xref: /titanic_50/usr/src/uts/common/io/scsi/targets/sd.c (revision cc01aeca826f4314d82007f16533b18d8e674824)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 
32 
33 
34 
35 #include <sys/scsi/scsi.h>
36 #include <sys/dkbad.h>
37 #include <sys/dklabel.h>
38 #include <sys/dkio.h>
39 #include <sys/fdio.h>
40 #include <sys/cdio.h>
41 #include <sys/mhd.h>
42 #include <sys/vtoc.h>
43 #include <sys/dktp/fdisk.h>
44 #include <sys/file.h>
45 #include <sys/stat.h>
46 #include <sys/kstat.h>
47 #include <sys/vtrace.h>
48 #include <sys/note.h>
49 #include <sys/thread.h>
50 #include <sys/proc.h>
51 #include <sys/efi_partition.h>
52 #include <sys/var.h>
53 #include <sys/aio_req.h>
54 
55 #ifdef __lock_lint
56 #define	_LP64
57 #define	__amd64
58 #endif
59 
60 #if (defined(__fibre))
61 /* Note: is there a leadville version of the following? */
62 #include <sys/fc4/fcal_linkapp.h>
63 #endif
64 #include <sys/taskq.h>
65 #include <sys/uuid.h>
66 #include <sys/byteorder.h>
67 #include <sys/sdt.h>
68 
69 #include "sd_xbuf.h"
70 
71 #include <sys/scsi/targets/sddef.h>
72 
73 
74 /*
75  * Loadable module info.
76  */
77 #if (defined(__fibre))
78 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
79 char _depends_on[]	= "misc/scsi drv/fcp";
80 #else
81 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
82 char _depends_on[]	= "misc/scsi";
83 #endif
84 
85 /*
86  * Define the interconnect type, to allow the driver to distinguish
87  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
88  *
89  * This is really for backward compatability. In the future, the driver
90  * should actually check the "interconnect-type" property as reported by
91  * the HBA; however at present this property is not defined by all HBAs,
92  * so we will use this #define (1) to permit the driver to run in
93  * backward-compatability mode; and (2) to print a notification message
94  * if an FC HBA does not support the "interconnect-type" property.  The
95  * behavior of the driver will be to assume parallel SCSI behaviors unless
96  * the "interconnect-type" property is defined by the HBA **AND** has a
97  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
98  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
99  * Channel behaviors (as per the old ssd).  (Note that the
100  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
101  * will result in the driver assuming parallel SCSI behaviors.)
102  *
103  * (see common/sys/scsi/impl/services.h)
104  *
105  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
106  * since some FC HBAs may already support that, and there is some code in
107  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
108  * default would confuse that code, and besides things should work fine
109  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
110  * "interconnect_type" property.
111  */
112 #if (defined(__fibre))
113 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
114 #else
115 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
116 #endif
117 
118 /*
119  * The name of the driver, established from the module name in _init.
120  */
121 static	char *sd_label			= NULL;
122 
123 /*
124  * Driver name is unfortunately prefixed on some driver.conf properties.
125  */
126 #if (defined(__fibre))
127 #define	sd_max_xfer_size		ssd_max_xfer_size
128 #define	sd_config_list			ssd_config_list
129 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
130 static	char *sd_config_list		= "ssd-config-list";
131 #else
132 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
133 static	char *sd_config_list		= "sd-config-list";
134 #endif
135 
136 /*
137  * Driver global variables
138  */
139 
140 #if (defined(__fibre))
141 /*
142  * These #defines are to avoid namespace collisions that occur because this
143  * code is currently used to compile two seperate driver modules: sd and ssd.
144  * All global variables need to be treated this way (even if declared static)
145  * in order to allow the debugger to resolve the names properly.
146  * It is anticipated that in the near future the ssd module will be obsoleted,
147  * at which time this namespace issue should go away.
148  */
149 #define	sd_state			ssd_state
150 #define	sd_io_time			ssd_io_time
151 #define	sd_failfast_enable		ssd_failfast_enable
152 #define	sd_ua_retry_count		ssd_ua_retry_count
153 #define	sd_report_pfa			ssd_report_pfa
154 #define	sd_max_throttle			ssd_max_throttle
155 #define	sd_min_throttle			ssd_min_throttle
156 #define	sd_rot_delay			ssd_rot_delay
157 
158 #define	sd_retry_on_reservation_conflict	\
159 					ssd_retry_on_reservation_conflict
160 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
161 #define	sd_resv_conflict_name		ssd_resv_conflict_name
162 
163 #define	sd_component_mask		ssd_component_mask
164 #define	sd_level_mask			ssd_level_mask
165 #define	sd_debug_un			ssd_debug_un
166 #define	sd_error_level			ssd_error_level
167 
168 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
169 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
170 
171 #define	sd_tr				ssd_tr
172 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
173 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
174 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
175 #define	sd_check_media_time		ssd_check_media_time
176 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
177 #define	sd_label_mutex			ssd_label_mutex
178 #define	sd_detach_mutex			ssd_detach_mutex
179 #define	sd_log_buf			ssd_log_buf
180 #define	sd_log_mutex			ssd_log_mutex
181 
182 #define	sd_disk_table			ssd_disk_table
183 #define	sd_disk_table_size		ssd_disk_table_size
184 #define	sd_sense_mutex			ssd_sense_mutex
185 #define	sd_cdbtab			ssd_cdbtab
186 
187 #define	sd_cb_ops			ssd_cb_ops
188 #define	sd_ops				ssd_ops
189 #define	sd_additional_codes		ssd_additional_codes
190 
191 #define	sd_minor_data			ssd_minor_data
192 #define	sd_minor_data_efi		ssd_minor_data_efi
193 
194 #define	sd_tq				ssd_tq
195 #define	sd_wmr_tq			ssd_wmr_tq
196 #define	sd_taskq_name			ssd_taskq_name
197 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
198 #define	sd_taskq_minalloc		ssd_taskq_minalloc
199 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
200 
201 #define	sd_dump_format_string		ssd_dump_format_string
202 
203 #define	sd_iostart_chain		ssd_iostart_chain
204 #define	sd_iodone_chain			ssd_iodone_chain
205 
206 #define	sd_pm_idletime			ssd_pm_idletime
207 
208 #define	sd_force_pm_supported		ssd_force_pm_supported
209 
210 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
211 
212 #endif
213 
214 
215 #ifdef	SDDEBUG
216 int	sd_force_pm_supported		= 0;
217 #endif	/* SDDEBUG */
218 
219 void *sd_state				= NULL;
220 int sd_io_time				= SD_IO_TIME;
221 int sd_failfast_enable			= 1;
222 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
223 int sd_report_pfa			= 1;
224 int sd_max_throttle			= SD_MAX_THROTTLE;
225 int sd_min_throttle			= SD_MIN_THROTTLE;
226 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
227 int sd_qfull_throttle_enable		= TRUE;
228 
229 int sd_retry_on_reservation_conflict	= 1;
230 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
231 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
232 
233 static int sd_dtype_optical_bind	= -1;
234 
235 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
236 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
237 
238 /*
239  * Global data for debug logging. To enable debug printing, sd_component_mask
240  * and sd_level_mask should be set to the desired bit patterns as outlined in
241  * sddef.h.
242  */
243 uint_t	sd_component_mask		= 0x0;
244 uint_t	sd_level_mask			= 0x0;
245 struct	sd_lun *sd_debug_un		= NULL;
246 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
247 
248 /* Note: these may go away in the future... */
249 static uint32_t	sd_xbuf_active_limit	= 512;
250 static uint32_t sd_xbuf_reserve_limit	= 16;
251 
252 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
253 
254 /*
255  * Timer value used to reset the throttle after it has been reduced
256  * (typically in response to TRAN_BUSY or STATUS_QFULL)
257  */
258 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
259 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
260 
261 /*
262  * Interval value associated with the media change scsi watch.
263  */
264 static int sd_check_media_time		= 3000000;
265 
266 /*
267  * Wait value used for in progress operations during a DDI_SUSPEND
268  */
269 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
270 
271 /*
272  * sd_label_mutex protects a static buffer used in the disk label
273  * component of the driver
274  */
275 static kmutex_t sd_label_mutex;
276 
277 /*
278  * sd_detach_mutex protects un_layer_count, un_detach_count, and
279  * un_opens_in_progress in the sd_lun structure.
280  */
281 static kmutex_t sd_detach_mutex;
282 
283 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
284 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
285 
286 /*
287  * Global buffer and mutex for debug logging
288  */
289 static char	sd_log_buf[1024];
290 static kmutex_t	sd_log_mutex;
291 
292 
293 /*
294  * "Smart" Probe Caching structs, globals, #defines, etc.
295  * For parallel scsi and non-self-identify device only.
296  */
297 
298 /*
299  * The following resources and routines are implemented to support
300  * "smart" probing, which caches the scsi_probe() results in an array,
301  * in order to help avoid long probe times.
302  */
303 struct sd_scsi_probe_cache {
304 	struct	sd_scsi_probe_cache	*next;
305 	dev_info_t	*pdip;
306 	int		cache[NTARGETS_WIDE];
307 };
308 
309 static kmutex_t	sd_scsi_probe_cache_mutex;
310 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
311 
312 /*
313  * Really we only need protection on the head of the linked list, but
314  * better safe than sorry.
315  */
316 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
317     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
318 
319 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
320     sd_scsi_probe_cache_head))
321 
322 
323 /*
324  * Vendor specific data name property declarations
325  */
326 
327 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
328 
329 static sd_tunables seagate_properties = {
330 	SEAGATE_THROTTLE_VALUE,
331 	0,
332 	0,
333 	0,
334 	0,
335 	0,
336 	0,
337 	0,
338 	0
339 };
340 
341 
342 static sd_tunables fujitsu_properties = {
343 	FUJITSU_THROTTLE_VALUE,
344 	0,
345 	0,
346 	0,
347 	0,
348 	0,
349 	0,
350 	0,
351 	0
352 };
353 
354 static sd_tunables ibm_properties = {
355 	IBM_THROTTLE_VALUE,
356 	0,
357 	0,
358 	0,
359 	0,
360 	0,
361 	0,
362 	0,
363 	0
364 };
365 
366 static sd_tunables purple_properties = {
367 	PURPLE_THROTTLE_VALUE,
368 	0,
369 	0,
370 	PURPLE_BUSY_RETRIES,
371 	PURPLE_RESET_RETRY_COUNT,
372 	PURPLE_RESERVE_RELEASE_TIME,
373 	0,
374 	0,
375 	0
376 };
377 
378 static sd_tunables sve_properties = {
379 	SVE_THROTTLE_VALUE,
380 	0,
381 	0,
382 	SVE_BUSY_RETRIES,
383 	SVE_RESET_RETRY_COUNT,
384 	SVE_RESERVE_RELEASE_TIME,
385 	SVE_MIN_THROTTLE_VALUE,
386 	SVE_DISKSORT_DISABLED_FLAG,
387 	0
388 };
389 
390 static sd_tunables maserati_properties = {
391 	0,
392 	0,
393 	0,
394 	0,
395 	0,
396 	0,
397 	0,
398 	MASERATI_DISKSORT_DISABLED_FLAG,
399 	MASERATI_LUN_RESET_ENABLED_FLAG
400 };
401 
402 static sd_tunables pirus_properties = {
403 	PIRUS_THROTTLE_VALUE,
404 	0,
405 	PIRUS_NRR_COUNT,
406 	PIRUS_BUSY_RETRIES,
407 	PIRUS_RESET_RETRY_COUNT,
408 	0,
409 	PIRUS_MIN_THROTTLE_VALUE,
410 	PIRUS_DISKSORT_DISABLED_FLAG,
411 	PIRUS_LUN_RESET_ENABLED_FLAG
412 };
413 
414 #endif
415 
416 #if (defined(__sparc) && !defined(__fibre)) || \
417 	(defined(__i386) || defined(__amd64))
418 
419 
420 static sd_tunables elite_properties = {
421 	ELITE_THROTTLE_VALUE,
422 	0,
423 	0,
424 	0,
425 	0,
426 	0,
427 	0,
428 	0,
429 	0
430 };
431 
432 static sd_tunables st31200n_properties = {
433 	ST31200N_THROTTLE_VALUE,
434 	0,
435 	0,
436 	0,
437 	0,
438 	0,
439 	0,
440 	0,
441 	0
442 };
443 
444 #endif /* Fibre or not */
445 
446 static sd_tunables lsi_properties_scsi = {
447 	LSI_THROTTLE_VALUE,
448 	0,
449 	LSI_NOTREADY_RETRIES,
450 	0,
451 	0,
452 	0,
453 	0,
454 	0,
455 	0
456 };
457 
458 static sd_tunables symbios_properties = {
459 	SYMBIOS_THROTTLE_VALUE,
460 	0,
461 	SYMBIOS_NOTREADY_RETRIES,
462 	0,
463 	0,
464 	0,
465 	0,
466 	0,
467 	0
468 };
469 
470 static sd_tunables lsi_properties = {
471 	0,
472 	0,
473 	LSI_NOTREADY_RETRIES,
474 	0,
475 	0,
476 	0,
477 	0,
478 	0,
479 	0
480 };
481 
482 static sd_tunables lsi_oem_properties = {
483 	0,
484 	0,
485 	LSI_OEM_NOTREADY_RETRIES,
486 	0,
487 	0,
488 	0,
489 	0,
490 	0,
491 	0
492 };
493 
494 
495 
496 #if (defined(SD_PROP_TST))
497 
498 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
499 #define	SD_TST_THROTTLE_VAL	16
500 #define	SD_TST_NOTREADY_VAL	12
501 #define	SD_TST_BUSY_VAL		60
502 #define	SD_TST_RST_RETRY_VAL	36
503 #define	SD_TST_RSV_REL_TIME	60
504 
505 static sd_tunables tst_properties = {
506 	SD_TST_THROTTLE_VAL,
507 	SD_TST_CTYPE_VAL,
508 	SD_TST_NOTREADY_VAL,
509 	SD_TST_BUSY_VAL,
510 	SD_TST_RST_RETRY_VAL,
511 	SD_TST_RSV_REL_TIME,
512 	0,
513 	0,
514 	0
515 };
516 #endif
517 
518 /* This is similiar to the ANSI toupper implementation */
519 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
520 
521 /*
522  * Static Driver Configuration Table
523  *
524  * This is the table of disks which need throttle adjustment (or, perhaps
525  * something else as defined by the flags at a future time.)  device_id
526  * is a string consisting of concatenated vid (vendor), pid (product/model)
527  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
528  * the parts of the string are as defined by the sizes in the scsi_inquiry
529  * structure.  Device type is searched as far as the device_id string is
530  * defined.  Flags defines which values are to be set in the driver from the
531  * properties list.
532  *
533  * Entries below which begin and end with a "*" are a special case.
534  * These do not have a specific vendor, and the string which follows
535  * can appear anywhere in the 16 byte PID portion of the inquiry data.
536  *
537  * Entries below which begin and end with a " " (blank) are a special
538  * case. The comparison function will treat multiple consecutive blanks
539  * as equivalent to a single blank. For example, this causes a
540  * sd_disk_table entry of " NEC CDROM " to match a device's id string
541  * of  "NEC       CDROM".
542  *
543  * Note: The MD21 controller type has been obsoleted.
544  *	 ST318202F is a Legacy device
545  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
546  *	 made with an FC connection. The entries here are a legacy.
547  */
548 static sd_disk_config_t sd_disk_table[] = {
549 #if defined(__fibre) || defined(__i386) || defined(__amd64)
550 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
551 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
552 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
553 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
554 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
555 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
556 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
557 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
558 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
559 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
560 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
561 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
562 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
563 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
564 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
565 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
566 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
567 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
568 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
569 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
570 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
571 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
572 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
573 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
574 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
575 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
576 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
577 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
578 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
579 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
580 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
581 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
582 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
583 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
584 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
585 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
586 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
587 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
588 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
589 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
590 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
591 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
592 			SD_CONF_BSET_BSY_RETRY_COUNT|
593 			SD_CONF_BSET_RST_RETRIES|
594 			SD_CONF_BSET_RSV_REL_TIME,
595 		&purple_properties },
596 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
597 		SD_CONF_BSET_BSY_RETRY_COUNT|
598 		SD_CONF_BSET_RST_RETRIES|
599 		SD_CONF_BSET_RSV_REL_TIME|
600 		SD_CONF_BSET_MIN_THROTTLE|
601 		SD_CONF_BSET_DISKSORT_DISABLED,
602 		&sve_properties },
603 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
604 			SD_CONF_BSET_BSY_RETRY_COUNT|
605 			SD_CONF_BSET_RST_RETRIES|
606 			SD_CONF_BSET_RSV_REL_TIME,
607 		&purple_properties },
608 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
609 		SD_CONF_BSET_LUN_RESET_ENABLED,
610 		&maserati_properties },
611 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
612 		SD_CONF_BSET_NRR_COUNT|
613 		SD_CONF_BSET_BSY_RETRY_COUNT|
614 		SD_CONF_BSET_RST_RETRIES|
615 		SD_CONF_BSET_MIN_THROTTLE|
616 		SD_CONF_BSET_DISKSORT_DISABLED|
617 		SD_CONF_BSET_LUN_RESET_ENABLED,
618 		&pirus_properties },
619 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
620 		SD_CONF_BSET_NRR_COUNT|
621 		SD_CONF_BSET_BSY_RETRY_COUNT|
622 		SD_CONF_BSET_RST_RETRIES|
623 		SD_CONF_BSET_MIN_THROTTLE|
624 		SD_CONF_BSET_DISKSORT_DISABLED|
625 		SD_CONF_BSET_LUN_RESET_ENABLED,
626 		&pirus_properties },
627 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
628 		SD_CONF_BSET_NRR_COUNT|
629 		SD_CONF_BSET_BSY_RETRY_COUNT|
630 		SD_CONF_BSET_RST_RETRIES|
631 		SD_CONF_BSET_MIN_THROTTLE|
632 		SD_CONF_BSET_DISKSORT_DISABLED|
633 		SD_CONF_BSET_LUN_RESET_ENABLED,
634 		&pirus_properties },
635 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
636 		SD_CONF_BSET_NRR_COUNT|
637 		SD_CONF_BSET_BSY_RETRY_COUNT|
638 		SD_CONF_BSET_RST_RETRIES|
639 		SD_CONF_BSET_MIN_THROTTLE|
640 		SD_CONF_BSET_DISKSORT_DISABLED|
641 		SD_CONF_BSET_LUN_RESET_ENABLED,
642 		&pirus_properties },
643 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
644 		SD_CONF_BSET_NRR_COUNT|
645 		SD_CONF_BSET_BSY_RETRY_COUNT|
646 		SD_CONF_BSET_RST_RETRIES|
647 		SD_CONF_BSET_MIN_THROTTLE|
648 		SD_CONF_BSET_DISKSORT_DISABLED|
649 		SD_CONF_BSET_LUN_RESET_ENABLED,
650 		&pirus_properties },
651 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
652 		SD_CONF_BSET_NRR_COUNT|
653 		SD_CONF_BSET_BSY_RETRY_COUNT|
654 		SD_CONF_BSET_RST_RETRIES|
655 		SD_CONF_BSET_MIN_THROTTLE|
656 		SD_CONF_BSET_DISKSORT_DISABLED|
657 		SD_CONF_BSET_LUN_RESET_ENABLED,
658 		&pirus_properties },
659 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
660 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
661 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
662 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
663 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
664 #endif /* fibre or NON-sparc platforms */
665 #if ((defined(__sparc) && !defined(__fibre)) ||\
666 	(defined(__i386) || defined(__amd64)))
667 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
668 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
669 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
670 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
671 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
672 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
673 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
674 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
675 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
676 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
677 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
678 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
679 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
680 	    &symbios_properties },
681 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
682 	    &lsi_properties_scsi },
683 #if defined(__i386) || defined(__amd64)
684 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
685 				    | SD_CONF_BSET_READSUB_BCD
686 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
687 				    | SD_CONF_BSET_NO_READ_HEADER
688 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
689 
690 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
691 				    | SD_CONF_BSET_READSUB_BCD
692 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
693 				    | SD_CONF_BSET_NO_READ_HEADER
694 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
695 #endif /* __i386 || __amd64 */
696 #endif /* sparc NON-fibre or NON-sparc platforms */
697 
698 #if (defined(SD_PROP_TST))
699 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
700 				| SD_CONF_BSET_CTYPE
701 				| SD_CONF_BSET_NRR_COUNT
702 				| SD_CONF_BSET_FAB_DEVID
703 				| SD_CONF_BSET_NOCACHE
704 				| SD_CONF_BSET_BSY_RETRY_COUNT
705 				| SD_CONF_BSET_PLAYMSF_BCD
706 				| SD_CONF_BSET_READSUB_BCD
707 				| SD_CONF_BSET_READ_TOC_TRK_BCD
708 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
709 				| SD_CONF_BSET_NO_READ_HEADER
710 				| SD_CONF_BSET_READ_CD_XD4
711 				| SD_CONF_BSET_RST_RETRIES
712 				| SD_CONF_BSET_RSV_REL_TIME
713 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
714 #endif
715 };
716 
717 static const int sd_disk_table_size =
718 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
719 
720 
721 /*
722  * Return codes of sd_uselabel().
723  */
724 #define	SD_LABEL_IS_VALID		0
725 #define	SD_LABEL_IS_INVALID		1
726 
727 #define	SD_INTERCONNECT_PARALLEL	0
728 #define	SD_INTERCONNECT_FABRIC		1
729 #define	SD_INTERCONNECT_FIBRE		2
730 #define	SD_INTERCONNECT_SSA		3
731 #define	SD_IS_PARALLEL_SCSI(un)		\
732 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
733 
734 /*
735  * Definitions used by device id registration routines
736  */
737 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
738 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
739 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
740 #define	WD_NODE			7	/* the whole disk minor */
741 
742 static kmutex_t sd_sense_mutex = {0};
743 
744 /*
745  * Macros for updates of the driver state
746  */
747 #define	New_state(un, s)        \
748 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
749 #define	Restore_state(un)	\
750 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
751 
752 static struct sd_cdbinfo sd_cdbtab[] = {
753 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
754 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
755 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
756 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
757 };
758 
759 /*
760  * Specifies the number of seconds that must have elapsed since the last
761  * cmd. has completed for a device to be declared idle to the PM framework.
762  */
763 static int sd_pm_idletime = 1;
764 
765 /*
766  * Internal function prototypes
767  */
768 
769 #if (defined(__fibre))
770 /*
771  * These #defines are to avoid namespace collisions that occur because this
772  * code is currently used to compile two seperate driver modules: sd and ssd.
773  * All function names need to be treated this way (even if declared static)
774  * in order to allow the debugger to resolve the names properly.
775  * It is anticipated that in the near future the ssd module will be obsoleted,
776  * at which time this ugliness should go away.
777  */
778 #define	sd_log_trace			ssd_log_trace
779 #define	sd_log_info			ssd_log_info
780 #define	sd_log_err			ssd_log_err
781 #define	sdprobe				ssdprobe
782 #define	sdinfo				ssdinfo
783 #define	sd_prop_op			ssd_prop_op
784 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
785 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
786 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
787 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
788 #define	sd_spin_up_unit			ssd_spin_up_unit
789 #define	sd_enable_descr_sense		ssd_enable_descr_sense
790 #define	sd_set_mmc_caps			ssd_set_mmc_caps
791 #define	sd_read_unit_properties		ssd_read_unit_properties
792 #define	sd_process_sdconf_file		ssd_process_sdconf_file
793 #define	sd_process_sdconf_table		ssd_process_sdconf_table
794 #define	sd_sdconf_id_match		ssd_sdconf_id_match
795 #define	sd_blank_cmp			ssd_blank_cmp
796 #define	sd_chk_vers1_data		ssd_chk_vers1_data
797 #define	sd_set_vers1_properties		ssd_set_vers1_properties
798 #define	sd_validate_geometry		ssd_validate_geometry
799 
800 #if defined(_SUNOS_VTOC_16)
801 #define	sd_convert_geometry		ssd_convert_geometry
802 #endif
803 
804 #define	sd_resync_geom_caches		ssd_resync_geom_caches
805 #define	sd_read_fdisk			ssd_read_fdisk
806 #define	sd_get_physical_geometry	ssd_get_physical_geometry
807 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
808 #define	sd_update_block_info		ssd_update_block_info
809 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
810 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
811 #define	sd_validate_efi			ssd_validate_efi
812 #define	sd_use_efi			ssd_use_efi
813 #define	sd_uselabel			ssd_uselabel
814 #define	sd_build_default_label		ssd_build_default_label
815 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
816 #define	sd_inq_fill			ssd_inq_fill
817 #define	sd_register_devid		ssd_register_devid
818 #define	sd_get_devid_block		ssd_get_devid_block
819 #define	sd_get_devid			ssd_get_devid
820 #define	sd_create_devid			ssd_create_devid
821 #define	sd_write_deviceid		ssd_write_deviceid
822 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
823 #define	sd_setup_pm			ssd_setup_pm
824 #define	sd_create_pm_components		ssd_create_pm_components
825 #define	sd_ddi_suspend			ssd_ddi_suspend
826 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
827 #define	sd_ddi_resume			ssd_ddi_resume
828 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
829 #define	sdpower				ssdpower
830 #define	sdattach			ssdattach
831 #define	sddetach			ssddetach
832 #define	sd_unit_attach			ssd_unit_attach
833 #define	sd_unit_detach			ssd_unit_detach
834 #define	sd_set_unit_attributes		ssd_set_unit_attributes
835 #define	sd_create_minor_nodes		ssd_create_minor_nodes
836 #define	sd_create_errstats		ssd_create_errstats
837 #define	sd_set_errstats			ssd_set_errstats
838 #define	sd_set_pstats			ssd_set_pstats
839 #define	sddump				ssddump
840 #define	sd_scsi_poll			ssd_scsi_poll
841 #define	sd_send_polled_RQS		ssd_send_polled_RQS
842 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
843 #define	sd_init_event_callbacks		ssd_init_event_callbacks
844 #define	sd_event_callback		ssd_event_callback
845 #define	sd_cache_control		ssd_cache_control
846 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
847 #define	sd_make_device			ssd_make_device
848 #define	sdopen				ssdopen
849 #define	sdclose				ssdclose
850 #define	sd_ready_and_valid		ssd_ready_and_valid
851 #define	sdmin				ssdmin
852 #define	sdread				ssdread
853 #define	sdwrite				ssdwrite
854 #define	sdaread				ssdaread
855 #define	sdawrite			ssdawrite
856 #define	sdstrategy			ssdstrategy
857 #define	sdioctl				ssdioctl
858 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
859 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
860 #define	sd_checksum_iostart		ssd_checksum_iostart
861 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
862 #define	sd_pm_iostart			ssd_pm_iostart
863 #define	sd_core_iostart			ssd_core_iostart
864 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
865 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
866 #define	sd_checksum_iodone		ssd_checksum_iodone
867 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
868 #define	sd_pm_iodone			ssd_pm_iodone
869 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
870 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
871 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
872 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
873 #define	sd_buf_iodone			ssd_buf_iodone
874 #define	sd_uscsi_strategy		ssd_uscsi_strategy
875 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
876 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
877 #define	sd_uscsi_iodone			ssd_uscsi_iodone
878 #define	sd_xbuf_strategy		ssd_xbuf_strategy
879 #define	sd_xbuf_init			ssd_xbuf_init
880 #define	sd_pm_entry			ssd_pm_entry
881 #define	sd_pm_exit			ssd_pm_exit
882 
883 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
884 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
885 
886 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
887 #define	sdintr				ssdintr
888 #define	sd_start_cmds			ssd_start_cmds
889 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
890 #define	sd_bioclone_alloc		ssd_bioclone_alloc
891 #define	sd_bioclone_free		ssd_bioclone_free
892 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
893 #define	sd_shadow_buf_free		ssd_shadow_buf_free
894 #define	sd_print_transport_rejected_message	\
895 					ssd_print_transport_rejected_message
896 #define	sd_retry_command		ssd_retry_command
897 #define	sd_set_retry_bp			ssd_set_retry_bp
898 #define	sd_send_request_sense_command	ssd_send_request_sense_command
899 #define	sd_start_retry_command		ssd_start_retry_command
900 #define	sd_start_direct_priority_command	\
901 					ssd_start_direct_priority_command
902 #define	sd_return_failed_command	ssd_return_failed_command
903 #define	sd_return_failed_command_no_restart	\
904 					ssd_return_failed_command_no_restart
905 #define	sd_return_command		ssd_return_command
906 #define	sd_sync_with_callback		ssd_sync_with_callback
907 #define	sdrunout			ssdrunout
908 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
909 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
910 #define	sd_reduce_throttle		ssd_reduce_throttle
911 #define	sd_restore_throttle		ssd_restore_throttle
912 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
913 #define	sd_init_cdb_limits		ssd_init_cdb_limits
914 #define	sd_pkt_status_good		ssd_pkt_status_good
915 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
916 #define	sd_pkt_status_busy		ssd_pkt_status_busy
917 #define	sd_pkt_status_reservation_conflict	\
918 					ssd_pkt_status_reservation_conflict
919 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
920 #define	sd_handle_request_sense		ssd_handle_request_sense
921 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
922 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
923 #define	sd_validate_sense_data		ssd_validate_sense_data
924 #define	sd_decode_sense			ssd_decode_sense
925 #define	sd_print_sense_msg		ssd_print_sense_msg
926 #define	sd_extract_sense_info_descr	ssd_extract_sense_info_descr
927 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
928 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
929 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
930 #define	sd_sense_key_medium_or_hardware_error	\
931 					ssd_sense_key_medium_or_hardware_error
932 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
933 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
934 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
935 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
936 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
937 #define	sd_sense_key_default		ssd_sense_key_default
938 #define	sd_print_retry_msg		ssd_print_retry_msg
939 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
940 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
941 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
942 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
943 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
944 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
945 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
946 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
947 #define	sd_pkt_reason_default		ssd_pkt_reason_default
948 #define	sd_reset_target			ssd_reset_target
949 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
950 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
951 #define	sd_taskq_create			ssd_taskq_create
952 #define	sd_taskq_delete			ssd_taskq_delete
953 #define	sd_media_change_task		ssd_media_change_task
954 #define	sd_handle_mchange		ssd_handle_mchange
955 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
956 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
957 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
958 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
959 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
960 					sd_send_scsi_feature_GET_CONFIGURATION
961 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
962 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
963 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
964 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
965 					ssd_send_scsi_PERSISTENT_RESERVE_IN
966 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
967 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
968 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
969 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
970 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
971 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
972 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
973 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
974 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
975 #define	sd_alloc_rqs			ssd_alloc_rqs
976 #define	sd_free_rqs			ssd_free_rqs
977 #define	sd_dump_memory			ssd_dump_memory
978 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
979 #define	sd_get_media_info		ssd_get_media_info
980 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
981 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
982 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
983 #define	sd_dkio_get_partition		ssd_dkio_get_partition
984 #define	sd_dkio_set_partition		ssd_dkio_set_partition
985 #define	sd_dkio_partition		ssd_dkio_partition
986 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
987 #define	sd_dkio_get_efi			ssd_dkio_get_efi
988 #define	sd_build_user_vtoc		ssd_build_user_vtoc
989 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
990 #define	sd_dkio_set_efi			ssd_dkio_set_efi
991 #define	sd_build_label_vtoc		ssd_build_label_vtoc
992 #define	sd_write_label			ssd_write_label
993 #define	sd_clear_vtoc			ssd_clear_vtoc
994 #define	sd_clear_efi			ssd_clear_efi
995 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
996 #define	sd_setup_next_xfer		ssd_setup_next_xfer
997 #define	sd_dkio_get_temp		ssd_dkio_get_temp
998 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
999 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
1000 #define	sd_setup_default_geometry	ssd_setup_default_geometry
1001 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
1002 #define	sd_check_mhd			ssd_check_mhd
1003 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1004 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1005 #define	sd_sname			ssd_sname
1006 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1007 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1008 #define	sd_take_ownership		ssd_take_ownership
1009 #define	sd_reserve_release		ssd_reserve_release
1010 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1011 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1012 #define	sd_persistent_reservation_in_read_keys	\
1013 					ssd_persistent_reservation_in_read_keys
1014 #define	sd_persistent_reservation_in_read_resv	\
1015 					ssd_persistent_reservation_in_read_resv
1016 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1017 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1018 #define	sd_mhdioc_release		ssd_mhdioc_release
1019 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1020 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1021 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1022 #define	sr_change_blkmode		ssr_change_blkmode
1023 #define	sr_change_speed			ssr_change_speed
1024 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1025 #define	sr_pause_resume			ssr_pause_resume
1026 #define	sr_play_msf			ssr_play_msf
1027 #define	sr_play_trkind			ssr_play_trkind
1028 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1029 #define	sr_read_subchannel		ssr_read_subchannel
1030 #define	sr_read_tocentry		ssr_read_tocentry
1031 #define	sr_read_tochdr			ssr_read_tochdr
1032 #define	sr_read_cdda			ssr_read_cdda
1033 #define	sr_read_cdxa			ssr_read_cdxa
1034 #define	sr_read_mode1			ssr_read_mode1
1035 #define	sr_read_mode2			ssr_read_mode2
1036 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1037 #define	sr_sector_mode			ssr_sector_mode
1038 #define	sr_eject			ssr_eject
1039 #define	sr_ejected			ssr_ejected
1040 #define	sr_check_wp			ssr_check_wp
1041 #define	sd_check_media			ssd_check_media
1042 #define	sd_media_watch_cb		ssd_media_watch_cb
1043 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1044 #define	sr_volume_ctrl			ssr_volume_ctrl
1045 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1046 #define	sd_log_page_supported		ssd_log_page_supported
1047 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1048 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1049 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1050 #define	sd_range_lock			ssd_range_lock
1051 #define	sd_get_range			ssd_get_range
1052 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1053 #define	sd_range_unlock			ssd_range_unlock
1054 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1055 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1056 
1057 #define	sd_iostart_chain		ssd_iostart_chain
1058 #define	sd_iodone_chain			ssd_iodone_chain
1059 #define	sd_initpkt_map			ssd_initpkt_map
1060 #define	sd_destroypkt_map		ssd_destroypkt_map
1061 #define	sd_chain_type_map		ssd_chain_type_map
1062 #define	sd_chain_index_map		ssd_chain_index_map
1063 
1064 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1065 #define	sd_failfast_flushq		ssd_failfast_flushq
1066 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1067 
1068 #define	sd_is_lsi			ssd_is_lsi
1069 
1070 #endif	/* #if (defined(__fibre)) */
1071 
1072 
1073 int _init(void);
1074 int _fini(void);
1075 int _info(struct modinfo *modinfop);
1076 
1077 /*PRINTFLIKE3*/
1078 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1079 /*PRINTFLIKE3*/
1080 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1081 /*PRINTFLIKE3*/
1082 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1083 
1084 static int sdprobe(dev_info_t *devi);
1085 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1086     void **result);
1087 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1088     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1089 
1090 /*
1091  * Smart probe for parallel scsi
1092  */
1093 static void sd_scsi_probe_cache_init(void);
1094 static void sd_scsi_probe_cache_fini(void);
1095 static void sd_scsi_clear_probe_cache(void);
1096 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1097 
1098 static int	sd_spin_up_unit(struct sd_lun *un);
1099 #ifdef _LP64
1100 static void	sd_enable_descr_sense(struct sd_lun *un);
1101 #endif /* _LP64 */
1102 static void	sd_set_mmc_caps(struct sd_lun *un);
1103 
1104 static void sd_read_unit_properties(struct sd_lun *un);
1105 static int  sd_process_sdconf_file(struct sd_lun *un);
1106 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1107     int *data_list, sd_tunables *values);
1108 static void sd_process_sdconf_table(struct sd_lun *un);
1109 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1110 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1111 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1112 	int list_len, char *dataname_ptr);
1113 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1114     sd_tunables *prop_list);
1115 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1116 
1117 #if defined(_SUNOS_VTOC_16)
1118 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1119 #endif
1120 
1121 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1122 	int path_flag);
1123 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1124 	int path_flag);
1125 static void sd_get_physical_geometry(struct sd_lun *un,
1126 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1127 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1128 	int lbasize);
1129 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1130 static void sd_swap_efi_gpt(efi_gpt_t *);
1131 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1132 static int sd_validate_efi(efi_gpt_t *);
1133 static int sd_use_efi(struct sd_lun *, int);
1134 static void sd_build_default_label(struct sd_lun *un);
1135 
1136 #if defined(_FIRMWARE_NEEDS_FDISK)
1137 static int  sd_has_max_chs_vals(struct ipart *fdp);
1138 #endif
1139 static void sd_inq_fill(char *p, int l, char *s);
1140 
1141 
1142 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1143     int reservation_flag);
1144 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1145 static int  sd_get_devid(struct sd_lun *un);
1146 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1147 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1148 static int  sd_write_deviceid(struct sd_lun *un);
1149 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1150 static int  sd_check_vpd_page_support(struct sd_lun *un);
1151 
1152 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1153 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1154 
1155 static int  sd_ddi_suspend(dev_info_t *devi);
1156 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1157 static int  sd_ddi_resume(dev_info_t *devi);
1158 static int  sd_ddi_pm_resume(struct sd_lun *un);
1159 static int  sdpower(dev_info_t *devi, int component, int level);
1160 
1161 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1162 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1163 static int  sd_unit_attach(dev_info_t *devi);
1164 static int  sd_unit_detach(dev_info_t *devi);
1165 
1166 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1167 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1168 static void sd_create_errstats(struct sd_lun *un, int instance);
1169 static void sd_set_errstats(struct sd_lun *un);
1170 static void sd_set_pstats(struct sd_lun *un);
1171 
1172 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1173 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1174 static int  sd_send_polled_RQS(struct sd_lun *un);
1175 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1176 
1177 #if (defined(__fibre))
1178 /*
1179  * Event callbacks (photon)
1180  */
1181 static void sd_init_event_callbacks(struct sd_lun *un);
1182 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1183 #endif
1184 
1185 /*
1186  * Defines for sd_cache_control
1187  */
1188 
1189 #define	SD_CACHE_ENABLE		1
1190 #define	SD_CACHE_DISABLE	0
1191 #define	SD_CACHE_NOCHANGE	-1
1192 
1193 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1194 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1195 static dev_t sd_make_device(dev_info_t *devi);
1196 
1197 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1198 	uint64_t capacity);
1199 
1200 /*
1201  * Driver entry point functions.
1202  */
1203 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1204 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1205 static int  sd_ready_and_valid(struct sd_lun *un);
1206 
1207 static void sdmin(struct buf *bp);
1208 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1209 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1210 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1211 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1212 
1213 static int sdstrategy(struct buf *bp);
1214 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1215 
1216 /*
1217  * Function prototypes for layering functions in the iostart chain.
1218  */
1219 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1220 	struct buf *bp);
1221 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1222 	struct buf *bp);
1223 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1224 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1225 	struct buf *bp);
1226 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1227 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1228 
1229 /*
1230  * Function prototypes for layering functions in the iodone chain.
1231  */
1232 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1233 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1234 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1235 	struct buf *bp);
1236 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1237 	struct buf *bp);
1238 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1239 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1240 	struct buf *bp);
1241 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1242 
1243 /*
1244  * Prototypes for functions to support buf(9S) based IO.
1245  */
1246 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1247 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1248 static void sd_destroypkt_for_buf(struct buf *);
1249 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1250 	struct buf *bp, int flags,
1251 	int (*callback)(caddr_t), caddr_t callback_arg,
1252 	diskaddr_t lba, uint32_t blockcount);
1253 #if defined(__i386) || defined(__amd64)
1254 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1255 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1256 #endif /* defined(__i386) || defined(__amd64) */
1257 
1258 /*
1259  * Prototypes for functions to support USCSI IO.
1260  */
1261 static int sd_uscsi_strategy(struct buf *bp);
1262 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1263 static void sd_destroypkt_for_uscsi(struct buf *);
1264 
1265 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1266 	uchar_t chain_type, void *pktinfop);
1267 
1268 static int  sd_pm_entry(struct sd_lun *un);
1269 static void sd_pm_exit(struct sd_lun *un);
1270 
1271 static void sd_pm_idletimeout_handler(void *arg);
1272 
1273 /*
1274  * sd_core internal functions (used at the sd_core_io layer).
1275  */
1276 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1277 static void sdintr(struct scsi_pkt *pktp);
1278 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1279 
1280 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1281 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1282 	int path_flag);
1283 
1284 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1285 	daddr_t blkno, int (*func)(struct buf *));
1286 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1287 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1288 static void sd_bioclone_free(struct buf *bp);
1289 static void sd_shadow_buf_free(struct buf *bp);
1290 
1291 static void sd_print_transport_rejected_message(struct sd_lun *un,
1292 	struct sd_xbuf *xp, int code);
1293 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1294     void *arg, int code);
1295 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1296     void *arg, int code);
1297 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1298     void *arg, int code);
1299 
1300 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1301 	int retry_check_flag,
1302 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1303 		int c),
1304 	void *user_arg, int failure_code,  clock_t retry_delay,
1305 	void (*statp)(kstat_io_t *));
1306 
1307 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1308 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1309 
1310 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1311 	struct scsi_pkt *pktp);
1312 static void sd_start_retry_command(void *arg);
1313 static void sd_start_direct_priority_command(void *arg);
1314 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1315 	int errcode);
1316 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1317 	struct buf *bp, int errcode);
1318 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1319 static void sd_sync_with_callback(struct sd_lun *un);
1320 static int sdrunout(caddr_t arg);
1321 
1322 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1323 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1324 
1325 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1326 static void sd_restore_throttle(void *arg);
1327 
1328 static void sd_init_cdb_limits(struct sd_lun *un);
1329 
1330 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1331 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1332 
1333 /*
1334  * Error handling functions
1335  */
1336 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1337 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1338 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1339 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1340 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1341 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1342 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1343 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1344 
1345 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1346 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1347 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1348 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1349 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1350 	struct sd_xbuf *xp);
1351 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1352 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1353 
1354 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1355 	void *arg, int code);
1356 static diskaddr_t sd_extract_sense_info_descr(
1357 	struct scsi_descr_sense_hdr *sdsp);
1358 
1359 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1360 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1361 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1362 	uint8_t asc,
1363 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1364 static void sd_sense_key_not_ready(struct sd_lun *un,
1365 	uint8_t asc, uint8_t ascq,
1366 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1367 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1368 	int sense_key, uint8_t asc,
1369 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1370 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1371 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1372 static void sd_sense_key_unit_attention(struct sd_lun *un,
1373 	uint8_t asc,
1374 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1375 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1376 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1377 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1378 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1379 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1380 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1381 static void sd_sense_key_default(struct sd_lun *un,
1382 	int sense_key,
1383 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1384 
1385 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1386 	void *arg, int flag);
1387 
1388 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1389 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1390 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1391 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1392 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1393 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1394 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1395 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1396 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1397 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1398 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1399 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1400 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1401 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1402 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1403 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1404 
1405 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1406 
1407 static void sd_start_stop_unit_callback(void *arg);
1408 static void sd_start_stop_unit_task(void *arg);
1409 
1410 static void sd_taskq_create(void);
1411 static void sd_taskq_delete(void);
1412 static void sd_media_change_task(void *arg);
1413 
1414 static int sd_handle_mchange(struct sd_lun *un);
1415 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1416 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1417 	uint32_t *lbap, int path_flag);
1418 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1419 	uint32_t *lbap, int path_flag);
1420 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1421 	int path_flag);
1422 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1423 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1424 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1425 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1426 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1427 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1428 	uchar_t usr_cmd, uchar_t *usr_bufp);
1429 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1430 	struct dk_callback *dkc);
1431 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1432 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1433 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1434 	uchar_t *bufaddr, uint_t buflen);
1435 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1436 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1437 	uchar_t *bufaddr, uint_t buflen, char feature);
1438 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1439 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1440 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1441 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1442 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1443 	size_t buflen, daddr_t start_block, int path_flag);
1444 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1445 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1446 	path_flag)
1447 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1448 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1449 	path_flag)
1450 
1451 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1452 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1453 	uint16_t param_ptr, int path_flag);
1454 
1455 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1456 static void sd_free_rqs(struct sd_lun *un);
1457 
1458 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1459 	uchar_t *data, int len, int fmt);
1460 static void sd_panic_for_res_conflict(struct sd_lun *un);
1461 
1462 /*
1463  * Disk Ioctl Function Prototypes
1464  */
1465 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1466 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1467 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1468 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1469 	int geom_validated);
1470 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1471 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1472 	int geom_validated);
1473 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1474 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1475 	int geom_validated);
1476 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1477 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1478 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1479 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1480 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1481 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1482 static int sd_write_label(dev_t dev);
1483 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1484 static void sd_clear_vtoc(struct sd_lun *un);
1485 static void sd_clear_efi(struct sd_lun *un);
1486 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1487 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1488 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1489 static void sd_setup_default_geometry(struct sd_lun *un);
1490 #if defined(__i386) || defined(__amd64)
1491 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1492 #endif
1493 
1494 /*
1495  * Multi-host Ioctl Prototypes
1496  */
1497 static int sd_check_mhd(dev_t dev, int interval);
1498 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1499 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1500 static char *sd_sname(uchar_t status);
1501 static void sd_mhd_resvd_recover(void *arg);
1502 static void sd_resv_reclaim_thread();
1503 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1504 static int sd_reserve_release(dev_t dev, int cmd);
1505 static void sd_rmv_resv_reclaim_req(dev_t dev);
1506 static void sd_mhd_reset_notify_cb(caddr_t arg);
1507 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1508 	mhioc_inkeys_t *usrp, int flag);
1509 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1510 	mhioc_inresvs_t *usrp, int flag);
1511 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1512 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1513 static int sd_mhdioc_release(dev_t dev);
1514 static int sd_mhdioc_register_devid(dev_t dev);
1515 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1516 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1517 
1518 /*
1519  * SCSI removable prototypes
1520  */
1521 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1522 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1523 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1524 static int sr_pause_resume(dev_t dev, int mode);
1525 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1526 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1527 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1528 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1529 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1530 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1531 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1532 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1533 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1534 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1535 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1536 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1537 static int sr_eject(dev_t dev);
1538 static void sr_ejected(register struct sd_lun *un);
1539 static int sr_check_wp(dev_t dev);
1540 static int sd_check_media(dev_t dev, enum dkio_state state);
1541 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1542 static void sd_delayed_cv_broadcast(void *arg);
1543 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1544 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1545 
1546 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1547 
1548 /*
1549  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1550  */
1551 static void sd_check_for_writable_cd(struct sd_lun *un);
1552 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1553 static void sd_wm_cache_destructor(void *wm, void *un);
1554 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1555 	daddr_t endb, ushort_t typ);
1556 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1557 	daddr_t endb);
1558 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1559 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1560 static void sd_read_modify_write_task(void * arg);
1561 static int
1562 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1563 	struct buf **bpp);
1564 
1565 
1566 /*
1567  * Function prototypes for failfast support.
1568  */
1569 static void sd_failfast_flushq(struct sd_lun *un);
1570 static int sd_failfast_flushq_callback(struct buf *bp);
1571 
1572 /*
1573  * Function prototypes to check for lsi devices
1574  */
1575 static void sd_is_lsi(struct sd_lun *un);
1576 
1577 /*
1578  * Function prototypes for x86 support
1579  */
1580 #if defined(__i386) || defined(__amd64)
1581 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1582 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1583 #endif
1584 
1585 /*
1586  * Constants for failfast support:
1587  *
1588  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1589  * failfast processing being performed.
1590  *
1591  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1592  * failfast processing on all bufs with B_FAILFAST set.
1593  */
1594 
1595 #define	SD_FAILFAST_INACTIVE		0
1596 #define	SD_FAILFAST_ACTIVE		1
1597 
1598 /*
1599  * Bitmask to control behavior of buf(9S) flushes when a transition to
1600  * the failfast state occurs. Optional bits include:
1601  *
1602  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1603  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1604  * be flushed.
1605  *
1606  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1607  * driver, in addition to the regular wait queue. This includes the xbuf
1608  * queues. When clear, only the driver's wait queue will be flushed.
1609  */
1610 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1611 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1612 
1613 /*
1614  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1615  * to flush all queues within the driver.
1616  */
1617 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1618 
1619 
1620 /*
1621  * SD Testing Fault Injection
1622  */
1623 #ifdef SD_FAULT_INJECTION
1624 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1625 static void sd_faultinjection(struct scsi_pkt *pktp);
1626 static void sd_injection_log(char *buf, struct sd_lun *un);
1627 #endif
1628 
1629 /*
1630  * Device driver ops vector
1631  */
1632 static struct cb_ops sd_cb_ops = {
1633 	sdopen,			/* open */
1634 	sdclose,		/* close */
1635 	sdstrategy,		/* strategy */
1636 	nodev,			/* print */
1637 	sddump,			/* dump */
1638 	sdread,			/* read */
1639 	sdwrite,		/* write */
1640 	sdioctl,		/* ioctl */
1641 	nodev,			/* devmap */
1642 	nodev,			/* mmap */
1643 	nodev,			/* segmap */
1644 	nochpoll,		/* poll */
1645 	sd_prop_op,		/* cb_prop_op */
1646 	0,			/* streamtab  */
1647 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1648 	CB_REV,			/* cb_rev */
1649 	sdaread, 		/* async I/O read entry point */
1650 	sdawrite		/* async I/O write entry point */
1651 };
1652 
1653 static struct dev_ops sd_ops = {
1654 	DEVO_REV,		/* devo_rev, */
1655 	0,			/* refcnt  */
1656 	sdinfo,			/* info */
1657 	nulldev,		/* identify */
1658 	sdprobe,		/* probe */
1659 	sdattach,		/* attach */
1660 	sddetach,		/* detach */
1661 	nodev,			/* reset */
1662 	&sd_cb_ops,		/* driver operations */
1663 	NULL,			/* bus operations */
1664 	sdpower			/* power */
1665 };
1666 
1667 
1668 /*
1669  * This is the loadable module wrapper.
1670  */
1671 #include <sys/modctl.h>
1672 
1673 static struct modldrv modldrv = {
1674 	&mod_driverops,		/* Type of module. This one is a driver */
1675 	SD_MODULE_NAME,		/* Module name. */
1676 	&sd_ops			/* driver ops */
1677 };
1678 
1679 
1680 static struct modlinkage modlinkage = {
1681 	MODREV_1,
1682 	&modldrv,
1683 	NULL
1684 };
1685 
1686 
1687 static struct scsi_asq_key_strings sd_additional_codes[] = {
1688 	0x81, 0, "Logical Unit is Reserved",
1689 	0x85, 0, "Audio Address Not Valid",
1690 	0xb6, 0, "Media Load Mechanism Failed",
1691 	0xB9, 0, "Audio Play Operation Aborted",
1692 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1693 	0x53, 2, "Medium removal prevented",
1694 	0x6f, 0, "Authentication failed during key exchange",
1695 	0x6f, 1, "Key not present",
1696 	0x6f, 2, "Key not established",
1697 	0x6f, 3, "Read without proper authentication",
1698 	0x6f, 4, "Mismatched region to this logical unit",
1699 	0x6f, 5, "Region reset count error",
1700 	0xffff, 0x0, NULL
1701 };
1702 
1703 
1704 /*
1705  * Struct for passing printing information for sense data messages
1706  */
1707 struct sd_sense_info {
1708 	int	ssi_severity;
1709 	int	ssi_pfa_flag;
1710 };
1711 
1712 /*
1713  * Table of function pointers for iostart-side routines. Seperate "chains"
1714  * of layered function calls are formed by placing the function pointers
1715  * sequentially in the desired order. Functions are called according to an
1716  * incrementing table index ordering. The last function in each chain must
1717  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1718  * in the sd_iodone_chain[] array.
1719  *
1720  * Note: It may seem more natural to organize both the iostart and iodone
1721  * functions together, into an array of structures (or some similar
1722  * organization) with a common index, rather than two seperate arrays which
1723  * must be maintained in synchronization. The purpose of this division is
1724  * to achiece improved performance: individual arrays allows for more
1725  * effective cache line utilization on certain platforms.
1726  */
1727 
1728 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1729 
1730 
1731 static sd_chain_t sd_iostart_chain[] = {
1732 
1733 	/* Chain for buf IO for disk drive targets (PM enabled) */
1734 	sd_mapblockaddr_iostart,	/* Index: 0 */
1735 	sd_pm_iostart,			/* Index: 1 */
1736 	sd_core_iostart,		/* Index: 2 */
1737 
1738 	/* Chain for buf IO for disk drive targets (PM disabled) */
1739 	sd_mapblockaddr_iostart,	/* Index: 3 */
1740 	sd_core_iostart,		/* Index: 4 */
1741 
1742 	/* Chain for buf IO for removable-media targets (PM enabled) */
1743 	sd_mapblockaddr_iostart,	/* Index: 5 */
1744 	sd_mapblocksize_iostart,	/* Index: 6 */
1745 	sd_pm_iostart,			/* Index: 7 */
1746 	sd_core_iostart,		/* Index: 8 */
1747 
1748 	/* Chain for buf IO for removable-media targets (PM disabled) */
1749 	sd_mapblockaddr_iostart,	/* Index: 9 */
1750 	sd_mapblocksize_iostart,	/* Index: 10 */
1751 	sd_core_iostart,		/* Index: 11 */
1752 
1753 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1754 	sd_mapblockaddr_iostart,	/* Index: 12 */
1755 	sd_checksum_iostart,		/* Index: 13 */
1756 	sd_pm_iostart,			/* Index: 14 */
1757 	sd_core_iostart,		/* Index: 15 */
1758 
1759 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1760 	sd_mapblockaddr_iostart,	/* Index: 16 */
1761 	sd_checksum_iostart,		/* Index: 17 */
1762 	sd_core_iostart,		/* Index: 18 */
1763 
1764 	/* Chain for USCSI commands (all targets) */
1765 	sd_pm_iostart,			/* Index: 19 */
1766 	sd_core_iostart,		/* Index: 20 */
1767 
1768 	/* Chain for checksumming USCSI commands (all targets) */
1769 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1770 	sd_pm_iostart,			/* Index: 22 */
1771 	sd_core_iostart,		/* Index: 23 */
1772 
1773 	/* Chain for "direct" USCSI commands (all targets) */
1774 	sd_core_iostart,		/* Index: 24 */
1775 
1776 	/* Chain for "direct priority" USCSI commands (all targets) */
1777 	sd_core_iostart,		/* Index: 25 */
1778 };
1779 
1780 /*
1781  * Macros to locate the first function of each iostart chain in the
1782  * sd_iostart_chain[] array. These are located by the index in the array.
1783  */
1784 #define	SD_CHAIN_DISK_IOSTART			0
1785 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1786 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1787 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1788 #define	SD_CHAIN_CHKSUM_IOSTART			12
1789 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1790 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1791 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1792 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1793 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1794 
1795 
1796 /*
1797  * Table of function pointers for the iodone-side routines for the driver-
1798  * internal layering mechanism.  The calling sequence for iodone routines
1799  * uses a decrementing table index, so the last routine called in a chain
1800  * must be at the lowest array index location for that chain.  The last
1801  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1802  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1803  * of the functions in an iodone side chain must correspond to the ordering
1804  * of the iostart routines for that chain.  Note that there is no iodone
1805  * side routine that corresponds to sd_core_iostart(), so there is no
1806  * entry in the table for this.
1807  */
1808 
1809 static sd_chain_t sd_iodone_chain[] = {
1810 
1811 	/* Chain for buf IO for disk drive targets (PM enabled) */
1812 	sd_buf_iodone,			/* Index: 0 */
1813 	sd_mapblockaddr_iodone,		/* Index: 1 */
1814 	sd_pm_iodone,			/* Index: 2 */
1815 
1816 	/* Chain for buf IO for disk drive targets (PM disabled) */
1817 	sd_buf_iodone,			/* Index: 3 */
1818 	sd_mapblockaddr_iodone,		/* Index: 4 */
1819 
1820 	/* Chain for buf IO for removable-media targets (PM enabled) */
1821 	sd_buf_iodone,			/* Index: 5 */
1822 	sd_mapblockaddr_iodone,		/* Index: 6 */
1823 	sd_mapblocksize_iodone,		/* Index: 7 */
1824 	sd_pm_iodone,			/* Index: 8 */
1825 
1826 	/* Chain for buf IO for removable-media targets (PM disabled) */
1827 	sd_buf_iodone,			/* Index: 9 */
1828 	sd_mapblockaddr_iodone,		/* Index: 10 */
1829 	sd_mapblocksize_iodone,		/* Index: 11 */
1830 
1831 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1832 	sd_buf_iodone,			/* Index: 12 */
1833 	sd_mapblockaddr_iodone,		/* Index: 13 */
1834 	sd_checksum_iodone,		/* Index: 14 */
1835 	sd_pm_iodone,			/* Index: 15 */
1836 
1837 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1838 	sd_buf_iodone,			/* Index: 16 */
1839 	sd_mapblockaddr_iodone,		/* Index: 17 */
1840 	sd_checksum_iodone,		/* Index: 18 */
1841 
1842 	/* Chain for USCSI commands (non-checksum targets) */
1843 	sd_uscsi_iodone,		/* Index: 19 */
1844 	sd_pm_iodone,			/* Index: 20 */
1845 
1846 	/* Chain for USCSI commands (checksum targets) */
1847 	sd_uscsi_iodone,		/* Index: 21 */
1848 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1849 	sd_pm_iodone,			/* Index: 22 */
1850 
1851 	/* Chain for "direct" USCSI commands (all targets) */
1852 	sd_uscsi_iodone,		/* Index: 24 */
1853 
1854 	/* Chain for "direct priority" USCSI commands (all targets) */
1855 	sd_uscsi_iodone,		/* Index: 25 */
1856 };
1857 
1858 
1859 /*
1860  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1861  * each iodone-side chain. These are located by the array index, but as the
1862  * iodone side functions are called in a decrementing-index order, the
1863  * highest index number in each chain must be specified (as these correspond
1864  * to the first function in the iodone chain that will be called by the core
1865  * at IO completion time).
1866  */
1867 
1868 #define	SD_CHAIN_DISK_IODONE			2
1869 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1870 #define	SD_CHAIN_RMMEDIA_IODONE			8
1871 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1872 #define	SD_CHAIN_CHKSUM_IODONE			15
1873 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1874 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1875 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1876 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1877 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1878 
1879 
1880 
1881 
1882 /*
1883  * Array to map a layering chain index to the appropriate initpkt routine.
1884  * The redundant entries are present so that the index used for accessing
1885  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1886  * with this table as well.
1887  */
1888 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1889 
1890 static sd_initpkt_t	sd_initpkt_map[] = {
1891 
1892 	/* Chain for buf IO for disk drive targets (PM enabled) */
1893 	sd_initpkt_for_buf,		/* Index: 0 */
1894 	sd_initpkt_for_buf,		/* Index: 1 */
1895 	sd_initpkt_for_buf,		/* Index: 2 */
1896 
1897 	/* Chain for buf IO for disk drive targets (PM disabled) */
1898 	sd_initpkt_for_buf,		/* Index: 3 */
1899 	sd_initpkt_for_buf,		/* Index: 4 */
1900 
1901 	/* Chain for buf IO for removable-media targets (PM enabled) */
1902 	sd_initpkt_for_buf,		/* Index: 5 */
1903 	sd_initpkt_for_buf,		/* Index: 6 */
1904 	sd_initpkt_for_buf,		/* Index: 7 */
1905 	sd_initpkt_for_buf,		/* Index: 8 */
1906 
1907 	/* Chain for buf IO for removable-media targets (PM disabled) */
1908 	sd_initpkt_for_buf,		/* Index: 9 */
1909 	sd_initpkt_for_buf,		/* Index: 10 */
1910 	sd_initpkt_for_buf,		/* Index: 11 */
1911 
1912 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1913 	sd_initpkt_for_buf,		/* Index: 12 */
1914 	sd_initpkt_for_buf,		/* Index: 13 */
1915 	sd_initpkt_for_buf,		/* Index: 14 */
1916 	sd_initpkt_for_buf,		/* Index: 15 */
1917 
1918 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1919 	sd_initpkt_for_buf,		/* Index: 16 */
1920 	sd_initpkt_for_buf,		/* Index: 17 */
1921 	sd_initpkt_for_buf,		/* Index: 18 */
1922 
1923 	/* Chain for USCSI commands (non-checksum targets) */
1924 	sd_initpkt_for_uscsi,		/* Index: 19 */
1925 	sd_initpkt_for_uscsi,		/* Index: 20 */
1926 
1927 	/* Chain for USCSI commands (checksum targets) */
1928 	sd_initpkt_for_uscsi,		/* Index: 21 */
1929 	sd_initpkt_for_uscsi,		/* Index: 22 */
1930 	sd_initpkt_for_uscsi,		/* Index: 22 */
1931 
1932 	/* Chain for "direct" USCSI commands (all targets) */
1933 	sd_initpkt_for_uscsi,		/* Index: 24 */
1934 
1935 	/* Chain for "direct priority" USCSI commands (all targets) */
1936 	sd_initpkt_for_uscsi,		/* Index: 25 */
1937 
1938 };
1939 
1940 
1941 /*
1942  * Array to map a layering chain index to the appropriate destroypktpkt routine.
1943  * The redundant entries are present so that the index used for accessing
1944  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1945  * with this table as well.
1946  */
1947 typedef void (*sd_destroypkt_t)(struct buf *);
1948 
1949 static sd_destroypkt_t	sd_destroypkt_map[] = {
1950 
1951 	/* Chain for buf IO for disk drive targets (PM enabled) */
1952 	sd_destroypkt_for_buf,		/* Index: 0 */
1953 	sd_destroypkt_for_buf,		/* Index: 1 */
1954 	sd_destroypkt_for_buf,		/* Index: 2 */
1955 
1956 	/* Chain for buf IO for disk drive targets (PM disabled) */
1957 	sd_destroypkt_for_buf,		/* Index: 3 */
1958 	sd_destroypkt_for_buf,		/* Index: 4 */
1959 
1960 	/* Chain for buf IO for removable-media targets (PM enabled) */
1961 	sd_destroypkt_for_buf,		/* Index: 5 */
1962 	sd_destroypkt_for_buf,		/* Index: 6 */
1963 	sd_destroypkt_for_buf,		/* Index: 7 */
1964 	sd_destroypkt_for_buf,		/* Index: 8 */
1965 
1966 	/* Chain for buf IO for removable-media targets (PM disabled) */
1967 	sd_destroypkt_for_buf,		/* Index: 9 */
1968 	sd_destroypkt_for_buf,		/* Index: 10 */
1969 	sd_destroypkt_for_buf,		/* Index: 11 */
1970 
1971 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1972 	sd_destroypkt_for_buf,		/* Index: 12 */
1973 	sd_destroypkt_for_buf,		/* Index: 13 */
1974 	sd_destroypkt_for_buf,		/* Index: 14 */
1975 	sd_destroypkt_for_buf,		/* Index: 15 */
1976 
1977 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1978 	sd_destroypkt_for_buf,		/* Index: 16 */
1979 	sd_destroypkt_for_buf,		/* Index: 17 */
1980 	sd_destroypkt_for_buf,		/* Index: 18 */
1981 
1982 	/* Chain for USCSI commands (non-checksum targets) */
1983 	sd_destroypkt_for_uscsi,	/* Index: 19 */
1984 	sd_destroypkt_for_uscsi,	/* Index: 20 */
1985 
1986 	/* Chain for USCSI commands (checksum targets) */
1987 	sd_destroypkt_for_uscsi,	/* Index: 21 */
1988 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1989 	sd_destroypkt_for_uscsi,	/* Index: 22 */
1990 
1991 	/* Chain for "direct" USCSI commands (all targets) */
1992 	sd_destroypkt_for_uscsi,	/* Index: 24 */
1993 
1994 	/* Chain for "direct priority" USCSI commands (all targets) */
1995 	sd_destroypkt_for_uscsi,	/* Index: 25 */
1996 
1997 };
1998 
1999 
2000 
2001 /*
2002  * Array to map a layering chain index to the appropriate chain "type".
2003  * The chain type indicates a specific property/usage of the chain.
2004  * The redundant entries are present so that the index used for accessing
2005  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2006  * with this table as well.
2007  */
2008 
2009 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2010 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2011 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2012 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2013 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2014 						/* (for error recovery) */
2015 
2016 static int sd_chain_type_map[] = {
2017 
2018 	/* Chain for buf IO for disk drive targets (PM enabled) */
2019 	SD_CHAIN_BUFIO,			/* Index: 0 */
2020 	SD_CHAIN_BUFIO,			/* Index: 1 */
2021 	SD_CHAIN_BUFIO,			/* Index: 2 */
2022 
2023 	/* Chain for buf IO for disk drive targets (PM disabled) */
2024 	SD_CHAIN_BUFIO,			/* Index: 3 */
2025 	SD_CHAIN_BUFIO,			/* Index: 4 */
2026 
2027 	/* Chain for buf IO for removable-media targets (PM enabled) */
2028 	SD_CHAIN_BUFIO,			/* Index: 5 */
2029 	SD_CHAIN_BUFIO,			/* Index: 6 */
2030 	SD_CHAIN_BUFIO,			/* Index: 7 */
2031 	SD_CHAIN_BUFIO,			/* Index: 8 */
2032 
2033 	/* Chain for buf IO for removable-media targets (PM disabled) */
2034 	SD_CHAIN_BUFIO,			/* Index: 9 */
2035 	SD_CHAIN_BUFIO,			/* Index: 10 */
2036 	SD_CHAIN_BUFIO,			/* Index: 11 */
2037 
2038 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2039 	SD_CHAIN_BUFIO,			/* Index: 12 */
2040 	SD_CHAIN_BUFIO,			/* Index: 13 */
2041 	SD_CHAIN_BUFIO,			/* Index: 14 */
2042 	SD_CHAIN_BUFIO,			/* Index: 15 */
2043 
2044 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2045 	SD_CHAIN_BUFIO,			/* Index: 16 */
2046 	SD_CHAIN_BUFIO,			/* Index: 17 */
2047 	SD_CHAIN_BUFIO,			/* Index: 18 */
2048 
2049 	/* Chain for USCSI commands (non-checksum targets) */
2050 	SD_CHAIN_USCSI,			/* Index: 19 */
2051 	SD_CHAIN_USCSI,			/* Index: 20 */
2052 
2053 	/* Chain for USCSI commands (checksum targets) */
2054 	SD_CHAIN_USCSI,			/* Index: 21 */
2055 	SD_CHAIN_USCSI,			/* Index: 22 */
2056 	SD_CHAIN_USCSI,			/* Index: 22 */
2057 
2058 	/* Chain for "direct" USCSI commands (all targets) */
2059 	SD_CHAIN_DIRECT,		/* Index: 24 */
2060 
2061 	/* Chain for "direct priority" USCSI commands (all targets) */
2062 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2063 };
2064 
2065 
2066 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2067 #define	SD_IS_BUFIO(xp)			\
2068 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2069 
2070 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2071 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2072 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2073 
2074 
2075 
2076 /*
2077  * Struct, array, and macros to map a specific chain to the appropriate
2078  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2079  *
2080  * The sd_chain_index_map[] array is used at attach time to set the various
2081  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2082  * chain to be used with the instance. This allows different instances to use
2083  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2084  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2085  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2086  * dynamically & without the use of locking; and (2) a layer may update the
2087  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2088  * to allow for deferred processing of an IO within the same chain from a
2089  * different execution context.
2090  */
2091 
2092 struct sd_chain_index {
2093 	int	sci_iostart_index;
2094 	int	sci_iodone_index;
2095 };
2096 
2097 static struct sd_chain_index	sd_chain_index_map[] = {
2098 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2099 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2100 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2101 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2102 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2103 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2104 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2105 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2106 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2107 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2108 };
2109 
2110 
2111 /*
2112  * The following are indexes into the sd_chain_index_map[] array.
2113  */
2114 
2115 /* un->un_buf_chain_type must be set to one of these */
2116 #define	SD_CHAIN_INFO_DISK		0
2117 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2118 #define	SD_CHAIN_INFO_RMMEDIA		2
2119 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2120 #define	SD_CHAIN_INFO_CHKSUM		4
2121 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2122 
2123 /* un->un_uscsi_chain_type must be set to one of these */
2124 #define	SD_CHAIN_INFO_USCSI_CMD		6
2125 /* USCSI with PM disabled is the same as DIRECT */
2126 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2127 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2128 
2129 /* un->un_direct_chain_type must be set to one of these */
2130 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2131 
2132 /* un->un_priority_chain_type must be set to one of these */
2133 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2134 
2135 /* size for devid inquiries */
2136 #define	MAX_INQUIRY_SIZE		0xF0
2137 
2138 /*
2139  * Macros used by functions to pass a given buf(9S) struct along to the
2140  * next function in the layering chain for further processing.
2141  *
2142  * In the following macros, passing more than three arguments to the called
2143  * routines causes the optimizer for the SPARC compiler to stop doing tail
2144  * call elimination which results in significant performance degradation.
2145  */
2146 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2147 	((*(sd_iostart_chain[index]))(index, un, bp))
2148 
2149 #define	SD_BEGIN_IODONE(index, un, bp)	\
2150 	((*(sd_iodone_chain[index]))(index, un, bp))
2151 
2152 #define	SD_NEXT_IOSTART(index, un, bp)				\
2153 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2154 
2155 #define	SD_NEXT_IODONE(index, un, bp)				\
2156 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2157 
2158 /*
2159  *    Function: _init
2160  *
2161  * Description: This is the driver _init(9E) entry point.
2162  *
2163  * Return Code: Returns the value from mod_install(9F) or
2164  *		ddi_soft_state_init(9F) as appropriate.
2165  *
2166  *     Context: Called when driver module loaded.
2167  */
2168 
2169 int
2170 _init(void)
2171 {
2172 	int	err;
2173 
2174 	/* establish driver name from module name */
2175 	sd_label = mod_modname(&modlinkage);
2176 
2177 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2178 		SD_MAXUNIT);
2179 
2180 	if (err != 0) {
2181 		return (err);
2182 	}
2183 
2184 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2185 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2186 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2187 
2188 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2189 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2190 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2191 
2192 	/*
2193 	 * it's ok to init here even for fibre device
2194 	 */
2195 	sd_scsi_probe_cache_init();
2196 
2197 	/*
2198 	 * Creating taskq before mod_install ensures that all callers (threads)
2199 	 * that enter the module after a successfull mod_install encounter
2200 	 * a valid taskq.
2201 	 */
2202 	sd_taskq_create();
2203 
2204 	err = mod_install(&modlinkage);
2205 	if (err != 0) {
2206 		/* delete taskq if install fails */
2207 		sd_taskq_delete();
2208 
2209 		mutex_destroy(&sd_detach_mutex);
2210 		mutex_destroy(&sd_log_mutex);
2211 		mutex_destroy(&sd_label_mutex);
2212 
2213 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2214 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2215 		cv_destroy(&sd_tr.srq_inprocess_cv);
2216 
2217 		sd_scsi_probe_cache_fini();
2218 
2219 		ddi_soft_state_fini(&sd_state);
2220 		return (err);
2221 	}
2222 
2223 	return (err);
2224 }
2225 
2226 
2227 /*
2228  *    Function: _fini
2229  *
2230  * Description: This is the driver _fini(9E) entry point.
2231  *
2232  * Return Code: Returns the value from mod_remove(9F)
2233  *
2234  *     Context: Called when driver module is unloaded.
2235  */
2236 
2237 int
2238 _fini(void)
2239 {
2240 	int err;
2241 
2242 	if ((err = mod_remove(&modlinkage)) != 0) {
2243 		return (err);
2244 	}
2245 
2246 	sd_taskq_delete();
2247 
2248 	mutex_destroy(&sd_detach_mutex);
2249 	mutex_destroy(&sd_log_mutex);
2250 	mutex_destroy(&sd_label_mutex);
2251 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2252 
2253 	sd_scsi_probe_cache_fini();
2254 
2255 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2256 	cv_destroy(&sd_tr.srq_inprocess_cv);
2257 
2258 	ddi_soft_state_fini(&sd_state);
2259 
2260 	return (err);
2261 }
2262 
2263 
2264 /*
2265  *    Function: _info
2266  *
2267  * Description: This is the driver _info(9E) entry point.
2268  *
2269  *   Arguments: modinfop - pointer to the driver modinfo structure
2270  *
2271  * Return Code: Returns the value from mod_info(9F).
2272  *
2273  *     Context: Kernel thread context
2274  */
2275 
2276 int
2277 _info(struct modinfo *modinfop)
2278 {
2279 	return (mod_info(&modlinkage, modinfop));
2280 }
2281 
2282 
2283 /*
2284  * The following routines implement the driver message logging facility.
2285  * They provide component- and level- based debug output filtering.
2286  * Output may also be restricted to messages for a single instance by
2287  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2288  * to NULL, then messages for all instances are printed.
2289  *
2290  * These routines have been cloned from each other due to the language
2291  * constraints of macros and variable argument list processing.
2292  */
2293 
2294 
2295 /*
2296  *    Function: sd_log_err
2297  *
2298  * Description: This routine is called by the SD_ERROR macro for debug
2299  *		logging of error conditions.
2300  *
2301  *   Arguments: comp - driver component being logged
2302  *		dev  - pointer to driver info structure
2303  *		fmt  - error string and format to be logged
2304  */
2305 
2306 static void
2307 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2308 {
2309 	va_list		ap;
2310 	dev_info_t	*dev;
2311 
2312 	ASSERT(un != NULL);
2313 	dev = SD_DEVINFO(un);
2314 	ASSERT(dev != NULL);
2315 
2316 	/*
2317 	 * Filter messages based on the global component and level masks.
2318 	 * Also print if un matches the value of sd_debug_un, or if
2319 	 * sd_debug_un is set to NULL.
2320 	 */
2321 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2322 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2323 		mutex_enter(&sd_log_mutex);
2324 		va_start(ap, fmt);
2325 		(void) vsprintf(sd_log_buf, fmt, ap);
2326 		va_end(ap);
2327 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2328 		mutex_exit(&sd_log_mutex);
2329 	}
2330 #ifdef SD_FAULT_INJECTION
2331 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2332 	if (un->sd_injection_mask & comp) {
2333 		mutex_enter(&sd_log_mutex);
2334 		va_start(ap, fmt);
2335 		(void) vsprintf(sd_log_buf, fmt, ap);
2336 		va_end(ap);
2337 		sd_injection_log(sd_log_buf, un);
2338 		mutex_exit(&sd_log_mutex);
2339 	}
2340 #endif
2341 }
2342 
2343 
2344 /*
2345  *    Function: sd_log_info
2346  *
2347  * Description: This routine is called by the SD_INFO macro for debug
2348  *		logging of general purpose informational conditions.
2349  *
2350  *   Arguments: comp - driver component being logged
2351  *		dev  - pointer to driver info structure
2352  *		fmt  - info string and format to be logged
2353  */
2354 
2355 static void
2356 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2357 {
2358 	va_list		ap;
2359 	dev_info_t	*dev;
2360 
2361 	ASSERT(un != NULL);
2362 	dev = SD_DEVINFO(un);
2363 	ASSERT(dev != NULL);
2364 
2365 	/*
2366 	 * Filter messages based on the global component and level masks.
2367 	 * Also print if un matches the value of sd_debug_un, or if
2368 	 * sd_debug_un is set to NULL.
2369 	 */
2370 	if ((sd_component_mask & component) &&
2371 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2372 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2373 		mutex_enter(&sd_log_mutex);
2374 		va_start(ap, fmt);
2375 		(void) vsprintf(sd_log_buf, fmt, ap);
2376 		va_end(ap);
2377 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2378 		mutex_exit(&sd_log_mutex);
2379 	}
2380 #ifdef SD_FAULT_INJECTION
2381 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2382 	if (un->sd_injection_mask & component) {
2383 		mutex_enter(&sd_log_mutex);
2384 		va_start(ap, fmt);
2385 		(void) vsprintf(sd_log_buf, fmt, ap);
2386 		va_end(ap);
2387 		sd_injection_log(sd_log_buf, un);
2388 		mutex_exit(&sd_log_mutex);
2389 	}
2390 #endif
2391 }
2392 
2393 
2394 /*
2395  *    Function: sd_log_trace
2396  *
2397  * Description: This routine is called by the SD_TRACE macro for debug
2398  *		logging of trace conditions (i.e. function entry/exit).
2399  *
2400  *   Arguments: comp - driver component being logged
2401  *		dev  - pointer to driver info structure
2402  *		fmt  - trace string and format to be logged
2403  */
2404 
2405 static void
2406 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2407 {
2408 	va_list		ap;
2409 	dev_info_t	*dev;
2410 
2411 	ASSERT(un != NULL);
2412 	dev = SD_DEVINFO(un);
2413 	ASSERT(dev != NULL);
2414 
2415 	/*
2416 	 * Filter messages based on the global component and level masks.
2417 	 * Also print if un matches the value of sd_debug_un, or if
2418 	 * sd_debug_un is set to NULL.
2419 	 */
2420 	if ((sd_component_mask & component) &&
2421 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2422 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2423 		mutex_enter(&sd_log_mutex);
2424 		va_start(ap, fmt);
2425 		(void) vsprintf(sd_log_buf, fmt, ap);
2426 		va_end(ap);
2427 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2428 		mutex_exit(&sd_log_mutex);
2429 	}
2430 #ifdef SD_FAULT_INJECTION
2431 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2432 	if (un->sd_injection_mask & component) {
2433 		mutex_enter(&sd_log_mutex);
2434 		va_start(ap, fmt);
2435 		(void) vsprintf(sd_log_buf, fmt, ap);
2436 		va_end(ap);
2437 		sd_injection_log(sd_log_buf, un);
2438 		mutex_exit(&sd_log_mutex);
2439 	}
2440 #endif
2441 }
2442 
2443 
2444 /*
2445  *    Function: sdprobe
2446  *
2447  * Description: This is the driver probe(9e) entry point function.
2448  *
2449  *   Arguments: devi - opaque device info handle
2450  *
2451  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2452  *              DDI_PROBE_FAILURE: If the probe failed.
2453  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2454  *				   but may be present in the future.
2455  */
2456 
2457 static int
2458 sdprobe(dev_info_t *devi)
2459 {
2460 	struct scsi_device	*devp;
2461 	int			rval;
2462 	int			instance;
2463 
2464 	/*
2465 	 * if it wasn't for pln, sdprobe could actually be nulldev
2466 	 * in the "__fibre" case.
2467 	 */
2468 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2469 		return (DDI_PROBE_DONTCARE);
2470 	}
2471 
2472 	devp = ddi_get_driver_private(devi);
2473 
2474 	if (devp == NULL) {
2475 		/* Ooops... nexus driver is mis-configured... */
2476 		return (DDI_PROBE_FAILURE);
2477 	}
2478 
2479 	instance = ddi_get_instance(devi);
2480 
2481 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2482 		return (DDI_PROBE_PARTIAL);
2483 	}
2484 
2485 	/*
2486 	 * Call the SCSA utility probe routine to see if we actually
2487 	 * have a target at this SCSI nexus.
2488 	 */
2489 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2490 	case SCSIPROBE_EXISTS:
2491 		switch (devp->sd_inq->inq_dtype) {
2492 		case DTYPE_DIRECT:
2493 			rval = DDI_PROBE_SUCCESS;
2494 			break;
2495 		case DTYPE_RODIRECT:
2496 			/* CDs etc. Can be removable media */
2497 			rval = DDI_PROBE_SUCCESS;
2498 			break;
2499 		case DTYPE_OPTICAL:
2500 			/*
2501 			 * Rewritable optical driver HP115AA
2502 			 * Can also be removable media
2503 			 */
2504 
2505 			/*
2506 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2507 			 * pre solaris 9 sparc sd behavior is required
2508 			 *
2509 			 * If first time through and sd_dtype_optical_bind
2510 			 * has not been set in /etc/system check properties
2511 			 */
2512 
2513 			if (sd_dtype_optical_bind  < 0) {
2514 			    sd_dtype_optical_bind = ddi_prop_get_int
2515 				(DDI_DEV_T_ANY,	devi,	0,
2516 				"optical-device-bind",	1);
2517 			}
2518 
2519 			if (sd_dtype_optical_bind == 0) {
2520 				rval = DDI_PROBE_FAILURE;
2521 			} else {
2522 				rval = DDI_PROBE_SUCCESS;
2523 			}
2524 			break;
2525 
2526 		case DTYPE_NOTPRESENT:
2527 		default:
2528 			rval = DDI_PROBE_FAILURE;
2529 			break;
2530 		}
2531 		break;
2532 	default:
2533 		rval = DDI_PROBE_PARTIAL;
2534 		break;
2535 	}
2536 
2537 	/*
2538 	 * This routine checks for resource allocation prior to freeing,
2539 	 * so it will take care of the "smart probing" case where a
2540 	 * scsi_probe() may or may not have been issued and will *not*
2541 	 * free previously-freed resources.
2542 	 */
2543 	scsi_unprobe(devp);
2544 	return (rval);
2545 }
2546 
2547 
2548 /*
2549  *    Function: sdinfo
2550  *
2551  * Description: This is the driver getinfo(9e) entry point function.
2552  * 		Given the device number, return the devinfo pointer from
2553  *		the scsi_device structure or the instance number
2554  *		associated with the dev_t.
2555  *
2556  *   Arguments: dip     - pointer to device info structure
2557  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2558  *			  DDI_INFO_DEVT2INSTANCE)
2559  *		arg     - driver dev_t
2560  *		resultp - user buffer for request response
2561  *
2562  * Return Code: DDI_SUCCESS
2563  *              DDI_FAILURE
2564  */
2565 /* ARGSUSED */
2566 static int
2567 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2568 {
2569 	struct sd_lun	*un;
2570 	dev_t		dev;
2571 	int		instance;
2572 	int		error;
2573 
2574 	switch (infocmd) {
2575 	case DDI_INFO_DEVT2DEVINFO:
2576 		dev = (dev_t)arg;
2577 		instance = SDUNIT(dev);
2578 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2579 			return (DDI_FAILURE);
2580 		}
2581 		*result = (void *) SD_DEVINFO(un);
2582 		error = DDI_SUCCESS;
2583 		break;
2584 	case DDI_INFO_DEVT2INSTANCE:
2585 		dev = (dev_t)arg;
2586 		instance = SDUNIT(dev);
2587 		*result = (void *)(uintptr_t)instance;
2588 		error = DDI_SUCCESS;
2589 		break;
2590 	default:
2591 		error = DDI_FAILURE;
2592 	}
2593 	return (error);
2594 }
2595 
2596 /*
2597  *    Function: sd_prop_op
2598  *
2599  * Description: This is the driver prop_op(9e) entry point function.
2600  *		Return the number of blocks for the partition in question
2601  *		or forward the request to the property facilities.
2602  *
2603  *   Arguments: dev       - device number
2604  *		dip       - pointer to device info structure
2605  *		prop_op   - property operator
2606  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2607  *		name      - pointer to property name
2608  *		valuep    - pointer or address of the user buffer
2609  *		lengthp   - property length
2610  *
2611  * Return Code: DDI_PROP_SUCCESS
2612  *              DDI_PROP_NOT_FOUND
2613  *              DDI_PROP_UNDEFINED
2614  *              DDI_PROP_NO_MEMORY
2615  *              DDI_PROP_BUF_TOO_SMALL
2616  */
2617 
2618 static int
2619 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2620 	char *name, caddr_t valuep, int *lengthp)
2621 {
2622 	int		instance = ddi_get_instance(dip);
2623 	struct sd_lun	*un;
2624 	uint64_t	nblocks64;
2625 
2626 	/*
2627 	 * Our dynamic properties are all device specific and size oriented.
2628 	 * Requests issued under conditions where size is valid are passed
2629 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2630 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2631 	 */
2632 	un = ddi_get_soft_state(sd_state, instance);
2633 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2634 	    (un->un_f_geometry_is_valid == FALSE)) {
2635 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2636 		    name, valuep, lengthp));
2637 	} else {
2638 		/* get nblocks value */
2639 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2640 		mutex_enter(SD_MUTEX(un));
2641 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2642 		mutex_exit(SD_MUTEX(un));
2643 
2644 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2645 		    name, valuep, lengthp, nblocks64));
2646 	}
2647 }
2648 
2649 /*
2650  * The following functions are for smart probing:
2651  * sd_scsi_probe_cache_init()
2652  * sd_scsi_probe_cache_fini()
2653  * sd_scsi_clear_probe_cache()
2654  * sd_scsi_probe_with_cache()
2655  */
2656 
2657 /*
2658  *    Function: sd_scsi_probe_cache_init
2659  *
2660  * Description: Initializes the probe response cache mutex and head pointer.
2661  *
2662  *     Context: Kernel thread context
2663  */
2664 
2665 static void
2666 sd_scsi_probe_cache_init(void)
2667 {
2668 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2669 	sd_scsi_probe_cache_head = NULL;
2670 }
2671 
2672 
2673 /*
2674  *    Function: sd_scsi_probe_cache_fini
2675  *
2676  * Description: Frees all resources associated with the probe response cache.
2677  *
2678  *     Context: Kernel thread context
2679  */
2680 
2681 static void
2682 sd_scsi_probe_cache_fini(void)
2683 {
2684 	struct sd_scsi_probe_cache *cp;
2685 	struct sd_scsi_probe_cache *ncp;
2686 
2687 	/* Clean up our smart probing linked list */
2688 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2689 		ncp = cp->next;
2690 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2691 	}
2692 	sd_scsi_probe_cache_head = NULL;
2693 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2694 }
2695 
2696 
2697 /*
2698  *    Function: sd_scsi_clear_probe_cache
2699  *
2700  * Description: This routine clears the probe response cache. This is
2701  *		done when open() returns ENXIO so that when deferred
2702  *		attach is attempted (possibly after a device has been
2703  *		turned on) we will retry the probe. Since we don't know
2704  *		which target we failed to open, we just clear the
2705  *		entire cache.
2706  *
2707  *     Context: Kernel thread context
2708  */
2709 
2710 static void
2711 sd_scsi_clear_probe_cache(void)
2712 {
2713 	struct sd_scsi_probe_cache	*cp;
2714 	int				i;
2715 
2716 	mutex_enter(&sd_scsi_probe_cache_mutex);
2717 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2718 		/*
2719 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2720 		 * force probing to be performed the next time
2721 		 * sd_scsi_probe_with_cache is called.
2722 		 */
2723 		for (i = 0; i < NTARGETS_WIDE; i++) {
2724 			cp->cache[i] = SCSIPROBE_EXISTS;
2725 		}
2726 	}
2727 	mutex_exit(&sd_scsi_probe_cache_mutex);
2728 }
2729 
2730 
2731 /*
2732  *    Function: sd_scsi_probe_with_cache
2733  *
2734  * Description: This routine implements support for a scsi device probe
2735  *		with cache. The driver maintains a cache of the target
2736  *		responses to scsi probes. If we get no response from a
2737  *		target during a probe inquiry, we remember that, and we
2738  *		avoid additional calls to scsi_probe on non-zero LUNs
2739  *		on the same target until the cache is cleared. By doing
2740  *		so we avoid the 1/4 sec selection timeout for nonzero
2741  *		LUNs. lun0 of a target is always probed.
2742  *
2743  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2744  *              waitfunc - indicates what the allocator routines should
2745  *			   do when resources are not available. This value
2746  *			   is passed on to scsi_probe() when that routine
2747  *			   is called.
2748  *
2749  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2750  *		otherwise the value returned by scsi_probe(9F).
2751  *
2752  *     Context: Kernel thread context
2753  */
2754 
2755 static int
2756 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2757 {
2758 	struct sd_scsi_probe_cache	*cp;
2759 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2760 	int		lun, tgt;
2761 
2762 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2763 	    SCSI_ADDR_PROP_LUN, 0);
2764 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2765 	    SCSI_ADDR_PROP_TARGET, -1);
2766 
2767 	/* Make sure caching enabled and target in range */
2768 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2769 		/* do it the old way (no cache) */
2770 		return (scsi_probe(devp, waitfn));
2771 	}
2772 
2773 	mutex_enter(&sd_scsi_probe_cache_mutex);
2774 
2775 	/* Find the cache for this scsi bus instance */
2776 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2777 		if (cp->pdip == pdip) {
2778 			break;
2779 		}
2780 	}
2781 
2782 	/* If we can't find a cache for this pdip, create one */
2783 	if (cp == NULL) {
2784 		int i;
2785 
2786 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2787 		    KM_SLEEP);
2788 		cp->pdip = pdip;
2789 		cp->next = sd_scsi_probe_cache_head;
2790 		sd_scsi_probe_cache_head = cp;
2791 		for (i = 0; i < NTARGETS_WIDE; i++) {
2792 			cp->cache[i] = SCSIPROBE_EXISTS;
2793 		}
2794 	}
2795 
2796 	mutex_exit(&sd_scsi_probe_cache_mutex);
2797 
2798 	/* Recompute the cache for this target if LUN zero */
2799 	if (lun == 0) {
2800 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2801 	}
2802 
2803 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2804 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2805 		return (SCSIPROBE_NORESP);
2806 	}
2807 
2808 	/* Do the actual probe; save & return the result */
2809 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2810 }
2811 
2812 
2813 /*
2814  *    Function: sd_spin_up_unit
2815  *
2816  * Description: Issues the following commands to spin-up the device:
2817  *		START STOP UNIT, and INQUIRY.
2818  *
2819  *   Arguments: un - driver soft state (unit) structure
2820  *
2821  * Return Code: 0 - success
2822  *		EIO - failure
2823  *		EACCES - reservation conflict
2824  *
2825  *     Context: Kernel thread context
2826  */
2827 
2828 static int
2829 sd_spin_up_unit(struct sd_lun *un)
2830 {
2831 	size_t	resid		= 0;
2832 	int	has_conflict	= FALSE;
2833 	uchar_t *bufaddr;
2834 
2835 	ASSERT(un != NULL);
2836 
2837 	/*
2838 	 * Send a throwaway START UNIT command.
2839 	 *
2840 	 * If we fail on this, we don't care presently what precisely
2841 	 * is wrong.  EMC's arrays will also fail this with a check
2842 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
2843 	 * we don't want to fail the attach because it may become
2844 	 * "active" later.
2845 	 */
2846 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
2847 	    == EACCES)
2848 		has_conflict = TRUE;
2849 
2850 	/*
2851 	 * Send another INQUIRY command to the target. This is necessary for
2852 	 * non-removable media direct access devices because their INQUIRY data
2853 	 * may not be fully qualified until they are spun up (perhaps via the
2854 	 * START command above).  Note: This seems to be needed for some
2855 	 * legacy devices only.) The INQUIRY command should succeed even if a
2856 	 * Reservation Conflict is present.
2857 	 */
2858 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
2859 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
2860 		kmem_free(bufaddr, SUN_INQSIZE);
2861 		return (EIO);
2862 	}
2863 
2864 	/*
2865 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
2866 	 * Note that this routine does not return a failure here even if the
2867 	 * INQUIRY command did not return any data.  This is a legacy behavior.
2868 	 */
2869 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
2870 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
2871 	}
2872 
2873 	kmem_free(bufaddr, SUN_INQSIZE);
2874 
2875 	/* If we hit a reservation conflict above, tell the caller. */
2876 	if (has_conflict == TRUE) {
2877 		return (EACCES);
2878 	}
2879 
2880 	return (0);
2881 }
2882 
2883 #ifdef _LP64
2884 /*
2885  *    Function: sd_enable_descr_sense
2886  *
2887  * Description: This routine attempts to select descriptor sense format
2888  *		using the Control mode page.  Devices that support 64 bit
2889  *		LBAs (for >2TB luns) should also implement descriptor
2890  *		sense data so we will call this function whenever we see
2891  *		a lun larger than 2TB.  If for some reason the device
2892  *		supports 64 bit LBAs but doesn't support descriptor sense
2893  *		presumably the mode select will fail.  Everything will
2894  *		continue to work normally except that we will not get
2895  *		complete sense data for commands that fail with an LBA
2896  *		larger than 32 bits.
2897  *
2898  *   Arguments: un - driver soft state (unit) structure
2899  *
2900  *     Context: Kernel thread context only
2901  */
2902 
2903 static void
2904 sd_enable_descr_sense(struct sd_lun *un)
2905 {
2906 	uchar_t			*header;
2907 	struct mode_control_scsi3 *ctrl_bufp;
2908 	size_t			buflen;
2909 	size_t			bd_len;
2910 
2911 	/*
2912 	 * Read MODE SENSE page 0xA, Control Mode Page
2913 	 */
2914 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
2915 	    sizeof (struct mode_control_scsi3);
2916 	header = kmem_zalloc(buflen, KM_SLEEP);
2917 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
2918 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
2919 		SD_ERROR(SD_LOG_COMMON, un,
2920 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
2921 		goto eds_exit;
2922 	}
2923 
2924 	/*
2925 	 * Determine size of Block Descriptors in order to locate
2926 	 * the mode page data. ATAPI devices return 0, SCSI devices
2927 	 * should return MODE_BLK_DESC_LENGTH.
2928 	 */
2929 	bd_len  = ((struct mode_header *)header)->bdesc_length;
2930 
2931 	ctrl_bufp = (struct mode_control_scsi3 *)
2932 	    (header + MODE_HEADER_LENGTH + bd_len);
2933 
2934 	/*
2935 	 * Clear PS bit for MODE SELECT
2936 	 */
2937 	ctrl_bufp->mode_page.ps = 0;
2938 
2939 	/*
2940 	 * Set D_SENSE to enable descriptor sense format.
2941 	 */
2942 	ctrl_bufp->d_sense = 1;
2943 
2944 	/*
2945 	 * Use MODE SELECT to commit the change to the D_SENSE bit
2946 	 */
2947 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
2948 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
2949 		SD_INFO(SD_LOG_COMMON, un,
2950 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
2951 		goto eds_exit;
2952 	}
2953 
2954 eds_exit:
2955 	kmem_free(header, buflen);
2956 }
2957 #endif /* _LP64 */
2958 
2959 
2960 /*
2961  *    Function: sd_set_mmc_caps
2962  *
2963  * Description: This routine determines if the device is MMC compliant and if
2964  *		the device supports CDDA via a mode sense of the CDVD
2965  *		capabilities mode page. Also checks if the device is a
2966  *		dvdram writable device.
2967  *
2968  *   Arguments: un - driver soft state (unit) structure
2969  *
2970  *     Context: Kernel thread context only
2971  */
2972 
2973 static void
2974 sd_set_mmc_caps(struct sd_lun *un)
2975 {
2976 	struct mode_header_grp2		*sense_mhp;
2977 	uchar_t				*sense_page;
2978 	caddr_t				buf;
2979 	int				bd_len;
2980 	int				status;
2981 	struct uscsi_cmd		com;
2982 	int				rtn;
2983 	uchar_t				*out_data_rw, *out_data_hd;
2984 	uchar_t				*rqbuf_rw, *rqbuf_hd;
2985 
2986 	ASSERT(un != NULL);
2987 
2988 	/*
2989 	 * The flags which will be set in this function are - mmc compliant,
2990 	 * dvdram writable device, cdda support. Initialize them to FALSE
2991 	 * and if a capability is detected - it will be set to TRUE.
2992 	 */
2993 	un->un_f_mmc_cap = FALSE;
2994 	un->un_f_dvdram_writable_device = FALSE;
2995 	un->un_f_cfg_cdda = FALSE;
2996 
2997 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
2998 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
2999 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3000 
3001 	if (status != 0) {
3002 		/* command failed; just return */
3003 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3004 		return;
3005 	}
3006 	/*
3007 	 * If the mode sense request for the CDROM CAPABILITIES
3008 	 * page (0x2A) succeeds the device is assumed to be MMC.
3009 	 */
3010 	un->un_f_mmc_cap = TRUE;
3011 
3012 	/* Get to the page data */
3013 	sense_mhp = (struct mode_header_grp2 *)buf;
3014 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3015 	    sense_mhp->bdesc_length_lo;
3016 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3017 		/*
3018 		 * We did not get back the expected block descriptor
3019 		 * length so we cannot determine if the device supports
3020 		 * CDDA. However, we still indicate the device is MMC
3021 		 * according to the successful response to the page
3022 		 * 0x2A mode sense request.
3023 		 */
3024 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3025 		    "sd_set_mmc_caps: Mode Sense returned "
3026 		    "invalid block descriptor length\n");
3027 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3028 		return;
3029 	}
3030 
3031 	/* See if read CDDA is supported */
3032 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3033 	    bd_len);
3034 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3035 
3036 	/* See if writing DVD RAM is supported. */
3037 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3038 	if (un->un_f_dvdram_writable_device == TRUE) {
3039 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3040 		return;
3041 	}
3042 
3043 	/*
3044 	 * If the device presents DVD or CD capabilities in the mode
3045 	 * page, we can return here since a RRD will not have
3046 	 * these capabilities.
3047 	 */
3048 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3049 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3050 		return;
3051 	}
3052 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3053 
3054 	/*
3055 	 * If un->un_f_dvdram_writable_device is still FALSE,
3056 	 * check for a Removable Rigid Disk (RRD).  A RRD
3057 	 * device is identified by the features RANDOM_WRITABLE and
3058 	 * HARDWARE_DEFECT_MANAGEMENT.
3059 	 */
3060 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3061 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3062 
3063 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3064 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3065 	    RANDOM_WRITABLE);
3066 	if (rtn != 0) {
3067 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3068 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3069 		return;
3070 	}
3071 
3072 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3073 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3074 
3075 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3076 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3077 	    HARDWARE_DEFECT_MANAGEMENT);
3078 	if (rtn == 0) {
3079 		/*
3080 		 * We have good information, check for random writable
3081 		 * and hardware defect features.
3082 		 */
3083 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3084 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3085 			un->un_f_dvdram_writable_device = TRUE;
3086 		}
3087 	}
3088 
3089 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3090 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3091 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3092 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3093 }
3094 
3095 /*
3096  *    Function: sd_check_for_writable_cd
3097  *
3098  * Description: This routine determines if the media in the device is
3099  *		writable or not. It uses the get configuration command (0x46)
3100  *		to determine if the media is writable
3101  *
3102  *   Arguments: un - driver soft state (unit) structure
3103  *
3104  *     Context: Never called at interrupt context.
3105  */
3106 
3107 static void
3108 sd_check_for_writable_cd(struct sd_lun *un)
3109 {
3110 	struct uscsi_cmd		com;
3111 	uchar_t				*out_data;
3112 	uchar_t				*rqbuf;
3113 	int				rtn;
3114 	uchar_t				*out_data_rw, *out_data_hd;
3115 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3116 	struct mode_header_grp2		*sense_mhp;
3117 	uchar_t				*sense_page;
3118 	caddr_t				buf;
3119 	int				bd_len;
3120 	int				status;
3121 
3122 	ASSERT(un != NULL);
3123 	ASSERT(mutex_owned(SD_MUTEX(un)));
3124 
3125 	/*
3126 	 * Initialize the writable media to false, if configuration info.
3127 	 * tells us otherwise then only we will set it.
3128 	 */
3129 	un->un_f_mmc_writable_media = FALSE;
3130 	mutex_exit(SD_MUTEX(un));
3131 
3132 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3133 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3134 
3135 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3136 	    out_data, SD_PROFILE_HEADER_LEN);
3137 
3138 	mutex_enter(SD_MUTEX(un));
3139 	if (rtn == 0) {
3140 		/*
3141 		 * We have good information, check for writable DVD.
3142 		 */
3143 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3144 			un->un_f_mmc_writable_media = TRUE;
3145 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3146 			kmem_free(rqbuf, SENSE_LENGTH);
3147 			return;
3148 		}
3149 	}
3150 
3151 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3152 	kmem_free(rqbuf, SENSE_LENGTH);
3153 
3154 	/*
3155 	 * Determine if this is a RRD type device.
3156 	 */
3157 	mutex_exit(SD_MUTEX(un));
3158 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3159 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3160 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3161 	mutex_enter(SD_MUTEX(un));
3162 	if (status != 0) {
3163 		/* command failed; just return */
3164 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3165 		return;
3166 	}
3167 
3168 	/* Get to the page data */
3169 	sense_mhp = (struct mode_header_grp2 *)buf;
3170 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3171 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3172 		/*
3173 		 * We did not get back the expected block descriptor length so
3174 		 * we cannot check the mode page.
3175 		 */
3176 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3177 		    "sd_check_for_writable_cd: Mode Sense returned "
3178 		    "invalid block descriptor length\n");
3179 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3180 		return;
3181 	}
3182 
3183 	/*
3184 	 * If the device presents DVD or CD capabilities in the mode
3185 	 * page, we can return here since a RRD device will not have
3186 	 * these capabilities.
3187 	 */
3188 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3189 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3190 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3191 		return;
3192 	}
3193 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3194 
3195 	/*
3196 	 * If un->un_f_mmc_writable_media is still FALSE,
3197 	 * check for RRD type media.  A RRD device is identified
3198 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3199 	 */
3200 	mutex_exit(SD_MUTEX(un));
3201 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3202 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3203 
3204 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3205 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3206 	    RANDOM_WRITABLE);
3207 	if (rtn != 0) {
3208 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3209 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3210 		mutex_enter(SD_MUTEX(un));
3211 		return;
3212 	}
3213 
3214 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3215 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3216 
3217 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3218 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3219 	    HARDWARE_DEFECT_MANAGEMENT);
3220 	mutex_enter(SD_MUTEX(un));
3221 	if (rtn == 0) {
3222 		/*
3223 		 * We have good information, check for random writable
3224 		 * and hardware defect features as current.
3225 		 */
3226 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3227 		    (out_data_rw[10] & 0x1) &&
3228 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3229 		    (out_data_hd[10] & 0x1)) {
3230 			un->un_f_mmc_writable_media = TRUE;
3231 		}
3232 	}
3233 
3234 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3235 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3236 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3237 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3238 }
3239 
3240 /*
3241  *    Function: sd_read_unit_properties
3242  *
3243  * Description: The following implements a property lookup mechanism.
3244  *		Properties for particular disks (keyed on vendor, model
3245  *		and rev numbers) are sought in the sd.conf file via
3246  *		sd_process_sdconf_file(), and if not found there, are
3247  *		looked for in a list hardcoded in this driver via
3248  *		sd_process_sdconf_table() Once located the properties
3249  *		are used to update the driver unit structure.
3250  *
3251  *   Arguments: un - driver soft state (unit) structure
3252  */
3253 
3254 static void
3255 sd_read_unit_properties(struct sd_lun *un)
3256 {
3257 	/*
3258 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3259 	 * the "sd-config-list" property (from the sd.conf file) or if
3260 	 * there was not a match for the inquiry vid/pid. If this event
3261 	 * occurs the static driver configuration table is searched for
3262 	 * a match.
3263 	 */
3264 	ASSERT(un != NULL);
3265 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3266 		sd_process_sdconf_table(un);
3267 	}
3268 
3269 	/* check for LSI device */
3270 	sd_is_lsi(un);
3271 
3272 
3273 }
3274 
3275 
3276 /*
3277  *    Function: sd_process_sdconf_file
3278  *
3279  * Description: Use ddi_getlongprop to obtain the properties from the
3280  *		driver's config file (ie, sd.conf) and update the driver
3281  *		soft state structure accordingly.
3282  *
3283  *   Arguments: un - driver soft state (unit) structure
3284  *
3285  * Return Code: SD_SUCCESS - The properties were successfully set according
3286  *			     to the driver configuration file.
3287  *		SD_FAILURE - The driver config list was not obtained or
3288  *			     there was no vid/pid match. This indicates that
3289  *			     the static config table should be used.
3290  *
3291  * The config file has a property, "sd-config-list", which consists of
3292  * one or more duplets as follows:
3293  *
3294  *  sd-config-list=
3295  *	<duplet>,
3296  *	[<duplet>,]
3297  *	[<duplet>];
3298  *
3299  * The structure of each duplet is as follows:
3300  *
3301  *  <duplet>:= <vid+pid>,<data-property-name_list>
3302  *
3303  * The first entry of the duplet is the device ID string (the concatenated
3304  * vid & pid; not to be confused with a device_id).  This is defined in
3305  * the same way as in the sd_disk_table.
3306  *
3307  * The second part of the duplet is a string that identifies a
3308  * data-property-name-list. The data-property-name-list is defined as
3309  * follows:
3310  *
3311  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3312  *
3313  * The syntax of <data-property-name> depends on the <version> field.
3314  *
3315  * If version = SD_CONF_VERSION_1 we have the following syntax:
3316  *
3317  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3318  *
3319  * where the prop0 value will be used to set prop0 if bit0 set in the
3320  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3321  *
3322  */
3323 
3324 static int
3325 sd_process_sdconf_file(struct sd_lun *un)
3326 {
3327 	char	*config_list = NULL;
3328 	int	config_list_len;
3329 	int	len;
3330 	int	dupletlen = 0;
3331 	char	*vidptr;
3332 	int	vidlen;
3333 	char	*dnlist_ptr;
3334 	char	*dataname_ptr;
3335 	int	dnlist_len;
3336 	int	dataname_len;
3337 	int	*data_list;
3338 	int	data_list_len;
3339 	int	rval = SD_FAILURE;
3340 	int	i;
3341 
3342 	ASSERT(un != NULL);
3343 
3344 	/* Obtain the configuration list associated with the .conf file */
3345 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3346 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3347 	    != DDI_PROP_SUCCESS) {
3348 		return (SD_FAILURE);
3349 	}
3350 
3351 	/*
3352 	 * Compare vids in each duplet to the inquiry vid - if a match is
3353 	 * made, get the data value and update the soft state structure
3354 	 * accordingly.
3355 	 *
3356 	 * Note: This algorithm is complex and difficult to maintain. It should
3357 	 * be replaced with a more robust implementation.
3358 	 */
3359 	for (len = config_list_len, vidptr = config_list; len > 0;
3360 	    vidptr += dupletlen, len -= dupletlen) {
3361 		/*
3362 		 * Note: The assumption here is that each vid entry is on
3363 		 * a unique line from its associated duplet.
3364 		 */
3365 		vidlen = dupletlen = (int)strlen(vidptr);
3366 		if ((vidlen == 0) ||
3367 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3368 			dupletlen++;
3369 			continue;
3370 		}
3371 
3372 		/*
3373 		 * dnlist contains 1 or more blank separated
3374 		 * data-property-name entries
3375 		 */
3376 		dnlist_ptr = vidptr + vidlen + 1;
3377 		dnlist_len = (int)strlen(dnlist_ptr);
3378 		dupletlen += dnlist_len + 2;
3379 
3380 		/*
3381 		 * Set a pointer for the first data-property-name
3382 		 * entry in the list
3383 		 */
3384 		dataname_ptr = dnlist_ptr;
3385 		dataname_len = 0;
3386 
3387 		/*
3388 		 * Loop through all data-property-name entries in the
3389 		 * data-property-name-list setting the properties for each.
3390 		 */
3391 		while (dataname_len < dnlist_len) {
3392 			int version;
3393 
3394 			/*
3395 			 * Determine the length of the current
3396 			 * data-property-name entry by indexing until a
3397 			 * blank or NULL is encountered. When the space is
3398 			 * encountered reset it to a NULL for compliance
3399 			 * with ddi_getlongprop().
3400 			 */
3401 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3402 			    (dataname_ptr[i] != '\0')); i++) {
3403 				;
3404 			}
3405 
3406 			dataname_len += i;
3407 			/* If not null terminated, Make it so */
3408 			if (dataname_ptr[i] == ' ') {
3409 				dataname_ptr[i] = '\0';
3410 			}
3411 			dataname_len++;
3412 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3413 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3414 			    vidptr, dataname_ptr);
3415 
3416 			/* Get the data list */
3417 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3418 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3419 			    != DDI_PROP_SUCCESS) {
3420 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3421 				    "sd_process_sdconf_file: data property (%s)"
3422 				    " has no value\n", dataname_ptr);
3423 				dataname_ptr = dnlist_ptr + dataname_len;
3424 				continue;
3425 			}
3426 
3427 			version = data_list[0];
3428 
3429 			if (version == SD_CONF_VERSION_1) {
3430 				sd_tunables values;
3431 
3432 				/* Set the properties */
3433 				if (sd_chk_vers1_data(un, data_list[1],
3434 				    &data_list[2], data_list_len, dataname_ptr)
3435 				    == SD_SUCCESS) {
3436 					sd_get_tunables_from_conf(un,
3437 					    data_list[1], &data_list[2],
3438 					    &values);
3439 					sd_set_vers1_properties(un,
3440 					    data_list[1], &values);
3441 					rval = SD_SUCCESS;
3442 				} else {
3443 					rval = SD_FAILURE;
3444 				}
3445 			} else {
3446 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3447 				    "data property %s version 0x%x is invalid.",
3448 				    dataname_ptr, version);
3449 				rval = SD_FAILURE;
3450 			}
3451 			kmem_free(data_list, data_list_len);
3452 			dataname_ptr = dnlist_ptr + dataname_len;
3453 		}
3454 	}
3455 
3456 	/* free up the memory allocated by ddi_getlongprop */
3457 	if (config_list) {
3458 		kmem_free(config_list, config_list_len);
3459 	}
3460 
3461 	return (rval);
3462 }
3463 
3464 /*
3465  *    Function: sd_get_tunables_from_conf()
3466  *
3467  *
3468  *    This function reads the data list from the sd.conf file and pulls
3469  *    the values that can have numeric values as arguments and places
3470  *    the values in the apropriate sd_tunables member.
3471  *    Since the order of the data list members varies across platforms
3472  *    This function reads them from the data list in a platform specific
3473  *    order and places them into the correct sd_tunable member that is
3474  *    a consistant across all platforms.
3475  */
3476 static void
3477 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3478     sd_tunables *values)
3479 {
3480 	int i;
3481 	int mask;
3482 
3483 	bzero(values, sizeof (sd_tunables));
3484 
3485 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3486 
3487 		mask = 1 << i;
3488 		if (mask > flags) {
3489 			break;
3490 		}
3491 
3492 		switch (mask & flags) {
3493 		case 0:	/* This mask bit not set in flags */
3494 			continue;
3495 		case SD_CONF_BSET_THROTTLE:
3496 			values->sdt_throttle = data_list[i];
3497 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3498 			    "sd_get_tunables_from_conf: throttle = %d\n",
3499 			    values->sdt_throttle);
3500 			break;
3501 		case SD_CONF_BSET_CTYPE:
3502 			values->sdt_ctype = data_list[i];
3503 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3504 			    "sd_get_tunables_from_conf: ctype = %d\n",
3505 			    values->sdt_ctype);
3506 			break;
3507 		case SD_CONF_BSET_NRR_COUNT:
3508 			values->sdt_not_rdy_retries = data_list[i];
3509 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3510 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3511 			    values->sdt_not_rdy_retries);
3512 			break;
3513 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3514 			values->sdt_busy_retries = data_list[i];
3515 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3516 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3517 			    values->sdt_busy_retries);
3518 			break;
3519 		case SD_CONF_BSET_RST_RETRIES:
3520 			values->sdt_reset_retries = data_list[i];
3521 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3522 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3523 			    values->sdt_reset_retries);
3524 			break;
3525 		case SD_CONF_BSET_RSV_REL_TIME:
3526 			values->sdt_reserv_rel_time = data_list[i];
3527 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3528 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3529 			    values->sdt_reserv_rel_time);
3530 			break;
3531 		case SD_CONF_BSET_MIN_THROTTLE:
3532 			values->sdt_min_throttle = data_list[i];
3533 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3534 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3535 			    values->sdt_min_throttle);
3536 			break;
3537 		case SD_CONF_BSET_DISKSORT_DISABLED:
3538 			values->sdt_disk_sort_dis = data_list[i];
3539 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3540 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3541 			    values->sdt_disk_sort_dis);
3542 			break;
3543 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3544 			values->sdt_lun_reset_enable = data_list[i];
3545 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3546 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3547 			    "\n", values->sdt_lun_reset_enable);
3548 			break;
3549 		}
3550 	}
3551 }
3552 
3553 /*
3554  *    Function: sd_process_sdconf_table
3555  *
3556  * Description: Search the static configuration table for a match on the
3557  *		inquiry vid/pid and update the driver soft state structure
3558  *		according to the table property values for the device.
3559  *
3560  *		The form of a configuration table entry is:
3561  *		  <vid+pid>,<flags>,<property-data>
3562  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3563  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3564  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3565  *
3566  *   Arguments: un - driver soft state (unit) structure
3567  */
3568 
3569 static void
3570 sd_process_sdconf_table(struct sd_lun *un)
3571 {
3572 	char	*id = NULL;
3573 	int	table_index;
3574 	int	idlen;
3575 
3576 	ASSERT(un != NULL);
3577 	for (table_index = 0; table_index < sd_disk_table_size;
3578 	    table_index++) {
3579 		id = sd_disk_table[table_index].device_id;
3580 		idlen = strlen(id);
3581 		if (idlen == 0) {
3582 			continue;
3583 		}
3584 
3585 		/*
3586 		 * The static configuration table currently does not
3587 		 * implement version 10 properties. Additionally,
3588 		 * multiple data-property-name entries are not
3589 		 * implemented in the static configuration table.
3590 		 */
3591 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3592 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3593 			    "sd_process_sdconf_table: disk %s\n", id);
3594 			sd_set_vers1_properties(un,
3595 			    sd_disk_table[table_index].flags,
3596 			    sd_disk_table[table_index].properties);
3597 			break;
3598 		}
3599 	}
3600 }
3601 
3602 
3603 /*
3604  *    Function: sd_sdconf_id_match
3605  *
3606  * Description: This local function implements a case sensitive vid/pid
3607  *		comparison as well as the boundary cases of wild card and
3608  *		multiple blanks.
3609  *
3610  *		Note: An implicit assumption made here is that the scsi
3611  *		inquiry structure will always keep the vid, pid and
3612  *		revision strings in consecutive sequence, so they can be
3613  *		read as a single string. If this assumption is not the
3614  *		case, a separate string, to be used for the check, needs
3615  *		to be built with these strings concatenated.
3616  *
3617  *   Arguments: un - driver soft state (unit) structure
3618  *		id - table or config file vid/pid
3619  *		idlen  - length of the vid/pid (bytes)
3620  *
3621  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3622  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3623  */
3624 
3625 static int
3626 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3627 {
3628 	struct scsi_inquiry	*sd_inq;
3629 	int 			rval = SD_SUCCESS;
3630 
3631 	ASSERT(un != NULL);
3632 	sd_inq = un->un_sd->sd_inq;
3633 	ASSERT(id != NULL);
3634 
3635 	/*
3636 	 * We use the inq_vid as a pointer to a buffer containing the
3637 	 * vid and pid and use the entire vid/pid length of the table
3638 	 * entry for the comparison. This works because the inq_pid
3639 	 * data member follows inq_vid in the scsi_inquiry structure.
3640 	 */
3641 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3642 		/*
3643 		 * The user id string is compared to the inquiry vid/pid
3644 		 * using a case insensitive comparison and ignoring
3645 		 * multiple spaces.
3646 		 */
3647 		rval = sd_blank_cmp(un, id, idlen);
3648 		if (rval != SD_SUCCESS) {
3649 			/*
3650 			 * User id strings that start and end with a "*"
3651 			 * are a special case. These do not have a
3652 			 * specific vendor, and the product string can
3653 			 * appear anywhere in the 16 byte PID portion of
3654 			 * the inquiry data. This is a simple strstr()
3655 			 * type search for the user id in the inquiry data.
3656 			 */
3657 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3658 				char	*pidptr = &id[1];
3659 				int	i;
3660 				int	j;
3661 				int	pidstrlen = idlen - 2;
3662 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3663 				    pidstrlen;
3664 
3665 				if (j < 0) {
3666 					return (SD_FAILURE);
3667 				}
3668 				for (i = 0; i < j; i++) {
3669 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3670 					    pidptr, pidstrlen) == 0) {
3671 						rval = SD_SUCCESS;
3672 						break;
3673 					}
3674 				}
3675 			}
3676 		}
3677 	}
3678 	return (rval);
3679 }
3680 
3681 
3682 /*
3683  *    Function: sd_blank_cmp
3684  *
3685  * Description: If the id string starts and ends with a space, treat
3686  *		multiple consecutive spaces as equivalent to a single
3687  *		space. For example, this causes a sd_disk_table entry
3688  *		of " NEC CDROM " to match a device's id string of
3689  *		"NEC       CDROM".
3690  *
3691  *		Note: The success exit condition for this routine is if
3692  *		the pointer to the table entry is '\0' and the cnt of
3693  *		the inquiry length is zero. This will happen if the inquiry
3694  *		string returned by the device is padded with spaces to be
3695  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3696  *		SCSI spec states that the inquiry string is to be padded with
3697  *		spaces.
3698  *
3699  *   Arguments: un - driver soft state (unit) structure
3700  *		id - table or config file vid/pid
3701  *		idlen  - length of the vid/pid (bytes)
3702  *
3703  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3704  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3705  */
3706 
3707 static int
3708 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3709 {
3710 	char		*p1;
3711 	char		*p2;
3712 	int		cnt;
3713 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3714 	    sizeof (SD_INQUIRY(un)->inq_pid);
3715 
3716 	ASSERT(un != NULL);
3717 	p2 = un->un_sd->sd_inq->inq_vid;
3718 	ASSERT(id != NULL);
3719 	p1 = id;
3720 
3721 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3722 		/*
3723 		 * Note: string p1 is terminated by a NUL but string p2
3724 		 * isn't.  The end of p2 is determined by cnt.
3725 		 */
3726 		for (;;) {
3727 			/* skip over any extra blanks in both strings */
3728 			while ((*p1 != '\0') && (*p1 == ' ')) {
3729 				p1++;
3730 			}
3731 			while ((cnt != 0) && (*p2 == ' ')) {
3732 				p2++;
3733 				cnt--;
3734 			}
3735 
3736 			/* compare the two strings */
3737 			if ((cnt == 0) ||
3738 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3739 				break;
3740 			}
3741 			while ((cnt > 0) &&
3742 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3743 				p1++;
3744 				p2++;
3745 				cnt--;
3746 			}
3747 		}
3748 	}
3749 
3750 	/* return SD_SUCCESS if both strings match */
3751 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3752 }
3753 
3754 
3755 /*
3756  *    Function: sd_chk_vers1_data
3757  *
3758  * Description: Verify the version 1 device properties provided by the
3759  *		user via the configuration file
3760  *
3761  *   Arguments: un	     - driver soft state (unit) structure
3762  *		flags	     - integer mask indicating properties to be set
3763  *		prop_list    - integer list of property values
3764  *		list_len     - length of user provided data
3765  *
3766  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3767  *		SD_FAILURE - Indicates the user provided data is invalid
3768  */
3769 
3770 static int
3771 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
3772     int list_len, char *dataname_ptr)
3773 {
3774 	int i;
3775 	int mask = 1;
3776 	int index = 0;
3777 
3778 	ASSERT(un != NULL);
3779 
3780 	/* Check for a NULL property name and list */
3781 	if (dataname_ptr == NULL) {
3782 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3783 		    "sd_chk_vers1_data: NULL data property name.");
3784 		return (SD_FAILURE);
3785 	}
3786 	if (prop_list == NULL) {
3787 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3788 		    "sd_chk_vers1_data: %s NULL data property list.",
3789 		    dataname_ptr);
3790 		return (SD_FAILURE);
3791 	}
3792 
3793 	/* Display a warning if undefined bits are set in the flags */
3794 	if (flags & ~SD_CONF_BIT_MASK) {
3795 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3796 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
3797 		    "Properties not set.",
3798 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
3799 		return (SD_FAILURE);
3800 	}
3801 
3802 	/*
3803 	 * Verify the length of the list by identifying the highest bit set
3804 	 * in the flags and validating that the property list has a length
3805 	 * up to the index of this bit.
3806 	 */
3807 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3808 		if (flags & mask) {
3809 			index++;
3810 		}
3811 		mask = 1 << i;
3812 	}
3813 	if ((list_len / sizeof (int)) < (index + 2)) {
3814 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3815 		    "sd_chk_vers1_data: "
3816 		    "Data property list %s size is incorrect. "
3817 		    "Properties not set.", dataname_ptr);
3818 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
3819 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
3820 		return (SD_FAILURE);
3821 	}
3822 	return (SD_SUCCESS);
3823 }
3824 
3825 
3826 /*
3827  *    Function: sd_set_vers1_properties
3828  *
3829  * Description: Set version 1 device properties based on a property list
3830  *		retrieved from the driver configuration file or static
3831  *		configuration table. Version 1 properties have the format:
3832  *
3833  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3834  *
3835  *		where the prop0 value will be used to set prop0 if bit0
3836  *		is set in the flags
3837  *
3838  *   Arguments: un	     - driver soft state (unit) structure
3839  *		flags	     - integer mask indicating properties to be set
3840  *		prop_list    - integer list of property values
3841  */
3842 
3843 static void
3844 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
3845 {
3846 	ASSERT(un != NULL);
3847 
3848 	/*
3849 	 * Set the flag to indicate cache is to be disabled. An attempt
3850 	 * to disable the cache via sd_cache_control() will be made
3851 	 * later during attach once the basic initialization is complete.
3852 	 */
3853 	if (flags & SD_CONF_BSET_NOCACHE) {
3854 		un->un_f_opt_disable_cache = TRUE;
3855 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3856 		    "sd_set_vers1_properties: caching disabled flag set\n");
3857 	}
3858 
3859 	/* CD-specific configuration parameters */
3860 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
3861 		un->un_f_cfg_playmsf_bcd = TRUE;
3862 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3863 		    "sd_set_vers1_properties: playmsf_bcd set\n");
3864 	}
3865 	if (flags & SD_CONF_BSET_READSUB_BCD) {
3866 		un->un_f_cfg_readsub_bcd = TRUE;
3867 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3868 		    "sd_set_vers1_properties: readsub_bcd set\n");
3869 	}
3870 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
3871 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
3872 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3873 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
3874 	}
3875 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
3876 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
3877 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3878 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
3879 	}
3880 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
3881 		un->un_f_cfg_no_read_header = TRUE;
3882 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3883 			    "sd_set_vers1_properties: no_read_header set\n");
3884 	}
3885 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
3886 		un->un_f_cfg_read_cd_xd4 = TRUE;
3887 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3888 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
3889 	}
3890 
3891 	/* Support for devices which do not have valid/unique serial numbers */
3892 	if (flags & SD_CONF_BSET_FAB_DEVID) {
3893 		un->un_f_opt_fab_devid = TRUE;
3894 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3895 		    "sd_set_vers1_properties: fab_devid bit set\n");
3896 	}
3897 
3898 	/* Support for user throttle configuration */
3899 	if (flags & SD_CONF_BSET_THROTTLE) {
3900 		ASSERT(prop_list != NULL);
3901 		un->un_saved_throttle = un->un_throttle =
3902 		    prop_list->sdt_throttle;
3903 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3904 		    "sd_set_vers1_properties: throttle set to %d\n",
3905 		    prop_list->sdt_throttle);
3906 	}
3907 
3908 	/* Set the per disk retry count according to the conf file or table. */
3909 	if (flags & SD_CONF_BSET_NRR_COUNT) {
3910 		ASSERT(prop_list != NULL);
3911 		if (prop_list->sdt_not_rdy_retries) {
3912 			un->un_notready_retry_count =
3913 				prop_list->sdt_not_rdy_retries;
3914 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3915 			    "sd_set_vers1_properties: not ready retry count"
3916 			    " set to %d\n", un->un_notready_retry_count);
3917 		}
3918 	}
3919 
3920 	/* The controller type is reported for generic disk driver ioctls */
3921 	if (flags & SD_CONF_BSET_CTYPE) {
3922 		ASSERT(prop_list != NULL);
3923 		switch (prop_list->sdt_ctype) {
3924 		case CTYPE_CDROM:
3925 			un->un_ctype = prop_list->sdt_ctype;
3926 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3927 			    "sd_set_vers1_properties: ctype set to "
3928 			    "CTYPE_CDROM\n");
3929 			break;
3930 		case CTYPE_CCS:
3931 			un->un_ctype = prop_list->sdt_ctype;
3932 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3933 				"sd_set_vers1_properties: ctype set to "
3934 				"CTYPE_CCS\n");
3935 			break;
3936 		case CTYPE_ROD:		/* RW optical */
3937 			un->un_ctype = prop_list->sdt_ctype;
3938 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3939 			    "sd_set_vers1_properties: ctype set to "
3940 			    "CTYPE_ROD\n");
3941 			break;
3942 		default:
3943 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3944 			    "sd_set_vers1_properties: Could not set "
3945 			    "invalid ctype value (%d)",
3946 			    prop_list->sdt_ctype);
3947 		}
3948 	}
3949 
3950 	/* Purple failover timeout */
3951 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
3952 		ASSERT(prop_list != NULL);
3953 		un->un_busy_retry_count =
3954 			prop_list->sdt_busy_retries;
3955 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3956 		    "sd_set_vers1_properties: "
3957 		    "busy retry count set to %d\n",
3958 		    un->un_busy_retry_count);
3959 	}
3960 
3961 	/* Purple reset retry count */
3962 	if (flags & SD_CONF_BSET_RST_RETRIES) {
3963 		ASSERT(prop_list != NULL);
3964 		un->un_reset_retry_count =
3965 			prop_list->sdt_reset_retries;
3966 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3967 		    "sd_set_vers1_properties: "
3968 		    "reset retry count set to %d\n",
3969 		    un->un_reset_retry_count);
3970 	}
3971 
3972 	/* Purple reservation release timeout */
3973 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
3974 		ASSERT(prop_list != NULL);
3975 		un->un_reserve_release_time =
3976 			prop_list->sdt_reserv_rel_time;
3977 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3978 		    "sd_set_vers1_properties: "
3979 		    "reservation release timeout set to %d\n",
3980 		    un->un_reserve_release_time);
3981 	}
3982 
3983 	/*
3984 	 * Driver flag telling the driver to verify that no commands are pending
3985 	 * for a device before issuing a Test Unit Ready. This is a workaround
3986 	 * for a firmware bug in some Seagate eliteI drives.
3987 	 */
3988 	if (flags & SD_CONF_BSET_TUR_CHECK) {
3989 		un->un_f_cfg_tur_check = TRUE;
3990 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3991 		    "sd_set_vers1_properties: tur queue check set\n");
3992 	}
3993 
3994 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
3995 		un->un_min_throttle = prop_list->sdt_min_throttle;
3996 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
3997 		    "sd_set_vers1_properties: min throttle set to %d\n",
3998 		    un->un_min_throttle);
3999 	}
4000 
4001 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4002 		un->un_f_disksort_disabled =
4003 		    (prop_list->sdt_disk_sort_dis != 0) ?
4004 		    TRUE : FALSE;
4005 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4006 		    "sd_set_vers1_properties: disksort disabled "
4007 		    "flag set to %d\n",
4008 		    prop_list->sdt_disk_sort_dis);
4009 	}
4010 
4011 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4012 		un->un_f_lun_reset_enabled =
4013 		    (prop_list->sdt_lun_reset_enable != 0) ?
4014 		    TRUE : FALSE;
4015 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4016 		    "sd_set_vers1_properties: lun reset enabled "
4017 		    "flag set to %d\n",
4018 		    prop_list->sdt_lun_reset_enable);
4019 	}
4020 
4021 	/*
4022 	 * Validate the throttle values.
4023 	 * If any of the numbers are invalid, set everything to defaults.
4024 	 */
4025 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4026 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4027 	    (un->un_min_throttle > un->un_throttle)) {
4028 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4029 		un->un_min_throttle = sd_min_throttle;
4030 	}
4031 }
4032 
4033 /*
4034  *   Function: sd_is_lsi()
4035  *
4036  *   Description: Check for lsi devices, step throught the static device
4037  *	table to match vid/pid.
4038  *
4039  *   Args: un - ptr to sd_lun
4040  *
4041  *   Notes:  When creating new LSI property, need to add the new LSI property
4042  *		to this function.
4043  */
4044 static void
4045 sd_is_lsi(struct sd_lun *un)
4046 {
4047 	char	*id = NULL;
4048 	int	table_index;
4049 	int	idlen;
4050 	void	*prop;
4051 
4052 	ASSERT(un != NULL);
4053 	for (table_index = 0; table_index < sd_disk_table_size;
4054 	    table_index++) {
4055 		id = sd_disk_table[table_index].device_id;
4056 		idlen = strlen(id);
4057 		if (idlen == 0) {
4058 			continue;
4059 		}
4060 
4061 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4062 			prop = sd_disk_table[table_index].properties;
4063 			if (prop == &lsi_properties ||
4064 			    prop == &lsi_oem_properties ||
4065 			    prop == &lsi_properties_scsi ||
4066 			    prop == &symbios_properties) {
4067 				un->un_f_cfg_is_lsi = TRUE;
4068 			}
4069 			break;
4070 		}
4071 	}
4072 }
4073 
4074 
4075 /*
4076  * The following routines support reading and interpretation of disk labels,
4077  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4078  * fdisk tables.
4079  */
4080 
4081 /*
4082  *    Function: sd_validate_geometry
4083  *
4084  * Description: Read the label from the disk (if present). Update the unit's
4085  *		geometry and vtoc information from the data in the label.
4086  *		Verify that the label is valid.
4087  *
4088  *   Arguments: un - driver soft state (unit) structure
4089  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4090  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4091  *			to use the USCSI "direct" chain and bypass the normal
4092  *			command waitq.
4093  *
4094  * Return Code: 0 - Successful completion
4095  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4096  *			  un->un_blockcount; or label on disk is corrupted
4097  *			  or unreadable.
4098  *		EACCES  - Reservation conflict at the device.
4099  *		ENOMEM  - Resource allocation error
4100  *		ENOTSUP - geometry not applicable
4101  *
4102  *     Context: Kernel thread only (can sleep).
4103  */
4104 
4105 static int
4106 sd_validate_geometry(struct sd_lun *un, int path_flag)
4107 {
4108 	static	char		labelstring[128];
4109 	static	char		buf[256];
4110 	char	*label		= NULL;
4111 	int	label_error	= 0;
4112 	int	gvalid		= un->un_f_geometry_is_valid;
4113 	int	lbasize;
4114 	uint_t	capacity;
4115 	int	count;
4116 
4117 	ASSERT(un != NULL);
4118 	ASSERT(mutex_owned(SD_MUTEX(un)));
4119 
4120 	/*
4121 	 * If the required values are not valid, then try getting them
4122 	 * once via read capacity. If that fails, then fail this call.
4123 	 * This is necessary with the new mpxio failover behavior in
4124 	 * the T300 where we can get an attach for the inactive path
4125 	 * before the active path. The inactive path fails commands with
4126 	 * sense data of 02,04,88 which happens to the read capacity
4127 	 * before mpxio has had sufficient knowledge to know if it should
4128 	 * force a fail over or not. (Which it won't do at attach anyhow).
4129 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4130 	 * un_blockcount won't be valid.
4131 	 */
4132 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4133 	    (un->un_f_blockcount_is_valid != TRUE)) {
4134 		uint64_t	cap;
4135 		uint32_t	lbasz;
4136 		int		rval;
4137 
4138 		mutex_exit(SD_MUTEX(un));
4139 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4140 		    &lbasz, SD_PATH_DIRECT);
4141 		mutex_enter(SD_MUTEX(un));
4142 		if (rval == 0) {
4143 			/*
4144 			 * The following relies on
4145 			 * sd_send_scsi_READ_CAPACITY never
4146 			 * returning 0 for capacity and/or lbasize.
4147 			 */
4148 			sd_update_block_info(un, lbasz, cap);
4149 		}
4150 
4151 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4152 		    (un->un_f_blockcount_is_valid != TRUE)) {
4153 			return (EINVAL);
4154 		}
4155 	}
4156 
4157 	/*
4158 	 * Copy the lbasize and capacity so that if they're reset while we're
4159 	 * not holding the SD_MUTEX, we will continue to use valid values
4160 	 * after the SD_MUTEX is reacquired. (4119659)
4161 	 */
4162 	lbasize  = un->un_tgt_blocksize;
4163 	capacity = un->un_blockcount;
4164 
4165 #if defined(_SUNOS_VTOC_16)
4166 	/*
4167 	 * Set up the "whole disk" fdisk partition; this should always
4168 	 * exist, regardless of whether the disk contains an fdisk table
4169 	 * or vtoc.
4170 	 */
4171 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4172 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4173 #endif
4174 
4175 	/*
4176 	 * Refresh the logical and physical geometry caches.
4177 	 * (data from MODE SENSE format/rigid disk geometry pages,
4178 	 * and scsi_ifgetcap("geometry").
4179 	 */
4180 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4181 
4182 	label_error = sd_use_efi(un, path_flag);
4183 	if (label_error == 0) {
4184 		/* found a valid EFI label */
4185 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4186 			"sd_validate_geometry: found EFI label\n");
4187 		un->un_solaris_offset = 0;
4188 		un->un_solaris_size = capacity;
4189 		return (ENOTSUP);
4190 	}
4191 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4192 		if (label_error == ESRCH) {
4193 			/*
4194 			 * they've configured a LUN over 1TB, but used
4195 			 * format.dat to restrict format's view of the
4196 			 * capacity to be under 1TB
4197 			 */
4198 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4199 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4200 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4201 "size to be < 1TB or relabel the disk with an EFI label");
4202 		} else {
4203 			/* unlabeled disk over 1TB */
4204 			return (ENOTSUP);
4205 		}
4206 	}
4207 	label_error = 0;
4208 
4209 	/*
4210 	 * at this point it is either labeled with a VTOC or it is
4211 	 * under 1TB
4212 	 */
4213 	if (un->un_f_vtoc_label_supported) {
4214 		struct	dk_label *dkl;
4215 		offset_t dkl1;
4216 		offset_t label_addr, real_addr;
4217 		int	rval;
4218 		size_t	buffer_size;
4219 
4220 		/*
4221 		 * Note: This will set up un->un_solaris_size and
4222 		 * un->un_solaris_offset.
4223 		 */
4224 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4225 		case SD_CMD_RESERVATION_CONFLICT:
4226 			ASSERT(mutex_owned(SD_MUTEX(un)));
4227 			return (EACCES);
4228 		case SD_CMD_FAILURE:
4229 			ASSERT(mutex_owned(SD_MUTEX(un)));
4230 			return (ENOMEM);
4231 		}
4232 
4233 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4234 			/*
4235 			 * Found fdisk table but no Solaris partition entry,
4236 			 * so don't call sd_uselabel() and don't create
4237 			 * a default label.
4238 			 */
4239 			label_error = 0;
4240 			un->un_f_geometry_is_valid = TRUE;
4241 			goto no_solaris_partition;
4242 		}
4243 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4244 
4245 		/*
4246 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4247 		 * blkno and save the index to beginning of dk_label
4248 		 */
4249 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4250 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4251 		    sizeof (struct dk_label));
4252 
4253 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4254 		    "label_addr: 0x%x allocation size: 0x%x\n",
4255 		    label_addr, buffer_size);
4256 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4257 		if (dkl == NULL) {
4258 			return (ENOMEM);
4259 		}
4260 
4261 		mutex_exit(SD_MUTEX(un));
4262 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4263 		    path_flag);
4264 		mutex_enter(SD_MUTEX(un));
4265 
4266 		switch (rval) {
4267 		case 0:
4268 			/*
4269 			 * sd_uselabel will establish that the geometry
4270 			 * is valid.
4271 			 * For sys_blocksize != tgt_blocksize, need
4272 			 * to index into the beginning of dk_label
4273 			 */
4274 			dkl1 = (daddr_t)dkl
4275 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4276 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4277 			    path_flag) != SD_LABEL_IS_VALID) {
4278 				label_error = EINVAL;
4279 			}
4280 			break;
4281 		case EACCES:
4282 			label_error = EACCES;
4283 			break;
4284 		default:
4285 			label_error = EINVAL;
4286 			break;
4287 		}
4288 
4289 		kmem_free(dkl, buffer_size);
4290 
4291 #if defined(_SUNOS_VTOC_8)
4292 		label = (char *)un->un_asciilabel;
4293 #elif defined(_SUNOS_VTOC_16)
4294 		label = (char *)un->un_vtoc.v_asciilabel;
4295 #else
4296 #error "No VTOC format defined."
4297 #endif
4298 	}
4299 
4300 	/*
4301 	 * If a valid label was not found, AND if no reservation conflict
4302 	 * was detected, then go ahead and create a default label (4069506).
4303 	 */
4304 
4305 	if (un->un_f_default_vtoc_supported && (label_error != EACCES)) {
4306 		if (un->un_f_geometry_is_valid == FALSE) {
4307 			sd_build_default_label(un);
4308 		}
4309 		label_error = 0;
4310 	}
4311 
4312 no_solaris_partition:
4313 	if ((!un->un_f_has_removable_media ||
4314 	    (un->un_f_has_removable_media &&
4315 		un->un_mediastate == DKIO_EJECTED)) &&
4316 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
4317 		/*
4318 		 * Print out a message indicating who and what we are.
4319 		 * We do this only when we happen to really validate the
4320 		 * geometry. We may call sd_validate_geometry() at other
4321 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4322 		 * don't want to print the label.
4323 		 * If the geometry is valid, print the label string,
4324 		 * else print vendor and product info, if available
4325 		 */
4326 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4327 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4328 		} else {
4329 			mutex_enter(&sd_label_mutex);
4330 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4331 			    labelstring);
4332 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4333 			    &labelstring[64]);
4334 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4335 			    labelstring, &labelstring[64]);
4336 			if (un->un_f_blockcount_is_valid == TRUE) {
4337 				(void) sprintf(&buf[strlen(buf)],
4338 				    ", %llu %u byte blocks\n",
4339 				    (longlong_t)un->un_blockcount,
4340 				    un->un_tgt_blocksize);
4341 			} else {
4342 				(void) sprintf(&buf[strlen(buf)],
4343 				    ", (unknown capacity)\n");
4344 			}
4345 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4346 			mutex_exit(&sd_label_mutex);
4347 		}
4348 	}
4349 
4350 #if defined(_SUNOS_VTOC_16)
4351 	/*
4352 	 * If we have valid geometry, set up the remaining fdisk partitions.
4353 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4354 	 * we set it to an entirely bogus value.
4355 	 */
4356 	for (count = 0; count < FD_NUMPART; count++) {
4357 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4358 		un->un_map[FDISK_P1 + count].dkl_nblk =
4359 		    un->un_fmap[count].fmap_nblk;
4360 
4361 		un->un_offset[FDISK_P1 + count] =
4362 		    un->un_fmap[count].fmap_start;
4363 	}
4364 #endif
4365 
4366 	for (count = 0; count < NDKMAP; count++) {
4367 #if defined(_SUNOS_VTOC_8)
4368 		struct dk_map *lp  = &un->un_map[count];
4369 		un->un_offset[count] =
4370 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4371 #elif defined(_SUNOS_VTOC_16)
4372 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4373 
4374 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4375 #else
4376 #error "No VTOC format defined."
4377 #endif
4378 	}
4379 
4380 	return (label_error);
4381 }
4382 
4383 
4384 #if defined(_SUNOS_VTOC_16)
4385 /*
4386  * Macro: MAX_BLKS
4387  *
4388  *	This macro is used for table entries where we need to have the largest
4389  *	possible sector value for that head & SPT (sectors per track)
4390  *	combination.  Other entries for some smaller disk sizes are set by
4391  *	convention to match those used by X86 BIOS usage.
4392  */
4393 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4394 
4395 /*
4396  *    Function: sd_convert_geometry
4397  *
4398  * Description: Convert physical geometry into a dk_geom structure. In
4399  *		other words, make sure we don't wrap 16-bit values.
4400  *		e.g. converting from geom_cache to dk_geom
4401  *
4402  *     Context: Kernel thread only
4403  */
4404 static void
4405 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4406 {
4407 	int i;
4408 	static const struct chs_values {
4409 		uint_t max_cap;		/* Max Capacity for this HS. */
4410 		uint_t nhead;		/* Heads to use. */
4411 		uint_t nsect;		/* SPT to use. */
4412 	} CHS_values[] = {
4413 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4414 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4415 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4416 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4417 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4418 	};
4419 
4420 	/* Unlabeled SCSI floppy device */
4421 	if (capacity <= 0x1000) {
4422 		un_g->dkg_nhead = 2;
4423 		un_g->dkg_ncyl = 80;
4424 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4425 		return;
4426 	}
4427 
4428 	/*
4429 	 * For all devices we calculate cylinders using the
4430 	 * heads and sectors we assign based on capacity of the
4431 	 * device.  The table is designed to be compatible with the
4432 	 * way other operating systems lay out fdisk tables for X86
4433 	 * and to insure that the cylinders never exceed 65535 to
4434 	 * prevent problems with X86 ioctls that report geometry.
4435 	 * We use SPT that are multiples of 63, since other OSes that
4436 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4437 	 * we make do by using multiples of 63 SPT.
4438 	 *
4439 	 * Note than capacities greater than or equal to 1TB will simply
4440 	 * get the largest geometry from the table. This should be okay
4441 	 * since disks this large shouldn't be using CHS values anyway.
4442 	 */
4443 	for (i = 0; CHS_values[i].max_cap < capacity &&
4444 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4445 		;
4446 
4447 	un_g->dkg_nhead = CHS_values[i].nhead;
4448 	un_g->dkg_nsect = CHS_values[i].nsect;
4449 }
4450 #endif
4451 
4452 
4453 /*
4454  *    Function: sd_resync_geom_caches
4455  *
4456  * Description: (Re)initialize both geometry caches: the virtual geometry
4457  *		information is extracted from the HBA (the "geometry"
4458  *		capability), and the physical geometry cache data is
4459  *		generated by issuing MODE SENSE commands.
4460  *
4461  *   Arguments: un - driver soft state (unit) structure
4462  *		capacity - disk capacity in #blocks
4463  *		lbasize - disk block size in bytes
4464  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4465  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4466  *			to use the USCSI "direct" chain and bypass the normal
4467  *			command waitq.
4468  *
4469  *     Context: Kernel thread only (can sleep).
4470  */
4471 
4472 static void
4473 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4474 	int path_flag)
4475 {
4476 	struct 	geom_cache 	pgeom;
4477 	struct 	geom_cache	*pgeom_p = &pgeom;
4478 	int 	spc;
4479 	unsigned short nhead;
4480 	unsigned short nsect;
4481 
4482 	ASSERT(un != NULL);
4483 	ASSERT(mutex_owned(SD_MUTEX(un)));
4484 
4485 	/*
4486 	 * Ask the controller for its logical geometry.
4487 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4488 	 * then the lgeom cache will be invalid.
4489 	 */
4490 	sd_get_virtual_geometry(un, capacity, lbasize);
4491 
4492 	/*
4493 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4494 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4495 	 */
4496 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4497 		/*
4498 		 * Note: Perhaps this needs to be more adaptive? The rationale
4499 		 * is that, if there's no HBA geometry from the HBA driver, any
4500 		 * guess is good, since this is the physical geometry. If MODE
4501 		 * SENSE fails this gives a max cylinder size for non-LBA access
4502 		 */
4503 		nhead = 255;
4504 		nsect = 63;
4505 	} else {
4506 		nhead = un->un_lgeom.g_nhead;
4507 		nsect = un->un_lgeom.g_nsect;
4508 	}
4509 
4510 	if (ISCD(un)) {
4511 		pgeom_p->g_nhead = 1;
4512 		pgeom_p->g_nsect = nsect * nhead;
4513 	} else {
4514 		pgeom_p->g_nhead = nhead;
4515 		pgeom_p->g_nsect = nsect;
4516 	}
4517 
4518 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4519 	pgeom_p->g_capacity = capacity;
4520 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4521 	pgeom_p->g_acyl = 0;
4522 
4523 	/*
4524 	 * Retrieve fresh geometry data from the hardware, stash it
4525 	 * here temporarily before we rebuild the incore label.
4526 	 *
4527 	 * We want to use the MODE SENSE commands to derive the
4528 	 * physical geometry of the device, but if either command
4529 	 * fails, the logical geometry is used as the fallback for
4530 	 * disk label geometry.
4531 	 */
4532 	mutex_exit(SD_MUTEX(un));
4533 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4534 	mutex_enter(SD_MUTEX(un));
4535 
4536 	/*
4537 	 * Now update the real copy while holding the mutex. This
4538 	 * way the global copy is never in an inconsistent state.
4539 	 */
4540 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4541 
4542 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4543 	    "(cached from lgeom)\n");
4544 	SD_INFO(SD_LOG_COMMON, un,
4545 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4546 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4547 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4548 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4549 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4550 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4551 	    un->un_pgeom.g_rpm);
4552 }
4553 
4554 
4555 /*
4556  *    Function: sd_read_fdisk
4557  *
4558  * Description: utility routine to read the fdisk table.
4559  *
4560  *   Arguments: un - driver soft state (unit) structure
4561  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4562  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4563  *			to use the USCSI "direct" chain and bypass the normal
4564  *			command waitq.
4565  *
4566  * Return Code: SD_CMD_SUCCESS
4567  *		SD_CMD_FAILURE
4568  *
4569  *     Context: Kernel thread only (can sleep).
4570  */
4571 /* ARGSUSED */
4572 static int
4573 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4574 {
4575 #if defined(_NO_FDISK_PRESENT)
4576 
4577 	un->un_solaris_offset = 0;
4578 	un->un_solaris_size = capacity;
4579 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4580 	return (SD_CMD_SUCCESS);
4581 
4582 #elif defined(_FIRMWARE_NEEDS_FDISK)
4583 
4584 	struct ipart	*fdp;
4585 	struct mboot	*mbp;
4586 	struct ipart	fdisk[FD_NUMPART];
4587 	int		i;
4588 	char		sigbuf[2];
4589 	caddr_t		bufp;
4590 	int		uidx;
4591 	int		rval;
4592 	int		lba = 0;
4593 	uint_t		solaris_offset;	/* offset to solaris part. */
4594 	daddr_t		solaris_size;	/* size of solaris partition */
4595 	uint32_t	blocksize;
4596 
4597 	ASSERT(un != NULL);
4598 	ASSERT(mutex_owned(SD_MUTEX(un)));
4599 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4600 
4601 	blocksize = un->un_tgt_blocksize;
4602 
4603 	/*
4604 	 * Start off assuming no fdisk table
4605 	 */
4606 	solaris_offset = 0;
4607 	solaris_size   = capacity;
4608 
4609 	mutex_exit(SD_MUTEX(un));
4610 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4611 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4612 	mutex_enter(SD_MUTEX(un));
4613 
4614 	if (rval != 0) {
4615 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4616 		    "sd_read_fdisk: fdisk read err\n");
4617 		kmem_free(bufp, blocksize);
4618 		return (SD_CMD_FAILURE);
4619 	}
4620 
4621 	mbp = (struct mboot *)bufp;
4622 
4623 	/*
4624 	 * The fdisk table does not begin on a 4-byte boundary within the
4625 	 * master boot record, so we copy it to an aligned structure to avoid
4626 	 * alignment exceptions on some processors.
4627 	 */
4628 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4629 
4630 	/*
4631 	 * Check for lba support before verifying sig; sig might not be
4632 	 * there, say on a blank disk, but the max_chs mark may still
4633 	 * be present.
4634 	 *
4635 	 * Note: LBA support and BEFs are an x86-only concept but this
4636 	 * code should work OK on SPARC as well.
4637 	 */
4638 
4639 	/*
4640 	 * First, check for lba-access-ok on root node (or prom root node)
4641 	 * if present there, don't need to search fdisk table.
4642 	 */
4643 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4644 	    "lba-access-ok", 0) != 0) {
4645 		/* All drives do LBA; don't search fdisk table */
4646 		lba = 1;
4647 	} else {
4648 		/* Okay, look for mark in fdisk table */
4649 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4650 			/* accumulate "lba" value from all partitions */
4651 			lba = (lba || sd_has_max_chs_vals(fdp));
4652 		}
4653 	}
4654 
4655 	if (lba != 0) {
4656 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4657 
4658 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4659 		    "lba-access-ok", 0) == 0) {
4660 			/* not found; create it */
4661 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4662 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4663 			    DDI_PROP_SUCCESS) {
4664 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4665 				    "sd_read_fdisk: Can't create lba property "
4666 				    "for instance %d\n",
4667 				    ddi_get_instance(SD_DEVINFO(un)));
4668 			}
4669 		}
4670 	}
4671 
4672 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4673 
4674 	/*
4675 	 * Endian-independent signature check
4676 	 */
4677 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4678 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4679 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4680 		    "sd_read_fdisk: no fdisk\n");
4681 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4682 		rval = SD_CMD_SUCCESS;
4683 		goto done;
4684 	}
4685 
4686 #ifdef SDDEBUG
4687 	if (sd_level_mask & SD_LOGMASK_INFO) {
4688 		fdp = fdisk;
4689 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4690 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4691 		    "numsect         sysid       bootid\n");
4692 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4693 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4694 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4695 			    i, fdp->relsect, fdp->numsect,
4696 			    fdp->systid, fdp->bootid);
4697 		}
4698 	}
4699 #endif
4700 
4701 	/*
4702 	 * Try to find the unix partition
4703 	 */
4704 	uidx = -1;
4705 	solaris_offset = 0;
4706 	solaris_size   = 0;
4707 
4708 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4709 		int	relsect;
4710 		int	numsect;
4711 
4712 		if (fdp->numsect == 0) {
4713 			un->un_fmap[i].fmap_start = 0;
4714 			un->un_fmap[i].fmap_nblk  = 0;
4715 			continue;
4716 		}
4717 
4718 		/*
4719 		 * Data in the fdisk table is little-endian.
4720 		 */
4721 		relsect = LE_32(fdp->relsect);
4722 		numsect = LE_32(fdp->numsect);
4723 
4724 		un->un_fmap[i].fmap_start = relsect;
4725 		un->un_fmap[i].fmap_nblk  = numsect;
4726 
4727 		if (fdp->systid != SUNIXOS &&
4728 		    fdp->systid != SUNIXOS2 &&
4729 		    fdp->systid != EFI_PMBR) {
4730 			continue;
4731 		}
4732 
4733 		/*
4734 		 * use the last active solaris partition id found
4735 		 * (there should only be 1 active partition id)
4736 		 *
4737 		 * if there are no active solaris partition id
4738 		 * then use the first inactive solaris partition id
4739 		 */
4740 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
4741 			uidx = i;
4742 			solaris_offset = relsect;
4743 			solaris_size   = numsect;
4744 		}
4745 	}
4746 
4747 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
4748 	    un->un_solaris_offset, un->un_solaris_size);
4749 
4750 	rval = SD_CMD_SUCCESS;
4751 
4752 done:
4753 
4754 	/*
4755 	 * Clear the VTOC info, only if the Solaris partition entry
4756 	 * has moved, changed size, been deleted, or if the size of
4757 	 * the partition is too small to even fit the label sector.
4758 	 */
4759 	if ((un->un_solaris_offset != solaris_offset) ||
4760 	    (un->un_solaris_size != solaris_size) ||
4761 	    solaris_size <= DK_LABEL_LOC) {
4762 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
4763 			solaris_offset, solaris_size);
4764 		bzero(&un->un_g, sizeof (struct dk_geom));
4765 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
4766 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
4767 		un->un_f_geometry_is_valid = FALSE;
4768 	}
4769 	un->un_solaris_offset = solaris_offset;
4770 	un->un_solaris_size = solaris_size;
4771 	kmem_free(bufp, blocksize);
4772 	return (rval);
4773 
4774 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
4775 #error "fdisk table presence undetermined for this platform."
4776 #endif	/* #if defined(_NO_FDISK_PRESENT) */
4777 }
4778 
4779 
4780 /*
4781  *    Function: sd_get_physical_geometry
4782  *
4783  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4784  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4785  *		target, and use this information to initialize the physical
4786  *		geometry cache specified by pgeom_p.
4787  *
4788  *		MODE SENSE is an optional command, so failure in this case
4789  *		does not necessarily denote an error. We want to use the
4790  *		MODE SENSE commands to derive the physical geometry of the
4791  *		device, but if either command fails, the logical geometry is
4792  *		used as the fallback for disk label geometry.
4793  *
4794  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4795  *		have already been initialized for the current target and
4796  *		that the current values be passed as args so that we don't
4797  *		end up ever trying to use -1 as a valid value. This could
4798  *		happen if either value is reset while we're not holding
4799  *		the mutex.
4800  *
4801  *   Arguments: un - driver soft state (unit) structure
4802  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4803  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4804  *			to use the USCSI "direct" chain and bypass the normal
4805  *			command waitq.
4806  *
4807  *     Context: Kernel thread only (can sleep).
4808  */
4809 
4810 static void
4811 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
4812 	int capacity, int lbasize, int path_flag)
4813 {
4814 	struct	mode_format	*page3p;
4815 	struct	mode_geometry	*page4p;
4816 	struct	mode_header	*headerp;
4817 	int	sector_size;
4818 	int	nsect;
4819 	int	nhead;
4820 	int	ncyl;
4821 	int	intrlv;
4822 	int	spc;
4823 	int	modesense_capacity;
4824 	int	rpm;
4825 	int	bd_len;
4826 	int	mode_header_length;
4827 	uchar_t	*p3bufp;
4828 	uchar_t	*p4bufp;
4829 	int	cdbsize;
4830 
4831 	ASSERT(un != NULL);
4832 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
4833 
4834 	if (un->un_f_blockcount_is_valid != TRUE) {
4835 		return;
4836 	}
4837 
4838 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
4839 		return;
4840 	}
4841 
4842 	if (lbasize == 0) {
4843 		if (ISCD(un)) {
4844 			lbasize = 2048;
4845 		} else {
4846 			lbasize = un->un_sys_blocksize;
4847 		}
4848 	}
4849 	pgeom_p->g_secsize = (unsigned short)lbasize;
4850 
4851 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4852 
4853 	/*
4854 	 * Retrieve MODE SENSE page 3 - Format Device Page
4855 	 */
4856 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4857 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
4858 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
4859 	    != 0) {
4860 		SD_ERROR(SD_LOG_COMMON, un,
4861 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4862 		goto page3_exit;
4863 	}
4864 
4865 	/*
4866 	 * Determine size of Block Descriptors in order to locate the mode
4867 	 * page data.  ATAPI devices return 0, SCSI devices should return
4868 	 * MODE_BLK_DESC_LENGTH.
4869 	 */
4870 	headerp = (struct mode_header *)p3bufp;
4871 	if (un->un_f_cfg_is_atapi == TRUE) {
4872 		struct mode_header_grp2 *mhp =
4873 		    (struct mode_header_grp2 *)headerp;
4874 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
4875 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4876 	} else {
4877 		mode_header_length = MODE_HEADER_LENGTH;
4878 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4879 	}
4880 
4881 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4882 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4883 		    "received unexpected bd_len of %d, page3\n", bd_len);
4884 		goto page3_exit;
4885 	}
4886 
4887 	page3p = (struct mode_format *)
4888 	    ((caddr_t)headerp + mode_header_length + bd_len);
4889 
4890 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
4891 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4892 		    "mode sense pg3 code mismatch %d\n",
4893 		    page3p->mode_page.code);
4894 		goto page3_exit;
4895 	}
4896 
4897 	/*
4898 	 * Use this physical geometry data only if BOTH MODE SENSE commands
4899 	 * complete successfully; otherwise, revert to the logical geometry.
4900 	 * So, we need to save everything in temporary variables.
4901 	 */
4902 	sector_size = BE_16(page3p->data_bytes_sect);
4903 
4904 	/*
4905 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
4906 	 */
4907 	if (sector_size == 0) {
4908 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
4909 	} else {
4910 		sector_size &= ~(un->un_sys_blocksize - 1);
4911 	}
4912 
4913 	nsect  = BE_16(page3p->sect_track);
4914 	intrlv = BE_16(page3p->interleave);
4915 
4916 	SD_INFO(SD_LOG_COMMON, un,
4917 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
4918 	SD_INFO(SD_LOG_COMMON, un,
4919 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
4920 	    page3p->mode_page.code, nsect, sector_size);
4921 	SD_INFO(SD_LOG_COMMON, un,
4922 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
4923 	    BE_16(page3p->track_skew),
4924 	    BE_16(page3p->cylinder_skew));
4925 
4926 
4927 	/*
4928 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
4929 	 */
4930 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
4931 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
4932 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
4933 	    != 0) {
4934 		SD_ERROR(SD_LOG_COMMON, un,
4935 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
4936 		goto page4_exit;
4937 	}
4938 
4939 	/*
4940 	 * Determine size of Block Descriptors in order to locate the mode
4941 	 * page data.  ATAPI devices return 0, SCSI devices should return
4942 	 * MODE_BLK_DESC_LENGTH.
4943 	 */
4944 	headerp = (struct mode_header *)p4bufp;
4945 	if (un->un_f_cfg_is_atapi == TRUE) {
4946 		struct mode_header_grp2 *mhp =
4947 		    (struct mode_header_grp2 *)headerp;
4948 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
4949 	} else {
4950 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
4951 	}
4952 
4953 	if (bd_len > MODE_BLK_DESC_LENGTH) {
4954 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4955 		    "received unexpected bd_len of %d, page4\n", bd_len);
4956 		goto page4_exit;
4957 	}
4958 
4959 	page4p = (struct mode_geometry *)
4960 	    ((caddr_t)headerp + mode_header_length + bd_len);
4961 
4962 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
4963 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
4964 		    "mode sense pg4 code mismatch %d\n",
4965 		    page4p->mode_page.code);
4966 		goto page4_exit;
4967 	}
4968 
4969 	/*
4970 	 * Stash the data now, after we know that both commands completed.
4971 	 */
4972 
4973 	mutex_enter(SD_MUTEX(un));
4974 
4975 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
4976 	spc   = nhead * nsect;
4977 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
4978 	rpm   = BE_16(page4p->rpm);
4979 
4980 	modesense_capacity = spc * ncyl;
4981 
4982 	SD_INFO(SD_LOG_COMMON, un,
4983 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
4984 	SD_INFO(SD_LOG_COMMON, un,
4985 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
4986 	SD_INFO(SD_LOG_COMMON, un,
4987 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
4988 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
4989 	    (void *)pgeom_p, capacity);
4990 
4991 	/*
4992 	 * Compensate if the drive's geometry is not rectangular, i.e.,
4993 	 * the product of C * H * S returned by MODE SENSE >= that returned
4994 	 * by read capacity. This is an idiosyncrasy of the original x86
4995 	 * disk subsystem.
4996 	 */
4997 	if (modesense_capacity >= capacity) {
4998 		SD_INFO(SD_LOG_COMMON, un,
4999 		    "sd_get_physical_geometry: adjusting acyl; "
5000 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5001 		    (modesense_capacity - capacity + spc - 1) / spc);
5002 		if (sector_size != 0) {
5003 			/* 1243403: NEC D38x7 drives don't support sec size */
5004 			pgeom_p->g_secsize = (unsigned short)sector_size;
5005 		}
5006 		pgeom_p->g_nsect    = (unsigned short)nsect;
5007 		pgeom_p->g_nhead    = (unsigned short)nhead;
5008 		pgeom_p->g_capacity = capacity;
5009 		pgeom_p->g_acyl	    =
5010 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5011 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5012 	}
5013 
5014 	pgeom_p->g_rpm    = (unsigned short)rpm;
5015 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5016 
5017 	SD_INFO(SD_LOG_COMMON, un,
5018 	    "sd_get_physical_geometry: mode sense geometry:\n");
5019 	SD_INFO(SD_LOG_COMMON, un,
5020 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5021 	    nsect, sector_size, intrlv);
5022 	SD_INFO(SD_LOG_COMMON, un,
5023 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5024 	    nhead, ncyl, rpm, modesense_capacity);
5025 	SD_INFO(SD_LOG_COMMON, un,
5026 	    "sd_get_physical_geometry: (cached)\n");
5027 	SD_INFO(SD_LOG_COMMON, un,
5028 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5029 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
5030 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
5031 	SD_INFO(SD_LOG_COMMON, un,
5032 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5033 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5034 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5035 
5036 	mutex_exit(SD_MUTEX(un));
5037 
5038 page4_exit:
5039 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5040 page3_exit:
5041 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5042 }
5043 
5044 
5045 /*
5046  *    Function: sd_get_virtual_geometry
5047  *
5048  * Description: Ask the controller to tell us about the target device.
5049  *
5050  *   Arguments: un - pointer to softstate
5051  *		capacity - disk capacity in #blocks
5052  *		lbasize - disk block size in bytes
5053  *
5054  *     Context: Kernel thread only
5055  */
5056 
5057 static void
5058 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5059 {
5060 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5061 	uint_t	geombuf;
5062 	int	spc;
5063 
5064 	ASSERT(un != NULL);
5065 	ASSERT(mutex_owned(SD_MUTEX(un)));
5066 
5067 	mutex_exit(SD_MUTEX(un));
5068 
5069 	/* Set sector size, and total number of sectors */
5070 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5071 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5072 
5073 	/* Let the HBA tell us its geometry */
5074 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5075 
5076 	mutex_enter(SD_MUTEX(un));
5077 
5078 	/* A value of -1 indicates an undefined "geometry" property */
5079 	if (geombuf == (-1)) {
5080 		return;
5081 	}
5082 
5083 	/* Initialize the logical geometry cache. */
5084 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5085 	lgeom_p->g_nsect   = geombuf & 0xffff;
5086 	lgeom_p->g_secsize = un->un_sys_blocksize;
5087 
5088 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5089 
5090 	/*
5091 	 * Note: The driver originally converted the capacity value from
5092 	 * target blocks to system blocks. However, the capacity value passed
5093 	 * to this routine is already in terms of system blocks (this scaling
5094 	 * is done when the READ CAPACITY command is issued and processed).
5095 	 * This 'error' may have gone undetected because the usage of g_ncyl
5096 	 * (which is based upon g_capacity) is very limited within the driver
5097 	 */
5098 	lgeom_p->g_capacity = capacity;
5099 
5100 	/*
5101 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5102 	 * hba may return zero values if the device has been removed.
5103 	 */
5104 	if (spc == 0) {
5105 		lgeom_p->g_ncyl = 0;
5106 	} else {
5107 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5108 	}
5109 	lgeom_p->g_acyl = 0;
5110 
5111 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5112 	SD_INFO(SD_LOG_COMMON, un,
5113 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5114 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5115 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5116 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5117 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5118 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5119 }
5120 
5121 
5122 /*
5123  *    Function: sd_update_block_info
5124  *
5125  * Description: Calculate a byte count to sector count bitshift value
5126  *		from sector size.
5127  *
5128  *   Arguments: un: unit struct.
5129  *		lbasize: new target sector size
5130  *		capacity: new target capacity, ie. block count
5131  *
5132  *     Context: Kernel thread context
5133  */
5134 
5135 static void
5136 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5137 {
5138 	if (lbasize != 0) {
5139 		un->un_tgt_blocksize = lbasize;
5140 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5141 	}
5142 
5143 	if (capacity != 0) {
5144 		un->un_blockcount		= capacity;
5145 		un->un_f_blockcount_is_valid	= TRUE;
5146 	}
5147 }
5148 
5149 
5150 static void
5151 sd_swap_efi_gpt(efi_gpt_t *e)
5152 {
5153 	_NOTE(ASSUMING_PROTECTED(*e))
5154 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5155 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5156 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5157 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5158 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5159 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5160 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5161 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5162 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5163 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5164 	e->efi_gpt_NumberOfPartitionEntries =
5165 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5166 	e->efi_gpt_SizeOfPartitionEntry =
5167 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5168 	e->efi_gpt_PartitionEntryArrayCRC32 =
5169 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5170 }
5171 
5172 static void
5173 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5174 {
5175 	int i;
5176 
5177 	_NOTE(ASSUMING_PROTECTED(*p))
5178 	for (i = 0; i < nparts; i++) {
5179 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5180 		    p[i].efi_gpe_PartitionTypeGUID);
5181 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5182 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5183 		/* PartitionAttrs */
5184 	}
5185 }
5186 
5187 static int
5188 sd_validate_efi(efi_gpt_t *labp)
5189 {
5190 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5191 		return (EINVAL);
5192 	/* at least 96 bytes in this version of the spec. */
5193 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5194 	    labp->efi_gpt_HeaderSize)
5195 		return (EINVAL);
5196 	/* this should be 128 bytes */
5197 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5198 		return (EINVAL);
5199 	return (0);
5200 }
5201 
5202 static int
5203 sd_use_efi(struct sd_lun *un, int path_flag)
5204 {
5205 	int		i;
5206 	int		rval = 0;
5207 	efi_gpe_t	*partitions;
5208 	uchar_t		*buf;
5209 	uint_t		lbasize;
5210 	uint64_t	cap;
5211 	uint_t		nparts;
5212 	diskaddr_t	gpe_lba;
5213 
5214 	ASSERT(mutex_owned(SD_MUTEX(un)));
5215 	lbasize = un->un_tgt_blocksize;
5216 
5217 	mutex_exit(SD_MUTEX(un));
5218 
5219 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5220 
5221 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5222 		rval = EINVAL;
5223 		goto done_err;
5224 	}
5225 
5226 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5227 	if (rval) {
5228 		goto done_err;
5229 	}
5230 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5231 		/* not ours */
5232 		rval = ESRCH;
5233 		goto done_err;
5234 	}
5235 
5236 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5237 	if (rval) {
5238 		goto done_err;
5239 	}
5240 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5241 
5242 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5243 		/*
5244 		 * Couldn't read the primary, try the backup.  Our
5245 		 * capacity at this point could be based on CHS, so
5246 		 * check what the device reports.
5247 		 */
5248 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5249 		    path_flag);
5250 		if (rval) {
5251 			goto done_err;
5252 		}
5253 
5254 		/*
5255 		 * The MMC standard allows READ CAPACITY to be
5256 		 * inaccurate by a bounded amount (in the interest of
5257 		 * response latency).  As a result, failed READs are
5258 		 * commonplace (due to the reading of metadata and not
5259 		 * data). Depending on the per-Vendor/drive Sense data,
5260 		 * the failed READ can cause many (unnecessary) retries.
5261 		 */
5262 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5263 		    cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5264 			path_flag)) != 0) {
5265 				goto done_err;
5266 		}
5267 
5268 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5269 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5270 			goto done_err;
5271 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5272 		    "primary label corrupt; using backup\n");
5273 	}
5274 
5275 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5276 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5277 
5278 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5279 	    path_flag);
5280 	if (rval) {
5281 		goto done_err;
5282 	}
5283 	partitions = (efi_gpe_t *)buf;
5284 
5285 	if (nparts > MAXPART) {
5286 		nparts = MAXPART;
5287 	}
5288 	sd_swap_efi_gpe(nparts, partitions);
5289 
5290 	mutex_enter(SD_MUTEX(un));
5291 
5292 	/* Fill in partition table. */
5293 	for (i = 0; i < nparts; i++) {
5294 		if (partitions->efi_gpe_StartingLBA != 0 ||
5295 		    partitions->efi_gpe_EndingLBA != 0) {
5296 			un->un_map[i].dkl_cylno =
5297 			    partitions->efi_gpe_StartingLBA;
5298 			un->un_map[i].dkl_nblk =
5299 			    partitions->efi_gpe_EndingLBA -
5300 			    partitions->efi_gpe_StartingLBA + 1;
5301 			un->un_offset[i] =
5302 			    partitions->efi_gpe_StartingLBA;
5303 		}
5304 		if (i == WD_NODE) {
5305 			/*
5306 			 * minor number 7 corresponds to the whole disk
5307 			 */
5308 			un->un_map[i].dkl_cylno = 0;
5309 			un->un_map[i].dkl_nblk = un->un_blockcount;
5310 			un->un_offset[i] = 0;
5311 		}
5312 		partitions++;
5313 	}
5314 	un->un_solaris_offset = 0;
5315 	un->un_solaris_size = cap;
5316 	un->un_f_geometry_is_valid = TRUE;
5317 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5318 	return (0);
5319 
5320 done_err:
5321 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5322 	mutex_enter(SD_MUTEX(un));
5323 	/*
5324 	 * if we didn't find something that could look like a VTOC
5325 	 * and the disk is over 1TB, we know there isn't a valid label.
5326 	 * Otherwise let sd_uselabel decide what to do.  We only
5327 	 * want to invalidate this if we're certain the label isn't
5328 	 * valid because sd_prop_op will now fail, which in turn
5329 	 * causes things like opens and stats on the partition to fail.
5330 	 */
5331 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5332 		un->un_f_geometry_is_valid = FALSE;
5333 	}
5334 	return (rval);
5335 }
5336 
5337 
5338 /*
5339  *    Function: sd_uselabel
5340  *
5341  * Description: Validate the disk label and update the relevant data (geometry,
5342  *		partition, vtoc, and capacity data) in the sd_lun struct.
5343  *		Marks the geometry of the unit as being valid.
5344  *
5345  *   Arguments: un: unit struct.
5346  *		dk_label: disk label
5347  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5348  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5349  *			to use the USCSI "direct" chain and bypass the normal
5350  *			command waitq.
5351  *
5352  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5353  *		partition, vtoc, and capacity data are good.
5354  *
5355  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5356  *		label; or computed capacity does not jibe with capacity
5357  *		reported from the READ CAPACITY command.
5358  *
5359  *     Context: Kernel thread only (can sleep).
5360  */
5361 
5362 static int
5363 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5364 {
5365 	short	*sp;
5366 	short	sum;
5367 	short	count;
5368 	int	label_error = SD_LABEL_IS_VALID;
5369 	int	i;
5370 	int	capacity;
5371 	int	part_end;
5372 	int	track_capacity;
5373 	int	err;
5374 #if defined(_SUNOS_VTOC_16)
5375 	struct	dkl_partition	*vpartp;
5376 #endif
5377 	ASSERT(un != NULL);
5378 	ASSERT(mutex_owned(SD_MUTEX(un)));
5379 
5380 	/* Validate the magic number of the label. */
5381 	if (labp->dkl_magic != DKL_MAGIC) {
5382 #if defined(__sparc)
5383 		if ((un->un_state == SD_STATE_NORMAL) &&
5384 			un->un_f_vtoc_errlog_supported) {
5385 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5386 			    "Corrupt label; wrong magic number\n");
5387 		}
5388 #endif
5389 		return (SD_LABEL_IS_INVALID);
5390 	}
5391 
5392 	/* Validate the checksum of the label. */
5393 	sp  = (short *)labp;
5394 	sum = 0;
5395 	count = sizeof (struct dk_label) / sizeof (short);
5396 	while (count--)	 {
5397 		sum ^= *sp++;
5398 	}
5399 
5400 	if (sum != 0) {
5401 #if	defined(_SUNOS_VTOC_16)
5402 		if ((un->un_state == SD_STATE_NORMAL) && !ISCD(un)) {
5403 #elif defined(_SUNOS_VTOC_8)
5404 		if ((un->un_state == SD_STATE_NORMAL) &&
5405 		    un->un_f_vtoc_errlog_supported) {
5406 #endif
5407 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5408 			    "Corrupt label - label checksum failed\n");
5409 		}
5410 		return (SD_LABEL_IS_INVALID);
5411 	}
5412 
5413 
5414 	/*
5415 	 * Fill in geometry structure with data from label.
5416 	 */
5417 	bzero(&un->un_g, sizeof (struct dk_geom));
5418 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5419 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5420 	un->un_g.dkg_bcyl   = 0;
5421 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5422 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5423 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5424 
5425 #if defined(_SUNOS_VTOC_8)
5426 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5427 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5428 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5429 #endif
5430 #if defined(_SUNOS_VTOC_16)
5431 	un->un_dkg_skew = labp->dkl_skew;
5432 #endif
5433 
5434 #if defined(__i386) || defined(__amd64)
5435 	un->un_g.dkg_apc = labp->dkl_apc;
5436 #endif
5437 
5438 	/*
5439 	 * Currently we rely on the values in the label being accurate. If
5440 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5441 	 *
5442 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5443 	 * although this command is optional in SCSI-2.
5444 	 */
5445 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5446 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5447 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5448 
5449 	/*
5450 	 * The Read and Write reinstruct values may not be valid
5451 	 * for older disks.
5452 	 */
5453 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5454 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5455 
5456 	/* Fill in partition table. */
5457 #if defined(_SUNOS_VTOC_8)
5458 	for (i = 0; i < NDKMAP; i++) {
5459 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5460 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5461 	}
5462 #endif
5463 #if  defined(_SUNOS_VTOC_16)
5464 	vpartp		= labp->dkl_vtoc.v_part;
5465 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5466 
5467 	/* Prevent divide by zero */
5468 	if (track_capacity == 0) {
5469 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5470 		    "Corrupt label - zero nhead or nsect value\n");
5471 
5472 		return (SD_LABEL_IS_INVALID);
5473 	}
5474 
5475 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5476 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5477 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5478 	}
5479 #endif
5480 
5481 	/* Fill in VTOC Structure. */
5482 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5483 #if defined(_SUNOS_VTOC_8)
5484 	/*
5485 	 * The 8-slice vtoc does not include the ascii label; save it into
5486 	 * the device's soft state structure here.
5487 	 */
5488 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5489 #endif
5490 
5491 	/* Now look for a valid capacity. */
5492 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5493 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5494 
5495 	if (un->un_g.dkg_acyl) {
5496 #if defined(__i386) || defined(__amd64)
5497 		/* we may have > 1 alts cylinder */
5498 		capacity += (track_capacity * un->un_g.dkg_acyl);
5499 #else
5500 		capacity += track_capacity;
5501 #endif
5502 	}
5503 
5504 	/*
5505 	 * Force check here to ensure the computed capacity is valid.
5506 	 * If capacity is zero, it indicates an invalid label and
5507 	 * we should abort updating the relevant data then.
5508 	 */
5509 	if (capacity == 0) {
5510 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5511 		    "Corrupt label - no valid capacity could be retrieved\n");
5512 
5513 		return (SD_LABEL_IS_INVALID);
5514 	}
5515 
5516 	/* Mark the geometry as valid. */
5517 	un->un_f_geometry_is_valid = TRUE;
5518 
5519 	/*
5520 	 * At this point, un->un_blockcount should contain valid data from
5521 	 * the READ CAPACITY command.
5522 	 */
5523 	if (un->un_f_blockcount_is_valid != TRUE) {
5524 		/*
5525 		 * We have a situation where the target didn't give us a good
5526 		 * READ CAPACITY value, yet there appears to be a valid label.
5527 		 * In this case, we'll fake the capacity.
5528 		 */
5529 		un->un_blockcount = capacity;
5530 		un->un_f_blockcount_is_valid = TRUE;
5531 		goto done;
5532 	}
5533 
5534 
5535 	if ((capacity <= un->un_blockcount) ||
5536 	    (un->un_state != SD_STATE_NORMAL)) {
5537 #if defined(_SUNOS_VTOC_8)
5538 		/*
5539 		 * We can't let this happen on drives that are subdivided
5540 		 * into logical disks (i.e., that have an fdisk table).
5541 		 * The un_blockcount field should always hold the full media
5542 		 * size in sectors, period.  This code would overwrite
5543 		 * un_blockcount with the size of the Solaris fdisk partition.
5544 		 */
5545 		SD_ERROR(SD_LOG_COMMON, un,
5546 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5547 		    capacity, un->un_blockcount);
5548 		un->un_blockcount = capacity;
5549 		un->un_f_blockcount_is_valid = TRUE;
5550 #endif	/* defined(_SUNOS_VTOC_8) */
5551 		goto done;
5552 	}
5553 
5554 	if (ISCD(un)) {
5555 		/* For CDROMs, we trust that the data in the label is OK. */
5556 #if defined(_SUNOS_VTOC_8)
5557 		for (i = 0; i < NDKMAP; i++) {
5558 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5559 			    labp->dkl_map[i].dkl_cylno +
5560 			    labp->dkl_map[i].dkl_nblk  - 1;
5561 
5562 			if ((labp->dkl_map[i].dkl_nblk) &&
5563 			    (part_end > un->un_blockcount)) {
5564 				un->un_f_geometry_is_valid = FALSE;
5565 				break;
5566 			}
5567 		}
5568 #endif
5569 #if defined(_SUNOS_VTOC_16)
5570 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5571 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5572 			part_end = vpartp->p_start + vpartp->p_size;
5573 			if ((vpartp->p_size > 0) &&
5574 			    (part_end > un->un_blockcount)) {
5575 				un->un_f_geometry_is_valid = FALSE;
5576 				break;
5577 			}
5578 		}
5579 #endif
5580 	} else {
5581 		uint64_t t_capacity;
5582 		uint32_t t_lbasize;
5583 
5584 		mutex_exit(SD_MUTEX(un));
5585 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5586 		    path_flag);
5587 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5588 		mutex_enter(SD_MUTEX(un));
5589 
5590 		if (err == 0) {
5591 			sd_update_block_info(un, t_lbasize, t_capacity);
5592 		}
5593 
5594 		if (capacity > un->un_blockcount) {
5595 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5596 			    "Corrupt label - bad geometry\n");
5597 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5598 			    "Label says %u blocks; Drive says %llu blocks\n",
5599 			    capacity, (unsigned long long)un->un_blockcount);
5600 			un->un_f_geometry_is_valid = FALSE;
5601 			label_error = SD_LABEL_IS_INVALID;
5602 		}
5603 	}
5604 
5605 done:
5606 
5607 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5608 	SD_INFO(SD_LOG_COMMON, un,
5609 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5610 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5611 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5612 	SD_INFO(SD_LOG_COMMON, un,
5613 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5614 	    un->un_tgt_blocksize, un->un_blockcount,
5615 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5616 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5617 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5618 
5619 	ASSERT(mutex_owned(SD_MUTEX(un)));
5620 
5621 	return (label_error);
5622 }
5623 
5624 
5625 /*
5626  *    Function: sd_build_default_label
5627  *
5628  * Description: Generate a default label for those devices that do not have
5629  *		one, e.g., new media, removable cartridges, etc..
5630  *
5631  *     Context: Kernel thread only
5632  */
5633 
5634 static void
5635 sd_build_default_label(struct sd_lun *un)
5636 {
5637 #if defined(_SUNOS_VTOC_16)
5638 	uint_t	phys_spc;
5639 	uint_t	disksize;
5640 	struct	dk_geom un_g;
5641 #endif
5642 
5643 	ASSERT(un != NULL);
5644 	ASSERT(mutex_owned(SD_MUTEX(un)));
5645 
5646 #if defined(_SUNOS_VTOC_8)
5647 	/*
5648 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5649 	 * only. This may be a valid check for VTOC_16 as well.
5650 	 * Once we understand why there is this difference between SPARC and
5651 	 * x86 platform, we could remove this legacy check.
5652 	 */
5653 	ASSERT(un->un_f_default_vtoc_supported);
5654 #endif
5655 
5656 	bzero(&un->un_g, sizeof (struct dk_geom));
5657 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5658 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5659 
5660 #if defined(_SUNOS_VTOC_8)
5661 
5662 	/*
5663 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
5664 	 * But it is still necessary to set up various geometry information,
5665 	 * and we are doing this here.
5666 	 */
5667 
5668 	/*
5669 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
5670 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
5671 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
5672 	 * equal to C*H*S values.  This will cause some truncation of size due
5673 	 * to round off errors. For CD-ROMs, this truncation can have adverse
5674 	 * side effects, so returning ncyl and nhead as 1. The nsect will
5675 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
5676 	 */
5677 	if (ISCD(un)) {
5678 		/*
5679 		 * Preserve the old behavior for non-writable
5680 		 * medias. Since dkg_nsect is a ushort, it
5681 		 * will lose bits as cdroms have more than
5682 		 * 65536 sectors. So if we recalculate
5683 		 * capacity, it will become much shorter.
5684 		 * But the dkg_* information is not
5685 		 * used for CDROMs so it is OK. But for
5686 		 * Writable CDs we need this information
5687 		 * to be valid (for newfs say). So we
5688 		 * make nsect and nhead > 1 that way
5689 		 * nsect can still stay within ushort limit
5690 		 * without losing any bits.
5691 		 */
5692 		if (un->un_f_mmc_writable_media == TRUE) {
5693 			un->un_g.dkg_nhead = 64;
5694 			un->un_g.dkg_nsect = 32;
5695 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
5696 			un->un_blockcount = un->un_g.dkg_ncyl *
5697 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5698 		} else {
5699 			un->un_g.dkg_ncyl  = 1;
5700 			un->un_g.dkg_nhead = 1;
5701 			un->un_g.dkg_nsect = un->un_blockcount;
5702 		}
5703 	} else {
5704 		if (un->un_blockcount <= 0x1000) {
5705 			/* unlabeled SCSI floppy device */
5706 			un->un_g.dkg_nhead = 2;
5707 			un->un_g.dkg_ncyl = 80;
5708 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
5709 		} else if (un->un_blockcount <= 0x200000) {
5710 			un->un_g.dkg_nhead = 64;
5711 			un->un_g.dkg_nsect = 32;
5712 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
5713 		} else {
5714 			un->un_g.dkg_nhead = 255;
5715 			un->un_g.dkg_nsect = 63;
5716 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
5717 		}
5718 		un->un_blockcount =
5719 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5720 	}
5721 
5722 	un->un_g.dkg_acyl	= 0;
5723 	un->un_g.dkg_bcyl	= 0;
5724 	un->un_g.dkg_rpm	= 200;
5725 	un->un_asciilabel[0]	= '\0';
5726 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
5727 
5728 	un->un_map[0].dkl_cylno = 0;
5729 	un->un_map[0].dkl_nblk  = un->un_blockcount;
5730 	un->un_map[2].dkl_cylno = 0;
5731 	un->un_map[2].dkl_nblk  = un->un_blockcount;
5732 
5733 #elif defined(_SUNOS_VTOC_16)
5734 
5735 	if (un->un_solaris_size == 0) {
5736 		/*
5737 		 * Got fdisk table but no solaris entry therefore
5738 		 * don't create a default label
5739 		 */
5740 		un->un_f_geometry_is_valid = TRUE;
5741 		return;
5742 	}
5743 
5744 	/*
5745 	 * For CDs we continue to use the physical geometry to calculate
5746 	 * number of cylinders. All other devices must convert the
5747 	 * physical geometry (geom_cache) to values that will fit
5748 	 * in a dk_geom structure.
5749 	 */
5750 	if (ISCD(un)) {
5751 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
5752 	} else {
5753 		/* Convert physical geometry to disk geometry */
5754 		bzero(&un_g, sizeof (struct dk_geom));
5755 		sd_convert_geometry(un->un_blockcount, &un_g);
5756 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
5757 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
5758 	}
5759 
5760 	ASSERT(phys_spc != 0);
5761 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
5762 	un->un_g.dkg_acyl = DK_ACYL;
5763 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
5764 	disksize = un->un_g.dkg_ncyl * phys_spc;
5765 
5766 	if (ISCD(un)) {
5767 		/*
5768 		 * CD's don't use the "heads * sectors * cyls"-type of
5769 		 * geometry, but instead use the entire capacity of the media.
5770 		 */
5771 		disksize = un->un_solaris_size;
5772 		un->un_g.dkg_nhead = 1;
5773 		un->un_g.dkg_nsect = 1;
5774 		un->un_g.dkg_rpm =
5775 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
5776 
5777 		un->un_vtoc.v_part[0].p_start = 0;
5778 		un->un_vtoc.v_part[0].p_size  = disksize;
5779 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
5780 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
5781 
5782 		un->un_map[0].dkl_cylno = 0;
5783 		un->un_map[0].dkl_nblk  = disksize;
5784 		un->un_offset[0] = 0;
5785 
5786 	} else {
5787 		/*
5788 		 * Hard disks and removable media cartridges
5789 		 */
5790 		un->un_g.dkg_rpm =
5791 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
5792 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
5793 
5794 		/* Add boot slice */
5795 		un->un_vtoc.v_part[8].p_start = 0;
5796 		un->un_vtoc.v_part[8].p_size  = phys_spc;
5797 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
5798 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
5799 
5800 		un->un_map[8].dkl_cylno = 0;
5801 		un->un_map[8].dkl_nblk  = phys_spc;
5802 		un->un_offset[8] = 0;
5803 	}
5804 
5805 	un->un_g.dkg_apc = 0;
5806 	un->un_vtoc.v_nparts = V_NUMPAR;
5807 
5808 	/* Add backup slice */
5809 	un->un_vtoc.v_part[2].p_start = 0;
5810 	un->un_vtoc.v_part[2].p_size  = disksize;
5811 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
5812 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
5813 
5814 	un->un_map[2].dkl_cylno = 0;
5815 	un->un_map[2].dkl_nblk  = disksize;
5816 	un->un_offset[2] = 0;
5817 
5818 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
5819 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
5820 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5821 
5822 #else
5823 #error "No VTOC format defined."
5824 #endif
5825 
5826 	un->un_g.dkg_read_reinstruct  = 0;
5827 	un->un_g.dkg_write_reinstruct = 0;
5828 
5829 	un->un_g.dkg_intrlv = 1;
5830 
5831 	un->un_vtoc.v_version = V_VERSION;
5832 	un->un_vtoc.v_sanity  = VTOC_SANE;
5833 
5834 	un->un_f_geometry_is_valid = TRUE;
5835 
5836 	SD_INFO(SD_LOG_COMMON, un,
5837 	    "sd_build_default_label: Default label created: "
5838 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
5839 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
5840 	    un->un_g.dkg_nsect, un->un_blockcount);
5841 }
5842 
5843 
5844 #if defined(_FIRMWARE_NEEDS_FDISK)
5845 /*
5846  * Max CHS values, as they are encoded into bytes, for 1022/254/63
5847  */
5848 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
5849 #define	LBA_MAX_CYL	(1022 & 0xFF)
5850 #define	LBA_MAX_HEAD	(254)
5851 
5852 
5853 /*
5854  *    Function: sd_has_max_chs_vals
5855  *
5856  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
5857  *
5858  *   Arguments: fdp - ptr to CHS info
5859  *
5860  * Return Code: True or false
5861  *
5862  *     Context: Any.
5863  */
5864 
5865 static int
5866 sd_has_max_chs_vals(struct ipart *fdp)
5867 {
5868 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
5869 	    (fdp->beghead == LBA_MAX_HEAD)	&&
5870 	    (fdp->begsect == LBA_MAX_SECT)	&&
5871 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
5872 	    (fdp->endhead == LBA_MAX_HEAD)	&&
5873 	    (fdp->endsect == LBA_MAX_SECT));
5874 }
5875 #endif
5876 
5877 
5878 /*
5879  *    Function: sd_inq_fill
5880  *
5881  * Description: Print a piece of inquiry data, cleaned up for non-printable
5882  *		characters and stopping at the first space character after
5883  *		the beginning of the passed string;
5884  *
5885  *   Arguments: p - source string
5886  *		l - maximum length to copy
5887  *		s - destination string
5888  *
5889  *     Context: Any.
5890  */
5891 
5892 static void
5893 sd_inq_fill(char *p, int l, char *s)
5894 {
5895 	unsigned i = 0;
5896 	char c;
5897 
5898 	while (i++ < l) {
5899 		if ((c = *p++) < ' ' || c >= 0x7F) {
5900 			c = '*';
5901 		} else if (i != 1 && c == ' ') {
5902 			break;
5903 		}
5904 		*s++ = c;
5905 	}
5906 	*s++ = 0;
5907 }
5908 
5909 
5910 /*
5911  *    Function: sd_register_devid
5912  *
5913  * Description: This routine will obtain the device id information from the
5914  *		target, obtain the serial number, and register the device
5915  *		id with the ddi framework.
5916  *
5917  *   Arguments: devi - the system's dev_info_t for the device.
5918  *		un - driver soft state (unit) structure
5919  *		reservation_flag - indicates if a reservation conflict
5920  *		occurred during attach
5921  *
5922  *     Context: Kernel Thread
5923  */
5924 static void
5925 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
5926 {
5927 	int		rval		= 0;
5928 	uchar_t		*inq80		= NULL;
5929 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5930 	size_t		inq80_resid	= 0;
5931 	uchar_t		*inq83		= NULL;
5932 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5933 	size_t		inq83_resid	= 0;
5934 
5935 	ASSERT(un != NULL);
5936 	ASSERT(mutex_owned(SD_MUTEX(un)));
5937 	ASSERT((SD_DEVINFO(un)) == devi);
5938 
5939 	/*
5940 	 * This is the case of antiquated Sun disk drives that have the
5941 	 * FAB_DEVID property set in the disk_table.  These drives
5942 	 * manage the devid's by storing them in last 2 available sectors
5943 	 * on the drive and have them fabricated by the ddi layer by calling
5944 	 * ddi_devid_init and passing the DEVID_FAB flag.
5945 	 */
5946 	if (un->un_f_opt_fab_devid == TRUE) {
5947 		/*
5948 		 * Depending on EINVAL isn't reliable, since a reserved disk
5949 		 * may result in invalid geometry, so check to make sure a
5950 		 * reservation conflict did not occur during attach.
5951 		 */
5952 		if ((sd_get_devid(un) == EINVAL) &&
5953 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5954 			/*
5955 			 * The devid is invalid AND there is no reservation
5956 			 * conflict.  Fabricate a new devid.
5957 			 */
5958 			(void) sd_create_devid(un);
5959 		}
5960 
5961 		/* Register the devid if it exists */
5962 		if (un->un_devid != NULL) {
5963 			(void) ddi_devid_register(SD_DEVINFO(un),
5964 			    un->un_devid);
5965 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5966 			    "sd_register_devid: Devid Fabricated\n");
5967 		}
5968 		return;
5969 	}
5970 
5971 	/*
5972 	 * We check the availibility of the World Wide Name (0x83) and Unit
5973 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5974 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5975 	 * 0x83 is availible, that is the best choice.  Our next choice is
5976 	 * 0x80.  If neither are availible, we munge the devid from the device
5977 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5978 	 * to fabricate a devid for non-Sun qualified disks.
5979 	 */
5980 	if (sd_check_vpd_page_support(un) == 0) {
5981 		/* collect page 80 data if available */
5982 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5983 
5984 			mutex_exit(SD_MUTEX(un));
5985 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5986 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
5987 			    0x01, 0x80, &inq80_resid);
5988 
5989 			if (rval != 0) {
5990 				kmem_free(inq80, inq80_len);
5991 				inq80 = NULL;
5992 				inq80_len = 0;
5993 			}
5994 			mutex_enter(SD_MUTEX(un));
5995 		}
5996 
5997 		/* collect page 83 data if available */
5998 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5999 			mutex_exit(SD_MUTEX(un));
6000 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
6001 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
6002 			    0x01, 0x83, &inq83_resid);
6003 
6004 			if (rval != 0) {
6005 				kmem_free(inq83, inq83_len);
6006 				inq83 = NULL;
6007 				inq83_len = 0;
6008 			}
6009 			mutex_enter(SD_MUTEX(un));
6010 		}
6011 	}
6012 
6013 	/* encode best devid possible based on data available */
6014 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
6015 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
6016 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
6017 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
6018 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
6019 
6020 		/* devid successfully encoded, register devid */
6021 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
6022 
6023 	} else {
6024 		/*
6025 		 * Unable to encode a devid based on data available.
6026 		 * This is not a Sun qualified disk.  Older Sun disk
6027 		 * drives that have the SD_FAB_DEVID property
6028 		 * set in the disk_table and non Sun qualified
6029 		 * disks are treated in the same manner.  These
6030 		 * drives manage the devid's by storing them in
6031 		 * last 2 available sectors on the drive and
6032 		 * have them fabricated by the ddi layer by
6033 		 * calling ddi_devid_init and passing the
6034 		 * DEVID_FAB flag.
6035 		 * Create a fabricate devid only if there's no
6036 		 * fabricate devid existed.
6037 		 */
6038 		if (sd_get_devid(un) == EINVAL) {
6039 			(void) sd_create_devid(un);
6040 			un->un_f_opt_fab_devid = TRUE;
6041 		}
6042 
6043 		/* Register the devid if it exists */
6044 		if (un->un_devid != NULL) {
6045 			(void) ddi_devid_register(SD_DEVINFO(un),
6046 			    un->un_devid);
6047 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6048 			    "sd_register_devid: devid fabricated using "
6049 			    "ddi framework\n");
6050 		}
6051 	}
6052 
6053 	/* clean up resources */
6054 	if (inq80 != NULL) {
6055 		kmem_free(inq80, inq80_len);
6056 	}
6057 	if (inq83 != NULL) {
6058 		kmem_free(inq83, inq83_len);
6059 	}
6060 }
6061 
6062 static daddr_t
6063 sd_get_devid_block(struct sd_lun *un)
6064 {
6065 	daddr_t			spc, blk, head, cyl;
6066 
6067 	if (un->un_blockcount <= DK_MAX_BLOCKS) {
6068 		/* this geometry doesn't allow us to write a devid */
6069 		if (un->un_g.dkg_acyl < 2) {
6070 			return (-1);
6071 		}
6072 
6073 		/*
6074 		 * Subtract 2 guarantees that the next to last cylinder
6075 		 * is used
6076 		 */
6077 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6078 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6079 		head = un->un_g.dkg_nhead - 1;
6080 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6081 		    (head * un->un_g.dkg_nsect) + 1;
6082 	} else {
6083 		if (un->un_reserved != -1) {
6084 			blk = un->un_map[un->un_reserved].dkl_cylno + 1;
6085 		} else {
6086 			return (-1);
6087 		}
6088 	}
6089 	return (blk);
6090 }
6091 
6092 /*
6093  *    Function: sd_get_devid
6094  *
6095  * Description: This routine will return 0 if a valid device id has been
6096  *		obtained from the target and stored in the soft state. If a
6097  *		valid device id has not been previously read and stored, a
6098  *		read attempt will be made.
6099  *
6100  *   Arguments: un - driver soft state (unit) structure
6101  *
6102  * Return Code: 0 if we successfully get the device id
6103  *
6104  *     Context: Kernel Thread
6105  */
6106 
6107 static int
6108 sd_get_devid(struct sd_lun *un)
6109 {
6110 	struct dk_devid		*dkdevid;
6111 	ddi_devid_t		tmpid;
6112 	uint_t			*ip;
6113 	size_t			sz;
6114 	daddr_t			blk;
6115 	int			status;
6116 	int			chksum;
6117 	int			i;
6118 	size_t			buffer_size;
6119 
6120 	ASSERT(un != NULL);
6121 	ASSERT(mutex_owned(SD_MUTEX(un)));
6122 
6123 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6124 	    un);
6125 
6126 	if (un->un_devid != NULL) {
6127 		return (0);
6128 	}
6129 
6130 	blk = sd_get_devid_block(un);
6131 	if (blk < 0)
6132 		return (EINVAL);
6133 
6134 	/*
6135 	 * Read and verify device id, stored in the reserved cylinders at the
6136 	 * end of the disk. Backup label is on the odd sectors of the last
6137 	 * track of the last cylinder. Device id will be on track of the next
6138 	 * to last cylinder.
6139 	 */
6140 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6141 	mutex_exit(SD_MUTEX(un));
6142 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6143 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6144 	    SD_PATH_DIRECT);
6145 	if (status != 0) {
6146 		goto error;
6147 	}
6148 
6149 	/* Validate the revision */
6150 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6151 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6152 		status = EINVAL;
6153 		goto error;
6154 	}
6155 
6156 	/* Calculate the checksum */
6157 	chksum = 0;
6158 	ip = (uint_t *)dkdevid;
6159 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6160 	    i++) {
6161 		chksum ^= ip[i];
6162 	}
6163 
6164 	/* Compare the checksums */
6165 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6166 		status = EINVAL;
6167 		goto error;
6168 	}
6169 
6170 	/* Validate the device id */
6171 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6172 		status = EINVAL;
6173 		goto error;
6174 	}
6175 
6176 	/*
6177 	 * Store the device id in the driver soft state
6178 	 */
6179 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6180 	tmpid = kmem_alloc(sz, KM_SLEEP);
6181 
6182 	mutex_enter(SD_MUTEX(un));
6183 
6184 	un->un_devid = tmpid;
6185 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6186 
6187 	kmem_free(dkdevid, buffer_size);
6188 
6189 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6190 
6191 	return (status);
6192 error:
6193 	mutex_enter(SD_MUTEX(un));
6194 	kmem_free(dkdevid, buffer_size);
6195 	return (status);
6196 }
6197 
6198 
6199 /*
6200  *    Function: sd_create_devid
6201  *
6202  * Description: This routine will fabricate the device id and write it
6203  *		to the disk.
6204  *
6205  *   Arguments: un - driver soft state (unit) structure
6206  *
6207  * Return Code: value of the fabricated device id
6208  *
6209  *     Context: Kernel Thread
6210  */
6211 
6212 static ddi_devid_t
6213 sd_create_devid(struct sd_lun *un)
6214 {
6215 	ASSERT(un != NULL);
6216 
6217 	/* Fabricate the devid */
6218 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6219 	    == DDI_FAILURE) {
6220 		return (NULL);
6221 	}
6222 
6223 	/* Write the devid to disk */
6224 	if (sd_write_deviceid(un) != 0) {
6225 		ddi_devid_free(un->un_devid);
6226 		un->un_devid = NULL;
6227 	}
6228 
6229 	return (un->un_devid);
6230 }
6231 
6232 
6233 /*
6234  *    Function: sd_write_deviceid
6235  *
6236  * Description: This routine will write the device id to the disk
6237  *		reserved sector.
6238  *
6239  *   Arguments: un - driver soft state (unit) structure
6240  *
6241  * Return Code: EINVAL
6242  *		value returned by sd_send_scsi_cmd
6243  *
6244  *     Context: Kernel Thread
6245  */
6246 
6247 static int
6248 sd_write_deviceid(struct sd_lun *un)
6249 {
6250 	struct dk_devid		*dkdevid;
6251 	daddr_t			blk;
6252 	uint_t			*ip, chksum;
6253 	int			status;
6254 	int			i;
6255 
6256 	ASSERT(mutex_owned(SD_MUTEX(un)));
6257 
6258 	blk = sd_get_devid_block(un);
6259 	if (blk < 0)
6260 		return (-1);
6261 	mutex_exit(SD_MUTEX(un));
6262 
6263 	/* Allocate the buffer */
6264 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6265 
6266 	/* Fill in the revision */
6267 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6268 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6269 
6270 	/* Copy in the device id */
6271 	mutex_enter(SD_MUTEX(un));
6272 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6273 	    ddi_devid_sizeof(un->un_devid));
6274 	mutex_exit(SD_MUTEX(un));
6275 
6276 	/* Calculate the checksum */
6277 	chksum = 0;
6278 	ip = (uint_t *)dkdevid;
6279 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6280 	    i++) {
6281 		chksum ^= ip[i];
6282 	}
6283 
6284 	/* Fill-in checksum */
6285 	DKD_FORMCHKSUM(chksum, dkdevid);
6286 
6287 	/* Write the reserved sector */
6288 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6289 	    SD_PATH_DIRECT);
6290 
6291 	kmem_free(dkdevid, un->un_sys_blocksize);
6292 
6293 	mutex_enter(SD_MUTEX(un));
6294 	return (status);
6295 }
6296 
6297 
6298 /*
6299  *    Function: sd_check_vpd_page_support
6300  *
6301  * Description: This routine sends an inquiry command with the EVPD bit set and
6302  *		a page code of 0x00 to the device. It is used to determine which
6303  *		vital product pages are availible to find the devid. We are
6304  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6305  *		device does not support that command.
6306  *
6307  *   Arguments: un  - driver soft state (unit) structure
6308  *
6309  * Return Code: 0 - success
6310  *		1 - check condition
6311  *
6312  *     Context: This routine can sleep.
6313  */
6314 
6315 static int
6316 sd_check_vpd_page_support(struct sd_lun *un)
6317 {
6318 	uchar_t	*page_list	= NULL;
6319 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6320 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6321 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6322 	int    	rval		= 0;
6323 	int	counter;
6324 
6325 	ASSERT(un != NULL);
6326 	ASSERT(mutex_owned(SD_MUTEX(un)));
6327 
6328 	mutex_exit(SD_MUTEX(un));
6329 
6330 	/*
6331 	 * We'll set the page length to the maximum to save figuring it out
6332 	 * with an additional call.
6333 	 */
6334 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6335 
6336 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6337 	    page_code, NULL);
6338 
6339 	mutex_enter(SD_MUTEX(un));
6340 
6341 	/*
6342 	 * Now we must validate that the device accepted the command, as some
6343 	 * drives do not support it.  If the drive does support it, we will
6344 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6345 	 * not, we return -1.
6346 	 */
6347 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6348 		/* Loop to find one of the 2 pages we need */
6349 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6350 
6351 		/*
6352 		 * Pages are returned in ascending order, and 0x83 is what we
6353 		 * are hoping for.
6354 		 */
6355 		while ((page_list[counter] <= 0x83) &&
6356 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6357 		    VPD_HEAD_OFFSET))) {
6358 			/*
6359 			 * Add 3 because page_list[3] is the number of
6360 			 * pages minus 3
6361 			 */
6362 
6363 			switch (page_list[counter]) {
6364 			case 0x00:
6365 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6366 				break;
6367 			case 0x80:
6368 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6369 				break;
6370 			case 0x81:
6371 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6372 				break;
6373 			case 0x82:
6374 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6375 				break;
6376 			case 0x83:
6377 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6378 				break;
6379 			}
6380 			counter++;
6381 		}
6382 
6383 	} else {
6384 		rval = -1;
6385 
6386 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6387 		    "sd_check_vpd_page_support: This drive does not implement "
6388 		    "VPD pages.\n");
6389 	}
6390 
6391 	kmem_free(page_list, page_length);
6392 
6393 	return (rval);
6394 }
6395 
6396 
6397 /*
6398  *    Function: sd_setup_pm
6399  *
6400  * Description: Initialize Power Management on the device
6401  *
6402  *     Context: Kernel Thread
6403  */
6404 
6405 static void
6406 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6407 {
6408 	uint_t	log_page_size;
6409 	uchar_t	*log_page_data;
6410 	int	rval;
6411 
6412 	/*
6413 	 * Since we are called from attach, holding a mutex for
6414 	 * un is unnecessary. Because some of the routines called
6415 	 * from here require SD_MUTEX to not be held, assert this
6416 	 * right up front.
6417 	 */
6418 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6419 	/*
6420 	 * Since the sd device does not have the 'reg' property,
6421 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6422 	 * The following code is to tell cpr that this device
6423 	 * DOES need to be suspended and resumed.
6424 	 */
6425 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6426 	    "pm-hardware-state", "needs-suspend-resume");
6427 
6428 	/*
6429 	 * This complies with the new power management framework
6430 	 * for certain desktop machines. Create the pm_components
6431 	 * property as a string array property.
6432 	 */
6433 	if (un->un_f_pm_supported) {
6434 		/*
6435 		 * not all devices have a motor, try it first.
6436 		 * some devices may return ILLEGAL REQUEST, some
6437 		 * will hang
6438 		 * The following START_STOP_UNIT is used to check if target
6439 		 * device has a motor.
6440 		 */
6441 		un->un_f_start_stop_supported = TRUE;
6442 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6443 		    SD_PATH_DIRECT) != 0) {
6444 			un->un_f_start_stop_supported = FALSE;
6445 		}
6446 
6447 		/*
6448 		 * create pm properties anyways otherwise the parent can't
6449 		 * go to sleep
6450 		 */
6451 		(void) sd_create_pm_components(devi, un);
6452 		un->un_f_pm_is_enabled = TRUE;
6453 		return;
6454 	}
6455 
6456 	if (!un->un_f_log_sense_supported) {
6457 		un->un_power_level = SD_SPINDLE_ON;
6458 		un->un_f_pm_is_enabled = FALSE;
6459 		return;
6460 	}
6461 
6462 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6463 
6464 #ifdef	SDDEBUG
6465 	if (sd_force_pm_supported) {
6466 		/* Force a successful result */
6467 		rval = 1;
6468 	}
6469 #endif
6470 
6471 	/*
6472 	 * If the start-stop cycle counter log page is not supported
6473 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6474 	 * then we should not create the pm_components property.
6475 	 */
6476 	if (rval == -1) {
6477 		/*
6478 		 * Error.
6479 		 * Reading log sense failed, most likely this is
6480 		 * an older drive that does not support log sense.
6481 		 * If this fails auto-pm is not supported.
6482 		 */
6483 		un->un_power_level = SD_SPINDLE_ON;
6484 		un->un_f_pm_is_enabled = FALSE;
6485 
6486 	} else if (rval == 0) {
6487 		/*
6488 		 * Page not found.
6489 		 * The start stop cycle counter is implemented as page
6490 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6491 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6492 		 */
6493 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6494 			/*
6495 			 * Page found, use this one.
6496 			 */
6497 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6498 			un->un_f_pm_is_enabled = TRUE;
6499 		} else {
6500 			/*
6501 			 * Error or page not found.
6502 			 * auto-pm is not supported for this device.
6503 			 */
6504 			un->un_power_level = SD_SPINDLE_ON;
6505 			un->un_f_pm_is_enabled = FALSE;
6506 		}
6507 	} else {
6508 		/*
6509 		 * Page found, use it.
6510 		 */
6511 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6512 		un->un_f_pm_is_enabled = TRUE;
6513 	}
6514 
6515 
6516 	if (un->un_f_pm_is_enabled == TRUE) {
6517 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6518 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6519 
6520 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6521 		    log_page_size, un->un_start_stop_cycle_page,
6522 		    0x01, 0, SD_PATH_DIRECT);
6523 #ifdef	SDDEBUG
6524 		if (sd_force_pm_supported) {
6525 			/* Force a successful result */
6526 			rval = 0;
6527 		}
6528 #endif
6529 
6530 		/*
6531 		 * If the Log sense for Page( Start/stop cycle counter page)
6532 		 * succeeds, then power managment is supported and we can
6533 		 * enable auto-pm.
6534 		 */
6535 		if (rval == 0)  {
6536 			(void) sd_create_pm_components(devi, un);
6537 		} else {
6538 			un->un_power_level = SD_SPINDLE_ON;
6539 			un->un_f_pm_is_enabled = FALSE;
6540 		}
6541 
6542 		kmem_free(log_page_data, log_page_size);
6543 	}
6544 }
6545 
6546 
6547 /*
6548  *    Function: sd_create_pm_components
6549  *
6550  * Description: Initialize PM property.
6551  *
6552  *     Context: Kernel thread context
6553  */
6554 
6555 static void
6556 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6557 {
6558 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6559 
6560 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6561 
6562 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6563 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6564 		/*
6565 		 * When components are initially created they are idle,
6566 		 * power up any non-removables.
6567 		 * Note: the return value of pm_raise_power can't be used
6568 		 * for determining if PM should be enabled for this device.
6569 		 * Even if you check the return values and remove this
6570 		 * property created above, the PM framework will not honor the
6571 		 * change after the first call to pm_raise_power. Hence,
6572 		 * removal of that property does not help if pm_raise_power
6573 		 * fails. In the case of removable media, the start/stop
6574 		 * will fail if the media is not present.
6575 		 */
6576 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6577 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6578 			mutex_enter(SD_MUTEX(un));
6579 			un->un_power_level = SD_SPINDLE_ON;
6580 			mutex_enter(&un->un_pm_mutex);
6581 			/* Set to on and not busy. */
6582 			un->un_pm_count = 0;
6583 		} else {
6584 			mutex_enter(SD_MUTEX(un));
6585 			un->un_power_level = SD_SPINDLE_OFF;
6586 			mutex_enter(&un->un_pm_mutex);
6587 			/* Set to off. */
6588 			un->un_pm_count = -1;
6589 		}
6590 		mutex_exit(&un->un_pm_mutex);
6591 		mutex_exit(SD_MUTEX(un));
6592 	} else {
6593 		un->un_power_level = SD_SPINDLE_ON;
6594 		un->un_f_pm_is_enabled = FALSE;
6595 	}
6596 }
6597 
6598 
6599 /*
6600  *    Function: sd_ddi_suspend
6601  *
6602  * Description: Performs system power-down operations. This includes
6603  *		setting the drive state to indicate its suspended so
6604  *		that no new commands will be accepted. Also, wait for
6605  *		all commands that are in transport or queued to a timer
6606  *		for retry to complete. All timeout threads are cancelled.
6607  *
6608  * Return Code: DDI_FAILURE or DDI_SUCCESS
6609  *
6610  *     Context: Kernel thread context
6611  */
6612 
6613 static int
6614 sd_ddi_suspend(dev_info_t *devi)
6615 {
6616 	struct	sd_lun	*un;
6617 	clock_t		wait_cmds_complete;
6618 
6619 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6620 	if (un == NULL) {
6621 		return (DDI_FAILURE);
6622 	}
6623 
6624 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6625 
6626 	mutex_enter(SD_MUTEX(un));
6627 
6628 	/* Return success if the device is already suspended. */
6629 	if (un->un_state == SD_STATE_SUSPENDED) {
6630 		mutex_exit(SD_MUTEX(un));
6631 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6632 		    "device already suspended, exiting\n");
6633 		return (DDI_SUCCESS);
6634 	}
6635 
6636 	/* Return failure if the device is being used by HA */
6637 	if (un->un_resvd_status &
6638 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6639 		mutex_exit(SD_MUTEX(un));
6640 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6641 		    "device in use by HA, exiting\n");
6642 		return (DDI_FAILURE);
6643 	}
6644 
6645 	/*
6646 	 * Return failure if the device is in a resource wait
6647 	 * or power changing state.
6648 	 */
6649 	if ((un->un_state == SD_STATE_RWAIT) ||
6650 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6651 		mutex_exit(SD_MUTEX(un));
6652 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6653 		    "device in resource wait state, exiting\n");
6654 		return (DDI_FAILURE);
6655 	}
6656 
6657 
6658 	un->un_save_state = un->un_last_state;
6659 	New_state(un, SD_STATE_SUSPENDED);
6660 
6661 	/*
6662 	 * Wait for all commands that are in transport or queued to a timer
6663 	 * for retry to complete.
6664 	 *
6665 	 * While waiting, no new commands will be accepted or sent because of
6666 	 * the new state we set above.
6667 	 *
6668 	 * Wait till current operation has completed. If we are in the resource
6669 	 * wait state (with an intr outstanding) then we need to wait till the
6670 	 * intr completes and starts the next cmd. We want to wait for
6671 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6672 	 */
6673 	wait_cmds_complete = ddi_get_lbolt() +
6674 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6675 
6676 	while (un->un_ncmds_in_transport != 0) {
6677 		/*
6678 		 * Fail if commands do not finish in the specified time.
6679 		 */
6680 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6681 		    wait_cmds_complete) == -1) {
6682 			/*
6683 			 * Undo the state changes made above. Everything
6684 			 * must go back to it's original value.
6685 			 */
6686 			Restore_state(un);
6687 			un->un_last_state = un->un_save_state;
6688 			/* Wake up any threads that might be waiting. */
6689 			cv_broadcast(&un->un_suspend_cv);
6690 			mutex_exit(SD_MUTEX(un));
6691 			SD_ERROR(SD_LOG_IO_PM, un,
6692 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6693 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6694 			return (DDI_FAILURE);
6695 		}
6696 	}
6697 
6698 	/*
6699 	 * Cancel SCSI watch thread and timeouts, if any are active
6700 	 */
6701 
6702 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6703 		opaque_t temp_token = un->un_swr_token;
6704 		mutex_exit(SD_MUTEX(un));
6705 		scsi_watch_suspend(temp_token);
6706 		mutex_enter(SD_MUTEX(un));
6707 	}
6708 
6709 	if (un->un_reset_throttle_timeid != NULL) {
6710 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6711 		un->un_reset_throttle_timeid = NULL;
6712 		mutex_exit(SD_MUTEX(un));
6713 		(void) untimeout(temp_id);
6714 		mutex_enter(SD_MUTEX(un));
6715 	}
6716 
6717 	if (un->un_dcvb_timeid != NULL) {
6718 		timeout_id_t temp_id = un->un_dcvb_timeid;
6719 		un->un_dcvb_timeid = NULL;
6720 		mutex_exit(SD_MUTEX(un));
6721 		(void) untimeout(temp_id);
6722 		mutex_enter(SD_MUTEX(un));
6723 	}
6724 
6725 	mutex_enter(&un->un_pm_mutex);
6726 	if (un->un_pm_timeid != NULL) {
6727 		timeout_id_t temp_id = un->un_pm_timeid;
6728 		un->un_pm_timeid = NULL;
6729 		mutex_exit(&un->un_pm_mutex);
6730 		mutex_exit(SD_MUTEX(un));
6731 		(void) untimeout(temp_id);
6732 		mutex_enter(SD_MUTEX(un));
6733 	} else {
6734 		mutex_exit(&un->un_pm_mutex);
6735 	}
6736 
6737 	if (un->un_retry_timeid != NULL) {
6738 		timeout_id_t temp_id = un->un_retry_timeid;
6739 		un->un_retry_timeid = NULL;
6740 		mutex_exit(SD_MUTEX(un));
6741 		(void) untimeout(temp_id);
6742 		mutex_enter(SD_MUTEX(un));
6743 	}
6744 
6745 	if (un->un_direct_priority_timeid != NULL) {
6746 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6747 		un->un_direct_priority_timeid = NULL;
6748 		mutex_exit(SD_MUTEX(un));
6749 		(void) untimeout(temp_id);
6750 		mutex_enter(SD_MUTEX(un));
6751 	}
6752 
6753 	if (un->un_f_is_fibre == TRUE) {
6754 		/*
6755 		 * Remove callbacks for insert and remove events
6756 		 */
6757 		if (un->un_insert_event != NULL) {
6758 			mutex_exit(SD_MUTEX(un));
6759 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6760 			mutex_enter(SD_MUTEX(un));
6761 			un->un_insert_event = NULL;
6762 		}
6763 
6764 		if (un->un_remove_event != NULL) {
6765 			mutex_exit(SD_MUTEX(un));
6766 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6767 			mutex_enter(SD_MUTEX(un));
6768 			un->un_remove_event = NULL;
6769 		}
6770 	}
6771 
6772 	mutex_exit(SD_MUTEX(un));
6773 
6774 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6775 
6776 	return (DDI_SUCCESS);
6777 }
6778 
6779 
6780 /*
6781  *    Function: sd_ddi_pm_suspend
6782  *
6783  * Description: Set the drive state to low power.
6784  *		Someone else is required to actually change the drive
6785  *		power level.
6786  *
6787  *   Arguments: un - driver soft state (unit) structure
6788  *
6789  * Return Code: DDI_FAILURE or DDI_SUCCESS
6790  *
6791  *     Context: Kernel thread context
6792  */
6793 
6794 static int
6795 sd_ddi_pm_suspend(struct sd_lun *un)
6796 {
6797 	ASSERT(un != NULL);
6798 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
6799 
6800 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6801 	mutex_enter(SD_MUTEX(un));
6802 
6803 	/*
6804 	 * Exit if power management is not enabled for this device, or if
6805 	 * the device is being used by HA.
6806 	 */
6807 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6808 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6809 		mutex_exit(SD_MUTEX(un));
6810 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
6811 		return (DDI_SUCCESS);
6812 	}
6813 
6814 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
6815 	    un->un_ncmds_in_driver);
6816 
6817 	/*
6818 	 * See if the device is not busy, ie.:
6819 	 *    - we have no commands in the driver for this device
6820 	 *    - not waiting for resources
6821 	 */
6822 	if ((un->un_ncmds_in_driver == 0) &&
6823 	    (un->un_state != SD_STATE_RWAIT)) {
6824 		/*
6825 		 * The device is not busy, so it is OK to go to low power state.
6826 		 * Indicate low power, but rely on someone else to actually
6827 		 * change it.
6828 		 */
6829 		mutex_enter(&un->un_pm_mutex);
6830 		un->un_pm_count = -1;
6831 		mutex_exit(&un->un_pm_mutex);
6832 		un->un_power_level = SD_SPINDLE_OFF;
6833 	}
6834 
6835 	mutex_exit(SD_MUTEX(un));
6836 
6837 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
6838 
6839 	return (DDI_SUCCESS);
6840 }
6841 
6842 
6843 /*
6844  *    Function: sd_ddi_resume
6845  *
6846  * Description: Performs system power-up operations..
6847  *
6848  * Return Code: DDI_SUCCESS
6849  *		DDI_FAILURE
6850  *
6851  *     Context: Kernel thread context
6852  */
6853 
6854 static int
6855 sd_ddi_resume(dev_info_t *devi)
6856 {
6857 	struct	sd_lun	*un;
6858 
6859 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6860 	if (un == NULL) {
6861 		return (DDI_FAILURE);
6862 	}
6863 
6864 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6865 
6866 	mutex_enter(SD_MUTEX(un));
6867 	Restore_state(un);
6868 
6869 	/*
6870 	 * Restore the state which was saved to give the
6871 	 * the right state in un_last_state
6872 	 */
6873 	un->un_last_state = un->un_save_state;
6874 	/*
6875 	 * Note: throttle comes back at full.
6876 	 * Also note: this MUST be done before calling pm_raise_power
6877 	 * otherwise the system can get hung in biowait. The scenario where
6878 	 * this'll happen is under cpr suspend. Writing of the system
6879 	 * state goes through sddump, which writes 0 to un_throttle. If
6880 	 * writing the system state then fails, example if the partition is
6881 	 * too small, then cpr attempts a resume. If throttle isn't restored
6882 	 * from the saved value until after calling pm_raise_power then
6883 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6884 	 * in biowait.
6885 	 */
6886 	un->un_throttle = un->un_saved_throttle;
6887 
6888 	/*
6889 	 * The chance of failure is very rare as the only command done in power
6890 	 * entry point is START command when you transition from 0->1 or
6891 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6892 	 * which suspend was done. Ignore the return value as the resume should
6893 	 * not be failed. In the case of removable media the media need not be
6894 	 * inserted and hence there is a chance that raise power will fail with
6895 	 * media not present.
6896 	 */
6897 	if (un->un_f_attach_spinup) {
6898 		mutex_exit(SD_MUTEX(un));
6899 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
6900 		mutex_enter(SD_MUTEX(un));
6901 	}
6902 
6903 	/*
6904 	 * Don't broadcast to the suspend cv and therefore possibly
6905 	 * start I/O until after power has been restored.
6906 	 */
6907 	cv_broadcast(&un->un_suspend_cv);
6908 	cv_broadcast(&un->un_state_cv);
6909 
6910 	/* restart thread */
6911 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6912 		scsi_watch_resume(un->un_swr_token);
6913 	}
6914 
6915 #if (defined(__fibre))
6916 	if (un->un_f_is_fibre == TRUE) {
6917 		/*
6918 		 * Add callbacks for insert and remove events
6919 		 */
6920 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6921 			sd_init_event_callbacks(un);
6922 		}
6923 	}
6924 #endif
6925 
6926 	/*
6927 	 * Transport any pending commands to the target.
6928 	 *
6929 	 * If this is a low-activity device commands in queue will have to wait
6930 	 * until new commands come in, which may take awhile. Also, we
6931 	 * specifically don't check un_ncmds_in_transport because we know that
6932 	 * there really are no commands in progress after the unit was
6933 	 * suspended and we could have reached the throttle level, been
6934 	 * suspended, and have no new commands coming in for awhile. Highly
6935 	 * unlikely, but so is the low-activity disk scenario.
6936 	 */
6937 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6938 
6939 	sd_start_cmds(un, NULL);
6940 	mutex_exit(SD_MUTEX(un));
6941 
6942 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6943 
6944 	return (DDI_SUCCESS);
6945 }
6946 
6947 
6948 /*
6949  *    Function: sd_ddi_pm_resume
6950  *
6951  * Description: Set the drive state to powered on.
6952  *		Someone else is required to actually change the drive
6953  *		power level.
6954  *
6955  *   Arguments: un - driver soft state (unit) structure
6956  *
6957  * Return Code: DDI_SUCCESS
6958  *
6959  *     Context: Kernel thread context
6960  */
6961 
6962 static int
6963 sd_ddi_pm_resume(struct sd_lun *un)
6964 {
6965 	ASSERT(un != NULL);
6966 
6967 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6968 	mutex_enter(SD_MUTEX(un));
6969 	un->un_power_level = SD_SPINDLE_ON;
6970 
6971 	ASSERT(!mutex_owned(&un->un_pm_mutex));
6972 	mutex_enter(&un->un_pm_mutex);
6973 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6974 		un->un_pm_count++;
6975 		ASSERT(un->un_pm_count == 0);
6976 		/*
6977 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
6978 		 * un_suspend_cv is for a system resume, not a power management
6979 		 * device resume. (4297749)
6980 		 *	 cv_broadcast(&un->un_suspend_cv);
6981 		 */
6982 	}
6983 	mutex_exit(&un->un_pm_mutex);
6984 	mutex_exit(SD_MUTEX(un));
6985 
6986 	return (DDI_SUCCESS);
6987 }
6988 
6989 
6990 /*
6991  *    Function: sd_pm_idletimeout_handler
6992  *
6993  * Description: A timer routine that's active only while a device is busy.
6994  *		The purpose is to extend slightly the pm framework's busy
6995  *		view of the device to prevent busy/idle thrashing for
6996  *		back-to-back commands. Do this by comparing the current time
6997  *		to the time at which the last command completed and when the
6998  *		difference is greater than sd_pm_idletime, call
6999  *		pm_idle_component. In addition to indicating idle to the pm
7000  *		framework, update the chain type to again use the internal pm
7001  *		layers of the driver.
7002  *
7003  *   Arguments: arg - driver soft state (unit) structure
7004  *
7005  *     Context: Executes in a timeout(9F) thread context
7006  */
7007 
7008 static void
7009 sd_pm_idletimeout_handler(void *arg)
7010 {
7011 	struct sd_lun *un = arg;
7012 
7013 	time_t	now;
7014 
7015 	mutex_enter(&sd_detach_mutex);
7016 	if (un->un_detach_count != 0) {
7017 		/* Abort if the instance is detaching */
7018 		mutex_exit(&sd_detach_mutex);
7019 		return;
7020 	}
7021 	mutex_exit(&sd_detach_mutex);
7022 
7023 	now = ddi_get_time();
7024 	/*
7025 	 * Grab both mutexes, in the proper order, since we're accessing
7026 	 * both PM and softstate variables.
7027 	 */
7028 	mutex_enter(SD_MUTEX(un));
7029 	mutex_enter(&un->un_pm_mutex);
7030 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7031 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7032 		/*
7033 		 * Update the chain types.
7034 		 * This takes affect on the next new command received.
7035 		 */
7036 		if (un->un_f_non_devbsize_supported) {
7037 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7038 		} else {
7039 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7040 		}
7041 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7042 
7043 		SD_TRACE(SD_LOG_IO_PM, un,
7044 		    "sd_pm_idletimeout_handler: idling device\n");
7045 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7046 		un->un_pm_idle_timeid = NULL;
7047 	} else {
7048 		un->un_pm_idle_timeid =
7049 			timeout(sd_pm_idletimeout_handler, un,
7050 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7051 	}
7052 	mutex_exit(&un->un_pm_mutex);
7053 	mutex_exit(SD_MUTEX(un));
7054 }
7055 
7056 
7057 /*
7058  *    Function: sd_pm_timeout_handler
7059  *
7060  * Description: Callback to tell framework we are idle.
7061  *
7062  *     Context: timeout(9f) thread context.
7063  */
7064 
7065 static void
7066 sd_pm_timeout_handler(void *arg)
7067 {
7068 	struct sd_lun *un = arg;
7069 
7070 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7071 	mutex_enter(&un->un_pm_mutex);
7072 	un->un_pm_timeid = NULL;
7073 	mutex_exit(&un->un_pm_mutex);
7074 }
7075 
7076 
7077 /*
7078  *    Function: sdpower
7079  *
7080  * Description: PM entry point.
7081  *
7082  * Return Code: DDI_SUCCESS
7083  *		DDI_FAILURE
7084  *
7085  *     Context: Kernel thread context
7086  */
7087 
7088 static int
7089 sdpower(dev_info_t *devi, int component, int level)
7090 {
7091 	struct sd_lun	*un;
7092 	int		instance;
7093 	int		rval = DDI_SUCCESS;
7094 	uint_t		i, log_page_size, maxcycles, ncycles;
7095 	uchar_t		*log_page_data;
7096 	int		log_sense_page;
7097 	int		medium_present;
7098 	time_t		intvlp;
7099 	dev_t		dev;
7100 	struct pm_trans_data	sd_pm_tran_data;
7101 	uchar_t		save_state;
7102 	int		sval;
7103 	uchar_t		state_before_pm;
7104 	int		got_semaphore_here;
7105 
7106 	instance = ddi_get_instance(devi);
7107 
7108 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7109 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7110 	    component != 0) {
7111 		return (DDI_FAILURE);
7112 	}
7113 
7114 	dev = sd_make_device(SD_DEVINFO(un));
7115 
7116 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7117 
7118 	/*
7119 	 * Must synchronize power down with close.
7120 	 * Attempt to decrement/acquire the open/close semaphore,
7121 	 * but do NOT wait on it. If it's not greater than zero,
7122 	 * ie. it can't be decremented without waiting, then
7123 	 * someone else, either open or close, already has it
7124 	 * and the try returns 0. Use that knowledge here to determine
7125 	 * if it's OK to change the device power level.
7126 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7127 	 * here.
7128 	 */
7129 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7130 
7131 	mutex_enter(SD_MUTEX(un));
7132 
7133 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7134 	    un->un_ncmds_in_driver);
7135 
7136 	/*
7137 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7138 	 * already being processed in the driver, or if the semaphore was
7139 	 * not gotten here it indicates an open or close is being processed.
7140 	 * At the same time somebody is requesting to go low power which
7141 	 * can't happen, therefore we need to return failure.
7142 	 */
7143 	if ((level == SD_SPINDLE_OFF) &&
7144 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7145 		mutex_exit(SD_MUTEX(un));
7146 
7147 		if (got_semaphore_here != 0) {
7148 			sema_v(&un->un_semoclose);
7149 		}
7150 		SD_TRACE(SD_LOG_IO_PM, un,
7151 		    "sdpower: exit, device has queued cmds.\n");
7152 		return (DDI_FAILURE);
7153 	}
7154 
7155 	/*
7156 	 * if it is OFFLINE that means the disk is completely dead
7157 	 * in our case we have to put the disk in on or off by sending commands
7158 	 * Of course that will fail anyway so return back here.
7159 	 *
7160 	 * Power changes to a device that's OFFLINE or SUSPENDED
7161 	 * are not allowed.
7162 	 */
7163 	if ((un->un_state == SD_STATE_OFFLINE) ||
7164 	    (un->un_state == SD_STATE_SUSPENDED)) {
7165 		mutex_exit(SD_MUTEX(un));
7166 
7167 		if (got_semaphore_here != 0) {
7168 			sema_v(&un->un_semoclose);
7169 		}
7170 		SD_TRACE(SD_LOG_IO_PM, un,
7171 		    "sdpower: exit, device is off-line.\n");
7172 		return (DDI_FAILURE);
7173 	}
7174 
7175 	/*
7176 	 * Change the device's state to indicate it's power level
7177 	 * is being changed. Do this to prevent a power off in the
7178 	 * middle of commands, which is especially bad on devices
7179 	 * that are really powered off instead of just spun down.
7180 	 */
7181 	state_before_pm = un->un_state;
7182 	un->un_state = SD_STATE_PM_CHANGING;
7183 
7184 	mutex_exit(SD_MUTEX(un));
7185 
7186 	/*
7187 	 * If "pm-capable" property is set to TRUE by HBA drivers,
7188 	 * bypass the following checking, otherwise, check the log
7189 	 * sense information for this device
7190 	 */
7191 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
7192 		/*
7193 		 * Get the log sense information to understand whether the
7194 		 * the powercycle counts have gone beyond the threshhold.
7195 		 */
7196 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7197 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7198 
7199 		mutex_enter(SD_MUTEX(un));
7200 		log_sense_page = un->un_start_stop_cycle_page;
7201 		mutex_exit(SD_MUTEX(un));
7202 
7203 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7204 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7205 #ifdef	SDDEBUG
7206 		if (sd_force_pm_supported) {
7207 			/* Force a successful result */
7208 			rval = 0;
7209 		}
7210 #endif
7211 		if (rval != 0) {
7212 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7213 			    "Log Sense Failed\n");
7214 			kmem_free(log_page_data, log_page_size);
7215 			/* Cannot support power management on those drives */
7216 
7217 			if (got_semaphore_here != 0) {
7218 				sema_v(&un->un_semoclose);
7219 			}
7220 			/*
7221 			 * On exit put the state back to it's original value
7222 			 * and broadcast to anyone waiting for the power
7223 			 * change completion.
7224 			 */
7225 			mutex_enter(SD_MUTEX(un));
7226 			un->un_state = state_before_pm;
7227 			cv_broadcast(&un->un_suspend_cv);
7228 			mutex_exit(SD_MUTEX(un));
7229 			SD_TRACE(SD_LOG_IO_PM, un,
7230 			    "sdpower: exit, Log Sense Failed.\n");
7231 			return (DDI_FAILURE);
7232 		}
7233 
7234 		/*
7235 		 * From the page data - Convert the essential information to
7236 		 * pm_trans_data
7237 		 */
7238 		maxcycles =
7239 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7240 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7241 
7242 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7243 
7244 		ncycles =
7245 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7246 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7247 
7248 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7249 
7250 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7251 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7252 			    log_page_data[8+i];
7253 		}
7254 
7255 		kmem_free(log_page_data, log_page_size);
7256 
7257 		/*
7258 		 * Call pm_trans_check routine to get the Ok from
7259 		 * the global policy
7260 		 */
7261 
7262 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7263 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7264 
7265 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7266 #ifdef	SDDEBUG
7267 		if (sd_force_pm_supported) {
7268 			/* Force a successful result */
7269 			rval = 1;
7270 		}
7271 #endif
7272 		switch (rval) {
7273 		case 0:
7274 			/*
7275 			 * Not Ok to Power cycle or error in parameters passed
7276 			 * Would have given the advised time to consider power
7277 			 * cycle. Based on the new intvlp parameter we are
7278 			 * supposed to pretend we are busy so that pm framework
7279 			 * will never call our power entry point. Because of
7280 			 * that install a timeout handler and wait for the
7281 			 * recommended time to elapse so that power management
7282 			 * can be effective again.
7283 			 *
7284 			 * To effect this behavior, call pm_busy_component to
7285 			 * indicate to the framework this device is busy.
7286 			 * By not adjusting un_pm_count the rest of PM in
7287 			 * the driver will function normally, and independant
7288 			 * of this but because the framework is told the device
7289 			 * is busy it won't attempt powering down until it gets
7290 			 * a matching idle. The timeout handler sends this.
7291 			 * Note: sd_pm_entry can't be called here to do this
7292 			 * because sdpower may have been called as a result
7293 			 * of a call to pm_raise_power from within sd_pm_entry.
7294 			 *
7295 			 * If a timeout handler is already active then
7296 			 * don't install another.
7297 			 */
7298 			mutex_enter(&un->un_pm_mutex);
7299 			if (un->un_pm_timeid == NULL) {
7300 				un->un_pm_timeid =
7301 				    timeout(sd_pm_timeout_handler,
7302 				    un, intvlp * drv_usectohz(1000000));
7303 				mutex_exit(&un->un_pm_mutex);
7304 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7305 			} else {
7306 				mutex_exit(&un->un_pm_mutex);
7307 			}
7308 			if (got_semaphore_here != 0) {
7309 				sema_v(&un->un_semoclose);
7310 			}
7311 			/*
7312 			 * On exit put the state back to it's original value
7313 			 * and broadcast to anyone waiting for the power
7314 			 * change completion.
7315 			 */
7316 			mutex_enter(SD_MUTEX(un));
7317 			un->un_state = state_before_pm;
7318 			cv_broadcast(&un->un_suspend_cv);
7319 			mutex_exit(SD_MUTEX(un));
7320 
7321 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7322 			    "trans check Failed, not ok to power cycle.\n");
7323 			return (DDI_FAILURE);
7324 
7325 		case -1:
7326 			if (got_semaphore_here != 0) {
7327 				sema_v(&un->un_semoclose);
7328 			}
7329 			/*
7330 			 * On exit put the state back to it's original value
7331 			 * and broadcast to anyone waiting for the power
7332 			 * change completion.
7333 			 */
7334 			mutex_enter(SD_MUTEX(un));
7335 			un->un_state = state_before_pm;
7336 			cv_broadcast(&un->un_suspend_cv);
7337 			mutex_exit(SD_MUTEX(un));
7338 			SD_TRACE(SD_LOG_IO_PM, un,
7339 			    "sdpower: exit, trans check command Failed.\n");
7340 			return (DDI_FAILURE);
7341 		}
7342 	}
7343 
7344 	if (level == SD_SPINDLE_OFF) {
7345 		/*
7346 		 * Save the last state... if the STOP FAILS we need it
7347 		 * for restoring
7348 		 */
7349 		mutex_enter(SD_MUTEX(un));
7350 		save_state = un->un_last_state;
7351 		/*
7352 		 * There must not be any cmds. getting processed
7353 		 * in the driver when we get here. Power to the
7354 		 * device is potentially going off.
7355 		 */
7356 		ASSERT(un->un_ncmds_in_driver == 0);
7357 		mutex_exit(SD_MUTEX(un));
7358 
7359 		/*
7360 		 * For now suspend the device completely before spindle is
7361 		 * turned off
7362 		 */
7363 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7364 			if (got_semaphore_here != 0) {
7365 				sema_v(&un->un_semoclose);
7366 			}
7367 			/*
7368 			 * On exit put the state back to it's original value
7369 			 * and broadcast to anyone waiting for the power
7370 			 * change completion.
7371 			 */
7372 			mutex_enter(SD_MUTEX(un));
7373 			un->un_state = state_before_pm;
7374 			cv_broadcast(&un->un_suspend_cv);
7375 			mutex_exit(SD_MUTEX(un));
7376 			SD_TRACE(SD_LOG_IO_PM, un,
7377 			    "sdpower: exit, PM suspend Failed.\n");
7378 			return (DDI_FAILURE);
7379 		}
7380 	}
7381 
7382 	/*
7383 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7384 	 * close, or strategy. Dump no long uses this routine, it uses it's
7385 	 * own code so it can be done in polled mode.
7386 	 */
7387 
7388 	medium_present = TRUE;
7389 
7390 	/*
7391 	 * When powering up, issue a TUR in case the device is at unit
7392 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7393 	 * a deadlock on un_pm_busy_cv will occur.
7394 	 */
7395 	if (level == SD_SPINDLE_ON) {
7396 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7397 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7398 	}
7399 
7400 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7401 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7402 
7403 	sval = sd_send_scsi_START_STOP_UNIT(un,
7404 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7405 	    SD_PATH_DIRECT);
7406 	/* Command failed, check for media present. */
7407 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
7408 		medium_present = FALSE;
7409 	}
7410 
7411 	/*
7412 	 * The conditions of interest here are:
7413 	 *   if a spindle off with media present fails,
7414 	 *	then restore the state and return an error.
7415 	 *   else if a spindle on fails,
7416 	 *	then return an error (there's no state to restore).
7417 	 * In all other cases we setup for the new state
7418 	 * and return success.
7419 	 */
7420 	switch (level) {
7421 	case SD_SPINDLE_OFF:
7422 		if ((medium_present == TRUE) && (sval != 0)) {
7423 			/* The stop command from above failed */
7424 			rval = DDI_FAILURE;
7425 			/*
7426 			 * The stop command failed, and we have media
7427 			 * present. Put the level back by calling the
7428 			 * sd_pm_resume() and set the state back to
7429 			 * it's previous value.
7430 			 */
7431 			(void) sd_ddi_pm_resume(un);
7432 			mutex_enter(SD_MUTEX(un));
7433 			un->un_last_state = save_state;
7434 			mutex_exit(SD_MUTEX(un));
7435 			break;
7436 		}
7437 		/*
7438 		 * The stop command from above succeeded.
7439 		 */
7440 		if (un->un_f_monitor_media_state) {
7441 			/*
7442 			 * Terminate watch thread in case of removable media
7443 			 * devices going into low power state. This is as per
7444 			 * the requirements of pm framework, otherwise commands
7445 			 * will be generated for the device (through watch
7446 			 * thread), even when the device is in low power state.
7447 			 */
7448 			mutex_enter(SD_MUTEX(un));
7449 			un->un_f_watcht_stopped = FALSE;
7450 			if (un->un_swr_token != NULL) {
7451 				opaque_t temp_token = un->un_swr_token;
7452 				un->un_f_watcht_stopped = TRUE;
7453 				un->un_swr_token = NULL;
7454 				mutex_exit(SD_MUTEX(un));
7455 				(void) scsi_watch_request_terminate(temp_token,
7456 				    SCSI_WATCH_TERMINATE_WAIT);
7457 			} else {
7458 				mutex_exit(SD_MUTEX(un));
7459 			}
7460 		}
7461 		break;
7462 
7463 	default:	/* The level requested is spindle on... */
7464 		/*
7465 		 * Legacy behavior: return success on a failed spinup
7466 		 * if there is no media in the drive.
7467 		 * Do this by looking at medium_present here.
7468 		 */
7469 		if ((sval != 0) && medium_present) {
7470 			/* The start command from above failed */
7471 			rval = DDI_FAILURE;
7472 			break;
7473 		}
7474 		/*
7475 		 * The start command from above succeeded
7476 		 * Resume the devices now that we have
7477 		 * started the disks
7478 		 */
7479 		(void) sd_ddi_pm_resume(un);
7480 
7481 		/*
7482 		 * Resume the watch thread since it was suspended
7483 		 * when the device went into low power mode.
7484 		 */
7485 		if (un->un_f_monitor_media_state) {
7486 			mutex_enter(SD_MUTEX(un));
7487 			if (un->un_f_watcht_stopped == TRUE) {
7488 				opaque_t temp_token;
7489 
7490 				un->un_f_watcht_stopped = FALSE;
7491 				mutex_exit(SD_MUTEX(un));
7492 				temp_token = scsi_watch_request_submit(
7493 				    SD_SCSI_DEVP(un),
7494 				    sd_check_media_time,
7495 				    SENSE_LENGTH, sd_media_watch_cb,
7496 				    (caddr_t)dev);
7497 				mutex_enter(SD_MUTEX(un));
7498 				un->un_swr_token = temp_token;
7499 			}
7500 			mutex_exit(SD_MUTEX(un));
7501 		}
7502 	}
7503 	if (got_semaphore_here != 0) {
7504 		sema_v(&un->un_semoclose);
7505 	}
7506 	/*
7507 	 * On exit put the state back to it's original value
7508 	 * and broadcast to anyone waiting for the power
7509 	 * change completion.
7510 	 */
7511 	mutex_enter(SD_MUTEX(un));
7512 	un->un_state = state_before_pm;
7513 	cv_broadcast(&un->un_suspend_cv);
7514 	mutex_exit(SD_MUTEX(un));
7515 
7516 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7517 
7518 	return (rval);
7519 }
7520 
7521 
7522 
7523 /*
7524  *    Function: sdattach
7525  *
7526  * Description: Driver's attach(9e) entry point function.
7527  *
7528  *   Arguments: devi - opaque device info handle
7529  *		cmd  - attach  type
7530  *
7531  * Return Code: DDI_SUCCESS
7532  *		DDI_FAILURE
7533  *
7534  *     Context: Kernel thread context
7535  */
7536 
7537 static int
7538 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7539 {
7540 	switch (cmd) {
7541 	case DDI_ATTACH:
7542 		return (sd_unit_attach(devi));
7543 	case DDI_RESUME:
7544 		return (sd_ddi_resume(devi));
7545 	default:
7546 		break;
7547 	}
7548 	return (DDI_FAILURE);
7549 }
7550 
7551 
7552 /*
7553  *    Function: sddetach
7554  *
7555  * Description: Driver's detach(9E) entry point function.
7556  *
7557  *   Arguments: devi - opaque device info handle
7558  *		cmd  - detach  type
7559  *
7560  * Return Code: DDI_SUCCESS
7561  *		DDI_FAILURE
7562  *
7563  *     Context: Kernel thread context
7564  */
7565 
7566 static int
7567 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7568 {
7569 	switch (cmd) {
7570 	case DDI_DETACH:
7571 		return (sd_unit_detach(devi));
7572 	case DDI_SUSPEND:
7573 		return (sd_ddi_suspend(devi));
7574 	default:
7575 		break;
7576 	}
7577 	return (DDI_FAILURE);
7578 }
7579 
7580 
7581 /*
7582  *     Function: sd_sync_with_callback
7583  *
7584  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7585  *		 state while the callback routine is active.
7586  *
7587  *    Arguments: un: softstate structure for the instance
7588  *
7589  *	Context: Kernel thread context
7590  */
7591 
7592 static void
7593 sd_sync_with_callback(struct sd_lun *un)
7594 {
7595 	ASSERT(un != NULL);
7596 
7597 	mutex_enter(SD_MUTEX(un));
7598 
7599 	ASSERT(un->un_in_callback >= 0);
7600 
7601 	while (un->un_in_callback > 0) {
7602 		mutex_exit(SD_MUTEX(un));
7603 		delay(2);
7604 		mutex_enter(SD_MUTEX(un));
7605 	}
7606 
7607 	mutex_exit(SD_MUTEX(un));
7608 }
7609 
7610 /*
7611  *    Function: sd_unit_attach
7612  *
7613  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7614  *		the soft state structure for the device and performs
7615  *		all necessary structure and device initializations.
7616  *
7617  *   Arguments: devi: the system's dev_info_t for the device.
7618  *
7619  * Return Code: DDI_SUCCESS if attach is successful.
7620  *		DDI_FAILURE if any part of the attach fails.
7621  *
7622  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7623  *		Kernel thread context only.  Can sleep.
7624  */
7625 
7626 static int
7627 sd_unit_attach(dev_info_t *devi)
7628 {
7629 	struct	scsi_device	*devp;
7630 	struct	sd_lun		*un;
7631 	char			*variantp;
7632 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7633 	int	instance;
7634 	int	rval;
7635 	int	wc_enabled;
7636 	uint64_t	capacity;
7637 	uint_t		lbasize;
7638 
7639 	/*
7640 	 * Retrieve the target driver's private data area. This was set
7641 	 * up by the HBA.
7642 	 */
7643 	devp = ddi_get_driver_private(devi);
7644 
7645 	/*
7646 	 * Since we have no idea what state things were left in by the last
7647 	 * user of the device, set up some 'default' settings, ie. turn 'em
7648 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7649 	 * Do this before the scsi_probe, which sends an inquiry.
7650 	 * This is a fix for bug (4430280).
7651 	 * Of special importance is wide-xfer. The drive could have been left
7652 	 * in wide transfer mode by the last driver to communicate with it,
7653 	 * this includes us. If that's the case, and if the following is not
7654 	 * setup properly or we don't re-negotiate with the drive prior to
7655 	 * transferring data to/from the drive, it causes bus parity errors,
7656 	 * data overruns, and unexpected interrupts. This first occurred when
7657 	 * the fix for bug (4378686) was made.
7658 	 */
7659 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7660 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7661 	(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7662 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7663 
7664 	/*
7665 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7666 	 * This call will allocate and fill in the scsi_inquiry structure
7667 	 * and point the sd_inq member of the scsi_device structure to it.
7668 	 * If the attach succeeds, then this memory will not be de-allocated
7669 	 * (via scsi_unprobe()) until the instance is detached.
7670 	 */
7671 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7672 		goto probe_failed;
7673 	}
7674 
7675 	/*
7676 	 * Check the device type as specified in the inquiry data and
7677 	 * claim it if it is of a type that we support.
7678 	 */
7679 	switch (devp->sd_inq->inq_dtype) {
7680 	case DTYPE_DIRECT:
7681 		break;
7682 	case DTYPE_RODIRECT:
7683 		break;
7684 	case DTYPE_OPTICAL:
7685 		break;
7686 	case DTYPE_NOTPRESENT:
7687 	default:
7688 		/* Unsupported device type; fail the attach. */
7689 		goto probe_failed;
7690 	}
7691 
7692 	/*
7693 	 * Allocate the soft state structure for this unit.
7694 	 *
7695 	 * We rely upon this memory being set to all zeroes by
7696 	 * ddi_soft_state_zalloc().  We assume that any member of the
7697 	 * soft state structure that is not explicitly initialized by
7698 	 * this routine will have a value of zero.
7699 	 */
7700 	instance = ddi_get_instance(devp->sd_dev);
7701 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7702 		goto probe_failed;
7703 	}
7704 
7705 	/*
7706 	 * Retrieve a pointer to the newly-allocated soft state.
7707 	 *
7708 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7709 	 * was successful, unless something has gone horribly wrong and the
7710 	 * ddi's soft state internals are corrupt (in which case it is
7711 	 * probably better to halt here than just fail the attach....)
7712 	 */
7713 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7714 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7715 		    instance);
7716 		/*NOTREACHED*/
7717 	}
7718 
7719 	/*
7720 	 * Link the back ptr of the driver soft state to the scsi_device
7721 	 * struct for this lun.
7722 	 * Save a pointer to the softstate in the driver-private area of
7723 	 * the scsi_device struct.
7724 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7725 	 * we first set un->un_sd below.
7726 	 */
7727 	un->un_sd = devp;
7728 	devp->sd_private = (opaque_t)un;
7729 
7730 	/*
7731 	 * The following must be after devp is stored in the soft state struct.
7732 	 */
7733 #ifdef SDDEBUG
7734 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7735 	    "%s_unit_attach: un:0x%p instance:%d\n",
7736 	    ddi_driver_name(devi), un, instance);
7737 #endif
7738 
7739 	/*
7740 	 * Set up the device type and node type (for the minor nodes).
7741 	 * By default we assume that the device can at least support the
7742 	 * Common Command Set. Call it a CD-ROM if it reports itself
7743 	 * as a RODIRECT device.
7744 	 */
7745 	switch (devp->sd_inq->inq_dtype) {
7746 	case DTYPE_RODIRECT:
7747 		un->un_node_type = DDI_NT_CD_CHAN;
7748 		un->un_ctype	 = CTYPE_CDROM;
7749 		break;
7750 	case DTYPE_OPTICAL:
7751 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7752 		un->un_ctype	 = CTYPE_ROD;
7753 		break;
7754 	default:
7755 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7756 		un->un_ctype	 = CTYPE_CCS;
7757 		break;
7758 	}
7759 
7760 	/*
7761 	 * Try to read the interconnect type from the HBA.
7762 	 *
7763 	 * Note: This driver is currently compiled as two binaries, a parallel
7764 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7765 	 * differences are determined at compile time. In the future a single
7766 	 * binary will be provided and the inteconnect type will be used to
7767 	 * differentiate between fibre and parallel scsi behaviors. At that time
7768 	 * it will be necessary for all fibre channel HBAs to support this
7769 	 * property.
7770 	 *
7771 	 * set un_f_is_fiber to TRUE ( default fiber )
7772 	 */
7773 	un->un_f_is_fibre = TRUE;
7774 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7775 	case INTERCONNECT_SSA:
7776 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7777 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7778 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7779 		break;
7780 	case INTERCONNECT_PARALLEL:
7781 		un->un_f_is_fibre = FALSE;
7782 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7783 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7784 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7785 		break;
7786 	case INTERCONNECT_FIBRE:
7787 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7788 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7789 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7790 		break;
7791 	case INTERCONNECT_FABRIC:
7792 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7793 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7794 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7795 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7796 		break;
7797 	default:
7798 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7799 		/*
7800 		 * The HBA does not support the "interconnect-type" property
7801 		 * (or did not provide a recognized type).
7802 		 *
7803 		 * Note: This will be obsoleted when a single fibre channel
7804 		 * and parallel scsi driver is delivered. In the meantime the
7805 		 * interconnect type will be set to the platform default.If that
7806 		 * type is not parallel SCSI, it means that we should be
7807 		 * assuming "ssd" semantics. However, here this also means that
7808 		 * the FC HBA is not supporting the "interconnect-type" property
7809 		 * like we expect it to, so log this occurrence.
7810 		 */
7811 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7812 		if (!SD_IS_PARALLEL_SCSI(un)) {
7813 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7814 			    "sd_unit_attach: un:0x%p Assuming "
7815 			    "INTERCONNECT_FIBRE\n", un);
7816 		} else {
7817 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7818 			    "sd_unit_attach: un:0x%p Assuming "
7819 			    "INTERCONNECT_PARALLEL\n", un);
7820 			un->un_f_is_fibre = FALSE;
7821 		}
7822 #else
7823 		/*
7824 		 * Note: This source will be implemented when a single fibre
7825 		 * channel and parallel scsi driver is delivered. The default
7826 		 * will be to assume that if a device does not support the
7827 		 * "interconnect-type" property it is a parallel SCSI HBA and
7828 		 * we will set the interconnect type for parallel scsi.
7829 		 */
7830 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7831 		un->un_f_is_fibre = FALSE;
7832 #endif
7833 		break;
7834 	}
7835 
7836 	if (un->un_f_is_fibre == TRUE) {
7837 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7838 			SCSI_VERSION_3) {
7839 			switch (un->un_interconnect_type) {
7840 			case SD_INTERCONNECT_FIBRE:
7841 			case SD_INTERCONNECT_SSA:
7842 				un->un_node_type = DDI_NT_BLOCK_WWN;
7843 				break;
7844 			default:
7845 				break;
7846 			}
7847 		}
7848 	}
7849 
7850 	/*
7851 	 * Initialize the Request Sense command for the target
7852 	 */
7853 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7854 		goto alloc_rqs_failed;
7855 	}
7856 
7857 	/*
7858 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7859 	 * with seperate binary for sd and ssd.
7860 	 *
7861 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7862 	 * The hardcoded values will go away when Sparc uses 1 binary
7863 	 * for sd and ssd.  This hardcoded values need to match
7864 	 * SD_RETRY_COUNT in sddef.h
7865 	 * The value used is base on interconnect type.
7866 	 * fibre = 3, parallel = 5
7867 	 */
7868 #if defined(__i386) || defined(__amd64)
7869 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7870 #else
7871 	un->un_retry_count = SD_RETRY_COUNT;
7872 #endif
7873 
7874 	/*
7875 	 * Set the per disk retry count to the default number of retries
7876 	 * for disks and CDROMs. This value can be overridden by the
7877 	 * disk property list or an entry in sd.conf.
7878 	 */
7879 	un->un_notready_retry_count =
7880 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7881 			: DISK_NOT_READY_RETRY_COUNT(un);
7882 
7883 	/*
7884 	 * Set the busy retry count to the default value of un_retry_count.
7885 	 * This can be overridden by entries in sd.conf or the device
7886 	 * config table.
7887 	 */
7888 	un->un_busy_retry_count = un->un_retry_count;
7889 
7890 	/*
7891 	 * Init the reset threshold for retries.  This number determines
7892 	 * how many retries must be performed before a reset can be issued
7893 	 * (for certain error conditions). This can be overridden by entries
7894 	 * in sd.conf or the device config table.
7895 	 */
7896 	un->un_reset_retry_count = (un->un_retry_count / 2);
7897 
7898 	/*
7899 	 * Set the victim_retry_count to the default un_retry_count
7900 	 */
7901 	un->un_victim_retry_count = (2 * un->un_retry_count);
7902 
7903 	/*
7904 	 * Set the reservation release timeout to the default value of
7905 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7906 	 * device config table.
7907 	 */
7908 	un->un_reserve_release_time = 5;
7909 
7910 	/*
7911 	 * Set up the default maximum transfer size. Note that this may
7912 	 * get updated later in the attach, when setting up default wide
7913 	 * operations for disks.
7914 	 */
7915 #if defined(__i386) || defined(__amd64)
7916 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7917 #else
7918 	un->un_max_xfer_size = (uint_t)maxphys;
7919 #endif
7920 
7921 	/*
7922 	 * Get "allow bus device reset" property (defaults to "enabled" if
7923 	 * the property was not defined). This is to disable bus resets for
7924 	 * certain kinds of error recovery. Note: In the future when a run-time
7925 	 * fibre check is available the soft state flag should default to
7926 	 * enabled.
7927 	 */
7928 	if (un->un_f_is_fibre == TRUE) {
7929 		un->un_f_allow_bus_device_reset = TRUE;
7930 	} else {
7931 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7932 			"allow-bus-device-reset", 1) != 0) {
7933 			un->un_f_allow_bus_device_reset = TRUE;
7934 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7935 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
7936 				un);
7937 		} else {
7938 			un->un_f_allow_bus_device_reset = FALSE;
7939 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7940 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
7941 				un);
7942 		}
7943 	}
7944 
7945 	/*
7946 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7947 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7948 	 *
7949 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7950 	 * property. The new "variant" property with a value of "atapi" has been
7951 	 * introduced so that future 'variants' of standard SCSI behavior (like
7952 	 * atapi) could be specified by the underlying HBA drivers by supplying
7953 	 * a new value for the "variant" property, instead of having to define a
7954 	 * new property.
7955 	 */
7956 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7957 		un->un_f_cfg_is_atapi = TRUE;
7958 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7959 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7960 	}
7961 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7962 	    &variantp) == DDI_PROP_SUCCESS) {
7963 		if (strcmp(variantp, "atapi") == 0) {
7964 			un->un_f_cfg_is_atapi = TRUE;
7965 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7966 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7967 		}
7968 		ddi_prop_free(variantp);
7969 	}
7970 
7971 	un->un_cmd_timeout	= SD_IO_TIME;
7972 
7973 	/* Info on current states, statuses, etc. (Updated frequently) */
7974 	un->un_state		= SD_STATE_NORMAL;
7975 	un->un_last_state	= SD_STATE_NORMAL;
7976 
7977 	/* Control & status info for command throttling */
7978 	un->un_throttle		= sd_max_throttle;
7979 	un->un_saved_throttle	= sd_max_throttle;
7980 	un->un_min_throttle	= sd_min_throttle;
7981 
7982 	if (un->un_f_is_fibre == TRUE) {
7983 		un->un_f_use_adaptive_throttle = TRUE;
7984 	} else {
7985 		un->un_f_use_adaptive_throttle = FALSE;
7986 	}
7987 
7988 	/* Removable media support. */
7989 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7990 	un->un_mediastate		= DKIO_NONE;
7991 	un->un_specified_mediastate	= DKIO_NONE;
7992 
7993 	/* CVs for suspend/resume (PM or DR) */
7994 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7995 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7996 
7997 	/* Power management support. */
7998 	un->un_power_level = SD_SPINDLE_UNINIT;
7999 
8000 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
8001 	un->un_f_wcc_inprog = 0;
8002 
8003 	/*
8004 	 * The open/close semaphore is used to serialize threads executing
8005 	 * in the driver's open & close entry point routines for a given
8006 	 * instance.
8007 	 */
8008 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
8009 
8010 	/*
8011 	 * The conf file entry and softstate variable is a forceful override,
8012 	 * meaning a non-zero value must be entered to change the default.
8013 	 */
8014 	un->un_f_disksort_disabled = FALSE;
8015 
8016 	/*
8017 	 * Retrieve the properties from the static driver table or the driver
8018 	 * configuration file (.conf) for this unit and update the soft state
8019 	 * for the device as needed for the indicated properties.
8020 	 * Note: the property configuration needs to occur here as some of the
8021 	 * following routines may have dependancies on soft state flags set
8022 	 * as part of the driver property configuration.
8023 	 */
8024 	sd_read_unit_properties(un);
8025 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8026 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8027 
8028 	/*
8029 	 * Only if a device has "hotpluggable" property, it is
8030 	 * treated as hotpluggable device. Otherwise, it is
8031 	 * regarded as non-hotpluggable one.
8032 	 */
8033 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
8034 	    -1) != -1) {
8035 		un->un_f_is_hotpluggable = TRUE;
8036 	}
8037 
8038 	/*
8039 	 * set unit's attributes(flags) according to "hotpluggable" and
8040 	 * RMB bit in INQUIRY data.
8041 	 */
8042 	sd_set_unit_attributes(un, devi);
8043 
8044 	/*
8045 	 * By default, we mark the capacity, lbasize, and geometry
8046 	 * as invalid. Only if we successfully read a valid capacity
8047 	 * will we update the un_blockcount and un_tgt_blocksize with the
8048 	 * valid values (the geometry will be validated later).
8049 	 */
8050 	un->un_f_blockcount_is_valid	= FALSE;
8051 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8052 	un->un_f_geometry_is_valid	= FALSE;
8053 
8054 	/*
8055 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8056 	 * otherwise.
8057 	 */
8058 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8059 	un->un_blockcount = 0;
8060 
8061 	/*
8062 	 * Set up the per-instance info needed to determine the correct
8063 	 * CDBs and other info for issuing commands to the target.
8064 	 */
8065 	sd_init_cdb_limits(un);
8066 
8067 	/*
8068 	 * Set up the IO chains to use, based upon the target type.
8069 	 */
8070 	if (un->un_f_non_devbsize_supported) {
8071 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8072 	} else {
8073 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8074 	}
8075 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8076 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8077 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8078 
8079 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8080 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8081 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8082 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8083 
8084 
8085 	if (ISCD(un)) {
8086 		un->un_additional_codes = sd_additional_codes;
8087 	} else {
8088 		un->un_additional_codes = NULL;
8089 	}
8090 
8091 	/*
8092 	 * Create the kstats here so they can be available for attach-time
8093 	 * routines that send commands to the unit (either polled or via
8094 	 * sd_send_scsi_cmd).
8095 	 *
8096 	 * Note: This is a critical sequence that needs to be maintained:
8097 	 *	1) Instantiate the kstats here, before any routines using the
8098 	 *	   iopath (i.e. sd_send_scsi_cmd).
8099 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8100 	 *	   stats (sd_set_pstats), following sd_validate_geometry(),
8101 	 *	   sd_register_devid(), and sd_cache_control().
8102 	 */
8103 
8104 	un->un_stats = kstat_create(sd_label, instance,
8105 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8106 	if (un->un_stats != NULL) {
8107 		un->un_stats->ks_lock = SD_MUTEX(un);
8108 		kstat_install(un->un_stats);
8109 	}
8110 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8111 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8112 
8113 	sd_create_errstats(un, instance);
8114 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8115 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8116 
8117 	/*
8118 	 * The following if/else code was relocated here from below as part
8119 	 * of the fix for bug (4430280). However with the default setup added
8120 	 * on entry to this routine, it's no longer absolutely necessary for
8121 	 * this to be before the call to sd_spin_up_unit.
8122 	 */
8123 	if (SD_IS_PARALLEL_SCSI(un)) {
8124 		/*
8125 		 * If SCSI-2 tagged queueing is supported by the target
8126 		 * and by the host adapter then we will enable it.
8127 		 */
8128 		un->un_tagflags = 0;
8129 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8130 		    (devp->sd_inq->inq_cmdque) &&
8131 		    (un->un_f_arq_enabled == TRUE)) {
8132 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8133 			    1, 1) == 1) {
8134 				un->un_tagflags = FLAG_STAG;
8135 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8136 				    "sd_unit_attach: un:0x%p tag queueing "
8137 				    "enabled\n", un);
8138 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8139 			    "untagged-qing", 0) == 1) {
8140 				un->un_f_opt_queueing = TRUE;
8141 				un->un_saved_throttle = un->un_throttle =
8142 				    min(un->un_throttle, 3);
8143 			} else {
8144 				un->un_f_opt_queueing = FALSE;
8145 				un->un_saved_throttle = un->un_throttle = 1;
8146 			}
8147 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8148 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8149 			/* The Host Adapter supports internal queueing. */
8150 			un->un_f_opt_queueing = TRUE;
8151 			un->un_saved_throttle = un->un_throttle =
8152 			    min(un->un_throttle, 3);
8153 		} else {
8154 			un->un_f_opt_queueing = FALSE;
8155 			un->un_saved_throttle = un->un_throttle = 1;
8156 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8157 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8158 		}
8159 
8160 
8161 		/* Setup or tear down default wide operations for disks */
8162 
8163 		/*
8164 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8165 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8166 		 * system and be set to different values. In the future this
8167 		 * code may need to be updated when the ssd module is
8168 		 * obsoleted and removed from the system. (4299588)
8169 		 */
8170 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8171 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8172 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8173 			    1, 1) == 1) {
8174 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8175 				    "sd_unit_attach: un:0x%p Wide Transfer "
8176 				    "enabled\n", un);
8177 			}
8178 
8179 			/*
8180 			 * If tagged queuing has also been enabled, then
8181 			 * enable large xfers
8182 			 */
8183 			if (un->un_saved_throttle == sd_max_throttle) {
8184 				un->un_max_xfer_size =
8185 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8186 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8187 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8188 				    "sd_unit_attach: un:0x%p max transfer "
8189 				    "size=0x%x\n", un, un->un_max_xfer_size);
8190 			}
8191 		} else {
8192 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8193 			    0, 1) == 1) {
8194 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8195 				    "sd_unit_attach: un:0x%p "
8196 				    "Wide Transfer disabled\n", un);
8197 			}
8198 		}
8199 	} else {
8200 		un->un_tagflags = FLAG_STAG;
8201 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8202 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8203 	}
8204 
8205 	/*
8206 	 * If this target supports LUN reset, try to enable it.
8207 	 */
8208 	if (un->un_f_lun_reset_enabled) {
8209 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8210 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8211 			    "un:0x%p lun_reset capability set\n", un);
8212 		} else {
8213 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8214 			    "un:0x%p lun-reset capability not set\n", un);
8215 		}
8216 	}
8217 
8218 	/*
8219 	 * At this point in the attach, we have enough info in the
8220 	 * soft state to be able to issue commands to the target.
8221 	 *
8222 	 * All command paths used below MUST issue their commands as
8223 	 * SD_PATH_DIRECT. This is important as intermediate layers
8224 	 * are not all initialized yet (such as PM).
8225 	 */
8226 
8227 	/*
8228 	 * Send a TEST UNIT READY command to the device. This should clear
8229 	 * any outstanding UNIT ATTENTION that may be present.
8230 	 *
8231 	 * Note: Don't check for success, just track if there is a reservation,
8232 	 * this is a throw away command to clear any unit attentions.
8233 	 *
8234 	 * Note: This MUST be the first command issued to the target during
8235 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8236 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8237 	 * with attempts at spinning up a device with no media.
8238 	 */
8239 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8240 		reservation_flag = SD_TARGET_IS_RESERVED;
8241 	}
8242 
8243 	/*
8244 	 * If the device is NOT a removable media device, attempt to spin
8245 	 * it up (using the START_STOP_UNIT command) and read its capacity
8246 	 * (using the READ CAPACITY command).  Note, however, that either
8247 	 * of these could fail and in some cases we would continue with
8248 	 * the attach despite the failure (see below).
8249 	 */
8250 	if (un->un_f_descr_format_supported) {
8251 		switch (sd_spin_up_unit(un)) {
8252 		case 0:
8253 			/*
8254 			 * Spin-up was successful; now try to read the
8255 			 * capacity.  If successful then save the results
8256 			 * and mark the capacity & lbasize as valid.
8257 			 */
8258 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8259 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8260 
8261 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8262 			    &lbasize, SD_PATH_DIRECT)) {
8263 			case 0: {
8264 				if (capacity > DK_MAX_BLOCKS) {
8265 #ifdef _LP64
8266 					/*
8267 					 * Enable descriptor format sense data
8268 					 * so that we can get 64 bit sense
8269 					 * data fields.
8270 					 */
8271 					sd_enable_descr_sense(un);
8272 #else
8273 					/* 32-bit kernels can't handle this */
8274 					scsi_log(SD_DEVINFO(un),
8275 					    sd_label, CE_WARN,
8276 					    "disk has %llu blocks, which "
8277 					    "is too large for a 32-bit "
8278 					    "kernel", capacity);
8279 					goto spinup_failed;
8280 #endif
8281 				}
8282 				/*
8283 				 * The following relies on
8284 				 * sd_send_scsi_READ_CAPACITY never
8285 				 * returning 0 for capacity and/or lbasize.
8286 				 */
8287 				sd_update_block_info(un, lbasize, capacity);
8288 
8289 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8290 				    "sd_unit_attach: un:0x%p capacity = %ld "
8291 				    "blocks; lbasize= %ld.\n", un,
8292 				    un->un_blockcount, un->un_tgt_blocksize);
8293 
8294 				break;
8295 			}
8296 			case EACCES:
8297 				/*
8298 				 * Should never get here if the spin-up
8299 				 * succeeded, but code it in anyway.
8300 				 * From here, just continue with the attach...
8301 				 */
8302 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8303 				    "sd_unit_attach: un:0x%p "
8304 				    "sd_send_scsi_READ_CAPACITY "
8305 				    "returned reservation conflict\n", un);
8306 				reservation_flag = SD_TARGET_IS_RESERVED;
8307 				break;
8308 			default:
8309 				/*
8310 				 * Likewise, should never get here if the
8311 				 * spin-up succeeded. Just continue with
8312 				 * the attach...
8313 				 */
8314 				break;
8315 			}
8316 			break;
8317 		case EACCES:
8318 			/*
8319 			 * Device is reserved by another host.  In this case
8320 			 * we could not spin it up or read the capacity, but
8321 			 * we continue with the attach anyway.
8322 			 */
8323 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8324 			    "sd_unit_attach: un:0x%p spin-up reservation "
8325 			    "conflict.\n", un);
8326 			reservation_flag = SD_TARGET_IS_RESERVED;
8327 			break;
8328 		default:
8329 			/* Fail the attach if the spin-up failed. */
8330 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8331 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8332 			goto spinup_failed;
8333 		}
8334 	}
8335 
8336 	/*
8337 	 * Check to see if this is a MMC drive
8338 	 */
8339 	if (ISCD(un)) {
8340 		sd_set_mmc_caps(un);
8341 	}
8342 
8343 	/*
8344 	 * Create the minor nodes for the device.
8345 	 * Note: If we want to support fdisk on both sparc and intel, this will
8346 	 * have to separate out the notion that VTOC8 is always sparc, and
8347 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8348 	 * type will have to be determined at run-time, and the fdisk
8349 	 * partitioning will have to have been read & set up before we
8350 	 * create the minor nodes. (any other inits (such as kstats) that
8351 	 * also ought to be done before creating the minor nodes?) (Doesn't
8352 	 * setting up the minor nodes kind of imply that we're ready to
8353 	 * handle an open from userland?)
8354 	 */
8355 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8356 		goto create_minor_nodes_failed;
8357 	}
8358 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8359 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8360 
8361 	/*
8362 	 * Add a zero-length attribute to tell the world we support
8363 	 * kernel ioctls (for layered drivers)
8364 	 */
8365 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8366 	    DDI_KERNEL_IOCTL, NULL, 0);
8367 
8368 	/*
8369 	 * Add a boolean property to tell the world we support
8370 	 * the B_FAILFAST flag (for layered drivers)
8371 	 */
8372 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8373 	    "ddi-failfast-supported", NULL, 0);
8374 
8375 	/*
8376 	 * Initialize power management
8377 	 */
8378 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8379 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8380 	sd_setup_pm(un, devi);
8381 	if (un->un_f_pm_is_enabled == FALSE) {
8382 		/*
8383 		 * For performance, point to a jump table that does
8384 		 * not include pm.
8385 		 * The direct and priority chains don't change with PM.
8386 		 *
8387 		 * Note: this is currently done based on individual device
8388 		 * capabilities. When an interface for determining system
8389 		 * power enabled state becomes available, or when additional
8390 		 * layers are added to the command chain, these values will
8391 		 * have to be re-evaluated for correctness.
8392 		 */
8393 		if (un->un_f_non_devbsize_supported) {
8394 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8395 		} else {
8396 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8397 		}
8398 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8399 	}
8400 
8401 	/*
8402 	 * This property is set to 0 by HA software to avoid retries
8403 	 * on a reserved disk. (The preferred property name is
8404 	 * "retry-on-reservation-conflict") (1189689)
8405 	 *
8406 	 * Note: The use of a global here can have unintended consequences. A
8407 	 * per instance variable is preferrable to match the capabilities of
8408 	 * different underlying hba's (4402600)
8409 	 */
8410 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8411 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8412 	    sd_retry_on_reservation_conflict);
8413 	if (sd_retry_on_reservation_conflict != 0) {
8414 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8415 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8416 		    sd_retry_on_reservation_conflict);
8417 	}
8418 
8419 	/* Set up options for QFULL handling. */
8420 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8421 	    "qfull-retries", -1)) != -1) {
8422 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8423 		    rval, 1);
8424 	}
8425 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8426 	    "qfull-retry-interval", -1)) != -1) {
8427 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8428 		    rval, 1);
8429 	}
8430 
8431 	/*
8432 	 * This just prints a message that announces the existence of the
8433 	 * device. The message is always printed in the system logfile, but
8434 	 * only appears on the console if the system is booted with the
8435 	 * -v (verbose) argument.
8436 	 */
8437 	ddi_report_dev(devi);
8438 
8439 	/*
8440 	 * The framework calls driver attach routines single-threaded
8441 	 * for a given instance.  However we still acquire SD_MUTEX here
8442 	 * because this required for calling the sd_validate_geometry()
8443 	 * and sd_register_devid() functions.
8444 	 */
8445 	mutex_enter(SD_MUTEX(un));
8446 	un->un_f_geometry_is_valid = FALSE;
8447 	un->un_mediastate = DKIO_NONE;
8448 	un->un_reserved = -1;
8449 
8450 	/*
8451 	 * Read and validate the device's geometry (ie, disk label)
8452 	 * A new unformatted drive will not have a valid geometry, but
8453 	 * the driver needs to successfully attach to this device so
8454 	 * the drive can be formatted via ioctls.
8455 	 */
8456 	if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8457 	    ENOTSUP)) &&
8458 	    (un->un_blockcount < DK_MAX_BLOCKS)) {
8459 		/*
8460 		 * We found a small disk with an EFI label on it;
8461 		 * we need to fix up the minor nodes accordingly.
8462 		 */
8463 		ddi_remove_minor_node(devi, "h");
8464 		ddi_remove_minor_node(devi, "h,raw");
8465 		(void) ddi_create_minor_node(devi, "wd",
8466 		    S_IFBLK,
8467 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8468 		    un->un_node_type, NULL);
8469 		(void) ddi_create_minor_node(devi, "wd,raw",
8470 		    S_IFCHR,
8471 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8472 		    un->un_node_type, NULL);
8473 	}
8474 
8475 	/*
8476 	 * Read and initialize the devid for the unit.
8477 	 */
8478 	ASSERT(un->un_errstats != NULL);
8479 	if (un->un_f_devid_supported) {
8480 		sd_register_devid(un, devi, reservation_flag);
8481 	}
8482 	mutex_exit(SD_MUTEX(un));
8483 
8484 #if (defined(__fibre))
8485 	/*
8486 	 * Register callbacks for fibre only.  You can't do this soley
8487 	 * on the basis of the devid_type because this is hba specific.
8488 	 * We need to query our hba capabilities to find out whether to
8489 	 * register or not.
8490 	 */
8491 	if (un->un_f_is_fibre) {
8492 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8493 		sd_init_event_callbacks(un);
8494 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8495 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8496 	    }
8497 	}
8498 #endif
8499 
8500 	if (un->un_f_opt_disable_cache == TRUE) {
8501 		/*
8502 		 * Disable both read cache and write cache.  This is
8503 		 * the historic behavior of the keywords in the config file.
8504 		 */
8505 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8506 		    0) {
8507 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8508 			    "sd_unit_attach: un:0x%p Could not disable "
8509 			    "caching", un);
8510 			goto devid_failed;
8511 		}
8512 	}
8513 
8514 	/*
8515 	 * Check the value of the WCE bit now and
8516 	 * set un_f_write_cache_enabled accordingly.
8517 	 */
8518 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
8519 	mutex_enter(SD_MUTEX(un));
8520 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8521 	mutex_exit(SD_MUTEX(un));
8522 
8523 	/*
8524 	 * Set the pstat and error stat values here, so data obtained during the
8525 	 * previous attach-time routines is available.
8526 	 *
8527 	 * Note: This is a critical sequence that needs to be maintained:
8528 	 *	1) Instantiate the kstats before any routines using the iopath
8529 	 *	   (i.e. sd_send_scsi_cmd).
8530 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8531 	 *	   stats (sd_set_pstats)here, following sd_validate_geometry(),
8532 	 *	   sd_register_devid(), and sd_cache_control().
8533 	 */
8534 	if (un->un_f_pkstats_enabled) {
8535 		sd_set_pstats(un);
8536 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8537 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8538 	}
8539 
8540 	sd_set_errstats(un);
8541 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8542 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8543 
8544 	/*
8545 	 * Find out what type of reservation this disk supports.
8546 	 */
8547 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
8548 	case 0:
8549 		/*
8550 		 * SCSI-3 reservations are supported.
8551 		 */
8552 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8553 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8554 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8555 		break;
8556 	case ENOTSUP:
8557 		/*
8558 		 * The PERSISTENT RESERVE IN command would not be recognized by
8559 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8560 		 */
8561 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8562 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8563 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8564 		break;
8565 	default:
8566 		/*
8567 		 * default to SCSI-3 reservations
8568 		 */
8569 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8570 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8571 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8572 		break;
8573 	}
8574 
8575 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8576 	    "sd_unit_attach: un:0x%p exit success\n", un);
8577 
8578 	return (DDI_SUCCESS);
8579 
8580 	/*
8581 	 * An error occurred during the attach; clean up & return failure.
8582 	 */
8583 
8584 devid_failed:
8585 
8586 setup_pm_failed:
8587 	ddi_remove_minor_node(devi, NULL);
8588 
8589 create_minor_nodes_failed:
8590 	/*
8591 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8592 	 */
8593 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8594 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8595 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8596 
8597 	if (un->un_f_is_fibre == FALSE) {
8598 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8599 	}
8600 
8601 spinup_failed:
8602 
8603 	mutex_enter(SD_MUTEX(un));
8604 
8605 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8606 	if (un->un_direct_priority_timeid != NULL) {
8607 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8608 		un->un_direct_priority_timeid = NULL;
8609 		mutex_exit(SD_MUTEX(un));
8610 		(void) untimeout(temp_id);
8611 		mutex_enter(SD_MUTEX(un));
8612 	}
8613 
8614 	/* Cancel any pending start/stop timeouts */
8615 	if (un->un_startstop_timeid != NULL) {
8616 		timeout_id_t temp_id = un->un_startstop_timeid;
8617 		un->un_startstop_timeid = NULL;
8618 		mutex_exit(SD_MUTEX(un));
8619 		(void) untimeout(temp_id);
8620 		mutex_enter(SD_MUTEX(un));
8621 	}
8622 
8623 	/* Cancel any pending reset-throttle timeouts */
8624 	if (un->un_reset_throttle_timeid != NULL) {
8625 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8626 		un->un_reset_throttle_timeid = NULL;
8627 		mutex_exit(SD_MUTEX(un));
8628 		(void) untimeout(temp_id);
8629 		mutex_enter(SD_MUTEX(un));
8630 	}
8631 
8632 	/* Cancel any pending retry timeouts */
8633 	if (un->un_retry_timeid != NULL) {
8634 		timeout_id_t temp_id = un->un_retry_timeid;
8635 		un->un_retry_timeid = NULL;
8636 		mutex_exit(SD_MUTEX(un));
8637 		(void) untimeout(temp_id);
8638 		mutex_enter(SD_MUTEX(un));
8639 	}
8640 
8641 	/* Cancel any pending delayed cv broadcast timeouts */
8642 	if (un->un_dcvb_timeid != NULL) {
8643 		timeout_id_t temp_id = un->un_dcvb_timeid;
8644 		un->un_dcvb_timeid = NULL;
8645 		mutex_exit(SD_MUTEX(un));
8646 		(void) untimeout(temp_id);
8647 		mutex_enter(SD_MUTEX(un));
8648 	}
8649 
8650 	mutex_exit(SD_MUTEX(un));
8651 
8652 	/* There should not be any in-progress I/O so ASSERT this check */
8653 	ASSERT(un->un_ncmds_in_transport == 0);
8654 	ASSERT(un->un_ncmds_in_driver == 0);
8655 
8656 	/* Do not free the softstate if the callback routine is active */
8657 	sd_sync_with_callback(un);
8658 
8659 	/*
8660 	 * Partition stats apparently are not used with removables. These would
8661 	 * not have been created during attach, so no need to clean them up...
8662 	 */
8663 	if (un->un_stats != NULL) {
8664 		kstat_delete(un->un_stats);
8665 		un->un_stats = NULL;
8666 	}
8667 	if (un->un_errstats != NULL) {
8668 		kstat_delete(un->un_errstats);
8669 		un->un_errstats = NULL;
8670 	}
8671 
8672 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8673 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8674 
8675 	ddi_prop_remove_all(devi);
8676 	sema_destroy(&un->un_semoclose);
8677 	cv_destroy(&un->un_state_cv);
8678 
8679 getrbuf_failed:
8680 
8681 	sd_free_rqs(un);
8682 
8683 alloc_rqs_failed:
8684 
8685 	devp->sd_private = NULL;
8686 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8687 
8688 get_softstate_failed:
8689 	/*
8690 	 * Note: the man pages are unclear as to whether or not doing a
8691 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8692 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8693 	 * ddi_get_soft_state() fails.  The implication seems to be
8694 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8695 	 */
8696 	ddi_soft_state_free(sd_state, instance);
8697 
8698 probe_failed:
8699 	scsi_unprobe(devp);
8700 #ifdef SDDEBUG
8701 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
8702 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
8703 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
8704 		    (void *)un);
8705 	}
8706 #endif
8707 	return (DDI_FAILURE);
8708 }
8709 
8710 
8711 /*
8712  *    Function: sd_unit_detach
8713  *
8714  * Description: Performs DDI_DETACH processing for sddetach().
8715  *
8716  * Return Code: DDI_SUCCESS
8717  *		DDI_FAILURE
8718  *
8719  *     Context: Kernel thread context
8720  */
8721 
8722 static int
8723 sd_unit_detach(dev_info_t *devi)
8724 {
8725 	struct scsi_device	*devp;
8726 	struct sd_lun		*un;
8727 	int			i;
8728 	dev_t			dev;
8729 	int			instance = ddi_get_instance(devi);
8730 
8731 	mutex_enter(&sd_detach_mutex);
8732 
8733 	/*
8734 	 * Fail the detach for any of the following:
8735 	 *  - Unable to get the sd_lun struct for the instance
8736 	 *  - A layered driver has an outstanding open on the instance
8737 	 *  - Another thread is already detaching this instance
8738 	 *  - Another thread is currently performing an open
8739 	 */
8740 	devp = ddi_get_driver_private(devi);
8741 	if ((devp == NULL) ||
8742 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8743 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8744 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8745 		mutex_exit(&sd_detach_mutex);
8746 		return (DDI_FAILURE);
8747 	}
8748 
8749 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8750 
8751 	/*
8752 	 * Mark this instance as currently in a detach, to inhibit any
8753 	 * opens from a layered driver.
8754 	 */
8755 	un->un_detach_count++;
8756 	mutex_exit(&sd_detach_mutex);
8757 
8758 	dev = sd_make_device(SD_DEVINFO(un));
8759 
8760 	_NOTE(COMPETING_THREADS_NOW);
8761 
8762 	mutex_enter(SD_MUTEX(un));
8763 
8764 	/*
8765 	 * Fail the detach if there are any outstanding layered
8766 	 * opens on this device.
8767 	 */
8768 	for (i = 0; i < NDKMAP; i++) {
8769 		if (un->un_ocmap.lyropen[i] != 0) {
8770 			goto err_notclosed;
8771 		}
8772 	}
8773 
8774 	/*
8775 	 * Verify there are NO outstanding commands issued to this device.
8776 	 * ie, un_ncmds_in_transport == 0.
8777 	 * It's possible to have outstanding commands through the physio
8778 	 * code path, even though everything's closed.
8779 	 */
8780 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8781 	    (un->un_direct_priority_timeid != NULL) ||
8782 	    (un->un_state == SD_STATE_RWAIT)) {
8783 		mutex_exit(SD_MUTEX(un));
8784 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8785 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8786 		goto err_stillbusy;
8787 	}
8788 
8789 	/*
8790 	 * If we have the device reserved, release the reservation.
8791 	 */
8792 	if ((un->un_resvd_status & SD_RESERVE) &&
8793 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8794 		mutex_exit(SD_MUTEX(un));
8795 		/*
8796 		 * Note: sd_reserve_release sends a command to the device
8797 		 * via the sd_ioctlcmd() path, and can sleep.
8798 		 */
8799 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8800 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8801 			    "sd_dr_detach: Cannot release reservation \n");
8802 		}
8803 	} else {
8804 		mutex_exit(SD_MUTEX(un));
8805 	}
8806 
8807 	/*
8808 	 * Untimeout any reserve recover, throttle reset, restart unit
8809 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8810 	 * from getting nulled by their callback functions.
8811 	 */
8812 	mutex_enter(SD_MUTEX(un));
8813 	if (un->un_resvd_timeid != NULL) {
8814 		timeout_id_t temp_id = un->un_resvd_timeid;
8815 		un->un_resvd_timeid = NULL;
8816 		mutex_exit(SD_MUTEX(un));
8817 		(void) untimeout(temp_id);
8818 		mutex_enter(SD_MUTEX(un));
8819 	}
8820 
8821 	if (un->un_reset_throttle_timeid != NULL) {
8822 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8823 		un->un_reset_throttle_timeid = NULL;
8824 		mutex_exit(SD_MUTEX(un));
8825 		(void) untimeout(temp_id);
8826 		mutex_enter(SD_MUTEX(un));
8827 	}
8828 
8829 	if (un->un_startstop_timeid != NULL) {
8830 		timeout_id_t temp_id = un->un_startstop_timeid;
8831 		un->un_startstop_timeid = NULL;
8832 		mutex_exit(SD_MUTEX(un));
8833 		(void) untimeout(temp_id);
8834 		mutex_enter(SD_MUTEX(un));
8835 	}
8836 
8837 	if (un->un_dcvb_timeid != NULL) {
8838 		timeout_id_t temp_id = un->un_dcvb_timeid;
8839 		un->un_dcvb_timeid = NULL;
8840 		mutex_exit(SD_MUTEX(un));
8841 		(void) untimeout(temp_id);
8842 	} else {
8843 		mutex_exit(SD_MUTEX(un));
8844 	}
8845 
8846 	/* Remove any pending reservation reclaim requests for this device */
8847 	sd_rmv_resv_reclaim_req(dev);
8848 
8849 	mutex_enter(SD_MUTEX(un));
8850 
8851 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8852 	if (un->un_direct_priority_timeid != NULL) {
8853 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8854 		un->un_direct_priority_timeid = NULL;
8855 		mutex_exit(SD_MUTEX(un));
8856 		(void) untimeout(temp_id);
8857 		mutex_enter(SD_MUTEX(un));
8858 	}
8859 
8860 	/* Cancel any active multi-host disk watch thread requests */
8861 	if (un->un_mhd_token != NULL) {
8862 		mutex_exit(SD_MUTEX(un));
8863 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8864 		if (scsi_watch_request_terminate(un->un_mhd_token,
8865 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8866 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8867 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8868 			/*
8869 			 * Note: We are returning here after having removed
8870 			 * some driver timeouts above. This is consistent with
8871 			 * the legacy implementation but perhaps the watch
8872 			 * terminate call should be made with the wait flag set.
8873 			 */
8874 			goto err_stillbusy;
8875 		}
8876 		mutex_enter(SD_MUTEX(un));
8877 		un->un_mhd_token = NULL;
8878 	}
8879 
8880 	if (un->un_swr_token != NULL) {
8881 		mutex_exit(SD_MUTEX(un));
8882 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8883 		if (scsi_watch_request_terminate(un->un_swr_token,
8884 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8885 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8886 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8887 			/*
8888 			 * Note: We are returning here after having removed
8889 			 * some driver timeouts above. This is consistent with
8890 			 * the legacy implementation but perhaps the watch
8891 			 * terminate call should be made with the wait flag set.
8892 			 */
8893 			goto err_stillbusy;
8894 		}
8895 		mutex_enter(SD_MUTEX(un));
8896 		un->un_swr_token = NULL;
8897 	}
8898 
8899 	mutex_exit(SD_MUTEX(un));
8900 
8901 	/*
8902 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8903 	 * if we have not registered one.
8904 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8905 	 */
8906 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8907 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8908 
8909 	/*
8910 	 * protect the timeout pointers from getting nulled by
8911 	 * their callback functions during the cancellation process.
8912 	 * In such a scenario untimeout can be invoked with a null value.
8913 	 */
8914 	_NOTE(NO_COMPETING_THREADS_NOW);
8915 
8916 	mutex_enter(&un->un_pm_mutex);
8917 	if (un->un_pm_idle_timeid != NULL) {
8918 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8919 		un->un_pm_idle_timeid = NULL;
8920 		mutex_exit(&un->un_pm_mutex);
8921 
8922 		/*
8923 		 * Timeout is active; cancel it.
8924 		 * Note that it'll never be active on a device
8925 		 * that does not support PM therefore we don't
8926 		 * have to check before calling pm_idle_component.
8927 		 */
8928 		(void) untimeout(temp_id);
8929 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8930 		mutex_enter(&un->un_pm_mutex);
8931 	}
8932 
8933 	/*
8934 	 * Check whether there is already a timeout scheduled for power
8935 	 * management. If yes then don't lower the power here, that's.
8936 	 * the timeout handler's job.
8937 	 */
8938 	if (un->un_pm_timeid != NULL) {
8939 		timeout_id_t temp_id = un->un_pm_timeid;
8940 		un->un_pm_timeid = NULL;
8941 		mutex_exit(&un->un_pm_mutex);
8942 		/*
8943 		 * Timeout is active; cancel it.
8944 		 * Note that it'll never be active on a device
8945 		 * that does not support PM therefore we don't
8946 		 * have to check before calling pm_idle_component.
8947 		 */
8948 		(void) untimeout(temp_id);
8949 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8950 
8951 	} else {
8952 		mutex_exit(&un->un_pm_mutex);
8953 		if ((un->un_f_pm_is_enabled == TRUE) &&
8954 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
8955 		    DDI_SUCCESS)) {
8956 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8957 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8958 			/*
8959 			 * Fix for bug: 4297749, item # 13
8960 			 * The above test now includes a check to see if PM is
8961 			 * supported by this device before call
8962 			 * pm_lower_power().
8963 			 * Note, the following is not dead code. The call to
8964 			 * pm_lower_power above will generate a call back into
8965 			 * our sdpower routine which might result in a timeout
8966 			 * handler getting activated. Therefore the following
8967 			 * code is valid and necessary.
8968 			 */
8969 			mutex_enter(&un->un_pm_mutex);
8970 			if (un->un_pm_timeid != NULL) {
8971 				timeout_id_t temp_id = un->un_pm_timeid;
8972 				un->un_pm_timeid = NULL;
8973 				mutex_exit(&un->un_pm_mutex);
8974 				(void) untimeout(temp_id);
8975 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8976 			} else {
8977 				mutex_exit(&un->un_pm_mutex);
8978 			}
8979 		}
8980 	}
8981 
8982 	/*
8983 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8984 	 * Relocated here from above to be after the call to
8985 	 * pm_lower_power, which was getting errors.
8986 	 */
8987 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8988 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8989 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8990 
8991 	if (un->un_f_is_fibre == FALSE) {
8992 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8993 	}
8994 
8995 	/*
8996 	 * Remove any event callbacks, fibre only
8997 	 */
8998 	if (un->un_f_is_fibre == TRUE) {
8999 		if ((un->un_insert_event != NULL) &&
9000 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
9001 				DDI_SUCCESS)) {
9002 			/*
9003 			 * Note: We are returning here after having done
9004 			 * substantial cleanup above. This is consistent
9005 			 * with the legacy implementation but this may not
9006 			 * be the right thing to do.
9007 			 */
9008 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9009 				"sd_dr_detach: Cannot cancel insert event\n");
9010 			goto err_remove_event;
9011 		}
9012 		un->un_insert_event = NULL;
9013 
9014 		if ((un->un_remove_event != NULL) &&
9015 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9016 				DDI_SUCCESS)) {
9017 			/*
9018 			 * Note: We are returning here after having done
9019 			 * substantial cleanup above. This is consistent
9020 			 * with the legacy implementation but this may not
9021 			 * be the right thing to do.
9022 			 */
9023 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9024 				"sd_dr_detach: Cannot cancel remove event\n");
9025 			goto err_remove_event;
9026 		}
9027 		un->un_remove_event = NULL;
9028 	}
9029 
9030 	/* Do not free the softstate if the callback routine is active */
9031 	sd_sync_with_callback(un);
9032 
9033 	/*
9034 	 * Hold the detach mutex here, to make sure that no other threads ever
9035 	 * can access a (partially) freed soft state structure.
9036 	 */
9037 	mutex_enter(&sd_detach_mutex);
9038 
9039 	/*
9040 	 * Clean up the soft state struct.
9041 	 * Cleanup is done in reverse order of allocs/inits.
9042 	 * At this point there should be no competing threads anymore.
9043 	 */
9044 
9045 	/* Unregister and free device id. */
9046 	ddi_devid_unregister(devi);
9047 	if (un->un_devid) {
9048 		ddi_devid_free(un->un_devid);
9049 		un->un_devid = NULL;
9050 	}
9051 
9052 	/*
9053 	 * Destroy wmap cache if it exists.
9054 	 */
9055 	if (un->un_wm_cache != NULL) {
9056 		kmem_cache_destroy(un->un_wm_cache);
9057 		un->un_wm_cache = NULL;
9058 	}
9059 
9060 	/* Remove minor nodes */
9061 	ddi_remove_minor_node(devi, NULL);
9062 
9063 	/*
9064 	 * kstat cleanup is done in detach for all device types (4363169).
9065 	 * We do not want to fail detach if the device kstats are not deleted
9066 	 * since there is a confusion about the devo_refcnt for the device.
9067 	 * We just delete the kstats and let detach complete successfully.
9068 	 */
9069 	if (un->un_stats != NULL) {
9070 		kstat_delete(un->un_stats);
9071 		un->un_stats = NULL;
9072 	}
9073 	if (un->un_errstats != NULL) {
9074 		kstat_delete(un->un_errstats);
9075 		un->un_errstats = NULL;
9076 	}
9077 
9078 	/* Remove partition stats */
9079 	if (un->un_f_pkstats_enabled) {
9080 		for (i = 0; i < NSDMAP; i++) {
9081 			if (un->un_pstats[i] != NULL) {
9082 				kstat_delete(un->un_pstats[i]);
9083 				un->un_pstats[i] = NULL;
9084 			}
9085 		}
9086 	}
9087 
9088 	/* Remove xbuf registration */
9089 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9090 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9091 
9092 	/* Remove driver properties */
9093 	ddi_prop_remove_all(devi);
9094 
9095 	mutex_destroy(&un->un_pm_mutex);
9096 	cv_destroy(&un->un_pm_busy_cv);
9097 
9098 	cv_destroy(&un->un_wcc_cv);
9099 
9100 	/* Open/close semaphore */
9101 	sema_destroy(&un->un_semoclose);
9102 
9103 	/* Removable media condvar. */
9104 	cv_destroy(&un->un_state_cv);
9105 
9106 	/* Suspend/resume condvar. */
9107 	cv_destroy(&un->un_suspend_cv);
9108 	cv_destroy(&un->un_disk_busy_cv);
9109 
9110 	sd_free_rqs(un);
9111 
9112 	/* Free up soft state */
9113 	devp->sd_private = NULL;
9114 	bzero(un, sizeof (struct sd_lun));
9115 	ddi_soft_state_free(sd_state, instance);
9116 
9117 	mutex_exit(&sd_detach_mutex);
9118 
9119 	/* This frees up the INQUIRY data associated with the device. */
9120 	scsi_unprobe(devp);
9121 
9122 	return (DDI_SUCCESS);
9123 
9124 err_notclosed:
9125 	mutex_exit(SD_MUTEX(un));
9126 
9127 err_stillbusy:
9128 	_NOTE(NO_COMPETING_THREADS_NOW);
9129 
9130 err_remove_event:
9131 	mutex_enter(&sd_detach_mutex);
9132 	un->un_detach_count--;
9133 	mutex_exit(&sd_detach_mutex);
9134 
9135 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9136 	return (DDI_FAILURE);
9137 }
9138 
9139 
9140 /*
9141  * Driver minor node structure and data table
9142  */
9143 struct driver_minor_data {
9144 	char	*name;
9145 	minor_t	minor;
9146 	int	type;
9147 };
9148 
9149 static struct driver_minor_data sd_minor_data[] = {
9150 	{"a", 0, S_IFBLK},
9151 	{"b", 1, S_IFBLK},
9152 	{"c", 2, S_IFBLK},
9153 	{"d", 3, S_IFBLK},
9154 	{"e", 4, S_IFBLK},
9155 	{"f", 5, S_IFBLK},
9156 	{"g", 6, S_IFBLK},
9157 	{"h", 7, S_IFBLK},
9158 #if defined(_SUNOS_VTOC_16)
9159 	{"i", 8, S_IFBLK},
9160 	{"j", 9, S_IFBLK},
9161 	{"k", 10, S_IFBLK},
9162 	{"l", 11, S_IFBLK},
9163 	{"m", 12, S_IFBLK},
9164 	{"n", 13, S_IFBLK},
9165 	{"o", 14, S_IFBLK},
9166 	{"p", 15, S_IFBLK},
9167 #endif			/* defined(_SUNOS_VTOC_16) */
9168 #if defined(_FIRMWARE_NEEDS_FDISK)
9169 	{"q", 16, S_IFBLK},
9170 	{"r", 17, S_IFBLK},
9171 	{"s", 18, S_IFBLK},
9172 	{"t", 19, S_IFBLK},
9173 	{"u", 20, S_IFBLK},
9174 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9175 	{"a,raw", 0, S_IFCHR},
9176 	{"b,raw", 1, S_IFCHR},
9177 	{"c,raw", 2, S_IFCHR},
9178 	{"d,raw", 3, S_IFCHR},
9179 	{"e,raw", 4, S_IFCHR},
9180 	{"f,raw", 5, S_IFCHR},
9181 	{"g,raw", 6, S_IFCHR},
9182 	{"h,raw", 7, S_IFCHR},
9183 #if defined(_SUNOS_VTOC_16)
9184 	{"i,raw", 8, S_IFCHR},
9185 	{"j,raw", 9, S_IFCHR},
9186 	{"k,raw", 10, S_IFCHR},
9187 	{"l,raw", 11, S_IFCHR},
9188 	{"m,raw", 12, S_IFCHR},
9189 	{"n,raw", 13, S_IFCHR},
9190 	{"o,raw", 14, S_IFCHR},
9191 	{"p,raw", 15, S_IFCHR},
9192 #endif			/* defined(_SUNOS_VTOC_16) */
9193 #if defined(_FIRMWARE_NEEDS_FDISK)
9194 	{"q,raw", 16, S_IFCHR},
9195 	{"r,raw", 17, S_IFCHR},
9196 	{"s,raw", 18, S_IFCHR},
9197 	{"t,raw", 19, S_IFCHR},
9198 	{"u,raw", 20, S_IFCHR},
9199 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9200 	{0}
9201 };
9202 
9203 static struct driver_minor_data sd_minor_data_efi[] = {
9204 	{"a", 0, S_IFBLK},
9205 	{"b", 1, S_IFBLK},
9206 	{"c", 2, S_IFBLK},
9207 	{"d", 3, S_IFBLK},
9208 	{"e", 4, S_IFBLK},
9209 	{"f", 5, S_IFBLK},
9210 	{"g", 6, S_IFBLK},
9211 	{"wd", 7, S_IFBLK},
9212 #if defined(_FIRMWARE_NEEDS_FDISK)
9213 	{"q", 16, S_IFBLK},
9214 	{"r", 17, S_IFBLK},
9215 	{"s", 18, S_IFBLK},
9216 	{"t", 19, S_IFBLK},
9217 	{"u", 20, S_IFBLK},
9218 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9219 	{"a,raw", 0, S_IFCHR},
9220 	{"b,raw", 1, S_IFCHR},
9221 	{"c,raw", 2, S_IFCHR},
9222 	{"d,raw", 3, S_IFCHR},
9223 	{"e,raw", 4, S_IFCHR},
9224 	{"f,raw", 5, S_IFCHR},
9225 	{"g,raw", 6, S_IFCHR},
9226 	{"wd,raw", 7, S_IFCHR},
9227 #if defined(_FIRMWARE_NEEDS_FDISK)
9228 	{"q,raw", 16, S_IFCHR},
9229 	{"r,raw", 17, S_IFCHR},
9230 	{"s,raw", 18, S_IFCHR},
9231 	{"t,raw", 19, S_IFCHR},
9232 	{"u,raw", 20, S_IFCHR},
9233 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9234 	{0}
9235 };
9236 
9237 
9238 /*
9239  *    Function: sd_create_minor_nodes
9240  *
9241  * Description: Create the minor device nodes for the instance.
9242  *
9243  *   Arguments: un - driver soft state (unit) structure
9244  *		devi - pointer to device info structure
9245  *
9246  * Return Code: DDI_SUCCESS
9247  *		DDI_FAILURE
9248  *
9249  *     Context: Kernel thread context
9250  */
9251 
9252 static int
9253 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9254 {
9255 	struct driver_minor_data	*dmdp;
9256 	struct scsi_device		*devp;
9257 	int				instance;
9258 	char				name[48];
9259 
9260 	ASSERT(un != NULL);
9261 	devp = ddi_get_driver_private(devi);
9262 	instance = ddi_get_instance(devp->sd_dev);
9263 
9264 	/*
9265 	 * Create all the minor nodes for this target.
9266 	 */
9267 	if (un->un_blockcount > DK_MAX_BLOCKS)
9268 		dmdp = sd_minor_data_efi;
9269 	else
9270 		dmdp = sd_minor_data;
9271 	while (dmdp->name != NULL) {
9272 
9273 		(void) sprintf(name, "%s", dmdp->name);
9274 
9275 		if (ddi_create_minor_node(devi, name, dmdp->type,
9276 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9277 		    un->un_node_type, NULL) == DDI_FAILURE) {
9278 			/*
9279 			 * Clean up any nodes that may have been created, in
9280 			 * case this fails in the middle of the loop.
9281 			 */
9282 			ddi_remove_minor_node(devi, NULL);
9283 			return (DDI_FAILURE);
9284 		}
9285 		dmdp++;
9286 	}
9287 
9288 	return (DDI_SUCCESS);
9289 }
9290 
9291 
9292 /*
9293  *    Function: sd_create_errstats
9294  *
9295  * Description: This routine instantiates the device error stats.
9296  *
9297  *		Note: During attach the stats are instantiated first so they are
9298  *		available for attach-time routines that utilize the driver
9299  *		iopath to send commands to the device. The stats are initialized
9300  *		separately so data obtained during some attach-time routines is
9301  *		available. (4362483)
9302  *
9303  *   Arguments: un - driver soft state (unit) structure
9304  *		instance - driver instance
9305  *
9306  *     Context: Kernel thread context
9307  */
9308 
9309 static void
9310 sd_create_errstats(struct sd_lun *un, int instance)
9311 {
9312 	struct	sd_errstats	*stp;
9313 	char	kstatmodule_err[KSTAT_STRLEN];
9314 	char	kstatname[KSTAT_STRLEN];
9315 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9316 
9317 	ASSERT(un != NULL);
9318 
9319 	if (un->un_errstats != NULL) {
9320 		return;
9321 	}
9322 
9323 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9324 	    "%serr", sd_label);
9325 	(void) snprintf(kstatname, sizeof (kstatname),
9326 	    "%s%d,err", sd_label, instance);
9327 
9328 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9329 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9330 
9331 	if (un->un_errstats == NULL) {
9332 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9333 		    "sd_create_errstats: Failed kstat_create\n");
9334 		return;
9335 	}
9336 
9337 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9338 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9339 	    KSTAT_DATA_UINT32);
9340 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9341 	    KSTAT_DATA_UINT32);
9342 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9343 	    KSTAT_DATA_UINT32);
9344 	kstat_named_init(&stp->sd_vid,		"Vendor",
9345 	    KSTAT_DATA_CHAR);
9346 	kstat_named_init(&stp->sd_pid,		"Product",
9347 	    KSTAT_DATA_CHAR);
9348 	kstat_named_init(&stp->sd_revision,	"Revision",
9349 	    KSTAT_DATA_CHAR);
9350 	kstat_named_init(&stp->sd_serial,	"Serial No",
9351 	    KSTAT_DATA_CHAR);
9352 	kstat_named_init(&stp->sd_capacity,	"Size",
9353 	    KSTAT_DATA_ULONGLONG);
9354 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9355 	    KSTAT_DATA_UINT32);
9356 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9357 	    KSTAT_DATA_UINT32);
9358 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9359 	    KSTAT_DATA_UINT32);
9360 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9361 	    KSTAT_DATA_UINT32);
9362 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9363 	    KSTAT_DATA_UINT32);
9364 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9365 	    KSTAT_DATA_UINT32);
9366 
9367 	un->un_errstats->ks_private = un;
9368 	un->un_errstats->ks_update  = nulldev;
9369 
9370 	kstat_install(un->un_errstats);
9371 }
9372 
9373 
9374 /*
9375  *    Function: sd_set_errstats
9376  *
9377  * Description: This routine sets the value of the vendor id, product id,
9378  *		revision, serial number, and capacity device error stats.
9379  *
9380  *		Note: During attach the stats are instantiated first so they are
9381  *		available for attach-time routines that utilize the driver
9382  *		iopath to send commands to the device. The stats are initialized
9383  *		separately so data obtained during some attach-time routines is
9384  *		available. (4362483)
9385  *
9386  *   Arguments: un - driver soft state (unit) structure
9387  *
9388  *     Context: Kernel thread context
9389  */
9390 
9391 static void
9392 sd_set_errstats(struct sd_lun *un)
9393 {
9394 	struct	sd_errstats	*stp;
9395 
9396 	ASSERT(un != NULL);
9397 	ASSERT(un->un_errstats != NULL);
9398 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9399 	ASSERT(stp != NULL);
9400 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9401 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9402 	(void) strncpy(stp->sd_revision.value.c,
9403 	    un->un_sd->sd_inq->inq_revision, 4);
9404 
9405 	/*
9406 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9407 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9408 	 * (4376302))
9409 	 */
9410 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9411 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9412 		    sizeof (SD_INQUIRY(un)->inq_serial));
9413 	}
9414 
9415 	if (un->un_f_blockcount_is_valid != TRUE) {
9416 		/*
9417 		 * Set capacity error stat to 0 for no media. This ensures
9418 		 * a valid capacity is displayed in response to 'iostat -E'
9419 		 * when no media is present in the device.
9420 		 */
9421 		stp->sd_capacity.value.ui64 = 0;
9422 	} else {
9423 		/*
9424 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9425 		 * capacity.
9426 		 *
9427 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9428 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9429 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9430 		 */
9431 		stp->sd_capacity.value.ui64 = (uint64_t)
9432 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9433 	}
9434 }
9435 
9436 
9437 /*
9438  *    Function: sd_set_pstats
9439  *
9440  * Description: This routine instantiates and initializes the partition
9441  *              stats for each partition with more than zero blocks.
9442  *		(4363169)
9443  *
9444  *   Arguments: un - driver soft state (unit) structure
9445  *
9446  *     Context: Kernel thread context
9447  */
9448 
9449 static void
9450 sd_set_pstats(struct sd_lun *un)
9451 {
9452 	char	kstatname[KSTAT_STRLEN];
9453 	int	instance;
9454 	int	i;
9455 
9456 	ASSERT(un != NULL);
9457 
9458 	instance = ddi_get_instance(SD_DEVINFO(un));
9459 
9460 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9461 	for (i = 0; i < NSDMAP; i++) {
9462 		if ((un->un_pstats[i] == NULL) &&
9463 		    (un->un_map[i].dkl_nblk != 0)) {
9464 			(void) snprintf(kstatname, sizeof (kstatname),
9465 			    "%s%d,%s", sd_label, instance,
9466 			    sd_minor_data[i].name);
9467 			un->un_pstats[i] = kstat_create(sd_label,
9468 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9469 			    1, KSTAT_FLAG_PERSISTENT);
9470 			if (un->un_pstats[i] != NULL) {
9471 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9472 				kstat_install(un->un_pstats[i]);
9473 			}
9474 		}
9475 	}
9476 }
9477 
9478 
9479 #if (defined(__fibre))
9480 /*
9481  *    Function: sd_init_event_callbacks
9482  *
9483  * Description: This routine initializes the insertion and removal event
9484  *		callbacks. (fibre only)
9485  *
9486  *   Arguments: un - driver soft state (unit) structure
9487  *
9488  *     Context: Kernel thread context
9489  */
9490 
9491 static void
9492 sd_init_event_callbacks(struct sd_lun *un)
9493 {
9494 	ASSERT(un != NULL);
9495 
9496 	if ((un->un_insert_event == NULL) &&
9497 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9498 	    &un->un_insert_event) == DDI_SUCCESS)) {
9499 		/*
9500 		 * Add the callback for an insertion event
9501 		 */
9502 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9503 		    un->un_insert_event, sd_event_callback, (void *)un,
9504 		    &(un->un_insert_cb_id));
9505 	}
9506 
9507 	if ((un->un_remove_event == NULL) &&
9508 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9509 	    &un->un_remove_event) == DDI_SUCCESS)) {
9510 		/*
9511 		 * Add the callback for a removal event
9512 		 */
9513 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9514 		    un->un_remove_event, sd_event_callback, (void *)un,
9515 		    &(un->un_remove_cb_id));
9516 	}
9517 }
9518 
9519 
9520 /*
9521  *    Function: sd_event_callback
9522  *
9523  * Description: This routine handles insert/remove events (photon). The
9524  *		state is changed to OFFLINE which can be used to supress
9525  *		error msgs. (fibre only)
9526  *
9527  *   Arguments: un - driver soft state (unit) structure
9528  *
9529  *     Context: Callout thread context
9530  */
9531 /* ARGSUSED */
9532 static void
9533 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9534     void *bus_impldata)
9535 {
9536 	struct sd_lun *un = (struct sd_lun *)arg;
9537 
9538 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9539 	if (event == un->un_insert_event) {
9540 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9541 		mutex_enter(SD_MUTEX(un));
9542 		if (un->un_state == SD_STATE_OFFLINE) {
9543 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9544 				un->un_state = un->un_last_state;
9545 			} else {
9546 				/*
9547 				 * We have gone through SUSPEND/RESUME while
9548 				 * we were offline. Restore the last state
9549 				 */
9550 				un->un_state = un->un_save_state;
9551 			}
9552 		}
9553 		mutex_exit(SD_MUTEX(un));
9554 
9555 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9556 	} else if (event == un->un_remove_event) {
9557 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9558 		mutex_enter(SD_MUTEX(un));
9559 		/*
9560 		 * We need to handle an event callback that occurs during
9561 		 * the suspend operation, since we don't prevent it.
9562 		 */
9563 		if (un->un_state != SD_STATE_OFFLINE) {
9564 			if (un->un_state != SD_STATE_SUSPENDED) {
9565 				New_state(un, SD_STATE_OFFLINE);
9566 			} else {
9567 				un->un_last_state = SD_STATE_OFFLINE;
9568 			}
9569 		}
9570 		mutex_exit(SD_MUTEX(un));
9571 	} else {
9572 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9573 		    "!Unknown event\n");
9574 	}
9575 
9576 }
9577 #endif
9578 
9579 /*
9580  *    Function: sd_cache_control()
9581  *
9582  * Description: This routine is the driver entry point for setting
9583  *		read and write caching by modifying the WCE (write cache
9584  *		enable) and RCD (read cache disable) bits of mode
9585  *		page 8 (MODEPAGE_CACHING).
9586  *
9587  *   Arguments: un - driver soft state (unit) structure
9588  *		rcd_flag - flag for controlling the read cache
9589  *		wce_flag - flag for controlling the write cache
9590  *
9591  * Return Code: EIO
9592  *		code returned by sd_send_scsi_MODE_SENSE and
9593  *		sd_send_scsi_MODE_SELECT
9594  *
9595  *     Context: Kernel Thread
9596  */
9597 
9598 static int
9599 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
9600 {
9601 	struct mode_caching	*mode_caching_page;
9602 	uchar_t			*header;
9603 	size_t			buflen;
9604 	int			hdrlen;
9605 	int			bd_len;
9606 	int			rval = 0;
9607 	struct mode_header_grp2	*mhp;
9608 
9609 	ASSERT(un != NULL);
9610 
9611 	/*
9612 	 * Do a test unit ready, otherwise a mode sense may not work if this
9613 	 * is the first command sent to the device after boot.
9614 	 */
9615 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9616 
9617 	if (un->un_f_cfg_is_atapi == TRUE) {
9618 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9619 	} else {
9620 		hdrlen = MODE_HEADER_LENGTH;
9621 	}
9622 
9623 	/*
9624 	 * Allocate memory for the retrieved mode page and its headers.  Set
9625 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
9626 	 * we get all of the mode sense data otherwise, the mode select
9627 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
9628 	 */
9629 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
9630 		sizeof (struct mode_cache_scsi3);
9631 
9632 	header = kmem_zalloc(buflen, KM_SLEEP);
9633 
9634 	/* Get the information from the device. */
9635 	if (un->un_f_cfg_is_atapi == TRUE) {
9636 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9637 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9638 	} else {
9639 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9640 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9641 	}
9642 	if (rval != 0) {
9643 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9644 		    "sd_cache_control: Mode Sense Failed\n");
9645 		kmem_free(header, buflen);
9646 		return (rval);
9647 	}
9648 
9649 	/*
9650 	 * Determine size of Block Descriptors in order to locate
9651 	 * the mode page data. ATAPI devices return 0, SCSI devices
9652 	 * should return MODE_BLK_DESC_LENGTH.
9653 	 */
9654 	if (un->un_f_cfg_is_atapi == TRUE) {
9655 		mhp	= (struct mode_header_grp2 *)header;
9656 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9657 	} else {
9658 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9659 	}
9660 
9661 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9662 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9663 		    "sd_cache_control: Mode Sense returned invalid "
9664 		    "block descriptor length\n");
9665 		kmem_free(header, buflen);
9666 		return (EIO);
9667 	}
9668 
9669 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9670 
9671 	/* Check the relevant bits on successful mode sense. */
9672 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9673 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9674 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9675 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9676 
9677 		size_t sbuflen;
9678 
9679 		/*
9680 		 * Construct select buffer length based on the
9681 		 * length of the sense data returned.
9682 		 */
9683 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
9684 				sizeof (struct mode_page) +
9685 				(int)mode_caching_page->mode_page.length;
9686 
9687 		/*
9688 		 * Set the caching bits as requested.
9689 		 */
9690 		if (rcd_flag == SD_CACHE_ENABLE)
9691 			mode_caching_page->rcd = 0;
9692 		else if (rcd_flag == SD_CACHE_DISABLE)
9693 			mode_caching_page->rcd = 1;
9694 
9695 		if (wce_flag == SD_CACHE_ENABLE)
9696 			mode_caching_page->wce = 1;
9697 		else if (wce_flag == SD_CACHE_DISABLE)
9698 			mode_caching_page->wce = 0;
9699 
9700 		/* Clear reserved bits before mode select. */
9701 		mode_caching_page->mode_page.ps = 0;
9702 
9703 		/*
9704 		 * Clear out mode header for mode select.
9705 		 * The rest of the retrieved page will be reused.
9706 		 */
9707 		bzero(header, hdrlen);
9708 
9709 		if (un->un_f_cfg_is_atapi == TRUE) {
9710 			mhp = (struct mode_header_grp2 *)header;
9711 			mhp->bdesc_length_hi = bd_len >> 8;
9712 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9713 		} else {
9714 			((struct mode_header *)header)->bdesc_length = bd_len;
9715 		}
9716 
9717 		/* Issue mode select to change the cache settings */
9718 		if (un->un_f_cfg_is_atapi == TRUE) {
9719 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
9720 			    sbuflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9721 		} else {
9722 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
9723 			    sbuflen, SD_SAVE_PAGE, SD_PATH_DIRECT);
9724 		}
9725 	}
9726 
9727 	kmem_free(header, buflen);
9728 	return (rval);
9729 }
9730 
9731 
9732 /*
9733  *    Function: sd_get_write_cache_enabled()
9734  *
9735  * Description: This routine is the driver entry point for determining if
9736  *		write caching is enabled.  It examines the WCE (write cache
9737  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9738  *
9739  *   Arguments: un - driver soft state (unit) structure
9740  *   		is_enabled - pointer to int where write cache enabled state
9741  *   			is returned (non-zero -> write cache enabled)
9742  *
9743  *
9744  * Return Code: EIO
9745  *		code returned by sd_send_scsi_MODE_SENSE
9746  *
9747  *     Context: Kernel Thread
9748  *
9749  * NOTE: If ioctl is added to disable write cache, this sequence should
9750  * be followed so that no locking is required for accesses to
9751  * un->un_f_write_cache_enabled:
9752  * 	do mode select to clear wce
9753  * 	do synchronize cache to flush cache
9754  * 	set un->un_f_write_cache_enabled = FALSE
9755  *
9756  * Conversely, an ioctl to enable the write cache should be done
9757  * in this order:
9758  * 	set un->un_f_write_cache_enabled = TRUE
9759  * 	do mode select to set wce
9760  */
9761 
9762 static int
9763 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
9764 {
9765 	struct mode_caching	*mode_caching_page;
9766 	uchar_t			*header;
9767 	size_t			buflen;
9768 	int			hdrlen;
9769 	int			bd_len;
9770 	int			rval = 0;
9771 
9772 	ASSERT(un != NULL);
9773 	ASSERT(is_enabled != NULL);
9774 
9775 	/* in case of error, flag as enabled */
9776 	*is_enabled = TRUE;
9777 
9778 	/*
9779 	 * Do a test unit ready, otherwise a mode sense may not work if this
9780 	 * is the first command sent to the device after boot.
9781 	 */
9782 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
9783 
9784 	if (un->un_f_cfg_is_atapi == TRUE) {
9785 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9786 	} else {
9787 		hdrlen = MODE_HEADER_LENGTH;
9788 	}
9789 
9790 	/*
9791 	 * Allocate memory for the retrieved mode page and its headers.  Set
9792 	 * a pointer to the page itself.
9793 	 */
9794 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9795 	header = kmem_zalloc(buflen, KM_SLEEP);
9796 
9797 	/* Get the information from the device. */
9798 	if (un->un_f_cfg_is_atapi == TRUE) {
9799 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
9800 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9801 	} else {
9802 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
9803 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9804 	}
9805 	if (rval != 0) {
9806 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9807 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9808 		kmem_free(header, buflen);
9809 		return (rval);
9810 	}
9811 
9812 	/*
9813 	 * Determine size of Block Descriptors in order to locate
9814 	 * the mode page data. ATAPI devices return 0, SCSI devices
9815 	 * should return MODE_BLK_DESC_LENGTH.
9816 	 */
9817 	if (un->un_f_cfg_is_atapi == TRUE) {
9818 		struct mode_header_grp2	*mhp;
9819 		mhp	= (struct mode_header_grp2 *)header;
9820 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9821 	} else {
9822 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9823 	}
9824 
9825 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9826 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
9827 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9828 		    "block descriptor length\n");
9829 		kmem_free(header, buflen);
9830 		return (EIO);
9831 	}
9832 
9833 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9834 	*is_enabled = mode_caching_page->wce;
9835 
9836 	kmem_free(header, buflen);
9837 	return (0);
9838 }
9839 
9840 
9841 /*
9842  *    Function: sd_make_device
9843  *
9844  * Description: Utility routine to return the Solaris device number from
9845  *		the data in the device's dev_info structure.
9846  *
9847  * Return Code: The Solaris device number
9848  *
9849  *     Context: Any
9850  */
9851 
9852 static dev_t
9853 sd_make_device(dev_info_t *devi)
9854 {
9855 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
9856 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9857 }
9858 
9859 
9860 /*
9861  *    Function: sd_pm_entry
9862  *
9863  * Description: Called at the start of a new command to manage power
9864  *		and busy status of a device. This includes determining whether
9865  *		the current power state of the device is sufficient for
9866  *		performing the command or whether it must be changed.
9867  *		The PM framework is notified appropriately.
9868  *		Only with a return status of DDI_SUCCESS will the
9869  *		component be busy to the framework.
9870  *
9871  *		All callers of sd_pm_entry must check the return status
9872  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9873  *		of DDI_FAILURE indicates the device failed to power up.
9874  *		In this case un_pm_count has been adjusted so the result
9875  *		on exit is still powered down, ie. count is less than 0.
9876  *		Calling sd_pm_exit with this count value hits an ASSERT.
9877  *
9878  * Return Code: DDI_SUCCESS or DDI_FAILURE
9879  *
9880  *     Context: Kernel thread context.
9881  */
9882 
9883 static int
9884 sd_pm_entry(struct sd_lun *un)
9885 {
9886 	int return_status = DDI_SUCCESS;
9887 
9888 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9889 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9890 
9891 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9892 
9893 	if (un->un_f_pm_is_enabled == FALSE) {
9894 		SD_TRACE(SD_LOG_IO_PM, un,
9895 		    "sd_pm_entry: exiting, PM not enabled\n");
9896 		return (return_status);
9897 	}
9898 
9899 	/*
9900 	 * Just increment a counter if PM is enabled. On the transition from
9901 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9902 	 * the count with each IO and mark the device as idle when the count
9903 	 * hits 0.
9904 	 *
9905 	 * If the count is less than 0 the device is powered down. If a powered
9906 	 * down device is successfully powered up then the count must be
9907 	 * incremented to reflect the power up. Note that it'll get incremented
9908 	 * a second time to become busy.
9909 	 *
9910 	 * Because the following has the potential to change the device state
9911 	 * and must release the un_pm_mutex to do so, only one thread can be
9912 	 * allowed through at a time.
9913 	 */
9914 
9915 	mutex_enter(&un->un_pm_mutex);
9916 	while (un->un_pm_busy == TRUE) {
9917 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9918 	}
9919 	un->un_pm_busy = TRUE;
9920 
9921 	if (un->un_pm_count < 1) {
9922 
9923 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9924 
9925 		/*
9926 		 * Indicate we are now busy so the framework won't attempt to
9927 		 * power down the device. This call will only fail if either
9928 		 * we passed a bad component number or the device has no
9929 		 * components. Neither of these should ever happen.
9930 		 */
9931 		mutex_exit(&un->un_pm_mutex);
9932 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9933 		ASSERT(return_status == DDI_SUCCESS);
9934 
9935 		mutex_enter(&un->un_pm_mutex);
9936 
9937 		if (un->un_pm_count < 0) {
9938 			mutex_exit(&un->un_pm_mutex);
9939 
9940 			SD_TRACE(SD_LOG_IO_PM, un,
9941 			    "sd_pm_entry: power up component\n");
9942 
9943 			/*
9944 			 * pm_raise_power will cause sdpower to be called
9945 			 * which brings the device power level to the
9946 			 * desired state, ON in this case. If successful,
9947 			 * un_pm_count and un_power_level will be updated
9948 			 * appropriately.
9949 			 */
9950 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9951 			    SD_SPINDLE_ON);
9952 
9953 			mutex_enter(&un->un_pm_mutex);
9954 
9955 			if (return_status != DDI_SUCCESS) {
9956 				/*
9957 				 * Power up failed.
9958 				 * Idle the device and adjust the count
9959 				 * so the result on exit is that we're
9960 				 * still powered down, ie. count is less than 0.
9961 				 */
9962 				SD_TRACE(SD_LOG_IO_PM, un,
9963 				    "sd_pm_entry: power up failed,"
9964 				    " idle the component\n");
9965 
9966 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9967 				un->un_pm_count--;
9968 			} else {
9969 				/*
9970 				 * Device is powered up, verify the
9971 				 * count is non-negative.
9972 				 * This is debug only.
9973 				 */
9974 				ASSERT(un->un_pm_count == 0);
9975 			}
9976 		}
9977 
9978 		if (return_status == DDI_SUCCESS) {
9979 			/*
9980 			 * For performance, now that the device has been tagged
9981 			 * as busy, and it's known to be powered up, update the
9982 			 * chain types to use jump tables that do not include
9983 			 * pm. This significantly lowers the overhead and
9984 			 * therefore improves performance.
9985 			 */
9986 
9987 			mutex_exit(&un->un_pm_mutex);
9988 			mutex_enter(SD_MUTEX(un));
9989 			SD_TRACE(SD_LOG_IO_PM, un,
9990 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9991 			    un->un_uscsi_chain_type);
9992 
9993 			if (un->un_f_non_devbsize_supported) {
9994 				un->un_buf_chain_type =
9995 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9996 			} else {
9997 				un->un_buf_chain_type =
9998 				    SD_CHAIN_INFO_DISK_NO_PM;
9999 			}
10000 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
10001 
10002 			SD_TRACE(SD_LOG_IO_PM, un,
10003 			    "             changed  uscsi_chain_type to   %d\n",
10004 			    un->un_uscsi_chain_type);
10005 			mutex_exit(SD_MUTEX(un));
10006 			mutex_enter(&un->un_pm_mutex);
10007 
10008 			if (un->un_pm_idle_timeid == NULL) {
10009 				/* 300 ms. */
10010 				un->un_pm_idle_timeid =
10011 				    timeout(sd_pm_idletimeout_handler, un,
10012 				    (drv_usectohz((clock_t)300000)));
10013 				/*
10014 				 * Include an extra call to busy which keeps the
10015 				 * device busy with-respect-to the PM layer
10016 				 * until the timer fires, at which time it'll
10017 				 * get the extra idle call.
10018 				 */
10019 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10020 			}
10021 		}
10022 	}
10023 	un->un_pm_busy = FALSE;
10024 	/* Next... */
10025 	cv_signal(&un->un_pm_busy_cv);
10026 
10027 	un->un_pm_count++;
10028 
10029 	SD_TRACE(SD_LOG_IO_PM, un,
10030 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10031 
10032 	mutex_exit(&un->un_pm_mutex);
10033 
10034 	return (return_status);
10035 }
10036 
10037 
10038 /*
10039  *    Function: sd_pm_exit
10040  *
10041  * Description: Called at the completion of a command to manage busy
10042  *		status for the device. If the device becomes idle the
10043  *		PM framework is notified.
10044  *
10045  *     Context: Kernel thread context
10046  */
10047 
10048 static void
10049 sd_pm_exit(struct sd_lun *un)
10050 {
10051 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10052 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10053 
10054 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10055 
10056 	/*
10057 	 * After attach the following flag is only read, so don't
10058 	 * take the penalty of acquiring a mutex for it.
10059 	 */
10060 	if (un->un_f_pm_is_enabled == TRUE) {
10061 
10062 		mutex_enter(&un->un_pm_mutex);
10063 		un->un_pm_count--;
10064 
10065 		SD_TRACE(SD_LOG_IO_PM, un,
10066 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10067 
10068 		ASSERT(un->un_pm_count >= 0);
10069 		if (un->un_pm_count == 0) {
10070 			mutex_exit(&un->un_pm_mutex);
10071 
10072 			SD_TRACE(SD_LOG_IO_PM, un,
10073 			    "sd_pm_exit: idle component\n");
10074 
10075 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10076 
10077 		} else {
10078 			mutex_exit(&un->un_pm_mutex);
10079 		}
10080 	}
10081 
10082 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10083 }
10084 
10085 
10086 /*
10087  *    Function: sdopen
10088  *
10089  * Description: Driver's open(9e) entry point function.
10090  *
10091  *   Arguments: dev_i   - pointer to device number
10092  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10093  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10094  *		cred_p  - user credential pointer
10095  *
10096  * Return Code: EINVAL
10097  *		ENXIO
10098  *		EIO
10099  *		EROFS
10100  *		EBUSY
10101  *
10102  *     Context: Kernel thread context
10103  */
10104 /* ARGSUSED */
10105 static int
10106 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10107 {
10108 	struct sd_lun	*un;
10109 	int		nodelay;
10110 	int		part;
10111 	uint64_t	partmask;
10112 	int		instance;
10113 	dev_t		dev;
10114 	int		rval = EIO;
10115 
10116 	/* Validate the open type */
10117 	if (otyp >= OTYPCNT) {
10118 		return (EINVAL);
10119 	}
10120 
10121 	dev = *dev_p;
10122 	instance = SDUNIT(dev);
10123 	mutex_enter(&sd_detach_mutex);
10124 
10125 	/*
10126 	 * Fail the open if there is no softstate for the instance, or
10127 	 * if another thread somewhere is trying to detach the instance.
10128 	 */
10129 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10130 	    (un->un_detach_count != 0)) {
10131 		mutex_exit(&sd_detach_mutex);
10132 		/*
10133 		 * The probe cache only needs to be cleared when open (9e) fails
10134 		 * with ENXIO (4238046).
10135 		 */
10136 		/*
10137 		 * un-conditionally clearing probe cache is ok with
10138 		 * separate sd/ssd binaries
10139 		 * x86 platform can be an issue with both parallel
10140 		 * and fibre in 1 binary
10141 		 */
10142 		sd_scsi_clear_probe_cache();
10143 		return (ENXIO);
10144 	}
10145 
10146 	/*
10147 	 * The un_layer_count is to prevent another thread in specfs from
10148 	 * trying to detach the instance, which can happen when we are
10149 	 * called from a higher-layer driver instead of thru specfs.
10150 	 * This will not be needed when DDI provides a layered driver
10151 	 * interface that allows specfs to know that an instance is in
10152 	 * use by a layered driver & should not be detached.
10153 	 *
10154 	 * Note: the semantics for layered driver opens are exactly one
10155 	 * close for every open.
10156 	 */
10157 	if (otyp == OTYP_LYR) {
10158 		un->un_layer_count++;
10159 	}
10160 
10161 	/*
10162 	 * Keep a count of the current # of opens in progress. This is because
10163 	 * some layered drivers try to call us as a regular open. This can
10164 	 * cause problems that we cannot prevent, however by keeping this count
10165 	 * we can at least keep our open and detach routines from racing against
10166 	 * each other under such conditions.
10167 	 */
10168 	un->un_opens_in_progress++;
10169 	mutex_exit(&sd_detach_mutex);
10170 
10171 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10172 	part	 = SDPART(dev);
10173 	partmask = 1 << part;
10174 
10175 	/*
10176 	 * We use a semaphore here in order to serialize
10177 	 * open and close requests on the device.
10178 	 */
10179 	sema_p(&un->un_semoclose);
10180 
10181 	mutex_enter(SD_MUTEX(un));
10182 
10183 	/*
10184 	 * All device accesses go thru sdstrategy() where we check
10185 	 * on suspend status but there could be a scsi_poll command,
10186 	 * which bypasses sdstrategy(), so we need to check pm
10187 	 * status.
10188 	 */
10189 
10190 	if (!nodelay) {
10191 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10192 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10193 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10194 		}
10195 
10196 		mutex_exit(SD_MUTEX(un));
10197 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10198 			rval = EIO;
10199 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10200 			    "sdopen: sd_pm_entry failed\n");
10201 			goto open_failed_with_pm;
10202 		}
10203 		mutex_enter(SD_MUTEX(un));
10204 	}
10205 
10206 	/* check for previous exclusive open */
10207 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10208 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10209 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10210 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10211 
10212 	if (un->un_exclopen & (partmask)) {
10213 		goto excl_open_fail;
10214 	}
10215 
10216 	if (flag & FEXCL) {
10217 		int i;
10218 		if (un->un_ocmap.lyropen[part]) {
10219 			goto excl_open_fail;
10220 		}
10221 		for (i = 0; i < (OTYPCNT - 1); i++) {
10222 			if (un->un_ocmap.regopen[i] & (partmask)) {
10223 				goto excl_open_fail;
10224 			}
10225 		}
10226 	}
10227 
10228 	/*
10229 	 * Check the write permission if this is a removable media device,
10230 	 * NDELAY has not been set, and writable permission is requested.
10231 	 *
10232 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10233 	 * attempt will fail with EIO as part of the I/O processing. This is a
10234 	 * more permissive implementation that allows the open to succeed and
10235 	 * WRITE attempts to fail when appropriate.
10236 	 */
10237 	if (un->un_f_chk_wp_open) {
10238 		if ((flag & FWRITE) && (!nodelay)) {
10239 			mutex_exit(SD_MUTEX(un));
10240 			/*
10241 			 * Defer the check for write permission on writable
10242 			 * DVD drive till sdstrategy and will not fail open even
10243 			 * if FWRITE is set as the device can be writable
10244 			 * depending upon the media and the media can change
10245 			 * after the call to open().
10246 			 */
10247 			if (un->un_f_dvdram_writable_device == FALSE) {
10248 				if (ISCD(un) || sr_check_wp(dev)) {
10249 				rval = EROFS;
10250 				mutex_enter(SD_MUTEX(un));
10251 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10252 				    "write to cd or write protected media\n");
10253 				goto open_fail;
10254 				}
10255 			}
10256 			mutex_enter(SD_MUTEX(un));
10257 		}
10258 	}
10259 
10260 	/*
10261 	 * If opening in NDELAY/NONBLOCK mode, just return.
10262 	 * Check if disk is ready and has a valid geometry later.
10263 	 */
10264 	if (!nodelay) {
10265 		mutex_exit(SD_MUTEX(un));
10266 		rval = sd_ready_and_valid(un);
10267 		mutex_enter(SD_MUTEX(un));
10268 		/*
10269 		 * Fail if device is not ready or if the number of disk
10270 		 * blocks is zero or negative for non CD devices.
10271 		 */
10272 		if ((rval != SD_READY_VALID) ||
10273 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10274 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10275 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10276 			    "device not ready or invalid disk block value\n");
10277 			goto open_fail;
10278 		}
10279 #if defined(__i386) || defined(__amd64)
10280 	} else {
10281 		uchar_t *cp;
10282 		/*
10283 		 * x86 requires special nodelay handling, so that p0 is
10284 		 * always defined and accessible.
10285 		 * Invalidate geometry only if device is not already open.
10286 		 */
10287 		cp = &un->un_ocmap.chkd[0];
10288 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10289 			if (*cp != (uchar_t)0) {
10290 			    break;
10291 			}
10292 			cp++;
10293 		}
10294 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10295 			un->un_f_geometry_is_valid = FALSE;
10296 		}
10297 
10298 #endif
10299 	}
10300 
10301 	if (otyp == OTYP_LYR) {
10302 		un->un_ocmap.lyropen[part]++;
10303 	} else {
10304 		un->un_ocmap.regopen[otyp] |= partmask;
10305 	}
10306 
10307 	/* Set up open and exclusive open flags */
10308 	if (flag & FEXCL) {
10309 		un->un_exclopen |= (partmask);
10310 	}
10311 
10312 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10313 	    "open of part %d type %d\n", part, otyp);
10314 
10315 	mutex_exit(SD_MUTEX(un));
10316 	if (!nodelay) {
10317 		sd_pm_exit(un);
10318 	}
10319 
10320 	sema_v(&un->un_semoclose);
10321 
10322 	mutex_enter(&sd_detach_mutex);
10323 	un->un_opens_in_progress--;
10324 	mutex_exit(&sd_detach_mutex);
10325 
10326 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10327 	return (DDI_SUCCESS);
10328 
10329 excl_open_fail:
10330 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10331 	rval = EBUSY;
10332 
10333 open_fail:
10334 	mutex_exit(SD_MUTEX(un));
10335 
10336 	/*
10337 	 * On a failed open we must exit the pm management.
10338 	 */
10339 	if (!nodelay) {
10340 		sd_pm_exit(un);
10341 	}
10342 open_failed_with_pm:
10343 	sema_v(&un->un_semoclose);
10344 
10345 	mutex_enter(&sd_detach_mutex);
10346 	un->un_opens_in_progress--;
10347 	if (otyp == OTYP_LYR) {
10348 		un->un_layer_count--;
10349 	}
10350 	mutex_exit(&sd_detach_mutex);
10351 
10352 	return (rval);
10353 }
10354 
10355 
10356 /*
10357  *    Function: sdclose
10358  *
10359  * Description: Driver's close(9e) entry point function.
10360  *
10361  *   Arguments: dev    - device number
10362  *		flag   - file status flag, informational only
10363  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10364  *		cred_p - user credential pointer
10365  *
10366  * Return Code: ENXIO
10367  *
10368  *     Context: Kernel thread context
10369  */
10370 /* ARGSUSED */
10371 static int
10372 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10373 {
10374 	struct sd_lun	*un;
10375 	uchar_t		*cp;
10376 	int		part;
10377 	int		nodelay;
10378 	int		rval = 0;
10379 
10380 	/* Validate the open type */
10381 	if (otyp >= OTYPCNT) {
10382 		return (ENXIO);
10383 	}
10384 
10385 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10386 		return (ENXIO);
10387 	}
10388 
10389 	part = SDPART(dev);
10390 	nodelay = flag & (FNDELAY | FNONBLOCK);
10391 
10392 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10393 	    "sdclose: close of part %d type %d\n", part, otyp);
10394 
10395 	/*
10396 	 * We use a semaphore here in order to serialize
10397 	 * open and close requests on the device.
10398 	 */
10399 	sema_p(&un->un_semoclose);
10400 
10401 	mutex_enter(SD_MUTEX(un));
10402 
10403 	/* Don't proceed if power is being changed. */
10404 	while (un->un_state == SD_STATE_PM_CHANGING) {
10405 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10406 	}
10407 
10408 	if (un->un_exclopen & (1 << part)) {
10409 		un->un_exclopen &= ~(1 << part);
10410 	}
10411 
10412 	/* Update the open partition map */
10413 	if (otyp == OTYP_LYR) {
10414 		un->un_ocmap.lyropen[part] -= 1;
10415 	} else {
10416 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10417 	}
10418 
10419 	cp = &un->un_ocmap.chkd[0];
10420 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10421 		if (*cp != NULL) {
10422 			break;
10423 		}
10424 		cp++;
10425 	}
10426 
10427 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10428 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10429 
10430 		/*
10431 		 * We avoid persistance upon the last close, and set
10432 		 * the throttle back to the maximum.
10433 		 */
10434 		un->un_throttle = un->un_saved_throttle;
10435 
10436 		if (un->un_state == SD_STATE_OFFLINE) {
10437 			if (un->un_f_is_fibre == FALSE) {
10438 				scsi_log(SD_DEVINFO(un), sd_label,
10439 					CE_WARN, "offline\n");
10440 			}
10441 			un->un_f_geometry_is_valid = FALSE;
10442 
10443 		} else {
10444 			/*
10445 			 * Flush any outstanding writes in NVRAM cache.
10446 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10447 			 * cmd, it may not work for non-Pluto devices.
10448 			 * SYNCHRONIZE CACHE is not required for removables,
10449 			 * except DVD-RAM drives.
10450 			 *
10451 			 * Also note: because SYNCHRONIZE CACHE is currently
10452 			 * the only command issued here that requires the
10453 			 * drive be powered up, only do the power up before
10454 			 * sending the Sync Cache command. If additional
10455 			 * commands are added which require a powered up
10456 			 * drive, the following sequence may have to change.
10457 			 *
10458 			 * And finally, note that parallel SCSI on SPARC
10459 			 * only issues a Sync Cache to DVD-RAM, a newly
10460 			 * supported device.
10461 			 */
10462 #if defined(__i386) || defined(__amd64)
10463 			if (un->un_f_sync_cache_supported ||
10464 			    un->un_f_dvdram_writable_device == TRUE) {
10465 #else
10466 			if (un->un_f_dvdram_writable_device == TRUE) {
10467 #endif
10468 				mutex_exit(SD_MUTEX(un));
10469 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10470 					rval =
10471 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10472 					    NULL);
10473 					/* ignore error if not supported */
10474 					if (rval == ENOTSUP) {
10475 						rval = 0;
10476 					} else if (rval != 0) {
10477 						rval = EIO;
10478 					}
10479 					sd_pm_exit(un);
10480 				} else {
10481 					rval = EIO;
10482 				}
10483 				mutex_enter(SD_MUTEX(un));
10484 			}
10485 
10486 			/*
10487 			 * For devices which supports DOOR_LOCK, send an ALLOW
10488 			 * MEDIA REMOVAL command, but don't get upset if it
10489 			 * fails. We need to raise the power of the drive before
10490 			 * we can call sd_send_scsi_DOORLOCK()
10491 			 */
10492 			if (un->un_f_doorlock_supported) {
10493 				mutex_exit(SD_MUTEX(un));
10494 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10495 					rval = sd_send_scsi_DOORLOCK(un,
10496 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10497 
10498 					sd_pm_exit(un);
10499 					if (ISCD(un) && (rval != 0) &&
10500 					    (nodelay != 0)) {
10501 						rval = ENXIO;
10502 					}
10503 				} else {
10504 					rval = EIO;
10505 				}
10506 				mutex_enter(SD_MUTEX(un));
10507 			}
10508 
10509 			/*
10510 			 * If a device has removable media, invalidate all
10511 			 * parameters related to media, such as geometry,
10512 			 * blocksize, and blockcount.
10513 			 */
10514 			if (un->un_f_has_removable_media) {
10515 				sr_ejected(un);
10516 			}
10517 
10518 		}
10519 	}
10520 
10521 	/*
10522 	 * Destroy the cache (if it exists) which was
10523 	 * allocated for the write maps since this is
10524 	 * the last close for this media.
10525 	 */
10526 	if (un->un_wm_cache) {
10527 		/*
10528 		 * Check if there are pending commands.
10529 		 * and if there are give a warning and
10530 		 * do not destroy the cache.
10531 		 */
10532 		if (un->un_ncmds_in_driver > 0) {
10533 			scsi_log(SD_DEVINFO(un),
10534 			    sd_label, CE_WARN,
10535 			    "Unable to clean up memory "
10536 			    "because of pending I/O\n");
10537 		} else {
10538 			kmem_cache_destroy(
10539 			    un->un_wm_cache);
10540 			un->un_wm_cache = NULL;
10541 		}
10542 	}
10543 
10544 	mutex_exit(SD_MUTEX(un));
10545 	sema_v(&un->un_semoclose);
10546 
10547 	if (otyp == OTYP_LYR) {
10548 		mutex_enter(&sd_detach_mutex);
10549 		/*
10550 		 * The detach routine may run when the layer count
10551 		 * drops to zero.
10552 		 */
10553 		un->un_layer_count--;
10554 		mutex_exit(&sd_detach_mutex);
10555 	}
10556 
10557 	return (rval);
10558 }
10559 
10560 
10561 /*
10562  *    Function: sd_ready_and_valid
10563  *
10564  * Description: Test if device is ready and has a valid geometry.
10565  *
10566  *   Arguments: dev - device number
10567  *		un  - driver soft state (unit) structure
10568  *
10569  * Return Code: SD_READY_VALID		ready and valid label
10570  *		SD_READY_NOT_VALID	ready, geom ops never applicable
10571  *		SD_NOT_READY_VALID	not ready, no label
10572  *
10573  *     Context: Never called at interrupt context.
10574  */
10575 
10576 static int
10577 sd_ready_and_valid(struct sd_lun *un)
10578 {
10579 	struct sd_errstats	*stp;
10580 	uint64_t		capacity;
10581 	uint_t			lbasize;
10582 	int			rval = SD_READY_VALID;
10583 	char			name_str[48];
10584 
10585 	ASSERT(un != NULL);
10586 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10587 
10588 	mutex_enter(SD_MUTEX(un));
10589 	/*
10590 	 * If a device has removable media, we must check if media is
10591 	 * ready when checking if this device is ready and valid.
10592 	 */
10593 	if (un->un_f_has_removable_media) {
10594 		mutex_exit(SD_MUTEX(un));
10595 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
10596 			rval = SD_NOT_READY_VALID;
10597 			mutex_enter(SD_MUTEX(un));
10598 			goto done;
10599 		}
10600 
10601 		mutex_enter(SD_MUTEX(un));
10602 		if ((un->un_f_geometry_is_valid == FALSE) ||
10603 		    (un->un_f_blockcount_is_valid == FALSE) ||
10604 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10605 
10606 			/* capacity has to be read every open. */
10607 			mutex_exit(SD_MUTEX(un));
10608 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
10609 			    &lbasize, SD_PATH_DIRECT) != 0) {
10610 				mutex_enter(SD_MUTEX(un));
10611 				un->un_f_geometry_is_valid = FALSE;
10612 				rval = SD_NOT_READY_VALID;
10613 				goto done;
10614 			} else {
10615 				mutex_enter(SD_MUTEX(un));
10616 				sd_update_block_info(un, lbasize, capacity);
10617 			}
10618 		}
10619 
10620 		/*
10621 		 * Check if the media in the device is writable or not.
10622 		 */
10623 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
10624 			sd_check_for_writable_cd(un);
10625 		}
10626 
10627 	} else {
10628 		/*
10629 		 * Do a test unit ready to clear any unit attention from non-cd
10630 		 * devices.
10631 		 */
10632 		mutex_exit(SD_MUTEX(un));
10633 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10634 		mutex_enter(SD_MUTEX(un));
10635 	}
10636 
10637 
10638 	/*
10639 	 * If this is a non 512 block device, allocate space for
10640 	 * the wmap cache. This is being done here since every time
10641 	 * a media is changed this routine will be called and the
10642 	 * block size is a function of media rather than device.
10643 	 */
10644 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
10645 		if (!(un->un_wm_cache)) {
10646 			(void) snprintf(name_str, sizeof (name_str),
10647 			    "%s%d_cache",
10648 			    ddi_driver_name(SD_DEVINFO(un)),
10649 			    ddi_get_instance(SD_DEVINFO(un)));
10650 			un->un_wm_cache = kmem_cache_create(
10651 			    name_str, sizeof (struct sd_w_map),
10652 			    8, sd_wm_cache_constructor,
10653 			    sd_wm_cache_destructor, NULL,
10654 			    (void *)un, NULL, 0);
10655 			if (!(un->un_wm_cache)) {
10656 					rval = ENOMEM;
10657 					goto done;
10658 			}
10659 		}
10660 	}
10661 
10662 	if (un->un_state == SD_STATE_NORMAL) {
10663 		/*
10664 		 * If the target is not yet ready here (defined by a TUR
10665 		 * failure), invalidate the geometry and print an 'offline'
10666 		 * message. This is a legacy message, as the state of the
10667 		 * target is not actually changed to SD_STATE_OFFLINE.
10668 		 *
10669 		 * If the TUR fails for EACCES (Reservation Conflict), it
10670 		 * means there actually is nothing wrong with the target that
10671 		 * would require invalidating the geometry, so continue in
10672 		 * that case as if the TUR was successful.
10673 		 */
10674 		int err;
10675 
10676 		mutex_exit(SD_MUTEX(un));
10677 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
10678 		mutex_enter(SD_MUTEX(un));
10679 
10680 		if ((err != 0) && (err != EACCES)) {
10681 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10682 			    "offline\n");
10683 			un->un_f_geometry_is_valid = FALSE;
10684 			rval = SD_NOT_READY_VALID;
10685 			goto done;
10686 		}
10687 	}
10688 
10689 	if (un->un_f_format_in_progress == FALSE) {
10690 		/*
10691 		 * Note: sd_validate_geometry may return TRUE, but that does
10692 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
10693 		 */
10694 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
10695 		if (rval == ENOTSUP) {
10696 			if (un->un_f_geometry_is_valid == TRUE)
10697 				rval = 0;
10698 			else {
10699 				rval = SD_READY_NOT_VALID;
10700 				goto done;
10701 			}
10702 		}
10703 		if (rval != 0) {
10704 			/*
10705 			 * We don't check the validity of geometry for
10706 			 * CDROMs. Also we assume we have a good label
10707 			 * even if sd_validate_geometry returned ENOMEM.
10708 			 */
10709 			if (!ISCD(un) && rval != ENOMEM) {
10710 				rval = SD_NOT_READY_VALID;
10711 				goto done;
10712 			}
10713 		}
10714 	}
10715 
10716 #ifdef DOESNTWORK /* on eliteII, see 1118607 */
10717 	/*
10718 	 * check to see if this disk is write protected, if it is and we have
10719 	 * not set read-only, then fail
10720 	 */
10721 	if ((flag & FWRITE) && (sr_check_wp(dev))) {
10722 		New_state(un, SD_STATE_CLOSED);
10723 		goto done;
10724 	}
10725 #endif
10726 
10727 	/*
10728 	 * If this device supports DOOR_LOCK command, try and send
10729 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10730 	 * if it fails. For a CD, however, it is an error
10731 	 */
10732 	if (un->un_f_doorlock_supported) {
10733 		mutex_exit(SD_MUTEX(un));
10734 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
10735 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
10736 			rval = SD_NOT_READY_VALID;
10737 			mutex_enter(SD_MUTEX(un));
10738 			goto done;
10739 		}
10740 		mutex_enter(SD_MUTEX(un));
10741 	}
10742 
10743 	/* The state has changed, inform the media watch routines */
10744 	un->un_mediastate = DKIO_INSERTED;
10745 	cv_broadcast(&un->un_state_cv);
10746 	rval = SD_READY_VALID;
10747 
10748 done:
10749 
10750 	/*
10751 	 * Initialize the capacity kstat value, if no media previously
10752 	 * (capacity kstat is 0) and a media has been inserted
10753 	 * (un_blockcount > 0).
10754 	 */
10755 	if (un->un_errstats != NULL) {
10756 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10757 		if ((stp->sd_capacity.value.ui64 == 0) &&
10758 		    (un->un_f_blockcount_is_valid == TRUE)) {
10759 			stp->sd_capacity.value.ui64 =
10760 			    (uint64_t)((uint64_t)un->un_blockcount *
10761 			    un->un_sys_blocksize);
10762 		}
10763 	}
10764 
10765 	mutex_exit(SD_MUTEX(un));
10766 	return (rval);
10767 }
10768 
10769 
10770 /*
10771  *    Function: sdmin
10772  *
10773  * Description: Routine to limit the size of a data transfer. Used in
10774  *		conjunction with physio(9F).
10775  *
10776  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10777  *
10778  *     Context: Kernel thread context.
10779  */
10780 
10781 static void
10782 sdmin(struct buf *bp)
10783 {
10784 	struct sd_lun	*un;
10785 	int		instance;
10786 
10787 	instance = SDUNIT(bp->b_edev);
10788 
10789 	un = ddi_get_soft_state(sd_state, instance);
10790 	ASSERT(un != NULL);
10791 
10792 	if (bp->b_bcount > un->un_max_xfer_size) {
10793 		bp->b_bcount = un->un_max_xfer_size;
10794 	}
10795 }
10796 
10797 
10798 /*
10799  *    Function: sdread
10800  *
10801  * Description: Driver's read(9e) entry point function.
10802  *
10803  *   Arguments: dev   - device number
10804  *		uio   - structure pointer describing where data is to be stored
10805  *			in user's space
10806  *		cred_p  - user credential pointer
10807  *
10808  * Return Code: ENXIO
10809  *		EIO
10810  *		EINVAL
10811  *		value returned by physio
10812  *
10813  *     Context: Kernel thread context.
10814  */
10815 /* ARGSUSED */
10816 static int
10817 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10818 {
10819 	struct sd_lun	*un = NULL;
10820 	int		secmask;
10821 	int		err;
10822 
10823 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10824 		return (ENXIO);
10825 	}
10826 
10827 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10828 
10829 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10830 		mutex_enter(SD_MUTEX(un));
10831 		/*
10832 		 * Because the call to sd_ready_and_valid will issue I/O we
10833 		 * must wait here if either the device is suspended or
10834 		 * if it's power level is changing.
10835 		 */
10836 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10837 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10838 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10839 		}
10840 		un->un_ncmds_in_driver++;
10841 		mutex_exit(SD_MUTEX(un));
10842 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10843 			mutex_enter(SD_MUTEX(un));
10844 			un->un_ncmds_in_driver--;
10845 			ASSERT(un->un_ncmds_in_driver >= 0);
10846 			mutex_exit(SD_MUTEX(un));
10847 			return (EIO);
10848 		}
10849 		mutex_enter(SD_MUTEX(un));
10850 		un->un_ncmds_in_driver--;
10851 		ASSERT(un->un_ncmds_in_driver >= 0);
10852 		mutex_exit(SD_MUTEX(un));
10853 	}
10854 
10855 	/*
10856 	 * Read requests are restricted to multiples of the system block size.
10857 	 */
10858 	secmask = un->un_sys_blocksize - 1;
10859 
10860 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10861 		SD_ERROR(SD_LOG_READ_WRITE, un,
10862 		    "sdread: file offset not modulo %d\n",
10863 		    un->un_sys_blocksize);
10864 		err = EINVAL;
10865 	} else if (uio->uio_iov->iov_len & (secmask)) {
10866 		SD_ERROR(SD_LOG_READ_WRITE, un,
10867 		    "sdread: transfer length not modulo %d\n",
10868 		    un->un_sys_blocksize);
10869 		err = EINVAL;
10870 	} else {
10871 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10872 	}
10873 	return (err);
10874 }
10875 
10876 
10877 /*
10878  *    Function: sdwrite
10879  *
10880  * Description: Driver's write(9e) entry point function.
10881  *
10882  *   Arguments: dev   - device number
10883  *		uio   - structure pointer describing where data is stored in
10884  *			user's space
10885  *		cred_p  - user credential pointer
10886  *
10887  * Return Code: ENXIO
10888  *		EIO
10889  *		EINVAL
10890  *		value returned by physio
10891  *
10892  *     Context: Kernel thread context.
10893  */
10894 /* ARGSUSED */
10895 static int
10896 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10897 {
10898 	struct sd_lun	*un = NULL;
10899 	int		secmask;
10900 	int		err;
10901 
10902 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10903 		return (ENXIO);
10904 	}
10905 
10906 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10907 
10908 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10909 		mutex_enter(SD_MUTEX(un));
10910 		/*
10911 		 * Because the call to sd_ready_and_valid will issue I/O we
10912 		 * must wait here if either the device is suspended or
10913 		 * if it's power level is changing.
10914 		 */
10915 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10916 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10917 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10918 		}
10919 		un->un_ncmds_in_driver++;
10920 		mutex_exit(SD_MUTEX(un));
10921 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
10922 			mutex_enter(SD_MUTEX(un));
10923 			un->un_ncmds_in_driver--;
10924 			ASSERT(un->un_ncmds_in_driver >= 0);
10925 			mutex_exit(SD_MUTEX(un));
10926 			return (EIO);
10927 		}
10928 		mutex_enter(SD_MUTEX(un));
10929 		un->un_ncmds_in_driver--;
10930 		ASSERT(un->un_ncmds_in_driver >= 0);
10931 		mutex_exit(SD_MUTEX(un));
10932 	}
10933 
10934 	/*
10935 	 * Write requests are restricted to multiples of the system block size.
10936 	 */
10937 	secmask = un->un_sys_blocksize - 1;
10938 
10939 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10940 		SD_ERROR(SD_LOG_READ_WRITE, un,
10941 		    "sdwrite: file offset not modulo %d\n",
10942 		    un->un_sys_blocksize);
10943 		err = EINVAL;
10944 	} else if (uio->uio_iov->iov_len & (secmask)) {
10945 		SD_ERROR(SD_LOG_READ_WRITE, un,
10946 		    "sdwrite: transfer length not modulo %d\n",
10947 		    un->un_sys_blocksize);
10948 		err = EINVAL;
10949 	} else {
10950 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
10951 	}
10952 	return (err);
10953 }
10954 
10955 
10956 /*
10957  *    Function: sdaread
10958  *
10959  * Description: Driver's aread(9e) entry point function.
10960  *
10961  *   Arguments: dev   - device number
10962  *		aio   - structure pointer describing where data is to be stored
10963  *		cred_p  - user credential pointer
10964  *
10965  * Return Code: ENXIO
10966  *		EIO
10967  *		EINVAL
10968  *		value returned by aphysio
10969  *
10970  *     Context: Kernel thread context.
10971  */
10972 /* ARGSUSED */
10973 static int
10974 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
10975 {
10976 	struct sd_lun	*un = NULL;
10977 	struct uio	*uio = aio->aio_uio;
10978 	int		secmask;
10979 	int		err;
10980 
10981 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10982 		return (ENXIO);
10983 	}
10984 
10985 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10986 
10987 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
10988 		mutex_enter(SD_MUTEX(un));
10989 		/*
10990 		 * Because the call to sd_ready_and_valid will issue I/O we
10991 		 * must wait here if either the device is suspended or
10992 		 * if it's power level is changing.
10993 		 */
10994 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10995 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10996 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10997 		}
10998 		un->un_ncmds_in_driver++;
10999 		mutex_exit(SD_MUTEX(un));
11000 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11001 			mutex_enter(SD_MUTEX(un));
11002 			un->un_ncmds_in_driver--;
11003 			ASSERT(un->un_ncmds_in_driver >= 0);
11004 			mutex_exit(SD_MUTEX(un));
11005 			return (EIO);
11006 		}
11007 		mutex_enter(SD_MUTEX(un));
11008 		un->un_ncmds_in_driver--;
11009 		ASSERT(un->un_ncmds_in_driver >= 0);
11010 		mutex_exit(SD_MUTEX(un));
11011 	}
11012 
11013 	/*
11014 	 * Read requests are restricted to multiples of the system block size.
11015 	 */
11016 	secmask = un->un_sys_blocksize - 1;
11017 
11018 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11019 		SD_ERROR(SD_LOG_READ_WRITE, un,
11020 		    "sdaread: file offset not modulo %d\n",
11021 		    un->un_sys_blocksize);
11022 		err = EINVAL;
11023 	} else if (uio->uio_iov->iov_len & (secmask)) {
11024 		SD_ERROR(SD_LOG_READ_WRITE, un,
11025 		    "sdaread: transfer length not modulo %d\n",
11026 		    un->un_sys_blocksize);
11027 		err = EINVAL;
11028 	} else {
11029 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11030 	}
11031 	return (err);
11032 }
11033 
11034 
11035 /*
11036  *    Function: sdawrite
11037  *
11038  * Description: Driver's awrite(9e) entry point function.
11039  *
11040  *   Arguments: dev   - device number
11041  *		aio   - structure pointer describing where data is stored
11042  *		cred_p  - user credential pointer
11043  *
11044  * Return Code: ENXIO
11045  *		EIO
11046  *		EINVAL
11047  *		value returned by aphysio
11048  *
11049  *     Context: Kernel thread context.
11050  */
11051 /* ARGSUSED */
11052 static int
11053 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11054 {
11055 	struct sd_lun	*un = NULL;
11056 	struct uio	*uio = aio->aio_uio;
11057 	int		secmask;
11058 	int		err;
11059 
11060 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11061 		return (ENXIO);
11062 	}
11063 
11064 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11065 
11066 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11067 		mutex_enter(SD_MUTEX(un));
11068 		/*
11069 		 * Because the call to sd_ready_and_valid will issue I/O we
11070 		 * must wait here if either the device is suspended or
11071 		 * if it's power level is changing.
11072 		 */
11073 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11074 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11075 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11076 		}
11077 		un->un_ncmds_in_driver++;
11078 		mutex_exit(SD_MUTEX(un));
11079 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11080 			mutex_enter(SD_MUTEX(un));
11081 			un->un_ncmds_in_driver--;
11082 			ASSERT(un->un_ncmds_in_driver >= 0);
11083 			mutex_exit(SD_MUTEX(un));
11084 			return (EIO);
11085 		}
11086 		mutex_enter(SD_MUTEX(un));
11087 		un->un_ncmds_in_driver--;
11088 		ASSERT(un->un_ncmds_in_driver >= 0);
11089 		mutex_exit(SD_MUTEX(un));
11090 	}
11091 
11092 	/*
11093 	 * Write requests are restricted to multiples of the system block size.
11094 	 */
11095 	secmask = un->un_sys_blocksize - 1;
11096 
11097 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11098 		SD_ERROR(SD_LOG_READ_WRITE, un,
11099 		    "sdawrite: file offset not modulo %d\n",
11100 		    un->un_sys_blocksize);
11101 		err = EINVAL;
11102 	} else if (uio->uio_iov->iov_len & (secmask)) {
11103 		SD_ERROR(SD_LOG_READ_WRITE, un,
11104 		    "sdawrite: transfer length not modulo %d\n",
11105 		    un->un_sys_blocksize);
11106 		err = EINVAL;
11107 	} else {
11108 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11109 	}
11110 	return (err);
11111 }
11112 
11113 
11114 
11115 
11116 
11117 /*
11118  * Driver IO processing follows the following sequence:
11119  *
11120  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11121  *         |                |                     ^
11122  *         v                v                     |
11123  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11124  *         |                |                     |                   |
11125  *         v                |                     |                   |
11126  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11127  *         |                |                     ^                   ^
11128  *         v                v                     |                   |
11129  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11130  *         |                |                     |                   |
11131  *     +---+                |                     +------------+      +-------+
11132  *     |                    |                                  |              |
11133  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11134  *     |                    v                                  |              |
11135  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11136  *     |                    |                                  ^              |
11137  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11138  *     |                    v                                  |              |
11139  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11140  *     |                    |                                  ^              |
11141  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11142  *     |                    v                                  |              |
11143  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11144  *     |                    |                                  ^              |
11145  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11146  *     |                    v                                  |              |
11147  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11148  *     |                    |                                  ^              |
11149  *     |                    |                                  |              |
11150  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11151  *                          |                           ^
11152  *                          v                           |
11153  *                   sd_core_iostart()                  |
11154  *                          |                           |
11155  *                          |                           +------>(*destroypkt)()
11156  *                          +-> sd_start_cmds() <-+     |           |
11157  *                          |                     |     |           v
11158  *                          |                     |     |  scsi_destroy_pkt(9F)
11159  *                          |                     |     |
11160  *                          +->(*initpkt)()       +- sdintr()
11161  *                          |  |                        |  |
11162  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11163  *                          |  +-> scsi_setup_cdb(9F)   |
11164  *                          |                           |
11165  *                          +--> scsi_transport(9F)     |
11166  *                                     |                |
11167  *                                     +----> SCSA ---->+
11168  *
11169  *
11170  * This code is based upon the following presumtions:
11171  *
11172  *   - iostart and iodone functions operate on buf(9S) structures. These
11173  *     functions perform the necessary operations on the buf(9S) and pass
11174  *     them along to the next function in the chain by using the macros
11175  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11176  *     (for iodone side functions).
11177  *
11178  *   - The iostart side functions may sleep. The iodone side functions
11179  *     are called under interrupt context and may NOT sleep. Therefore
11180  *     iodone side functions also may not call iostart side functions.
11181  *     (NOTE: iostart side functions should NOT sleep for memory, as
11182  *     this could result in deadlock.)
11183  *
11184  *   - An iostart side function may call its corresponding iodone side
11185  *     function directly (if necessary).
11186  *
11187  *   - In the event of an error, an iostart side function can return a buf(9S)
11188  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11189  *     b_error in the usual way of course).
11190  *
11191  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11192  *     requests to the iostart side functions.  The iostart side functions in
11193  *     this case would be called under the context of a taskq thread, so it's
11194  *     OK for them to block/sleep/spin in this case.
11195  *
11196  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11197  *     pass them along to the next function in the chain.  The corresponding
11198  *     iodone side functions must coalesce the "shadow" bufs and return
11199  *     the "original" buf to the next higher layer.
11200  *
11201  *   - The b_private field of the buf(9S) struct holds a pointer to
11202  *     an sd_xbuf struct, which contains information needed to
11203  *     construct the scsi_pkt for the command.
11204  *
11205  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11206  *     layer must acquire & release the SD_MUTEX(un) as needed.
11207  */
11208 
11209 
11210 /*
11211  * Create taskq for all targets in the system. This is created at
11212  * _init(9E) and destroyed at _fini(9E).
11213  *
11214  * Note: here we set the minalloc to a reasonably high number to ensure that
11215  * we will have an adequate supply of task entries available at interrupt time.
11216  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11217  * sd_create_taskq().  Since we do not want to sleep for allocations at
11218  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11219  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11220  * requests any one instant in time.
11221  */
11222 #define	SD_TASKQ_NUMTHREADS	8
11223 #define	SD_TASKQ_MINALLOC	256
11224 #define	SD_TASKQ_MAXALLOC	256
11225 
11226 static taskq_t	*sd_tq = NULL;
11227 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11228 
11229 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11230 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11231 
11232 /*
11233  * The following task queue is being created for the write part of
11234  * read-modify-write of non-512 block size devices.
11235  * Limit the number of threads to 1 for now. This number has been choosen
11236  * considering the fact that it applies only to dvd ram drives/MO drives
11237  * currently. Performance for which is not main criteria at this stage.
11238  * Note: It needs to be explored if we can use a single taskq in future
11239  */
11240 #define	SD_WMR_TASKQ_NUMTHREADS	1
11241 static taskq_t	*sd_wmr_tq = NULL;
11242 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11243 
11244 /*
11245  *    Function: sd_taskq_create
11246  *
11247  * Description: Create taskq thread(s) and preallocate task entries
11248  *
11249  * Return Code: Returns a pointer to the allocated taskq_t.
11250  *
11251  *     Context: Can sleep. Requires blockable context.
11252  *
11253  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11254  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11255  *		- taskq_create() will block for memory, also it will panic
11256  *		  if it cannot create the requested number of threads.
11257  *		- Currently taskq_create() creates threads that cannot be
11258  *		  swapped.
11259  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11260  *		  supply of taskq entries at interrupt time (ie, so that we
11261  *		  do not have to sleep for memory)
11262  */
11263 
11264 static void
11265 sd_taskq_create(void)
11266 {
11267 	char	taskq_name[TASKQ_NAMELEN];
11268 
11269 	ASSERT(sd_tq == NULL);
11270 	ASSERT(sd_wmr_tq == NULL);
11271 
11272 	(void) snprintf(taskq_name, sizeof (taskq_name),
11273 	    "%s_drv_taskq", sd_label);
11274 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11275 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11276 	    TASKQ_PREPOPULATE));
11277 
11278 	(void) snprintf(taskq_name, sizeof (taskq_name),
11279 	    "%s_rmw_taskq", sd_label);
11280 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11281 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11282 	    TASKQ_PREPOPULATE));
11283 }
11284 
11285 
11286 /*
11287  *    Function: sd_taskq_delete
11288  *
11289  * Description: Complementary cleanup routine for sd_taskq_create().
11290  *
11291  *     Context: Kernel thread context.
11292  */
11293 
11294 static void
11295 sd_taskq_delete(void)
11296 {
11297 	ASSERT(sd_tq != NULL);
11298 	ASSERT(sd_wmr_tq != NULL);
11299 	taskq_destroy(sd_tq);
11300 	taskq_destroy(sd_wmr_tq);
11301 	sd_tq = NULL;
11302 	sd_wmr_tq = NULL;
11303 }
11304 
11305 
11306 /*
11307  *    Function: sdstrategy
11308  *
11309  * Description: Driver's strategy (9E) entry point function.
11310  *
11311  *   Arguments: bp - pointer to buf(9S)
11312  *
11313  * Return Code: Always returns zero
11314  *
11315  *     Context: Kernel thread context.
11316  */
11317 
11318 static int
11319 sdstrategy(struct buf *bp)
11320 {
11321 	struct sd_lun *un;
11322 
11323 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11324 	if (un == NULL) {
11325 		bioerror(bp, EIO);
11326 		bp->b_resid = bp->b_bcount;
11327 		biodone(bp);
11328 		return (0);
11329 	}
11330 	/* As was done in the past, fail new cmds. if state is dumping. */
11331 	if (un->un_state == SD_STATE_DUMPING) {
11332 		bioerror(bp, ENXIO);
11333 		bp->b_resid = bp->b_bcount;
11334 		biodone(bp);
11335 		return (0);
11336 	}
11337 
11338 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11339 
11340 	/*
11341 	 * Commands may sneak in while we released the mutex in
11342 	 * DDI_SUSPEND, we should block new commands. However, old
11343 	 * commands that are still in the driver at this point should
11344 	 * still be allowed to drain.
11345 	 */
11346 	mutex_enter(SD_MUTEX(un));
11347 	/*
11348 	 * Must wait here if either the device is suspended or
11349 	 * if it's power level is changing.
11350 	 */
11351 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11352 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11353 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11354 	}
11355 
11356 	un->un_ncmds_in_driver++;
11357 
11358 	/*
11359 	 * atapi: Since we are running the CD for now in PIO mode we need to
11360 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11361 	 * the HBA's init_pkt routine.
11362 	 */
11363 	if (un->un_f_cfg_is_atapi == TRUE) {
11364 		mutex_exit(SD_MUTEX(un));
11365 		bp_mapin(bp);
11366 		mutex_enter(SD_MUTEX(un));
11367 	}
11368 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11369 	    un->un_ncmds_in_driver);
11370 
11371 	mutex_exit(SD_MUTEX(un));
11372 
11373 	/*
11374 	 * This will (eventually) allocate the sd_xbuf area and
11375 	 * call sd_xbuf_strategy().  We just want to return the
11376 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11377 	 * imized tail call which saves us a stack frame.
11378 	 */
11379 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11380 }
11381 
11382 
11383 /*
11384  *    Function: sd_xbuf_strategy
11385  *
11386  * Description: Function for initiating IO operations via the
11387  *		ddi_xbuf_qstrategy() mechanism.
11388  *
11389  *     Context: Kernel thread context.
11390  */
11391 
11392 static void
11393 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11394 {
11395 	struct sd_lun *un = arg;
11396 
11397 	ASSERT(bp != NULL);
11398 	ASSERT(xp != NULL);
11399 	ASSERT(un != NULL);
11400 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11401 
11402 	/*
11403 	 * Initialize the fields in the xbuf and save a pointer to the
11404 	 * xbuf in bp->b_private.
11405 	 */
11406 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11407 
11408 	/* Send the buf down the iostart chain */
11409 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11410 }
11411 
11412 
11413 /*
11414  *    Function: sd_xbuf_init
11415  *
11416  * Description: Prepare the given sd_xbuf struct for use.
11417  *
11418  *   Arguments: un - ptr to softstate
11419  *		bp - ptr to associated buf(9S)
11420  *		xp - ptr to associated sd_xbuf
11421  *		chain_type - IO chain type to use:
11422  *			SD_CHAIN_NULL
11423  *			SD_CHAIN_BUFIO
11424  *			SD_CHAIN_USCSI
11425  *			SD_CHAIN_DIRECT
11426  *			SD_CHAIN_DIRECT_PRIORITY
11427  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11428  *			initialization; may be NULL if none.
11429  *
11430  *     Context: Kernel thread context
11431  */
11432 
11433 static void
11434 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11435 	uchar_t chain_type, void *pktinfop)
11436 {
11437 	int index;
11438 
11439 	ASSERT(un != NULL);
11440 	ASSERT(bp != NULL);
11441 	ASSERT(xp != NULL);
11442 
11443 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11444 	    bp, chain_type);
11445 
11446 	xp->xb_un	= un;
11447 	xp->xb_pktp	= NULL;
11448 	xp->xb_pktinfo	= pktinfop;
11449 	xp->xb_private	= bp->b_private;
11450 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11451 
11452 	/*
11453 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11454 	 * upon the specified chain type to use.
11455 	 */
11456 	switch (chain_type) {
11457 	case SD_CHAIN_NULL:
11458 		/*
11459 		 * Fall thru to just use the values for the buf type, even
11460 		 * tho for the NULL chain these values will never be used.
11461 		 */
11462 		/* FALLTHRU */
11463 	case SD_CHAIN_BUFIO:
11464 		index = un->un_buf_chain_type;
11465 		break;
11466 	case SD_CHAIN_USCSI:
11467 		index = un->un_uscsi_chain_type;
11468 		break;
11469 	case SD_CHAIN_DIRECT:
11470 		index = un->un_direct_chain_type;
11471 		break;
11472 	case SD_CHAIN_DIRECT_PRIORITY:
11473 		index = un->un_priority_chain_type;
11474 		break;
11475 	default:
11476 		/* We're really broken if we ever get here... */
11477 		panic("sd_xbuf_init: illegal chain type!");
11478 		/*NOTREACHED*/
11479 	}
11480 
11481 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11482 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11483 
11484 	/*
11485 	 * It might be a bit easier to simply bzero the entire xbuf above,
11486 	 * but it turns out that since we init a fair number of members anyway,
11487 	 * we save a fair number cycles by doing explicit assignment of zero.
11488 	 */
11489 	xp->xb_pkt_flags	= 0;
11490 	xp->xb_dma_resid	= 0;
11491 	xp->xb_retry_count	= 0;
11492 	xp->xb_victim_retry_count = 0;
11493 	xp->xb_ua_retry_count	= 0;
11494 	xp->xb_sense_bp		= NULL;
11495 	xp->xb_sense_status	= 0;
11496 	xp->xb_sense_state	= 0;
11497 	xp->xb_sense_resid	= 0;
11498 
11499 	bp->b_private	= xp;
11500 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11501 	bp->b_resid	= 0;
11502 	bp->av_forw	= NULL;
11503 	bp->av_back	= NULL;
11504 	bioerror(bp, 0);
11505 
11506 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11507 }
11508 
11509 
11510 /*
11511  *    Function: sd_uscsi_strategy
11512  *
11513  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11514  *
11515  *   Arguments: bp - buf struct ptr
11516  *
11517  * Return Code: Always returns 0
11518  *
11519  *     Context: Kernel thread context
11520  */
11521 
11522 static int
11523 sd_uscsi_strategy(struct buf *bp)
11524 {
11525 	struct sd_lun		*un;
11526 	struct sd_uscsi_info	*uip;
11527 	struct sd_xbuf		*xp;
11528 	uchar_t			chain_type;
11529 
11530 	ASSERT(bp != NULL);
11531 
11532 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11533 	if (un == NULL) {
11534 		bioerror(bp, EIO);
11535 		bp->b_resid = bp->b_bcount;
11536 		biodone(bp);
11537 		return (0);
11538 	}
11539 
11540 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11541 
11542 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11543 
11544 	mutex_enter(SD_MUTEX(un));
11545 	/*
11546 	 * atapi: Since we are running the CD for now in PIO mode we need to
11547 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11548 	 * the HBA's init_pkt routine.
11549 	 */
11550 	if (un->un_f_cfg_is_atapi == TRUE) {
11551 		mutex_exit(SD_MUTEX(un));
11552 		bp_mapin(bp);
11553 		mutex_enter(SD_MUTEX(un));
11554 	}
11555 	un->un_ncmds_in_driver++;
11556 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11557 	    un->un_ncmds_in_driver);
11558 	mutex_exit(SD_MUTEX(un));
11559 
11560 	/*
11561 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11562 	 */
11563 	ASSERT(bp->b_private != NULL);
11564 	uip = (struct sd_uscsi_info *)bp->b_private;
11565 
11566 	switch (uip->ui_flags) {
11567 	case SD_PATH_DIRECT:
11568 		chain_type = SD_CHAIN_DIRECT;
11569 		break;
11570 	case SD_PATH_DIRECT_PRIORITY:
11571 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11572 		break;
11573 	default:
11574 		chain_type = SD_CHAIN_USCSI;
11575 		break;
11576 	}
11577 
11578 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
11579 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11580 
11581 	/* Use the index obtained within xbuf_init */
11582 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11583 
11584 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11585 
11586 	return (0);
11587 }
11588 
11589 
11590 /*
11591  * These routines perform raw i/o operations.
11592  */
11593 /*ARGSUSED*/
11594 static void
11595 sduscsimin(struct buf *bp)
11596 {
11597 	/*
11598 	 * do not break up because the CDB count would then
11599 	 * be incorrect and data underruns would result (incomplete
11600 	 * read/writes which would be retried and then failed, see
11601 	 * sdintr().
11602 	 */
11603 }
11604 
11605 
11606 
11607 /*
11608  *    Function: sd_send_scsi_cmd
11609  *
11610  * Description: Runs a USCSI command for user (when called thru sdioctl),
11611  *		or for the driver
11612  *
11613  *   Arguments: dev - the dev_t for the device
11614  *		incmd - ptr to a valid uscsi_cmd struct
11615  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
11616  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11617  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
11618  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11619  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11620  *			to use the USCSI "direct" chain and bypass the normal
11621  *			command waitq.
11622  *
11623  * Return Code: 0 -  successful completion of the given command
11624  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
11625  *		ENXIO  - soft state not found for specified dev
11626  *		EINVAL
11627  *		EFAULT - copyin/copyout error
11628  *		return code of biowait(9F) or physio(9F):
11629  *			EIO - IO error, caller may check incmd->uscsi_status
11630  *			ENXIO
11631  *			EACCES - reservation conflict
11632  *
11633  *     Context: Waits for command to complete. Can sleep.
11634  */
11635 
11636 static int
11637 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
11638 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
11639 	int path_flag)
11640 {
11641 	struct sd_uscsi_info	*uip;
11642 	struct uscsi_cmd	*uscmd;
11643 	struct sd_lun	*un;
11644 	struct buf	*bp;
11645 	int	rval;
11646 	int	flags;
11647 
11648 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11649 	if (un == NULL) {
11650 		return (ENXIO);
11651 	}
11652 
11653 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11654 
11655 #ifdef SDDEBUG
11656 	switch (dataspace) {
11657 	case UIO_USERSPACE:
11658 		SD_TRACE(SD_LOG_IO, un,
11659 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
11660 		break;
11661 	case UIO_SYSSPACE:
11662 		SD_TRACE(SD_LOG_IO, un,
11663 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
11664 		break;
11665 	default:
11666 		SD_TRACE(SD_LOG_IO, un,
11667 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
11668 		break;
11669 	}
11670 #endif
11671 
11672 	/*
11673 	 * Perform resets directly; no need to generate a command to do it.
11674 	 */
11675 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
11676 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
11677 		    RESET_ALL : RESET_TARGET;
11678 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
11679 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
11680 			/* Reset attempt was unsuccessful */
11681 			SD_TRACE(SD_LOG_IO, un,
11682 			    "sd_send_scsi_cmd: reset: failure\n");
11683 			return (EIO);
11684 		}
11685 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
11686 		return (0);
11687 	}
11688 
11689 	/* Perfunctory sanity check... */
11690 	if (incmd->uscsi_cdblen <= 0) {
11691 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11692 		    "invalid uscsi_cdblen, returning EINVAL\n");
11693 		return (EINVAL);
11694 	}
11695 
11696 	/*
11697 	 * In order to not worry about where the uscsi structure came from
11698 	 * (or where the cdb it points to came from) we're going to make
11699 	 * kmem_alloc'd copies of them here. This will also allow reference
11700 	 * to the data they contain long after this process has gone to
11701 	 * sleep and its kernel stack has been unmapped, etc.
11702 	 *
11703 	 * First get some memory for the uscsi_cmd struct and copy the
11704 	 * contents of the given uscsi_cmd struct into it.
11705 	 */
11706 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
11707 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
11708 
11709 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
11710 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
11711 
11712 	/*
11713 	 * Now get some space for the CDB, and copy the given CDB into
11714 	 * it. Use ddi_copyin() in case the data is in user space.
11715 	 */
11716 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
11717 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
11718 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
11719 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
11720 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
11721 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
11722 		return (EFAULT);
11723 	}
11724 
11725 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
11726 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
11727 
11728 	bp = getrbuf(KM_SLEEP);
11729 
11730 	/*
11731 	 * Allocate an sd_uscsi_info struct and fill it with the info
11732 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
11733 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
11734 	 * since we allocate the buf here in this function, we do not
11735 	 * need to preserve the prior contents of b_private.
11736 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
11737 	 */
11738 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11739 	uip->ui_flags = path_flag;
11740 	uip->ui_cmdp  = uscmd;
11741 	bp->b_private = uip;
11742 
11743 	/*
11744 	 * Initialize Request Sense buffering, if requested.
11745 	 */
11746 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11747 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11748 		/*
11749 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
11750 		 * buffer, but we replace this with a kernel buffer that
11751 		 * we allocate to use with the sense data. The sense data
11752 		 * (if present) gets copied into this new buffer before the
11753 		 * command is completed.  Then we copy the sense data from
11754 		 * our allocated buf into the caller's buffer below. Note
11755 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
11756 		 * below to perform the copy back to the caller's buf.
11757 		 */
11758 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
11759 		if (rqbufspace == UIO_USERSPACE) {
11760 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
11761 			uscmd->uscsi_rqresid = SENSE_LENGTH;
11762 		} else {
11763 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
11764 			uscmd->uscsi_rqlen   = rlen;
11765 			uscmd->uscsi_rqresid = rlen;
11766 		}
11767 	} else {
11768 		uscmd->uscsi_rqbuf = NULL;
11769 		uscmd->uscsi_rqlen   = 0;
11770 		uscmd->uscsi_rqresid = 0;
11771 	}
11772 
11773 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
11774 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
11775 
11776 	if (un->un_f_is_fibre == FALSE) {
11777 		/*
11778 		 * Force asynchronous mode, if necessary.  Doing this here
11779 		 * has the unfortunate effect of running other queued
11780 		 * commands async also, but since the main purpose of this
11781 		 * capability is downloading new drive firmware, we can
11782 		 * probably live with it.
11783 		 */
11784 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
11785 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11786 				== 1) {
11787 				if (scsi_ifsetcap(SD_ADDRESS(un),
11788 					    "synchronous", 0, 1) == 1) {
11789 					SD_TRACE(SD_LOG_IO, un,
11790 					"sd_send_scsi_cmd: forced async ok\n");
11791 				} else {
11792 					SD_TRACE(SD_LOG_IO, un,
11793 					"sd_send_scsi_cmd:\
11794 					forced async failed\n");
11795 					rval = EINVAL;
11796 					goto done;
11797 				}
11798 			}
11799 		}
11800 
11801 		/*
11802 		 * Re-enable synchronous mode, if requested
11803 		 */
11804 		if (uscmd->uscsi_flags & USCSI_SYNC) {
11805 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
11806 				== 0) {
11807 				int i = scsi_ifsetcap(SD_ADDRESS(un),
11808 						"synchronous", 1, 1);
11809 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11810 					"re-enabled sync %s\n",
11811 					(i == 1) ? "ok" : "failed");
11812 			}
11813 		}
11814 	}
11815 
11816 	/*
11817 	 * Commands sent with priority are intended for error recovery
11818 	 * situations, and do not have retries performed.
11819 	 */
11820 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
11821 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
11822 	}
11823 
11824 	/*
11825 	 * If we're going to do actual I/O, let physio do all the right things
11826 	 */
11827 	if (uscmd->uscsi_buflen != 0) {
11828 		struct iovec	aiov;
11829 		struct uio	auio;
11830 		struct uio	*uio = &auio;
11831 
11832 		bzero(&auio, sizeof (struct uio));
11833 		bzero(&aiov, sizeof (struct iovec));
11834 		aiov.iov_base = uscmd->uscsi_bufaddr;
11835 		aiov.iov_len  = uscmd->uscsi_buflen;
11836 		uio->uio_iov  = &aiov;
11837 
11838 		uio->uio_iovcnt  = 1;
11839 		uio->uio_resid   = uscmd->uscsi_buflen;
11840 		uio->uio_segflg  = dataspace;
11841 
11842 		/*
11843 		 * physio() will block here until the command completes....
11844 		 */
11845 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
11846 
11847 		rval = physio(sd_uscsi_strategy, bp, dev,
11848 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
11849 		    sduscsimin, uio);
11850 
11851 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11852 		    "returned from physio with 0x%x\n", rval);
11853 
11854 	} else {
11855 		/*
11856 		 * We have to mimic what physio would do here! Argh!
11857 		 */
11858 		bp->b_flags  = B_BUSY |
11859 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
11860 		bp->b_edev   = dev;
11861 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
11862 		bp->b_bcount = 0;
11863 		bp->b_blkno  = 0;
11864 
11865 		SD_TRACE(SD_LOG_IO, un,
11866 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
11867 
11868 		(void) sd_uscsi_strategy(bp);
11869 
11870 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
11871 
11872 		rval = biowait(bp);
11873 
11874 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11875 		    "returned from  biowait with 0x%x\n", rval);
11876 	}
11877 
11878 done:
11879 
11880 #ifdef SDDEBUG
11881 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11882 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
11883 	    uscmd->uscsi_status, uscmd->uscsi_resid);
11884 	if (uscmd->uscsi_bufaddr != NULL) {
11885 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11886 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
11887 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
11888 		if (dataspace == UIO_SYSSPACE) {
11889 			SD_DUMP_MEMORY(un, SD_LOG_IO,
11890 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
11891 			    uscmd->uscsi_buflen, SD_LOG_HEX);
11892 		}
11893 	}
11894 #endif
11895 
11896 	/*
11897 	 * Get the status and residual to return to the caller.
11898 	 */
11899 	incmd->uscsi_status = uscmd->uscsi_status;
11900 	incmd->uscsi_resid  = uscmd->uscsi_resid;
11901 
11902 	/*
11903 	 * If the caller wants sense data, copy back whatever sense data
11904 	 * we may have gotten, and update the relevant rqsense info.
11905 	 */
11906 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
11907 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
11908 
11909 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
11910 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
11911 
11912 		/* Update the Request Sense status and resid */
11913 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
11914 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
11915 
11916 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11917 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
11918 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
11919 
11920 		/* Copy out the sense data for user processes */
11921 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
11922 			int flags =
11923 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
11924 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
11925 			    rqlen, flags) != 0) {
11926 				rval = EFAULT;
11927 			}
11928 			/*
11929 			 * Note: Can't touch incmd->uscsi_rqbuf so use
11930 			 * uscmd->uscsi_rqbuf instead. They're the same.
11931 			 */
11932 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
11933 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
11934 			    incmd->uscsi_rqbuf, rqlen);
11935 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
11936 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
11937 		}
11938 	}
11939 
11940 	/*
11941 	 * Free allocated resources and return; mapout the buf in case it was
11942 	 * mapped in by a lower layer.
11943 	 */
11944 	bp_mapout(bp);
11945 	freerbuf(bp);
11946 	kmem_free(uip, sizeof (struct sd_uscsi_info));
11947 	if (uscmd->uscsi_rqbuf != NULL) {
11948 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
11949 	}
11950 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
11951 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
11952 
11953 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
11954 
11955 	return (rval);
11956 }
11957 
11958 
11959 /*
11960  *    Function: sd_buf_iodone
11961  *
11962  * Description: Frees the sd_xbuf & returns the buf to its originator.
11963  *
11964  *     Context: May be called from interrupt context.
11965  */
11966 /* ARGSUSED */
11967 static void
11968 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
11969 {
11970 	struct sd_xbuf *xp;
11971 
11972 	ASSERT(un != NULL);
11973 	ASSERT(bp != NULL);
11974 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11975 
11976 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
11977 
11978 	xp = SD_GET_XBUF(bp);
11979 	ASSERT(xp != NULL);
11980 
11981 	mutex_enter(SD_MUTEX(un));
11982 
11983 	/*
11984 	 * Grab time when the cmd completed.
11985 	 * This is used for determining if the system has been
11986 	 * idle long enough to make it idle to the PM framework.
11987 	 * This is for lowering the overhead, and therefore improving
11988 	 * performance per I/O operation.
11989 	 */
11990 	un->un_pm_idle_time = ddi_get_time();
11991 
11992 	un->un_ncmds_in_driver--;
11993 	ASSERT(un->un_ncmds_in_driver >= 0);
11994 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
11995 	    un->un_ncmds_in_driver);
11996 
11997 	mutex_exit(SD_MUTEX(un));
11998 
11999 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
12000 	biodone(bp);				/* bp is gone after this */
12001 
12002 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12003 }
12004 
12005 
12006 /*
12007  *    Function: sd_uscsi_iodone
12008  *
12009  * Description: Frees the sd_xbuf & returns the buf to its originator.
12010  *
12011  *     Context: May be called from interrupt context.
12012  */
12013 /* ARGSUSED */
12014 static void
12015 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12016 {
12017 	struct sd_xbuf *xp;
12018 
12019 	ASSERT(un != NULL);
12020 	ASSERT(bp != NULL);
12021 
12022 	xp = SD_GET_XBUF(bp);
12023 	ASSERT(xp != NULL);
12024 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12025 
12026 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12027 
12028 	bp->b_private = xp->xb_private;
12029 
12030 	mutex_enter(SD_MUTEX(un));
12031 
12032 	/*
12033 	 * Grab time when the cmd completed.
12034 	 * This is used for determining if the system has been
12035 	 * idle long enough to make it idle to the PM framework.
12036 	 * This is for lowering the overhead, and therefore improving
12037 	 * performance per I/O operation.
12038 	 */
12039 	un->un_pm_idle_time = ddi_get_time();
12040 
12041 	un->un_ncmds_in_driver--;
12042 	ASSERT(un->un_ncmds_in_driver >= 0);
12043 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12044 	    un->un_ncmds_in_driver);
12045 
12046 	mutex_exit(SD_MUTEX(un));
12047 
12048 	kmem_free(xp, sizeof (struct sd_xbuf));
12049 	biodone(bp);
12050 
12051 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12052 }
12053 
12054 
12055 /*
12056  *    Function: sd_mapblockaddr_iostart
12057  *
12058  * Description: Verify request lies withing the partition limits for
12059  *		the indicated minor device.  Issue "overrun" buf if
12060  *		request would exceed partition range.  Converts
12061  *		partition-relative block address to absolute.
12062  *
12063  *     Context: Can sleep
12064  *
12065  *      Issues: This follows what the old code did, in terms of accessing
12066  *		some of the partition info in the unit struct without holding
12067  *		the mutext.  This is a general issue, if the partition info
12068  *		can be altered while IO is in progress... as soon as we send
12069  *		a buf, its partitioning can be invalid before it gets to the
12070  *		device.  Probably the right fix is to move partitioning out
12071  *		of the driver entirely.
12072  */
12073 
12074 static void
12075 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12076 {
12077 	daddr_t	nblocks;	/* #blocks in the given partition */
12078 	daddr_t	blocknum;	/* Block number specified by the buf */
12079 	size_t	requested_nblocks;
12080 	size_t	available_nblocks;
12081 	int	partition;
12082 	diskaddr_t	partition_offset;
12083 	struct sd_xbuf *xp;
12084 
12085 
12086 	ASSERT(un != NULL);
12087 	ASSERT(bp != NULL);
12088 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12089 
12090 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12091 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12092 
12093 	xp = SD_GET_XBUF(bp);
12094 	ASSERT(xp != NULL);
12095 
12096 	/*
12097 	 * If the geometry is not indicated as valid, attempt to access
12098 	 * the unit & verify the geometry/label. This can be the case for
12099 	 * removable-media devices, of if the device was opened in
12100 	 * NDELAY/NONBLOCK mode.
12101 	 */
12102 	if ((un->un_f_geometry_is_valid != TRUE) &&
12103 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
12104 		/*
12105 		 * For removable devices it is possible to start an I/O
12106 		 * without a media by opening the device in nodelay mode.
12107 		 * Also for writable CDs there can be many scenarios where
12108 		 * there is no geometry yet but volume manager is trying to
12109 		 * issue a read() just because it can see TOC on the CD. So
12110 		 * do not print a message for removables.
12111 		 */
12112 		if (!un->un_f_has_removable_media) {
12113 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12114 			    "i/o to invalid geometry\n");
12115 		}
12116 		bioerror(bp, EIO);
12117 		bp->b_resid = bp->b_bcount;
12118 		SD_BEGIN_IODONE(index, un, bp);
12119 		return;
12120 	}
12121 
12122 	partition = SDPART(bp->b_edev);
12123 
12124 	/* #blocks in partition */
12125 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
12126 
12127 	/* Use of a local variable potentially improves performance slightly */
12128 	partition_offset = un->un_offset[partition];
12129 
12130 	/*
12131 	 * blocknum is the starting block number of the request. At this
12132 	 * point it is still relative to the start of the minor device.
12133 	 */
12134 	blocknum = xp->xb_blkno;
12135 
12136 	/*
12137 	 * Legacy: If the starting block number is one past the last block
12138 	 * in the partition, do not set B_ERROR in the buf.
12139 	 */
12140 	if (blocknum == nblocks)  {
12141 		goto error_exit;
12142 	}
12143 
12144 	/*
12145 	 * Confirm that the first block of the request lies within the
12146 	 * partition limits. Also the requested number of bytes must be
12147 	 * a multiple of the system block size.
12148 	 */
12149 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12150 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12151 		bp->b_flags |= B_ERROR;
12152 		goto error_exit;
12153 	}
12154 
12155 	/*
12156 	 * If the requsted # blocks exceeds the available # blocks, that
12157 	 * is an overrun of the partition.
12158 	 */
12159 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12160 	available_nblocks = (size_t)(nblocks - blocknum);
12161 	ASSERT(nblocks >= blocknum);
12162 
12163 	if (requested_nblocks > available_nblocks) {
12164 		/*
12165 		 * Allocate an "overrun" buf to allow the request to proceed
12166 		 * for the amount of space available in the partition. The
12167 		 * amount not transferred will be added into the b_resid
12168 		 * when the operation is complete. The overrun buf
12169 		 * replaces the original buf here, and the original buf
12170 		 * is saved inside the overrun buf, for later use.
12171 		 */
12172 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12173 		    (offset_t)(requested_nblocks - available_nblocks));
12174 		size_t count = bp->b_bcount - resid;
12175 		/*
12176 		 * Note: count is an unsigned entity thus it'll NEVER
12177 		 * be less than 0 so ASSERT the original values are
12178 		 * correct.
12179 		 */
12180 		ASSERT(bp->b_bcount >= resid);
12181 
12182 		bp = sd_bioclone_alloc(bp, count, blocknum,
12183 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12184 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12185 		ASSERT(xp != NULL);
12186 	}
12187 
12188 	/* At this point there should be no residual for this buf. */
12189 	ASSERT(bp->b_resid == 0);
12190 
12191 	/* Convert the block number to an absolute address. */
12192 	xp->xb_blkno += partition_offset;
12193 
12194 	SD_NEXT_IOSTART(index, un, bp);
12195 
12196 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12197 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12198 
12199 	return;
12200 
12201 error_exit:
12202 	bp->b_resid = bp->b_bcount;
12203 	SD_BEGIN_IODONE(index, un, bp);
12204 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12205 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12206 }
12207 
12208 
12209 /*
12210  *    Function: sd_mapblockaddr_iodone
12211  *
12212  * Description: Completion-side processing for partition management.
12213  *
12214  *     Context: May be called under interrupt context
12215  */
12216 
12217 static void
12218 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12219 {
12220 	/* int	partition; */	/* Not used, see below. */
12221 	ASSERT(un != NULL);
12222 	ASSERT(bp != NULL);
12223 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12224 
12225 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12226 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12227 
12228 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12229 		/*
12230 		 * We have an "overrun" buf to deal with...
12231 		 */
12232 		struct sd_xbuf	*xp;
12233 		struct buf	*obp;	/* ptr to the original buf */
12234 
12235 		xp = SD_GET_XBUF(bp);
12236 		ASSERT(xp != NULL);
12237 
12238 		/* Retrieve the pointer to the original buf */
12239 		obp = (struct buf *)xp->xb_private;
12240 		ASSERT(obp != NULL);
12241 
12242 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12243 		bioerror(obp, bp->b_error);
12244 
12245 		sd_bioclone_free(bp);
12246 
12247 		/*
12248 		 * Get back the original buf.
12249 		 * Note that since the restoration of xb_blkno below
12250 		 * was removed, the sd_xbuf is not needed.
12251 		 */
12252 		bp = obp;
12253 		/*
12254 		 * xp = SD_GET_XBUF(bp);
12255 		 * ASSERT(xp != NULL);
12256 		 */
12257 	}
12258 
12259 	/*
12260 	 * Convert sd->xb_blkno back to a minor-device relative value.
12261 	 * Note: this has been commented out, as it is not needed in the
12262 	 * current implementation of the driver (ie, since this function
12263 	 * is at the top of the layering chains, so the info will be
12264 	 * discarded) and it is in the "hot" IO path.
12265 	 *
12266 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12267 	 * xp->xb_blkno -= un->un_offset[partition];
12268 	 */
12269 
12270 	SD_NEXT_IODONE(index, un, bp);
12271 
12272 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12273 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12274 }
12275 
12276 
12277 /*
12278  *    Function: sd_mapblocksize_iostart
12279  *
12280  * Description: Convert between system block size (un->un_sys_blocksize)
12281  *		and target block size (un->un_tgt_blocksize).
12282  *
12283  *     Context: Can sleep to allocate resources.
12284  *
12285  * Assumptions: A higher layer has already performed any partition validation,
12286  *		and converted the xp->xb_blkno to an absolute value relative
12287  *		to the start of the device.
12288  *
12289  *		It is also assumed that the higher layer has implemented
12290  *		an "overrun" mechanism for the case where the request would
12291  *		read/write beyond the end of a partition.  In this case we
12292  *		assume (and ASSERT) that bp->b_resid == 0.
12293  *
12294  *		Note: The implementation for this routine assumes the target
12295  *		block size remains constant between allocation and transport.
12296  */
12297 
12298 static void
12299 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12300 {
12301 	struct sd_mapblocksize_info	*bsp;
12302 	struct sd_xbuf			*xp;
12303 	offset_t first_byte;
12304 	daddr_t	start_block, end_block;
12305 	daddr_t	request_bytes;
12306 	ushort_t is_aligned = FALSE;
12307 
12308 	ASSERT(un != NULL);
12309 	ASSERT(bp != NULL);
12310 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12311 	ASSERT(bp->b_resid == 0);
12312 
12313 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12314 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12315 
12316 	/*
12317 	 * For a non-writable CD, a write request is an error
12318 	 */
12319 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12320 	    (un->un_f_mmc_writable_media == FALSE)) {
12321 		bioerror(bp, EIO);
12322 		bp->b_resid = bp->b_bcount;
12323 		SD_BEGIN_IODONE(index, un, bp);
12324 		return;
12325 	}
12326 
12327 	/*
12328 	 * We do not need a shadow buf if the device is using
12329 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12330 	 * In this case there is no layer-private data block allocated.
12331 	 */
12332 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12333 	    (bp->b_bcount == 0)) {
12334 		goto done;
12335 	}
12336 
12337 #if defined(__i386) || defined(__amd64)
12338 	/* We do not support non-block-aligned transfers for ROD devices */
12339 	ASSERT(!ISROD(un));
12340 #endif
12341 
12342 	xp = SD_GET_XBUF(bp);
12343 	ASSERT(xp != NULL);
12344 
12345 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12346 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12347 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12348 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12349 	    "request start block:0x%x\n", xp->xb_blkno);
12350 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12351 	    "request len:0x%x\n", bp->b_bcount);
12352 
12353 	/*
12354 	 * Allocate the layer-private data area for the mapblocksize layer.
12355 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12356 	 * struct to store the pointer to their layer-private data block, but
12357 	 * each layer also has the responsibility of restoring the prior
12358 	 * contents of xb_private before returning the buf/xbuf to the
12359 	 * higher layer that sent it.
12360 	 *
12361 	 * Here we save the prior contents of xp->xb_private into the
12362 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12363 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12364 	 * the layer-private area and returning the buf/xbuf to the layer
12365 	 * that sent it.
12366 	 *
12367 	 * Note that here we use kmem_zalloc for the allocation as there are
12368 	 * parts of the mapblocksize code that expect certain fields to be
12369 	 * zero unless explicitly set to a required value.
12370 	 */
12371 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12372 	bsp->mbs_oprivate = xp->xb_private;
12373 	xp->xb_private = bsp;
12374 
12375 	/*
12376 	 * This treats the data on the disk (target) as an array of bytes.
12377 	 * first_byte is the byte offset, from the beginning of the device,
12378 	 * to the location of the request. This is converted from a
12379 	 * un->un_sys_blocksize block address to a byte offset, and then back
12380 	 * to a block address based upon a un->un_tgt_blocksize block size.
12381 	 *
12382 	 * xp->xb_blkno should be absolute upon entry into this function,
12383 	 * but, but it is based upon partitions that use the "system"
12384 	 * block size. It must be adjusted to reflect the block size of
12385 	 * the target.
12386 	 *
12387 	 * Note that end_block is actually the block that follows the last
12388 	 * block of the request, but that's what is needed for the computation.
12389 	 */
12390 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12391 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12392 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12393 	    un->un_tgt_blocksize;
12394 
12395 	/* request_bytes is rounded up to a multiple of the target block size */
12396 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12397 
12398 	/*
12399 	 * See if the starting address of the request and the request
12400 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12401 	 * then we do not need to allocate a shadow buf to handle the request.
12402 	 */
12403 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12404 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12405 		is_aligned = TRUE;
12406 	}
12407 
12408 	if ((bp->b_flags & B_READ) == 0) {
12409 		/*
12410 		 * Lock the range for a write operation. An aligned request is
12411 		 * considered a simple write; otherwise the request must be a
12412 		 * read-modify-write.
12413 		 */
12414 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12415 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12416 	}
12417 
12418 	/*
12419 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12420 	 * where the READ command is generated for a read-modify-write. (The
12421 	 * write phase is deferred until after the read completes.)
12422 	 */
12423 	if (is_aligned == FALSE) {
12424 
12425 		struct sd_mapblocksize_info	*shadow_bsp;
12426 		struct sd_xbuf	*shadow_xp;
12427 		struct buf	*shadow_bp;
12428 
12429 		/*
12430 		 * Allocate the shadow buf and it associated xbuf. Note that
12431 		 * after this call the xb_blkno value in both the original
12432 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12433 		 * same: absolute relative to the start of the device, and
12434 		 * adjusted for the target block size. The b_blkno in the
12435 		 * shadow buf will also be set to this value. We should never
12436 		 * change b_blkno in the original bp however.
12437 		 *
12438 		 * Note also that the shadow buf will always need to be a
12439 		 * READ command, regardless of whether the incoming command
12440 		 * is a READ or a WRITE.
12441 		 */
12442 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12443 		    xp->xb_blkno,
12444 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12445 
12446 		shadow_xp = SD_GET_XBUF(shadow_bp);
12447 
12448 		/*
12449 		 * Allocate the layer-private data for the shadow buf.
12450 		 * (No need to preserve xb_private in the shadow xbuf.)
12451 		 */
12452 		shadow_xp->xb_private = shadow_bsp =
12453 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12454 
12455 		/*
12456 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
12457 		 * to figure out where the start of the user data is (based upon
12458 		 * the system block size) in the data returned by the READ
12459 		 * command (which will be based upon the target blocksize). Note
12460 		 * that this is only really used if the request is unaligned.
12461 		 */
12462 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
12463 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
12464 		ASSERT((bsp->mbs_copy_offset >= 0) &&
12465 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
12466 
12467 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
12468 
12469 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
12470 
12471 		/* Transfer the wmap (if any) to the shadow buf */
12472 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
12473 		bsp->mbs_wmp = NULL;
12474 
12475 		/*
12476 		 * The shadow buf goes on from here in place of the
12477 		 * original buf.
12478 		 */
12479 		shadow_bsp->mbs_orig_bp = bp;
12480 		bp = shadow_bp;
12481 	}
12482 
12483 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12484 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
12485 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12486 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
12487 	    request_bytes);
12488 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
12489 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
12490 
12491 done:
12492 	SD_NEXT_IOSTART(index, un, bp);
12493 
12494 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12495 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
12496 }
12497 
12498 
12499 /*
12500  *    Function: sd_mapblocksize_iodone
12501  *
12502  * Description: Completion side processing for block-size mapping.
12503  *
12504  *     Context: May be called under interrupt context
12505  */
12506 
12507 static void
12508 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
12509 {
12510 	struct sd_mapblocksize_info	*bsp;
12511 	struct sd_xbuf	*xp;
12512 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
12513 	struct buf	*orig_bp;	/* ptr to the original buf */
12514 	offset_t	shadow_end;
12515 	offset_t	request_end;
12516 	offset_t	shadow_start;
12517 	ssize_t		copy_offset;
12518 	size_t		copy_length;
12519 	size_t		shortfall;
12520 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
12521 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
12522 
12523 	ASSERT(un != NULL);
12524 	ASSERT(bp != NULL);
12525 
12526 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12527 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
12528 
12529 	/*
12530 	 * There is no shadow buf or layer-private data if the target is
12531 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
12532 	 */
12533 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12534 	    (bp->b_bcount == 0)) {
12535 		goto exit;
12536 	}
12537 
12538 	xp = SD_GET_XBUF(bp);
12539 	ASSERT(xp != NULL);
12540 
12541 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
12542 	bsp = xp->xb_private;
12543 
12544 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
12545 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
12546 
12547 	if (is_write) {
12548 		/*
12549 		 * For a WRITE request we must free up the block range that
12550 		 * we have locked up.  This holds regardless of whether this is
12551 		 * an aligned write request or a read-modify-write request.
12552 		 */
12553 		sd_range_unlock(un, bsp->mbs_wmp);
12554 		bsp->mbs_wmp = NULL;
12555 	}
12556 
12557 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
12558 		/*
12559 		 * An aligned read or write command will have no shadow buf;
12560 		 * there is not much else to do with it.
12561 		 */
12562 		goto done;
12563 	}
12564 
12565 	orig_bp = bsp->mbs_orig_bp;
12566 	ASSERT(orig_bp != NULL);
12567 	orig_xp = SD_GET_XBUF(orig_bp);
12568 	ASSERT(orig_xp != NULL);
12569 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12570 
12571 	if (!is_write && has_wmap) {
12572 		/*
12573 		 * A READ with a wmap means this is the READ phase of a
12574 		 * read-modify-write. If an error occurred on the READ then
12575 		 * we do not proceed with the WRITE phase or copy any data.
12576 		 * Just release the write maps and return with an error.
12577 		 */
12578 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
12579 			orig_bp->b_resid = orig_bp->b_bcount;
12580 			bioerror(orig_bp, bp->b_error);
12581 			sd_range_unlock(un, bsp->mbs_wmp);
12582 			goto freebuf_done;
12583 		}
12584 	}
12585 
12586 	/*
12587 	 * Here is where we set up to copy the data from the shadow buf
12588 	 * into the space associated with the original buf.
12589 	 *
12590 	 * To deal with the conversion between block sizes, these
12591 	 * computations treat the data as an array of bytes, with the
12592 	 * first byte (byte 0) corresponding to the first byte in the
12593 	 * first block on the disk.
12594 	 */
12595 
12596 	/*
12597 	 * shadow_start and shadow_len indicate the location and size of
12598 	 * the data returned with the shadow IO request.
12599 	 */
12600 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12601 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
12602 
12603 	/*
12604 	 * copy_offset gives the offset (in bytes) from the start of the first
12605 	 * block of the READ request to the beginning of the data.  We retrieve
12606 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
12607 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
12608 	 * data to be copied (in bytes).
12609 	 */
12610 	copy_offset  = bsp->mbs_copy_offset;
12611 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
12612 	copy_length  = orig_bp->b_bcount;
12613 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
12614 
12615 	/*
12616 	 * Set up the resid and error fields of orig_bp as appropriate.
12617 	 */
12618 	if (shadow_end >= request_end) {
12619 		/* We got all the requested data; set resid to zero */
12620 		orig_bp->b_resid = 0;
12621 	} else {
12622 		/*
12623 		 * We failed to get enough data to fully satisfy the original
12624 		 * request. Just copy back whatever data we got and set
12625 		 * up the residual and error code as required.
12626 		 *
12627 		 * 'shortfall' is the amount by which the data received with the
12628 		 * shadow buf has "fallen short" of the requested amount.
12629 		 */
12630 		shortfall = (size_t)(request_end - shadow_end);
12631 
12632 		if (shortfall > orig_bp->b_bcount) {
12633 			/*
12634 			 * We did not get enough data to even partially
12635 			 * fulfill the original request.  The residual is
12636 			 * equal to the amount requested.
12637 			 */
12638 			orig_bp->b_resid = orig_bp->b_bcount;
12639 		} else {
12640 			/*
12641 			 * We did not get all the data that we requested
12642 			 * from the device, but we will try to return what
12643 			 * portion we did get.
12644 			 */
12645 			orig_bp->b_resid = shortfall;
12646 		}
12647 		ASSERT(copy_length >= orig_bp->b_resid);
12648 		copy_length  -= orig_bp->b_resid;
12649 	}
12650 
12651 	/* Propagate the error code from the shadow buf to the original buf */
12652 	bioerror(orig_bp, bp->b_error);
12653 
12654 	if (is_write) {
12655 		goto freebuf_done;	/* No data copying for a WRITE */
12656 	}
12657 
12658 	if (has_wmap) {
12659 		/*
12660 		 * This is a READ command from the READ phase of a
12661 		 * read-modify-write request. We have to copy the data given
12662 		 * by the user OVER the data returned by the READ command,
12663 		 * then convert the command from a READ to a WRITE and send
12664 		 * it back to the target.
12665 		 */
12666 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
12667 		    copy_length);
12668 
12669 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
12670 
12671 		/*
12672 		 * Dispatch the WRITE command to the taskq thread, which
12673 		 * will in turn send the command to the target. When the
12674 		 * WRITE command completes, we (sd_mapblocksize_iodone())
12675 		 * will get called again as part of the iodone chain
12676 		 * processing for it. Note that we will still be dealing
12677 		 * with the shadow buf at that point.
12678 		 */
12679 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
12680 		    KM_NOSLEEP) != 0) {
12681 			/*
12682 			 * Dispatch was successful so we are done. Return
12683 			 * without going any higher up the iodone chain. Do
12684 			 * not free up any layer-private data until after the
12685 			 * WRITE completes.
12686 			 */
12687 			return;
12688 		}
12689 
12690 		/*
12691 		 * Dispatch of the WRITE command failed; set up the error
12692 		 * condition and send this IO back up the iodone chain.
12693 		 */
12694 		bioerror(orig_bp, EIO);
12695 		orig_bp->b_resid = orig_bp->b_bcount;
12696 
12697 	} else {
12698 		/*
12699 		 * This is a regular READ request (ie, not a RMW). Copy the
12700 		 * data from the shadow buf into the original buf. The
12701 		 * copy_offset compensates for any "misalignment" between the
12702 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
12703 		 * original buf (with its un->un_sys_blocksize blocks).
12704 		 */
12705 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
12706 		    copy_length);
12707 	}
12708 
12709 freebuf_done:
12710 
12711 	/*
12712 	 * At this point we still have both the shadow buf AND the original
12713 	 * buf to deal with, as well as the layer-private data area in each.
12714 	 * Local variables are as follows:
12715 	 *
12716 	 * bp -- points to shadow buf
12717 	 * xp -- points to xbuf of shadow buf
12718 	 * bsp -- points to layer-private data area of shadow buf
12719 	 * orig_bp -- points to original buf
12720 	 *
12721 	 * First free the shadow buf and its associated xbuf, then free the
12722 	 * layer-private data area from the shadow buf. There is no need to
12723 	 * restore xb_private in the shadow xbuf.
12724 	 */
12725 	sd_shadow_buf_free(bp);
12726 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12727 
12728 	/*
12729 	 * Now update the local variables to point to the original buf, xbuf,
12730 	 * and layer-private area.
12731 	 */
12732 	bp = orig_bp;
12733 	xp = SD_GET_XBUF(bp);
12734 	ASSERT(xp != NULL);
12735 	ASSERT(xp == orig_xp);
12736 	bsp = xp->xb_private;
12737 	ASSERT(bsp != NULL);
12738 
12739 done:
12740 	/*
12741 	 * Restore xb_private to whatever it was set to by the next higher
12742 	 * layer in the chain, then free the layer-private data area.
12743 	 */
12744 	xp->xb_private = bsp->mbs_oprivate;
12745 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
12746 
12747 exit:
12748 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
12749 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
12750 
12751 	SD_NEXT_IODONE(index, un, bp);
12752 }
12753 
12754 
12755 /*
12756  *    Function: sd_checksum_iostart
12757  *
12758  * Description: A stub function for a layer that's currently not used.
12759  *		For now just a placeholder.
12760  *
12761  *     Context: Kernel thread context
12762  */
12763 
12764 static void
12765 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
12766 {
12767 	ASSERT(un != NULL);
12768 	ASSERT(bp != NULL);
12769 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12770 	SD_NEXT_IOSTART(index, un, bp);
12771 }
12772 
12773 
12774 /*
12775  *    Function: sd_checksum_iodone
12776  *
12777  * Description: A stub function for a layer that's currently not used.
12778  *		For now just a placeholder.
12779  *
12780  *     Context: May be called under interrupt context
12781  */
12782 
12783 static void
12784 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
12785 {
12786 	ASSERT(un != NULL);
12787 	ASSERT(bp != NULL);
12788 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12789 	SD_NEXT_IODONE(index, un, bp);
12790 }
12791 
12792 
12793 /*
12794  *    Function: sd_checksum_uscsi_iostart
12795  *
12796  * Description: A stub function for a layer that's currently not used.
12797  *		For now just a placeholder.
12798  *
12799  *     Context: Kernel thread context
12800  */
12801 
12802 static void
12803 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
12804 {
12805 	ASSERT(un != NULL);
12806 	ASSERT(bp != NULL);
12807 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12808 	SD_NEXT_IOSTART(index, un, bp);
12809 }
12810 
12811 
12812 /*
12813  *    Function: sd_checksum_uscsi_iodone
12814  *
12815  * Description: A stub function for a layer that's currently not used.
12816  *		For now just a placeholder.
12817  *
12818  *     Context: May be called under interrupt context
12819  */
12820 
12821 static void
12822 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12823 {
12824 	ASSERT(un != NULL);
12825 	ASSERT(bp != NULL);
12826 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12827 	SD_NEXT_IODONE(index, un, bp);
12828 }
12829 
12830 
12831 /*
12832  *    Function: sd_pm_iostart
12833  *
12834  * Description: iostart-side routine for Power mangement.
12835  *
12836  *     Context: Kernel thread context
12837  */
12838 
12839 static void
12840 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
12841 {
12842 	ASSERT(un != NULL);
12843 	ASSERT(bp != NULL);
12844 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12845 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12846 
12847 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
12848 
12849 	if (sd_pm_entry(un) != DDI_SUCCESS) {
12850 		/*
12851 		 * Set up to return the failed buf back up the 'iodone'
12852 		 * side of the calling chain.
12853 		 */
12854 		bioerror(bp, EIO);
12855 		bp->b_resid = bp->b_bcount;
12856 
12857 		SD_BEGIN_IODONE(index, un, bp);
12858 
12859 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12860 		return;
12861 	}
12862 
12863 	SD_NEXT_IOSTART(index, un, bp);
12864 
12865 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
12866 }
12867 
12868 
12869 /*
12870  *    Function: sd_pm_iodone
12871  *
12872  * Description: iodone-side routine for power mangement.
12873  *
12874  *     Context: may be called from interrupt context
12875  */
12876 
12877 static void
12878 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
12879 {
12880 	ASSERT(un != NULL);
12881 	ASSERT(bp != NULL);
12882 	ASSERT(!mutex_owned(&un->un_pm_mutex));
12883 
12884 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
12885 
12886 	/*
12887 	 * After attach the following flag is only read, so don't
12888 	 * take the penalty of acquiring a mutex for it.
12889 	 */
12890 	if (un->un_f_pm_is_enabled == TRUE) {
12891 		sd_pm_exit(un);
12892 	}
12893 
12894 	SD_NEXT_IODONE(index, un, bp);
12895 
12896 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
12897 }
12898 
12899 
12900 /*
12901  *    Function: sd_core_iostart
12902  *
12903  * Description: Primary driver function for enqueuing buf(9S) structs from
12904  *		the system and initiating IO to the target device
12905  *
12906  *     Context: Kernel thread context. Can sleep.
12907  *
12908  * Assumptions:  - The given xp->xb_blkno is absolute
12909  *		   (ie, relative to the start of the device).
12910  *		 - The IO is to be done using the native blocksize of
12911  *		   the device, as specified in un->un_tgt_blocksize.
12912  */
12913 /* ARGSUSED */
12914 static void
12915 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
12916 {
12917 	struct sd_xbuf *xp;
12918 
12919 	ASSERT(un != NULL);
12920 	ASSERT(bp != NULL);
12921 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12922 	ASSERT(bp->b_resid == 0);
12923 
12924 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
12925 
12926 	xp = SD_GET_XBUF(bp);
12927 	ASSERT(xp != NULL);
12928 
12929 	mutex_enter(SD_MUTEX(un));
12930 
12931 	/*
12932 	 * If we are currently in the failfast state, fail any new IO
12933 	 * that has B_FAILFAST set, then return.
12934 	 */
12935 	if ((bp->b_flags & B_FAILFAST) &&
12936 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
12937 		mutex_exit(SD_MUTEX(un));
12938 		bioerror(bp, EIO);
12939 		bp->b_resid = bp->b_bcount;
12940 		SD_BEGIN_IODONE(index, un, bp);
12941 		return;
12942 	}
12943 
12944 	if (SD_IS_DIRECT_PRIORITY(xp)) {
12945 		/*
12946 		 * Priority command -- transport it immediately.
12947 		 *
12948 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
12949 		 * because all direct priority commands should be associated
12950 		 * with error recovery actions which we don't want to retry.
12951 		 */
12952 		sd_start_cmds(un, bp);
12953 	} else {
12954 		/*
12955 		 * Normal command -- add it to the wait queue, then start
12956 		 * transporting commands from the wait queue.
12957 		 */
12958 		sd_add_buf_to_waitq(un, bp);
12959 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
12960 		sd_start_cmds(un, NULL);
12961 	}
12962 
12963 	mutex_exit(SD_MUTEX(un));
12964 
12965 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
12966 }
12967 
12968 
12969 /*
12970  *    Function: sd_init_cdb_limits
12971  *
12972  * Description: This is to handle scsi_pkt initialization differences
12973  *		between the driver platforms.
12974  *
12975  *		Legacy behaviors:
12976  *
12977  *		If the block number or the sector count exceeds the
12978  *		capabilities of a Group 0 command, shift over to a
12979  *		Group 1 command. We don't blindly use Group 1
12980  *		commands because a) some drives (CDC Wren IVs) get a
12981  *		bit confused, and b) there is probably a fair amount
12982  *		of speed difference for a target to receive and decode
12983  *		a 10 byte command instead of a 6 byte command.
12984  *
12985  *		The xfer time difference of 6 vs 10 byte CDBs is
12986  *		still significant so this code is still worthwhile.
12987  *		10 byte CDBs are very inefficient with the fas HBA driver
12988  *		and older disks. Each CDB byte took 1 usec with some
12989  *		popular disks.
12990  *
12991  *     Context: Must be called at attach time
12992  */
12993 
12994 static void
12995 sd_init_cdb_limits(struct sd_lun *un)
12996 {
12997 	/*
12998 	 * Use CDB_GROUP1 commands for most devices except for
12999 	 * parallel SCSI fixed drives in which case we get better
13000 	 * performance using CDB_GROUP0 commands (where applicable).
13001 	 */
13002 	un->un_mincdb = SD_CDB_GROUP1;
13003 #if !defined(__fibre)
13004 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13005 	    !un->un_f_has_removable_media) {
13006 		un->un_mincdb = SD_CDB_GROUP0;
13007 	}
13008 #endif
13009 
13010 	/*
13011 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13012 	 * commands for fixed disks unless we are building for a 32 bit
13013 	 * kernel.
13014 	 */
13015 #ifdef _LP64
13016 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13017 	    SD_CDB_GROUP4;
13018 #else
13019 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13020 	    SD_CDB_GROUP1;
13021 #endif
13022 
13023 	/*
13024 	 * x86 systems require the PKT_DMA_PARTIAL flag
13025 	 */
13026 #if defined(__x86)
13027 	un->un_pkt_flags = PKT_DMA_PARTIAL;
13028 #else
13029 	un->un_pkt_flags = 0;
13030 #endif
13031 
13032 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13033 	    ? sizeof (struct scsi_arq_status) : 1);
13034 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13035 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13036 }
13037 
13038 
13039 /*
13040  *    Function: sd_initpkt_for_buf
13041  *
13042  * Description: Allocate and initialize for transport a scsi_pkt struct,
13043  *		based upon the info specified in the given buf struct.
13044  *
13045  *		Assumes the xb_blkno in the request is absolute (ie,
13046  *		relative to the start of the device (NOT partition!).
13047  *		Also assumes that the request is using the native block
13048  *		size of the device (as returned by the READ CAPACITY
13049  *		command).
13050  *
13051  * Return Code: SD_PKT_ALLOC_SUCCESS
13052  *		SD_PKT_ALLOC_FAILURE
13053  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13054  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13055  *
13056  *     Context: Kernel thread and may be called from software interrupt context
13057  *		as part of a sdrunout callback. This function may not block or
13058  *		call routines that block
13059  */
13060 
13061 static int
13062 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13063 {
13064 	struct sd_xbuf	*xp;
13065 	struct scsi_pkt *pktp = NULL;
13066 	struct sd_lun	*un;
13067 	size_t		blockcount;
13068 	daddr_t		startblock;
13069 	int		rval;
13070 	int		cmd_flags;
13071 
13072 	ASSERT(bp != NULL);
13073 	ASSERT(pktpp != NULL);
13074 	xp = SD_GET_XBUF(bp);
13075 	ASSERT(xp != NULL);
13076 	un = SD_GET_UN(bp);
13077 	ASSERT(un != NULL);
13078 	ASSERT(mutex_owned(SD_MUTEX(un)));
13079 	ASSERT(bp->b_resid == 0);
13080 
13081 	SD_TRACE(SD_LOG_IO_CORE, un,
13082 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13083 
13084 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13085 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13086 		/*
13087 		 * Already have a scsi_pkt -- just need DMA resources.
13088 		 * We must recompute the CDB in case the mapping returns
13089 		 * a nonzero pkt_resid.
13090 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13091 		 * that is being retried, the unmap/remap of the DMA resouces
13092 		 * will result in the entire transfer starting over again
13093 		 * from the very first block.
13094 		 */
13095 		ASSERT(xp->xb_pktp != NULL);
13096 		pktp = xp->xb_pktp;
13097 	} else {
13098 		pktp = NULL;
13099 	}
13100 #endif /* __i386 || __amd64 */
13101 
13102 	startblock = xp->xb_blkno;	/* Absolute block num. */
13103 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13104 
13105 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13106 
13107 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13108 
13109 #else
13110 
13111 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
13112 
13113 #endif
13114 
13115 	/*
13116 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13117 	 * call scsi_init_pkt, and build the CDB.
13118 	 */
13119 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13120 	    cmd_flags, sdrunout, (caddr_t)un,
13121 	    startblock, blockcount);
13122 
13123 	if (rval == 0) {
13124 		/*
13125 		 * Success.
13126 		 *
13127 		 * If partial DMA is being used and required for this transfer.
13128 		 * set it up here.
13129 		 */
13130 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13131 		    (pktp->pkt_resid != 0)) {
13132 
13133 			/*
13134 			 * Save the CDB length and pkt_resid for the
13135 			 * next xfer
13136 			 */
13137 			xp->xb_dma_resid = pktp->pkt_resid;
13138 
13139 			/* rezero resid */
13140 			pktp->pkt_resid = 0;
13141 
13142 		} else {
13143 			xp->xb_dma_resid = 0;
13144 		}
13145 
13146 		pktp->pkt_flags = un->un_tagflags;
13147 		pktp->pkt_time  = un->un_cmd_timeout;
13148 		pktp->pkt_comp  = sdintr;
13149 
13150 		pktp->pkt_private = bp;
13151 		*pktpp = pktp;
13152 
13153 		SD_TRACE(SD_LOG_IO_CORE, un,
13154 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13155 
13156 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13157 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13158 #endif
13159 
13160 		return (SD_PKT_ALLOC_SUCCESS);
13161 
13162 	}
13163 
13164 	/*
13165 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13166 	 * from sd_setup_rw_pkt.
13167 	 */
13168 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13169 
13170 	if (rval == SD_PKT_ALLOC_FAILURE) {
13171 		*pktpp = NULL;
13172 		/*
13173 		 * Set the driver state to RWAIT to indicate the driver
13174 		 * is waiting on resource allocations. The driver will not
13175 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13176 		 */
13177 		New_state(un, SD_STATE_RWAIT);
13178 
13179 		SD_ERROR(SD_LOG_IO_CORE, un,
13180 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13181 
13182 		if ((bp->b_flags & B_ERROR) != 0) {
13183 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13184 		}
13185 		return (SD_PKT_ALLOC_FAILURE);
13186 	} else {
13187 		/*
13188 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13189 		 *
13190 		 * This should never happen.  Maybe someone messed with the
13191 		 * kernel's minphys?
13192 		 */
13193 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13194 		    "Request rejected: too large for CDB: "
13195 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13196 		SD_ERROR(SD_LOG_IO_CORE, un,
13197 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13198 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13199 
13200 	}
13201 }
13202 
13203 
13204 /*
13205  *    Function: sd_destroypkt_for_buf
13206  *
13207  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13208  *
13209  *     Context: Kernel thread or interrupt context
13210  */
13211 
13212 static void
13213 sd_destroypkt_for_buf(struct buf *bp)
13214 {
13215 	ASSERT(bp != NULL);
13216 	ASSERT(SD_GET_UN(bp) != NULL);
13217 
13218 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13219 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13220 
13221 	ASSERT(SD_GET_PKTP(bp) != NULL);
13222 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13223 
13224 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13225 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13226 }
13227 
13228 /*
13229  *    Function: sd_setup_rw_pkt
13230  *
13231  * Description: Determines appropriate CDB group for the requested LBA
13232  *		and transfer length, calls scsi_init_pkt, and builds
13233  *		the CDB.  Do not use for partial DMA transfers except
13234  *		for the initial transfer since the CDB size must
13235  *		remain constant.
13236  *
13237  *     Context: Kernel thread and may be called from software interrupt
13238  *		context as part of a sdrunout callback. This function may not
13239  *		block or call routines that block
13240  */
13241 
13242 
13243 int
13244 sd_setup_rw_pkt(struct sd_lun *un,
13245     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13246     int (*callback)(caddr_t), caddr_t callback_arg,
13247     diskaddr_t lba, uint32_t blockcount)
13248 {
13249 	struct scsi_pkt *return_pktp;
13250 	union scsi_cdb *cdbp;
13251 	struct sd_cdbinfo *cp = NULL;
13252 	int i;
13253 
13254 	/*
13255 	 * See which size CDB to use, based upon the request.
13256 	 */
13257 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13258 
13259 		/*
13260 		 * Check lba and block count against sd_cdbtab limits.
13261 		 * In the partial DMA case, we have to use the same size
13262 		 * CDB for all the transfers.  Check lba + blockcount
13263 		 * against the max LBA so we know that segment of the
13264 		 * transfer can use the CDB we select.
13265 		 */
13266 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13267 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13268 
13269 			/*
13270 			 * The command will fit into the CDB type
13271 			 * specified by sd_cdbtab[i].
13272 			 */
13273 			cp = sd_cdbtab + i;
13274 
13275 			/*
13276 			 * Call scsi_init_pkt so we can fill in the
13277 			 * CDB.
13278 			 */
13279 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13280 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13281 			    flags, callback, callback_arg);
13282 
13283 			if (return_pktp != NULL) {
13284 
13285 				/*
13286 				 * Return new value of pkt
13287 				 */
13288 				*pktpp = return_pktp;
13289 
13290 				/*
13291 				 * To be safe, zero the CDB insuring there is
13292 				 * no leftover data from a previous command.
13293 				 */
13294 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13295 
13296 				/*
13297 				 * Handle partial DMA mapping
13298 				 */
13299 				if (return_pktp->pkt_resid != 0) {
13300 
13301 					/*
13302 					 * Not going to xfer as many blocks as
13303 					 * originally expected
13304 					 */
13305 					blockcount -=
13306 					    SD_BYTES2TGTBLOCKS(un,
13307 						return_pktp->pkt_resid);
13308 				}
13309 
13310 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13311 
13312 				/*
13313 				 * Set command byte based on the CDB
13314 				 * type we matched.
13315 				 */
13316 				cdbp->scc_cmd = cp->sc_grpmask |
13317 				    ((bp->b_flags & B_READ) ?
13318 					SCMD_READ : SCMD_WRITE);
13319 
13320 				SD_FILL_SCSI1_LUN(un, return_pktp);
13321 
13322 				/*
13323 				 * Fill in LBA and length
13324 				 */
13325 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13326 				    (cp->sc_grpcode == CDB_GROUP4) ||
13327 				    (cp->sc_grpcode == CDB_GROUP0) ||
13328 				    (cp->sc_grpcode == CDB_GROUP5));
13329 
13330 				if (cp->sc_grpcode == CDB_GROUP1) {
13331 					FORMG1ADDR(cdbp, lba);
13332 					FORMG1COUNT(cdbp, blockcount);
13333 					return (0);
13334 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13335 					FORMG4LONGADDR(cdbp, lba);
13336 					FORMG4COUNT(cdbp, blockcount);
13337 					return (0);
13338 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13339 					FORMG0ADDR(cdbp, lba);
13340 					FORMG0COUNT(cdbp, blockcount);
13341 					return (0);
13342 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13343 					FORMG5ADDR(cdbp, lba);
13344 					FORMG5COUNT(cdbp, blockcount);
13345 					return (0);
13346 				}
13347 
13348 				/*
13349 				 * It should be impossible to not match one
13350 				 * of the CDB types above, so we should never
13351 				 * reach this point.  Set the CDB command byte
13352 				 * to test-unit-ready to avoid writing
13353 				 * to somewhere we don't intend.
13354 				 */
13355 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13356 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13357 			} else {
13358 				/*
13359 				 * Couldn't get scsi_pkt
13360 				 */
13361 				return (SD_PKT_ALLOC_FAILURE);
13362 			}
13363 		}
13364 	}
13365 
13366 	/*
13367 	 * None of the available CDB types were suitable.  This really
13368 	 * should never happen:  on a 64 bit system we support
13369 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13370 	 * and on a 32 bit system we will refuse to bind to a device
13371 	 * larger than 2TB so addresses will never be larger than 32 bits.
13372 	 */
13373 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13374 }
13375 
13376 #if defined(__i386) || defined(__amd64)
13377 /*
13378  *    Function: sd_setup_next_rw_pkt
13379  *
13380  * Description: Setup packet for partial DMA transfers, except for the
13381  * 		initial transfer.  sd_setup_rw_pkt should be used for
13382  *		the initial transfer.
13383  *
13384  *     Context: Kernel thread and may be called from interrupt context.
13385  */
13386 
13387 int
13388 sd_setup_next_rw_pkt(struct sd_lun *un,
13389     struct scsi_pkt *pktp, struct buf *bp,
13390     diskaddr_t lba, uint32_t blockcount)
13391 {
13392 	uchar_t com;
13393 	union scsi_cdb *cdbp;
13394 	uchar_t cdb_group_id;
13395 
13396 	ASSERT(pktp != NULL);
13397 	ASSERT(pktp->pkt_cdbp != NULL);
13398 
13399 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13400 	com = cdbp->scc_cmd;
13401 	cdb_group_id = CDB_GROUPID(com);
13402 
13403 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13404 	    (cdb_group_id == CDB_GROUPID_1) ||
13405 	    (cdb_group_id == CDB_GROUPID_4) ||
13406 	    (cdb_group_id == CDB_GROUPID_5));
13407 
13408 	/*
13409 	 * Move pkt to the next portion of the xfer.
13410 	 * func is NULL_FUNC so we do not have to release
13411 	 * the disk mutex here.
13412 	 */
13413 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13414 	    NULL_FUNC, NULL) == pktp) {
13415 		/* Success.  Handle partial DMA */
13416 		if (pktp->pkt_resid != 0) {
13417 			blockcount -=
13418 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13419 		}
13420 
13421 		cdbp->scc_cmd = com;
13422 		SD_FILL_SCSI1_LUN(un, pktp);
13423 		if (cdb_group_id == CDB_GROUPID_1) {
13424 			FORMG1ADDR(cdbp, lba);
13425 			FORMG1COUNT(cdbp, blockcount);
13426 			return (0);
13427 		} else if (cdb_group_id == CDB_GROUPID_4) {
13428 			FORMG4LONGADDR(cdbp, lba);
13429 			FORMG4COUNT(cdbp, blockcount);
13430 			return (0);
13431 		} else if (cdb_group_id == CDB_GROUPID_0) {
13432 			FORMG0ADDR(cdbp, lba);
13433 			FORMG0COUNT(cdbp, blockcount);
13434 			return (0);
13435 		} else if (cdb_group_id == CDB_GROUPID_5) {
13436 			FORMG5ADDR(cdbp, lba);
13437 			FORMG5COUNT(cdbp, blockcount);
13438 			return (0);
13439 		}
13440 
13441 		/* Unreachable */
13442 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13443 	}
13444 
13445 	/*
13446 	 * Error setting up next portion of cmd transfer.
13447 	 * Something is definitely very wrong and this
13448 	 * should not happen.
13449 	 */
13450 	return (SD_PKT_ALLOC_FAILURE);
13451 }
13452 #endif /* defined(__i386) || defined(__amd64) */
13453 
13454 /*
13455  *    Function: sd_initpkt_for_uscsi
13456  *
13457  * Description: Allocate and initialize for transport a scsi_pkt struct,
13458  *		based upon the info specified in the given uscsi_cmd struct.
13459  *
13460  * Return Code: SD_PKT_ALLOC_SUCCESS
13461  *		SD_PKT_ALLOC_FAILURE
13462  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13463  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13464  *
13465  *     Context: Kernel thread and may be called from software interrupt context
13466  *		as part of a sdrunout callback. This function may not block or
13467  *		call routines that block
13468  */
13469 
13470 static int
13471 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
13472 {
13473 	struct uscsi_cmd *uscmd;
13474 	struct sd_xbuf	*xp;
13475 	struct scsi_pkt	*pktp;
13476 	struct sd_lun	*un;
13477 	uint32_t	flags = 0;
13478 
13479 	ASSERT(bp != NULL);
13480 	ASSERT(pktpp != NULL);
13481 	xp = SD_GET_XBUF(bp);
13482 	ASSERT(xp != NULL);
13483 	un = SD_GET_UN(bp);
13484 	ASSERT(un != NULL);
13485 	ASSERT(mutex_owned(SD_MUTEX(un)));
13486 
13487 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13488 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13489 	ASSERT(uscmd != NULL);
13490 
13491 	SD_TRACE(SD_LOG_IO_CORE, un,
13492 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
13493 
13494 	/*
13495 	 * Allocate the scsi_pkt for the command.
13496 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
13497 	 *	 during scsi_init_pkt time and will continue to use the
13498 	 *	 same path as long as the same scsi_pkt is used without
13499 	 *	 intervening scsi_dma_free(). Since uscsi command does
13500 	 *	 not call scsi_dmafree() before retry failed command, it
13501 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
13502 	 *	 set such that scsi_vhci can use other available path for
13503 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
13504 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
13505 	 */
13506 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
13507 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
13508 	    sizeof (struct scsi_arq_status), 0,
13509 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
13510 	    sdrunout, (caddr_t)un);
13511 
13512 	if (pktp == NULL) {
13513 		*pktpp = NULL;
13514 		/*
13515 		 * Set the driver state to RWAIT to indicate the driver
13516 		 * is waiting on resource allocations. The driver will not
13517 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13518 		 */
13519 		New_state(un, SD_STATE_RWAIT);
13520 
13521 		SD_ERROR(SD_LOG_IO_CORE, un,
13522 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
13523 
13524 		if ((bp->b_flags & B_ERROR) != 0) {
13525 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13526 		}
13527 		return (SD_PKT_ALLOC_FAILURE);
13528 	}
13529 
13530 	/*
13531 	 * We do not do DMA breakup for USCSI commands, so return failure
13532 	 * here if all the needed DMA resources were not allocated.
13533 	 */
13534 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
13535 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
13536 		scsi_destroy_pkt(pktp);
13537 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
13538 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
13539 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
13540 	}
13541 
13542 	/* Init the cdb from the given uscsi struct */
13543 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
13544 	    uscmd->uscsi_cdb[0], 0, 0, 0);
13545 
13546 	SD_FILL_SCSI1_LUN(un, pktp);
13547 
13548 	/*
13549 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
13550 	 * for listing of the supported flags.
13551 	 */
13552 
13553 	if (uscmd->uscsi_flags & USCSI_SILENT) {
13554 		flags |= FLAG_SILENT;
13555 	}
13556 
13557 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
13558 		flags |= FLAG_DIAGNOSE;
13559 	}
13560 
13561 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
13562 		flags |= FLAG_ISOLATE;
13563 	}
13564 
13565 	if (un->un_f_is_fibre == FALSE) {
13566 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
13567 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
13568 		}
13569 	}
13570 
13571 	/*
13572 	 * Set the pkt flags here so we save time later.
13573 	 * Note: These flags are NOT in the uscsi man page!!!
13574 	 */
13575 	if (uscmd->uscsi_flags & USCSI_HEAD) {
13576 		flags |= FLAG_HEAD;
13577 	}
13578 
13579 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
13580 		flags |= FLAG_NOINTR;
13581 	}
13582 
13583 	/*
13584 	 * For tagged queueing, things get a bit complicated.
13585 	 * Check first for head of queue and last for ordered queue.
13586 	 * If neither head nor order, use the default driver tag flags.
13587 	 */
13588 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
13589 		if (uscmd->uscsi_flags & USCSI_HTAG) {
13590 			flags |= FLAG_HTAG;
13591 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
13592 			flags |= FLAG_OTAG;
13593 		} else {
13594 			flags |= un->un_tagflags & FLAG_TAGMASK;
13595 		}
13596 	}
13597 
13598 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
13599 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
13600 	}
13601 
13602 	pktp->pkt_flags = flags;
13603 
13604 	/* Copy the caller's CDB into the pkt... */
13605 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
13606 
13607 	if (uscmd->uscsi_timeout == 0) {
13608 		pktp->pkt_time = un->un_uscsi_timeout;
13609 	} else {
13610 		pktp->pkt_time = uscmd->uscsi_timeout;
13611 	}
13612 
13613 	/* need it later to identify USCSI request in sdintr */
13614 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
13615 
13616 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
13617 
13618 	pktp->pkt_private = bp;
13619 	pktp->pkt_comp = sdintr;
13620 	*pktpp = pktp;
13621 
13622 	SD_TRACE(SD_LOG_IO_CORE, un,
13623 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
13624 
13625 	return (SD_PKT_ALLOC_SUCCESS);
13626 }
13627 
13628 
13629 /*
13630  *    Function: sd_destroypkt_for_uscsi
13631  *
13632  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
13633  *		IOs.. Also saves relevant info into the associated uscsi_cmd
13634  *		struct.
13635  *
13636  *     Context: May be called under interrupt context
13637  */
13638 
13639 static void
13640 sd_destroypkt_for_uscsi(struct buf *bp)
13641 {
13642 	struct uscsi_cmd *uscmd;
13643 	struct sd_xbuf	*xp;
13644 	struct scsi_pkt	*pktp;
13645 	struct sd_lun	*un;
13646 
13647 	ASSERT(bp != NULL);
13648 	xp = SD_GET_XBUF(bp);
13649 	ASSERT(xp != NULL);
13650 	un = SD_GET_UN(bp);
13651 	ASSERT(un != NULL);
13652 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13653 	pktp = SD_GET_PKTP(bp);
13654 	ASSERT(pktp != NULL);
13655 
13656 	SD_TRACE(SD_LOG_IO_CORE, un,
13657 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
13658 
13659 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
13660 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
13661 	ASSERT(uscmd != NULL);
13662 
13663 	/* Save the status and the residual into the uscsi_cmd struct */
13664 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
13665 	uscmd->uscsi_resid  = bp->b_resid;
13666 
13667 	/*
13668 	 * If enabled, copy any saved sense data into the area specified
13669 	 * by the uscsi command.
13670 	 */
13671 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
13672 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
13673 		/*
13674 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
13675 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
13676 		 */
13677 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
13678 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
13679 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
13680 	}
13681 
13682 	/* We are done with the scsi_pkt; free it now */
13683 	ASSERT(SD_GET_PKTP(bp) != NULL);
13684 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13685 
13686 	SD_TRACE(SD_LOG_IO_CORE, un,
13687 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
13688 }
13689 
13690 
13691 /*
13692  *    Function: sd_bioclone_alloc
13693  *
13694  * Description: Allocate a buf(9S) and init it as per the given buf
13695  *		and the various arguments.  The associated sd_xbuf
13696  *		struct is (nearly) duplicated.  The struct buf *bp
13697  *		argument is saved in new_xp->xb_private.
13698  *
13699  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13700  *		datalen - size of data area for the shadow bp
13701  *		blkno - starting LBA
13702  *		func - function pointer for b_iodone in the shadow buf. (May
13703  *			be NULL if none.)
13704  *
13705  * Return Code: Pointer to allocates buf(9S) struct
13706  *
13707  *     Context: Can sleep.
13708  */
13709 
13710 static struct buf *
13711 sd_bioclone_alloc(struct buf *bp, size_t datalen,
13712 	daddr_t blkno, int (*func)(struct buf *))
13713 {
13714 	struct	sd_lun	*un;
13715 	struct	sd_xbuf	*xp;
13716 	struct	sd_xbuf	*new_xp;
13717 	struct	buf	*new_bp;
13718 
13719 	ASSERT(bp != NULL);
13720 	xp = SD_GET_XBUF(bp);
13721 	ASSERT(xp != NULL);
13722 	un = SD_GET_UN(bp);
13723 	ASSERT(un != NULL);
13724 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13725 
13726 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
13727 	    NULL, KM_SLEEP);
13728 
13729 	new_bp->b_lblkno	= blkno;
13730 
13731 	/*
13732 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13733 	 * original xbuf into it.
13734 	 */
13735 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13736 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13737 
13738 	/*
13739 	 * The given bp is automatically saved in the xb_private member
13740 	 * of the new xbuf.  Callers are allowed to depend on this.
13741 	 */
13742 	new_xp->xb_private = bp;
13743 
13744 	new_bp->b_private  = new_xp;
13745 
13746 	return (new_bp);
13747 }
13748 
13749 /*
13750  *    Function: sd_shadow_buf_alloc
13751  *
13752  * Description: Allocate a buf(9S) and init it as per the given buf
13753  *		and the various arguments.  The associated sd_xbuf
13754  *		struct is (nearly) duplicated.  The struct buf *bp
13755  *		argument is saved in new_xp->xb_private.
13756  *
13757  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
13758  *		datalen - size of data area for the shadow bp
13759  *		bflags - B_READ or B_WRITE (pseudo flag)
13760  *		blkno - starting LBA
13761  *		func - function pointer for b_iodone in the shadow buf. (May
13762  *			be NULL if none.)
13763  *
13764  * Return Code: Pointer to allocates buf(9S) struct
13765  *
13766  *     Context: Can sleep.
13767  */
13768 
13769 static struct buf *
13770 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
13771 	daddr_t blkno, int (*func)(struct buf *))
13772 {
13773 	struct	sd_lun	*un;
13774 	struct	sd_xbuf	*xp;
13775 	struct	sd_xbuf	*new_xp;
13776 	struct	buf	*new_bp;
13777 
13778 	ASSERT(bp != NULL);
13779 	xp = SD_GET_XBUF(bp);
13780 	ASSERT(xp != NULL);
13781 	un = SD_GET_UN(bp);
13782 	ASSERT(un != NULL);
13783 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13784 
13785 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
13786 		bp_mapin(bp);
13787 	}
13788 
13789 	bflags &= (B_READ | B_WRITE);
13790 #if defined(__i386) || defined(__amd64)
13791 	new_bp = getrbuf(KM_SLEEP);
13792 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
13793 	new_bp->b_bcount = datalen;
13794 	new_bp->b_flags	= bp->b_flags | bflags;
13795 #else
13796 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
13797 	    datalen, bflags, SLEEP_FUNC, NULL);
13798 #endif
13799 	new_bp->av_forw	= NULL;
13800 	new_bp->av_back	= NULL;
13801 	new_bp->b_dev	= bp->b_dev;
13802 	new_bp->b_blkno	= blkno;
13803 	new_bp->b_iodone = func;
13804 	new_bp->b_edev	= bp->b_edev;
13805 	new_bp->b_resid	= 0;
13806 
13807 	/* We need to preserve the B_FAILFAST flag */
13808 	if (bp->b_flags & B_FAILFAST) {
13809 		new_bp->b_flags |= B_FAILFAST;
13810 	}
13811 
13812 	/*
13813 	 * Allocate an xbuf for the shadow bp and copy the contents of the
13814 	 * original xbuf into it.
13815 	 */
13816 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
13817 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
13818 
13819 	/* Need later to copy data between the shadow buf & original buf! */
13820 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
13821 
13822 	/*
13823 	 * The given bp is automatically saved in the xb_private member
13824 	 * of the new xbuf.  Callers are allowed to depend on this.
13825 	 */
13826 	new_xp->xb_private = bp;
13827 
13828 	new_bp->b_private  = new_xp;
13829 
13830 	return (new_bp);
13831 }
13832 
13833 /*
13834  *    Function: sd_bioclone_free
13835  *
13836  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
13837  *		in the larger than partition operation.
13838  *
13839  *     Context: May be called under interrupt context
13840  */
13841 
13842 static void
13843 sd_bioclone_free(struct buf *bp)
13844 {
13845 	struct sd_xbuf	*xp;
13846 
13847 	ASSERT(bp != NULL);
13848 	xp = SD_GET_XBUF(bp);
13849 	ASSERT(xp != NULL);
13850 
13851 	/*
13852 	 * Call bp_mapout() before freeing the buf,  in case a lower
13853 	 * layer or HBA  had done a bp_mapin().  we must do this here
13854 	 * as we are the "originator" of the shadow buf.
13855 	 */
13856 	bp_mapout(bp);
13857 
13858 	/*
13859 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13860 	 * never gets confused by a stale value in this field. (Just a little
13861 	 * extra defensiveness here.)
13862 	 */
13863 	bp->b_iodone = NULL;
13864 
13865 	freerbuf(bp);
13866 
13867 	kmem_free(xp, sizeof (struct sd_xbuf));
13868 }
13869 
13870 /*
13871  *    Function: sd_shadow_buf_free
13872  *
13873  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
13874  *
13875  *     Context: May be called under interrupt context
13876  */
13877 
13878 static void
13879 sd_shadow_buf_free(struct buf *bp)
13880 {
13881 	struct sd_xbuf	*xp;
13882 
13883 	ASSERT(bp != NULL);
13884 	xp = SD_GET_XBUF(bp);
13885 	ASSERT(xp != NULL);
13886 
13887 #if defined(__sparc)
13888 	/*
13889 	 * Call bp_mapout() before freeing the buf,  in case a lower
13890 	 * layer or HBA  had done a bp_mapin().  we must do this here
13891 	 * as we are the "originator" of the shadow buf.
13892 	 */
13893 	bp_mapout(bp);
13894 #endif
13895 
13896 	/*
13897 	 * Null out b_iodone before freeing the bp, to ensure that the driver
13898 	 * never gets confused by a stale value in this field. (Just a little
13899 	 * extra defensiveness here.)
13900 	 */
13901 	bp->b_iodone = NULL;
13902 
13903 #if defined(__i386) || defined(__amd64)
13904 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
13905 	freerbuf(bp);
13906 #else
13907 	scsi_free_consistent_buf(bp);
13908 #endif
13909 
13910 	kmem_free(xp, sizeof (struct sd_xbuf));
13911 }
13912 
13913 
13914 /*
13915  *    Function: sd_print_transport_rejected_message
13916  *
13917  * Description: This implements the ludicrously complex rules for printing
13918  *		a "transport rejected" message.  This is to address the
13919  *		specific problem of having a flood of this error message
13920  *		produced when a failover occurs.
13921  *
13922  *     Context: Any.
13923  */
13924 
13925 static void
13926 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
13927 	int code)
13928 {
13929 	ASSERT(un != NULL);
13930 	ASSERT(mutex_owned(SD_MUTEX(un)));
13931 	ASSERT(xp != NULL);
13932 
13933 	/*
13934 	 * Print the "transport rejected" message under the following
13935 	 * conditions:
13936 	 *
13937 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
13938 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
13939 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
13940 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
13941 	 *   scsi_transport(9F) (which indicates that the target might have
13942 	 *   gone off-line).  This uses the un->un_tran_fatal_count
13943 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
13944 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
13945 	 *   from scsi_transport().
13946 	 *
13947 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
13948 	 * the preceeding cases in order for the message to be printed.
13949 	 */
13950 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
13951 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
13952 		    (code != TRAN_FATAL_ERROR) ||
13953 		    (un->un_tran_fatal_count == 1)) {
13954 			switch (code) {
13955 			case TRAN_BADPKT:
13956 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13957 				    "transport rejected bad packet\n");
13958 				break;
13959 			case TRAN_FATAL_ERROR:
13960 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13961 				    "transport rejected fatal error\n");
13962 				break;
13963 			default:
13964 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13965 				    "transport rejected (%d)\n", code);
13966 				break;
13967 			}
13968 		}
13969 	}
13970 }
13971 
13972 
13973 /*
13974  *    Function: sd_add_buf_to_waitq
13975  *
13976  * Description: Add the given buf(9S) struct to the wait queue for the
13977  *		instance.  If sorting is enabled, then the buf is added
13978  *		to the queue via an elevator sort algorithm (a la
13979  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
13980  *		If sorting is not enabled, then the buf is just added
13981  *		to the end of the wait queue.
13982  *
13983  * Return Code: void
13984  *
13985  *     Context: Does not sleep/block, therefore technically can be called
13986  *		from any context.  However if sorting is enabled then the
13987  *		execution time is indeterminate, and may take long if
13988  *		the wait queue grows large.
13989  */
13990 
13991 static void
13992 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
13993 {
13994 	struct buf *ap;
13995 
13996 	ASSERT(bp != NULL);
13997 	ASSERT(un != NULL);
13998 	ASSERT(mutex_owned(SD_MUTEX(un)));
13999 
14000 	/* If the queue is empty, add the buf as the only entry & return. */
14001 	if (un->un_waitq_headp == NULL) {
14002 		ASSERT(un->un_waitq_tailp == NULL);
14003 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14004 		bp->av_forw = NULL;
14005 		return;
14006 	}
14007 
14008 	ASSERT(un->un_waitq_tailp != NULL);
14009 
14010 	/*
14011 	 * If sorting is disabled, just add the buf to the tail end of
14012 	 * the wait queue and return.
14013 	 */
14014 	if (un->un_f_disksort_disabled) {
14015 		un->un_waitq_tailp->av_forw = bp;
14016 		un->un_waitq_tailp = bp;
14017 		bp->av_forw = NULL;
14018 		return;
14019 	}
14020 
14021 	/*
14022 	 * Sort thru the list of requests currently on the wait queue
14023 	 * and add the new buf request at the appropriate position.
14024 	 *
14025 	 * The un->un_waitq_headp is an activity chain pointer on which
14026 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14027 	 * first queue holds those requests which are positioned after
14028 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14029 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14030 	 * Thus we implement a one way scan, retracting after reaching
14031 	 * the end of the drive to the first request on the second
14032 	 * queue, at which time it becomes the first queue.
14033 	 * A one-way scan is natural because of the way UNIX read-ahead
14034 	 * blocks are allocated.
14035 	 *
14036 	 * If we lie after the first request, then we must locate the
14037 	 * second request list and add ourselves to it.
14038 	 */
14039 	ap = un->un_waitq_headp;
14040 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14041 		while (ap->av_forw != NULL) {
14042 			/*
14043 			 * Look for an "inversion" in the (normally
14044 			 * ascending) block numbers. This indicates
14045 			 * the start of the second request list.
14046 			 */
14047 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14048 				/*
14049 				 * Search the second request list for the
14050 				 * first request at a larger block number.
14051 				 * We go before that; however if there is
14052 				 * no such request, we go at the end.
14053 				 */
14054 				do {
14055 					if (SD_GET_BLKNO(bp) <
14056 					    SD_GET_BLKNO(ap->av_forw)) {
14057 						goto insert;
14058 					}
14059 					ap = ap->av_forw;
14060 				} while (ap->av_forw != NULL);
14061 				goto insert;		/* after last */
14062 			}
14063 			ap = ap->av_forw;
14064 		}
14065 
14066 		/*
14067 		 * No inversions... we will go after the last, and
14068 		 * be the first request in the second request list.
14069 		 */
14070 		goto insert;
14071 	}
14072 
14073 	/*
14074 	 * Request is at/after the current request...
14075 	 * sort in the first request list.
14076 	 */
14077 	while (ap->av_forw != NULL) {
14078 		/*
14079 		 * We want to go after the current request (1) if
14080 		 * there is an inversion after it (i.e. it is the end
14081 		 * of the first request list), or (2) if the next
14082 		 * request is a larger block no. than our request.
14083 		 */
14084 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14085 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14086 			goto insert;
14087 		}
14088 		ap = ap->av_forw;
14089 	}
14090 
14091 	/*
14092 	 * Neither a second list nor a larger request, therefore
14093 	 * we go at the end of the first list (which is the same
14094 	 * as the end of the whole schebang).
14095 	 */
14096 insert:
14097 	bp->av_forw = ap->av_forw;
14098 	ap->av_forw = bp;
14099 
14100 	/*
14101 	 * If we inserted onto the tail end of the waitq, make sure the
14102 	 * tail pointer is updated.
14103 	 */
14104 	if (ap == un->un_waitq_tailp) {
14105 		un->un_waitq_tailp = bp;
14106 	}
14107 }
14108 
14109 
14110 /*
14111  *    Function: sd_start_cmds
14112  *
14113  * Description: Remove and transport cmds from the driver queues.
14114  *
14115  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14116  *
14117  *		immed_bp - ptr to a buf to be transported immediately. Only
14118  *		the immed_bp is transported; bufs on the waitq are not
14119  *		processed and the un_retry_bp is not checked.  If immed_bp is
14120  *		NULL, then normal queue processing is performed.
14121  *
14122  *     Context: May be called from kernel thread context, interrupt context,
14123  *		or runout callback context. This function may not block or
14124  *		call routines that block.
14125  */
14126 
14127 static void
14128 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14129 {
14130 	struct	sd_xbuf	*xp;
14131 	struct	buf	*bp;
14132 	void	(*statp)(kstat_io_t *);
14133 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14134 	void	(*saved_statp)(kstat_io_t *);
14135 #endif
14136 	int	rval;
14137 
14138 	ASSERT(un != NULL);
14139 	ASSERT(mutex_owned(SD_MUTEX(un)));
14140 	ASSERT(un->un_ncmds_in_transport >= 0);
14141 	ASSERT(un->un_throttle >= 0);
14142 
14143 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14144 
14145 	do {
14146 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14147 		saved_statp = NULL;
14148 #endif
14149 
14150 		/*
14151 		 * If we are syncing or dumping, fail the command to
14152 		 * avoid recursively calling back into scsi_transport().
14153 		 * The dump I/O itself uses a separate code path so this
14154 		 * only prevents non-dump I/O from being sent while dumping.
14155 		 * File system sync takes place before dumping begins.
14156 		 * During panic, filesystem I/O is allowed provided
14157 		 * un_in_callback is <= 1.  This is to prevent recursion
14158 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14159 		 * sd_start_cmds and so on.  See panic.c for more information
14160 		 * about the states the system can be in during panic.
14161 		 */
14162 		if ((un->un_state == SD_STATE_DUMPING) ||
14163 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14164 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14165 			    "sd_start_cmds: panicking\n");
14166 			goto exit;
14167 		}
14168 
14169 		if ((bp = immed_bp) != NULL) {
14170 			/*
14171 			 * We have a bp that must be transported immediately.
14172 			 * It's OK to transport the immed_bp here without doing
14173 			 * the throttle limit check because the immed_bp is
14174 			 * always used in a retry/recovery case. This means
14175 			 * that we know we are not at the throttle limit by
14176 			 * virtue of the fact that to get here we must have
14177 			 * already gotten a command back via sdintr(). This also
14178 			 * relies on (1) the command on un_retry_bp preventing
14179 			 * further commands from the waitq from being issued;
14180 			 * and (2) the code in sd_retry_command checking the
14181 			 * throttle limit before issuing a delayed or immediate
14182 			 * retry. This holds even if the throttle limit is
14183 			 * currently ratcheted down from its maximum value.
14184 			 */
14185 			statp = kstat_runq_enter;
14186 			if (bp == un->un_retry_bp) {
14187 				ASSERT((un->un_retry_statp == NULL) ||
14188 				    (un->un_retry_statp == kstat_waitq_enter) ||
14189 				    (un->un_retry_statp ==
14190 				    kstat_runq_back_to_waitq));
14191 				/*
14192 				 * If the waitq kstat was incremented when
14193 				 * sd_set_retry_bp() queued this bp for a retry,
14194 				 * then we must set up statp so that the waitq
14195 				 * count will get decremented correctly below.
14196 				 * Also we must clear un->un_retry_statp to
14197 				 * ensure that we do not act on a stale value
14198 				 * in this field.
14199 				 */
14200 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14201 				    (un->un_retry_statp ==
14202 				    kstat_runq_back_to_waitq)) {
14203 					statp = kstat_waitq_to_runq;
14204 				}
14205 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14206 				saved_statp = un->un_retry_statp;
14207 #endif
14208 				un->un_retry_statp = NULL;
14209 
14210 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14211 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14212 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14213 				    un, un->un_retry_bp, un->un_throttle,
14214 				    un->un_ncmds_in_transport);
14215 			} else {
14216 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14217 				    "processing priority bp:0x%p\n", bp);
14218 			}
14219 
14220 		} else if ((bp = un->un_waitq_headp) != NULL) {
14221 			/*
14222 			 * A command on the waitq is ready to go, but do not
14223 			 * send it if:
14224 			 *
14225 			 * (1) the throttle limit has been reached, or
14226 			 * (2) a retry is pending, or
14227 			 * (3) a START_STOP_UNIT callback pending, or
14228 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14229 			 *	command is pending.
14230 			 *
14231 			 * For all of these conditions, IO processing will
14232 			 * restart after the condition is cleared.
14233 			 */
14234 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14235 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14236 				    "sd_start_cmds: exiting, "
14237 				    "throttle limit reached!\n");
14238 				goto exit;
14239 			}
14240 			if (un->un_retry_bp != NULL) {
14241 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14242 				    "sd_start_cmds: exiting, retry pending!\n");
14243 				goto exit;
14244 			}
14245 			if (un->un_startstop_timeid != NULL) {
14246 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14247 				    "sd_start_cmds: exiting, "
14248 				    "START_STOP pending!\n");
14249 				goto exit;
14250 			}
14251 			if (un->un_direct_priority_timeid != NULL) {
14252 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14253 				    "sd_start_cmds: exiting, "
14254 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14255 				goto exit;
14256 			}
14257 
14258 			/* Dequeue the command */
14259 			un->un_waitq_headp = bp->av_forw;
14260 			if (un->un_waitq_headp == NULL) {
14261 				un->un_waitq_tailp = NULL;
14262 			}
14263 			bp->av_forw = NULL;
14264 			statp = kstat_waitq_to_runq;
14265 			SD_TRACE(SD_LOG_IO_CORE, un,
14266 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14267 
14268 		} else {
14269 			/* No work to do so bail out now */
14270 			SD_TRACE(SD_LOG_IO_CORE, un,
14271 			    "sd_start_cmds: no more work, exiting!\n");
14272 			goto exit;
14273 		}
14274 
14275 		/*
14276 		 * Reset the state to normal. This is the mechanism by which
14277 		 * the state transitions from either SD_STATE_RWAIT or
14278 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14279 		 * If state is SD_STATE_PM_CHANGING then this command is
14280 		 * part of the device power control and the state must
14281 		 * not be put back to normal. Doing so would would
14282 		 * allow new commands to proceed when they shouldn't,
14283 		 * the device may be going off.
14284 		 */
14285 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14286 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14287 			New_state(un, SD_STATE_NORMAL);
14288 		    }
14289 
14290 		xp = SD_GET_XBUF(bp);
14291 		ASSERT(xp != NULL);
14292 
14293 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14294 		/*
14295 		 * Allocate the scsi_pkt if we need one, or attach DMA
14296 		 * resources if we have a scsi_pkt that needs them. The
14297 		 * latter should only occur for commands that are being
14298 		 * retried.
14299 		 */
14300 		if ((xp->xb_pktp == NULL) ||
14301 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14302 #else
14303 		if (xp->xb_pktp == NULL) {
14304 #endif
14305 			/*
14306 			 * There is no scsi_pkt allocated for this buf. Call
14307 			 * the initpkt function to allocate & init one.
14308 			 *
14309 			 * The scsi_init_pkt runout callback functionality is
14310 			 * implemented as follows:
14311 			 *
14312 			 * 1) The initpkt function always calls
14313 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14314 			 *    callback routine.
14315 			 * 2) A successful packet allocation is initialized and
14316 			 *    the I/O is transported.
14317 			 * 3) The I/O associated with an allocation resource
14318 			 *    failure is left on its queue to be retried via
14319 			 *    runout or the next I/O.
14320 			 * 4) The I/O associated with a DMA error is removed
14321 			 *    from the queue and failed with EIO. Processing of
14322 			 *    the transport queues is also halted to be
14323 			 *    restarted via runout or the next I/O.
14324 			 * 5) The I/O associated with a CDB size or packet
14325 			 *    size error is removed from the queue and failed
14326 			 *    with EIO. Processing of the transport queues is
14327 			 *    continued.
14328 			 *
14329 			 * Note: there is no interface for canceling a runout
14330 			 * callback. To prevent the driver from detaching or
14331 			 * suspending while a runout is pending the driver
14332 			 * state is set to SD_STATE_RWAIT
14333 			 *
14334 			 * Note: using the scsi_init_pkt callback facility can
14335 			 * result in an I/O request persisting at the head of
14336 			 * the list which cannot be satisfied even after
14337 			 * multiple retries. In the future the driver may
14338 			 * implement some kind of maximum runout count before
14339 			 * failing an I/O.
14340 			 *
14341 			 * Note: the use of funcp below may seem superfluous,
14342 			 * but it helps warlock figure out the correct
14343 			 * initpkt function calls (see [s]sd.wlcmd).
14344 			 */
14345 			struct scsi_pkt	*pktp;
14346 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14347 
14348 			ASSERT(bp != un->un_rqs_bp);
14349 
14350 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14351 			switch ((*funcp)(bp, &pktp)) {
14352 			case  SD_PKT_ALLOC_SUCCESS:
14353 				xp->xb_pktp = pktp;
14354 				SD_TRACE(SD_LOG_IO_CORE, un,
14355 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14356 				    pktp);
14357 				goto got_pkt;
14358 
14359 			case SD_PKT_ALLOC_FAILURE:
14360 				/*
14361 				 * Temporary (hopefully) resource depletion.
14362 				 * Since retries and RQS commands always have a
14363 				 * scsi_pkt allocated, these cases should never
14364 				 * get here. So the only cases this needs to
14365 				 * handle is a bp from the waitq (which we put
14366 				 * back onto the waitq for sdrunout), or a bp
14367 				 * sent as an immed_bp (which we just fail).
14368 				 */
14369 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14370 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14371 
14372 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14373 
14374 				if (bp == immed_bp) {
14375 					/*
14376 					 * If SD_XB_DMA_FREED is clear, then
14377 					 * this is a failure to allocate a
14378 					 * scsi_pkt, and we must fail the
14379 					 * command.
14380 					 */
14381 					if ((xp->xb_pkt_flags &
14382 					    SD_XB_DMA_FREED) == 0) {
14383 						break;
14384 					}
14385 
14386 					/*
14387 					 * If this immediate command is NOT our
14388 					 * un_retry_bp, then we must fail it.
14389 					 */
14390 					if (bp != un->un_retry_bp) {
14391 						break;
14392 					}
14393 
14394 					/*
14395 					 * We get here if this cmd is our
14396 					 * un_retry_bp that was DMAFREED, but
14397 					 * scsi_init_pkt() failed to reallocate
14398 					 * DMA resources when we attempted to
14399 					 * retry it. This can happen when an
14400 					 * mpxio failover is in progress, but
14401 					 * we don't want to just fail the
14402 					 * command in this case.
14403 					 *
14404 					 * Use timeout(9F) to restart it after
14405 					 * a 100ms delay.  We don't want to
14406 					 * let sdrunout() restart it, because
14407 					 * sdrunout() is just supposed to start
14408 					 * commands that are sitting on the
14409 					 * wait queue.  The un_retry_bp stays
14410 					 * set until the command completes, but
14411 					 * sdrunout can be called many times
14412 					 * before that happens.  Since sdrunout
14413 					 * cannot tell if the un_retry_bp is
14414 					 * already in the transport, it could
14415 					 * end up calling scsi_transport() for
14416 					 * the un_retry_bp multiple times.
14417 					 *
14418 					 * Also: don't schedule the callback
14419 					 * if some other callback is already
14420 					 * pending.
14421 					 */
14422 					if (un->un_retry_statp == NULL) {
14423 						/*
14424 						 * restore the kstat pointer to
14425 						 * keep kstat counts coherent
14426 						 * when we do retry the command.
14427 						 */
14428 						un->un_retry_statp =
14429 						    saved_statp;
14430 					}
14431 
14432 					if ((un->un_startstop_timeid == NULL) &&
14433 					    (un->un_retry_timeid == NULL) &&
14434 					    (un->un_direct_priority_timeid ==
14435 					    NULL)) {
14436 
14437 						un->un_retry_timeid =
14438 						    timeout(
14439 						    sd_start_retry_command,
14440 						    un, SD_RESTART_TIMEOUT);
14441 					}
14442 					goto exit;
14443 				}
14444 
14445 #else
14446 				if (bp == immed_bp) {
14447 					break;	/* Just fail the command */
14448 				}
14449 #endif
14450 
14451 				/* Add the buf back to the head of the waitq */
14452 				bp->av_forw = un->un_waitq_headp;
14453 				un->un_waitq_headp = bp;
14454 				if (un->un_waitq_tailp == NULL) {
14455 					un->un_waitq_tailp = bp;
14456 				}
14457 				goto exit;
14458 
14459 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
14460 				/*
14461 				 * HBA DMA resource failure. Fail the command
14462 				 * and continue processing of the queues.
14463 				 */
14464 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14465 				    "sd_start_cmds: "
14466 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
14467 				break;
14468 
14469 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
14470 				/*
14471 				 * Note:x86: Partial DMA mapping not supported
14472 				 * for USCSI commands, and all the needed DMA
14473 				 * resources were not allocated.
14474 				 */
14475 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14476 				    "sd_start_cmds: "
14477 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
14478 				break;
14479 
14480 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
14481 				/*
14482 				 * Note:x86: Request cannot fit into CDB based
14483 				 * on lba and len.
14484 				 */
14485 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14486 				    "sd_start_cmds: "
14487 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
14488 				break;
14489 
14490 			default:
14491 				/* Should NEVER get here! */
14492 				panic("scsi_initpkt error");
14493 				/*NOTREACHED*/
14494 			}
14495 
14496 			/*
14497 			 * Fatal error in allocating a scsi_pkt for this buf.
14498 			 * Update kstats & return the buf with an error code.
14499 			 * We must use sd_return_failed_command_no_restart() to
14500 			 * avoid a recursive call back into sd_start_cmds().
14501 			 * However this also means that we must keep processing
14502 			 * the waitq here in order to avoid stalling.
14503 			 */
14504 			if (statp == kstat_waitq_to_runq) {
14505 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
14506 			}
14507 			sd_return_failed_command_no_restart(un, bp, EIO);
14508 			if (bp == immed_bp) {
14509 				/* immed_bp is gone by now, so clear this */
14510 				immed_bp = NULL;
14511 			}
14512 			continue;
14513 		}
14514 got_pkt:
14515 		if (bp == immed_bp) {
14516 			/* goto the head of the class.... */
14517 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
14518 		}
14519 
14520 		un->un_ncmds_in_transport++;
14521 		SD_UPDATE_KSTATS(un, statp, bp);
14522 
14523 		/*
14524 		 * Call scsi_transport() to send the command to the target.
14525 		 * According to SCSA architecture, we must drop the mutex here
14526 		 * before calling scsi_transport() in order to avoid deadlock.
14527 		 * Note that the scsi_pkt's completion routine can be executed
14528 		 * (from interrupt context) even before the call to
14529 		 * scsi_transport() returns.
14530 		 */
14531 		SD_TRACE(SD_LOG_IO_CORE, un,
14532 		    "sd_start_cmds: calling scsi_transport()\n");
14533 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
14534 
14535 		mutex_exit(SD_MUTEX(un));
14536 		rval = scsi_transport(xp->xb_pktp);
14537 		mutex_enter(SD_MUTEX(un));
14538 
14539 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14540 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
14541 
14542 		switch (rval) {
14543 		case TRAN_ACCEPT:
14544 			/* Clear this with every pkt accepted by the HBA */
14545 			un->un_tran_fatal_count = 0;
14546 			break;	/* Success; try the next cmd (if any) */
14547 
14548 		case TRAN_BUSY:
14549 			un->un_ncmds_in_transport--;
14550 			ASSERT(un->un_ncmds_in_transport >= 0);
14551 
14552 			/*
14553 			 * Don't retry request sense, the sense data
14554 			 * is lost when another request is sent.
14555 			 * Free up the rqs buf and retry
14556 			 * the original failed cmd.  Update kstat.
14557 			 */
14558 			if (bp == un->un_rqs_bp) {
14559 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14560 				bp = sd_mark_rqs_idle(un, xp);
14561 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
14562 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
14563 					kstat_waitq_enter);
14564 				goto exit;
14565 			}
14566 
14567 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14568 			/*
14569 			 * Free the DMA resources for the  scsi_pkt. This will
14570 			 * allow mpxio to select another path the next time
14571 			 * we call scsi_transport() with this scsi_pkt.
14572 			 * See sdintr() for the rationalization behind this.
14573 			 */
14574 			if ((un->un_f_is_fibre == TRUE) &&
14575 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
14576 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
14577 				scsi_dmafree(xp->xb_pktp);
14578 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
14579 			}
14580 #endif
14581 
14582 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
14583 				/*
14584 				 * Commands that are SD_PATH_DIRECT_PRIORITY
14585 				 * are for error recovery situations. These do
14586 				 * not use the normal command waitq, so if they
14587 				 * get a TRAN_BUSY we cannot put them back onto
14588 				 * the waitq for later retry. One possible
14589 				 * problem is that there could already be some
14590 				 * other command on un_retry_bp that is waiting
14591 				 * for this one to complete, so we would be
14592 				 * deadlocked if we put this command back onto
14593 				 * the waitq for later retry (since un_retry_bp
14594 				 * must complete before the driver gets back to
14595 				 * commands on the waitq).
14596 				 *
14597 				 * To avoid deadlock we must schedule a callback
14598 				 * that will restart this command after a set
14599 				 * interval.  This should keep retrying for as
14600 				 * long as the underlying transport keeps
14601 				 * returning TRAN_BUSY (just like for other
14602 				 * commands).  Use the same timeout interval as
14603 				 * for the ordinary TRAN_BUSY retry.
14604 				 */
14605 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14606 				    "sd_start_cmds: scsi_transport() returned "
14607 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
14608 
14609 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14610 				un->un_direct_priority_timeid =
14611 				    timeout(sd_start_direct_priority_command,
14612 				    bp, SD_BSY_TIMEOUT / 500);
14613 
14614 				goto exit;
14615 			}
14616 
14617 			/*
14618 			 * For TRAN_BUSY, we want to reduce the throttle value,
14619 			 * unless we are retrying a command.
14620 			 */
14621 			if (bp != un->un_retry_bp) {
14622 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
14623 			}
14624 
14625 			/*
14626 			 * Set up the bp to be tried again 10 ms later.
14627 			 * Note:x86: Is there a timeout value in the sd_lun
14628 			 * for this condition?
14629 			 */
14630 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
14631 				kstat_runq_back_to_waitq);
14632 			goto exit;
14633 
14634 		case TRAN_FATAL_ERROR:
14635 			un->un_tran_fatal_count++;
14636 			/* FALLTHRU */
14637 
14638 		case TRAN_BADPKT:
14639 		default:
14640 			un->un_ncmds_in_transport--;
14641 			ASSERT(un->un_ncmds_in_transport >= 0);
14642 
14643 			/*
14644 			 * If this is our REQUEST SENSE command with a
14645 			 * transport error, we must get back the pointers
14646 			 * to the original buf, and mark the REQUEST
14647 			 * SENSE command as "available".
14648 			 */
14649 			if (bp == un->un_rqs_bp) {
14650 				bp = sd_mark_rqs_idle(un, xp);
14651 				xp = SD_GET_XBUF(bp);
14652 			} else {
14653 				/*
14654 				 * Legacy behavior: do not update transport
14655 				 * error count for request sense commands.
14656 				 */
14657 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
14658 			}
14659 
14660 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
14661 			sd_print_transport_rejected_message(un, xp, rval);
14662 
14663 			/*
14664 			 * We must use sd_return_failed_command_no_restart() to
14665 			 * avoid a recursive call back into sd_start_cmds().
14666 			 * However this also means that we must keep processing
14667 			 * the waitq here in order to avoid stalling.
14668 			 */
14669 			sd_return_failed_command_no_restart(un, bp, EIO);
14670 
14671 			/*
14672 			 * Notify any threads waiting in sd_ddi_suspend() that
14673 			 * a command completion has occurred.
14674 			 */
14675 			if (un->un_state == SD_STATE_SUSPENDED) {
14676 				cv_broadcast(&un->un_disk_busy_cv);
14677 			}
14678 
14679 			if (bp == immed_bp) {
14680 				/* immed_bp is gone by now, so clear this */
14681 				immed_bp = NULL;
14682 			}
14683 			break;
14684 		}
14685 
14686 	} while (immed_bp == NULL);
14687 
14688 exit:
14689 	ASSERT(mutex_owned(SD_MUTEX(un)));
14690 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
14691 }
14692 
14693 
14694 /*
14695  *    Function: sd_return_command
14696  *
14697  * Description: Returns a command to its originator (with or without an
14698  *		error).  Also starts commands waiting to be transported
14699  *		to the target.
14700  *
14701  *     Context: May be called from interrupt, kernel, or timeout context
14702  */
14703 
14704 static void
14705 sd_return_command(struct sd_lun *un, struct buf *bp)
14706 {
14707 	struct sd_xbuf *xp;
14708 #if defined(__i386) || defined(__amd64)
14709 	struct scsi_pkt *pktp;
14710 #endif
14711 
14712 	ASSERT(bp != NULL);
14713 	ASSERT(un != NULL);
14714 	ASSERT(mutex_owned(SD_MUTEX(un)));
14715 	ASSERT(bp != un->un_rqs_bp);
14716 	xp = SD_GET_XBUF(bp);
14717 	ASSERT(xp != NULL);
14718 
14719 #if defined(__i386) || defined(__amd64)
14720 	pktp = SD_GET_PKTP(bp);
14721 #endif
14722 
14723 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
14724 
14725 #if defined(__i386) || defined(__amd64)
14726 	/*
14727 	 * Note:x86: check for the "sdrestart failed" case.
14728 	 */
14729 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
14730 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
14731 		(xp->xb_pktp->pkt_resid == 0)) {
14732 
14733 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
14734 			/*
14735 			 * Successfully set up next portion of cmd
14736 			 * transfer, try sending it
14737 			 */
14738 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
14739 			    NULL, NULL, 0, (clock_t)0, NULL);
14740 			sd_start_cmds(un, NULL);
14741 			return;	/* Note:x86: need a return here? */
14742 		}
14743 	}
14744 #endif
14745 
14746 	/*
14747 	 * If this is the failfast bp, clear it from un_failfast_bp. This
14748 	 * can happen if upon being re-tried the failfast bp either
14749 	 * succeeded or encountered another error (possibly even a different
14750 	 * error than the one that precipitated the failfast state, but in
14751 	 * that case it would have had to exhaust retries as well). Regardless,
14752 	 * this should not occur whenever the instance is in the active
14753 	 * failfast state.
14754 	 */
14755 	if (bp == un->un_failfast_bp) {
14756 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14757 		un->un_failfast_bp = NULL;
14758 	}
14759 
14760 	/*
14761 	 * Clear the failfast state upon successful completion of ANY cmd.
14762 	 */
14763 	if (bp->b_error == 0) {
14764 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
14765 	}
14766 
14767 	/*
14768 	 * This is used if the command was retried one or more times. Show that
14769 	 * we are done with it, and allow processing of the waitq to resume.
14770 	 */
14771 	if (bp == un->un_retry_bp) {
14772 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14773 		    "sd_return_command: un:0x%p: "
14774 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14775 		un->un_retry_bp = NULL;
14776 		un->un_retry_statp = NULL;
14777 	}
14778 
14779 	SD_UPDATE_RDWR_STATS(un, bp);
14780 	SD_UPDATE_PARTITION_STATS(un, bp);
14781 
14782 	switch (un->un_state) {
14783 	case SD_STATE_SUSPENDED:
14784 		/*
14785 		 * Notify any threads waiting in sd_ddi_suspend() that
14786 		 * a command completion has occurred.
14787 		 */
14788 		cv_broadcast(&un->un_disk_busy_cv);
14789 		break;
14790 	default:
14791 		sd_start_cmds(un, NULL);
14792 		break;
14793 	}
14794 
14795 	/* Return this command up the iodone chain to its originator. */
14796 	mutex_exit(SD_MUTEX(un));
14797 
14798 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14799 	xp->xb_pktp = NULL;
14800 
14801 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14802 
14803 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14804 	mutex_enter(SD_MUTEX(un));
14805 
14806 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
14807 }
14808 
14809 
14810 /*
14811  *    Function: sd_return_failed_command
14812  *
14813  * Description: Command completion when an error occurred.
14814  *
14815  *     Context: May be called from interrupt context
14816  */
14817 
14818 static void
14819 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
14820 {
14821 	ASSERT(bp != NULL);
14822 	ASSERT(un != NULL);
14823 	ASSERT(mutex_owned(SD_MUTEX(un)));
14824 
14825 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14826 	    "sd_return_failed_command: entry\n");
14827 
14828 	/*
14829 	 * b_resid could already be nonzero due to a partial data
14830 	 * transfer, so do not change it here.
14831 	 */
14832 	SD_BIOERROR(bp, errcode);
14833 
14834 	sd_return_command(un, bp);
14835 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14836 	    "sd_return_failed_command: exit\n");
14837 }
14838 
14839 
14840 /*
14841  *    Function: sd_return_failed_command_no_restart
14842  *
14843  * Description: Same as sd_return_failed_command, but ensures that no
14844  *		call back into sd_start_cmds will be issued.
14845  *
14846  *     Context: May be called from interrupt context
14847  */
14848 
14849 static void
14850 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
14851 	int errcode)
14852 {
14853 	struct sd_xbuf *xp;
14854 
14855 	ASSERT(bp != NULL);
14856 	ASSERT(un != NULL);
14857 	ASSERT(mutex_owned(SD_MUTEX(un)));
14858 	xp = SD_GET_XBUF(bp);
14859 	ASSERT(xp != NULL);
14860 	ASSERT(errcode != 0);
14861 
14862 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14863 	    "sd_return_failed_command_no_restart: entry\n");
14864 
14865 	/*
14866 	 * b_resid could already be nonzero due to a partial data
14867 	 * transfer, so do not change it here.
14868 	 */
14869 	SD_BIOERROR(bp, errcode);
14870 
14871 	/*
14872 	 * If this is the failfast bp, clear it. This can happen if the
14873 	 * failfast bp encounterd a fatal error when we attempted to
14874 	 * re-try it (such as a scsi_transport(9F) failure).  However
14875 	 * we should NOT be in an active failfast state if the failfast
14876 	 * bp is not NULL.
14877 	 */
14878 	if (bp == un->un_failfast_bp) {
14879 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
14880 		un->un_failfast_bp = NULL;
14881 	}
14882 
14883 	if (bp == un->un_retry_bp) {
14884 		/*
14885 		 * This command was retried one or more times. Show that we are
14886 		 * done with it, and allow processing of the waitq to resume.
14887 		 */
14888 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14889 		    "sd_return_failed_command_no_restart: "
14890 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
14891 		un->un_retry_bp = NULL;
14892 		un->un_retry_statp = NULL;
14893 	}
14894 
14895 	SD_UPDATE_RDWR_STATS(un, bp);
14896 	SD_UPDATE_PARTITION_STATS(un, bp);
14897 
14898 	mutex_exit(SD_MUTEX(un));
14899 
14900 	if (xp->xb_pktp != NULL) {
14901 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
14902 		xp->xb_pktp = NULL;
14903 	}
14904 
14905 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
14906 
14907 	mutex_enter(SD_MUTEX(un));
14908 
14909 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14910 	    "sd_return_failed_command_no_restart: exit\n");
14911 }
14912 
14913 
14914 /*
14915  *    Function: sd_retry_command
14916  *
14917  * Description: queue up a command for retry, or (optionally) fail it
14918  *		if retry counts are exhausted.
14919  *
14920  *   Arguments: un - Pointer to the sd_lun struct for the target.
14921  *
14922  *		bp - Pointer to the buf for the command to be retried.
14923  *
14924  *		retry_check_flag - Flag to see which (if any) of the retry
14925  *		   counts should be decremented/checked. If the indicated
14926  *		   retry count is exhausted, then the command will not be
14927  *		   retried; it will be failed instead. This should use a
14928  *		   value equal to one of the following:
14929  *
14930  *			SD_RETRIES_NOCHECK
14931  *			SD_RESD_RETRIES_STANDARD
14932  *			SD_RETRIES_VICTIM
14933  *
14934  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
14935  *		   if the check should be made to see of FLAG_ISOLATE is set
14936  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
14937  *		   not retried, it is simply failed.
14938  *
14939  *		user_funcp - Ptr to function to call before dispatching the
14940  *		   command. May be NULL if no action needs to be performed.
14941  *		   (Primarily intended for printing messages.)
14942  *
14943  *		user_arg - Optional argument to be passed along to
14944  *		   the user_funcp call.
14945  *
14946  *		failure_code - errno return code to set in the bp if the
14947  *		   command is going to be failed.
14948  *
14949  *		retry_delay - Retry delay interval in (clock_t) units. May
14950  *		   be zero which indicates that the retry should be retried
14951  *		   immediately (ie, without an intervening delay).
14952  *
14953  *		statp - Ptr to kstat function to be updated if the command
14954  *		   is queued for a delayed retry. May be NULL if no kstat
14955  *		   update is desired.
14956  *
14957  *     Context: May be called from interupt context.
14958  */
14959 
14960 static void
14961 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
14962 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
14963 	code), void *user_arg, int failure_code,  clock_t retry_delay,
14964 	void (*statp)(kstat_io_t *))
14965 {
14966 	struct sd_xbuf	*xp;
14967 	struct scsi_pkt	*pktp;
14968 
14969 	ASSERT(un != NULL);
14970 	ASSERT(mutex_owned(SD_MUTEX(un)));
14971 	ASSERT(bp != NULL);
14972 	xp = SD_GET_XBUF(bp);
14973 	ASSERT(xp != NULL);
14974 	pktp = SD_GET_PKTP(bp);
14975 	ASSERT(pktp != NULL);
14976 
14977 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14978 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
14979 
14980 	/*
14981 	 * If we are syncing or dumping, fail the command to avoid
14982 	 * recursively calling back into scsi_transport().
14983 	 */
14984 	if (ddi_in_panic()) {
14985 		goto fail_command_no_log;
14986 	}
14987 
14988 	/*
14989 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
14990 	 * log an error and fail the command.
14991 	 */
14992 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
14993 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
14994 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
14995 		sd_dump_memory(un, SD_LOG_IO, "CDB",
14996 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
14997 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
14998 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
14999 		goto fail_command;
15000 	}
15001 
15002 	/*
15003 	 * If we are suspended, then put the command onto head of the
15004 	 * wait queue since we don't want to start more commands.
15005 	 */
15006 	switch (un->un_state) {
15007 	case SD_STATE_SUSPENDED:
15008 	case SD_STATE_DUMPING:
15009 		bp->av_forw = un->un_waitq_headp;
15010 		un->un_waitq_headp = bp;
15011 		if (un->un_waitq_tailp == NULL) {
15012 			un->un_waitq_tailp = bp;
15013 		}
15014 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15015 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15016 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15017 		return;
15018 	default:
15019 		break;
15020 	}
15021 
15022 	/*
15023 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15024 	 * is set; if it is then we do not want to retry the command.
15025 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15026 	 */
15027 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15028 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15029 			goto fail_command;
15030 		}
15031 	}
15032 
15033 
15034 	/*
15035 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15036 	 * command timeout or a selection timeout has occurred. This means
15037 	 * that we were unable to establish an kind of communication with
15038 	 * the target, and subsequent retries and/or commands are likely
15039 	 * to encounter similar results and take a long time to complete.
15040 	 *
15041 	 * If this is a failfast error condition, we need to update the
15042 	 * failfast state, even if this bp does not have B_FAILFAST set.
15043 	 */
15044 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15045 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15046 			ASSERT(un->un_failfast_bp == NULL);
15047 			/*
15048 			 * If we are already in the active failfast state, and
15049 			 * another failfast error condition has been detected,
15050 			 * then fail this command if it has B_FAILFAST set.
15051 			 * If B_FAILFAST is clear, then maintain the legacy
15052 			 * behavior of retrying heroically, even tho this will
15053 			 * take a lot more time to fail the command.
15054 			 */
15055 			if (bp->b_flags & B_FAILFAST) {
15056 				goto fail_command;
15057 			}
15058 		} else {
15059 			/*
15060 			 * We're not in the active failfast state, but we
15061 			 * have a failfast error condition, so we must begin
15062 			 * transition to the next state. We do this regardless
15063 			 * of whether or not this bp has B_FAILFAST set.
15064 			 */
15065 			if (un->un_failfast_bp == NULL) {
15066 				/*
15067 				 * This is the first bp to meet a failfast
15068 				 * condition so save it on un_failfast_bp &
15069 				 * do normal retry processing. Do not enter
15070 				 * active failfast state yet. This marks
15071 				 * entry into the "failfast pending" state.
15072 				 */
15073 				un->un_failfast_bp = bp;
15074 
15075 			} else if (un->un_failfast_bp == bp) {
15076 				/*
15077 				 * This is the second time *this* bp has
15078 				 * encountered a failfast error condition,
15079 				 * so enter active failfast state & flush
15080 				 * queues as appropriate.
15081 				 */
15082 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15083 				un->un_failfast_bp = NULL;
15084 				sd_failfast_flushq(un);
15085 
15086 				/*
15087 				 * Fail this bp now if B_FAILFAST set;
15088 				 * otherwise continue with retries. (It would
15089 				 * be pretty ironic if this bp succeeded on a
15090 				 * subsequent retry after we just flushed all
15091 				 * the queues).
15092 				 */
15093 				if (bp->b_flags & B_FAILFAST) {
15094 					goto fail_command;
15095 				}
15096 
15097 #if !defined(lint) && !defined(__lint)
15098 			} else {
15099 				/*
15100 				 * If neither of the preceeding conditionals
15101 				 * was true, it means that there is some
15102 				 * *other* bp that has met an inital failfast
15103 				 * condition and is currently either being
15104 				 * retried or is waiting to be retried. In
15105 				 * that case we should perform normal retry
15106 				 * processing on *this* bp, since there is a
15107 				 * chance that the current failfast condition
15108 				 * is transient and recoverable. If that does
15109 				 * not turn out to be the case, then retries
15110 				 * will be cleared when the wait queue is
15111 				 * flushed anyway.
15112 				 */
15113 #endif
15114 			}
15115 		}
15116 	} else {
15117 		/*
15118 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15119 		 * likely were able to at least establish some level of
15120 		 * communication with the target and subsequent commands
15121 		 * and/or retries are likely to get through to the target,
15122 		 * In this case we want to be aggressive about clearing
15123 		 * the failfast state. Note that this does not affect
15124 		 * the "failfast pending" condition.
15125 		 */
15126 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15127 	}
15128 
15129 
15130 	/*
15131 	 * Check the specified retry count to see if we can still do
15132 	 * any retries with this pkt before we should fail it.
15133 	 */
15134 	switch (retry_check_flag & SD_RETRIES_MASK) {
15135 	case SD_RETRIES_VICTIM:
15136 		/*
15137 		 * Check the victim retry count. If exhausted, then fall
15138 		 * thru & check against the standard retry count.
15139 		 */
15140 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15141 			/* Increment count & proceed with the retry */
15142 			xp->xb_victim_retry_count++;
15143 			break;
15144 		}
15145 		/* Victim retries exhausted, fall back to std. retries... */
15146 		/* FALLTHRU */
15147 
15148 	case SD_RETRIES_STANDARD:
15149 		if (xp->xb_retry_count >= un->un_retry_count) {
15150 			/* Retries exhausted, fail the command */
15151 			SD_TRACE(SD_LOG_IO_CORE, un,
15152 			    "sd_retry_command: retries exhausted!\n");
15153 			/*
15154 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15155 			 * commands with nonzero pkt_resid.
15156 			 */
15157 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15158 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15159 			    (pktp->pkt_resid != 0)) {
15160 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15161 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15162 					SD_UPDATE_B_RESID(bp, pktp);
15163 				}
15164 			}
15165 			goto fail_command;
15166 		}
15167 		xp->xb_retry_count++;
15168 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15169 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15170 		break;
15171 
15172 	case SD_RETRIES_UA:
15173 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15174 			/* Retries exhausted, fail the command */
15175 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15176 			    "Unit Attention retries exhausted. "
15177 			    "Check the target.\n");
15178 			goto fail_command;
15179 		}
15180 		xp->xb_ua_retry_count++;
15181 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15182 		    "sd_retry_command: retry count:%d\n",
15183 			xp->xb_ua_retry_count);
15184 		break;
15185 
15186 	case SD_RETRIES_BUSY:
15187 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15188 			/* Retries exhausted, fail the command */
15189 			SD_TRACE(SD_LOG_IO_CORE, un,
15190 			    "sd_retry_command: retries exhausted!\n");
15191 			goto fail_command;
15192 		}
15193 		xp->xb_retry_count++;
15194 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15195 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15196 		break;
15197 
15198 	case SD_RETRIES_NOCHECK:
15199 	default:
15200 		/* No retry count to check. Just proceed with the retry */
15201 		break;
15202 	}
15203 
15204 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15205 
15206 	/*
15207 	 * If we were given a zero timeout, we must attempt to retry the
15208 	 * command immediately (ie, without a delay).
15209 	 */
15210 	if (retry_delay == 0) {
15211 		/*
15212 		 * Check some limiting conditions to see if we can actually
15213 		 * do the immediate retry.  If we cannot, then we must
15214 		 * fall back to queueing up a delayed retry.
15215 		 */
15216 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15217 			/*
15218 			 * We are at the throttle limit for the target,
15219 			 * fall back to delayed retry.
15220 			 */
15221 			retry_delay = SD_BSY_TIMEOUT;
15222 			statp = kstat_waitq_enter;
15223 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15224 			    "sd_retry_command: immed. retry hit "
15225 			    "throttle!\n");
15226 		} else {
15227 			/*
15228 			 * We're clear to proceed with the immediate retry.
15229 			 * First call the user-provided function (if any)
15230 			 */
15231 			if (user_funcp != NULL) {
15232 				(*user_funcp)(un, bp, user_arg,
15233 				    SD_IMMEDIATE_RETRY_ISSUED);
15234 #ifdef __lock_lint
15235 				sd_print_incomplete_msg(un, bp, user_arg,
15236 				    SD_IMMEDIATE_RETRY_ISSUED);
15237 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15238 				    SD_IMMEDIATE_RETRY_ISSUED);
15239 				sd_print_sense_failed_msg(un, bp, user_arg,
15240 				    SD_IMMEDIATE_RETRY_ISSUED);
15241 #endif
15242 			}
15243 
15244 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15245 			    "sd_retry_command: issuing immediate retry\n");
15246 
15247 			/*
15248 			 * Call sd_start_cmds() to transport the command to
15249 			 * the target.
15250 			 */
15251 			sd_start_cmds(un, bp);
15252 
15253 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15254 			    "sd_retry_command exit\n");
15255 			return;
15256 		}
15257 	}
15258 
15259 	/*
15260 	 * Set up to retry the command after a delay.
15261 	 * First call the user-provided function (if any)
15262 	 */
15263 	if (user_funcp != NULL) {
15264 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15265 	}
15266 
15267 	sd_set_retry_bp(un, bp, retry_delay, statp);
15268 
15269 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15270 	return;
15271 
15272 fail_command:
15273 
15274 	if (user_funcp != NULL) {
15275 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15276 	}
15277 
15278 fail_command_no_log:
15279 
15280 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15281 	    "sd_retry_command: returning failed command\n");
15282 
15283 	sd_return_failed_command(un, bp, failure_code);
15284 
15285 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15286 }
15287 
15288 
15289 /*
15290  *    Function: sd_set_retry_bp
15291  *
15292  * Description: Set up the given bp for retry.
15293  *
15294  *   Arguments: un - ptr to associated softstate
15295  *		bp - ptr to buf(9S) for the command
15296  *		retry_delay - time interval before issuing retry (may be 0)
15297  *		statp - optional pointer to kstat function
15298  *
15299  *     Context: May be called under interrupt context
15300  */
15301 
15302 static void
15303 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15304 	void (*statp)(kstat_io_t *))
15305 {
15306 	ASSERT(un != NULL);
15307 	ASSERT(mutex_owned(SD_MUTEX(un)));
15308 	ASSERT(bp != NULL);
15309 
15310 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15311 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15312 
15313 	/*
15314 	 * Indicate that the command is being retried. This will not allow any
15315 	 * other commands on the wait queue to be transported to the target
15316 	 * until this command has been completed (success or failure). The
15317 	 * "retry command" is not transported to the target until the given
15318 	 * time delay expires, unless the user specified a 0 retry_delay.
15319 	 *
15320 	 * Note: the timeout(9F) callback routine is what actually calls
15321 	 * sd_start_cmds() to transport the command, with the exception of a
15322 	 * zero retry_delay. The only current implementor of a zero retry delay
15323 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15324 	 */
15325 	if (un->un_retry_bp == NULL) {
15326 		ASSERT(un->un_retry_statp == NULL);
15327 		un->un_retry_bp = bp;
15328 
15329 		/*
15330 		 * If the user has not specified a delay the command should
15331 		 * be queued and no timeout should be scheduled.
15332 		 */
15333 		if (retry_delay == 0) {
15334 			/*
15335 			 * Save the kstat pointer that will be used in the
15336 			 * call to SD_UPDATE_KSTATS() below, so that
15337 			 * sd_start_cmds() can correctly decrement the waitq
15338 			 * count when it is time to transport this command.
15339 			 */
15340 			un->un_retry_statp = statp;
15341 			goto done;
15342 		}
15343 	}
15344 
15345 	if (un->un_retry_bp == bp) {
15346 		/*
15347 		 * Save the kstat pointer that will be used in the call to
15348 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15349 		 * correctly decrement the waitq count when it is time to
15350 		 * transport this command.
15351 		 */
15352 		un->un_retry_statp = statp;
15353 
15354 		/*
15355 		 * Schedule a timeout if:
15356 		 *   1) The user has specified a delay.
15357 		 *   2) There is not a START_STOP_UNIT callback pending.
15358 		 *
15359 		 * If no delay has been specified, then it is up to the caller
15360 		 * to ensure that IO processing continues without stalling.
15361 		 * Effectively, this means that the caller will issue the
15362 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15363 		 * callback does this after the START STOP UNIT command has
15364 		 * completed. In either of these cases we should not schedule
15365 		 * a timeout callback here.  Also don't schedule the timeout if
15366 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15367 		 */
15368 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15369 		    (un->un_direct_priority_timeid == NULL)) {
15370 			un->un_retry_timeid =
15371 			    timeout(sd_start_retry_command, un, retry_delay);
15372 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15373 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15374 			    " bp:0x%p un_retry_timeid:0x%p\n",
15375 			    un, bp, un->un_retry_timeid);
15376 		}
15377 	} else {
15378 		/*
15379 		 * We only get in here if there is already another command
15380 		 * waiting to be retried.  In this case, we just put the
15381 		 * given command onto the wait queue, so it can be transported
15382 		 * after the current retry command has completed.
15383 		 *
15384 		 * Also we have to make sure that if the command at the head
15385 		 * of the wait queue is the un_failfast_bp, that we do not
15386 		 * put ahead of it any other commands that are to be retried.
15387 		 */
15388 		if ((un->un_failfast_bp != NULL) &&
15389 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15390 			/*
15391 			 * Enqueue this command AFTER the first command on
15392 			 * the wait queue (which is also un_failfast_bp).
15393 			 */
15394 			bp->av_forw = un->un_waitq_headp->av_forw;
15395 			un->un_waitq_headp->av_forw = bp;
15396 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15397 				un->un_waitq_tailp = bp;
15398 			}
15399 		} else {
15400 			/* Enqueue this command at the head of the waitq. */
15401 			bp->av_forw = un->un_waitq_headp;
15402 			un->un_waitq_headp = bp;
15403 			if (un->un_waitq_tailp == NULL) {
15404 				un->un_waitq_tailp = bp;
15405 			}
15406 		}
15407 
15408 		if (statp == NULL) {
15409 			statp = kstat_waitq_enter;
15410 		}
15411 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15412 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15413 	}
15414 
15415 done:
15416 	if (statp != NULL) {
15417 		SD_UPDATE_KSTATS(un, statp, bp);
15418 	}
15419 
15420 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15421 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15422 }
15423 
15424 
15425 /*
15426  *    Function: sd_start_retry_command
15427  *
15428  * Description: Start the command that has been waiting on the target's
15429  *		retry queue.  Called from timeout(9F) context after the
15430  *		retry delay interval has expired.
15431  *
15432  *   Arguments: arg - pointer to associated softstate for the device.
15433  *
15434  *     Context: timeout(9F) thread context.  May not sleep.
15435  */
15436 
15437 static void
15438 sd_start_retry_command(void *arg)
15439 {
15440 	struct sd_lun *un = arg;
15441 
15442 	ASSERT(un != NULL);
15443 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15444 
15445 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15446 	    "sd_start_retry_command: entry\n");
15447 
15448 	mutex_enter(SD_MUTEX(un));
15449 
15450 	un->un_retry_timeid = NULL;
15451 
15452 	if (un->un_retry_bp != NULL) {
15453 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15454 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
15455 		    un, un->un_retry_bp);
15456 		sd_start_cmds(un, un->un_retry_bp);
15457 	}
15458 
15459 	mutex_exit(SD_MUTEX(un));
15460 
15461 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15462 	    "sd_start_retry_command: exit\n");
15463 }
15464 
15465 
15466 /*
15467  *    Function: sd_start_direct_priority_command
15468  *
15469  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
15470  *		received TRAN_BUSY when we called scsi_transport() to send it
15471  *		to the underlying HBA. This function is called from timeout(9F)
15472  *		context after the delay interval has expired.
15473  *
15474  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
15475  *
15476  *     Context: timeout(9F) thread context.  May not sleep.
15477  */
15478 
15479 static void
15480 sd_start_direct_priority_command(void *arg)
15481 {
15482 	struct buf	*priority_bp = arg;
15483 	struct sd_lun	*un;
15484 
15485 	ASSERT(priority_bp != NULL);
15486 	un = SD_GET_UN(priority_bp);
15487 	ASSERT(un != NULL);
15488 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15489 
15490 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15491 	    "sd_start_direct_priority_command: entry\n");
15492 
15493 	mutex_enter(SD_MUTEX(un));
15494 	un->un_direct_priority_timeid = NULL;
15495 	sd_start_cmds(un, priority_bp);
15496 	mutex_exit(SD_MUTEX(un));
15497 
15498 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15499 	    "sd_start_direct_priority_command: exit\n");
15500 }
15501 
15502 
15503 /*
15504  *    Function: sd_send_request_sense_command
15505  *
15506  * Description: Sends a REQUEST SENSE command to the target
15507  *
15508  *     Context: May be called from interrupt context.
15509  */
15510 
15511 static void
15512 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
15513 	struct scsi_pkt *pktp)
15514 {
15515 	ASSERT(bp != NULL);
15516 	ASSERT(un != NULL);
15517 	ASSERT(mutex_owned(SD_MUTEX(un)));
15518 
15519 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
15520 	    "entry: buf:0x%p\n", bp);
15521 
15522 	/*
15523 	 * If we are syncing or dumping, then fail the command to avoid a
15524 	 * recursive callback into scsi_transport(). Also fail the command
15525 	 * if we are suspended (legacy behavior).
15526 	 */
15527 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
15528 	    (un->un_state == SD_STATE_DUMPING)) {
15529 		sd_return_failed_command(un, bp, EIO);
15530 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15531 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
15532 		return;
15533 	}
15534 
15535 	/*
15536 	 * Retry the failed command and don't issue the request sense if:
15537 	 *    1) the sense buf is busy
15538 	 *    2) we have 1 or more outstanding commands on the target
15539 	 *    (the sense data will be cleared or invalidated any way)
15540 	 *
15541 	 * Note: There could be an issue with not checking a retry limit here,
15542 	 * the problem is determining which retry limit to check.
15543 	 */
15544 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
15545 		/* Don't retry if the command is flagged as non-retryable */
15546 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
15547 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15548 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
15549 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15550 			    "sd_send_request_sense_command: "
15551 			    "at full throttle, retrying exit\n");
15552 		} else {
15553 			sd_return_failed_command(un, bp, EIO);
15554 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15555 			    "sd_send_request_sense_command: "
15556 			    "at full throttle, non-retryable exit\n");
15557 		}
15558 		return;
15559 	}
15560 
15561 	sd_mark_rqs_busy(un, bp);
15562 	sd_start_cmds(un, un->un_rqs_bp);
15563 
15564 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15565 	    "sd_send_request_sense_command: exit\n");
15566 }
15567 
15568 
15569 /*
15570  *    Function: sd_mark_rqs_busy
15571  *
15572  * Description: Indicate that the request sense bp for this instance is
15573  *		in use.
15574  *
15575  *     Context: May be called under interrupt context
15576  */
15577 
15578 static void
15579 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
15580 {
15581 	struct sd_xbuf	*sense_xp;
15582 
15583 	ASSERT(un != NULL);
15584 	ASSERT(bp != NULL);
15585 	ASSERT(mutex_owned(SD_MUTEX(un)));
15586 	ASSERT(un->un_sense_isbusy == 0);
15587 
15588 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
15589 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
15590 
15591 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
15592 	ASSERT(sense_xp != NULL);
15593 
15594 	SD_INFO(SD_LOG_IO, un,
15595 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
15596 
15597 	ASSERT(sense_xp->xb_pktp != NULL);
15598 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
15599 	    == (FLAG_SENSING | FLAG_HEAD));
15600 
15601 	un->un_sense_isbusy = 1;
15602 	un->un_rqs_bp->b_resid = 0;
15603 	sense_xp->xb_pktp->pkt_resid  = 0;
15604 	sense_xp->xb_pktp->pkt_reason = 0;
15605 
15606 	/* So we can get back the bp at interrupt time! */
15607 	sense_xp->xb_sense_bp = bp;
15608 
15609 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
15610 
15611 	/*
15612 	 * Mark this buf as awaiting sense data. (This is already set in
15613 	 * the pkt_flags for the RQS packet.)
15614 	 */
15615 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
15616 
15617 	sense_xp->xb_retry_count	= 0;
15618 	sense_xp->xb_victim_retry_count = 0;
15619 	sense_xp->xb_ua_retry_count	= 0;
15620 	sense_xp->xb_dma_resid  = 0;
15621 
15622 	/* Clean up the fields for auto-request sense */
15623 	sense_xp->xb_sense_status = 0;
15624 	sense_xp->xb_sense_state  = 0;
15625 	sense_xp->xb_sense_resid  = 0;
15626 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
15627 
15628 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
15629 }
15630 
15631 
15632 /*
15633  *    Function: sd_mark_rqs_idle
15634  *
15635  * Description: SD_MUTEX must be held continuously through this routine
15636  *		to prevent reuse of the rqs struct before the caller can
15637  *		complete it's processing.
15638  *
15639  * Return Code: Pointer to the RQS buf
15640  *
15641  *     Context: May be called under interrupt context
15642  */
15643 
15644 static struct buf *
15645 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
15646 {
15647 	struct buf *bp;
15648 	ASSERT(un != NULL);
15649 	ASSERT(sense_xp != NULL);
15650 	ASSERT(mutex_owned(SD_MUTEX(un)));
15651 	ASSERT(un->un_sense_isbusy != 0);
15652 
15653 	un->un_sense_isbusy = 0;
15654 	bp = sense_xp->xb_sense_bp;
15655 	sense_xp->xb_sense_bp = NULL;
15656 
15657 	/* This pkt is no longer interested in getting sense data */
15658 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
15659 
15660 	return (bp);
15661 }
15662 
15663 
15664 
15665 /*
15666  *    Function: sd_alloc_rqs
15667  *
15668  * Description: Set up the unit to receive auto request sense data
15669  *
15670  * Return Code: DDI_SUCCESS or DDI_FAILURE
15671  *
15672  *     Context: Called under attach(9E) context
15673  */
15674 
15675 static int
15676 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
15677 {
15678 	struct sd_xbuf *xp;
15679 
15680 	ASSERT(un != NULL);
15681 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15682 	ASSERT(un->un_rqs_bp == NULL);
15683 	ASSERT(un->un_rqs_pktp == NULL);
15684 
15685 	/*
15686 	 * First allocate the required buf and scsi_pkt structs, then set up
15687 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
15688 	 */
15689 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
15690 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
15691 	if (un->un_rqs_bp == NULL) {
15692 		return (DDI_FAILURE);
15693 	}
15694 
15695 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
15696 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
15697 
15698 	if (un->un_rqs_pktp == NULL) {
15699 		sd_free_rqs(un);
15700 		return (DDI_FAILURE);
15701 	}
15702 
15703 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
15704 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
15705 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
15706 
15707 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
15708 
15709 	/* Set up the other needed members in the ARQ scsi_pkt. */
15710 	un->un_rqs_pktp->pkt_comp   = sdintr;
15711 	un->un_rqs_pktp->pkt_time   = sd_io_time;
15712 	un->un_rqs_pktp->pkt_flags |=
15713 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
15714 
15715 	/*
15716 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
15717 	 * provide any intpkt, destroypkt routines as we take care of
15718 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
15719 	 */
15720 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
15721 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
15722 	xp->xb_pktp = un->un_rqs_pktp;
15723 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
15724 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
15725 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
15726 
15727 	/*
15728 	 * Save the pointer to the request sense private bp so it can
15729 	 * be retrieved in sdintr.
15730 	 */
15731 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
15732 	ASSERT(un->un_rqs_bp->b_private == xp);
15733 
15734 	/*
15735 	 * See if the HBA supports auto-request sense for the specified
15736 	 * target/lun. If it does, then try to enable it (if not already
15737 	 * enabled).
15738 	 *
15739 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
15740 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
15741 	 * return success.  However, in both of these cases ARQ is always
15742 	 * enabled and scsi_ifgetcap will always return true. The best approach
15743 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
15744 	 *
15745 	 * The 3rd case is the HBA (adp) always return enabled on
15746 	 * scsi_ifgetgetcap even when it's not enable, the best approach
15747 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
15748 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
15749 	 */
15750 
15751 	if (un->un_f_is_fibre == TRUE) {
15752 		un->un_f_arq_enabled = TRUE;
15753 	} else {
15754 #if defined(__i386) || defined(__amd64)
15755 		/*
15756 		 * Circumvent the Adaptec bug, remove this code when
15757 		 * the bug is fixed
15758 		 */
15759 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
15760 #endif
15761 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
15762 		case 0:
15763 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15764 				"sd_alloc_rqs: HBA supports ARQ\n");
15765 			/*
15766 			 * ARQ is supported by this HBA but currently is not
15767 			 * enabled. Attempt to enable it and if successful then
15768 			 * mark this instance as ARQ enabled.
15769 			 */
15770 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
15771 				== 1) {
15772 				/* Successfully enabled ARQ in the HBA */
15773 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15774 					"sd_alloc_rqs: ARQ enabled\n");
15775 				un->un_f_arq_enabled = TRUE;
15776 			} else {
15777 				/* Could not enable ARQ in the HBA */
15778 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
15779 				"sd_alloc_rqs: failed ARQ enable\n");
15780 				un->un_f_arq_enabled = FALSE;
15781 			}
15782 			break;
15783 		case 1:
15784 			/*
15785 			 * ARQ is supported by this HBA and is already enabled.
15786 			 * Just mark ARQ as enabled for this instance.
15787 			 */
15788 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15789 				"sd_alloc_rqs: ARQ already enabled\n");
15790 			un->un_f_arq_enabled = TRUE;
15791 			break;
15792 		default:
15793 			/*
15794 			 * ARQ is not supported by this HBA; disable it for this
15795 			 * instance.
15796 			 */
15797 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
15798 				"sd_alloc_rqs: HBA does not support ARQ\n");
15799 			un->un_f_arq_enabled = FALSE;
15800 			break;
15801 		}
15802 	}
15803 
15804 	return (DDI_SUCCESS);
15805 }
15806 
15807 
15808 /*
15809  *    Function: sd_free_rqs
15810  *
15811  * Description: Cleanup for the pre-instance RQS command.
15812  *
15813  *     Context: Kernel thread context
15814  */
15815 
15816 static void
15817 sd_free_rqs(struct sd_lun *un)
15818 {
15819 	ASSERT(un != NULL);
15820 
15821 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
15822 
15823 	/*
15824 	 * If consistent memory is bound to a scsi_pkt, the pkt
15825 	 * has to be destroyed *before* freeing the consistent memory.
15826 	 * Don't change the sequence of this operations.
15827 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
15828 	 * after it was freed in scsi_free_consistent_buf().
15829 	 */
15830 	if (un->un_rqs_pktp != NULL) {
15831 		scsi_destroy_pkt(un->un_rqs_pktp);
15832 		un->un_rqs_pktp = NULL;
15833 	}
15834 
15835 	if (un->un_rqs_bp != NULL) {
15836 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
15837 		scsi_free_consistent_buf(un->un_rqs_bp);
15838 		un->un_rqs_bp = NULL;
15839 	}
15840 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
15841 }
15842 
15843 
15844 
15845 /*
15846  *    Function: sd_reduce_throttle
15847  *
15848  * Description: Reduces the maximun # of outstanding commands on a
15849  *		target to the current number of outstanding commands.
15850  *		Queues a tiemout(9F) callback to restore the limit
15851  *		after a specified interval has elapsed.
15852  *		Typically used when we get a TRAN_BUSY return code
15853  *		back from scsi_transport().
15854  *
15855  *   Arguments: un - ptr to the sd_lun softstate struct
15856  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
15857  *
15858  *     Context: May be called from interrupt context
15859  */
15860 
15861 static void
15862 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
15863 {
15864 	ASSERT(un != NULL);
15865 	ASSERT(mutex_owned(SD_MUTEX(un)));
15866 	ASSERT(un->un_ncmds_in_transport >= 0);
15867 
15868 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15869 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
15870 	    un, un->un_throttle, un->un_ncmds_in_transport);
15871 
15872 	if (un->un_throttle > 1) {
15873 		if (un->un_f_use_adaptive_throttle == TRUE) {
15874 			switch (throttle_type) {
15875 			case SD_THROTTLE_TRAN_BUSY:
15876 				if (un->un_busy_throttle == 0) {
15877 					un->un_busy_throttle = un->un_throttle;
15878 				}
15879 				break;
15880 			case SD_THROTTLE_QFULL:
15881 				un->un_busy_throttle = 0;
15882 				break;
15883 			default:
15884 				ASSERT(FALSE);
15885 			}
15886 
15887 			if (un->un_ncmds_in_transport > 0) {
15888 			    un->un_throttle = un->un_ncmds_in_transport;
15889 			}
15890 
15891 		} else {
15892 			if (un->un_ncmds_in_transport == 0) {
15893 				un->un_throttle = 1;
15894 			} else {
15895 				un->un_throttle = un->un_ncmds_in_transport;
15896 			}
15897 		}
15898 	}
15899 
15900 	/* Reschedule the timeout if none is currently active */
15901 	if (un->un_reset_throttle_timeid == NULL) {
15902 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
15903 		    un, SD_THROTTLE_RESET_INTERVAL);
15904 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15905 		    "sd_reduce_throttle: timeout scheduled!\n");
15906 	}
15907 
15908 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
15909 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15910 }
15911 
15912 
15913 
15914 /*
15915  *    Function: sd_restore_throttle
15916  *
15917  * Description: Callback function for timeout(9F).  Resets the current
15918  *		value of un->un_throttle to its default.
15919  *
15920  *   Arguments: arg - pointer to associated softstate for the device.
15921  *
15922  *     Context: May be called from interrupt context
15923  */
15924 
15925 static void
15926 sd_restore_throttle(void *arg)
15927 {
15928 	struct sd_lun	*un = arg;
15929 
15930 	ASSERT(un != NULL);
15931 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15932 
15933 	mutex_enter(SD_MUTEX(un));
15934 
15935 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15936 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
15937 
15938 	un->un_reset_throttle_timeid = NULL;
15939 
15940 	if (un->un_f_use_adaptive_throttle == TRUE) {
15941 		/*
15942 		 * If un_busy_throttle is nonzero, then it contains the
15943 		 * value that un_throttle was when we got a TRAN_BUSY back
15944 		 * from scsi_transport(). We want to revert back to this
15945 		 * value.
15946 		 *
15947 		 * In the QFULL case, the throttle limit will incrementally
15948 		 * increase until it reaches max throttle.
15949 		 */
15950 		if (un->un_busy_throttle > 0) {
15951 			un->un_throttle = un->un_busy_throttle;
15952 			un->un_busy_throttle = 0;
15953 		} else {
15954 			/*
15955 			 * increase throttle by 10% open gate slowly, schedule
15956 			 * another restore if saved throttle has not been
15957 			 * reached
15958 			 */
15959 			short throttle;
15960 			if (sd_qfull_throttle_enable) {
15961 				throttle = un->un_throttle +
15962 				    max((un->un_throttle / 10), 1);
15963 				un->un_throttle =
15964 				    (throttle < un->un_saved_throttle) ?
15965 				    throttle : un->un_saved_throttle;
15966 				if (un->un_throttle < un->un_saved_throttle) {
15967 				    un->un_reset_throttle_timeid =
15968 					timeout(sd_restore_throttle,
15969 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
15970 				}
15971 			}
15972 		}
15973 
15974 		/*
15975 		 * If un_throttle has fallen below the low-water mark, we
15976 		 * restore the maximum value here (and allow it to ratchet
15977 		 * down again if necessary).
15978 		 */
15979 		if (un->un_throttle < un->un_min_throttle) {
15980 			un->un_throttle = un->un_saved_throttle;
15981 		}
15982 	} else {
15983 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
15984 		    "restoring limit from 0x%x to 0x%x\n",
15985 		    un->un_throttle, un->un_saved_throttle);
15986 		un->un_throttle = un->un_saved_throttle;
15987 	}
15988 
15989 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15990 	    "sd_restore_throttle: calling sd_start_cmds!\n");
15991 
15992 	sd_start_cmds(un, NULL);
15993 
15994 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15995 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
15996 	    un, un->un_throttle);
15997 
15998 	mutex_exit(SD_MUTEX(un));
15999 
16000 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16001 }
16002 
16003 /*
16004  *    Function: sdrunout
16005  *
16006  * Description: Callback routine for scsi_init_pkt when a resource allocation
16007  *		fails.
16008  *
16009  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16010  *		soft state instance.
16011  *
16012  * Return Code: The scsi_init_pkt routine allows for the callback function to
16013  *		return a 0 indicating the callback should be rescheduled or a 1
16014  *		indicating not to reschedule. This routine always returns 1
16015  *		because the driver always provides a callback function to
16016  *		scsi_init_pkt. This results in a callback always being scheduled
16017  *		(via the scsi_init_pkt callback implementation) if a resource
16018  *		failure occurs.
16019  *
16020  *     Context: This callback function may not block or call routines that block
16021  *
16022  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16023  *		request persisting at the head of the list which cannot be
16024  *		satisfied even after multiple retries. In the future the driver
16025  *		may implement some time of maximum runout count before failing
16026  *		an I/O.
16027  */
16028 
16029 static int
16030 sdrunout(caddr_t arg)
16031 {
16032 	struct sd_lun	*un = (struct sd_lun *)arg;
16033 
16034 	ASSERT(un != NULL);
16035 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16036 
16037 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16038 
16039 	mutex_enter(SD_MUTEX(un));
16040 	sd_start_cmds(un, NULL);
16041 	mutex_exit(SD_MUTEX(un));
16042 	/*
16043 	 * This callback routine always returns 1 (i.e. do not reschedule)
16044 	 * because we always specify sdrunout as the callback handler for
16045 	 * scsi_init_pkt inside the call to sd_start_cmds.
16046 	 */
16047 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16048 	return (1);
16049 }
16050 
16051 
16052 /*
16053  *    Function: sdintr
16054  *
16055  * Description: Completion callback routine for scsi_pkt(9S) structs
16056  *		sent to the HBA driver via scsi_transport(9F).
16057  *
16058  *     Context: Interrupt context
16059  */
16060 
16061 static void
16062 sdintr(struct scsi_pkt *pktp)
16063 {
16064 	struct buf	*bp;
16065 	struct sd_xbuf	*xp;
16066 	struct sd_lun	*un;
16067 
16068 	ASSERT(pktp != NULL);
16069 	bp = (struct buf *)pktp->pkt_private;
16070 	ASSERT(bp != NULL);
16071 	xp = SD_GET_XBUF(bp);
16072 	ASSERT(xp != NULL);
16073 	ASSERT(xp->xb_pktp != NULL);
16074 	un = SD_GET_UN(bp);
16075 	ASSERT(un != NULL);
16076 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16077 
16078 #ifdef SD_FAULT_INJECTION
16079 
16080 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16081 	/* SD FaultInjection */
16082 	sd_faultinjection(pktp);
16083 
16084 #endif /* SD_FAULT_INJECTION */
16085 
16086 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16087 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16088 
16089 	mutex_enter(SD_MUTEX(un));
16090 
16091 	/* Reduce the count of the #commands currently in transport */
16092 	un->un_ncmds_in_transport--;
16093 	ASSERT(un->un_ncmds_in_transport >= 0);
16094 
16095 	/* Increment counter to indicate that the callback routine is active */
16096 	un->un_in_callback++;
16097 
16098 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16099 
16100 #ifdef	SDDEBUG
16101 	if (bp == un->un_retry_bp) {
16102 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16103 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16104 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16105 	}
16106 #endif
16107 
16108 	/*
16109 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
16110 	 */
16111 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16112 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16113 			    "Device is gone\n");
16114 		sd_return_failed_command(un, bp, EIO);
16115 		goto exit;
16116 	}
16117 
16118 	/*
16119 	 * First see if the pkt has auto-request sense data with it....
16120 	 * Look at the packet state first so we don't take a performance
16121 	 * hit looking at the arq enabled flag unless absolutely necessary.
16122 	 */
16123 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16124 	    (un->un_f_arq_enabled == TRUE)) {
16125 		/*
16126 		 * The HBA did an auto request sense for this command so check
16127 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16128 		 * driver command that should not be retried.
16129 		 */
16130 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16131 			/*
16132 			 * Save the relevant sense info into the xp for the
16133 			 * original cmd.
16134 			 */
16135 			struct scsi_arq_status *asp;
16136 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16137 			xp->xb_sense_status =
16138 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16139 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16140 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16141 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16142 			    min(sizeof (struct scsi_extended_sense),
16143 			    SENSE_LENGTH));
16144 
16145 			/* fail the command */
16146 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16147 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16148 			sd_return_failed_command(un, bp, EIO);
16149 			goto exit;
16150 		}
16151 
16152 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16153 		/*
16154 		 * We want to either retry or fail this command, so free
16155 		 * the DMA resources here.  If we retry the command then
16156 		 * the DMA resources will be reallocated in sd_start_cmds().
16157 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16158 		 * causes the *entire* transfer to start over again from the
16159 		 * beginning of the request, even for PARTIAL chunks that
16160 		 * have already transferred successfully.
16161 		 */
16162 		if ((un->un_f_is_fibre == TRUE) &&
16163 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16164 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16165 			scsi_dmafree(pktp);
16166 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16167 		}
16168 #endif
16169 
16170 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16171 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16172 
16173 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16174 		goto exit;
16175 	}
16176 
16177 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16178 	if (pktp->pkt_flags & FLAG_SENSING)  {
16179 		/* This pktp is from the unit's REQUEST_SENSE command */
16180 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16181 		    "sdintr: sd_handle_request_sense\n");
16182 		sd_handle_request_sense(un, bp, xp, pktp);
16183 		goto exit;
16184 	}
16185 
16186 	/*
16187 	 * Check to see if the command successfully completed as requested;
16188 	 * this is the most common case (and also the hot performance path).
16189 	 *
16190 	 * Requirements for successful completion are:
16191 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16192 	 * In addition:
16193 	 * - A residual of zero indicates successful completion no matter what
16194 	 *   the command is.
16195 	 * - If the residual is not zero and the command is not a read or
16196 	 *   write, then it's still defined as successful completion. In other
16197 	 *   words, if the command is a read or write the residual must be
16198 	 *   zero for successful completion.
16199 	 * - If the residual is not zero and the command is a read or
16200 	 *   write, and it's a USCSICMD, then it's still defined as
16201 	 *   successful completion.
16202 	 */
16203 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16204 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16205 
16206 		/*
16207 		 * Since this command is returned with a good status, we
16208 		 * can reset the count for Sonoma failover.
16209 		 */
16210 		un->un_sonoma_failure_count = 0;
16211 
16212 		/*
16213 		 * Return all USCSI commands on good status
16214 		 */
16215 		if (pktp->pkt_resid == 0) {
16216 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16217 			    "sdintr: returning command for resid == 0\n");
16218 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16219 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16220 			SD_UPDATE_B_RESID(bp, pktp);
16221 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16222 			    "sdintr: returning command for resid != 0\n");
16223 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16224 			SD_UPDATE_B_RESID(bp, pktp);
16225 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16226 				"sdintr: returning uscsi command\n");
16227 		} else {
16228 			goto not_successful;
16229 		}
16230 		sd_return_command(un, bp);
16231 
16232 		/*
16233 		 * Decrement counter to indicate that the callback routine
16234 		 * is done.
16235 		 */
16236 		un->un_in_callback--;
16237 		ASSERT(un->un_in_callback >= 0);
16238 		mutex_exit(SD_MUTEX(un));
16239 
16240 		return;
16241 	}
16242 
16243 not_successful:
16244 
16245 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16246 	/*
16247 	 * The following is based upon knowledge of the underlying transport
16248 	 * and its use of DMA resources.  This code should be removed when
16249 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16250 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16251 	 * and sd_start_cmds().
16252 	 *
16253 	 * Free any DMA resources associated with this command if there
16254 	 * is a chance it could be retried or enqueued for later retry.
16255 	 * If we keep the DMA binding then mpxio cannot reissue the
16256 	 * command on another path whenever a path failure occurs.
16257 	 *
16258 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16259 	 * causes the *entire* transfer to start over again from the
16260 	 * beginning of the request, even for PARTIAL chunks that
16261 	 * have already transferred successfully.
16262 	 *
16263 	 * This is only done for non-uscsi commands (and also skipped for the
16264 	 * driver's internal RQS command). Also just do this for Fibre Channel
16265 	 * devices as these are the only ones that support mpxio.
16266 	 */
16267 	if ((un->un_f_is_fibre == TRUE) &&
16268 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16269 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16270 		scsi_dmafree(pktp);
16271 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16272 	}
16273 #endif
16274 
16275 	/*
16276 	 * The command did not successfully complete as requested so check
16277 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16278 	 * driver command that should not be retried so just return. If
16279 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16280 	 */
16281 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16282 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16283 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16284 		/*
16285 		 * Issue a request sense if a check condition caused the error
16286 		 * (we handle the auto request sense case above), otherwise
16287 		 * just fail the command.
16288 		 */
16289 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16290 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16291 			sd_send_request_sense_command(un, bp, pktp);
16292 		} else {
16293 			sd_return_failed_command(un, bp, EIO);
16294 		}
16295 		goto exit;
16296 	}
16297 
16298 	/*
16299 	 * The command did not successfully complete as requested so process
16300 	 * the error, retry, and/or attempt recovery.
16301 	 */
16302 	switch (pktp->pkt_reason) {
16303 	case CMD_CMPLT:
16304 		switch (SD_GET_PKT_STATUS(pktp)) {
16305 		case STATUS_GOOD:
16306 			/*
16307 			 * The command completed successfully with a non-zero
16308 			 * residual
16309 			 */
16310 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16311 			    "sdintr: STATUS_GOOD \n");
16312 			sd_pkt_status_good(un, bp, xp, pktp);
16313 			break;
16314 
16315 		case STATUS_CHECK:
16316 		case STATUS_TERMINATED:
16317 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16318 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16319 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16320 			break;
16321 
16322 		case STATUS_BUSY:
16323 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16324 			    "sdintr: STATUS_BUSY\n");
16325 			sd_pkt_status_busy(un, bp, xp, pktp);
16326 			break;
16327 
16328 		case STATUS_RESERVATION_CONFLICT:
16329 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16330 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16331 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16332 			break;
16333 
16334 		case STATUS_QFULL:
16335 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16336 			    "sdintr: STATUS_QFULL\n");
16337 			sd_pkt_status_qfull(un, bp, xp, pktp);
16338 			break;
16339 
16340 		case STATUS_MET:
16341 		case STATUS_INTERMEDIATE:
16342 		case STATUS_SCSI2:
16343 		case STATUS_INTERMEDIATE_MET:
16344 		case STATUS_ACA_ACTIVE:
16345 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16346 			    "Unexpected SCSI status received: 0x%x\n",
16347 			    SD_GET_PKT_STATUS(pktp));
16348 			sd_return_failed_command(un, bp, EIO);
16349 			break;
16350 
16351 		default:
16352 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16353 			    "Invalid SCSI status received: 0x%x\n",
16354 			    SD_GET_PKT_STATUS(pktp));
16355 			sd_return_failed_command(un, bp, EIO);
16356 			break;
16357 
16358 		}
16359 		break;
16360 
16361 	case CMD_INCOMPLETE:
16362 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16363 		    "sdintr:  CMD_INCOMPLETE\n");
16364 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16365 		break;
16366 	case CMD_TRAN_ERR:
16367 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16368 		    "sdintr: CMD_TRAN_ERR\n");
16369 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16370 		break;
16371 	case CMD_RESET:
16372 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16373 		    "sdintr: CMD_RESET \n");
16374 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16375 		break;
16376 	case CMD_ABORTED:
16377 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16378 		    "sdintr: CMD_ABORTED \n");
16379 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16380 		break;
16381 	case CMD_TIMEOUT:
16382 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16383 		    "sdintr: CMD_TIMEOUT\n");
16384 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16385 		break;
16386 	case CMD_UNX_BUS_FREE:
16387 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16388 		    "sdintr: CMD_UNX_BUS_FREE \n");
16389 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16390 		break;
16391 	case CMD_TAG_REJECT:
16392 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16393 		    "sdintr: CMD_TAG_REJECT\n");
16394 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16395 		break;
16396 	default:
16397 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16398 		    "sdintr: default\n");
16399 		sd_pkt_reason_default(un, bp, xp, pktp);
16400 		break;
16401 	}
16402 
16403 exit:
16404 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16405 
16406 	/* Decrement counter to indicate that the callback routine is done. */
16407 	un->un_in_callback--;
16408 	ASSERT(un->un_in_callback >= 0);
16409 
16410 	/*
16411 	 * At this point, the pkt has been dispatched, ie, it is either
16412 	 * being re-tried or has been returned to its caller and should
16413 	 * not be referenced.
16414 	 */
16415 
16416 	mutex_exit(SD_MUTEX(un));
16417 }
16418 
16419 
16420 /*
16421  *    Function: sd_print_incomplete_msg
16422  *
16423  * Description: Prints the error message for a CMD_INCOMPLETE error.
16424  *
16425  *   Arguments: un - ptr to associated softstate for the device.
16426  *		bp - ptr to the buf(9S) for the command.
16427  *		arg - message string ptr
16428  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
16429  *			or SD_NO_RETRY_ISSUED.
16430  *
16431  *     Context: May be called under interrupt context
16432  */
16433 
16434 static void
16435 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
16436 {
16437 	struct scsi_pkt	*pktp;
16438 	char	*msgp;
16439 	char	*cmdp = arg;
16440 
16441 	ASSERT(un != NULL);
16442 	ASSERT(mutex_owned(SD_MUTEX(un)));
16443 	ASSERT(bp != NULL);
16444 	ASSERT(arg != NULL);
16445 	pktp = SD_GET_PKTP(bp);
16446 	ASSERT(pktp != NULL);
16447 
16448 	switch (code) {
16449 	case SD_DELAYED_RETRY_ISSUED:
16450 	case SD_IMMEDIATE_RETRY_ISSUED:
16451 		msgp = "retrying";
16452 		break;
16453 	case SD_NO_RETRY_ISSUED:
16454 	default:
16455 		msgp = "giving up";
16456 		break;
16457 	}
16458 
16459 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16460 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16461 		    "incomplete %s- %s\n", cmdp, msgp);
16462 	}
16463 }
16464 
16465 
16466 
16467 /*
16468  *    Function: sd_pkt_status_good
16469  *
16470  * Description: Processing for a STATUS_GOOD code in pkt_status.
16471  *
16472  *     Context: May be called under interrupt context
16473  */
16474 
16475 static void
16476 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
16477 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16478 {
16479 	char	*cmdp;
16480 
16481 	ASSERT(un != NULL);
16482 	ASSERT(mutex_owned(SD_MUTEX(un)));
16483 	ASSERT(bp != NULL);
16484 	ASSERT(xp != NULL);
16485 	ASSERT(pktp != NULL);
16486 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
16487 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
16488 	ASSERT(pktp->pkt_resid != 0);
16489 
16490 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
16491 
16492 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
16493 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
16494 	case SCMD_READ:
16495 		cmdp = "read";
16496 		break;
16497 	case SCMD_WRITE:
16498 		cmdp = "write";
16499 		break;
16500 	default:
16501 		SD_UPDATE_B_RESID(bp, pktp);
16502 		sd_return_command(un, bp);
16503 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16504 		return;
16505 	}
16506 
16507 	/*
16508 	 * See if we can retry the read/write, preferrably immediately.
16509 	 * If retries are exhaused, then sd_retry_command() will update
16510 	 * the b_resid count.
16511 	 */
16512 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
16513 	    cmdp, EIO, (clock_t)0, NULL);
16514 
16515 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
16516 }
16517 
16518 
16519 
16520 
16521 
16522 /*
16523  *    Function: sd_handle_request_sense
16524  *
16525  * Description: Processing for non-auto Request Sense command.
16526  *
16527  *   Arguments: un - ptr to associated softstate
16528  *		sense_bp - ptr to buf(9S) for the RQS command
16529  *		sense_xp - ptr to the sd_xbuf for the RQS command
16530  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
16531  *
16532  *     Context: May be called under interrupt context
16533  */
16534 
16535 static void
16536 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
16537 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
16538 {
16539 	struct buf	*cmd_bp;	/* buf for the original command */
16540 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
16541 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
16542 
16543 	ASSERT(un != NULL);
16544 	ASSERT(mutex_owned(SD_MUTEX(un)));
16545 	ASSERT(sense_bp != NULL);
16546 	ASSERT(sense_xp != NULL);
16547 	ASSERT(sense_pktp != NULL);
16548 
16549 	/*
16550 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
16551 	 * RQS command and not the original command.
16552 	 */
16553 	ASSERT(sense_pktp == un->un_rqs_pktp);
16554 	ASSERT(sense_bp   == un->un_rqs_bp);
16555 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
16556 	    (FLAG_SENSING | FLAG_HEAD));
16557 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
16558 	    FLAG_SENSING) == FLAG_SENSING);
16559 
16560 	/* These are the bp, xp, and pktp for the original command */
16561 	cmd_bp = sense_xp->xb_sense_bp;
16562 	cmd_xp = SD_GET_XBUF(cmd_bp);
16563 	cmd_pktp = SD_GET_PKTP(cmd_bp);
16564 
16565 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
16566 		/*
16567 		 * The REQUEST SENSE command failed.  Release the REQUEST
16568 		 * SENSE command for re-use, get back the bp for the original
16569 		 * command, and attempt to re-try the original command if
16570 		 * FLAG_DIAGNOSE is not set in the original packet.
16571 		 */
16572 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
16573 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16574 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
16575 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
16576 			    NULL, NULL, EIO, (clock_t)0, NULL);
16577 			return;
16578 		}
16579 	}
16580 
16581 	/*
16582 	 * Save the relevant sense info into the xp for the original cmd.
16583 	 *
16584 	 * Note: if the request sense failed the state info will be zero
16585 	 * as set in sd_mark_rqs_busy()
16586 	 */
16587 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
16588 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
16589 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
16590 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
16591 
16592 	/*
16593 	 *  Free up the RQS command....
16594 	 *  NOTE:
16595 	 *	Must do this BEFORE calling sd_validate_sense_data!
16596 	 *	sd_validate_sense_data may return the original command in
16597 	 *	which case the pkt will be freed and the flags can no
16598 	 *	longer be touched.
16599 	 *	SD_MUTEX is held through this process until the command
16600 	 *	is dispatched based upon the sense data, so there are
16601 	 *	no race conditions.
16602 	 */
16603 	(void) sd_mark_rqs_idle(un, sense_xp);
16604 
16605 	/*
16606 	 * For a retryable command see if we have valid sense data, if so then
16607 	 * turn it over to sd_decode_sense() to figure out the right course of
16608 	 * action. Just fail a non-retryable command.
16609 	 */
16610 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16611 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
16612 		    SD_SENSE_DATA_IS_VALID) {
16613 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
16614 		}
16615 	} else {
16616 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
16617 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
16618 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
16619 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
16620 		sd_return_failed_command(un, cmd_bp, EIO);
16621 	}
16622 }
16623 
16624 
16625 
16626 
16627 /*
16628  *    Function: sd_handle_auto_request_sense
16629  *
16630  * Description: Processing for auto-request sense information.
16631  *
16632  *   Arguments: un - ptr to associated softstate
16633  *		bp - ptr to buf(9S) for the command
16634  *		xp - ptr to the sd_xbuf for the command
16635  *		pktp - ptr to the scsi_pkt(9S) for the command
16636  *
16637  *     Context: May be called under interrupt context
16638  */
16639 
16640 static void
16641 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
16642 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
16643 {
16644 	struct scsi_arq_status *asp;
16645 
16646 	ASSERT(un != NULL);
16647 	ASSERT(mutex_owned(SD_MUTEX(un)));
16648 	ASSERT(bp != NULL);
16649 	ASSERT(xp != NULL);
16650 	ASSERT(pktp != NULL);
16651 	ASSERT(pktp != un->un_rqs_pktp);
16652 	ASSERT(bp   != un->un_rqs_bp);
16653 
16654 	/*
16655 	 * For auto-request sense, we get a scsi_arq_status back from
16656 	 * the HBA, with the sense data in the sts_sensedata member.
16657 	 * The pkt_scbp of the packet points to this scsi_arq_status.
16658 	 */
16659 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16660 
16661 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
16662 		/*
16663 		 * The auto REQUEST SENSE failed; see if we can re-try
16664 		 * the original command.
16665 		 */
16666 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16667 		    "auto request sense failed (reason=%s)\n",
16668 		    scsi_rname(asp->sts_rqpkt_reason));
16669 
16670 		sd_reset_target(un, pktp);
16671 
16672 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16673 		    NULL, NULL, EIO, (clock_t)0, NULL);
16674 		return;
16675 	}
16676 
16677 	/* Save the relevant sense info into the xp for the original cmd. */
16678 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
16679 	xp->xb_sense_state  = asp->sts_rqpkt_state;
16680 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16681 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16682 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
16683 
16684 	/*
16685 	 * See if we have valid sense data, if so then turn it over to
16686 	 * sd_decode_sense() to figure out the right course of action.
16687 	 */
16688 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
16689 		sd_decode_sense(un, bp, xp, pktp);
16690 	}
16691 }
16692 
16693 
16694 /*
16695  *    Function: sd_print_sense_failed_msg
16696  *
16697  * Description: Print log message when RQS has failed.
16698  *
16699  *   Arguments: un - ptr to associated softstate
16700  *		bp - ptr to buf(9S) for the command
16701  *		arg - generic message string ptr
16702  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
16703  *			or SD_NO_RETRY_ISSUED
16704  *
16705  *     Context: May be called from interrupt context
16706  */
16707 
16708 static void
16709 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
16710 	int code)
16711 {
16712 	char	*msgp = arg;
16713 
16714 	ASSERT(un != NULL);
16715 	ASSERT(mutex_owned(SD_MUTEX(un)));
16716 	ASSERT(bp != NULL);
16717 
16718 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
16719 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
16720 	}
16721 }
16722 
16723 
16724 /*
16725  *    Function: sd_validate_sense_data
16726  *
16727  * Description: Check the given sense data for validity.
16728  *		If the sense data is not valid, the command will
16729  *		be either failed or retried!
16730  *
16731  * Return Code: SD_SENSE_DATA_IS_INVALID
16732  *		SD_SENSE_DATA_IS_VALID
16733  *
16734  *     Context: May be called from interrupt context
16735  */
16736 
16737 static int
16738 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
16739 {
16740 	struct scsi_extended_sense *esp;
16741 	struct	scsi_pkt *pktp;
16742 	size_t	actual_len;
16743 	char	*msgp = NULL;
16744 
16745 	ASSERT(un != NULL);
16746 	ASSERT(mutex_owned(SD_MUTEX(un)));
16747 	ASSERT(bp != NULL);
16748 	ASSERT(bp != un->un_rqs_bp);
16749 	ASSERT(xp != NULL);
16750 
16751 	pktp = SD_GET_PKTP(bp);
16752 	ASSERT(pktp != NULL);
16753 
16754 	/*
16755 	 * Check the status of the RQS command (auto or manual).
16756 	 */
16757 	switch (xp->xb_sense_status & STATUS_MASK) {
16758 	case STATUS_GOOD:
16759 		break;
16760 
16761 	case STATUS_RESERVATION_CONFLICT:
16762 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16763 		return (SD_SENSE_DATA_IS_INVALID);
16764 
16765 	case STATUS_BUSY:
16766 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16767 		    "Busy Status on REQUEST SENSE\n");
16768 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
16769 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16770 		return (SD_SENSE_DATA_IS_INVALID);
16771 
16772 	case STATUS_QFULL:
16773 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16774 		    "QFULL Status on REQUEST SENSE\n");
16775 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
16776 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
16777 		return (SD_SENSE_DATA_IS_INVALID);
16778 
16779 	case STATUS_CHECK:
16780 	case STATUS_TERMINATED:
16781 		msgp = "Check Condition on REQUEST SENSE\n";
16782 		goto sense_failed;
16783 
16784 	default:
16785 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
16786 		goto sense_failed;
16787 	}
16788 
16789 	/*
16790 	 * See if we got the minimum required amount of sense data.
16791 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
16792 	 * or less.
16793 	 */
16794 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
16795 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
16796 	    (actual_len == 0)) {
16797 		msgp = "Request Sense couldn't get sense data\n";
16798 		goto sense_failed;
16799 	}
16800 
16801 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
16802 		msgp = "Not enough sense information\n";
16803 		goto sense_failed;
16804 	}
16805 
16806 	/*
16807 	 * We require the extended sense data
16808 	 */
16809 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16810 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
16811 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
16812 			static char tmp[8];
16813 			static char buf[148];
16814 			char *p = (char *)(xp->xb_sense_data);
16815 			int i;
16816 
16817 			mutex_enter(&sd_sense_mutex);
16818 			(void) strcpy(buf, "undecodable sense information:");
16819 			for (i = 0; i < actual_len; i++) {
16820 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
16821 				(void) strcpy(&buf[strlen(buf)], tmp);
16822 			}
16823 			i = strlen(buf);
16824 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
16825 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
16826 			mutex_exit(&sd_sense_mutex);
16827 		}
16828 		/* Note: Legacy behavior, fail the command with no retry */
16829 		sd_return_failed_command(un, bp, EIO);
16830 		return (SD_SENSE_DATA_IS_INVALID);
16831 	}
16832 
16833 	/*
16834 	 * Check that es_code is valid (es_class concatenated with es_code
16835 	 * make up the "response code" field.  es_class will always be 7, so
16836 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
16837 	 * format.
16838 	 */
16839 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
16840 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
16841 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
16842 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
16843 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
16844 		goto sense_failed;
16845 	}
16846 
16847 	return (SD_SENSE_DATA_IS_VALID);
16848 
16849 sense_failed:
16850 	/*
16851 	 * If the request sense failed (for whatever reason), attempt
16852 	 * to retry the original command.
16853 	 */
16854 #if defined(__i386) || defined(__amd64)
16855 	/*
16856 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
16857 	 * sddef.h for Sparc platform, and x86 uses 1 binary
16858 	 * for both SCSI/FC.
16859 	 * The SD_RETRY_DELAY value need to be adjusted here
16860 	 * when SD_RETRY_DELAY change in sddef.h
16861 	 */
16862 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16863 	    sd_print_sense_failed_msg, msgp, EIO,
16864 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
16865 #else
16866 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
16867 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
16868 #endif
16869 
16870 	return (SD_SENSE_DATA_IS_INVALID);
16871 }
16872 
16873 
16874 
16875 /*
16876  *    Function: sd_decode_sense
16877  *
16878  * Description: Take recovery action(s) when SCSI Sense Data is received.
16879  *
16880  *     Context: Interrupt context.
16881  */
16882 
16883 static void
16884 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
16885 	struct scsi_pkt *pktp)
16886 {
16887 	struct scsi_extended_sense *esp;
16888 	struct scsi_descr_sense_hdr *sdsp;
16889 	uint8_t asc, ascq, sense_key;
16890 
16891 	ASSERT(un != NULL);
16892 	ASSERT(mutex_owned(SD_MUTEX(un)));
16893 	ASSERT(bp != NULL);
16894 	ASSERT(bp != un->un_rqs_bp);
16895 	ASSERT(xp != NULL);
16896 	ASSERT(pktp != NULL);
16897 
16898 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
16899 
16900 	switch (esp->es_code) {
16901 	case CODE_FMT_DESCR_CURRENT:
16902 	case CODE_FMT_DESCR_DEFERRED:
16903 		sdsp = (struct scsi_descr_sense_hdr *)xp->xb_sense_data;
16904 		sense_key = sdsp->ds_key;
16905 		asc = sdsp->ds_add_code;
16906 		ascq = sdsp->ds_qual_code;
16907 		break;
16908 	case CODE_FMT_VENDOR_SPECIFIC:
16909 	case CODE_FMT_FIXED_CURRENT:
16910 	case CODE_FMT_FIXED_DEFERRED:
16911 	default:
16912 		sense_key = esp->es_key;
16913 		asc = esp->es_add_code;
16914 		ascq = esp->es_qual_code;
16915 		break;
16916 	}
16917 
16918 	switch (sense_key) {
16919 	case KEY_NO_SENSE:
16920 		sd_sense_key_no_sense(un, bp, xp, pktp);
16921 		break;
16922 	case KEY_RECOVERABLE_ERROR:
16923 		sd_sense_key_recoverable_error(un, asc, bp, xp, pktp);
16924 		break;
16925 	case KEY_NOT_READY:
16926 		sd_sense_key_not_ready(un, asc, ascq, bp, xp, pktp);
16927 		break;
16928 	case KEY_MEDIUM_ERROR:
16929 	case KEY_HARDWARE_ERROR:
16930 		sd_sense_key_medium_or_hardware_error(un,
16931 		    sense_key, asc, bp, xp, pktp);
16932 		break;
16933 	case KEY_ILLEGAL_REQUEST:
16934 		sd_sense_key_illegal_request(un, bp, xp, pktp);
16935 		break;
16936 	case KEY_UNIT_ATTENTION:
16937 		sd_sense_key_unit_attention(un, asc, bp, xp, pktp);
16938 		break;
16939 	case KEY_WRITE_PROTECT:
16940 	case KEY_VOLUME_OVERFLOW:
16941 	case KEY_MISCOMPARE:
16942 		sd_sense_key_fail_command(un, bp, xp, pktp);
16943 		break;
16944 	case KEY_BLANK_CHECK:
16945 		sd_sense_key_blank_check(un, bp, xp, pktp);
16946 		break;
16947 	case KEY_ABORTED_COMMAND:
16948 		sd_sense_key_aborted_command(un, bp, xp, pktp);
16949 		break;
16950 	case KEY_VENDOR_UNIQUE:
16951 	case KEY_COPY_ABORTED:
16952 	case KEY_EQUAL:
16953 	case KEY_RESERVED:
16954 	default:
16955 		sd_sense_key_default(un, sense_key, bp, xp, pktp);
16956 		break;
16957 	}
16958 }
16959 
16960 
16961 /*
16962  *    Function: sd_dump_memory
16963  *
16964  * Description: Debug logging routine to print the contents of a user provided
16965  *		buffer. The output of the buffer is broken up into 256 byte
16966  *		segments due to a size constraint of the scsi_log.
16967  *		implementation.
16968  *
16969  *   Arguments: un - ptr to softstate
16970  *		comp - component mask
16971  *		title - "title" string to preceed data when printed
16972  *		data - ptr to data block to be printed
16973  *		len - size of data block to be printed
16974  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
16975  *
16976  *     Context: May be called from interrupt context
16977  */
16978 
16979 #define	SD_DUMP_MEMORY_BUF_SIZE	256
16980 
16981 static char *sd_dump_format_string[] = {
16982 		" 0x%02x",
16983 		" %c"
16984 };
16985 
16986 static void
16987 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
16988     int len, int fmt)
16989 {
16990 	int	i, j;
16991 	int	avail_count;
16992 	int	start_offset;
16993 	int	end_offset;
16994 	size_t	entry_len;
16995 	char	*bufp;
16996 	char	*local_buf;
16997 	char	*format_string;
16998 
16999 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17000 
17001 	/*
17002 	 * In the debug version of the driver, this function is called from a
17003 	 * number of places which are NOPs in the release driver.
17004 	 * The debug driver therefore has additional methods of filtering
17005 	 * debug output.
17006 	 */
17007 #ifdef SDDEBUG
17008 	/*
17009 	 * In the debug version of the driver we can reduce the amount of debug
17010 	 * messages by setting sd_error_level to something other than
17011 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17012 	 * sd_component_mask.
17013 	 */
17014 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17015 	    (sd_error_level != SCSI_ERR_ALL)) {
17016 		return;
17017 	}
17018 	if (((sd_component_mask & comp) == 0) ||
17019 	    (sd_error_level != SCSI_ERR_ALL)) {
17020 		return;
17021 	}
17022 #else
17023 	if (sd_error_level != SCSI_ERR_ALL) {
17024 		return;
17025 	}
17026 #endif
17027 
17028 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17029 	bufp = local_buf;
17030 	/*
17031 	 * Available length is the length of local_buf[], minus the
17032 	 * length of the title string, minus one for the ":", minus
17033 	 * one for the newline, minus one for the NULL terminator.
17034 	 * This gives the #bytes available for holding the printed
17035 	 * values from the given data buffer.
17036 	 */
17037 	if (fmt == SD_LOG_HEX) {
17038 		format_string = sd_dump_format_string[0];
17039 	} else /* SD_LOG_CHAR */ {
17040 		format_string = sd_dump_format_string[1];
17041 	}
17042 	/*
17043 	 * Available count is the number of elements from the given
17044 	 * data buffer that we can fit into the available length.
17045 	 * This is based upon the size of the format string used.
17046 	 * Make one entry and find it's size.
17047 	 */
17048 	(void) sprintf(bufp, format_string, data[0]);
17049 	entry_len = strlen(bufp);
17050 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17051 
17052 	j = 0;
17053 	while (j < len) {
17054 		bufp = local_buf;
17055 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17056 		start_offset = j;
17057 
17058 		end_offset = start_offset + avail_count;
17059 
17060 		(void) sprintf(bufp, "%s:", title);
17061 		bufp += strlen(bufp);
17062 		for (i = start_offset; ((i < end_offset) && (j < len));
17063 		    i++, j++) {
17064 			(void) sprintf(bufp, format_string, data[i]);
17065 			bufp += entry_len;
17066 		}
17067 		(void) sprintf(bufp, "\n");
17068 
17069 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17070 	}
17071 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17072 }
17073 
17074 /*
17075  *    Function: sd_print_sense_msg
17076  *
17077  * Description: Log a message based upon the given sense data.
17078  *
17079  *   Arguments: un - ptr to associated softstate
17080  *		bp - ptr to buf(9S) for the command
17081  *		arg - ptr to associate sd_sense_info struct
17082  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17083  *			or SD_NO_RETRY_ISSUED
17084  *
17085  *     Context: May be called from interrupt context
17086  */
17087 
17088 static void
17089 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17090 {
17091 	struct sd_xbuf	*xp;
17092 	struct scsi_pkt	*pktp;
17093 	struct scsi_extended_sense *sensep;
17094 	daddr_t request_blkno;
17095 	diskaddr_t err_blkno;
17096 	int severity;
17097 	int pfa_flag;
17098 	int fixed_format = TRUE;
17099 	extern struct scsi_key_strings scsi_cmds[];
17100 
17101 	ASSERT(un != NULL);
17102 	ASSERT(mutex_owned(SD_MUTEX(un)));
17103 	ASSERT(bp != NULL);
17104 	xp = SD_GET_XBUF(bp);
17105 	ASSERT(xp != NULL);
17106 	pktp = SD_GET_PKTP(bp);
17107 	ASSERT(pktp != NULL);
17108 	ASSERT(arg != NULL);
17109 
17110 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17111 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17112 
17113 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17114 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17115 		severity = SCSI_ERR_RETRYABLE;
17116 	}
17117 
17118 	/* Use absolute block number for the request block number */
17119 	request_blkno = xp->xb_blkno;
17120 
17121 	/*
17122 	 * Now try to get the error block number from the sense data
17123 	 */
17124 	sensep = (struct scsi_extended_sense *)xp->xb_sense_data;
17125 	switch (sensep->es_code) {
17126 	case CODE_FMT_DESCR_CURRENT:
17127 	case CODE_FMT_DESCR_DEFERRED:
17128 		err_blkno =
17129 		    sd_extract_sense_info_descr(
17130 			(struct scsi_descr_sense_hdr *)sensep);
17131 		fixed_format = FALSE;
17132 		break;
17133 	case CODE_FMT_FIXED_CURRENT:
17134 	case CODE_FMT_FIXED_DEFERRED:
17135 	case CODE_FMT_VENDOR_SPECIFIC:
17136 	default:
17137 		/*
17138 		 * With the es_valid bit set, we assume that the error
17139 		 * blkno is in the sense data.  Also, if xp->xb_blkno is
17140 		 * greater than 0xffffffff then the target *should* have used
17141 		 * a descriptor sense format (or it shouldn't have set
17142 		 * the es_valid bit), and we may as well ignore the
17143 		 * 32-bit value.
17144 		 */
17145 		if ((sensep->es_valid != 0) && (xp->xb_blkno <= 0xffffffff)) {
17146 			err_blkno = (diskaddr_t)
17147 			    ((sensep->es_info_1 << 24) |
17148 			    (sensep->es_info_2 << 16) |
17149 			    (sensep->es_info_3 << 8)  |
17150 			    (sensep->es_info_4));
17151 		} else {
17152 			err_blkno = (diskaddr_t)-1;
17153 		}
17154 		break;
17155 	}
17156 
17157 	if (err_blkno == (diskaddr_t)-1) {
17158 		/*
17159 		 * Without the es_valid bit set (for fixed format) or an
17160 		 * information descriptor (for descriptor format) we cannot
17161 		 * be certain of the error blkno, so just use the
17162 		 * request_blkno.
17163 		 */
17164 		err_blkno = (diskaddr_t)request_blkno;
17165 	} else {
17166 		/*
17167 		 * We retrieved the error block number from the information
17168 		 * portion of the sense data.
17169 		 *
17170 		 * For USCSI commands we are better off using the error
17171 		 * block no. as the requested block no. (This is the best
17172 		 * we can estimate.)
17173 		 */
17174 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17175 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17176 			request_blkno = err_blkno;
17177 		}
17178 	}
17179 
17180 	/*
17181 	 * The following will log the buffer contents for the release driver
17182 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17183 	 * level is set to verbose.
17184 	 */
17185 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17186 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17187 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17188 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17189 
17190 	if (pfa_flag == FALSE) {
17191 		/* This is normally only set for USCSI */
17192 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17193 			return;
17194 		}
17195 
17196 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17197 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17198 		    (severity < sd_error_level))) {
17199 			return;
17200 		}
17201 	}
17202 
17203 	/*
17204 	 * If the data is fixed format then check for Sonoma Failover,
17205 	 * and keep a count of how many failed I/O's.  We should not have
17206 	 * to worry about Sonoma returning descriptor format sense data,
17207 	 * and asc/ascq are in a different location in descriptor format.
17208 	 */
17209 	if (fixed_format &&
17210 	    (SD_IS_LSI(un)) && (sensep->es_key == KEY_ILLEGAL_REQUEST) &&
17211 	    (sensep->es_add_code == 0x94) && (sensep->es_qual_code == 0x01)) {
17212 		un->un_sonoma_failure_count++;
17213 		if (un->un_sonoma_failure_count > 1) {
17214 			return;
17215 		}
17216 	}
17217 
17218 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17219 	    request_blkno, err_blkno, scsi_cmds, sensep,
17220 	    un->un_additional_codes, NULL);
17221 }
17222 
17223 /*
17224  *    Function: sd_extract_sense_info_descr
17225  *
17226  * Description: Retrieve "information" field from descriptor format
17227  *              sense data.  Iterates through each sense descriptor
17228  *              looking for the information descriptor and returns
17229  *              the information field from that descriptor.
17230  *
17231  *     Context: May be called from interrupt context
17232  */
17233 
17234 static diskaddr_t
17235 sd_extract_sense_info_descr(struct scsi_descr_sense_hdr *sdsp)
17236 {
17237 	diskaddr_t result;
17238 	uint8_t *descr_offset;
17239 	int valid_sense_length;
17240 	struct scsi_information_sense_descr *isd;
17241 
17242 	/*
17243 	 * Initialize result to -1 indicating there is no information
17244 	 * descriptor
17245 	 */
17246 	result = (diskaddr_t)-1;
17247 
17248 	/*
17249 	 * The first descriptor will immediately follow the header
17250 	 */
17251 	descr_offset = (uint8_t *)(sdsp+1); /* Pointer arithmetic */
17252 
17253 	/*
17254 	 * Calculate the amount of valid sense data
17255 	 */
17256 	valid_sense_length =
17257 	    min((sizeof (struct scsi_descr_sense_hdr) +
17258 	    sdsp->ds_addl_sense_length),
17259 	    SENSE_LENGTH);
17260 
17261 	/*
17262 	 * Iterate through the list of descriptors, stopping when we
17263 	 * run out of sense data
17264 	 */
17265 	while ((descr_offset + sizeof (struct scsi_information_sense_descr)) <=
17266 	    (uint8_t *)sdsp + valid_sense_length) {
17267 		/*
17268 		 * Check if this is an information descriptor.  We can
17269 		 * use the scsi_information_sense_descr structure as a
17270 		 * template sense the first two fields are always the
17271 		 * same
17272 		 */
17273 		isd = (struct scsi_information_sense_descr *)descr_offset;
17274 		if (isd->isd_descr_type == DESCR_INFORMATION) {
17275 			/*
17276 			 * Found an information descriptor.  Copy the
17277 			 * information field.  There will only be one
17278 			 * information descriptor so we can stop looking.
17279 			 */
17280 			result =
17281 			    (((diskaddr_t)isd->isd_information[0] << 56) |
17282 				((diskaddr_t)isd->isd_information[1] << 48) |
17283 				((diskaddr_t)isd->isd_information[2] << 40) |
17284 				((diskaddr_t)isd->isd_information[3] << 32) |
17285 				((diskaddr_t)isd->isd_information[4] << 24) |
17286 				((diskaddr_t)isd->isd_information[5] << 16) |
17287 				((diskaddr_t)isd->isd_information[6] << 8)  |
17288 				((diskaddr_t)isd->isd_information[7]));
17289 			break;
17290 		}
17291 
17292 		/*
17293 		 * Get pointer to the next descriptor.  The "additional
17294 		 * length" field holds the length of the descriptor except
17295 		 * for the "type" and "additional length" fields, so
17296 		 * we need to add 2 to get the total length.
17297 		 */
17298 		descr_offset += (isd->isd_addl_length + 2);
17299 	}
17300 
17301 	return (result);
17302 }
17303 
17304 /*
17305  *    Function: sd_sense_key_no_sense
17306  *
17307  * Description: Recovery action when sense data was not received.
17308  *
17309  *     Context: May be called from interrupt context
17310  */
17311 
17312 static void
17313 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17314 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17315 {
17316 	struct sd_sense_info	si;
17317 
17318 	ASSERT(un != NULL);
17319 	ASSERT(mutex_owned(SD_MUTEX(un)));
17320 	ASSERT(bp != NULL);
17321 	ASSERT(xp != NULL);
17322 	ASSERT(pktp != NULL);
17323 
17324 	si.ssi_severity = SCSI_ERR_FATAL;
17325 	si.ssi_pfa_flag = FALSE;
17326 
17327 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17328 
17329 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17330 		&si, EIO, (clock_t)0, NULL);
17331 }
17332 
17333 
17334 /*
17335  *    Function: sd_sense_key_recoverable_error
17336  *
17337  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17338  *
17339  *     Context: May be called from interrupt context
17340  */
17341 
17342 static void
17343 sd_sense_key_recoverable_error(struct sd_lun *un,
17344 	uint8_t asc,
17345 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17346 {
17347 	struct sd_sense_info	si;
17348 
17349 	ASSERT(un != NULL);
17350 	ASSERT(mutex_owned(SD_MUTEX(un)));
17351 	ASSERT(bp != NULL);
17352 	ASSERT(xp != NULL);
17353 	ASSERT(pktp != NULL);
17354 
17355 	/*
17356 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17357 	 */
17358 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17359 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17360 		si.ssi_severity = SCSI_ERR_INFO;
17361 		si.ssi_pfa_flag = TRUE;
17362 	} else {
17363 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17364 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17365 		si.ssi_severity = SCSI_ERR_RECOVERED;
17366 		si.ssi_pfa_flag = FALSE;
17367 	}
17368 
17369 	if (pktp->pkt_resid == 0) {
17370 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17371 		sd_return_command(un, bp);
17372 		return;
17373 	}
17374 
17375 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17376 	    &si, EIO, (clock_t)0, NULL);
17377 }
17378 
17379 
17380 
17381 
17382 /*
17383  *    Function: sd_sense_key_not_ready
17384  *
17385  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17386  *
17387  *     Context: May be called from interrupt context
17388  */
17389 
17390 static void
17391 sd_sense_key_not_ready(struct sd_lun *un,
17392 	uint8_t asc, uint8_t ascq,
17393 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17394 {
17395 	struct sd_sense_info	si;
17396 
17397 	ASSERT(un != NULL);
17398 	ASSERT(mutex_owned(SD_MUTEX(un)));
17399 	ASSERT(bp != NULL);
17400 	ASSERT(xp != NULL);
17401 	ASSERT(pktp != NULL);
17402 
17403 	si.ssi_severity = SCSI_ERR_FATAL;
17404 	si.ssi_pfa_flag = FALSE;
17405 
17406 	/*
17407 	 * Update error stats after first NOT READY error. Disks may have
17408 	 * been powered down and may need to be restarted.  For CDROMs,
17409 	 * report NOT READY errors only if media is present.
17410 	 */
17411 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17412 	    (xp->xb_retry_count > 0)) {
17413 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17414 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17415 	}
17416 
17417 	/*
17418 	 * Just fail if the "not ready" retry limit has been reached.
17419 	 */
17420 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17421 		/* Special check for error message printing for removables. */
17422 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17423 		    (ascq >= 0x04)) {
17424 			si.ssi_severity = SCSI_ERR_ALL;
17425 		}
17426 		goto fail_command;
17427 	}
17428 
17429 	/*
17430 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17431 	 * what to do.
17432 	 */
17433 	switch (asc) {
17434 	case 0x04:	/* LOGICAL UNIT NOT READY */
17435 		/*
17436 		 * disk drives that don't spin up result in a very long delay
17437 		 * in format without warning messages. We will log a message
17438 		 * if the error level is set to verbose.
17439 		 */
17440 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17441 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17442 			    "logical unit not ready, resetting disk\n");
17443 		}
17444 
17445 		/*
17446 		 * There are different requirements for CDROMs and disks for
17447 		 * the number of retries.  If a CD-ROM is giving this, it is
17448 		 * probably reading TOC and is in the process of getting
17449 		 * ready, so we should keep on trying for a long time to make
17450 		 * sure that all types of media are taken in account (for
17451 		 * some media the drive takes a long time to read TOC).  For
17452 		 * disks we do not want to retry this too many times as this
17453 		 * can cause a long hang in format when the drive refuses to
17454 		 * spin up (a very common failure).
17455 		 */
17456 		switch (ascq) {
17457 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17458 			/*
17459 			 * Disk drives frequently refuse to spin up which
17460 			 * results in a very long hang in format without
17461 			 * warning messages.
17462 			 *
17463 			 * Note: This code preserves the legacy behavior of
17464 			 * comparing xb_retry_count against zero for fibre
17465 			 * channel targets instead of comparing against the
17466 			 * un_reset_retry_count value.  The reason for this
17467 			 * discrepancy has been so utterly lost beneath the
17468 			 * Sands of Time that even Indiana Jones could not
17469 			 * find it.
17470 			 */
17471 			if (un->un_f_is_fibre == TRUE) {
17472 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17473 					(xp->xb_retry_count > 0)) &&
17474 					(un->un_startstop_timeid == NULL)) {
17475 					scsi_log(SD_DEVINFO(un), sd_label,
17476 					CE_WARN, "logical unit not ready, "
17477 					"resetting disk\n");
17478 					sd_reset_target(un, pktp);
17479 				}
17480 			} else {
17481 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17482 					(xp->xb_retry_count >
17483 					un->un_reset_retry_count)) &&
17484 					(un->un_startstop_timeid == NULL)) {
17485 					scsi_log(SD_DEVINFO(un), sd_label,
17486 					CE_WARN, "logical unit not ready, "
17487 					"resetting disk\n");
17488 					sd_reset_target(un, pktp);
17489 				}
17490 			}
17491 			break;
17492 
17493 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17494 			/*
17495 			 * If the target is in the process of becoming
17496 			 * ready, just proceed with the retry. This can
17497 			 * happen with CD-ROMs that take a long time to
17498 			 * read TOC after a power cycle or reset.
17499 			 */
17500 			goto do_retry;
17501 
17502 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17503 			break;
17504 
17505 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17506 			/*
17507 			 * Retries cannot help here so just fail right away.
17508 			 */
17509 			goto fail_command;
17510 
17511 		case 0x88:
17512 			/*
17513 			 * Vendor-unique code for T3/T4: it indicates a
17514 			 * path problem in a mutipathed config, but as far as
17515 			 * the target driver is concerned it equates to a fatal
17516 			 * error, so we should just fail the command right away
17517 			 * (without printing anything to the console). If this
17518 			 * is not a T3/T4, fall thru to the default recovery
17519 			 * action.
17520 			 * T3/T4 is FC only, don't need to check is_fibre
17521 			 */
17522 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17523 				sd_return_failed_command(un, bp, EIO);
17524 				return;
17525 			}
17526 			/* FALLTHRU */
17527 
17528 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17529 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17530 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17531 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17532 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17533 		default:    /* Possible future codes in SCSI spec? */
17534 			/*
17535 			 * For removable-media devices, do not retry if
17536 			 * ASCQ > 2 as these result mostly from USCSI commands
17537 			 * on MMC devices issued to check status of an
17538 			 * operation initiated in immediate mode.  Also for
17539 			 * ASCQ >= 4 do not print console messages as these
17540 			 * mainly represent a user-initiated operation
17541 			 * instead of a system failure.
17542 			 */
17543 			if (un->un_f_has_removable_media) {
17544 				si.ssi_severity = SCSI_ERR_ALL;
17545 				goto fail_command;
17546 			}
17547 			break;
17548 		}
17549 
17550 		/*
17551 		 * As part of our recovery attempt for the NOT READY
17552 		 * condition, we issue a START STOP UNIT command. However
17553 		 * we want to wait for a short delay before attempting this
17554 		 * as there may still be more commands coming back from the
17555 		 * target with the check condition. To do this we use
17556 		 * timeout(9F) to call sd_start_stop_unit_callback() after
17557 		 * the delay interval expires. (sd_start_stop_unit_callback()
17558 		 * dispatches sd_start_stop_unit_task(), which will issue
17559 		 * the actual START STOP UNIT command. The delay interval
17560 		 * is one-half of the delay that we will use to retry the
17561 		 * command that generated the NOT READY condition.
17562 		 *
17563 		 * Note that we could just dispatch sd_start_stop_unit_task()
17564 		 * from here and allow it to sleep for the delay interval,
17565 		 * but then we would be tying up the taskq thread
17566 		 * uncesessarily for the duration of the delay.
17567 		 *
17568 		 * Do not issue the START STOP UNIT if the current command
17569 		 * is already a START STOP UNIT.
17570 		 */
17571 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
17572 			break;
17573 		}
17574 
17575 		/*
17576 		 * Do not schedule the timeout if one is already pending.
17577 		 */
17578 		if (un->un_startstop_timeid != NULL) {
17579 			SD_INFO(SD_LOG_ERROR, un,
17580 			    "sd_sense_key_not_ready: restart already issued to"
17581 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
17582 			    ddi_get_instance(SD_DEVINFO(un)));
17583 			break;
17584 		}
17585 
17586 		/*
17587 		 * Schedule the START STOP UNIT command, then queue the command
17588 		 * for a retry.
17589 		 *
17590 		 * Note: A timeout is not scheduled for this retry because we
17591 		 * want the retry to be serial with the START_STOP_UNIT. The
17592 		 * retry will be started when the START_STOP_UNIT is completed
17593 		 * in sd_start_stop_unit_task.
17594 		 */
17595 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
17596 		    un, SD_BSY_TIMEOUT / 2);
17597 		xp->xb_retry_count++;
17598 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
17599 		return;
17600 
17601 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
17602 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17603 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17604 			    "unit does not respond to selection\n");
17605 		}
17606 		break;
17607 
17608 	case 0x3A:	/* MEDIUM NOT PRESENT */
17609 		if (sd_error_level >= SCSI_ERR_FATAL) {
17610 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17611 			    "Caddy not inserted in drive\n");
17612 		}
17613 
17614 		sr_ejected(un);
17615 		un->un_mediastate = DKIO_EJECTED;
17616 		/* The state has changed, inform the media watch routines */
17617 		cv_broadcast(&un->un_state_cv);
17618 		/* Just fail if no media is present in the drive. */
17619 		goto fail_command;
17620 
17621 	default:
17622 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17623 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
17624 			    "Unit not Ready. Additional sense code 0x%x\n",
17625 			    asc);
17626 		}
17627 		break;
17628 	}
17629 
17630 do_retry:
17631 
17632 	/*
17633 	 * Retry the command, as some targets may report NOT READY for
17634 	 * several seconds after being reset.
17635 	 */
17636 	xp->xb_retry_count++;
17637 	si.ssi_severity = SCSI_ERR_RETRYABLE;
17638 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
17639 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
17640 
17641 	return;
17642 
17643 fail_command:
17644 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17645 	sd_return_failed_command(un, bp, EIO);
17646 }
17647 
17648 
17649 
17650 /*
17651  *    Function: sd_sense_key_medium_or_hardware_error
17652  *
17653  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
17654  *		sense key.
17655  *
17656  *     Context: May be called from interrupt context
17657  */
17658 
17659 static void
17660 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
17661 	int sense_key, uint8_t asc,
17662 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17663 {
17664 	struct sd_sense_info	si;
17665 
17666 	ASSERT(un != NULL);
17667 	ASSERT(mutex_owned(SD_MUTEX(un)));
17668 	ASSERT(bp != NULL);
17669 	ASSERT(xp != NULL);
17670 	ASSERT(pktp != NULL);
17671 
17672 	si.ssi_severity = SCSI_ERR_FATAL;
17673 	si.ssi_pfa_flag = FALSE;
17674 
17675 	if (sense_key == KEY_MEDIUM_ERROR) {
17676 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
17677 	}
17678 
17679 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17680 
17681 	if ((un->un_reset_retry_count != 0) &&
17682 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
17683 		mutex_exit(SD_MUTEX(un));
17684 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
17685 		if (un->un_f_allow_bus_device_reset == TRUE) {
17686 
17687 			boolean_t try_resetting_target = B_TRUE;
17688 
17689 			/*
17690 			 * We need to be able to handle specific ASC when we are
17691 			 * handling a KEY_HARDWARE_ERROR. In particular
17692 			 * taking the default action of resetting the target may
17693 			 * not be the appropriate way to attempt recovery.
17694 			 * Resetting a target because of a single LUN failure
17695 			 * victimizes all LUNs on that target.
17696 			 *
17697 			 * This is true for the LSI arrays, if an LSI
17698 			 * array controller returns an ASC of 0x84 (LUN Dead) we
17699 			 * should trust it.
17700 			 */
17701 
17702 			if (sense_key == KEY_HARDWARE_ERROR) {
17703 				switch (asc) {
17704 				case 0x84:
17705 					if (SD_IS_LSI(un)) {
17706 						try_resetting_target = B_FALSE;
17707 					}
17708 					break;
17709 				default:
17710 					break;
17711 				}
17712 			}
17713 
17714 			if (try_resetting_target == B_TRUE) {
17715 				int reset_retval = 0;
17716 				if (un->un_f_lun_reset_enabled == TRUE) {
17717 					SD_TRACE(SD_LOG_IO_CORE, un,
17718 					    "sd_sense_key_medium_or_hardware_"
17719 					    "error: issuing RESET_LUN\n");
17720 					reset_retval =
17721 					    scsi_reset(SD_ADDRESS(un),
17722 					    RESET_LUN);
17723 				}
17724 				if (reset_retval == 0) {
17725 					SD_TRACE(SD_LOG_IO_CORE, un,
17726 					    "sd_sense_key_medium_or_hardware_"
17727 					    "error: issuing RESET_TARGET\n");
17728 					(void) scsi_reset(SD_ADDRESS(un),
17729 					    RESET_TARGET);
17730 				}
17731 			}
17732 		}
17733 		mutex_enter(SD_MUTEX(un));
17734 	}
17735 
17736 	/*
17737 	 * This really ought to be a fatal error, but we will retry anyway
17738 	 * as some drives report this as a spurious error.
17739 	 */
17740 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17741 	    &si, EIO, (clock_t)0, NULL);
17742 }
17743 
17744 
17745 
17746 /*
17747  *    Function: sd_sense_key_illegal_request
17748  *
17749  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
17750  *
17751  *     Context: May be called from interrupt context
17752  */
17753 
17754 static void
17755 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
17756 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17757 {
17758 	struct sd_sense_info	si;
17759 
17760 	ASSERT(un != NULL);
17761 	ASSERT(mutex_owned(SD_MUTEX(un)));
17762 	ASSERT(bp != NULL);
17763 	ASSERT(xp != NULL);
17764 	ASSERT(pktp != NULL);
17765 
17766 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17767 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
17768 
17769 	si.ssi_severity = SCSI_ERR_INFO;
17770 	si.ssi_pfa_flag = FALSE;
17771 
17772 	/* Pointless to retry if the target thinks it's an illegal request */
17773 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17774 	sd_return_failed_command(un, bp, EIO);
17775 }
17776 
17777 
17778 
17779 
17780 /*
17781  *    Function: sd_sense_key_unit_attention
17782  *
17783  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
17784  *
17785  *     Context: May be called from interrupt context
17786  */
17787 
17788 static void
17789 sd_sense_key_unit_attention(struct sd_lun *un,
17790 	uint8_t asc,
17791 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17792 {
17793 	/*
17794 	 * For UNIT ATTENTION we allow retries for one minute. Devices
17795 	 * like Sonoma can return UNIT ATTENTION close to a minute
17796 	 * under certain conditions.
17797 	 */
17798 	int	retry_check_flag = SD_RETRIES_UA;
17799 	boolean_t	kstat_updated = B_FALSE;
17800 	struct	sd_sense_info		si;
17801 
17802 	ASSERT(un != NULL);
17803 	ASSERT(mutex_owned(SD_MUTEX(un)));
17804 	ASSERT(bp != NULL);
17805 	ASSERT(xp != NULL);
17806 	ASSERT(pktp != NULL);
17807 
17808 	si.ssi_severity = SCSI_ERR_INFO;
17809 	si.ssi_pfa_flag = FALSE;
17810 
17811 
17812 	switch (asc) {
17813 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
17814 		if (sd_report_pfa != 0) {
17815 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17816 			si.ssi_pfa_flag = TRUE;
17817 			retry_check_flag = SD_RETRIES_STANDARD;
17818 			goto do_retry;
17819 		}
17820 		break;
17821 
17822 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
17823 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
17824 			un->un_resvd_status |=
17825 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
17826 		}
17827 		/* FALLTHRU */
17828 
17829 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
17830 		if (!un->un_f_has_removable_media) {
17831 			break;
17832 		}
17833 
17834 		/*
17835 		 * When we get a unit attention from a removable-media device,
17836 		 * it may be in a state that will take a long time to recover
17837 		 * (e.g., from a reset).  Since we are executing in interrupt
17838 		 * context here, we cannot wait around for the device to come
17839 		 * back. So hand this command off to sd_media_change_task()
17840 		 * for deferred processing under taskq thread context. (Note
17841 		 * that the command still may be failed if a problem is
17842 		 * encountered at a later time.)
17843 		 */
17844 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
17845 		    KM_NOSLEEP) == 0) {
17846 			/*
17847 			 * Cannot dispatch the request so fail the command.
17848 			 */
17849 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
17850 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17851 			si.ssi_severity = SCSI_ERR_FATAL;
17852 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17853 			sd_return_failed_command(un, bp, EIO);
17854 		}
17855 
17856 		/*
17857 		 * If failed to dispatch sd_media_change_task(), we already
17858 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
17859 		 * we should update kstat later if it encounters an error. So,
17860 		 * we update kstat_updated flag here.
17861 		 */
17862 		kstat_updated = B_TRUE;
17863 
17864 		/*
17865 		 * Either the command has been successfully dispatched to a
17866 		 * task Q for retrying, or the dispatch failed. In either case
17867 		 * do NOT retry again by calling sd_retry_command. This sets up
17868 		 * two retries of the same command and when one completes and
17869 		 * frees the resources the other will access freed memory,
17870 		 * a bad thing.
17871 		 */
17872 		return;
17873 
17874 	default:
17875 		break;
17876 	}
17877 
17878 	/*
17879 	 * Update kstat if we haven't done that.
17880 	 */
17881 	if (!kstat_updated) {
17882 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17883 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
17884 	}
17885 
17886 do_retry:
17887 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
17888 	    EIO, SD_UA_RETRY_DELAY, NULL);
17889 }
17890 
17891 
17892 
17893 /*
17894  *    Function: sd_sense_key_fail_command
17895  *
17896  * Description: Use to fail a command when we don't like the sense key that
17897  *		was returned.
17898  *
17899  *     Context: May be called from interrupt context
17900  */
17901 
17902 static void
17903 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
17904 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17905 {
17906 	struct sd_sense_info	si;
17907 
17908 	ASSERT(un != NULL);
17909 	ASSERT(mutex_owned(SD_MUTEX(un)));
17910 	ASSERT(bp != NULL);
17911 	ASSERT(xp != NULL);
17912 	ASSERT(pktp != NULL);
17913 
17914 	si.ssi_severity = SCSI_ERR_FATAL;
17915 	si.ssi_pfa_flag = FALSE;
17916 
17917 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17918 	sd_return_failed_command(un, bp, EIO);
17919 }
17920 
17921 
17922 
17923 /*
17924  *    Function: sd_sense_key_blank_check
17925  *
17926  * Description: Recovery actions for a SCSI "Blank Check" sense key.
17927  *		Has no monetary connotation.
17928  *
17929  *     Context: May be called from interrupt context
17930  */
17931 
17932 static void
17933 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
17934 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17935 {
17936 	struct sd_sense_info	si;
17937 
17938 	ASSERT(un != NULL);
17939 	ASSERT(mutex_owned(SD_MUTEX(un)));
17940 	ASSERT(bp != NULL);
17941 	ASSERT(xp != NULL);
17942 	ASSERT(pktp != NULL);
17943 
17944 	/*
17945 	 * Blank check is not fatal for removable devices, therefore
17946 	 * it does not require a console message.
17947 	 */
17948 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
17949 	    SCSI_ERR_FATAL;
17950 	si.ssi_pfa_flag = FALSE;
17951 
17952 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17953 	sd_return_failed_command(un, bp, EIO);
17954 }
17955 
17956 
17957 
17958 
17959 /*
17960  *    Function: sd_sense_key_aborted_command
17961  *
17962  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
17963  *
17964  *     Context: May be called from interrupt context
17965  */
17966 
17967 static void
17968 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
17969 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17970 {
17971 	struct sd_sense_info	si;
17972 
17973 	ASSERT(un != NULL);
17974 	ASSERT(mutex_owned(SD_MUTEX(un)));
17975 	ASSERT(bp != NULL);
17976 	ASSERT(xp != NULL);
17977 	ASSERT(pktp != NULL);
17978 
17979 	si.ssi_severity = SCSI_ERR_FATAL;
17980 	si.ssi_pfa_flag = FALSE;
17981 
17982 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17983 
17984 	/*
17985 	 * This really ought to be a fatal error, but we will retry anyway
17986 	 * as some drives report this as a spurious error.
17987 	 */
17988 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17989 	    &si, EIO, (clock_t)0, NULL);
17990 }
17991 
17992 
17993 
17994 /*
17995  *    Function: sd_sense_key_default
17996  *
17997  * Description: Default recovery action for several SCSI sense keys (basically
17998  *		attempts a retry).
17999  *
18000  *     Context: May be called from interrupt context
18001  */
18002 
18003 static void
18004 sd_sense_key_default(struct sd_lun *un,
18005 	int sense_key,
18006 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18007 {
18008 	struct sd_sense_info	si;
18009 
18010 	ASSERT(un != NULL);
18011 	ASSERT(mutex_owned(SD_MUTEX(un)));
18012 	ASSERT(bp != NULL);
18013 	ASSERT(xp != NULL);
18014 	ASSERT(pktp != NULL);
18015 
18016 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18017 
18018 	/*
18019 	 * Undecoded sense key.	Attempt retries and hope that will fix
18020 	 * the problem.  Otherwise, we're dead.
18021 	 */
18022 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18023 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18024 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18025 	}
18026 
18027 	si.ssi_severity = SCSI_ERR_FATAL;
18028 	si.ssi_pfa_flag = FALSE;
18029 
18030 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18031 	    &si, EIO, (clock_t)0, NULL);
18032 }
18033 
18034 
18035 
18036 /*
18037  *    Function: sd_print_retry_msg
18038  *
18039  * Description: Print a message indicating the retry action being taken.
18040  *
18041  *   Arguments: un - ptr to associated softstate
18042  *		bp - ptr to buf(9S) for the command
18043  *		arg - not used.
18044  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18045  *			or SD_NO_RETRY_ISSUED
18046  *
18047  *     Context: May be called from interrupt context
18048  */
18049 /* ARGSUSED */
18050 static void
18051 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18052 {
18053 	struct sd_xbuf	*xp;
18054 	struct scsi_pkt *pktp;
18055 	char *reasonp;
18056 	char *msgp;
18057 
18058 	ASSERT(un != NULL);
18059 	ASSERT(mutex_owned(SD_MUTEX(un)));
18060 	ASSERT(bp != NULL);
18061 	pktp = SD_GET_PKTP(bp);
18062 	ASSERT(pktp != NULL);
18063 	xp = SD_GET_XBUF(bp);
18064 	ASSERT(xp != NULL);
18065 
18066 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18067 	mutex_enter(&un->un_pm_mutex);
18068 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18069 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18070 	    (pktp->pkt_flags & FLAG_SILENT)) {
18071 		mutex_exit(&un->un_pm_mutex);
18072 		goto update_pkt_reason;
18073 	}
18074 	mutex_exit(&un->un_pm_mutex);
18075 
18076 	/*
18077 	 * Suppress messages if they are all the same pkt_reason; with
18078 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18079 	 * If we are in panic, then suppress the retry messages.
18080 	 */
18081 	switch (flag) {
18082 	case SD_NO_RETRY_ISSUED:
18083 		msgp = "giving up";
18084 		break;
18085 	case SD_IMMEDIATE_RETRY_ISSUED:
18086 	case SD_DELAYED_RETRY_ISSUED:
18087 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18088 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18089 		    (sd_error_level != SCSI_ERR_ALL))) {
18090 			return;
18091 		}
18092 		msgp = "retrying command";
18093 		break;
18094 	default:
18095 		goto update_pkt_reason;
18096 	}
18097 
18098 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18099 	    scsi_rname(pktp->pkt_reason));
18100 
18101 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18102 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18103 
18104 update_pkt_reason:
18105 	/*
18106 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18107 	 * This is to prevent multiple console messages for the same failure
18108 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18109 	 * when the command is retried successfully because there still may be
18110 	 * more commands coming back with the same value of pktp->pkt_reason.
18111 	 */
18112 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18113 		un->un_last_pkt_reason = pktp->pkt_reason;
18114 	}
18115 }
18116 
18117 
18118 /*
18119  *    Function: sd_print_cmd_incomplete_msg
18120  *
18121  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18122  *
18123  *   Arguments: un - ptr to associated softstate
18124  *		bp - ptr to buf(9S) for the command
18125  *		arg - passed to sd_print_retry_msg()
18126  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18127  *			or SD_NO_RETRY_ISSUED
18128  *
18129  *     Context: May be called from interrupt context
18130  */
18131 
18132 static void
18133 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18134 	int code)
18135 {
18136 	dev_info_t	*dip;
18137 
18138 	ASSERT(un != NULL);
18139 	ASSERT(mutex_owned(SD_MUTEX(un)));
18140 	ASSERT(bp != NULL);
18141 
18142 	switch (code) {
18143 	case SD_NO_RETRY_ISSUED:
18144 		/* Command was failed. Someone turned off this target? */
18145 		if (un->un_state != SD_STATE_OFFLINE) {
18146 			/*
18147 			 * Suppress message if we are detaching and
18148 			 * device has been disconnected
18149 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18150 			 * private interface and not part of the DDI
18151 			 */
18152 			dip = un->un_sd->sd_dev;
18153 			if (!(DEVI_IS_DETACHING(dip) &&
18154 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18155 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18156 				"disk not responding to selection\n");
18157 			}
18158 			New_state(un, SD_STATE_OFFLINE);
18159 		}
18160 		break;
18161 
18162 	case SD_DELAYED_RETRY_ISSUED:
18163 	case SD_IMMEDIATE_RETRY_ISSUED:
18164 	default:
18165 		/* Command was successfully queued for retry */
18166 		sd_print_retry_msg(un, bp, arg, code);
18167 		break;
18168 	}
18169 }
18170 
18171 
18172 /*
18173  *    Function: sd_pkt_reason_cmd_incomplete
18174  *
18175  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18176  *
18177  *     Context: May be called from interrupt context
18178  */
18179 
18180 static void
18181 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18182 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18183 {
18184 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18185 
18186 	ASSERT(un != NULL);
18187 	ASSERT(mutex_owned(SD_MUTEX(un)));
18188 	ASSERT(bp != NULL);
18189 	ASSERT(xp != NULL);
18190 	ASSERT(pktp != NULL);
18191 
18192 	/* Do not do a reset if selection did not complete */
18193 	/* Note: Should this not just check the bit? */
18194 	if (pktp->pkt_state != STATE_GOT_BUS) {
18195 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18196 		sd_reset_target(un, pktp);
18197 	}
18198 
18199 	/*
18200 	 * If the target was not successfully selected, then set
18201 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18202 	 * with the target, and further retries and/or commands are
18203 	 * likely to take a long time.
18204 	 */
18205 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18206 		flag |= SD_RETRIES_FAILFAST;
18207 	}
18208 
18209 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18210 
18211 	sd_retry_command(un, bp, flag,
18212 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18213 }
18214 
18215 
18216 
18217 /*
18218  *    Function: sd_pkt_reason_cmd_tran_err
18219  *
18220  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18221  *
18222  *     Context: May be called from interrupt context
18223  */
18224 
18225 static void
18226 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18227 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18228 {
18229 	ASSERT(un != NULL);
18230 	ASSERT(mutex_owned(SD_MUTEX(un)));
18231 	ASSERT(bp != NULL);
18232 	ASSERT(xp != NULL);
18233 	ASSERT(pktp != NULL);
18234 
18235 	/*
18236 	 * Do not reset if we got a parity error, or if
18237 	 * selection did not complete.
18238 	 */
18239 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18240 	/* Note: Should this not just check the bit for pkt_state? */
18241 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18242 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18243 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18244 		sd_reset_target(un, pktp);
18245 	}
18246 
18247 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18248 
18249 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18250 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18251 }
18252 
18253 
18254 
18255 /*
18256  *    Function: sd_pkt_reason_cmd_reset
18257  *
18258  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18259  *
18260  *     Context: May be called from interrupt context
18261  */
18262 
18263 static void
18264 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18265 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18266 {
18267 	ASSERT(un != NULL);
18268 	ASSERT(mutex_owned(SD_MUTEX(un)));
18269 	ASSERT(bp != NULL);
18270 	ASSERT(xp != NULL);
18271 	ASSERT(pktp != NULL);
18272 
18273 	/* The target may still be running the command, so try to reset. */
18274 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18275 	sd_reset_target(un, pktp);
18276 
18277 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18278 
18279 	/*
18280 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18281 	 * reset because another target on this bus caused it. The target
18282 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18283 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18284 	 */
18285 
18286 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18287 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18288 }
18289 
18290 
18291 
18292 
18293 /*
18294  *    Function: sd_pkt_reason_cmd_aborted
18295  *
18296  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18297  *
18298  *     Context: May be called from interrupt context
18299  */
18300 
18301 static void
18302 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18303 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18304 {
18305 	ASSERT(un != NULL);
18306 	ASSERT(mutex_owned(SD_MUTEX(un)));
18307 	ASSERT(bp != NULL);
18308 	ASSERT(xp != NULL);
18309 	ASSERT(pktp != NULL);
18310 
18311 	/* The target may still be running the command, so try to reset. */
18312 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18313 	sd_reset_target(un, pktp);
18314 
18315 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18316 
18317 	/*
18318 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18319 	 * aborted because another target on this bus caused it. The target
18320 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18321 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18322 	 */
18323 
18324 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18325 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18326 }
18327 
18328 
18329 
18330 /*
18331  *    Function: sd_pkt_reason_cmd_timeout
18332  *
18333  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18334  *
18335  *     Context: May be called from interrupt context
18336  */
18337 
18338 static void
18339 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18340 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18341 {
18342 	ASSERT(un != NULL);
18343 	ASSERT(mutex_owned(SD_MUTEX(un)));
18344 	ASSERT(bp != NULL);
18345 	ASSERT(xp != NULL);
18346 	ASSERT(pktp != NULL);
18347 
18348 
18349 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18350 	sd_reset_target(un, pktp);
18351 
18352 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18353 
18354 	/*
18355 	 * A command timeout indicates that we could not establish
18356 	 * communication with the target, so set SD_RETRIES_FAILFAST
18357 	 * as further retries/commands are likely to take a long time.
18358 	 */
18359 	sd_retry_command(un, bp,
18360 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18361 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18362 }
18363 
18364 
18365 
18366 /*
18367  *    Function: sd_pkt_reason_cmd_unx_bus_free
18368  *
18369  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18370  *
18371  *     Context: May be called from interrupt context
18372  */
18373 
18374 static void
18375 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18376 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18377 {
18378 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18379 
18380 	ASSERT(un != NULL);
18381 	ASSERT(mutex_owned(SD_MUTEX(un)));
18382 	ASSERT(bp != NULL);
18383 	ASSERT(xp != NULL);
18384 	ASSERT(pktp != NULL);
18385 
18386 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18387 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18388 
18389 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18390 	    sd_print_retry_msg : NULL;
18391 
18392 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18393 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18394 }
18395 
18396 
18397 /*
18398  *    Function: sd_pkt_reason_cmd_tag_reject
18399  *
18400  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18401  *
18402  *     Context: May be called from interrupt context
18403  */
18404 
18405 static void
18406 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18407 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18408 {
18409 	ASSERT(un != NULL);
18410 	ASSERT(mutex_owned(SD_MUTEX(un)));
18411 	ASSERT(bp != NULL);
18412 	ASSERT(xp != NULL);
18413 	ASSERT(pktp != NULL);
18414 
18415 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18416 	pktp->pkt_flags = 0;
18417 	un->un_tagflags = 0;
18418 	if (un->un_f_opt_queueing == TRUE) {
18419 		un->un_throttle = min(un->un_throttle, 3);
18420 	} else {
18421 		un->un_throttle = 1;
18422 	}
18423 	mutex_exit(SD_MUTEX(un));
18424 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18425 	mutex_enter(SD_MUTEX(un));
18426 
18427 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18428 
18429 	/* Legacy behavior not to check retry counts here. */
18430 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18431 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18432 }
18433 
18434 
18435 /*
18436  *    Function: sd_pkt_reason_default
18437  *
18438  * Description: Default recovery actions for SCSA pkt_reason values that
18439  *		do not have more explicit recovery actions.
18440  *
18441  *     Context: May be called from interrupt context
18442  */
18443 
18444 static void
18445 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18446 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18447 {
18448 	ASSERT(un != NULL);
18449 	ASSERT(mutex_owned(SD_MUTEX(un)));
18450 	ASSERT(bp != NULL);
18451 	ASSERT(xp != NULL);
18452 	ASSERT(pktp != NULL);
18453 
18454 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18455 	sd_reset_target(un, pktp);
18456 
18457 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18458 
18459 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18460 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18461 }
18462 
18463 
18464 
18465 /*
18466  *    Function: sd_pkt_status_check_condition
18467  *
18468  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18469  *
18470  *     Context: May be called from interrupt context
18471  */
18472 
18473 static void
18474 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18475 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18476 {
18477 	ASSERT(un != NULL);
18478 	ASSERT(mutex_owned(SD_MUTEX(un)));
18479 	ASSERT(bp != NULL);
18480 	ASSERT(xp != NULL);
18481 	ASSERT(pktp != NULL);
18482 
18483 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18484 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18485 
18486 	/*
18487 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18488 	 * command will be retried after the request sense). Otherwise, retry
18489 	 * the command. Note: we are issuing the request sense even though the
18490 	 * retry limit may have been reached for the failed command.
18491 	 */
18492 	if (un->un_f_arq_enabled == FALSE) {
18493 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18494 		    "no ARQ, sending request sense command\n");
18495 		sd_send_request_sense_command(un, bp, pktp);
18496 	} else {
18497 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18498 		    "ARQ,retrying request sense command\n");
18499 #if defined(__i386) || defined(__amd64)
18500 		/*
18501 		 * The SD_RETRY_DELAY value need to be adjusted here
18502 		 * when SD_RETRY_DELAY change in sddef.h
18503 		 */
18504 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18505 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18506 			NULL);
18507 #else
18508 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18509 		    EIO, SD_RETRY_DELAY, NULL);
18510 #endif
18511 	}
18512 
18513 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18514 }
18515 
18516 
18517 /*
18518  *    Function: sd_pkt_status_busy
18519  *
18520  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18521  *
18522  *     Context: May be called from interrupt context
18523  */
18524 
18525 static void
18526 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18527 	struct scsi_pkt *pktp)
18528 {
18529 	ASSERT(un != NULL);
18530 	ASSERT(mutex_owned(SD_MUTEX(un)));
18531 	ASSERT(bp != NULL);
18532 	ASSERT(xp != NULL);
18533 	ASSERT(pktp != NULL);
18534 
18535 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18536 	    "sd_pkt_status_busy: entry\n");
18537 
18538 	/* If retries are exhausted, just fail the command. */
18539 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
18540 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18541 		    "device busy too long\n");
18542 		sd_return_failed_command(un, bp, EIO);
18543 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18544 		    "sd_pkt_status_busy: exit\n");
18545 		return;
18546 	}
18547 	xp->xb_retry_count++;
18548 
18549 	/*
18550 	 * Try to reset the target. However, we do not want to perform
18551 	 * more than one reset if the device continues to fail. The reset
18552 	 * will be performed when the retry count reaches the reset
18553 	 * threshold.  This threshold should be set such that at least
18554 	 * one retry is issued before the reset is performed.
18555 	 */
18556 	if (xp->xb_retry_count ==
18557 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
18558 		int rval = 0;
18559 		mutex_exit(SD_MUTEX(un));
18560 		if (un->un_f_allow_bus_device_reset == TRUE) {
18561 			/*
18562 			 * First try to reset the LUN; if we cannot then
18563 			 * try to reset the target.
18564 			 */
18565 			if (un->un_f_lun_reset_enabled == TRUE) {
18566 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18567 				    "sd_pkt_status_busy: RESET_LUN\n");
18568 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18569 			}
18570 			if (rval == 0) {
18571 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18572 				    "sd_pkt_status_busy: RESET_TARGET\n");
18573 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18574 			}
18575 		}
18576 		if (rval == 0) {
18577 			/*
18578 			 * If the RESET_LUN and/or RESET_TARGET failed,
18579 			 * try RESET_ALL
18580 			 */
18581 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18582 			    "sd_pkt_status_busy: RESET_ALL\n");
18583 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
18584 		}
18585 		mutex_enter(SD_MUTEX(un));
18586 		if (rval == 0) {
18587 			/*
18588 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
18589 			 * At this point we give up & fail the command.
18590 			 */
18591 			sd_return_failed_command(un, bp, EIO);
18592 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18593 			    "sd_pkt_status_busy: exit (failed cmd)\n");
18594 			return;
18595 		}
18596 	}
18597 
18598 	/*
18599 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
18600 	 * we have already checked the retry counts above.
18601 	 */
18602 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
18603 	    EIO, SD_BSY_TIMEOUT, NULL);
18604 
18605 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18606 	    "sd_pkt_status_busy: exit\n");
18607 }
18608 
18609 
18610 /*
18611  *    Function: sd_pkt_status_reservation_conflict
18612  *
18613  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
18614  *		command status.
18615  *
18616  *     Context: May be called from interrupt context
18617  */
18618 
18619 static void
18620 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
18621 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18622 {
18623 	ASSERT(un != NULL);
18624 	ASSERT(mutex_owned(SD_MUTEX(un)));
18625 	ASSERT(bp != NULL);
18626 	ASSERT(xp != NULL);
18627 	ASSERT(pktp != NULL);
18628 
18629 	/*
18630 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
18631 	 * conflict could be due to various reasons like incorrect keys, not
18632 	 * registered or not reserved etc. So, we return EACCES to the caller.
18633 	 */
18634 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
18635 		int cmd = SD_GET_PKT_OPCODE(pktp);
18636 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
18637 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
18638 			sd_return_failed_command(un, bp, EACCES);
18639 			return;
18640 		}
18641 	}
18642 
18643 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
18644 
18645 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
18646 		if (sd_failfast_enable != 0) {
18647 			/* By definition, we must panic here.... */
18648 			sd_panic_for_res_conflict(un);
18649 			/*NOTREACHED*/
18650 		}
18651 		SD_ERROR(SD_LOG_IO, un,
18652 		    "sd_handle_resv_conflict: Disk Reserved\n");
18653 		sd_return_failed_command(un, bp, EACCES);
18654 		return;
18655 	}
18656 
18657 	/*
18658 	 * 1147670: retry only if sd_retry_on_reservation_conflict
18659 	 * property is set (default is 1). Retries will not succeed
18660 	 * on a disk reserved by another initiator. HA systems
18661 	 * may reset this via sd.conf to avoid these retries.
18662 	 *
18663 	 * Note: The legacy return code for this failure is EIO, however EACCES
18664 	 * seems more appropriate for a reservation conflict.
18665 	 */
18666 	if (sd_retry_on_reservation_conflict == 0) {
18667 		SD_ERROR(SD_LOG_IO, un,
18668 		    "sd_handle_resv_conflict: Device Reserved\n");
18669 		sd_return_failed_command(un, bp, EIO);
18670 		return;
18671 	}
18672 
18673 	/*
18674 	 * Retry the command if we can.
18675 	 *
18676 	 * Note: The legacy return code for this failure is EIO, however EACCES
18677 	 * seems more appropriate for a reservation conflict.
18678 	 */
18679 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18680 	    (clock_t)2, NULL);
18681 }
18682 
18683 
18684 
18685 /*
18686  *    Function: sd_pkt_status_qfull
18687  *
18688  * Description: Handle a QUEUE FULL condition from the target.  This can
18689  *		occur if the HBA does not handle the queue full condition.
18690  *		(Basically this means third-party HBAs as Sun HBAs will
18691  *		handle the queue full condition.)  Note that if there are
18692  *		some commands already in the transport, then the queue full
18693  *		has occurred because the queue for this nexus is actually
18694  *		full. If there are no commands in the transport, then the
18695  *		queue full is resulting from some other initiator or lun
18696  *		consuming all the resources at the target.
18697  *
18698  *     Context: May be called from interrupt context
18699  */
18700 
18701 static void
18702 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
18703 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18704 {
18705 	ASSERT(un != NULL);
18706 	ASSERT(mutex_owned(SD_MUTEX(un)));
18707 	ASSERT(bp != NULL);
18708 	ASSERT(xp != NULL);
18709 	ASSERT(pktp != NULL);
18710 
18711 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18712 	    "sd_pkt_status_qfull: entry\n");
18713 
18714 	/*
18715 	 * Just lower the QFULL throttle and retry the command.  Note that
18716 	 * we do not limit the number of retries here.
18717 	 */
18718 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
18719 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
18720 	    SD_RESTART_TIMEOUT, NULL);
18721 
18722 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18723 	    "sd_pkt_status_qfull: exit\n");
18724 }
18725 
18726 
18727 /*
18728  *    Function: sd_reset_target
18729  *
18730  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
18731  *		RESET_TARGET, or RESET_ALL.
18732  *
18733  *     Context: May be called under interrupt context.
18734  */
18735 
18736 static void
18737 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
18738 {
18739 	int rval = 0;
18740 
18741 	ASSERT(un != NULL);
18742 	ASSERT(mutex_owned(SD_MUTEX(un)));
18743 	ASSERT(pktp != NULL);
18744 
18745 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
18746 
18747 	/*
18748 	 * No need to reset if the transport layer has already done so.
18749 	 */
18750 	if ((pktp->pkt_statistics &
18751 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
18752 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18753 		    "sd_reset_target: no reset\n");
18754 		return;
18755 	}
18756 
18757 	mutex_exit(SD_MUTEX(un));
18758 
18759 	if (un->un_f_allow_bus_device_reset == TRUE) {
18760 		if (un->un_f_lun_reset_enabled == TRUE) {
18761 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18762 			    "sd_reset_target: RESET_LUN\n");
18763 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
18764 		}
18765 		if (rval == 0) {
18766 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18767 			    "sd_reset_target: RESET_TARGET\n");
18768 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
18769 		}
18770 	}
18771 
18772 	if (rval == 0) {
18773 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
18774 		    "sd_reset_target: RESET_ALL\n");
18775 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
18776 	}
18777 
18778 	mutex_enter(SD_MUTEX(un));
18779 
18780 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
18781 }
18782 
18783 
18784 /*
18785  *    Function: sd_media_change_task
18786  *
18787  * Description: Recovery action for CDROM to become available.
18788  *
18789  *     Context: Executes in a taskq() thread context
18790  */
18791 
18792 static void
18793 sd_media_change_task(void *arg)
18794 {
18795 	struct	scsi_pkt	*pktp = arg;
18796 	struct	sd_lun		*un;
18797 	struct	buf		*bp;
18798 	struct	sd_xbuf		*xp;
18799 	int	err		= 0;
18800 	int	retry_count	= 0;
18801 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
18802 	struct	sd_sense_info	si;
18803 
18804 	ASSERT(pktp != NULL);
18805 	bp = (struct buf *)pktp->pkt_private;
18806 	ASSERT(bp != NULL);
18807 	xp = SD_GET_XBUF(bp);
18808 	ASSERT(xp != NULL);
18809 	un = SD_GET_UN(bp);
18810 	ASSERT(un != NULL);
18811 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18812 	ASSERT(un->un_f_monitor_media_state);
18813 
18814 	si.ssi_severity = SCSI_ERR_INFO;
18815 	si.ssi_pfa_flag = FALSE;
18816 
18817 	/*
18818 	 * When a reset is issued on a CDROM, it takes a long time to
18819 	 * recover. First few attempts to read capacity and other things
18820 	 * related to handling unit attention fail (with a ASC 0x4 and
18821 	 * ASCQ 0x1). In that case we want to do enough retries and we want
18822 	 * to limit the retries in other cases of genuine failures like
18823 	 * no media in drive.
18824 	 */
18825 	while (retry_count++ < retry_limit) {
18826 		if ((err = sd_handle_mchange(un)) == 0) {
18827 			break;
18828 		}
18829 		if (err == EAGAIN) {
18830 			retry_limit = SD_UNIT_ATTENTION_RETRY;
18831 		}
18832 		/* Sleep for 0.5 sec. & try again */
18833 		delay(drv_usectohz(500000));
18834 	}
18835 
18836 	/*
18837 	 * Dispatch (retry or fail) the original command here,
18838 	 * along with appropriate console messages....
18839 	 *
18840 	 * Must grab the mutex before calling sd_retry_command,
18841 	 * sd_print_sense_msg and sd_return_failed_command.
18842 	 */
18843 	mutex_enter(SD_MUTEX(un));
18844 	if (err != SD_CMD_SUCCESS) {
18845 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18846 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18847 		si.ssi_severity = SCSI_ERR_FATAL;
18848 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18849 		sd_return_failed_command(un, bp, EIO);
18850 	} else {
18851 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18852 		    &si, EIO, (clock_t)0, NULL);
18853 	}
18854 	mutex_exit(SD_MUTEX(un));
18855 }
18856 
18857 
18858 
18859 /*
18860  *    Function: sd_handle_mchange
18861  *
18862  * Description: Perform geometry validation & other recovery when CDROM
18863  *		has been removed from drive.
18864  *
18865  * Return Code: 0 for success
18866  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
18867  *		sd_send_scsi_READ_CAPACITY()
18868  *
18869  *     Context: Executes in a taskq() thread context
18870  */
18871 
18872 static int
18873 sd_handle_mchange(struct sd_lun *un)
18874 {
18875 	uint64_t	capacity;
18876 	uint32_t	lbasize;
18877 	int		rval;
18878 
18879 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18880 	ASSERT(un->un_f_monitor_media_state);
18881 
18882 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
18883 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
18884 		return (rval);
18885 	}
18886 
18887 	mutex_enter(SD_MUTEX(un));
18888 	sd_update_block_info(un, lbasize, capacity);
18889 
18890 	if (un->un_errstats != NULL) {
18891 		struct	sd_errstats *stp =
18892 		    (struct sd_errstats *)un->un_errstats->ks_data;
18893 		stp->sd_capacity.value.ui64 = (uint64_t)
18894 		    ((uint64_t)un->un_blockcount *
18895 		    (uint64_t)un->un_tgt_blocksize);
18896 	}
18897 
18898 	/*
18899 	 * Note: Maybe let the strategy/partitioning chain worry about getting
18900 	 * valid geometry.
18901 	 */
18902 	un->un_f_geometry_is_valid = FALSE;
18903 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
18904 	if (un->un_f_geometry_is_valid == FALSE) {
18905 		mutex_exit(SD_MUTEX(un));
18906 		return (EIO);
18907 	}
18908 
18909 	mutex_exit(SD_MUTEX(un));
18910 
18911 	/*
18912 	 * Try to lock the door
18913 	 */
18914 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
18915 	    SD_PATH_DIRECT_PRIORITY));
18916 }
18917 
18918 
18919 /*
18920  *    Function: sd_send_scsi_DOORLOCK
18921  *
18922  * Description: Issue the scsi DOOR LOCK command
18923  *
18924  *   Arguments: un    - pointer to driver soft state (unit) structure for
18925  *			this target.
18926  *		flag  - SD_REMOVAL_ALLOW
18927  *			SD_REMOVAL_PREVENT
18928  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
18929  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
18930  *			to use the USCSI "direct" chain and bypass the normal
18931  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
18932  *			command is issued as part of an error recovery action.
18933  *
18934  * Return Code: 0   - Success
18935  *		errno return code from sd_send_scsi_cmd()
18936  *
18937  *     Context: Can sleep.
18938  */
18939 
18940 static int
18941 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
18942 {
18943 	union scsi_cdb		cdb;
18944 	struct uscsi_cmd	ucmd_buf;
18945 	struct scsi_extended_sense	sense_buf;
18946 	int			status;
18947 
18948 	ASSERT(un != NULL);
18949 	ASSERT(!mutex_owned(SD_MUTEX(un)));
18950 
18951 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
18952 
18953 	/* already determined doorlock is not supported, fake success */
18954 	if (un->un_f_doorlock_supported == FALSE) {
18955 		return (0);
18956 	}
18957 
18958 	bzero(&cdb, sizeof (cdb));
18959 	bzero(&ucmd_buf, sizeof (ucmd_buf));
18960 
18961 	cdb.scc_cmd = SCMD_DOORLOCK;
18962 	cdb.cdb_opaque[4] = (uchar_t)flag;
18963 
18964 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
18965 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
18966 	ucmd_buf.uscsi_bufaddr	= NULL;
18967 	ucmd_buf.uscsi_buflen	= 0;
18968 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
18969 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
18970 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
18971 	ucmd_buf.uscsi_timeout	= 15;
18972 
18973 	SD_TRACE(SD_LOG_IO, un,
18974 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
18975 
18976 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
18977 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
18978 
18979 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
18980 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
18981 	    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
18982 		/* fake success and skip subsequent doorlock commands */
18983 		un->un_f_doorlock_supported = FALSE;
18984 		return (0);
18985 	}
18986 
18987 	return (status);
18988 }
18989 
18990 /*
18991  *    Function: sd_send_scsi_READ_CAPACITY
18992  *
18993  * Description: This routine uses the scsi READ CAPACITY command to determine
18994  *		the device capacity in number of blocks and the device native
18995  *		block size. If this function returns a failure, then the
18996  *		values in *capp and *lbap are undefined.  If the capacity
18997  *		returned is 0xffffffff then the lun is too large for a
18998  *		normal READ CAPACITY command and the results of a
18999  *		READ CAPACITY 16 will be used instead.
19000  *
19001  *   Arguments: un   - ptr to soft state struct for the target
19002  *		capp - ptr to unsigned 64-bit variable to receive the
19003  *			capacity value from the command.
19004  *		lbap - ptr to unsigned 32-bit varaible to receive the
19005  *			block size value from the command
19006  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19007  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19008  *			to use the USCSI "direct" chain and bypass the normal
19009  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19010  *			command is issued as part of an error recovery action.
19011  *
19012  * Return Code: 0   - Success
19013  *		EIO - IO error
19014  *		EACCES - Reservation conflict detected
19015  *		EAGAIN - Device is becoming ready
19016  *		errno return code from sd_send_scsi_cmd()
19017  *
19018  *     Context: Can sleep.  Blocks until command completes.
19019  */
19020 
19021 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19022 
19023 static int
19024 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
19025 	int path_flag)
19026 {
19027 	struct	scsi_extended_sense	sense_buf;
19028 	struct	uscsi_cmd	ucmd_buf;
19029 	union	scsi_cdb	cdb;
19030 	uint32_t		*capacity_buf;
19031 	uint64_t		capacity;
19032 	uint32_t		lbasize;
19033 	int			status;
19034 
19035 	ASSERT(un != NULL);
19036 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19037 	ASSERT(capp != NULL);
19038 	ASSERT(lbap != NULL);
19039 
19040 	SD_TRACE(SD_LOG_IO, un,
19041 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19042 
19043 	/*
19044 	 * First send a READ_CAPACITY command to the target.
19045 	 * (This command is mandatory under SCSI-2.)
19046 	 *
19047 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19048 	 * Medium Indicator bit is cleared.  The address field must be
19049 	 * zero if the PMI bit is zero.
19050 	 */
19051 	bzero(&cdb, sizeof (cdb));
19052 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19053 
19054 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19055 
19056 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19057 
19058 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19059 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19060 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19061 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19062 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19063 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19064 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19065 	ucmd_buf.uscsi_timeout	= 60;
19066 
19067 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19068 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19069 
19070 	switch (status) {
19071 	case 0:
19072 		/* Return failure if we did not get valid capacity data. */
19073 		if (ucmd_buf.uscsi_resid != 0) {
19074 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19075 			return (EIO);
19076 		}
19077 
19078 		/*
19079 		 * Read capacity and block size from the READ CAPACITY 10 data.
19080 		 * This data may be adjusted later due to device specific
19081 		 * issues.
19082 		 *
19083 		 * According to the SCSI spec, the READ CAPACITY 10
19084 		 * command returns the following:
19085 		 *
19086 		 *  bytes 0-3: Maximum logical block address available.
19087 		 *		(MSB in byte:0 & LSB in byte:3)
19088 		 *
19089 		 *  bytes 4-7: Block length in bytes
19090 		 *		(MSB in byte:4 & LSB in byte:7)
19091 		 *
19092 		 */
19093 		capacity = BE_32(capacity_buf[0]);
19094 		lbasize = BE_32(capacity_buf[1]);
19095 
19096 		/*
19097 		 * Done with capacity_buf
19098 		 */
19099 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19100 
19101 		/*
19102 		 * if the reported capacity is set to all 0xf's, then
19103 		 * this disk is too large and requires SBC-2 commands.
19104 		 * Reissue the request using READ CAPACITY 16.
19105 		 */
19106 		if (capacity == 0xffffffff) {
19107 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
19108 			    &lbasize, path_flag);
19109 			if (status != 0) {
19110 				return (status);
19111 			}
19112 		}
19113 		break;	/* Success! */
19114 	case EIO:
19115 		switch (ucmd_buf.uscsi_status) {
19116 		case STATUS_RESERVATION_CONFLICT:
19117 			status = EACCES;
19118 			break;
19119 		case STATUS_CHECK:
19120 			/*
19121 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19122 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19123 			 */
19124 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19125 			    (sense_buf.es_add_code  == 0x04) &&
19126 			    (sense_buf.es_qual_code == 0x01)) {
19127 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19128 				return (EAGAIN);
19129 			}
19130 			break;
19131 		default:
19132 			break;
19133 		}
19134 		/* FALLTHRU */
19135 	default:
19136 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19137 		return (status);
19138 	}
19139 
19140 	/*
19141 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19142 	 * (2352 and 0 are common) so for these devices always force the value
19143 	 * to 2048 as required by the ATAPI specs.
19144 	 */
19145 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19146 		lbasize = 2048;
19147 	}
19148 
19149 	/*
19150 	 * Get the maximum LBA value from the READ CAPACITY data.
19151 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19152 	 * was cleared when issuing the command. This means that the LBA
19153 	 * returned from the device is the LBA of the last logical block
19154 	 * on the logical unit.  The actual logical block count will be
19155 	 * this value plus one.
19156 	 *
19157 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19158 	 * so scale the capacity value to reflect this.
19159 	 */
19160 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19161 
19162 #if defined(__i386) || defined(__amd64)
19163 	/*
19164 	 * On x86, compensate for off-by-1 error (number of sectors on
19165 	 * media)  (1175930)
19166 	 */
19167 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
19168 	    (lbasize == un->un_sys_blocksize)) {
19169 		capacity -= 1;
19170 	}
19171 #endif
19172 
19173 	/*
19174 	 * Copy the values from the READ CAPACITY command into the space
19175 	 * provided by the caller.
19176 	 */
19177 	*capp = capacity;
19178 	*lbap = lbasize;
19179 
19180 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19181 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19182 
19183 	/*
19184 	 * Both the lbasize and capacity from the device must be nonzero,
19185 	 * otherwise we assume that the values are not valid and return
19186 	 * failure to the caller. (4203735)
19187 	 */
19188 	if ((capacity == 0) || (lbasize == 0)) {
19189 		return (EIO);
19190 	}
19191 
19192 	return (0);
19193 }
19194 
19195 /*
19196  *    Function: sd_send_scsi_READ_CAPACITY_16
19197  *
19198  * Description: This routine uses the scsi READ CAPACITY 16 command to
19199  *		determine the device capacity in number of blocks and the
19200  *		device native block size.  If this function returns a failure,
19201  *		then the values in *capp and *lbap are undefined.
19202  *		This routine should always be called by
19203  *		sd_send_scsi_READ_CAPACITY which will appy any device
19204  *		specific adjustments to capacity and lbasize.
19205  *
19206  *   Arguments: un   - ptr to soft state struct for the target
19207  *		capp - ptr to unsigned 64-bit variable to receive the
19208  *			capacity value from the command.
19209  *		lbap - ptr to unsigned 32-bit varaible to receive the
19210  *			block size value from the command
19211  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19212  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19213  *			to use the USCSI "direct" chain and bypass the normal
19214  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19215  *			this command is issued as part of an error recovery
19216  *			action.
19217  *
19218  * Return Code: 0   - Success
19219  *		EIO - IO error
19220  *		EACCES - Reservation conflict detected
19221  *		EAGAIN - Device is becoming ready
19222  *		errno return code from sd_send_scsi_cmd()
19223  *
19224  *     Context: Can sleep.  Blocks until command completes.
19225  */
19226 
19227 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19228 
19229 static int
19230 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
19231 	uint32_t *lbap, int path_flag)
19232 {
19233 	struct	scsi_extended_sense	sense_buf;
19234 	struct	uscsi_cmd	ucmd_buf;
19235 	union	scsi_cdb	cdb;
19236 	uint64_t		*capacity16_buf;
19237 	uint64_t		capacity;
19238 	uint32_t		lbasize;
19239 	int			status;
19240 
19241 	ASSERT(un != NULL);
19242 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19243 	ASSERT(capp != NULL);
19244 	ASSERT(lbap != NULL);
19245 
19246 	SD_TRACE(SD_LOG_IO, un,
19247 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19248 
19249 	/*
19250 	 * First send a READ_CAPACITY_16 command to the target.
19251 	 *
19252 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19253 	 * Medium Indicator bit is cleared.  The address field must be
19254 	 * zero if the PMI bit is zero.
19255 	 */
19256 	bzero(&cdb, sizeof (cdb));
19257 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19258 
19259 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19260 
19261 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19262 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19263 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19264 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19265 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19266 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19267 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19268 	ucmd_buf.uscsi_timeout	= 60;
19269 
19270 	/*
19271 	 * Read Capacity (16) is a Service Action In command.  One
19272 	 * command byte (0x9E) is overloaded for multiple operations,
19273 	 * with the second CDB byte specifying the desired operation
19274 	 */
19275 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19276 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19277 
19278 	/*
19279 	 * Fill in allocation length field
19280 	 */
19281 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19282 
19283 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19284 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19285 
19286 	switch (status) {
19287 	case 0:
19288 		/* Return failure if we did not get valid capacity data. */
19289 		if (ucmd_buf.uscsi_resid > 20) {
19290 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19291 			return (EIO);
19292 		}
19293 
19294 		/*
19295 		 * Read capacity and block size from the READ CAPACITY 10 data.
19296 		 * This data may be adjusted later due to device specific
19297 		 * issues.
19298 		 *
19299 		 * According to the SCSI spec, the READ CAPACITY 10
19300 		 * command returns the following:
19301 		 *
19302 		 *  bytes 0-7: Maximum logical block address available.
19303 		 *		(MSB in byte:0 & LSB in byte:7)
19304 		 *
19305 		 *  bytes 8-11: Block length in bytes
19306 		 *		(MSB in byte:8 & LSB in byte:11)
19307 		 *
19308 		 */
19309 		capacity = BE_64(capacity16_buf[0]);
19310 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19311 
19312 		/*
19313 		 * Done with capacity16_buf
19314 		 */
19315 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19316 
19317 		/*
19318 		 * if the reported capacity is set to all 0xf's, then
19319 		 * this disk is too large.  This could only happen with
19320 		 * a device that supports LBAs larger than 64 bits which
19321 		 * are not defined by any current T10 standards.
19322 		 */
19323 		if (capacity == 0xffffffffffffffff) {
19324 			return (EIO);
19325 		}
19326 		break;	/* Success! */
19327 	case EIO:
19328 		switch (ucmd_buf.uscsi_status) {
19329 		case STATUS_RESERVATION_CONFLICT:
19330 			status = EACCES;
19331 			break;
19332 		case STATUS_CHECK:
19333 			/*
19334 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19335 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19336 			 */
19337 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19338 			    (sense_buf.es_add_code  == 0x04) &&
19339 			    (sense_buf.es_qual_code == 0x01)) {
19340 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19341 				return (EAGAIN);
19342 			}
19343 			break;
19344 		default:
19345 			break;
19346 		}
19347 		/* FALLTHRU */
19348 	default:
19349 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19350 		return (status);
19351 	}
19352 
19353 	*capp = capacity;
19354 	*lbap = lbasize;
19355 
19356 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19357 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19358 
19359 	return (0);
19360 }
19361 
19362 
19363 /*
19364  *    Function: sd_send_scsi_START_STOP_UNIT
19365  *
19366  * Description: Issue a scsi START STOP UNIT command to the target.
19367  *
19368  *   Arguments: un    - pointer to driver soft state (unit) structure for
19369  *			this target.
19370  *		flag  - SD_TARGET_START
19371  *			SD_TARGET_STOP
19372  *			SD_TARGET_EJECT
19373  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19374  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19375  *			to use the USCSI "direct" chain and bypass the normal
19376  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19377  *			command is issued as part of an error recovery action.
19378  *
19379  * Return Code: 0   - Success
19380  *		EIO - IO error
19381  *		EACCES - Reservation conflict detected
19382  *		ENXIO  - Not Ready, medium not present
19383  *		errno return code from sd_send_scsi_cmd()
19384  *
19385  *     Context: Can sleep.
19386  */
19387 
19388 static int
19389 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19390 {
19391 	struct	scsi_extended_sense	sense_buf;
19392 	union scsi_cdb		cdb;
19393 	struct uscsi_cmd	ucmd_buf;
19394 	int			status;
19395 
19396 	ASSERT(un != NULL);
19397 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19398 
19399 	SD_TRACE(SD_LOG_IO, un,
19400 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19401 
19402 	if (un->un_f_check_start_stop &&
19403 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19404 	    (un->un_f_start_stop_supported != TRUE)) {
19405 		return (0);
19406 	}
19407 
19408 	bzero(&cdb, sizeof (cdb));
19409 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19410 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19411 
19412 	cdb.scc_cmd = SCMD_START_STOP;
19413 	cdb.cdb_opaque[4] = (uchar_t)flag;
19414 
19415 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19416 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19417 	ucmd_buf.uscsi_bufaddr	= NULL;
19418 	ucmd_buf.uscsi_buflen	= 0;
19419 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19420 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19421 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19422 	ucmd_buf.uscsi_timeout	= 200;
19423 
19424 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19425 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19426 
19427 	switch (status) {
19428 	case 0:
19429 		break;	/* Success! */
19430 	case EIO:
19431 		switch (ucmd_buf.uscsi_status) {
19432 		case STATUS_RESERVATION_CONFLICT:
19433 			status = EACCES;
19434 			break;
19435 		case STATUS_CHECK:
19436 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19437 				switch (sense_buf.es_key) {
19438 				case KEY_ILLEGAL_REQUEST:
19439 					status = ENOTSUP;
19440 					break;
19441 				case KEY_NOT_READY:
19442 					if (sense_buf.es_add_code == 0x3A) {
19443 						status = ENXIO;
19444 					}
19445 					break;
19446 				default:
19447 					break;
19448 				}
19449 			}
19450 			break;
19451 		default:
19452 			break;
19453 		}
19454 		break;
19455 	default:
19456 		break;
19457 	}
19458 
19459 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19460 
19461 	return (status);
19462 }
19463 
19464 
19465 /*
19466  *    Function: sd_start_stop_unit_callback
19467  *
19468  * Description: timeout(9F) callback to begin recovery process for a
19469  *		device that has spun down.
19470  *
19471  *   Arguments: arg - pointer to associated softstate struct.
19472  *
19473  *     Context: Executes in a timeout(9F) thread context
19474  */
19475 
19476 static void
19477 sd_start_stop_unit_callback(void *arg)
19478 {
19479 	struct sd_lun	*un = arg;
19480 	ASSERT(un != NULL);
19481 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19482 
19483 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19484 
19485 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19486 }
19487 
19488 
19489 /*
19490  *    Function: sd_start_stop_unit_task
19491  *
19492  * Description: Recovery procedure when a drive is spun down.
19493  *
19494  *   Arguments: arg - pointer to associated softstate struct.
19495  *
19496  *     Context: Executes in a taskq() thread context
19497  */
19498 
19499 static void
19500 sd_start_stop_unit_task(void *arg)
19501 {
19502 	struct sd_lun	*un = arg;
19503 
19504 	ASSERT(un != NULL);
19505 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19506 
19507 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19508 
19509 	/*
19510 	 * Some unformatted drives report not ready error, no need to
19511 	 * restart if format has been initiated.
19512 	 */
19513 	mutex_enter(SD_MUTEX(un));
19514 	if (un->un_f_format_in_progress == TRUE) {
19515 		mutex_exit(SD_MUTEX(un));
19516 		return;
19517 	}
19518 	mutex_exit(SD_MUTEX(un));
19519 
19520 	/*
19521 	 * When a START STOP command is issued from here, it is part of a
19522 	 * failure recovery operation and must be issued before any other
19523 	 * commands, including any pending retries. Thus it must be sent
19524 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19525 	 * succeeds or not, we will start I/O after the attempt.
19526 	 */
19527 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19528 	    SD_PATH_DIRECT_PRIORITY);
19529 
19530 	/*
19531 	 * The above call blocks until the START_STOP_UNIT command completes.
19532 	 * Now that it has completed, we must re-try the original IO that
19533 	 * received the NOT READY condition in the first place. There are
19534 	 * three possible conditions here:
19535 	 *
19536 	 *  (1) The original IO is on un_retry_bp.
19537 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
19538 	 *	is NULL.
19539 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
19540 	 *	points to some other, unrelated bp.
19541 	 *
19542 	 * For each case, we must call sd_start_cmds() with un_retry_bp
19543 	 * as the argument. If un_retry_bp is NULL, this will initiate
19544 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
19545 	 * then this will process the bp on un_retry_bp. That may or may not
19546 	 * be the original IO, but that does not matter: the important thing
19547 	 * is to keep the IO processing going at this point.
19548 	 *
19549 	 * Note: This is a very specific error recovery sequence associated
19550 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
19551 	 * serialize the I/O with completion of the spin-up.
19552 	 */
19553 	mutex_enter(SD_MUTEX(un));
19554 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19555 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
19556 	    un, un->un_retry_bp);
19557 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
19558 	sd_start_cmds(un, un->un_retry_bp);
19559 	mutex_exit(SD_MUTEX(un));
19560 
19561 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
19562 }
19563 
19564 
19565 /*
19566  *    Function: sd_send_scsi_INQUIRY
19567  *
19568  * Description: Issue the scsi INQUIRY command.
19569  *
19570  *   Arguments: un
19571  *		bufaddr
19572  *		buflen
19573  *		evpd
19574  *		page_code
19575  *		page_length
19576  *
19577  * Return Code: 0   - Success
19578  *		errno return code from sd_send_scsi_cmd()
19579  *
19580  *     Context: Can sleep. Does not return until command is completed.
19581  */
19582 
19583 static int
19584 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
19585 	uchar_t evpd, uchar_t page_code, size_t *residp)
19586 {
19587 	union scsi_cdb		cdb;
19588 	struct uscsi_cmd	ucmd_buf;
19589 	int			status;
19590 
19591 	ASSERT(un != NULL);
19592 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19593 	ASSERT(bufaddr != NULL);
19594 
19595 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
19596 
19597 	bzero(&cdb, sizeof (cdb));
19598 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19599 	bzero(bufaddr, buflen);
19600 
19601 	cdb.scc_cmd = SCMD_INQUIRY;
19602 	cdb.cdb_opaque[1] = evpd;
19603 	cdb.cdb_opaque[2] = page_code;
19604 	FORMG0COUNT(&cdb, buflen);
19605 
19606 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19607 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19608 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
19609 	ucmd_buf.uscsi_buflen	= buflen;
19610 	ucmd_buf.uscsi_rqbuf	= NULL;
19611 	ucmd_buf.uscsi_rqlen	= 0;
19612 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
19613 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
19614 
19615 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19616 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
19617 
19618 	if ((status == 0) && (residp != NULL)) {
19619 		*residp = ucmd_buf.uscsi_resid;
19620 	}
19621 
19622 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
19623 
19624 	return (status);
19625 }
19626 
19627 
19628 /*
19629  *    Function: sd_send_scsi_TEST_UNIT_READY
19630  *
19631  * Description: Issue the scsi TEST UNIT READY command.
19632  *		This routine can be told to set the flag USCSI_DIAGNOSE to
19633  *		prevent retrying failed commands. Use this when the intent
19634  *		is either to check for device readiness, to clear a Unit
19635  *		Attention, or to clear any outstanding sense data.
19636  *		However under specific conditions the expected behavior
19637  *		is for retries to bring a device ready, so use the flag
19638  *		with caution.
19639  *
19640  *   Arguments: un
19641  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
19642  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
19643  *			0: dont check for media present, do retries on cmd.
19644  *
19645  * Return Code: 0   - Success
19646  *		EIO - IO error
19647  *		EACCES - Reservation conflict detected
19648  *		ENXIO  - Not Ready, medium not present
19649  *		errno return code from sd_send_scsi_cmd()
19650  *
19651  *     Context: Can sleep. Does not return until command is completed.
19652  */
19653 
19654 static int
19655 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
19656 {
19657 	struct	scsi_extended_sense	sense_buf;
19658 	union scsi_cdb		cdb;
19659 	struct uscsi_cmd	ucmd_buf;
19660 	int			status;
19661 
19662 	ASSERT(un != NULL);
19663 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19664 
19665 	SD_TRACE(SD_LOG_IO, un,
19666 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
19667 
19668 	/*
19669 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
19670 	 * timeouts when they receive a TUR and the queue is not empty. Check
19671 	 * the configuration flag set during attach (indicating the drive has
19672 	 * this firmware bug) and un_ncmds_in_transport before issuing the
19673 	 * TUR. If there are
19674 	 * pending commands return success, this is a bit arbitrary but is ok
19675 	 * for non-removables (i.e. the eliteI disks) and non-clustering
19676 	 * configurations.
19677 	 */
19678 	if (un->un_f_cfg_tur_check == TRUE) {
19679 		mutex_enter(SD_MUTEX(un));
19680 		if (un->un_ncmds_in_transport != 0) {
19681 			mutex_exit(SD_MUTEX(un));
19682 			return (0);
19683 		}
19684 		mutex_exit(SD_MUTEX(un));
19685 	}
19686 
19687 	bzero(&cdb, sizeof (cdb));
19688 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19689 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19690 
19691 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
19692 
19693 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19694 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19695 	ucmd_buf.uscsi_bufaddr	= NULL;
19696 	ucmd_buf.uscsi_buflen	= 0;
19697 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19698 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19699 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19700 
19701 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
19702 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
19703 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
19704 	}
19705 	ucmd_buf.uscsi_timeout	= 60;
19706 
19707 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19708 	    UIO_SYSSPACE, UIO_SYSSPACE,
19709 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
19710 
19711 	switch (status) {
19712 	case 0:
19713 		break;	/* Success! */
19714 	case EIO:
19715 		switch (ucmd_buf.uscsi_status) {
19716 		case STATUS_RESERVATION_CONFLICT:
19717 			status = EACCES;
19718 			break;
19719 		case STATUS_CHECK:
19720 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
19721 				break;
19722 			}
19723 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19724 			    (sense_buf.es_key == KEY_NOT_READY) &&
19725 			    (sense_buf.es_add_code == 0x3A)) {
19726 				status = ENXIO;
19727 			}
19728 			break;
19729 		default:
19730 			break;
19731 		}
19732 		break;
19733 	default:
19734 		break;
19735 	}
19736 
19737 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
19738 
19739 	return (status);
19740 }
19741 
19742 
19743 /*
19744  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
19745  *
19746  * Description: Issue the scsi PERSISTENT RESERVE IN command.
19747  *
19748  *   Arguments: un
19749  *
19750  * Return Code: 0   - Success
19751  *		EACCES
19752  *		ENOTSUP
19753  *		errno return code from sd_send_scsi_cmd()
19754  *
19755  *     Context: Can sleep. Does not return until command is completed.
19756  */
19757 
19758 static int
19759 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
19760 	uint16_t data_len, uchar_t *data_bufp)
19761 {
19762 	struct scsi_extended_sense	sense_buf;
19763 	union scsi_cdb		cdb;
19764 	struct uscsi_cmd	ucmd_buf;
19765 	int			status;
19766 	int			no_caller_buf = FALSE;
19767 
19768 	ASSERT(un != NULL);
19769 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19770 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
19771 
19772 	SD_TRACE(SD_LOG_IO, un,
19773 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
19774 
19775 	bzero(&cdb, sizeof (cdb));
19776 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19777 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19778 	if (data_bufp == NULL) {
19779 		/* Allocate a default buf if the caller did not give one */
19780 		ASSERT(data_len == 0);
19781 		data_len  = MHIOC_RESV_KEY_SIZE;
19782 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
19783 		no_caller_buf = TRUE;
19784 	}
19785 
19786 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
19787 	cdb.cdb_opaque[1] = usr_cmd;
19788 	FORMG1COUNT(&cdb, data_len);
19789 
19790 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19791 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19792 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
19793 	ucmd_buf.uscsi_buflen	= data_len;
19794 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19795 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19796 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19797 	ucmd_buf.uscsi_timeout	= 60;
19798 
19799 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19800 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19801 
19802 	switch (status) {
19803 	case 0:
19804 		break;	/* Success! */
19805 	case EIO:
19806 		switch (ucmd_buf.uscsi_status) {
19807 		case STATUS_RESERVATION_CONFLICT:
19808 			status = EACCES;
19809 			break;
19810 		case STATUS_CHECK:
19811 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19812 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19813 				status = ENOTSUP;
19814 			}
19815 			break;
19816 		default:
19817 			break;
19818 		}
19819 		break;
19820 	default:
19821 		break;
19822 	}
19823 
19824 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
19825 
19826 	if (no_caller_buf == TRUE) {
19827 		kmem_free(data_bufp, data_len);
19828 	}
19829 
19830 	return (status);
19831 }
19832 
19833 
19834 /*
19835  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
19836  *
19837  * Description: This routine is the driver entry point for handling CD-ROM
19838  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
19839  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
19840  *		device.
19841  *
19842  *   Arguments: un  -   Pointer to soft state struct for the target.
19843  *		usr_cmd SCSI-3 reservation facility command (one of
19844  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
19845  *			SD_SCSI3_PREEMPTANDABORT)
19846  *		usr_bufp - user provided pointer register, reserve descriptor or
19847  *			preempt and abort structure (mhioc_register_t,
19848  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
19849  *
19850  * Return Code: 0   - Success
19851  *		EACCES
19852  *		ENOTSUP
19853  *		errno return code from sd_send_scsi_cmd()
19854  *
19855  *     Context: Can sleep. Does not return until command is completed.
19856  */
19857 
19858 static int
19859 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
19860 	uchar_t	*usr_bufp)
19861 {
19862 	struct scsi_extended_sense	sense_buf;
19863 	union scsi_cdb		cdb;
19864 	struct uscsi_cmd	ucmd_buf;
19865 	int			status;
19866 	uchar_t			data_len = sizeof (sd_prout_t);
19867 	sd_prout_t		*prp;
19868 
19869 	ASSERT(un != NULL);
19870 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19871 	ASSERT(data_len == 24);	/* required by scsi spec */
19872 
19873 	SD_TRACE(SD_LOG_IO, un,
19874 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
19875 
19876 	if (usr_bufp == NULL) {
19877 		return (EINVAL);
19878 	}
19879 
19880 	bzero(&cdb, sizeof (cdb));
19881 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19882 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19883 	prp = kmem_zalloc(data_len, KM_SLEEP);
19884 
19885 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
19886 	cdb.cdb_opaque[1] = usr_cmd;
19887 	FORMG1COUNT(&cdb, data_len);
19888 
19889 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19890 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19891 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
19892 	ucmd_buf.uscsi_buflen	= data_len;
19893 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19894 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19895 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
19896 	ucmd_buf.uscsi_timeout	= 60;
19897 
19898 	switch (usr_cmd) {
19899 	case SD_SCSI3_REGISTER: {
19900 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
19901 
19902 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19903 		bcopy(ptr->newkey.key, prp->service_key,
19904 		    MHIOC_RESV_KEY_SIZE);
19905 		prp->aptpl = ptr->aptpl;
19906 		break;
19907 	}
19908 	case SD_SCSI3_RESERVE:
19909 	case SD_SCSI3_RELEASE: {
19910 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
19911 
19912 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19913 		prp->scope_address = BE_32(ptr->scope_specific_addr);
19914 		cdb.cdb_opaque[2] = ptr->type;
19915 		break;
19916 	}
19917 	case SD_SCSI3_PREEMPTANDABORT: {
19918 		mhioc_preemptandabort_t *ptr =
19919 		    (mhioc_preemptandabort_t *)usr_bufp;
19920 
19921 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
19922 		bcopy(ptr->victim_key.key, prp->service_key,
19923 		    MHIOC_RESV_KEY_SIZE);
19924 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
19925 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
19926 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
19927 		break;
19928 	}
19929 	case SD_SCSI3_REGISTERANDIGNOREKEY:
19930 	{
19931 		mhioc_registerandignorekey_t *ptr;
19932 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
19933 		bcopy(ptr->newkey.key,
19934 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
19935 		prp->aptpl = ptr->aptpl;
19936 		break;
19937 	}
19938 	default:
19939 		ASSERT(FALSE);
19940 		break;
19941 	}
19942 
19943 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19944 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
19945 
19946 	switch (status) {
19947 	case 0:
19948 		break;	/* Success! */
19949 	case EIO:
19950 		switch (ucmd_buf.uscsi_status) {
19951 		case STATUS_RESERVATION_CONFLICT:
19952 			status = EACCES;
19953 			break;
19954 		case STATUS_CHECK:
19955 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19956 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) {
19957 				status = ENOTSUP;
19958 			}
19959 			break;
19960 		default:
19961 			break;
19962 		}
19963 		break;
19964 	default:
19965 		break;
19966 	}
19967 
19968 	kmem_free(prp, data_len);
19969 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
19970 	return (status);
19971 }
19972 
19973 
19974 /*
19975  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
19976  *
19977  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
19978  *
19979  *   Arguments: un - pointer to the target's soft state struct
19980  *
19981  * Return Code: 0 - success
19982  *		errno-type error code
19983  *
19984  *     Context: kernel thread context only.
19985  */
19986 
19987 static int
19988 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
19989 {
19990 	struct sd_uscsi_info	*uip;
19991 	struct uscsi_cmd	*uscmd;
19992 	union scsi_cdb		*cdb;
19993 	struct buf		*bp;
19994 	int			rval = 0;
19995 
19996 	SD_TRACE(SD_LOG_IO, un,
19997 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
19998 
19999 	ASSERT(un != NULL);
20000 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20001 
20002 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20003 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20004 
20005 	/*
20006 	 * First get some memory for the uscsi_cmd struct and cdb
20007 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20008 	 */
20009 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20010 	uscmd->uscsi_cdblen = CDB_GROUP1;
20011 	uscmd->uscsi_cdb = (caddr_t)cdb;
20012 	uscmd->uscsi_bufaddr = NULL;
20013 	uscmd->uscsi_buflen = 0;
20014 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20015 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20016 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20017 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20018 	uscmd->uscsi_timeout = sd_io_time;
20019 
20020 	/*
20021 	 * Allocate an sd_uscsi_info struct and fill it with the info
20022 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20023 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20024 	 * since we allocate the buf here in this function, we do not
20025 	 * need to preserve the prior contents of b_private.
20026 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20027 	 */
20028 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20029 	uip->ui_flags = SD_PATH_DIRECT;
20030 	uip->ui_cmdp  = uscmd;
20031 
20032 	bp = getrbuf(KM_SLEEP);
20033 	bp->b_private = uip;
20034 
20035 	/*
20036 	 * Setup buffer to carry uscsi request.
20037 	 */
20038 	bp->b_flags  = B_BUSY;
20039 	bp->b_bcount = 0;
20040 	bp->b_blkno  = 0;
20041 
20042 	if (dkc != NULL) {
20043 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20044 		uip->ui_dkc = *dkc;
20045 	}
20046 
20047 	bp->b_edev = SD_GET_DEV(un);
20048 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20049 
20050 	(void) sd_uscsi_strategy(bp);
20051 
20052 	/*
20053 	 * If synchronous request, wait for completion
20054 	 * If async just return and let b_iodone callback
20055 	 * cleanup.
20056 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20057 	 * but it was also incremented in sd_uscsi_strategy(), so
20058 	 * we should be ok.
20059 	 */
20060 	if (dkc == NULL) {
20061 		(void) biowait(bp);
20062 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20063 	}
20064 
20065 	return (rval);
20066 }
20067 
20068 
20069 static int
20070 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20071 {
20072 	struct sd_uscsi_info *uip;
20073 	struct uscsi_cmd *uscmd;
20074 	struct scsi_extended_sense *sense_buf;
20075 	struct sd_lun *un;
20076 	int status;
20077 
20078 	uip = (struct sd_uscsi_info *)(bp->b_private);
20079 	ASSERT(uip != NULL);
20080 
20081 	uscmd = uip->ui_cmdp;
20082 	ASSERT(uscmd != NULL);
20083 
20084 	sense_buf = (struct scsi_extended_sense *)uscmd->uscsi_rqbuf;
20085 	ASSERT(sense_buf != NULL);
20086 
20087 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20088 	ASSERT(un != NULL);
20089 
20090 	status = geterror(bp);
20091 	switch (status) {
20092 	case 0:
20093 		break;	/* Success! */
20094 	case EIO:
20095 		switch (uscmd->uscsi_status) {
20096 		case STATUS_RESERVATION_CONFLICT:
20097 			/* Ignore reservation conflict */
20098 			status = 0;
20099 			goto done;
20100 
20101 		case STATUS_CHECK:
20102 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20103 			    (sense_buf->es_key == KEY_ILLEGAL_REQUEST)) {
20104 				/* Ignore Illegal Request error */
20105 				mutex_enter(SD_MUTEX(un));
20106 				un->un_f_sync_cache_supported = FALSE;
20107 				mutex_exit(SD_MUTEX(un));
20108 				status = ENOTSUP;
20109 				goto done;
20110 			}
20111 			break;
20112 		default:
20113 			break;
20114 		}
20115 		/* FALLTHRU */
20116 	default:
20117 		/* Ignore error if the media is not present */
20118 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
20119 			status = 0;
20120 			goto done;
20121 		}
20122 		/* If we reach this, we had an error */
20123 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20124 		    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20125 		break;
20126 	}
20127 
20128 done:
20129 	if (uip->ui_dkc.dkc_callback != NULL) {
20130 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20131 	}
20132 
20133 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20134 	freerbuf(bp);
20135 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20136 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20137 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20138 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20139 
20140 	return (status);
20141 }
20142 
20143 
20144 /*
20145  *    Function: sd_send_scsi_GET_CONFIGURATION
20146  *
20147  * Description: Issues the get configuration command to the device.
20148  *		Called from sd_check_for_writable_cd & sd_get_media_info
20149  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20150  *   Arguments: un
20151  *		ucmdbuf
20152  *		rqbuf
20153  *		rqbuflen
20154  *		bufaddr
20155  *		buflen
20156  *
20157  * Return Code: 0   - Success
20158  *		errno return code from sd_send_scsi_cmd()
20159  *
20160  *     Context: Can sleep. Does not return until command is completed.
20161  *
20162  */
20163 
20164 static int
20165 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
20166 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
20167 {
20168 	char	cdb[CDB_GROUP1];
20169 	int	status;
20170 
20171 	ASSERT(un != NULL);
20172 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20173 	ASSERT(bufaddr != NULL);
20174 	ASSERT(ucmdbuf != NULL);
20175 	ASSERT(rqbuf != NULL);
20176 
20177 	SD_TRACE(SD_LOG_IO, un,
20178 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20179 
20180 	bzero(cdb, sizeof (cdb));
20181 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20182 	bzero(rqbuf, rqbuflen);
20183 	bzero(bufaddr, buflen);
20184 
20185 	/*
20186 	 * Set up cdb field for the get configuration command.
20187 	 */
20188 	cdb[0] = SCMD_GET_CONFIGURATION;
20189 	cdb[1] = 0x02;  /* Requested Type */
20190 	cdb[8] = SD_PROFILE_HEADER_LEN;
20191 	ucmdbuf->uscsi_cdb = cdb;
20192 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20193 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20194 	ucmdbuf->uscsi_buflen = buflen;
20195 	ucmdbuf->uscsi_timeout = sd_io_time;
20196 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20197 	ucmdbuf->uscsi_rqlen = rqbuflen;
20198 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20199 
20200 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20201 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20202 
20203 	switch (status) {
20204 	case 0:
20205 		break;  /* Success! */
20206 	case EIO:
20207 		switch (ucmdbuf->uscsi_status) {
20208 		case STATUS_RESERVATION_CONFLICT:
20209 			status = EACCES;
20210 			break;
20211 		default:
20212 			break;
20213 		}
20214 		break;
20215 	default:
20216 		break;
20217 	}
20218 
20219 	if (status == 0) {
20220 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20221 		    "sd_send_scsi_GET_CONFIGURATION: data",
20222 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20223 	}
20224 
20225 	SD_TRACE(SD_LOG_IO, un,
20226 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20227 
20228 	return (status);
20229 }
20230 
20231 /*
20232  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20233  *
20234  * Description: Issues the get configuration command to the device to
20235  *              retrieve a specfic feature. Called from
20236  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20237  *   Arguments: un
20238  *              ucmdbuf
20239  *              rqbuf
20240  *              rqbuflen
20241  *              bufaddr
20242  *              buflen
20243  *		feature
20244  *
20245  * Return Code: 0   - Success
20246  *              errno return code from sd_send_scsi_cmd()
20247  *
20248  *     Context: Can sleep. Does not return until command is completed.
20249  *
20250  */
20251 static int
20252 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
20253 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20254 	uchar_t *bufaddr, uint_t buflen, char feature)
20255 {
20256 	char    cdb[CDB_GROUP1];
20257 	int	status;
20258 
20259 	ASSERT(un != NULL);
20260 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20261 	ASSERT(bufaddr != NULL);
20262 	ASSERT(ucmdbuf != NULL);
20263 	ASSERT(rqbuf != NULL);
20264 
20265 	SD_TRACE(SD_LOG_IO, un,
20266 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20267 
20268 	bzero(cdb, sizeof (cdb));
20269 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20270 	bzero(rqbuf, rqbuflen);
20271 	bzero(bufaddr, buflen);
20272 
20273 	/*
20274 	 * Set up cdb field for the get configuration command.
20275 	 */
20276 	cdb[0] = SCMD_GET_CONFIGURATION;
20277 	cdb[1] = 0x02;  /* Requested Type */
20278 	cdb[3] = feature;
20279 	cdb[8] = buflen;
20280 	ucmdbuf->uscsi_cdb = cdb;
20281 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20282 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20283 	ucmdbuf->uscsi_buflen = buflen;
20284 	ucmdbuf->uscsi_timeout = sd_io_time;
20285 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20286 	ucmdbuf->uscsi_rqlen = rqbuflen;
20287 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20288 
20289 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20290 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20291 
20292 	switch (status) {
20293 	case 0:
20294 		break;  /* Success! */
20295 	case EIO:
20296 		switch (ucmdbuf->uscsi_status) {
20297 		case STATUS_RESERVATION_CONFLICT:
20298 			status = EACCES;
20299 			break;
20300 		default:
20301 			break;
20302 		}
20303 		break;
20304 	default:
20305 		break;
20306 	}
20307 
20308 	if (status == 0) {
20309 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20310 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20311 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20312 	}
20313 
20314 	SD_TRACE(SD_LOG_IO, un,
20315 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20316 
20317 	return (status);
20318 }
20319 
20320 
20321 /*
20322  *    Function: sd_send_scsi_MODE_SENSE
20323  *
20324  * Description: Utility function for issuing a scsi MODE SENSE command.
20325  *		Note: This routine uses a consistent implementation for Group0,
20326  *		Group1, and Group2 commands across all platforms. ATAPI devices
20327  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20328  *
20329  *   Arguments: un - pointer to the softstate struct for the target.
20330  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20331  *			  CDB_GROUP[1|2] (10 byte).
20332  *		bufaddr - buffer for page data retrieved from the target.
20333  *		buflen - size of page to be retrieved.
20334  *		page_code - page code of data to be retrieved from the target.
20335  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20336  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20337  *			to use the USCSI "direct" chain and bypass the normal
20338  *			command waitq.
20339  *
20340  * Return Code: 0   - Success
20341  *		errno return code from sd_send_scsi_cmd()
20342  *
20343  *     Context: Can sleep. Does not return until command is completed.
20344  */
20345 
20346 static int
20347 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20348 	size_t buflen,  uchar_t page_code, int path_flag)
20349 {
20350 	struct	scsi_extended_sense	sense_buf;
20351 	union scsi_cdb		cdb;
20352 	struct uscsi_cmd	ucmd_buf;
20353 	int			status;
20354 
20355 	ASSERT(un != NULL);
20356 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20357 	ASSERT(bufaddr != NULL);
20358 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20359 	    (cdbsize == CDB_GROUP2));
20360 
20361 	SD_TRACE(SD_LOG_IO, un,
20362 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20363 
20364 	bzero(&cdb, sizeof (cdb));
20365 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20366 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20367 	bzero(bufaddr, buflen);
20368 
20369 	if (cdbsize == CDB_GROUP0) {
20370 		cdb.scc_cmd = SCMD_MODE_SENSE;
20371 		cdb.cdb_opaque[2] = page_code;
20372 		FORMG0COUNT(&cdb, buflen);
20373 	} else {
20374 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20375 		cdb.cdb_opaque[2] = page_code;
20376 		FORMG1COUNT(&cdb, buflen);
20377 	}
20378 
20379 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20380 
20381 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20382 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20383 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20384 	ucmd_buf.uscsi_buflen	= buflen;
20385 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20386 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20387 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20388 	ucmd_buf.uscsi_timeout	= 60;
20389 
20390 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20391 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20392 
20393 	switch (status) {
20394 	case 0:
20395 		break;	/* Success! */
20396 	case EIO:
20397 		switch (ucmd_buf.uscsi_status) {
20398 		case STATUS_RESERVATION_CONFLICT:
20399 			status = EACCES;
20400 			break;
20401 		default:
20402 			break;
20403 		}
20404 		break;
20405 	default:
20406 		break;
20407 	}
20408 
20409 	if (status == 0) {
20410 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20411 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20412 	}
20413 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20414 
20415 	return (status);
20416 }
20417 
20418 
20419 /*
20420  *    Function: sd_send_scsi_MODE_SELECT
20421  *
20422  * Description: Utility function for issuing a scsi MODE SELECT command.
20423  *		Note: This routine uses a consistent implementation for Group0,
20424  *		Group1, and Group2 commands across all platforms. ATAPI devices
20425  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20426  *
20427  *   Arguments: un - pointer to the softstate struct for the target.
20428  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20429  *			  CDB_GROUP[1|2] (10 byte).
20430  *		bufaddr - buffer for page data retrieved from the target.
20431  *		buflen - size of page to be retrieved.
20432  *		save_page - boolean to determin if SP bit should be set.
20433  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20434  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20435  *			to use the USCSI "direct" chain and bypass the normal
20436  *			command waitq.
20437  *
20438  * Return Code: 0   - Success
20439  *		errno return code from sd_send_scsi_cmd()
20440  *
20441  *     Context: Can sleep. Does not return until command is completed.
20442  */
20443 
20444 static int
20445 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20446 	size_t buflen,  uchar_t save_page, int path_flag)
20447 {
20448 	struct	scsi_extended_sense	sense_buf;
20449 	union scsi_cdb		cdb;
20450 	struct uscsi_cmd	ucmd_buf;
20451 	int			status;
20452 
20453 	ASSERT(un != NULL);
20454 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20455 	ASSERT(bufaddr != NULL);
20456 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20457 	    (cdbsize == CDB_GROUP2));
20458 
20459 	SD_TRACE(SD_LOG_IO, un,
20460 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20461 
20462 	bzero(&cdb, sizeof (cdb));
20463 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20464 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20465 
20466 	/* Set the PF bit for many third party drives */
20467 	cdb.cdb_opaque[1] = 0x10;
20468 
20469 	/* Set the savepage(SP) bit if given */
20470 	if (save_page == SD_SAVE_PAGE) {
20471 		cdb.cdb_opaque[1] |= 0x01;
20472 	}
20473 
20474 	if (cdbsize == CDB_GROUP0) {
20475 		cdb.scc_cmd = SCMD_MODE_SELECT;
20476 		FORMG0COUNT(&cdb, buflen);
20477 	} else {
20478 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20479 		FORMG1COUNT(&cdb, buflen);
20480 	}
20481 
20482 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20483 
20484 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20485 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20486 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20487 	ucmd_buf.uscsi_buflen	= buflen;
20488 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20489 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20490 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20491 	ucmd_buf.uscsi_timeout	= 60;
20492 
20493 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20494 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20495 
20496 	switch (status) {
20497 	case 0:
20498 		break;	/* Success! */
20499 	case EIO:
20500 		switch (ucmd_buf.uscsi_status) {
20501 		case STATUS_RESERVATION_CONFLICT:
20502 			status = EACCES;
20503 			break;
20504 		default:
20505 			break;
20506 		}
20507 		break;
20508 	default:
20509 		break;
20510 	}
20511 
20512 	if (status == 0) {
20513 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
20514 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20515 	}
20516 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
20517 
20518 	return (status);
20519 }
20520 
20521 
20522 /*
20523  *    Function: sd_send_scsi_RDWR
20524  *
20525  * Description: Issue a scsi READ or WRITE command with the given parameters.
20526  *
20527  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20528  *		cmd:	 SCMD_READ or SCMD_WRITE
20529  *		bufaddr: Address of caller's buffer to receive the RDWR data
20530  *		buflen:  Length of caller's buffer receive the RDWR data.
20531  *		start_block: Block number for the start of the RDWR operation.
20532  *			 (Assumes target-native block size.)
20533  *		residp:  Pointer to variable to receive the redisual of the
20534  *			 RDWR operation (may be NULL of no residual requested).
20535  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20536  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20537  *			to use the USCSI "direct" chain and bypass the normal
20538  *			command waitq.
20539  *
20540  * Return Code: 0   - Success
20541  *		errno return code from sd_send_scsi_cmd()
20542  *
20543  *     Context: Can sleep. Does not return until command is completed.
20544  */
20545 
20546 static int
20547 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
20548 	size_t buflen, daddr_t start_block, int path_flag)
20549 {
20550 	struct	scsi_extended_sense	sense_buf;
20551 	union scsi_cdb		cdb;
20552 	struct uscsi_cmd	ucmd_buf;
20553 	uint32_t		block_count;
20554 	int			status;
20555 	int			cdbsize;
20556 	uchar_t			flag;
20557 
20558 	ASSERT(un != NULL);
20559 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20560 	ASSERT(bufaddr != NULL);
20561 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
20562 
20563 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
20564 
20565 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
20566 		return (EINVAL);
20567 	}
20568 
20569 	mutex_enter(SD_MUTEX(un));
20570 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
20571 	mutex_exit(SD_MUTEX(un));
20572 
20573 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
20574 
20575 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
20576 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
20577 	    bufaddr, buflen, start_block, block_count);
20578 
20579 	bzero(&cdb, sizeof (cdb));
20580 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20581 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20582 
20583 	/* Compute CDB size to use */
20584 	if (start_block > 0xffffffff)
20585 		cdbsize = CDB_GROUP4;
20586 	else if ((start_block & 0xFFE00000) ||
20587 	    (un->un_f_cfg_is_atapi == TRUE))
20588 		cdbsize = CDB_GROUP1;
20589 	else
20590 		cdbsize = CDB_GROUP0;
20591 
20592 	switch (cdbsize) {
20593 	case CDB_GROUP0:	/* 6-byte CDBs */
20594 		cdb.scc_cmd = cmd;
20595 		FORMG0ADDR(&cdb, start_block);
20596 		FORMG0COUNT(&cdb, block_count);
20597 		break;
20598 	case CDB_GROUP1:	/* 10-byte CDBs */
20599 		cdb.scc_cmd = cmd | SCMD_GROUP1;
20600 		FORMG1ADDR(&cdb, start_block);
20601 		FORMG1COUNT(&cdb, block_count);
20602 		break;
20603 	case CDB_GROUP4:	/* 16-byte CDBs */
20604 		cdb.scc_cmd = cmd | SCMD_GROUP4;
20605 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
20606 		FORMG4COUNT(&cdb, block_count);
20607 		break;
20608 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
20609 	default:
20610 		/* All others reserved */
20611 		return (EINVAL);
20612 	}
20613 
20614 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
20615 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20616 
20617 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20618 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20619 	ucmd_buf.uscsi_bufaddr	= bufaddr;
20620 	ucmd_buf.uscsi_buflen	= buflen;
20621 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20622 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20623 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
20624 	ucmd_buf.uscsi_timeout	= 60;
20625 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20626 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20627 	switch (status) {
20628 	case 0:
20629 		break;	/* Success! */
20630 	case EIO:
20631 		switch (ucmd_buf.uscsi_status) {
20632 		case STATUS_RESERVATION_CONFLICT:
20633 			status = EACCES;
20634 			break;
20635 		default:
20636 			break;
20637 		}
20638 		break;
20639 	default:
20640 		break;
20641 	}
20642 
20643 	if (status == 0) {
20644 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
20645 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20646 	}
20647 
20648 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
20649 
20650 	return (status);
20651 }
20652 
20653 
20654 /*
20655  *    Function: sd_send_scsi_LOG_SENSE
20656  *
20657  * Description: Issue a scsi LOG_SENSE command with the given parameters.
20658  *
20659  *   Arguments: un:      Pointer to the sd_lun struct for the target.
20660  *
20661  * Return Code: 0   - Success
20662  *		errno return code from sd_send_scsi_cmd()
20663  *
20664  *     Context: Can sleep. Does not return until command is completed.
20665  */
20666 
20667 static int
20668 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
20669 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
20670 	int path_flag)
20671 
20672 {
20673 	struct	scsi_extended_sense	sense_buf;
20674 	union scsi_cdb		cdb;
20675 	struct uscsi_cmd	ucmd_buf;
20676 	int			status;
20677 
20678 	ASSERT(un != NULL);
20679 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20680 
20681 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
20682 
20683 	bzero(&cdb, sizeof (cdb));
20684 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20685 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20686 
20687 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
20688 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
20689 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
20690 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
20691 	FORMG1COUNT(&cdb, buflen);
20692 
20693 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20694 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20695 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20696 	ucmd_buf.uscsi_buflen	= buflen;
20697 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20698 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20699 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20700 	ucmd_buf.uscsi_timeout	= 60;
20701 
20702 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20703 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20704 
20705 	switch (status) {
20706 	case 0:
20707 		break;
20708 	case EIO:
20709 		switch (ucmd_buf.uscsi_status) {
20710 		case STATUS_RESERVATION_CONFLICT:
20711 			status = EACCES;
20712 			break;
20713 		case STATUS_CHECK:
20714 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20715 			    (sense_buf.es_key == KEY_ILLEGAL_REQUEST) &&
20716 			    (sense_buf.es_add_code == 0x24)) {
20717 				/*
20718 				 * ASC 0x24: INVALID FIELD IN CDB
20719 				 */
20720 				switch (page_code) {
20721 				case START_STOP_CYCLE_PAGE:
20722 					/*
20723 					 * The start stop cycle counter is
20724 					 * implemented as page 0x31 in earlier
20725 					 * generation disks. In new generation
20726 					 * disks the start stop cycle counter is
20727 					 * implemented as page 0xE. To properly
20728 					 * handle this case if an attempt for
20729 					 * log page 0xE is made and fails we
20730 					 * will try again using page 0x31.
20731 					 *
20732 					 * Network storage BU committed to
20733 					 * maintain the page 0x31 for this
20734 					 * purpose and will not have any other
20735 					 * page implemented with page code 0x31
20736 					 * until all disks transition to the
20737 					 * standard page.
20738 					 */
20739 					mutex_enter(SD_MUTEX(un));
20740 					un->un_start_stop_cycle_page =
20741 					    START_STOP_CYCLE_VU_PAGE;
20742 					cdb.cdb_opaque[2] =
20743 					    (char)(page_control << 6) |
20744 					    un->un_start_stop_cycle_page;
20745 					mutex_exit(SD_MUTEX(un));
20746 					status = sd_send_scsi_cmd(
20747 					    SD_GET_DEV(un), &ucmd_buf,
20748 					    UIO_SYSSPACE, UIO_SYSSPACE,
20749 					    UIO_SYSSPACE, path_flag);
20750 
20751 					break;
20752 				case TEMPERATURE_PAGE:
20753 					status = ENOTTY;
20754 					break;
20755 				default:
20756 					break;
20757 				}
20758 			}
20759 			break;
20760 		default:
20761 			break;
20762 		}
20763 		break;
20764 	default:
20765 		break;
20766 	}
20767 
20768 	if (status == 0) {
20769 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
20770 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20771 	}
20772 
20773 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
20774 
20775 	return (status);
20776 }
20777 
20778 
20779 /*
20780  *    Function: sdioctl
20781  *
20782  * Description: Driver's ioctl(9e) entry point function.
20783  *
20784  *   Arguments: dev     - device number
20785  *		cmd     - ioctl operation to be performed
20786  *		arg     - user argument, contains data to be set or reference
20787  *			  parameter for get
20788  *		flag    - bit flag, indicating open settings, 32/64 bit type
20789  *		cred_p  - user credential pointer
20790  *		rval_p  - calling process return value (OPT)
20791  *
20792  * Return Code: EINVAL
20793  *		ENOTTY
20794  *		ENXIO
20795  *		EIO
20796  *		EFAULT
20797  *		ENOTSUP
20798  *		EPERM
20799  *
20800  *     Context: Called from the device switch at normal priority.
20801  */
20802 
20803 static int
20804 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
20805 {
20806 	struct sd_lun	*un = NULL;
20807 	int		geom_validated = FALSE;
20808 	int		err = 0;
20809 	int		i = 0;
20810 	cred_t		*cr;
20811 
20812 	/*
20813 	 * All device accesses go thru sdstrategy where we check on suspend
20814 	 * status
20815 	 */
20816 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
20817 		return (ENXIO);
20818 	}
20819 
20820 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20821 
20822 	/*
20823 	 * Moved this wait from sd_uscsi_strategy to here for
20824 	 * reasons of deadlock prevention. Internal driver commands,
20825 	 * specifically those to change a devices power level, result
20826 	 * in a call to sd_uscsi_strategy.
20827 	 */
20828 	mutex_enter(SD_MUTEX(un));
20829 	while ((un->un_state == SD_STATE_SUSPENDED) ||
20830 	    (un->un_state == SD_STATE_PM_CHANGING)) {
20831 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
20832 	}
20833 	/*
20834 	 * Twiddling the counter here protects commands from now
20835 	 * through to the top of sd_uscsi_strategy. Without the
20836 	 * counter inc. a power down, for example, could get in
20837 	 * after the above check for state is made and before
20838 	 * execution gets to the top of sd_uscsi_strategy.
20839 	 * That would cause problems.
20840 	 */
20841 	un->un_ncmds_in_driver++;
20842 
20843 	if ((un->un_f_geometry_is_valid == FALSE) &&
20844 	    (flag & (FNDELAY | FNONBLOCK))) {
20845 		switch (cmd) {
20846 		case CDROMPAUSE:
20847 		case CDROMRESUME:
20848 		case CDROMPLAYMSF:
20849 		case CDROMPLAYTRKIND:
20850 		case CDROMREADTOCHDR:
20851 		case CDROMREADTOCENTRY:
20852 		case CDROMSTOP:
20853 		case CDROMSTART:
20854 		case CDROMVOLCTRL:
20855 		case CDROMSUBCHNL:
20856 		case CDROMREADMODE2:
20857 		case CDROMREADMODE1:
20858 		case CDROMREADOFFSET:
20859 		case CDROMSBLKMODE:
20860 		case CDROMGBLKMODE:
20861 		case CDROMGDRVSPEED:
20862 		case CDROMSDRVSPEED:
20863 		case CDROMCDDA:
20864 		case CDROMCDXA:
20865 		case CDROMSUBCODE:
20866 			if (!ISCD(un)) {
20867 				un->un_ncmds_in_driver--;
20868 				ASSERT(un->un_ncmds_in_driver >= 0);
20869 				mutex_exit(SD_MUTEX(un));
20870 				return (ENOTTY);
20871 			}
20872 			break;
20873 		case FDEJECT:
20874 		case DKIOCEJECT:
20875 		case CDROMEJECT:
20876 			if (!un->un_f_eject_media_supported) {
20877 				un->un_ncmds_in_driver--;
20878 				ASSERT(un->un_ncmds_in_driver >= 0);
20879 				mutex_exit(SD_MUTEX(un));
20880 				return (ENOTTY);
20881 			}
20882 			break;
20883 		case DKIOCSVTOC:
20884 		case DKIOCSETEFI:
20885 		case DKIOCSMBOOT:
20886 		case DKIOCFLUSHWRITECACHE:
20887 			mutex_exit(SD_MUTEX(un));
20888 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
20889 			if (err != 0) {
20890 				mutex_enter(SD_MUTEX(un));
20891 				un->un_ncmds_in_driver--;
20892 				ASSERT(un->un_ncmds_in_driver >= 0);
20893 				mutex_exit(SD_MUTEX(un));
20894 				return (EIO);
20895 			}
20896 			mutex_enter(SD_MUTEX(un));
20897 			/* FALLTHROUGH */
20898 		case DKIOCREMOVABLE:
20899 		case DKIOCHOTPLUGGABLE:
20900 		case DKIOCINFO:
20901 		case DKIOCGMEDIAINFO:
20902 		case MHIOCENFAILFAST:
20903 		case MHIOCSTATUS:
20904 		case MHIOCTKOWN:
20905 		case MHIOCRELEASE:
20906 		case MHIOCGRP_INKEYS:
20907 		case MHIOCGRP_INRESV:
20908 		case MHIOCGRP_REGISTER:
20909 		case MHIOCGRP_RESERVE:
20910 		case MHIOCGRP_PREEMPTANDABORT:
20911 		case MHIOCGRP_REGISTERANDIGNOREKEY:
20912 		case CDROMCLOSETRAY:
20913 		case USCSICMD:
20914 			goto skip_ready_valid;
20915 		default:
20916 			break;
20917 		}
20918 
20919 		mutex_exit(SD_MUTEX(un));
20920 		err = sd_ready_and_valid(un);
20921 		mutex_enter(SD_MUTEX(un));
20922 		if (err == SD_READY_NOT_VALID) {
20923 			switch (cmd) {
20924 			case DKIOCGAPART:
20925 			case DKIOCGGEOM:
20926 			case DKIOCSGEOM:
20927 			case DKIOCGVTOC:
20928 			case DKIOCSVTOC:
20929 			case DKIOCSAPART:
20930 			case DKIOCG_PHYGEOM:
20931 			case DKIOCG_VIRTGEOM:
20932 				err = ENOTSUP;
20933 				un->un_ncmds_in_driver--;
20934 				ASSERT(un->un_ncmds_in_driver >= 0);
20935 				mutex_exit(SD_MUTEX(un));
20936 				return (err);
20937 			}
20938 		}
20939 		if (err != SD_READY_VALID) {
20940 			switch (cmd) {
20941 			case DKIOCSTATE:
20942 			case CDROMGDRVSPEED:
20943 			case CDROMSDRVSPEED:
20944 			case FDEJECT:	/* for eject command */
20945 			case DKIOCEJECT:
20946 			case CDROMEJECT:
20947 			case DKIOCGETEFI:
20948 			case DKIOCSGEOM:
20949 			case DKIOCREMOVABLE:
20950 			case DKIOCHOTPLUGGABLE:
20951 			case DKIOCSAPART:
20952 			case DKIOCSETEFI:
20953 				break;
20954 			default:
20955 				if (un->un_f_has_removable_media) {
20956 					err = ENXIO;
20957 				} else {
20958 					/* Do not map EACCES to EIO */
20959 					if (err != EACCES)
20960 						err = EIO;
20961 				}
20962 				un->un_ncmds_in_driver--;
20963 				ASSERT(un->un_ncmds_in_driver >= 0);
20964 				mutex_exit(SD_MUTEX(un));
20965 				return (err);
20966 			}
20967 		}
20968 		geom_validated = TRUE;
20969 	}
20970 	if ((un->un_f_geometry_is_valid == TRUE) &&
20971 	    (un->un_solaris_size > 0)) {
20972 		/*
20973 		 * the "geometry_is_valid" flag could be true if we
20974 		 * have an fdisk table but no Solaris partition
20975 		 */
20976 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
20977 			/* it is EFI, so return ENOTSUP for these */
20978 			switch (cmd) {
20979 			case DKIOCGAPART:
20980 			case DKIOCGGEOM:
20981 			case DKIOCGVTOC:
20982 			case DKIOCSVTOC:
20983 			case DKIOCSAPART:
20984 				err = ENOTSUP;
20985 				un->un_ncmds_in_driver--;
20986 				ASSERT(un->un_ncmds_in_driver >= 0);
20987 				mutex_exit(SD_MUTEX(un));
20988 				return (err);
20989 			}
20990 		}
20991 	}
20992 
20993 skip_ready_valid:
20994 	mutex_exit(SD_MUTEX(un));
20995 
20996 	switch (cmd) {
20997 	case DKIOCINFO:
20998 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
20999 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21000 		break;
21001 
21002 	case DKIOCGMEDIAINFO:
21003 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21004 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21005 		break;
21006 
21007 	case DKIOCGGEOM:
21008 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
21009 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
21010 		    geom_validated);
21011 		break;
21012 
21013 	case DKIOCSGEOM:
21014 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
21015 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
21016 		break;
21017 
21018 	case DKIOCGAPART:
21019 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
21020 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
21021 		    geom_validated);
21022 		break;
21023 
21024 	case DKIOCSAPART:
21025 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
21026 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
21027 		break;
21028 
21029 	case DKIOCGVTOC:
21030 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
21031 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
21032 		    geom_validated);
21033 		break;
21034 
21035 	case DKIOCGETEFI:
21036 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
21037 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
21038 		break;
21039 
21040 	case DKIOCPARTITION:
21041 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
21042 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
21043 		break;
21044 
21045 	case DKIOCSVTOC:
21046 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
21047 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
21048 		break;
21049 
21050 	case DKIOCSETEFI:
21051 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
21052 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
21053 		break;
21054 
21055 	case DKIOCGMBOOT:
21056 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
21057 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
21058 		break;
21059 
21060 	case DKIOCSMBOOT:
21061 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
21062 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
21063 		break;
21064 
21065 	case DKIOCLOCK:
21066 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21067 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21068 		    SD_PATH_STANDARD);
21069 		break;
21070 
21071 	case DKIOCUNLOCK:
21072 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21073 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
21074 		    SD_PATH_STANDARD);
21075 		break;
21076 
21077 	case DKIOCSTATE: {
21078 		enum dkio_state		state;
21079 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21080 
21081 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21082 			err = EFAULT;
21083 		} else {
21084 			err = sd_check_media(dev, state);
21085 			if (err == 0) {
21086 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21087 				    sizeof (int), flag) != 0)
21088 					err = EFAULT;
21089 			}
21090 		}
21091 		break;
21092 	}
21093 
21094 	case DKIOCREMOVABLE:
21095 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21096 		/*
21097 		 * At present, vold only does automount for removable-media
21098 		 * devices, in order not to break current applications, we
21099 		 * still let hopluggable devices pretend to be removable media
21100 		 * devices for vold. In the near future, once vold is EOL'ed,
21101 		 * we should remove this workaround.
21102 		 */
21103 		if (un->un_f_has_removable_media || un->un_f_is_hotpluggable) {
21104 			i = 1;
21105 		} else {
21106 			i = 0;
21107 		}
21108 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21109 			err = EFAULT;
21110 		} else {
21111 			err = 0;
21112 		}
21113 		break;
21114 
21115 	case DKIOCHOTPLUGGABLE:
21116 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21117 		if (un->un_f_is_hotpluggable) {
21118 			i = 1;
21119 		} else {
21120 			i = 0;
21121 		}
21122 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21123 			err = EFAULT;
21124 		} else {
21125 			err = 0;
21126 		}
21127 		break;
21128 
21129 	case DKIOCGTEMPERATURE:
21130 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21131 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21132 		break;
21133 
21134 	case MHIOCENFAILFAST:
21135 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21136 		if ((err = drv_priv(cred_p)) == 0) {
21137 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21138 		}
21139 		break;
21140 
21141 	case MHIOCTKOWN:
21142 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21143 		if ((err = drv_priv(cred_p)) == 0) {
21144 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21145 		}
21146 		break;
21147 
21148 	case MHIOCRELEASE:
21149 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21150 		if ((err = drv_priv(cred_p)) == 0) {
21151 			err = sd_mhdioc_release(dev);
21152 		}
21153 		break;
21154 
21155 	case MHIOCSTATUS:
21156 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21157 		if ((err = drv_priv(cred_p)) == 0) {
21158 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
21159 			case 0:
21160 				err = 0;
21161 				break;
21162 			case EACCES:
21163 				*rval_p = 1;
21164 				err = 0;
21165 				break;
21166 			default:
21167 				err = EIO;
21168 				break;
21169 			}
21170 		}
21171 		break;
21172 
21173 	case MHIOCQRESERVE:
21174 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21175 		if ((err = drv_priv(cred_p)) == 0) {
21176 			err = sd_reserve_release(dev, SD_RESERVE);
21177 		}
21178 		break;
21179 
21180 	case MHIOCREREGISTERDEVID:
21181 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21182 		if (drv_priv(cred_p) == EPERM) {
21183 			err = EPERM;
21184 		} else if (!un->un_f_devid_supported) {
21185 			err = ENOTTY;
21186 		} else {
21187 			err = sd_mhdioc_register_devid(dev);
21188 		}
21189 		break;
21190 
21191 	case MHIOCGRP_INKEYS:
21192 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21193 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21194 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21195 				err = ENOTSUP;
21196 			} else {
21197 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21198 				    flag);
21199 			}
21200 		}
21201 		break;
21202 
21203 	case MHIOCGRP_INRESV:
21204 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21205 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21206 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21207 				err = ENOTSUP;
21208 			} else {
21209 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21210 			}
21211 		}
21212 		break;
21213 
21214 	case MHIOCGRP_REGISTER:
21215 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21216 		if ((err = drv_priv(cred_p)) != EPERM) {
21217 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21218 				err = ENOTSUP;
21219 			} else if (arg != NULL) {
21220 				mhioc_register_t reg;
21221 				if (ddi_copyin((void *)arg, &reg,
21222 				    sizeof (mhioc_register_t), flag) != 0) {
21223 					err = EFAULT;
21224 				} else {
21225 					err =
21226 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21227 					    un, SD_SCSI3_REGISTER,
21228 					    (uchar_t *)&reg);
21229 				}
21230 			}
21231 		}
21232 		break;
21233 
21234 	case MHIOCGRP_RESERVE:
21235 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21236 		if ((err = drv_priv(cred_p)) != EPERM) {
21237 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21238 				err = ENOTSUP;
21239 			} else if (arg != NULL) {
21240 				mhioc_resv_desc_t resv_desc;
21241 				if (ddi_copyin((void *)arg, &resv_desc,
21242 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21243 					err = EFAULT;
21244 				} else {
21245 					err =
21246 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21247 					    un, SD_SCSI3_RESERVE,
21248 					    (uchar_t *)&resv_desc);
21249 				}
21250 			}
21251 		}
21252 		break;
21253 
21254 	case MHIOCGRP_PREEMPTANDABORT:
21255 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21256 		if ((err = drv_priv(cred_p)) != EPERM) {
21257 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21258 				err = ENOTSUP;
21259 			} else if (arg != NULL) {
21260 				mhioc_preemptandabort_t preempt_abort;
21261 				if (ddi_copyin((void *)arg, &preempt_abort,
21262 				    sizeof (mhioc_preemptandabort_t),
21263 				    flag) != 0) {
21264 					err = EFAULT;
21265 				} else {
21266 					err =
21267 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21268 					    un, SD_SCSI3_PREEMPTANDABORT,
21269 					    (uchar_t *)&preempt_abort);
21270 				}
21271 			}
21272 		}
21273 		break;
21274 
21275 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21276 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21277 		if ((err = drv_priv(cred_p)) != EPERM) {
21278 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21279 				err = ENOTSUP;
21280 			} else if (arg != NULL) {
21281 				mhioc_registerandignorekey_t r_and_i;
21282 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21283 				    sizeof (mhioc_registerandignorekey_t),
21284 				    flag) != 0) {
21285 					err = EFAULT;
21286 				} else {
21287 					err =
21288 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21289 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
21290 					    (uchar_t *)&r_and_i);
21291 				}
21292 			}
21293 		}
21294 		break;
21295 
21296 	case USCSICMD:
21297 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21298 		cr = ddi_get_cred();
21299 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21300 			err = EPERM;
21301 		} else {
21302 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
21303 		}
21304 		break;
21305 
21306 	case CDROMPAUSE:
21307 	case CDROMRESUME:
21308 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21309 		if (!ISCD(un)) {
21310 			err = ENOTTY;
21311 		} else {
21312 			err = sr_pause_resume(dev, cmd);
21313 		}
21314 		break;
21315 
21316 	case CDROMPLAYMSF:
21317 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21318 		if (!ISCD(un)) {
21319 			err = ENOTTY;
21320 		} else {
21321 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21322 		}
21323 		break;
21324 
21325 	case CDROMPLAYTRKIND:
21326 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21327 #if defined(__i386) || defined(__amd64)
21328 		/*
21329 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21330 		 */
21331 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21332 #else
21333 		if (!ISCD(un)) {
21334 #endif
21335 			err = ENOTTY;
21336 		} else {
21337 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21338 		}
21339 		break;
21340 
21341 	case CDROMREADTOCHDR:
21342 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21343 		if (!ISCD(un)) {
21344 			err = ENOTTY;
21345 		} else {
21346 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21347 		}
21348 		break;
21349 
21350 	case CDROMREADTOCENTRY:
21351 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21352 		if (!ISCD(un)) {
21353 			err = ENOTTY;
21354 		} else {
21355 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21356 		}
21357 		break;
21358 
21359 	case CDROMSTOP:
21360 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21361 		if (!ISCD(un)) {
21362 			err = ENOTTY;
21363 		} else {
21364 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21365 			    SD_PATH_STANDARD);
21366 		}
21367 		break;
21368 
21369 	case CDROMSTART:
21370 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21371 		if (!ISCD(un)) {
21372 			err = ENOTTY;
21373 		} else {
21374 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21375 			    SD_PATH_STANDARD);
21376 		}
21377 		break;
21378 
21379 	case CDROMCLOSETRAY:
21380 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21381 		if (!ISCD(un)) {
21382 			err = ENOTTY;
21383 		} else {
21384 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21385 			    SD_PATH_STANDARD);
21386 		}
21387 		break;
21388 
21389 	case FDEJECT:	/* for eject command */
21390 	case DKIOCEJECT:
21391 	case CDROMEJECT:
21392 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21393 		if (!un->un_f_eject_media_supported) {
21394 			err = ENOTTY;
21395 		} else {
21396 			err = sr_eject(dev);
21397 		}
21398 		break;
21399 
21400 	case CDROMVOLCTRL:
21401 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21402 		if (!ISCD(un)) {
21403 			err = ENOTTY;
21404 		} else {
21405 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21406 		}
21407 		break;
21408 
21409 	case CDROMSUBCHNL:
21410 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21411 		if (!ISCD(un)) {
21412 			err = ENOTTY;
21413 		} else {
21414 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21415 		}
21416 		break;
21417 
21418 	case CDROMREADMODE2:
21419 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21420 		if (!ISCD(un)) {
21421 			err = ENOTTY;
21422 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21423 			/*
21424 			 * If the drive supports READ CD, use that instead of
21425 			 * switching the LBA size via a MODE SELECT
21426 			 * Block Descriptor
21427 			 */
21428 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21429 		} else {
21430 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21431 		}
21432 		break;
21433 
21434 	case CDROMREADMODE1:
21435 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21436 		if (!ISCD(un)) {
21437 			err = ENOTTY;
21438 		} else {
21439 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21440 		}
21441 		break;
21442 
21443 	case CDROMREADOFFSET:
21444 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21445 		if (!ISCD(un)) {
21446 			err = ENOTTY;
21447 		} else {
21448 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21449 			    flag);
21450 		}
21451 		break;
21452 
21453 	case CDROMSBLKMODE:
21454 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21455 		/*
21456 		 * There is no means of changing block size in case of atapi
21457 		 * drives, thus return ENOTTY if drive type is atapi
21458 		 */
21459 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21460 			err = ENOTTY;
21461 		} else if (un->un_f_mmc_cap == TRUE) {
21462 
21463 			/*
21464 			 * MMC Devices do not support changing the
21465 			 * logical block size
21466 			 *
21467 			 * Note: EINVAL is being returned instead of ENOTTY to
21468 			 * maintain consistancy with the original mmc
21469 			 * driver update.
21470 			 */
21471 			err = EINVAL;
21472 		} else {
21473 			mutex_enter(SD_MUTEX(un));
21474 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21475 			    (un->un_ncmds_in_transport > 0)) {
21476 				mutex_exit(SD_MUTEX(un));
21477 				err = EINVAL;
21478 			} else {
21479 				mutex_exit(SD_MUTEX(un));
21480 				err = sr_change_blkmode(dev, cmd, arg, flag);
21481 			}
21482 		}
21483 		break;
21484 
21485 	case CDROMGBLKMODE:
21486 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21487 		if (!ISCD(un)) {
21488 			err = ENOTTY;
21489 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21490 		    (un->un_f_blockcount_is_valid != FALSE)) {
21491 			/*
21492 			 * Drive is an ATAPI drive so return target block
21493 			 * size for ATAPI drives since we cannot change the
21494 			 * blocksize on ATAPI drives. Used primarily to detect
21495 			 * if an ATAPI cdrom is present.
21496 			 */
21497 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21498 			    sizeof (int), flag) != 0) {
21499 				err = EFAULT;
21500 			} else {
21501 				err = 0;
21502 			}
21503 
21504 		} else {
21505 			/*
21506 			 * Drive supports changing block sizes via a Mode
21507 			 * Select.
21508 			 */
21509 			err = sr_change_blkmode(dev, cmd, arg, flag);
21510 		}
21511 		break;
21512 
21513 	case CDROMGDRVSPEED:
21514 	case CDROMSDRVSPEED:
21515 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21516 		if (!ISCD(un)) {
21517 			err = ENOTTY;
21518 		} else if (un->un_f_mmc_cap == TRUE) {
21519 			/*
21520 			 * Note: In the future the driver implementation
21521 			 * for getting and
21522 			 * setting cd speed should entail:
21523 			 * 1) If non-mmc try the Toshiba mode page
21524 			 *    (sr_change_speed)
21525 			 * 2) If mmc but no support for Real Time Streaming try
21526 			 *    the SET CD SPEED (0xBB) command
21527 			 *   (sr_atapi_change_speed)
21528 			 * 3) If mmc and support for Real Time Streaming
21529 			 *    try the GET PERFORMANCE and SET STREAMING
21530 			 *    commands (not yet implemented, 4380808)
21531 			 */
21532 			/*
21533 			 * As per recent MMC spec, CD-ROM speed is variable
21534 			 * and changes with LBA. Since there is no such
21535 			 * things as drive speed now, fail this ioctl.
21536 			 *
21537 			 * Note: EINVAL is returned for consistancy of original
21538 			 * implementation which included support for getting
21539 			 * the drive speed of mmc devices but not setting
21540 			 * the drive speed. Thus EINVAL would be returned
21541 			 * if a set request was made for an mmc device.
21542 			 * We no longer support get or set speed for
21543 			 * mmc but need to remain consistant with regard
21544 			 * to the error code returned.
21545 			 */
21546 			err = EINVAL;
21547 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21548 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
21549 		} else {
21550 			err = sr_change_speed(dev, cmd, arg, flag);
21551 		}
21552 		break;
21553 
21554 	case CDROMCDDA:
21555 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
21556 		if (!ISCD(un)) {
21557 			err = ENOTTY;
21558 		} else {
21559 			err = sr_read_cdda(dev, (void *)arg, flag);
21560 		}
21561 		break;
21562 
21563 	case CDROMCDXA:
21564 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
21565 		if (!ISCD(un)) {
21566 			err = ENOTTY;
21567 		} else {
21568 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
21569 		}
21570 		break;
21571 
21572 	case CDROMSUBCODE:
21573 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
21574 		if (!ISCD(un)) {
21575 			err = ENOTTY;
21576 		} else {
21577 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
21578 		}
21579 		break;
21580 
21581 	case DKIOCPARTINFO: {
21582 		/*
21583 		 * Return parameters describing the selected disk slice.
21584 		 * Note: this ioctl is for the intel platform only
21585 		 */
21586 #if defined(__i386) || defined(__amd64)
21587 		int part;
21588 
21589 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21590 		part = SDPART(dev);
21591 
21592 		/* don't check un_solaris_size for pN */
21593 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
21594 			err = EIO;
21595 		} else {
21596 			struct part_info p;
21597 
21598 			p.p_start = (daddr_t)un->un_offset[part];
21599 			p.p_length = (int)un->un_map[part].dkl_nblk;
21600 #ifdef _MULTI_DATAMODEL
21601 			switch (ddi_model_convert_from(flag & FMODELS)) {
21602 			case DDI_MODEL_ILP32:
21603 			{
21604 				struct part_info32 p32;
21605 
21606 				p32.p_start = (daddr32_t)p.p_start;
21607 				p32.p_length = p.p_length;
21608 				if (ddi_copyout(&p32, (void *)arg,
21609 				    sizeof (p32), flag))
21610 					err = EFAULT;
21611 				break;
21612 			}
21613 
21614 			case DDI_MODEL_NONE:
21615 			{
21616 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
21617 				    flag))
21618 					err = EFAULT;
21619 				break;
21620 			}
21621 			}
21622 #else /* ! _MULTI_DATAMODEL */
21623 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
21624 				err = EFAULT;
21625 #endif /* _MULTI_DATAMODEL */
21626 		}
21627 #else
21628 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
21629 		err = ENOTTY;
21630 #endif
21631 		break;
21632 	}
21633 
21634 	case DKIOCG_PHYGEOM: {
21635 		/* Return the driver's notion of the media physical geometry */
21636 #if defined(__i386) || defined(__amd64)
21637 		struct dk_geom	disk_geom;
21638 		struct dk_geom	*dkgp = &disk_geom;
21639 
21640 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21641 		mutex_enter(SD_MUTEX(un));
21642 
21643 		if (un->un_g.dkg_nhead != 0 &&
21644 		    un->un_g.dkg_nsect != 0) {
21645 			/*
21646 			 * We succeeded in getting a geometry, but
21647 			 * right now it is being reported as just the
21648 			 * Solaris fdisk partition, just like for
21649 			 * DKIOCGGEOM. We need to change that to be
21650 			 * correct for the entire disk now.
21651 			 */
21652 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
21653 			dkgp->dkg_acyl = 0;
21654 			dkgp->dkg_ncyl = un->un_blockcount /
21655 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21656 		} else {
21657 			bzero(dkgp, sizeof (struct dk_geom));
21658 			/*
21659 			 * This disk does not have a Solaris VTOC
21660 			 * so we must present a physical geometry
21661 			 * that will remain consistent regardless
21662 			 * of how the disk is used. This will ensure
21663 			 * that the geometry does not change regardless
21664 			 * of the fdisk partition type (ie. EFI, FAT32,
21665 			 * Solaris, etc).
21666 			 */
21667 			if (ISCD(un)) {
21668 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
21669 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
21670 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
21671 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
21672 			} else {
21673 				/*
21674 				 * Invalid un_blockcount can generate invalid
21675 				 * dk_geom and may result in division by zero
21676 				 * system failure. Should make sure blockcount
21677 				 * is valid before using it here.
21678 				 */
21679 				if (un->un_f_blockcount_is_valid == FALSE) {
21680 					mutex_exit(SD_MUTEX(un));
21681 					err = EIO;
21682 
21683 					break;
21684 				}
21685 				sd_convert_geometry(un->un_blockcount, dkgp);
21686 				dkgp->dkg_acyl = 0;
21687 				dkgp->dkg_ncyl = un->un_blockcount /
21688 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
21689 			}
21690 		}
21691 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
21692 
21693 		if (ddi_copyout(dkgp, (void *)arg,
21694 		    sizeof (struct dk_geom), flag)) {
21695 			mutex_exit(SD_MUTEX(un));
21696 			err = EFAULT;
21697 		} else {
21698 			mutex_exit(SD_MUTEX(un));
21699 			err = 0;
21700 		}
21701 #else
21702 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
21703 		err = ENOTTY;
21704 #endif
21705 		break;
21706 	}
21707 
21708 	case DKIOCG_VIRTGEOM: {
21709 		/* Return the driver's notion of the media's logical geometry */
21710 #if defined(__i386) || defined(__amd64)
21711 		struct dk_geom	disk_geom;
21712 		struct dk_geom	*dkgp = &disk_geom;
21713 
21714 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21715 		mutex_enter(SD_MUTEX(un));
21716 		/*
21717 		 * If there is no HBA geometry available, or
21718 		 * if the HBA returned us something that doesn't
21719 		 * really fit into an Int 13/function 8 geometry
21720 		 * result, just fail the ioctl.  See PSARC 1998/313.
21721 		 */
21722 		if (un->un_lgeom.g_nhead == 0 ||
21723 		    un->un_lgeom.g_nsect == 0 ||
21724 		    un->un_lgeom.g_ncyl > 1024) {
21725 			mutex_exit(SD_MUTEX(un));
21726 			err = EINVAL;
21727 		} else {
21728 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
21729 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
21730 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
21731 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
21732 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
21733 
21734 			if (ddi_copyout(dkgp, (void *)arg,
21735 			    sizeof (struct dk_geom), flag)) {
21736 				mutex_exit(SD_MUTEX(un));
21737 				err = EFAULT;
21738 			} else {
21739 				mutex_exit(SD_MUTEX(un));
21740 				err = 0;
21741 			}
21742 		}
21743 #else
21744 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
21745 		err = ENOTTY;
21746 #endif
21747 		break;
21748 	}
21749 #ifdef SDDEBUG
21750 /* RESET/ABORTS testing ioctls */
21751 	case DKIOCRESET: {
21752 		int	reset_level;
21753 
21754 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
21755 			err = EFAULT;
21756 		} else {
21757 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
21758 			    "reset_level = 0x%lx\n", reset_level);
21759 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
21760 				err = 0;
21761 			} else {
21762 				err = EIO;
21763 			}
21764 		}
21765 		break;
21766 	}
21767 
21768 	case DKIOCABORT:
21769 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
21770 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
21771 			err = 0;
21772 		} else {
21773 			err = EIO;
21774 		}
21775 		break;
21776 #endif
21777 
21778 #ifdef SD_FAULT_INJECTION
21779 /* SDIOC FaultInjection testing ioctls */
21780 	case SDIOCSTART:
21781 	case SDIOCSTOP:
21782 	case SDIOCINSERTPKT:
21783 	case SDIOCINSERTXB:
21784 	case SDIOCINSERTUN:
21785 	case SDIOCINSERTARQ:
21786 	case SDIOCPUSH:
21787 	case SDIOCRETRIEVE:
21788 	case SDIOCRUN:
21789 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
21790 		    "SDIOC detected cmd:0x%X:\n", cmd);
21791 		/* call error generator */
21792 		sd_faultinjection_ioctl(cmd, arg, un);
21793 		err = 0;
21794 		break;
21795 
21796 #endif /* SD_FAULT_INJECTION */
21797 
21798 	case DKIOCFLUSHWRITECACHE:
21799 		{
21800 			struct dk_callback *dkc = (struct dk_callback *)arg;
21801 
21802 			mutex_enter(SD_MUTEX(un));
21803 			if (!un->un_f_sync_cache_supported ||
21804 			    !un->un_f_write_cache_enabled) {
21805 				err = un->un_f_sync_cache_supported ?
21806 					0 : ENOTSUP;
21807 				mutex_exit(SD_MUTEX(un));
21808 				if ((flag & FKIOCTL) && dkc != NULL &&
21809 				    dkc->dkc_callback != NULL) {
21810 					(*dkc->dkc_callback)(dkc->dkc_cookie,
21811 					    err);
21812 					/*
21813 					 * Did callback and reported error.
21814 					 * Since we did a callback, ioctl
21815 					 * should return 0.
21816 					 */
21817 					err = 0;
21818 				}
21819 				break;
21820 			}
21821 			mutex_exit(SD_MUTEX(un));
21822 
21823 			if ((flag & FKIOCTL) && dkc != NULL &&
21824 			    dkc->dkc_callback != NULL) {
21825 				/* async SYNC CACHE request */
21826 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
21827 			} else {
21828 				/* synchronous SYNC CACHE request */
21829 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
21830 			}
21831 		}
21832 		break;
21833 
21834 	case DKIOCGETWCE: {
21835 
21836 		int wce;
21837 
21838 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
21839 			break;
21840 		}
21841 
21842 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
21843 			err = EFAULT;
21844 		}
21845 		break;
21846 	}
21847 
21848 	case DKIOCSETWCE: {
21849 
21850 		int wce, sync_supported;
21851 
21852 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
21853 			err = EFAULT;
21854 			break;
21855 		}
21856 
21857 		/*
21858 		 * Synchronize multiple threads trying to enable
21859 		 * or disable the cache via the un_f_wcc_cv
21860 		 * condition variable.
21861 		 */
21862 		mutex_enter(SD_MUTEX(un));
21863 
21864 		/*
21865 		 * Don't allow the cache to be enabled if the
21866 		 * config file has it disabled.
21867 		 */
21868 		if (un->un_f_opt_disable_cache && wce) {
21869 			mutex_exit(SD_MUTEX(un));
21870 			err = EINVAL;
21871 			break;
21872 		}
21873 
21874 		/*
21875 		 * Wait for write cache change in progress
21876 		 * bit to be clear before proceeding.
21877 		 */
21878 		while (un->un_f_wcc_inprog)
21879 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
21880 
21881 		un->un_f_wcc_inprog = 1;
21882 
21883 		if (un->un_f_write_cache_enabled && wce == 0) {
21884 			/*
21885 			 * Disable the write cache.  Don't clear
21886 			 * un_f_write_cache_enabled until after
21887 			 * the mode select and flush are complete.
21888 			 */
21889 			sync_supported = un->un_f_sync_cache_supported;
21890 			mutex_exit(SD_MUTEX(un));
21891 			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
21892 			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
21893 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
21894 			}
21895 
21896 			mutex_enter(SD_MUTEX(un));
21897 			if (err == 0) {
21898 				un->un_f_write_cache_enabled = 0;
21899 			}
21900 
21901 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
21902 			/*
21903 			 * Set un_f_write_cache_enabled first, so there is
21904 			 * no window where the cache is enabled, but the
21905 			 * bit says it isn't.
21906 			 */
21907 			un->un_f_write_cache_enabled = 1;
21908 			mutex_exit(SD_MUTEX(un));
21909 
21910 			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
21911 				SD_CACHE_ENABLE);
21912 
21913 			mutex_enter(SD_MUTEX(un));
21914 
21915 			if (err) {
21916 				un->un_f_write_cache_enabled = 0;
21917 			}
21918 		}
21919 
21920 		un->un_f_wcc_inprog = 0;
21921 		cv_broadcast(&un->un_wcc_cv);
21922 		mutex_exit(SD_MUTEX(un));
21923 		break;
21924 	}
21925 
21926 	default:
21927 		err = ENOTTY;
21928 		break;
21929 	}
21930 	mutex_enter(SD_MUTEX(un));
21931 	un->un_ncmds_in_driver--;
21932 	ASSERT(un->un_ncmds_in_driver >= 0);
21933 	mutex_exit(SD_MUTEX(un));
21934 
21935 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
21936 	return (err);
21937 }
21938 
21939 
21940 /*
21941  *    Function: sd_uscsi_ioctl
21942  *
21943  * Description: This routine is the driver entry point for handling USCSI ioctl
21944  *		requests (USCSICMD).
21945  *
21946  *   Arguments: dev	- the device number
21947  *		arg	- user provided scsi command
21948  *		flag	- this argument is a pass through to ddi_copyxxx()
21949  *			  directly from the mode argument of ioctl().
21950  *
21951  * Return Code: code returned by sd_send_scsi_cmd
21952  *		ENXIO
21953  *		EFAULT
21954  *		EAGAIN
21955  */
21956 
21957 static int
21958 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
21959 {
21960 #ifdef _MULTI_DATAMODEL
21961 	/*
21962 	 * For use when a 32 bit app makes a call into a
21963 	 * 64 bit ioctl
21964 	 */
21965 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
21966 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
21967 	model_t			model;
21968 #endif /* _MULTI_DATAMODEL */
21969 	struct uscsi_cmd	*scmd = NULL;
21970 	struct sd_lun		*un = NULL;
21971 	enum uio_seg		uioseg;
21972 	char			cdb[CDB_GROUP0];
21973 	int			rval = 0;
21974 
21975 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21976 		return (ENXIO);
21977 	}
21978 
21979 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
21980 
21981 	scmd = (struct uscsi_cmd *)
21982 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21983 
21984 #ifdef _MULTI_DATAMODEL
21985 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
21986 	case DDI_MODEL_ILP32:
21987 	{
21988 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
21989 			rval = EFAULT;
21990 			goto done;
21991 		}
21992 		/*
21993 		 * Convert the ILP32 uscsi data from the
21994 		 * application to LP64 for internal use.
21995 		 */
21996 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
21997 		break;
21998 	}
21999 	case DDI_MODEL_NONE:
22000 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22001 			rval = EFAULT;
22002 			goto done;
22003 		}
22004 		break;
22005 	}
22006 #else /* ! _MULTI_DATAMODEL */
22007 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22008 		rval = EFAULT;
22009 		goto done;
22010 	}
22011 #endif /* _MULTI_DATAMODEL */
22012 
22013 	scmd->uscsi_flags &= ~USCSI_NOINTR;
22014 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
22015 	if (un->un_f_format_in_progress == TRUE) {
22016 		rval = EAGAIN;
22017 		goto done;
22018 	}
22019 
22020 	/*
22021 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
22022 	 * we will have a valid cdb[0] to test.
22023 	 */
22024 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
22025 	    (cdb[0] == SCMD_FORMAT)) {
22026 		SD_TRACE(SD_LOG_IOCTL, un,
22027 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22028 		mutex_enter(SD_MUTEX(un));
22029 		un->un_f_format_in_progress = TRUE;
22030 		mutex_exit(SD_MUTEX(un));
22031 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22032 		    SD_PATH_STANDARD);
22033 		mutex_enter(SD_MUTEX(un));
22034 		un->un_f_format_in_progress = FALSE;
22035 		mutex_exit(SD_MUTEX(un));
22036 	} else {
22037 		SD_TRACE(SD_LOG_IOCTL, un,
22038 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22039 		/*
22040 		 * It's OK to fall into here even if the ddi_copyin()
22041 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
22042 		 * does this same copyin and will return the EFAULT
22043 		 * if it fails.
22044 		 */
22045 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22046 		    SD_PATH_STANDARD);
22047 	}
22048 #ifdef _MULTI_DATAMODEL
22049 	switch (model) {
22050 	case DDI_MODEL_ILP32:
22051 		/*
22052 		 * Convert back to ILP32 before copyout to the
22053 		 * application
22054 		 */
22055 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
22056 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
22057 			if (rval != 0) {
22058 				rval = EFAULT;
22059 			}
22060 		}
22061 		break;
22062 	case DDI_MODEL_NONE:
22063 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22064 			if (rval != 0) {
22065 				rval = EFAULT;
22066 			}
22067 		}
22068 		break;
22069 	}
22070 #else /* ! _MULTI_DATAMODE */
22071 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22072 		if (rval != 0) {
22073 			rval = EFAULT;
22074 		}
22075 	}
22076 #endif /* _MULTI_DATAMODE */
22077 done:
22078 	kmem_free(scmd, sizeof (struct uscsi_cmd));
22079 
22080 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
22081 
22082 	return (rval);
22083 }
22084 
22085 
22086 /*
22087  *    Function: sd_dkio_ctrl_info
22088  *
22089  * Description: This routine is the driver entry point for handling controller
22090  *		information ioctl requests (DKIOCINFO).
22091  *
22092  *   Arguments: dev  - the device number
22093  *		arg  - pointer to user provided dk_cinfo structure
22094  *		       specifying the controller type and attributes.
22095  *		flag - this argument is a pass through to ddi_copyxxx()
22096  *		       directly from the mode argument of ioctl().
22097  *
22098  * Return Code: 0
22099  *		EFAULT
22100  *		ENXIO
22101  */
22102 
22103 static int
22104 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22105 {
22106 	struct sd_lun	*un = NULL;
22107 	struct dk_cinfo	*info;
22108 	dev_info_t	*pdip;
22109 	int		lun, tgt;
22110 
22111 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22112 		return (ENXIO);
22113 	}
22114 
22115 	info = (struct dk_cinfo *)
22116 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22117 
22118 	switch (un->un_ctype) {
22119 	case CTYPE_CDROM:
22120 		info->dki_ctype = DKC_CDROM;
22121 		break;
22122 	default:
22123 		info->dki_ctype = DKC_SCSI_CCS;
22124 		break;
22125 	}
22126 	pdip = ddi_get_parent(SD_DEVINFO(un));
22127 	info->dki_cnum = ddi_get_instance(pdip);
22128 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22129 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22130 	} else {
22131 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22132 		    DK_DEVLEN - 1);
22133 	}
22134 
22135 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22136 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22137 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22138 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22139 
22140 	/* Unit Information */
22141 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22142 	info->dki_slave = ((tgt << 3) | lun);
22143 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22144 	    DK_DEVLEN - 1);
22145 	info->dki_flags = DKI_FMTVOL;
22146 	info->dki_partition = SDPART(dev);
22147 
22148 	/* Max Transfer size of this device in blocks */
22149 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22150 	info->dki_addr = 0;
22151 	info->dki_space = 0;
22152 	info->dki_prio = 0;
22153 	info->dki_vec = 0;
22154 
22155 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22156 		kmem_free(info, sizeof (struct dk_cinfo));
22157 		return (EFAULT);
22158 	} else {
22159 		kmem_free(info, sizeof (struct dk_cinfo));
22160 		return (0);
22161 	}
22162 }
22163 
22164 
22165 /*
22166  *    Function: sd_get_media_info
22167  *
22168  * Description: This routine is the driver entry point for handling ioctl
22169  *		requests for the media type or command set profile used by the
22170  *		drive to operate on the media (DKIOCGMEDIAINFO).
22171  *
22172  *   Arguments: dev	- the device number
22173  *		arg	- pointer to user provided dk_minfo structure
22174  *			  specifying the media type, logical block size and
22175  *			  drive capacity.
22176  *		flag	- this argument is a pass through to ddi_copyxxx()
22177  *			  directly from the mode argument of ioctl().
22178  *
22179  * Return Code: 0
22180  *		EACCESS
22181  *		EFAULT
22182  *		ENXIO
22183  *		EIO
22184  */
22185 
22186 static int
22187 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22188 {
22189 	struct sd_lun		*un = NULL;
22190 	struct uscsi_cmd	com;
22191 	struct scsi_inquiry	*sinq;
22192 	struct dk_minfo		media_info;
22193 	u_longlong_t		media_capacity;
22194 	uint64_t		capacity;
22195 	uint_t			lbasize;
22196 	uchar_t			*out_data;
22197 	uchar_t			*rqbuf;
22198 	int			rval = 0;
22199 	int			rtn;
22200 
22201 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22202 	    (un->un_state == SD_STATE_OFFLINE)) {
22203 		return (ENXIO);
22204 	}
22205 
22206 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22207 
22208 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22209 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22210 
22211 	/* Issue a TUR to determine if the drive is ready with media present */
22212 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
22213 	if (rval == ENXIO) {
22214 		goto done;
22215 	}
22216 
22217 	/* Now get configuration data */
22218 	if (ISCD(un)) {
22219 		media_info.dki_media_type = DK_CDROM;
22220 
22221 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22222 		if (un->un_f_mmc_cap == TRUE) {
22223 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
22224 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
22225 
22226 			if (rtn) {
22227 				/*
22228 				 * Failed for other than an illegal request
22229 				 * or command not supported
22230 				 */
22231 				if ((com.uscsi_status == STATUS_CHECK) &&
22232 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22233 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22234 					    (rqbuf[12] != 0x20)) {
22235 						rval = EIO;
22236 						goto done;
22237 					}
22238 				}
22239 			} else {
22240 				/*
22241 				 * The GET CONFIGURATION command succeeded
22242 				 * so set the media type according to the
22243 				 * returned data
22244 				 */
22245 				media_info.dki_media_type = out_data[6];
22246 				media_info.dki_media_type <<= 8;
22247 				media_info.dki_media_type |= out_data[7];
22248 			}
22249 		}
22250 	} else {
22251 		/*
22252 		 * The profile list is not available, so we attempt to identify
22253 		 * the media type based on the inquiry data
22254 		 */
22255 		sinq = un->un_sd->sd_inq;
22256 		if (sinq->inq_qual == 0) {
22257 			/* This is a direct access device */
22258 			media_info.dki_media_type = DK_FIXED_DISK;
22259 
22260 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22261 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22262 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22263 					media_info.dki_media_type = DK_ZIP;
22264 				} else if (
22265 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22266 					media_info.dki_media_type = DK_JAZ;
22267 				}
22268 			}
22269 		} else {
22270 			/* Not a CD or direct access so return unknown media */
22271 			media_info.dki_media_type = DK_UNKNOWN;
22272 		}
22273 	}
22274 
22275 	/* Now read the capacity so we can provide the lbasize and capacity */
22276 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
22277 	    SD_PATH_DIRECT)) {
22278 	case 0:
22279 		break;
22280 	case EACCES:
22281 		rval = EACCES;
22282 		goto done;
22283 	default:
22284 		rval = EIO;
22285 		goto done;
22286 	}
22287 
22288 	media_info.dki_lbsize = lbasize;
22289 	media_capacity = capacity;
22290 
22291 	/*
22292 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22293 	 * un->un_sys_blocksize chunks. So we need to convert it into
22294 	 * cap.lbasize chunks.
22295 	 */
22296 	media_capacity *= un->un_sys_blocksize;
22297 	media_capacity /= lbasize;
22298 	media_info.dki_capacity = media_capacity;
22299 
22300 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22301 		rval = EFAULT;
22302 		/* Put goto. Anybody might add some code below in future */
22303 		goto done;
22304 	}
22305 done:
22306 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22307 	kmem_free(rqbuf, SENSE_LENGTH);
22308 	return (rval);
22309 }
22310 
22311 
22312 /*
22313  *    Function: sd_dkio_get_geometry
22314  *
22315  * Description: This routine is the driver entry point for handling user
22316  *		requests to get the device geometry (DKIOCGGEOM).
22317  *
22318  *   Arguments: dev  - the device number
22319  *		arg  - pointer to user provided dk_geom structure specifying
22320  *			the controller's notion of the current geometry.
22321  *		flag - this argument is a pass through to ddi_copyxxx()
22322  *		       directly from the mode argument of ioctl().
22323  *		geom_validated - flag indicating if the device geometry has been
22324  *				 previously validated in the sdioctl routine.
22325  *
22326  * Return Code: 0
22327  *		EFAULT
22328  *		ENXIO
22329  *		EIO
22330  */
22331 
22332 static int
22333 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
22334 {
22335 	struct sd_lun	*un = NULL;
22336 	struct dk_geom	*tmp_geom = NULL;
22337 	int		rval = 0;
22338 
22339 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22340 		return (ENXIO);
22341 	}
22342 
22343 #if defined(__i386) || defined(__amd64)
22344 	if (un->un_solaris_size == 0) {
22345 		return (EIO);
22346 	}
22347 #endif
22348 	if (geom_validated == FALSE) {
22349 		/*
22350 		 * sd_validate_geometry does not spin a disk up
22351 		 * if it was spun down. We need to make sure it
22352 		 * is ready.
22353 		 */
22354 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22355 			return (rval);
22356 		}
22357 		mutex_enter(SD_MUTEX(un));
22358 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
22359 		mutex_exit(SD_MUTEX(un));
22360 	}
22361 	if (rval)
22362 		return (rval);
22363 
22364 	/*
22365 	 * Make a local copy of the soft state geometry to avoid some potential
22366 	 * race conditions associated with holding the mutex and updating the
22367 	 * write_reinstruct value
22368 	 */
22369 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22370 	mutex_enter(SD_MUTEX(un));
22371 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
22372 	mutex_exit(SD_MUTEX(un));
22373 
22374 	if (tmp_geom->dkg_write_reinstruct == 0) {
22375 		tmp_geom->dkg_write_reinstruct =
22376 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
22377 		    sd_rot_delay) / (int)60000);
22378 	}
22379 
22380 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
22381 	    flag);
22382 	if (rval != 0) {
22383 		rval = EFAULT;
22384 	}
22385 
22386 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22387 	return (rval);
22388 
22389 }
22390 
22391 
22392 /*
22393  *    Function: sd_dkio_set_geometry
22394  *
22395  * Description: This routine is the driver entry point for handling user
22396  *		requests to set the device geometry (DKIOCSGEOM). The actual
22397  *		device geometry is not updated, just the driver "notion" of it.
22398  *
22399  *   Arguments: dev  - the device number
22400  *		arg  - pointer to user provided dk_geom structure used to set
22401  *			the controller's notion of the current geometry.
22402  *		flag - this argument is a pass through to ddi_copyxxx()
22403  *		       directly from the mode argument of ioctl().
22404  *
22405  * Return Code: 0
22406  *		EFAULT
22407  *		ENXIO
22408  *		EIO
22409  */
22410 
22411 static int
22412 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
22413 {
22414 	struct sd_lun	*un = NULL;
22415 	struct dk_geom	*tmp_geom;
22416 	struct dk_map	*lp;
22417 	int		rval = 0;
22418 	int		i;
22419 
22420 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22421 		return (ENXIO);
22422 	}
22423 
22424 #if defined(__i386) || defined(__amd64)
22425 	if (un->un_solaris_size == 0) {
22426 		return (EIO);
22427 	}
22428 #endif
22429 	/*
22430 	 * We need to copy the user specified geometry into local
22431 	 * storage and then update the softstate. We don't want to hold
22432 	 * the mutex and copyin directly from the user to the soft state
22433 	 */
22434 	tmp_geom = (struct dk_geom *)
22435 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22436 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
22437 	if (rval != 0) {
22438 		kmem_free(tmp_geom, sizeof (struct dk_geom));
22439 		return (EFAULT);
22440 	}
22441 
22442 	mutex_enter(SD_MUTEX(un));
22443 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
22444 	for (i = 0; i < NDKMAP; i++) {
22445 		lp  = &un->un_map[i];
22446 		un->un_offset[i] =
22447 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22448 #if defined(__i386) || defined(__amd64)
22449 		un->un_offset[i] += un->un_solaris_offset;
22450 #endif
22451 	}
22452 	un->un_f_geometry_is_valid = FALSE;
22453 	mutex_exit(SD_MUTEX(un));
22454 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22455 
22456 	return (rval);
22457 }
22458 
22459 
22460 /*
22461  *    Function: sd_dkio_get_partition
22462  *
22463  * Description: This routine is the driver entry point for handling user
22464  *		requests to get the partition table (DKIOCGAPART).
22465  *
22466  *   Arguments: dev  - the device number
22467  *		arg  - pointer to user provided dk_allmap structure specifying
22468  *			the controller's notion of the current partition table.
22469  *		flag - this argument is a pass through to ddi_copyxxx()
22470  *		       directly from the mode argument of ioctl().
22471  *		geom_validated - flag indicating if the device geometry has been
22472  *				 previously validated in the sdioctl routine.
22473  *
22474  * Return Code: 0
22475  *		EFAULT
22476  *		ENXIO
22477  *		EIO
22478  */
22479 
22480 static int
22481 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
22482 {
22483 	struct sd_lun	*un = NULL;
22484 	int		rval = 0;
22485 	int		size;
22486 
22487 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22488 		return (ENXIO);
22489 	}
22490 
22491 #if defined(__i386) || defined(__amd64)
22492 	if (un->un_solaris_size == 0) {
22493 		return (EIO);
22494 	}
22495 #endif
22496 	/*
22497 	 * Make sure the geometry is valid before getting the partition
22498 	 * information.
22499 	 */
22500 	mutex_enter(SD_MUTEX(un));
22501 	if (geom_validated == FALSE) {
22502 		/*
22503 		 * sd_validate_geometry does not spin a disk up
22504 		 * if it was spun down. We need to make sure it
22505 		 * is ready before validating the geometry.
22506 		 */
22507 		mutex_exit(SD_MUTEX(un));
22508 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22509 			return (rval);
22510 		}
22511 		mutex_enter(SD_MUTEX(un));
22512 
22513 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22514 			mutex_exit(SD_MUTEX(un));
22515 			return (rval);
22516 		}
22517 	}
22518 	mutex_exit(SD_MUTEX(un));
22519 
22520 #ifdef _MULTI_DATAMODEL
22521 	switch (ddi_model_convert_from(flag & FMODELS)) {
22522 	case DDI_MODEL_ILP32: {
22523 		struct dk_map32 dk_map32[NDKMAP];
22524 		int		i;
22525 
22526 		for (i = 0; i < NDKMAP; i++) {
22527 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
22528 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
22529 		}
22530 		size = NDKMAP * sizeof (struct dk_map32);
22531 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
22532 		if (rval != 0) {
22533 			rval = EFAULT;
22534 		}
22535 		break;
22536 	}
22537 	case DDI_MODEL_NONE:
22538 		size = NDKMAP * sizeof (struct dk_map);
22539 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22540 		if (rval != 0) {
22541 			rval = EFAULT;
22542 		}
22543 		break;
22544 	}
22545 #else /* ! _MULTI_DATAMODEL */
22546 	size = NDKMAP * sizeof (struct dk_map);
22547 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
22548 	if (rval != 0) {
22549 		rval = EFAULT;
22550 	}
22551 #endif /* _MULTI_DATAMODEL */
22552 	return (rval);
22553 }
22554 
22555 
22556 /*
22557  *    Function: sd_dkio_set_partition
22558  *
22559  * Description: This routine is the driver entry point for handling user
22560  *		requests to set the partition table (DKIOCSAPART). The actual
22561  *		device partition is not updated.
22562  *
22563  *   Arguments: dev  - the device number
22564  *		arg  - pointer to user provided dk_allmap structure used to set
22565  *			the controller's notion of the partition table.
22566  *		flag - this argument is a pass through to ddi_copyxxx()
22567  *		       directly from the mode argument of ioctl().
22568  *
22569  * Return Code: 0
22570  *		EINVAL
22571  *		EFAULT
22572  *		ENXIO
22573  *		EIO
22574  */
22575 
22576 static int
22577 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
22578 {
22579 	struct sd_lun	*un = NULL;
22580 	struct dk_map	dk_map[NDKMAP];
22581 	struct dk_map	*lp;
22582 	int		rval = 0;
22583 	int		size;
22584 	int		i;
22585 #if defined(_SUNOS_VTOC_16)
22586 	struct dkl_partition	*vp;
22587 #endif
22588 
22589 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22590 		return (ENXIO);
22591 	}
22592 
22593 	/*
22594 	 * Set the map for all logical partitions.  We lock
22595 	 * the priority just to make sure an interrupt doesn't
22596 	 * come in while the map is half updated.
22597 	 */
22598 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
22599 	mutex_enter(SD_MUTEX(un));
22600 	if (un->un_blockcount > DK_MAX_BLOCKS) {
22601 		mutex_exit(SD_MUTEX(un));
22602 		return (ENOTSUP);
22603 	}
22604 	mutex_exit(SD_MUTEX(un));
22605 	if (un->un_solaris_size == 0) {
22606 		return (EIO);
22607 	}
22608 
22609 #ifdef _MULTI_DATAMODEL
22610 	switch (ddi_model_convert_from(flag & FMODELS)) {
22611 	case DDI_MODEL_ILP32: {
22612 		struct dk_map32 dk_map32[NDKMAP];
22613 
22614 		size = NDKMAP * sizeof (struct dk_map32);
22615 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
22616 		if (rval != 0) {
22617 			return (EFAULT);
22618 		}
22619 		for (i = 0; i < NDKMAP; i++) {
22620 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
22621 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
22622 		}
22623 		break;
22624 	}
22625 	case DDI_MODEL_NONE:
22626 		size = NDKMAP * sizeof (struct dk_map);
22627 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
22628 		if (rval != 0) {
22629 			return (EFAULT);
22630 		}
22631 		break;
22632 	}
22633 #else /* ! _MULTI_DATAMODEL */
22634 	size = NDKMAP * sizeof (struct dk_map);
22635 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
22636 	if (rval != 0) {
22637 		return (EFAULT);
22638 	}
22639 #endif /* _MULTI_DATAMODEL */
22640 
22641 	mutex_enter(SD_MUTEX(un));
22642 	/* Note: The size used in this bcopy is set based upon the data model */
22643 	bcopy(dk_map, un->un_map, size);
22644 #if defined(_SUNOS_VTOC_16)
22645 	vp = (struct dkl_partition *)&(un->un_vtoc);
22646 #endif	/* defined(_SUNOS_VTOC_16) */
22647 	for (i = 0; i < NDKMAP; i++) {
22648 		lp  = &un->un_map[i];
22649 		un->un_offset[i] =
22650 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22651 #if defined(_SUNOS_VTOC_16)
22652 		vp->p_start = un->un_offset[i];
22653 		vp->p_size = lp->dkl_nblk;
22654 		vp++;
22655 #endif	/* defined(_SUNOS_VTOC_16) */
22656 #if defined(__i386) || defined(__amd64)
22657 		un->un_offset[i] += un->un_solaris_offset;
22658 #endif
22659 	}
22660 	mutex_exit(SD_MUTEX(un));
22661 	return (rval);
22662 }
22663 
22664 
22665 /*
22666  *    Function: sd_dkio_get_vtoc
22667  *
22668  * Description: This routine is the driver entry point for handling user
22669  *		requests to get the current volume table of contents
22670  *		(DKIOCGVTOC).
22671  *
22672  *   Arguments: dev  - the device number
22673  *		arg  - pointer to user provided vtoc structure specifying
22674  *			the current vtoc.
22675  *		flag - this argument is a pass through to ddi_copyxxx()
22676  *		       directly from the mode argument of ioctl().
22677  *		geom_validated - flag indicating if the device geometry has been
22678  *				 previously validated in the sdioctl routine.
22679  *
22680  * Return Code: 0
22681  *		EFAULT
22682  *		ENXIO
22683  *		EIO
22684  */
22685 
22686 static int
22687 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
22688 {
22689 	struct sd_lun	*un = NULL;
22690 #if defined(_SUNOS_VTOC_8)
22691 	struct vtoc	user_vtoc;
22692 #endif	/* defined(_SUNOS_VTOC_8) */
22693 	int		rval = 0;
22694 
22695 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22696 		return (ENXIO);
22697 	}
22698 
22699 	mutex_enter(SD_MUTEX(un));
22700 	if (geom_validated == FALSE) {
22701 		/*
22702 		 * sd_validate_geometry does not spin a disk up
22703 		 * if it was spun down. We need to make sure it
22704 		 * is ready.
22705 		 */
22706 		mutex_exit(SD_MUTEX(un));
22707 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22708 			return (rval);
22709 		}
22710 		mutex_enter(SD_MUTEX(un));
22711 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
22712 			mutex_exit(SD_MUTEX(un));
22713 			return (rval);
22714 		}
22715 	}
22716 
22717 #if defined(_SUNOS_VTOC_8)
22718 	sd_build_user_vtoc(un, &user_vtoc);
22719 	mutex_exit(SD_MUTEX(un));
22720 
22721 #ifdef _MULTI_DATAMODEL
22722 	switch (ddi_model_convert_from(flag & FMODELS)) {
22723 	case DDI_MODEL_ILP32: {
22724 		struct vtoc32 user_vtoc32;
22725 
22726 		vtoctovtoc32(user_vtoc, user_vtoc32);
22727 		if (ddi_copyout(&user_vtoc32, (void *)arg,
22728 		    sizeof (struct vtoc32), flag)) {
22729 			return (EFAULT);
22730 		}
22731 		break;
22732 	}
22733 
22734 	case DDI_MODEL_NONE:
22735 		if (ddi_copyout(&user_vtoc, (void *)arg,
22736 		    sizeof (struct vtoc), flag)) {
22737 			return (EFAULT);
22738 		}
22739 		break;
22740 	}
22741 #else /* ! _MULTI_DATAMODEL */
22742 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
22743 		return (EFAULT);
22744 	}
22745 #endif /* _MULTI_DATAMODEL */
22746 
22747 #elif defined(_SUNOS_VTOC_16)
22748 	mutex_exit(SD_MUTEX(un));
22749 
22750 #ifdef _MULTI_DATAMODEL
22751 	/*
22752 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
22753 	 * 32-bit to maintain compatibility with existing on-disk
22754 	 * structures.  Thus, we need to convert the structure when copying
22755 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
22756 	 * program.  If the target is a 32-bit program, then no conversion
22757 	 * is necessary.
22758 	 */
22759 	/* LINTED: logical expression always true: op "||" */
22760 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
22761 	switch (ddi_model_convert_from(flag & FMODELS)) {
22762 	case DDI_MODEL_ILP32:
22763 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
22764 		    sizeof (un->un_vtoc), flag)) {
22765 			return (EFAULT);
22766 		}
22767 		break;
22768 
22769 	case DDI_MODEL_NONE: {
22770 		struct vtoc user_vtoc;
22771 
22772 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
22773 		if (ddi_copyout(&user_vtoc, (void *)arg,
22774 		    sizeof (struct vtoc), flag)) {
22775 			return (EFAULT);
22776 		}
22777 		break;
22778 	}
22779 	}
22780 #else /* ! _MULTI_DATAMODEL */
22781 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
22782 	    flag)) {
22783 		return (EFAULT);
22784 	}
22785 #endif /* _MULTI_DATAMODEL */
22786 #else
22787 #error "No VTOC format defined."
22788 #endif
22789 
22790 	return (rval);
22791 }
22792 
22793 static int
22794 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
22795 {
22796 	struct sd_lun	*un = NULL;
22797 	dk_efi_t	user_efi;
22798 	int		rval = 0;
22799 	void		*buffer;
22800 
22801 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
22802 		return (ENXIO);
22803 
22804 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
22805 		return (EFAULT);
22806 
22807 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
22808 
22809 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
22810 	    (user_efi.dki_length > un->un_max_xfer_size))
22811 		return (EINVAL);
22812 
22813 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
22814 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
22815 	    user_efi.dki_lba, SD_PATH_DIRECT);
22816 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
22817 	    user_efi.dki_length, flag) != 0)
22818 		rval = EFAULT;
22819 
22820 	kmem_free(buffer, user_efi.dki_length);
22821 	return (rval);
22822 }
22823 
22824 /*
22825  *    Function: sd_build_user_vtoc
22826  *
22827  * Description: This routine populates a pass by reference variable with the
22828  *		current volume table of contents.
22829  *
22830  *   Arguments: un - driver soft state (unit) structure
22831  *		user_vtoc - pointer to vtoc structure to be populated
22832  */
22833 
22834 static void
22835 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
22836 {
22837 	struct dk_map2		*lpart;
22838 	struct dk_map		*lmap;
22839 	struct partition	*vpart;
22840 	int			nblks;
22841 	int			i;
22842 
22843 	ASSERT(mutex_owned(SD_MUTEX(un)));
22844 
22845 	/*
22846 	 * Return vtoc structure fields in the provided VTOC area, addressed
22847 	 * by *vtoc.
22848 	 */
22849 	bzero(user_vtoc, sizeof (struct vtoc));
22850 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
22851 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
22852 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
22853 	user_vtoc->v_sanity	= VTOC_SANE;
22854 	user_vtoc->v_version	= un->un_vtoc.v_version;
22855 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
22856 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
22857 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
22858 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
22859 	    sizeof (un->un_vtoc.v_reserved));
22860 	/*
22861 	 * Convert partitioning information.
22862 	 *
22863 	 * Note the conversion from starting cylinder number
22864 	 * to starting sector number.
22865 	 */
22866 	lmap = un->un_map;
22867 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
22868 	vpart = user_vtoc->v_part;
22869 
22870 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
22871 
22872 	for (i = 0; i < V_NUMPAR; i++) {
22873 		vpart->p_tag	= lpart->p_tag;
22874 		vpart->p_flag	= lpart->p_flag;
22875 		vpart->p_start	= lmap->dkl_cylno * nblks;
22876 		vpart->p_size	= lmap->dkl_nblk;
22877 		lmap++;
22878 		lpart++;
22879 		vpart++;
22880 
22881 		/* (4364927) */
22882 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
22883 	}
22884 
22885 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
22886 }
22887 
22888 static int
22889 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
22890 {
22891 	struct sd_lun		*un = NULL;
22892 	struct partition64	p64;
22893 	int			rval = 0;
22894 	uint_t			nparts;
22895 	efi_gpe_t		*partitions;
22896 	efi_gpt_t		*buffer;
22897 	diskaddr_t		gpe_lba;
22898 
22899 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22900 		return (ENXIO);
22901 	}
22902 
22903 	if (ddi_copyin((const void *)arg, &p64,
22904 	    sizeof (struct partition64), flag)) {
22905 		return (EFAULT);
22906 	}
22907 
22908 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
22909 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
22910 		1, SD_PATH_DIRECT);
22911 	if (rval != 0)
22912 		goto done_error;
22913 
22914 	sd_swap_efi_gpt(buffer);
22915 
22916 	if ((rval = sd_validate_efi(buffer)) != 0)
22917 		goto done_error;
22918 
22919 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
22920 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
22921 	if (p64.p_partno > nparts) {
22922 		/* couldn't find it */
22923 		rval = ESRCH;
22924 		goto done_error;
22925 	}
22926 	/*
22927 	 * if we're dealing with a partition that's out of the normal
22928 	 * 16K block, adjust accordingly
22929 	 */
22930 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
22931 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
22932 			gpe_lba, SD_PATH_DIRECT);
22933 	if (rval) {
22934 		goto done_error;
22935 	}
22936 	partitions = (efi_gpe_t *)buffer;
22937 
22938 	sd_swap_efi_gpe(nparts, partitions);
22939 
22940 	partitions += p64.p_partno;
22941 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
22942 	    sizeof (struct uuid));
22943 	p64.p_start = partitions->efi_gpe_StartingLBA;
22944 	p64.p_size = partitions->efi_gpe_EndingLBA -
22945 			p64.p_start + 1;
22946 
22947 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
22948 		rval = EFAULT;
22949 
22950 done_error:
22951 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
22952 	return (rval);
22953 }
22954 
22955 
22956 /*
22957  *    Function: sd_dkio_set_vtoc
22958  *
22959  * Description: This routine is the driver entry point for handling user
22960  *		requests to set the current volume table of contents
22961  *		(DKIOCSVTOC).
22962  *
22963  *   Arguments: dev  - the device number
22964  *		arg  - pointer to user provided vtoc structure used to set the
22965  *			current vtoc.
22966  *		flag - this argument is a pass through to ddi_copyxxx()
22967  *		       directly from the mode argument of ioctl().
22968  *
22969  * Return Code: 0
22970  *		EFAULT
22971  *		ENXIO
22972  *		EINVAL
22973  *		ENOTSUP
22974  */
22975 
22976 static int
22977 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
22978 {
22979 	struct sd_lun	*un = NULL;
22980 	struct vtoc	user_vtoc;
22981 	int		rval = 0;
22982 
22983 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22984 		return (ENXIO);
22985 	}
22986 
22987 #if defined(__i386) || defined(__amd64)
22988 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
22989 		return (EINVAL);
22990 	}
22991 #endif
22992 
22993 #ifdef _MULTI_DATAMODEL
22994 	switch (ddi_model_convert_from(flag & FMODELS)) {
22995 	case DDI_MODEL_ILP32: {
22996 		struct vtoc32 user_vtoc32;
22997 
22998 		if (ddi_copyin((const void *)arg, &user_vtoc32,
22999 		    sizeof (struct vtoc32), flag)) {
23000 			return (EFAULT);
23001 		}
23002 		vtoc32tovtoc(user_vtoc32, user_vtoc);
23003 		break;
23004 	}
23005 
23006 	case DDI_MODEL_NONE:
23007 		if (ddi_copyin((const void *)arg, &user_vtoc,
23008 		    sizeof (struct vtoc), flag)) {
23009 			return (EFAULT);
23010 		}
23011 		break;
23012 	}
23013 #else /* ! _MULTI_DATAMODEL */
23014 	if (ddi_copyin((const void *)arg, &user_vtoc,
23015 	    sizeof (struct vtoc), flag)) {
23016 		return (EFAULT);
23017 	}
23018 #endif /* _MULTI_DATAMODEL */
23019 
23020 	mutex_enter(SD_MUTEX(un));
23021 	if (un->un_blockcount > DK_MAX_BLOCKS) {
23022 		mutex_exit(SD_MUTEX(un));
23023 		return (ENOTSUP);
23024 	}
23025 	if (un->un_g.dkg_ncyl == 0) {
23026 		mutex_exit(SD_MUTEX(un));
23027 		return (EINVAL);
23028 	}
23029 
23030 	mutex_exit(SD_MUTEX(un));
23031 	sd_clear_efi(un);
23032 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
23033 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
23034 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
23035 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23036 	    un->un_node_type, NULL);
23037 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
23038 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23039 	    un->un_node_type, NULL);
23040 	mutex_enter(SD_MUTEX(un));
23041 
23042 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
23043 		if ((rval = sd_write_label(dev)) == 0) {
23044 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
23045 			    != 0) {
23046 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
23047 				    "sd_dkio_set_vtoc: "
23048 				    "Failed validate geometry\n");
23049 			}
23050 		}
23051 	}
23052 
23053 	/*
23054 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
23055 	 * devid anyway, what can it hurt? Also preserve the device id by
23056 	 * writing to the disk acyl for the case where a devid has been
23057 	 * fabricated.
23058 	 */
23059 	if (un->un_f_devid_supported &&
23060 	    (un->un_f_opt_fab_devid == TRUE)) {
23061 		if (un->un_devid == NULL) {
23062 			sd_register_devid(un, SD_DEVINFO(un),
23063 			    SD_TARGET_IS_UNRESERVED);
23064 		} else {
23065 			/*
23066 			 * The device id for this disk has been
23067 			 * fabricated. Fabricated device id's are
23068 			 * managed by storing them in the last 2
23069 			 * available sectors on the drive. The device
23070 			 * id must be preserved by writing it back out
23071 			 * to this location.
23072 			 */
23073 			if (sd_write_deviceid(un) != 0) {
23074 				ddi_devid_free(un->un_devid);
23075 				un->un_devid = NULL;
23076 			}
23077 		}
23078 	}
23079 	mutex_exit(SD_MUTEX(un));
23080 	return (rval);
23081 }
23082 
23083 
23084 /*
23085  *    Function: sd_build_label_vtoc
23086  *
23087  * Description: This routine updates the driver soft state current volume table
23088  *		of contents based on a user specified vtoc.
23089  *
23090  *   Arguments: un - driver soft state (unit) structure
23091  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
23092  *			    to update the driver soft state.
23093  *
23094  * Return Code: 0
23095  *		EINVAL
23096  */
23097 
23098 static int
23099 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23100 {
23101 	struct dk_map		*lmap;
23102 	struct partition	*vpart;
23103 	int			nblks;
23104 #if defined(_SUNOS_VTOC_8)
23105 	int			ncyl;
23106 	struct dk_map2		*lpart;
23107 #endif	/* defined(_SUNOS_VTOC_8) */
23108 	int			i;
23109 
23110 	ASSERT(mutex_owned(SD_MUTEX(un)));
23111 
23112 	/* Sanity-check the vtoc */
23113 	if (user_vtoc->v_sanity != VTOC_SANE ||
23114 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
23115 	    user_vtoc->v_nparts != V_NUMPAR) {
23116 		return (EINVAL);
23117 	}
23118 
23119 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23120 	if (nblks == 0) {
23121 		return (EINVAL);
23122 	}
23123 
23124 #if defined(_SUNOS_VTOC_8)
23125 	vpart = user_vtoc->v_part;
23126 	for (i = 0; i < V_NUMPAR; i++) {
23127 		if ((vpart->p_start % nblks) != 0) {
23128 			return (EINVAL);
23129 		}
23130 		ncyl = vpart->p_start / nblks;
23131 		ncyl += vpart->p_size / nblks;
23132 		if ((vpart->p_size % nblks) != 0) {
23133 			ncyl++;
23134 		}
23135 		if (ncyl > (int)un->un_g.dkg_ncyl) {
23136 			return (EINVAL);
23137 		}
23138 		vpart++;
23139 	}
23140 #endif	/* defined(_SUNOS_VTOC_8) */
23141 
23142 	/* Put appropriate vtoc structure fields into the disk label */
23143 #if defined(_SUNOS_VTOC_16)
23144 	/*
23145 	 * The vtoc is always a 32bit data structure to maintain the
23146 	 * on-disk format. Convert "in place" instead of bcopying it.
23147 	 */
23148 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
23149 
23150 	/*
23151 	 * in the 16-slice vtoc, starting sectors are expressed in
23152 	 * numbers *relative* to the start of the Solaris fdisk partition.
23153 	 */
23154 	lmap = un->un_map;
23155 	vpart = user_vtoc->v_part;
23156 
23157 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
23158 		lmap->dkl_cylno = vpart->p_start / nblks;
23159 		lmap->dkl_nblk = vpart->p_size;
23160 	}
23161 
23162 #elif defined(_SUNOS_VTOC_8)
23163 
23164 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
23165 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
23166 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
23167 
23168 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
23169 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
23170 
23171 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
23172 
23173 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
23174 
23175 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
23176 	    sizeof (un->un_vtoc.v_reserved));
23177 
23178 	/*
23179 	 * Note the conversion from starting sector number
23180 	 * to starting cylinder number.
23181 	 * Return error if division results in a remainder.
23182 	 */
23183 	lmap = un->un_map;
23184 	lpart = un->un_vtoc.v_part;
23185 	vpart = user_vtoc->v_part;
23186 
23187 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
23188 		lpart->p_tag  = vpart->p_tag;
23189 		lpart->p_flag = vpart->p_flag;
23190 		lmap->dkl_cylno = vpart->p_start / nblks;
23191 		lmap->dkl_nblk = vpart->p_size;
23192 
23193 		lmap++;
23194 		lpart++;
23195 		vpart++;
23196 
23197 		/* (4387723) */
23198 #ifdef _LP64
23199 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
23200 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
23201 		} else {
23202 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23203 		}
23204 #else
23205 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23206 #endif
23207 	}
23208 
23209 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
23210 #else
23211 #error "No VTOC format defined."
23212 #endif
23213 	return (0);
23214 }
23215 
23216 /*
23217  *    Function: sd_clear_efi
23218  *
23219  * Description: This routine clears all EFI labels.
23220  *
23221  *   Arguments: un - driver soft state (unit) structure
23222  *
23223  * Return Code: void
23224  */
23225 
23226 static void
23227 sd_clear_efi(struct sd_lun *un)
23228 {
23229 	efi_gpt_t	*gpt;
23230 	uint_t		lbasize;
23231 	uint64_t	cap;
23232 	int rval;
23233 
23234 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23235 
23236 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
23237 
23238 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
23239 		goto done;
23240 	}
23241 
23242 	sd_swap_efi_gpt(gpt);
23243 	rval = sd_validate_efi(gpt);
23244 	if (rval == 0) {
23245 		/* clear primary */
23246 		bzero(gpt, sizeof (efi_gpt_t));
23247 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
23248 			SD_PATH_DIRECT))) {
23249 			SD_INFO(SD_LOG_IO_PARTITION, un,
23250 				"sd_clear_efi: clear primary label failed\n");
23251 		}
23252 	}
23253 	/* the backup */
23254 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
23255 	    SD_PATH_DIRECT);
23256 	if (rval) {
23257 		goto done;
23258 	}
23259 	/*
23260 	 * The MMC standard allows READ CAPACITY to be
23261 	 * inaccurate by a bounded amount (in the interest of
23262 	 * response latency).  As a result, failed READs are
23263 	 * commonplace (due to the reading of metadata and not
23264 	 * data). Depending on the per-Vendor/drive Sense data,
23265 	 * the failed READ can cause many (unnecessary) retries.
23266 	 */
23267 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23268 	    cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23269 		SD_PATH_DIRECT)) != 0) {
23270 		goto done;
23271 	}
23272 	sd_swap_efi_gpt(gpt);
23273 	rval = sd_validate_efi(gpt);
23274 	if (rval == 0) {
23275 		/* clear backup */
23276 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
23277 			cap-1);
23278 		bzero(gpt, sizeof (efi_gpt_t));
23279 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23280 		    cap-1, SD_PATH_DIRECT))) {
23281 			SD_INFO(SD_LOG_IO_PARTITION, un,
23282 				"sd_clear_efi: clear backup label failed\n");
23283 		}
23284 	}
23285 
23286 done:
23287 	kmem_free(gpt, sizeof (efi_gpt_t));
23288 }
23289 
23290 /*
23291  *    Function: sd_set_vtoc
23292  *
23293  * Description: This routine writes data to the appropriate positions
23294  *
23295  *   Arguments: un - driver soft state (unit) structure
23296  *              dkl  - the data to be written
23297  *
23298  * Return: void
23299  */
23300 
23301 static int
23302 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
23303 {
23304 	void			*shadow_buf;
23305 	uint_t			label_addr;
23306 	int			sec;
23307 	int			blk;
23308 	int			head;
23309 	int			cyl;
23310 	int			rval;
23311 
23312 #if defined(__i386) || defined(__amd64)
23313 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
23314 #else
23315 	/* Write the primary label at block 0 of the solaris partition. */
23316 	label_addr = 0;
23317 #endif
23318 
23319 	if (NOT_DEVBSIZE(un)) {
23320 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
23321 		/*
23322 		 * Read the target's first block.
23323 		 */
23324 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
23325 		    un->un_tgt_blocksize, label_addr,
23326 		    SD_PATH_STANDARD)) != 0) {
23327 			goto exit;
23328 		}
23329 		/*
23330 		 * Copy the contents of the label into the shadow buffer
23331 		 * which is of the size of target block size.
23332 		 */
23333 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23334 	}
23335 
23336 	/* Write the primary label */
23337 	if (NOT_DEVBSIZE(un)) {
23338 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
23339 		    label_addr, SD_PATH_STANDARD);
23340 	} else {
23341 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23342 		    label_addr, SD_PATH_STANDARD);
23343 	}
23344 	if (rval != 0) {
23345 		return (rval);
23346 	}
23347 
23348 	/*
23349 	 * Calculate where the backup labels go.  They are always on
23350 	 * the last alternate cylinder, but some older drives put them
23351 	 * on head 2 instead of the last head.	They are always on the
23352 	 * first 5 odd sectors of the appropriate track.
23353 	 *
23354 	 * We have no choice at this point, but to believe that the
23355 	 * disk label is valid.	 Use the geometry of the disk
23356 	 * as described in the label.
23357 	 */
23358 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
23359 	head = dkl->dkl_nhead - 1;
23360 
23361 	/*
23362 	 * Write and verify the backup labels. Make sure we don't try to
23363 	 * write past the last cylinder.
23364 	 */
23365 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
23366 		blk = (daddr_t)(
23367 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
23368 		    (head * dkl->dkl_nsect) + sec);
23369 #if defined(__i386) || defined(__amd64)
23370 		blk += un->un_solaris_offset;
23371 #endif
23372 		if (NOT_DEVBSIZE(un)) {
23373 			uint64_t	tblk;
23374 			/*
23375 			 * Need to read the block first for read modify write.
23376 			 */
23377 			tblk = (uint64_t)blk;
23378 			blk = (int)((tblk * un->un_sys_blocksize) /
23379 			    un->un_tgt_blocksize);
23380 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
23381 			    un->un_tgt_blocksize, blk,
23382 			    SD_PATH_STANDARD)) != 0) {
23383 				goto exit;
23384 			}
23385 			/*
23386 			 * Modify the shadow buffer with the label.
23387 			 */
23388 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23389 			rval = sd_send_scsi_WRITE(un, shadow_buf,
23390 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
23391 		} else {
23392 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23393 			    blk, SD_PATH_STANDARD);
23394 			SD_INFO(SD_LOG_IO_PARTITION, un,
23395 			"sd_set_vtoc: wrote backup label %d\n", blk);
23396 		}
23397 		if (rval != 0) {
23398 			goto exit;
23399 		}
23400 	}
23401 exit:
23402 	if (NOT_DEVBSIZE(un)) {
23403 		kmem_free(shadow_buf, un->un_tgt_blocksize);
23404 	}
23405 	return (rval);
23406 }
23407 
23408 /*
23409  *    Function: sd_clear_vtoc
23410  *
23411  * Description: This routine clears out the VTOC labels.
23412  *
23413  *   Arguments: un - driver soft state (unit) structure
23414  *
23415  * Return: void
23416  */
23417 
23418 static void
23419 sd_clear_vtoc(struct sd_lun *un)
23420 {
23421 	struct dk_label		*dkl;
23422 
23423 	mutex_exit(SD_MUTEX(un));
23424 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23425 	mutex_enter(SD_MUTEX(un));
23426 	/*
23427 	 * sd_set_vtoc uses these fields in order to figure out
23428 	 * where to overwrite the backup labels
23429 	 */
23430 	dkl->dkl_apc    = un->un_g.dkg_apc;
23431 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
23432 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
23433 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
23434 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
23435 	mutex_exit(SD_MUTEX(un));
23436 	(void) sd_set_vtoc(un, dkl);
23437 	kmem_free(dkl, sizeof (struct dk_label));
23438 
23439 	mutex_enter(SD_MUTEX(un));
23440 }
23441 
23442 /*
23443  *    Function: sd_write_label
23444  *
23445  * Description: This routine will validate and write the driver soft state vtoc
23446  *		contents to the device.
23447  *
23448  *   Arguments: dev - the device number
23449  *
23450  * Return Code: the code returned by sd_send_scsi_cmd()
23451  *		0
23452  *		EINVAL
23453  *		ENXIO
23454  *		ENOMEM
23455  */
23456 
23457 static int
23458 sd_write_label(dev_t dev)
23459 {
23460 	struct sd_lun		*un;
23461 	struct dk_label		*dkl;
23462 	short			sum;
23463 	short			*sp;
23464 	int			i;
23465 	int			rval;
23466 
23467 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23468 	    (un->un_state == SD_STATE_OFFLINE)) {
23469 		return (ENXIO);
23470 	}
23471 	ASSERT(mutex_owned(SD_MUTEX(un)));
23472 	mutex_exit(SD_MUTEX(un));
23473 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23474 	mutex_enter(SD_MUTEX(un));
23475 
23476 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
23477 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
23478 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
23479 	dkl->dkl_apc	= un->un_g.dkg_apc;
23480 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
23481 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
23482 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
23483 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
23484 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
23485 
23486 #if defined(_SUNOS_VTOC_8)
23487 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
23488 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
23489 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
23490 	for (i = 0; i < NDKMAP; i++) {
23491 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
23492 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
23493 	}
23494 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
23495 #elif defined(_SUNOS_VTOC_16)
23496 	dkl->dkl_skew	= un->un_dkg_skew;
23497 #else
23498 #error "No VTOC format defined."
23499 #endif
23500 
23501 	dkl->dkl_magic			= DKL_MAGIC;
23502 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
23503 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
23504 
23505 	/* Construct checksum for the new disk label */
23506 	sum = 0;
23507 	sp = (short *)dkl;
23508 	i = sizeof (struct dk_label) / sizeof (short);
23509 	while (i--) {
23510 		sum ^= *sp++;
23511 	}
23512 	dkl->dkl_cksum = sum;
23513 
23514 	mutex_exit(SD_MUTEX(un));
23515 
23516 	rval = sd_set_vtoc(un, dkl);
23517 exit:
23518 	kmem_free(dkl, sizeof (struct dk_label));
23519 	mutex_enter(SD_MUTEX(un));
23520 	return (rval);
23521 }
23522 
23523 static int
23524 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
23525 {
23526 	struct sd_lun	*un = NULL;
23527 	dk_efi_t	user_efi;
23528 	int		rval = 0;
23529 	void		*buffer;
23530 
23531 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23532 		return (ENXIO);
23533 
23534 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23535 		return (EFAULT);
23536 
23537 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23538 
23539 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23540 	    (user_efi.dki_length > un->un_max_xfer_size))
23541 		return (EINVAL);
23542 
23543 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23544 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
23545 		rval = EFAULT;
23546 	} else {
23547 		/*
23548 		 * let's clear the vtoc labels and clear the softstate
23549 		 * vtoc.
23550 		 */
23551 		mutex_enter(SD_MUTEX(un));
23552 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
23553 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23554 				"sd_dkio_set_efi: CLEAR VTOC\n");
23555 			sd_clear_vtoc(un);
23556 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23557 			mutex_exit(SD_MUTEX(un));
23558 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
23559 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
23560 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
23561 			    S_IFBLK,
23562 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23563 			    un->un_node_type, NULL);
23564 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
23565 			    S_IFCHR,
23566 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23567 			    un->un_node_type, NULL);
23568 		} else
23569 			mutex_exit(SD_MUTEX(un));
23570 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
23571 		    user_efi.dki_lba, SD_PATH_DIRECT);
23572 		if (rval == 0) {
23573 			mutex_enter(SD_MUTEX(un));
23574 			un->un_f_geometry_is_valid = FALSE;
23575 			mutex_exit(SD_MUTEX(un));
23576 		}
23577 	}
23578 	kmem_free(buffer, user_efi.dki_length);
23579 	return (rval);
23580 }
23581 
23582 /*
23583  *    Function: sd_dkio_get_mboot
23584  *
23585  * Description: This routine is the driver entry point for handling user
23586  *		requests to get the current device mboot (DKIOCGMBOOT)
23587  *
23588  *   Arguments: dev  - the device number
23589  *		arg  - pointer to user provided mboot structure specifying
23590  *			the current mboot.
23591  *		flag - this argument is a pass through to ddi_copyxxx()
23592  *		       directly from the mode argument of ioctl().
23593  *
23594  * Return Code: 0
23595  *		EINVAL
23596  *		EFAULT
23597  *		ENXIO
23598  */
23599 
23600 static int
23601 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
23602 {
23603 	struct sd_lun	*un;
23604 	struct mboot	*mboot;
23605 	int		rval;
23606 	size_t		buffer_size;
23607 
23608 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
23609 	    (un->un_state == SD_STATE_OFFLINE)) {
23610 		return (ENXIO);
23611 	}
23612 
23613 	if (!un->un_f_mboot_supported || arg == NULL) {
23614 		return (EINVAL);
23615 	}
23616 
23617 	/*
23618 	 * Read the mboot block, located at absolute block 0 on the target.
23619 	 */
23620 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
23621 
23622 	SD_TRACE(SD_LOG_IO_PARTITION, un,
23623 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
23624 
23625 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
23626 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
23627 	    SD_PATH_STANDARD)) == 0) {
23628 		if (ddi_copyout(mboot, (void *)arg,
23629 		    sizeof (struct mboot), flag) != 0) {
23630 			rval = EFAULT;
23631 		}
23632 	}
23633 	kmem_free(mboot, buffer_size);
23634 	return (rval);
23635 }
23636 
23637 
23638 /*
23639  *    Function: sd_dkio_set_mboot
23640  *
23641  * Description: This routine is the driver entry point for handling user
23642  *		requests to validate and set the device master boot
23643  *		(DKIOCSMBOOT).
23644  *
23645  *   Arguments: dev  - the device number
23646  *		arg  - pointer to user provided mboot structure used to set the
23647  *			master boot.
23648  *		flag - this argument is a pass through to ddi_copyxxx()
23649  *		       directly from the mode argument of ioctl().
23650  *
23651  * Return Code: 0
23652  *		EINVAL
23653  *		EFAULT
23654  *		ENXIO
23655  */
23656 
23657 static int
23658 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
23659 {
23660 	struct sd_lun	*un = NULL;
23661 	struct mboot	*mboot = NULL;
23662 	int		rval;
23663 	ushort_t	magic;
23664 
23665 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23666 		return (ENXIO);
23667 	}
23668 
23669 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23670 
23671 	if (!un->un_f_mboot_supported) {
23672 		return (EINVAL);
23673 	}
23674 
23675 	if (arg == NULL) {
23676 		return (EINVAL);
23677 	}
23678 
23679 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
23680 
23681 	if (ddi_copyin((const void *)arg, mboot,
23682 	    sizeof (struct mboot), flag) != 0) {
23683 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23684 		return (EFAULT);
23685 	}
23686 
23687 	/* Is this really a master boot record? */
23688 	magic = LE_16(mboot->signature);
23689 	if (magic != MBB_MAGIC) {
23690 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23691 		return (EINVAL);
23692 	}
23693 
23694 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
23695 	    SD_PATH_STANDARD);
23696 
23697 	mutex_enter(SD_MUTEX(un));
23698 #if defined(__i386) || defined(__amd64)
23699 	if (rval == 0) {
23700 		/*
23701 		 * mboot has been written successfully.
23702 		 * update the fdisk and vtoc tables in memory
23703 		 */
23704 		rval = sd_update_fdisk_and_vtoc(un);
23705 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
23706 			mutex_exit(SD_MUTEX(un));
23707 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23708 			return (rval);
23709 		}
23710 	}
23711 
23712 	/*
23713 	 * If the mboot write fails, write the devid anyway, what can it hurt?
23714 	 * Also preserve the device id by writing to the disk acyl for the case
23715 	 * where a devid has been fabricated.
23716 	 */
23717 	if (un->un_f_devid_supported && un->un_f_opt_fab_devid) {
23718 		if (un->un_devid == NULL) {
23719 			sd_register_devid(un, SD_DEVINFO(un),
23720 			    SD_TARGET_IS_UNRESERVED);
23721 		} else {
23722 			/*
23723 			 * The device id for this disk has been
23724 			 * fabricated. Fabricated device id's are
23725 			 * managed by storing them in the last 2
23726 			 * available sectors on the drive. The device
23727 			 * id must be preserved by writing it back out
23728 			 * to this location.
23729 			 */
23730 			if (sd_write_deviceid(un) != 0) {
23731 				ddi_devid_free(un->un_devid);
23732 				un->un_devid = NULL;
23733 			}
23734 		}
23735 	}
23736 
23737 #ifdef __lock_lint
23738 	sd_setup_default_geometry(un);
23739 #endif
23740 
23741 #else
23742 	if (rval == 0) {
23743 		/*
23744 		 * mboot has been written successfully.
23745 		 * set up the default geometry and VTOC
23746 		 */
23747 		if (un->un_blockcount <= DK_MAX_BLOCKS)
23748 			sd_setup_default_geometry(un);
23749 	}
23750 #endif
23751 	mutex_exit(SD_MUTEX(un));
23752 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
23753 	return (rval);
23754 }
23755 
23756 
23757 /*
23758  *    Function: sd_setup_default_geometry
23759  *
23760  * Description: This local utility routine sets the default geometry as part of
23761  *		setting the device mboot.
23762  *
23763  *   Arguments: un - driver soft state (unit) structure
23764  *
23765  * Note: This may be redundant with sd_build_default_label.
23766  */
23767 
23768 static void
23769 sd_setup_default_geometry(struct sd_lun *un)
23770 {
23771 	/* zero out the soft state geometry and partition table. */
23772 	bzero(&un->un_g, sizeof (struct dk_geom));
23773 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
23774 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
23775 	un->un_asciilabel[0] = '\0';
23776 
23777 	/*
23778 	 * For the rpm, we use the minimum for the disk.
23779 	 * For the head, cyl and number of sector per track,
23780 	 * if the capacity <= 1GB, head = 64, sect = 32.
23781 	 * else head = 255, sect 63
23782 	 * Note: the capacity should be equal to C*H*S values.
23783 	 * This will cause some truncation of size due to
23784 	 * round off errors. For CD-ROMs, this truncation can
23785 	 * have adverse side effects, so returning ncyl and
23786 	 * nhead as 1. The nsect will overflow for most of
23787 	 * CD-ROMs as nsect is of type ushort.
23788 	 */
23789 	if (ISCD(un)) {
23790 		un->un_g.dkg_ncyl = 1;
23791 		un->un_g.dkg_nhead = 1;
23792 		un->un_g.dkg_nsect = un->un_blockcount;
23793 	} else {
23794 		if (un->un_blockcount <= 0x1000) {
23795 			/* Needed for unlabeled SCSI floppies. */
23796 			un->un_g.dkg_nhead = 2;
23797 			un->un_g.dkg_ncyl = 80;
23798 			un->un_g.dkg_pcyl = 80;
23799 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
23800 		} else if (un->un_blockcount <= 0x200000) {
23801 			un->un_g.dkg_nhead = 64;
23802 			un->un_g.dkg_nsect = 32;
23803 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
23804 		} else {
23805 			un->un_g.dkg_nhead = 255;
23806 			un->un_g.dkg_nsect = 63;
23807 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
23808 		}
23809 		un->un_blockcount = un->un_g.dkg_ncyl *
23810 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
23811 	}
23812 	un->un_g.dkg_acyl = 0;
23813 	un->un_g.dkg_bcyl = 0;
23814 	un->un_g.dkg_intrlv = 1;
23815 	un->un_g.dkg_rpm = 200;
23816 	un->un_g.dkg_read_reinstruct = 0;
23817 	un->un_g.dkg_write_reinstruct = 0;
23818 	if (un->un_g.dkg_pcyl == 0) {
23819 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
23820 	}
23821 
23822 	un->un_map['a'-'a'].dkl_cylno = 0;
23823 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
23824 	un->un_map['c'-'a'].dkl_cylno = 0;
23825 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
23826 	un->un_f_geometry_is_valid = FALSE;
23827 }
23828 
23829 
23830 #if defined(__i386) || defined(__amd64)
23831 /*
23832  *    Function: sd_update_fdisk_and_vtoc
23833  *
23834  * Description: This local utility routine updates the device fdisk and vtoc
23835  *		as part of setting the device mboot.
23836  *
23837  *   Arguments: un - driver soft state (unit) structure
23838  *
23839  * Return Code: 0 for success or errno-type return code.
23840  *
23841  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
23842  *		these did exist seperately in x86 sd.c!!!
23843  */
23844 
23845 static int
23846 sd_update_fdisk_and_vtoc(struct sd_lun *un)
23847 {
23848 	static char	labelstring[128];
23849 	static char	buf[256];
23850 	char		*label = 0;
23851 	int		count;
23852 	int		label_rc = 0;
23853 	int		gvalid = un->un_f_geometry_is_valid;
23854 	int		fdisk_rval;
23855 	int		lbasize;
23856 	int		capacity;
23857 
23858 	ASSERT(mutex_owned(SD_MUTEX(un)));
23859 
23860 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
23861 		return (EINVAL);
23862 	}
23863 
23864 	if (un->un_f_blockcount_is_valid == FALSE) {
23865 		return (EINVAL);
23866 	}
23867 
23868 #if defined(_SUNOS_VTOC_16)
23869 	/*
23870 	 * Set up the "whole disk" fdisk partition; this should always
23871 	 * exist, regardless of whether the disk contains an fdisk table
23872 	 * or vtoc.
23873 	 */
23874 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
23875 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
23876 #endif	/* defined(_SUNOS_VTOC_16) */
23877 
23878 	/*
23879 	 * copy the lbasize and capacity so that if they're
23880 	 * reset while we're not holding the SD_MUTEX(un), we will
23881 	 * continue to use valid values after the SD_MUTEX(un) is
23882 	 * reacquired.
23883 	 */
23884 	lbasize  = un->un_tgt_blocksize;
23885 	capacity = un->un_blockcount;
23886 
23887 	/*
23888 	 * refresh the logical and physical geometry caches.
23889 	 * (data from mode sense format/rigid disk geometry pages,
23890 	 * and scsi_ifgetcap("geometry").
23891 	 */
23892 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
23893 
23894 	/*
23895 	 * Only DIRECT ACCESS devices will have Sun labels.
23896 	 * CD's supposedly have a Sun label, too
23897 	 */
23898 	if (un->un_f_vtoc_label_supported) {
23899 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
23900 		    SD_PATH_DIRECT);
23901 		if (fdisk_rval == SD_CMD_FAILURE) {
23902 			ASSERT(mutex_owned(SD_MUTEX(un)));
23903 			return (EIO);
23904 		}
23905 
23906 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
23907 			ASSERT(mutex_owned(SD_MUTEX(un)));
23908 			return (EACCES);
23909 		}
23910 
23911 		if (un->un_solaris_size <= DK_LABEL_LOC) {
23912 			/*
23913 			 * Found fdisk table but no Solaris partition entry,
23914 			 * so don't call sd_uselabel() and don't create
23915 			 * a default label.
23916 			 */
23917 			label_rc = 0;
23918 			un->un_f_geometry_is_valid = TRUE;
23919 			goto no_solaris_partition;
23920 		}
23921 
23922 #if defined(_SUNOS_VTOC_8)
23923 		label = (char *)un->un_asciilabel;
23924 #elif defined(_SUNOS_VTOC_16)
23925 		label = (char *)un->un_vtoc.v_asciilabel;
23926 #else
23927 #error "No VTOC format defined."
23928 #endif
23929 	} else if (capacity < 0) {
23930 		ASSERT(mutex_owned(SD_MUTEX(un)));
23931 		return (EINVAL);
23932 	}
23933 
23934 	/*
23935 	 * For Removable media We reach here if we have found a
23936 	 * SOLARIS PARTITION.
23937 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
23938 	 * PARTITION has changed from the previous one, hence we will setup a
23939 	 * default VTOC in this case.
23940 	 */
23941 	if (un->un_f_geometry_is_valid == FALSE) {
23942 		sd_build_default_label(un);
23943 		label_rc = 0;
23944 	}
23945 
23946 no_solaris_partition:
23947 	if ((!un->un_f_has_removable_media ||
23948 	    (un->un_f_has_removable_media &&
23949 	    un->un_mediastate == DKIO_EJECTED)) &&
23950 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
23951 		/*
23952 		 * Print out a message indicating who and what we are.
23953 		 * We do this only when we happen to really validate the
23954 		 * geometry. We may call sd_validate_geometry() at other
23955 		 * times, ioctl()'s like Get VTOC in which case we
23956 		 * don't want to print the label.
23957 		 * If the geometry is valid, print the label string,
23958 		 * else print vendor and product info, if available
23959 		 */
23960 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
23961 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
23962 		} else {
23963 			mutex_enter(&sd_label_mutex);
23964 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
23965 			    labelstring);
23966 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
23967 			    &labelstring[64]);
23968 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
23969 			    labelstring, &labelstring[64]);
23970 			if (un->un_f_blockcount_is_valid == TRUE) {
23971 				(void) sprintf(&buf[strlen(buf)],
23972 				    ", %" PRIu64 " %u byte blocks\n",
23973 				    un->un_blockcount,
23974 				    un->un_tgt_blocksize);
23975 			} else {
23976 				(void) sprintf(&buf[strlen(buf)],
23977 				    ", (unknown capacity)\n");
23978 			}
23979 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
23980 			mutex_exit(&sd_label_mutex);
23981 		}
23982 	}
23983 
23984 #if defined(_SUNOS_VTOC_16)
23985 	/*
23986 	 * If we have valid geometry, set up the remaining fdisk partitions.
23987 	 * Note that dkl_cylno is not used for the fdisk map entries, so
23988 	 * we set it to an entirely bogus value.
23989 	 */
23990 	for (count = 0; count < FD_NUMPART; count++) {
23991 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
23992 		un->un_map[FDISK_P1 + count].dkl_nblk =
23993 		    un->un_fmap[count].fmap_nblk;
23994 		un->un_offset[FDISK_P1 + count] =
23995 		    un->un_fmap[count].fmap_start;
23996 	}
23997 #endif
23998 
23999 	for (count = 0; count < NDKMAP; count++) {
24000 #if defined(_SUNOS_VTOC_8)
24001 		struct dk_map *lp  = &un->un_map[count];
24002 		un->un_offset[count] =
24003 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
24004 #elif defined(_SUNOS_VTOC_16)
24005 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
24006 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
24007 #else
24008 #error "No VTOC format defined."
24009 #endif
24010 	}
24011 
24012 	ASSERT(mutex_owned(SD_MUTEX(un)));
24013 	return (label_rc);
24014 }
24015 #endif
24016 
24017 
24018 /*
24019  *    Function: sd_check_media
24020  *
24021  * Description: This utility routine implements the functionality for the
24022  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
24023  *		driver state changes from that specified by the user
24024  *		(inserted or ejected). For example, if the user specifies
24025  *		DKIO_EJECTED and the current media state is inserted this
24026  *		routine will immediately return DKIO_INSERTED. However, if the
24027  *		current media state is not inserted the user thread will be
24028  *		blocked until the drive state changes. If DKIO_NONE is specified
24029  *		the user thread will block until a drive state change occurs.
24030  *
24031  *   Arguments: dev  - the device number
24032  *		state  - user pointer to a dkio_state, updated with the current
24033  *			drive state at return.
24034  *
24035  * Return Code: ENXIO
24036  *		EIO
24037  *		EAGAIN
24038  *		EINTR
24039  */
24040 
24041 static int
24042 sd_check_media(dev_t dev, enum dkio_state state)
24043 {
24044 	struct sd_lun		*un = NULL;
24045 	enum dkio_state		prev_state;
24046 	opaque_t		token = NULL;
24047 	int			rval = 0;
24048 
24049 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24050 		return (ENXIO);
24051 	}
24052 
24053 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
24054 
24055 	mutex_enter(SD_MUTEX(un));
24056 
24057 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
24058 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
24059 
24060 	prev_state = un->un_mediastate;
24061 
24062 	/* is there anything to do? */
24063 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
24064 		/*
24065 		 * submit the request to the scsi_watch service;
24066 		 * scsi_media_watch_cb() does the real work
24067 		 */
24068 		mutex_exit(SD_MUTEX(un));
24069 
24070 		/*
24071 		 * This change handles the case where a scsi watch request is
24072 		 * added to a device that is powered down. To accomplish this
24073 		 * we power up the device before adding the scsi watch request,
24074 		 * since the scsi watch sends a TUR directly to the device
24075 		 * which the device cannot handle if it is powered down.
24076 		 */
24077 		if (sd_pm_entry(un) != DDI_SUCCESS) {
24078 			mutex_enter(SD_MUTEX(un));
24079 			goto done;
24080 		}
24081 
24082 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
24083 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
24084 		    (caddr_t)dev);
24085 
24086 		sd_pm_exit(un);
24087 
24088 		mutex_enter(SD_MUTEX(un));
24089 		if (token == NULL) {
24090 			rval = EAGAIN;
24091 			goto done;
24092 		}
24093 
24094 		/*
24095 		 * This is a special case IOCTL that doesn't return
24096 		 * until the media state changes. Routine sdpower
24097 		 * knows about and handles this so don't count it
24098 		 * as an active cmd in the driver, which would
24099 		 * keep the device busy to the pm framework.
24100 		 * If the count isn't decremented the device can't
24101 		 * be powered down.
24102 		 */
24103 		un->un_ncmds_in_driver--;
24104 		ASSERT(un->un_ncmds_in_driver >= 0);
24105 
24106 		/*
24107 		 * if a prior request had been made, this will be the same
24108 		 * token, as scsi_watch was designed that way.
24109 		 */
24110 		un->un_swr_token = token;
24111 		un->un_specified_mediastate = state;
24112 
24113 		/*
24114 		 * now wait for media change
24115 		 * we will not be signalled unless mediastate == state but it is
24116 		 * still better to test for this condition, since there is a
24117 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
24118 		 */
24119 		SD_TRACE(SD_LOG_COMMON, un,
24120 		    "sd_check_media: waiting for media state change\n");
24121 		while (un->un_mediastate == state) {
24122 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
24123 				SD_TRACE(SD_LOG_COMMON, un,
24124 				    "sd_check_media: waiting for media state "
24125 				    "was interrupted\n");
24126 				un->un_ncmds_in_driver++;
24127 				rval = EINTR;
24128 				goto done;
24129 			}
24130 			SD_TRACE(SD_LOG_COMMON, un,
24131 			    "sd_check_media: received signal, state=%x\n",
24132 			    un->un_mediastate);
24133 		}
24134 		/*
24135 		 * Inc the counter to indicate the device once again
24136 		 * has an active outstanding cmd.
24137 		 */
24138 		un->un_ncmds_in_driver++;
24139 	}
24140 
24141 	/* invalidate geometry */
24142 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
24143 		sr_ejected(un);
24144 	}
24145 
24146 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
24147 		uint64_t	capacity;
24148 		uint_t		lbasize;
24149 
24150 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
24151 		mutex_exit(SD_MUTEX(un));
24152 		/*
24153 		 * Since the following routines use SD_PATH_DIRECT, we must
24154 		 * call PM directly before the upcoming disk accesses. This
24155 		 * may cause the disk to be power/spin up.
24156 		 */
24157 
24158 		if (sd_pm_entry(un) == DDI_SUCCESS) {
24159 			rval = sd_send_scsi_READ_CAPACITY(un,
24160 			    &capacity,
24161 			    &lbasize, SD_PATH_DIRECT);
24162 			if (rval != 0) {
24163 				sd_pm_exit(un);
24164 				mutex_enter(SD_MUTEX(un));
24165 				goto done;
24166 			}
24167 		} else {
24168 			rval = EIO;
24169 			mutex_enter(SD_MUTEX(un));
24170 			goto done;
24171 		}
24172 		mutex_enter(SD_MUTEX(un));
24173 
24174 		sd_update_block_info(un, lbasize, capacity);
24175 
24176 		un->un_f_geometry_is_valid	= FALSE;
24177 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
24178 
24179 		mutex_exit(SD_MUTEX(un));
24180 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
24181 		    SD_PATH_DIRECT);
24182 		sd_pm_exit(un);
24183 
24184 		mutex_enter(SD_MUTEX(un));
24185 	}
24186 done:
24187 	un->un_f_watcht_stopped = FALSE;
24188 	if (un->un_swr_token) {
24189 		/*
24190 		 * Use of this local token and the mutex ensures that we avoid
24191 		 * some race conditions associated with terminating the
24192 		 * scsi watch.
24193 		 */
24194 		token = un->un_swr_token;
24195 		un->un_swr_token = (opaque_t)NULL;
24196 		mutex_exit(SD_MUTEX(un));
24197 		(void) scsi_watch_request_terminate(token,
24198 		    SCSI_WATCH_TERMINATE_WAIT);
24199 		mutex_enter(SD_MUTEX(un));
24200 	}
24201 
24202 	/*
24203 	 * Update the capacity kstat value, if no media previously
24204 	 * (capacity kstat is 0) and a media has been inserted
24205 	 * (un_f_blockcount_is_valid == TRUE)
24206 	 */
24207 	if (un->un_errstats) {
24208 		struct sd_errstats	*stp = NULL;
24209 
24210 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
24211 		if ((stp->sd_capacity.value.ui64 == 0) &&
24212 		    (un->un_f_blockcount_is_valid == TRUE)) {
24213 			stp->sd_capacity.value.ui64 =
24214 			    (uint64_t)((uint64_t)un->un_blockcount *
24215 			    un->un_sys_blocksize);
24216 		}
24217 	}
24218 	mutex_exit(SD_MUTEX(un));
24219 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
24220 	return (rval);
24221 }
24222 
24223 
24224 /*
24225  *    Function: sd_delayed_cv_broadcast
24226  *
24227  * Description: Delayed cv_broadcast to allow for target to recover from media
24228  *		insertion.
24229  *
24230  *   Arguments: arg - driver soft state (unit) structure
24231  */
24232 
24233 static void
24234 sd_delayed_cv_broadcast(void *arg)
24235 {
24236 	struct sd_lun *un = arg;
24237 
24238 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
24239 
24240 	mutex_enter(SD_MUTEX(un));
24241 	un->un_dcvb_timeid = NULL;
24242 	cv_broadcast(&un->un_state_cv);
24243 	mutex_exit(SD_MUTEX(un));
24244 }
24245 
24246 
24247 /*
24248  *    Function: sd_media_watch_cb
24249  *
24250  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
24251  *		routine processes the TUR sense data and updates the driver
24252  *		state if a transition has occurred. The user thread
24253  *		(sd_check_media) is then signalled.
24254  *
24255  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24256  *			among multiple watches that share this callback function
24257  *		resultp - scsi watch facility result packet containing scsi
24258  *			  packet, status byte and sense data
24259  *
24260  * Return Code: 0 for success, -1 for failure
24261  */
24262 
24263 static int
24264 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24265 {
24266 	struct sd_lun			*un;
24267 	struct scsi_status		*statusp = resultp->statusp;
24268 	struct scsi_extended_sense	*sensep = resultp->sensep;
24269 	enum dkio_state			state = DKIO_NONE;
24270 	dev_t				dev = (dev_t)arg;
24271 	uchar_t				actual_sense_length;
24272 
24273 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24274 		return (-1);
24275 	}
24276 	actual_sense_length = resultp->actual_sense_length;
24277 
24278 	mutex_enter(SD_MUTEX(un));
24279 	SD_TRACE(SD_LOG_COMMON, un,
24280 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
24281 	    *((char *)statusp), (void *)sensep, actual_sense_length);
24282 
24283 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
24284 		un->un_mediastate = DKIO_DEV_GONE;
24285 		cv_broadcast(&un->un_state_cv);
24286 		mutex_exit(SD_MUTEX(un));
24287 
24288 		return (0);
24289 	}
24290 
24291 	/*
24292 	 * If there was a check condition then sensep points to valid sense data
24293 	 * If status was not a check condition but a reservation or busy status
24294 	 * then the new state is DKIO_NONE
24295 	 */
24296 	if (sensep != NULL) {
24297 		SD_INFO(SD_LOG_COMMON, un,
24298 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24299 		    sensep->es_key, sensep->es_add_code, sensep->es_qual_code);
24300 		/* This routine only uses up to 13 bytes of sense data. */
24301 		if (actual_sense_length >= 13) {
24302 			if (sensep->es_key == KEY_UNIT_ATTENTION) {
24303 				if (sensep->es_add_code == 0x28) {
24304 					state = DKIO_INSERTED;
24305 				}
24306 			} else {
24307 				/*
24308 				 * if 02/04/02  means that the host
24309 				 * should send start command. Explicitly
24310 				 * leave the media state as is
24311 				 * (inserted) as the media is inserted
24312 				 * and host has stopped device for PM
24313 				 * reasons. Upon next true read/write
24314 				 * to this media will bring the
24315 				 * device to the right state good for
24316 				 * media access.
24317 				 */
24318 				if ((sensep->es_key == KEY_NOT_READY) &&
24319 				    (sensep->es_add_code == 0x3a)) {
24320 					state = DKIO_EJECTED;
24321 				}
24322 
24323 				/*
24324 				 * If the drivge is busy with an operation
24325 				 * or long write, keep the media in an
24326 				 * inserted state.
24327 				 */
24328 
24329 				if ((sensep->es_key == KEY_NOT_READY) &&
24330 				    (sensep->es_add_code == 0x04) &&
24331 				    ((sensep->es_qual_code == 0x02) ||
24332 				    (sensep->es_qual_code == 0x07) ||
24333 				    (sensep->es_qual_code == 0x08))) {
24334 					state = DKIO_INSERTED;
24335 				}
24336 			}
24337 		}
24338 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24339 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24340 		state = DKIO_INSERTED;
24341 	}
24342 
24343 	SD_TRACE(SD_LOG_COMMON, un,
24344 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24345 	    state, un->un_specified_mediastate);
24346 
24347 	/*
24348 	 * now signal the waiting thread if this is *not* the specified state;
24349 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24350 	 * to recover
24351 	 */
24352 	if (state != un->un_specified_mediastate) {
24353 		un->un_mediastate = state;
24354 		if (state == DKIO_INSERTED) {
24355 			/*
24356 			 * delay the signal to give the drive a chance
24357 			 * to do what it apparently needs to do
24358 			 */
24359 			SD_TRACE(SD_LOG_COMMON, un,
24360 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24361 			if (un->un_dcvb_timeid == NULL) {
24362 				un->un_dcvb_timeid =
24363 				    timeout(sd_delayed_cv_broadcast, un,
24364 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24365 			}
24366 		} else {
24367 			SD_TRACE(SD_LOG_COMMON, un,
24368 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24369 			cv_broadcast(&un->un_state_cv);
24370 		}
24371 	}
24372 	mutex_exit(SD_MUTEX(un));
24373 	return (0);
24374 }
24375 
24376 
24377 /*
24378  *    Function: sd_dkio_get_temp
24379  *
24380  * Description: This routine is the driver entry point for handling ioctl
24381  *		requests to get the disk temperature.
24382  *
24383  *   Arguments: dev  - the device number
24384  *		arg  - pointer to user provided dk_temperature structure.
24385  *		flag - this argument is a pass through to ddi_copyxxx()
24386  *		       directly from the mode argument of ioctl().
24387  *
24388  * Return Code: 0
24389  *		EFAULT
24390  *		ENXIO
24391  *		EAGAIN
24392  */
24393 
24394 static int
24395 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24396 {
24397 	struct sd_lun		*un = NULL;
24398 	struct dk_temperature	*dktemp = NULL;
24399 	uchar_t			*temperature_page;
24400 	int			rval = 0;
24401 	int			path_flag = SD_PATH_STANDARD;
24402 
24403 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24404 		return (ENXIO);
24405 	}
24406 
24407 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24408 
24409 	/* copyin the disk temp argument to get the user flags */
24410 	if (ddi_copyin((void *)arg, dktemp,
24411 	    sizeof (struct dk_temperature), flag) != 0) {
24412 		rval = EFAULT;
24413 		goto done;
24414 	}
24415 
24416 	/* Initialize the temperature to invalid. */
24417 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24418 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24419 
24420 	/*
24421 	 * Note: Investigate removing the "bypass pm" semantic.
24422 	 * Can we just bypass PM always?
24423 	 */
24424 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24425 		path_flag = SD_PATH_DIRECT;
24426 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24427 		mutex_enter(&un->un_pm_mutex);
24428 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24429 			/*
24430 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24431 			 * in low power mode, we can not wake it up, Need to
24432 			 * return EAGAIN.
24433 			 */
24434 			mutex_exit(&un->un_pm_mutex);
24435 			rval = EAGAIN;
24436 			goto done;
24437 		} else {
24438 			/*
24439 			 * Indicate to PM the device is busy. This is required
24440 			 * to avoid a race - i.e. the ioctl is issuing a
24441 			 * command and the pm framework brings down the device
24442 			 * to low power mode (possible power cut-off on some
24443 			 * platforms).
24444 			 */
24445 			mutex_exit(&un->un_pm_mutex);
24446 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24447 				rval = EAGAIN;
24448 				goto done;
24449 			}
24450 		}
24451 	}
24452 
24453 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24454 
24455 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
24456 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
24457 		goto done2;
24458 	}
24459 
24460 	/*
24461 	 * For the current temperature verify that the parameter length is 0x02
24462 	 * and the parameter code is 0x00
24463 	 */
24464 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24465 	    (temperature_page[5] == 0x00)) {
24466 		if (temperature_page[9] == 0xFF) {
24467 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24468 		} else {
24469 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24470 		}
24471 	}
24472 
24473 	/*
24474 	 * For the reference temperature verify that the parameter
24475 	 * length is 0x02 and the parameter code is 0x01
24476 	 */
24477 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24478 	    (temperature_page[11] == 0x01)) {
24479 		if (temperature_page[15] == 0xFF) {
24480 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24481 		} else {
24482 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24483 		}
24484 	}
24485 
24486 	/* Do the copyout regardless of the temperature commands status. */
24487 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24488 	    flag) != 0) {
24489 		rval = EFAULT;
24490 	}
24491 
24492 done2:
24493 	if (path_flag == SD_PATH_DIRECT) {
24494 		sd_pm_exit(un);
24495 	}
24496 
24497 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24498 done:
24499 	if (dktemp != NULL) {
24500 		kmem_free(dktemp, sizeof (struct dk_temperature));
24501 	}
24502 
24503 	return (rval);
24504 }
24505 
24506 
24507 /*
24508  *    Function: sd_log_page_supported
24509  *
24510  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24511  *		supported log pages.
24512  *
24513  *   Arguments: un -
24514  *		log_page -
24515  *
24516  * Return Code: -1 - on error (log sense is optional and may not be supported).
24517  *		0  - log page not found.
24518  *  		1  - log page found.
24519  */
24520 
24521 static int
24522 sd_log_page_supported(struct sd_lun *un, int log_page)
24523 {
24524 	uchar_t *log_page_data;
24525 	int	i;
24526 	int	match = 0;
24527 	int	log_size;
24528 
24529 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24530 
24531 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
24532 	    SD_PATH_DIRECT) != 0) {
24533 		SD_ERROR(SD_LOG_COMMON, un,
24534 		    "sd_log_page_supported: failed log page retrieval\n");
24535 		kmem_free(log_page_data, 0xFF);
24536 		return (-1);
24537 	}
24538 	log_size = log_page_data[3];
24539 
24540 	/*
24541 	 * The list of supported log pages start from the fourth byte. Check
24542 	 * until we run out of log pages or a match is found.
24543 	 */
24544 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24545 		if (log_page_data[i] == log_page) {
24546 			match++;
24547 		}
24548 	}
24549 	kmem_free(log_page_data, 0xFF);
24550 	return (match);
24551 }
24552 
24553 
24554 /*
24555  *    Function: sd_mhdioc_failfast
24556  *
24557  * Description: This routine is the driver entry point for handling ioctl
24558  *		requests to enable/disable the multihost failfast option.
24559  *		(MHIOCENFAILFAST)
24560  *
24561  *   Arguments: dev	- the device number
24562  *		arg	- user specified probing interval.
24563  *		flag	- this argument is a pass through to ddi_copyxxx()
24564  *			  directly from the mode argument of ioctl().
24565  *
24566  * Return Code: 0
24567  *		EFAULT
24568  *		ENXIO
24569  */
24570 
24571 static int
24572 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24573 {
24574 	struct sd_lun	*un = NULL;
24575 	int		mh_time;
24576 	int		rval = 0;
24577 
24578 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24579 		return (ENXIO);
24580 	}
24581 
24582 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24583 		return (EFAULT);
24584 
24585 	if (mh_time) {
24586 		mutex_enter(SD_MUTEX(un));
24587 		un->un_resvd_status |= SD_FAILFAST;
24588 		mutex_exit(SD_MUTEX(un));
24589 		/*
24590 		 * If mh_time is INT_MAX, then this ioctl is being used for
24591 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24592 		 */
24593 		if (mh_time != INT_MAX) {
24594 			rval = sd_check_mhd(dev, mh_time);
24595 		}
24596 	} else {
24597 		(void) sd_check_mhd(dev, 0);
24598 		mutex_enter(SD_MUTEX(un));
24599 		un->un_resvd_status &= ~SD_FAILFAST;
24600 		mutex_exit(SD_MUTEX(un));
24601 	}
24602 	return (rval);
24603 }
24604 
24605 
24606 /*
24607  *    Function: sd_mhdioc_takeown
24608  *
24609  * Description: This routine is the driver entry point for handling ioctl
24610  *		requests to forcefully acquire exclusive access rights to the
24611  *		multihost disk (MHIOCTKOWN).
24612  *
24613  *   Arguments: dev	- the device number
24614  *		arg	- user provided structure specifying the delay
24615  *			  parameters in milliseconds
24616  *		flag	- this argument is a pass through to ddi_copyxxx()
24617  *			  directly from the mode argument of ioctl().
24618  *
24619  * Return Code: 0
24620  *		EFAULT
24621  *		ENXIO
24622  */
24623 
24624 static int
24625 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24626 {
24627 	struct sd_lun		*un = NULL;
24628 	struct mhioctkown	*tkown = NULL;
24629 	int			rval = 0;
24630 
24631 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24632 		return (ENXIO);
24633 	}
24634 
24635 	if (arg != NULL) {
24636 		tkown = (struct mhioctkown *)
24637 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24638 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24639 		if (rval != 0) {
24640 			rval = EFAULT;
24641 			goto error;
24642 		}
24643 	}
24644 
24645 	rval = sd_take_ownership(dev, tkown);
24646 	mutex_enter(SD_MUTEX(un));
24647 	if (rval == 0) {
24648 		un->un_resvd_status |= SD_RESERVE;
24649 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24650 			sd_reinstate_resv_delay =
24651 			    tkown->reinstate_resv_delay * 1000;
24652 		} else {
24653 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24654 		}
24655 		/*
24656 		 * Give the scsi_watch routine interval set by
24657 		 * the MHIOCENFAILFAST ioctl precedence here.
24658 		 */
24659 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24660 			mutex_exit(SD_MUTEX(un));
24661 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24662 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24663 			    "sd_mhdioc_takeown : %d\n",
24664 			    sd_reinstate_resv_delay);
24665 		} else {
24666 			mutex_exit(SD_MUTEX(un));
24667 		}
24668 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24669 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24670 	} else {
24671 		un->un_resvd_status &= ~SD_RESERVE;
24672 		mutex_exit(SD_MUTEX(un));
24673 	}
24674 
24675 error:
24676 	if (tkown != NULL) {
24677 		kmem_free(tkown, sizeof (struct mhioctkown));
24678 	}
24679 	return (rval);
24680 }
24681 
24682 
24683 /*
24684  *    Function: sd_mhdioc_release
24685  *
24686  * Description: This routine is the driver entry point for handling ioctl
24687  *		requests to release exclusive access rights to the multihost
24688  *		disk (MHIOCRELEASE).
24689  *
24690  *   Arguments: dev	- the device number
24691  *
24692  * Return Code: 0
24693  *		ENXIO
24694  */
24695 
24696 static int
24697 sd_mhdioc_release(dev_t dev)
24698 {
24699 	struct sd_lun		*un = NULL;
24700 	timeout_id_t		resvd_timeid_save;
24701 	int			resvd_status_save;
24702 	int			rval = 0;
24703 
24704 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24705 		return (ENXIO);
24706 	}
24707 
24708 	mutex_enter(SD_MUTEX(un));
24709 	resvd_status_save = un->un_resvd_status;
24710 	un->un_resvd_status &=
24711 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24712 	if (un->un_resvd_timeid) {
24713 		resvd_timeid_save = un->un_resvd_timeid;
24714 		un->un_resvd_timeid = NULL;
24715 		mutex_exit(SD_MUTEX(un));
24716 		(void) untimeout(resvd_timeid_save);
24717 	} else {
24718 		mutex_exit(SD_MUTEX(un));
24719 	}
24720 
24721 	/*
24722 	 * destroy any pending timeout thread that may be attempting to
24723 	 * reinstate reservation on this device.
24724 	 */
24725 	sd_rmv_resv_reclaim_req(dev);
24726 
24727 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24728 		mutex_enter(SD_MUTEX(un));
24729 		if ((un->un_mhd_token) &&
24730 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24731 			mutex_exit(SD_MUTEX(un));
24732 			(void) sd_check_mhd(dev, 0);
24733 		} else {
24734 			mutex_exit(SD_MUTEX(un));
24735 		}
24736 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24737 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24738 	} else {
24739 		/*
24740 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24741 		 */
24742 		mutex_enter(SD_MUTEX(un));
24743 		un->un_resvd_status = resvd_status_save;
24744 		mutex_exit(SD_MUTEX(un));
24745 	}
24746 	return (rval);
24747 }
24748 
24749 
24750 /*
24751  *    Function: sd_mhdioc_register_devid
24752  *
24753  * Description: This routine is the driver entry point for handling ioctl
24754  *		requests to register the device id (MHIOCREREGISTERDEVID).
24755  *
24756  *		Note: The implementation for this ioctl has been updated to
24757  *		be consistent with the original PSARC case (1999/357)
24758  *		(4375899, 4241671, 4220005)
24759  *
24760  *   Arguments: dev	- the device number
24761  *
24762  * Return Code: 0
24763  *		ENXIO
24764  */
24765 
24766 static int
24767 sd_mhdioc_register_devid(dev_t dev)
24768 {
24769 	struct sd_lun	*un = NULL;
24770 	int		rval = 0;
24771 
24772 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24773 		return (ENXIO);
24774 	}
24775 
24776 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24777 
24778 	mutex_enter(SD_MUTEX(un));
24779 
24780 	/* If a devid already exists, de-register it */
24781 	if (un->un_devid != NULL) {
24782 		ddi_devid_unregister(SD_DEVINFO(un));
24783 		/*
24784 		 * After unregister devid, needs to free devid memory
24785 		 */
24786 		ddi_devid_free(un->un_devid);
24787 		un->un_devid = NULL;
24788 	}
24789 
24790 	/* Check for reservation conflict */
24791 	mutex_exit(SD_MUTEX(un));
24792 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
24793 	mutex_enter(SD_MUTEX(un));
24794 
24795 	switch (rval) {
24796 	case 0:
24797 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24798 		break;
24799 	case EACCES:
24800 		break;
24801 	default:
24802 		rval = EIO;
24803 	}
24804 
24805 	mutex_exit(SD_MUTEX(un));
24806 	return (rval);
24807 }
24808 
24809 
24810 /*
24811  *    Function: sd_mhdioc_inkeys
24812  *
24813  * Description: This routine is the driver entry point for handling ioctl
24814  *		requests to issue the SCSI-3 Persistent In Read Keys command
24815  *		to the device (MHIOCGRP_INKEYS).
24816  *
24817  *   Arguments: dev	- the device number
24818  *		arg	- user provided in_keys structure
24819  *		flag	- this argument is a pass through to ddi_copyxxx()
24820  *			  directly from the mode argument of ioctl().
24821  *
24822  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24823  *		ENXIO
24824  *		EFAULT
24825  */
24826 
24827 static int
24828 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24829 {
24830 	struct sd_lun		*un;
24831 	mhioc_inkeys_t		inkeys;
24832 	int			rval = 0;
24833 
24834 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24835 		return (ENXIO);
24836 	}
24837 
24838 #ifdef _MULTI_DATAMODEL
24839 	switch (ddi_model_convert_from(flag & FMODELS)) {
24840 	case DDI_MODEL_ILP32: {
24841 		struct mhioc_inkeys32	inkeys32;
24842 
24843 		if (ddi_copyin(arg, &inkeys32,
24844 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24845 			return (EFAULT);
24846 		}
24847 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24848 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24849 		    &inkeys, flag)) != 0) {
24850 			return (rval);
24851 		}
24852 		inkeys32.generation = inkeys.generation;
24853 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24854 		    flag) != 0) {
24855 			return (EFAULT);
24856 		}
24857 		break;
24858 	}
24859 	case DDI_MODEL_NONE:
24860 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24861 		    flag) != 0) {
24862 			return (EFAULT);
24863 		}
24864 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24865 		    &inkeys, flag)) != 0) {
24866 			return (rval);
24867 		}
24868 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24869 		    flag) != 0) {
24870 			return (EFAULT);
24871 		}
24872 		break;
24873 	}
24874 
24875 #else /* ! _MULTI_DATAMODEL */
24876 
24877 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24878 		return (EFAULT);
24879 	}
24880 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24881 	if (rval != 0) {
24882 		return (rval);
24883 	}
24884 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24885 		return (EFAULT);
24886 	}
24887 
24888 #endif /* _MULTI_DATAMODEL */
24889 
24890 	return (rval);
24891 }
24892 
24893 
24894 /*
24895  *    Function: sd_mhdioc_inresv
24896  *
24897  * Description: This routine is the driver entry point for handling ioctl
24898  *		requests to issue the SCSI-3 Persistent In Read Reservations
24899  *		command to the device (MHIOCGRP_INKEYS).
24900  *
24901  *   Arguments: dev	- the device number
24902  *		arg	- user provided in_resv structure
24903  *		flag	- this argument is a pass through to ddi_copyxxx()
24904  *			  directly from the mode argument of ioctl().
24905  *
24906  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24907  *		ENXIO
24908  *		EFAULT
24909  */
24910 
24911 static int
24912 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24913 {
24914 	struct sd_lun		*un;
24915 	mhioc_inresvs_t		inresvs;
24916 	int			rval = 0;
24917 
24918 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24919 		return (ENXIO);
24920 	}
24921 
24922 #ifdef _MULTI_DATAMODEL
24923 
24924 	switch (ddi_model_convert_from(flag & FMODELS)) {
24925 	case DDI_MODEL_ILP32: {
24926 		struct mhioc_inresvs32	inresvs32;
24927 
24928 		if (ddi_copyin(arg, &inresvs32,
24929 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24930 			return (EFAULT);
24931 		}
24932 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24933 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24934 		    &inresvs, flag)) != 0) {
24935 			return (rval);
24936 		}
24937 		inresvs32.generation = inresvs.generation;
24938 		if (ddi_copyout(&inresvs32, arg,
24939 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24940 			return (EFAULT);
24941 		}
24942 		break;
24943 	}
24944 	case DDI_MODEL_NONE:
24945 		if (ddi_copyin(arg, &inresvs,
24946 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24947 			return (EFAULT);
24948 		}
24949 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24950 		    &inresvs, flag)) != 0) {
24951 			return (rval);
24952 		}
24953 		if (ddi_copyout(&inresvs, arg,
24954 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24955 			return (EFAULT);
24956 		}
24957 		break;
24958 	}
24959 
24960 #else /* ! _MULTI_DATAMODEL */
24961 
24962 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24963 		return (EFAULT);
24964 	}
24965 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24966 	if (rval != 0) {
24967 		return (rval);
24968 	}
24969 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24970 		return (EFAULT);
24971 	}
24972 
24973 #endif /* ! _MULTI_DATAMODEL */
24974 
24975 	return (rval);
24976 }
24977 
24978 
24979 /*
24980  * The following routines support the clustering functionality described below
24981  * and implement lost reservation reclaim functionality.
24982  *
24983  * Clustering
24984  * ----------
24985  * The clustering code uses two different, independent forms of SCSI
24986  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24987  * Persistent Group Reservations. For any particular disk, it will use either
24988  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24989  *
24990  * SCSI-2
24991  * The cluster software takes ownership of a multi-hosted disk by issuing the
24992  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24993  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
24994  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
24995  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
24996  * meaning of failfast is that if the driver (on this host) ever encounters the
24997  * scsi error return code RESERVATION_CONFLICT from the device, it should
24998  * immediately panic the host. The motivation for this ioctl is that if this
24999  * host does encounter reservation conflict, the underlying cause is that some
25000  * other host of the cluster has decided that this host is no longer in the
25001  * cluster and has seized control of the disks for itself. Since this host is no
25002  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
25003  * does two things:
25004  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
25005  *      error to panic the host
25006  *      (b) it sets up a periodic timer to test whether this host still has
25007  *      "access" (in that no other host has reserved the device):  if the
25008  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
25009  *      purpose of that periodic timer is to handle scenarios where the host is
25010  *      otherwise temporarily quiescent, temporarily doing no real i/o.
25011  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
25012  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
25013  * the device itself.
25014  *
25015  * SCSI-3 PGR
25016  * A direct semantic implementation of the SCSI-3 Persistent Reservation
25017  * facility is supported through the shared multihost disk ioctls
25018  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
25019  * MHIOCGRP_PREEMPTANDABORT)
25020  *
25021  * Reservation Reclaim:
25022  * --------------------
25023  * To support the lost reservation reclaim operations this driver creates a
25024  * single thread to handle reinstating reservations on all devices that have
25025  * lost reservations sd_resv_reclaim_requests are logged for all devices that
25026  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
25027  * and the reservation reclaim thread loops through the requests to regain the
25028  * lost reservations.
25029  */
25030 
25031 /*
25032  *    Function: sd_check_mhd()
25033  *
25034  * Description: This function sets up and submits a scsi watch request or
25035  *		terminates an existing watch request. This routine is used in
25036  *		support of reservation reclaim.
25037  *
25038  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
25039  *			 among multiple watches that share the callback function
25040  *		interval - the number of microseconds specifying the watch
25041  *			   interval for issuing TEST UNIT READY commands. If
25042  *			   set to 0 the watch should be terminated. If the
25043  *			   interval is set to 0 and if the device is required
25044  *			   to hold reservation while disabling failfast, the
25045  *			   watch is restarted with an interval of
25046  *			   reinstate_resv_delay.
25047  *
25048  * Return Code: 0	   - Successful submit/terminate of scsi watch request
25049  *		ENXIO      - Indicates an invalid device was specified
25050  *		EAGAIN     - Unable to submit the scsi watch request
25051  */
25052 
25053 static int
25054 sd_check_mhd(dev_t dev, int interval)
25055 {
25056 	struct sd_lun	*un;
25057 	opaque_t	token;
25058 
25059 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25060 		return (ENXIO);
25061 	}
25062 
25063 	/* is this a watch termination request? */
25064 	if (interval == 0) {
25065 		mutex_enter(SD_MUTEX(un));
25066 		/* if there is an existing watch task then terminate it */
25067 		if (un->un_mhd_token) {
25068 			token = un->un_mhd_token;
25069 			un->un_mhd_token = NULL;
25070 			mutex_exit(SD_MUTEX(un));
25071 			(void) scsi_watch_request_terminate(token,
25072 			    SCSI_WATCH_TERMINATE_WAIT);
25073 			mutex_enter(SD_MUTEX(un));
25074 		} else {
25075 			mutex_exit(SD_MUTEX(un));
25076 			/*
25077 			 * Note: If we return here we don't check for the
25078 			 * failfast case. This is the original legacy
25079 			 * implementation but perhaps we should be checking
25080 			 * the failfast case.
25081 			 */
25082 			return (0);
25083 		}
25084 		/*
25085 		 * If the device is required to hold reservation while
25086 		 * disabling failfast, we need to restart the scsi_watch
25087 		 * routine with an interval of reinstate_resv_delay.
25088 		 */
25089 		if (un->un_resvd_status & SD_RESERVE) {
25090 			interval = sd_reinstate_resv_delay/1000;
25091 		} else {
25092 			/* no failfast so bail */
25093 			mutex_exit(SD_MUTEX(un));
25094 			return (0);
25095 		}
25096 		mutex_exit(SD_MUTEX(un));
25097 	}
25098 
25099 	/*
25100 	 * adjust minimum time interval to 1 second,
25101 	 * and convert from msecs to usecs
25102 	 */
25103 	if (interval > 0 && interval < 1000) {
25104 		interval = 1000;
25105 	}
25106 	interval *= 1000;
25107 
25108 	/*
25109 	 * submit the request to the scsi_watch service
25110 	 */
25111 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
25112 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
25113 	if (token == NULL) {
25114 		return (EAGAIN);
25115 	}
25116 
25117 	/*
25118 	 * save token for termination later on
25119 	 */
25120 	mutex_enter(SD_MUTEX(un));
25121 	un->un_mhd_token = token;
25122 	mutex_exit(SD_MUTEX(un));
25123 	return (0);
25124 }
25125 
25126 
25127 /*
25128  *    Function: sd_mhd_watch_cb()
25129  *
25130  * Description: This function is the call back function used by the scsi watch
25131  *		facility. The scsi watch facility sends the "Test Unit Ready"
25132  *		and processes the status. If applicable (i.e. a "Unit Attention"
25133  *		status and automatic "Request Sense" not used) the scsi watch
25134  *		facility will send a "Request Sense" and retrieve the sense data
25135  *		to be passed to this callback function. In either case the
25136  *		automatic "Request Sense" or the facility submitting one, this
25137  *		callback is passed the status and sense data.
25138  *
25139  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25140  *			among multiple watches that share this callback function
25141  *		resultp - scsi watch facility result packet containing scsi
25142  *			  packet, status byte and sense data
25143  *
25144  * Return Code: 0 - continue the watch task
25145  *		non-zero - terminate the watch task
25146  */
25147 
25148 static int
25149 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
25150 {
25151 	struct sd_lun			*un;
25152 	struct scsi_status		*statusp;
25153 	struct scsi_extended_sense	*sensep;
25154 	struct scsi_pkt			*pkt;
25155 	uchar_t				actual_sense_length;
25156 	dev_t  				dev = (dev_t)arg;
25157 
25158 	ASSERT(resultp != NULL);
25159 	statusp			= resultp->statusp;
25160 	sensep			= resultp->sensep;
25161 	pkt			= resultp->pkt;
25162 	actual_sense_length	= resultp->actual_sense_length;
25163 
25164 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25165 		return (ENXIO);
25166 	}
25167 
25168 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25169 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
25170 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
25171 
25172 	/* Begin processing of the status and/or sense data */
25173 	if (pkt->pkt_reason != CMD_CMPLT) {
25174 		/* Handle the incomplete packet */
25175 		sd_mhd_watch_incomplete(un, pkt);
25176 		return (0);
25177 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
25178 		if (*((unsigned char *)statusp)
25179 		    == STATUS_RESERVATION_CONFLICT) {
25180 			/*
25181 			 * Handle a reservation conflict by panicking if
25182 			 * configured for failfast or by logging the conflict
25183 			 * and updating the reservation status
25184 			 */
25185 			mutex_enter(SD_MUTEX(un));
25186 			if ((un->un_resvd_status & SD_FAILFAST) &&
25187 			    (sd_failfast_enable)) {
25188 				sd_panic_for_res_conflict(un);
25189 				/*NOTREACHED*/
25190 			}
25191 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25192 			    "sd_mhd_watch_cb: Reservation Conflict\n");
25193 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
25194 			mutex_exit(SD_MUTEX(un));
25195 		}
25196 	}
25197 
25198 	if (sensep != NULL) {
25199 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
25200 			mutex_enter(SD_MUTEX(un));
25201 			if ((sensep->es_add_code == SD_SCSI_RESET_SENSE_CODE) &&
25202 			    (un->un_resvd_status & SD_RESERVE)) {
25203 				/*
25204 				 * The additional sense code indicates a power
25205 				 * on or bus device reset has occurred; update
25206 				 * the reservation status.
25207 				 */
25208 				un->un_resvd_status |=
25209 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25210 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25211 				    "sd_mhd_watch_cb: Lost Reservation\n");
25212 			}
25213 		} else {
25214 			return (0);
25215 		}
25216 	} else {
25217 		mutex_enter(SD_MUTEX(un));
25218 	}
25219 
25220 	if ((un->un_resvd_status & SD_RESERVE) &&
25221 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25222 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25223 			/*
25224 			 * A reset occurred in between the last probe and this
25225 			 * one so if a timeout is pending cancel it.
25226 			 */
25227 			if (un->un_resvd_timeid) {
25228 				timeout_id_t temp_id = un->un_resvd_timeid;
25229 				un->un_resvd_timeid = NULL;
25230 				mutex_exit(SD_MUTEX(un));
25231 				(void) untimeout(temp_id);
25232 				mutex_enter(SD_MUTEX(un));
25233 			}
25234 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25235 		}
25236 		if (un->un_resvd_timeid == 0) {
25237 			/* Schedule a timeout to handle the lost reservation */
25238 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25239 			    (void *)dev,
25240 			    drv_usectohz(sd_reinstate_resv_delay));
25241 		}
25242 	}
25243 	mutex_exit(SD_MUTEX(un));
25244 	return (0);
25245 }
25246 
25247 
25248 /*
25249  *    Function: sd_mhd_watch_incomplete()
25250  *
25251  * Description: This function is used to find out why a scsi pkt sent by the
25252  *		scsi watch facility was not completed. Under some scenarios this
25253  *		routine will return. Otherwise it will send a bus reset to see
25254  *		if the drive is still online.
25255  *
25256  *   Arguments: un  - driver soft state (unit) structure
25257  *		pkt - incomplete scsi pkt
25258  */
25259 
25260 static void
25261 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25262 {
25263 	int	be_chatty;
25264 	int	perr;
25265 
25266 	ASSERT(pkt != NULL);
25267 	ASSERT(un != NULL);
25268 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25269 	perr		= (pkt->pkt_statistics & STAT_PERR);
25270 
25271 	mutex_enter(SD_MUTEX(un));
25272 	if (un->un_state == SD_STATE_DUMPING) {
25273 		mutex_exit(SD_MUTEX(un));
25274 		return;
25275 	}
25276 
25277 	switch (pkt->pkt_reason) {
25278 	case CMD_UNX_BUS_FREE:
25279 		/*
25280 		 * If we had a parity error that caused the target to drop BSY*,
25281 		 * don't be chatty about it.
25282 		 */
25283 		if (perr && be_chatty) {
25284 			be_chatty = 0;
25285 		}
25286 		break;
25287 	case CMD_TAG_REJECT:
25288 		/*
25289 		 * The SCSI-2 spec states that a tag reject will be sent by the
25290 		 * target if tagged queuing is not supported. A tag reject may
25291 		 * also be sent during certain initialization periods or to
25292 		 * control internal resources. For the latter case the target
25293 		 * may also return Queue Full.
25294 		 *
25295 		 * If this driver receives a tag reject from a target that is
25296 		 * going through an init period or controlling internal
25297 		 * resources tagged queuing will be disabled. This is a less
25298 		 * than optimal behavior but the driver is unable to determine
25299 		 * the target state and assumes tagged queueing is not supported
25300 		 */
25301 		pkt->pkt_flags = 0;
25302 		un->un_tagflags = 0;
25303 
25304 		if (un->un_f_opt_queueing == TRUE) {
25305 			un->un_throttle = min(un->un_throttle, 3);
25306 		} else {
25307 			un->un_throttle = 1;
25308 		}
25309 		mutex_exit(SD_MUTEX(un));
25310 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25311 		mutex_enter(SD_MUTEX(un));
25312 		break;
25313 	case CMD_INCOMPLETE:
25314 		/*
25315 		 * The transport stopped with an abnormal state, fallthrough and
25316 		 * reset the target and/or bus unless selection did not complete
25317 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25318 		 * go through a target/bus reset
25319 		 */
25320 		if (pkt->pkt_state == STATE_GOT_BUS) {
25321 			break;
25322 		}
25323 		/*FALLTHROUGH*/
25324 
25325 	case CMD_TIMEOUT:
25326 	default:
25327 		/*
25328 		 * The lun may still be running the command, so a lun reset
25329 		 * should be attempted. If the lun reset fails or cannot be
25330 		 * issued, than try a target reset. Lastly try a bus reset.
25331 		 */
25332 		if ((pkt->pkt_statistics &
25333 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25334 			int reset_retval = 0;
25335 			mutex_exit(SD_MUTEX(un));
25336 			if (un->un_f_allow_bus_device_reset == TRUE) {
25337 				if (un->un_f_lun_reset_enabled == TRUE) {
25338 					reset_retval =
25339 					    scsi_reset(SD_ADDRESS(un),
25340 					    RESET_LUN);
25341 				}
25342 				if (reset_retval == 0) {
25343 					reset_retval =
25344 					    scsi_reset(SD_ADDRESS(un),
25345 					    RESET_TARGET);
25346 				}
25347 			}
25348 			if (reset_retval == 0) {
25349 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25350 			}
25351 			mutex_enter(SD_MUTEX(un));
25352 		}
25353 		break;
25354 	}
25355 
25356 	/* A device/bus reset has occurred; update the reservation status. */
25357 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25358 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25359 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25360 			un->un_resvd_status |=
25361 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25362 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25363 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25364 		}
25365 	}
25366 
25367 	/*
25368 	 * The disk has been turned off; Update the device state.
25369 	 *
25370 	 * Note: Should we be offlining the disk here?
25371 	 */
25372 	if (pkt->pkt_state == STATE_GOT_BUS) {
25373 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25374 		    "Disk not responding to selection\n");
25375 		if (un->un_state != SD_STATE_OFFLINE) {
25376 			New_state(un, SD_STATE_OFFLINE);
25377 		}
25378 	} else if (be_chatty) {
25379 		/*
25380 		 * suppress messages if they are all the same pkt reason;
25381 		 * with TQ, many (up to 256) are returned with the same
25382 		 * pkt_reason
25383 		 */
25384 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25385 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25386 			    "sd_mhd_watch_incomplete: "
25387 			    "SCSI transport failed: reason '%s'\n",
25388 			    scsi_rname(pkt->pkt_reason));
25389 		}
25390 	}
25391 	un->un_last_pkt_reason = pkt->pkt_reason;
25392 	mutex_exit(SD_MUTEX(un));
25393 }
25394 
25395 
25396 /*
25397  *    Function: sd_sname()
25398  *
25399  * Description: This is a simple little routine to return a string containing
25400  *		a printable description of command status byte for use in
25401  *		logging.
25402  *
25403  *   Arguments: status - pointer to a status byte
25404  *
25405  * Return Code: char * - string containing status description.
25406  */
25407 
25408 static char *
25409 sd_sname(uchar_t status)
25410 {
25411 	switch (status & STATUS_MASK) {
25412 	case STATUS_GOOD:
25413 		return ("good status");
25414 	case STATUS_CHECK:
25415 		return ("check condition");
25416 	case STATUS_MET:
25417 		return ("condition met");
25418 	case STATUS_BUSY:
25419 		return ("busy");
25420 	case STATUS_INTERMEDIATE:
25421 		return ("intermediate");
25422 	case STATUS_INTERMEDIATE_MET:
25423 		return ("intermediate - condition met");
25424 	case STATUS_RESERVATION_CONFLICT:
25425 		return ("reservation_conflict");
25426 	case STATUS_TERMINATED:
25427 		return ("command terminated");
25428 	case STATUS_QFULL:
25429 		return ("queue full");
25430 	default:
25431 		return ("<unknown status>");
25432 	}
25433 }
25434 
25435 
25436 /*
25437  *    Function: sd_mhd_resvd_recover()
25438  *
25439  * Description: This function adds a reservation entry to the
25440  *		sd_resv_reclaim_request list and signals the reservation
25441  *		reclaim thread that there is work pending. If the reservation
25442  *		reclaim thread has not been previously created this function
25443  *		will kick it off.
25444  *
25445  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25446  *			among multiple watches that share this callback function
25447  *
25448  *     Context: This routine is called by timeout() and is run in interrupt
25449  *		context. It must not sleep or call other functions which may
25450  *		sleep.
25451  */
25452 
25453 static void
25454 sd_mhd_resvd_recover(void *arg)
25455 {
25456 	dev_t			dev = (dev_t)arg;
25457 	struct sd_lun		*un;
25458 	struct sd_thr_request	*sd_treq = NULL;
25459 	struct sd_thr_request	*sd_cur = NULL;
25460 	struct sd_thr_request	*sd_prev = NULL;
25461 	int			already_there = 0;
25462 
25463 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25464 		return;
25465 	}
25466 
25467 	mutex_enter(SD_MUTEX(un));
25468 	un->un_resvd_timeid = NULL;
25469 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25470 		/*
25471 		 * There was a reset so don't issue the reserve, allow the
25472 		 * sd_mhd_watch_cb callback function to notice this and
25473 		 * reschedule the timeout for reservation.
25474 		 */
25475 		mutex_exit(SD_MUTEX(un));
25476 		return;
25477 	}
25478 	mutex_exit(SD_MUTEX(un));
25479 
25480 	/*
25481 	 * Add this device to the sd_resv_reclaim_request list and the
25482 	 * sd_resv_reclaim_thread should take care of the rest.
25483 	 *
25484 	 * Note: We can't sleep in this context so if the memory allocation
25485 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25486 	 * reschedule the timeout for reservation.  (4378460)
25487 	 */
25488 	sd_treq = (struct sd_thr_request *)
25489 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25490 	if (sd_treq == NULL) {
25491 		return;
25492 	}
25493 
25494 	sd_treq->sd_thr_req_next = NULL;
25495 	sd_treq->dev = dev;
25496 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25497 	if (sd_tr.srq_thr_req_head == NULL) {
25498 		sd_tr.srq_thr_req_head = sd_treq;
25499 	} else {
25500 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25501 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25502 			if (sd_cur->dev == dev) {
25503 				/*
25504 				 * already in Queue so don't log
25505 				 * another request for the device
25506 				 */
25507 				already_there = 1;
25508 				break;
25509 			}
25510 			sd_prev = sd_cur;
25511 		}
25512 		if (!already_there) {
25513 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25514 			    "logging request for %lx\n", dev);
25515 			sd_prev->sd_thr_req_next = sd_treq;
25516 		} else {
25517 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25518 		}
25519 	}
25520 
25521 	/*
25522 	 * Create a kernel thread to do the reservation reclaim and free up this
25523 	 * thread. We cannot block this thread while we go away to do the
25524 	 * reservation reclaim
25525 	 */
25526 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25527 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25528 		    sd_resv_reclaim_thread, NULL,
25529 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25530 
25531 	/* Tell the reservation reclaim thread that it has work to do */
25532 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25533 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25534 }
25535 
25536 /*
25537  *    Function: sd_resv_reclaim_thread()
25538  *
25539  * Description: This function implements the reservation reclaim operations
25540  *
25541  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25542  *		      among multiple watches that share this callback function
25543  */
25544 
25545 static void
25546 sd_resv_reclaim_thread()
25547 {
25548 	struct sd_lun		*un;
25549 	struct sd_thr_request	*sd_mhreq;
25550 
25551 	/* Wait for work */
25552 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25553 	if (sd_tr.srq_thr_req_head == NULL) {
25554 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25555 		    &sd_tr.srq_resv_reclaim_mutex);
25556 	}
25557 
25558 	/* Loop while we have work */
25559 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25560 		un = ddi_get_soft_state(sd_state,
25561 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25562 		if (un == NULL) {
25563 			/*
25564 			 * softstate structure is NULL so just
25565 			 * dequeue the request and continue
25566 			 */
25567 			sd_tr.srq_thr_req_head =
25568 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25569 			kmem_free(sd_tr.srq_thr_cur_req,
25570 			    sizeof (struct sd_thr_request));
25571 			continue;
25572 		}
25573 
25574 		/* dequeue the request */
25575 		sd_mhreq = sd_tr.srq_thr_cur_req;
25576 		sd_tr.srq_thr_req_head =
25577 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25578 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25579 
25580 		/*
25581 		 * Reclaim reservation only if SD_RESERVE is still set. There
25582 		 * may have been a call to MHIOCRELEASE before we got here.
25583 		 */
25584 		mutex_enter(SD_MUTEX(un));
25585 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25586 			/*
25587 			 * Note: The SD_LOST_RESERVE flag is cleared before
25588 			 * reclaiming the reservation. If this is done after the
25589 			 * call to sd_reserve_release a reservation loss in the
25590 			 * window between pkt completion of reserve cmd and
25591 			 * mutex_enter below may not be recognized
25592 			 */
25593 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25594 			mutex_exit(SD_MUTEX(un));
25595 
25596 			if (sd_reserve_release(sd_mhreq->dev,
25597 			    SD_RESERVE) == 0) {
25598 				mutex_enter(SD_MUTEX(un));
25599 				un->un_resvd_status |= SD_RESERVE;
25600 				mutex_exit(SD_MUTEX(un));
25601 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25602 				    "sd_resv_reclaim_thread: "
25603 				    "Reservation Recovered\n");
25604 			} else {
25605 				mutex_enter(SD_MUTEX(un));
25606 				un->un_resvd_status |= SD_LOST_RESERVE;
25607 				mutex_exit(SD_MUTEX(un));
25608 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25609 				    "sd_resv_reclaim_thread: Failed "
25610 				    "Reservation Recovery\n");
25611 			}
25612 		} else {
25613 			mutex_exit(SD_MUTEX(un));
25614 		}
25615 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25616 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25617 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25618 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25619 		/*
25620 		 * wakeup the destroy thread if anyone is waiting on
25621 		 * us to complete.
25622 		 */
25623 		cv_signal(&sd_tr.srq_inprocess_cv);
25624 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25625 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25626 	}
25627 
25628 	/*
25629 	 * cleanup the sd_tr structure now that this thread will not exist
25630 	 */
25631 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25632 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25633 	sd_tr.srq_resv_reclaim_thread = NULL;
25634 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25635 	thread_exit();
25636 }
25637 
25638 
25639 /*
25640  *    Function: sd_rmv_resv_reclaim_req()
25641  *
25642  * Description: This function removes any pending reservation reclaim requests
25643  *		for the specified device.
25644  *
25645  *   Arguments: dev - the device 'dev_t'
25646  */
25647 
25648 static void
25649 sd_rmv_resv_reclaim_req(dev_t dev)
25650 {
25651 	struct sd_thr_request *sd_mhreq;
25652 	struct sd_thr_request *sd_prev;
25653 
25654 	/* Remove a reservation reclaim request from the list */
25655 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25656 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25657 		/*
25658 		 * We are attempting to reinstate reservation for
25659 		 * this device. We wait for sd_reserve_release()
25660 		 * to return before we return.
25661 		 */
25662 		cv_wait(&sd_tr.srq_inprocess_cv,
25663 		    &sd_tr.srq_resv_reclaim_mutex);
25664 	} else {
25665 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25666 		if (sd_mhreq && sd_mhreq->dev == dev) {
25667 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25668 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25669 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25670 			return;
25671 		}
25672 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25673 			if (sd_mhreq && sd_mhreq->dev == dev) {
25674 				break;
25675 			}
25676 			sd_prev = sd_mhreq;
25677 		}
25678 		if (sd_mhreq != NULL) {
25679 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25680 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25681 		}
25682 	}
25683 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25684 }
25685 
25686 
25687 /*
25688  *    Function: sd_mhd_reset_notify_cb()
25689  *
25690  * Description: This is a call back function for scsi_reset_notify. This
25691  *		function updates the softstate reserved status and logs the
25692  *		reset. The driver scsi watch facility callback function
25693  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25694  *		will reclaim the reservation.
25695  *
25696  *   Arguments: arg  - driver soft state (unit) structure
25697  */
25698 
25699 static void
25700 sd_mhd_reset_notify_cb(caddr_t arg)
25701 {
25702 	struct sd_lun *un = (struct sd_lun *)arg;
25703 
25704 	mutex_enter(SD_MUTEX(un));
25705 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25706 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25707 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25708 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25709 	}
25710 	mutex_exit(SD_MUTEX(un));
25711 }
25712 
25713 
25714 /*
25715  *    Function: sd_take_ownership()
25716  *
25717  * Description: This routine implements an algorithm to achieve a stable
25718  *		reservation on disks which don't implement priority reserve,
25719  *		and makes sure that other host lose re-reservation attempts.
25720  *		This algorithm contains of a loop that keeps issuing the RESERVE
25721  *		for some period of time (min_ownership_delay, default 6 seconds)
25722  *		During that loop, it looks to see if there has been a bus device
25723  *		reset or bus reset (both of which cause an existing reservation
25724  *		to be lost). If the reservation is lost issue RESERVE until a
25725  *		period of min_ownership_delay with no resets has gone by, or
25726  *		until max_ownership_delay has expired. This loop ensures that
25727  *		the host really did manage to reserve the device, in spite of
25728  *		resets. The looping for min_ownership_delay (default six
25729  *		seconds) is important to early generation clustering products,
25730  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25731  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25732  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25733  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25734  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25735  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25736  *		no longer "owns" the disk and will have panicked itself.  Thus,
25737  *		the host issuing the MHIOCTKOWN is assured (with timing
25738  *		dependencies) that by the time it actually starts to use the
25739  *		disk for real work, the old owner is no longer accessing it.
25740  *
25741  *		min_ownership_delay is the minimum amount of time for which the
25742  *		disk must be reserved continuously devoid of resets before the
25743  *		MHIOCTKOWN ioctl will return success.
25744  *
25745  *		max_ownership_delay indicates the amount of time by which the
25746  *		take ownership should succeed or timeout with an error.
25747  *
25748  *   Arguments: dev - the device 'dev_t'
25749  *		*p  - struct containing timing info.
25750  *
25751  * Return Code: 0 for success or error code
25752  */
25753 
25754 static int
25755 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25756 {
25757 	struct sd_lun	*un;
25758 	int		rval;
25759 	int		err;
25760 	int		reservation_count   = 0;
25761 	int		min_ownership_delay =  6000000; /* in usec */
25762 	int		max_ownership_delay = 30000000; /* in usec */
25763 	clock_t		start_time;	/* starting time of this algorithm */
25764 	clock_t		end_time;	/* time limit for giving up */
25765 	clock_t		ownership_time;	/* time limit for stable ownership */
25766 	clock_t		current_time;
25767 	clock_t		previous_current_time;
25768 
25769 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25770 		return (ENXIO);
25771 	}
25772 
25773 	/*
25774 	 * Attempt a device reservation. A priority reservation is requested.
25775 	 */
25776 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25777 	    != SD_SUCCESS) {
25778 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25779 		    "sd_take_ownership: return(1)=%d\n", rval);
25780 		return (rval);
25781 	}
25782 
25783 	/* Update the softstate reserved status to indicate the reservation */
25784 	mutex_enter(SD_MUTEX(un));
25785 	un->un_resvd_status |= SD_RESERVE;
25786 	un->un_resvd_status &=
25787 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25788 	mutex_exit(SD_MUTEX(un));
25789 
25790 	if (p != NULL) {
25791 		if (p->min_ownership_delay != 0) {
25792 			min_ownership_delay = p->min_ownership_delay * 1000;
25793 		}
25794 		if (p->max_ownership_delay != 0) {
25795 			max_ownership_delay = p->max_ownership_delay * 1000;
25796 		}
25797 	}
25798 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25799 	    "sd_take_ownership: min, max delays: %d, %d\n",
25800 	    min_ownership_delay, max_ownership_delay);
25801 
25802 	start_time = ddi_get_lbolt();
25803 	current_time	= start_time;
25804 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25805 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25806 
25807 	while (current_time - end_time < 0) {
25808 		delay(drv_usectohz(500000));
25809 
25810 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25811 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25812 				mutex_enter(SD_MUTEX(un));
25813 				rval = (un->un_resvd_status &
25814 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25815 				mutex_exit(SD_MUTEX(un));
25816 				break;
25817 			}
25818 		}
25819 		previous_current_time = current_time;
25820 		current_time = ddi_get_lbolt();
25821 		mutex_enter(SD_MUTEX(un));
25822 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25823 			ownership_time = ddi_get_lbolt() +
25824 			    drv_usectohz(min_ownership_delay);
25825 			reservation_count = 0;
25826 		} else {
25827 			reservation_count++;
25828 		}
25829 		un->un_resvd_status |= SD_RESERVE;
25830 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25831 		mutex_exit(SD_MUTEX(un));
25832 
25833 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25834 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25835 		    "reservation=%s\n", (current_time - previous_current_time),
25836 		    reservation_count ? "ok" : "reclaimed");
25837 
25838 		if (current_time - ownership_time >= 0 &&
25839 		    reservation_count >= 4) {
25840 			rval = 0; /* Achieved a stable ownership */
25841 			break;
25842 		}
25843 		if (current_time - end_time >= 0) {
25844 			rval = EACCES; /* No ownership in max possible time */
25845 			break;
25846 		}
25847 	}
25848 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25849 	    "sd_take_ownership: return(2)=%d\n", rval);
25850 	return (rval);
25851 }
25852 
25853 
25854 /*
25855  *    Function: sd_reserve_release()
25856  *
25857  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25858  *		PRIORITY RESERVE commands based on a user specified command type
25859  *
25860  *   Arguments: dev - the device 'dev_t'
25861  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25862  *		      SD_RESERVE, SD_RELEASE
25863  *
25864  * Return Code: 0 or Error Code
25865  */
25866 
25867 static int
25868 sd_reserve_release(dev_t dev, int cmd)
25869 {
25870 	struct uscsi_cmd	*com = NULL;
25871 	struct sd_lun		*un = NULL;
25872 	char			cdb[CDB_GROUP0];
25873 	int			rval;
25874 
25875 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25876 	    (cmd == SD_PRIORITY_RESERVE));
25877 
25878 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25879 		return (ENXIO);
25880 	}
25881 
25882 	/* instantiate and initialize the command and cdb */
25883 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25884 	bzero(cdb, CDB_GROUP0);
25885 	com->uscsi_flags   = USCSI_SILENT;
25886 	com->uscsi_timeout = un->un_reserve_release_time;
25887 	com->uscsi_cdblen  = CDB_GROUP0;
25888 	com->uscsi_cdb	   = cdb;
25889 	if (cmd == SD_RELEASE) {
25890 		cdb[0] = SCMD_RELEASE;
25891 	} else {
25892 		cdb[0] = SCMD_RESERVE;
25893 	}
25894 
25895 	/* Send the command. */
25896 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25897 	    UIO_SYSSPACE, SD_PATH_STANDARD);
25898 
25899 	/*
25900 	 * "break" a reservation that is held by another host, by issuing a
25901 	 * reset if priority reserve is desired, and we could not get the
25902 	 * device.
25903 	 */
25904 	if ((cmd == SD_PRIORITY_RESERVE) &&
25905 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25906 		/*
25907 		 * First try to reset the LUN. If we cannot, then try a target
25908 		 * reset, followed by a bus reset if the target reset fails.
25909 		 */
25910 		int reset_retval = 0;
25911 		if (un->un_f_lun_reset_enabled == TRUE) {
25912 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25913 		}
25914 		if (reset_retval == 0) {
25915 			/* The LUN reset either failed or was not issued */
25916 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25917 		}
25918 		if ((reset_retval == 0) &&
25919 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25920 			rval = EIO;
25921 			kmem_free(com, sizeof (*com));
25922 			return (rval);
25923 		}
25924 
25925 		bzero(com, sizeof (struct uscsi_cmd));
25926 		com->uscsi_flags   = USCSI_SILENT;
25927 		com->uscsi_cdb	   = cdb;
25928 		com->uscsi_cdblen  = CDB_GROUP0;
25929 		com->uscsi_timeout = 5;
25930 
25931 		/*
25932 		 * Reissue the last reserve command, this time without request
25933 		 * sense.  Assume that it is just a regular reserve command.
25934 		 */
25935 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
25936 		    UIO_SYSSPACE, SD_PATH_STANDARD);
25937 	}
25938 
25939 	/* Return an error if still getting a reservation conflict. */
25940 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25941 		rval = EACCES;
25942 	}
25943 
25944 	kmem_free(com, sizeof (*com));
25945 	return (rval);
25946 }
25947 
25948 
25949 #define	SD_NDUMP_RETRIES	12
25950 /*
25951  *	System Crash Dump routine
25952  */
25953 
25954 static int
25955 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25956 {
25957 	int		instance;
25958 	int		partition;
25959 	int		i;
25960 	int		err;
25961 	struct sd_lun	*un;
25962 	struct dk_map	*lp;
25963 	struct scsi_pkt *wr_pktp;
25964 	struct buf	*wr_bp;
25965 	struct buf	wr_buf;
25966 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25967 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25968 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25969 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25970 	size_t		io_start_offset;
25971 	int		doing_rmw = FALSE;
25972 	int		rval;
25973 #if defined(__i386) || defined(__amd64)
25974 	ssize_t dma_resid;
25975 	daddr_t oblkno;
25976 #endif
25977 
25978 	instance = SDUNIT(dev);
25979 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25980 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
25981 		return (ENXIO);
25982 	}
25983 
25984 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25985 
25986 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25987 
25988 	partition = SDPART(dev);
25989 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25990 
25991 	/* Validate blocks to dump at against partition size. */
25992 	lp = &un->un_map[partition];
25993 	if ((blkno + nblk) > lp->dkl_nblk) {
25994 		SD_TRACE(SD_LOG_DUMP, un,
25995 		    "sddump: dump range larger than partition: "
25996 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25997 		    blkno, nblk, lp->dkl_nblk);
25998 		return (EINVAL);
25999 	}
26000 
26001 	mutex_enter(&un->un_pm_mutex);
26002 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
26003 		struct scsi_pkt *start_pktp;
26004 
26005 		mutex_exit(&un->un_pm_mutex);
26006 
26007 		/*
26008 		 * use pm framework to power on HBA 1st
26009 		 */
26010 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
26011 
26012 		/*
26013 		 * Dump no long uses sdpower to power on a device, it's
26014 		 * in-line here so it can be done in polled mode.
26015 		 */
26016 
26017 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
26018 
26019 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
26020 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
26021 
26022 		if (start_pktp == NULL) {
26023 			/* We were not given a SCSI packet, fail. */
26024 			return (EIO);
26025 		}
26026 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
26027 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
26028 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
26029 		start_pktp->pkt_flags = FLAG_NOINTR;
26030 
26031 		mutex_enter(SD_MUTEX(un));
26032 		SD_FILL_SCSI1_LUN(un, start_pktp);
26033 		mutex_exit(SD_MUTEX(un));
26034 		/*
26035 		 * Scsi_poll returns 0 (success) if the command completes and
26036 		 * the status block is STATUS_GOOD.
26037 		 */
26038 		if (sd_scsi_poll(un, start_pktp) != 0) {
26039 			scsi_destroy_pkt(start_pktp);
26040 			return (EIO);
26041 		}
26042 		scsi_destroy_pkt(start_pktp);
26043 		(void) sd_ddi_pm_resume(un);
26044 	} else {
26045 		mutex_exit(&un->un_pm_mutex);
26046 	}
26047 
26048 	mutex_enter(SD_MUTEX(un));
26049 	un->un_throttle = 0;
26050 
26051 	/*
26052 	 * The first time through, reset the specific target device.
26053 	 * However, when cpr calls sddump we know that sd is in a
26054 	 * a good state so no bus reset is required.
26055 	 * Clear sense data via Request Sense cmd.
26056 	 * In sddump we don't care about allow_bus_device_reset anymore
26057 	 */
26058 
26059 	if ((un->un_state != SD_STATE_SUSPENDED) &&
26060 	    (un->un_state != SD_STATE_DUMPING)) {
26061 
26062 		New_state(un, SD_STATE_DUMPING);
26063 
26064 		if (un->un_f_is_fibre == FALSE) {
26065 			mutex_exit(SD_MUTEX(un));
26066 			/*
26067 			 * Attempt a bus reset for parallel scsi.
26068 			 *
26069 			 * Note: A bus reset is required because on some host
26070 			 * systems (i.e. E420R) a bus device reset is
26071 			 * insufficient to reset the state of the target.
26072 			 *
26073 			 * Note: Don't issue the reset for fibre-channel,
26074 			 * because this tends to hang the bus (loop) for
26075 			 * too long while everyone is logging out and in
26076 			 * and the deadman timer for dumping will fire
26077 			 * before the dump is complete.
26078 			 */
26079 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
26080 				mutex_enter(SD_MUTEX(un));
26081 				Restore_state(un);
26082 				mutex_exit(SD_MUTEX(un));
26083 				return (EIO);
26084 			}
26085 
26086 			/* Delay to give the device some recovery time. */
26087 			drv_usecwait(10000);
26088 
26089 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
26090 				SD_INFO(SD_LOG_DUMP, un,
26091 					"sddump: sd_send_polled_RQS failed\n");
26092 			}
26093 			mutex_enter(SD_MUTEX(un));
26094 		}
26095 	}
26096 
26097 	/*
26098 	 * Convert the partition-relative block number to a
26099 	 * disk physical block number.
26100 	 */
26101 	blkno += un->un_offset[partition];
26102 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
26103 
26104 
26105 	/*
26106 	 * Check if the device has a non-512 block size.
26107 	 */
26108 	wr_bp = NULL;
26109 	if (NOT_DEVBSIZE(un)) {
26110 		tgt_byte_offset = blkno * un->un_sys_blocksize;
26111 		tgt_byte_count = nblk * un->un_sys_blocksize;
26112 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
26113 		    (tgt_byte_count % un->un_tgt_blocksize)) {
26114 			doing_rmw = TRUE;
26115 			/*
26116 			 * Calculate the block number and number of block
26117 			 * in terms of the media block size.
26118 			 */
26119 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26120 			tgt_nblk =
26121 			    ((tgt_byte_offset + tgt_byte_count +
26122 				(un->un_tgt_blocksize - 1)) /
26123 				un->un_tgt_blocksize) - tgt_blkno;
26124 
26125 			/*
26126 			 * Invoke the routine which is going to do read part
26127 			 * of read-modify-write.
26128 			 * Note that this routine returns a pointer to
26129 			 * a valid bp in wr_bp.
26130 			 */
26131 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
26132 			    &wr_bp);
26133 			if (err) {
26134 				mutex_exit(SD_MUTEX(un));
26135 				return (err);
26136 			}
26137 			/*
26138 			 * Offset is being calculated as -
26139 			 * (original block # * system block size) -
26140 			 * (new block # * target block size)
26141 			 */
26142 			io_start_offset =
26143 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
26144 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
26145 
26146 			ASSERT((io_start_offset >= 0) &&
26147 			    (io_start_offset < un->un_tgt_blocksize));
26148 			/*
26149 			 * Do the modify portion of read modify write.
26150 			 */
26151 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
26152 			    (size_t)nblk * un->un_sys_blocksize);
26153 		} else {
26154 			doing_rmw = FALSE;
26155 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26156 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
26157 		}
26158 
26159 		/* Convert blkno and nblk to target blocks */
26160 		blkno = tgt_blkno;
26161 		nblk = tgt_nblk;
26162 	} else {
26163 		wr_bp = &wr_buf;
26164 		bzero(wr_bp, sizeof (struct buf));
26165 		wr_bp->b_flags		= B_BUSY;
26166 		wr_bp->b_un.b_addr	= addr;
26167 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
26168 		wr_bp->b_resid		= 0;
26169 	}
26170 
26171 	mutex_exit(SD_MUTEX(un));
26172 
26173 	/*
26174 	 * Obtain a SCSI packet for the write command.
26175 	 * It should be safe to call the allocator here without
26176 	 * worrying about being locked for DVMA mapping because
26177 	 * the address we're passed is already a DVMA mapping
26178 	 *
26179 	 * We are also not going to worry about semaphore ownership
26180 	 * in the dump buffer. Dumping is single threaded at present.
26181 	 */
26182 
26183 	wr_pktp = NULL;
26184 
26185 #if defined(__i386) || defined(__amd64)
26186 	dma_resid = wr_bp->b_bcount;
26187 	oblkno = blkno;
26188 	while (dma_resid != 0) {
26189 #endif
26190 
26191 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26192 		wr_bp->b_flags &= ~B_ERROR;
26193 
26194 #if defined(__i386) || defined(__amd64)
26195 		blkno = oblkno +
26196 			((wr_bp->b_bcount - dma_resid) /
26197 			    un->un_tgt_blocksize);
26198 		nblk = dma_resid / un->un_tgt_blocksize;
26199 
26200 		if (wr_pktp) {
26201 			/* Partial DMA transfers after initial transfer */
26202 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26203 			    blkno, nblk);
26204 		} else {
26205 			/* Initial transfer */
26206 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26207 			    un->un_pkt_flags, NULL_FUNC, NULL,
26208 			    blkno, nblk);
26209 		}
26210 #else
26211 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26212 		    0, NULL_FUNC, NULL, blkno, nblk);
26213 #endif
26214 
26215 		if (rval == 0) {
26216 			/* We were given a SCSI packet, continue. */
26217 			break;
26218 		}
26219 
26220 		if (i == 0) {
26221 			if (wr_bp->b_flags & B_ERROR) {
26222 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26223 				    "no resources for dumping; "
26224 				    "error code: 0x%x, retrying",
26225 				    geterror(wr_bp));
26226 			} else {
26227 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26228 				    "no resources for dumping; retrying");
26229 			}
26230 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26231 			if (wr_bp->b_flags & B_ERROR) {
26232 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26233 				    "no resources for dumping; error code: "
26234 				    "0x%x, retrying\n", geterror(wr_bp));
26235 			}
26236 		} else {
26237 			if (wr_bp->b_flags & B_ERROR) {
26238 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26239 				    "no resources for dumping; "
26240 				    "error code: 0x%x, retries failed, "
26241 				    "giving up.\n", geterror(wr_bp));
26242 			} else {
26243 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26244 				    "no resources for dumping; "
26245 				    "retries failed, giving up.\n");
26246 			}
26247 			mutex_enter(SD_MUTEX(un));
26248 			Restore_state(un);
26249 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26250 				mutex_exit(SD_MUTEX(un));
26251 				scsi_free_consistent_buf(wr_bp);
26252 			} else {
26253 				mutex_exit(SD_MUTEX(un));
26254 			}
26255 			return (EIO);
26256 		}
26257 		drv_usecwait(10000);
26258 	}
26259 
26260 #if defined(__i386) || defined(__amd64)
26261 	/*
26262 	 * save the resid from PARTIAL_DMA
26263 	 */
26264 	dma_resid = wr_pktp->pkt_resid;
26265 	if (dma_resid != 0)
26266 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26267 	wr_pktp->pkt_resid = 0;
26268 #endif
26269 
26270 	/* SunBug 1222170 */
26271 	wr_pktp->pkt_flags = FLAG_NOINTR;
26272 
26273 	err = EIO;
26274 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26275 
26276 		/*
26277 		 * Scsi_poll returns 0 (success) if the command completes and
26278 		 * the status block is STATUS_GOOD.  We should only check
26279 		 * errors if this condition is not true.  Even then we should
26280 		 * send our own request sense packet only if we have a check
26281 		 * condition and auto request sense has not been performed by
26282 		 * the hba.
26283 		 */
26284 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26285 
26286 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26287 		    (wr_pktp->pkt_resid == 0)) {
26288 			err = SD_SUCCESS;
26289 			break;
26290 		}
26291 
26292 		/*
26293 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26294 		 */
26295 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26296 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26297 			    "Device is gone\n");
26298 			break;
26299 		}
26300 
26301 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26302 			SD_INFO(SD_LOG_DUMP, un,
26303 			    "sddump: write failed with CHECK, try # %d\n", i);
26304 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26305 				(void) sd_send_polled_RQS(un);
26306 			}
26307 
26308 			continue;
26309 		}
26310 
26311 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26312 			int reset_retval = 0;
26313 
26314 			SD_INFO(SD_LOG_DUMP, un,
26315 			    "sddump: write failed with BUSY, try # %d\n", i);
26316 
26317 			if (un->un_f_lun_reset_enabled == TRUE) {
26318 				reset_retval = scsi_reset(SD_ADDRESS(un),
26319 				    RESET_LUN);
26320 			}
26321 			if (reset_retval == 0) {
26322 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26323 			}
26324 			(void) sd_send_polled_RQS(un);
26325 
26326 		} else {
26327 			SD_INFO(SD_LOG_DUMP, un,
26328 			    "sddump: write failed with 0x%x, try # %d\n",
26329 			    SD_GET_PKT_STATUS(wr_pktp), i);
26330 			mutex_enter(SD_MUTEX(un));
26331 			sd_reset_target(un, wr_pktp);
26332 			mutex_exit(SD_MUTEX(un));
26333 		}
26334 
26335 		/*
26336 		 * If we are not getting anywhere with lun/target resets,
26337 		 * let's reset the bus.
26338 		 */
26339 		if (i == SD_NDUMP_RETRIES/2) {
26340 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26341 			(void) sd_send_polled_RQS(un);
26342 		}
26343 
26344 	}
26345 #if defined(__i386) || defined(__amd64)
26346 	}	/* dma_resid */
26347 #endif
26348 
26349 	scsi_destroy_pkt(wr_pktp);
26350 	mutex_enter(SD_MUTEX(un));
26351 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26352 		mutex_exit(SD_MUTEX(un));
26353 		scsi_free_consistent_buf(wr_bp);
26354 	} else {
26355 		mutex_exit(SD_MUTEX(un));
26356 	}
26357 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26358 	return (err);
26359 }
26360 
26361 /*
26362  *    Function: sd_scsi_poll()
26363  *
26364  * Description: This is a wrapper for the scsi_poll call.
26365  *
26366  *   Arguments: sd_lun - The unit structure
26367  *              scsi_pkt - The scsi packet being sent to the device.
26368  *
26369  * Return Code: 0 - Command completed successfully with good status
26370  *             -1 - Command failed.  This could indicate a check condition
26371  *                  or other status value requiring recovery action.
26372  *
26373  */
26374 
26375 static int
26376 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26377 {
26378 	int status;
26379 
26380 	ASSERT(un != NULL);
26381 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26382 	ASSERT(pktp != NULL);
26383 
26384 	status = SD_SUCCESS;
26385 
26386 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26387 		pktp->pkt_flags |= un->un_tagflags;
26388 		pktp->pkt_flags &= ~FLAG_NODISCON;
26389 	}
26390 
26391 	status = sd_ddi_scsi_poll(pktp);
26392 	/*
26393 	 * Scsi_poll returns 0 (success) if the command completes and the
26394 	 * status block is STATUS_GOOD.  We should only check errors if this
26395 	 * condition is not true.  Even then we should send our own request
26396 	 * sense packet only if we have a check condition and auto
26397 	 * request sense has not been performed by the hba.
26398 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26399 	 */
26400 	if ((status != SD_SUCCESS) &&
26401 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26402 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26403 	    (pktp->pkt_reason != CMD_DEV_GONE))
26404 		(void) sd_send_polled_RQS(un);
26405 
26406 	return (status);
26407 }
26408 
26409 /*
26410  *    Function: sd_send_polled_RQS()
26411  *
26412  * Description: This sends the request sense command to a device.
26413  *
26414  *   Arguments: sd_lun - The unit structure
26415  *
26416  * Return Code: 0 - Command completed successfully with good status
26417  *             -1 - Command failed.
26418  *
26419  */
26420 
26421 static int
26422 sd_send_polled_RQS(struct sd_lun *un)
26423 {
26424 	int	ret_val;
26425 	struct	scsi_pkt	*rqs_pktp;
26426 	struct	buf		*rqs_bp;
26427 
26428 	ASSERT(un != NULL);
26429 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26430 
26431 	ret_val = SD_SUCCESS;
26432 
26433 	rqs_pktp = un->un_rqs_pktp;
26434 	rqs_bp	 = un->un_rqs_bp;
26435 
26436 	mutex_enter(SD_MUTEX(un));
26437 
26438 	if (un->un_sense_isbusy) {
26439 		ret_val = SD_FAILURE;
26440 		mutex_exit(SD_MUTEX(un));
26441 		return (ret_val);
26442 	}
26443 
26444 	/*
26445 	 * If the request sense buffer (and packet) is not in use,
26446 	 * let's set the un_sense_isbusy and send our packet
26447 	 */
26448 	un->un_sense_isbusy 	= 1;
26449 	rqs_pktp->pkt_resid  	= 0;
26450 	rqs_pktp->pkt_reason 	= 0;
26451 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26452 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26453 
26454 	mutex_exit(SD_MUTEX(un));
26455 
26456 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26457 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26458 
26459 	/*
26460 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26461 	 * axle - it has a call into us!
26462 	 */
26463 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26464 		SD_INFO(SD_LOG_COMMON, un,
26465 		    "sd_send_polled_RQS: RQS failed\n");
26466 	}
26467 
26468 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26469 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26470 
26471 	mutex_enter(SD_MUTEX(un));
26472 	un->un_sense_isbusy = 0;
26473 	mutex_exit(SD_MUTEX(un));
26474 
26475 	return (ret_val);
26476 }
26477 
26478 /*
26479  * Defines needed for localized version of the scsi_poll routine.
26480  */
26481 #define	SD_CSEC		10000			/* usecs */
26482 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
26483 
26484 
26485 /*
26486  *    Function: sd_ddi_scsi_poll()
26487  *
26488  * Description: Localized version of the scsi_poll routine.  The purpose is to
26489  *		send a scsi_pkt to a device as a polled command.  This version
26490  *		is to ensure more robust handling of transport errors.
26491  *		Specifically this routine cures not ready, coming ready
26492  *		transition for power up and reset of sonoma's.  This can take
26493  *		up to 45 seconds for power-on and 20 seconds for reset of a
26494  * 		sonoma lun.
26495  *
26496  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26497  *
26498  * Return Code: 0 - Command completed successfully with good status
26499  *             -1 - Command failed.
26500  *
26501  */
26502 
26503 static int
26504 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26505 {
26506 	int busy_count;
26507 	int timeout;
26508 	int rval = SD_FAILURE;
26509 	int savef;
26510 	struct scsi_extended_sense *sensep;
26511 	long savet;
26512 	void (*savec)();
26513 	/*
26514 	 * The following is defined in machdep.c and is used in determining if
26515 	 * the scsi transport system will do polled I/O instead of interrupt
26516 	 * I/O when called from xx_dump().
26517 	 */
26518 	extern int do_polled_io;
26519 
26520 	/*
26521 	 * save old flags in pkt, to restore at end
26522 	 */
26523 	savef = pkt->pkt_flags;
26524 	savec = pkt->pkt_comp;
26525 	savet = pkt->pkt_time;
26526 
26527 	pkt->pkt_flags |= FLAG_NOINTR;
26528 
26529 	/*
26530 	 * XXX there is nothing in the SCSA spec that states that we should not
26531 	 * do a callback for polled cmds; however, removing this will break sd
26532 	 * and probably other target drivers
26533 	 */
26534 	pkt->pkt_comp = NULL;
26535 
26536 	/*
26537 	 * we don't like a polled command without timeout.
26538 	 * 60 seconds seems long enough.
26539 	 */
26540 	if (pkt->pkt_time == 0) {
26541 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26542 	}
26543 
26544 	/*
26545 	 * Send polled cmd.
26546 	 *
26547 	 * We do some error recovery for various errors.  Tran_busy,
26548 	 * queue full, and non-dispatched commands are retried every 10 msec.
26549 	 * as they are typically transient failures.  Busy status and Not
26550 	 * Ready are retried every second as this status takes a while to
26551 	 * change.  Unit attention is retried for pkt_time (60) times
26552 	 * with no delay.
26553 	 */
26554 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
26555 
26556 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26557 		int rc;
26558 		int poll_delay;
26559 
26560 		/*
26561 		 * Initialize pkt status variables.
26562 		 */
26563 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26564 
26565 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26566 			if (rc != TRAN_BUSY) {
26567 				/* Transport failed - give up. */
26568 				break;
26569 			} else {
26570 				/* Transport busy - try again. */
26571 				poll_delay = 1 * SD_CSEC; /* 10 msec */
26572 			}
26573 		} else {
26574 			/*
26575 			 * Transport accepted - check pkt status.
26576 			 */
26577 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26578 			if (pkt->pkt_reason == CMD_CMPLT &&
26579 			    rc == STATUS_CHECK &&
26580 			    pkt->pkt_state & STATE_ARQ_DONE) {
26581 				struct scsi_arq_status *arqstat =
26582 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26583 
26584 				sensep = &arqstat->sts_sensedata;
26585 			} else {
26586 				sensep = NULL;
26587 			}
26588 
26589 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26590 			    (rc == STATUS_GOOD)) {
26591 				/* No error - we're done */
26592 				rval = SD_SUCCESS;
26593 				break;
26594 
26595 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26596 				/* Lost connection - give up */
26597 				break;
26598 
26599 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26600 			    (pkt->pkt_state == 0)) {
26601 				/* Pkt not dispatched - try again. */
26602 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26603 
26604 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26605 			    (rc == STATUS_QFULL)) {
26606 				/* Queue full - try again. */
26607 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
26608 
26609 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26610 			    (rc == STATUS_BUSY)) {
26611 				/* Busy - try again. */
26612 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26613 				busy_count += (SD_SEC_TO_CSEC - 1);
26614 
26615 			} else if ((sensep != NULL) &&
26616 			    (sensep->es_key == KEY_UNIT_ATTENTION)) {
26617 				/* Unit Attention - try again */
26618 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
26619 				continue;
26620 
26621 			} else if ((sensep != NULL) &&
26622 			    (sensep->es_key == KEY_NOT_READY) &&
26623 			    (sensep->es_add_code == 0x04) &&
26624 			    (sensep->es_qual_code == 0x01)) {
26625 				/* Not ready -> ready - try again. */
26626 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
26627 				busy_count += (SD_SEC_TO_CSEC - 1);
26628 
26629 			} else {
26630 				/* BAD status - give up. */
26631 				break;
26632 			}
26633 		}
26634 
26635 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
26636 		    !do_polled_io) {
26637 			delay(drv_usectohz(poll_delay));
26638 		} else {
26639 			/* we busy wait during cpr_dump or interrupt threads */
26640 			drv_usecwait(poll_delay);
26641 		}
26642 	}
26643 
26644 	pkt->pkt_flags = savef;
26645 	pkt->pkt_comp = savec;
26646 	pkt->pkt_time = savet;
26647 	return (rval);
26648 }
26649 
26650 
26651 /*
26652  *    Function: sd_persistent_reservation_in_read_keys
26653  *
26654  * Description: This routine is the driver entry point for handling CD-ROM
26655  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26656  *		by sending the SCSI-3 PRIN commands to the device.
26657  *		Processes the read keys command response by copying the
26658  *		reservation key information into the user provided buffer.
26659  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26660  *
26661  *   Arguments: un   -  Pointer to soft state struct for the target.
26662  *		usrp -	user provided pointer to multihost Persistent In Read
26663  *			Keys structure (mhioc_inkeys_t)
26664  *		flag -	this argument is a pass through to ddi_copyxxx()
26665  *			directly from the mode argument of ioctl().
26666  *
26667  * Return Code: 0   - Success
26668  *		EACCES
26669  *		ENOTSUP
26670  *		errno return code from sd_send_scsi_cmd()
26671  *
26672  *     Context: Can sleep. Does not return until command is completed.
26673  */
26674 
26675 static int
26676 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26677     mhioc_inkeys_t *usrp, int flag)
26678 {
26679 #ifdef _MULTI_DATAMODEL
26680 	struct mhioc_key_list32	li32;
26681 #endif
26682 	sd_prin_readkeys_t	*in;
26683 	mhioc_inkeys_t		*ptr;
26684 	mhioc_key_list_t	li;
26685 	uchar_t			*data_bufp;
26686 	int 			data_len;
26687 	int			rval;
26688 	size_t			copysz;
26689 
26690 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26691 		return (EINVAL);
26692 	}
26693 	bzero(&li, sizeof (mhioc_key_list_t));
26694 
26695 	/*
26696 	 * Get the listsize from user
26697 	 */
26698 #ifdef _MULTI_DATAMODEL
26699 
26700 	switch (ddi_model_convert_from(flag & FMODELS)) {
26701 	case DDI_MODEL_ILP32:
26702 		copysz = sizeof (struct mhioc_key_list32);
26703 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26704 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26705 			    "sd_persistent_reservation_in_read_keys: "
26706 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26707 			rval = EFAULT;
26708 			goto done;
26709 		}
26710 		li.listsize = li32.listsize;
26711 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26712 		break;
26713 
26714 	case DDI_MODEL_NONE:
26715 		copysz = sizeof (mhioc_key_list_t);
26716 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26717 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26718 			    "sd_persistent_reservation_in_read_keys: "
26719 			    "failed ddi_copyin: mhioc_key_list_t\n");
26720 			rval = EFAULT;
26721 			goto done;
26722 		}
26723 		break;
26724 	}
26725 
26726 #else /* ! _MULTI_DATAMODEL */
26727 	copysz = sizeof (mhioc_key_list_t);
26728 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26729 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26730 		    "sd_persistent_reservation_in_read_keys: "
26731 		    "failed ddi_copyin: mhioc_key_list_t\n");
26732 		rval = EFAULT;
26733 		goto done;
26734 	}
26735 #endif
26736 
26737 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26738 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26739 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26740 
26741 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
26742 	    data_len, data_bufp)) != 0) {
26743 		goto done;
26744 	}
26745 	in = (sd_prin_readkeys_t *)data_bufp;
26746 	ptr->generation = BE_32(in->generation);
26747 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26748 
26749 	/*
26750 	 * Return the min(listsize, listlen) keys
26751 	 */
26752 #ifdef _MULTI_DATAMODEL
26753 
26754 	switch (ddi_model_convert_from(flag & FMODELS)) {
26755 	case DDI_MODEL_ILP32:
26756 		li32.listlen = li.listlen;
26757 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26758 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26759 			    "sd_persistent_reservation_in_read_keys: "
26760 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26761 			rval = EFAULT;
26762 			goto done;
26763 		}
26764 		break;
26765 
26766 	case DDI_MODEL_NONE:
26767 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26768 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26769 			    "sd_persistent_reservation_in_read_keys: "
26770 			    "failed ddi_copyout: mhioc_key_list_t\n");
26771 			rval = EFAULT;
26772 			goto done;
26773 		}
26774 		break;
26775 	}
26776 
26777 #else /* ! _MULTI_DATAMODEL */
26778 
26779 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26780 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26781 		    "sd_persistent_reservation_in_read_keys: "
26782 		    "failed ddi_copyout: mhioc_key_list_t\n");
26783 		rval = EFAULT;
26784 		goto done;
26785 	}
26786 
26787 #endif /* _MULTI_DATAMODEL */
26788 
26789 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26790 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26791 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26792 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26793 		    "sd_persistent_reservation_in_read_keys: "
26794 		    "failed ddi_copyout: keylist\n");
26795 		rval = EFAULT;
26796 	}
26797 done:
26798 	kmem_free(data_bufp, data_len);
26799 	return (rval);
26800 }
26801 
26802 
26803 /*
26804  *    Function: sd_persistent_reservation_in_read_resv
26805  *
26806  * Description: This routine is the driver entry point for handling CD-ROM
26807  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26808  *		by sending the SCSI-3 PRIN commands to the device.
26809  *		Process the read persistent reservations command response by
26810  *		copying the reservation information into the user provided
26811  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26812  *
26813  *   Arguments: un   -  Pointer to soft state struct for the target.
26814  *		usrp -	user provided pointer to multihost Persistent In Read
26815  *			Keys structure (mhioc_inkeys_t)
26816  *		flag -	this argument is a pass through to ddi_copyxxx()
26817  *			directly from the mode argument of ioctl().
26818  *
26819  * Return Code: 0   - Success
26820  *		EACCES
26821  *		ENOTSUP
26822  *		errno return code from sd_send_scsi_cmd()
26823  *
26824  *     Context: Can sleep. Does not return until command is completed.
26825  */
26826 
26827 static int
26828 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26829     mhioc_inresvs_t *usrp, int flag)
26830 {
26831 #ifdef _MULTI_DATAMODEL
26832 	struct mhioc_resv_desc_list32 resvlist32;
26833 #endif
26834 	sd_prin_readresv_t	*in;
26835 	mhioc_inresvs_t		*ptr;
26836 	sd_readresv_desc_t	*readresv_ptr;
26837 	mhioc_resv_desc_list_t	resvlist;
26838 	mhioc_resv_desc_t 	resvdesc;
26839 	uchar_t			*data_bufp;
26840 	int 			data_len;
26841 	int			rval;
26842 	int			i;
26843 	size_t			copysz;
26844 	mhioc_resv_desc_t	*bufp;
26845 
26846 	if ((ptr = usrp) == NULL) {
26847 		return (EINVAL);
26848 	}
26849 
26850 	/*
26851 	 * Get the listsize from user
26852 	 */
26853 #ifdef _MULTI_DATAMODEL
26854 	switch (ddi_model_convert_from(flag & FMODELS)) {
26855 	case DDI_MODEL_ILP32:
26856 		copysz = sizeof (struct mhioc_resv_desc_list32);
26857 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26858 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26859 			    "sd_persistent_reservation_in_read_resv: "
26860 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26861 			rval = EFAULT;
26862 			goto done;
26863 		}
26864 		resvlist.listsize = resvlist32.listsize;
26865 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26866 		break;
26867 
26868 	case DDI_MODEL_NONE:
26869 		copysz = sizeof (mhioc_resv_desc_list_t);
26870 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26871 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26872 			    "sd_persistent_reservation_in_read_resv: "
26873 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26874 			rval = EFAULT;
26875 			goto done;
26876 		}
26877 		break;
26878 	}
26879 #else /* ! _MULTI_DATAMODEL */
26880 	copysz = sizeof (mhioc_resv_desc_list_t);
26881 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26882 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26883 		    "sd_persistent_reservation_in_read_resv: "
26884 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26885 		rval = EFAULT;
26886 		goto done;
26887 	}
26888 #endif /* ! _MULTI_DATAMODEL */
26889 
26890 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26891 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26892 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26893 
26894 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
26895 	    data_len, data_bufp)) != 0) {
26896 		goto done;
26897 	}
26898 	in = (sd_prin_readresv_t *)data_bufp;
26899 	ptr->generation = BE_32(in->generation);
26900 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26901 
26902 	/*
26903 	 * Return the min(listsize, listlen( keys
26904 	 */
26905 #ifdef _MULTI_DATAMODEL
26906 
26907 	switch (ddi_model_convert_from(flag & FMODELS)) {
26908 	case DDI_MODEL_ILP32:
26909 		resvlist32.listlen = resvlist.listlen;
26910 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26911 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26912 			    "sd_persistent_reservation_in_read_resv: "
26913 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26914 			rval = EFAULT;
26915 			goto done;
26916 		}
26917 		break;
26918 
26919 	case DDI_MODEL_NONE:
26920 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26921 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26922 			    "sd_persistent_reservation_in_read_resv: "
26923 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26924 			rval = EFAULT;
26925 			goto done;
26926 		}
26927 		break;
26928 	}
26929 
26930 #else /* ! _MULTI_DATAMODEL */
26931 
26932 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26933 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26934 		    "sd_persistent_reservation_in_read_resv: "
26935 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26936 		rval = EFAULT;
26937 		goto done;
26938 	}
26939 
26940 #endif /* ! _MULTI_DATAMODEL */
26941 
26942 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26943 	bufp = resvlist.list;
26944 	copysz = sizeof (mhioc_resv_desc_t);
26945 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26946 	    i++, readresv_ptr++, bufp++) {
26947 
26948 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26949 		    MHIOC_RESV_KEY_SIZE);
26950 		resvdesc.type  = readresv_ptr->type;
26951 		resvdesc.scope = readresv_ptr->scope;
26952 		resvdesc.scope_specific_addr =
26953 		    BE_32(readresv_ptr->scope_specific_addr);
26954 
26955 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26956 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26957 			    "sd_persistent_reservation_in_read_resv: "
26958 			    "failed ddi_copyout: resvlist\n");
26959 			rval = EFAULT;
26960 			goto done;
26961 		}
26962 	}
26963 done:
26964 	kmem_free(data_bufp, data_len);
26965 	return (rval);
26966 }
26967 
26968 
26969 /*
26970  *    Function: sr_change_blkmode()
26971  *
26972  * Description: This routine is the driver entry point for handling CD-ROM
26973  *		block mode ioctl requests. Support for returning and changing
26974  *		the current block size in use by the device is implemented. The
26975  *		LBA size is changed via a MODE SELECT Block Descriptor.
26976  *
26977  *		This routine issues a mode sense with an allocation length of
26978  *		12 bytes for the mode page header and a single block descriptor.
26979  *
26980  *   Arguments: dev - the device 'dev_t'
26981  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26982  *		      CDROMSBLKMODE (set)
26983  *		data - current block size or requested block size
26984  *		flag - this argument is a pass through to ddi_copyxxx() directly
26985  *		       from the mode argument of ioctl().
26986  *
26987  * Return Code: the code returned by sd_send_scsi_cmd()
26988  *		EINVAL if invalid arguments are provided
26989  *		EFAULT if ddi_copyxxx() fails
26990  *		ENXIO if fail ddi_get_soft_state
26991  *		EIO if invalid mode sense block descriptor length
26992  *
26993  */
26994 
26995 static int
26996 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26997 {
26998 	struct sd_lun			*un = NULL;
26999 	struct mode_header		*sense_mhp, *select_mhp;
27000 	struct block_descriptor		*sense_desc, *select_desc;
27001 	int				current_bsize;
27002 	int				rval = EINVAL;
27003 	uchar_t				*sense = NULL;
27004 	uchar_t				*select = NULL;
27005 
27006 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
27007 
27008 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27009 		return (ENXIO);
27010 	}
27011 
27012 	/*
27013 	 * The block length is changed via the Mode Select block descriptor, the
27014 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
27015 	 * required as part of this routine. Therefore the mode sense allocation
27016 	 * length is specified to be the length of a mode page header and a
27017 	 * block descriptor.
27018 	 */
27019 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27020 
27021 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27022 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
27023 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27024 		    "sr_change_blkmode: Mode Sense Failed\n");
27025 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27026 		return (rval);
27027 	}
27028 
27029 	/* Check the block descriptor len to handle only 1 block descriptor */
27030 	sense_mhp = (struct mode_header *)sense;
27031 	if ((sense_mhp->bdesc_length == 0) ||
27032 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
27033 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27034 		    "sr_change_blkmode: Mode Sense returned invalid block"
27035 		    " descriptor length\n");
27036 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27037 		return (EIO);
27038 	}
27039 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
27040 	current_bsize = ((sense_desc->blksize_hi << 16) |
27041 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
27042 
27043 	/* Process command */
27044 	switch (cmd) {
27045 	case CDROMGBLKMODE:
27046 		/* Return the block size obtained during the mode sense */
27047 		if (ddi_copyout(&current_bsize, (void *)data,
27048 		    sizeof (int), flag) != 0)
27049 			rval = EFAULT;
27050 		break;
27051 	case CDROMSBLKMODE:
27052 		/* Validate the requested block size */
27053 		switch (data) {
27054 		case CDROM_BLK_512:
27055 		case CDROM_BLK_1024:
27056 		case CDROM_BLK_2048:
27057 		case CDROM_BLK_2056:
27058 		case CDROM_BLK_2336:
27059 		case CDROM_BLK_2340:
27060 		case CDROM_BLK_2352:
27061 		case CDROM_BLK_2368:
27062 		case CDROM_BLK_2448:
27063 		case CDROM_BLK_2646:
27064 		case CDROM_BLK_2647:
27065 			break;
27066 		default:
27067 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27068 			    "sr_change_blkmode: "
27069 			    "Block Size '%ld' Not Supported\n", data);
27070 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27071 			return (EINVAL);
27072 		}
27073 
27074 		/*
27075 		 * The current block size matches the requested block size so
27076 		 * there is no need to send the mode select to change the size
27077 		 */
27078 		if (current_bsize == data) {
27079 			break;
27080 		}
27081 
27082 		/* Build the select data for the requested block size */
27083 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27084 		select_mhp = (struct mode_header *)select;
27085 		select_desc =
27086 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
27087 		/*
27088 		 * The LBA size is changed via the block descriptor, so the
27089 		 * descriptor is built according to the user data
27090 		 */
27091 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
27092 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
27093 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
27094 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
27095 
27096 		/* Send the mode select for the requested block size */
27097 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27098 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27099 		    SD_PATH_STANDARD)) != 0) {
27100 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27101 			    "sr_change_blkmode: Mode Select Failed\n");
27102 			/*
27103 			 * The mode select failed for the requested block size,
27104 			 * so reset the data for the original block size and
27105 			 * send it to the target. The error is indicated by the
27106 			 * return value for the failed mode select.
27107 			 */
27108 			select_desc->blksize_hi  = sense_desc->blksize_hi;
27109 			select_desc->blksize_mid = sense_desc->blksize_mid;
27110 			select_desc->blksize_lo  = sense_desc->blksize_lo;
27111 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27112 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27113 			    SD_PATH_STANDARD);
27114 		} else {
27115 			ASSERT(!mutex_owned(SD_MUTEX(un)));
27116 			mutex_enter(SD_MUTEX(un));
27117 			sd_update_block_info(un, (uint32_t)data, 0);
27118 
27119 			mutex_exit(SD_MUTEX(un));
27120 		}
27121 		break;
27122 	default:
27123 		/* should not reach here, but check anyway */
27124 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27125 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27126 		rval = EINVAL;
27127 		break;
27128 	}
27129 
27130 	if (select) {
27131 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27132 	}
27133 	if (sense) {
27134 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27135 	}
27136 	return (rval);
27137 }
27138 
27139 
27140 /*
27141  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27142  * implement driver support for getting and setting the CD speed. The command
27143  * set used will be based on the device type. If the device has not been
27144  * identified as MMC the Toshiba vendor specific mode page will be used. If
27145  * the device is MMC but does not support the Real Time Streaming feature
27146  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27147  * be used to read the speed.
27148  */
27149 
27150 /*
27151  *    Function: sr_change_speed()
27152  *
27153  * Description: This routine is the driver entry point for handling CD-ROM
27154  *		drive speed ioctl requests for devices supporting the Toshiba
27155  *		vendor specific drive speed mode page. Support for returning
27156  *		and changing the current drive speed in use by the device is
27157  *		implemented.
27158  *
27159  *   Arguments: dev - the device 'dev_t'
27160  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27161  *		      CDROMSDRVSPEED (set)
27162  *		data - current drive speed or requested drive speed
27163  *		flag - this argument is a pass through to ddi_copyxxx() directly
27164  *		       from the mode argument of ioctl().
27165  *
27166  * Return Code: the code returned by sd_send_scsi_cmd()
27167  *		EINVAL if invalid arguments are provided
27168  *		EFAULT if ddi_copyxxx() fails
27169  *		ENXIO if fail ddi_get_soft_state
27170  *		EIO if invalid mode sense block descriptor length
27171  */
27172 
27173 static int
27174 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27175 {
27176 	struct sd_lun			*un = NULL;
27177 	struct mode_header		*sense_mhp, *select_mhp;
27178 	struct mode_speed		*sense_page, *select_page;
27179 	int				current_speed;
27180 	int				rval = EINVAL;
27181 	int				bd_len;
27182 	uchar_t				*sense = NULL;
27183 	uchar_t				*select = NULL;
27184 
27185 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27186 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27187 		return (ENXIO);
27188 	}
27189 
27190 	/*
27191 	 * Note: The drive speed is being modified here according to a Toshiba
27192 	 * vendor specific mode page (0x31).
27193 	 */
27194 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27195 
27196 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27197 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27198 	    SD_PATH_STANDARD)) != 0) {
27199 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27200 		    "sr_change_speed: Mode Sense Failed\n");
27201 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27202 		return (rval);
27203 	}
27204 	sense_mhp  = (struct mode_header *)sense;
27205 
27206 	/* Check the block descriptor len to handle only 1 block descriptor */
27207 	bd_len = sense_mhp->bdesc_length;
27208 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27209 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27210 		    "sr_change_speed: Mode Sense returned invalid block "
27211 		    "descriptor length\n");
27212 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27213 		return (EIO);
27214 	}
27215 
27216 	sense_page = (struct mode_speed *)
27217 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27218 	current_speed = sense_page->speed;
27219 
27220 	/* Process command */
27221 	switch (cmd) {
27222 	case CDROMGDRVSPEED:
27223 		/* Return the drive speed obtained during the mode sense */
27224 		if (current_speed == 0x2) {
27225 			current_speed = CDROM_TWELVE_SPEED;
27226 		}
27227 		if (ddi_copyout(&current_speed, (void *)data,
27228 		    sizeof (int), flag) != 0) {
27229 			rval = EFAULT;
27230 		}
27231 		break;
27232 	case CDROMSDRVSPEED:
27233 		/* Validate the requested drive speed */
27234 		switch ((uchar_t)data) {
27235 		case CDROM_TWELVE_SPEED:
27236 			data = 0x2;
27237 			/*FALLTHROUGH*/
27238 		case CDROM_NORMAL_SPEED:
27239 		case CDROM_DOUBLE_SPEED:
27240 		case CDROM_QUAD_SPEED:
27241 		case CDROM_MAXIMUM_SPEED:
27242 			break;
27243 		default:
27244 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27245 			    "sr_change_speed: "
27246 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27247 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27248 			return (EINVAL);
27249 		}
27250 
27251 		/*
27252 		 * The current drive speed matches the requested drive speed so
27253 		 * there is no need to send the mode select to change the speed
27254 		 */
27255 		if (current_speed == data) {
27256 			break;
27257 		}
27258 
27259 		/* Build the select data for the requested drive speed */
27260 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27261 		select_mhp = (struct mode_header *)select;
27262 		select_mhp->bdesc_length = 0;
27263 		select_page =
27264 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27265 		select_page =
27266 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27267 		select_page->mode_page.code = CDROM_MODE_SPEED;
27268 		select_page->mode_page.length = 2;
27269 		select_page->speed = (uchar_t)data;
27270 
27271 		/* Send the mode select for the requested block size */
27272 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27273 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27274 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
27275 			/*
27276 			 * The mode select failed for the requested drive speed,
27277 			 * so reset the data for the original drive speed and
27278 			 * send it to the target. The error is indicated by the
27279 			 * return value for the failed mode select.
27280 			 */
27281 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27282 			    "sr_drive_speed: Mode Select Failed\n");
27283 			select_page->speed = sense_page->speed;
27284 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27285 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27286 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27287 		}
27288 		break;
27289 	default:
27290 		/* should not reach here, but check anyway */
27291 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27292 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27293 		rval = EINVAL;
27294 		break;
27295 	}
27296 
27297 	if (select) {
27298 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27299 	}
27300 	if (sense) {
27301 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27302 	}
27303 
27304 	return (rval);
27305 }
27306 
27307 
27308 /*
27309  *    Function: sr_atapi_change_speed()
27310  *
27311  * Description: This routine is the driver entry point for handling CD-ROM
27312  *		drive speed ioctl requests for MMC devices that do not support
27313  *		the Real Time Streaming feature (0x107).
27314  *
27315  *		Note: This routine will use the SET SPEED command which may not
27316  *		be supported by all devices.
27317  *
27318  *   Arguments: dev- the device 'dev_t'
27319  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27320  *		     CDROMSDRVSPEED (set)
27321  *		data- current drive speed or requested drive speed
27322  *		flag- this argument is a pass through to ddi_copyxxx() directly
27323  *		      from the mode argument of ioctl().
27324  *
27325  * Return Code: the code returned by sd_send_scsi_cmd()
27326  *		EINVAL if invalid arguments are provided
27327  *		EFAULT if ddi_copyxxx() fails
27328  *		ENXIO if fail ddi_get_soft_state
27329  *		EIO if invalid mode sense block descriptor length
27330  */
27331 
27332 static int
27333 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27334 {
27335 	struct sd_lun			*un;
27336 	struct uscsi_cmd		*com = NULL;
27337 	struct mode_header_grp2		*sense_mhp;
27338 	uchar_t				*sense_page;
27339 	uchar_t				*sense = NULL;
27340 	char				cdb[CDB_GROUP5];
27341 	int				bd_len;
27342 	int				current_speed = 0;
27343 	int				max_speed = 0;
27344 	int				rval;
27345 
27346 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27347 
27348 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27349 		return (ENXIO);
27350 	}
27351 
27352 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27353 
27354 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
27355 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27356 	    SD_PATH_STANDARD)) != 0) {
27357 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27358 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27359 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27360 		return (rval);
27361 	}
27362 
27363 	/* Check the block descriptor len to handle only 1 block descriptor */
27364 	sense_mhp = (struct mode_header_grp2 *)sense;
27365 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27366 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27367 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27368 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27369 		    "block descriptor length\n");
27370 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27371 		return (EIO);
27372 	}
27373 
27374 	/* Calculate the current and maximum drive speeds */
27375 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27376 	current_speed = (sense_page[14] << 8) | sense_page[15];
27377 	max_speed = (sense_page[8] << 8) | sense_page[9];
27378 
27379 	/* Process the command */
27380 	switch (cmd) {
27381 	case CDROMGDRVSPEED:
27382 		current_speed /= SD_SPEED_1X;
27383 		if (ddi_copyout(&current_speed, (void *)data,
27384 		    sizeof (int), flag) != 0)
27385 			rval = EFAULT;
27386 		break;
27387 	case CDROMSDRVSPEED:
27388 		/* Convert the speed code to KB/sec */
27389 		switch ((uchar_t)data) {
27390 		case CDROM_NORMAL_SPEED:
27391 			current_speed = SD_SPEED_1X;
27392 			break;
27393 		case CDROM_DOUBLE_SPEED:
27394 			current_speed = 2 * SD_SPEED_1X;
27395 			break;
27396 		case CDROM_QUAD_SPEED:
27397 			current_speed = 4 * SD_SPEED_1X;
27398 			break;
27399 		case CDROM_TWELVE_SPEED:
27400 			current_speed = 12 * SD_SPEED_1X;
27401 			break;
27402 		case CDROM_MAXIMUM_SPEED:
27403 			current_speed = 0xffff;
27404 			break;
27405 		default:
27406 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27407 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27408 			    (uchar_t)data);
27409 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27410 			return (EINVAL);
27411 		}
27412 
27413 		/* Check the request against the drive's max speed. */
27414 		if (current_speed != 0xffff) {
27415 			if (current_speed > max_speed) {
27416 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27417 				return (EINVAL);
27418 			}
27419 		}
27420 
27421 		/*
27422 		 * Build and send the SET SPEED command
27423 		 *
27424 		 * Note: The SET SPEED (0xBB) command used in this routine is
27425 		 * obsolete per the SCSI MMC spec but still supported in the
27426 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27427 		 * therefore the command is still implemented in this routine.
27428 		 */
27429 		bzero(cdb, sizeof (cdb));
27430 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27431 		cdb[2] = (uchar_t)(current_speed >> 8);
27432 		cdb[3] = (uchar_t)current_speed;
27433 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27434 		com->uscsi_cdb	   = (caddr_t)cdb;
27435 		com->uscsi_cdblen  = CDB_GROUP5;
27436 		com->uscsi_bufaddr = NULL;
27437 		com->uscsi_buflen  = 0;
27438 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27439 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
27440 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27441 		break;
27442 	default:
27443 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27444 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27445 		rval = EINVAL;
27446 	}
27447 
27448 	if (sense) {
27449 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27450 	}
27451 	if (com) {
27452 		kmem_free(com, sizeof (*com));
27453 	}
27454 	return (rval);
27455 }
27456 
27457 
27458 /*
27459  *    Function: sr_pause_resume()
27460  *
27461  * Description: This routine is the driver entry point for handling CD-ROM
27462  *		pause/resume ioctl requests. This only affects the audio play
27463  *		operation.
27464  *
27465  *   Arguments: dev - the device 'dev_t'
27466  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27467  *		      for setting the resume bit of the cdb.
27468  *
27469  * Return Code: the code returned by sd_send_scsi_cmd()
27470  *		EINVAL if invalid mode specified
27471  *
27472  */
27473 
27474 static int
27475 sr_pause_resume(dev_t dev, int cmd)
27476 {
27477 	struct sd_lun		*un;
27478 	struct uscsi_cmd	*com;
27479 	char			cdb[CDB_GROUP1];
27480 	int			rval;
27481 
27482 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27483 		return (ENXIO);
27484 	}
27485 
27486 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27487 	bzero(cdb, CDB_GROUP1);
27488 	cdb[0] = SCMD_PAUSE_RESUME;
27489 	switch (cmd) {
27490 	case CDROMRESUME:
27491 		cdb[8] = 1;
27492 		break;
27493 	case CDROMPAUSE:
27494 		cdb[8] = 0;
27495 		break;
27496 	default:
27497 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27498 		    " Command '%x' Not Supported\n", cmd);
27499 		rval = EINVAL;
27500 		goto done;
27501 	}
27502 
27503 	com->uscsi_cdb    = cdb;
27504 	com->uscsi_cdblen = CDB_GROUP1;
27505 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27506 
27507 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27508 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27509 
27510 done:
27511 	kmem_free(com, sizeof (*com));
27512 	return (rval);
27513 }
27514 
27515 
27516 /*
27517  *    Function: sr_play_msf()
27518  *
27519  * Description: This routine is the driver entry point for handling CD-ROM
27520  *		ioctl requests to output the audio signals at the specified
27521  *		starting address and continue the audio play until the specified
27522  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27523  *		Frame (MSF) format.
27524  *
27525  *   Arguments: dev	- the device 'dev_t'
27526  *		data	- pointer to user provided audio msf structure,
27527  *		          specifying start/end addresses.
27528  *		flag	- this argument is a pass through to ddi_copyxxx()
27529  *		          directly from the mode argument of ioctl().
27530  *
27531  * Return Code: the code returned by sd_send_scsi_cmd()
27532  *		EFAULT if ddi_copyxxx() fails
27533  *		ENXIO if fail ddi_get_soft_state
27534  *		EINVAL if data pointer is NULL
27535  */
27536 
27537 static int
27538 sr_play_msf(dev_t dev, caddr_t data, int flag)
27539 {
27540 	struct sd_lun		*un;
27541 	struct uscsi_cmd	*com;
27542 	struct cdrom_msf	msf_struct;
27543 	struct cdrom_msf	*msf = &msf_struct;
27544 	char			cdb[CDB_GROUP1];
27545 	int			rval;
27546 
27547 	if (data == NULL) {
27548 		return (EINVAL);
27549 	}
27550 
27551 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27552 		return (ENXIO);
27553 	}
27554 
27555 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27556 		return (EFAULT);
27557 	}
27558 
27559 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27560 	bzero(cdb, CDB_GROUP1);
27561 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27562 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27563 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27564 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27565 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27566 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27567 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27568 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27569 	} else {
27570 		cdb[3] = msf->cdmsf_min0;
27571 		cdb[4] = msf->cdmsf_sec0;
27572 		cdb[5] = msf->cdmsf_frame0;
27573 		cdb[6] = msf->cdmsf_min1;
27574 		cdb[7] = msf->cdmsf_sec1;
27575 		cdb[8] = msf->cdmsf_frame1;
27576 	}
27577 	com->uscsi_cdb    = cdb;
27578 	com->uscsi_cdblen = CDB_GROUP1;
27579 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27580 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27581 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27582 	kmem_free(com, sizeof (*com));
27583 	return (rval);
27584 }
27585 
27586 
27587 /*
27588  *    Function: sr_play_trkind()
27589  *
27590  * Description: This routine is the driver entry point for handling CD-ROM
27591  *		ioctl requests to output the audio signals at the specified
27592  *		starting address and continue the audio play until the specified
27593  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27594  *		format.
27595  *
27596  *   Arguments: dev	- the device 'dev_t'
27597  *		data	- pointer to user provided audio track/index structure,
27598  *		          specifying start/end addresses.
27599  *		flag	- this argument is a pass through to ddi_copyxxx()
27600  *		          directly from the mode argument of ioctl().
27601  *
27602  * Return Code: the code returned by sd_send_scsi_cmd()
27603  *		EFAULT if ddi_copyxxx() fails
27604  *		ENXIO if fail ddi_get_soft_state
27605  *		EINVAL if data pointer is NULL
27606  */
27607 
27608 static int
27609 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27610 {
27611 	struct cdrom_ti		ti_struct;
27612 	struct cdrom_ti		*ti = &ti_struct;
27613 	struct uscsi_cmd	*com = NULL;
27614 	char			cdb[CDB_GROUP1];
27615 	int			rval;
27616 
27617 	if (data == NULL) {
27618 		return (EINVAL);
27619 	}
27620 
27621 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27622 		return (EFAULT);
27623 	}
27624 
27625 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27626 	bzero(cdb, CDB_GROUP1);
27627 	cdb[0] = SCMD_PLAYAUDIO_TI;
27628 	cdb[4] = ti->cdti_trk0;
27629 	cdb[5] = ti->cdti_ind0;
27630 	cdb[7] = ti->cdti_trk1;
27631 	cdb[8] = ti->cdti_ind1;
27632 	com->uscsi_cdb    = cdb;
27633 	com->uscsi_cdblen = CDB_GROUP1;
27634 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27635 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27636 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27637 	kmem_free(com, sizeof (*com));
27638 	return (rval);
27639 }
27640 
27641 
27642 /*
27643  *    Function: sr_read_all_subcodes()
27644  *
27645  * Description: This routine is the driver entry point for handling CD-ROM
27646  *		ioctl requests to return raw subcode data while the target is
27647  *		playing audio (CDROMSUBCODE).
27648  *
27649  *   Arguments: dev	- the device 'dev_t'
27650  *		data	- pointer to user provided cdrom subcode structure,
27651  *		          specifying the transfer length and address.
27652  *		flag	- this argument is a pass through to ddi_copyxxx()
27653  *		          directly from the mode argument of ioctl().
27654  *
27655  * Return Code: the code returned by sd_send_scsi_cmd()
27656  *		EFAULT if ddi_copyxxx() fails
27657  *		ENXIO if fail ddi_get_soft_state
27658  *		EINVAL if data pointer is NULL
27659  */
27660 
27661 static int
27662 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27663 {
27664 	struct sd_lun		*un = NULL;
27665 	struct uscsi_cmd	*com = NULL;
27666 	struct cdrom_subcode	*subcode = NULL;
27667 	int			rval;
27668 	size_t			buflen;
27669 	char			cdb[CDB_GROUP5];
27670 
27671 #ifdef _MULTI_DATAMODEL
27672 	/* To support ILP32 applications in an LP64 world */
27673 	struct cdrom_subcode32		cdrom_subcode32;
27674 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27675 #endif
27676 	if (data == NULL) {
27677 		return (EINVAL);
27678 	}
27679 
27680 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27681 		return (ENXIO);
27682 	}
27683 
27684 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27685 
27686 #ifdef _MULTI_DATAMODEL
27687 	switch (ddi_model_convert_from(flag & FMODELS)) {
27688 	case DDI_MODEL_ILP32:
27689 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27690 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27691 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27692 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27693 			return (EFAULT);
27694 		}
27695 		/* Convert the ILP32 uscsi data from the application to LP64 */
27696 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27697 		break;
27698 	case DDI_MODEL_NONE:
27699 		if (ddi_copyin(data, subcode,
27700 		    sizeof (struct cdrom_subcode), flag)) {
27701 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27702 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27703 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27704 			return (EFAULT);
27705 		}
27706 		break;
27707 	}
27708 #else /* ! _MULTI_DATAMODEL */
27709 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27710 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27711 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27712 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27713 		return (EFAULT);
27714 	}
27715 #endif /* _MULTI_DATAMODEL */
27716 
27717 	/*
27718 	 * Since MMC-2 expects max 3 bytes for length, check if the
27719 	 * length input is greater than 3 bytes
27720 	 */
27721 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27722 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27723 		    "sr_read_all_subcodes: "
27724 		    "cdrom transfer length too large: %d (limit %d)\n",
27725 		    subcode->cdsc_length, 0xFFFFFF);
27726 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27727 		return (EINVAL);
27728 	}
27729 
27730 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27731 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27732 	bzero(cdb, CDB_GROUP5);
27733 
27734 	if (un->un_f_mmc_cap == TRUE) {
27735 		cdb[0] = (char)SCMD_READ_CD;
27736 		cdb[2] = (char)0xff;
27737 		cdb[3] = (char)0xff;
27738 		cdb[4] = (char)0xff;
27739 		cdb[5] = (char)0xff;
27740 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27741 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27742 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27743 		cdb[10] = 1;
27744 	} else {
27745 		/*
27746 		 * Note: A vendor specific command (0xDF) is being used her to
27747 		 * request a read of all subcodes.
27748 		 */
27749 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27750 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27751 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27752 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27753 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27754 	}
27755 	com->uscsi_cdb	   = cdb;
27756 	com->uscsi_cdblen  = CDB_GROUP5;
27757 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27758 	com->uscsi_buflen  = buflen;
27759 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27760 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
27761 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27762 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27763 	kmem_free(com, sizeof (*com));
27764 	return (rval);
27765 }
27766 
27767 
27768 /*
27769  *    Function: sr_read_subchannel()
27770  *
27771  * Description: This routine is the driver entry point for handling CD-ROM
27772  *		ioctl requests to return the Q sub-channel data of the CD
27773  *		current position block. (CDROMSUBCHNL) The data includes the
27774  *		track number, index number, absolute CD-ROM address (LBA or MSF
27775  *		format per the user) , track relative CD-ROM address (LBA or MSF
27776  *		format per the user), control data and audio status.
27777  *
27778  *   Arguments: dev	- the device 'dev_t'
27779  *		data	- pointer to user provided cdrom sub-channel structure
27780  *		flag	- this argument is a pass through to ddi_copyxxx()
27781  *		          directly from the mode argument of ioctl().
27782  *
27783  * Return Code: the code returned by sd_send_scsi_cmd()
27784  *		EFAULT if ddi_copyxxx() fails
27785  *		ENXIO if fail ddi_get_soft_state
27786  *		EINVAL if data pointer is NULL
27787  */
27788 
27789 static int
27790 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27791 {
27792 	struct sd_lun		*un;
27793 	struct uscsi_cmd	*com;
27794 	struct cdrom_subchnl	subchanel;
27795 	struct cdrom_subchnl	*subchnl = &subchanel;
27796 	char			cdb[CDB_GROUP1];
27797 	caddr_t			buffer;
27798 	int			rval;
27799 
27800 	if (data == NULL) {
27801 		return (EINVAL);
27802 	}
27803 
27804 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27805 	    (un->un_state == SD_STATE_OFFLINE)) {
27806 		return (ENXIO);
27807 	}
27808 
27809 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27810 		return (EFAULT);
27811 	}
27812 
27813 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27814 	bzero(cdb, CDB_GROUP1);
27815 	cdb[0] = SCMD_READ_SUBCHANNEL;
27816 	/* Set the MSF bit based on the user requested address format */
27817 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27818 	/*
27819 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27820 	 * returned
27821 	 */
27822 	cdb[2] = 0x40;
27823 	/*
27824 	 * Set byte 3 to specify the return data format. A value of 0x01
27825 	 * indicates that the CD-ROM current position should be returned.
27826 	 */
27827 	cdb[3] = 0x01;
27828 	cdb[8] = 0x10;
27829 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27830 	com->uscsi_cdb	   = cdb;
27831 	com->uscsi_cdblen  = CDB_GROUP1;
27832 	com->uscsi_bufaddr = buffer;
27833 	com->uscsi_buflen  = 16;
27834 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27835 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27836 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27837 	if (rval != 0) {
27838 		kmem_free(buffer, 16);
27839 		kmem_free(com, sizeof (*com));
27840 		return (rval);
27841 	}
27842 
27843 	/* Process the returned Q sub-channel data */
27844 	subchnl->cdsc_audiostatus = buffer[1];
27845 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
27846 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27847 	subchnl->cdsc_trk	= buffer[6];
27848 	subchnl->cdsc_ind	= buffer[7];
27849 	if (subchnl->cdsc_format & CDROM_LBA) {
27850 		subchnl->cdsc_absaddr.lba =
27851 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27852 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27853 		subchnl->cdsc_reladdr.lba =
27854 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27855 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27856 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27857 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27858 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27859 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27860 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27861 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27862 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27863 	} else {
27864 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27865 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27866 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27867 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27868 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27869 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27870 	}
27871 	kmem_free(buffer, 16);
27872 	kmem_free(com, sizeof (*com));
27873 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27874 	    != 0) {
27875 		return (EFAULT);
27876 	}
27877 	return (rval);
27878 }
27879 
27880 
27881 /*
27882  *    Function: sr_read_tocentry()
27883  *
27884  * Description: This routine is the driver entry point for handling CD-ROM
27885  *		ioctl requests to read from the Table of Contents (TOC)
27886  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27887  *		fields, the starting address (LBA or MSF format per the user)
27888  *		and the data mode if the user specified track is a data track.
27889  *
27890  *		Note: The READ HEADER (0x44) command used in this routine is
27891  *		obsolete per the SCSI MMC spec but still supported in the
27892  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27893  *		therefore the command is still implemented in this routine.
27894  *
27895  *   Arguments: dev	- the device 'dev_t'
27896  *		data	- pointer to user provided toc entry structure,
27897  *			  specifying the track # and the address format
27898  *			  (LBA or MSF).
27899  *		flag	- this argument is a pass through to ddi_copyxxx()
27900  *		          directly from the mode argument of ioctl().
27901  *
27902  * Return Code: the code returned by sd_send_scsi_cmd()
27903  *		EFAULT if ddi_copyxxx() fails
27904  *		ENXIO if fail ddi_get_soft_state
27905  *		EINVAL if data pointer is NULL
27906  */
27907 
27908 static int
27909 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27910 {
27911 	struct sd_lun		*un = NULL;
27912 	struct uscsi_cmd	*com;
27913 	struct cdrom_tocentry	toc_entry;
27914 	struct cdrom_tocentry	*entry = &toc_entry;
27915 	caddr_t			buffer;
27916 	int			rval;
27917 	char			cdb[CDB_GROUP1];
27918 
27919 	if (data == NULL) {
27920 		return (EINVAL);
27921 	}
27922 
27923 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27924 	    (un->un_state == SD_STATE_OFFLINE)) {
27925 		return (ENXIO);
27926 	}
27927 
27928 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27929 		return (EFAULT);
27930 	}
27931 
27932 	/* Validate the requested track and address format */
27933 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27934 		return (EINVAL);
27935 	}
27936 
27937 	if (entry->cdte_track == 0) {
27938 		return (EINVAL);
27939 	}
27940 
27941 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27942 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27943 	bzero(cdb, CDB_GROUP1);
27944 
27945 	cdb[0] = SCMD_READ_TOC;
27946 	/* Set the MSF bit based on the user requested address format  */
27947 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27948 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27949 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27950 	} else {
27951 		cdb[6] = entry->cdte_track;
27952 	}
27953 
27954 	/*
27955 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27956 	 * (4 byte TOC response header + 8 byte track descriptor)
27957 	 */
27958 	cdb[8] = 12;
27959 	com->uscsi_cdb	   = cdb;
27960 	com->uscsi_cdblen  = CDB_GROUP1;
27961 	com->uscsi_bufaddr = buffer;
27962 	com->uscsi_buflen  = 0x0C;
27963 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27964 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27965 	    UIO_SYSSPACE, SD_PATH_STANDARD);
27966 	if (rval != 0) {
27967 		kmem_free(buffer, 12);
27968 		kmem_free(com, sizeof (*com));
27969 		return (rval);
27970 	}
27971 
27972 	/* Process the toc entry */
27973 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27974 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27975 	if (entry->cdte_format & CDROM_LBA) {
27976 		entry->cdte_addr.lba =
27977 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27978 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27979 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27980 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27981 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27982 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27983 		/*
27984 		 * Send a READ TOC command using the LBA address format to get
27985 		 * the LBA for the track requested so it can be used in the
27986 		 * READ HEADER request
27987 		 *
27988 		 * Note: The MSF bit of the READ HEADER command specifies the
27989 		 * output format. The block address specified in that command
27990 		 * must be in LBA format.
27991 		 */
27992 		cdb[1] = 0;
27993 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
27994 		    UIO_SYSSPACE, SD_PATH_STANDARD);
27995 		if (rval != 0) {
27996 			kmem_free(buffer, 12);
27997 			kmem_free(com, sizeof (*com));
27998 			return (rval);
27999 		}
28000 	} else {
28001 		entry->cdte_addr.msf.minute	= buffer[9];
28002 		entry->cdte_addr.msf.second	= buffer[10];
28003 		entry->cdte_addr.msf.frame	= buffer[11];
28004 		/*
28005 		 * Send a READ TOC command using the LBA address format to get
28006 		 * the LBA for the track requested so it can be used in the
28007 		 * READ HEADER request
28008 		 *
28009 		 * Note: The MSF bit of the READ HEADER command specifies the
28010 		 * output format. The block address specified in that command
28011 		 * must be in LBA format.
28012 		 */
28013 		cdb[1] = 0;
28014 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28015 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28016 		if (rval != 0) {
28017 			kmem_free(buffer, 12);
28018 			kmem_free(com, sizeof (*com));
28019 			return (rval);
28020 		}
28021 	}
28022 
28023 	/*
28024 	 * Build and send the READ HEADER command to determine the data mode of
28025 	 * the user specified track.
28026 	 */
28027 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
28028 	    (entry->cdte_track != CDROM_LEADOUT)) {
28029 		bzero(cdb, CDB_GROUP1);
28030 		cdb[0] = SCMD_READ_HEADER;
28031 		cdb[2] = buffer[8];
28032 		cdb[3] = buffer[9];
28033 		cdb[4] = buffer[10];
28034 		cdb[5] = buffer[11];
28035 		cdb[8] = 0x08;
28036 		com->uscsi_buflen = 0x08;
28037 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28038 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28039 		if (rval == 0) {
28040 			entry->cdte_datamode = buffer[0];
28041 		} else {
28042 			/*
28043 			 * READ HEADER command failed, since this is
28044 			 * obsoleted in one spec, its better to return
28045 			 * -1 for an invlid track so that we can still
28046 			 * recieve the rest of the TOC data.
28047 			 */
28048 			entry->cdte_datamode = (uchar_t)-1;
28049 		}
28050 	} else {
28051 		entry->cdte_datamode = (uchar_t)-1;
28052 	}
28053 
28054 	kmem_free(buffer, 12);
28055 	kmem_free(com, sizeof (*com));
28056 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
28057 		return (EFAULT);
28058 
28059 	return (rval);
28060 }
28061 
28062 
28063 /*
28064  *    Function: sr_read_tochdr()
28065  *
28066  * Description: This routine is the driver entry point for handling CD-ROM
28067  * 		ioctl requests to read the Table of Contents (TOC) header
28068  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
28069  *		and ending track numbers
28070  *
28071  *   Arguments: dev	- the device 'dev_t'
28072  *		data	- pointer to user provided toc header structure,
28073  *			  specifying the starting and ending track numbers.
28074  *		flag	- this argument is a pass through to ddi_copyxxx()
28075  *			  directly from the mode argument of ioctl().
28076  *
28077  * Return Code: the code returned by sd_send_scsi_cmd()
28078  *		EFAULT if ddi_copyxxx() fails
28079  *		ENXIO if fail ddi_get_soft_state
28080  *		EINVAL if data pointer is NULL
28081  */
28082 
28083 static int
28084 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
28085 {
28086 	struct sd_lun		*un;
28087 	struct uscsi_cmd	*com;
28088 	struct cdrom_tochdr	toc_header;
28089 	struct cdrom_tochdr	*hdr = &toc_header;
28090 	char			cdb[CDB_GROUP1];
28091 	int			rval;
28092 	caddr_t			buffer;
28093 
28094 	if (data == NULL) {
28095 		return (EINVAL);
28096 	}
28097 
28098 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28099 	    (un->un_state == SD_STATE_OFFLINE)) {
28100 		return (ENXIO);
28101 	}
28102 
28103 	buffer = kmem_zalloc(4, KM_SLEEP);
28104 	bzero(cdb, CDB_GROUP1);
28105 	cdb[0] = SCMD_READ_TOC;
28106 	/*
28107 	 * Specifying a track number of 0x00 in the READ TOC command indicates
28108 	 * that the TOC header should be returned
28109 	 */
28110 	cdb[6] = 0x00;
28111 	/*
28112 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28113 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28114 	 */
28115 	cdb[8] = 0x04;
28116 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28117 	com->uscsi_cdb	   = cdb;
28118 	com->uscsi_cdblen  = CDB_GROUP1;
28119 	com->uscsi_bufaddr = buffer;
28120 	com->uscsi_buflen  = 0x04;
28121 	com->uscsi_timeout = 300;
28122 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28123 
28124 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28125 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28126 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28127 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28128 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28129 	} else {
28130 		hdr->cdth_trk0 = buffer[2];
28131 		hdr->cdth_trk1 = buffer[3];
28132 	}
28133 	kmem_free(buffer, 4);
28134 	kmem_free(com, sizeof (*com));
28135 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28136 		return (EFAULT);
28137 	}
28138 	return (rval);
28139 }
28140 
28141 
28142 /*
28143  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28144  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28145  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28146  * digital audio and extended architecture digital audio. These modes are
28147  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28148  * MMC specs.
28149  *
28150  * In addition to support for the various data formats these routines also
28151  * include support for devices that implement only the direct access READ
28152  * commands (0x08, 0x28), devices that implement the READ_CD commands
28153  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28154  * READ CDXA commands (0xD8, 0xDB)
28155  */
28156 
28157 /*
28158  *    Function: sr_read_mode1()
28159  *
28160  * Description: This routine is the driver entry point for handling CD-ROM
28161  *		ioctl read mode1 requests (CDROMREADMODE1).
28162  *
28163  *   Arguments: dev	- the device 'dev_t'
28164  *		data	- pointer to user provided cd read structure specifying
28165  *			  the lba buffer address and length.
28166  *		flag	- this argument is a pass through to ddi_copyxxx()
28167  *			  directly from the mode argument of ioctl().
28168  *
28169  * Return Code: the code returned by sd_send_scsi_cmd()
28170  *		EFAULT if ddi_copyxxx() fails
28171  *		ENXIO if fail ddi_get_soft_state
28172  *		EINVAL if data pointer is NULL
28173  */
28174 
28175 static int
28176 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28177 {
28178 	struct sd_lun		*un;
28179 	struct cdrom_read	mode1_struct;
28180 	struct cdrom_read	*mode1 = &mode1_struct;
28181 	int			rval;
28182 #ifdef _MULTI_DATAMODEL
28183 	/* To support ILP32 applications in an LP64 world */
28184 	struct cdrom_read32	cdrom_read32;
28185 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28186 #endif /* _MULTI_DATAMODEL */
28187 
28188 	if (data == NULL) {
28189 		return (EINVAL);
28190 	}
28191 
28192 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28193 	    (un->un_state == SD_STATE_OFFLINE)) {
28194 		return (ENXIO);
28195 	}
28196 
28197 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28198 	    "sd_read_mode1: entry: un:0x%p\n", un);
28199 
28200 #ifdef _MULTI_DATAMODEL
28201 	switch (ddi_model_convert_from(flag & FMODELS)) {
28202 	case DDI_MODEL_ILP32:
28203 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28204 			return (EFAULT);
28205 		}
28206 		/* Convert the ILP32 uscsi data from the application to LP64 */
28207 		cdrom_read32tocdrom_read(cdrd32, mode1);
28208 		break;
28209 	case DDI_MODEL_NONE:
28210 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28211 			return (EFAULT);
28212 		}
28213 	}
28214 #else /* ! _MULTI_DATAMODEL */
28215 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28216 		return (EFAULT);
28217 	}
28218 #endif /* _MULTI_DATAMODEL */
28219 
28220 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
28221 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28222 
28223 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28224 	    "sd_read_mode1: exit: un:0x%p\n", un);
28225 
28226 	return (rval);
28227 }
28228 
28229 
28230 /*
28231  *    Function: sr_read_cd_mode2()
28232  *
28233  * Description: This routine is the driver entry point for handling CD-ROM
28234  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28235  *		support the READ CD (0xBE) command or the 1st generation
28236  *		READ CD (0xD4) command.
28237  *
28238  *   Arguments: dev	- the device 'dev_t'
28239  *		data	- pointer to user provided cd read structure specifying
28240  *			  the lba buffer address and length.
28241  *		flag	- this argument is a pass through to ddi_copyxxx()
28242  *			  directly from the mode argument of ioctl().
28243  *
28244  * Return Code: the code returned by sd_send_scsi_cmd()
28245  *		EFAULT if ddi_copyxxx() fails
28246  *		ENXIO if fail ddi_get_soft_state
28247  *		EINVAL if data pointer is NULL
28248  */
28249 
28250 static int
28251 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28252 {
28253 	struct sd_lun		*un;
28254 	struct uscsi_cmd	*com;
28255 	struct cdrom_read	mode2_struct;
28256 	struct cdrom_read	*mode2 = &mode2_struct;
28257 	uchar_t			cdb[CDB_GROUP5];
28258 	int			nblocks;
28259 	int			rval;
28260 #ifdef _MULTI_DATAMODEL
28261 	/*  To support ILP32 applications in an LP64 world */
28262 	struct cdrom_read32	cdrom_read32;
28263 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28264 #endif /* _MULTI_DATAMODEL */
28265 
28266 	if (data == NULL) {
28267 		return (EINVAL);
28268 	}
28269 
28270 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28271 	    (un->un_state == SD_STATE_OFFLINE)) {
28272 		return (ENXIO);
28273 	}
28274 
28275 #ifdef _MULTI_DATAMODEL
28276 	switch (ddi_model_convert_from(flag & FMODELS)) {
28277 	case DDI_MODEL_ILP32:
28278 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28279 			return (EFAULT);
28280 		}
28281 		/* Convert the ILP32 uscsi data from the application to LP64 */
28282 		cdrom_read32tocdrom_read(cdrd32, mode2);
28283 		break;
28284 	case DDI_MODEL_NONE:
28285 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28286 			return (EFAULT);
28287 		}
28288 		break;
28289 	}
28290 
28291 #else /* ! _MULTI_DATAMODEL */
28292 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28293 		return (EFAULT);
28294 	}
28295 #endif /* _MULTI_DATAMODEL */
28296 
28297 	bzero(cdb, sizeof (cdb));
28298 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28299 		/* Read command supported by 1st generation atapi drives */
28300 		cdb[0] = SCMD_READ_CDD4;
28301 	} else {
28302 		/* Universal CD Access Command */
28303 		cdb[0] = SCMD_READ_CD;
28304 	}
28305 
28306 	/*
28307 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28308 	 */
28309 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28310 
28311 	/* set the start address */
28312 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28313 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28314 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28315 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28316 
28317 	/* set the transfer length */
28318 	nblocks = mode2->cdread_buflen / 2336;
28319 	cdb[6] = (uchar_t)(nblocks >> 16);
28320 	cdb[7] = (uchar_t)(nblocks >> 8);
28321 	cdb[8] = (uchar_t)nblocks;
28322 
28323 	/* set the filter bits */
28324 	cdb[9] = CDROM_READ_CD_USERDATA;
28325 
28326 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28327 	com->uscsi_cdb = (caddr_t)cdb;
28328 	com->uscsi_cdblen = sizeof (cdb);
28329 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28330 	com->uscsi_buflen = mode2->cdread_buflen;
28331 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28332 
28333 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28334 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28335 	kmem_free(com, sizeof (*com));
28336 	return (rval);
28337 }
28338 
28339 
28340 /*
28341  *    Function: sr_read_mode2()
28342  *
28343  * Description: This routine is the driver entry point for handling CD-ROM
28344  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28345  *		do not support the READ CD (0xBE) command.
28346  *
28347  *   Arguments: dev	- the device 'dev_t'
28348  *		data	- pointer to user provided cd read structure specifying
28349  *			  the lba buffer address and length.
28350  *		flag	- this argument is a pass through to ddi_copyxxx()
28351  *			  directly from the mode argument of ioctl().
28352  *
28353  * Return Code: the code returned by sd_send_scsi_cmd()
28354  *		EFAULT if ddi_copyxxx() fails
28355  *		ENXIO if fail ddi_get_soft_state
28356  *		EINVAL if data pointer is NULL
28357  *		EIO if fail to reset block size
28358  *		EAGAIN if commands are in progress in the driver
28359  */
28360 
28361 static int
28362 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28363 {
28364 	struct sd_lun		*un;
28365 	struct cdrom_read	mode2_struct;
28366 	struct cdrom_read	*mode2 = &mode2_struct;
28367 	int			rval;
28368 	uint32_t		restore_blksize;
28369 	struct uscsi_cmd	*com;
28370 	uchar_t			cdb[CDB_GROUP0];
28371 	int			nblocks;
28372 
28373 #ifdef _MULTI_DATAMODEL
28374 	/* To support ILP32 applications in an LP64 world */
28375 	struct cdrom_read32	cdrom_read32;
28376 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28377 #endif /* _MULTI_DATAMODEL */
28378 
28379 	if (data == NULL) {
28380 		return (EINVAL);
28381 	}
28382 
28383 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28384 	    (un->un_state == SD_STATE_OFFLINE)) {
28385 		return (ENXIO);
28386 	}
28387 
28388 	/*
28389 	 * Because this routine will update the device and driver block size
28390 	 * being used we want to make sure there are no commands in progress.
28391 	 * If commands are in progress the user will have to try again.
28392 	 *
28393 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28394 	 * in sdioctl to protect commands from sdioctl through to the top of
28395 	 * sd_uscsi_strategy. See sdioctl for details.
28396 	 */
28397 	mutex_enter(SD_MUTEX(un));
28398 	if (un->un_ncmds_in_driver != 1) {
28399 		mutex_exit(SD_MUTEX(un));
28400 		return (EAGAIN);
28401 	}
28402 	mutex_exit(SD_MUTEX(un));
28403 
28404 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28405 	    "sd_read_mode2: entry: un:0x%p\n", un);
28406 
28407 #ifdef _MULTI_DATAMODEL
28408 	switch (ddi_model_convert_from(flag & FMODELS)) {
28409 	case DDI_MODEL_ILP32:
28410 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28411 			return (EFAULT);
28412 		}
28413 		/* Convert the ILP32 uscsi data from the application to LP64 */
28414 		cdrom_read32tocdrom_read(cdrd32, mode2);
28415 		break;
28416 	case DDI_MODEL_NONE:
28417 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28418 			return (EFAULT);
28419 		}
28420 		break;
28421 	}
28422 #else /* ! _MULTI_DATAMODEL */
28423 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28424 		return (EFAULT);
28425 	}
28426 #endif /* _MULTI_DATAMODEL */
28427 
28428 	/* Store the current target block size for restoration later */
28429 	restore_blksize = un->un_tgt_blocksize;
28430 
28431 	/* Change the device and soft state target block size to 2336 */
28432 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28433 		rval = EIO;
28434 		goto done;
28435 	}
28436 
28437 
28438 	bzero(cdb, sizeof (cdb));
28439 
28440 	/* set READ operation */
28441 	cdb[0] = SCMD_READ;
28442 
28443 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28444 	mode2->cdread_lba >>= 2;
28445 
28446 	/* set the start address */
28447 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28448 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28449 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28450 
28451 	/* set the transfer length */
28452 	nblocks = mode2->cdread_buflen / 2336;
28453 	cdb[4] = (uchar_t)nblocks & 0xFF;
28454 
28455 	/* build command */
28456 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28457 	com->uscsi_cdb = (caddr_t)cdb;
28458 	com->uscsi_cdblen = sizeof (cdb);
28459 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28460 	com->uscsi_buflen = mode2->cdread_buflen;
28461 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28462 
28463 	/*
28464 	 * Issue SCSI command with user space address for read buffer.
28465 	 *
28466 	 * This sends the command through main channel in the driver.
28467 	 *
28468 	 * Since this is accessed via an IOCTL call, we go through the
28469 	 * standard path, so that if the device was powered down, then
28470 	 * it would be 'awakened' to handle the command.
28471 	 */
28472 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28473 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28474 
28475 	kmem_free(com, sizeof (*com));
28476 
28477 	/* Restore the device and soft state target block size */
28478 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28479 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28480 		    "can't do switch back to mode 1\n");
28481 		/*
28482 		 * If sd_send_scsi_READ succeeded we still need to report
28483 		 * an error because we failed to reset the block size
28484 		 */
28485 		if (rval == 0) {
28486 			rval = EIO;
28487 		}
28488 	}
28489 
28490 done:
28491 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28492 	    "sd_read_mode2: exit: un:0x%p\n", un);
28493 
28494 	return (rval);
28495 }
28496 
28497 
28498 /*
28499  *    Function: sr_sector_mode()
28500  *
28501  * Description: This utility function is used by sr_read_mode2 to set the target
28502  *		block size based on the user specified size. This is a legacy
28503  *		implementation based upon a vendor specific mode page
28504  *
28505  *   Arguments: dev	- the device 'dev_t'
28506  *		data	- flag indicating if block size is being set to 2336 or
28507  *			  512.
28508  *
28509  * Return Code: the code returned by sd_send_scsi_cmd()
28510  *		EFAULT if ddi_copyxxx() fails
28511  *		ENXIO if fail ddi_get_soft_state
28512  *		EINVAL if data pointer is NULL
28513  */
28514 
28515 static int
28516 sr_sector_mode(dev_t dev, uint32_t blksize)
28517 {
28518 	struct sd_lun	*un;
28519 	uchar_t		*sense;
28520 	uchar_t		*select;
28521 	int		rval;
28522 
28523 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28524 	    (un->un_state == SD_STATE_OFFLINE)) {
28525 		return (ENXIO);
28526 	}
28527 
28528 	sense = kmem_zalloc(20, KM_SLEEP);
28529 
28530 	/* Note: This is a vendor specific mode page (0x81) */
28531 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
28532 	    SD_PATH_STANDARD)) != 0) {
28533 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28534 		    "sr_sector_mode: Mode Sense failed\n");
28535 		kmem_free(sense, 20);
28536 		return (rval);
28537 	}
28538 	select = kmem_zalloc(20, KM_SLEEP);
28539 	select[3] = 0x08;
28540 	select[10] = ((blksize >> 8) & 0xff);
28541 	select[11] = (blksize & 0xff);
28542 	select[12] = 0x01;
28543 	select[13] = 0x06;
28544 	select[14] = sense[14];
28545 	select[15] = sense[15];
28546 	if (blksize == SD_MODE2_BLKSIZE) {
28547 		select[14] |= 0x01;
28548 	}
28549 
28550 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
28551 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
28552 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28553 		    "sr_sector_mode: Mode Select failed\n");
28554 	} else {
28555 		/*
28556 		 * Only update the softstate block size if we successfully
28557 		 * changed the device block mode.
28558 		 */
28559 		mutex_enter(SD_MUTEX(un));
28560 		sd_update_block_info(un, blksize, 0);
28561 		mutex_exit(SD_MUTEX(un));
28562 	}
28563 	kmem_free(sense, 20);
28564 	kmem_free(select, 20);
28565 	return (rval);
28566 }
28567 
28568 
28569 /*
28570  *    Function: sr_read_cdda()
28571  *
28572  * Description: This routine is the driver entry point for handling CD-ROM
28573  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28574  *		the target supports CDDA these requests are handled via a vendor
28575  *		specific command (0xD8) If the target does not support CDDA
28576  *		these requests are handled via the READ CD command (0xBE).
28577  *
28578  *   Arguments: dev	- the device 'dev_t'
28579  *		data	- pointer to user provided CD-DA structure specifying
28580  *			  the track starting address, transfer length, and
28581  *			  subcode options.
28582  *		flag	- this argument is a pass through to ddi_copyxxx()
28583  *			  directly from the mode argument of ioctl().
28584  *
28585  * Return Code: the code returned by sd_send_scsi_cmd()
28586  *		EFAULT if ddi_copyxxx() fails
28587  *		ENXIO if fail ddi_get_soft_state
28588  *		EINVAL if invalid arguments are provided
28589  *		ENOTTY
28590  */
28591 
28592 static int
28593 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28594 {
28595 	struct sd_lun			*un;
28596 	struct uscsi_cmd		*com;
28597 	struct cdrom_cdda		*cdda;
28598 	int				rval;
28599 	size_t				buflen;
28600 	char				cdb[CDB_GROUP5];
28601 
28602 #ifdef _MULTI_DATAMODEL
28603 	/* To support ILP32 applications in an LP64 world */
28604 	struct cdrom_cdda32	cdrom_cdda32;
28605 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28606 #endif /* _MULTI_DATAMODEL */
28607 
28608 	if (data == NULL) {
28609 		return (EINVAL);
28610 	}
28611 
28612 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28613 		return (ENXIO);
28614 	}
28615 
28616 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28617 
28618 #ifdef _MULTI_DATAMODEL
28619 	switch (ddi_model_convert_from(flag & FMODELS)) {
28620 	case DDI_MODEL_ILP32:
28621 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28622 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28623 			    "sr_read_cdda: ddi_copyin Failed\n");
28624 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28625 			return (EFAULT);
28626 		}
28627 		/* Convert the ILP32 uscsi data from the application to LP64 */
28628 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28629 		break;
28630 	case DDI_MODEL_NONE:
28631 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28632 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28633 			    "sr_read_cdda: ddi_copyin Failed\n");
28634 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28635 			return (EFAULT);
28636 		}
28637 		break;
28638 	}
28639 #else /* ! _MULTI_DATAMODEL */
28640 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28641 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28642 		    "sr_read_cdda: ddi_copyin Failed\n");
28643 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28644 		return (EFAULT);
28645 	}
28646 #endif /* _MULTI_DATAMODEL */
28647 
28648 	/*
28649 	 * Since MMC-2 expects max 3 bytes for length, check if the
28650 	 * length input is greater than 3 bytes
28651 	 */
28652 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28653 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28654 		    "cdrom transfer length too large: %d (limit %d)\n",
28655 		    cdda->cdda_length, 0xFFFFFF);
28656 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28657 		return (EINVAL);
28658 	}
28659 
28660 	switch (cdda->cdda_subcode) {
28661 	case CDROM_DA_NO_SUBCODE:
28662 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28663 		break;
28664 	case CDROM_DA_SUBQ:
28665 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28666 		break;
28667 	case CDROM_DA_ALL_SUBCODE:
28668 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28669 		break;
28670 	case CDROM_DA_SUBCODE_ONLY:
28671 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28672 		break;
28673 	default:
28674 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28675 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28676 		    cdda->cdda_subcode);
28677 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28678 		return (EINVAL);
28679 	}
28680 
28681 	/* Build and send the command */
28682 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28683 	bzero(cdb, CDB_GROUP5);
28684 
28685 	if (un->un_f_cfg_cdda == TRUE) {
28686 		cdb[0] = (char)SCMD_READ_CD;
28687 		cdb[1] = 0x04;
28688 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28689 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28690 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28691 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28692 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28693 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28694 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28695 		cdb[9] = 0x10;
28696 		switch (cdda->cdda_subcode) {
28697 		case CDROM_DA_NO_SUBCODE :
28698 			cdb[10] = 0x0;
28699 			break;
28700 		case CDROM_DA_SUBQ :
28701 			cdb[10] = 0x2;
28702 			break;
28703 		case CDROM_DA_ALL_SUBCODE :
28704 			cdb[10] = 0x1;
28705 			break;
28706 		case CDROM_DA_SUBCODE_ONLY :
28707 			/* FALLTHROUGH */
28708 		default :
28709 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28710 			kmem_free(com, sizeof (*com));
28711 			return (ENOTTY);
28712 		}
28713 	} else {
28714 		cdb[0] = (char)SCMD_READ_CDDA;
28715 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28716 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28717 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28718 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28719 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28720 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28721 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28722 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28723 		cdb[10] = cdda->cdda_subcode;
28724 	}
28725 
28726 	com->uscsi_cdb = cdb;
28727 	com->uscsi_cdblen = CDB_GROUP5;
28728 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28729 	com->uscsi_buflen = buflen;
28730 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28731 
28732 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28733 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28734 
28735 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28736 	kmem_free(com, sizeof (*com));
28737 	return (rval);
28738 }
28739 
28740 
28741 /*
28742  *    Function: sr_read_cdxa()
28743  *
28744  * Description: This routine is the driver entry point for handling CD-ROM
28745  *		ioctl requests to return CD-XA (Extended Architecture) data.
28746  *		(CDROMCDXA).
28747  *
28748  *   Arguments: dev	- the device 'dev_t'
28749  *		data	- pointer to user provided CD-XA structure specifying
28750  *			  the data starting address, transfer length, and format
28751  *		flag	- this argument is a pass through to ddi_copyxxx()
28752  *			  directly from the mode argument of ioctl().
28753  *
28754  * Return Code: the code returned by sd_send_scsi_cmd()
28755  *		EFAULT if ddi_copyxxx() fails
28756  *		ENXIO if fail ddi_get_soft_state
28757  *		EINVAL if data pointer is NULL
28758  */
28759 
28760 static int
28761 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28762 {
28763 	struct sd_lun		*un;
28764 	struct uscsi_cmd	*com;
28765 	struct cdrom_cdxa	*cdxa;
28766 	int			rval;
28767 	size_t			buflen;
28768 	char			cdb[CDB_GROUP5];
28769 	uchar_t			read_flags;
28770 
28771 #ifdef _MULTI_DATAMODEL
28772 	/* To support ILP32 applications in an LP64 world */
28773 	struct cdrom_cdxa32		cdrom_cdxa32;
28774 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28775 #endif /* _MULTI_DATAMODEL */
28776 
28777 	if (data == NULL) {
28778 		return (EINVAL);
28779 	}
28780 
28781 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28782 		return (ENXIO);
28783 	}
28784 
28785 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28786 
28787 #ifdef _MULTI_DATAMODEL
28788 	switch (ddi_model_convert_from(flag & FMODELS)) {
28789 	case DDI_MODEL_ILP32:
28790 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28791 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28792 			return (EFAULT);
28793 		}
28794 		/*
28795 		 * Convert the ILP32 uscsi data from the
28796 		 * application to LP64 for internal use.
28797 		 */
28798 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28799 		break;
28800 	case DDI_MODEL_NONE:
28801 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28802 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28803 			return (EFAULT);
28804 		}
28805 		break;
28806 	}
28807 #else /* ! _MULTI_DATAMODEL */
28808 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28809 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28810 		return (EFAULT);
28811 	}
28812 #endif /* _MULTI_DATAMODEL */
28813 
28814 	/*
28815 	 * Since MMC-2 expects max 3 bytes for length, check if the
28816 	 * length input is greater than 3 bytes
28817 	 */
28818 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28819 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28820 		    "cdrom transfer length too large: %d (limit %d)\n",
28821 		    cdxa->cdxa_length, 0xFFFFFF);
28822 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28823 		return (EINVAL);
28824 	}
28825 
28826 	switch (cdxa->cdxa_format) {
28827 	case CDROM_XA_DATA:
28828 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28829 		read_flags = 0x10;
28830 		break;
28831 	case CDROM_XA_SECTOR_DATA:
28832 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28833 		read_flags = 0xf8;
28834 		break;
28835 	case CDROM_XA_DATA_W_ERROR:
28836 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28837 		read_flags = 0xfc;
28838 		break;
28839 	default:
28840 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28841 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28842 		    cdxa->cdxa_format);
28843 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28844 		return (EINVAL);
28845 	}
28846 
28847 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28848 	bzero(cdb, CDB_GROUP5);
28849 	if (un->un_f_mmc_cap == TRUE) {
28850 		cdb[0] = (char)SCMD_READ_CD;
28851 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28852 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28853 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28854 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28855 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28856 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28857 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28858 		cdb[9] = (char)read_flags;
28859 	} else {
28860 		/*
28861 		 * Note: A vendor specific command (0xDB) is being used her to
28862 		 * request a read of all subcodes.
28863 		 */
28864 		cdb[0] = (char)SCMD_READ_CDXA;
28865 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28866 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28867 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28868 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28869 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28870 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28871 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28872 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28873 		cdb[10] = cdxa->cdxa_format;
28874 	}
28875 	com->uscsi_cdb	   = cdb;
28876 	com->uscsi_cdblen  = CDB_GROUP5;
28877 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28878 	com->uscsi_buflen  = buflen;
28879 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28880 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28881 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28882 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28883 	kmem_free(com, sizeof (*com));
28884 	return (rval);
28885 }
28886 
28887 
28888 /*
28889  *    Function: sr_eject()
28890  *
28891  * Description: This routine is the driver entry point for handling CD-ROM
28892  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28893  *
28894  *   Arguments: dev	- the device 'dev_t'
28895  *
28896  * Return Code: the code returned by sd_send_scsi_cmd()
28897  */
28898 
28899 static int
28900 sr_eject(dev_t dev)
28901 {
28902 	struct sd_lun	*un;
28903 	int		rval;
28904 
28905 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28906 	    (un->un_state == SD_STATE_OFFLINE)) {
28907 		return (ENXIO);
28908 	}
28909 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
28910 	    SD_PATH_STANDARD)) != 0) {
28911 		return (rval);
28912 	}
28913 
28914 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
28915 	    SD_PATH_STANDARD);
28916 
28917 	if (rval == 0) {
28918 		mutex_enter(SD_MUTEX(un));
28919 		sr_ejected(un);
28920 		un->un_mediastate = DKIO_EJECTED;
28921 		cv_broadcast(&un->un_state_cv);
28922 		mutex_exit(SD_MUTEX(un));
28923 	}
28924 	return (rval);
28925 }
28926 
28927 
28928 /*
28929  *    Function: sr_ejected()
28930  *
28931  * Description: This routine updates the soft state structure to invalidate the
28932  *		geometry information after the media has been ejected or a
28933  *		media eject has been detected.
28934  *
28935  *   Arguments: un - driver soft state (unit) structure
28936  */
28937 
28938 static void
28939 sr_ejected(struct sd_lun *un)
28940 {
28941 	struct sd_errstats *stp;
28942 
28943 	ASSERT(un != NULL);
28944 	ASSERT(mutex_owned(SD_MUTEX(un)));
28945 
28946 	un->un_f_blockcount_is_valid	= FALSE;
28947 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28948 	un->un_f_geometry_is_valid	= FALSE;
28949 
28950 	if (un->un_errstats != NULL) {
28951 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28952 		stp->sd_capacity.value.ui64 = 0;
28953 	}
28954 }
28955 
28956 
28957 /*
28958  *    Function: sr_check_wp()
28959  *
28960  * Description: This routine checks the write protection of a removable media
28961  *		disk via the write protect bit of the Mode Page Header device
28962  *		specific field.  This routine has been implemented to use the
28963  *		error recovery mode page for all device types.
28964  *		Note: In the future use a sd_send_scsi_MODE_SENSE() routine
28965  *
28966  *   Arguments: dev		- the device 'dev_t'
28967  *
28968  * Return Code: int indicating if the device is write protected (1) or not (0)
28969  *
28970  *     Context: Kernel thread.
28971  *
28972  */
28973 
28974 static int
28975 sr_check_wp(dev_t dev)
28976 {
28977 	struct sd_lun	*un;
28978 	uchar_t		device_specific;
28979 	uchar_t		*sense;
28980 	int		hdrlen;
28981 	int		rval;
28982 	int		retry_flag = FALSE;
28983 
28984 	/*
28985 	 * Note: The return codes for this routine should be reworked to
28986 	 * properly handle the case of a NULL softstate.
28987 	 */
28988 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28989 		return (FALSE);
28990 	}
28991 
28992 	if (un->un_f_cfg_is_atapi == TRUE) {
28993 		retry_flag = TRUE;
28994 	}
28995 
28996 retry:
28997 	if (un->un_f_cfg_is_atapi == TRUE) {
28998 		/*
28999 		 * The mode page contents are not required; set the allocation
29000 		 * length for the mode page header only
29001 		 */
29002 		hdrlen = MODE_HEADER_LENGTH_GRP2;
29003 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29004 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
29005 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
29006 		device_specific =
29007 		    ((struct mode_header_grp2 *)sense)->device_specific;
29008 	} else {
29009 		hdrlen = MODE_HEADER_LENGTH;
29010 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29011 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
29012 		    MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
29013 		device_specific =
29014 		    ((struct mode_header *)sense)->device_specific;
29015 	}
29016 
29017 	if (rval != 0) {
29018 		if ((un->un_f_cfg_is_atapi == TRUE) && (retry_flag)) {
29019 			/*
29020 			 * For an Atapi Zip drive, observed the drive
29021 			 * reporting check condition for the first attempt.
29022 			 * Sense data indicating power on or bus device/reset.
29023 			 * Hence in case of failure need to try at least once
29024 			 * for Atapi devices.
29025 			 */
29026 			retry_flag = FALSE;
29027 			kmem_free(sense, hdrlen);
29028 			goto retry;
29029 		} else {
29030 			/*
29031 			 * Write protect mode sense failed; not all disks
29032 			 * understand this query. Return FALSE assuming that
29033 			 * these devices are not writable.
29034 			 */
29035 			rval = FALSE;
29036 		}
29037 	} else {
29038 		if (device_specific & WRITE_PROTECT) {
29039 			rval = TRUE;
29040 		} else {
29041 			rval = FALSE;
29042 		}
29043 	}
29044 	kmem_free(sense, hdrlen);
29045 	return (rval);
29046 }
29047 
29048 
29049 /*
29050  *    Function: sr_volume_ctrl()
29051  *
29052  * Description: This routine is the driver entry point for handling CD-ROM
29053  *		audio output volume ioctl requests. (CDROMVOLCTRL)
29054  *
29055  *   Arguments: dev	- the device 'dev_t'
29056  *		data	- pointer to user audio volume control structure
29057  *		flag	- this argument is a pass through to ddi_copyxxx()
29058  *			  directly from the mode argument of ioctl().
29059  *
29060  * Return Code: the code returned by sd_send_scsi_cmd()
29061  *		EFAULT if ddi_copyxxx() fails
29062  *		ENXIO if fail ddi_get_soft_state
29063  *		EINVAL if data pointer is NULL
29064  *
29065  */
29066 
29067 static int
29068 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
29069 {
29070 	struct sd_lun		*un;
29071 	struct cdrom_volctrl    volume;
29072 	struct cdrom_volctrl    *vol = &volume;
29073 	uchar_t			*sense_page;
29074 	uchar_t			*select_page;
29075 	uchar_t			*sense;
29076 	uchar_t			*select;
29077 	int			sense_buflen;
29078 	int			select_buflen;
29079 	int			rval;
29080 
29081 	if (data == NULL) {
29082 		return (EINVAL);
29083 	}
29084 
29085 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29086 	    (un->un_state == SD_STATE_OFFLINE)) {
29087 		return (ENXIO);
29088 	}
29089 
29090 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29091 		return (EFAULT);
29092 	}
29093 
29094 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29095 		struct mode_header_grp2		*sense_mhp;
29096 		struct mode_header_grp2		*select_mhp;
29097 		int				bd_len;
29098 
29099 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29100 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29101 		    MODEPAGE_AUDIO_CTRL_LEN;
29102 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29103 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29104 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
29105 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29106 		    SD_PATH_STANDARD)) != 0) {
29107 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29108 			    "sr_volume_ctrl: Mode Sense Failed\n");
29109 			kmem_free(sense, sense_buflen);
29110 			kmem_free(select, select_buflen);
29111 			return (rval);
29112 		}
29113 		sense_mhp = (struct mode_header_grp2 *)sense;
29114 		select_mhp = (struct mode_header_grp2 *)select;
29115 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29116 		    sense_mhp->bdesc_length_lo;
29117 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29118 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29119 			    "sr_volume_ctrl: Mode Sense returned invalid "
29120 			    "block descriptor length\n");
29121 			kmem_free(sense, sense_buflen);
29122 			kmem_free(select, select_buflen);
29123 			return (EIO);
29124 		}
29125 		sense_page = (uchar_t *)
29126 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29127 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29128 		select_mhp->length_msb = 0;
29129 		select_mhp->length_lsb = 0;
29130 		select_mhp->bdesc_length_hi = 0;
29131 		select_mhp->bdesc_length_lo = 0;
29132 	} else {
29133 		struct mode_header		*sense_mhp, *select_mhp;
29134 
29135 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29136 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29137 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29138 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29139 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
29140 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29141 		    SD_PATH_STANDARD)) != 0) {
29142 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29143 			    "sr_volume_ctrl: Mode Sense Failed\n");
29144 			kmem_free(sense, sense_buflen);
29145 			kmem_free(select, select_buflen);
29146 			return (rval);
29147 		}
29148 		sense_mhp  = (struct mode_header *)sense;
29149 		select_mhp = (struct mode_header *)select;
29150 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29151 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29152 			    "sr_volume_ctrl: Mode Sense returned invalid "
29153 			    "block descriptor length\n");
29154 			kmem_free(sense, sense_buflen);
29155 			kmem_free(select, select_buflen);
29156 			return (EIO);
29157 		}
29158 		sense_page = (uchar_t *)
29159 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29160 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29161 		select_mhp->length = 0;
29162 		select_mhp->bdesc_length = 0;
29163 	}
29164 	/*
29165 	 * Note: An audio control data structure could be created and overlayed
29166 	 * on the following in place of the array indexing method implemented.
29167 	 */
29168 
29169 	/* Build the select data for the user volume data */
29170 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29171 	select_page[1] = 0xE;
29172 	/* Set the immediate bit */
29173 	select_page[2] = 0x04;
29174 	/* Zero out reserved fields */
29175 	select_page[3] = 0x00;
29176 	select_page[4] = 0x00;
29177 	/* Return sense data for fields not to be modified */
29178 	select_page[5] = sense_page[5];
29179 	select_page[6] = sense_page[6];
29180 	select_page[7] = sense_page[7];
29181 	/* Set the user specified volume levels for channel 0 and 1 */
29182 	select_page[8] = 0x01;
29183 	select_page[9] = vol->channel0;
29184 	select_page[10] = 0x02;
29185 	select_page[11] = vol->channel1;
29186 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29187 	select_page[12] = sense_page[12];
29188 	select_page[13] = sense_page[13];
29189 	select_page[14] = sense_page[14];
29190 	select_page[15] = sense_page[15];
29191 
29192 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29193 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
29194 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29195 	} else {
29196 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
29197 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29198 	}
29199 
29200 	kmem_free(sense, sense_buflen);
29201 	kmem_free(select, select_buflen);
29202 	return (rval);
29203 }
29204 
29205 
29206 /*
29207  *    Function: sr_read_sony_session_offset()
29208  *
29209  * Description: This routine is the driver entry point for handling CD-ROM
29210  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29211  *		The address of the first track in the last session of a
29212  *		multi-session CD-ROM is returned
29213  *
29214  *		Note: This routine uses a vendor specific key value in the
29215  *		command control field without implementing any vendor check here
29216  *		or in the ioctl routine.
29217  *
29218  *   Arguments: dev	- the device 'dev_t'
29219  *		data	- pointer to an int to hold the requested address
29220  *		flag	- this argument is a pass through to ddi_copyxxx()
29221  *			  directly from the mode argument of ioctl().
29222  *
29223  * Return Code: the code returned by sd_send_scsi_cmd()
29224  *		EFAULT if ddi_copyxxx() fails
29225  *		ENXIO if fail ddi_get_soft_state
29226  *		EINVAL if data pointer is NULL
29227  */
29228 
29229 static int
29230 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29231 {
29232 	struct sd_lun		*un;
29233 	struct uscsi_cmd	*com;
29234 	caddr_t			buffer;
29235 	char			cdb[CDB_GROUP1];
29236 	int			session_offset = 0;
29237 	int			rval;
29238 
29239 	if (data == NULL) {
29240 		return (EINVAL);
29241 	}
29242 
29243 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29244 	    (un->un_state == SD_STATE_OFFLINE)) {
29245 		return (ENXIO);
29246 	}
29247 
29248 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29249 	bzero(cdb, CDB_GROUP1);
29250 	cdb[0] = SCMD_READ_TOC;
29251 	/*
29252 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29253 	 * (4 byte TOC response header + 8 byte response data)
29254 	 */
29255 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29256 	/* Byte 9 is the control byte. A vendor specific value is used */
29257 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29258 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29259 	com->uscsi_cdb = cdb;
29260 	com->uscsi_cdblen = CDB_GROUP1;
29261 	com->uscsi_bufaddr = buffer;
29262 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29263 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29264 
29265 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
29266 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29267 	if (rval != 0) {
29268 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29269 		kmem_free(com, sizeof (*com));
29270 		return (rval);
29271 	}
29272 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29273 		session_offset =
29274 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29275 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29276 		/*
29277 		 * Offset returned offset in current lbasize block's. Convert to
29278 		 * 2k block's to return to the user
29279 		 */
29280 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29281 			session_offset >>= 2;
29282 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29283 			session_offset >>= 1;
29284 		}
29285 	}
29286 
29287 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29288 		rval = EFAULT;
29289 	}
29290 
29291 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29292 	kmem_free(com, sizeof (*com));
29293 	return (rval);
29294 }
29295 
29296 
29297 /*
29298  *    Function: sd_wm_cache_constructor()
29299  *
29300  * Description: Cache Constructor for the wmap cache for the read/modify/write
29301  * 		devices.
29302  *
29303  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29304  *		un	- sd_lun structure for the device.
29305  *		flag	- the km flags passed to constructor
29306  *
29307  * Return Code: 0 on success.
29308  *		-1 on failure.
29309  */
29310 
29311 /*ARGSUSED*/
29312 static int
29313 sd_wm_cache_constructor(void *wm, void *un, int flags)
29314 {
29315 	bzero(wm, sizeof (struct sd_w_map));
29316 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29317 	return (0);
29318 }
29319 
29320 
29321 /*
29322  *    Function: sd_wm_cache_destructor()
29323  *
29324  * Description: Cache destructor for the wmap cache for the read/modify/write
29325  * 		devices.
29326  *
29327  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29328  *		un	- sd_lun structure for the device.
29329  */
29330 /*ARGSUSED*/
29331 static void
29332 sd_wm_cache_destructor(void *wm, void *un)
29333 {
29334 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29335 }
29336 
29337 
29338 /*
29339  *    Function: sd_range_lock()
29340  *
29341  * Description: Lock the range of blocks specified as parameter to ensure
29342  *		that read, modify write is atomic and no other i/o writes
29343  *		to the same location. The range is specified in terms
29344  *		of start and end blocks. Block numbers are the actual
29345  *		media block numbers and not system.
29346  *
29347  *   Arguments: un	- sd_lun structure for the device.
29348  *		startb - The starting block number
29349  *		endb - The end block number
29350  *		typ - type of i/o - simple/read_modify_write
29351  *
29352  * Return Code: wm  - pointer to the wmap structure.
29353  *
29354  *     Context: This routine can sleep.
29355  */
29356 
29357 static struct sd_w_map *
29358 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29359 {
29360 	struct sd_w_map *wmp = NULL;
29361 	struct sd_w_map *sl_wmp = NULL;
29362 	struct sd_w_map *tmp_wmp;
29363 	wm_state state = SD_WM_CHK_LIST;
29364 
29365 
29366 	ASSERT(un != NULL);
29367 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29368 
29369 	mutex_enter(SD_MUTEX(un));
29370 
29371 	while (state != SD_WM_DONE) {
29372 
29373 		switch (state) {
29374 		case SD_WM_CHK_LIST:
29375 			/*
29376 			 * This is the starting state. Check the wmap list
29377 			 * to see if the range is currently available.
29378 			 */
29379 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29380 				/*
29381 				 * If this is a simple write and no rmw
29382 				 * i/o is pending then try to lock the
29383 				 * range as the range should be available.
29384 				 */
29385 				state = SD_WM_LOCK_RANGE;
29386 			} else {
29387 				tmp_wmp = sd_get_range(un, startb, endb);
29388 				if (tmp_wmp != NULL) {
29389 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29390 						/*
29391 						 * Should not keep onlist wmps
29392 						 * while waiting this macro
29393 						 * will also do wmp = NULL;
29394 						 */
29395 						FREE_ONLIST_WMAP(un, wmp);
29396 					}
29397 					/*
29398 					 * sl_wmp is the wmap on which wait
29399 					 * is done, since the tmp_wmp points
29400 					 * to the inuse wmap, set sl_wmp to
29401 					 * tmp_wmp and change the state to sleep
29402 					 */
29403 					sl_wmp = tmp_wmp;
29404 					state = SD_WM_WAIT_MAP;
29405 				} else {
29406 					state = SD_WM_LOCK_RANGE;
29407 				}
29408 
29409 			}
29410 			break;
29411 
29412 		case SD_WM_LOCK_RANGE:
29413 			ASSERT(un->un_wm_cache);
29414 			/*
29415 			 * The range need to be locked, try to get a wmap.
29416 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29417 			 * if possible as we will have to release the sd mutex
29418 			 * if we have to sleep.
29419 			 */
29420 			if (wmp == NULL)
29421 				wmp = kmem_cache_alloc(un->un_wm_cache,
29422 				    KM_NOSLEEP);
29423 			if (wmp == NULL) {
29424 				mutex_exit(SD_MUTEX(un));
29425 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29426 				    (sd_lun::un_wm_cache))
29427 				wmp = kmem_cache_alloc(un->un_wm_cache,
29428 				    KM_SLEEP);
29429 				mutex_enter(SD_MUTEX(un));
29430 				/*
29431 				 * we released the mutex so recheck and go to
29432 				 * check list state.
29433 				 */
29434 				state = SD_WM_CHK_LIST;
29435 			} else {
29436 				/*
29437 				 * We exit out of state machine since we
29438 				 * have the wmap. Do the housekeeping first.
29439 				 * place the wmap on the wmap list if it is not
29440 				 * on it already and then set the state to done.
29441 				 */
29442 				wmp->wm_start = startb;
29443 				wmp->wm_end = endb;
29444 				wmp->wm_flags = typ | SD_WM_BUSY;
29445 				if (typ & SD_WTYPE_RMW) {
29446 					un->un_rmw_count++;
29447 				}
29448 				/*
29449 				 * If not already on the list then link
29450 				 */
29451 				if (!ONLIST(un, wmp)) {
29452 					wmp->wm_next = un->un_wm;
29453 					wmp->wm_prev = NULL;
29454 					if (wmp->wm_next)
29455 						wmp->wm_next->wm_prev = wmp;
29456 					un->un_wm = wmp;
29457 				}
29458 				state = SD_WM_DONE;
29459 			}
29460 			break;
29461 
29462 		case SD_WM_WAIT_MAP:
29463 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29464 			/*
29465 			 * Wait is done on sl_wmp, which is set in the
29466 			 * check_list state.
29467 			 */
29468 			sl_wmp->wm_wanted_count++;
29469 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29470 			sl_wmp->wm_wanted_count--;
29471 			/*
29472 			 * We can reuse the memory from the completed sl_wmp
29473 			 * lock range for our new lock, but only if noone is
29474 			 * waiting for it.
29475 			 */
29476 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29477 			if (sl_wmp->wm_wanted_count == 0) {
29478 				if (wmp != NULL)
29479 					CHK_N_FREEWMP(un, wmp);
29480 				wmp = sl_wmp;
29481 			}
29482 			sl_wmp = NULL;
29483 			/*
29484 			 * After waking up, need to recheck for availability of
29485 			 * range.
29486 			 */
29487 			state = SD_WM_CHK_LIST;
29488 			break;
29489 
29490 		default:
29491 			panic("sd_range_lock: "
29492 			    "Unknown state %d in sd_range_lock", state);
29493 			/*NOTREACHED*/
29494 		} /* switch(state) */
29495 
29496 	} /* while(state != SD_WM_DONE) */
29497 
29498 	mutex_exit(SD_MUTEX(un));
29499 
29500 	ASSERT(wmp != NULL);
29501 
29502 	return (wmp);
29503 }
29504 
29505 
29506 /*
29507  *    Function: sd_get_range()
29508  *
29509  * Description: Find if there any overlapping I/O to this one
29510  *		Returns the write-map of 1st such I/O, NULL otherwise.
29511  *
29512  *   Arguments: un	- sd_lun structure for the device.
29513  *		startb - The starting block number
29514  *		endb - The end block number
29515  *
29516  * Return Code: wm  - pointer to the wmap structure.
29517  */
29518 
29519 static struct sd_w_map *
29520 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29521 {
29522 	struct sd_w_map *wmp;
29523 
29524 	ASSERT(un != NULL);
29525 
29526 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29527 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29528 			continue;
29529 		}
29530 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29531 			break;
29532 		}
29533 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29534 			break;
29535 		}
29536 	}
29537 
29538 	return (wmp);
29539 }
29540 
29541 
29542 /*
29543  *    Function: sd_free_inlist_wmap()
29544  *
29545  * Description: Unlink and free a write map struct.
29546  *
29547  *   Arguments: un      - sd_lun structure for the device.
29548  *		wmp	- sd_w_map which needs to be unlinked.
29549  */
29550 
29551 static void
29552 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29553 {
29554 	ASSERT(un != NULL);
29555 
29556 	if (un->un_wm == wmp) {
29557 		un->un_wm = wmp->wm_next;
29558 	} else {
29559 		wmp->wm_prev->wm_next = wmp->wm_next;
29560 	}
29561 
29562 	if (wmp->wm_next) {
29563 		wmp->wm_next->wm_prev = wmp->wm_prev;
29564 	}
29565 
29566 	wmp->wm_next = wmp->wm_prev = NULL;
29567 
29568 	kmem_cache_free(un->un_wm_cache, wmp);
29569 }
29570 
29571 
29572 /*
29573  *    Function: sd_range_unlock()
29574  *
29575  * Description: Unlock the range locked by wm.
29576  *		Free write map if nobody else is waiting on it.
29577  *
29578  *   Arguments: un      - sd_lun structure for the device.
29579  *              wmp     - sd_w_map which needs to be unlinked.
29580  */
29581 
29582 static void
29583 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29584 {
29585 	ASSERT(un != NULL);
29586 	ASSERT(wm != NULL);
29587 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29588 
29589 	mutex_enter(SD_MUTEX(un));
29590 
29591 	if (wm->wm_flags & SD_WTYPE_RMW) {
29592 		un->un_rmw_count--;
29593 	}
29594 
29595 	if (wm->wm_wanted_count) {
29596 		wm->wm_flags = 0;
29597 		/*
29598 		 * Broadcast that the wmap is available now.
29599 		 */
29600 		cv_broadcast(&wm->wm_avail);
29601 	} else {
29602 		/*
29603 		 * If no one is waiting on the map, it should be free'ed.
29604 		 */
29605 		sd_free_inlist_wmap(un, wm);
29606 	}
29607 
29608 	mutex_exit(SD_MUTEX(un));
29609 }
29610 
29611 
29612 /*
29613  *    Function: sd_read_modify_write_task
29614  *
29615  * Description: Called from a taskq thread to initiate the write phase of
29616  *		a read-modify-write request.  This is used for targets where
29617  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29618  *
29619  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29620  *
29621  *     Context: Called under taskq thread context.
29622  */
29623 
29624 static void
29625 sd_read_modify_write_task(void *arg)
29626 {
29627 	struct sd_mapblocksize_info	*bsp;
29628 	struct buf	*bp;
29629 	struct sd_xbuf	*xp;
29630 	struct sd_lun	*un;
29631 
29632 	bp = arg;	/* The bp is given in arg */
29633 	ASSERT(bp != NULL);
29634 
29635 	/* Get the pointer to the layer-private data struct */
29636 	xp = SD_GET_XBUF(bp);
29637 	ASSERT(xp != NULL);
29638 	bsp = xp->xb_private;
29639 	ASSERT(bsp != NULL);
29640 
29641 	un = SD_GET_UN(bp);
29642 	ASSERT(un != NULL);
29643 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29644 
29645 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29646 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29647 
29648 	/*
29649 	 * This is the write phase of a read-modify-write request, called
29650 	 * under the context of a taskq thread in response to the completion
29651 	 * of the read portion of the rmw request completing under interrupt
29652 	 * context. The write request must be sent from here down the iostart
29653 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29654 	 * we use the layer index saved in the layer-private data area.
29655 	 */
29656 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29657 
29658 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29659 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29660 }
29661 
29662 
29663 /*
29664  *    Function: sddump_do_read_of_rmw()
29665  *
29666  * Description: This routine will be called from sddump, If sddump is called
29667  *		with an I/O which not aligned on device blocksize boundary
29668  *		then the write has to be converted to read-modify-write.
29669  *		Do the read part here in order to keep sddump simple.
29670  *		Note - That the sd_mutex is held across the call to this
29671  *		routine.
29672  *
29673  *   Arguments: un	- sd_lun
29674  *		blkno	- block number in terms of media block size.
29675  *		nblk	- number of blocks.
29676  *		bpp	- pointer to pointer to the buf structure. On return
29677  *			from this function, *bpp points to the valid buffer
29678  *			to which the write has to be done.
29679  *
29680  * Return Code: 0 for success or errno-type return code
29681  */
29682 
29683 static int
29684 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29685 	struct buf **bpp)
29686 {
29687 	int err;
29688 	int i;
29689 	int rval;
29690 	struct buf *bp;
29691 	struct scsi_pkt *pkt = NULL;
29692 	uint32_t target_blocksize;
29693 
29694 	ASSERT(un != NULL);
29695 	ASSERT(mutex_owned(SD_MUTEX(un)));
29696 
29697 	target_blocksize = un->un_tgt_blocksize;
29698 
29699 	mutex_exit(SD_MUTEX(un));
29700 
29701 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29702 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29703 	if (bp == NULL) {
29704 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29705 		    "no resources for dumping; giving up");
29706 		err = ENOMEM;
29707 		goto done;
29708 	}
29709 
29710 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29711 	    blkno, nblk);
29712 	if (rval != 0) {
29713 		scsi_free_consistent_buf(bp);
29714 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29715 		    "no resources for dumping; giving up");
29716 		err = ENOMEM;
29717 		goto done;
29718 	}
29719 
29720 	pkt->pkt_flags |= FLAG_NOINTR;
29721 
29722 	err = EIO;
29723 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29724 
29725 		/*
29726 		 * Scsi_poll returns 0 (success) if the command completes and
29727 		 * the status block is STATUS_GOOD.  We should only check
29728 		 * errors if this condition is not true.  Even then we should
29729 		 * send our own request sense packet only if we have a check
29730 		 * condition and auto request sense has not been performed by
29731 		 * the hba.
29732 		 */
29733 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29734 
29735 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29736 			err = 0;
29737 			break;
29738 		}
29739 
29740 		/*
29741 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29742 		 * no need to read RQS data.
29743 		 */
29744 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29745 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
29746 			    "Device is gone\n");
29747 			break;
29748 		}
29749 
29750 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29751 			SD_INFO(SD_LOG_DUMP, un,
29752 			    "sddump: read failed with CHECK, try # %d\n", i);
29753 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29754 				(void) sd_send_polled_RQS(un);
29755 			}
29756 
29757 			continue;
29758 		}
29759 
29760 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29761 			int reset_retval = 0;
29762 
29763 			SD_INFO(SD_LOG_DUMP, un,
29764 			    "sddump: read failed with BUSY, try # %d\n", i);
29765 
29766 			if (un->un_f_lun_reset_enabled == TRUE) {
29767 				reset_retval = scsi_reset(SD_ADDRESS(un),
29768 				    RESET_LUN);
29769 			}
29770 			if (reset_retval == 0) {
29771 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29772 			}
29773 			(void) sd_send_polled_RQS(un);
29774 
29775 		} else {
29776 			SD_INFO(SD_LOG_DUMP, un,
29777 			    "sddump: read failed with 0x%x, try # %d\n",
29778 			    SD_GET_PKT_STATUS(pkt), i);
29779 			mutex_enter(SD_MUTEX(un));
29780 			sd_reset_target(un, pkt);
29781 			mutex_exit(SD_MUTEX(un));
29782 		}
29783 
29784 		/*
29785 		 * If we are not getting anywhere with lun/target resets,
29786 		 * let's reset the bus.
29787 		 */
29788 		if (i > SD_NDUMP_RETRIES/2) {
29789 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29790 			(void) sd_send_polled_RQS(un);
29791 		}
29792 
29793 	}
29794 	scsi_destroy_pkt(pkt);
29795 
29796 	if (err != 0) {
29797 		scsi_free_consistent_buf(bp);
29798 		*bpp = NULL;
29799 	} else {
29800 		*bpp = bp;
29801 	}
29802 
29803 done:
29804 	mutex_enter(SD_MUTEX(un));
29805 	return (err);
29806 }
29807 
29808 
29809 /*
29810  *    Function: sd_failfast_flushq
29811  *
29812  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29813  *		in b_flags and move them onto the failfast queue, then kick
29814  *		off a thread to return all bp's on the failfast queue to
29815  *		their owners with an error set.
29816  *
29817  *   Arguments: un - pointer to the soft state struct for the instance.
29818  *
29819  *     Context: may execute in interrupt context.
29820  */
29821 
29822 static void
29823 sd_failfast_flushq(struct sd_lun *un)
29824 {
29825 	struct buf *bp;
29826 	struct buf *next_waitq_bp;
29827 	struct buf *prev_waitq_bp = NULL;
29828 
29829 	ASSERT(un != NULL);
29830 	ASSERT(mutex_owned(SD_MUTEX(un)));
29831 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29832 	ASSERT(un->un_failfast_bp == NULL);
29833 
29834 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29835 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29836 
29837 	/*
29838 	 * Check if we should flush all bufs when entering failfast state, or
29839 	 * just those with B_FAILFAST set.
29840 	 */
29841 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29842 		/*
29843 		 * Move *all* bp's on the wait queue to the failfast flush
29844 		 * queue, including those that do NOT have B_FAILFAST set.
29845 		 */
29846 		if (un->un_failfast_headp == NULL) {
29847 			ASSERT(un->un_failfast_tailp == NULL);
29848 			un->un_failfast_headp = un->un_waitq_headp;
29849 		} else {
29850 			ASSERT(un->un_failfast_tailp != NULL);
29851 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29852 		}
29853 
29854 		un->un_failfast_tailp = un->un_waitq_tailp;
29855 
29856 		/* update kstat for each bp moved out of the waitq */
29857 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29858 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29859 		}
29860 
29861 		/* empty the waitq */
29862 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29863 
29864 	} else {
29865 		/*
29866 		 * Go thru the wait queue, pick off all entries with
29867 		 * B_FAILFAST set, and move these onto the failfast queue.
29868 		 */
29869 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29870 			/*
29871 			 * Save the pointer to the next bp on the wait queue,
29872 			 * so we get to it on the next iteration of this loop.
29873 			 */
29874 			next_waitq_bp = bp->av_forw;
29875 
29876 			/*
29877 			 * If this bp from the wait queue does NOT have
29878 			 * B_FAILFAST set, just move on to the next element
29879 			 * in the wait queue. Note, this is the only place
29880 			 * where it is correct to set prev_waitq_bp.
29881 			 */
29882 			if ((bp->b_flags & B_FAILFAST) == 0) {
29883 				prev_waitq_bp = bp;
29884 				continue;
29885 			}
29886 
29887 			/*
29888 			 * Remove the bp from the wait queue.
29889 			 */
29890 			if (bp == un->un_waitq_headp) {
29891 				/* The bp is the first element of the waitq. */
29892 				un->un_waitq_headp = next_waitq_bp;
29893 				if (un->un_waitq_headp == NULL) {
29894 					/* The wait queue is now empty */
29895 					un->un_waitq_tailp = NULL;
29896 				}
29897 			} else {
29898 				/*
29899 				 * The bp is either somewhere in the middle
29900 				 * or at the end of the wait queue.
29901 				 */
29902 				ASSERT(un->un_waitq_headp != NULL);
29903 				ASSERT(prev_waitq_bp != NULL);
29904 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29905 				    == 0);
29906 				if (bp == un->un_waitq_tailp) {
29907 					/* bp is the last entry on the waitq. */
29908 					ASSERT(next_waitq_bp == NULL);
29909 					un->un_waitq_tailp = prev_waitq_bp;
29910 				}
29911 				prev_waitq_bp->av_forw = next_waitq_bp;
29912 			}
29913 			bp->av_forw = NULL;
29914 
29915 			/*
29916 			 * update kstat since the bp is moved out of
29917 			 * the waitq
29918 			 */
29919 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29920 
29921 			/*
29922 			 * Now put the bp onto the failfast queue.
29923 			 */
29924 			if (un->un_failfast_headp == NULL) {
29925 				/* failfast queue is currently empty */
29926 				ASSERT(un->un_failfast_tailp == NULL);
29927 				un->un_failfast_headp =
29928 				    un->un_failfast_tailp = bp;
29929 			} else {
29930 				/* Add the bp to the end of the failfast q */
29931 				ASSERT(un->un_failfast_tailp != NULL);
29932 				ASSERT(un->un_failfast_tailp->b_flags &
29933 				    B_FAILFAST);
29934 				un->un_failfast_tailp->av_forw = bp;
29935 				un->un_failfast_tailp = bp;
29936 			}
29937 		}
29938 	}
29939 
29940 	/*
29941 	 * Now return all bp's on the failfast queue to their owners.
29942 	 */
29943 	while ((bp = un->un_failfast_headp) != NULL) {
29944 
29945 		un->un_failfast_headp = bp->av_forw;
29946 		if (un->un_failfast_headp == NULL) {
29947 			un->un_failfast_tailp = NULL;
29948 		}
29949 
29950 		/*
29951 		 * We want to return the bp with a failure error code, but
29952 		 * we do not want a call to sd_start_cmds() to occur here,
29953 		 * so use sd_return_failed_command_no_restart() instead of
29954 		 * sd_return_failed_command().
29955 		 */
29956 		sd_return_failed_command_no_restart(un, bp, EIO);
29957 	}
29958 
29959 	/* Flush the xbuf queues if required. */
29960 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29961 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29962 	}
29963 
29964 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29965 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29966 }
29967 
29968 
29969 /*
29970  *    Function: sd_failfast_flushq_callback
29971  *
29972  * Description: Return TRUE if the given bp meets the criteria for failfast
29973  *		flushing. Used with ddi_xbuf_flushq(9F).
29974  *
29975  *   Arguments: bp - ptr to buf struct to be examined.
29976  *
29977  *     Context: Any
29978  */
29979 
29980 static int
29981 sd_failfast_flushq_callback(struct buf *bp)
29982 {
29983 	/*
29984 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29985 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29986 	 */
29987 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29988 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29989 }
29990 
29991 
29992 
29993 #if defined(__i386) || defined(__amd64)
29994 /*
29995  * Function: sd_setup_next_xfer
29996  *
29997  * Description: Prepare next I/O operation using DMA_PARTIAL
29998  *
29999  */
30000 
30001 static int
30002 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
30003     struct scsi_pkt *pkt, struct sd_xbuf *xp)
30004 {
30005 	ssize_t	num_blks_not_xfered;
30006 	daddr_t	strt_blk_num;
30007 	ssize_t	bytes_not_xfered;
30008 	int	rval;
30009 
30010 	ASSERT(pkt->pkt_resid == 0);
30011 
30012 	/*
30013 	 * Calculate next block number and amount to be transferred.
30014 	 *
30015 	 * How much data NOT transfered to the HBA yet.
30016 	 */
30017 	bytes_not_xfered = xp->xb_dma_resid;
30018 
30019 	/*
30020 	 * figure how many blocks NOT transfered to the HBA yet.
30021 	 */
30022 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
30023 
30024 	/*
30025 	 * set starting block number to the end of what WAS transfered.
30026 	 */
30027 	strt_blk_num = xp->xb_blkno +
30028 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
30029 
30030 	/*
30031 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
30032 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
30033 	 * the disk mutex here.
30034 	 */
30035 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
30036 	    strt_blk_num, num_blks_not_xfered);
30037 
30038 	if (rval == 0) {
30039 
30040 		/*
30041 		 * Success.
30042 		 *
30043 		 * Adjust things if there are still more blocks to be
30044 		 * transfered.
30045 		 */
30046 		xp->xb_dma_resid = pkt->pkt_resid;
30047 		pkt->pkt_resid = 0;
30048 
30049 		return (1);
30050 	}
30051 
30052 	/*
30053 	 * There's really only one possible return value from
30054 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
30055 	 * returns NULL.
30056 	 */
30057 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
30058 
30059 	bp->b_resid = bp->b_bcount;
30060 	bp->b_flags |= B_ERROR;
30061 
30062 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30063 	    "Error setting up next portion of DMA transfer\n");
30064 
30065 	return (0);
30066 }
30067 #endif
30068 
30069 /*
30070  *    Function: sd_panic_for_res_conflict
30071  *
30072  * Description: Call panic with a string formated with "Reservation Conflict"
30073  *		and a human readable identifier indicating the SD instance
30074  *		that experienced the reservation conflict.
30075  *
30076  *   Arguments: un - pointer to the soft state struct for the instance.
30077  *
30078  *     Context: may execute in interrupt context.
30079  */
30080 
30081 #define	SD_RESV_CONFLICT_FMT_LEN 40
30082 void
30083 sd_panic_for_res_conflict(struct sd_lun *un)
30084 {
30085 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30086 	char path_str[MAXPATHLEN];
30087 
30088 	(void) snprintf(panic_str, sizeof (panic_str),
30089 	    "Reservation Conflict\nDisk: %s",
30090 	    ddi_pathname(SD_DEVINFO(un), path_str));
30091 
30092 	panic(panic_str);
30093 }
30094 
30095 /*
30096  * Note: The following sd_faultinjection_ioctl( ) routines implement
30097  * driver support for handling fault injection for error analysis
30098  * causing faults in multiple layers of the driver.
30099  *
30100  */
30101 
30102 #ifdef SD_FAULT_INJECTION
30103 static uint_t   sd_fault_injection_on = 0;
30104 
30105 /*
30106  *    Function: sd_faultinjection_ioctl()
30107  *
30108  * Description: This routine is the driver entry point for handling
30109  *              faultinjection ioctls to inject errors into the
30110  *              layer model
30111  *
30112  *   Arguments: cmd	- the ioctl cmd recieved
30113  *		arg	- the arguments from user and returns
30114  */
30115 
30116 static void
30117 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30118 
30119 	uint_t i;
30120 	uint_t rval;
30121 
30122 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30123 
30124 	mutex_enter(SD_MUTEX(un));
30125 
30126 	switch (cmd) {
30127 	case SDIOCRUN:
30128 		/* Allow pushed faults to be injected */
30129 		SD_INFO(SD_LOG_SDTEST, un,
30130 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30131 
30132 		sd_fault_injection_on = 1;
30133 
30134 		SD_INFO(SD_LOG_IOERR, un,
30135 		    "sd_faultinjection_ioctl: run finished\n");
30136 		break;
30137 
30138 	case SDIOCSTART:
30139 		/* Start Injection Session */
30140 		SD_INFO(SD_LOG_SDTEST, un,
30141 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30142 
30143 		sd_fault_injection_on = 0;
30144 		un->sd_injection_mask = 0xFFFFFFFF;
30145 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30146 			un->sd_fi_fifo_pkt[i] = NULL;
30147 			un->sd_fi_fifo_xb[i] = NULL;
30148 			un->sd_fi_fifo_un[i] = NULL;
30149 			un->sd_fi_fifo_arq[i] = NULL;
30150 		}
30151 		un->sd_fi_fifo_start = 0;
30152 		un->sd_fi_fifo_end = 0;
30153 
30154 		mutex_enter(&(un->un_fi_mutex));
30155 		un->sd_fi_log[0] = '\0';
30156 		un->sd_fi_buf_len = 0;
30157 		mutex_exit(&(un->un_fi_mutex));
30158 
30159 		SD_INFO(SD_LOG_IOERR, un,
30160 		    "sd_faultinjection_ioctl: start finished\n");
30161 		break;
30162 
30163 	case SDIOCSTOP:
30164 		/* Stop Injection Session */
30165 		SD_INFO(SD_LOG_SDTEST, un,
30166 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30167 		sd_fault_injection_on = 0;
30168 		un->sd_injection_mask = 0x0;
30169 
30170 		/* Empty stray or unuseds structs from fifo */
30171 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30172 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30173 				kmem_free(un->sd_fi_fifo_pkt[i],
30174 				    sizeof (struct sd_fi_pkt));
30175 			}
30176 			if (un->sd_fi_fifo_xb[i] != NULL) {
30177 				kmem_free(un->sd_fi_fifo_xb[i],
30178 				    sizeof (struct sd_fi_xb));
30179 			}
30180 			if (un->sd_fi_fifo_un[i] != NULL) {
30181 				kmem_free(un->sd_fi_fifo_un[i],
30182 				    sizeof (struct sd_fi_un));
30183 			}
30184 			if (un->sd_fi_fifo_arq[i] != NULL) {
30185 				kmem_free(un->sd_fi_fifo_arq[i],
30186 				    sizeof (struct sd_fi_arq));
30187 			}
30188 			un->sd_fi_fifo_pkt[i] = NULL;
30189 			un->sd_fi_fifo_un[i] = NULL;
30190 			un->sd_fi_fifo_xb[i] = NULL;
30191 			un->sd_fi_fifo_arq[i] = NULL;
30192 		}
30193 		un->sd_fi_fifo_start = 0;
30194 		un->sd_fi_fifo_end = 0;
30195 
30196 		SD_INFO(SD_LOG_IOERR, un,
30197 		    "sd_faultinjection_ioctl: stop finished\n");
30198 		break;
30199 
30200 	case SDIOCINSERTPKT:
30201 		/* Store a packet struct to be pushed onto fifo */
30202 		SD_INFO(SD_LOG_SDTEST, un,
30203 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30204 
30205 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30206 
30207 		sd_fault_injection_on = 0;
30208 
30209 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30210 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30211 			kmem_free(un->sd_fi_fifo_pkt[i],
30212 			    sizeof (struct sd_fi_pkt));
30213 		}
30214 		if (arg != NULL) {
30215 			un->sd_fi_fifo_pkt[i] =
30216 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30217 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30218 				/* Alloc failed don't store anything */
30219 				break;
30220 			}
30221 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30222 			    sizeof (struct sd_fi_pkt), 0);
30223 			if (rval == -1) {
30224 				kmem_free(un->sd_fi_fifo_pkt[i],
30225 				    sizeof (struct sd_fi_pkt));
30226 				un->sd_fi_fifo_pkt[i] = NULL;
30227 			}
30228 		} else {
30229 			SD_INFO(SD_LOG_IOERR, un,
30230 			    "sd_faultinjection_ioctl: pkt null\n");
30231 		}
30232 		break;
30233 
30234 	case SDIOCINSERTXB:
30235 		/* Store a xb struct to be pushed onto fifo */
30236 		SD_INFO(SD_LOG_SDTEST, un,
30237 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30238 
30239 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30240 
30241 		sd_fault_injection_on = 0;
30242 
30243 		if (un->sd_fi_fifo_xb[i] != NULL) {
30244 			kmem_free(un->sd_fi_fifo_xb[i],
30245 			    sizeof (struct sd_fi_xb));
30246 			un->sd_fi_fifo_xb[i] = NULL;
30247 		}
30248 		if (arg != NULL) {
30249 			un->sd_fi_fifo_xb[i] =
30250 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30251 			if (un->sd_fi_fifo_xb[i] == NULL) {
30252 				/* Alloc failed don't store anything */
30253 				break;
30254 			}
30255 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30256 			    sizeof (struct sd_fi_xb), 0);
30257 
30258 			if (rval == -1) {
30259 				kmem_free(un->sd_fi_fifo_xb[i],
30260 				    sizeof (struct sd_fi_xb));
30261 				un->sd_fi_fifo_xb[i] = NULL;
30262 			}
30263 		} else {
30264 			SD_INFO(SD_LOG_IOERR, un,
30265 			    "sd_faultinjection_ioctl: xb null\n");
30266 		}
30267 		break;
30268 
30269 	case SDIOCINSERTUN:
30270 		/* Store a un struct to be pushed onto fifo */
30271 		SD_INFO(SD_LOG_SDTEST, un,
30272 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30273 
30274 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30275 
30276 		sd_fault_injection_on = 0;
30277 
30278 		if (un->sd_fi_fifo_un[i] != NULL) {
30279 			kmem_free(un->sd_fi_fifo_un[i],
30280 			    sizeof (struct sd_fi_un));
30281 			un->sd_fi_fifo_un[i] = NULL;
30282 		}
30283 		if (arg != NULL) {
30284 			un->sd_fi_fifo_un[i] =
30285 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30286 			if (un->sd_fi_fifo_un[i] == NULL) {
30287 				/* Alloc failed don't store anything */
30288 				break;
30289 			}
30290 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30291 			    sizeof (struct sd_fi_un), 0);
30292 			if (rval == -1) {
30293 				kmem_free(un->sd_fi_fifo_un[i],
30294 				    sizeof (struct sd_fi_un));
30295 				un->sd_fi_fifo_un[i] = NULL;
30296 			}
30297 
30298 		} else {
30299 			SD_INFO(SD_LOG_IOERR, un,
30300 			    "sd_faultinjection_ioctl: un null\n");
30301 		}
30302 
30303 		break;
30304 
30305 	case SDIOCINSERTARQ:
30306 		/* Store a arq struct to be pushed onto fifo */
30307 		SD_INFO(SD_LOG_SDTEST, un,
30308 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30309 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30310 
30311 		sd_fault_injection_on = 0;
30312 
30313 		if (un->sd_fi_fifo_arq[i] != NULL) {
30314 			kmem_free(un->sd_fi_fifo_arq[i],
30315 			    sizeof (struct sd_fi_arq));
30316 			un->sd_fi_fifo_arq[i] = NULL;
30317 		}
30318 		if (arg != NULL) {
30319 			un->sd_fi_fifo_arq[i] =
30320 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30321 			if (un->sd_fi_fifo_arq[i] == NULL) {
30322 				/* Alloc failed don't store anything */
30323 				break;
30324 			}
30325 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30326 			    sizeof (struct sd_fi_arq), 0);
30327 			if (rval == -1) {
30328 				kmem_free(un->sd_fi_fifo_arq[i],
30329 				    sizeof (struct sd_fi_arq));
30330 				un->sd_fi_fifo_arq[i] = NULL;
30331 			}
30332 
30333 		} else {
30334 			SD_INFO(SD_LOG_IOERR, un,
30335 			    "sd_faultinjection_ioctl: arq null\n");
30336 		}
30337 
30338 		break;
30339 
30340 	case SDIOCPUSH:
30341 		/* Push stored xb, pkt, un, and arq onto fifo */
30342 		sd_fault_injection_on = 0;
30343 
30344 		if (arg != NULL) {
30345 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30346 			if (rval != -1 &&
30347 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30348 				un->sd_fi_fifo_end += i;
30349 			}
30350 		} else {
30351 			SD_INFO(SD_LOG_IOERR, un,
30352 			    "sd_faultinjection_ioctl: push arg null\n");
30353 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30354 				un->sd_fi_fifo_end++;
30355 			}
30356 		}
30357 		SD_INFO(SD_LOG_IOERR, un,
30358 		    "sd_faultinjection_ioctl: push to end=%d\n",
30359 		    un->sd_fi_fifo_end);
30360 		break;
30361 
30362 	case SDIOCRETRIEVE:
30363 		/* Return buffer of log from Injection session */
30364 		SD_INFO(SD_LOG_SDTEST, un,
30365 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30366 
30367 		sd_fault_injection_on = 0;
30368 
30369 		mutex_enter(&(un->un_fi_mutex));
30370 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30371 		    un->sd_fi_buf_len+1, 0);
30372 		mutex_exit(&(un->un_fi_mutex));
30373 
30374 		if (rval == -1) {
30375 			/*
30376 			 * arg is possibly invalid setting
30377 			 * it to NULL for return
30378 			 */
30379 			arg = NULL;
30380 		}
30381 		break;
30382 	}
30383 
30384 	mutex_exit(SD_MUTEX(un));
30385 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30386 			    " exit\n");
30387 }
30388 
30389 
30390 /*
30391  *    Function: sd_injection_log()
30392  *
30393  * Description: This routine adds buff to the already existing injection log
30394  *              for retrieval via faultinjection_ioctl for use in fault
30395  *              detection and recovery
30396  *
30397  *   Arguments: buf - the string to add to the log
30398  */
30399 
30400 static void
30401 sd_injection_log(char *buf, struct sd_lun *un)
30402 {
30403 	uint_t len;
30404 
30405 	ASSERT(un != NULL);
30406 	ASSERT(buf != NULL);
30407 
30408 	mutex_enter(&(un->un_fi_mutex));
30409 
30410 	len = min(strlen(buf), 255);
30411 	/* Add logged value to Injection log to be returned later */
30412 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30413 		uint_t	offset = strlen((char *)un->sd_fi_log);
30414 		char *destp = (char *)un->sd_fi_log + offset;
30415 		int i;
30416 		for (i = 0; i < len; i++) {
30417 			*destp++ = *buf++;
30418 		}
30419 		un->sd_fi_buf_len += len;
30420 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30421 	}
30422 
30423 	mutex_exit(&(un->un_fi_mutex));
30424 }
30425 
30426 
30427 /*
30428  *    Function: sd_faultinjection()
30429  *
30430  * Description: This routine takes the pkt and changes its
30431  *		content based on error injection scenerio.
30432  *
30433  *   Arguments: pktp	- packet to be changed
30434  */
30435 
30436 static void
30437 sd_faultinjection(struct scsi_pkt *pktp)
30438 {
30439 	uint_t i;
30440 	struct sd_fi_pkt *fi_pkt;
30441 	struct sd_fi_xb *fi_xb;
30442 	struct sd_fi_un *fi_un;
30443 	struct sd_fi_arq *fi_arq;
30444 	struct buf *bp;
30445 	struct sd_xbuf *xb;
30446 	struct sd_lun *un;
30447 
30448 	ASSERT(pktp != NULL);
30449 
30450 	/* pull bp xb and un from pktp */
30451 	bp = (struct buf *)pktp->pkt_private;
30452 	xb = SD_GET_XBUF(bp);
30453 	un = SD_GET_UN(bp);
30454 
30455 	ASSERT(un != NULL);
30456 
30457 	mutex_enter(SD_MUTEX(un));
30458 
30459 	SD_TRACE(SD_LOG_SDTEST, un,
30460 	    "sd_faultinjection: entry Injection from sdintr\n");
30461 
30462 	/* if injection is off return */
30463 	if (sd_fault_injection_on == 0 ||
30464 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30465 		mutex_exit(SD_MUTEX(un));
30466 		return;
30467 	}
30468 
30469 
30470 	/* take next set off fifo */
30471 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30472 
30473 	fi_pkt = un->sd_fi_fifo_pkt[i];
30474 	fi_xb = un->sd_fi_fifo_xb[i];
30475 	fi_un = un->sd_fi_fifo_un[i];
30476 	fi_arq = un->sd_fi_fifo_arq[i];
30477 
30478 
30479 	/* set variables accordingly */
30480 	/* set pkt if it was on fifo */
30481 	if (fi_pkt != NULL) {
30482 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30483 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30484 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30485 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30486 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30487 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30488 
30489 	}
30490 
30491 	/* set xb if it was on fifo */
30492 	if (fi_xb != NULL) {
30493 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30494 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30495 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30496 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30497 		    "xb_victim_retry_count");
30498 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30499 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30500 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30501 
30502 		/* copy in block data from sense */
30503 		if (fi_xb->xb_sense_data[0] != -1) {
30504 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30505 			    SENSE_LENGTH);
30506 		}
30507 
30508 		/* copy in extended sense codes */
30509 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
30510 		    "es_code");
30511 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
30512 		    "es_key");
30513 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
30514 		    "es_add_code");
30515 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
30516 		    es_qual_code, "es_qual_code");
30517 	}
30518 
30519 	/* set un if it was on fifo */
30520 	if (fi_un != NULL) {
30521 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30522 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30523 		SD_CONDSET(un, un, un_reset_retry_count,
30524 		    "un_reset_retry_count");
30525 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30526 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30527 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30528 		SD_CONDSET(un, un, un_f_geometry_is_valid,
30529 		    "un_f_geometry_is_valid");
30530 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30531 		    "un_f_allow_bus_device_reset");
30532 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30533 
30534 	}
30535 
30536 	/* copy in auto request sense if it was on fifo */
30537 	if (fi_arq != NULL) {
30538 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30539 	}
30540 
30541 	/* free structs */
30542 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30543 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30544 	}
30545 	if (un->sd_fi_fifo_xb[i] != NULL) {
30546 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30547 	}
30548 	if (un->sd_fi_fifo_un[i] != NULL) {
30549 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30550 	}
30551 	if (un->sd_fi_fifo_arq[i] != NULL) {
30552 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30553 	}
30554 
30555 	/*
30556 	 * kmem_free does not gurantee to set to NULL
30557 	 * since we uses these to determine if we set
30558 	 * values or not lets confirm they are always
30559 	 * NULL after free
30560 	 */
30561 	un->sd_fi_fifo_pkt[i] = NULL;
30562 	un->sd_fi_fifo_un[i] = NULL;
30563 	un->sd_fi_fifo_xb[i] = NULL;
30564 	un->sd_fi_fifo_arq[i] = NULL;
30565 
30566 	un->sd_fi_fifo_start++;
30567 
30568 	mutex_exit(SD_MUTEX(un));
30569 
30570 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30571 }
30572 
30573 #endif /* SD_FAULT_INJECTION */
30574 
30575 /*
30576  * This routine is invoked in sd_unit_attach(). Before calling it, the
30577  * properties in conf file should be processed already, and "hotpluggable"
30578  * property was processed also.
30579  *
30580  * The sd driver distinguishes 3 different type of devices: removable media,
30581  * non-removable media, and hotpluggable. Below the differences are defined:
30582  *
30583  * 1. Device ID
30584  *
30585  *     The device ID of a device is used to identify this device. Refer to
30586  *     ddi_devid_register(9F).
30587  *
30588  *     For a non-removable media disk device which can provide 0x80 or 0x83
30589  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30590  *     device ID is created to identify this device. For other non-removable
30591  *     media devices, a default device ID is created only if this device has
30592  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30593  *
30594  *     -------------------------------------------------------
30595  *     removable media   hotpluggable  | Can Have Device ID
30596  *     -------------------------------------------------------
30597  *         false             false     |     Yes
30598  *         false             true      |     Yes
30599  *         true                x       |     No
30600  *     ------------------------------------------------------
30601  *
30602  *
30603  * 2. SCSI group 4 commands
30604  *
30605  *     In SCSI specs, only some commands in group 4 command set can use
30606  *     8-byte addresses that can be used to access >2TB storage spaces.
30607  *     Other commands have no such capability. Without supporting group4,
30608  *     it is impossible to make full use of storage spaces of a disk with
30609  *     capacity larger than 2TB.
30610  *
30611  *     -----------------------------------------------
30612  *     removable media   hotpluggable   LP64  |  Group
30613  *     -----------------------------------------------
30614  *           false          false       false |   1
30615  *           false          false       true  |   4
30616  *           false          true        false |   1
30617  *           false          true        true  |   4
30618  *           true             x           x   |   5
30619  *     -----------------------------------------------
30620  *
30621  *
30622  * 3. Check for VTOC Label
30623  *
30624  *     If a direct-access disk has no EFI label, sd will check if it has a
30625  *     valid VTOC label. Now, sd also does that check for removable media
30626  *     and hotpluggable devices.
30627  *
30628  *     --------------------------------------------------------------
30629  *     Direct-Access   removable media    hotpluggable |  Check Label
30630  *     -------------------------------------------------------------
30631  *         false          false           false        |   No
30632  *         false          false           true         |   No
30633  *         false          true            false        |   Yes
30634  *         false          true            true         |   Yes
30635  *         true            x                x          |   Yes
30636  *     --------------------------------------------------------------
30637  *
30638  *
30639  * 4. Building default VTOC label
30640  *
30641  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30642  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30643  *     create default VTOC for them. Currently sd creates default VTOC label
30644  *     for all devices on x86 platform (VTOC_16), but only for removable
30645  *     media devices on SPARC (VTOC_8).
30646  *
30647  *     -----------------------------------------------------------
30648  *       removable media hotpluggable platform   |   Default Label
30649  *     -----------------------------------------------------------
30650  *             false          false    sparc     |     No
30651  *             false          true      x86      |     Yes
30652  *             false          true     sparc     |     Yes
30653  *             true             x        x       |     Yes
30654  *     ----------------------------------------------------------
30655  *
30656  *
30657  * 5. Supported blocksizes of target devices
30658  *
30659  *     Sd supports non-512-byte blocksize for removable media devices only.
30660  *     For other devices, only 512-byte blocksize is supported. This may be
30661  *     changed in near future because some RAID devices require non-512-byte
30662  *     blocksize
30663  *
30664  *     -----------------------------------------------------------
30665  *     removable media    hotpluggable    | non-512-byte blocksize
30666  *     -----------------------------------------------------------
30667  *           false          false         |   No
30668  *           false          true          |   No
30669  *           true             x           |   Yes
30670  *     -----------------------------------------------------------
30671  *
30672  *
30673  * 6. Automatic mount & unmount (i.e. vold)
30674  *
30675  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30676  *     if a device is removable media device. It return 1 for removable media
30677  *     devices, and 0 for others.
30678  *
30679  *     Vold treats a device as removable one only if DKIOREMOVABLE returns 1.
30680  *     And it does automounting only for removable media devices. In order to
30681  *     preserve users' experience and let vold continue to do automounting for
30682  *     USB disk devices, DKIOCREMOVABLE ioctl still returns 1 for USB/1394 disk
30683  *     devices.
30684  *
30685  *      ------------------------------------------------------
30686  *       removable media    hotpluggable   |  automatic mount
30687  *      ------------------------------------------------------
30688  *             false          false        |   No
30689  *             false          true         |   Yes
30690  *             true             x          |   Yes
30691  *      ------------------------------------------------------
30692  *
30693  *
30694  * 7. fdisk partition management
30695  *
30696  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30697  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30698  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30699  *     fdisk partitions on both x86 and SPARC platform.
30700  *
30701  *     -----------------------------------------------------------
30702  *       platform   removable media  USB/1394  |  fdisk supported
30703  *     -----------------------------------------------------------
30704  *        x86         X               X        |       true
30705  *     ------------------------------------------------------------
30706  *        sparc       X               X        |       false
30707  *     ------------------------------------------------------------
30708  *
30709  *
30710  * 8. MBOOT/MBR
30711  *
30712  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30713  *     read/write mboot for removable media devices on sparc platform.
30714  *
30715  *     -----------------------------------------------------------
30716  *       platform   removable media  USB/1394  |  mboot supported
30717  *     -----------------------------------------------------------
30718  *        x86         X               X        |       true
30719  *     ------------------------------------------------------------
30720  *        sparc      false           false     |       false
30721  *        sparc      false           true      |       true
30722  *        sparc      true            false     |       true
30723  *        sparc      true            true      |       true
30724  *     ------------------------------------------------------------
30725  *
30726  *
30727  * 9.  error handling during opening device
30728  *
30729  *     If failed to open a disk device, an errno is returned. For some kinds
30730  *     of errors, different errno is returned depending on if this device is
30731  *     a removable media device. This brings USB/1394 hard disks in line with
30732  *     expected hard disk behavior. It is not expected that this breaks any
30733  *     application.
30734  *
30735  *     ------------------------------------------------------
30736  *       removable media    hotpluggable   |  errno
30737  *     ------------------------------------------------------
30738  *             false          false        |   EIO
30739  *             false          true         |   EIO
30740  *             true             x          |   ENXIO
30741  *     ------------------------------------------------------
30742  *
30743  *
30744  * 10. off-by-1 workaround (bug 1175930, and 4996920) (x86 only)
30745  *
30746  *     [ this is a bit of very ugly history, soon to be removed ]
30747  *
30748  *     SCSI READ_CAPACITY command returns the last valid logical block number
30749  *     which starts from 0. So real capacity is larger than the returned
30750  *     value by 1. However, because scdk.c (which was EOL'ed) directly used
30751  *     the logical block number as capacity of disk devices, off-by-1 work-
30752  *     around was applied. This workaround causes fixed SCSI disk to loss a
30753  *     sector on x86 platform, and precludes exchanging fixed hard disks
30754  *     between sparc and x86.
30755  *
30756  *     ------------------------------------------------------
30757  *       removable media    hotplug        |   Off-by-1 works
30758  *     -------------------------------------------------------
30759  *             false          false        |     Yes
30760  *             false          true         |     No
30761  *             true           false        |     No
30762  *             true           true         |     No
30763  *     ------------------------------------------------------
30764  *
30765  *
30766  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30767  *
30768  *     These IOCTLs are applicable only to removable media devices.
30769  *
30770  *     -----------------------------------------------------------
30771  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30772  *     -----------------------------------------------------------
30773  *             false          false        |     No
30774  *             false          true         |     No
30775  *             true            x           |     Yes
30776  *     -----------------------------------------------------------
30777  *
30778  *
30779  * 12. Kstats for partitions
30780  *
30781  *     sd creates partition kstat for non-removable media devices. USB and
30782  *     Firewire hard disks now have partition kstats
30783  *
30784  *      ------------------------------------------------------
30785  *       removable media    hotplugable    |   kstat
30786  *      ------------------------------------------------------
30787  *             false          false        |    Yes
30788  *             false          true         |    Yes
30789  *             true             x          |    No
30790  *       ------------------------------------------------------
30791  *
30792  *
30793  * 13. Removable media & hotpluggable properties
30794  *
30795  *     Sd driver creates a "removable-media" property for removable media
30796  *     devices. Parent nexus drivers create a "hotpluggable" property if
30797  *     it supports hotplugging.
30798  *
30799  *     ---------------------------------------------------------------------
30800  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30801  *     ---------------------------------------------------------------------
30802  *       false            false       |    No                   No
30803  *       false            true        |    No                   Yes
30804  *       true             false       |    Yes                  No
30805  *       true             true        |    Yes                  Yes
30806  *     ---------------------------------------------------------------------
30807  *
30808  *
30809  * 14. Power Management
30810  *
30811  *     sd only power manages removable media devices or devices that support
30812  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30813  *
30814  *     A parent nexus that supports hotplugging can also set "pm-capable"
30815  *     if the disk can be power managed.
30816  *
30817  *     ------------------------------------------------------------
30818  *       removable media hotpluggable pm-capable  |   power manage
30819  *     ------------------------------------------------------------
30820  *             false          false     false     |     No
30821  *             false          false     true      |     Yes
30822  *             false          true      false     |     No
30823  *             false          true      true      |     Yes
30824  *             true             x        x        |     Yes
30825  *     ------------------------------------------------------------
30826  *
30827  *      USB and firewire hard disks can now be power managed independently
30828  *      of the framebuffer
30829  *
30830  *
30831  * 15. Support for USB disks with capacity larger than 1TB
30832  *
30833  *     Currently, sd doesn't permit a fixed disk device with capacity
30834  *     larger than 1TB to be used in a 32-bit operating system environment.
30835  *     However, sd doesn't do that for removable media devices. Instead, it
30836  *     assumes that removable media devices cannot have a capacity larger
30837  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30838  *     supported, which can cause some unexpected results.
30839  *
30840  *     ---------------------------------------------------------------------
30841  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30842  *     ---------------------------------------------------------------------
30843  *             false          false  |   true         |     no
30844  *             false          true   |   true         |     no
30845  *             true           false  |   true         |     Yes
30846  *             true           true   |   true         |     Yes
30847  *     ---------------------------------------------------------------------
30848  *
30849  *
30850  * 16. Check write-protection at open time
30851  *
30852  *     When a removable media device is being opened for writing without NDELAY
30853  *     flag, sd will check if this device is writable. If attempting to open
30854  *     without NDELAY flag a write-protected device, this operation will abort.
30855  *
30856  *     ------------------------------------------------------------
30857  *       removable media    USB/1394   |   WP Check
30858  *     ------------------------------------------------------------
30859  *             false          false    |     No
30860  *             false          true     |     No
30861  *             true           false    |     Yes
30862  *             true           true     |     Yes
30863  *     ------------------------------------------------------------
30864  *
30865  *
30866  * 17. syslog when corrupted VTOC is encountered
30867  *
30868  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30869  *      for fixed SCSI disks.
30870  *     ------------------------------------------------------------
30871  *       removable media    USB/1394   |   print syslog
30872  *     ------------------------------------------------------------
30873  *             false          false    |     Yes
30874  *             false          true     |     No
30875  *             true           false    |     No
30876  *             true           true     |     No
30877  *     ------------------------------------------------------------
30878  */
30879 static void
30880 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30881 {
30882 	int	pm_capable_prop;
30883 
30884 	ASSERT(un->un_sd);
30885 	ASSERT(un->un_sd->sd_inq);
30886 
30887 #if defined(_SUNOS_VTOC_16)
30888 	/*
30889 	 * For VTOC_16 devices, the default label will be created for all
30890 	 * devices. (see sd_build_default_label)
30891 	 */
30892 	un->un_f_default_vtoc_supported = TRUE;
30893 #endif
30894 
30895 	if (un->un_sd->sd_inq->inq_rmb) {
30896 		/*
30897 		 * The media of this device is removable. And for this kind
30898 		 * of devices, it is possible to change medium after openning
30899 		 * devices. Thus we should support this operation.
30900 		 */
30901 		un->un_f_has_removable_media = TRUE;
30902 
30903 #if defined(_SUNOS_VTOC_8)
30904 		/*
30905 		 * Note: currently, for VTOC_8 devices, default label is
30906 		 * created for removable and hotpluggable devices only.
30907 		 */
30908 		un->un_f_default_vtoc_supported = TRUE;
30909 #endif
30910 		/*
30911 		 * support non-512-byte blocksize of removable media devices
30912 		 */
30913 		un->un_f_non_devbsize_supported = TRUE;
30914 
30915 		/*
30916 		 * Assume that all removable media devices support DOOR_LOCK
30917 		 */
30918 		un->un_f_doorlock_supported = TRUE;
30919 
30920 		/*
30921 		 * For a removable media device, it is possible to be opened
30922 		 * with NDELAY flag when there is no media in drive, in this
30923 		 * case we don't care if device is writable. But if without
30924 		 * NDELAY flag, we need to check if media is write-protected.
30925 		 */
30926 		un->un_f_chk_wp_open = TRUE;
30927 
30928 		/*
30929 		 * need to start a SCSI watch thread to monitor media state,
30930 		 * when media is being inserted or ejected, notify syseventd.
30931 		 */
30932 		un->un_f_monitor_media_state = TRUE;
30933 
30934 		/*
30935 		 * Some devices don't support START_STOP_UNIT command.
30936 		 * Therefore, we'd better check if a device supports it
30937 		 * before sending it.
30938 		 */
30939 		un->un_f_check_start_stop = TRUE;
30940 
30941 		/*
30942 		 * support eject media ioctl:
30943 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
30944 		 */
30945 		un->un_f_eject_media_supported = TRUE;
30946 
30947 		/*
30948 		 * Because many removable-media devices don't support
30949 		 * LOG_SENSE, we couldn't use this command to check if
30950 		 * a removable media device support power-management.
30951 		 * We assume that they support power-management via
30952 		 * START_STOP_UNIT command and can be spun up and down
30953 		 * without limitations.
30954 		 */
30955 		un->un_f_pm_supported = TRUE;
30956 
30957 		/*
30958 		 * Need to create a zero length (Boolean) property
30959 		 * removable-media for the removable media devices.
30960 		 * Note that the return value of the property is not being
30961 		 * checked, since if unable to create the property
30962 		 * then do not want the attach to fail altogether. Consistent
30963 		 * with other property creation in attach.
30964 		 */
30965 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
30966 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
30967 
30968 	} else {
30969 		/*
30970 		 * create device ID for device
30971 		 */
30972 		un->un_f_devid_supported = TRUE;
30973 
30974 		/*
30975 		 * Spin up non-removable-media devices once it is attached
30976 		 */
30977 		un->un_f_attach_spinup = TRUE;
30978 
30979 		/*
30980 		 * According to SCSI specification, Sense data has two kinds of
30981 		 * format: fixed format, and descriptor format. At present, we
30982 		 * don't support descriptor format sense data for removable
30983 		 * media.
30984 		 */
30985 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30986 			un->un_f_descr_format_supported = TRUE;
30987 		}
30988 
30989 		/*
30990 		 * kstats are created only for non-removable media devices.
30991 		 *
30992 		 * Set this in sd.conf to 0 in order to disable kstats.  The
30993 		 * default is 1, so they are enabled by default.
30994 		 */
30995 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
30996 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
30997 			"enable-partition-kstats", 1));
30998 
30999 		/*
31000 		 * Check if HBA has set the "pm-capable" property.
31001 		 * If "pm-capable" exists and is non-zero then we can
31002 		 * power manage the device without checking the start/stop
31003 		 * cycle count log sense page.
31004 		 *
31005 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
31006 		 * then we should not power manage the device.
31007 		 *
31008 		 * If "pm-capable" doesn't exist then pm_capable_prop will
31009 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
31010 		 * sd will check the start/stop cycle count log sense page
31011 		 * and power manage the device if the cycle count limit has
31012 		 * not been exceeded.
31013 		 */
31014 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
31015 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
31016 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
31017 			un->un_f_log_sense_supported = TRUE;
31018 		} else {
31019 			/*
31020 			 * pm-capable property exists.
31021 			 *
31022 			 * Convert "TRUE" values for pm_capable_prop to
31023 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
31024 			 * later. "TRUE" values are any values except
31025 			 * SD_PM_CAPABLE_FALSE (0) and
31026 			 * SD_PM_CAPABLE_UNDEFINED (-1)
31027 			 */
31028 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
31029 				un->un_f_log_sense_supported = FALSE;
31030 			} else {
31031 				un->un_f_pm_supported = TRUE;
31032 			}
31033 
31034 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
31035 			    "sd_unit_attach: un:0x%p pm-capable "
31036 			    "property set to %d.\n", un, un->un_f_pm_supported);
31037 		}
31038 	}
31039 
31040 	if (un->un_f_is_hotpluggable) {
31041 #if defined(_SUNOS_VTOC_8)
31042 		/*
31043 		 * Note: currently, for VTOC_8 devices, default label is
31044 		 * created for removable and hotpluggable devices only.
31045 		 */
31046 		un->un_f_default_vtoc_supported = TRUE;
31047 #endif
31048 
31049 		/*
31050 		 * Temporarily, let hotpluggable devices pretend to be
31051 		 * removable-media devices for vold.
31052 		 */
31053 		un->un_f_monitor_media_state = TRUE;
31054 
31055 		un->un_f_check_start_stop = TRUE;
31056 
31057 	}
31058 
31059 	/*
31060 	 * By default, only DIRECT ACCESS devices and CDs will have Sun
31061 	 * labels.
31062 	 */
31063 	if ((SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) ||
31064 	    (un->un_sd->sd_inq->inq_rmb)) {
31065 		/*
31066 		 * Direct access devices have disk label
31067 		 */
31068 		un->un_f_vtoc_label_supported = TRUE;
31069 	}
31070 
31071 	/*
31072 	 * Fdisk partitions are supported for all direct access devices on
31073 	 * x86 platform, and just for removable media and hotpluggable
31074 	 * devices on SPARC platform. Later, we will set the following flag
31075 	 * to FALSE if current device is not removable media or hotpluggable
31076 	 * device and if sd works on SAPRC platform.
31077 	 */
31078 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31079 		un->un_f_mboot_supported = TRUE;
31080 	}
31081 
31082 	if (!un->un_f_is_hotpluggable &&
31083 	    !un->un_sd->sd_inq->inq_rmb) {
31084 
31085 #if defined(_SUNOS_VTOC_8)
31086 		/*
31087 		 * Don't support fdisk on fixed disk
31088 		 */
31089 		un->un_f_mboot_supported = FALSE;
31090 #endif
31091 
31092 		/*
31093 		 * Fixed disk support SYNC CACHE
31094 		 */
31095 		un->un_f_sync_cache_supported = TRUE;
31096 
31097 		/*
31098 		 * For fixed disk, if its VTOC is not valid, we will write
31099 		 * errlog into system log
31100 		 */
31101 		if (un->un_f_vtoc_label_supported)
31102 			un->un_f_vtoc_errlog_supported = TRUE;
31103 	}
31104 }
31105