825 	case SD_NO_RETRY_ISSUED:
16826 		/* Command was failed. Someone turned off this target? */
16827 		if (un->un_state != SD_STATE_OFFLINE) {
16828 			/*
16829 			 * Suppress message if we are detaching and
16830 			 * device has been disconnected
16831 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
16832 			 * private interface and not part of the DDI
16833 			 */
16834 			dip = un->un_sd->sd_dev;
16835 			if (!(DEVI_IS_DETACHING(dip) &&
16836 			    DEVI_IS_DEVICE_REMOVED(dip))) {
16837 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16838 				"disk not responding to selection\n");
16839 			}
16840 			New_state(un, SD_STATE_OFFLINE);
16841 		}
16842 		break;
16843 
16844 	case SD_DELAYED_RETRY_ISSUED:
16845 	case SD_IMMEDIATE_RETRY_ISSUED:
16846 	default:
16847 		/* Command was successfully queued for retry */
16848 		sd_print_retry_msg(un, bp, arg, code);
16849 		break;
16850 	}
16851 }
16852 
16853 
16854 /*
16855  *    Function: sd_pkt_reason_cmd_incomplete
16856  *
16857  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
16858  *
16859  *     Context: May be called from interrupt context
16860  */
16861 
16862 static void
16863 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
16864 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16865 {
16866 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
16867 
16868 	ASSERT(un != NULL);
16869 	ASSERT(mutex_owned(SD_MUTEX(un)));
16870 	ASSERT(bp != NULL);
16871 	ASSERT(xp != NULL);
16872 	ASSERT(pktp != NULL);
16873 
16874 	/* Do not do a reset if selection did not complete */
16875 	/* Note: Should this not just check the bit? */
16876 	if (pktp->pkt_state != STATE_GOT_BUS) {
16877 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16878 		sd_reset_target(un, pktp);
16879 	}
16880 
16881 	/*
16882 	 * If the target was not successfully selected, then set
16883 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
16884 	 * with the target, and further retries and/or commands are
16885 	 * likely to take a long time.
16886 	 */
16887 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
16888 		flag |= SD_RETRIES_FAILFAST;
16889 	}
16890 
16891 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16892 
16893 	sd_retry_command(un, bp, flag,
16894 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16895 }
16896 
16897 
16898 
16899 /*
16900  *    Function: sd_pkt_reason_cmd_tran_err
16901  *
16902  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
16903  *
16904  *     Context: May be called from interrupt context
16905  */
16906 
16907 static void
16908 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
16909 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16910 {
16911 	ASSERT(un != NULL);
16912 	ASSERT(mutex_owned(SD_MUTEX(un)));
16913 	ASSERT(bp != NULL);
16914 	ASSERT(xp != NULL);
16915 	ASSERT(pktp != NULL);
16916 
16917 	/*
16918 	 * Do not reset if we got a parity error, or if
16919 	 * selection did not complete.
16920 	 */
16921 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16922 	/* Note: Should this not just check the bit for pkt_state? */
16923 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
16924 	    (pktp->pkt_state != STATE_GOT_BUS)) {
16925 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
16926 		sd_reset_target(un, pktp);
16927 	}
16928 
16929 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16930 
16931 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
16932 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16933 }
16934 
16935 
16936 
16937 /*
16938  *    Function: sd_pkt_reason_cmd_reset
16939  *
16940  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
16941  *
16942  *     Context: May be called from interrupt context
16943  */
16944 
16945 static void
16946 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
16947 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16948 {
16949 	ASSERT(un != NULL);
16950 	ASSERT(mutex_owned(SD_MUTEX(un)));
16951 	ASSERT(bp != NULL);
16952 	ASSERT(xp != NULL);
16953 	ASSERT(pktp != NULL);
16954 
16955 	/* The target may still be running the command, so try to reset. */
16956 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16957 	sd_reset_target(un, pktp);
16958 
16959 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16960 
16961 	/*
16962 	 * If pkt_reason is CMD_RESET chances are that this pkt got
16963 	 * reset because another target on this bus caused it. The target
16964 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
16965 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
16966 	 */
16967 
16968 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
16969 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
16970 }
16971 
16972 
16973 
16974 
16975 /*
16976  *    Function: sd_pkt_reason_cmd_aborted
16977  *
16978  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
16979  *
16980  *     Context: May be called from interrupt context
16981  */
16982 
16983 static void
16984 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
16985 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16986 {
16987 	ASSERT(un != NULL);
16988 	ASSERT(mutex_owned(SD_MUTEX(un)));
16989 	ASSERT(bp != NULL);
16990 	ASSERT(xp != NULL);
16991 	ASSERT(pktp != NULL);
16992 
16993 	/* The target may still be running the command, so try to reset. */
16994 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
16995 	sd_reset_target(un, pktp);
16996 
16997 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
16998 
16999 	/*
17000 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
17001 	 * aborted because another target on this bus caused it. The target
17002 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
17003 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
17004 	 */
17005 
17006 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
17007 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17008 }
17009 
17010 
17011 
17012 /*
17013  *    Function: sd_pkt_reason_cmd_timeout
17014  *
17015  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
17016  *
17017  *     Context: May be called from interrupt context
17018  */
17019 
17020 static void
17021 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
17022 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17023 {
17024 	ASSERT(un != NULL);
17025 	ASSERT(mutex_owned(SD_MUTEX(un)));
17026 	ASSERT(bp != NULL);
17027 	ASSERT(xp != NULL);
17028 	ASSERT(pktp != NULL);
17029 
17030 
17031 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17032 	sd_reset_target(un, pktp);
17033 
17034 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17035 
17036 	/*
17037 	 * A command timeout indicates that we could not establish
17038 	 * communication with the target, so set SD_RETRIES_FAILFAST
17039 	 * as further retries/commands are likely to take a long time.
17040 	 */
17041 	sd_retry_command(un, bp,
17042 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
17043 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17044 }
17045 
17046 
17047 
17048 /*
17049  *    Function: sd_pkt_reason_cmd_unx_bus_free
17050  *
17051  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
17052  *
17053  *     Context: May be called from interrupt context
17054  */
17055 
17056 static void
17057 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
17058 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17059 {
17060 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
17061 
17062 	ASSERT(un != NULL);
17063 	ASSERT(mutex_owned(SD_MUTEX(un)));
17064 	ASSERT(bp != NULL);
17065 	ASSERT(xp != NULL);
17066 	ASSERT(pktp != NULL);
17067 
17068 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17069 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17070 
17071 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
17072 	    sd_print_retry_msg : NULL;
17073 
17074 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17075 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17076 }
17077 
17078 
17079 /*
17080  *    Function: sd_pkt_reason_cmd_tag_reject
17081  *
17082  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
17083  *
17084  *     Context: May be called from interrupt context
17085  */
17086 
17087 static void
17088 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
17089 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17090 {
17091 	ASSERT(un != NULL);
17092 	ASSERT(mutex_owned(SD_MUTEX(un)));
17093 	ASSERT(bp != NULL);
17094 	ASSERT(xp != NULL);
17095 	ASSERT(pktp != NULL);
17096 
17097 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17098 	pktp->pkt_flags = 0;
17099 	un->un_tagflags = 0;
17100 	if (un->un_f_opt_queueing == TRUE) {
17101 		un->un_throttle = min(un->un_throttle, 3);
17102 	} else {
17103 		un->un_throttle = 1;
17104 	}
17105 	mutex_exit(SD_MUTEX(un));
17106 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
17107 	mutex_enter(SD_MUTEX(un));
17108 
17109 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17110 
17111 	/* Legacy behavior not to check retry counts here. */
17112 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
17113 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17114 }
17115 
17116 
17117 /*
17118  *    Function: sd_pkt_reason_default
17119  *
17120  * Description: Default recovery actions for SCSA pkt_reason values that
17121  *		do not have more explicit recovery actions.
17122  *
17123  *     Context: May be called from interrupt context
17124  */
17125 
17126 static void
17127 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
17128 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17129 {
17130 	ASSERT(un != NULL);
17131 	ASSERT(mutex_owned(SD_MUTEX(un)));
17132 	ASSERT(bp != NULL);
17133 	ASSERT(xp != NULL);
17134 	ASSERT(pktp != NULL);
17135 
17136 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
17137 	sd_reset_target(un, pktp);
17138 
17139 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
17140 
17141 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
17142 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
17143 }
17144 
17145 
17146 
17147 /*
17148  *    Function: sd_pkt_status_check_condition
17149  *
17150  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
17151  *
17152  *     Context: May be called from interrupt context
17153  */
17154 
17155 static void
17156 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
17157 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17158 {
17159 	ASSERT(un != NULL);
17160 	ASSERT(mutex_owned(SD_MUTEX(un)));
17161 	ASSERT(bp != NULL);
17162 	ASSERT(xp != NULL);
17163 	ASSERT(pktp != NULL);
17164 
17165 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
17166 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
17167 
17168 	/*
17169 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
17170 	 * command will be retried after the request sense). Otherwise, retry
17171 	 * the command. Note: we are issuing the request sense even though the
17172 	 * retry limit may have been reached for the failed command.
17173 	 */
17174 	if (un->un_f_arq_enabled == FALSE) {
17175 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17176 		    "no ARQ, sending request sense command\n");
17177 		sd_send_request_sense_command(un, bp, pktp);
17178 	} else {
17179 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
17180 		    "ARQ,retrying request sense command\n");
17181 #if defined(__i386) || defined(__amd64)
17182 		/*
17183 		 * The SD_RETRY_DELAY value need to be adjusted here
17184 		 * when SD_RETRY_DELAY change in sddef.h
17185 		 */
17186 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17187 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
17188 		    NULL);
17189 #else
17190 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
17191 		    EIO, SD_RETRY_DELAY, NULL);
17192 #endif
17193 	}
17194 
17195 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
17196 }
17197 
17198 
17199 /*
17200  *    Function: sd_pkt_status_busy
17201  *
17202  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
17203  *
17204  *     Context: May be called from interrupt context
17205  */
17206 
17207 static void
17208 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17209 	struct scsi_pkt *pktp)
17210 {
17211 	ASSERT(un != NULL);
17212 	ASSERT(mutex_owned(SD_MUTEX(un)));
17213 	ASSERT(bp != NULL);
17214 	ASSERT(xp != NULL);
17215 	ASSERT(pktp != NULL);
17216 
17217 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17218 	    "sd_pkt_status_busy: entry\n");
17219 
17220 	/* If retries are exhausted, just fail the command. */
17221 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
17222 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17223 		    "device busy too long\n");
17224 		sd_return_failed_command(un, bp, EIO);
17225 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17226 		    "sd_pkt_status_busy: exit\n");
17227 		return;
17228 	}
17229 	xp->xb_retry_count++;
17230 
17231 	/*
17232 	 * Try to reset the target. However, we do not want to perform
17233 	 * more than one reset if the device continues to fail. The reset
17234 	 * will be performed when the retry count reaches the reset
17235 	 * threshold.  This threshold should be set such that at least
17236 	 * one retry is issued before the reset is performed.
17237 	 */
17238 	if (xp->xb_retry_count ==
17239 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
17240 		int rval = 0;
17241 		mutex_exit(SD_MUTEX(un));
17242 		if (un->un_f_allow_bus_device_reset == TRUE) {
17243 			/*
17244 			 * First try to reset the LUN; if we cannot then
17245 			 * try to reset the target.
17246 			 */
17247 			if (un->un_f_lun_reset_enabled == TRUE) {
17248 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17249 				    "sd_pkt_status_busy: RESET_LUN\n");
17250 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17251 			}
17252 			if (rval == 0) {
17253 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17254 				    "sd_pkt_status_busy: RESET_TARGET\n");
17255 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17256 			}
17257 		}
17258 		if (rval == 0) {
17259 			/*
17260 			 * If the RESET_LUN and/or RESET_TARGET failed,
17261 			 * try RESET_ALL
17262 			 */
17263 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17264 			    "sd_pkt_status_busy: RESET_ALL\n");
17265 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
17266 		}
17267 		mutex_enter(SD_MUTEX(un));
17268 		if (rval == 0) {
17269 			/*
17270 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
17271 			 * At this point we give up & fail the command.
17272 			 */
17273 			sd_return_failed_command(un, bp, EIO);
17274 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17275 			    "sd_pkt_status_busy: exit (failed cmd)\n");
17276 			return;
17277 		}
17278 	}
17279 
17280 	/*
17281 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
17282 	 * we have already checked the retry counts above.
17283 	 */
17284 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
17285 	    EIO, SD_BSY_TIMEOUT, NULL);
17286 
17287 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17288 	    "sd_pkt_status_busy: exit\n");
17289 }
17290 
17291 
17292 /*
17293  *    Function: sd_pkt_status_reservation_conflict
17294  *
17295  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
17296  *		command status.
17297  *
17298  *     Context: May be called from interrupt context
17299  */
17300 
17301 static void
17302 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
17303 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17304 {
17305 	ASSERT(un != NULL);
17306 	ASSERT(mutex_owned(SD_MUTEX(un)));
17307 	ASSERT(bp != NULL);
17308 	ASSERT(xp != NULL);
17309 	ASSERT(pktp != NULL);
17310 
17311 	/*
17312 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
17313 	 * conflict could be due to various reasons like incorrect keys, not
17314 	 * registered or not reserved etc. So, we return EACCES to the caller.
17315 	 */
17316 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
17317 		int cmd = SD_GET_PKT_OPCODE(pktp);
17318 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
17319 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
17320 			sd_return_failed_command(un, bp, EACCES);
17321 			return;
17322 		}
17323 	}
17324 
17325 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
17326 
17327 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
17328 		if (sd_failfast_enable != 0) {
17329 			/* By definition, we must panic here.... */
17330 			sd_panic_for_res_conflict(un);
17331 			/*NOTREACHED*/
17332 		}
17333 		SD_ERROR(SD_LOG_IO, un,
17334 		    "sd_handle_resv_conflict: Disk Reserved\n");
17335 		sd_return_failed_command(un, bp, EACCES);
17336 		return;
17337 	}
17338 
17339 	/*
17340 	 * 1147670: retry only if sd_retry_on_reservation_conflict
17341 	 * property is set (default is 1). Retries will not succeed
17342 	 * on a disk reserved by another initiator. HA systems
17343 	 * may reset this via sd.conf to avoid these retries.
17344 	 *
17345 	 * Note: The legacy return code for this failure is EIO, however EACCES
17346 	 * seems more appropriate for a reservation conflict.
17347 	 */
17348 	if (sd_retry_on_reservation_conflict == 0) {
17349 		SD_ERROR(SD_LOG_IO, un,
17350 		    "sd_handle_resv_conflict: Device Reserved\n");
17351 		sd_return_failed_command(un, bp, EIO);
17352 		return;
17353 	}
17354 
17355 	/*
17356 	 * Retry the command if we can.
17357 	 *
17358 	 * Note: The legacy return code for this failure is EIO, however EACCES
17359 	 * seems more appropriate for a reservation conflict.
17360 	 */
17361 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
17362 	    (clock_t)2, NULL);
17363 }
17364 
17365 
17366 
17367 /*
17368  *    Function: sd_pkt_status_qfull
17369  *
17370  * Description: Handle a QUEUE FULL condition from the target.  This can
17371  *		occur if the HBA does not handle the queue full condition.
17372  *		(Basically this means third-party HBAs as Sun HBAs will
17373  *		handle the queue full condition.)  Note that if there are
17374  *		some commands already in the transport, then the queue full
17375  *		has occurred because the queue for this nexus is actually
17376  *		full. If there are no commands in the transport, then the
17377  *		queue full is resulting from some other initiator or lun
17378  *		consuming all the resources at the target.
17379  *
17380  *     Context: May be called from interrupt context
17381  */
17382 
17383 static void
17384 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
17385 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17386 {
17387 	ASSERT(un != NULL);
17388 	ASSERT(mutex_owned(SD_MUTEX(un)));
17389 	ASSERT(bp != NULL);
17390 	ASSERT(xp != NULL);
17391 	ASSERT(pktp != NULL);
17392 
17393 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17394 	    "sd_pkt_status_qfull: entry\n");
17395 
17396 	/*
17397 	 * Just lower the QFULL throttle and retry the command.  Note that
17398 	 * we do not limit the number of retries here.
17399 	 */
17400 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
17401 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
17402 	    SD_RESTART_TIMEOUT, NULL);
17403 
17404 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17405 	    "sd_pkt_status_qfull: exit\n");
17406 }
17407 
17408 
17409 /*
17410  *    Function: sd_reset_target
17411  *
17412  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
17413  *		RESET_TARGET, or RESET_ALL.
17414  *
17415  *     Context: May be called under interrupt context.
17416  */
17417 
17418 static void
17419 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
17420 {
17421 	int rval = 0;
17422 
17423 	ASSERT(un != NULL);
17424 	ASSERT(mutex_owned(SD_MUTEX(un)));
17425 	ASSERT(pktp != NULL);
17426 
17427 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
17428 
17429 	/*
17430 	 * No need to reset if the transport layer has already done so.
17431 	 */
17432 	if ((pktp->pkt_statistics &
17433 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
17434 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17435 		    "sd_reset_target: no reset\n");
17436 		return;
17437 	}
17438 
17439 	mutex_exit(SD_MUTEX(un));
17440 
17441 	if (un->un_f_allow_bus_device_reset == TRUE) {
17442 		if (un->un_f_lun_reset_enabled == TRUE) {
17443 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17444 			    "sd_reset_target: RESET_LUN\n");
17445 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
17446 		}
17447 		if (rval == 0) {
17448 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17449 			    "sd_reset_target: RESET_TARGET\n");
17450 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
17451 		}
17452 	}
17453 
17454 	if (rval == 0) {
17455 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17456 		    "sd_reset_target: RESET_ALL\n");
17457 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
17458 	}
17459 
17460 	mutex_enter(SD_MUTEX(un));
17461 
17462 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
17463 }
17464 
17465 
17466 /*
17467  *    Function: sd_media_change_task
17468  *
17469  * Description: Recovery action for CDROM to become available.
17470  *
17471  *     Context: Executes in a taskq() thread context
17472  */
17473 
17474 static void
17475 sd_media_change_task(void *arg)
17476 {
17477 	struct	scsi_pkt	*pktp = arg;
17478 	struct	sd_lun		*un;
17479 	struct	buf		*bp;
17480 	struct	sd_xbuf		*xp;
17481 	int	err		= 0;
17482 	int	retry_count	= 0;
17483 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
17484 	struct	sd_sense_info	si;
17485 
17486 	ASSERT(pktp != NULL);
17487 	bp = (struct buf *)pktp->pkt_private;
17488 	ASSERT(bp != NULL);
17489 	xp = SD_GET_XBUF(bp);
17490 	ASSERT(xp != NULL);
17491 	un = SD_GET_UN(bp);
17492 	ASSERT(un != NULL);
17493 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17494 	ASSERT(un->un_f_monitor_media_state);
17495 
17496 	si.ssi_severity = SCSI_ERR_INFO;
17497 	si.ssi_pfa_flag = FALSE;
17498 
17499 	/*
17500 	 * When a reset is issued on a CDROM, it takes a long time to
17501 	 * recover. First few attempts to read capacity and other things
17502 	 * related to handling unit attention fail (with a ASC 0x4 and
17503 	 * ASCQ 0x1). In that case we want to do enough retries and we want
17504 	 * to limit the retries in other cases of genuine failures like
17505 	 * no media in drive.
17506 	 */
17507 	while (retry_count++ < retry_limit) {
17508 		if ((err = sd_handle_mchange(un)) == 0) {
17509 			break;
17510 		}
17511 		if (err == EAGAIN) {
17512 			retry_limit = SD_UNIT_ATTENTION_RETRY;
17513 		}
17514 		/* Sleep for 0.5 sec. & try again */
17515 		delay(drv_usectohz(500000));
17516 	}
17517 
17518 	/*
17519 	 * Dispatch (retry or fail) the original command here,
17520 	 * along with appropriate console messages....
17521 	 *
17522 	 * Must grab the mutex before calling sd_retry_command,
17523 	 * sd_print_sense_msg and sd_return_failed_command.
17524 	 */
17525 	mutex_enter(SD_MUTEX(un));
17526 	if (err != SD_CMD_SUCCESS) {
17527 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17528 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17529 		si.ssi_severity = SCSI_ERR_FATAL;
17530 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17531 		sd_return_failed_command(un, bp, EIO);
17532 	} else {
17533 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17534 		    &si, EIO, (clock_t)0, NULL);
17535 	}
17536 	mutex_exit(SD_MUTEX(un));
17537 }
17538 
17539 
17540 
17541 /*
17542  *    Function: sd_handle_mchange
17543  *
17544  * Description: Perform geometry validation & other recovery when CDROM
17545  *		has been removed from drive.
17546  *
17547  * Return Code: 0 for success
17548  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
17549  *		sd_send_scsi_READ_CAPACITY()
17550  *
17551  *     Context: Executes in a taskq() thread context
17552  */
17553 
17554 static int
17555 sd_handle_mchange(struct sd_lun *un)
17556 {
17557 	uint64_t	capacity;
17558 	uint32_t	lbasize;
17559 	int		rval;
17560 
17561 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17562 	ASSERT(un->un_f_monitor_media_state);
17563 
17564 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
17565 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
17566 		return (rval);
17567 	}
17568 
17569 	mutex_enter(SD_MUTEX(un));
17570 	sd_update_block_info(un, lbasize, capacity);
17571 
17572 	if (un->un_errstats != NULL) {
17573 		struct	sd_errstats *stp =
17574 		    (struct sd_errstats *)un->un_errstats->ks_data;
17575 		stp->sd_capacity.value.ui64 = (uint64_t)
17576 		    ((uint64_t)un->un_blockcount *
17577 		    (uint64_t)un->un_tgt_blocksize);
17578 	}
17579 
17580 
17581 	/*
17582 	 * Check if the media in the device is writable or not
17583 	 */
17584 	if (ISCD(un))
17585 		sd_check_for_writable_cd(un, SD_PATH_DIRECT_PRIORITY);
17586 
17587 	/*
17588 	 * Note: Maybe let the strategy/partitioning chain worry about getting
17589 	 * valid geometry.
17590 	 */
17591 	mutex_exit(SD_MUTEX(un));
17592 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
17593 
17594 
17595 	if (cmlb_validate(un->un_cmlbhandle, 0,
17596 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
17597 		return (EIO);
17598 	} else {
17599 		if (un->un_f_pkstats_enabled) {
17600 			sd_set_pstats(un);
17601 			SD_TRACE(SD_LOG_IO_PARTITION, un,
17602 			    "sd_handle_mchange: un:0x%p pstats created and "
17603 			    "set\n", un);
17604 		}
17605 	}
17606 
17607 
17608 	/*
17609 	 * Try to lock the door
17610 	 */
17611 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
17612 	    SD_PATH_DIRECT_PRIORITY));
17613 }
17614 
17615 
17616 /*
17617  *    Function: sd_send_scsi_DOORLOCK
17618  *
17619  * Description: Issue the scsi DOOR LOCK command
17620  *
17621  *   Arguments: un    - pointer to driver soft state (unit) structure for
17622  *			this target.
17623  *		flag  - SD_REMOVAL_ALLOW
17624  *			SD_REMOVAL_PREVENT
17625  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17626  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17627  *			to use the USCSI "direct" chain and bypass the normal
17628  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17629  *			command is issued as part of an error recovery action.
17630  *
17631  * Return Code: 0   - Success
17632  *		errno return code from sd_send_scsi_cmd()
17633  *
17634  *     Context: Can sleep.
17635  */
17636 
17637 static int
17638 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
17639 {
17640 	union scsi_cdb		cdb;
17641 	struct uscsi_cmd	ucmd_buf;
17642 	struct scsi_extended_sense	sense_buf;
17643 	int			status;
17644 
17645 	ASSERT(un != NULL);
17646 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17647 
17648 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
17649 
17650 	/* already determined doorlock is not supported, fake success */
17651 	if (un->un_f_doorlock_supported == FALSE) {
17652 		return (0);
17653 	}
17654 
17655 	/*
17656 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
17657 	 * ignore the command so we can complete the eject
17658 	 * operation.
17659 	 */
17660 	if (flag == SD_REMOVAL_PREVENT) {
17661 		mutex_enter(SD_MUTEX(un));
17662 		if (un->un_f_ejecting == TRUE) {
17663 			mutex_exit(SD_MUTEX(un));
17664 			return (EAGAIN);
17665 		}
17666 		mutex_exit(SD_MUTEX(un));
17667 	}
17668 
17669 	bzero(&cdb, sizeof (cdb));
17670 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17671 
17672 	cdb.scc_cmd = SCMD_DOORLOCK;
17673 	cdb.cdb_opaque[4] = (uchar_t)flag;
17674 
17675 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17676 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
17677 	ucmd_buf.uscsi_bufaddr	= NULL;
17678 	ucmd_buf.uscsi_buflen	= 0;
17679 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17680 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17681 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
17682 	ucmd_buf.uscsi_timeout	= 15;
17683 
17684 	SD_TRACE(SD_LOG_IO, un,
17685 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
17686 
17687 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17688 	    UIO_SYSSPACE, path_flag);
17689 
17690 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
17691 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17692 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
17693 		/* fake success and skip subsequent doorlock commands */
17694 		un->un_f_doorlock_supported = FALSE;
17695 		return (0);
17696 	}
17697 
17698 	return (status);
17699 }
17700 
17701 /*
17702  *    Function: sd_send_scsi_READ_CAPACITY
17703  *
17704  * Description: This routine uses the scsi READ CAPACITY command to determine
17705  *		the device capacity in number of blocks and the device native
17706  *		block size. If this function returns a failure, then the
17707  *		values in *capp and *lbap are undefined.  If the capacity
17708  *		returned is 0xffffffff then the lun is too large for a
17709  *		normal READ CAPACITY command and the results of a
17710  *		READ CAPACITY 16 will be used instead.
17711  *
17712  *   Arguments: un   - ptr to soft state struct for the target
17713  *		capp - ptr to unsigned 64-bit variable to receive the
17714  *			capacity value from the command.
17715  *		lbap - ptr to unsigned 32-bit varaible to receive the
17716  *			block size value from the command
17717  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17718  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17719  *			to use the USCSI "direct" chain and bypass the normal
17720  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
17721  *			command is issued as part of an error recovery action.
17722  *
17723  * Return Code: 0   - Success
17724  *		EIO - IO error
17725  *		EACCES - Reservation conflict detected
17726  *		EAGAIN - Device is becoming ready
17727  *		errno return code from sd_send_scsi_cmd()
17728  *
17729  *     Context: Can sleep.  Blocks until command completes.
17730  */
17731 
17732 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
17733 
17734 static int
17735 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
17736 	int path_flag)
17737 {
17738 	struct	scsi_extended_sense	sense_buf;
17739 	struct	uscsi_cmd	ucmd_buf;
17740 	union	scsi_cdb	cdb;
17741 	uint32_t		*capacity_buf;
17742 	uint64_t		capacity;
17743 	uint32_t		lbasize;
17744 	int			status;
17745 
17746 	ASSERT(un != NULL);
17747 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17748 	ASSERT(capp != NULL);
17749 	ASSERT(lbap != NULL);
17750 
17751 	SD_TRACE(SD_LOG_IO, un,
17752 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17753 
17754 	/*
17755 	 * First send a READ_CAPACITY command to the target.
17756 	 * (This command is mandatory under SCSI-2.)
17757 	 *
17758 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
17759 	 * Medium Indicator bit is cleared.  The address field must be
17760 	 * zero if the PMI bit is zero.
17761 	 */
17762 	bzero(&cdb, sizeof (cdb));
17763 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17764 
17765 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
17766 
17767 	cdb.scc_cmd = SCMD_READ_CAPACITY;
17768 
17769 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17770 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
17771 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
17772 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
17773 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17774 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17775 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17776 	ucmd_buf.uscsi_timeout	= 60;
17777 
17778 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17779 	    UIO_SYSSPACE, path_flag);
17780 
17781 	switch (status) {
17782 	case 0:
17783 		/* Return failure if we did not get valid capacity data. */
17784 		if (ucmd_buf.uscsi_resid != 0) {
17785 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17786 			return (EIO);
17787 		}
17788 
17789 		/*
17790 		 * Read capacity and block size from the READ CAPACITY 10 data.
17791 		 * This data may be adjusted later due to device specific
17792 		 * issues.
17793 		 *
17794 		 * According to the SCSI spec, the READ CAPACITY 10
17795 		 * command returns the following:
17796 		 *
17797 		 *  bytes 0-3: Maximum logical block address available.
17798 		 *		(MSB in byte:0 & LSB in byte:3)
17799 		 *
17800 		 *  bytes 4-7: Block length in bytes
17801 		 *		(MSB in byte:4 & LSB in byte:7)
17802 		 *
17803 		 */
17804 		capacity = BE_32(capacity_buf[0]);
17805 		lbasize = BE_32(capacity_buf[1]);
17806 
17807 		/*
17808 		 * Done with capacity_buf
17809 		 */
17810 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17811 
17812 		/*
17813 		 * if the reported capacity is set to all 0xf's, then
17814 		 * this disk is too large and requires SBC-2 commands.
17815 		 * Reissue the request using READ CAPACITY 16.
17816 		 */
17817 		if (capacity == 0xffffffff) {
17818 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
17819 			    &lbasize, path_flag);
17820 			if (status != 0) {
17821 				return (status);
17822 			}
17823 		}
17824 		break;	/* Success! */
17825 	case EIO:
17826 		switch (ucmd_buf.uscsi_status) {
17827 		case STATUS_RESERVATION_CONFLICT:
17828 			status = EACCES;
17829 			break;
17830 		case STATUS_CHECK:
17831 			/*
17832 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
17833 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
17834 			 */
17835 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
17836 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
17837 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
17838 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17839 				return (EAGAIN);
17840 			}
17841 			break;
17842 		default:
17843 			break;
17844 		}
17845 		/* FALLTHRU */
17846 	default:
17847 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
17848 		return (status);
17849 	}
17850 
17851 	/*
17852 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
17853 	 * (2352 and 0 are common) so for these devices always force the value
17854 	 * to 2048 as required by the ATAPI specs.
17855 	 */
17856 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
17857 		lbasize = 2048;
17858 	}
17859 
17860 	/*
17861 	 * Get the maximum LBA value from the READ CAPACITY data.
17862 	 * Here we assume that the Partial Medium Indicator (PMI) bit
17863 	 * was cleared when issuing the command. This means that the LBA
17864 	 * returned from the device is the LBA of the last logical block
17865 	 * on the logical unit.  The actual logical block count will be
17866 	 * this value plus one.
17867 	 *
17868 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
17869 	 * so scale the capacity value to reflect this.
17870 	 */
17871 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
17872 
17873 	/*
17874 	 * Copy the values from the READ CAPACITY command into the space
17875 	 * provided by the caller.
17876 	 */
17877 	*capp = capacity;
17878 	*lbap = lbasize;
17879 
17880 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
17881 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
17882 
17883 	/*
17884 	 * Both the lbasize and capacity from the device must be nonzero,
17885 	 * otherwise we assume that the values are not valid and return
17886 	 * failure to the caller. (4203735)
17887 	 */
17888 	if ((capacity == 0) || (lbasize == 0)) {
17889 		return (EIO);
17890 	}
17891 
17892 	return (0);
17893 }
17894 
17895 /*
17896  *    Function: sd_send_scsi_READ_CAPACITY_16
17897  *
17898  * Description: This routine uses the scsi READ CAPACITY 16 command to
17899  *		determine the device capacity in number of blocks and the
17900  *		device native block size.  If this function returns a failure,
17901  *		then the values in *capp and *lbap are undefined.
17902  *		This routine should always be called by
17903  *		sd_send_scsi_READ_CAPACITY which will appy any device
17904  *		specific adjustments to capacity and lbasize.
17905  *
17906  *   Arguments: un   - ptr to soft state struct for the target
17907  *		capp - ptr to unsigned 64-bit variable to receive the
17908  *			capacity value from the command.
17909  *		lbap - ptr to unsigned 32-bit varaible to receive the
17910  *			block size value from the command
17911  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
17912  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
17913  *			to use the USCSI "direct" chain and bypass the normal
17914  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
17915  *			this command is issued as part of an error recovery
17916  *			action.
17917  *
17918  * Return Code: 0   - Success
17919  *		EIO - IO error
17920  *		EACCES - Reservation conflict detected
17921  *		EAGAIN - Device is becoming ready
17922  *		errno return code from sd_send_scsi_cmd()
17923  *
17924  *     Context: Can sleep.  Blocks until command completes.
17925  */
17926 
17927 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
17928 
17929 static int
17930 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
17931 	uint32_t *lbap, int path_flag)
17932 {
17933 	struct	scsi_extended_sense	sense_buf;
17934 	struct	uscsi_cmd	ucmd_buf;
17935 	union	scsi_cdb	cdb;
17936 	uint64_t		*capacity16_buf;
17937 	uint64_t		capacity;
17938 	uint32_t		lbasize;
17939 	int			status;
17940 
17941 	ASSERT(un != NULL);
17942 	ASSERT(!mutex_owned(SD_MUTEX(un)));
17943 	ASSERT(capp != NULL);
17944 	ASSERT(lbap != NULL);
17945 
17946 	SD_TRACE(SD_LOG_IO, un,
17947 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
17948 
17949 	/*
17950 	 * First send a READ_CAPACITY_16 command to the target.
17951 	 *
17952 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
17953 	 * Medium Indicator bit is cleared.  The address field must be
17954 	 * zero if the PMI bit is zero.
17955 	 */
17956 	bzero(&cdb, sizeof (cdb));
17957 	bzero(&ucmd_buf, sizeof (ucmd_buf));
17958 
17959 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
17960 
17961 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
17962 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
17963 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
17964 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
17965 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
17966 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
17967 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
17968 	ucmd_buf.uscsi_timeout	= 60;
17969 
17970 	/*
17971 	 * Read Capacity (16) is a Service Action In command.  One
17972 	 * command byte (0x9E) is overloaded for multiple operations,
17973 	 * with the second CDB byte specifying the desired operation
17974 	 */
17975 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
17976 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
17977 
17978 	/*
17979 	 * Fill in allocation length field
17980 	 */
17981 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
17982 
17983 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
17984 	    UIO_SYSSPACE, path_flag);
17985 
17986 	switch (status) {
17987 	case 0:
17988 		/* Return failure if we did not get valid capacity data. */
17989 		if (ucmd_buf.uscsi_resid > 20) {
17990 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
17991 			return (EIO);
17992 		}
17993 
17994 		/*
17995 		 * Read capacity and block size from the READ CAPACITY 10 data.
17996 		 * This data may be adjusted later due to device specific
17997 		 * issues.
17998 		 *
17999 		 * According to the SCSI spec, the READ CAPACITY 10
18000 		 * command returns the following:
18001 		 *
18002 		 *  bytes 0-7: Maximum logical block address available.
18003 		 *		(MSB in byte:0 & LSB in byte:7)
18004 		 *
18005 		 *  bytes 8-11: Block length in bytes
18006 		 *		(MSB in byte:8 & LSB in byte:11)
18007 		 *
18008 		 */
18009 		capacity = BE_64(capacity16_buf[0]);
18010 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
18011 
18012 		/*
18013 		 * Done with capacity16_buf
18014 		 */
18015 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18016 
18017 		/*
18018 		 * if the reported capacity is set to all 0xf's, then
18019 		 * this disk is too large.  This could only happen with
18020 		 * a device that supports LBAs larger than 64 bits which
18021 		 * are not defined by any current T10 standards.
18022 		 */
18023 		if (capacity == 0xffffffffffffffff) {
18024 			return (EIO);
18025 		}
18026 		break;	/* Success! */
18027 	case EIO:
18028 		switch (ucmd_buf.uscsi_status) {
18029 		case STATUS_RESERVATION_CONFLICT:
18030 			status = EACCES;
18031 			break;
18032 		case STATUS_CHECK:
18033 			/*
18034 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
18035 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
18036 			 */
18037 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18038 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
18039 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
18040 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18041 				return (EAGAIN);
18042 			}
18043 			break;
18044 		default:
18045 			break;
18046 		}
18047 		/* FALLTHRU */
18048 	default:
18049 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
18050 		return (status);
18051 	}
18052 
18053 	*capp = capacity;
18054 	*lbap = lbasize;
18055 
18056 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
18057 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
18058 
18059 	return (0);
18060 }
18061 
18062 
18063 /*
18064  *    Function: sd_send_scsi_START_STOP_UNIT
18065  *
18066  * Description: Issue a scsi START STOP UNIT command to the target.
18067  *
18068  *   Arguments: un    - pointer to driver soft state (unit) structure for
18069  *			this target.
18070  *		flag  - SD_TARGET_START
18071  *			SD_TARGET_STOP
18072  *			SD_TARGET_EJECT
18073  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18074  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18075  *			to use the USCSI "direct" chain and bypass the normal
18076  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18077  *			command is issued as part of an error recovery action.
18078  *
18079  * Return Code: 0   - Success
18080  *		EIO - IO error
18081  *		EACCES - Reservation conflict detected
18082  *		ENXIO  - Not Ready, medium not present
18083  *		errno return code from sd_send_scsi_cmd()
18084  *
18085  *     Context: Can sleep.
18086  */
18087 
18088 static int
18089 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
18090 {
18091 	struct	scsi_extended_sense	sense_buf;
18092 	union scsi_cdb		cdb;
18093 	struct uscsi_cmd	ucmd_buf;
18094 	int			status;
18095 
18096 	ASSERT(un != NULL);
18097 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18098 
18099 	SD_TRACE(SD_LOG_IO, un,
18100 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
18101 
18102 	if (un->un_f_check_start_stop &&
18103 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
18104 	    (un->un_f_start_stop_supported != TRUE)) {
18105 		return (0);
18106 	}
18107 
18108 	/*
18109 	 * If we are performing an eject operation and
18110 	 * we receive any command other than SD_TARGET_EJECT
18111 	 * we should immediately return.
18112 	 */
18113 	if (flag != SD_TARGET_EJECT) {
18114 		mutex_enter(SD_MUTEX(un));
18115 		if (un->un_f_ejecting == TRUE) {
18116 			mutex_exit(SD_MUTEX(un));
18117 			return (EAGAIN);
18118 		}
18119 		mutex_exit(SD_MUTEX(un));
18120 	}
18121 
18122 	bzero(&cdb, sizeof (cdb));
18123 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18124 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18125 
18126 	cdb.scc_cmd = SCMD_START_STOP;
18127 	cdb.cdb_opaque[4] = (uchar_t)flag;
18128 
18129 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18130 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18131 	ucmd_buf.uscsi_bufaddr	= NULL;
18132 	ucmd_buf.uscsi_buflen	= 0;
18133 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18134 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18135 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18136 	ucmd_buf.uscsi_timeout	= 200;
18137 
18138 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18139 	    UIO_SYSSPACE, path_flag);
18140 
18141 	switch (status) {
18142 	case 0:
18143 		break;	/* Success! */
18144 	case EIO:
18145 		switch (ucmd_buf.uscsi_status) {
18146 		case STATUS_RESERVATION_CONFLICT:
18147 			status = EACCES;
18148 			break;
18149 		case STATUS_CHECK:
18150 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
18151 				switch (scsi_sense_key(
18152 				    (uint8_t *)&sense_buf)) {
18153 				case KEY_ILLEGAL_REQUEST:
18154 					status = ENOTSUP;
18155 					break;
18156 				case KEY_NOT_READY:
18157 					if (scsi_sense_asc(
18158 					    (uint8_t *)&sense_buf)
18159 					    == 0x3A) {
18160 						status = ENXIO;
18161 					}
18162 					break;
18163 				default:
18164 					break;
18165 				}
18166 			}
18167 			break;
18168 		default:
18169 			break;
18170 		}
18171 		break;
18172 	default:
18173 		break;
18174 	}
18175 
18176 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
18177 
18178 	return (status);
18179 }
18180 
18181 
18182 /*
18183  *    Function: sd_start_stop_unit_callback
18184  *
18185  * Description: timeout(9F) callback to begin recovery process for a
18186  *		device that has spun down.
18187  *
18188  *   Arguments: arg - pointer to associated softstate struct.
18189  *
18190  *     Context: Executes in a timeout(9F) thread context
18191  */
18192 
18193 static void
18194 sd_start_stop_unit_callback(void *arg)
18195 {
18196 	struct sd_lun	*un = arg;
18197 	ASSERT(un != NULL);
18198 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18199 
18200 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
18201 
18202 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
18203 }
18204 
18205 
18206 /*
18207  *    Function: sd_start_stop_unit_task
18208  *
18209  * Description: Recovery procedure when a drive is spun down.
18210  *
18211  *   Arguments: arg - pointer to associated softstate struct.
18212  *
18213  *     Context: Executes in a taskq() thread context
18214  */
18215 
18216 static void
18217 sd_start_stop_unit_task(void *arg)
18218 {
18219 	struct sd_lun	*un = arg;
18220 
18221 	ASSERT(un != NULL);
18222 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18223 
18224 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
18225 
18226 	/*
18227 	 * Some unformatted drives report not ready error, no need to
18228 	 * restart if format has been initiated.
18229 	 */
18230 	mutex_enter(SD_MUTEX(un));
18231 	if (un->un_f_format_in_progress == TRUE) {
18232 		mutex_exit(SD_MUTEX(un));
18233 		return;
18234 	}
18235 	mutex_exit(SD_MUTEX(un));
18236 
18237 	/*
18238 	 * When a START STOP command is issued from here, it is part of a
18239 	 * failure recovery operation and must be issued before any other
18240 	 * commands, including any pending retries. Thus it must be sent
18241 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
18242 	 * succeeds or not, we will start I/O after the attempt.
18243 	 */
18244 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
18245 	    SD_PATH_DIRECT_PRIORITY);
18246 
18247 	/*
18248 	 * The above call blocks until the START_STOP_UNIT command completes.
18249 	 * Now that it has completed, we must re-try the original IO that
18250 	 * received the NOT READY condition in the first place. There are
18251 	 * three possible conditions here:
18252 	 *
18253 	 *  (1) The original IO is on un_retry_bp.
18254 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
18255 	 *	is NULL.
18256 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
18257 	 *	points to some other, unrelated bp.
18258 	 *
18259 	 * For each case, we must call sd_start_cmds() with un_retry_bp
18260 	 * as the argument. If un_retry_bp is NULL, this will initiate
18261 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
18262 	 * then this will process the bp on un_retry_bp. That may or may not
18263 	 * be the original IO, but that does not matter: the important thing
18264 	 * is to keep the IO processing going at this point.
18265 	 *
18266 	 * Note: This is a very specific error recovery sequence associated
18267 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
18268 	 * serialize the I/O with completion of the spin-up.
18269 	 */
18270 	mutex_enter(SD_MUTEX(un));
18271 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18272 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
18273 	    un, un->un_retry_bp);
18274 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
18275 	sd_start_cmds(un, un->un_retry_bp);
18276 	mutex_exit(SD_MUTEX(un));
18277 
18278 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
18279 }
18280 
18281 
18282 /*
18283  *    Function: sd_send_scsi_INQUIRY
18284  *
18285  * Description: Issue the scsi INQUIRY command.
18286  *
18287  *   Arguments: un
18288  *		bufaddr
18289  *		buflen
18290  *		evpd
18291  *		page_code
18292  *		page_length
18293  *
18294  * Return Code: 0   - Success
18295  *		errno return code from sd_send_scsi_cmd()
18296  *
18297  *     Context: Can sleep. Does not return until command is completed.
18298  */
18299 
18300 static int
18301 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
18302 	uchar_t evpd, uchar_t page_code, size_t *residp)
18303 {
18304 	union scsi_cdb		cdb;
18305 	struct uscsi_cmd	ucmd_buf;
18306 	int			status;
18307 
18308 	ASSERT(un != NULL);
18309 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18310 	ASSERT(bufaddr != NULL);
18311 
18312 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
18313 
18314 	bzero(&cdb, sizeof (cdb));
18315 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18316 	bzero(bufaddr, buflen);
18317 
18318 	cdb.scc_cmd = SCMD_INQUIRY;
18319 	cdb.cdb_opaque[1] = evpd;
18320 	cdb.cdb_opaque[2] = page_code;
18321 	FORMG0COUNT(&cdb, buflen);
18322 
18323 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18324 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18325 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
18326 	ucmd_buf.uscsi_buflen	= buflen;
18327 	ucmd_buf.uscsi_rqbuf	= NULL;
18328 	ucmd_buf.uscsi_rqlen	= 0;
18329 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
18330 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
18331 
18332 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18333 	    UIO_SYSSPACE, SD_PATH_DIRECT);
18334 
18335 	if ((status == 0) && (residp != NULL)) {
18336 		*residp = ucmd_buf.uscsi_resid;
18337 	}
18338 
18339 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
18340 
18341 	return (status);
18342 }
18343 
18344 
18345 /*
18346  *    Function: sd_send_scsi_TEST_UNIT_READY
18347  *
18348  * Description: Issue the scsi TEST UNIT READY command.
18349  *		This routine can be told to set the flag USCSI_DIAGNOSE to
18350  *		prevent retrying failed commands. Use this when the intent
18351  *		is either to check for device readiness, to clear a Unit
18352  *		Attention, or to clear any outstanding sense data.
18353  *		However under specific conditions the expected behavior
18354  *		is for retries to bring a device ready, so use the flag
18355  *		with caution.
18356  *
18357  *   Arguments: un
18358  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
18359  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
18360  *			0: dont check for media present, do retries on cmd.
18361  *
18362  * Return Code: 0   - Success
18363  *		EIO - IO error
18364  *		EACCES - Reservation conflict detected
18365  *		ENXIO  - Not Ready, medium not present
18366  *		errno return code from sd_send_scsi_cmd()
18367  *
18368  *     Context: Can sleep. Does not return until command is completed.
18369  */
18370 
18371 static int
18372 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
18373 {
18374 	struct	scsi_extended_sense	sense_buf;
18375 	union scsi_cdb		cdb;
18376 	struct uscsi_cmd	ucmd_buf;
18377 	int			status;
18378 
18379 	ASSERT(un != NULL);
18380 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18381 
18382 	SD_TRACE(SD_LOG_IO, un,
18383 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
18384 
18385 	/*
18386 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
18387 	 * timeouts when they receive a TUR and the queue is not empty. Check
18388 	 * the configuration flag set during attach (indicating the drive has
18389 	 * this firmware bug) and un_ncmds_in_transport before issuing the
18390 	 * TUR. If there are
18391 	 * pending commands return success, this is a bit arbitrary but is ok
18392 	 * for non-removables (i.e. the eliteI disks) and non-clustering
18393 	 * configurations.
18394 	 */
18395 	if (un->un_f_cfg_tur_check == TRUE) {
18396 		mutex_enter(SD_MUTEX(un));
18397 		if (un->un_ncmds_in_transport != 0) {
18398 			mutex_exit(SD_MUTEX(un));
18399 			return (0);
18400 		}
18401 		mutex_exit(SD_MUTEX(un));
18402 	}
18403 
18404 	bzero(&cdb, sizeof (cdb));
18405 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18406 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18407 
18408 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
18409 
18410 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18411 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18412 	ucmd_buf.uscsi_bufaddr	= NULL;
18413 	ucmd_buf.uscsi_buflen	= 0;
18414 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18415 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18416 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18417 
18418 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
18419 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
18420 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
18421 	}
18422 	ucmd_buf.uscsi_timeout	= 60;
18423 
18424 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18425 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
18426 	    SD_PATH_STANDARD));
18427 
18428 	switch (status) {
18429 	case 0:
18430 		break;	/* Success! */
18431 	case EIO:
18432 		switch (ucmd_buf.uscsi_status) {
18433 		case STATUS_RESERVATION_CONFLICT:
18434 			status = EACCES;
18435 			break;
18436 		case STATUS_CHECK:
18437 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
18438 				break;
18439 			}
18440 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18441 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18442 			    KEY_NOT_READY) &&
18443 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
18444 				status = ENXIO;
18445 			}
18446 			break;
18447 		default:
18448 			break;
18449 		}
18450 		break;
18451 	default:
18452 		break;
18453 	}
18454 
18455 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
18456 
18457 	return (status);
18458 }
18459 
18460 
18461 /*
18462  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
18463  *
18464  * Description: Issue the scsi PERSISTENT RESERVE IN command.
18465  *
18466  *   Arguments: un
18467  *
18468  * Return Code: 0   - Success
18469  *		EACCES
18470  *		ENOTSUP
18471  *		errno return code from sd_send_scsi_cmd()
18472  *
18473  *     Context: Can sleep. Does not return until command is completed.
18474  */
18475 
18476 static int
18477 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
18478 	uint16_t data_len, uchar_t *data_bufp)
18479 {
18480 	struct scsi_extended_sense	sense_buf;
18481 	union scsi_cdb		cdb;
18482 	struct uscsi_cmd	ucmd_buf;
18483 	int			status;
18484 	int			no_caller_buf = FALSE;
18485 
18486 	ASSERT(un != NULL);
18487 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18488 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
18489 
18490 	SD_TRACE(SD_LOG_IO, un,
18491 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
18492 
18493 	bzero(&cdb, sizeof (cdb));
18494 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18495 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18496 	if (data_bufp == NULL) {
18497 		/* Allocate a default buf if the caller did not give one */
18498 		ASSERT(data_len == 0);
18499 		data_len  = MHIOC_RESV_KEY_SIZE;
18500 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
18501 		no_caller_buf = TRUE;
18502 	}
18503 
18504 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
18505 	cdb.cdb_opaque[1] = usr_cmd;
18506 	FORMG1COUNT(&cdb, data_len);
18507 
18508 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18509 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18510 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
18511 	ucmd_buf.uscsi_buflen	= data_len;
18512 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18513 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18514 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
18515 	ucmd_buf.uscsi_timeout	= 60;
18516 
18517 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18518 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18519 
18520 	switch (status) {
18521 	case 0:
18522 		break;	/* Success! */
18523 	case EIO:
18524 		switch (ucmd_buf.uscsi_status) {
18525 		case STATUS_RESERVATION_CONFLICT:
18526 			status = EACCES;
18527 			break;
18528 		case STATUS_CHECK:
18529 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18530 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18531 			    KEY_ILLEGAL_REQUEST)) {
18532 				status = ENOTSUP;
18533 			}
18534 			break;
18535 		default:
18536 			break;
18537 		}
18538 		break;
18539 	default:
18540 		break;
18541 	}
18542 
18543 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
18544 
18545 	if (no_caller_buf == TRUE) {
18546 		kmem_free(data_bufp, data_len);
18547 	}
18548 
18549 	return (status);
18550 }
18551 
18552 
18553 /*
18554  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
18555  *
18556  * Description: This routine is the driver entry point for handling CD-ROM
18557  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
18558  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
18559  *		device.
18560  *
18561  *   Arguments: un  -   Pointer to soft state struct for the target.
18562  *		usr_cmd SCSI-3 reservation facility command (one of
18563  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
18564  *			SD_SCSI3_PREEMPTANDABORT)
18565  *		usr_bufp - user provided pointer register, reserve descriptor or
18566  *			preempt and abort structure (mhioc_register_t,
18567  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
18568  *
18569  * Return Code: 0   - Success
18570  *		EACCES
18571  *		ENOTSUP
18572  *		errno return code from sd_send_scsi_cmd()
18573  *
18574  *     Context: Can sleep. Does not return until command is completed.
18575  */
18576 
18577 static int
18578 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
18579 	uchar_t	*usr_bufp)
18580 {
18581 	struct scsi_extended_sense	sense_buf;
18582 	union scsi_cdb		cdb;
18583 	struct uscsi_cmd	ucmd_buf;
18584 	int			status;
18585 	uchar_t			data_len = sizeof (sd_prout_t);
18586 	sd_prout_t		*prp;
18587 
18588 	ASSERT(un != NULL);
18589 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18590 	ASSERT(data_len == 24);	/* required by scsi spec */
18591 
18592 	SD_TRACE(SD_LOG_IO, un,
18593 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
18594 
18595 	if (usr_bufp == NULL) {
18596 		return (EINVAL);
18597 	}
18598 
18599 	bzero(&cdb, sizeof (cdb));
18600 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18601 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
18602 	prp = kmem_zalloc(data_len, KM_SLEEP);
18603 
18604 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
18605 	cdb.cdb_opaque[1] = usr_cmd;
18606 	FORMG1COUNT(&cdb, data_len);
18607 
18608 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18609 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
18610 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
18611 	ucmd_buf.uscsi_buflen	= data_len;
18612 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18613 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
18614 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
18615 	ucmd_buf.uscsi_timeout	= 60;
18616 
18617 	switch (usr_cmd) {
18618 	case SD_SCSI3_REGISTER: {
18619 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
18620 
18621 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18622 		bcopy(ptr->newkey.key, prp->service_key,
18623 		    MHIOC_RESV_KEY_SIZE);
18624 		prp->aptpl = ptr->aptpl;
18625 		break;
18626 	}
18627 	case SD_SCSI3_RESERVE:
18628 	case SD_SCSI3_RELEASE: {
18629 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
18630 
18631 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18632 		prp->scope_address = BE_32(ptr->scope_specific_addr);
18633 		cdb.cdb_opaque[2] = ptr->type;
18634 		break;
18635 	}
18636 	case SD_SCSI3_PREEMPTANDABORT: {
18637 		mhioc_preemptandabort_t *ptr =
18638 		    (mhioc_preemptandabort_t *)usr_bufp;
18639 
18640 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
18641 		bcopy(ptr->victim_key.key, prp->service_key,
18642 		    MHIOC_RESV_KEY_SIZE);
18643 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
18644 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
18645 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
18646 		break;
18647 	}
18648 	case SD_SCSI3_REGISTERANDIGNOREKEY:
18649 	{
18650 		mhioc_registerandignorekey_t *ptr;
18651 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
18652 		bcopy(ptr->newkey.key,
18653 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
18654 		prp->aptpl = ptr->aptpl;
18655 		break;
18656 	}
18657 	default:
18658 		ASSERT(FALSE);
18659 		break;
18660 	}
18661 
18662 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
18663 	    UIO_SYSSPACE, SD_PATH_STANDARD);
18664 
18665 	switch (status) {
18666 	case 0:
18667 		break;	/* Success! */
18668 	case EIO:
18669 		switch (ucmd_buf.uscsi_status) {
18670 		case STATUS_RESERVATION_CONFLICT:
18671 			status = EACCES;
18672 			break;
18673 		case STATUS_CHECK:
18674 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18675 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
18676 			    KEY_ILLEGAL_REQUEST)) {
18677 				status = ENOTSUP;
18678 			}
18679 			break;
18680 		default:
18681 			break;
18682 		}
18683 		break;
18684 	default:
18685 		break;
18686 	}
18687 
18688 	kmem_free(prp, data_len);
18689 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
18690 	return (status);
18691 }
18692 
18693 
18694 /*
18695  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
18696  *
18697  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
18698  *
18699  *   Arguments: un - pointer to the target's soft state struct
18700  *              dkc - pointer to the callback structure
18701  *
18702  * Return Code: 0 - success
18703  *		errno-type error code
18704  *
18705  *     Context: kernel thread context only.
18706  *
18707  *  _______________________________________________________________
18708  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
18709  * |FLUSH_VOLATILE|              | operation                       |
18710  * |______________|______________|_________________________________|
18711  * | 0            | NULL         | Synchronous flush on both       |
18712  * |              |              | volatile and non-volatile cache |
18713  * |______________|______________|_________________________________|
18714  * | 1            | NULL         | Synchronous flush on volatile   |
18715  * |              |              | cache; disk drivers may suppress|
18716  * |              |              | flush if disk table indicates   |
18717  * |              |              | non-volatile cache              |
18718  * |______________|______________|_________________________________|
18719  * | 0            | !NULL        | Asynchronous flush on both      |
18720  * |              |              | volatile and non-volatile cache;|
18721  * |______________|______________|_________________________________|
18722  * | 1            | !NULL        | Asynchronous flush on volatile  |
18723  * |              |              | cache; disk drivers may suppress|
18724  * |              |              | flush if disk table indicates   |
18725  * |              |              | non-volatile cache              |
18726  * |______________|______________|_________________________________|
18727  *
18728  */
18729 
18730 static int
18731 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
18732 {
18733 	struct sd_uscsi_info	*uip;
18734 	struct uscsi_cmd	*uscmd;
18735 	union scsi_cdb		*cdb;
18736 	struct buf		*bp;
18737 	int			rval = 0;
18738 	int			is_async;
18739 
18740 	SD_TRACE(SD_LOG_IO, un,
18741 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
18742 
18743 	ASSERT(un != NULL);
18744 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18745 
18746 	if (dkc == NULL || dkc->dkc_callback == NULL) {
18747 		is_async = FALSE;
18748 	} else {
18749 		is_async = TRUE;
18750 	}
18751 
18752 	mutex_enter(SD_MUTEX(un));
18753 	/* check whether cache flush should be suppressed */
18754 	if (un->un_f_suppress_cache_flush == TRUE) {
18755 		mutex_exit(SD_MUTEX(un));
18756 		/*
18757 		 * suppress the cache flush if the device is told to do
18758 		 * so by sd.conf or disk table
18759 		 */
18760 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
18761 		    skip the cache flush since suppress_cache_flush is %d!\n",
18762 		    un->un_f_suppress_cache_flush);
18763 
18764 		if (is_async == TRUE) {
18765 			/* invoke callback for asynchronous flush */
18766 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
18767 		}
18768 		return (rval);
18769 	}
18770 	mutex_exit(SD_MUTEX(un));
18771 
18772 	/*
18773 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
18774 	 * set properly
18775 	 */
18776 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
18777 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
18778 
18779 	mutex_enter(SD_MUTEX(un));
18780 	if (dkc != NULL && un->un_f_sync_nv_supported &&
18781 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
18782 		/*
18783 		 * if the device supports SYNC_NV bit, turn on
18784 		 * the SYNC_NV bit to only flush volatile cache
18785 		 */
18786 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
18787 	}
18788 	mutex_exit(SD_MUTEX(un));
18789 
18790 	/*
18791 	 * First get some memory for the uscsi_cmd struct and cdb
18792 	 * and initialize for SYNCHRONIZE_CACHE cmd.
18793 	 */
18794 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
18795 	uscmd->uscsi_cdblen = CDB_GROUP1;
18796 	uscmd->uscsi_cdb = (caddr_t)cdb;
18797 	uscmd->uscsi_bufaddr = NULL;
18798 	uscmd->uscsi_buflen = 0;
18799 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
18800 	uscmd->uscsi_rqlen = SENSE_LENGTH;
18801 	uscmd->uscsi_rqresid = SENSE_LENGTH;
18802 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
18803 	uscmd->uscsi_timeout = sd_io_time;
18804 
18805 	/*
18806 	 * Allocate an sd_uscsi_info struct and fill it with the info
18807 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
18808 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
18809 	 * since we allocate the buf here in this function, we do not
18810 	 * need to preserve the prior contents of b_private.
18811 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
18812 	 */
18813 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
18814 	uip->ui_flags = SD_PATH_DIRECT;
18815 	uip->ui_cmdp  = uscmd;
18816 
18817 	bp = getrbuf(KM_SLEEP);
18818 	bp->b_private = uip;
18819 
18820 	/*
18821 	 * Setup buffer to carry uscsi request.
18822 	 */
18823 	bp->b_flags  = B_BUSY;
18824 	bp->b_bcount = 0;
18825 	bp->b_blkno  = 0;
18826 
18827 	if (is_async == TRUE) {
18828 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
18829 		uip->ui_dkc = *dkc;
18830 	}
18831 
18832 	bp->b_edev = SD_GET_DEV(un);
18833 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
18834 
18835 	(void) sd_uscsi_strategy(bp);
18836 
18837 	/*
18838 	 * If synchronous request, wait for completion
18839 	 * If async just return and let b_iodone callback
18840 	 * cleanup.
18841 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
18842 	 * but it was also incremented in sd_uscsi_strategy(), so
18843 	 * we should be ok.
18844 	 */
18845 	if (is_async == FALSE) {
18846 		(void) biowait(bp);
18847 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
18848 	}
18849 
18850 	return (rval);
18851 }
18852 
18853 
18854 static int
18855 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
18856 {
18857 	struct sd_uscsi_info *uip;
18858 	struct uscsi_cmd *uscmd;
18859 	uint8_t *sense_buf;
18860 	struct sd_lun *un;
18861 	int status;
18862 	union scsi_cdb *cdb;
18863 
18864 	uip = (struct sd_uscsi_info *)(bp->b_private);
18865 	ASSERT(uip != NULL);
18866 
18867 	uscmd = uip->ui_cmdp;
18868 	ASSERT(uscmd != NULL);
18869 
18870 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
18871 	ASSERT(sense_buf != NULL);
18872 
18873 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
18874 	ASSERT(un != NULL);
18875 
18876 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
18877 
18878 	status = geterror(bp);
18879 	switch (status) {
18880 	case 0:
18881 		break;	/* Success! */
18882 	case EIO:
18883 		switch (uscmd->uscsi_status) {
18884 		case STATUS_RESERVATION_CONFLICT:
18885 			/* Ignore reservation conflict */
18886 			status = 0;
18887 			goto done;
18888 
18889 		case STATUS_CHECK:
18890 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
18891 			    (scsi_sense_key(sense_buf) ==
18892 			    KEY_ILLEGAL_REQUEST)) {
18893 				/* Ignore Illegal Request error */
18894 				if (cdb->cdb_un.tag|SD_SYNC_NV_BIT) {
18895 					mutex_enter(SD_MUTEX(un));
18896 					un->un_f_sync_nv_supported = FALSE;
18897 					mutex_exit(SD_MUTEX(un));
18898 					status = 0;
18899 					SD_TRACE(SD_LOG_IO, un,
18900 					    "un_f_sync_nv_supported \
18901 					    is set to false.\n");
18902 					goto done;
18903 				}
18904 
18905 				mutex_enter(SD_MUTEX(un));
18906 				un->un_f_sync_cache_supported = FALSE;
18907 				mutex_exit(SD_MUTEX(un));
18908 				SD_TRACE(SD_LOG_IO, un,
18909 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
18910 				    un_f_sync_cache_supported set to false \
18911 				    with asc = %x, ascq = %x\n",
18912 				    scsi_sense_asc(sense_buf),
18913 				    scsi_sense_ascq(sense_buf));
18914 				status = ENOTSUP;
18915 				goto done;
18916 			}
18917 			break;
18918 		default:
18919 			break;
18920 		}
18921 		/* FALLTHRU */
18922 	default:
18923 		/*
18924 		 * Don't log an error message if this device
18925 		 * has removable media.
18926 		 */
18927 		if (!un->un_f_has_removable_media) {
18928 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18929 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
18930 		}
18931 		break;
18932 	}
18933 
18934 done:
18935 	if (uip->ui_dkc.dkc_callback != NULL) {
18936 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
18937 	}
18938 
18939 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
18940 	freerbuf(bp);
18941 	kmem_free(uip, sizeof (struct sd_uscsi_info));
18942 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
18943 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
18944 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
18945 
18946 	return (status);
18947 }
18948 
18949 
18950 /*
18951  *    Function: sd_send_scsi_GET_CONFIGURATION
18952  *
18953  * Description: Issues the get configuration command to the device.
18954  *		Called from sd_check_for_writable_cd & sd_get_media_info
18955  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
18956  *   Arguments: un
18957  *		ucmdbuf
18958  *		rqbuf
18959  *		rqbuflen
18960  *		bufaddr
18961  *		buflen
18962  *		path_flag
18963  *
18964  * Return Code: 0   - Success
18965  *		errno return code from sd_send_scsi_cmd()
18966  *
18967  *     Context: Can sleep. Does not return until command is completed.
18968  *
18969  */
18970 
18971 static int
18972 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
18973 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
18974 	int path_flag)
18975 {
18976 	char	cdb[CDB_GROUP1];
18977 	int	status;
18978 
18979 	ASSERT(un != NULL);
18980 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18981 	ASSERT(bufaddr != NULL);
18982 	ASSERT(ucmdbuf != NULL);
18983 	ASSERT(rqbuf != NULL);
18984 
18985 	SD_TRACE(SD_LOG_IO, un,
18986 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
18987 
18988 	bzero(cdb, sizeof (cdb));
18989 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
18990 	bzero(rqbuf, rqbuflen);
18991 	bzero(bufaddr, buflen);
18992 
18993 	/*
18994 	 * Set up cdb field for the get configuration command.
18995 	 */
18996 	cdb[0] = SCMD_GET_CONFIGURATION;
18997 	cdb[1] = 0x02;  /* Requested Type */
18998 	cdb[8] = SD_PROFILE_HEADER_LEN;
18999 	ucmdbuf->uscsi_cdb = cdb;
19000 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19001 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19002 	ucmdbuf->uscsi_buflen = buflen;
19003 	ucmdbuf->uscsi_timeout = sd_io_time;
19004 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19005 	ucmdbuf->uscsi_rqlen = rqbuflen;
19006 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19007 
19008 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19009 	    UIO_SYSSPACE, path_flag);
19010 
19011 	switch (status) {
19012 	case 0:
19013 		break;  /* Success! */
19014 	case EIO:
19015 		switch (ucmdbuf->uscsi_status) {
19016 		case STATUS_RESERVATION_CONFLICT:
19017 			status = EACCES;
19018 			break;
19019 		default:
19020 			break;
19021 		}
19022 		break;
19023 	default:
19024 		break;
19025 	}
19026 
19027 	if (status == 0) {
19028 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19029 		    "sd_send_scsi_GET_CONFIGURATION: data",
19030 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19031 	}
19032 
19033 	SD_TRACE(SD_LOG_IO, un,
19034 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
19035 
19036 	return (status);
19037 }
19038 
19039 /*
19040  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
19041  *
19042  * Description: Issues the get configuration command to the device to
19043  *              retrieve a specific feature. Called from
19044  *		sd_check_for_writable_cd & sd_set_mmc_caps.
19045  *   Arguments: un
19046  *              ucmdbuf
19047  *              rqbuf
19048  *              rqbuflen
19049  *              bufaddr
19050  *              buflen
19051  *		feature
19052  *
19053  * Return Code: 0   - Success
19054  *              errno return code from sd_send_scsi_cmd()
19055  *
19056  *     Context: Can sleep. Does not return until command is completed.
19057  *
19058  */
19059 static int
19060 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
19061 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
19062 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
19063 {
19064 	char    cdb[CDB_GROUP1];
19065 	int	status;
19066 
19067 	ASSERT(un != NULL);
19068 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19069 	ASSERT(bufaddr != NULL);
19070 	ASSERT(ucmdbuf != NULL);
19071 	ASSERT(rqbuf != NULL);
19072 
19073 	SD_TRACE(SD_LOG_IO, un,
19074 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
19075 
19076 	bzero(cdb, sizeof (cdb));
19077 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
19078 	bzero(rqbuf, rqbuflen);
19079 	bzero(bufaddr, buflen);
19080 
19081 	/*
19082 	 * Set up cdb field for the get configuration command.
19083 	 */
19084 	cdb[0] = SCMD_GET_CONFIGURATION;
19085 	cdb[1] = 0x02;  /* Requested Type */
19086 	cdb[3] = feature;
19087 	cdb[8] = buflen;
19088 	ucmdbuf->uscsi_cdb = cdb;
19089 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
19090 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
19091 	ucmdbuf->uscsi_buflen = buflen;
19092 	ucmdbuf->uscsi_timeout = sd_io_time;
19093 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
19094 	ucmdbuf->uscsi_rqlen = rqbuflen;
19095 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
19096 
19097 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, FKIOCTL,
19098 	    UIO_SYSSPACE, path_flag);
19099 
19100 	switch (status) {
19101 	case 0:
19102 		break;  /* Success! */
19103 	case EIO:
19104 		switch (ucmdbuf->uscsi_status) {
19105 		case STATUS_RESERVATION_CONFLICT:
19106 			status = EACCES;
19107 			break;
19108 		default:
19109 			break;
19110 		}
19111 		break;
19112 	default:
19113 		break;
19114 	}
19115 
19116 	if (status == 0) {
19117 		SD_DUMP_MEMORY(un, SD_LOG_IO,
19118 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
19119 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
19120 	}
19121 
19122 	SD_TRACE(SD_LOG_IO, un,
19123 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
19124 
19125 	return (status);
19126 }
19127 
19128 
19129 /*
19130  *    Function: sd_send_scsi_MODE_SENSE
19131  *
19132  * Description: Utility function for issuing a scsi MODE SENSE command.
19133  *		Note: This routine uses a consistent implementation for Group0,
19134  *		Group1, and Group2 commands across all platforms. ATAPI devices
19135  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19136  *
19137  *   Arguments: un - pointer to the softstate struct for the target.
19138  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19139  *			  CDB_GROUP[1|2] (10 byte).
19140  *		bufaddr - buffer for page data retrieved from the target.
19141  *		buflen - size of page to be retrieved.
19142  *		page_code - page code of data to be retrieved from the target.
19143  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19144  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19145  *			to use the USCSI "direct" chain and bypass the normal
19146  *			command waitq.
19147  *
19148  * Return Code: 0   - Success
19149  *		errno return code from sd_send_scsi_cmd()
19150  *
19151  *     Context: Can sleep. Does not return until command is completed.
19152  */
19153 
19154 static int
19155 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19156 	size_t buflen,  uchar_t page_code, int path_flag)
19157 {
19158 	struct	scsi_extended_sense	sense_buf;
19159 	union scsi_cdb		cdb;
19160 	struct uscsi_cmd	ucmd_buf;
19161 	int			status;
19162 	int			headlen;
19163 
19164 	ASSERT(un != NULL);
19165 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19166 	ASSERT(bufaddr != NULL);
19167 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19168 	    (cdbsize == CDB_GROUP2));
19169 
19170 	SD_TRACE(SD_LOG_IO, un,
19171 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
19172 
19173 	bzero(&cdb, sizeof (cdb));
19174 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19175 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19176 	bzero(bufaddr, buflen);
19177 
19178 	if (cdbsize == CDB_GROUP0) {
19179 		cdb.scc_cmd = SCMD_MODE_SENSE;
19180 		cdb.cdb_opaque[2] = page_code;
19181 		FORMG0COUNT(&cdb, buflen);
19182 		headlen = MODE_HEADER_LENGTH;
19183 	} else {
19184 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
19185 		cdb.cdb_opaque[2] = page_code;
19186 		FORMG1COUNT(&cdb, buflen);
19187 		headlen = MODE_HEADER_LENGTH_GRP2;
19188 	}
19189 
19190 	ASSERT(headlen <= buflen);
19191 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19192 
19193 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19194 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19195 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19196 	ucmd_buf.uscsi_buflen	= buflen;
19197 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19198 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19199 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19200 	ucmd_buf.uscsi_timeout	= 60;
19201 
19202 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19203 	    UIO_SYSSPACE, path_flag);
19204 
19205 	switch (status) {
19206 	case 0:
19207 		/*
19208 		 * sr_check_wp() uses 0x3f page code and check the header of
19209 		 * mode page to determine if target device is write-protected.
19210 		 * But some USB devices return 0 bytes for 0x3f page code. For
19211 		 * this case, make sure that mode page header is returned at
19212 		 * least.
19213 		 */
19214 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
19215 			status = EIO;
19216 		break;	/* Success! */
19217 	case EIO:
19218 		switch (ucmd_buf.uscsi_status) {
19219 		case STATUS_RESERVATION_CONFLICT:
19220 			status = EACCES;
19221 			break;
19222 		default:
19223 			break;
19224 		}
19225 		break;
19226 	default:
19227 		break;
19228 	}
19229 
19230 	if (status == 0) {
19231 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
19232 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19233 	}
19234 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
19235 
19236 	return (status);
19237 }
19238 
19239 
19240 /*
19241  *    Function: sd_send_scsi_MODE_SELECT
19242  *
19243  * Description: Utility function for issuing a scsi MODE SELECT command.
19244  *		Note: This routine uses a consistent implementation for Group0,
19245  *		Group1, and Group2 commands across all platforms. ATAPI devices
19246  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
19247  *
19248  *   Arguments: un - pointer to the softstate struct for the target.
19249  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
19250  *			  CDB_GROUP[1|2] (10 byte).
19251  *		bufaddr - buffer for page data retrieved from the target.
19252  *		buflen - size of page to be retrieved.
19253  *		save_page - boolean to determin if SP bit should be set.
19254  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19255  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19256  *			to use the USCSI "direct" chain and bypass the normal
19257  *			command waitq.
19258  *
19259  * Return Code: 0   - Success
19260  *		errno return code from sd_send_scsi_cmd()
19261  *
19262  *     Context: Can sleep. Does not return until command is completed.
19263  */
19264 
19265 static int
19266 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
19267 	size_t buflen,  uchar_t save_page, int path_flag)
19268 {
19269 	struct	scsi_extended_sense	sense_buf;
19270 	union scsi_cdb		cdb;
19271 	struct uscsi_cmd	ucmd_buf;
19272 	int			status;
19273 
19274 	ASSERT(un != NULL);
19275 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19276 	ASSERT(bufaddr != NULL);
19277 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
19278 	    (cdbsize == CDB_GROUP2));
19279 
19280 	SD_TRACE(SD_LOG_IO, un,
19281 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
19282 
19283 	bzero(&cdb, sizeof (cdb));
19284 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19285 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19286 
19287 	/* Set the PF bit for many third party drives */
19288 	cdb.cdb_opaque[1] = 0x10;
19289 
19290 	/* Set the savepage(SP) bit if given */
19291 	if (save_page == SD_SAVE_PAGE) {
19292 		cdb.cdb_opaque[1] |= 0x01;
19293 	}
19294 
19295 	if (cdbsize == CDB_GROUP0) {
19296 		cdb.scc_cmd = SCMD_MODE_SELECT;
19297 		FORMG0COUNT(&cdb, buflen);
19298 	} else {
19299 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
19300 		FORMG1COUNT(&cdb, buflen);
19301 	}
19302 
19303 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19304 
19305 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19306 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19307 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19308 	ucmd_buf.uscsi_buflen	= buflen;
19309 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19310 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19311 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19312 	ucmd_buf.uscsi_timeout	= 60;
19313 
19314 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19315 	    UIO_SYSSPACE, path_flag);
19316 
19317 	switch (status) {
19318 	case 0:
19319 		break;	/* Success! */
19320 	case EIO:
19321 		switch (ucmd_buf.uscsi_status) {
19322 		case STATUS_RESERVATION_CONFLICT:
19323 			status = EACCES;
19324 			break;
19325 		default:
19326 			break;
19327 		}
19328 		break;
19329 	default:
19330 		break;
19331 	}
19332 
19333 	if (status == 0) {
19334 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
19335 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19336 	}
19337 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
19338 
19339 	return (status);
19340 }
19341 
19342 
19343 /*
19344  *    Function: sd_send_scsi_RDWR
19345  *
19346  * Description: Issue a scsi READ or WRITE command with the given parameters.
19347  *
19348  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19349  *		cmd:	 SCMD_READ or SCMD_WRITE
19350  *		bufaddr: Address of caller's buffer to receive the RDWR data
19351  *		buflen:  Length of caller's buffer receive the RDWR data.
19352  *		start_block: Block number for the start of the RDWR operation.
19353  *			 (Assumes target-native block size.)
19354  *		residp:  Pointer to variable to receive the redisual of the
19355  *			 RDWR operation (may be NULL of no residual requested).
19356  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19357  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19358  *			to use the USCSI "direct" chain and bypass the normal
19359  *			command waitq.
19360  *
19361  * Return Code: 0   - Success
19362  *		errno return code from sd_send_scsi_cmd()
19363  *
19364  *     Context: Can sleep. Does not return until command is completed.
19365  */
19366 
19367 static int
19368 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
19369 	size_t buflen, daddr_t start_block, int path_flag)
19370 {
19371 	struct	scsi_extended_sense	sense_buf;
19372 	union scsi_cdb		cdb;
19373 	struct uscsi_cmd	ucmd_buf;
19374 	uint32_t		block_count;
19375 	int			status;
19376 	int			cdbsize;
19377 	uchar_t			flag;
19378 
19379 	ASSERT(un != NULL);
19380 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19381 	ASSERT(bufaddr != NULL);
19382 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
19383 
19384 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
19385 
19386 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
19387 		return (EINVAL);
19388 	}
19389 
19390 	mutex_enter(SD_MUTEX(un));
19391 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
19392 	mutex_exit(SD_MUTEX(un));
19393 
19394 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
19395 
19396 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
19397 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
19398 	    bufaddr, buflen, start_block, block_count);
19399 
19400 	bzero(&cdb, sizeof (cdb));
19401 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19402 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19403 
19404 	/* Compute CDB size to use */
19405 	if (start_block > 0xffffffff)
19406 		cdbsize = CDB_GROUP4;
19407 	else if ((start_block & 0xFFE00000) ||
19408 	    (un->un_f_cfg_is_atapi == TRUE))
19409 		cdbsize = CDB_GROUP1;
19410 	else
19411 		cdbsize = CDB_GROUP0;
19412 
19413 	switch (cdbsize) {
19414 	case CDB_GROUP0:	/* 6-byte CDBs */
19415 		cdb.scc_cmd = cmd;
19416 		FORMG0ADDR(&cdb, start_block);
19417 		FORMG0COUNT(&cdb, block_count);
19418 		break;
19419 	case CDB_GROUP1:	/* 10-byte CDBs */
19420 		cdb.scc_cmd = cmd | SCMD_GROUP1;
19421 		FORMG1ADDR(&cdb, start_block);
19422 		FORMG1COUNT(&cdb, block_count);
19423 		break;
19424 	case CDB_GROUP4:	/* 16-byte CDBs */
19425 		cdb.scc_cmd = cmd | SCMD_GROUP4;
19426 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
19427 		FORMG4COUNT(&cdb, block_count);
19428 		break;
19429 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
19430 	default:
19431 		/* All others reserved */
19432 		return (EINVAL);
19433 	}
19434 
19435 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
19436 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
19437 
19438 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19439 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
19440 	ucmd_buf.uscsi_bufaddr	= bufaddr;
19441 	ucmd_buf.uscsi_buflen	= buflen;
19442 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19443 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19444 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
19445 	ucmd_buf.uscsi_timeout	= 60;
19446 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19447 	    UIO_SYSSPACE, path_flag);
19448 	switch (status) {
19449 	case 0:
19450 		break;	/* Success! */
19451 	case EIO:
19452 		switch (ucmd_buf.uscsi_status) {
19453 		case STATUS_RESERVATION_CONFLICT:
19454 			status = EACCES;
19455 			break;
19456 		default:
19457 			break;
19458 		}
19459 		break;
19460 	default:
19461 		break;
19462 	}
19463 
19464 	if (status == 0) {
19465 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
19466 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19467 	}
19468 
19469 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
19470 
19471 	return (status);
19472 }
19473 
19474 
19475 /*
19476  *    Function: sd_send_scsi_LOG_SENSE
19477  *
19478  * Description: Issue a scsi LOG_SENSE command with the given parameters.
19479  *
19480  *   Arguments: un:      Pointer to the sd_lun struct for the target.
19481  *
19482  * Return Code: 0   - Success
19483  *		errno return code from sd_send_scsi_cmd()
19484  *
19485  *     Context: Can sleep. Does not return until command is completed.
19486  */
19487 
19488 static int
19489 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
19490 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
19491 	int path_flag)
19492 
19493 {
19494 	struct	scsi_extended_sense	sense_buf;
19495 	union scsi_cdb		cdb;
19496 	struct uscsi_cmd	ucmd_buf;
19497 	int			status;
19498 
19499 	ASSERT(un != NULL);
19500 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19501 
19502 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
19503 
19504 	bzero(&cdb, sizeof (cdb));
19505 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19506 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19507 
19508 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
19509 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
19510 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
19511 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
19512 	FORMG1COUNT(&cdb, buflen);
19513 
19514 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19515 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19516 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19517 	ucmd_buf.uscsi_buflen	= buflen;
19518 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19519 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19520 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19521 	ucmd_buf.uscsi_timeout	= 60;
19522 
19523 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19524 	    UIO_SYSSPACE, path_flag);
19525 
19526 	switch (status) {
19527 	case 0:
19528 		break;
19529 	case EIO:
19530 		switch (ucmd_buf.uscsi_status) {
19531 		case STATUS_RESERVATION_CONFLICT:
19532 			status = EACCES;
19533 			break;
19534 		case STATUS_CHECK:
19535 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19536 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
19537 				KEY_ILLEGAL_REQUEST) &&
19538 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
19539 				/*
19540 				 * ASC 0x24: INVALID FIELD IN CDB
19541 				 */
19542 				switch (page_code) {
19543 				case START_STOP_CYCLE_PAGE:
19544 					/*
19545 					 * The start stop cycle counter is
19546 					 * implemented as page 0x31 in earlier
19547 					 * generation disks. In new generation
19548 					 * disks the start stop cycle counter is
19549 					 * implemented as page 0xE. To properly
19550 					 * handle this case if an attempt for
19551 					 * log page 0xE is made and fails we
19552 					 * will try again using page 0x31.
19553 					 *
19554 					 * Network storage BU committed to
19555 					 * maintain the page 0x31 for this
19556 					 * purpose and will not have any other
19557 					 * page implemented with page code 0x31
19558 					 * until all disks transition to the
19559 					 * standard page.
19560 					 */
19561 					mutex_enter(SD_MUTEX(un));
19562 					un->un_start_stop_cycle_page =
19563 					    START_STOP_CYCLE_VU_PAGE;
19564 					cdb.cdb_opaque[2] =
19565 					    (char)(page_control << 6) |
19566 					    un->un_start_stop_cycle_page;
19567 					mutex_exit(SD_MUTEX(un));
19568 					status = sd_send_scsi_cmd(
19569 					    SD_GET_DEV(un), &ucmd_buf, FKIOCTL,
19570 					    UIO_SYSSPACE, path_flag);
19571 
19572 					break;
19573 				case TEMPERATURE_PAGE:
19574 					status = ENOTTY;
19575 					break;
19576 				default:
19577 					break;
19578 				}
19579 			}
19580 			break;
19581 		default:
19582 			break;
19583 		}
19584 		break;
19585 	default:
19586 		break;
19587 	}
19588 
19589 	if (status == 0) {
19590 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
19591 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
19592 	}
19593 
19594 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
19595 
19596 	return (status);
19597 }
19598 
19599 
19600 /*
19601  *    Function: sdioctl
19602  *
19603  * Description: Driver's ioctl(9e) entry point function.
19604  *
19605  *   Arguments: dev     - device number
19606  *		cmd     - ioctl operation to be performed
19607  *		arg     - user argument, contains data to be set or reference
19608  *			  parameter for get
19609  *		flag    - bit flag, indicating open settings, 32/64 bit type
19610  *		cred_p  - user credential pointer
19611  *		rval_p  - calling process return value (OPT)
19612  *
19613  * Return Code: EINVAL
19614  *		ENOTTY
19615  *		ENXIO
19616  *		EIO
19617  *		EFAULT
19618  *		ENOTSUP
19619  *		EPERM
19620  *
19621  *     Context: Called from the device switch at normal priority.
19622  */
19623 
19624 static int
19625 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
19626 {
19627 	struct sd_lun	*un = NULL;
19628 	int		err = 0;
19629 	int		i = 0;
19630 	cred_t		*cr;
19631 	int		tmprval = EINVAL;
19632 	int 		is_valid;
19633 
19634 	/*
19635 	 * All device accesses go thru sdstrategy where we check on suspend
19636 	 * status
19637 	 */
19638 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
19639 		return (ENXIO);
19640 	}
19641 
19642 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19643 
19644 
19645 	is_valid = SD_IS_VALID_LABEL(un);
19646 
19647 	/*
19648 	 * Moved this wait from sd_uscsi_strategy to here for
19649 	 * reasons of deadlock prevention. Internal driver commands,
19650 	 * specifically those to change a devices power level, result
19651 	 * in a call to sd_uscsi_strategy.
19652 	 */
19653 	mutex_enter(SD_MUTEX(un));
19654 	while ((un->un_state == SD_STATE_SUSPENDED) ||
19655 	    (un->un_state == SD_STATE_PM_CHANGING)) {
19656 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
19657 	}
19658 	/*
19659 	 * Twiddling the counter here protects commands from now
19660 	 * through to the top of sd_uscsi_strategy. Without the
19661 	 * counter inc. a power down, for example, could get in
19662 	 * after the above check for state is made and before
19663 	 * execution gets to the top of sd_uscsi_strategy.
19664 	 * That would cause problems.
19665 	 */
19666 	un->un_ncmds_in_driver++;
19667 
19668 	if (!is_valid &&
19669 	    (flag & (FNDELAY | FNONBLOCK))) {
19670 		switch (cmd) {
19671 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
19672 		case DKIOCGVTOC:
19673 		case DKIOCGAPART:
19674 		case DKIOCPARTINFO:
19675 		case DKIOCSGEOM:
19676 		case DKIOCSAPART:
19677 		case DKIOCGETEFI:
19678 		case DKIOCPARTITION:
19679 		case DKIOCSVTOC:
19680 		case DKIOCSETEFI:
19681 		case DKIOCGMBOOT:
19682 		case DKIOCSMBOOT:
19683 		case DKIOCG_PHYGEOM:
19684 		case DKIOCG_VIRTGEOM:
19685 			/* let cmlb handle it */
19686 			goto skip_ready_valid;
19687 
19688 		case CDROMPAUSE:
19689 		case CDROMRESUME:
19690 		case CDROMPLAYMSF:
19691 		case CDROMPLAYTRKIND:
19692 		case CDROMREADTOCHDR:
19693 		case CDROMREADTOCENTRY:
19694 		case CDROMSTOP:
19695 		case CDROMSTART:
19696 		case CDROMVOLCTRL:
19697 		case CDROMSUBCHNL:
19698 		case CDROMREADMODE2:
19699 		case CDROMREADMODE1:
19700 		case CDROMREADOFFSET:
19701 		case CDROMSBLKMODE:
19702 		case CDROMGBLKMODE:
19703 		case CDROMGDRVSPEED:
19704 		case CDROMSDRVSPEED:
19705 		case CDROMCDDA:
19706 		case CDROMCDXA:
19707 		case CDROMSUBCODE:
19708 			if (!ISCD(un)) {
19709 				un->un_ncmds_in_driver--;
19710 				ASSERT(un->un_ncmds_in_driver >= 0);
19711 				mutex_exit(SD_MUTEX(un));
19712 				return (ENOTTY);
19713 			}
19714 			break;
19715 		case FDEJECT:
19716 		case DKIOCEJECT:
19717 		case CDROMEJECT:
19718 			if (!un->un_f_eject_media_supported) {
19719 				un->un_ncmds_in_driver--;
19720 				ASSERT(un->un_ncmds_in_driver >= 0);
19721 				mutex_exit(SD_MUTEX(un));
19722 				return (ENOTTY);
19723 			}
19724 			break;
19725 		case DKIOCFLUSHWRITECACHE:
19726 			mutex_exit(SD_MUTEX(un));
19727 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19728 			if (err != 0) {
19729 				mutex_enter(SD_MUTEX(un));
19730 				un->un_ncmds_in_driver--;
19731 				ASSERT(un->un_ncmds_in_driver >= 0);
19732 				mutex_exit(SD_MUTEX(un));
19733 				return (EIO);
19734 			}
19735 			mutex_enter(SD_MUTEX(un));
19736 			/* FALLTHROUGH */
19737 		case DKIOCREMOVABLE:
19738 		case DKIOCHOTPLUGGABLE:
19739 		case DKIOCINFO:
19740 		case DKIOCGMEDIAINFO:
19741 		case MHIOCENFAILFAST:
19742 		case MHIOCSTATUS:
19743 		case MHIOCTKOWN:
19744 		case MHIOCRELEASE:
19745 		case MHIOCGRP_INKEYS:
19746 		case MHIOCGRP_INRESV:
19747 		case MHIOCGRP_REGISTER:
19748 		case MHIOCGRP_RESERVE:
19749 		case MHIOCGRP_PREEMPTANDABORT:
19750 		case MHIOCGRP_REGISTERANDIGNOREKEY:
19751 		case CDROMCLOSETRAY:
19752 		case USCSICMD:
19753 			goto skip_ready_valid;
19754 		default:
19755 			break;
19756 		}
19757 
19758 		mutex_exit(SD_MUTEX(un));
19759 		err = sd_ready_and_valid(un);
19760 		mutex_enter(SD_MUTEX(un));
19761 
19762 		if (err != SD_READY_VALID) {
19763 			switch (cmd) {
19764 			case DKIOCSTATE:
19765 			case CDROMGDRVSPEED:
19766 			case CDROMSDRVSPEED:
19767 			case FDEJECT:	/* for eject command */
19768 			case DKIOCEJECT:
19769 			case CDROMEJECT:
19770 			case DKIOCREMOVABLE:
19771 			case DKIOCHOTPLUGGABLE:
19772 				break;
19773 			default:
19774 				if (un->un_f_has_removable_media) {
19775 					err = ENXIO;
19776 				} else {
19777 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
19778 					if (err == SD_RESERVED_BY_OTHERS) {
19779 						err = EACCES;
19780 					} else {
19781 						err = EIO;
19782 					}
19783 				}
19784 				un->un_ncmds_in_driver--;
19785 				ASSERT(un->un_ncmds_in_driver >= 0);
19786 				mutex_exit(SD_MUTEX(un));
19787 				return (err);
19788 			}
19789 		}
19790 	}
19791 
19792 skip_ready_valid:
19793 	mutex_exit(SD_MUTEX(un));
19794 
19795 	switch (cmd) {
19796 	case DKIOCINFO:
19797 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
19798 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
19799 		break;
19800 
19801 	case DKIOCGMEDIAINFO:
19802 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
19803 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
19804 		break;
19805 
19806 	case DKIOCGGEOM:
19807 	case DKIOCGVTOC:
19808 	case DKIOCGAPART:
19809 	case DKIOCPARTINFO:
19810 	case DKIOCSGEOM:
19811 	case DKIOCSAPART:
19812 	case DKIOCGETEFI:
19813 	case DKIOCPARTITION:
19814 	case DKIOCSVTOC:
19815 	case DKIOCSETEFI:
19816 	case DKIOCGMBOOT:
19817 	case DKIOCSMBOOT:
19818 	case DKIOCG_PHYGEOM:
19819 	case DKIOCG_VIRTGEOM:
19820 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
19821 
19822 		/* TUR should spin up */
19823 
19824 		if (un->un_f_has_removable_media)
19825 			err = sd_send_scsi_TEST_UNIT_READY(un,
19826 			    SD_CHECK_FOR_MEDIA);
19827 		else
19828 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
19829 
19830 		if (err != 0)
19831 			break;
19832 
19833 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
19834 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
19835 
19836 		if ((err == 0) &&
19837 		    ((cmd == DKIOCSETEFI) ||
19838 		    (un->un_f_pkstats_enabled) &&
19839 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC))) {
19840 
19841 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
19842 			    (void *)SD_PATH_DIRECT);
19843 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
19844 				sd_set_pstats(un);
19845 				SD_TRACE(SD_LOG_IO_PARTITION, un,
19846 				    "sd_ioctl: un:0x%p pstats created and "
19847 				    "set\n", un);
19848 			}
19849 		}
19850 
19851 		if ((cmd == DKIOCSVTOC) ||
19852 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
19853 
19854 			mutex_enter(SD_MUTEX(un));
19855 			if (un->un_f_devid_supported &&
19856 			    (un->un_f_opt_fab_devid == TRUE)) {
19857 				if (un->un_devid == NULL) {
19858 					sd_register_devid(un, SD_DEVINFO(un),
19859 					    SD_TARGET_IS_UNRESERVED);
19860 				} else {
19861 					/*
19862 					 * The device id for this disk
19863 					 * has been fabricated. The
19864 					 * device id must be preserved
19865 					 * by writing it back out to
19866 					 * disk.
19867 					 */
19868 					if (sd_write_deviceid(un) != 0) {
19869 						ddi_devid_free(un->un_devid);
19870 						un->un_devid = NULL;
19871 					}
19872 				}
19873 			}
19874 			mutex_exit(SD_MUTEX(un));
19875 		}
19876 
19877 		break;
19878 
19879 	case DKIOCLOCK:
19880 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
19881 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19882 		    SD_PATH_STANDARD);
19883 		break;
19884 
19885 	case DKIOCUNLOCK:
19886 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
19887 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
19888 		    SD_PATH_STANDARD);
19889 		break;
19890 
19891 	case DKIOCSTATE: {
19892 		enum dkio_state		state;
19893 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
19894 
19895 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
19896 			err = EFAULT;
19897 		} else {
19898 			err = sd_check_media(dev, state);
19899 			if (err == 0) {
19900 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
19901 				    sizeof (int), flag) != 0)
19902 					err = EFAULT;
19903 			}
19904 		}
19905 		break;
19906 	}
19907 
19908 	case DKIOCREMOVABLE:
19909 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
19910 		i = un->un_f_has_removable_media ? 1 : 0;
19911 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19912 			err = EFAULT;
19913 		} else {
19914 			err = 0;
19915 		}
19916 		break;
19917 
19918 	case DKIOCHOTPLUGGABLE:
19919 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
19920 		i = un->un_f_is_hotpluggable ? 1 : 0;
19921 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
19922 			err = EFAULT;
19923 		} else {
19924 			err = 0;
19925 		}
19926 		break;
19927 
19928 	case DKIOCGTEMPERATURE:
19929 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
19930 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
19931 		break;
19932 
19933 	case MHIOCENFAILFAST:
19934 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
19935 		if ((err = drv_priv(cred_p)) == 0) {
19936 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
19937 		}
19938 		break;
19939 
19940 	case MHIOCTKOWN:
19941 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
19942 		if ((err = drv_priv(cred_p)) == 0) {
19943 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
19944 		}
19945 		break;
19946 
19947 	case MHIOCRELEASE:
19948 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
19949 		if ((err = drv_priv(cred_p)) == 0) {
19950 			err = sd_mhdioc_release(dev);
19951 		}
19952 		break;
19953 
19954 	case MHIOCSTATUS:
19955 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
19956 		if ((err = drv_priv(cred_p)) == 0) {
19957 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
19958 			case 0:
19959 				err = 0;
19960 				break;
19961 			case EACCES:
19962 				*rval_p = 1;
19963 				err = 0;
19964 				break;
19965 			default:
19966 				err = EIO;
19967 				break;
19968 			}
19969 		}
19970 		break;
19971 
19972 	case MHIOCQRESERVE:
19973 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
19974 		if ((err = drv_priv(cred_p)) == 0) {
19975 			err = sd_reserve_release(dev, SD_RESERVE);
19976 		}
19977 		break;
19978 
19979 	case MHIOCREREGISTERDEVID:
19980 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
19981 		if (drv_priv(cred_p) == EPERM) {
19982 			err = EPERM;
19983 		} else if (!un->un_f_devid_supported) {
19984 			err = ENOTTY;
19985 		} else {
19986 			err = sd_mhdioc_register_devid(dev);
19987 		}
19988 		break;
19989 
19990 	case MHIOCGRP_INKEYS:
19991 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
19992 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
19993 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
19994 				err = ENOTSUP;
19995 			} else {
19996 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
19997 				    flag);
19998 			}
19999 		}
20000 		break;
20001 
20002 	case MHIOCGRP_INRESV:
20003 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
20004 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
20005 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20006 				err = ENOTSUP;
20007 			} else {
20008 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
20009 			}
20010 		}
20011 		break;
20012 
20013 	case MHIOCGRP_REGISTER:
20014 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
20015 		if ((err = drv_priv(cred_p)) != EPERM) {
20016 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20017 				err = ENOTSUP;
20018 			} else if (arg != NULL) {
20019 				mhioc_register_t reg;
20020 				if (ddi_copyin((void *)arg, &reg,
20021 				    sizeof (mhioc_register_t), flag) != 0) {
20022 					err = EFAULT;
20023 				} else {
20024 					err =
20025 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20026 					    un, SD_SCSI3_REGISTER,
20027 					    (uchar_t *)&reg);
20028 				}
20029 			}
20030 		}
20031 		break;
20032 
20033 	case MHIOCGRP_RESERVE:
20034 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
20035 		if ((err = drv_priv(cred_p)) != EPERM) {
20036 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20037 				err = ENOTSUP;
20038 			} else if (arg != NULL) {
20039 				mhioc_resv_desc_t resv_desc;
20040 				if (ddi_copyin((void *)arg, &resv_desc,
20041 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
20042 					err = EFAULT;
20043 				} else {
20044 					err =
20045 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20046 					    un, SD_SCSI3_RESERVE,
20047 					    (uchar_t *)&resv_desc);
20048 				}
20049 			}
20050 		}
20051 		break;
20052 
20053 	case MHIOCGRP_PREEMPTANDABORT:
20054 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
20055 		if ((err = drv_priv(cred_p)) != EPERM) {
20056 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20057 				err = ENOTSUP;
20058 			} else if (arg != NULL) {
20059 				mhioc_preemptandabort_t preempt_abort;
20060 				if (ddi_copyin((void *)arg, &preempt_abort,
20061 				    sizeof (mhioc_preemptandabort_t),
20062 				    flag) != 0) {
20063 					err = EFAULT;
20064 				} else {
20065 					err =
20066 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20067 					    un, SD_SCSI3_PREEMPTANDABORT,
20068 					    (uchar_t *)&preempt_abort);
20069 				}
20070 			}
20071 		}
20072 		break;
20073 
20074 	case MHIOCGRP_REGISTERANDIGNOREKEY:
20075 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
20076 		if ((err = drv_priv(cred_p)) != EPERM) {
20077 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
20078 				err = ENOTSUP;
20079 			} else if (arg != NULL) {
20080 				mhioc_registerandignorekey_t r_and_i;
20081 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
20082 				    sizeof (mhioc_registerandignorekey_t),
20083 				    flag) != 0) {
20084 					err = EFAULT;
20085 				} else {
20086 					err =
20087 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
20088 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
20089 					    (uchar_t *)&r_and_i);
20090 				}
20091 			}
20092 		}
20093 		break;
20094 
20095 	case USCSICMD:
20096 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
20097 		cr = ddi_get_cred();
20098 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
20099 			err = EPERM;
20100 		} else {
20101 			enum uio_seg	uioseg;
20102 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
20103 			    UIO_USERSPACE;
20104 			if (un->un_f_format_in_progress == TRUE) {
20105 				err = EAGAIN;
20106 				break;
20107 			}
20108 			err = sd_send_scsi_cmd(dev, (struct uscsi_cmd *)arg,
20109 			    flag, uioseg, SD_PATH_STANDARD);
20110 		}
20111 		break;
20112 
20113 	case CDROMPAUSE:
20114 	case CDROMRESUME:
20115 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
20116 		if (!ISCD(un)) {
20117 			err = ENOTTY;
20118 		} else {
20119 			err = sr_pause_resume(dev, cmd);
20120 		}
20121 		break;
20122 
20123 	case CDROMPLAYMSF:
20124 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
20125 		if (!ISCD(un)) {
20126 			err = ENOTTY;
20127 		} else {
20128 			err = sr_play_msf(dev, (caddr_t)arg, flag);
20129 		}
20130 		break;
20131 
20132 	case CDROMPLAYTRKIND:
20133 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
20134 #if defined(__i386) || defined(__amd64)
20135 		/*
20136 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
20137 		 */
20138 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20139 #else
20140 		if (!ISCD(un)) {
20141 #endif
20142 			err = ENOTTY;
20143 		} else {
20144 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
20145 		}
20146 		break;
20147 
20148 	case CDROMREADTOCHDR:
20149 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
20150 		if (!ISCD(un)) {
20151 			err = ENOTTY;
20152 		} else {
20153 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
20154 		}
20155 		break;
20156 
20157 	case CDROMREADTOCENTRY:
20158 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
20159 		if (!ISCD(un)) {
20160 			err = ENOTTY;
20161 		} else {
20162 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
20163 		}
20164 		break;
20165 
20166 	case CDROMSTOP:
20167 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
20168 		if (!ISCD(un)) {
20169 			err = ENOTTY;
20170 		} else {
20171 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
20172 			    SD_PATH_STANDARD);
20173 		}
20174 		break;
20175 
20176 	case CDROMSTART:
20177 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
20178 		if (!ISCD(un)) {
20179 			err = ENOTTY;
20180 		} else {
20181 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
20182 			    SD_PATH_STANDARD);
20183 		}
20184 		break;
20185 
20186 	case CDROMCLOSETRAY:
20187 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
20188 		if (!ISCD(un)) {
20189 			err = ENOTTY;
20190 		} else {
20191 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
20192 			    SD_PATH_STANDARD);
20193 		}
20194 		break;
20195 
20196 	case FDEJECT:	/* for eject command */
20197 	case DKIOCEJECT:
20198 	case CDROMEJECT:
20199 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
20200 		if (!un->un_f_eject_media_supported) {
20201 			err = ENOTTY;
20202 		} else {
20203 			err = sr_eject(dev);
20204 		}
20205 		break;
20206 
20207 	case CDROMVOLCTRL:
20208 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
20209 		if (!ISCD(un)) {
20210 			err = ENOTTY;
20211 		} else {
20212 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
20213 		}
20214 		break;
20215 
20216 	case CDROMSUBCHNL:
20217 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
20218 		if (!ISCD(un)) {
20219 			err = ENOTTY;
20220 		} else {
20221 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
20222 		}
20223 		break;
20224 
20225 	case CDROMREADMODE2:
20226 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
20227 		if (!ISCD(un)) {
20228 			err = ENOTTY;
20229 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20230 			/*
20231 			 * If the drive supports READ CD, use that instead of
20232 			 * switching the LBA size via a MODE SELECT
20233 			 * Block Descriptor
20234 			 */
20235 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
20236 		} else {
20237 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
20238 		}
20239 		break;
20240 
20241 	case CDROMREADMODE1:
20242 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
20243 		if (!ISCD(un)) {
20244 			err = ENOTTY;
20245 		} else {
20246 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
20247 		}
20248 		break;
20249 
20250 	case CDROMREADOFFSET:
20251 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
20252 		if (!ISCD(un)) {
20253 			err = ENOTTY;
20254 		} else {
20255 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
20256 			    flag);
20257 		}
20258 		break;
20259 
20260 	case CDROMSBLKMODE:
20261 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
20262 		/*
20263 		 * There is no means of changing block size in case of atapi
20264 		 * drives, thus return ENOTTY if drive type is atapi
20265 		 */
20266 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
20267 			err = ENOTTY;
20268 		} else if (un->un_f_mmc_cap == TRUE) {
20269 
20270 			/*
20271 			 * MMC Devices do not support changing the
20272 			 * logical block size
20273 			 *
20274 			 * Note: EINVAL is being returned instead of ENOTTY to
20275 			 * maintain consistancy with the original mmc
20276 			 * driver update.
20277 			 */
20278 			err = EINVAL;
20279 		} else {
20280 			mutex_enter(SD_MUTEX(un));
20281 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
20282 			    (un->un_ncmds_in_transport > 0)) {
20283 				mutex_exit(SD_MUTEX(un));
20284 				err = EINVAL;
20285 			} else {
20286 				mutex_exit(SD_MUTEX(un));
20287 				err = sr_change_blkmode(dev, cmd, arg, flag);
20288 			}
20289 		}
20290 		break;
20291 
20292 	case CDROMGBLKMODE:
20293 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
20294 		if (!ISCD(un)) {
20295 			err = ENOTTY;
20296 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
20297 		    (un->un_f_blockcount_is_valid != FALSE)) {
20298 			/*
20299 			 * Drive is an ATAPI drive so return target block
20300 			 * size for ATAPI drives since we cannot change the
20301 			 * blocksize on ATAPI drives. Used primarily to detect
20302 			 * if an ATAPI cdrom is present.
20303 			 */
20304 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
20305 			    sizeof (int), flag) != 0) {
20306 				err = EFAULT;
20307 			} else {
20308 				err = 0;
20309 			}
20310 
20311 		} else {
20312 			/*
20313 			 * Drive supports changing block sizes via a Mode
20314 			 * Select.
20315 			 */
20316 			err = sr_change_blkmode(dev, cmd, arg, flag);
20317 		}
20318 		break;
20319 
20320 	case CDROMGDRVSPEED:
20321 	case CDROMSDRVSPEED:
20322 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
20323 		if (!ISCD(un)) {
20324 			err = ENOTTY;
20325 		} else if (un->un_f_mmc_cap == TRUE) {
20326 			/*
20327 			 * Note: In the future the driver implementation
20328 			 * for getting and
20329 			 * setting cd speed should entail:
20330 			 * 1) If non-mmc try the Toshiba mode page
20331 			 *    (sr_change_speed)
20332 			 * 2) If mmc but no support for Real Time Streaming try
20333 			 *    the SET CD SPEED (0xBB) command
20334 			 *   (sr_atapi_change_speed)
20335 			 * 3) If mmc and support for Real Time Streaming
20336 			 *    try the GET PERFORMANCE and SET STREAMING
20337 			 *    commands (not yet implemented, 4380808)
20338 			 */
20339 			/*
20340 			 * As per recent MMC spec, CD-ROM speed is variable
20341 			 * and changes with LBA. Since there is no such
20342 			 * things as drive speed now, fail this ioctl.
20343 			 *
20344 			 * Note: EINVAL is returned for consistancy of original
20345 			 * implementation which included support for getting
20346 			 * the drive speed of mmc devices but not setting
20347 			 * the drive speed. Thus EINVAL would be returned
20348 			 * if a set request was made for an mmc device.
20349 			 * We no longer support get or set speed for
20350 			 * mmc but need to remain consistent with regard
20351 			 * to the error code returned.
20352 			 */
20353 			err = EINVAL;
20354 		} else if (un->un_f_cfg_is_atapi == TRUE) {
20355 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
20356 		} else {
20357 			err = sr_change_speed(dev, cmd, arg, flag);
20358 		}
20359 		break;
20360 
20361 	case CDROMCDDA:
20362 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
20363 		if (!ISCD(un)) {
20364 			err = ENOTTY;
20365 		} else {
20366 			err = sr_read_cdda(dev, (void *)arg, flag);
20367 		}
20368 		break;
20369 
20370 	case CDROMCDXA:
20371 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
20372 		if (!ISCD(un)) {
20373 			err = ENOTTY;
20374 		} else {
20375 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
20376 		}
20377 		break;
20378 
20379 	case CDROMSUBCODE:
20380 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
20381 		if (!ISCD(un)) {
20382 			err = ENOTTY;
20383 		} else {
20384 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
20385 		}
20386 		break;
20387 
20388 
20389 #ifdef SDDEBUG
20390 /* RESET/ABORTS testing ioctls */
20391 	case DKIOCRESET: {
20392 		int	reset_level;
20393 
20394 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
20395 			err = EFAULT;
20396 		} else {
20397 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
20398 			    "reset_level = 0x%lx\n", reset_level);
20399 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
20400 				err = 0;
20401 			} else {
20402 				err = EIO;
20403 			}
20404 		}
20405 		break;
20406 	}
20407 
20408 	case DKIOCABORT:
20409 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
20410 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
20411 			err = 0;
20412 		} else {
20413 			err = EIO;
20414 		}
20415 		break;
20416 #endif
20417 
20418 #ifdef SD_FAULT_INJECTION
20419 /* SDIOC FaultInjection testing ioctls */
20420 	case SDIOCSTART:
20421 	case SDIOCSTOP:
20422 	case SDIOCINSERTPKT:
20423 	case SDIOCINSERTXB:
20424 	case SDIOCINSERTUN:
20425 	case SDIOCINSERTARQ:
20426 	case SDIOCPUSH:
20427 	case SDIOCRETRIEVE:
20428 	case SDIOCRUN:
20429 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
20430 		    "SDIOC detected cmd:0x%X:\n", cmd);
20431 		/* call error generator */
20432 		sd_faultinjection_ioctl(cmd, arg, un);
20433 		err = 0;
20434 		break;
20435 
20436 #endif /* SD_FAULT_INJECTION */
20437 
20438 	case DKIOCFLUSHWRITECACHE:
20439 		{
20440 			struct dk_callback *dkc = (struct dk_callback *)arg;
20441 
20442 			mutex_enter(SD_MUTEX(un));
20443 			if (!un->un_f_sync_cache_supported ||
20444 			    !un->un_f_write_cache_enabled) {
20445 				err = un->un_f_sync_cache_supported ?
20446 				    0 : ENOTSUP;
20447 				mutex_exit(SD_MUTEX(un));
20448 				if ((flag & FKIOCTL) && dkc != NULL &&
20449 				    dkc->dkc_callback != NULL) {
20450 					(*dkc->dkc_callback)(dkc->dkc_cookie,
20451 					    err);
20452 					/*
20453 					 * Did callback and reported error.
20454 					 * Since we did a callback, ioctl
20455 					 * should return 0.
20456 					 */
20457 					err = 0;
20458 				}
20459 				break;
20460 			}
20461 			mutex_exit(SD_MUTEX(un));
20462 
20463 			if ((flag & FKIOCTL) && dkc != NULL &&
20464 			    dkc->dkc_callback != NULL) {
20465 				/* async SYNC CACHE request */
20466 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
20467 			} else {
20468 				/* synchronous SYNC CACHE request */
20469 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
20470 			}
20471 		}
20472 		break;
20473 
20474 	case DKIOCGETWCE: {
20475 
20476 		int wce;
20477 
20478 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
20479 			break;
20480 		}
20481 
20482 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
20483 			err = EFAULT;
20484 		}
20485 		break;
20486 	}
20487 
20488 	case DKIOCSETWCE: {
20489 
20490 		int wce, sync_supported;
20491 
20492 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
20493 			err = EFAULT;
20494 			break;
20495 		}
20496 
20497 		/*
20498 		 * Synchronize multiple threads trying to enable
20499 		 * or disable the cache via the un_f_wcc_cv
20500 		 * condition variable.
20501 		 */
20502 		mutex_enter(SD_MUTEX(un));
20503 
20504 		/*
20505 		 * Don't allow the cache to be enabled if the
20506 		 * config file has it disabled.
20507 		 */
20508 		if (un->un_f_opt_disable_cache && wce) {
20509 			mutex_exit(SD_MUTEX(un));
20510 			err = EINVAL;
20511 			break;
20512 		}
20513 
20514 		/*
20515 		 * Wait for write cache change in progress
20516 		 * bit to be clear before proceeding.
20517 		 */
20518 		while (un->un_f_wcc_inprog)
20519 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
20520 
20521 		un->un_f_wcc_inprog = 1;
20522 
20523 		if (un->un_f_write_cache_enabled && wce == 0) {
20524 			/*
20525 			 * Disable the write cache.  Don't clear
20526 			 * un_f_write_cache_enabled until after
20527 			 * the mode select and flush are complete.
20528 			 */
20529 			sync_supported = un->un_f_sync_cache_supported;
20530 
20531 			/*
20532 			 * If cache flush is suppressed, we assume that the
20533 			 * controller firmware will take care of managing the
20534 			 * write cache for us: no need to explicitly
20535 			 * disable it.
20536 			 */
20537 			if (!un->un_f_suppress_cache_flush) {
20538 				mutex_exit(SD_MUTEX(un));
20539 				if ((err = sd_cache_control(un,
20540 				    SD_CACHE_NOCHANGE,
20541 				    SD_CACHE_DISABLE)) == 0 &&
20542 				    sync_supported) {
20543 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
20544 					    NULL);
20545 				}
20546 			} else {
20547 				mutex_exit(SD_MUTEX(un));
20548 			}
20549 
20550 			mutex_enter(SD_MUTEX(un));
20551 			if (err == 0) {
20552 				un->un_f_write_cache_enabled = 0;
20553 			}
20554 
20555 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
20556 			/*
20557 			 * Set un_f_write_cache_enabled first, so there is
20558 			 * no window where the cache is enabled, but the
20559 			 * bit says it isn't.
20560 			 */
20561 			un->un_f_write_cache_enabled = 1;
20562 
20563 			/*
20564 			 * If cache flush is suppressed, we assume that the
20565 			 * controller firmware will take care of managing the
20566 			 * write cache for us: no need to explicitly
20567 			 * enable it.
20568 			 */
20569 			if (!un->un_f_suppress_cache_flush) {
20570 				mutex_exit(SD_MUTEX(un));
20571 				err = sd_cache_control(un, SD_CACHE_NOCHANGE,
20572 				    SD_CACHE_ENABLE);
20573 			} else {
20574 				mutex_exit(SD_MUTEX(un));
20575 			}
20576 
20577 			mutex_enter(SD_MUTEX(un));
20578 
20579 			if (err) {
20580 				un->un_f_write_cache_enabled = 0;
20581 			}
20582 		}
20583 
20584 		un->un_f_wcc_inprog = 0;
20585 		cv_broadcast(&un->un_wcc_cv);
20586 		mutex_exit(SD_MUTEX(un));
20587 		break;
20588 	}
20589 
20590 	default:
20591 		err = ENOTTY;
20592 		break;
20593 	}
20594 	mutex_enter(SD_MUTEX(un));
20595 	un->un_ncmds_in_driver--;
20596 	ASSERT(un->un_ncmds_in_driver >= 0);
20597 	mutex_exit(SD_MUTEX(un));
20598 
20599 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
20600 	return (err);
20601 }
20602 
20603 
20604 /*
20605  *    Function: sd_dkio_ctrl_info
20606  *
20607  * Description: This routine is the driver entry point for handling controller
20608  *		information ioctl requests (DKIOCINFO).
20609  *
20610  *   Arguments: dev  - the device number
20611  *		arg  - pointer to user provided dk_cinfo structure
20612  *		       specifying the controller type and attributes.
20613  *		flag - this argument is a pass through to ddi_copyxxx()
20614  *		       directly from the mode argument of ioctl().
20615  *
20616  * Return Code: 0
20617  *		EFAULT
20618  *		ENXIO
20619  */
20620 
20621 static int
20622 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
20623 {
20624 	struct sd_lun	*un = NULL;
20625 	struct dk_cinfo	*info;
20626 	dev_info_t	*pdip;
20627 	int		lun, tgt;
20628 
20629 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20630 		return (ENXIO);
20631 	}
20632 
20633 	info = (struct dk_cinfo *)
20634 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
20635 
20636 	switch (un->un_ctype) {
20637 	case CTYPE_CDROM:
20638 		info->dki_ctype = DKC_CDROM;
20639 		break;
20640 	default:
20641 		info->dki_ctype = DKC_SCSI_CCS;
20642 		break;
20643 	}
20644 	pdip = ddi_get_parent(SD_DEVINFO(un));
20645 	info->dki_cnum = ddi_get_instance(pdip);
20646 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
20647 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
20648 	} else {
20649 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
20650 		    DK_DEVLEN - 1);
20651 	}
20652 
20653 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20654 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
20655 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
20656 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
20657 
20658 	/* Unit Information */
20659 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
20660 	info->dki_slave = ((tgt << 3) | lun);
20661 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
20662 	    DK_DEVLEN - 1);
20663 	info->dki_flags = DKI_FMTVOL;
20664 	info->dki_partition = SDPART(dev);
20665 
20666 	/* Max Transfer size of this device in blocks */
20667 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
20668 	info->dki_addr = 0;
20669 	info->dki_space = 0;
20670 	info->dki_prio = 0;
20671 	info->dki_vec = 0;
20672 
20673 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
20674 		kmem_free(info, sizeof (struct dk_cinfo));
20675 		return (EFAULT);
20676 	} else {
20677 		kmem_free(info, sizeof (struct dk_cinfo));
20678 		return (0);
20679 	}
20680 }
20681 
20682 
20683 /*
20684  *    Function: sd_get_media_info
20685  *
20686  * Description: This routine is the driver entry point for handling ioctl
20687  *		requests for the media type or command set profile used by the
20688  *		drive to operate on the media (DKIOCGMEDIAINFO).
20689  *
20690  *   Arguments: dev	- the device number
20691  *		arg	- pointer to user provided dk_minfo structure
20692  *			  specifying the media type, logical block size and
20693  *			  drive capacity.
20694  *		flag	- this argument is a pass through to ddi_copyxxx()
20695  *			  directly from the mode argument of ioctl().
20696  *
20697  * Return Code: 0
20698  *		EACCESS
20699  *		EFAULT
20700  *		ENXIO
20701  *		EIO
20702  */
20703 
20704 static int
20705 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
20706 {
20707 	struct sd_lun		*un = NULL;
20708 	struct uscsi_cmd	com;
20709 	struct scsi_inquiry	*sinq;
20710 	struct dk_minfo		media_info;
20711 	u_longlong_t		media_capacity;
20712 	uint64_t		capacity;
20713 	uint_t			lbasize;
20714 	uchar_t			*out_data;
20715 	uchar_t			*rqbuf;
20716 	int			rval = 0;
20717 	int			rtn;
20718 
20719 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
20720 	    (un->un_state == SD_STATE_OFFLINE)) {
20721 		return (ENXIO);
20722 	}
20723 
20724 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
20725 
20726 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
20727 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20728 
20729 	/* Issue a TUR to determine if the drive is ready with media present */
20730 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
20731 	if (rval == ENXIO) {
20732 		goto done;
20733 	}
20734 
20735 	/* Now get configuration data */
20736 	if (ISCD(un)) {
20737 		media_info.dki_media_type = DK_CDROM;
20738 
20739 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
20740 		if (un->un_f_mmc_cap == TRUE) {
20741 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
20742 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
20743 			    SD_PATH_STANDARD);
20744 
20745 			if (rtn) {
20746 				/*
20747 				 * Failed for other than an illegal request
20748 				 * or command not supported
20749 				 */
20750 				if ((com.uscsi_status == STATUS_CHECK) &&
20751 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
20752 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
20753 					    (rqbuf[12] != 0x20)) {
20754 						rval = EIO;
20755 						goto done;
20756 					}
20757 				}
20758 			} else {
20759 				/*
20760 				 * The GET CONFIGURATION command succeeded
20761 				 * so set the media type according to the
20762 				 * returned data
20763 				 */
20764 				media_info.dki_media_type = out_data[6];
20765 				media_info.dki_media_type <<= 8;
20766 				media_info.dki_media_type |= out_data[7];
20767 			}
20768 		}
20769 	} else {
20770 		/*
20771 		 * The profile list is not available, so we attempt to identify
20772 		 * the media type based on the inquiry data
20773 		 */
20774 		sinq = un->un_sd->sd_inq;
20775 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
20776 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
20777 			/* This is a direct access device  or optical disk */
20778 			media_info.dki_media_type = DK_FIXED_DISK;
20779 
20780 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
20781 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
20782 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
20783 					media_info.dki_media_type = DK_ZIP;
20784 				} else if (
20785 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
20786 					media_info.dki_media_type = DK_JAZ;
20787 				}
20788 			}
20789 		} else {
20790 			/*
20791 			 * Not a CD, direct access or optical disk so return
20792 			 * unknown media
20793 			 */
20794 			media_info.dki_media_type = DK_UNKNOWN;
20795 		}
20796 	}
20797 
20798 	/* Now read the capacity so we can provide the lbasize and capacity */
20799 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
20800 	    SD_PATH_DIRECT)) {
20801 	case 0:
20802 		break;
20803 	case EACCES:
20804 		rval = EACCES;
20805 		goto done;
20806 	default:
20807 		rval = EIO;
20808 		goto done;
20809 	}
20810 
20811 	media_info.dki_lbsize = lbasize;
20812 	media_capacity = capacity;
20813 
20814 	/*
20815 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
20816 	 * un->un_sys_blocksize chunks. So we need to convert it into
20817 	 * cap.lbasize chunks.
20818 	 */
20819 	media_capacity *= un->un_sys_blocksize;
20820 	media_capacity /= lbasize;
20821 	media_info.dki_capacity = media_capacity;
20822 
20823 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
20824 		rval = EFAULT;
20825 		/* Put goto. Anybody might add some code below in future */
20826 		goto done;
20827 	}
20828 done:
20829 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
20830 	kmem_free(rqbuf, SENSE_LENGTH);
20831 	return (rval);
20832 }
20833 
20834 
20835 /*
20836  *    Function: sd_check_media
20837  *
20838  * Description: This utility routine implements the functionality for the
20839  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
20840  *		driver state changes from that specified by the user
20841  *		(inserted or ejected). For example, if the user specifies
20842  *		DKIO_EJECTED and the current media state is inserted this
20843  *		routine will immediately return DKIO_INSERTED. However, if the
20844  *		current media state is not inserted the user thread will be
20845  *		blocked until the drive state changes. If DKIO_NONE is specified
20846  *		the user thread will block until a drive state change occurs.
20847  *
20848  *   Arguments: dev  - the device number
20849  *		state  - user pointer to a dkio_state, updated with the current
20850  *			drive state at return.
20851  *
20852  * Return Code: ENXIO
20853  *		EIO
20854  *		EAGAIN
20855  *		EINTR
20856  */
20857 
20858 static int
20859 sd_check_media(dev_t dev, enum dkio_state state)
20860 {
20861 	struct sd_lun		*un = NULL;
20862 	enum dkio_state		prev_state;
20863 	opaque_t		token = NULL;
20864 	int			rval = 0;
20865 
20866 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20867 		return (ENXIO);
20868 	}
20869 
20870 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
20871 
20872 	mutex_enter(SD_MUTEX(un));
20873 
20874 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
20875 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
20876 
20877 	prev_state = un->un_mediastate;
20878 
20879 	/* is there anything to do? */
20880 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
20881 		/*
20882 		 * submit the request to the scsi_watch service;
20883 		 * scsi_media_watch_cb() does the real work
20884 		 */
20885 		mutex_exit(SD_MUTEX(un));
20886 
20887 		/*
20888 		 * This change handles the case where a scsi watch request is
20889 		 * added to a device that is powered down. To accomplish this
20890 		 * we power up the device before adding the scsi watch request,
20891 		 * since the scsi watch sends a TUR directly to the device
20892 		 * which the device cannot handle if it is powered down.
20893 		 */
20894 		if (sd_pm_entry(un) != DDI_SUCCESS) {
20895 			mutex_enter(SD_MUTEX(un));
20896 			goto done;
20897 		}
20898 
20899 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
20900 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
20901 		    (caddr_t)dev);
20902 
20903 		sd_pm_exit(un);
20904 
20905 		mutex_enter(SD_MUTEX(un));
20906 		if (token == NULL) {
20907 			rval = EAGAIN;
20908 			goto done;
20909 		}
20910 
20911 		/*
20912 		 * This is a special case IOCTL that doesn't return
20913 		 * until the media state changes. Routine sdpower
20914 		 * knows about and handles this so don't count it
20915 		 * as an active cmd in the driver, which would
20916 		 * keep the device busy to the pm framework.
20917 		 * If the count isn't decremented the device can't
20918 		 * be powered down.
20919 		 */
20920 		un->un_ncmds_in_driver--;
20921 		ASSERT(un->un_ncmds_in_driver >= 0);
20922 
20923 		/*
20924 		 * if a prior request had been made, this will be the same
20925 		 * token, as scsi_watch was designed that way.
20926 		 */
20927 		un->un_swr_token = token;
20928 		un->un_specified_mediastate = state;
20929 
20930 		/*
20931 		 * now wait for media change
20932 		 * we will not be signalled unless mediastate == state but it is
20933 		 * still better to test for this condition, since there is a
20934 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
20935 		 */
20936 		SD_TRACE(SD_LOG_COMMON, un,
20937 		    "sd_check_media: waiting for media state change\n");
20938 		while (un->un_mediastate == state) {
20939 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
20940 				SD_TRACE(SD_LOG_COMMON, un,
20941 				    "sd_check_media: waiting for media state "
20942 				    "was interrupted\n");
20943 				un->un_ncmds_in_driver++;
20944 				rval = EINTR;
20945 				goto done;
20946 			}
20947 			SD_TRACE(SD_LOG_COMMON, un,
20948 			    "sd_check_media: received signal, state=%x\n",
20949 			    un->un_mediastate);
20950 		}
20951 		/*
20952 		 * Inc the counter to indicate the device once again
20953 		 * has an active outstanding cmd.
20954 		 */
20955 		un->un_ncmds_in_driver++;
20956 	}
20957 
20958 	/* invalidate geometry */
20959 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
20960 		sr_ejected(un);
20961 	}
20962 
20963 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
20964 		uint64_t	capacity;
20965 		uint_t		lbasize;
20966 
20967 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
20968 		mutex_exit(SD_MUTEX(un));
20969 		/*
20970 		 * Since the following routines use SD_PATH_DIRECT, we must
20971 		 * call PM directly before the upcoming disk accesses. This
20972 		 * may cause the disk to be power/spin up.
20973 		 */
20974 
20975 		if (sd_pm_entry(un) == DDI_SUCCESS) {
20976 			rval = sd_send_scsi_READ_CAPACITY(un,
20977 			    &capacity,
20978 			    &lbasize, SD_PATH_DIRECT);
20979 			if (rval != 0) {
20980 				sd_pm_exit(un);
20981 				mutex_enter(SD_MUTEX(un));
20982 				goto done;
20983 			}
20984 		} else {
20985 			rval = EIO;
20986 			mutex_enter(SD_MUTEX(un));
20987 			goto done;
20988 		}
20989 		mutex_enter(SD_MUTEX(un));
20990 
20991 		sd_update_block_info(un, lbasize, capacity);
20992 
20993 		/*
20994 		 *  Check if the media in the device is writable or not
20995 		 */
20996 		if (ISCD(un))
20997 			sd_check_for_writable_cd(un, SD_PATH_DIRECT);
20998 
20999 		mutex_exit(SD_MUTEX(un));
21000 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
21001 		if ((cmlb_validate(un->un_cmlbhandle, 0,
21002 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
21003 			sd_set_pstats(un);
21004 			SD_TRACE(SD_LOG_IO_PARTITION, un,
21005 			    "sd_check_media: un:0x%p pstats created and "
21006 			    "set\n", un);
21007 		}
21008 
21009 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21010 		    SD_PATH_DIRECT);
21011 		sd_pm_exit(un);
21012 
21013 		mutex_enter(SD_MUTEX(un));
21014 	}
21015 done:
21016 	un->un_f_watcht_stopped = FALSE;
21017 	if (un->un_swr_token) {
21018 		/*
21019 		 * Use of this local token and the mutex ensures that we avoid
21020 		 * some race conditions associated with terminating the
21021 		 * scsi watch.
21022 		 */
21023 		token = un->un_swr_token;
21024 		un->un_swr_token = (opaque_t)NULL;
21025 		mutex_exit(SD_MUTEX(un));
21026 		(void) scsi_watch_request_terminate(token,
21027 		    SCSI_WATCH_TERMINATE_WAIT);
21028 		mutex_enter(SD_MUTEX(un));
21029 	}
21030 
21031 	/*
21032 	 * Update the capacity kstat value, if no media previously
21033 	 * (capacity kstat is 0) and a media has been inserted
21034 	 * (un_f_blockcount_is_valid == TRUE)
21035 	 */
21036 	if (un->un_errstats) {
21037 		struct sd_errstats	*stp = NULL;
21038 
21039 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
21040 		if ((stp->sd_capacity.value.ui64 == 0) &&
21041 		    (un->un_f_blockcount_is_valid == TRUE)) {
21042 			stp->sd_capacity.value.ui64 =
21043 			    (uint64_t)((uint64_t)un->un_blockcount *
21044 			    un->un_sys_blocksize);
21045 		}
21046 	}
21047 	mutex_exit(SD_MUTEX(un));
21048 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
21049 	return (rval);
21050 }
21051 
21052 
21053 /*
21054  *    Function: sd_delayed_cv_broadcast
21055  *
21056  * Description: Delayed cv_broadcast to allow for target to recover from media
21057  *		insertion.
21058  *
21059  *   Arguments: arg - driver soft state (unit) structure
21060  */
21061 
21062 static void
21063 sd_delayed_cv_broadcast(void *arg)
21064 {
21065 	struct sd_lun *un = arg;
21066 
21067 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
21068 
21069 	mutex_enter(SD_MUTEX(un));
21070 	un->un_dcvb_timeid = NULL;
21071 	cv_broadcast(&un->un_state_cv);
21072 	mutex_exit(SD_MUTEX(un));
21073 }
21074 
21075 
21076 /*
21077  *    Function: sd_media_watch_cb
21078  *
21079  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
21080  *		routine processes the TUR sense data and updates the driver
21081  *		state if a transition has occurred. The user thread
21082  *		(sd_check_media) is then signalled.
21083  *
21084  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21085  *			among multiple watches that share this callback function
21086  *		resultp - scsi watch facility result packet containing scsi
21087  *			  packet, status byte and sense data
21088  *
21089  * Return Code: 0 for success, -1 for failure
21090  */
21091 
21092 static int
21093 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21094 {
21095 	struct sd_lun			*un;
21096 	struct scsi_status		*statusp = resultp->statusp;
21097 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
21098 	enum dkio_state			state = DKIO_NONE;
21099 	dev_t				dev = (dev_t)arg;
21100 	uchar_t				actual_sense_length;
21101 	uint8_t				skey, asc, ascq;
21102 
21103 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21104 		return (-1);
21105 	}
21106 	actual_sense_length = resultp->actual_sense_length;
21107 
21108 	mutex_enter(SD_MUTEX(un));
21109 	SD_TRACE(SD_LOG_COMMON, un,
21110 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
21111 	    *((char *)statusp), (void *)sensep, actual_sense_length);
21112 
21113 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
21114 		un->un_mediastate = DKIO_DEV_GONE;
21115 		cv_broadcast(&un->un_state_cv);
21116 		mutex_exit(SD_MUTEX(un));
21117 
21118 		return (0);
21119 	}
21120 
21121 	/*
21122 	 * If there was a check condition then sensep points to valid sense data
21123 	 * If status was not a check condition but a reservation or busy status
21124 	 * then the new state is DKIO_NONE
21125 	 */
21126 	if (sensep != NULL) {
21127 		skey = scsi_sense_key(sensep);
21128 		asc = scsi_sense_asc(sensep);
21129 		ascq = scsi_sense_ascq(sensep);
21130 
21131 		SD_INFO(SD_LOG_COMMON, un,
21132 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
21133 		    skey, asc, ascq);
21134 		/* This routine only uses up to 13 bytes of sense data. */
21135 		if (actual_sense_length >= 13) {
21136 			if (skey == KEY_UNIT_ATTENTION) {
21137 				if (asc == 0x28) {
21138 					state = DKIO_INSERTED;
21139 				}
21140 			} else if (skey == KEY_NOT_READY) {
21141 				/*
21142 				 * if 02/04/02  means that the host
21143 				 * should send start command. Explicitly
21144 				 * leave the media state as is
21145 				 * (inserted) as the media is inserted
21146 				 * and host has stopped device for PM
21147 				 * reasons. Upon next true read/write
21148 				 * to this media will bring the
21149 				 * device to the right state good for
21150 				 * media access.
21151 				 */
21152 				if (asc == 0x3a) {
21153 					state = DKIO_EJECTED;
21154 				} else {
21155 					/*
21156 					 * If the drive is busy with an
21157 					 * operation or long write, keep the
21158 					 * media in an inserted state.
21159 					 */
21160 
21161 					if ((asc == 0x04) &&
21162 					    ((ascq == 0x02) ||
21163 					    (ascq == 0x07) ||
21164 					    (ascq == 0x08))) {
21165 						state = DKIO_INSERTED;
21166 					}
21167 				}
21168 			} else if (skey == KEY_NO_SENSE) {
21169 				if ((asc == 0x00) && (ascq == 0x00)) {
21170 					/*
21171 					 * Sense Data 00/00/00 does not provide
21172 					 * any information about the state of
21173 					 * the media. Ignore it.
21174 					 */
21175 					mutex_exit(SD_MUTEX(un));
21176 					return (0);
21177 				}
21178 			}
21179 		}
21180 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
21181 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
21182 		state = DKIO_INSERTED;
21183 	}
21184 
21185 	SD_TRACE(SD_LOG_COMMON, un,
21186 	    "sd_media_watch_cb: state=%x, specified=%x\n",
21187 	    state, un->un_specified_mediastate);
21188 
21189 	/*
21190 	 * now signal the waiting thread if this is *not* the specified state;
21191 	 * delay the signal if the state is DKIO_INSERTED to allow the target
21192 	 * to recover
21193 	 */
21194 	if (state != un->un_specified_mediastate) {
21195 		un->un_mediastate = state;
21196 		if (state == DKIO_INSERTED) {
21197 			/*
21198 			 * delay the signal to give the drive a chance
21199 			 * to do what it apparently needs to do
21200 			 */
21201 			SD_TRACE(SD_LOG_COMMON, un,
21202 			    "sd_media_watch_cb: delayed cv_broadcast\n");
21203 			if (un->un_dcvb_timeid == NULL) {
21204 				un->un_dcvb_timeid =
21205 				    timeout(sd_delayed_cv_broadcast, un,
21206 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
21207 			}
21208 		} else {
21209 			SD_TRACE(SD_LOG_COMMON, un,
21210 			    "sd_media_watch_cb: immediate cv_broadcast\n");
21211 			cv_broadcast(&un->un_state_cv);
21212 		}
21213 	}
21214 	mutex_exit(SD_MUTEX(un));
21215 	return (0);
21216 }
21217 
21218 
21219 /*
21220  *    Function: sd_dkio_get_temp
21221  *
21222  * Description: This routine is the driver entry point for handling ioctl
21223  *		requests to get the disk temperature.
21224  *
21225  *   Arguments: dev  - the device number
21226  *		arg  - pointer to user provided dk_temperature structure.
21227  *		flag - this argument is a pass through to ddi_copyxxx()
21228  *		       directly from the mode argument of ioctl().
21229  *
21230  * Return Code: 0
21231  *		EFAULT
21232  *		ENXIO
21233  *		EAGAIN
21234  */
21235 
21236 static int
21237 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
21238 {
21239 	struct sd_lun		*un = NULL;
21240 	struct dk_temperature	*dktemp = NULL;
21241 	uchar_t			*temperature_page;
21242 	int			rval = 0;
21243 	int			path_flag = SD_PATH_STANDARD;
21244 
21245 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21246 		return (ENXIO);
21247 	}
21248 
21249 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
21250 
21251 	/* copyin the disk temp argument to get the user flags */
21252 	if (ddi_copyin((void *)arg, dktemp,
21253 	    sizeof (struct dk_temperature), flag) != 0) {
21254 		rval = EFAULT;
21255 		goto done;
21256 	}
21257 
21258 	/* Initialize the temperature to invalid. */
21259 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21260 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21261 
21262 	/*
21263 	 * Note: Investigate removing the "bypass pm" semantic.
21264 	 * Can we just bypass PM always?
21265 	 */
21266 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
21267 		path_flag = SD_PATH_DIRECT;
21268 		ASSERT(!mutex_owned(&un->un_pm_mutex));
21269 		mutex_enter(&un->un_pm_mutex);
21270 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
21271 			/*
21272 			 * If DKT_BYPASS_PM is set, and the drive happens to be
21273 			 * in low power mode, we can not wake it up, Need to
21274 			 * return EAGAIN.
21275 			 */
21276 			mutex_exit(&un->un_pm_mutex);
21277 			rval = EAGAIN;
21278 			goto done;
21279 		} else {
21280 			/*
21281 			 * Indicate to PM the device is busy. This is required
21282 			 * to avoid a race - i.e. the ioctl is issuing a
21283 			 * command and the pm framework brings down the device
21284 			 * to low power mode (possible power cut-off on some
21285 			 * platforms).
21286 			 */
21287 			mutex_exit(&un->un_pm_mutex);
21288 			if (sd_pm_entry(un) != DDI_SUCCESS) {
21289 				rval = EAGAIN;
21290 				goto done;
21291 			}
21292 		}
21293 	}
21294 
21295 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
21296 
21297 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
21298 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
21299 		goto done2;
21300 	}
21301 
21302 	/*
21303 	 * For the current temperature verify that the parameter length is 0x02
21304 	 * and the parameter code is 0x00
21305 	 */
21306 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
21307 	    (temperature_page[5] == 0x00)) {
21308 		if (temperature_page[9] == 0xFF) {
21309 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
21310 		} else {
21311 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
21312 		}
21313 	}
21314 
21315 	/*
21316 	 * For the reference temperature verify that the parameter
21317 	 * length is 0x02 and the parameter code is 0x01
21318 	 */
21319 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
21320 	    (temperature_page[11] == 0x01)) {
21321 		if (temperature_page[15] == 0xFF) {
21322 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
21323 		} else {
21324 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
21325 		}
21326 	}
21327 
21328 	/* Do the copyout regardless of the temperature commands status. */
21329 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
21330 	    flag) != 0) {
21331 		rval = EFAULT;
21332 	}
21333 
21334 done2:
21335 	if (path_flag == SD_PATH_DIRECT) {
21336 		sd_pm_exit(un);
21337 	}
21338 
21339 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
21340 done:
21341 	if (dktemp != NULL) {
21342 		kmem_free(dktemp, sizeof (struct dk_temperature));
21343 	}
21344 
21345 	return (rval);
21346 }
21347 
21348 
21349 /*
21350  *    Function: sd_log_page_supported
21351  *
21352  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
21353  *		supported log pages.
21354  *
21355  *   Arguments: un -
21356  *		log_page -
21357  *
21358  * Return Code: -1 - on error (log sense is optional and may not be supported).
21359  *		0  - log page not found.
21360  *  		1  - log page found.
21361  */
21362 
21363 static int
21364 sd_log_page_supported(struct sd_lun *un, int log_page)
21365 {
21366 	uchar_t *log_page_data;
21367 	int	i;
21368 	int	match = 0;
21369 	int	log_size;
21370 
21371 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
21372 
21373 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
21374 	    SD_PATH_DIRECT) != 0) {
21375 		SD_ERROR(SD_LOG_COMMON, un,
21376 		    "sd_log_page_supported: failed log page retrieval\n");
21377 		kmem_free(log_page_data, 0xFF);
21378 		return (-1);
21379 	}
21380 	log_size = log_page_data[3];
21381 
21382 	/*
21383 	 * The list of supported log pages start from the fourth byte. Check
21384 	 * until we run out of log pages or a match is found.
21385 	 */
21386 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
21387 		if (log_page_data[i] == log_page) {
21388 			match++;
21389 		}
21390 	}
21391 	kmem_free(log_page_data, 0xFF);
21392 	return (match);
21393 }
21394 
21395 
21396 /*
21397  *    Function: sd_mhdioc_failfast
21398  *
21399  * Description: This routine is the driver entry point for handling ioctl
21400  *		requests to enable/disable the multihost failfast option.
21401  *		(MHIOCENFAILFAST)
21402  *
21403  *   Arguments: dev	- the device number
21404  *		arg	- user specified probing interval.
21405  *		flag	- this argument is a pass through to ddi_copyxxx()
21406  *			  directly from the mode argument of ioctl().
21407  *
21408  * Return Code: 0
21409  *		EFAULT
21410  *		ENXIO
21411  */
21412 
21413 static int
21414 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
21415 {
21416 	struct sd_lun	*un = NULL;
21417 	int		mh_time;
21418 	int		rval = 0;
21419 
21420 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21421 		return (ENXIO);
21422 	}
21423 
21424 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
21425 		return (EFAULT);
21426 
21427 	if (mh_time) {
21428 		mutex_enter(SD_MUTEX(un));
21429 		un->un_resvd_status |= SD_FAILFAST;
21430 		mutex_exit(SD_MUTEX(un));
21431 		/*
21432 		 * If mh_time is INT_MAX, then this ioctl is being used for
21433 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
21434 		 */
21435 		if (mh_time != INT_MAX) {
21436 			rval = sd_check_mhd(dev, mh_time);
21437 		}
21438 	} else {
21439 		(void) sd_check_mhd(dev, 0);
21440 		mutex_enter(SD_MUTEX(un));
21441 		un->un_resvd_status &= ~SD_FAILFAST;
21442 		mutex_exit(SD_MUTEX(un));
21443 	}
21444 	return (rval);
21445 }
21446 
21447 
21448 /*
21449  *    Function: sd_mhdioc_takeown
21450  *
21451  * Description: This routine is the driver entry point for handling ioctl
21452  *		requests to forcefully acquire exclusive access rights to the
21453  *		multihost disk (MHIOCTKOWN).
21454  *
21455  *   Arguments: dev	- the device number
21456  *		arg	- user provided structure specifying the delay
21457  *			  parameters in milliseconds
21458  *		flag	- this argument is a pass through to ddi_copyxxx()
21459  *			  directly from the mode argument of ioctl().
21460  *
21461  * Return Code: 0
21462  *		EFAULT
21463  *		ENXIO
21464  */
21465 
21466 static int
21467 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
21468 {
21469 	struct sd_lun		*un = NULL;
21470 	struct mhioctkown	*tkown = NULL;
21471 	int			rval = 0;
21472 
21473 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21474 		return (ENXIO);
21475 	}
21476 
21477 	if (arg != NULL) {
21478 		tkown = (struct mhioctkown *)
21479 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
21480 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
21481 		if (rval != 0) {
21482 			rval = EFAULT;
21483 			goto error;
21484 		}
21485 	}
21486 
21487 	rval = sd_take_ownership(dev, tkown);
21488 	mutex_enter(SD_MUTEX(un));
21489 	if (rval == 0) {
21490 		un->un_resvd_status |= SD_RESERVE;
21491 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
21492 			sd_reinstate_resv_delay =
21493 			    tkown->reinstate_resv_delay * 1000;
21494 		} else {
21495 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
21496 		}
21497 		/*
21498 		 * Give the scsi_watch routine interval set by
21499 		 * the MHIOCENFAILFAST ioctl precedence here.
21500 		 */
21501 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
21502 			mutex_exit(SD_MUTEX(un));
21503 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
21504 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
21505 			    "sd_mhdioc_takeown : %d\n",
21506 			    sd_reinstate_resv_delay);
21507 		} else {
21508 			mutex_exit(SD_MUTEX(un));
21509 		}
21510 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
21511 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21512 	} else {
21513 		un->un_resvd_status &= ~SD_RESERVE;
21514 		mutex_exit(SD_MUTEX(un));
21515 	}
21516 
21517 error:
21518 	if (tkown != NULL) {
21519 		kmem_free(tkown, sizeof (struct mhioctkown));
21520 	}
21521 	return (rval);
21522 }
21523 
21524 
21525 /*
21526  *    Function: sd_mhdioc_release
21527  *
21528  * Description: This routine is the driver entry point for handling ioctl
21529  *		requests to release exclusive access rights to the multihost
21530  *		disk (MHIOCRELEASE).
21531  *
21532  *   Arguments: dev	- the device number
21533  *
21534  * Return Code: 0
21535  *		ENXIO
21536  */
21537 
21538 static int
21539 sd_mhdioc_release(dev_t dev)
21540 {
21541 	struct sd_lun		*un = NULL;
21542 	timeout_id_t		resvd_timeid_save;
21543 	int			resvd_status_save;
21544 	int			rval = 0;
21545 
21546 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21547 		return (ENXIO);
21548 	}
21549 
21550 	mutex_enter(SD_MUTEX(un));
21551 	resvd_status_save = un->un_resvd_status;
21552 	un->un_resvd_status &=
21553 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
21554 	if (un->un_resvd_timeid) {
21555 		resvd_timeid_save = un->un_resvd_timeid;
21556 		un->un_resvd_timeid = NULL;
21557 		mutex_exit(SD_MUTEX(un));
21558 		(void) untimeout(resvd_timeid_save);
21559 	} else {
21560 		mutex_exit(SD_MUTEX(un));
21561 	}
21562 
21563 	/*
21564 	 * destroy any pending timeout thread that may be attempting to
21565 	 * reinstate reservation on this device.
21566 	 */
21567 	sd_rmv_resv_reclaim_req(dev);
21568 
21569 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
21570 		mutex_enter(SD_MUTEX(un));
21571 		if ((un->un_mhd_token) &&
21572 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
21573 			mutex_exit(SD_MUTEX(un));
21574 			(void) sd_check_mhd(dev, 0);
21575 		} else {
21576 			mutex_exit(SD_MUTEX(un));
21577 		}
21578 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
21579 		    sd_mhd_reset_notify_cb, (caddr_t)un);
21580 	} else {
21581 		/*
21582 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
21583 		 */
21584 		mutex_enter(SD_MUTEX(un));
21585 		un->un_resvd_status = resvd_status_save;
21586 		mutex_exit(SD_MUTEX(un));
21587 	}
21588 	return (rval);
21589 }
21590 
21591 
21592 /*
21593  *    Function: sd_mhdioc_register_devid
21594  *
21595  * Description: This routine is the driver entry point for handling ioctl
21596  *		requests to register the device id (MHIOCREREGISTERDEVID).
21597  *
21598  *		Note: The implementation for this ioctl has been updated to
21599  *		be consistent with the original PSARC case (1999/357)
21600  *		(4375899, 4241671, 4220005)
21601  *
21602  *   Arguments: dev	- the device number
21603  *
21604  * Return Code: 0
21605  *		ENXIO
21606  */
21607 
21608 static int
21609 sd_mhdioc_register_devid(dev_t dev)
21610 {
21611 	struct sd_lun	*un = NULL;
21612 	int		rval = 0;
21613 
21614 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21615 		return (ENXIO);
21616 	}
21617 
21618 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21619 
21620 	mutex_enter(SD_MUTEX(un));
21621 
21622 	/* If a devid already exists, de-register it */
21623 	if (un->un_devid != NULL) {
21624 		ddi_devid_unregister(SD_DEVINFO(un));
21625 		/*
21626 		 * After unregister devid, needs to free devid memory
21627 		 */
21628 		ddi_devid_free(un->un_devid);
21629 		un->un_devid = NULL;
21630 	}
21631 
21632 	/* Check for reservation conflict */
21633 	mutex_exit(SD_MUTEX(un));
21634 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
21635 	mutex_enter(SD_MUTEX(un));
21636 
21637 	switch (rval) {
21638 	case 0:
21639 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
21640 		break;
21641 	case EACCES:
21642 		break;
21643 	default:
21644 		rval = EIO;
21645 	}
21646 
21647 	mutex_exit(SD_MUTEX(un));
21648 	return (rval);
21649 }
21650 
21651 
21652 /*
21653  *    Function: sd_mhdioc_inkeys
21654  *
21655  * Description: This routine is the driver entry point for handling ioctl
21656  *		requests to issue the SCSI-3 Persistent In Read Keys command
21657  *		to the device (MHIOCGRP_INKEYS).
21658  *
21659  *   Arguments: dev	- the device number
21660  *		arg	- user provided in_keys structure
21661  *		flag	- this argument is a pass through to ddi_copyxxx()
21662  *			  directly from the mode argument of ioctl().
21663  *
21664  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
21665  *		ENXIO
21666  *		EFAULT
21667  */
21668 
21669 static int
21670 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
21671 {
21672 	struct sd_lun		*un;
21673 	mhioc_inkeys_t		inkeys;
21674 	int			rval = 0;
21675 
21676 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21677 		return (ENXIO);
21678 	}
21679 
21680 #ifdef _MULTI_DATAMODEL
21681 	switch (ddi_model_convert_from(flag & FMODELS)) {
21682 	case DDI_MODEL_ILP32: {
21683 		struct mhioc_inkeys32	inkeys32;
21684 
21685 		if (ddi_copyin(arg, &inkeys32,
21686 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
21687 			return (EFAULT);
21688 		}
21689 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
21690 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21691 		    &inkeys, flag)) != 0) {
21692 			return (rval);
21693 		}
21694 		inkeys32.generation = inkeys.generation;
21695 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
21696 		    flag) != 0) {
21697 			return (EFAULT);
21698 		}
21699 		break;
21700 	}
21701 	case DDI_MODEL_NONE:
21702 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
21703 		    flag) != 0) {
21704 			return (EFAULT);
21705 		}
21706 		if ((rval = sd_persistent_reservation_in_read_keys(un,
21707 		    &inkeys, flag)) != 0) {
21708 			return (rval);
21709 		}
21710 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
21711 		    flag) != 0) {
21712 			return (EFAULT);
21713 		}
21714 		break;
21715 	}
21716 
21717 #else /* ! _MULTI_DATAMODEL */
21718 
21719 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
21720 		return (EFAULT);
21721 	}
21722 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
21723 	if (rval != 0) {
21724 		return (rval);
21725 	}
21726 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
21727 		return (EFAULT);
21728 	}
21729 
21730 #endif /* _MULTI_DATAMODEL */
21731 
21732 	return (rval);
21733 }
21734 
21735 
21736 /*
21737  *    Function: sd_mhdioc_inresv
21738  *
21739  * Description: This routine is the driver entry point for handling ioctl
21740  *		requests to issue the SCSI-3 Persistent In Read Reservations
21741  *		command to the device (MHIOCGRP_INKEYS).
21742  *
21743  *   Arguments: dev	- the device number
21744  *		arg	- user provided in_resv structure
21745  *		flag	- this argument is a pass through to ddi_copyxxx()
21746  *			  directly from the mode argument of ioctl().
21747  *
21748  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
21749  *		ENXIO
21750  *		EFAULT
21751  */
21752 
21753 static int
21754 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
21755 {
21756 	struct sd_lun		*un;
21757 	mhioc_inresvs_t		inresvs;
21758 	int			rval = 0;
21759 
21760 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21761 		return (ENXIO);
21762 	}
21763 
21764 #ifdef _MULTI_DATAMODEL
21765 
21766 	switch (ddi_model_convert_from(flag & FMODELS)) {
21767 	case DDI_MODEL_ILP32: {
21768 		struct mhioc_inresvs32	inresvs32;
21769 
21770 		if (ddi_copyin(arg, &inresvs32,
21771 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21772 			return (EFAULT);
21773 		}
21774 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
21775 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21776 		    &inresvs, flag)) != 0) {
21777 			return (rval);
21778 		}
21779 		inresvs32.generation = inresvs.generation;
21780 		if (ddi_copyout(&inresvs32, arg,
21781 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
21782 			return (EFAULT);
21783 		}
21784 		break;
21785 	}
21786 	case DDI_MODEL_NONE:
21787 		if (ddi_copyin(arg, &inresvs,
21788 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21789 			return (EFAULT);
21790 		}
21791 		if ((rval = sd_persistent_reservation_in_read_resv(un,
21792 		    &inresvs, flag)) != 0) {
21793 			return (rval);
21794 		}
21795 		if (ddi_copyout(&inresvs, arg,
21796 		    sizeof (mhioc_inresvs_t), flag) != 0) {
21797 			return (EFAULT);
21798 		}
21799 		break;
21800 	}
21801 
21802 #else /* ! _MULTI_DATAMODEL */
21803 
21804 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
21805 		return (EFAULT);
21806 	}
21807 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
21808 	if (rval != 0) {
21809 		return (rval);
21810 	}
21811 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
21812 		return (EFAULT);
21813 	}
21814 
21815 #endif /* ! _MULTI_DATAMODEL */
21816 
21817 	return (rval);
21818 }
21819 
21820 
21821 /*
21822  * The following routines support the clustering functionality described below
21823  * and implement lost reservation reclaim functionality.
21824  *
21825  * Clustering
21826  * ----------
21827  * The clustering code uses two different, independent forms of SCSI
21828  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
21829  * Persistent Group Reservations. For any particular disk, it will use either
21830  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
21831  *
21832  * SCSI-2
21833  * The cluster software takes ownership of a multi-hosted disk by issuing the
21834  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
21835  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
21836  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
21837  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
21838  * driver. The meaning of failfast is that if the driver (on this host) ever
21839  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
21840  * it should immediately panic the host. The motivation for this ioctl is that
21841  * if this host does encounter reservation conflict, the underlying cause is
21842  * that some other host of the cluster has decided that this host is no longer
21843  * in the cluster and has seized control of the disks for itself. Since this
21844  * host is no longer in the cluster, it ought to panic itself. The
21845  * MHIOCENFAILFAST ioctl does two things:
21846  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
21847  *      error to panic the host
21848  *      (b) it sets up a periodic timer to test whether this host still has
21849  *      "access" (in that no other host has reserved the device):  if the
21850  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
21851  *      purpose of that periodic timer is to handle scenarios where the host is
21852  *      otherwise temporarily quiescent, temporarily doing no real i/o.
21853  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
21854  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
21855  * the device itself.
21856  *
21857  * SCSI-3 PGR
21858  * A direct semantic implementation of the SCSI-3 Persistent Reservation
21859  * facility is supported through the shared multihost disk ioctls
21860  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
21861  * MHIOCGRP_PREEMPTANDABORT)
21862  *
21863  * Reservation Reclaim:
21864  * --------------------
21865  * To support the lost reservation reclaim operations this driver creates a
21866  * single thread to handle reinstating reservations on all devices that have
21867  * lost reservations sd_resv_reclaim_requests are logged for all devices that
21868  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
21869  * and the reservation reclaim thread loops through the requests to regain the
21870  * lost reservations.
21871  */
21872 
21873 /*
21874  *    Function: sd_check_mhd()
21875  *
21876  * Description: This function sets up and submits a scsi watch request or
21877  *		terminates an existing watch request. This routine is used in
21878  *		support of reservation reclaim.
21879  *
21880  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
21881  *			 among multiple watches that share the callback function
21882  *		interval - the number of microseconds specifying the watch
21883  *			   interval for issuing TEST UNIT READY commands. If
21884  *			   set to 0 the watch should be terminated. If the
21885  *			   interval is set to 0 and if the device is required
21886  *			   to hold reservation while disabling failfast, the
21887  *			   watch is restarted with an interval of
21888  *			   reinstate_resv_delay.
21889  *
21890  * Return Code: 0	   - Successful submit/terminate of scsi watch request
21891  *		ENXIO      - Indicates an invalid device was specified
21892  *		EAGAIN     - Unable to submit the scsi watch request
21893  */
21894 
21895 static int
21896 sd_check_mhd(dev_t dev, int interval)
21897 {
21898 	struct sd_lun	*un;
21899 	opaque_t	token;
21900 
21901 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21902 		return (ENXIO);
21903 	}
21904 
21905 	/* is this a watch termination request? */
21906 	if (interval == 0) {
21907 		mutex_enter(SD_MUTEX(un));
21908 		/* if there is an existing watch task then terminate it */
21909 		if (un->un_mhd_token) {
21910 			token = un->un_mhd_token;
21911 			un->un_mhd_token = NULL;
21912 			mutex_exit(SD_MUTEX(un));
21913 			(void) scsi_watch_request_terminate(token,
21914 			    SCSI_WATCH_TERMINATE_WAIT);
21915 			mutex_enter(SD_MUTEX(un));
21916 		} else {
21917 			mutex_exit(SD_MUTEX(un));
21918 			/*
21919 			 * Note: If we return here we don't check for the
21920 			 * failfast case. This is the original legacy
21921 			 * implementation but perhaps we should be checking
21922 			 * the failfast case.
21923 			 */
21924 			return (0);
21925 		}
21926 		/*
21927 		 * If the device is required to hold reservation while
21928 		 * disabling failfast, we need to restart the scsi_watch
21929 		 * routine with an interval of reinstate_resv_delay.
21930 		 */
21931 		if (un->un_resvd_status & SD_RESERVE) {
21932 			interval = sd_reinstate_resv_delay/1000;
21933 		} else {
21934 			/* no failfast so bail */
21935 			mutex_exit(SD_MUTEX(un));
21936 			return (0);
21937 		}
21938 		mutex_exit(SD_MUTEX(un));
21939 	}
21940 
21941 	/*
21942 	 * adjust minimum time interval to 1 second,
21943 	 * and convert from msecs to usecs
21944 	 */
21945 	if (interval > 0 && interval < 1000) {
21946 		interval = 1000;
21947 	}
21948 	interval *= 1000;
21949 
21950 	/*
21951 	 * submit the request to the scsi_watch service
21952 	 */
21953 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
21954 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
21955 	if (token == NULL) {
21956 		return (EAGAIN);
21957 	}
21958 
21959 	/*
21960 	 * save token for termination later on
21961 	 */
21962 	mutex_enter(SD_MUTEX(un));
21963 	un->un_mhd_token = token;
21964 	mutex_exit(SD_MUTEX(un));
21965 	return (0);
21966 }
21967 
21968 
21969 /*
21970  *    Function: sd_mhd_watch_cb()
21971  *
21972  * Description: This function is the call back function used by the scsi watch
21973  *		facility. The scsi watch facility sends the "Test Unit Ready"
21974  *		and processes the status. If applicable (i.e. a "Unit Attention"
21975  *		status and automatic "Request Sense" not used) the scsi watch
21976  *		facility will send a "Request Sense" and retrieve the sense data
21977  *		to be passed to this callback function. In either case the
21978  *		automatic "Request Sense" or the facility submitting one, this
21979  *		callback is passed the status and sense data.
21980  *
21981  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
21982  *			among multiple watches that share this callback function
21983  *		resultp - scsi watch facility result packet containing scsi
21984  *			  packet, status byte and sense data
21985  *
21986  * Return Code: 0 - continue the watch task
21987  *		non-zero - terminate the watch task
21988  */
21989 
21990 static int
21991 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
21992 {
21993 	struct sd_lun			*un;
21994 	struct scsi_status		*statusp;
21995 	uint8_t				*sensep;
21996 	struct scsi_pkt			*pkt;
21997 	uchar_t				actual_sense_length;
21998 	dev_t  				dev = (dev_t)arg;
21999 
22000 	ASSERT(resultp != NULL);
22001 	statusp			= resultp->statusp;
22002 	sensep			= (uint8_t *)resultp->sensep;
22003 	pkt			= resultp->pkt;
22004 	actual_sense_length	= resultp->actual_sense_length;
22005 
22006 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22007 		return (ENXIO);
22008 	}
22009 
22010 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22011 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
22012 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
22013 
22014 	/* Begin processing of the status and/or sense data */
22015 	if (pkt->pkt_reason != CMD_CMPLT) {
22016 		/* Handle the incomplete packet */
22017 		sd_mhd_watch_incomplete(un, pkt);
22018 		return (0);
22019 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
22020 		if (*((unsigned char *)statusp)
22021 		    == STATUS_RESERVATION_CONFLICT) {
22022 			/*
22023 			 * Handle a reservation conflict by panicking if
22024 			 * configured for failfast or by logging the conflict
22025 			 * and updating the reservation status
22026 			 */
22027 			mutex_enter(SD_MUTEX(un));
22028 			if ((un->un_resvd_status & SD_FAILFAST) &&
22029 			    (sd_failfast_enable)) {
22030 				sd_panic_for_res_conflict(un);
22031 				/*NOTREACHED*/
22032 			}
22033 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22034 			    "sd_mhd_watch_cb: Reservation Conflict\n");
22035 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
22036 			mutex_exit(SD_MUTEX(un));
22037 		}
22038 	}
22039 
22040 	if (sensep != NULL) {
22041 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
22042 			mutex_enter(SD_MUTEX(un));
22043 			if ((scsi_sense_asc(sensep) ==
22044 			    SD_SCSI_RESET_SENSE_CODE) &&
22045 			    (un->un_resvd_status & SD_RESERVE)) {
22046 				/*
22047 				 * The additional sense code indicates a power
22048 				 * on or bus device reset has occurred; update
22049 				 * the reservation status.
22050 				 */
22051 				un->un_resvd_status |=
22052 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22053 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22054 				    "sd_mhd_watch_cb: Lost Reservation\n");
22055 			}
22056 		} else {
22057 			return (0);
22058 		}
22059 	} else {
22060 		mutex_enter(SD_MUTEX(un));
22061 	}
22062 
22063 	if ((un->un_resvd_status & SD_RESERVE) &&
22064 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
22065 		if (un->un_resvd_status & SD_WANT_RESERVE) {
22066 			/*
22067 			 * A reset occurred in between the last probe and this
22068 			 * one so if a timeout is pending cancel it.
22069 			 */
22070 			if (un->un_resvd_timeid) {
22071 				timeout_id_t temp_id = un->un_resvd_timeid;
22072 				un->un_resvd_timeid = NULL;
22073 				mutex_exit(SD_MUTEX(un));
22074 				(void) untimeout(temp_id);
22075 				mutex_enter(SD_MUTEX(un));
22076 			}
22077 			un->un_resvd_status &= ~SD_WANT_RESERVE;
22078 		}
22079 		if (un->un_resvd_timeid == 0) {
22080 			/* Schedule a timeout to handle the lost reservation */
22081 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
22082 			    (void *)dev,
22083 			    drv_usectohz(sd_reinstate_resv_delay));
22084 		}
22085 	}
22086 	mutex_exit(SD_MUTEX(un));
22087 	return (0);
22088 }
22089 
22090 
22091 /*
22092  *    Function: sd_mhd_watch_incomplete()
22093  *
22094  * Description: This function is used to find out why a scsi pkt sent by the
22095  *		scsi watch facility was not completed. Under some scenarios this
22096  *		routine will return. Otherwise it will send a bus reset to see
22097  *		if the drive is still online.
22098  *
22099  *   Arguments: un  - driver soft state (unit) structure
22100  *		pkt - incomplete scsi pkt
22101  */
22102 
22103 static void
22104 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
22105 {
22106 	int	be_chatty;
22107 	int	perr;
22108 
22109 	ASSERT(pkt != NULL);
22110 	ASSERT(un != NULL);
22111 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
22112 	perr		= (pkt->pkt_statistics & STAT_PERR);
22113 
22114 	mutex_enter(SD_MUTEX(un));
22115 	if (un->un_state == SD_STATE_DUMPING) {
22116 		mutex_exit(SD_MUTEX(un));
22117 		return;
22118 	}
22119 
22120 	switch (pkt->pkt_reason) {
22121 	case CMD_UNX_BUS_FREE:
22122 		/*
22123 		 * If we had a parity error that caused the target to drop BSY*,
22124 		 * don't be chatty about it.
22125 		 */
22126 		if (perr && be_chatty) {
22127 			be_chatty = 0;
22128 		}
22129 		break;
22130 	case CMD_TAG_REJECT:
22131 		/*
22132 		 * The SCSI-2 spec states that a tag reject will be sent by the
22133 		 * target if tagged queuing is not supported. A tag reject may
22134 		 * also be sent during certain initialization periods or to
22135 		 * control internal resources. For the latter case the target
22136 		 * may also return Queue Full.
22137 		 *
22138 		 * If this driver receives a tag reject from a target that is
22139 		 * going through an init period or controlling internal
22140 		 * resources tagged queuing will be disabled. This is a less
22141 		 * than optimal behavior but the driver is unable to determine
22142 		 * the target state and assumes tagged queueing is not supported
22143 		 */
22144 		pkt->pkt_flags = 0;
22145 		un->un_tagflags = 0;
22146 
22147 		if (un->un_f_opt_queueing == TRUE) {
22148 			un->un_throttle = min(un->un_throttle, 3);
22149 		} else {
22150 			un->un_throttle = 1;
22151 		}
22152 		mutex_exit(SD_MUTEX(un));
22153 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
22154 		mutex_enter(SD_MUTEX(un));
22155 		break;
22156 	case CMD_INCOMPLETE:
22157 		/*
22158 		 * The transport stopped with an abnormal state, fallthrough and
22159 		 * reset the target and/or bus unless selection did not complete
22160 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
22161 		 * go through a target/bus reset
22162 		 */
22163 		if (pkt->pkt_state == STATE_GOT_BUS) {
22164 			break;
22165 		}
22166 		/*FALLTHROUGH*/
22167 
22168 	case CMD_TIMEOUT:
22169 	default:
22170 		/*
22171 		 * The lun may still be running the command, so a lun reset
22172 		 * should be attempted. If the lun reset fails or cannot be
22173 		 * issued, than try a target reset. Lastly try a bus reset.
22174 		 */
22175 		if ((pkt->pkt_statistics &
22176 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
22177 			int reset_retval = 0;
22178 			mutex_exit(SD_MUTEX(un));
22179 			if (un->un_f_allow_bus_device_reset == TRUE) {
22180 				if (un->un_f_lun_reset_enabled == TRUE) {
22181 					reset_retval =
22182 					    scsi_reset(SD_ADDRESS(un),
22183 					    RESET_LUN);
22184 				}
22185 				if (reset_retval == 0) {
22186 					reset_retval =
22187 					    scsi_reset(SD_ADDRESS(un),
22188 					    RESET_TARGET);
22189 				}
22190 			}
22191 			if (reset_retval == 0) {
22192 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
22193 			}
22194 			mutex_enter(SD_MUTEX(un));
22195 		}
22196 		break;
22197 	}
22198 
22199 	/* A device/bus reset has occurred; update the reservation status. */
22200 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
22201 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
22202 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22203 			un->un_resvd_status |=
22204 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
22205 			SD_INFO(SD_LOG_IOCTL_MHD, un,
22206 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
22207 		}
22208 	}
22209 
22210 	/*
22211 	 * The disk has been turned off; Update the device state.
22212 	 *
22213 	 * Note: Should we be offlining the disk here?
22214 	 */
22215 	if (pkt->pkt_state == STATE_GOT_BUS) {
22216 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
22217 		    "Disk not responding to selection\n");
22218 		if (un->un_state != SD_STATE_OFFLINE) {
22219 			New_state(un, SD_STATE_OFFLINE);
22220 		}
22221 	} else if (be_chatty) {
22222 		/*
22223 		 * suppress messages if they are all the same pkt reason;
22224 		 * with TQ, many (up to 256) are returned with the same
22225 		 * pkt_reason
22226 		 */
22227 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
22228 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
22229 			    "sd_mhd_watch_incomplete: "
22230 			    "SCSI transport failed: reason '%s'\n",
22231 			    scsi_rname(pkt->pkt_reason));
22232 		}
22233 	}
22234 	un->un_last_pkt_reason = pkt->pkt_reason;
22235 	mutex_exit(SD_MUTEX(un));
22236 }
22237 
22238 
22239 /*
22240  *    Function: sd_sname()
22241  *
22242  * Description: This is a simple little routine to return a string containing
22243  *		a printable description of command status byte for use in
22244  *		logging.
22245  *
22246  *   Arguments: status - pointer to a status byte
22247  *
22248  * Return Code: char * - string containing status description.
22249  */
22250 
22251 static char *
22252 sd_sname(uchar_t status)
22253 {
22254 	switch (status & STATUS_MASK) {
22255 	case STATUS_GOOD:
22256 		return ("good status");
22257 	case STATUS_CHECK:
22258 		return ("check condition");
22259 	case STATUS_MET:
22260 		return ("condition met");
22261 	case STATUS_BUSY:
22262 		return ("busy");
22263 	case STATUS_INTERMEDIATE:
22264 		return ("intermediate");
22265 	case STATUS_INTERMEDIATE_MET:
22266 		return ("intermediate - condition met");
22267 	case STATUS_RESERVATION_CONFLICT:
22268 		return ("reservation_conflict");
22269 	case STATUS_TERMINATED:
22270 		return ("command terminated");
22271 	case STATUS_QFULL:
22272 		return ("queue full");
22273 	default:
22274 		return ("<unknown status>");
22275 	}
22276 }
22277 
22278 
22279 /*
22280  *    Function: sd_mhd_resvd_recover()
22281  *
22282  * Description: This function adds a reservation entry to the
22283  *		sd_resv_reclaim_request list and signals the reservation
22284  *		reclaim thread that there is work pending. If the reservation
22285  *		reclaim thread has not been previously created this function
22286  *		will kick it off.
22287  *
22288  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
22289  *			among multiple watches that share this callback function
22290  *
22291  *     Context: This routine is called by timeout() and is run in interrupt
22292  *		context. It must not sleep or call other functions which may
22293  *		sleep.
22294  */
22295 
22296 static void
22297 sd_mhd_resvd_recover(void *arg)
22298 {
22299 	dev_t			dev = (dev_t)arg;
22300 	struct sd_lun		*un;
22301 	struct sd_thr_request	*sd_treq = NULL;
22302 	struct sd_thr_request	*sd_cur = NULL;
22303 	struct sd_thr_request	*sd_prev = NULL;
22304 	int			already_there = 0;
22305 
22306 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22307 		return;
22308 	}
22309 
22310 	mutex_enter(SD_MUTEX(un));
22311 	un->un_resvd_timeid = NULL;
22312 	if (un->un_resvd_status & SD_WANT_RESERVE) {
22313 		/*
22314 		 * There was a reset so don't issue the reserve, allow the
22315 		 * sd_mhd_watch_cb callback function to notice this and
22316 		 * reschedule the timeout for reservation.
22317 		 */
22318 		mutex_exit(SD_MUTEX(un));
22319 		return;
22320 	}
22321 	mutex_exit(SD_MUTEX(un));
22322 
22323 	/*
22324 	 * Add this device to the sd_resv_reclaim_request list and the
22325 	 * sd_resv_reclaim_thread should take care of the rest.
22326 	 *
22327 	 * Note: We can't sleep in this context so if the memory allocation
22328 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
22329 	 * reschedule the timeout for reservation.  (4378460)
22330 	 */
22331 	sd_treq = (struct sd_thr_request *)
22332 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
22333 	if (sd_treq == NULL) {
22334 		return;
22335 	}
22336 
22337 	sd_treq->sd_thr_req_next = NULL;
22338 	sd_treq->dev = dev;
22339 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22340 	if (sd_tr.srq_thr_req_head == NULL) {
22341 		sd_tr.srq_thr_req_head = sd_treq;
22342 	} else {
22343 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
22344 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
22345 			if (sd_cur->dev == dev) {
22346 				/*
22347 				 * already in Queue so don't log
22348 				 * another request for the device
22349 				 */
22350 				already_there = 1;
22351 				break;
22352 			}
22353 			sd_prev = sd_cur;
22354 		}
22355 		if (!already_there) {
22356 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
22357 			    "logging request for %lx\n", dev);
22358 			sd_prev->sd_thr_req_next = sd_treq;
22359 		} else {
22360 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
22361 		}
22362 	}
22363 
22364 	/*
22365 	 * Create a kernel thread to do the reservation reclaim and free up this
22366 	 * thread. We cannot block this thread while we go away to do the
22367 	 * reservation reclaim
22368 	 */
22369 	if (sd_tr.srq_resv_reclaim_thread == NULL)
22370 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
22371 		    sd_resv_reclaim_thread, NULL,
22372 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
22373 
22374 	/* Tell the reservation reclaim thread that it has work to do */
22375 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
22376 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22377 }
22378 
22379 /*
22380  *    Function: sd_resv_reclaim_thread()
22381  *
22382  * Description: This function implements the reservation reclaim operations
22383  *
22384  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
22385  *		      among multiple watches that share this callback function
22386  */
22387 
22388 static void
22389 sd_resv_reclaim_thread()
22390 {
22391 	struct sd_lun		*un;
22392 	struct sd_thr_request	*sd_mhreq;
22393 
22394 	/* Wait for work */
22395 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22396 	if (sd_tr.srq_thr_req_head == NULL) {
22397 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
22398 		    &sd_tr.srq_resv_reclaim_mutex);
22399 	}
22400 
22401 	/* Loop while we have work */
22402 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
22403 		un = ddi_get_soft_state(sd_state,
22404 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
22405 		if (un == NULL) {
22406 			/*
22407 			 * softstate structure is NULL so just
22408 			 * dequeue the request and continue
22409 			 */
22410 			sd_tr.srq_thr_req_head =
22411 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22412 			kmem_free(sd_tr.srq_thr_cur_req,
22413 			    sizeof (struct sd_thr_request));
22414 			continue;
22415 		}
22416 
22417 		/* dequeue the request */
22418 		sd_mhreq = sd_tr.srq_thr_cur_req;
22419 		sd_tr.srq_thr_req_head =
22420 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
22421 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22422 
22423 		/*
22424 		 * Reclaim reservation only if SD_RESERVE is still set. There
22425 		 * may have been a call to MHIOCRELEASE before we got here.
22426 		 */
22427 		mutex_enter(SD_MUTEX(un));
22428 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22429 			/*
22430 			 * Note: The SD_LOST_RESERVE flag is cleared before
22431 			 * reclaiming the reservation. If this is done after the
22432 			 * call to sd_reserve_release a reservation loss in the
22433 			 * window between pkt completion of reserve cmd and
22434 			 * mutex_enter below may not be recognized
22435 			 */
22436 			un->un_resvd_status &= ~SD_LOST_RESERVE;
22437 			mutex_exit(SD_MUTEX(un));
22438 
22439 			if (sd_reserve_release(sd_mhreq->dev,
22440 			    SD_RESERVE) == 0) {
22441 				mutex_enter(SD_MUTEX(un));
22442 				un->un_resvd_status |= SD_RESERVE;
22443 				mutex_exit(SD_MUTEX(un));
22444 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22445 				    "sd_resv_reclaim_thread: "
22446 				    "Reservation Recovered\n");
22447 			} else {
22448 				mutex_enter(SD_MUTEX(un));
22449 				un->un_resvd_status |= SD_LOST_RESERVE;
22450 				mutex_exit(SD_MUTEX(un));
22451 				SD_INFO(SD_LOG_IOCTL_MHD, un,
22452 				    "sd_resv_reclaim_thread: Failed "
22453 				    "Reservation Recovery\n");
22454 			}
22455 		} else {
22456 			mutex_exit(SD_MUTEX(un));
22457 		}
22458 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22459 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
22460 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22461 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
22462 		/*
22463 		 * wakeup the destroy thread if anyone is waiting on
22464 		 * us to complete.
22465 		 */
22466 		cv_signal(&sd_tr.srq_inprocess_cv);
22467 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
22468 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
22469 	}
22470 
22471 	/*
22472 	 * cleanup the sd_tr structure now that this thread will not exist
22473 	 */
22474 	ASSERT(sd_tr.srq_thr_req_head == NULL);
22475 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
22476 	sd_tr.srq_resv_reclaim_thread = NULL;
22477 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22478 	thread_exit();
22479 }
22480 
22481 
22482 /*
22483  *    Function: sd_rmv_resv_reclaim_req()
22484  *
22485  * Description: This function removes any pending reservation reclaim requests
22486  *		for the specified device.
22487  *
22488  *   Arguments: dev - the device 'dev_t'
22489  */
22490 
22491 static void
22492 sd_rmv_resv_reclaim_req(dev_t dev)
22493 {
22494 	struct sd_thr_request *sd_mhreq;
22495 	struct sd_thr_request *sd_prev;
22496 
22497 	/* Remove a reservation reclaim request from the list */
22498 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
22499 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
22500 		/*
22501 		 * We are attempting to reinstate reservation for
22502 		 * this device. We wait for sd_reserve_release()
22503 		 * to return before we return.
22504 		 */
22505 		cv_wait(&sd_tr.srq_inprocess_cv,
22506 		    &sd_tr.srq_resv_reclaim_mutex);
22507 	} else {
22508 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
22509 		if (sd_mhreq && sd_mhreq->dev == dev) {
22510 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
22511 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22512 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22513 			return;
22514 		}
22515 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
22516 			if (sd_mhreq && sd_mhreq->dev == dev) {
22517 				break;
22518 			}
22519 			sd_prev = sd_mhreq;
22520 		}
22521 		if (sd_mhreq != NULL) {
22522 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
22523 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
22524 		}
22525 	}
22526 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
22527 }
22528 
22529 
22530 /*
22531  *    Function: sd_mhd_reset_notify_cb()
22532  *
22533  * Description: This is a call back function for scsi_reset_notify. This
22534  *		function updates the softstate reserved status and logs the
22535  *		reset. The driver scsi watch facility callback function
22536  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
22537  *		will reclaim the reservation.
22538  *
22539  *   Arguments: arg  - driver soft state (unit) structure
22540  */
22541 
22542 static void
22543 sd_mhd_reset_notify_cb(caddr_t arg)
22544 {
22545 	struct sd_lun *un = (struct sd_lun *)arg;
22546 
22547 	mutex_enter(SD_MUTEX(un));
22548 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
22549 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
22550 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22551 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
22552 	}
22553 	mutex_exit(SD_MUTEX(un));
22554 }
22555 
22556 
22557 /*
22558  *    Function: sd_take_ownership()
22559  *
22560  * Description: This routine implements an algorithm to achieve a stable
22561  *		reservation on disks which don't implement priority reserve,
22562  *		and makes sure that other host lose re-reservation attempts.
22563  *		This algorithm contains of a loop that keeps issuing the RESERVE
22564  *		for some period of time (min_ownership_delay, default 6 seconds)
22565  *		During that loop, it looks to see if there has been a bus device
22566  *		reset or bus reset (both of which cause an existing reservation
22567  *		to be lost). If the reservation is lost issue RESERVE until a
22568  *		period of min_ownership_delay with no resets has gone by, or
22569  *		until max_ownership_delay has expired. This loop ensures that
22570  *		the host really did manage to reserve the device, in spite of
22571  *		resets. The looping for min_ownership_delay (default six
22572  *		seconds) is important to early generation clustering products,
22573  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
22574  *		MHIOCENFAILFAST periodic timer of two seconds. By having
22575  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
22576  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
22577  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
22578  *		have already noticed, via the MHIOCENFAILFAST polling, that it
22579  *		no longer "owns" the disk and will have panicked itself.  Thus,
22580  *		the host issuing the MHIOCTKOWN is assured (with timing
22581  *		dependencies) that by the time it actually starts to use the
22582  *		disk for real work, the old owner is no longer accessing it.
22583  *
22584  *		min_ownership_delay is the minimum amount of time for which the
22585  *		disk must be reserved continuously devoid of resets before the
22586  *		MHIOCTKOWN ioctl will return success.
22587  *
22588  *		max_ownership_delay indicates the amount of time by which the
22589  *		take ownership should succeed or timeout with an error.
22590  *
22591  *   Arguments: dev - the device 'dev_t'
22592  *		*p  - struct containing timing info.
22593  *
22594  * Return Code: 0 for success or error code
22595  */
22596 
22597 static int
22598 sd_take_ownership(dev_t dev, struct mhioctkown *p)
22599 {
22600 	struct sd_lun	*un;
22601 	int		rval;
22602 	int		err;
22603 	int		reservation_count   = 0;
22604 	int		min_ownership_delay =  6000000; /* in usec */
22605 	int		max_ownership_delay = 30000000; /* in usec */
22606 	clock_t		start_time;	/* starting time of this algorithm */
22607 	clock_t		end_time;	/* time limit for giving up */
22608 	clock_t		ownership_time;	/* time limit for stable ownership */
22609 	clock_t		current_time;
22610 	clock_t		previous_current_time;
22611 
22612 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22613 		return (ENXIO);
22614 	}
22615 
22616 	/*
22617 	 * Attempt a device reservation. A priority reservation is requested.
22618 	 */
22619 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
22620 	    != SD_SUCCESS) {
22621 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
22622 		    "sd_take_ownership: return(1)=%d\n", rval);
22623 		return (rval);
22624 	}
22625 
22626 	/* Update the softstate reserved status to indicate the reservation */
22627 	mutex_enter(SD_MUTEX(un));
22628 	un->un_resvd_status |= SD_RESERVE;
22629 	un->un_resvd_status &=
22630 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
22631 	mutex_exit(SD_MUTEX(un));
22632 
22633 	if (p != NULL) {
22634 		if (p->min_ownership_delay != 0) {
22635 			min_ownership_delay = p->min_ownership_delay * 1000;
22636 		}
22637 		if (p->max_ownership_delay != 0) {
22638 			max_ownership_delay = p->max_ownership_delay * 1000;
22639 		}
22640 	}
22641 	SD_INFO(SD_LOG_IOCTL_MHD, un,
22642 	    "sd_take_ownership: min, max delays: %d, %d\n",
22643 	    min_ownership_delay, max_ownership_delay);
22644 
22645 	start_time = ddi_get_lbolt();
22646 	current_time	= start_time;
22647 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
22648 	end_time	= start_time + drv_usectohz(max_ownership_delay);
22649 
22650 	while (current_time - end_time < 0) {
22651 		delay(drv_usectohz(500000));
22652 
22653 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
22654 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
22655 				mutex_enter(SD_MUTEX(un));
22656 				rval = (un->un_resvd_status &
22657 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
22658 				mutex_exit(SD_MUTEX(un));
22659 				break;
22660 			}
22661 		}
22662 		previous_current_time = current_time;
22663 		current_time = ddi_get_lbolt();
22664 		mutex_enter(SD_MUTEX(un));
22665 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
22666 			ownership_time = ddi_get_lbolt() +
22667 			    drv_usectohz(min_ownership_delay);
22668 			reservation_count = 0;
22669 		} else {
22670 			reservation_count++;
22671 		}
22672 		un->un_resvd_status |= SD_RESERVE;
22673 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
22674 		mutex_exit(SD_MUTEX(un));
22675 
22676 		SD_INFO(SD_LOG_IOCTL_MHD, un,
22677 		    "sd_take_ownership: ticks for loop iteration=%ld, "
22678 		    "reservation=%s\n", (current_time - previous_current_time),
22679 		    reservation_count ? "ok" : "reclaimed");
22680 
22681 		if (current_time - ownership_time >= 0 &&
22682 		    reservation_count >= 4) {
22683 			rval = 0; /* Achieved a stable ownership */
22684 			break;
22685 		}
22686 		if (current_time - end_time >= 0) {
22687 			rval = EACCES; /* No ownership in max possible time */
22688 			break;
22689 		}
22690 	}
22691 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
22692 	    "sd_take_ownership: return(2)=%d\n", rval);
22693 	return (rval);
22694 }
22695 
22696 
22697 /*
22698  *    Function: sd_reserve_release()
22699  *
22700  * Description: This function builds and sends scsi RESERVE, RELEASE, and
22701  *		PRIORITY RESERVE commands based on a user specified command type
22702  *
22703  *   Arguments: dev - the device 'dev_t'
22704  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
22705  *		      SD_RESERVE, SD_RELEASE
22706  *
22707  * Return Code: 0 or Error Code
22708  */
22709 
22710 static int
22711 sd_reserve_release(dev_t dev, int cmd)
22712 {
22713 	struct uscsi_cmd	*com = NULL;
22714 	struct sd_lun		*un = NULL;
22715 	char			cdb[CDB_GROUP0];
22716 	int			rval;
22717 
22718 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
22719 	    (cmd == SD_PRIORITY_RESERVE));
22720 
22721 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22722 		return (ENXIO);
22723 	}
22724 
22725 	/* instantiate and initialize the command and cdb */
22726 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
22727 	bzero(cdb, CDB_GROUP0);
22728 	com->uscsi_flags   = USCSI_SILENT;
22729 	com->uscsi_timeout = un->un_reserve_release_time;
22730 	com->uscsi_cdblen  = CDB_GROUP0;
22731 	com->uscsi_cdb	   = cdb;
22732 	if (cmd == SD_RELEASE) {
22733 		cdb[0] = SCMD_RELEASE;
22734 	} else {
22735 		cdb[0] = SCMD_RESERVE;
22736 	}
22737 
22738 	/* Send the command. */
22739 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22740 	    SD_PATH_STANDARD);
22741 
22742 	/*
22743 	 * "break" a reservation that is held by another host, by issuing a
22744 	 * reset if priority reserve is desired, and we could not get the
22745 	 * device.
22746 	 */
22747 	if ((cmd == SD_PRIORITY_RESERVE) &&
22748 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22749 		/*
22750 		 * First try to reset the LUN. If we cannot, then try a target
22751 		 * reset, followed by a bus reset if the target reset fails.
22752 		 */
22753 		int reset_retval = 0;
22754 		if (un->un_f_lun_reset_enabled == TRUE) {
22755 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
22756 		}
22757 		if (reset_retval == 0) {
22758 			/* The LUN reset either failed or was not issued */
22759 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
22760 		}
22761 		if ((reset_retval == 0) &&
22762 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
22763 			rval = EIO;
22764 			kmem_free(com, sizeof (*com));
22765 			return (rval);
22766 		}
22767 
22768 		bzero(com, sizeof (struct uscsi_cmd));
22769 		com->uscsi_flags   = USCSI_SILENT;
22770 		com->uscsi_cdb	   = cdb;
22771 		com->uscsi_cdblen  = CDB_GROUP0;
22772 		com->uscsi_timeout = 5;
22773 
22774 		/*
22775 		 * Reissue the last reserve command, this time without request
22776 		 * sense.  Assume that it is just a regular reserve command.
22777 		 */
22778 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
22779 		    SD_PATH_STANDARD);
22780 	}
22781 
22782 	/* Return an error if still getting a reservation conflict. */
22783 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
22784 		rval = EACCES;
22785 	}
22786 
22787 	kmem_free(com, sizeof (*com));
22788 	return (rval);
22789 }
22790 
22791 
22792 #define	SD_NDUMP_RETRIES	12
22793 /*
22794  *	System Crash Dump routine
22795  */
22796 
22797 static int
22798 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
22799 {
22800 	int		instance;
22801 	int		partition;
22802 	int		i;
22803 	int		err;
22804 	struct sd_lun	*un;
22805 	struct scsi_pkt *wr_pktp;
22806 	struct buf	*wr_bp;
22807 	struct buf	wr_buf;
22808 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
22809 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
22810 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
22811 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
22812 	size_t		io_start_offset;
22813 	int		doing_rmw = FALSE;
22814 	int		rval;
22815 	ssize_t		dma_resid;
22816 	daddr_t		oblkno;
22817 	diskaddr_t	nblks = 0;
22818 	diskaddr_t	start_block;
22819 
22820 	instance = SDUNIT(dev);
22821 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
22822 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
22823 		return (ENXIO);
22824 	}
22825 
22826 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
22827 
22828 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
22829 
22830 	partition = SDPART(dev);
22831 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
22832 
22833 	/* Validate blocks to dump at against partition size. */
22834 
22835 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
22836 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
22837 
22838 	if ((blkno + nblk) > nblks) {
22839 		SD_TRACE(SD_LOG_DUMP, un,
22840 		    "sddump: dump range larger than partition: "
22841 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
22842 		    blkno, nblk, nblks);
22843 		return (EINVAL);
22844 	}
22845 
22846 	mutex_enter(&un->un_pm_mutex);
22847 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
22848 		struct scsi_pkt *start_pktp;
22849 
22850 		mutex_exit(&un->un_pm_mutex);
22851 
22852 		/*
22853 		 * use pm framework to power on HBA 1st
22854 		 */
22855 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
22856 
22857 		/*
22858 		 * Dump no long uses sdpower to power on a device, it's
22859 		 * in-line here so it can be done in polled mode.
22860 		 */
22861 
22862 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
22863 
22864 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
22865 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
22866 
22867 		if (start_pktp == NULL) {
22868 			/* We were not given a SCSI packet, fail. */
22869 			return (EIO);
22870 		}
22871 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
22872 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
22873 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
22874 		start_pktp->pkt_flags = FLAG_NOINTR;
22875 
22876 		mutex_enter(SD_MUTEX(un));
22877 		SD_FILL_SCSI1_LUN(un, start_pktp);
22878 		mutex_exit(SD_MUTEX(un));
22879 		/*
22880 		 * Scsi_poll returns 0 (success) if the command completes and
22881 		 * the status block is STATUS_GOOD.
22882 		 */
22883 		if (sd_scsi_poll(un, start_pktp) != 0) {
22884 			scsi_destroy_pkt(start_pktp);
22885 			return (EIO);
22886 		}
22887 		scsi_destroy_pkt(start_pktp);
22888 		(void) sd_ddi_pm_resume(un);
22889 	} else {
22890 		mutex_exit(&un->un_pm_mutex);
22891 	}
22892 
22893 	mutex_enter(SD_MUTEX(un));
22894 	un->un_throttle = 0;
22895 
22896 	/*
22897 	 * The first time through, reset the specific target device.
22898 	 * However, when cpr calls sddump we know that sd is in a
22899 	 * a good state so no bus reset is required.
22900 	 * Clear sense data via Request Sense cmd.
22901 	 * In sddump we don't care about allow_bus_device_reset anymore
22902 	 */
22903 
22904 	if ((un->un_state != SD_STATE_SUSPENDED) &&
22905 	    (un->un_state != SD_STATE_DUMPING)) {
22906 
22907 		New_state(un, SD_STATE_DUMPING);
22908 
22909 		if (un->un_f_is_fibre == FALSE) {
22910 			mutex_exit(SD_MUTEX(un));
22911 			/*
22912 			 * Attempt a bus reset for parallel scsi.
22913 			 *
22914 			 * Note: A bus reset is required because on some host
22915 			 * systems (i.e. E420R) a bus device reset is
22916 			 * insufficient to reset the state of the target.
22917 			 *
22918 			 * Note: Don't issue the reset for fibre-channel,
22919 			 * because this tends to hang the bus (loop) for
22920 			 * too long while everyone is logging out and in
22921 			 * and the deadman timer for dumping will fire
22922 			 * before the dump is complete.
22923 			 */
22924 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
22925 				mutex_enter(SD_MUTEX(un));
22926 				Restore_state(un);
22927 				mutex_exit(SD_MUTEX(un));
22928 				return (EIO);
22929 			}
22930 
22931 			/* Delay to give the device some recovery time. */
22932 			drv_usecwait(10000);
22933 
22934 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
22935 				SD_INFO(SD_LOG_DUMP, un,
22936 				    "sddump: sd_send_polled_RQS failed\n");
22937 			}
22938 			mutex_enter(SD_MUTEX(un));
22939 		}
22940 	}
22941 
22942 	/*
22943 	 * Convert the partition-relative block number to a
22944 	 * disk physical block number.
22945 	 */
22946 	blkno += start_block;
22947 
22948 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
22949 
22950 
22951 	/*
22952 	 * Check if the device has a non-512 block size.
22953 	 */
22954 	wr_bp = NULL;
22955 	if (NOT_DEVBSIZE(un)) {
22956 		tgt_byte_offset = blkno * un->un_sys_blocksize;
22957 		tgt_byte_count = nblk * un->un_sys_blocksize;
22958 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
22959 		    (tgt_byte_count % un->un_tgt_blocksize)) {
22960 			doing_rmw = TRUE;
22961 			/*
22962 			 * Calculate the block number and number of block
22963 			 * in terms of the media block size.
22964 			 */
22965 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
22966 			tgt_nblk =
22967 			    ((tgt_byte_offset + tgt_byte_count +
22968 			    (un->un_tgt_blocksize - 1)) /
22969 			    un->un_tgt_blocksize) - tgt_blkno;
22970 
22971 			/*
22972 			 * Invoke the routine which is going to do read part
22973 			 * of read-modify-write.
22974 			 * Note that this routine returns a pointer to
22975 			 * a valid bp in wr_bp.
22976 			 */
22977 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
22978 			    &wr_bp);
22979 			if (err) {
22980 				mutex_exit(SD_MUTEX(un));
22981 				return (err);
22982 			}
22983 			/*
22984 			 * Offset is being calculated as -
22985 			 * (original block # * system block size) -
22986 			 * (new block # * target block size)
22987 			 */
22988 			io_start_offset =
22989 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
22990 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
22991 
22992 			ASSERT((io_start_offset >= 0) &&
22993 			    (io_start_offset < un->un_tgt_blocksize));
22994 			/*
22995 			 * Do the modify portion of read modify write.
22996 			 */
22997 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
22998 			    (size_t)nblk * un->un_sys_blocksize);
22999 		} else {
23000 			doing_rmw = FALSE;
23001 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
23002 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
23003 		}
23004 
23005 		/* Convert blkno and nblk to target blocks */
23006 		blkno = tgt_blkno;
23007 		nblk = tgt_nblk;
23008 	} else {
23009 		wr_bp = &wr_buf;
23010 		bzero(wr_bp, sizeof (struct buf));
23011 		wr_bp->b_flags		= B_BUSY;
23012 		wr_bp->b_un.b_addr	= addr;
23013 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
23014 		wr_bp->b_resid		= 0;
23015 	}
23016 
23017 	mutex_exit(SD_MUTEX(un));
23018 
23019 	/*
23020 	 * Obtain a SCSI packet for the write command.
23021 	 * It should be safe to call the allocator here without
23022 	 * worrying about being locked for DVMA mapping because
23023 	 * the address we're passed is already a DVMA mapping
23024 	 *
23025 	 * We are also not going to worry about semaphore ownership
23026 	 * in the dump buffer. Dumping is single threaded at present.
23027 	 */
23028 
23029 	wr_pktp = NULL;
23030 
23031 	dma_resid = wr_bp->b_bcount;
23032 	oblkno = blkno;
23033 
23034 	while (dma_resid != 0) {
23035 
23036 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23037 		wr_bp->b_flags &= ~B_ERROR;
23038 
23039 		if (un->un_partial_dma_supported == 1) {
23040 			blkno = oblkno +
23041 			    ((wr_bp->b_bcount - dma_resid) /
23042 			    un->un_tgt_blocksize);
23043 			nblk = dma_resid / un->un_tgt_blocksize;
23044 
23045 			if (wr_pktp) {
23046 				/*
23047 				 * Partial DMA transfers after initial transfer
23048 				 */
23049 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
23050 				    blkno, nblk);
23051 			} else {
23052 				/* Initial transfer */
23053 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23054 				    un->un_pkt_flags, NULL_FUNC, NULL,
23055 				    blkno, nblk);
23056 			}
23057 		} else {
23058 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
23059 			    0, NULL_FUNC, NULL, blkno, nblk);
23060 		}
23061 
23062 		if (rval == 0) {
23063 			/* We were given a SCSI packet, continue. */
23064 			break;
23065 		}
23066 
23067 		if (i == 0) {
23068 			if (wr_bp->b_flags & B_ERROR) {
23069 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23070 				    "no resources for dumping; "
23071 				    "error code: 0x%x, retrying",
23072 				    geterror(wr_bp));
23073 			} else {
23074 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23075 				    "no resources for dumping; retrying");
23076 			}
23077 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
23078 			if (wr_bp->b_flags & B_ERROR) {
23079 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23080 				    "no resources for dumping; error code: "
23081 				    "0x%x, retrying\n", geterror(wr_bp));
23082 			}
23083 		} else {
23084 			if (wr_bp->b_flags & B_ERROR) {
23085 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23086 				    "no resources for dumping; "
23087 				    "error code: 0x%x, retries failed, "
23088 				    "giving up.\n", geterror(wr_bp));
23089 			} else {
23090 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
23091 				    "no resources for dumping; "
23092 				    "retries failed, giving up.\n");
23093 			}
23094 			mutex_enter(SD_MUTEX(un));
23095 			Restore_state(un);
23096 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
23097 				mutex_exit(SD_MUTEX(un));
23098 				scsi_free_consistent_buf(wr_bp);
23099 			} else {
23100 				mutex_exit(SD_MUTEX(un));
23101 			}
23102 			return (EIO);
23103 		}
23104 		drv_usecwait(10000);
23105 	}
23106 
23107 	if (un->un_partial_dma_supported == 1) {
23108 		/*
23109 		 * save the resid from PARTIAL_DMA
23110 		 */
23111 		dma_resid = wr_pktp->pkt_resid;
23112 		if (dma_resid != 0)
23113 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
23114 		wr_pktp->pkt_resid = 0;
23115 	} else {
23116 		dma_resid = 0;
23117 	}
23118 
23119 	/* SunBug 1222170 */
23120 	wr_pktp->pkt_flags = FLAG_NOINTR;
23121 
23122 	err = EIO;
23123 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
23124 
23125 		/*
23126 		 * Scsi_poll returns 0 (success) if the command completes and
23127 		 * the status block is STATUS_GOOD.  We should only check
23128 		 * errors if this condition is not true.  Even then we should
23129 		 * send our own request sense packet only if we have a check
23130 		 * condition and auto request sense has not been performed by
23131 		 * the hba.
23132 		 */
23133 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
23134 
23135 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
23136 		    (wr_pktp->pkt_resid == 0)) {
23137 			err = SD_SUCCESS;
23138 			break;
23139 		}
23140 
23141 		/*
23142 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
23143 		 */
23144 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
23145 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23146 			    "Error while dumping state...Device is gone\n");
23147 			break;
23148 		}
23149 
23150 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
23151 			SD_INFO(SD_LOG_DUMP, un,
23152 			    "sddump: write failed with CHECK, try # %d\n", i);
23153 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
23154 				(void) sd_send_polled_RQS(un);
23155 			}
23156 
23157 			continue;
23158 		}
23159 
23160 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
23161 			int reset_retval = 0;
23162 
23163 			SD_INFO(SD_LOG_DUMP, un,
23164 			    "sddump: write failed with BUSY, try # %d\n", i);
23165 
23166 			if (un->un_f_lun_reset_enabled == TRUE) {
23167 				reset_retval = scsi_reset(SD_ADDRESS(un),
23168 				    RESET_LUN);
23169 			}
23170 			if (reset_retval == 0) {
23171 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
23172 			}
23173 			(void) sd_send_polled_RQS(un);
23174 
23175 		} else {
23176 			SD_INFO(SD_LOG_DUMP, un,
23177 			    "sddump: write failed with 0x%x, try # %d\n",
23178 			    SD_GET_PKT_STATUS(wr_pktp), i);
23179 			mutex_enter(SD_MUTEX(un));
23180 			sd_reset_target(un, wr_pktp);
23181 			mutex_exit(SD_MUTEX(un));
23182 		}
23183 
23184 		/*
23185 		 * If we are not getting anywhere with lun/target resets,
23186 		 * let's reset the bus.
23187 		 */
23188 		if (i == SD_NDUMP_RETRIES/2) {
23189 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
23190 			(void) sd_send_polled_RQS(un);
23191 		}
23192 	}
23193 	}
23194 
23195 	scsi_destroy_pkt(wr_pktp);
23196 	mutex_enter(SD_MUTEX(un));
23197 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
23198 		mutex_exit(SD_MUTEX(un));
23199 		scsi_free_consistent_buf(wr_bp);
23200 	} else {
23201 		mutex_exit(SD_MUTEX(un));
23202 	}
23203 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
23204 	return (err);
23205 }
23206 
23207 /*
23208  *    Function: sd_scsi_poll()
23209  *
23210  * Description: This is a wrapper for the scsi_poll call.
23211  *
23212  *   Arguments: sd_lun - The unit structure
23213  *              scsi_pkt - The scsi packet being sent to the device.
23214  *
23215  * Return Code: 0 - Command completed successfully with good status
23216  *             -1 - Command failed.  This could indicate a check condition
23217  *                  or other status value requiring recovery action.
23218  *
23219  */
23220 
23221 static int
23222 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
23223 {
23224 	int status;
23225 
23226 	ASSERT(un != NULL);
23227 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23228 	ASSERT(pktp != NULL);
23229 
23230 	status = SD_SUCCESS;
23231 
23232 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
23233 		pktp->pkt_flags |= un->un_tagflags;
23234 		pktp->pkt_flags &= ~FLAG_NODISCON;
23235 	}
23236 
23237 	status = sd_ddi_scsi_poll(pktp);
23238 	/*
23239 	 * Scsi_poll returns 0 (success) if the command completes and the
23240 	 * status block is STATUS_GOOD.  We should only check errors if this
23241 	 * condition is not true.  Even then we should send our own request
23242 	 * sense packet only if we have a check condition and auto
23243 	 * request sense has not been performed by the hba.
23244 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
23245 	 */
23246 	if ((status != SD_SUCCESS) &&
23247 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
23248 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
23249 	    (pktp->pkt_reason != CMD_DEV_GONE))
23250 		(void) sd_send_polled_RQS(un);
23251 
23252 	return (status);
23253 }
23254 
23255 /*
23256  *    Function: sd_send_polled_RQS()
23257  *
23258  * Description: This sends the request sense command to a device.
23259  *
23260  *   Arguments: sd_lun - The unit structure
23261  *
23262  * Return Code: 0 - Command completed successfully with good status
23263  *             -1 - Command failed.
23264  *
23265  */
23266 
23267 static int
23268 sd_send_polled_RQS(struct sd_lun *un)
23269 {
23270 	int	ret_val;
23271 	struct	scsi_pkt	*rqs_pktp;
23272 	struct	buf		*rqs_bp;
23273 
23274 	ASSERT(un != NULL);
23275 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23276 
23277 	ret_val = SD_SUCCESS;
23278 
23279 	rqs_pktp = un->un_rqs_pktp;
23280 	rqs_bp	 = un->un_rqs_bp;
23281 
23282 	mutex_enter(SD_MUTEX(un));
23283 
23284 	if (un->un_sense_isbusy) {
23285 		ret_val = SD_FAILURE;
23286 		mutex_exit(SD_MUTEX(un));
23287 		return (ret_val);
23288 	}
23289 
23290 	/*
23291 	 * If the request sense buffer (and packet) is not in use,
23292 	 * let's set the un_sense_isbusy and send our packet
23293 	 */
23294 	un->un_sense_isbusy 	= 1;
23295 	rqs_pktp->pkt_resid  	= 0;
23296 	rqs_pktp->pkt_reason 	= 0;
23297 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
23298 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
23299 
23300 	mutex_exit(SD_MUTEX(un));
23301 
23302 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
23303 	    " 0x%p\n", rqs_bp->b_un.b_addr);
23304 
23305 	/*
23306 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
23307 	 * axle - it has a call into us!
23308 	 */
23309 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
23310 		SD_INFO(SD_LOG_COMMON, un,
23311 		    "sd_send_polled_RQS: RQS failed\n");
23312 	}
23313 
23314 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
23315 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
23316 
23317 	mutex_enter(SD_MUTEX(un));
23318 	un->un_sense_isbusy = 0;
23319 	mutex_exit(SD_MUTEX(un));
23320 
23321 	return (ret_val);
23322 }
23323 
23324 /*
23325  * Defines needed for localized version of the scsi_poll routine.
23326  */
23327 #define	SD_CSEC		10000			/* usecs */
23328 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
23329 
23330 
23331 /*
23332  *    Function: sd_ddi_scsi_poll()
23333  *
23334  * Description: Localized version of the scsi_poll routine.  The purpose is to
23335  *		send a scsi_pkt to a device as a polled command.  This version
23336  *		is to ensure more robust handling of transport errors.
23337  *		Specifically this routine cures not ready, coming ready
23338  *		transition for power up and reset of sonoma's.  This can take
23339  *		up to 45 seconds for power-on and 20 seconds for reset of a
23340  * 		sonoma lun.
23341  *
23342  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
23343  *
23344  * Return Code: 0 - Command completed successfully with good status
23345  *             -1 - Command failed.
23346  *
23347  */
23348 
23349 static int
23350 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
23351 {
23352 	int busy_count;
23353 	int timeout;
23354 	int rval = SD_FAILURE;
23355 	int savef;
23356 	uint8_t *sensep;
23357 	long savet;
23358 	void (*savec)();
23359 	/*
23360 	 * The following is defined in machdep.c and is used in determining if
23361 	 * the scsi transport system will do polled I/O instead of interrupt
23362 	 * I/O when called from xx_dump().
23363 	 */
23364 	extern int do_polled_io;
23365 
23366 	/*
23367 	 * save old flags in pkt, to restore at end
23368 	 */
23369 	savef = pkt->pkt_flags;
23370 	savec = pkt->pkt_comp;
23371 	savet = pkt->pkt_time;
23372 
23373 	pkt->pkt_flags |= FLAG_NOINTR;
23374 
23375 	/*
23376 	 * XXX there is nothing in the SCSA spec that states that we should not
23377 	 * do a callback for polled cmds; however, removing this will break sd
23378 	 * and probably other target drivers
23379 	 */
23380 	pkt->pkt_comp = NULL;
23381 
23382 	/*
23383 	 * we don't like a polled command without timeout.
23384 	 * 60 seconds seems long enough.
23385 	 */
23386 	if (pkt->pkt_time == 0) {
23387 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
23388 	}
23389 
23390 	/*
23391 	 * Send polled cmd.
23392 	 *
23393 	 * We do some error recovery for various errors.  Tran_busy,
23394 	 * queue full, and non-dispatched commands are retried every 10 msec.
23395 	 * as they are typically transient failures.  Busy status and Not
23396 	 * Ready are retried every second as this status takes a while to
23397 	 * change.  Unit attention is retried for pkt_time (60) times
23398 	 * with no delay.
23399 	 */
23400 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
23401 
23402 	for (busy_count = 0; busy_count < timeout; busy_count++) {
23403 		int rc;
23404 		int poll_delay;
23405 
23406 		/*
23407 		 * Initialize pkt status variables.
23408 		 */
23409 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
23410 
23411 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
23412 			if (rc != TRAN_BUSY) {
23413 				/* Transport failed - give up. */
23414 				break;
23415 			} else {
23416 				/* Transport busy - try again. */
23417 				poll_delay = 1 * SD_CSEC; /* 10 msec */
23418 			}
23419 		} else {
23420 			/*
23421 			 * Transport accepted - check pkt status.
23422 			 */
23423 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
23424 			if (pkt->pkt_reason == CMD_CMPLT &&
23425 			    rc == STATUS_CHECK &&
23426 			    pkt->pkt_state & STATE_ARQ_DONE) {
23427 				struct scsi_arq_status *arqstat =
23428 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
23429 
23430 				sensep = (uint8_t *)&arqstat->sts_sensedata;
23431 			} else {
23432 				sensep = NULL;
23433 			}
23434 
23435 			if ((pkt->pkt_reason == CMD_CMPLT) &&
23436 			    (rc == STATUS_GOOD)) {
23437 				/* No error - we're done */
23438 				rval = SD_SUCCESS;
23439 				break;
23440 
23441 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
23442 				/* Lost connection - give up */
23443 				break;
23444 
23445 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
23446 			    (pkt->pkt_state == 0)) {
23447 				/* Pkt not dispatched - try again. */
23448 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
23449 
23450 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23451 			    (rc == STATUS_QFULL)) {
23452 				/* Queue full - try again. */
23453 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
23454 
23455 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
23456 			    (rc == STATUS_BUSY)) {
23457 				/* Busy - try again. */
23458 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23459 				busy_count += (SD_SEC_TO_CSEC - 1);
23460 
23461 			} else if ((sensep != NULL) &&
23462 			    (scsi_sense_key(sensep) ==
23463 			    KEY_UNIT_ATTENTION)) {
23464 				/* Unit Attention - try again */
23465 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
23466 				continue;
23467 
23468 			} else if ((sensep != NULL) &&
23469 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
23470 			    (scsi_sense_asc(sensep) == 0x04) &&
23471 			    (scsi_sense_ascq(sensep) == 0x01)) {
23472 				/* Not ready -> ready - try again. */
23473 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
23474 				busy_count += (SD_SEC_TO_CSEC - 1);
23475 
23476 			} else {
23477 				/* BAD status - give up. */
23478 				break;
23479 			}
23480 		}
23481 
23482 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
23483 		    !do_polled_io) {
23484 			delay(drv_usectohz(poll_delay));
23485 		} else {
23486 			/* we busy wait during cpr_dump or interrupt threads */
23487 			drv_usecwait(poll_delay);
23488 		}
23489 	}
23490 
23491 	pkt->pkt_flags = savef;
23492 	pkt->pkt_comp = savec;
23493 	pkt->pkt_time = savet;
23494 	return (rval);
23495 }
23496 
23497 
23498 /*
23499  *    Function: sd_persistent_reservation_in_read_keys
23500  *
23501  * Description: This routine is the driver entry point for handling CD-ROM
23502  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
23503  *		by sending the SCSI-3 PRIN commands to the device.
23504  *		Processes the read keys command response by copying the
23505  *		reservation key information into the user provided buffer.
23506  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
23507  *
23508  *   Arguments: un   -  Pointer to soft state struct for the target.
23509  *		usrp -	user provided pointer to multihost Persistent In Read
23510  *			Keys structure (mhioc_inkeys_t)
23511  *		flag -	this argument is a pass through to ddi_copyxxx()
23512  *			directly from the mode argument of ioctl().
23513  *
23514  * Return Code: 0   - Success
23515  *		EACCES
23516  *		ENOTSUP
23517  *		errno return code from sd_send_scsi_cmd()
23518  *
23519  *     Context: Can sleep. Does not return until command is completed.
23520  */
23521 
23522 static int
23523 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
23524     mhioc_inkeys_t *usrp, int flag)
23525 {
23526 #ifdef _MULTI_DATAMODEL
23527 	struct mhioc_key_list32	li32;
23528 #endif
23529 	sd_prin_readkeys_t	*in;
23530 	mhioc_inkeys_t		*ptr;
23531 	mhioc_key_list_t	li;
23532 	uchar_t			*data_bufp;
23533 	int 			data_len;
23534 	int			rval;
23535 	size_t			copysz;
23536 
23537 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
23538 		return (EINVAL);
23539 	}
23540 	bzero(&li, sizeof (mhioc_key_list_t));
23541 
23542 	/*
23543 	 * Get the listsize from user
23544 	 */
23545 #ifdef _MULTI_DATAMODEL
23546 
23547 	switch (ddi_model_convert_from(flag & FMODELS)) {
23548 	case DDI_MODEL_ILP32:
23549 		copysz = sizeof (struct mhioc_key_list32);
23550 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
23551 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23552 			    "sd_persistent_reservation_in_read_keys: "
23553 			    "failed ddi_copyin: mhioc_key_list32_t\n");
23554 			rval = EFAULT;
23555 			goto done;
23556 		}
23557 		li.listsize = li32.listsize;
23558 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
23559 		break;
23560 
23561 	case DDI_MODEL_NONE:
23562 		copysz = sizeof (mhioc_key_list_t);
23563 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23564 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23565 			    "sd_persistent_reservation_in_read_keys: "
23566 			    "failed ddi_copyin: mhioc_key_list_t\n");
23567 			rval = EFAULT;
23568 			goto done;
23569 		}
23570 		break;
23571 	}
23572 
23573 #else /* ! _MULTI_DATAMODEL */
23574 	copysz = sizeof (mhioc_key_list_t);
23575 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
23576 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23577 		    "sd_persistent_reservation_in_read_keys: "
23578 		    "failed ddi_copyin: mhioc_key_list_t\n");
23579 		rval = EFAULT;
23580 		goto done;
23581 	}
23582 #endif
23583 
23584 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
23585 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
23586 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23587 
23588 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
23589 	    data_len, data_bufp)) != 0) {
23590 		goto done;
23591 	}
23592 	in = (sd_prin_readkeys_t *)data_bufp;
23593 	ptr->generation = BE_32(in->generation);
23594 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
23595 
23596 	/*
23597 	 * Return the min(listsize, listlen) keys
23598 	 */
23599 #ifdef _MULTI_DATAMODEL
23600 
23601 	switch (ddi_model_convert_from(flag & FMODELS)) {
23602 	case DDI_MODEL_ILP32:
23603 		li32.listlen = li.listlen;
23604 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
23605 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23606 			    "sd_persistent_reservation_in_read_keys: "
23607 			    "failed ddi_copyout: mhioc_key_list32_t\n");
23608 			rval = EFAULT;
23609 			goto done;
23610 		}
23611 		break;
23612 
23613 	case DDI_MODEL_NONE:
23614 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23615 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23616 			    "sd_persistent_reservation_in_read_keys: "
23617 			    "failed ddi_copyout: mhioc_key_list_t\n");
23618 			rval = EFAULT;
23619 			goto done;
23620 		}
23621 		break;
23622 	}
23623 
23624 #else /* ! _MULTI_DATAMODEL */
23625 
23626 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
23627 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23628 		    "sd_persistent_reservation_in_read_keys: "
23629 		    "failed ddi_copyout: mhioc_key_list_t\n");
23630 		rval = EFAULT;
23631 		goto done;
23632 	}
23633 
23634 #endif /* _MULTI_DATAMODEL */
23635 
23636 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
23637 	    li.listsize * MHIOC_RESV_KEY_SIZE);
23638 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
23639 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23640 		    "sd_persistent_reservation_in_read_keys: "
23641 		    "failed ddi_copyout: keylist\n");
23642 		rval = EFAULT;
23643 	}
23644 done:
23645 	kmem_free(data_bufp, data_len);
23646 	return (rval);
23647 }
23648 
23649 
23650 /*
23651  *    Function: sd_persistent_reservation_in_read_resv
23652  *
23653  * Description: This routine is the driver entry point for handling CD-ROM
23654  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
23655  *		by sending the SCSI-3 PRIN commands to the device.
23656  *		Process the read persistent reservations command response by
23657  *		copying the reservation information into the user provided
23658  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
23659  *
23660  *   Arguments: un   -  Pointer to soft state struct for the target.
23661  *		usrp -	user provided pointer to multihost Persistent In Read
23662  *			Keys structure (mhioc_inkeys_t)
23663  *		flag -	this argument is a pass through to ddi_copyxxx()
23664  *			directly from the mode argument of ioctl().
23665  *
23666  * Return Code: 0   - Success
23667  *		EACCES
23668  *		ENOTSUP
23669  *		errno return code from sd_send_scsi_cmd()
23670  *
23671  *     Context: Can sleep. Does not return until command is completed.
23672  */
23673 
23674 static int
23675 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
23676     mhioc_inresvs_t *usrp, int flag)
23677 {
23678 #ifdef _MULTI_DATAMODEL
23679 	struct mhioc_resv_desc_list32 resvlist32;
23680 #endif
23681 	sd_prin_readresv_t	*in;
23682 	mhioc_inresvs_t		*ptr;
23683 	sd_readresv_desc_t	*readresv_ptr;
23684 	mhioc_resv_desc_list_t	resvlist;
23685 	mhioc_resv_desc_t 	resvdesc;
23686 	uchar_t			*data_bufp;
23687 	int 			data_len;
23688 	int			rval;
23689 	int			i;
23690 	size_t			copysz;
23691 	mhioc_resv_desc_t	*bufp;
23692 
23693 	if ((ptr = usrp) == NULL) {
23694 		return (EINVAL);
23695 	}
23696 
23697 	/*
23698 	 * Get the listsize from user
23699 	 */
23700 #ifdef _MULTI_DATAMODEL
23701 	switch (ddi_model_convert_from(flag & FMODELS)) {
23702 	case DDI_MODEL_ILP32:
23703 		copysz = sizeof (struct mhioc_resv_desc_list32);
23704 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
23705 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23706 			    "sd_persistent_reservation_in_read_resv: "
23707 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23708 			rval = EFAULT;
23709 			goto done;
23710 		}
23711 		resvlist.listsize = resvlist32.listsize;
23712 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
23713 		break;
23714 
23715 	case DDI_MODEL_NONE:
23716 		copysz = sizeof (mhioc_resv_desc_list_t);
23717 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23718 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23719 			    "sd_persistent_reservation_in_read_resv: "
23720 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23721 			rval = EFAULT;
23722 			goto done;
23723 		}
23724 		break;
23725 	}
23726 #else /* ! _MULTI_DATAMODEL */
23727 	copysz = sizeof (mhioc_resv_desc_list_t);
23728 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
23729 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23730 		    "sd_persistent_reservation_in_read_resv: "
23731 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
23732 		rval = EFAULT;
23733 		goto done;
23734 	}
23735 #endif /* ! _MULTI_DATAMODEL */
23736 
23737 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
23738 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
23739 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
23740 
23741 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
23742 	    data_len, data_bufp)) != 0) {
23743 		goto done;
23744 	}
23745 	in = (sd_prin_readresv_t *)data_bufp;
23746 	ptr->generation = BE_32(in->generation);
23747 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
23748 
23749 	/*
23750 	 * Return the min(listsize, listlen( keys
23751 	 */
23752 #ifdef _MULTI_DATAMODEL
23753 
23754 	switch (ddi_model_convert_from(flag & FMODELS)) {
23755 	case DDI_MODEL_ILP32:
23756 		resvlist32.listlen = resvlist.listlen;
23757 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
23758 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23759 			    "sd_persistent_reservation_in_read_resv: "
23760 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23761 			rval = EFAULT;
23762 			goto done;
23763 		}
23764 		break;
23765 
23766 	case DDI_MODEL_NONE:
23767 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23768 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23769 			    "sd_persistent_reservation_in_read_resv: "
23770 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23771 			rval = EFAULT;
23772 			goto done;
23773 		}
23774 		break;
23775 	}
23776 
23777 #else /* ! _MULTI_DATAMODEL */
23778 
23779 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
23780 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
23781 		    "sd_persistent_reservation_in_read_resv: "
23782 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
23783 		rval = EFAULT;
23784 		goto done;
23785 	}
23786 
23787 #endif /* ! _MULTI_DATAMODEL */
23788 
23789 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
23790 	bufp = resvlist.list;
23791 	copysz = sizeof (mhioc_resv_desc_t);
23792 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
23793 	    i++, readresv_ptr++, bufp++) {
23794 
23795 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
23796 		    MHIOC_RESV_KEY_SIZE);
23797 		resvdesc.type  = readresv_ptr->type;
23798 		resvdesc.scope = readresv_ptr->scope;
23799 		resvdesc.scope_specific_addr =
23800 		    BE_32(readresv_ptr->scope_specific_addr);
23801 
23802 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
23803 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
23804 			    "sd_persistent_reservation_in_read_resv: "
23805 			    "failed ddi_copyout: resvlist\n");
23806 			rval = EFAULT;
23807 			goto done;
23808 		}
23809 	}
23810 done:
23811 	kmem_free(data_bufp, data_len);
23812 	return (rval);
23813 }
23814 
23815 
23816 /*
23817  *    Function: sr_change_blkmode()
23818  *
23819  * Description: This routine is the driver entry point for handling CD-ROM
23820  *		block mode ioctl requests. Support for returning and changing
23821  *		the current block size in use by the device is implemented. The
23822  *		LBA size is changed via a MODE SELECT Block Descriptor.
23823  *
23824  *		This routine issues a mode sense with an allocation length of
23825  *		12 bytes for the mode page header and a single block descriptor.
23826  *
23827  *   Arguments: dev - the device 'dev_t'
23828  *		cmd - the request type; one of CDROMGBLKMODE (get) or
23829  *		      CDROMSBLKMODE (set)
23830  *		data - current block size or requested block size
23831  *		flag - this argument is a pass through to ddi_copyxxx() directly
23832  *		       from the mode argument of ioctl().
23833  *
23834  * Return Code: the code returned by sd_send_scsi_cmd()
23835  *		EINVAL if invalid arguments are provided
23836  *		EFAULT if ddi_copyxxx() fails
23837  *		ENXIO if fail ddi_get_soft_state
23838  *		EIO if invalid mode sense block descriptor length
23839  *
23840  */
23841 
23842 static int
23843 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
23844 {
23845 	struct sd_lun			*un = NULL;
23846 	struct mode_header		*sense_mhp, *select_mhp;
23847 	struct block_descriptor		*sense_desc, *select_desc;
23848 	int				current_bsize;
23849 	int				rval = EINVAL;
23850 	uchar_t				*sense = NULL;
23851 	uchar_t				*select = NULL;
23852 
23853 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
23854 
23855 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23856 		return (ENXIO);
23857 	}
23858 
23859 	/*
23860 	 * The block length is changed via the Mode Select block descriptor, the
23861 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
23862 	 * required as part of this routine. Therefore the mode sense allocation
23863 	 * length is specified to be the length of a mode page header and a
23864 	 * block descriptor.
23865 	 */
23866 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23867 
23868 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
23869 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
23870 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23871 		    "sr_change_blkmode: Mode Sense Failed\n");
23872 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23873 		return (rval);
23874 	}
23875 
23876 	/* Check the block descriptor len to handle only 1 block descriptor */
23877 	sense_mhp = (struct mode_header *)sense;
23878 	if ((sense_mhp->bdesc_length == 0) ||
23879 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
23880 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23881 		    "sr_change_blkmode: Mode Sense returned invalid block"
23882 		    " descriptor length\n");
23883 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23884 		return (EIO);
23885 	}
23886 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
23887 	current_bsize = ((sense_desc->blksize_hi << 16) |
23888 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
23889 
23890 	/* Process command */
23891 	switch (cmd) {
23892 	case CDROMGBLKMODE:
23893 		/* Return the block size obtained during the mode sense */
23894 		if (ddi_copyout(&current_bsize, (void *)data,
23895 		    sizeof (int), flag) != 0)
23896 			rval = EFAULT;
23897 		break;
23898 	case CDROMSBLKMODE:
23899 		/* Validate the requested block size */
23900 		switch (data) {
23901 		case CDROM_BLK_512:
23902 		case CDROM_BLK_1024:
23903 		case CDROM_BLK_2048:
23904 		case CDROM_BLK_2056:
23905 		case CDROM_BLK_2336:
23906 		case CDROM_BLK_2340:
23907 		case CDROM_BLK_2352:
23908 		case CDROM_BLK_2368:
23909 		case CDROM_BLK_2448:
23910 		case CDROM_BLK_2646:
23911 		case CDROM_BLK_2647:
23912 			break;
23913 		default:
23914 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23915 			    "sr_change_blkmode: "
23916 			    "Block Size '%ld' Not Supported\n", data);
23917 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23918 			return (EINVAL);
23919 		}
23920 
23921 		/*
23922 		 * The current block size matches the requested block size so
23923 		 * there is no need to send the mode select to change the size
23924 		 */
23925 		if (current_bsize == data) {
23926 			break;
23927 		}
23928 
23929 		/* Build the select data for the requested block size */
23930 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
23931 		select_mhp = (struct mode_header *)select;
23932 		select_desc =
23933 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
23934 		/*
23935 		 * The LBA size is changed via the block descriptor, so the
23936 		 * descriptor is built according to the user data
23937 		 */
23938 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
23939 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
23940 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
23941 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
23942 
23943 		/* Send the mode select for the requested block size */
23944 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23945 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23946 		    SD_PATH_STANDARD)) != 0) {
23947 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23948 			    "sr_change_blkmode: Mode Select Failed\n");
23949 			/*
23950 			 * The mode select failed for the requested block size,
23951 			 * so reset the data for the original block size and
23952 			 * send it to the target. The error is indicated by the
23953 			 * return value for the failed mode select.
23954 			 */
23955 			select_desc->blksize_hi  = sense_desc->blksize_hi;
23956 			select_desc->blksize_mid = sense_desc->blksize_mid;
23957 			select_desc->blksize_lo  = sense_desc->blksize_lo;
23958 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
23959 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
23960 			    SD_PATH_STANDARD);
23961 		} else {
23962 			ASSERT(!mutex_owned(SD_MUTEX(un)));
23963 			mutex_enter(SD_MUTEX(un));
23964 			sd_update_block_info(un, (uint32_t)data, 0);
23965 			mutex_exit(SD_MUTEX(un));
23966 		}
23967 		break;
23968 	default:
23969 		/* should not reach here, but check anyway */
23970 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
23971 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
23972 		rval = EINVAL;
23973 		break;
23974 	}
23975 
23976 	if (select) {
23977 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
23978 	}
23979 	if (sense) {
23980 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
23981 	}
23982 	return (rval);
23983 }
23984 
23985 
23986 /*
23987  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
23988  * implement driver support for getting and setting the CD speed. The command
23989  * set used will be based on the device type. If the device has not been
23990  * identified as MMC the Toshiba vendor specific mode page will be used. If
23991  * the device is MMC but does not support the Real Time Streaming feature
23992  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
23993  * be used to read the speed.
23994  */
23995 
23996 /*
23997  *    Function: sr_change_speed()
23998  *
23999  * Description: This routine is the driver entry point for handling CD-ROM
24000  *		drive speed ioctl requests for devices supporting the Toshiba
24001  *		vendor specific drive speed mode page. Support for returning
24002  *		and changing the current drive speed in use by the device is
24003  *		implemented.
24004  *
24005  *   Arguments: dev - the device 'dev_t'
24006  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
24007  *		      CDROMSDRVSPEED (set)
24008  *		data - current drive speed or requested drive speed
24009  *		flag - this argument is a pass through to ddi_copyxxx() directly
24010  *		       from the mode argument of ioctl().
24011  *
24012  * Return Code: the code returned by sd_send_scsi_cmd()
24013  *		EINVAL if invalid arguments are provided
24014  *		EFAULT if ddi_copyxxx() fails
24015  *		ENXIO if fail ddi_get_soft_state
24016  *		EIO if invalid mode sense block descriptor length
24017  */
24018 
24019 static int
24020 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24021 {
24022 	struct sd_lun			*un = NULL;
24023 	struct mode_header		*sense_mhp, *select_mhp;
24024 	struct mode_speed		*sense_page, *select_page;
24025 	int				current_speed;
24026 	int				rval = EINVAL;
24027 	int				bd_len;
24028 	uchar_t				*sense = NULL;
24029 	uchar_t				*select = NULL;
24030 
24031 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24032 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24033 		return (ENXIO);
24034 	}
24035 
24036 	/*
24037 	 * Note: The drive speed is being modified here according to a Toshiba
24038 	 * vendor specific mode page (0x31).
24039 	 */
24040 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24041 
24042 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
24043 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
24044 	    SD_PATH_STANDARD)) != 0) {
24045 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24046 		    "sr_change_speed: Mode Sense Failed\n");
24047 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24048 		return (rval);
24049 	}
24050 	sense_mhp  = (struct mode_header *)sense;
24051 
24052 	/* Check the block descriptor len to handle only 1 block descriptor */
24053 	bd_len = sense_mhp->bdesc_length;
24054 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24055 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24056 		    "sr_change_speed: Mode Sense returned invalid block "
24057 		    "descriptor length\n");
24058 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24059 		return (EIO);
24060 	}
24061 
24062 	sense_page = (struct mode_speed *)
24063 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
24064 	current_speed = sense_page->speed;
24065 
24066 	/* Process command */
24067 	switch (cmd) {
24068 	case CDROMGDRVSPEED:
24069 		/* Return the drive speed obtained during the mode sense */
24070 		if (current_speed == 0x2) {
24071 			current_speed = CDROM_TWELVE_SPEED;
24072 		}
24073 		if (ddi_copyout(&current_speed, (void *)data,
24074 		    sizeof (int), flag) != 0) {
24075 			rval = EFAULT;
24076 		}
24077 		break;
24078 	case CDROMSDRVSPEED:
24079 		/* Validate the requested drive speed */
24080 		switch ((uchar_t)data) {
24081 		case CDROM_TWELVE_SPEED:
24082 			data = 0x2;
24083 			/*FALLTHROUGH*/
24084 		case CDROM_NORMAL_SPEED:
24085 		case CDROM_DOUBLE_SPEED:
24086 		case CDROM_QUAD_SPEED:
24087 		case CDROM_MAXIMUM_SPEED:
24088 			break;
24089 		default:
24090 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24091 			    "sr_change_speed: "
24092 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
24093 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24094 			return (EINVAL);
24095 		}
24096 
24097 		/*
24098 		 * The current drive speed matches the requested drive speed so
24099 		 * there is no need to send the mode select to change the speed
24100 		 */
24101 		if (current_speed == data) {
24102 			break;
24103 		}
24104 
24105 		/* Build the select data for the requested drive speed */
24106 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
24107 		select_mhp = (struct mode_header *)select;
24108 		select_mhp->bdesc_length = 0;
24109 		select_page =
24110 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24111 		select_page =
24112 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
24113 		select_page->mode_page.code = CDROM_MODE_SPEED;
24114 		select_page->mode_page.length = 2;
24115 		select_page->speed = (uchar_t)data;
24116 
24117 		/* Send the mode select for the requested block size */
24118 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24119 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24120 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
24121 			/*
24122 			 * The mode select failed for the requested drive speed,
24123 			 * so reset the data for the original drive speed and
24124 			 * send it to the target. The error is indicated by the
24125 			 * return value for the failed mode select.
24126 			 */
24127 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24128 			    "sr_drive_speed: Mode Select Failed\n");
24129 			select_page->speed = sense_page->speed;
24130 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
24131 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
24132 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
24133 		}
24134 		break;
24135 	default:
24136 		/* should not reach here, but check anyway */
24137 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24138 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
24139 		rval = EINVAL;
24140 		break;
24141 	}
24142 
24143 	if (select) {
24144 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
24145 	}
24146 	if (sense) {
24147 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
24148 	}
24149 
24150 	return (rval);
24151 }
24152 
24153 
24154 /*
24155  *    Function: sr_atapi_change_speed()
24156  *
24157  * Description: This routine is the driver entry point for handling CD-ROM
24158  *		drive speed ioctl requests for MMC devices that do not support
24159  *		the Real Time Streaming feature (0x107).
24160  *
24161  *		Note: This routine will use the SET SPEED command which may not
24162  *		be supported by all devices.
24163  *
24164  *   Arguments: dev- the device 'dev_t'
24165  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
24166  *		     CDROMSDRVSPEED (set)
24167  *		data- current drive speed or requested drive speed
24168  *		flag- this argument is a pass through to ddi_copyxxx() directly
24169  *		      from the mode argument of ioctl().
24170  *
24171  * Return Code: the code returned by sd_send_scsi_cmd()
24172  *		EINVAL if invalid arguments are provided
24173  *		EFAULT if ddi_copyxxx() fails
24174  *		ENXIO if fail ddi_get_soft_state
24175  *		EIO if invalid mode sense block descriptor length
24176  */
24177 
24178 static int
24179 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
24180 {
24181 	struct sd_lun			*un;
24182 	struct uscsi_cmd		*com = NULL;
24183 	struct mode_header_grp2		*sense_mhp;
24184 	uchar_t				*sense_page;
24185 	uchar_t				*sense = NULL;
24186 	char				cdb[CDB_GROUP5];
24187 	int				bd_len;
24188 	int				current_speed = 0;
24189 	int				max_speed = 0;
24190 	int				rval;
24191 
24192 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
24193 
24194 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24195 		return (ENXIO);
24196 	}
24197 
24198 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
24199 
24200 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
24201 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
24202 	    SD_PATH_STANDARD)) != 0) {
24203 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24204 		    "sr_atapi_change_speed: Mode Sense Failed\n");
24205 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24206 		return (rval);
24207 	}
24208 
24209 	/* Check the block descriptor len to handle only 1 block descriptor */
24210 	sense_mhp = (struct mode_header_grp2 *)sense;
24211 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
24212 	if (bd_len > MODE_BLK_DESC_LENGTH) {
24213 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24214 		    "sr_atapi_change_speed: Mode Sense returned invalid "
24215 		    "block descriptor length\n");
24216 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24217 		return (EIO);
24218 	}
24219 
24220 	/* Calculate the current and maximum drive speeds */
24221 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
24222 	current_speed = (sense_page[14] << 8) | sense_page[15];
24223 	max_speed = (sense_page[8] << 8) | sense_page[9];
24224 
24225 	/* Process the command */
24226 	switch (cmd) {
24227 	case CDROMGDRVSPEED:
24228 		current_speed /= SD_SPEED_1X;
24229 		if (ddi_copyout(&current_speed, (void *)data,
24230 		    sizeof (int), flag) != 0)
24231 			rval = EFAULT;
24232 		break;
24233 	case CDROMSDRVSPEED:
24234 		/* Convert the speed code to KB/sec */
24235 		switch ((uchar_t)data) {
24236 		case CDROM_NORMAL_SPEED:
24237 			current_speed = SD_SPEED_1X;
24238 			break;
24239 		case CDROM_DOUBLE_SPEED:
24240 			current_speed = 2 * SD_SPEED_1X;
24241 			break;
24242 		case CDROM_QUAD_SPEED:
24243 			current_speed = 4 * SD_SPEED_1X;
24244 			break;
24245 		case CDROM_TWELVE_SPEED:
24246 			current_speed = 12 * SD_SPEED_1X;
24247 			break;
24248 		case CDROM_MAXIMUM_SPEED:
24249 			current_speed = 0xffff;
24250 			break;
24251 		default:
24252 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24253 			    "sr_atapi_change_speed: invalid drive speed %d\n",
24254 			    (uchar_t)data);
24255 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24256 			return (EINVAL);
24257 		}
24258 
24259 		/* Check the request against the drive's max speed. */
24260 		if (current_speed != 0xffff) {
24261 			if (current_speed > max_speed) {
24262 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24263 				return (EINVAL);
24264 			}
24265 		}
24266 
24267 		/*
24268 		 * Build and send the SET SPEED command
24269 		 *
24270 		 * Note: The SET SPEED (0xBB) command used in this routine is
24271 		 * obsolete per the SCSI MMC spec but still supported in the
24272 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24273 		 * therefore the command is still implemented in this routine.
24274 		 */
24275 		bzero(cdb, sizeof (cdb));
24276 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
24277 		cdb[2] = (uchar_t)(current_speed >> 8);
24278 		cdb[3] = (uchar_t)current_speed;
24279 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24280 		com->uscsi_cdb	   = (caddr_t)cdb;
24281 		com->uscsi_cdblen  = CDB_GROUP5;
24282 		com->uscsi_bufaddr = NULL;
24283 		com->uscsi_buflen  = 0;
24284 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
24285 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
24286 		break;
24287 	default:
24288 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24289 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
24290 		rval = EINVAL;
24291 	}
24292 
24293 	if (sense) {
24294 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
24295 	}
24296 	if (com) {
24297 		kmem_free(com, sizeof (*com));
24298 	}
24299 	return (rval);
24300 }
24301 
24302 
24303 /*
24304  *    Function: sr_pause_resume()
24305  *
24306  * Description: This routine is the driver entry point for handling CD-ROM
24307  *		pause/resume ioctl requests. This only affects the audio play
24308  *		operation.
24309  *
24310  *   Arguments: dev - the device 'dev_t'
24311  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
24312  *		      for setting the resume bit of the cdb.
24313  *
24314  * Return Code: the code returned by sd_send_scsi_cmd()
24315  *		EINVAL if invalid mode specified
24316  *
24317  */
24318 
24319 static int
24320 sr_pause_resume(dev_t dev, int cmd)
24321 {
24322 	struct sd_lun		*un;
24323 	struct uscsi_cmd	*com;
24324 	char			cdb[CDB_GROUP1];
24325 	int			rval;
24326 
24327 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24328 		return (ENXIO);
24329 	}
24330 
24331 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24332 	bzero(cdb, CDB_GROUP1);
24333 	cdb[0] = SCMD_PAUSE_RESUME;
24334 	switch (cmd) {
24335 	case CDROMRESUME:
24336 		cdb[8] = 1;
24337 		break;
24338 	case CDROMPAUSE:
24339 		cdb[8] = 0;
24340 		break;
24341 	default:
24342 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
24343 		    " Command '%x' Not Supported\n", cmd);
24344 		rval = EINVAL;
24345 		goto done;
24346 	}
24347 
24348 	com->uscsi_cdb    = cdb;
24349 	com->uscsi_cdblen = CDB_GROUP1;
24350 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24351 
24352 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24353 	    SD_PATH_STANDARD);
24354 
24355 done:
24356 	kmem_free(com, sizeof (*com));
24357 	return (rval);
24358 }
24359 
24360 
24361 /*
24362  *    Function: sr_play_msf()
24363  *
24364  * Description: This routine is the driver entry point for handling CD-ROM
24365  *		ioctl requests to output the audio signals at the specified
24366  *		starting address and continue the audio play until the specified
24367  *		ending address (CDROMPLAYMSF) The address is in Minute Second
24368  *		Frame (MSF) format.
24369  *
24370  *   Arguments: dev	- the device 'dev_t'
24371  *		data	- pointer to user provided audio msf structure,
24372  *		          specifying start/end addresses.
24373  *		flag	- this argument is a pass through to ddi_copyxxx()
24374  *		          directly from the mode argument of ioctl().
24375  *
24376  * Return Code: the code returned by sd_send_scsi_cmd()
24377  *		EFAULT if ddi_copyxxx() fails
24378  *		ENXIO if fail ddi_get_soft_state
24379  *		EINVAL if data pointer is NULL
24380  */
24381 
24382 static int
24383 sr_play_msf(dev_t dev, caddr_t data, int flag)
24384 {
24385 	struct sd_lun		*un;
24386 	struct uscsi_cmd	*com;
24387 	struct cdrom_msf	msf_struct;
24388 	struct cdrom_msf	*msf = &msf_struct;
24389 	char			cdb[CDB_GROUP1];
24390 	int			rval;
24391 
24392 	if (data == NULL) {
24393 		return (EINVAL);
24394 	}
24395 
24396 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24397 		return (ENXIO);
24398 	}
24399 
24400 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
24401 		return (EFAULT);
24402 	}
24403 
24404 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24405 	bzero(cdb, CDB_GROUP1);
24406 	cdb[0] = SCMD_PLAYAUDIO_MSF;
24407 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
24408 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
24409 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
24410 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
24411 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
24412 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
24413 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
24414 	} else {
24415 		cdb[3] = msf->cdmsf_min0;
24416 		cdb[4] = msf->cdmsf_sec0;
24417 		cdb[5] = msf->cdmsf_frame0;
24418 		cdb[6] = msf->cdmsf_min1;
24419 		cdb[7] = msf->cdmsf_sec1;
24420 		cdb[8] = msf->cdmsf_frame1;
24421 	}
24422 	com->uscsi_cdb    = cdb;
24423 	com->uscsi_cdblen = CDB_GROUP1;
24424 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24425 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24426 	    SD_PATH_STANDARD);
24427 	kmem_free(com, sizeof (*com));
24428 	return (rval);
24429 }
24430 
24431 
24432 /*
24433  *    Function: sr_play_trkind()
24434  *
24435  * Description: This routine is the driver entry point for handling CD-ROM
24436  *		ioctl requests to output the audio signals at the specified
24437  *		starting address and continue the audio play until the specified
24438  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
24439  *		format.
24440  *
24441  *   Arguments: dev	- the device 'dev_t'
24442  *		data	- pointer to user provided audio track/index structure,
24443  *		          specifying start/end addresses.
24444  *		flag	- this argument is a pass through to ddi_copyxxx()
24445  *		          directly from the mode argument of ioctl().
24446  *
24447  * Return Code: the code returned by sd_send_scsi_cmd()
24448  *		EFAULT if ddi_copyxxx() fails
24449  *		ENXIO if fail ddi_get_soft_state
24450  *		EINVAL if data pointer is NULL
24451  */
24452 
24453 static int
24454 sr_play_trkind(dev_t dev, caddr_t data, int flag)
24455 {
24456 	struct cdrom_ti		ti_struct;
24457 	struct cdrom_ti		*ti = &ti_struct;
24458 	struct uscsi_cmd	*com = NULL;
24459 	char			cdb[CDB_GROUP1];
24460 	int			rval;
24461 
24462 	if (data == NULL) {
24463 		return (EINVAL);
24464 	}
24465 
24466 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
24467 		return (EFAULT);
24468 	}
24469 
24470 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24471 	bzero(cdb, CDB_GROUP1);
24472 	cdb[0] = SCMD_PLAYAUDIO_TI;
24473 	cdb[4] = ti->cdti_trk0;
24474 	cdb[5] = ti->cdti_ind0;
24475 	cdb[7] = ti->cdti_trk1;
24476 	cdb[8] = ti->cdti_ind1;
24477 	com->uscsi_cdb    = cdb;
24478 	com->uscsi_cdblen = CDB_GROUP1;
24479 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
24480 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24481 	    SD_PATH_STANDARD);
24482 	kmem_free(com, sizeof (*com));
24483 	return (rval);
24484 }
24485 
24486 
24487 /*
24488  *    Function: sr_read_all_subcodes()
24489  *
24490  * Description: This routine is the driver entry point for handling CD-ROM
24491  *		ioctl requests to return raw subcode data while the target is
24492  *		playing audio (CDROMSUBCODE).
24493  *
24494  *   Arguments: dev	- the device 'dev_t'
24495  *		data	- pointer to user provided cdrom subcode structure,
24496  *		          specifying the transfer length and address.
24497  *		flag	- this argument is a pass through to ddi_copyxxx()
24498  *		          directly from the mode argument of ioctl().
24499  *
24500  * Return Code: the code returned by sd_send_scsi_cmd()
24501  *		EFAULT if ddi_copyxxx() fails
24502  *		ENXIO if fail ddi_get_soft_state
24503  *		EINVAL if data pointer is NULL
24504  */
24505 
24506 static int
24507 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
24508 {
24509 	struct sd_lun		*un = NULL;
24510 	struct uscsi_cmd	*com = NULL;
24511 	struct cdrom_subcode	*subcode = NULL;
24512 	int			rval;
24513 	size_t			buflen;
24514 	char			cdb[CDB_GROUP5];
24515 
24516 #ifdef _MULTI_DATAMODEL
24517 	/* To support ILP32 applications in an LP64 world */
24518 	struct cdrom_subcode32		cdrom_subcode32;
24519 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
24520 #endif
24521 	if (data == NULL) {
24522 		return (EINVAL);
24523 	}
24524 
24525 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24526 		return (ENXIO);
24527 	}
24528 
24529 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
24530 
24531 #ifdef _MULTI_DATAMODEL
24532 	switch (ddi_model_convert_from(flag & FMODELS)) {
24533 	case DDI_MODEL_ILP32:
24534 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
24535 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24536 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24537 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24538 			return (EFAULT);
24539 		}
24540 		/* Convert the ILP32 uscsi data from the application to LP64 */
24541 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
24542 		break;
24543 	case DDI_MODEL_NONE:
24544 		if (ddi_copyin(data, subcode,
24545 		    sizeof (struct cdrom_subcode), flag)) {
24546 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24547 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
24548 			kmem_free(subcode, sizeof (struct cdrom_subcode));
24549 			return (EFAULT);
24550 		}
24551 		break;
24552 	}
24553 #else /* ! _MULTI_DATAMODEL */
24554 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
24555 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24556 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
24557 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24558 		return (EFAULT);
24559 	}
24560 #endif /* _MULTI_DATAMODEL */
24561 
24562 	/*
24563 	 * Since MMC-2 expects max 3 bytes for length, check if the
24564 	 * length input is greater than 3 bytes
24565 	 */
24566 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
24567 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
24568 		    "sr_read_all_subcodes: "
24569 		    "cdrom transfer length too large: %d (limit %d)\n",
24570 		    subcode->cdsc_length, 0xFFFFFF);
24571 		kmem_free(subcode, sizeof (struct cdrom_subcode));
24572 		return (EINVAL);
24573 	}
24574 
24575 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
24576 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24577 	bzero(cdb, CDB_GROUP5);
24578 
24579 	if (un->un_f_mmc_cap == TRUE) {
24580 		cdb[0] = (char)SCMD_READ_CD;
24581 		cdb[2] = (char)0xff;
24582 		cdb[3] = (char)0xff;
24583 		cdb[4] = (char)0xff;
24584 		cdb[5] = (char)0xff;
24585 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24586 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24587 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
24588 		cdb[10] = 1;
24589 	} else {
24590 		/*
24591 		 * Note: A vendor specific command (0xDF) is being used her to
24592 		 * request a read of all subcodes.
24593 		 */
24594 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
24595 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
24596 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
24597 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
24598 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
24599 	}
24600 	com->uscsi_cdb	   = cdb;
24601 	com->uscsi_cdblen  = CDB_GROUP5;
24602 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
24603 	com->uscsi_buflen  = buflen;
24604 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24605 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
24606 	    SD_PATH_STANDARD);
24607 	kmem_free(subcode, sizeof (struct cdrom_subcode));
24608 	kmem_free(com, sizeof (*com));
24609 	return (rval);
24610 }
24611 
24612 
24613 /*
24614  *    Function: sr_read_subchannel()
24615  *
24616  * Description: This routine is the driver entry point for handling CD-ROM
24617  *		ioctl requests to return the Q sub-channel data of the CD
24618  *		current position block. (CDROMSUBCHNL) The data includes the
24619  *		track number, index number, absolute CD-ROM address (LBA or MSF
24620  *		format per the user) , track relative CD-ROM address (LBA or MSF
24621  *		format per the user), control data and audio status.
24622  *
24623  *   Arguments: dev	- the device 'dev_t'
24624  *		data	- pointer to user provided cdrom sub-channel structure
24625  *		flag	- this argument is a pass through to ddi_copyxxx()
24626  *		          directly from the mode argument of ioctl().
24627  *
24628  * Return Code: the code returned by sd_send_scsi_cmd()
24629  *		EFAULT if ddi_copyxxx() fails
24630  *		ENXIO if fail ddi_get_soft_state
24631  *		EINVAL if data pointer is NULL
24632  */
24633 
24634 static int
24635 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
24636 {
24637 	struct sd_lun		*un;
24638 	struct uscsi_cmd	*com;
24639 	struct cdrom_subchnl	subchanel;
24640 	struct cdrom_subchnl	*subchnl = &subchanel;
24641 	char			cdb[CDB_GROUP1];
24642 	caddr_t			buffer;
24643 	int			rval;
24644 
24645 	if (data == NULL) {
24646 		return (EINVAL);
24647 	}
24648 
24649 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24650 	    (un->un_state == SD_STATE_OFFLINE)) {
24651 		return (ENXIO);
24652 	}
24653 
24654 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
24655 		return (EFAULT);
24656 	}
24657 
24658 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
24659 	bzero(cdb, CDB_GROUP1);
24660 	cdb[0] = SCMD_READ_SUBCHANNEL;
24661 	/* Set the MSF bit based on the user requested address format */
24662 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
24663 	/*
24664 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
24665 	 * returned
24666 	 */
24667 	cdb[2] = 0x40;
24668 	/*
24669 	 * Set byte 3 to specify the return data format. A value of 0x01
24670 	 * indicates that the CD-ROM current position should be returned.
24671 	 */
24672 	cdb[3] = 0x01;
24673 	cdb[8] = 0x10;
24674 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24675 	com->uscsi_cdb	   = cdb;
24676 	com->uscsi_cdblen  = CDB_GROUP1;
24677 	com->uscsi_bufaddr = buffer;
24678 	com->uscsi_buflen  = 16;
24679 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24680 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24681 	    SD_PATH_STANDARD);
24682 	if (rval != 0) {
24683 		kmem_free(buffer, 16);
24684 		kmem_free(com, sizeof (*com));
24685 		return (rval);
24686 	}
24687 
24688 	/* Process the returned Q sub-channel data */
24689 	subchnl->cdsc_audiostatus = buffer[1];
24690 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
24691 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
24692 	subchnl->cdsc_trk	= buffer[6];
24693 	subchnl->cdsc_ind	= buffer[7];
24694 	if (subchnl->cdsc_format & CDROM_LBA) {
24695 		subchnl->cdsc_absaddr.lba =
24696 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24697 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24698 		subchnl->cdsc_reladdr.lba =
24699 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
24700 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
24701 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
24702 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
24703 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
24704 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
24705 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
24706 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
24707 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
24708 	} else {
24709 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
24710 		subchnl->cdsc_absaddr.msf.second = buffer[10];
24711 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
24712 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
24713 		subchnl->cdsc_reladdr.msf.second = buffer[14];
24714 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
24715 	}
24716 	kmem_free(buffer, 16);
24717 	kmem_free(com, sizeof (*com));
24718 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
24719 	    != 0) {
24720 		return (EFAULT);
24721 	}
24722 	return (rval);
24723 }
24724 
24725 
24726 /*
24727  *    Function: sr_read_tocentry()
24728  *
24729  * Description: This routine is the driver entry point for handling CD-ROM
24730  *		ioctl requests to read from the Table of Contents (TOC)
24731  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
24732  *		fields, the starting address (LBA or MSF format per the user)
24733  *		and the data mode if the user specified track is a data track.
24734  *
24735  *		Note: The READ HEADER (0x44) command used in this routine is
24736  *		obsolete per the SCSI MMC spec but still supported in the
24737  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
24738  *		therefore the command is still implemented in this routine.
24739  *
24740  *   Arguments: dev	- the device 'dev_t'
24741  *		data	- pointer to user provided toc entry structure,
24742  *			  specifying the track # and the address format
24743  *			  (LBA or MSF).
24744  *		flag	- this argument is a pass through to ddi_copyxxx()
24745  *		          directly from the mode argument of ioctl().
24746  *
24747  * Return Code: the code returned by sd_send_scsi_cmd()
24748  *		EFAULT if ddi_copyxxx() fails
24749  *		ENXIO if fail ddi_get_soft_state
24750  *		EINVAL if data pointer is NULL
24751  */
24752 
24753 static int
24754 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
24755 {
24756 	struct sd_lun		*un = NULL;
24757 	struct uscsi_cmd	*com;
24758 	struct cdrom_tocentry	toc_entry;
24759 	struct cdrom_tocentry	*entry = &toc_entry;
24760 	caddr_t			buffer;
24761 	int			rval;
24762 	char			cdb[CDB_GROUP1];
24763 
24764 	if (data == NULL) {
24765 		return (EINVAL);
24766 	}
24767 
24768 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24769 	    (un->un_state == SD_STATE_OFFLINE)) {
24770 		return (ENXIO);
24771 	}
24772 
24773 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
24774 		return (EFAULT);
24775 	}
24776 
24777 	/* Validate the requested track and address format */
24778 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
24779 		return (EINVAL);
24780 	}
24781 
24782 	if (entry->cdte_track == 0) {
24783 		return (EINVAL);
24784 	}
24785 
24786 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
24787 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24788 	bzero(cdb, CDB_GROUP1);
24789 
24790 	cdb[0] = SCMD_READ_TOC;
24791 	/* Set the MSF bit based on the user requested address format  */
24792 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
24793 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24794 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
24795 	} else {
24796 		cdb[6] = entry->cdte_track;
24797 	}
24798 
24799 	/*
24800 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
24801 	 * (4 byte TOC response header + 8 byte track descriptor)
24802 	 */
24803 	cdb[8] = 12;
24804 	com->uscsi_cdb	   = cdb;
24805 	com->uscsi_cdblen  = CDB_GROUP1;
24806 	com->uscsi_bufaddr = buffer;
24807 	com->uscsi_buflen  = 0x0C;
24808 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
24809 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24810 	    SD_PATH_STANDARD);
24811 	if (rval != 0) {
24812 		kmem_free(buffer, 12);
24813 		kmem_free(com, sizeof (*com));
24814 		return (rval);
24815 	}
24816 
24817 	/* Process the toc entry */
24818 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
24819 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
24820 	if (entry->cdte_format & CDROM_LBA) {
24821 		entry->cdte_addr.lba =
24822 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
24823 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
24824 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
24825 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
24826 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
24827 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
24828 		/*
24829 		 * Send a READ TOC command using the LBA address format to get
24830 		 * the LBA for the track requested so it can be used in the
24831 		 * READ HEADER request
24832 		 *
24833 		 * Note: The MSF bit of the READ HEADER command specifies the
24834 		 * output format. The block address specified in that command
24835 		 * must be in LBA format.
24836 		 */
24837 		cdb[1] = 0;
24838 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24839 		    SD_PATH_STANDARD);
24840 		if (rval != 0) {
24841 			kmem_free(buffer, 12);
24842 			kmem_free(com, sizeof (*com));
24843 			return (rval);
24844 		}
24845 	} else {
24846 		entry->cdte_addr.msf.minute	= buffer[9];
24847 		entry->cdte_addr.msf.second	= buffer[10];
24848 		entry->cdte_addr.msf.frame	= buffer[11];
24849 		/*
24850 		 * Send a READ TOC command using the LBA address format to get
24851 		 * the LBA for the track requested so it can be used in the
24852 		 * READ HEADER request
24853 		 *
24854 		 * Note: The MSF bit of the READ HEADER command specifies the
24855 		 * output format. The block address specified in that command
24856 		 * must be in LBA format.
24857 		 */
24858 		cdb[1] = 0;
24859 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24860 		    SD_PATH_STANDARD);
24861 		if (rval != 0) {
24862 			kmem_free(buffer, 12);
24863 			kmem_free(com, sizeof (*com));
24864 			return (rval);
24865 		}
24866 	}
24867 
24868 	/*
24869 	 * Build and send the READ HEADER command to determine the data mode of
24870 	 * the user specified track.
24871 	 */
24872 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
24873 	    (entry->cdte_track != CDROM_LEADOUT)) {
24874 		bzero(cdb, CDB_GROUP1);
24875 		cdb[0] = SCMD_READ_HEADER;
24876 		cdb[2] = buffer[8];
24877 		cdb[3] = buffer[9];
24878 		cdb[4] = buffer[10];
24879 		cdb[5] = buffer[11];
24880 		cdb[8] = 0x08;
24881 		com->uscsi_buflen = 0x08;
24882 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24883 		    SD_PATH_STANDARD);
24884 		if (rval == 0) {
24885 			entry->cdte_datamode = buffer[0];
24886 		} else {
24887 			/*
24888 			 * READ HEADER command failed, since this is
24889 			 * obsoleted in one spec, its better to return
24890 			 * -1 for an invlid track so that we can still
24891 			 * receive the rest of the TOC data.
24892 			 */
24893 			entry->cdte_datamode = (uchar_t)-1;
24894 		}
24895 	} else {
24896 		entry->cdte_datamode = (uchar_t)-1;
24897 	}
24898 
24899 	kmem_free(buffer, 12);
24900 	kmem_free(com, sizeof (*com));
24901 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
24902 		return (EFAULT);
24903 
24904 	return (rval);
24905 }
24906 
24907 
24908 /*
24909  *    Function: sr_read_tochdr()
24910  *
24911  * Description: This routine is the driver entry point for handling CD-ROM
24912  * 		ioctl requests to read the Table of Contents (TOC) header
24913  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
24914  *		and ending track numbers
24915  *
24916  *   Arguments: dev	- the device 'dev_t'
24917  *		data	- pointer to user provided toc header structure,
24918  *			  specifying the starting and ending track numbers.
24919  *		flag	- this argument is a pass through to ddi_copyxxx()
24920  *			  directly from the mode argument of ioctl().
24921  *
24922  * Return Code: the code returned by sd_send_scsi_cmd()
24923  *		EFAULT if ddi_copyxxx() fails
24924  *		ENXIO if fail ddi_get_soft_state
24925  *		EINVAL if data pointer is NULL
24926  */
24927 
24928 static int
24929 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
24930 {
24931 	struct sd_lun		*un;
24932 	struct uscsi_cmd	*com;
24933 	struct cdrom_tochdr	toc_header;
24934 	struct cdrom_tochdr	*hdr = &toc_header;
24935 	char			cdb[CDB_GROUP1];
24936 	int			rval;
24937 	caddr_t			buffer;
24938 
24939 	if (data == NULL) {
24940 		return (EINVAL);
24941 	}
24942 
24943 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
24944 	    (un->un_state == SD_STATE_OFFLINE)) {
24945 		return (ENXIO);
24946 	}
24947 
24948 	buffer = kmem_zalloc(4, KM_SLEEP);
24949 	bzero(cdb, CDB_GROUP1);
24950 	cdb[0] = SCMD_READ_TOC;
24951 	/*
24952 	 * Specifying a track number of 0x00 in the READ TOC command indicates
24953 	 * that the TOC header should be returned
24954 	 */
24955 	cdb[6] = 0x00;
24956 	/*
24957 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
24958 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
24959 	 */
24960 	cdb[8] = 0x04;
24961 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
24962 	com->uscsi_cdb	   = cdb;
24963 	com->uscsi_cdblen  = CDB_GROUP1;
24964 	com->uscsi_bufaddr = buffer;
24965 	com->uscsi_buflen  = 0x04;
24966 	com->uscsi_timeout = 300;
24967 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
24968 
24969 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
24970 	    SD_PATH_STANDARD);
24971 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
24972 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
24973 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
24974 	} else {
24975 		hdr->cdth_trk0 = buffer[2];
24976 		hdr->cdth_trk1 = buffer[3];
24977 	}
24978 	kmem_free(buffer, 4);
24979 	kmem_free(com, sizeof (*com));
24980 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
24981 		return (EFAULT);
24982 	}
24983 	return (rval);
24984 }
24985 
24986 
24987 /*
24988  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
24989  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
24990  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
24991  * digital audio and extended architecture digital audio. These modes are
24992  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
24993  * MMC specs.
24994  *
24995  * In addition to support for the various data formats these routines also
24996  * include support for devices that implement only the direct access READ
24997  * commands (0x08, 0x28), devices that implement the READ_CD commands
24998  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
24999  * READ CDXA commands (0xD8, 0xDB)
25000  */
25001 
25002 /*
25003  *    Function: sr_read_mode1()
25004  *
25005  * Description: This routine is the driver entry point for handling CD-ROM
25006  *		ioctl read mode1 requests (CDROMREADMODE1).
25007  *
25008  *   Arguments: dev	- the device 'dev_t'
25009  *		data	- pointer to user provided cd read structure specifying
25010  *			  the lba buffer address and length.
25011  *		flag	- this argument is a pass through to ddi_copyxxx()
25012  *			  directly from the mode argument of ioctl().
25013  *
25014  * Return Code: the code returned by sd_send_scsi_cmd()
25015  *		EFAULT if ddi_copyxxx() fails
25016  *		ENXIO if fail ddi_get_soft_state
25017  *		EINVAL if data pointer is NULL
25018  */
25019 
25020 static int
25021 sr_read_mode1(dev_t dev, caddr_t data, int flag)
25022 {
25023 	struct sd_lun		*un;
25024 	struct cdrom_read	mode1_struct;
25025 	struct cdrom_read	*mode1 = &mode1_struct;
25026 	int			rval;
25027 #ifdef _MULTI_DATAMODEL
25028 	/* To support ILP32 applications in an LP64 world */
25029 	struct cdrom_read32	cdrom_read32;
25030 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25031 #endif /* _MULTI_DATAMODEL */
25032 
25033 	if (data == NULL) {
25034 		return (EINVAL);
25035 	}
25036 
25037 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25038 	    (un->un_state == SD_STATE_OFFLINE)) {
25039 		return (ENXIO);
25040 	}
25041 
25042 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25043 	    "sd_read_mode1: entry: un:0x%p\n", un);
25044 
25045 #ifdef _MULTI_DATAMODEL
25046 	switch (ddi_model_convert_from(flag & FMODELS)) {
25047 	case DDI_MODEL_ILP32:
25048 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25049 			return (EFAULT);
25050 		}
25051 		/* Convert the ILP32 uscsi data from the application to LP64 */
25052 		cdrom_read32tocdrom_read(cdrd32, mode1);
25053 		break;
25054 	case DDI_MODEL_NONE:
25055 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25056 			return (EFAULT);
25057 		}
25058 	}
25059 #else /* ! _MULTI_DATAMODEL */
25060 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
25061 		return (EFAULT);
25062 	}
25063 #endif /* _MULTI_DATAMODEL */
25064 
25065 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
25066 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
25067 
25068 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25069 	    "sd_read_mode1: exit: un:0x%p\n", un);
25070 
25071 	return (rval);
25072 }
25073 
25074 
25075 /*
25076  *    Function: sr_read_cd_mode2()
25077  *
25078  * Description: This routine is the driver entry point for handling CD-ROM
25079  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25080  *		support the READ CD (0xBE) command or the 1st generation
25081  *		READ CD (0xD4) command.
25082  *
25083  *   Arguments: dev	- the device 'dev_t'
25084  *		data	- pointer to user provided cd read structure specifying
25085  *			  the lba buffer address and length.
25086  *		flag	- this argument is a pass through to ddi_copyxxx()
25087  *			  directly from the mode argument of ioctl().
25088  *
25089  * Return Code: the code returned by sd_send_scsi_cmd()
25090  *		EFAULT if ddi_copyxxx() fails
25091  *		ENXIO if fail ddi_get_soft_state
25092  *		EINVAL if data pointer is NULL
25093  */
25094 
25095 static int
25096 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
25097 {
25098 	struct sd_lun		*un;
25099 	struct uscsi_cmd	*com;
25100 	struct cdrom_read	mode2_struct;
25101 	struct cdrom_read	*mode2 = &mode2_struct;
25102 	uchar_t			cdb[CDB_GROUP5];
25103 	int			nblocks;
25104 	int			rval;
25105 #ifdef _MULTI_DATAMODEL
25106 	/*  To support ILP32 applications in an LP64 world */
25107 	struct cdrom_read32	cdrom_read32;
25108 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25109 #endif /* _MULTI_DATAMODEL */
25110 
25111 	if (data == NULL) {
25112 		return (EINVAL);
25113 	}
25114 
25115 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25116 	    (un->un_state == SD_STATE_OFFLINE)) {
25117 		return (ENXIO);
25118 	}
25119 
25120 #ifdef _MULTI_DATAMODEL
25121 	switch (ddi_model_convert_from(flag & FMODELS)) {
25122 	case DDI_MODEL_ILP32:
25123 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25124 			return (EFAULT);
25125 		}
25126 		/* Convert the ILP32 uscsi data from the application to LP64 */
25127 		cdrom_read32tocdrom_read(cdrd32, mode2);
25128 		break;
25129 	case DDI_MODEL_NONE:
25130 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25131 			return (EFAULT);
25132 		}
25133 		break;
25134 	}
25135 
25136 #else /* ! _MULTI_DATAMODEL */
25137 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25138 		return (EFAULT);
25139 	}
25140 #endif /* _MULTI_DATAMODEL */
25141 
25142 	bzero(cdb, sizeof (cdb));
25143 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
25144 		/* Read command supported by 1st generation atapi drives */
25145 		cdb[0] = SCMD_READ_CDD4;
25146 	} else {
25147 		/* Universal CD Access Command */
25148 		cdb[0] = SCMD_READ_CD;
25149 	}
25150 
25151 	/*
25152 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
25153 	 */
25154 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
25155 
25156 	/* set the start address */
25157 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
25158 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
25159 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25160 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
25161 
25162 	/* set the transfer length */
25163 	nblocks = mode2->cdread_buflen / 2336;
25164 	cdb[6] = (uchar_t)(nblocks >> 16);
25165 	cdb[7] = (uchar_t)(nblocks >> 8);
25166 	cdb[8] = (uchar_t)nblocks;
25167 
25168 	/* set the filter bits */
25169 	cdb[9] = CDROM_READ_CD_USERDATA;
25170 
25171 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25172 	com->uscsi_cdb = (caddr_t)cdb;
25173 	com->uscsi_cdblen = sizeof (cdb);
25174 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25175 	com->uscsi_buflen = mode2->cdread_buflen;
25176 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25177 
25178 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25179 	    SD_PATH_STANDARD);
25180 	kmem_free(com, sizeof (*com));
25181 	return (rval);
25182 }
25183 
25184 
25185 /*
25186  *    Function: sr_read_mode2()
25187  *
25188  * Description: This routine is the driver entry point for handling CD-ROM
25189  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
25190  *		do not support the READ CD (0xBE) command.
25191  *
25192  *   Arguments: dev	- the device 'dev_t'
25193  *		data	- pointer to user provided cd read structure specifying
25194  *			  the lba buffer address and length.
25195  *		flag	- this argument is a pass through to ddi_copyxxx()
25196  *			  directly from the mode argument of ioctl().
25197  *
25198  * Return Code: the code returned by sd_send_scsi_cmd()
25199  *		EFAULT if ddi_copyxxx() fails
25200  *		ENXIO if fail ddi_get_soft_state
25201  *		EINVAL if data pointer is NULL
25202  *		EIO if fail to reset block size
25203  *		EAGAIN if commands are in progress in the driver
25204  */
25205 
25206 static int
25207 sr_read_mode2(dev_t dev, caddr_t data, int flag)
25208 {
25209 	struct sd_lun		*un;
25210 	struct cdrom_read	mode2_struct;
25211 	struct cdrom_read	*mode2 = &mode2_struct;
25212 	int			rval;
25213 	uint32_t		restore_blksize;
25214 	struct uscsi_cmd	*com;
25215 	uchar_t			cdb[CDB_GROUP0];
25216 	int			nblocks;
25217 
25218 #ifdef _MULTI_DATAMODEL
25219 	/* To support ILP32 applications in an LP64 world */
25220 	struct cdrom_read32	cdrom_read32;
25221 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
25222 #endif /* _MULTI_DATAMODEL */
25223 
25224 	if (data == NULL) {
25225 		return (EINVAL);
25226 	}
25227 
25228 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25229 	    (un->un_state == SD_STATE_OFFLINE)) {
25230 		return (ENXIO);
25231 	}
25232 
25233 	/*
25234 	 * Because this routine will update the device and driver block size
25235 	 * being used we want to make sure there are no commands in progress.
25236 	 * If commands are in progress the user will have to try again.
25237 	 *
25238 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
25239 	 * in sdioctl to protect commands from sdioctl through to the top of
25240 	 * sd_uscsi_strategy. See sdioctl for details.
25241 	 */
25242 	mutex_enter(SD_MUTEX(un));
25243 	if (un->un_ncmds_in_driver != 1) {
25244 		mutex_exit(SD_MUTEX(un));
25245 		return (EAGAIN);
25246 	}
25247 	mutex_exit(SD_MUTEX(un));
25248 
25249 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25250 	    "sd_read_mode2: entry: un:0x%p\n", un);
25251 
25252 #ifdef _MULTI_DATAMODEL
25253 	switch (ddi_model_convert_from(flag & FMODELS)) {
25254 	case DDI_MODEL_ILP32:
25255 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
25256 			return (EFAULT);
25257 		}
25258 		/* Convert the ILP32 uscsi data from the application to LP64 */
25259 		cdrom_read32tocdrom_read(cdrd32, mode2);
25260 		break;
25261 	case DDI_MODEL_NONE:
25262 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
25263 			return (EFAULT);
25264 		}
25265 		break;
25266 	}
25267 #else /* ! _MULTI_DATAMODEL */
25268 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
25269 		return (EFAULT);
25270 	}
25271 #endif /* _MULTI_DATAMODEL */
25272 
25273 	/* Store the current target block size for restoration later */
25274 	restore_blksize = un->un_tgt_blocksize;
25275 
25276 	/* Change the device and soft state target block size to 2336 */
25277 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
25278 		rval = EIO;
25279 		goto done;
25280 	}
25281 
25282 
25283 	bzero(cdb, sizeof (cdb));
25284 
25285 	/* set READ operation */
25286 	cdb[0] = SCMD_READ;
25287 
25288 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
25289 	mode2->cdread_lba >>= 2;
25290 
25291 	/* set the start address */
25292 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
25293 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
25294 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
25295 
25296 	/* set the transfer length */
25297 	nblocks = mode2->cdread_buflen / 2336;
25298 	cdb[4] = (uchar_t)nblocks & 0xFF;
25299 
25300 	/* build command */
25301 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25302 	com->uscsi_cdb = (caddr_t)cdb;
25303 	com->uscsi_cdblen = sizeof (cdb);
25304 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
25305 	com->uscsi_buflen = mode2->cdread_buflen;
25306 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25307 
25308 	/*
25309 	 * Issue SCSI command with user space address for read buffer.
25310 	 *
25311 	 * This sends the command through main channel in the driver.
25312 	 *
25313 	 * Since this is accessed via an IOCTL call, we go through the
25314 	 * standard path, so that if the device was powered down, then
25315 	 * it would be 'awakened' to handle the command.
25316 	 */
25317 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25318 	    SD_PATH_STANDARD);
25319 
25320 	kmem_free(com, sizeof (*com));
25321 
25322 	/* Restore the device and soft state target block size */
25323 	if (sr_sector_mode(dev, restore_blksize) != 0) {
25324 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25325 		    "can't do switch back to mode 1\n");
25326 		/*
25327 		 * If sd_send_scsi_READ succeeded we still need to report
25328 		 * an error because we failed to reset the block size
25329 		 */
25330 		if (rval == 0) {
25331 			rval = EIO;
25332 		}
25333 	}
25334 
25335 done:
25336 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
25337 	    "sd_read_mode2: exit: un:0x%p\n", un);
25338 
25339 	return (rval);
25340 }
25341 
25342 
25343 /*
25344  *    Function: sr_sector_mode()
25345  *
25346  * Description: This utility function is used by sr_read_mode2 to set the target
25347  *		block size based on the user specified size. This is a legacy
25348  *		implementation based upon a vendor specific mode page
25349  *
25350  *   Arguments: dev	- the device 'dev_t'
25351  *		data	- flag indicating if block size is being set to 2336 or
25352  *			  512.
25353  *
25354  * Return Code: the code returned by sd_send_scsi_cmd()
25355  *		EFAULT if ddi_copyxxx() fails
25356  *		ENXIO if fail ddi_get_soft_state
25357  *		EINVAL if data pointer is NULL
25358  */
25359 
25360 static int
25361 sr_sector_mode(dev_t dev, uint32_t blksize)
25362 {
25363 	struct sd_lun	*un;
25364 	uchar_t		*sense;
25365 	uchar_t		*select;
25366 	int		rval;
25367 
25368 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25369 	    (un->un_state == SD_STATE_OFFLINE)) {
25370 		return (ENXIO);
25371 	}
25372 
25373 	sense = kmem_zalloc(20, KM_SLEEP);
25374 
25375 	/* Note: This is a vendor specific mode page (0x81) */
25376 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
25377 	    SD_PATH_STANDARD)) != 0) {
25378 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25379 		    "sr_sector_mode: Mode Sense failed\n");
25380 		kmem_free(sense, 20);
25381 		return (rval);
25382 	}
25383 	select = kmem_zalloc(20, KM_SLEEP);
25384 	select[3] = 0x08;
25385 	select[10] = ((blksize >> 8) & 0xff);
25386 	select[11] = (blksize & 0xff);
25387 	select[12] = 0x01;
25388 	select[13] = 0x06;
25389 	select[14] = sense[14];
25390 	select[15] = sense[15];
25391 	if (blksize == SD_MODE2_BLKSIZE) {
25392 		select[14] |= 0x01;
25393 	}
25394 
25395 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
25396 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
25397 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25398 		    "sr_sector_mode: Mode Select failed\n");
25399 	} else {
25400 		/*
25401 		 * Only update the softstate block size if we successfully
25402 		 * changed the device block mode.
25403 		 */
25404 		mutex_enter(SD_MUTEX(un));
25405 		sd_update_block_info(un, blksize, 0);
25406 		mutex_exit(SD_MUTEX(un));
25407 	}
25408 	kmem_free(sense, 20);
25409 	kmem_free(select, 20);
25410 	return (rval);
25411 }
25412 
25413 
25414 /*
25415  *    Function: sr_read_cdda()
25416  *
25417  * Description: This routine is the driver entry point for handling CD-ROM
25418  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
25419  *		the target supports CDDA these requests are handled via a vendor
25420  *		specific command (0xD8) If the target does not support CDDA
25421  *		these requests are handled via the READ CD command (0xBE).
25422  *
25423  *   Arguments: dev	- the device 'dev_t'
25424  *		data	- pointer to user provided CD-DA structure specifying
25425  *			  the track starting address, transfer length, and
25426  *			  subcode options.
25427  *		flag	- this argument is a pass through to ddi_copyxxx()
25428  *			  directly from the mode argument of ioctl().
25429  *
25430  * Return Code: the code returned by sd_send_scsi_cmd()
25431  *		EFAULT if ddi_copyxxx() fails
25432  *		ENXIO if fail ddi_get_soft_state
25433  *		EINVAL if invalid arguments are provided
25434  *		ENOTTY
25435  */
25436 
25437 static int
25438 sr_read_cdda(dev_t dev, caddr_t data, int flag)
25439 {
25440 	struct sd_lun			*un;
25441 	struct uscsi_cmd		*com;
25442 	struct cdrom_cdda		*cdda;
25443 	int				rval;
25444 	size_t				buflen;
25445 	char				cdb[CDB_GROUP5];
25446 
25447 #ifdef _MULTI_DATAMODEL
25448 	/* To support ILP32 applications in an LP64 world */
25449 	struct cdrom_cdda32	cdrom_cdda32;
25450 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
25451 #endif /* _MULTI_DATAMODEL */
25452 
25453 	if (data == NULL) {
25454 		return (EINVAL);
25455 	}
25456 
25457 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25458 		return (ENXIO);
25459 	}
25460 
25461 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
25462 
25463 #ifdef _MULTI_DATAMODEL
25464 	switch (ddi_model_convert_from(flag & FMODELS)) {
25465 	case DDI_MODEL_ILP32:
25466 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
25467 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25468 			    "sr_read_cdda: ddi_copyin Failed\n");
25469 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25470 			return (EFAULT);
25471 		}
25472 		/* Convert the ILP32 uscsi data from the application to LP64 */
25473 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
25474 		break;
25475 	case DDI_MODEL_NONE:
25476 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25477 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25478 			    "sr_read_cdda: ddi_copyin Failed\n");
25479 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25480 			return (EFAULT);
25481 		}
25482 		break;
25483 	}
25484 #else /* ! _MULTI_DATAMODEL */
25485 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
25486 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25487 		    "sr_read_cdda: ddi_copyin Failed\n");
25488 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25489 		return (EFAULT);
25490 	}
25491 #endif /* _MULTI_DATAMODEL */
25492 
25493 	/*
25494 	 * Since MMC-2 expects max 3 bytes for length, check if the
25495 	 * length input is greater than 3 bytes
25496 	 */
25497 	if ((cdda->cdda_length & 0xFF000000) != 0) {
25498 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
25499 		    "cdrom transfer length too large: %d (limit %d)\n",
25500 		    cdda->cdda_length, 0xFFFFFF);
25501 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25502 		return (EINVAL);
25503 	}
25504 
25505 	switch (cdda->cdda_subcode) {
25506 	case CDROM_DA_NO_SUBCODE:
25507 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
25508 		break;
25509 	case CDROM_DA_SUBQ:
25510 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
25511 		break;
25512 	case CDROM_DA_ALL_SUBCODE:
25513 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
25514 		break;
25515 	case CDROM_DA_SUBCODE_ONLY:
25516 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
25517 		break;
25518 	default:
25519 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25520 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
25521 		    cdda->cdda_subcode);
25522 		kmem_free(cdda, sizeof (struct cdrom_cdda));
25523 		return (EINVAL);
25524 	}
25525 
25526 	/* Build and send the command */
25527 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25528 	bzero(cdb, CDB_GROUP5);
25529 
25530 	if (un->un_f_cfg_cdda == TRUE) {
25531 		cdb[0] = (char)SCMD_READ_CD;
25532 		cdb[1] = 0x04;
25533 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25534 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25535 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25536 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25537 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25538 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25539 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
25540 		cdb[9] = 0x10;
25541 		switch (cdda->cdda_subcode) {
25542 		case CDROM_DA_NO_SUBCODE :
25543 			cdb[10] = 0x0;
25544 			break;
25545 		case CDROM_DA_SUBQ :
25546 			cdb[10] = 0x2;
25547 			break;
25548 		case CDROM_DA_ALL_SUBCODE :
25549 			cdb[10] = 0x1;
25550 			break;
25551 		case CDROM_DA_SUBCODE_ONLY :
25552 			/* FALLTHROUGH */
25553 		default :
25554 			kmem_free(cdda, sizeof (struct cdrom_cdda));
25555 			kmem_free(com, sizeof (*com));
25556 			return (ENOTTY);
25557 		}
25558 	} else {
25559 		cdb[0] = (char)SCMD_READ_CDDA;
25560 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
25561 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
25562 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
25563 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
25564 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
25565 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
25566 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
25567 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
25568 		cdb[10] = cdda->cdda_subcode;
25569 	}
25570 
25571 	com->uscsi_cdb = cdb;
25572 	com->uscsi_cdblen = CDB_GROUP5;
25573 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
25574 	com->uscsi_buflen = buflen;
25575 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25576 
25577 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25578 	    SD_PATH_STANDARD);
25579 
25580 	kmem_free(cdda, sizeof (struct cdrom_cdda));
25581 	kmem_free(com, sizeof (*com));
25582 	return (rval);
25583 }
25584 
25585 
25586 /*
25587  *    Function: sr_read_cdxa()
25588  *
25589  * Description: This routine is the driver entry point for handling CD-ROM
25590  *		ioctl requests to return CD-XA (Extended Architecture) data.
25591  *		(CDROMCDXA).
25592  *
25593  *   Arguments: dev	- the device 'dev_t'
25594  *		data	- pointer to user provided CD-XA structure specifying
25595  *			  the data starting address, transfer length, and format
25596  *		flag	- this argument is a pass through to ddi_copyxxx()
25597  *			  directly from the mode argument of ioctl().
25598  *
25599  * Return Code: the code returned by sd_send_scsi_cmd()
25600  *		EFAULT if ddi_copyxxx() fails
25601  *		ENXIO if fail ddi_get_soft_state
25602  *		EINVAL if data pointer is NULL
25603  */
25604 
25605 static int
25606 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
25607 {
25608 	struct sd_lun		*un;
25609 	struct uscsi_cmd	*com;
25610 	struct cdrom_cdxa	*cdxa;
25611 	int			rval;
25612 	size_t			buflen;
25613 	char			cdb[CDB_GROUP5];
25614 	uchar_t			read_flags;
25615 
25616 #ifdef _MULTI_DATAMODEL
25617 	/* To support ILP32 applications in an LP64 world */
25618 	struct cdrom_cdxa32		cdrom_cdxa32;
25619 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
25620 #endif /* _MULTI_DATAMODEL */
25621 
25622 	if (data == NULL) {
25623 		return (EINVAL);
25624 	}
25625 
25626 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25627 		return (ENXIO);
25628 	}
25629 
25630 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
25631 
25632 #ifdef _MULTI_DATAMODEL
25633 	switch (ddi_model_convert_from(flag & FMODELS)) {
25634 	case DDI_MODEL_ILP32:
25635 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
25636 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25637 			return (EFAULT);
25638 		}
25639 		/*
25640 		 * Convert the ILP32 uscsi data from the
25641 		 * application to LP64 for internal use.
25642 		 */
25643 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
25644 		break;
25645 	case DDI_MODEL_NONE:
25646 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25647 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25648 			return (EFAULT);
25649 		}
25650 		break;
25651 	}
25652 #else /* ! _MULTI_DATAMODEL */
25653 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
25654 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25655 		return (EFAULT);
25656 	}
25657 #endif /* _MULTI_DATAMODEL */
25658 
25659 	/*
25660 	 * Since MMC-2 expects max 3 bytes for length, check if the
25661 	 * length input is greater than 3 bytes
25662 	 */
25663 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
25664 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
25665 		    "cdrom transfer length too large: %d (limit %d)\n",
25666 		    cdxa->cdxa_length, 0xFFFFFF);
25667 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25668 		return (EINVAL);
25669 	}
25670 
25671 	switch (cdxa->cdxa_format) {
25672 	case CDROM_XA_DATA:
25673 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
25674 		read_flags = 0x10;
25675 		break;
25676 	case CDROM_XA_SECTOR_DATA:
25677 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
25678 		read_flags = 0xf8;
25679 		break;
25680 	case CDROM_XA_DATA_W_ERROR:
25681 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
25682 		read_flags = 0xfc;
25683 		break;
25684 	default:
25685 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25686 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
25687 		    cdxa->cdxa_format);
25688 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25689 		return (EINVAL);
25690 	}
25691 
25692 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25693 	bzero(cdb, CDB_GROUP5);
25694 	if (un->un_f_mmc_cap == TRUE) {
25695 		cdb[0] = (char)SCMD_READ_CD;
25696 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25697 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25698 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25699 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25700 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25701 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25702 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
25703 		cdb[9] = (char)read_flags;
25704 	} else {
25705 		/*
25706 		 * Note: A vendor specific command (0xDB) is being used her to
25707 		 * request a read of all subcodes.
25708 		 */
25709 		cdb[0] = (char)SCMD_READ_CDXA;
25710 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
25711 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
25712 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
25713 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
25714 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
25715 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
25716 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
25717 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
25718 		cdb[10] = cdxa->cdxa_format;
25719 	}
25720 	com->uscsi_cdb	   = cdb;
25721 	com->uscsi_cdblen  = CDB_GROUP5;
25722 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
25723 	com->uscsi_buflen  = buflen;
25724 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
25725 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
25726 	    SD_PATH_STANDARD);
25727 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
25728 	kmem_free(com, sizeof (*com));
25729 	return (rval);
25730 }
25731 
25732 
25733 /*
25734  *    Function: sr_eject()
25735  *
25736  * Description: This routine is the driver entry point for handling CD-ROM
25737  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
25738  *
25739  *   Arguments: dev	- the device 'dev_t'
25740  *
25741  * Return Code: the code returned by sd_send_scsi_cmd()
25742  */
25743 
25744 static int
25745 sr_eject(dev_t dev)
25746 {
25747 	struct sd_lun	*un;
25748 	int		rval;
25749 
25750 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25751 	    (un->un_state == SD_STATE_OFFLINE)) {
25752 		return (ENXIO);
25753 	}
25754 
25755 	/*
25756 	 * To prevent race conditions with the eject
25757 	 * command, keep track of an eject command as
25758 	 * it progresses. If we are already handling
25759 	 * an eject command in the driver for the given
25760 	 * unit and another request to eject is received
25761 	 * immediately return EAGAIN so we don't lose
25762 	 * the command if the current eject command fails.
25763 	 */
25764 	mutex_enter(SD_MUTEX(un));
25765 	if (un->un_f_ejecting == TRUE) {
25766 		mutex_exit(SD_MUTEX(un));
25767 		return (EAGAIN);
25768 	}
25769 	un->un_f_ejecting = TRUE;
25770 	mutex_exit(SD_MUTEX(un));
25771 
25772 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
25773 	    SD_PATH_STANDARD)) != 0) {
25774 		mutex_enter(SD_MUTEX(un));
25775 		un->un_f_ejecting = FALSE;
25776 		mutex_exit(SD_MUTEX(un));
25777 		return (rval);
25778 	}
25779 
25780 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
25781 	    SD_PATH_STANDARD);
25782 
25783 	if (rval == 0) {
25784 		mutex_enter(SD_MUTEX(un));
25785 		sr_ejected(un);
25786 		un->un_mediastate = DKIO_EJECTED;
25787 		un->un_f_ejecting = FALSE;
25788 		cv_broadcast(&un->un_state_cv);
25789 		mutex_exit(SD_MUTEX(un));
25790 	} else {
25791 		mutex_enter(SD_MUTEX(un));
25792 		un->un_f_ejecting = FALSE;
25793 		mutex_exit(SD_MUTEX(un));
25794 	}
25795 	return (rval);
25796 }
25797 
25798 
25799 /*
25800  *    Function: sr_ejected()
25801  *
25802  * Description: This routine updates the soft state structure to invalidate the
25803  *		geometry information after the media has been ejected or a
25804  *		media eject has been detected.
25805  *
25806  *   Arguments: un - driver soft state (unit) structure
25807  */
25808 
25809 static void
25810 sr_ejected(struct sd_lun *un)
25811 {
25812 	struct sd_errstats *stp;
25813 
25814 	ASSERT(un != NULL);
25815 	ASSERT(mutex_owned(SD_MUTEX(un)));
25816 
25817 	un->un_f_blockcount_is_valid	= FALSE;
25818 	un->un_f_tgt_blocksize_is_valid	= FALSE;
25819 	mutex_exit(SD_MUTEX(un));
25820 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
25821 	mutex_enter(SD_MUTEX(un));
25822 
25823 	if (un->un_errstats != NULL) {
25824 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
25825 		stp->sd_capacity.value.ui64 = 0;
25826 	}
25827 
25828 	/* remove "capacity-of-device" properties */
25829 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
25830 	    "device-nblocks");
25831 	(void) ddi_prop_remove(DDI_DEV_T_NONE, SD_DEVINFO(un),
25832 	    "device-blksize");
25833 }
25834 
25835 
25836 /*
25837  *    Function: sr_check_wp()
25838  *
25839  * Description: This routine checks the write protection of a removable
25840  *      media disk and hotpluggable devices via the write protect bit of
25841  *      the Mode Page Header device specific field. Some devices choke
25842  *      on unsupported mode page. In order to workaround this issue,
25843  *      this routine has been implemented to use 0x3f mode page(request
25844  *      for all pages) for all device types.
25845  *
25846  *   Arguments: dev		- the device 'dev_t'
25847  *
25848  * Return Code: int indicating if the device is write protected (1) or not (0)
25849  *
25850  *     Context: Kernel thread.
25851  *
25852  */
25853 
25854 static int
25855 sr_check_wp(dev_t dev)
25856 {
25857 	struct sd_lun	*un;
25858 	uchar_t		device_specific;
25859 	uchar_t		*sense;
25860 	int		hdrlen;
25861 	int		rval = FALSE;
25862 
25863 	/*
25864 	 * Note: The return codes for this routine should be reworked to
25865 	 * properly handle the case of a NULL softstate.
25866 	 */
25867 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25868 		return (FALSE);
25869 	}
25870 
25871 	if (un->un_f_cfg_is_atapi == TRUE) {
25872 		/*
25873 		 * The mode page contents are not required; set the allocation
25874 		 * length for the mode page header only
25875 		 */
25876 		hdrlen = MODE_HEADER_LENGTH_GRP2;
25877 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25878 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
25879 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25880 			goto err_exit;
25881 		device_specific =
25882 		    ((struct mode_header_grp2 *)sense)->device_specific;
25883 	} else {
25884 		hdrlen = MODE_HEADER_LENGTH;
25885 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
25886 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
25887 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
25888 			goto err_exit;
25889 		device_specific =
25890 		    ((struct mode_header *)sense)->device_specific;
25891 	}
25892 
25893 	/*
25894 	 * Write protect mode sense failed; not all disks
25895 	 * understand this query. Return FALSE assuming that
25896 	 * these devices are not writable.
25897 	 */
25898 	if (device_specific & WRITE_PROTECT) {
25899 		rval = TRUE;
25900 	}
25901 
25902 err_exit:
25903 	kmem_free(sense, hdrlen);
25904 	return (rval);
25905 }
25906 
25907 /*
25908  *    Function: sr_volume_ctrl()
25909  *
25910  * Description: This routine is the driver entry point for handling CD-ROM
25911  *		audio output volume ioctl requests. (CDROMVOLCTRL)
25912  *
25913  *   Arguments: dev	- the device 'dev_t'
25914  *		data	- pointer to user audio volume control structure
25915  *		flag	- this argument is a pass through to ddi_copyxxx()
25916  *			  directly from the mode argument of ioctl().
25917  *
25918  * Return Code: the code returned by sd_send_scsi_cmd()
25919  *		EFAULT if ddi_copyxxx() fails
25920  *		ENXIO if fail ddi_get_soft_state
25921  *		EINVAL if data pointer is NULL
25922  *
25923  */
25924 
25925 static int
25926 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
25927 {
25928 	struct sd_lun		*un;
25929 	struct cdrom_volctrl    volume;
25930 	struct cdrom_volctrl    *vol = &volume;
25931 	uchar_t			*sense_page;
25932 	uchar_t			*select_page;
25933 	uchar_t			*sense;
25934 	uchar_t			*select;
25935 	int			sense_buflen;
25936 	int			select_buflen;
25937 	int			rval;
25938 
25939 	if (data == NULL) {
25940 		return (EINVAL);
25941 	}
25942 
25943 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
25944 	    (un->un_state == SD_STATE_OFFLINE)) {
25945 		return (ENXIO);
25946 	}
25947 
25948 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
25949 		return (EFAULT);
25950 	}
25951 
25952 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
25953 		struct mode_header_grp2		*sense_mhp;
25954 		struct mode_header_grp2		*select_mhp;
25955 		int				bd_len;
25956 
25957 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
25958 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
25959 		    MODEPAGE_AUDIO_CTRL_LEN;
25960 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25961 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25962 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
25963 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25964 		    SD_PATH_STANDARD)) != 0) {
25965 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
25966 			    "sr_volume_ctrl: Mode Sense Failed\n");
25967 			kmem_free(sense, sense_buflen);
25968 			kmem_free(select, select_buflen);
25969 			return (rval);
25970 		}
25971 		sense_mhp = (struct mode_header_grp2 *)sense;
25972 		select_mhp = (struct mode_header_grp2 *)select;
25973 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
25974 		    sense_mhp->bdesc_length_lo;
25975 		if (bd_len > MODE_BLK_DESC_LENGTH) {
25976 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
25977 			    "sr_volume_ctrl: Mode Sense returned invalid "
25978 			    "block descriptor length\n");
25979 			kmem_free(sense, sense_buflen);
25980 			kmem_free(select, select_buflen);
25981 			return (EIO);
25982 		}
25983 		sense_page = (uchar_t *)
25984 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
25985 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
25986 		select_mhp->length_msb = 0;
25987 		select_mhp->length_lsb = 0;
25988 		select_mhp->bdesc_length_hi = 0;
25989 		select_mhp->bdesc_length_lo = 0;
25990 	} else {
25991 		struct mode_header		*sense_mhp, *select_mhp;
25992 
25993 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25994 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
25995 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
25996 		select = kmem_zalloc(select_buflen, KM_SLEEP);
25997 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
25998 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
25999 		    SD_PATH_STANDARD)) != 0) {
26000 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26001 			    "sr_volume_ctrl: Mode Sense Failed\n");
26002 			kmem_free(sense, sense_buflen);
26003 			kmem_free(select, select_buflen);
26004 			return (rval);
26005 		}
26006 		sense_mhp  = (struct mode_header *)sense;
26007 		select_mhp = (struct mode_header *)select;
26008 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
26009 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26010 			    "sr_volume_ctrl: Mode Sense returned invalid "
26011 			    "block descriptor length\n");
26012 			kmem_free(sense, sense_buflen);
26013 			kmem_free(select, select_buflen);
26014 			return (EIO);
26015 		}
26016 		sense_page = (uchar_t *)
26017 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
26018 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
26019 		select_mhp->length = 0;
26020 		select_mhp->bdesc_length = 0;
26021 	}
26022 	/*
26023 	 * Note: An audio control data structure could be created and overlayed
26024 	 * on the following in place of the array indexing method implemented.
26025 	 */
26026 
26027 	/* Build the select data for the user volume data */
26028 	select_page[0] = MODEPAGE_AUDIO_CTRL;
26029 	select_page[1] = 0xE;
26030 	/* Set the immediate bit */
26031 	select_page[2] = 0x04;
26032 	/* Zero out reserved fields */
26033 	select_page[3] = 0x00;
26034 	select_page[4] = 0x00;
26035 	/* Return sense data for fields not to be modified */
26036 	select_page[5] = sense_page[5];
26037 	select_page[6] = sense_page[6];
26038 	select_page[7] = sense_page[7];
26039 	/* Set the user specified volume levels for channel 0 and 1 */
26040 	select_page[8] = 0x01;
26041 	select_page[9] = vol->channel0;
26042 	select_page[10] = 0x02;
26043 	select_page[11] = vol->channel1;
26044 	/* Channel 2 and 3 are currently unsupported so return the sense data */
26045 	select_page[12] = sense_page[12];
26046 	select_page[13] = sense_page[13];
26047 	select_page[14] = sense_page[14];
26048 	select_page[15] = sense_page[15];
26049 
26050 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
26051 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
26052 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26053 	} else {
26054 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
26055 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
26056 	}
26057 
26058 	kmem_free(sense, sense_buflen);
26059 	kmem_free(select, select_buflen);
26060 	return (rval);
26061 }
26062 
26063 
26064 /*
26065  *    Function: sr_read_sony_session_offset()
26066  *
26067  * Description: This routine is the driver entry point for handling CD-ROM
26068  *		ioctl requests for session offset information. (CDROMREADOFFSET)
26069  *		The address of the first track in the last session of a
26070  *		multi-session CD-ROM is returned
26071  *
26072  *		Note: This routine uses a vendor specific key value in the
26073  *		command control field without implementing any vendor check here
26074  *		or in the ioctl routine.
26075  *
26076  *   Arguments: dev	- the device 'dev_t'
26077  *		data	- pointer to an int to hold the requested address
26078  *		flag	- this argument is a pass through to ddi_copyxxx()
26079  *			  directly from the mode argument of ioctl().
26080  *
26081  * Return Code: the code returned by sd_send_scsi_cmd()
26082  *		EFAULT if ddi_copyxxx() fails
26083  *		ENXIO if fail ddi_get_soft_state
26084  *		EINVAL if data pointer is NULL
26085  */
26086 
26087 static int
26088 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
26089 {
26090 	struct sd_lun		*un;
26091 	struct uscsi_cmd	*com;
26092 	caddr_t			buffer;
26093 	char			cdb[CDB_GROUP1];
26094 	int			session_offset = 0;
26095 	int			rval;
26096 
26097 	if (data == NULL) {
26098 		return (EINVAL);
26099 	}
26100 
26101 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
26102 	    (un->un_state == SD_STATE_OFFLINE)) {
26103 		return (ENXIO);
26104 	}
26105 
26106 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
26107 	bzero(cdb, CDB_GROUP1);
26108 	cdb[0] = SCMD_READ_TOC;
26109 	/*
26110 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
26111 	 * (4 byte TOC response header + 8 byte response data)
26112 	 */
26113 	cdb[8] = SONY_SESSION_OFFSET_LEN;
26114 	/* Byte 9 is the control byte. A vendor specific value is used */
26115 	cdb[9] = SONY_SESSION_OFFSET_KEY;
26116 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26117 	com->uscsi_cdb = cdb;
26118 	com->uscsi_cdblen = CDB_GROUP1;
26119 	com->uscsi_bufaddr = buffer;
26120 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
26121 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
26122 
26123 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
26124 	    SD_PATH_STANDARD);
26125 	if (rval != 0) {
26126 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26127 		kmem_free(com, sizeof (*com));
26128 		return (rval);
26129 	}
26130 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
26131 		session_offset =
26132 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
26133 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
26134 		/*
26135 		 * Offset returned offset in current lbasize block's. Convert to
26136 		 * 2k block's to return to the user
26137 		 */
26138 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
26139 			session_offset >>= 2;
26140 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
26141 			session_offset >>= 1;
26142 		}
26143 	}
26144 
26145 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
26146 		rval = EFAULT;
26147 	}
26148 
26149 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
26150 	kmem_free(com, sizeof (*com));
26151 	return (rval);
26152 }
26153 
26154 
26155 /*
26156  *    Function: sd_wm_cache_constructor()
26157  *
26158  * Description: Cache Constructor for the wmap cache for the read/modify/write
26159  * 		devices.
26160  *
26161  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26162  *		un	- sd_lun structure for the device.
26163  *		flag	- the km flags passed to constructor
26164  *
26165  * Return Code: 0 on success.
26166  *		-1 on failure.
26167  */
26168 
26169 /*ARGSUSED*/
26170 static int
26171 sd_wm_cache_constructor(void *wm, void *un, int flags)
26172 {
26173 	bzero(wm, sizeof (struct sd_w_map));
26174 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
26175 	return (0);
26176 }
26177 
26178 
26179 /*
26180  *    Function: sd_wm_cache_destructor()
26181  *
26182  * Description: Cache destructor for the wmap cache for the read/modify/write
26183  * 		devices.
26184  *
26185  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
26186  *		un	- sd_lun structure for the device.
26187  */
26188 /*ARGSUSED*/
26189 static void
26190 sd_wm_cache_destructor(void *wm, void *un)
26191 {
26192 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
26193 }
26194 
26195 
26196 /*
26197  *    Function: sd_range_lock()
26198  *
26199  * Description: Lock the range of blocks specified as parameter to ensure
26200  *		that read, modify write is atomic and no other i/o writes
26201  *		to the same location. The range is specified in terms
26202  *		of start and end blocks. Block numbers are the actual
26203  *		media block numbers and not system.
26204  *
26205  *   Arguments: un	- sd_lun structure for the device.
26206  *		startb - The starting block number
26207  *		endb - The end block number
26208  *		typ - type of i/o - simple/read_modify_write
26209  *
26210  * Return Code: wm  - pointer to the wmap structure.
26211  *
26212  *     Context: This routine can sleep.
26213  */
26214 
26215 static struct sd_w_map *
26216 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
26217 {
26218 	struct sd_w_map *wmp = NULL;
26219 	struct sd_w_map *sl_wmp = NULL;
26220 	struct sd_w_map *tmp_wmp;
26221 	wm_state state = SD_WM_CHK_LIST;
26222 
26223 
26224 	ASSERT(un != NULL);
26225 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26226 
26227 	mutex_enter(SD_MUTEX(un));
26228 
26229 	while (state != SD_WM_DONE) {
26230 
26231 		switch (state) {
26232 		case SD_WM_CHK_LIST:
26233 			/*
26234 			 * This is the starting state. Check the wmap list
26235 			 * to see if the range is currently available.
26236 			 */
26237 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
26238 				/*
26239 				 * If this is a simple write and no rmw
26240 				 * i/o is pending then try to lock the
26241 				 * range as the range should be available.
26242 				 */
26243 				state = SD_WM_LOCK_RANGE;
26244 			} else {
26245 				tmp_wmp = sd_get_range(un, startb, endb);
26246 				if (tmp_wmp != NULL) {
26247 					if ((wmp != NULL) && ONLIST(un, wmp)) {
26248 						/*
26249 						 * Should not keep onlist wmps
26250 						 * while waiting this macro
26251 						 * will also do wmp = NULL;
26252 						 */
26253 						FREE_ONLIST_WMAP(un, wmp);
26254 					}
26255 					/*
26256 					 * sl_wmp is the wmap on which wait
26257 					 * is done, since the tmp_wmp points
26258 					 * to the inuse wmap, set sl_wmp to
26259 					 * tmp_wmp and change the state to sleep
26260 					 */
26261 					sl_wmp = tmp_wmp;
26262 					state = SD_WM_WAIT_MAP;
26263 				} else {
26264 					state = SD_WM_LOCK_RANGE;
26265 				}
26266 
26267 			}
26268 			break;
26269 
26270 		case SD_WM_LOCK_RANGE:
26271 			ASSERT(un->un_wm_cache);
26272 			/*
26273 			 * The range need to be locked, try to get a wmap.
26274 			 * First attempt it with NO_SLEEP, want to avoid a sleep
26275 			 * if possible as we will have to release the sd mutex
26276 			 * if we have to sleep.
26277 			 */
26278 			if (wmp == NULL)
26279 				wmp = kmem_cache_alloc(un->un_wm_cache,
26280 				    KM_NOSLEEP);
26281 			if (wmp == NULL) {
26282 				mutex_exit(SD_MUTEX(un));
26283 				_NOTE(DATA_READABLE_WITHOUT_LOCK
26284 				    (sd_lun::un_wm_cache))
26285 				wmp = kmem_cache_alloc(un->un_wm_cache,
26286 				    KM_SLEEP);
26287 				mutex_enter(SD_MUTEX(un));
26288 				/*
26289 				 * we released the mutex so recheck and go to
26290 				 * check list state.
26291 				 */
26292 				state = SD_WM_CHK_LIST;
26293 			} else {
26294 				/*
26295 				 * We exit out of state machine since we
26296 				 * have the wmap. Do the housekeeping first.
26297 				 * place the wmap on the wmap list if it is not
26298 				 * on it already and then set the state to done.
26299 				 */
26300 				wmp->wm_start = startb;
26301 				wmp->wm_end = endb;
26302 				wmp->wm_flags = typ | SD_WM_BUSY;
26303 				if (typ & SD_WTYPE_RMW) {
26304 					un->un_rmw_count++;
26305 				}
26306 				/*
26307 				 * If not already on the list then link
26308 				 */
26309 				if (!ONLIST(un, wmp)) {
26310 					wmp->wm_next = un->un_wm;
26311 					wmp->wm_prev = NULL;
26312 					if (wmp->wm_next)
26313 						wmp->wm_next->wm_prev = wmp;
26314 					un->un_wm = wmp;
26315 				}
26316 				state = SD_WM_DONE;
26317 			}
26318 			break;
26319 
26320 		case SD_WM_WAIT_MAP:
26321 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
26322 			/*
26323 			 * Wait is done on sl_wmp, which is set in the
26324 			 * check_list state.
26325 			 */
26326 			sl_wmp->wm_wanted_count++;
26327 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
26328 			sl_wmp->wm_wanted_count--;
26329 			/*
26330 			 * We can reuse the memory from the completed sl_wmp
26331 			 * lock range for our new lock, but only if noone is
26332 			 * waiting for it.
26333 			 */
26334 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
26335 			if (sl_wmp->wm_wanted_count == 0) {
26336 				if (wmp != NULL)
26337 					CHK_N_FREEWMP(un, wmp);
26338 				wmp = sl_wmp;
26339 			}
26340 			sl_wmp = NULL;
26341 			/*
26342 			 * After waking up, need to recheck for availability of
26343 			 * range.
26344 			 */
26345 			state = SD_WM_CHK_LIST;
26346 			break;
26347 
26348 		default:
26349 			panic("sd_range_lock: "
26350 			    "Unknown state %d in sd_range_lock", state);
26351 			/*NOTREACHED*/
26352 		} /* switch(state) */
26353 
26354 	} /* while(state != SD_WM_DONE) */
26355 
26356 	mutex_exit(SD_MUTEX(un));
26357 
26358 	ASSERT(wmp != NULL);
26359 
26360 	return (wmp);
26361 }
26362 
26363 
26364 /*
26365  *    Function: sd_get_range()
26366  *
26367  * Description: Find if there any overlapping I/O to this one
26368  *		Returns the write-map of 1st such I/O, NULL otherwise.
26369  *
26370  *   Arguments: un	- sd_lun structure for the device.
26371  *		startb - The starting block number
26372  *		endb - The end block number
26373  *
26374  * Return Code: wm  - pointer to the wmap structure.
26375  */
26376 
26377 static struct sd_w_map *
26378 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
26379 {
26380 	struct sd_w_map *wmp;
26381 
26382 	ASSERT(un != NULL);
26383 
26384 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
26385 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
26386 			continue;
26387 		}
26388 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
26389 			break;
26390 		}
26391 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
26392 			break;
26393 		}
26394 	}
26395 
26396 	return (wmp);
26397 }
26398 
26399 
26400 /*
26401  *    Function: sd_free_inlist_wmap()
26402  *
26403  * Description: Unlink and free a write map struct.
26404  *
26405  *   Arguments: un      - sd_lun structure for the device.
26406  *		wmp	- sd_w_map which needs to be unlinked.
26407  */
26408 
26409 static void
26410 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
26411 {
26412 	ASSERT(un != NULL);
26413 
26414 	if (un->un_wm == wmp) {
26415 		un->un_wm = wmp->wm_next;
26416 	} else {
26417 		wmp->wm_prev->wm_next = wmp->wm_next;
26418 	}
26419 
26420 	if (wmp->wm_next) {
26421 		wmp->wm_next->wm_prev = wmp->wm_prev;
26422 	}
26423 
26424 	wmp->wm_next = wmp->wm_prev = NULL;
26425 
26426 	kmem_cache_free(un->un_wm_cache, wmp);
26427 }
26428 
26429 
26430 /*
26431  *    Function: sd_range_unlock()
26432  *
26433  * Description: Unlock the range locked by wm.
26434  *		Free write map if nobody else is waiting on it.
26435  *
26436  *   Arguments: un      - sd_lun structure for the device.
26437  *              wmp     - sd_w_map which needs to be unlinked.
26438  */
26439 
26440 static void
26441 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
26442 {
26443 	ASSERT(un != NULL);
26444 	ASSERT(wm != NULL);
26445 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26446 
26447 	mutex_enter(SD_MUTEX(un));
26448 
26449 	if (wm->wm_flags & SD_WTYPE_RMW) {
26450 		un->un_rmw_count--;
26451 	}
26452 
26453 	if (wm->wm_wanted_count) {
26454 		wm->wm_flags = 0;
26455 		/*
26456 		 * Broadcast that the wmap is available now.
26457 		 */
26458 		cv_broadcast(&wm->wm_avail);
26459 	} else {
26460 		/*
26461 		 * If no one is waiting on the map, it should be free'ed.
26462 		 */
26463 		sd_free_inlist_wmap(un, wm);
26464 	}
26465 
26466 	mutex_exit(SD_MUTEX(un));
26467 }
26468 
26469 
26470 /*
26471  *    Function: sd_read_modify_write_task
26472  *
26473  * Description: Called from a taskq thread to initiate the write phase of
26474  *		a read-modify-write request.  This is used for targets where
26475  *		un->un_sys_blocksize != un->un_tgt_blocksize.
26476  *
26477  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
26478  *
26479  *     Context: Called under taskq thread context.
26480  */
26481 
26482 static void
26483 sd_read_modify_write_task(void *arg)
26484 {
26485 	struct sd_mapblocksize_info	*bsp;
26486 	struct buf	*bp;
26487 	struct sd_xbuf	*xp;
26488 	struct sd_lun	*un;
26489 
26490 	bp = arg;	/* The bp is given in arg */
26491 	ASSERT(bp != NULL);
26492 
26493 	/* Get the pointer to the layer-private data struct */
26494 	xp = SD_GET_XBUF(bp);
26495 	ASSERT(xp != NULL);
26496 	bsp = xp->xb_private;
26497 	ASSERT(bsp != NULL);
26498 
26499 	un = SD_GET_UN(bp);
26500 	ASSERT(un != NULL);
26501 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26502 
26503 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26504 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
26505 
26506 	/*
26507 	 * This is the write phase of a read-modify-write request, called
26508 	 * under the context of a taskq thread in response to the completion
26509 	 * of the read portion of the rmw request completing under interrupt
26510 	 * context. The write request must be sent from here down the iostart
26511 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
26512 	 * we use the layer index saved in the layer-private data area.
26513 	 */
26514 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
26515 
26516 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
26517 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
26518 }
26519 
26520 
26521 /*
26522  *    Function: sddump_do_read_of_rmw()
26523  *
26524  * Description: This routine will be called from sddump, If sddump is called
26525  *		with an I/O which not aligned on device blocksize boundary
26526  *		then the write has to be converted to read-modify-write.
26527  *		Do the read part here in order to keep sddump simple.
26528  *		Note - That the sd_mutex is held across the call to this
26529  *		routine.
26530  *
26531  *   Arguments: un	- sd_lun
26532  *		blkno	- block number in terms of media block size.
26533  *		nblk	- number of blocks.
26534  *		bpp	- pointer to pointer to the buf structure. On return
26535  *			from this function, *bpp points to the valid buffer
26536  *			to which the write has to be done.
26537  *
26538  * Return Code: 0 for success or errno-type return code
26539  */
26540 
26541 static int
26542 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
26543 	struct buf **bpp)
26544 {
26545 	int err;
26546 	int i;
26547 	int rval;
26548 	struct buf *bp;
26549 	struct scsi_pkt *pkt = NULL;
26550 	uint32_t target_blocksize;
26551 
26552 	ASSERT(un != NULL);
26553 	ASSERT(mutex_owned(SD_MUTEX(un)));
26554 
26555 	target_blocksize = un->un_tgt_blocksize;
26556 
26557 	mutex_exit(SD_MUTEX(un));
26558 
26559 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
26560 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
26561 	if (bp == NULL) {
26562 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26563 		    "no resources for dumping; giving up");
26564 		err = ENOMEM;
26565 		goto done;
26566 	}
26567 
26568 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
26569 	    blkno, nblk);
26570 	if (rval != 0) {
26571 		scsi_free_consistent_buf(bp);
26572 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26573 		    "no resources for dumping; giving up");
26574 		err = ENOMEM;
26575 		goto done;
26576 	}
26577 
26578 	pkt->pkt_flags |= FLAG_NOINTR;
26579 
26580 	err = EIO;
26581 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26582 
26583 		/*
26584 		 * Scsi_poll returns 0 (success) if the command completes and
26585 		 * the status block is STATUS_GOOD.  We should only check
26586 		 * errors if this condition is not true.  Even then we should
26587 		 * send our own request sense packet only if we have a check
26588 		 * condition and auto request sense has not been performed by
26589 		 * the hba.
26590 		 */
26591 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
26592 
26593 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
26594 			err = 0;
26595 			break;
26596 		}
26597 
26598 		/*
26599 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
26600 		 * no need to read RQS data.
26601 		 */
26602 		if (pkt->pkt_reason == CMD_DEV_GONE) {
26603 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26604 			    "Error while dumping state with rmw..."
26605 			    "Device is gone\n");
26606 			break;
26607 		}
26608 
26609 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
26610 			SD_INFO(SD_LOG_DUMP, un,
26611 			    "sddump: read failed with CHECK, try # %d\n", i);
26612 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
26613 				(void) sd_send_polled_RQS(un);
26614 			}
26615 
26616 			continue;
26617 		}
26618 
26619 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
26620 			int reset_retval = 0;
26621 
26622 			SD_INFO(SD_LOG_DUMP, un,
26623 			    "sddump: read failed with BUSY, try # %d\n", i);
26624 
26625 			if (un->un_f_lun_reset_enabled == TRUE) {
26626 				reset_retval = scsi_reset(SD_ADDRESS(un),
26627 				    RESET_LUN);
26628 			}
26629 			if (reset_retval == 0) {
26630 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26631 			}
26632 			(void) sd_send_polled_RQS(un);
26633 
26634 		} else {
26635 			SD_INFO(SD_LOG_DUMP, un,
26636 			    "sddump: read failed with 0x%x, try # %d\n",
26637 			    SD_GET_PKT_STATUS(pkt), i);
26638 			mutex_enter(SD_MUTEX(un));
26639 			sd_reset_target(un, pkt);
26640 			mutex_exit(SD_MUTEX(un));
26641 		}
26642 
26643 		/*
26644 		 * If we are not getting anywhere with lun/target resets,
26645 		 * let's reset the bus.
26646 		 */
26647 		if (i > SD_NDUMP_RETRIES/2) {
26648 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26649 			(void) sd_send_polled_RQS(un);
26650 		}
26651 
26652 	}
26653 	scsi_destroy_pkt(pkt);
26654 
26655 	if (err != 0) {
26656 		scsi_free_consistent_buf(bp);
26657 		*bpp = NULL;
26658 	} else {
26659 		*bpp = bp;
26660 	}
26661 
26662 done:
26663 	mutex_enter(SD_MUTEX(un));
26664 	return (err);
26665 }
26666 
26667 
26668 /*
26669  *    Function: sd_failfast_flushq
26670  *
26671  * Description: Take all bp's on the wait queue that have B_FAILFAST set
26672  *		in b_flags and move them onto the failfast queue, then kick
26673  *		off a thread to return all bp's on the failfast queue to
26674  *		their owners with an error set.
26675  *
26676  *   Arguments: un - pointer to the soft state struct for the instance.
26677  *
26678  *     Context: may execute in interrupt context.
26679  */
26680 
26681 static void
26682 sd_failfast_flushq(struct sd_lun *un)
26683 {
26684 	struct buf *bp;
26685 	struct buf *next_waitq_bp;
26686 	struct buf *prev_waitq_bp = NULL;
26687 
26688 	ASSERT(un != NULL);
26689 	ASSERT(mutex_owned(SD_MUTEX(un)));
26690 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
26691 	ASSERT(un->un_failfast_bp == NULL);
26692 
26693 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26694 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
26695 
26696 	/*
26697 	 * Check if we should flush all bufs when entering failfast state, or
26698 	 * just those with B_FAILFAST set.
26699 	 */
26700 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
26701 		/*
26702 		 * Move *all* bp's on the wait queue to the failfast flush
26703 		 * queue, including those that do NOT have B_FAILFAST set.
26704 		 */
26705 		if (un->un_failfast_headp == NULL) {
26706 			ASSERT(un->un_failfast_tailp == NULL);
26707 			un->un_failfast_headp = un->un_waitq_headp;
26708 		} else {
26709 			ASSERT(un->un_failfast_tailp != NULL);
26710 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
26711 		}
26712 
26713 		un->un_failfast_tailp = un->un_waitq_tailp;
26714 
26715 		/* update kstat for each bp moved out of the waitq */
26716 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
26717 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26718 		}
26719 
26720 		/* empty the waitq */
26721 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
26722 
26723 	} else {
26724 		/*
26725 		 * Go thru the wait queue, pick off all entries with
26726 		 * B_FAILFAST set, and move these onto the failfast queue.
26727 		 */
26728 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
26729 			/*
26730 			 * Save the pointer to the next bp on the wait queue,
26731 			 * so we get to it on the next iteration of this loop.
26732 			 */
26733 			next_waitq_bp = bp->av_forw;
26734 
26735 			/*
26736 			 * If this bp from the wait queue does NOT have
26737 			 * B_FAILFAST set, just move on to the next element
26738 			 * in the wait queue. Note, this is the only place
26739 			 * where it is correct to set prev_waitq_bp.
26740 			 */
26741 			if ((bp->b_flags & B_FAILFAST) == 0) {
26742 				prev_waitq_bp = bp;
26743 				continue;
26744 			}
26745 
26746 			/*
26747 			 * Remove the bp from the wait queue.
26748 			 */
26749 			if (bp == un->un_waitq_headp) {
26750 				/* The bp is the first element of the waitq. */
26751 				un->un_waitq_headp = next_waitq_bp;
26752 				if (un->un_waitq_headp == NULL) {
26753 					/* The wait queue is now empty */
26754 					un->un_waitq_tailp = NULL;
26755 				}
26756 			} else {
26757 				/*
26758 				 * The bp is either somewhere in the middle
26759 				 * or at the end of the wait queue.
26760 				 */
26761 				ASSERT(un->un_waitq_headp != NULL);
26762 				ASSERT(prev_waitq_bp != NULL);
26763 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
26764 				    == 0);
26765 				if (bp == un->un_waitq_tailp) {
26766 					/* bp is the last entry on the waitq. */
26767 					ASSERT(next_waitq_bp == NULL);
26768 					un->un_waitq_tailp = prev_waitq_bp;
26769 				}
26770 				prev_waitq_bp->av_forw = next_waitq_bp;
26771 			}
26772 			bp->av_forw = NULL;
26773 
26774 			/*
26775 			 * update kstat since the bp is moved out of
26776 			 * the waitq
26777 			 */
26778 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
26779 
26780 			/*
26781 			 * Now put the bp onto the failfast queue.
26782 			 */
26783 			if (un->un_failfast_headp == NULL) {
26784 				/* failfast queue is currently empty */
26785 				ASSERT(un->un_failfast_tailp == NULL);
26786 				un->un_failfast_headp =
26787 				    un->un_failfast_tailp = bp;
26788 			} else {
26789 				/* Add the bp to the end of the failfast q */
26790 				ASSERT(un->un_failfast_tailp != NULL);
26791 				ASSERT(un->un_failfast_tailp->b_flags &
26792 				    B_FAILFAST);
26793 				un->un_failfast_tailp->av_forw = bp;
26794 				un->un_failfast_tailp = bp;
26795 			}
26796 		}
26797 	}
26798 
26799 	/*
26800 	 * Now return all bp's on the failfast queue to their owners.
26801 	 */
26802 	while ((bp = un->un_failfast_headp) != NULL) {
26803 
26804 		un->un_failfast_headp = bp->av_forw;
26805 		if (un->un_failfast_headp == NULL) {
26806 			un->un_failfast_tailp = NULL;
26807 		}
26808 
26809 		/*
26810 		 * We want to return the bp with a failure error code, but
26811 		 * we do not want a call to sd_start_cmds() to occur here,
26812 		 * so use sd_return_failed_command_no_restart() instead of
26813 		 * sd_return_failed_command().
26814 		 */
26815 		sd_return_failed_command_no_restart(un, bp, EIO);
26816 	}
26817 
26818 	/* Flush the xbuf queues if required. */
26819 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
26820 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
26821 	}
26822 
26823 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
26824 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
26825 }
26826 
26827 
26828 /*
26829  *    Function: sd_failfast_flushq_callback
26830  *
26831  * Description: Return TRUE if the given bp meets the criteria for failfast
26832  *		flushing. Used with ddi_xbuf_flushq(9F).
26833  *
26834  *   Arguments: bp - ptr to buf struct to be examined.
26835  *
26836  *     Context: Any
26837  */
26838 
26839 static int
26840 sd_failfast_flushq_callback(struct buf *bp)
26841 {
26842 	/*
26843 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
26844 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
26845 	 */
26846 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
26847 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
26848 }
26849 
26850 
26851 
26852 /*
26853  * Function: sd_setup_next_xfer
26854  *
26855  * Description: Prepare next I/O operation using DMA_PARTIAL
26856  *
26857  */
26858 
26859 static int
26860 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
26861     struct scsi_pkt *pkt, struct sd_xbuf *xp)
26862 {
26863 	ssize_t	num_blks_not_xfered;
26864 	daddr_t	strt_blk_num;
26865 	ssize_t	bytes_not_xfered;
26866 	int	rval;
26867 
26868 	ASSERT(pkt->pkt_resid == 0);
26869 
26870 	/*
26871 	 * Calculate next block number and amount to be transferred.
26872 	 *
26873 	 * How much data NOT transfered to the HBA yet.
26874 	 */
26875 	bytes_not_xfered = xp->xb_dma_resid;
26876 
26877 	/*
26878 	 * figure how many blocks NOT transfered to the HBA yet.
26879 	 */
26880 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
26881 
26882 	/*
26883 	 * set starting block number to the end of what WAS transfered.
26884 	 */
26885 	strt_blk_num = xp->xb_blkno +
26886 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
26887 
26888 	/*
26889 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
26890 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
26891 	 * the disk mutex here.
26892 	 */
26893 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
26894 	    strt_blk_num, num_blks_not_xfered);
26895 
26896 	if (rval == 0) {
26897 
26898 		/*
26899 		 * Success.
26900 		 *
26901 		 * Adjust things if there are still more blocks to be
26902 		 * transfered.
26903 		 */
26904 		xp->xb_dma_resid = pkt->pkt_resid;
26905 		pkt->pkt_resid = 0;
26906 
26907 		return (1);
26908 	}
26909 
26910 	/*
26911 	 * There's really only one possible return value from
26912 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
26913 	 * returns NULL.
26914 	 */
26915 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
26916 
26917 	bp->b_resid = bp->b_bcount;
26918 	bp->b_flags |= B_ERROR;
26919 
26920 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26921 	    "Error setting up next portion of DMA transfer\n");
26922 
26923 	return (0);
26924 }
26925 
26926 /*
26927  *    Function: sd_panic_for_res_conflict
26928  *
26929  * Description: Call panic with a string formatted with "Reservation Conflict"
26930  *		and a human readable identifier indicating the SD instance
26931  *		that experienced the reservation conflict.
26932  *
26933  *   Arguments: un - pointer to the soft state struct for the instance.
26934  *
26935  *     Context: may execute in interrupt context.
26936  */
26937 
26938 #define	SD_RESV_CONFLICT_FMT_LEN 40
26939 void
26940 sd_panic_for_res_conflict(struct sd_lun *un)
26941 {
26942 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
26943 	char path_str[MAXPATHLEN];
26944 
26945 	(void) snprintf(panic_str, sizeof (panic_str),
26946 	    "Reservation Conflict\nDisk: %s",
26947 	    ddi_pathname(SD_DEVINFO(un), path_str));
26948 
26949 	panic(panic_str);
26950 }
26951 
26952 /*
26953  * Note: The following sd_faultinjection_ioctl( ) routines implement
26954  * driver support for handling fault injection for error analysis
26955  * causing faults in multiple layers of the driver.
26956  *
26957  */
26958 
26959 #ifdef SD_FAULT_INJECTION
26960 static uint_t   sd_fault_injection_on = 0;
26961 
26962 /*
26963  *    Function: sd_faultinjection_ioctl()
26964  *
26965  * Description: This routine is the driver entry point for handling
26966  *              faultinjection ioctls to inject errors into the
26967  *              layer model
26968  *
26969  *   Arguments: cmd	- the ioctl cmd received
26970  *		arg	- the arguments from user and returns
26971  */
26972 
26973 static void
26974 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
26975 
26976 	uint_t i;
26977 	uint_t rval;
26978 
26979 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
26980 
26981 	mutex_enter(SD_MUTEX(un));
26982 
26983 	switch (cmd) {
26984 	case SDIOCRUN:
26985 		/* Allow pushed faults to be injected */
26986 		SD_INFO(SD_LOG_SDTEST, un,
26987 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
26988 
26989 		sd_fault_injection_on = 1;
26990 
26991 		SD_INFO(SD_LOG_IOERR, un,
26992 		    "sd_faultinjection_ioctl: run finished\n");
26993 		break;
26994 
26995 	case SDIOCSTART:
26996 		/* Start Injection Session */
26997 		SD_INFO(SD_LOG_SDTEST, un,
26998 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
26999 
27000 		sd_fault_injection_on = 0;
27001 		un->sd_injection_mask = 0xFFFFFFFF;
27002 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27003 			un->sd_fi_fifo_pkt[i] = NULL;
27004 			un->sd_fi_fifo_xb[i] = NULL;
27005 			un->sd_fi_fifo_un[i] = NULL;
27006 			un->sd_fi_fifo_arq[i] = NULL;
27007 		}
27008 		un->sd_fi_fifo_start = 0;
27009 		un->sd_fi_fifo_end = 0;
27010 
27011 		mutex_enter(&(un->un_fi_mutex));
27012 		un->sd_fi_log[0] = '\0';
27013 		un->sd_fi_buf_len = 0;
27014 		mutex_exit(&(un->un_fi_mutex));
27015 
27016 		SD_INFO(SD_LOG_IOERR, un,
27017 		    "sd_faultinjection_ioctl: start finished\n");
27018 		break;
27019 
27020 	case SDIOCSTOP:
27021 		/* Stop Injection Session */
27022 		SD_INFO(SD_LOG_SDTEST, un,
27023 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
27024 		sd_fault_injection_on = 0;
27025 		un->sd_injection_mask = 0x0;
27026 
27027 		/* Empty stray or unuseds structs from fifo */
27028 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
27029 			if (un->sd_fi_fifo_pkt[i] != NULL) {
27030 				kmem_free(un->sd_fi_fifo_pkt[i],
27031 				    sizeof (struct sd_fi_pkt));
27032 			}
27033 			if (un->sd_fi_fifo_xb[i] != NULL) {
27034 				kmem_free(un->sd_fi_fifo_xb[i],
27035 				    sizeof (struct sd_fi_xb));
27036 			}
27037 			if (un->sd_fi_fifo_un[i] != NULL) {
27038 				kmem_free(un->sd_fi_fifo_un[i],
27039 				    sizeof (struct sd_fi_un));
27040 			}
27041 			if (un->sd_fi_fifo_arq[i] != NULL) {
27042 				kmem_free(un->sd_fi_fifo_arq[i],
27043 				    sizeof (struct sd_fi_arq));
27044 			}
27045 			un->sd_fi_fifo_pkt[i] = NULL;
27046 			un->sd_fi_fifo_un[i] = NULL;
27047 			un->sd_fi_fifo_xb[i] = NULL;
27048 			un->sd_fi_fifo_arq[i] = NULL;
27049 		}
27050 		un->sd_fi_fifo_start = 0;
27051 		un->sd_fi_fifo_end = 0;
27052 
27053 		SD_INFO(SD_LOG_IOERR, un,
27054 		    "sd_faultinjection_ioctl: stop finished\n");
27055 		break;
27056 
27057 	case SDIOCINSERTPKT:
27058 		/* Store a packet struct to be pushed onto fifo */
27059 		SD_INFO(SD_LOG_SDTEST, un,
27060 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
27061 
27062 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27063 
27064 		sd_fault_injection_on = 0;
27065 
27066 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
27067 		if (un->sd_fi_fifo_pkt[i] != NULL) {
27068 			kmem_free(un->sd_fi_fifo_pkt[i],
27069 			    sizeof (struct sd_fi_pkt));
27070 		}
27071 		if (arg != NULL) {
27072 			un->sd_fi_fifo_pkt[i] =
27073 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
27074 			if (un->sd_fi_fifo_pkt[i] == NULL) {
27075 				/* Alloc failed don't store anything */
27076 				break;
27077 			}
27078 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
27079 			    sizeof (struct sd_fi_pkt), 0);
27080 			if (rval == -1) {
27081 				kmem_free(un->sd_fi_fifo_pkt[i],
27082 				    sizeof (struct sd_fi_pkt));
27083 				un->sd_fi_fifo_pkt[i] = NULL;
27084 			}
27085 		} else {
27086 			SD_INFO(SD_LOG_IOERR, un,
27087 			    "sd_faultinjection_ioctl: pkt null\n");
27088 		}
27089 		break;
27090 
27091 	case SDIOCINSERTXB:
27092 		/* Store a xb struct to be pushed onto fifo */
27093 		SD_INFO(SD_LOG_SDTEST, un,
27094 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
27095 
27096 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27097 
27098 		sd_fault_injection_on = 0;
27099 
27100 		if (un->sd_fi_fifo_xb[i] != NULL) {
27101 			kmem_free(un->sd_fi_fifo_xb[i],
27102 			    sizeof (struct sd_fi_xb));
27103 			un->sd_fi_fifo_xb[i] = NULL;
27104 		}
27105 		if (arg != NULL) {
27106 			un->sd_fi_fifo_xb[i] =
27107 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
27108 			if (un->sd_fi_fifo_xb[i] == NULL) {
27109 				/* Alloc failed don't store anything */
27110 				break;
27111 			}
27112 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
27113 			    sizeof (struct sd_fi_xb), 0);
27114 
27115 			if (rval == -1) {
27116 				kmem_free(un->sd_fi_fifo_xb[i],
27117 				    sizeof (struct sd_fi_xb));
27118 				un->sd_fi_fifo_xb[i] = NULL;
27119 			}
27120 		} else {
27121 			SD_INFO(SD_LOG_IOERR, un,
27122 			    "sd_faultinjection_ioctl: xb null\n");
27123 		}
27124 		break;
27125 
27126 	case SDIOCINSERTUN:
27127 		/* Store a un struct to be pushed onto fifo */
27128 		SD_INFO(SD_LOG_SDTEST, un,
27129 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
27130 
27131 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27132 
27133 		sd_fault_injection_on = 0;
27134 
27135 		if (un->sd_fi_fifo_un[i] != NULL) {
27136 			kmem_free(un->sd_fi_fifo_un[i],
27137 			    sizeof (struct sd_fi_un));
27138 			un->sd_fi_fifo_un[i] = NULL;
27139 		}
27140 		if (arg != NULL) {
27141 			un->sd_fi_fifo_un[i] =
27142 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
27143 			if (un->sd_fi_fifo_un[i] == NULL) {
27144 				/* Alloc failed don't store anything */
27145 				break;
27146 			}
27147 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
27148 			    sizeof (struct sd_fi_un), 0);
27149 			if (rval == -1) {
27150 				kmem_free(un->sd_fi_fifo_un[i],
27151 				    sizeof (struct sd_fi_un));
27152 				un->sd_fi_fifo_un[i] = NULL;
27153 			}
27154 
27155 		} else {
27156 			SD_INFO(SD_LOG_IOERR, un,
27157 			    "sd_faultinjection_ioctl: un null\n");
27158 		}
27159 
27160 		break;
27161 
27162 	case SDIOCINSERTARQ:
27163 		/* Store a arq struct to be pushed onto fifo */
27164 		SD_INFO(SD_LOG_SDTEST, un,
27165 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
27166 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
27167 
27168 		sd_fault_injection_on = 0;
27169 
27170 		if (un->sd_fi_fifo_arq[i] != NULL) {
27171 			kmem_free(un->sd_fi_fifo_arq[i],
27172 			    sizeof (struct sd_fi_arq));
27173 			un->sd_fi_fifo_arq[i] = NULL;
27174 		}
27175 		if (arg != NULL) {
27176 			un->sd_fi_fifo_arq[i] =
27177 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
27178 			if (un->sd_fi_fifo_arq[i] == NULL) {
27179 				/* Alloc failed don't store anything */
27180 				break;
27181 			}
27182 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
27183 			    sizeof (struct sd_fi_arq), 0);
27184 			if (rval == -1) {
27185 				kmem_free(un->sd_fi_fifo_arq[i],
27186 				    sizeof (struct sd_fi_arq));
27187 				un->sd_fi_fifo_arq[i] = NULL;
27188 			}
27189 
27190 		} else {
27191 			SD_INFO(SD_LOG_IOERR, un,
27192 			    "sd_faultinjection_ioctl: arq null\n");
27193 		}
27194 
27195 		break;
27196 
27197 	case SDIOCPUSH:
27198 		/* Push stored xb, pkt, un, and arq onto fifo */
27199 		sd_fault_injection_on = 0;
27200 
27201 		if (arg != NULL) {
27202 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
27203 			if (rval != -1 &&
27204 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27205 				un->sd_fi_fifo_end += i;
27206 			}
27207 		} else {
27208 			SD_INFO(SD_LOG_IOERR, un,
27209 			    "sd_faultinjection_ioctl: push arg null\n");
27210 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
27211 				un->sd_fi_fifo_end++;
27212 			}
27213 		}
27214 		SD_INFO(SD_LOG_IOERR, un,
27215 		    "sd_faultinjection_ioctl: push to end=%d\n",
27216 		    un->sd_fi_fifo_end);
27217 		break;
27218 
27219 	case SDIOCRETRIEVE:
27220 		/* Return buffer of log from Injection session */
27221 		SD_INFO(SD_LOG_SDTEST, un,
27222 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
27223 
27224 		sd_fault_injection_on = 0;
27225 
27226 		mutex_enter(&(un->un_fi_mutex));
27227 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
27228 		    un->sd_fi_buf_len+1, 0);
27229 		mutex_exit(&(un->un_fi_mutex));
27230 
27231 		if (rval == -1) {
27232 			/*
27233 			 * arg is possibly invalid setting
27234 			 * it to NULL for return
27235 			 */
27236 			arg = NULL;
27237 		}
27238 		break;
27239 	}
27240 
27241 	mutex_exit(SD_MUTEX(un));
27242 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
27243 			    " exit\n");
27244 }
27245 
27246 
27247 /*
27248  *    Function: sd_injection_log()
27249  *
27250  * Description: This routine adds buff to the already existing injection log
27251  *              for retrieval via faultinjection_ioctl for use in fault
27252  *              detection and recovery
27253  *
27254  *   Arguments: buf - the string to add to the log
27255  */
27256 
27257 static void
27258 sd_injection_log(char *buf, struct sd_lun *un)
27259 {
27260 	uint_t len;
27261 
27262 	ASSERT(un != NULL);
27263 	ASSERT(buf != NULL);
27264 
27265 	mutex_enter(&(un->un_fi_mutex));
27266 
27267 	len = min(strlen(buf), 255);
27268 	/* Add logged value to Injection log to be returned later */
27269 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
27270 		uint_t	offset = strlen((char *)un->sd_fi_log);
27271 		char *destp = (char *)un->sd_fi_log + offset;
27272 		int i;
27273 		for (i = 0; i < len; i++) {
27274 			*destp++ = *buf++;
27275 		}
27276 		un->sd_fi_buf_len += len;
27277 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
27278 	}
27279 
27280 	mutex_exit(&(un->un_fi_mutex));
27281 }
27282 
27283 
27284 /*
27285  *    Function: sd_faultinjection()
27286  *
27287  * Description: This routine takes the pkt and changes its
27288  *		content based on error injection scenerio.
27289  *
27290  *   Arguments: pktp	- packet to be changed
27291  */
27292 
27293 static void
27294 sd_faultinjection(struct scsi_pkt *pktp)
27295 {
27296 	uint_t i;
27297 	struct sd_fi_pkt *fi_pkt;
27298 	struct sd_fi_xb *fi_xb;
27299 	struct sd_fi_un *fi_un;
27300 	struct sd_fi_arq *fi_arq;
27301 	struct buf *bp;
27302 	struct sd_xbuf *xb;
27303 	struct sd_lun *un;
27304 
27305 	ASSERT(pktp != NULL);
27306 
27307 	/* pull bp xb and un from pktp */
27308 	bp = (struct buf *)pktp->pkt_private;
27309 	xb = SD_GET_XBUF(bp);
27310 	un = SD_GET_UN(bp);
27311 
27312 	ASSERT(un != NULL);
27313 
27314 	mutex_enter(SD_MUTEX(un));
27315 
27316 	SD_TRACE(SD_LOG_SDTEST, un,
27317 	    "sd_faultinjection: entry Injection from sdintr\n");
27318 
27319 	/* if injection is off return */
27320 	if (sd_fault_injection_on == 0 ||
27321 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
27322 		mutex_exit(SD_MUTEX(un));
27323 		return;
27324 	}
27325 
27326 
27327 	/* take next set off fifo */
27328 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
27329 
27330 	fi_pkt = un->sd_fi_fifo_pkt[i];
27331 	fi_xb = un->sd_fi_fifo_xb[i];
27332 	fi_un = un->sd_fi_fifo_un[i];
27333 	fi_arq = un->sd_fi_fifo_arq[i];
27334 
27335 
27336 	/* set variables accordingly */
27337 	/* set pkt if it was on fifo */
27338 	if (fi_pkt != NULL) {
27339 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
27340 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
27341 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
27342 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
27343 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
27344 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
27345 
27346 	}
27347 
27348 	/* set xb if it was on fifo */
27349 	if (fi_xb != NULL) {
27350 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
27351 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
27352 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
27353 		SD_CONDSET(xb, xb, xb_victim_retry_count,
27354 		    "xb_victim_retry_count");
27355 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
27356 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
27357 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
27358 
27359 		/* copy in block data from sense */
27360 		if (fi_xb->xb_sense_data[0] != -1) {
27361 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
27362 			    SENSE_LENGTH);
27363 		}
27364 
27365 		/* copy in extended sense codes */
27366 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
27367 		    "es_code");
27368 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
27369 		    "es_key");
27370 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
27371 		    "es_add_code");
27372 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
27373 		    es_qual_code, "es_qual_code");
27374 	}
27375 
27376 	/* set un if it was on fifo */
27377 	if (fi_un != NULL) {
27378 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
27379 		SD_CONDSET(un, un, un_ctype, "un_ctype");
27380 		SD_CONDSET(un, un, un_reset_retry_count,
27381 		    "un_reset_retry_count");
27382 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
27383 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
27384 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
27385 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
27386 		    "un_f_allow_bus_device_reset");
27387 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
27388 
27389 	}
27390 
27391 	/* copy in auto request sense if it was on fifo */
27392 	if (fi_arq != NULL) {
27393 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
27394 	}
27395 
27396 	/* free structs */
27397 	if (un->sd_fi_fifo_pkt[i] != NULL) {
27398 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
27399 	}
27400 	if (un->sd_fi_fifo_xb[i] != NULL) {
27401 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
27402 	}
27403 	if (un->sd_fi_fifo_un[i] != NULL) {
27404 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
27405 	}
27406 	if (un->sd_fi_fifo_arq[i] != NULL) {
27407 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
27408 	}
27409 
27410 	/*
27411 	 * kmem_free does not gurantee to set to NULL
27412 	 * since we uses these to determine if we set
27413 	 * values or not lets confirm they are always
27414 	 * NULL after free
27415 	 */
27416 	un->sd_fi_fifo_pkt[i] = NULL;
27417 	un->sd_fi_fifo_un[i] = NULL;
27418 	un->sd_fi_fifo_xb[i] = NULL;
27419 	un->sd_fi_fifo_arq[i] = NULL;
27420 
27421 	un->sd_fi_fifo_start++;
27422 
27423 	mutex_exit(SD_MUTEX(un));
27424 
27425 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
27426 }
27427 
27428 #endif /* SD_FAULT_INJECTION */
27429 
27430 /*
27431  * This routine is invoked in sd_unit_attach(). Before calling it, the
27432  * properties in conf file should be processed already, and "hotpluggable"
27433  * property was processed also.
27434  *
27435  * The sd driver distinguishes 3 different type of devices: removable media,
27436  * non-removable media, and hotpluggable. Below the differences are defined:
27437  *
27438  * 1. Device ID
27439  *
27440  *     The device ID of a device is used to identify this device. Refer to
27441  *     ddi_devid_register(9F).
27442  *
27443  *     For a non-removable media disk device which can provide 0x80 or 0x83
27444  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
27445  *     device ID is created to identify this device. For other non-removable
27446  *     media devices, a default device ID is created only if this device has
27447  *     at least 2 alter cylinders. Otherwise, this device has no devid.
27448  *
27449  *     -------------------------------------------------------
27450  *     removable media   hotpluggable  | Can Have Device ID
27451  *     -------------------------------------------------------
27452  *         false             false     |     Yes
27453  *         false             true      |     Yes
27454  *         true                x       |     No
27455  *     ------------------------------------------------------
27456  *
27457  *
27458  * 2. SCSI group 4 commands
27459  *
27460  *     In SCSI specs, only some commands in group 4 command set can use
27461  *     8-byte addresses that can be used to access >2TB storage spaces.
27462  *     Other commands have no such capability. Without supporting group4,
27463  *     it is impossible to make full use of storage spaces of a disk with
27464  *     capacity larger than 2TB.
27465  *
27466  *     -----------------------------------------------
27467  *     removable media   hotpluggable   LP64  |  Group
27468  *     -----------------------------------------------
27469  *           false          false       false |   1
27470  *           false          false       true  |   4
27471  *           false          true        false |   1
27472  *           false          true        true  |   4
27473  *           true             x           x   |   5
27474  *     -----------------------------------------------
27475  *
27476  *
27477  * 3. Check for VTOC Label
27478  *
27479  *     If a direct-access disk has no EFI label, sd will check if it has a
27480  *     valid VTOC label. Now, sd also does that check for removable media
27481  *     and hotpluggable devices.
27482  *
27483  *     --------------------------------------------------------------
27484  *     Direct-Access   removable media    hotpluggable |  Check Label
27485  *     -------------------------------------------------------------
27486  *         false          false           false        |   No
27487  *         false          false           true         |   No
27488  *         false          true            false        |   Yes
27489  *         false          true            true         |   Yes
27490  *         true            x                x          |   Yes
27491  *     --------------------------------------------------------------
27492  *
27493  *
27494  * 4. Building default VTOC label
27495  *
27496  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
27497  *     If those devices have no valid VTOC label, sd(7d) will attempt to
27498  *     create default VTOC for them. Currently sd creates default VTOC label
27499  *     for all devices on x86 platform (VTOC_16), but only for removable
27500  *     media devices on SPARC (VTOC_8).
27501  *
27502  *     -----------------------------------------------------------
27503  *       removable media hotpluggable platform   |   Default Label
27504  *     -----------------------------------------------------------
27505  *             false          false    sparc     |     No
27506  *             false          true      x86      |     Yes
27507  *             false          true     sparc     |     Yes
27508  *             true             x        x       |     Yes
27509  *     ----------------------------------------------------------
27510  *
27511  *
27512  * 5. Supported blocksizes of target devices
27513  *
27514  *     Sd supports non-512-byte blocksize for removable media devices only.
27515  *     For other devices, only 512-byte blocksize is supported. This may be
27516  *     changed in near future because some RAID devices require non-512-byte
27517  *     blocksize
27518  *
27519  *     -----------------------------------------------------------
27520  *     removable media    hotpluggable    | non-512-byte blocksize
27521  *     -----------------------------------------------------------
27522  *           false          false         |   No
27523  *           false          true          |   No
27524  *           true             x           |   Yes
27525  *     -----------------------------------------------------------
27526  *
27527  *
27528  * 6. Automatic mount & unmount
27529  *
27530  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
27531  *     if a device is removable media device. It return 1 for removable media
27532  *     devices, and 0 for others.
27533  *
27534  *     The automatic mounting subsystem should distinguish between the types
27535  *     of devices and apply automounting policies to each.
27536  *
27537  *
27538  * 7. fdisk partition management
27539  *
27540  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
27541  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
27542  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
27543  *     fdisk partitions on both x86 and SPARC platform.
27544  *
27545  *     -----------------------------------------------------------
27546  *       platform   removable media  USB/1394  |  fdisk supported
27547  *     -----------------------------------------------------------
27548  *        x86         X               X        |       true
27549  *     ------------------------------------------------------------
27550  *        sparc       X               X        |       false
27551  *     ------------------------------------------------------------
27552  *
27553  *
27554  * 8. MBOOT/MBR
27555  *
27556  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
27557  *     read/write mboot for removable media devices on sparc platform.
27558  *
27559  *     -----------------------------------------------------------
27560  *       platform   removable media  USB/1394  |  mboot supported
27561  *     -----------------------------------------------------------
27562  *        x86         X               X        |       true
27563  *     ------------------------------------------------------------
27564  *        sparc      false           false     |       false
27565  *        sparc      false           true      |       true
27566  *        sparc      true            false     |       true
27567  *        sparc      true            true      |       true
27568  *     ------------------------------------------------------------
27569  *
27570  *
27571  * 9.  error handling during opening device
27572  *
27573  *     If failed to open a disk device, an errno is returned. For some kinds
27574  *     of errors, different errno is returned depending on if this device is
27575  *     a removable media device. This brings USB/1394 hard disks in line with
27576  *     expected hard disk behavior. It is not expected that this breaks any
27577  *     application.
27578  *
27579  *     ------------------------------------------------------
27580  *       removable media    hotpluggable   |  errno
27581  *     ------------------------------------------------------
27582  *             false          false        |   EIO
27583  *             false          true         |   EIO
27584  *             true             x          |   ENXIO
27585  *     ------------------------------------------------------
27586  *
27587  *
27588  * 11. ioctls: DKIOCEJECT, CDROMEJECT
27589  *
27590  *     These IOCTLs are applicable only to removable media devices.
27591  *
27592  *     -----------------------------------------------------------
27593  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
27594  *     -----------------------------------------------------------
27595  *             false          false        |     No
27596  *             false          true         |     No
27597  *             true            x           |     Yes
27598  *     -----------------------------------------------------------
27599  *
27600  *
27601  * 12. Kstats for partitions
27602  *
27603  *     sd creates partition kstat for non-removable media devices. USB and
27604  *     Firewire hard disks now have partition kstats
27605  *
27606  *      ------------------------------------------------------
27607  *       removable media    hotpluggable   |   kstat
27608  *      ------------------------------------------------------
27609  *             false          false        |    Yes
27610  *             false          true         |    Yes
27611  *             true             x          |    No
27612  *       ------------------------------------------------------
27613  *
27614  *
27615  * 13. Removable media & hotpluggable properties
27616  *
27617  *     Sd driver creates a "removable-media" property for removable media
27618  *     devices. Parent nexus drivers create a "hotpluggable" property if
27619  *     it supports hotplugging.
27620  *
27621  *     ---------------------------------------------------------------------
27622  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
27623  *     ---------------------------------------------------------------------
27624  *       false            false       |    No                   No
27625  *       false            true        |    No                   Yes
27626  *       true             false       |    Yes                  No
27627  *       true             true        |    Yes                  Yes
27628  *     ---------------------------------------------------------------------
27629  *
27630  *
27631  * 14. Power Management
27632  *
27633  *     sd only power manages removable media devices or devices that support
27634  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
27635  *
27636  *     A parent nexus that supports hotplugging can also set "pm-capable"
27637  *     if the disk can be power managed.
27638  *
27639  *     ------------------------------------------------------------
27640  *       removable media hotpluggable pm-capable  |   power manage
27641  *     ------------------------------------------------------------
27642  *             false          false     false     |     No
27643  *             false          false     true      |     Yes
27644  *             false          true      false     |     No
27645  *             false          true      true      |     Yes
27646  *             true             x        x        |     Yes
27647  *     ------------------------------------------------------------
27648  *
27649  *      USB and firewire hard disks can now be power managed independently
27650  *      of the framebuffer
27651  *
27652  *
27653  * 15. Support for USB disks with capacity larger than 1TB
27654  *
27655  *     Currently, sd doesn't permit a fixed disk device with capacity
27656  *     larger than 1TB to be used in a 32-bit operating system environment.
27657  *     However, sd doesn't do that for removable media devices. Instead, it
27658  *     assumes that removable media devices cannot have a capacity larger
27659  *     than 1TB. Therefore, using those devices on 32-bit system is partially
27660  *     supported, which can cause some unexpected results.
27661  *
27662  *     ---------------------------------------------------------------------
27663  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
27664  *     ---------------------------------------------------------------------
27665  *             false          false  |   true         |     no
27666  *             false          true   |   true         |     no
27667  *             true           false  |   true         |     Yes
27668  *             true           true   |   true         |     Yes
27669  *     ---------------------------------------------------------------------
27670  *
27671  *
27672  * 16. Check write-protection at open time
27673  *
27674  *     When a removable media device is being opened for writing without NDELAY
27675  *     flag, sd will check if this device is writable. If attempting to open
27676  *     without NDELAY flag a write-protected device, this operation will abort.
27677  *
27678  *     ------------------------------------------------------------
27679  *       removable media    USB/1394   |   WP Check
27680  *     ------------------------------------------------------------
27681  *             false          false    |     No
27682  *             false          true     |     No
27683  *             true           false    |     Yes
27684  *             true           true     |     Yes
27685  *     ------------------------------------------------------------
27686  *
27687  *
27688  * 17. syslog when corrupted VTOC is encountered
27689  *
27690  *      Currently, if an invalid VTOC is encountered, sd only print syslog
27691  *      for fixed SCSI disks.
27692  *     ------------------------------------------------------------
27693  *       removable media    USB/1394   |   print syslog
27694  *     ------------------------------------------------------------
27695  *             false          false    |     Yes
27696  *             false          true     |     No
27697  *             true           false    |     No
27698  *             true           true     |     No
27699  *     ------------------------------------------------------------
27700  */
27701 static void
27702 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
27703 {
27704 	int	pm_capable_prop;
27705 
27706 	ASSERT(un->un_sd);
27707 	ASSERT(un->un_sd->sd_inq);
27708 
27709 	/*
27710 	 * Enable SYNC CACHE support for all devices.
27711 	 */
27712 	un->un_f_sync_cache_supported = TRUE;
27713 
27714 	if (un->un_sd->sd_inq->inq_rmb) {
27715 		/*
27716 		 * The media of this device is removable. And for this kind
27717 		 * of devices, it is possible to change medium after opening
27718 		 * devices. Thus we should support this operation.
27719 		 */
27720 		un->un_f_has_removable_media = TRUE;
27721 
27722 		/*
27723 		 * support non-512-byte blocksize of removable media devices
27724 		 */
27725 		un->un_f_non_devbsize_supported = TRUE;
27726 
27727 		/*
27728 		 * Assume that all removable media devices support DOOR_LOCK
27729 		 */
27730 		un->un_f_doorlock_supported = TRUE;
27731 
27732 		/*
27733 		 * For a removable media device, it is possible to be opened
27734 		 * with NDELAY flag when there is no media in drive, in this
27735 		 * case we don't care if device is writable. But if without
27736 		 * NDELAY flag, we need to check if media is write-protected.
27737 		 */
27738 		un->un_f_chk_wp_open = TRUE;
27739 
27740 		/*
27741 		 * need to start a SCSI watch thread to monitor media state,
27742 		 * when media is being inserted or ejected, notify syseventd.
27743 		 */
27744 		un->un_f_monitor_media_state = TRUE;
27745 
27746 		/*
27747 		 * Some devices don't support START_STOP_UNIT command.
27748 		 * Therefore, we'd better check if a device supports it
27749 		 * before sending it.
27750 		 */
27751 		un->un_f_check_start_stop = TRUE;
27752 
27753 		/*
27754 		 * support eject media ioctl:
27755 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
27756 		 */
27757 		un->un_f_eject_media_supported = TRUE;
27758 
27759 		/*
27760 		 * Because many removable-media devices don't support
27761 		 * LOG_SENSE, we couldn't use this command to check if
27762 		 * a removable media device support power-management.
27763 		 * We assume that they support power-management via
27764 		 * START_STOP_UNIT command and can be spun up and down
27765 		 * without limitations.
27766 		 */
27767 		un->un_f_pm_supported = TRUE;
27768 
27769 		/*
27770 		 * Need to create a zero length (Boolean) property
27771 		 * removable-media for the removable media devices.
27772 		 * Note that the return value of the property is not being
27773 		 * checked, since if unable to create the property
27774 		 * then do not want the attach to fail altogether. Consistent
27775 		 * with other property creation in attach.
27776 		 */
27777 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
27778 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
27779 
27780 	} else {
27781 		/*
27782 		 * create device ID for device
27783 		 */
27784 		un->un_f_devid_supported = TRUE;
27785 
27786 		/*
27787 		 * Spin up non-removable-media devices once it is attached
27788 		 */
27789 		un->un_f_attach_spinup = TRUE;
27790 
27791 		/*
27792 		 * According to SCSI specification, Sense data has two kinds of
27793 		 * format: fixed format, and descriptor format. At present, we
27794 		 * don't support descriptor format sense data for removable
27795 		 * media.
27796 		 */
27797 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
27798 			un->un_f_descr_format_supported = TRUE;
27799 		}
27800 
27801 		/*
27802 		 * kstats are created only for non-removable media devices.
27803 		 *
27804 		 * Set this in sd.conf to 0 in order to disable kstats.  The
27805 		 * default is 1, so they are enabled by default.
27806 		 */
27807 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
27808 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
27809 		    "enable-partition-kstats", 1));
27810 
27811 		/*
27812 		 * Check if HBA has set the "pm-capable" property.
27813 		 * If "pm-capable" exists and is non-zero then we can
27814 		 * power manage the device without checking the start/stop
27815 		 * cycle count log sense page.
27816 		 *
27817 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
27818 		 * then we should not power manage the device.
27819 		 *
27820 		 * If "pm-capable" doesn't exist then pm_capable_prop will
27821 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
27822 		 * sd will check the start/stop cycle count log sense page
27823 		 * and power manage the device if the cycle count limit has
27824 		 * not been exceeded.
27825 		 */
27826 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
27827 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
27828 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
27829 			un->un_f_log_sense_supported = TRUE;
27830 		} else {
27831 			/*
27832 			 * pm-capable property exists.
27833 			 *
27834 			 * Convert "TRUE" values for pm_capable_prop to
27835 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
27836 			 * later. "TRUE" values are any values except
27837 			 * SD_PM_CAPABLE_FALSE (0) and
27838 			 * SD_PM_CAPABLE_UNDEFINED (-1)
27839 			 */
27840 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
27841 				un->un_f_log_sense_supported = FALSE;
27842 			} else {
27843 				un->un_f_pm_supported = TRUE;
27844 			}
27845 
27846 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
27847 			    "sd_unit_attach: un:0x%p pm-capable "
27848 			    "property set to %d.\n", un, un->un_f_pm_supported);
27849 		}
27850 	}
27851 
27852 	if (un->un_f_is_hotpluggable) {
27853 
27854 		/*
27855 		 * Have to watch hotpluggable devices as well, since
27856 		 * that's the only way for userland applications to
27857 		 * detect hot removal while device is busy/mounted.
27858 		 */
27859 		un->un_f_monitor_media_state = TRUE;
27860 
27861 		un->un_f_check_start_stop = TRUE;
27862 
27863 	}
27864 }
27865 
27866 /*
27867  * sd_tg_rdwr:
27868  * Provides rdwr access for cmlb via sd_tgops. The start_block is
27869  * in sys block size, req_length in bytes.
27870  *
27871  */
27872 static int
27873 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
27874     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
27875 {
27876 	struct sd_lun *un;
27877 	int path_flag = (int)(uintptr_t)tg_cookie;
27878 	char *dkl = NULL;
27879 	diskaddr_t real_addr = start_block;
27880 	diskaddr_t first_byte, end_block;
27881 
27882 	size_t	buffer_size = reqlength;
27883 	int rval;
27884 	diskaddr_t	cap;
27885 	uint32_t	lbasize;
27886 
27887 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27888 	if (un == NULL)
27889 		return (ENXIO);
27890 
27891 	if (cmd != TG_READ && cmd != TG_WRITE)
27892 		return (EINVAL);
27893 
27894 	mutex_enter(SD_MUTEX(un));
27895 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
27896 		mutex_exit(SD_MUTEX(un));
27897 		rval = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
27898 		    &lbasize, path_flag);
27899 		if (rval != 0)
27900 			return (rval);
27901 		mutex_enter(SD_MUTEX(un));
27902 		sd_update_block_info(un, lbasize, cap);
27903 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
27904 			mutex_exit(SD_MUTEX(un));
27905 			return (EIO);
27906 		}
27907 	}
27908 
27909 	if (NOT_DEVBSIZE(un)) {
27910 		/*
27911 		 * sys_blocksize != tgt_blocksize, need to re-adjust
27912 		 * blkno and save the index to beginning of dk_label
27913 		 */
27914 		first_byte  = SD_SYSBLOCKS2BYTES(un, start_block);
27915 		real_addr = first_byte / un->un_tgt_blocksize;
27916 
27917 		end_block = (first_byte + reqlength +
27918 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
27919 
27920 		/* round up buffer size to multiple of target block size */
27921 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
27922 
27923 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
27924 		    "label_addr: 0x%x allocation size: 0x%x\n",
27925 		    real_addr, buffer_size);
27926 
27927 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
27928 		    (reqlength % un->un_tgt_blocksize) != 0)
27929 			/* the request is not aligned */
27930 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
27931 	}
27932 
27933 	/*
27934 	 * The MMC standard allows READ CAPACITY to be
27935 	 * inaccurate by a bounded amount (in the interest of
27936 	 * response latency).  As a result, failed READs are
27937 	 * commonplace (due to the reading of metadata and not
27938 	 * data). Depending on the per-Vendor/drive Sense data,
27939 	 * the failed READ can cause many (unnecessary) retries.
27940 	 */
27941 
27942 	if (ISCD(un) && (cmd == TG_READ) &&
27943 	    (un->un_f_blockcount_is_valid == TRUE) &&
27944 	    ((start_block == (un->un_blockcount - 1))||
27945 	    (start_block == (un->un_blockcount - 2)))) {
27946 			path_flag = SD_PATH_DIRECT_PRIORITY;
27947 	}
27948 
27949 	mutex_exit(SD_MUTEX(un));
27950 	if (cmd == TG_READ) {
27951 		rval = sd_send_scsi_READ(un, (dkl != NULL)? dkl: bufaddr,
27952 		    buffer_size, real_addr, path_flag);
27953 		if (dkl != NULL)
27954 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
27955 			    real_addr), bufaddr, reqlength);
27956 	} else {
27957 		if (dkl) {
27958 			rval = sd_send_scsi_READ(un, dkl, buffer_size,
27959 			    real_addr, path_flag);
27960 			if (rval) {
27961 				kmem_free(dkl, buffer_size);
27962 				return (rval);
27963 			}
27964 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
27965 			    real_addr), reqlength);
27966 		}
27967 		rval = sd_send_scsi_WRITE(un, (dkl != NULL)? dkl: bufaddr,
27968 		    buffer_size, real_addr, path_flag);
27969 	}
27970 
27971 	if (dkl != NULL)
27972 		kmem_free(dkl, buffer_size);
27973 
27974 	return (rval);
27975 }
27976 
27977 
27978 static int
27979 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
27980 {
27981 
27982 	struct sd_lun *un;
27983 	diskaddr_t	cap;
27984 	uint32_t	lbasize;
27985 	int		path_flag = (int)(uintptr_t)tg_cookie;
27986 	int		ret = 0;
27987 
27988 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
27989 	if (un == NULL)
27990 		return (ENXIO);
27991 
27992 	switch (cmd) {
27993 	case TG_GETPHYGEOM:
27994 	case TG_GETVIRTGEOM:
27995 	case TG_GETCAPACITY:
27996 	case  TG_GETBLOCKSIZE:
27997 		mutex_enter(SD_MUTEX(un));
27998 
27999 		if ((un->un_f_blockcount_is_valid == TRUE) &&
28000 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
28001 			cap = un->un_blockcount;
28002 			lbasize = un->un_tgt_blocksize;
28003 			mutex_exit(SD_MUTEX(un));
28004 		} else {
28005 			mutex_exit(SD_MUTEX(un));
28006 			ret = sd_send_scsi_READ_CAPACITY(un, (uint64_t *)&cap,
28007 			    &lbasize, path_flag);
28008 			if (ret != 0)
28009 				return (ret);
28010 			mutex_enter(SD_MUTEX(un));
28011 			sd_update_block_info(un, lbasize, cap);
28012 			if ((un->un_f_blockcount_is_valid == FALSE) ||
28013 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
28014 				mutex_exit(SD_MUTEX(un));
28015 				return (EIO);
28016 			}
28017 			mutex_exit(SD_MUTEX(un));
28018 		}
28019 
28020 		if (cmd == TG_GETCAPACITY) {
28021 			*(diskaddr_t *)arg = cap;
28022 			return (0);
28023 		}
28024 
28025 		if (cmd == TG_GETBLOCKSIZE) {
28026 			*(uint32_t *)arg = lbasize;
28027 			return (0);
28028 		}
28029 
28030 		if (cmd == TG_GETPHYGEOM)
28031 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
28032 			    cap, lbasize, path_flag);
28033 		else
28034 			/* TG_GETVIRTGEOM */
28035 			ret = sd_get_virtual_geometry(un,
28036 			    (cmlb_geom_t *)arg, cap, lbasize);
28037 
28038 		return (ret);
28039 
28040 	case TG_GETATTR:
28041 		mutex_enter(SD_MUTEX(un));
28042 		((tg_attribute_t *)arg)->media_is_writable =
28043 		    un->un_f_mmc_writable_media;
28044 		mutex_exit(SD_MUTEX(un));
28045 		return (0);
28046 	default:
28047 		return (ENOTTY);
28048 
28049 	}
28050 
28051 }
28052