1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * SCSI disk target driver. 30 */ 31 32 33 34 35 #include <sys/scsi/scsi.h> 36 #include <sys/dkbad.h> 37 #include <sys/dklabel.h> 38 #include <sys/dkio.h> 39 #include <sys/fdio.h> 40 #include <sys/cdio.h> 41 #include <sys/mhd.h> 42 #include <sys/vtoc.h> 43 #include <sys/dktp/fdisk.h> 44 #include <sys/file.h> 45 #include <sys/stat.h> 46 #include <sys/kstat.h> 47 #include <sys/vtrace.h> 48 #include <sys/note.h> 49 #include <sys/thread.h> 50 #include <sys/proc.h> 51 #include <sys/efi_partition.h> 52 #include <sys/var.h> 53 #include <sys/aio_req.h> 54 55 #ifdef __lock_lint 56 #define _LP64 57 #define __amd64 58 #endif 59 60 #if (defined(__fibre)) 61 /* Note: is there a leadville version of the following? */ 62 #include <sys/fc4/fcal_linkapp.h> 63 #endif 64 #include <sys/taskq.h> 65 #include <sys/uuid.h> 66 #include <sys/byteorder.h> 67 #include <sys/sdt.h> 68 69 #include "sd_xbuf.h" 70 71 #include <sys/scsi/targets/sddef.h> 72 73 74 /* 75 * Loadable module info. 76 */ 77 #if (defined(__fibre)) 78 #define SD_MODULE_NAME "SCSI SSA/FCAL Disk Driver %I%" 79 char _depends_on[] = "misc/scsi drv/fcp"; 80 #else 81 #define SD_MODULE_NAME "SCSI Disk Driver %I%" 82 char _depends_on[] = "misc/scsi"; 83 #endif 84 85 /* 86 * Define the interconnect type, to allow the driver to distinguish 87 * between parallel SCSI (sd) and fibre channel (ssd) behaviors. 88 * 89 * This is really for backward compatability. In the future, the driver 90 * should actually check the "interconnect-type" property as reported by 91 * the HBA; however at present this property is not defined by all HBAs, 92 * so we will use this #define (1) to permit the driver to run in 93 * backward-compatability mode; and (2) to print a notification message 94 * if an FC HBA does not support the "interconnect-type" property. The 95 * behavior of the driver will be to assume parallel SCSI behaviors unless 96 * the "interconnect-type" property is defined by the HBA **AND** has a 97 * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or 98 * INTERCONNECT_FABRIC, in which case the driver will assume Fibre 99 * Channel behaviors (as per the old ssd). (Note that the 100 * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and 101 * will result in the driver assuming parallel SCSI behaviors.) 102 * 103 * (see common/sys/scsi/impl/services.h) 104 * 105 * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default 106 * since some FC HBAs may already support that, and there is some code in 107 * the driver that already looks for it. Using INTERCONNECT_FABRIC as the 108 * default would confuse that code, and besides things should work fine 109 * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the 110 * "interconnect_type" property. 111 */ 112 #if (defined(__fibre)) 113 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_FIBRE 114 #else 115 #define SD_DEFAULT_INTERCONNECT_TYPE SD_INTERCONNECT_PARALLEL 116 #endif 117 118 /* 119 * The name of the driver, established from the module name in _init. 120 */ 121 static char *sd_label = NULL; 122 123 /* 124 * Driver name is unfortunately prefixed on some driver.conf properties. 125 */ 126 #if (defined(__fibre)) 127 #define sd_max_xfer_size ssd_max_xfer_size 128 #define sd_config_list ssd_config_list 129 static char *sd_max_xfer_size = "ssd_max_xfer_size"; 130 static char *sd_config_list = "ssd-config-list"; 131 #else 132 static char *sd_max_xfer_size = "sd_max_xfer_size"; 133 static char *sd_config_list = "sd-config-list"; 134 #endif 135 136 /* 137 * Driver global variables 138 */ 139 140 #if (defined(__fibre)) 141 /* 142 * These #defines are to avoid namespace collisions that occur because this 143 * code is currently used to compile two seperate driver modules: sd and ssd. 144 * All global variables need to be treated this way (even if declared static) 145 * in order to allow the debugger to resolve the names properly. 146 * It is anticipated that in the near future the ssd module will be obsoleted, 147 * at which time this namespace issue should go away. 148 */ 149 #define sd_state ssd_state 150 #define sd_io_time ssd_io_time 151 #define sd_failfast_enable ssd_failfast_enable 152 #define sd_ua_retry_count ssd_ua_retry_count 153 #define sd_report_pfa ssd_report_pfa 154 #define sd_max_throttle ssd_max_throttle 155 #define sd_min_throttle ssd_min_throttle 156 #define sd_rot_delay ssd_rot_delay 157 158 #define sd_retry_on_reservation_conflict \ 159 ssd_retry_on_reservation_conflict 160 #define sd_reinstate_resv_delay ssd_reinstate_resv_delay 161 #define sd_resv_conflict_name ssd_resv_conflict_name 162 163 #define sd_component_mask ssd_component_mask 164 #define sd_level_mask ssd_level_mask 165 #define sd_debug_un ssd_debug_un 166 #define sd_error_level ssd_error_level 167 168 #define sd_xbuf_active_limit ssd_xbuf_active_limit 169 #define sd_xbuf_reserve_limit ssd_xbuf_reserve_limit 170 171 #define sd_tr ssd_tr 172 #define sd_reset_throttle_timeout ssd_reset_throttle_timeout 173 #define sd_qfull_throttle_timeout ssd_qfull_throttle_timeout 174 #define sd_qfull_throttle_enable ssd_qfull_throttle_enable 175 #define sd_check_media_time ssd_check_media_time 176 #define sd_wait_cmds_complete ssd_wait_cmds_complete 177 #define sd_label_mutex ssd_label_mutex 178 #define sd_detach_mutex ssd_detach_mutex 179 #define sd_log_buf ssd_log_buf 180 #define sd_log_mutex ssd_log_mutex 181 182 #define sd_disk_table ssd_disk_table 183 #define sd_disk_table_size ssd_disk_table_size 184 #define sd_sense_mutex ssd_sense_mutex 185 #define sd_cdbtab ssd_cdbtab 186 187 #define sd_cb_ops ssd_cb_ops 188 #define sd_ops ssd_ops 189 #define sd_additional_codes ssd_additional_codes 190 191 #define sd_minor_data ssd_minor_data 192 #define sd_minor_data_efi ssd_minor_data_efi 193 194 #define sd_tq ssd_tq 195 #define sd_wmr_tq ssd_wmr_tq 196 #define sd_taskq_name ssd_taskq_name 197 #define sd_wmr_taskq_name ssd_wmr_taskq_name 198 #define sd_taskq_minalloc ssd_taskq_minalloc 199 #define sd_taskq_maxalloc ssd_taskq_maxalloc 200 201 #define sd_dump_format_string ssd_dump_format_string 202 203 #define sd_iostart_chain ssd_iostart_chain 204 #define sd_iodone_chain ssd_iodone_chain 205 206 #define sd_pm_idletime ssd_pm_idletime 207 208 #define sd_force_pm_supported ssd_force_pm_supported 209 210 #define sd_dtype_optical_bind ssd_dtype_optical_bind 211 212 #endif 213 214 215 #ifdef SDDEBUG 216 int sd_force_pm_supported = 0; 217 #endif /* SDDEBUG */ 218 219 void *sd_state = NULL; 220 int sd_io_time = SD_IO_TIME; 221 int sd_failfast_enable = 1; 222 int sd_ua_retry_count = SD_UA_RETRY_COUNT; 223 int sd_report_pfa = 1; 224 int sd_max_throttle = SD_MAX_THROTTLE; 225 int sd_min_throttle = SD_MIN_THROTTLE; 226 int sd_rot_delay = 4; /* Default 4ms Rotation delay */ 227 int sd_qfull_throttle_enable = TRUE; 228 229 int sd_retry_on_reservation_conflict = 1; 230 int sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 231 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay)) 232 233 static int sd_dtype_optical_bind = -1; 234 235 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */ 236 static char *sd_resv_conflict_name = "sd_retry_on_reservation_conflict"; 237 238 /* 239 * Global data for debug logging. To enable debug printing, sd_component_mask 240 * and sd_level_mask should be set to the desired bit patterns as outlined in 241 * sddef.h. 242 */ 243 uint_t sd_component_mask = 0x0; 244 uint_t sd_level_mask = 0x0; 245 struct sd_lun *sd_debug_un = NULL; 246 uint_t sd_error_level = SCSI_ERR_RETRYABLE; 247 248 /* Note: these may go away in the future... */ 249 static uint32_t sd_xbuf_active_limit = 512; 250 static uint32_t sd_xbuf_reserve_limit = 16; 251 252 static struct sd_resv_reclaim_request sd_tr = { NULL, NULL, NULL, 0, 0, 0 }; 253 254 /* 255 * Timer value used to reset the throttle after it has been reduced 256 * (typically in response to TRAN_BUSY or STATUS_QFULL) 257 */ 258 static int sd_reset_throttle_timeout = SD_RESET_THROTTLE_TIMEOUT; 259 static int sd_qfull_throttle_timeout = SD_QFULL_THROTTLE_TIMEOUT; 260 261 /* 262 * Interval value associated with the media change scsi watch. 263 */ 264 static int sd_check_media_time = 3000000; 265 266 /* 267 * Wait value used for in progress operations during a DDI_SUSPEND 268 */ 269 static int sd_wait_cmds_complete = SD_WAIT_CMDS_COMPLETE; 270 271 /* 272 * sd_label_mutex protects a static buffer used in the disk label 273 * component of the driver 274 */ 275 static kmutex_t sd_label_mutex; 276 277 /* 278 * sd_detach_mutex protects un_layer_count, un_detach_count, and 279 * un_opens_in_progress in the sd_lun structure. 280 */ 281 static kmutex_t sd_detach_mutex; 282 283 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex, 284 sd_lun::{un_layer_count un_detach_count un_opens_in_progress})) 285 286 /* 287 * Global buffer and mutex for debug logging 288 */ 289 static char sd_log_buf[1024]; 290 static kmutex_t sd_log_mutex; 291 292 293 /* 294 * "Smart" Probe Caching structs, globals, #defines, etc. 295 * For parallel scsi and non-self-identify device only. 296 */ 297 298 /* 299 * The following resources and routines are implemented to support 300 * "smart" probing, which caches the scsi_probe() results in an array, 301 * in order to help avoid long probe times. 302 */ 303 struct sd_scsi_probe_cache { 304 struct sd_scsi_probe_cache *next; 305 dev_info_t *pdip; 306 int cache[NTARGETS_WIDE]; 307 }; 308 309 static kmutex_t sd_scsi_probe_cache_mutex; 310 static struct sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL; 311 312 /* 313 * Really we only need protection on the head of the linked list, but 314 * better safe than sorry. 315 */ 316 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 317 sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip)) 318 319 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex, 320 sd_scsi_probe_cache_head)) 321 322 323 /* 324 * Vendor specific data name property declarations 325 */ 326 327 #if defined(__fibre) || defined(__i386) ||defined(__amd64) 328 329 static sd_tunables seagate_properties = { 330 SEAGATE_THROTTLE_VALUE, 331 0, 332 0, 333 0, 334 0, 335 0, 336 0, 337 0, 338 0 339 }; 340 341 342 static sd_tunables fujitsu_properties = { 343 FUJITSU_THROTTLE_VALUE, 344 0, 345 0, 346 0, 347 0, 348 0, 349 0, 350 0, 351 0 352 }; 353 354 static sd_tunables ibm_properties = { 355 IBM_THROTTLE_VALUE, 356 0, 357 0, 358 0, 359 0, 360 0, 361 0, 362 0, 363 0 364 }; 365 366 static sd_tunables purple_properties = { 367 PURPLE_THROTTLE_VALUE, 368 0, 369 0, 370 PURPLE_BUSY_RETRIES, 371 PURPLE_RESET_RETRY_COUNT, 372 PURPLE_RESERVE_RELEASE_TIME, 373 0, 374 0, 375 0 376 }; 377 378 static sd_tunables sve_properties = { 379 SVE_THROTTLE_VALUE, 380 0, 381 0, 382 SVE_BUSY_RETRIES, 383 SVE_RESET_RETRY_COUNT, 384 SVE_RESERVE_RELEASE_TIME, 385 SVE_MIN_THROTTLE_VALUE, 386 SVE_DISKSORT_DISABLED_FLAG, 387 0 388 }; 389 390 static sd_tunables maserati_properties = { 391 0, 392 0, 393 0, 394 0, 395 0, 396 0, 397 0, 398 MASERATI_DISKSORT_DISABLED_FLAG, 399 MASERATI_LUN_RESET_ENABLED_FLAG 400 }; 401 402 static sd_tunables pirus_properties = { 403 PIRUS_THROTTLE_VALUE, 404 0, 405 PIRUS_NRR_COUNT, 406 PIRUS_BUSY_RETRIES, 407 PIRUS_RESET_RETRY_COUNT, 408 0, 409 PIRUS_MIN_THROTTLE_VALUE, 410 PIRUS_DISKSORT_DISABLED_FLAG, 411 PIRUS_LUN_RESET_ENABLED_FLAG 412 }; 413 414 #endif 415 416 #if (defined(__sparc) && !defined(__fibre)) || \ 417 (defined(__i386) || defined(__amd64)) 418 419 420 static sd_tunables elite_properties = { 421 ELITE_THROTTLE_VALUE, 422 0, 423 0, 424 0, 425 0, 426 0, 427 0, 428 0, 429 0 430 }; 431 432 static sd_tunables st31200n_properties = { 433 ST31200N_THROTTLE_VALUE, 434 0, 435 0, 436 0, 437 0, 438 0, 439 0, 440 0, 441 0 442 }; 443 444 #endif /* Fibre or not */ 445 446 static sd_tunables lsi_properties_scsi = { 447 LSI_THROTTLE_VALUE, 448 0, 449 LSI_NOTREADY_RETRIES, 450 0, 451 0, 452 0, 453 0, 454 0, 455 0 456 }; 457 458 static sd_tunables symbios_properties = { 459 SYMBIOS_THROTTLE_VALUE, 460 0, 461 SYMBIOS_NOTREADY_RETRIES, 462 0, 463 0, 464 0, 465 0, 466 0, 467 0 468 }; 469 470 static sd_tunables lsi_properties = { 471 0, 472 0, 473 LSI_NOTREADY_RETRIES, 474 0, 475 0, 476 0, 477 0, 478 0, 479 0 480 }; 481 482 static sd_tunables lsi_oem_properties = { 483 0, 484 0, 485 LSI_OEM_NOTREADY_RETRIES, 486 0, 487 0, 488 0, 489 0, 490 0, 491 0 492 }; 493 494 495 496 #if (defined(SD_PROP_TST)) 497 498 #define SD_TST_CTYPE_VAL CTYPE_CDROM 499 #define SD_TST_THROTTLE_VAL 16 500 #define SD_TST_NOTREADY_VAL 12 501 #define SD_TST_BUSY_VAL 60 502 #define SD_TST_RST_RETRY_VAL 36 503 #define SD_TST_RSV_REL_TIME 60 504 505 static sd_tunables tst_properties = { 506 SD_TST_THROTTLE_VAL, 507 SD_TST_CTYPE_VAL, 508 SD_TST_NOTREADY_VAL, 509 SD_TST_BUSY_VAL, 510 SD_TST_RST_RETRY_VAL, 511 SD_TST_RSV_REL_TIME, 512 0, 513 0, 514 0 515 }; 516 #endif 517 518 /* This is similiar to the ANSI toupper implementation */ 519 #define SD_TOUPPER(C) (((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C)) 520 521 /* 522 * Static Driver Configuration Table 523 * 524 * This is the table of disks which need throttle adjustment (or, perhaps 525 * something else as defined by the flags at a future time.) device_id 526 * is a string consisting of concatenated vid (vendor), pid (product/model) 527 * and revision strings as defined in the scsi_inquiry structure. Offsets of 528 * the parts of the string are as defined by the sizes in the scsi_inquiry 529 * structure. Device type is searched as far as the device_id string is 530 * defined. Flags defines which values are to be set in the driver from the 531 * properties list. 532 * 533 * Entries below which begin and end with a "*" are a special case. 534 * These do not have a specific vendor, and the string which follows 535 * can appear anywhere in the 16 byte PID portion of the inquiry data. 536 * 537 * Entries below which begin and end with a " " (blank) are a special 538 * case. The comparison function will treat multiple consecutive blanks 539 * as equivalent to a single blank. For example, this causes a 540 * sd_disk_table entry of " NEC CDROM " to match a device's id string 541 * of "NEC CDROM". 542 * 543 * Note: The MD21 controller type has been obsoleted. 544 * ST318202F is a Legacy device 545 * MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been 546 * made with an FC connection. The entries here are a legacy. 547 */ 548 static sd_disk_config_t sd_disk_table[] = { 549 #if defined(__fibre) || defined(__i386) || defined(__amd64) 550 { "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 551 { "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 552 { "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 553 { "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties }, 554 { "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 555 { "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 556 { "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 557 { "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 558 { "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 559 { "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 560 { "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 561 { "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 562 { "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 563 { "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties }, 564 { "FUJITSU MAG3091F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 565 { "FUJITSU MAG3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 566 { "FUJITSU MAA3182F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 567 { "FUJITSU MAF3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 568 { "FUJITSU MAL3364F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 569 { "FUJITSU MAL3738F", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 570 { "FUJITSU MAM3182FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 571 { "FUJITSU MAM3364FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 572 { "FUJITSU MAM3738FC", SD_CONF_BSET_THROTTLE, &fujitsu_properties }, 573 { "IBM DDYFT1835", SD_CONF_BSET_THROTTLE, &ibm_properties }, 574 { "IBM DDYFT3695", SD_CONF_BSET_THROTTLE, &ibm_properties }, 575 { "IBM IC35LF2D2", SD_CONF_BSET_THROTTLE, &ibm_properties }, 576 { "IBM IC35LF2PR", SD_CONF_BSET_THROTTLE, &ibm_properties }, 577 { "IBM 3526", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 578 { "IBM 3542", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 579 { "IBM 3552", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 580 { "IBM 1722", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 581 { "IBM 1742", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 582 { "IBM 1815", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 583 { "IBM FAStT", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 584 { "LSI INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 585 { "ENGENIO INF", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 586 { "SGI TP", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 587 { "SGI IS", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 588 { "*CSM100_*", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 589 { "*CSM200_*", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 590 { "LSI", SD_CONF_BSET_NRR_COUNT, &lsi_properties }, 591 { "SUN T3", SD_CONF_BSET_THROTTLE | 592 SD_CONF_BSET_BSY_RETRY_COUNT| 593 SD_CONF_BSET_RST_RETRIES| 594 SD_CONF_BSET_RSV_REL_TIME, 595 &purple_properties }, 596 { "SUN SESS01", SD_CONF_BSET_THROTTLE | 597 SD_CONF_BSET_BSY_RETRY_COUNT| 598 SD_CONF_BSET_RST_RETRIES| 599 SD_CONF_BSET_RSV_REL_TIME| 600 SD_CONF_BSET_MIN_THROTTLE| 601 SD_CONF_BSET_DISKSORT_DISABLED, 602 &sve_properties }, 603 { "SUN T4", SD_CONF_BSET_THROTTLE | 604 SD_CONF_BSET_BSY_RETRY_COUNT| 605 SD_CONF_BSET_RST_RETRIES| 606 SD_CONF_BSET_RSV_REL_TIME, 607 &purple_properties }, 608 { "SUN SVE01", SD_CONF_BSET_DISKSORT_DISABLED | 609 SD_CONF_BSET_LUN_RESET_ENABLED, 610 &maserati_properties }, 611 { "SUN SE6920", SD_CONF_BSET_THROTTLE | 612 SD_CONF_BSET_NRR_COUNT| 613 SD_CONF_BSET_BSY_RETRY_COUNT| 614 SD_CONF_BSET_RST_RETRIES| 615 SD_CONF_BSET_MIN_THROTTLE| 616 SD_CONF_BSET_DISKSORT_DISABLED| 617 SD_CONF_BSET_LUN_RESET_ENABLED, 618 &pirus_properties }, 619 { "SUN SE6940", SD_CONF_BSET_THROTTLE | 620 SD_CONF_BSET_NRR_COUNT| 621 SD_CONF_BSET_BSY_RETRY_COUNT| 622 SD_CONF_BSET_RST_RETRIES| 623 SD_CONF_BSET_MIN_THROTTLE| 624 SD_CONF_BSET_DISKSORT_DISABLED| 625 SD_CONF_BSET_LUN_RESET_ENABLED, 626 &pirus_properties }, 627 { "SUN StorageTek 6920", SD_CONF_BSET_THROTTLE | 628 SD_CONF_BSET_NRR_COUNT| 629 SD_CONF_BSET_BSY_RETRY_COUNT| 630 SD_CONF_BSET_RST_RETRIES| 631 SD_CONF_BSET_MIN_THROTTLE| 632 SD_CONF_BSET_DISKSORT_DISABLED| 633 SD_CONF_BSET_LUN_RESET_ENABLED, 634 &pirus_properties }, 635 { "SUN StorageTek 6940", SD_CONF_BSET_THROTTLE | 636 SD_CONF_BSET_NRR_COUNT| 637 SD_CONF_BSET_BSY_RETRY_COUNT| 638 SD_CONF_BSET_RST_RETRIES| 639 SD_CONF_BSET_MIN_THROTTLE| 640 SD_CONF_BSET_DISKSORT_DISABLED| 641 SD_CONF_BSET_LUN_RESET_ENABLED, 642 &pirus_properties }, 643 { "SUN PSX1000", SD_CONF_BSET_THROTTLE | 644 SD_CONF_BSET_NRR_COUNT| 645 SD_CONF_BSET_BSY_RETRY_COUNT| 646 SD_CONF_BSET_RST_RETRIES| 647 SD_CONF_BSET_MIN_THROTTLE| 648 SD_CONF_BSET_DISKSORT_DISABLED| 649 SD_CONF_BSET_LUN_RESET_ENABLED, 650 &pirus_properties }, 651 { "SUN SE6330", SD_CONF_BSET_THROTTLE | 652 SD_CONF_BSET_NRR_COUNT| 653 SD_CONF_BSET_BSY_RETRY_COUNT| 654 SD_CONF_BSET_RST_RETRIES| 655 SD_CONF_BSET_MIN_THROTTLE| 656 SD_CONF_BSET_DISKSORT_DISABLED| 657 SD_CONF_BSET_LUN_RESET_ENABLED, 658 &pirus_properties }, 659 { "STK OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 660 { "STK OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 661 { "STK BladeCtlr", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 662 { "STK FLEXLINE", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties }, 663 { "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties }, 664 #endif /* fibre or NON-sparc platforms */ 665 #if ((defined(__sparc) && !defined(__fibre)) ||\ 666 (defined(__i386) || defined(__amd64))) 667 { "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties }, 668 { "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties }, 669 { "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL }, 670 { "CONNER CP30540", SD_CONF_BSET_NOCACHE, NULL }, 671 { "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL }, 672 { "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL }, 673 { "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL }, 674 { "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL }, 675 { "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL }, 676 { "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL }, 677 { "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL }, 678 { "SYMBIOS INF-01-00 ", SD_CONF_BSET_FAB_DEVID, NULL }, 679 { "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT, 680 &symbios_properties }, 681 { "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT, 682 &lsi_properties_scsi }, 683 #if defined(__i386) || defined(__amd64) 684 { " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD 685 | SD_CONF_BSET_READSUB_BCD 686 | SD_CONF_BSET_READ_TOC_ADDR_BCD 687 | SD_CONF_BSET_NO_READ_HEADER 688 | SD_CONF_BSET_READ_CD_XD4), NULL }, 689 690 { " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD 691 | SD_CONF_BSET_READSUB_BCD 692 | SD_CONF_BSET_READ_TOC_ADDR_BCD 693 | SD_CONF_BSET_NO_READ_HEADER 694 | SD_CONF_BSET_READ_CD_XD4), NULL }, 695 #endif /* __i386 || __amd64 */ 696 #endif /* sparc NON-fibre or NON-sparc platforms */ 697 698 #if (defined(SD_PROP_TST)) 699 { "VENDOR PRODUCT ", (SD_CONF_BSET_THROTTLE 700 | SD_CONF_BSET_CTYPE 701 | SD_CONF_BSET_NRR_COUNT 702 | SD_CONF_BSET_FAB_DEVID 703 | SD_CONF_BSET_NOCACHE 704 | SD_CONF_BSET_BSY_RETRY_COUNT 705 | SD_CONF_BSET_PLAYMSF_BCD 706 | SD_CONF_BSET_READSUB_BCD 707 | SD_CONF_BSET_READ_TOC_TRK_BCD 708 | SD_CONF_BSET_READ_TOC_ADDR_BCD 709 | SD_CONF_BSET_NO_READ_HEADER 710 | SD_CONF_BSET_READ_CD_XD4 711 | SD_CONF_BSET_RST_RETRIES 712 | SD_CONF_BSET_RSV_REL_TIME 713 | SD_CONF_BSET_TUR_CHECK), &tst_properties}, 714 #endif 715 }; 716 717 static const int sd_disk_table_size = 718 sizeof (sd_disk_table)/ sizeof (sd_disk_config_t); 719 720 721 /* 722 * Return codes of sd_uselabel(). 723 */ 724 #define SD_LABEL_IS_VALID 0 725 #define SD_LABEL_IS_INVALID 1 726 727 #define SD_INTERCONNECT_PARALLEL 0 728 #define SD_INTERCONNECT_FABRIC 1 729 #define SD_INTERCONNECT_FIBRE 2 730 #define SD_INTERCONNECT_SSA 3 731 #define SD_IS_PARALLEL_SCSI(un) \ 732 ((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL) 733 734 /* 735 * Definitions used by device id registration routines 736 */ 737 #define VPD_HEAD_OFFSET 3 /* size of head for vpd page */ 738 #define VPD_PAGE_LENGTH 3 /* offset for pge length data */ 739 #define VPD_MODE_PAGE 1 /* offset into vpd pg for "page code" */ 740 #define WD_NODE 7 /* the whole disk minor */ 741 742 static kmutex_t sd_sense_mutex = {0}; 743 744 /* 745 * Macros for updates of the driver state 746 */ 747 #define New_state(un, s) \ 748 (un)->un_last_state = (un)->un_state, (un)->un_state = (s) 749 #define Restore_state(un) \ 750 { uchar_t tmp = (un)->un_last_state; New_state((un), tmp); } 751 752 static struct sd_cdbinfo sd_cdbtab[] = { 753 { CDB_GROUP0, 0x00, 0x1FFFFF, 0xFF, }, 754 { CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF, }, 755 { CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF, }, 756 { CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, }, 757 }; 758 759 /* 760 * Specifies the number of seconds that must have elapsed since the last 761 * cmd. has completed for a device to be declared idle to the PM framework. 762 */ 763 static int sd_pm_idletime = 1; 764 765 /* 766 * Internal function prototypes 767 */ 768 769 #if (defined(__fibre)) 770 /* 771 * These #defines are to avoid namespace collisions that occur because this 772 * code is currently used to compile two seperate driver modules: sd and ssd. 773 * All function names need to be treated this way (even if declared static) 774 * in order to allow the debugger to resolve the names properly. 775 * It is anticipated that in the near future the ssd module will be obsoleted, 776 * at which time this ugliness should go away. 777 */ 778 #define sd_log_trace ssd_log_trace 779 #define sd_log_info ssd_log_info 780 #define sd_log_err ssd_log_err 781 #define sdprobe ssdprobe 782 #define sdinfo ssdinfo 783 #define sd_prop_op ssd_prop_op 784 #define sd_scsi_probe_cache_init ssd_scsi_probe_cache_init 785 #define sd_scsi_probe_cache_fini ssd_scsi_probe_cache_fini 786 #define sd_scsi_clear_probe_cache ssd_scsi_clear_probe_cache 787 #define sd_scsi_probe_with_cache ssd_scsi_probe_with_cache 788 #define sd_spin_up_unit ssd_spin_up_unit 789 #define sd_enable_descr_sense ssd_enable_descr_sense 790 #define sd_set_mmc_caps ssd_set_mmc_caps 791 #define sd_read_unit_properties ssd_read_unit_properties 792 #define sd_process_sdconf_file ssd_process_sdconf_file 793 #define sd_process_sdconf_table ssd_process_sdconf_table 794 #define sd_sdconf_id_match ssd_sdconf_id_match 795 #define sd_blank_cmp ssd_blank_cmp 796 #define sd_chk_vers1_data ssd_chk_vers1_data 797 #define sd_set_vers1_properties ssd_set_vers1_properties 798 #define sd_validate_geometry ssd_validate_geometry 799 800 #if defined(_SUNOS_VTOC_16) 801 #define sd_convert_geometry ssd_convert_geometry 802 #endif 803 804 #define sd_resync_geom_caches ssd_resync_geom_caches 805 #define sd_read_fdisk ssd_read_fdisk 806 #define sd_get_physical_geometry ssd_get_physical_geometry 807 #define sd_get_virtual_geometry ssd_get_virtual_geometry 808 #define sd_update_block_info ssd_update_block_info 809 #define sd_swap_efi_gpt ssd_swap_efi_gpt 810 #define sd_swap_efi_gpe ssd_swap_efi_gpe 811 #define sd_validate_efi ssd_validate_efi 812 #define sd_use_efi ssd_use_efi 813 #define sd_uselabel ssd_uselabel 814 #define sd_build_default_label ssd_build_default_label 815 #define sd_has_max_chs_vals ssd_has_max_chs_vals 816 #define sd_inq_fill ssd_inq_fill 817 #define sd_register_devid ssd_register_devid 818 #define sd_get_devid_block ssd_get_devid_block 819 #define sd_get_devid ssd_get_devid 820 #define sd_create_devid ssd_create_devid 821 #define sd_write_deviceid ssd_write_deviceid 822 #define sd_check_vpd_page_support ssd_check_vpd_page_support 823 #define sd_setup_pm ssd_setup_pm 824 #define sd_create_pm_components ssd_create_pm_components 825 #define sd_ddi_suspend ssd_ddi_suspend 826 #define sd_ddi_pm_suspend ssd_ddi_pm_suspend 827 #define sd_ddi_resume ssd_ddi_resume 828 #define sd_ddi_pm_resume ssd_ddi_pm_resume 829 #define sdpower ssdpower 830 #define sdattach ssdattach 831 #define sddetach ssddetach 832 #define sd_unit_attach ssd_unit_attach 833 #define sd_unit_detach ssd_unit_detach 834 #define sd_set_unit_attributes ssd_set_unit_attributes 835 #define sd_create_minor_nodes ssd_create_minor_nodes 836 #define sd_create_errstats ssd_create_errstats 837 #define sd_set_errstats ssd_set_errstats 838 #define sd_set_pstats ssd_set_pstats 839 #define sddump ssddump 840 #define sd_scsi_poll ssd_scsi_poll 841 #define sd_send_polled_RQS ssd_send_polled_RQS 842 #define sd_ddi_scsi_poll ssd_ddi_scsi_poll 843 #define sd_init_event_callbacks ssd_init_event_callbacks 844 #define sd_event_callback ssd_event_callback 845 #define sd_cache_control ssd_cache_control 846 #define sd_get_write_cache_enabled ssd_get_write_cache_enabled 847 #define sd_make_device ssd_make_device 848 #define sdopen ssdopen 849 #define sdclose ssdclose 850 #define sd_ready_and_valid ssd_ready_and_valid 851 #define sdmin ssdmin 852 #define sdread ssdread 853 #define sdwrite ssdwrite 854 #define sdaread ssdaread 855 #define sdawrite ssdawrite 856 #define sdstrategy ssdstrategy 857 #define sdioctl ssdioctl 858 #define sd_mapblockaddr_iostart ssd_mapblockaddr_iostart 859 #define sd_mapblocksize_iostart ssd_mapblocksize_iostart 860 #define sd_checksum_iostart ssd_checksum_iostart 861 #define sd_checksum_uscsi_iostart ssd_checksum_uscsi_iostart 862 #define sd_pm_iostart ssd_pm_iostart 863 #define sd_core_iostart ssd_core_iostart 864 #define sd_mapblockaddr_iodone ssd_mapblockaddr_iodone 865 #define sd_mapblocksize_iodone ssd_mapblocksize_iodone 866 #define sd_checksum_iodone ssd_checksum_iodone 867 #define sd_checksum_uscsi_iodone ssd_checksum_uscsi_iodone 868 #define sd_pm_iodone ssd_pm_iodone 869 #define sd_initpkt_for_buf ssd_initpkt_for_buf 870 #define sd_destroypkt_for_buf ssd_destroypkt_for_buf 871 #define sd_setup_rw_pkt ssd_setup_rw_pkt 872 #define sd_setup_next_rw_pkt ssd_setup_next_rw_pkt 873 #define sd_buf_iodone ssd_buf_iodone 874 #define sd_uscsi_strategy ssd_uscsi_strategy 875 #define sd_initpkt_for_uscsi ssd_initpkt_for_uscsi 876 #define sd_destroypkt_for_uscsi ssd_destroypkt_for_uscsi 877 #define sd_uscsi_iodone ssd_uscsi_iodone 878 #define sd_xbuf_strategy ssd_xbuf_strategy 879 #define sd_xbuf_init ssd_xbuf_init 880 #define sd_pm_entry ssd_pm_entry 881 #define sd_pm_exit ssd_pm_exit 882 883 #define sd_pm_idletimeout_handler ssd_pm_idletimeout_handler 884 #define sd_pm_timeout_handler ssd_pm_timeout_handler 885 886 #define sd_add_buf_to_waitq ssd_add_buf_to_waitq 887 #define sdintr ssdintr 888 #define sd_start_cmds ssd_start_cmds 889 #define sd_send_scsi_cmd ssd_send_scsi_cmd 890 #define sd_bioclone_alloc ssd_bioclone_alloc 891 #define sd_bioclone_free ssd_bioclone_free 892 #define sd_shadow_buf_alloc ssd_shadow_buf_alloc 893 #define sd_shadow_buf_free ssd_shadow_buf_free 894 #define sd_print_transport_rejected_message \ 895 ssd_print_transport_rejected_message 896 #define sd_retry_command ssd_retry_command 897 #define sd_set_retry_bp ssd_set_retry_bp 898 #define sd_send_request_sense_command ssd_send_request_sense_command 899 #define sd_start_retry_command ssd_start_retry_command 900 #define sd_start_direct_priority_command \ 901 ssd_start_direct_priority_command 902 #define sd_return_failed_command ssd_return_failed_command 903 #define sd_return_failed_command_no_restart \ 904 ssd_return_failed_command_no_restart 905 #define sd_return_command ssd_return_command 906 #define sd_sync_with_callback ssd_sync_with_callback 907 #define sdrunout ssdrunout 908 #define sd_mark_rqs_busy ssd_mark_rqs_busy 909 #define sd_mark_rqs_idle ssd_mark_rqs_idle 910 #define sd_reduce_throttle ssd_reduce_throttle 911 #define sd_restore_throttle ssd_restore_throttle 912 #define sd_print_incomplete_msg ssd_print_incomplete_msg 913 #define sd_init_cdb_limits ssd_init_cdb_limits 914 #define sd_pkt_status_good ssd_pkt_status_good 915 #define sd_pkt_status_check_condition ssd_pkt_status_check_condition 916 #define sd_pkt_status_busy ssd_pkt_status_busy 917 #define sd_pkt_status_reservation_conflict \ 918 ssd_pkt_status_reservation_conflict 919 #define sd_pkt_status_qfull ssd_pkt_status_qfull 920 #define sd_handle_request_sense ssd_handle_request_sense 921 #define sd_handle_auto_request_sense ssd_handle_auto_request_sense 922 #define sd_print_sense_failed_msg ssd_print_sense_failed_msg 923 #define sd_validate_sense_data ssd_validate_sense_data 924 #define sd_decode_sense ssd_decode_sense 925 #define sd_print_sense_msg ssd_print_sense_msg 926 #define sd_extract_sense_info_descr ssd_extract_sense_info_descr 927 #define sd_sense_key_no_sense ssd_sense_key_no_sense 928 #define sd_sense_key_recoverable_error ssd_sense_key_recoverable_error 929 #define sd_sense_key_not_ready ssd_sense_key_not_ready 930 #define sd_sense_key_medium_or_hardware_error \ 931 ssd_sense_key_medium_or_hardware_error 932 #define sd_sense_key_illegal_request ssd_sense_key_illegal_request 933 #define sd_sense_key_unit_attention ssd_sense_key_unit_attention 934 #define sd_sense_key_fail_command ssd_sense_key_fail_command 935 #define sd_sense_key_blank_check ssd_sense_key_blank_check 936 #define sd_sense_key_aborted_command ssd_sense_key_aborted_command 937 #define sd_sense_key_default ssd_sense_key_default 938 #define sd_print_retry_msg ssd_print_retry_msg 939 #define sd_print_cmd_incomplete_msg ssd_print_cmd_incomplete_msg 940 #define sd_pkt_reason_cmd_incomplete ssd_pkt_reason_cmd_incomplete 941 #define sd_pkt_reason_cmd_tran_err ssd_pkt_reason_cmd_tran_err 942 #define sd_pkt_reason_cmd_reset ssd_pkt_reason_cmd_reset 943 #define sd_pkt_reason_cmd_aborted ssd_pkt_reason_cmd_aborted 944 #define sd_pkt_reason_cmd_timeout ssd_pkt_reason_cmd_timeout 945 #define sd_pkt_reason_cmd_unx_bus_free ssd_pkt_reason_cmd_unx_bus_free 946 #define sd_pkt_reason_cmd_tag_reject ssd_pkt_reason_cmd_tag_reject 947 #define sd_pkt_reason_default ssd_pkt_reason_default 948 #define sd_reset_target ssd_reset_target 949 #define sd_start_stop_unit_callback ssd_start_stop_unit_callback 950 #define sd_start_stop_unit_task ssd_start_stop_unit_task 951 #define sd_taskq_create ssd_taskq_create 952 #define sd_taskq_delete ssd_taskq_delete 953 #define sd_media_change_task ssd_media_change_task 954 #define sd_handle_mchange ssd_handle_mchange 955 #define sd_send_scsi_DOORLOCK ssd_send_scsi_DOORLOCK 956 #define sd_send_scsi_READ_CAPACITY ssd_send_scsi_READ_CAPACITY 957 #define sd_send_scsi_READ_CAPACITY_16 ssd_send_scsi_READ_CAPACITY_16 958 #define sd_send_scsi_GET_CONFIGURATION ssd_send_scsi_GET_CONFIGURATION 959 #define sd_send_scsi_feature_GET_CONFIGURATION \ 960 sd_send_scsi_feature_GET_CONFIGURATION 961 #define sd_send_scsi_START_STOP_UNIT ssd_send_scsi_START_STOP_UNIT 962 #define sd_send_scsi_INQUIRY ssd_send_scsi_INQUIRY 963 #define sd_send_scsi_TEST_UNIT_READY ssd_send_scsi_TEST_UNIT_READY 964 #define sd_send_scsi_PERSISTENT_RESERVE_IN \ 965 ssd_send_scsi_PERSISTENT_RESERVE_IN 966 #define sd_send_scsi_PERSISTENT_RESERVE_OUT \ 967 ssd_send_scsi_PERSISTENT_RESERVE_OUT 968 #define sd_send_scsi_SYNCHRONIZE_CACHE ssd_send_scsi_SYNCHRONIZE_CACHE 969 #define sd_send_scsi_SYNCHRONIZE_CACHE_biodone \ 970 ssd_send_scsi_SYNCHRONIZE_CACHE_biodone 971 #define sd_send_scsi_MODE_SENSE ssd_send_scsi_MODE_SENSE 972 #define sd_send_scsi_MODE_SELECT ssd_send_scsi_MODE_SELECT 973 #define sd_send_scsi_RDWR ssd_send_scsi_RDWR 974 #define sd_send_scsi_LOG_SENSE ssd_send_scsi_LOG_SENSE 975 #define sd_alloc_rqs ssd_alloc_rqs 976 #define sd_free_rqs ssd_free_rqs 977 #define sd_dump_memory ssd_dump_memory 978 #define sd_uscsi_ioctl ssd_uscsi_ioctl 979 #define sd_get_media_info ssd_get_media_info 980 #define sd_dkio_ctrl_info ssd_dkio_ctrl_info 981 #define sd_dkio_get_geometry ssd_dkio_get_geometry 982 #define sd_dkio_set_geometry ssd_dkio_set_geometry 983 #define sd_dkio_get_partition ssd_dkio_get_partition 984 #define sd_dkio_set_partition ssd_dkio_set_partition 985 #define sd_dkio_partition ssd_dkio_partition 986 #define sd_dkio_get_vtoc ssd_dkio_get_vtoc 987 #define sd_dkio_get_efi ssd_dkio_get_efi 988 #define sd_build_user_vtoc ssd_build_user_vtoc 989 #define sd_dkio_set_vtoc ssd_dkio_set_vtoc 990 #define sd_dkio_set_efi ssd_dkio_set_efi 991 #define sd_build_label_vtoc ssd_build_label_vtoc 992 #define sd_write_label ssd_write_label 993 #define sd_clear_vtoc ssd_clear_vtoc 994 #define sd_clear_efi ssd_clear_efi 995 #define sd_get_tunables_from_conf ssd_get_tunables_from_conf 996 #define sd_setup_next_xfer ssd_setup_next_xfer 997 #define sd_dkio_get_temp ssd_dkio_get_temp 998 #define sd_dkio_get_mboot ssd_dkio_get_mboot 999 #define sd_dkio_set_mboot ssd_dkio_set_mboot 1000 #define sd_setup_default_geometry ssd_setup_default_geometry 1001 #define sd_update_fdisk_and_vtoc ssd_update_fdisk_and_vtoc 1002 #define sd_check_mhd ssd_check_mhd 1003 #define sd_mhd_watch_cb ssd_mhd_watch_cb 1004 #define sd_mhd_watch_incomplete ssd_mhd_watch_incomplete 1005 #define sd_sname ssd_sname 1006 #define sd_mhd_resvd_recover ssd_mhd_resvd_recover 1007 #define sd_resv_reclaim_thread ssd_resv_reclaim_thread 1008 #define sd_take_ownership ssd_take_ownership 1009 #define sd_reserve_release ssd_reserve_release 1010 #define sd_rmv_resv_reclaim_req ssd_rmv_resv_reclaim_req 1011 #define sd_mhd_reset_notify_cb ssd_mhd_reset_notify_cb 1012 #define sd_persistent_reservation_in_read_keys \ 1013 ssd_persistent_reservation_in_read_keys 1014 #define sd_persistent_reservation_in_read_resv \ 1015 ssd_persistent_reservation_in_read_resv 1016 #define sd_mhdioc_takeown ssd_mhdioc_takeown 1017 #define sd_mhdioc_failfast ssd_mhdioc_failfast 1018 #define sd_mhdioc_release ssd_mhdioc_release 1019 #define sd_mhdioc_register_devid ssd_mhdioc_register_devid 1020 #define sd_mhdioc_inkeys ssd_mhdioc_inkeys 1021 #define sd_mhdioc_inresv ssd_mhdioc_inresv 1022 #define sr_change_blkmode ssr_change_blkmode 1023 #define sr_change_speed ssr_change_speed 1024 #define sr_atapi_change_speed ssr_atapi_change_speed 1025 #define sr_pause_resume ssr_pause_resume 1026 #define sr_play_msf ssr_play_msf 1027 #define sr_play_trkind ssr_play_trkind 1028 #define sr_read_all_subcodes ssr_read_all_subcodes 1029 #define sr_read_subchannel ssr_read_subchannel 1030 #define sr_read_tocentry ssr_read_tocentry 1031 #define sr_read_tochdr ssr_read_tochdr 1032 #define sr_read_cdda ssr_read_cdda 1033 #define sr_read_cdxa ssr_read_cdxa 1034 #define sr_read_mode1 ssr_read_mode1 1035 #define sr_read_mode2 ssr_read_mode2 1036 #define sr_read_cd_mode2 ssr_read_cd_mode2 1037 #define sr_sector_mode ssr_sector_mode 1038 #define sr_eject ssr_eject 1039 #define sr_ejected ssr_ejected 1040 #define sr_check_wp ssr_check_wp 1041 #define sd_check_media ssd_check_media 1042 #define sd_media_watch_cb ssd_media_watch_cb 1043 #define sd_delayed_cv_broadcast ssd_delayed_cv_broadcast 1044 #define sr_volume_ctrl ssr_volume_ctrl 1045 #define sr_read_sony_session_offset ssr_read_sony_session_offset 1046 #define sd_log_page_supported ssd_log_page_supported 1047 #define sd_check_for_writable_cd ssd_check_for_writable_cd 1048 #define sd_wm_cache_constructor ssd_wm_cache_constructor 1049 #define sd_wm_cache_destructor ssd_wm_cache_destructor 1050 #define sd_range_lock ssd_range_lock 1051 #define sd_get_range ssd_get_range 1052 #define sd_free_inlist_wmap ssd_free_inlist_wmap 1053 #define sd_range_unlock ssd_range_unlock 1054 #define sd_read_modify_write_task ssd_read_modify_write_task 1055 #define sddump_do_read_of_rmw ssddump_do_read_of_rmw 1056 1057 #define sd_iostart_chain ssd_iostart_chain 1058 #define sd_iodone_chain ssd_iodone_chain 1059 #define sd_initpkt_map ssd_initpkt_map 1060 #define sd_destroypkt_map ssd_destroypkt_map 1061 #define sd_chain_type_map ssd_chain_type_map 1062 #define sd_chain_index_map ssd_chain_index_map 1063 1064 #define sd_failfast_flushctl ssd_failfast_flushctl 1065 #define sd_failfast_flushq ssd_failfast_flushq 1066 #define sd_failfast_flushq_callback ssd_failfast_flushq_callback 1067 1068 #define sd_is_lsi ssd_is_lsi 1069 1070 #endif /* #if (defined(__fibre)) */ 1071 1072 1073 int _init(void); 1074 int _fini(void); 1075 int _info(struct modinfo *modinfop); 1076 1077 /*PRINTFLIKE3*/ 1078 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1079 /*PRINTFLIKE3*/ 1080 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1081 /*PRINTFLIKE3*/ 1082 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...); 1083 1084 static int sdprobe(dev_info_t *devi); 1085 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, 1086 void **result); 1087 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, 1088 int mod_flags, char *name, caddr_t valuep, int *lengthp); 1089 1090 /* 1091 * Smart probe for parallel scsi 1092 */ 1093 static void sd_scsi_probe_cache_init(void); 1094 static void sd_scsi_probe_cache_fini(void); 1095 static void sd_scsi_clear_probe_cache(void); 1096 static int sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)()); 1097 1098 static int sd_spin_up_unit(struct sd_lun *un); 1099 #ifdef _LP64 1100 static void sd_enable_descr_sense(struct sd_lun *un); 1101 #endif /* _LP64 */ 1102 static void sd_set_mmc_caps(struct sd_lun *un); 1103 1104 static void sd_read_unit_properties(struct sd_lun *un); 1105 static int sd_process_sdconf_file(struct sd_lun *un); 1106 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags, 1107 int *data_list, sd_tunables *values); 1108 static void sd_process_sdconf_table(struct sd_lun *un); 1109 static int sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen); 1110 static int sd_blank_cmp(struct sd_lun *un, char *id, int idlen); 1111 static int sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 1112 int list_len, char *dataname_ptr); 1113 static void sd_set_vers1_properties(struct sd_lun *un, int flags, 1114 sd_tunables *prop_list); 1115 static int sd_validate_geometry(struct sd_lun *un, int path_flag); 1116 1117 #if defined(_SUNOS_VTOC_16) 1118 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g); 1119 #endif 1120 1121 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize, 1122 int path_flag); 1123 static int sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, 1124 int path_flag); 1125 static void sd_get_physical_geometry(struct sd_lun *un, 1126 struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag); 1127 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity, 1128 int lbasize); 1129 static int sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag); 1130 static void sd_swap_efi_gpt(efi_gpt_t *); 1131 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *); 1132 static int sd_validate_efi(efi_gpt_t *); 1133 static int sd_use_efi(struct sd_lun *, int); 1134 static void sd_build_default_label(struct sd_lun *un); 1135 1136 #if defined(_FIRMWARE_NEEDS_FDISK) 1137 static int sd_has_max_chs_vals(struct ipart *fdp); 1138 #endif 1139 static void sd_inq_fill(char *p, int l, char *s); 1140 1141 1142 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi, 1143 int reservation_flag); 1144 static daddr_t sd_get_devid_block(struct sd_lun *un); 1145 static int sd_get_devid(struct sd_lun *un); 1146 static int sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len); 1147 static ddi_devid_t sd_create_devid(struct sd_lun *un); 1148 static int sd_write_deviceid(struct sd_lun *un); 1149 static int sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len); 1150 static int sd_check_vpd_page_support(struct sd_lun *un); 1151 1152 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi); 1153 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un); 1154 1155 static int sd_ddi_suspend(dev_info_t *devi); 1156 static int sd_ddi_pm_suspend(struct sd_lun *un); 1157 static int sd_ddi_resume(dev_info_t *devi); 1158 static int sd_ddi_pm_resume(struct sd_lun *un); 1159 static int sdpower(dev_info_t *devi, int component, int level); 1160 1161 static int sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd); 1162 static int sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd); 1163 static int sd_unit_attach(dev_info_t *devi); 1164 static int sd_unit_detach(dev_info_t *devi); 1165 1166 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi); 1167 static int sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi); 1168 static void sd_create_errstats(struct sd_lun *un, int instance); 1169 static void sd_set_errstats(struct sd_lun *un); 1170 static void sd_set_pstats(struct sd_lun *un); 1171 1172 static int sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk); 1173 static int sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt); 1174 static int sd_send_polled_RQS(struct sd_lun *un); 1175 static int sd_ddi_scsi_poll(struct scsi_pkt *pkt); 1176 1177 #if (defined(__fibre)) 1178 /* 1179 * Event callbacks (photon) 1180 */ 1181 static void sd_init_event_callbacks(struct sd_lun *un); 1182 static void sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *); 1183 #endif 1184 1185 /* 1186 * Defines for sd_cache_control 1187 */ 1188 1189 #define SD_CACHE_ENABLE 1 1190 #define SD_CACHE_DISABLE 0 1191 #define SD_CACHE_NOCHANGE -1 1192 1193 static int sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag); 1194 static int sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled); 1195 static dev_t sd_make_device(dev_info_t *devi); 1196 1197 static void sd_update_block_info(struct sd_lun *un, uint32_t lbasize, 1198 uint64_t capacity); 1199 1200 /* 1201 * Driver entry point functions. 1202 */ 1203 static int sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p); 1204 static int sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p); 1205 static int sd_ready_and_valid(struct sd_lun *un); 1206 1207 static void sdmin(struct buf *bp); 1208 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p); 1209 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p); 1210 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1211 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p); 1212 1213 static int sdstrategy(struct buf *bp); 1214 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *); 1215 1216 /* 1217 * Function prototypes for layering functions in the iostart chain. 1218 */ 1219 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un, 1220 struct buf *bp); 1221 static void sd_mapblocksize_iostart(int index, struct sd_lun *un, 1222 struct buf *bp); 1223 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp); 1224 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un, 1225 struct buf *bp); 1226 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp); 1227 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp); 1228 1229 /* 1230 * Function prototypes for layering functions in the iodone chain. 1231 */ 1232 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp); 1233 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp); 1234 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un, 1235 struct buf *bp); 1236 static void sd_mapblocksize_iodone(int index, struct sd_lun *un, 1237 struct buf *bp); 1238 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp); 1239 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un, 1240 struct buf *bp); 1241 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp); 1242 1243 /* 1244 * Prototypes for functions to support buf(9S) based IO. 1245 */ 1246 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg); 1247 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **); 1248 static void sd_destroypkt_for_buf(struct buf *); 1249 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp, 1250 struct buf *bp, int flags, 1251 int (*callback)(caddr_t), caddr_t callback_arg, 1252 diskaddr_t lba, uint32_t blockcount); 1253 #if defined(__i386) || defined(__amd64) 1254 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp, 1255 struct buf *bp, diskaddr_t lba, uint32_t blockcount); 1256 #endif /* defined(__i386) || defined(__amd64) */ 1257 1258 /* 1259 * Prototypes for functions to support USCSI IO. 1260 */ 1261 static int sd_uscsi_strategy(struct buf *bp); 1262 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **); 1263 static void sd_destroypkt_for_uscsi(struct buf *); 1264 1265 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 1266 uchar_t chain_type, void *pktinfop); 1267 1268 static int sd_pm_entry(struct sd_lun *un); 1269 static void sd_pm_exit(struct sd_lun *un); 1270 1271 static void sd_pm_idletimeout_handler(void *arg); 1272 1273 /* 1274 * sd_core internal functions (used at the sd_core_io layer). 1275 */ 1276 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp); 1277 static void sdintr(struct scsi_pkt *pktp); 1278 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp); 1279 1280 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, 1281 enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace, 1282 int path_flag); 1283 1284 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen, 1285 daddr_t blkno, int (*func)(struct buf *)); 1286 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen, 1287 uint_t bflags, daddr_t blkno, int (*func)(struct buf *)); 1288 static void sd_bioclone_free(struct buf *bp); 1289 static void sd_shadow_buf_free(struct buf *bp); 1290 1291 static void sd_print_transport_rejected_message(struct sd_lun *un, 1292 struct sd_xbuf *xp, int code); 1293 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, 1294 void *arg, int code); 1295 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, 1296 void *arg, int code); 1297 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, 1298 void *arg, int code); 1299 1300 static void sd_retry_command(struct sd_lun *un, struct buf *bp, 1301 int retry_check_flag, 1302 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, 1303 int c), 1304 void *user_arg, int failure_code, clock_t retry_delay, 1305 void (*statp)(kstat_io_t *)); 1306 1307 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp, 1308 clock_t retry_delay, void (*statp)(kstat_io_t *)); 1309 1310 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 1311 struct scsi_pkt *pktp); 1312 static void sd_start_retry_command(void *arg); 1313 static void sd_start_direct_priority_command(void *arg); 1314 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp, 1315 int errcode); 1316 static void sd_return_failed_command_no_restart(struct sd_lun *un, 1317 struct buf *bp, int errcode); 1318 static void sd_return_command(struct sd_lun *un, struct buf *bp); 1319 static void sd_sync_with_callback(struct sd_lun *un); 1320 static int sdrunout(caddr_t arg); 1321 1322 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp); 1323 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp); 1324 1325 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type); 1326 static void sd_restore_throttle(void *arg); 1327 1328 static void sd_init_cdb_limits(struct sd_lun *un); 1329 1330 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 1331 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1332 1333 /* 1334 * Error handling functions 1335 */ 1336 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 1337 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1338 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, 1339 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1340 static void sd_pkt_status_reservation_conflict(struct sd_lun *un, 1341 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1342 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 1343 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1344 1345 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp, 1346 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1347 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 1348 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1349 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp, 1350 struct sd_xbuf *xp); 1351 static void sd_decode_sense(struct sd_lun *un, struct buf *bp, 1352 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1353 1354 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp, 1355 void *arg, int code); 1356 static diskaddr_t sd_extract_sense_info_descr( 1357 struct scsi_descr_sense_hdr *sdsp); 1358 1359 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 1360 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1361 static void sd_sense_key_recoverable_error(struct sd_lun *un, 1362 uint8_t asc, 1363 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1364 static void sd_sense_key_not_ready(struct sd_lun *un, 1365 uint8_t asc, uint8_t ascq, 1366 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1367 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 1368 int sense_key, uint8_t asc, 1369 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1370 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 1371 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1372 static void sd_sense_key_unit_attention(struct sd_lun *un, 1373 uint8_t asc, 1374 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1375 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 1376 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1377 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 1378 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1379 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 1380 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1381 static void sd_sense_key_default(struct sd_lun *un, 1382 int sense_key, 1383 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp); 1384 1385 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp, 1386 void *arg, int flag); 1387 1388 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 1389 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1390 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 1391 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1392 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 1393 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1394 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 1395 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1396 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 1397 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1398 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 1399 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1400 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 1401 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1402 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 1403 struct sd_xbuf *xp, struct scsi_pkt *pktp); 1404 1405 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp); 1406 1407 static void sd_start_stop_unit_callback(void *arg); 1408 static void sd_start_stop_unit_task(void *arg); 1409 1410 static void sd_taskq_create(void); 1411 static void sd_taskq_delete(void); 1412 static void sd_media_change_task(void *arg); 1413 1414 static int sd_handle_mchange(struct sd_lun *un); 1415 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag); 1416 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, 1417 uint32_t *lbap, int path_flag); 1418 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp, 1419 uint32_t *lbap, int path_flag); 1420 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, 1421 int path_flag); 1422 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, 1423 size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp); 1424 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag); 1425 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, 1426 uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp); 1427 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, 1428 uchar_t usr_cmd, uchar_t *usr_bufp); 1429 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, 1430 struct dk_callback *dkc); 1431 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp); 1432 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, 1433 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1434 uchar_t *bufaddr, uint_t buflen); 1435 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un, 1436 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 1437 uchar_t *bufaddr, uint_t buflen, char feature); 1438 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, 1439 uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag); 1440 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, 1441 uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag); 1442 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr, 1443 size_t buflen, daddr_t start_block, int path_flag); 1444 #define sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag) \ 1445 sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \ 1446 path_flag) 1447 #define sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag) \ 1448 sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\ 1449 path_flag) 1450 1451 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, 1452 uint16_t buflen, uchar_t page_code, uchar_t page_control, 1453 uint16_t param_ptr, int path_flag); 1454 1455 static int sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un); 1456 static void sd_free_rqs(struct sd_lun *un); 1457 1458 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, 1459 uchar_t *data, int len, int fmt); 1460 static void sd_panic_for_res_conflict(struct sd_lun *un); 1461 1462 /* 1463 * Disk Ioctl Function Prototypes 1464 */ 1465 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag); 1466 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag); 1467 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag); 1468 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, 1469 int geom_validated); 1470 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag); 1471 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, 1472 int geom_validated); 1473 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag); 1474 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, 1475 int geom_validated); 1476 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag); 1477 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag); 1478 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc); 1479 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag); 1480 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag); 1481 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc); 1482 static int sd_write_label(dev_t dev); 1483 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl); 1484 static void sd_clear_vtoc(struct sd_lun *un); 1485 static void sd_clear_efi(struct sd_lun *un); 1486 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag); 1487 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag); 1488 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag); 1489 static void sd_setup_default_geometry(struct sd_lun *un); 1490 #if defined(__i386) || defined(__amd64) 1491 static int sd_update_fdisk_and_vtoc(struct sd_lun *un); 1492 #endif 1493 1494 /* 1495 * Multi-host Ioctl Prototypes 1496 */ 1497 static int sd_check_mhd(dev_t dev, int interval); 1498 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1499 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt); 1500 static char *sd_sname(uchar_t status); 1501 static void sd_mhd_resvd_recover(void *arg); 1502 static void sd_resv_reclaim_thread(); 1503 static int sd_take_ownership(dev_t dev, struct mhioctkown *p); 1504 static int sd_reserve_release(dev_t dev, int cmd); 1505 static void sd_rmv_resv_reclaim_req(dev_t dev); 1506 static void sd_mhd_reset_notify_cb(caddr_t arg); 1507 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un, 1508 mhioc_inkeys_t *usrp, int flag); 1509 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un, 1510 mhioc_inresvs_t *usrp, int flag); 1511 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag); 1512 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag); 1513 static int sd_mhdioc_release(dev_t dev); 1514 static int sd_mhdioc_register_devid(dev_t dev); 1515 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag); 1516 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag); 1517 1518 /* 1519 * SCSI removable prototypes 1520 */ 1521 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag); 1522 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1523 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag); 1524 static int sr_pause_resume(dev_t dev, int mode); 1525 static int sr_play_msf(dev_t dev, caddr_t data, int flag); 1526 static int sr_play_trkind(dev_t dev, caddr_t data, int flag); 1527 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag); 1528 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag); 1529 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag); 1530 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag); 1531 static int sr_read_cdda(dev_t dev, caddr_t data, int flag); 1532 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag); 1533 static int sr_read_mode1(dev_t dev, caddr_t data, int flag); 1534 static int sr_read_mode2(dev_t dev, caddr_t data, int flag); 1535 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag); 1536 static int sr_sector_mode(dev_t dev, uint32_t blksize); 1537 static int sr_eject(dev_t dev); 1538 static void sr_ejected(register struct sd_lun *un); 1539 static int sr_check_wp(dev_t dev); 1540 static int sd_check_media(dev_t dev, enum dkio_state state); 1541 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp); 1542 static void sd_delayed_cv_broadcast(void *arg); 1543 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag); 1544 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag); 1545 1546 static int sd_log_page_supported(struct sd_lun *un, int log_page); 1547 1548 /* 1549 * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions. 1550 */ 1551 static void sd_check_for_writable_cd(struct sd_lun *un); 1552 static int sd_wm_cache_constructor(void *wm, void *un, int flags); 1553 static void sd_wm_cache_destructor(void *wm, void *un); 1554 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb, 1555 daddr_t endb, ushort_t typ); 1556 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb, 1557 daddr_t endb); 1558 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp); 1559 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm); 1560 static void sd_read_modify_write_task(void * arg); 1561 static int 1562 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 1563 struct buf **bpp); 1564 1565 1566 /* 1567 * Function prototypes for failfast support. 1568 */ 1569 static void sd_failfast_flushq(struct sd_lun *un); 1570 static int sd_failfast_flushq_callback(struct buf *bp); 1571 1572 /* 1573 * Function prototypes to check for lsi devices 1574 */ 1575 static void sd_is_lsi(struct sd_lun *un); 1576 1577 /* 1578 * Function prototypes for x86 support 1579 */ 1580 #if defined(__i386) || defined(__amd64) 1581 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 1582 struct scsi_pkt *pkt, struct sd_xbuf *xp); 1583 #endif 1584 1585 /* 1586 * Constants for failfast support: 1587 * 1588 * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO 1589 * failfast processing being performed. 1590 * 1591 * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing 1592 * failfast processing on all bufs with B_FAILFAST set. 1593 */ 1594 1595 #define SD_FAILFAST_INACTIVE 0 1596 #define SD_FAILFAST_ACTIVE 1 1597 1598 /* 1599 * Bitmask to control behavior of buf(9S) flushes when a transition to 1600 * the failfast state occurs. Optional bits include: 1601 * 1602 * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that 1603 * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will 1604 * be flushed. 1605 * 1606 * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the 1607 * driver, in addition to the regular wait queue. This includes the xbuf 1608 * queues. When clear, only the driver's wait queue will be flushed. 1609 */ 1610 #define SD_FAILFAST_FLUSH_ALL_BUFS 0x01 1611 #define SD_FAILFAST_FLUSH_ALL_QUEUES 0x02 1612 1613 /* 1614 * The default behavior is to only flush bufs that have B_FAILFAST set, but 1615 * to flush all queues within the driver. 1616 */ 1617 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES; 1618 1619 1620 /* 1621 * SD Testing Fault Injection 1622 */ 1623 #ifdef SD_FAULT_INJECTION 1624 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un); 1625 static void sd_faultinjection(struct scsi_pkt *pktp); 1626 static void sd_injection_log(char *buf, struct sd_lun *un); 1627 #endif 1628 1629 /* 1630 * Device driver ops vector 1631 */ 1632 static struct cb_ops sd_cb_ops = { 1633 sdopen, /* open */ 1634 sdclose, /* close */ 1635 sdstrategy, /* strategy */ 1636 nodev, /* print */ 1637 sddump, /* dump */ 1638 sdread, /* read */ 1639 sdwrite, /* write */ 1640 sdioctl, /* ioctl */ 1641 nodev, /* devmap */ 1642 nodev, /* mmap */ 1643 nodev, /* segmap */ 1644 nochpoll, /* poll */ 1645 sd_prop_op, /* cb_prop_op */ 1646 0, /* streamtab */ 1647 D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */ 1648 CB_REV, /* cb_rev */ 1649 sdaread, /* async I/O read entry point */ 1650 sdawrite /* async I/O write entry point */ 1651 }; 1652 1653 static struct dev_ops sd_ops = { 1654 DEVO_REV, /* devo_rev, */ 1655 0, /* refcnt */ 1656 sdinfo, /* info */ 1657 nulldev, /* identify */ 1658 sdprobe, /* probe */ 1659 sdattach, /* attach */ 1660 sddetach, /* detach */ 1661 nodev, /* reset */ 1662 &sd_cb_ops, /* driver operations */ 1663 NULL, /* bus operations */ 1664 sdpower /* power */ 1665 }; 1666 1667 1668 /* 1669 * This is the loadable module wrapper. 1670 */ 1671 #include <sys/modctl.h> 1672 1673 static struct modldrv modldrv = { 1674 &mod_driverops, /* Type of module. This one is a driver */ 1675 SD_MODULE_NAME, /* Module name. */ 1676 &sd_ops /* driver ops */ 1677 }; 1678 1679 1680 static struct modlinkage modlinkage = { 1681 MODREV_1, 1682 &modldrv, 1683 NULL 1684 }; 1685 1686 1687 static struct scsi_asq_key_strings sd_additional_codes[] = { 1688 0x81, 0, "Logical Unit is Reserved", 1689 0x85, 0, "Audio Address Not Valid", 1690 0xb6, 0, "Media Load Mechanism Failed", 1691 0xB9, 0, "Audio Play Operation Aborted", 1692 0xbf, 0, "Buffer Overflow for Read All Subcodes Command", 1693 0x53, 2, "Medium removal prevented", 1694 0x6f, 0, "Authentication failed during key exchange", 1695 0x6f, 1, "Key not present", 1696 0x6f, 2, "Key not established", 1697 0x6f, 3, "Read without proper authentication", 1698 0x6f, 4, "Mismatched region to this logical unit", 1699 0x6f, 5, "Region reset count error", 1700 0xffff, 0x0, NULL 1701 }; 1702 1703 1704 /* 1705 * Struct for passing printing information for sense data messages 1706 */ 1707 struct sd_sense_info { 1708 int ssi_severity; 1709 int ssi_pfa_flag; 1710 }; 1711 1712 /* 1713 * Table of function pointers for iostart-side routines. Seperate "chains" 1714 * of layered function calls are formed by placing the function pointers 1715 * sequentially in the desired order. Functions are called according to an 1716 * incrementing table index ordering. The last function in each chain must 1717 * be sd_core_iostart(). The corresponding iodone-side routines are expected 1718 * in the sd_iodone_chain[] array. 1719 * 1720 * Note: It may seem more natural to organize both the iostart and iodone 1721 * functions together, into an array of structures (or some similar 1722 * organization) with a common index, rather than two seperate arrays which 1723 * must be maintained in synchronization. The purpose of this division is 1724 * to achiece improved performance: individual arrays allows for more 1725 * effective cache line utilization on certain platforms. 1726 */ 1727 1728 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp); 1729 1730 1731 static sd_chain_t sd_iostart_chain[] = { 1732 1733 /* Chain for buf IO for disk drive targets (PM enabled) */ 1734 sd_mapblockaddr_iostart, /* Index: 0 */ 1735 sd_pm_iostart, /* Index: 1 */ 1736 sd_core_iostart, /* Index: 2 */ 1737 1738 /* Chain for buf IO for disk drive targets (PM disabled) */ 1739 sd_mapblockaddr_iostart, /* Index: 3 */ 1740 sd_core_iostart, /* Index: 4 */ 1741 1742 /* Chain for buf IO for removable-media targets (PM enabled) */ 1743 sd_mapblockaddr_iostart, /* Index: 5 */ 1744 sd_mapblocksize_iostart, /* Index: 6 */ 1745 sd_pm_iostart, /* Index: 7 */ 1746 sd_core_iostart, /* Index: 8 */ 1747 1748 /* Chain for buf IO for removable-media targets (PM disabled) */ 1749 sd_mapblockaddr_iostart, /* Index: 9 */ 1750 sd_mapblocksize_iostart, /* Index: 10 */ 1751 sd_core_iostart, /* Index: 11 */ 1752 1753 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1754 sd_mapblockaddr_iostart, /* Index: 12 */ 1755 sd_checksum_iostart, /* Index: 13 */ 1756 sd_pm_iostart, /* Index: 14 */ 1757 sd_core_iostart, /* Index: 15 */ 1758 1759 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1760 sd_mapblockaddr_iostart, /* Index: 16 */ 1761 sd_checksum_iostart, /* Index: 17 */ 1762 sd_core_iostart, /* Index: 18 */ 1763 1764 /* Chain for USCSI commands (all targets) */ 1765 sd_pm_iostart, /* Index: 19 */ 1766 sd_core_iostart, /* Index: 20 */ 1767 1768 /* Chain for checksumming USCSI commands (all targets) */ 1769 sd_checksum_uscsi_iostart, /* Index: 21 */ 1770 sd_pm_iostart, /* Index: 22 */ 1771 sd_core_iostart, /* Index: 23 */ 1772 1773 /* Chain for "direct" USCSI commands (all targets) */ 1774 sd_core_iostart, /* Index: 24 */ 1775 1776 /* Chain for "direct priority" USCSI commands (all targets) */ 1777 sd_core_iostart, /* Index: 25 */ 1778 }; 1779 1780 /* 1781 * Macros to locate the first function of each iostart chain in the 1782 * sd_iostart_chain[] array. These are located by the index in the array. 1783 */ 1784 #define SD_CHAIN_DISK_IOSTART 0 1785 #define SD_CHAIN_DISK_IOSTART_NO_PM 3 1786 #define SD_CHAIN_RMMEDIA_IOSTART 5 1787 #define SD_CHAIN_RMMEDIA_IOSTART_NO_PM 9 1788 #define SD_CHAIN_CHKSUM_IOSTART 12 1789 #define SD_CHAIN_CHKSUM_IOSTART_NO_PM 16 1790 #define SD_CHAIN_USCSI_CMD_IOSTART 19 1791 #define SD_CHAIN_USCSI_CHKSUM_IOSTART 21 1792 #define SD_CHAIN_DIRECT_CMD_IOSTART 24 1793 #define SD_CHAIN_PRIORITY_CMD_IOSTART 25 1794 1795 1796 /* 1797 * Table of function pointers for the iodone-side routines for the driver- 1798 * internal layering mechanism. The calling sequence for iodone routines 1799 * uses a decrementing table index, so the last routine called in a chain 1800 * must be at the lowest array index location for that chain. The last 1801 * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs) 1802 * or sd_uscsi_iodone() (for uscsi IOs). Other than this, the ordering 1803 * of the functions in an iodone side chain must correspond to the ordering 1804 * of the iostart routines for that chain. Note that there is no iodone 1805 * side routine that corresponds to sd_core_iostart(), so there is no 1806 * entry in the table for this. 1807 */ 1808 1809 static sd_chain_t sd_iodone_chain[] = { 1810 1811 /* Chain for buf IO for disk drive targets (PM enabled) */ 1812 sd_buf_iodone, /* Index: 0 */ 1813 sd_mapblockaddr_iodone, /* Index: 1 */ 1814 sd_pm_iodone, /* Index: 2 */ 1815 1816 /* Chain for buf IO for disk drive targets (PM disabled) */ 1817 sd_buf_iodone, /* Index: 3 */ 1818 sd_mapblockaddr_iodone, /* Index: 4 */ 1819 1820 /* Chain for buf IO for removable-media targets (PM enabled) */ 1821 sd_buf_iodone, /* Index: 5 */ 1822 sd_mapblockaddr_iodone, /* Index: 6 */ 1823 sd_mapblocksize_iodone, /* Index: 7 */ 1824 sd_pm_iodone, /* Index: 8 */ 1825 1826 /* Chain for buf IO for removable-media targets (PM disabled) */ 1827 sd_buf_iodone, /* Index: 9 */ 1828 sd_mapblockaddr_iodone, /* Index: 10 */ 1829 sd_mapblocksize_iodone, /* Index: 11 */ 1830 1831 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1832 sd_buf_iodone, /* Index: 12 */ 1833 sd_mapblockaddr_iodone, /* Index: 13 */ 1834 sd_checksum_iodone, /* Index: 14 */ 1835 sd_pm_iodone, /* Index: 15 */ 1836 1837 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1838 sd_buf_iodone, /* Index: 16 */ 1839 sd_mapblockaddr_iodone, /* Index: 17 */ 1840 sd_checksum_iodone, /* Index: 18 */ 1841 1842 /* Chain for USCSI commands (non-checksum targets) */ 1843 sd_uscsi_iodone, /* Index: 19 */ 1844 sd_pm_iodone, /* Index: 20 */ 1845 1846 /* Chain for USCSI commands (checksum targets) */ 1847 sd_uscsi_iodone, /* Index: 21 */ 1848 sd_checksum_uscsi_iodone, /* Index: 22 */ 1849 sd_pm_iodone, /* Index: 22 */ 1850 1851 /* Chain for "direct" USCSI commands (all targets) */ 1852 sd_uscsi_iodone, /* Index: 24 */ 1853 1854 /* Chain for "direct priority" USCSI commands (all targets) */ 1855 sd_uscsi_iodone, /* Index: 25 */ 1856 }; 1857 1858 1859 /* 1860 * Macros to locate the "first" function in the sd_iodone_chain[] array for 1861 * each iodone-side chain. These are located by the array index, but as the 1862 * iodone side functions are called in a decrementing-index order, the 1863 * highest index number in each chain must be specified (as these correspond 1864 * to the first function in the iodone chain that will be called by the core 1865 * at IO completion time). 1866 */ 1867 1868 #define SD_CHAIN_DISK_IODONE 2 1869 #define SD_CHAIN_DISK_IODONE_NO_PM 4 1870 #define SD_CHAIN_RMMEDIA_IODONE 8 1871 #define SD_CHAIN_RMMEDIA_IODONE_NO_PM 11 1872 #define SD_CHAIN_CHKSUM_IODONE 15 1873 #define SD_CHAIN_CHKSUM_IODONE_NO_PM 18 1874 #define SD_CHAIN_USCSI_CMD_IODONE 20 1875 #define SD_CHAIN_USCSI_CHKSUM_IODONE 22 1876 #define SD_CHAIN_DIRECT_CMD_IODONE 24 1877 #define SD_CHAIN_PRIORITY_CMD_IODONE 25 1878 1879 1880 1881 1882 /* 1883 * Array to map a layering chain index to the appropriate initpkt routine. 1884 * The redundant entries are present so that the index used for accessing 1885 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 1886 * with this table as well. 1887 */ 1888 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **); 1889 1890 static sd_initpkt_t sd_initpkt_map[] = { 1891 1892 /* Chain for buf IO for disk drive targets (PM enabled) */ 1893 sd_initpkt_for_buf, /* Index: 0 */ 1894 sd_initpkt_for_buf, /* Index: 1 */ 1895 sd_initpkt_for_buf, /* Index: 2 */ 1896 1897 /* Chain for buf IO for disk drive targets (PM disabled) */ 1898 sd_initpkt_for_buf, /* Index: 3 */ 1899 sd_initpkt_for_buf, /* Index: 4 */ 1900 1901 /* Chain for buf IO for removable-media targets (PM enabled) */ 1902 sd_initpkt_for_buf, /* Index: 5 */ 1903 sd_initpkt_for_buf, /* Index: 6 */ 1904 sd_initpkt_for_buf, /* Index: 7 */ 1905 sd_initpkt_for_buf, /* Index: 8 */ 1906 1907 /* Chain for buf IO for removable-media targets (PM disabled) */ 1908 sd_initpkt_for_buf, /* Index: 9 */ 1909 sd_initpkt_for_buf, /* Index: 10 */ 1910 sd_initpkt_for_buf, /* Index: 11 */ 1911 1912 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1913 sd_initpkt_for_buf, /* Index: 12 */ 1914 sd_initpkt_for_buf, /* Index: 13 */ 1915 sd_initpkt_for_buf, /* Index: 14 */ 1916 sd_initpkt_for_buf, /* Index: 15 */ 1917 1918 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1919 sd_initpkt_for_buf, /* Index: 16 */ 1920 sd_initpkt_for_buf, /* Index: 17 */ 1921 sd_initpkt_for_buf, /* Index: 18 */ 1922 1923 /* Chain for USCSI commands (non-checksum targets) */ 1924 sd_initpkt_for_uscsi, /* Index: 19 */ 1925 sd_initpkt_for_uscsi, /* Index: 20 */ 1926 1927 /* Chain for USCSI commands (checksum targets) */ 1928 sd_initpkt_for_uscsi, /* Index: 21 */ 1929 sd_initpkt_for_uscsi, /* Index: 22 */ 1930 sd_initpkt_for_uscsi, /* Index: 22 */ 1931 1932 /* Chain for "direct" USCSI commands (all targets) */ 1933 sd_initpkt_for_uscsi, /* Index: 24 */ 1934 1935 /* Chain for "direct priority" USCSI commands (all targets) */ 1936 sd_initpkt_for_uscsi, /* Index: 25 */ 1937 1938 }; 1939 1940 1941 /* 1942 * Array to map a layering chain index to the appropriate destroypktpkt routine. 1943 * The redundant entries are present so that the index used for accessing 1944 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 1945 * with this table as well. 1946 */ 1947 typedef void (*sd_destroypkt_t)(struct buf *); 1948 1949 static sd_destroypkt_t sd_destroypkt_map[] = { 1950 1951 /* Chain for buf IO for disk drive targets (PM enabled) */ 1952 sd_destroypkt_for_buf, /* Index: 0 */ 1953 sd_destroypkt_for_buf, /* Index: 1 */ 1954 sd_destroypkt_for_buf, /* Index: 2 */ 1955 1956 /* Chain for buf IO for disk drive targets (PM disabled) */ 1957 sd_destroypkt_for_buf, /* Index: 3 */ 1958 sd_destroypkt_for_buf, /* Index: 4 */ 1959 1960 /* Chain for buf IO for removable-media targets (PM enabled) */ 1961 sd_destroypkt_for_buf, /* Index: 5 */ 1962 sd_destroypkt_for_buf, /* Index: 6 */ 1963 sd_destroypkt_for_buf, /* Index: 7 */ 1964 sd_destroypkt_for_buf, /* Index: 8 */ 1965 1966 /* Chain for buf IO for removable-media targets (PM disabled) */ 1967 sd_destroypkt_for_buf, /* Index: 9 */ 1968 sd_destroypkt_for_buf, /* Index: 10 */ 1969 sd_destroypkt_for_buf, /* Index: 11 */ 1970 1971 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 1972 sd_destroypkt_for_buf, /* Index: 12 */ 1973 sd_destroypkt_for_buf, /* Index: 13 */ 1974 sd_destroypkt_for_buf, /* Index: 14 */ 1975 sd_destroypkt_for_buf, /* Index: 15 */ 1976 1977 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 1978 sd_destroypkt_for_buf, /* Index: 16 */ 1979 sd_destroypkt_for_buf, /* Index: 17 */ 1980 sd_destroypkt_for_buf, /* Index: 18 */ 1981 1982 /* Chain for USCSI commands (non-checksum targets) */ 1983 sd_destroypkt_for_uscsi, /* Index: 19 */ 1984 sd_destroypkt_for_uscsi, /* Index: 20 */ 1985 1986 /* Chain for USCSI commands (checksum targets) */ 1987 sd_destroypkt_for_uscsi, /* Index: 21 */ 1988 sd_destroypkt_for_uscsi, /* Index: 22 */ 1989 sd_destroypkt_for_uscsi, /* Index: 22 */ 1990 1991 /* Chain for "direct" USCSI commands (all targets) */ 1992 sd_destroypkt_for_uscsi, /* Index: 24 */ 1993 1994 /* Chain for "direct priority" USCSI commands (all targets) */ 1995 sd_destroypkt_for_uscsi, /* Index: 25 */ 1996 1997 }; 1998 1999 2000 2001 /* 2002 * Array to map a layering chain index to the appropriate chain "type". 2003 * The chain type indicates a specific property/usage of the chain. 2004 * The redundant entries are present so that the index used for accessing 2005 * the above sd_iostart_chain and sd_iodone_chain tables can be used directly 2006 * with this table as well. 2007 */ 2008 2009 #define SD_CHAIN_NULL 0 /* for the special RQS cmd */ 2010 #define SD_CHAIN_BUFIO 1 /* regular buf IO */ 2011 #define SD_CHAIN_USCSI 2 /* regular USCSI commands */ 2012 #define SD_CHAIN_DIRECT 3 /* uscsi, w/ bypass power mgt */ 2013 #define SD_CHAIN_DIRECT_PRIORITY 4 /* uscsi, w/ bypass power mgt */ 2014 /* (for error recovery) */ 2015 2016 static int sd_chain_type_map[] = { 2017 2018 /* Chain for buf IO for disk drive targets (PM enabled) */ 2019 SD_CHAIN_BUFIO, /* Index: 0 */ 2020 SD_CHAIN_BUFIO, /* Index: 1 */ 2021 SD_CHAIN_BUFIO, /* Index: 2 */ 2022 2023 /* Chain for buf IO for disk drive targets (PM disabled) */ 2024 SD_CHAIN_BUFIO, /* Index: 3 */ 2025 SD_CHAIN_BUFIO, /* Index: 4 */ 2026 2027 /* Chain for buf IO for removable-media targets (PM enabled) */ 2028 SD_CHAIN_BUFIO, /* Index: 5 */ 2029 SD_CHAIN_BUFIO, /* Index: 6 */ 2030 SD_CHAIN_BUFIO, /* Index: 7 */ 2031 SD_CHAIN_BUFIO, /* Index: 8 */ 2032 2033 /* Chain for buf IO for removable-media targets (PM disabled) */ 2034 SD_CHAIN_BUFIO, /* Index: 9 */ 2035 SD_CHAIN_BUFIO, /* Index: 10 */ 2036 SD_CHAIN_BUFIO, /* Index: 11 */ 2037 2038 /* Chain for buf IO for disk drives with checksumming (PM enabled) */ 2039 SD_CHAIN_BUFIO, /* Index: 12 */ 2040 SD_CHAIN_BUFIO, /* Index: 13 */ 2041 SD_CHAIN_BUFIO, /* Index: 14 */ 2042 SD_CHAIN_BUFIO, /* Index: 15 */ 2043 2044 /* Chain for buf IO for disk drives with checksumming (PM disabled) */ 2045 SD_CHAIN_BUFIO, /* Index: 16 */ 2046 SD_CHAIN_BUFIO, /* Index: 17 */ 2047 SD_CHAIN_BUFIO, /* Index: 18 */ 2048 2049 /* Chain for USCSI commands (non-checksum targets) */ 2050 SD_CHAIN_USCSI, /* Index: 19 */ 2051 SD_CHAIN_USCSI, /* Index: 20 */ 2052 2053 /* Chain for USCSI commands (checksum targets) */ 2054 SD_CHAIN_USCSI, /* Index: 21 */ 2055 SD_CHAIN_USCSI, /* Index: 22 */ 2056 SD_CHAIN_USCSI, /* Index: 22 */ 2057 2058 /* Chain for "direct" USCSI commands (all targets) */ 2059 SD_CHAIN_DIRECT, /* Index: 24 */ 2060 2061 /* Chain for "direct priority" USCSI commands (all targets) */ 2062 SD_CHAIN_DIRECT_PRIORITY, /* Index: 25 */ 2063 }; 2064 2065 2066 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */ 2067 #define SD_IS_BUFIO(xp) \ 2068 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO) 2069 2070 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */ 2071 #define SD_IS_DIRECT_PRIORITY(xp) \ 2072 (sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY) 2073 2074 2075 2076 /* 2077 * Struct, array, and macros to map a specific chain to the appropriate 2078 * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays. 2079 * 2080 * The sd_chain_index_map[] array is used at attach time to set the various 2081 * un_xxx_chain type members of the sd_lun softstate to the specific layering 2082 * chain to be used with the instance. This allows different instances to use 2083 * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart 2084 * and xb_chain_iodone index values in the sd_xbuf are initialized to these 2085 * values at sd_xbuf init time, this allows (1) layering chains may be changed 2086 * dynamically & without the use of locking; and (2) a layer may update the 2087 * xb_chain_io[start|done] member in a given xbuf with its current index value, 2088 * to allow for deferred processing of an IO within the same chain from a 2089 * different execution context. 2090 */ 2091 2092 struct sd_chain_index { 2093 int sci_iostart_index; 2094 int sci_iodone_index; 2095 }; 2096 2097 static struct sd_chain_index sd_chain_index_map[] = { 2098 { SD_CHAIN_DISK_IOSTART, SD_CHAIN_DISK_IODONE }, 2099 { SD_CHAIN_DISK_IOSTART_NO_PM, SD_CHAIN_DISK_IODONE_NO_PM }, 2100 { SD_CHAIN_RMMEDIA_IOSTART, SD_CHAIN_RMMEDIA_IODONE }, 2101 { SD_CHAIN_RMMEDIA_IOSTART_NO_PM, SD_CHAIN_RMMEDIA_IODONE_NO_PM }, 2102 { SD_CHAIN_CHKSUM_IOSTART, SD_CHAIN_CHKSUM_IODONE }, 2103 { SD_CHAIN_CHKSUM_IOSTART_NO_PM, SD_CHAIN_CHKSUM_IODONE_NO_PM }, 2104 { SD_CHAIN_USCSI_CMD_IOSTART, SD_CHAIN_USCSI_CMD_IODONE }, 2105 { SD_CHAIN_USCSI_CHKSUM_IOSTART, SD_CHAIN_USCSI_CHKSUM_IODONE }, 2106 { SD_CHAIN_DIRECT_CMD_IOSTART, SD_CHAIN_DIRECT_CMD_IODONE }, 2107 { SD_CHAIN_PRIORITY_CMD_IOSTART, SD_CHAIN_PRIORITY_CMD_IODONE }, 2108 }; 2109 2110 2111 /* 2112 * The following are indexes into the sd_chain_index_map[] array. 2113 */ 2114 2115 /* un->un_buf_chain_type must be set to one of these */ 2116 #define SD_CHAIN_INFO_DISK 0 2117 #define SD_CHAIN_INFO_DISK_NO_PM 1 2118 #define SD_CHAIN_INFO_RMMEDIA 2 2119 #define SD_CHAIN_INFO_RMMEDIA_NO_PM 3 2120 #define SD_CHAIN_INFO_CHKSUM 4 2121 #define SD_CHAIN_INFO_CHKSUM_NO_PM 5 2122 2123 /* un->un_uscsi_chain_type must be set to one of these */ 2124 #define SD_CHAIN_INFO_USCSI_CMD 6 2125 /* USCSI with PM disabled is the same as DIRECT */ 2126 #define SD_CHAIN_INFO_USCSI_CMD_NO_PM 8 2127 #define SD_CHAIN_INFO_USCSI_CHKSUM 7 2128 2129 /* un->un_direct_chain_type must be set to one of these */ 2130 #define SD_CHAIN_INFO_DIRECT_CMD 8 2131 2132 /* un->un_priority_chain_type must be set to one of these */ 2133 #define SD_CHAIN_INFO_PRIORITY_CMD 9 2134 2135 /* size for devid inquiries */ 2136 #define MAX_INQUIRY_SIZE 0xF0 2137 2138 /* 2139 * Macros used by functions to pass a given buf(9S) struct along to the 2140 * next function in the layering chain for further processing. 2141 * 2142 * In the following macros, passing more than three arguments to the called 2143 * routines causes the optimizer for the SPARC compiler to stop doing tail 2144 * call elimination which results in significant performance degradation. 2145 */ 2146 #define SD_BEGIN_IOSTART(index, un, bp) \ 2147 ((*(sd_iostart_chain[index]))(index, un, bp)) 2148 2149 #define SD_BEGIN_IODONE(index, un, bp) \ 2150 ((*(sd_iodone_chain[index]))(index, un, bp)) 2151 2152 #define SD_NEXT_IOSTART(index, un, bp) \ 2153 ((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp)) 2154 2155 #define SD_NEXT_IODONE(index, un, bp) \ 2156 ((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp)) 2157 2158 /* 2159 * Function: _init 2160 * 2161 * Description: This is the driver _init(9E) entry point. 2162 * 2163 * Return Code: Returns the value from mod_install(9F) or 2164 * ddi_soft_state_init(9F) as appropriate. 2165 * 2166 * Context: Called when driver module loaded. 2167 */ 2168 2169 int 2170 _init(void) 2171 { 2172 int err; 2173 2174 /* establish driver name from module name */ 2175 sd_label = mod_modname(&modlinkage); 2176 2177 err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun), 2178 SD_MAXUNIT); 2179 2180 if (err != 0) { 2181 return (err); 2182 } 2183 2184 mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL); 2185 mutex_init(&sd_log_mutex, NULL, MUTEX_DRIVER, NULL); 2186 mutex_init(&sd_label_mutex, NULL, MUTEX_DRIVER, NULL); 2187 2188 mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL); 2189 cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL); 2190 cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL); 2191 2192 /* 2193 * it's ok to init here even for fibre device 2194 */ 2195 sd_scsi_probe_cache_init(); 2196 2197 /* 2198 * Creating taskq before mod_install ensures that all callers (threads) 2199 * that enter the module after a successfull mod_install encounter 2200 * a valid taskq. 2201 */ 2202 sd_taskq_create(); 2203 2204 err = mod_install(&modlinkage); 2205 if (err != 0) { 2206 /* delete taskq if install fails */ 2207 sd_taskq_delete(); 2208 2209 mutex_destroy(&sd_detach_mutex); 2210 mutex_destroy(&sd_log_mutex); 2211 mutex_destroy(&sd_label_mutex); 2212 2213 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2214 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2215 cv_destroy(&sd_tr.srq_inprocess_cv); 2216 2217 sd_scsi_probe_cache_fini(); 2218 2219 ddi_soft_state_fini(&sd_state); 2220 return (err); 2221 } 2222 2223 return (err); 2224 } 2225 2226 2227 /* 2228 * Function: _fini 2229 * 2230 * Description: This is the driver _fini(9E) entry point. 2231 * 2232 * Return Code: Returns the value from mod_remove(9F) 2233 * 2234 * Context: Called when driver module is unloaded. 2235 */ 2236 2237 int 2238 _fini(void) 2239 { 2240 int err; 2241 2242 if ((err = mod_remove(&modlinkage)) != 0) { 2243 return (err); 2244 } 2245 2246 sd_taskq_delete(); 2247 2248 mutex_destroy(&sd_detach_mutex); 2249 mutex_destroy(&sd_log_mutex); 2250 mutex_destroy(&sd_label_mutex); 2251 mutex_destroy(&sd_tr.srq_resv_reclaim_mutex); 2252 2253 sd_scsi_probe_cache_fini(); 2254 2255 cv_destroy(&sd_tr.srq_resv_reclaim_cv); 2256 cv_destroy(&sd_tr.srq_inprocess_cv); 2257 2258 ddi_soft_state_fini(&sd_state); 2259 2260 return (err); 2261 } 2262 2263 2264 /* 2265 * Function: _info 2266 * 2267 * Description: This is the driver _info(9E) entry point. 2268 * 2269 * Arguments: modinfop - pointer to the driver modinfo structure 2270 * 2271 * Return Code: Returns the value from mod_info(9F). 2272 * 2273 * Context: Kernel thread context 2274 */ 2275 2276 int 2277 _info(struct modinfo *modinfop) 2278 { 2279 return (mod_info(&modlinkage, modinfop)); 2280 } 2281 2282 2283 /* 2284 * The following routines implement the driver message logging facility. 2285 * They provide component- and level- based debug output filtering. 2286 * Output may also be restricted to messages for a single instance by 2287 * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set 2288 * to NULL, then messages for all instances are printed. 2289 * 2290 * These routines have been cloned from each other due to the language 2291 * constraints of macros and variable argument list processing. 2292 */ 2293 2294 2295 /* 2296 * Function: sd_log_err 2297 * 2298 * Description: This routine is called by the SD_ERROR macro for debug 2299 * logging of error conditions. 2300 * 2301 * Arguments: comp - driver component being logged 2302 * dev - pointer to driver info structure 2303 * fmt - error string and format to be logged 2304 */ 2305 2306 static void 2307 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...) 2308 { 2309 va_list ap; 2310 dev_info_t *dev; 2311 2312 ASSERT(un != NULL); 2313 dev = SD_DEVINFO(un); 2314 ASSERT(dev != NULL); 2315 2316 /* 2317 * Filter messages based on the global component and level masks. 2318 * Also print if un matches the value of sd_debug_un, or if 2319 * sd_debug_un is set to NULL. 2320 */ 2321 if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) && 2322 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2323 mutex_enter(&sd_log_mutex); 2324 va_start(ap, fmt); 2325 (void) vsprintf(sd_log_buf, fmt, ap); 2326 va_end(ap); 2327 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2328 mutex_exit(&sd_log_mutex); 2329 } 2330 #ifdef SD_FAULT_INJECTION 2331 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2332 if (un->sd_injection_mask & comp) { 2333 mutex_enter(&sd_log_mutex); 2334 va_start(ap, fmt); 2335 (void) vsprintf(sd_log_buf, fmt, ap); 2336 va_end(ap); 2337 sd_injection_log(sd_log_buf, un); 2338 mutex_exit(&sd_log_mutex); 2339 } 2340 #endif 2341 } 2342 2343 2344 /* 2345 * Function: sd_log_info 2346 * 2347 * Description: This routine is called by the SD_INFO macro for debug 2348 * logging of general purpose informational conditions. 2349 * 2350 * Arguments: comp - driver component being logged 2351 * dev - pointer to driver info structure 2352 * fmt - info string and format to be logged 2353 */ 2354 2355 static void 2356 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...) 2357 { 2358 va_list ap; 2359 dev_info_t *dev; 2360 2361 ASSERT(un != NULL); 2362 dev = SD_DEVINFO(un); 2363 ASSERT(dev != NULL); 2364 2365 /* 2366 * Filter messages based on the global component and level masks. 2367 * Also print if un matches the value of sd_debug_un, or if 2368 * sd_debug_un is set to NULL. 2369 */ 2370 if ((sd_component_mask & component) && 2371 (sd_level_mask & SD_LOGMASK_INFO) && 2372 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2373 mutex_enter(&sd_log_mutex); 2374 va_start(ap, fmt); 2375 (void) vsprintf(sd_log_buf, fmt, ap); 2376 va_end(ap); 2377 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2378 mutex_exit(&sd_log_mutex); 2379 } 2380 #ifdef SD_FAULT_INJECTION 2381 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2382 if (un->sd_injection_mask & component) { 2383 mutex_enter(&sd_log_mutex); 2384 va_start(ap, fmt); 2385 (void) vsprintf(sd_log_buf, fmt, ap); 2386 va_end(ap); 2387 sd_injection_log(sd_log_buf, un); 2388 mutex_exit(&sd_log_mutex); 2389 } 2390 #endif 2391 } 2392 2393 2394 /* 2395 * Function: sd_log_trace 2396 * 2397 * Description: This routine is called by the SD_TRACE macro for debug 2398 * logging of trace conditions (i.e. function entry/exit). 2399 * 2400 * Arguments: comp - driver component being logged 2401 * dev - pointer to driver info structure 2402 * fmt - trace string and format to be logged 2403 */ 2404 2405 static void 2406 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...) 2407 { 2408 va_list ap; 2409 dev_info_t *dev; 2410 2411 ASSERT(un != NULL); 2412 dev = SD_DEVINFO(un); 2413 ASSERT(dev != NULL); 2414 2415 /* 2416 * Filter messages based on the global component and level masks. 2417 * Also print if un matches the value of sd_debug_un, or if 2418 * sd_debug_un is set to NULL. 2419 */ 2420 if ((sd_component_mask & component) && 2421 (sd_level_mask & SD_LOGMASK_TRACE) && 2422 ((sd_debug_un == NULL) || (sd_debug_un == un))) { 2423 mutex_enter(&sd_log_mutex); 2424 va_start(ap, fmt); 2425 (void) vsprintf(sd_log_buf, fmt, ap); 2426 va_end(ap); 2427 scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf); 2428 mutex_exit(&sd_log_mutex); 2429 } 2430 #ifdef SD_FAULT_INJECTION 2431 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask)); 2432 if (un->sd_injection_mask & component) { 2433 mutex_enter(&sd_log_mutex); 2434 va_start(ap, fmt); 2435 (void) vsprintf(sd_log_buf, fmt, ap); 2436 va_end(ap); 2437 sd_injection_log(sd_log_buf, un); 2438 mutex_exit(&sd_log_mutex); 2439 } 2440 #endif 2441 } 2442 2443 2444 /* 2445 * Function: sdprobe 2446 * 2447 * Description: This is the driver probe(9e) entry point function. 2448 * 2449 * Arguments: devi - opaque device info handle 2450 * 2451 * Return Code: DDI_PROBE_SUCCESS: If the probe was successful. 2452 * DDI_PROBE_FAILURE: If the probe failed. 2453 * DDI_PROBE_PARTIAL: If the instance is not present now, 2454 * but may be present in the future. 2455 */ 2456 2457 static int 2458 sdprobe(dev_info_t *devi) 2459 { 2460 struct scsi_device *devp; 2461 int rval; 2462 int instance; 2463 2464 /* 2465 * if it wasn't for pln, sdprobe could actually be nulldev 2466 * in the "__fibre" case. 2467 */ 2468 if (ddi_dev_is_sid(devi) == DDI_SUCCESS) { 2469 return (DDI_PROBE_DONTCARE); 2470 } 2471 2472 devp = ddi_get_driver_private(devi); 2473 2474 if (devp == NULL) { 2475 /* Ooops... nexus driver is mis-configured... */ 2476 return (DDI_PROBE_FAILURE); 2477 } 2478 2479 instance = ddi_get_instance(devi); 2480 2481 if (ddi_get_soft_state(sd_state, instance) != NULL) { 2482 return (DDI_PROBE_PARTIAL); 2483 } 2484 2485 /* 2486 * Call the SCSA utility probe routine to see if we actually 2487 * have a target at this SCSI nexus. 2488 */ 2489 switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) { 2490 case SCSIPROBE_EXISTS: 2491 switch (devp->sd_inq->inq_dtype) { 2492 case DTYPE_DIRECT: 2493 rval = DDI_PROBE_SUCCESS; 2494 break; 2495 case DTYPE_RODIRECT: 2496 /* CDs etc. Can be removable media */ 2497 rval = DDI_PROBE_SUCCESS; 2498 break; 2499 case DTYPE_OPTICAL: 2500 /* 2501 * Rewritable optical driver HP115AA 2502 * Can also be removable media 2503 */ 2504 2505 /* 2506 * Do not attempt to bind to DTYPE_OPTICAL if 2507 * pre solaris 9 sparc sd behavior is required 2508 * 2509 * If first time through and sd_dtype_optical_bind 2510 * has not been set in /etc/system check properties 2511 */ 2512 2513 if (sd_dtype_optical_bind < 0) { 2514 sd_dtype_optical_bind = ddi_prop_get_int 2515 (DDI_DEV_T_ANY, devi, 0, 2516 "optical-device-bind", 1); 2517 } 2518 2519 if (sd_dtype_optical_bind == 0) { 2520 rval = DDI_PROBE_FAILURE; 2521 } else { 2522 rval = DDI_PROBE_SUCCESS; 2523 } 2524 break; 2525 2526 case DTYPE_NOTPRESENT: 2527 default: 2528 rval = DDI_PROBE_FAILURE; 2529 break; 2530 } 2531 break; 2532 default: 2533 rval = DDI_PROBE_PARTIAL; 2534 break; 2535 } 2536 2537 /* 2538 * This routine checks for resource allocation prior to freeing, 2539 * so it will take care of the "smart probing" case where a 2540 * scsi_probe() may or may not have been issued and will *not* 2541 * free previously-freed resources. 2542 */ 2543 scsi_unprobe(devp); 2544 return (rval); 2545 } 2546 2547 2548 /* 2549 * Function: sdinfo 2550 * 2551 * Description: This is the driver getinfo(9e) entry point function. 2552 * Given the device number, return the devinfo pointer from 2553 * the scsi_device structure or the instance number 2554 * associated with the dev_t. 2555 * 2556 * Arguments: dip - pointer to device info structure 2557 * infocmd - command argument (DDI_INFO_DEVT2DEVINFO, 2558 * DDI_INFO_DEVT2INSTANCE) 2559 * arg - driver dev_t 2560 * resultp - user buffer for request response 2561 * 2562 * Return Code: DDI_SUCCESS 2563 * DDI_FAILURE 2564 */ 2565 /* ARGSUSED */ 2566 static int 2567 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 2568 { 2569 struct sd_lun *un; 2570 dev_t dev; 2571 int instance; 2572 int error; 2573 2574 switch (infocmd) { 2575 case DDI_INFO_DEVT2DEVINFO: 2576 dev = (dev_t)arg; 2577 instance = SDUNIT(dev); 2578 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 2579 return (DDI_FAILURE); 2580 } 2581 *result = (void *) SD_DEVINFO(un); 2582 error = DDI_SUCCESS; 2583 break; 2584 case DDI_INFO_DEVT2INSTANCE: 2585 dev = (dev_t)arg; 2586 instance = SDUNIT(dev); 2587 *result = (void *)(uintptr_t)instance; 2588 error = DDI_SUCCESS; 2589 break; 2590 default: 2591 error = DDI_FAILURE; 2592 } 2593 return (error); 2594 } 2595 2596 /* 2597 * Function: sd_prop_op 2598 * 2599 * Description: This is the driver prop_op(9e) entry point function. 2600 * Return the number of blocks for the partition in question 2601 * or forward the request to the property facilities. 2602 * 2603 * Arguments: dev - device number 2604 * dip - pointer to device info structure 2605 * prop_op - property operator 2606 * mod_flags - DDI_PROP_DONTPASS, don't pass to parent 2607 * name - pointer to property name 2608 * valuep - pointer or address of the user buffer 2609 * lengthp - property length 2610 * 2611 * Return Code: DDI_PROP_SUCCESS 2612 * DDI_PROP_NOT_FOUND 2613 * DDI_PROP_UNDEFINED 2614 * DDI_PROP_NO_MEMORY 2615 * DDI_PROP_BUF_TOO_SMALL 2616 */ 2617 2618 static int 2619 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags, 2620 char *name, caddr_t valuep, int *lengthp) 2621 { 2622 int instance = ddi_get_instance(dip); 2623 struct sd_lun *un; 2624 uint64_t nblocks64; 2625 2626 /* 2627 * Our dynamic properties are all device specific and size oriented. 2628 * Requests issued under conditions where size is valid are passed 2629 * to ddi_prop_op_nblocks with the size information, otherwise the 2630 * request is passed to ddi_prop_op. Size depends on valid geometry. 2631 */ 2632 un = ddi_get_soft_state(sd_state, instance); 2633 if ((dev == DDI_DEV_T_ANY) || (un == NULL) || 2634 (un->un_f_geometry_is_valid == FALSE)) { 2635 return (ddi_prop_op(dev, dip, prop_op, mod_flags, 2636 name, valuep, lengthp)); 2637 } else { 2638 /* get nblocks value */ 2639 ASSERT(!mutex_owned(SD_MUTEX(un))); 2640 mutex_enter(SD_MUTEX(un)); 2641 nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk; 2642 mutex_exit(SD_MUTEX(un)); 2643 2644 return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags, 2645 name, valuep, lengthp, nblocks64)); 2646 } 2647 } 2648 2649 /* 2650 * The following functions are for smart probing: 2651 * sd_scsi_probe_cache_init() 2652 * sd_scsi_probe_cache_fini() 2653 * sd_scsi_clear_probe_cache() 2654 * sd_scsi_probe_with_cache() 2655 */ 2656 2657 /* 2658 * Function: sd_scsi_probe_cache_init 2659 * 2660 * Description: Initializes the probe response cache mutex and head pointer. 2661 * 2662 * Context: Kernel thread context 2663 */ 2664 2665 static void 2666 sd_scsi_probe_cache_init(void) 2667 { 2668 mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL); 2669 sd_scsi_probe_cache_head = NULL; 2670 } 2671 2672 2673 /* 2674 * Function: sd_scsi_probe_cache_fini 2675 * 2676 * Description: Frees all resources associated with the probe response cache. 2677 * 2678 * Context: Kernel thread context 2679 */ 2680 2681 static void 2682 sd_scsi_probe_cache_fini(void) 2683 { 2684 struct sd_scsi_probe_cache *cp; 2685 struct sd_scsi_probe_cache *ncp; 2686 2687 /* Clean up our smart probing linked list */ 2688 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) { 2689 ncp = cp->next; 2690 kmem_free(cp, sizeof (struct sd_scsi_probe_cache)); 2691 } 2692 sd_scsi_probe_cache_head = NULL; 2693 mutex_destroy(&sd_scsi_probe_cache_mutex); 2694 } 2695 2696 2697 /* 2698 * Function: sd_scsi_clear_probe_cache 2699 * 2700 * Description: This routine clears the probe response cache. This is 2701 * done when open() returns ENXIO so that when deferred 2702 * attach is attempted (possibly after a device has been 2703 * turned on) we will retry the probe. Since we don't know 2704 * which target we failed to open, we just clear the 2705 * entire cache. 2706 * 2707 * Context: Kernel thread context 2708 */ 2709 2710 static void 2711 sd_scsi_clear_probe_cache(void) 2712 { 2713 struct sd_scsi_probe_cache *cp; 2714 int i; 2715 2716 mutex_enter(&sd_scsi_probe_cache_mutex); 2717 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2718 /* 2719 * Reset all entries to SCSIPROBE_EXISTS. This will 2720 * force probing to be performed the next time 2721 * sd_scsi_probe_with_cache is called. 2722 */ 2723 for (i = 0; i < NTARGETS_WIDE; i++) { 2724 cp->cache[i] = SCSIPROBE_EXISTS; 2725 } 2726 } 2727 mutex_exit(&sd_scsi_probe_cache_mutex); 2728 } 2729 2730 2731 /* 2732 * Function: sd_scsi_probe_with_cache 2733 * 2734 * Description: This routine implements support for a scsi device probe 2735 * with cache. The driver maintains a cache of the target 2736 * responses to scsi probes. If we get no response from a 2737 * target during a probe inquiry, we remember that, and we 2738 * avoid additional calls to scsi_probe on non-zero LUNs 2739 * on the same target until the cache is cleared. By doing 2740 * so we avoid the 1/4 sec selection timeout for nonzero 2741 * LUNs. lun0 of a target is always probed. 2742 * 2743 * Arguments: devp - Pointer to a scsi_device(9S) structure 2744 * waitfunc - indicates what the allocator routines should 2745 * do when resources are not available. This value 2746 * is passed on to scsi_probe() when that routine 2747 * is called. 2748 * 2749 * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache; 2750 * otherwise the value returned by scsi_probe(9F). 2751 * 2752 * Context: Kernel thread context 2753 */ 2754 2755 static int 2756 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)()) 2757 { 2758 struct sd_scsi_probe_cache *cp; 2759 dev_info_t *pdip = ddi_get_parent(devp->sd_dev); 2760 int lun, tgt; 2761 2762 lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2763 SCSI_ADDR_PROP_LUN, 0); 2764 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS, 2765 SCSI_ADDR_PROP_TARGET, -1); 2766 2767 /* Make sure caching enabled and target in range */ 2768 if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) { 2769 /* do it the old way (no cache) */ 2770 return (scsi_probe(devp, waitfn)); 2771 } 2772 2773 mutex_enter(&sd_scsi_probe_cache_mutex); 2774 2775 /* Find the cache for this scsi bus instance */ 2776 for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) { 2777 if (cp->pdip == pdip) { 2778 break; 2779 } 2780 } 2781 2782 /* If we can't find a cache for this pdip, create one */ 2783 if (cp == NULL) { 2784 int i; 2785 2786 cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache), 2787 KM_SLEEP); 2788 cp->pdip = pdip; 2789 cp->next = sd_scsi_probe_cache_head; 2790 sd_scsi_probe_cache_head = cp; 2791 for (i = 0; i < NTARGETS_WIDE; i++) { 2792 cp->cache[i] = SCSIPROBE_EXISTS; 2793 } 2794 } 2795 2796 mutex_exit(&sd_scsi_probe_cache_mutex); 2797 2798 /* Recompute the cache for this target if LUN zero */ 2799 if (lun == 0) { 2800 cp->cache[tgt] = SCSIPROBE_EXISTS; 2801 } 2802 2803 /* Don't probe if cache remembers a NORESP from a previous LUN. */ 2804 if (cp->cache[tgt] != SCSIPROBE_EXISTS) { 2805 return (SCSIPROBE_NORESP); 2806 } 2807 2808 /* Do the actual probe; save & return the result */ 2809 return (cp->cache[tgt] = scsi_probe(devp, waitfn)); 2810 } 2811 2812 2813 /* 2814 * Function: sd_spin_up_unit 2815 * 2816 * Description: Issues the following commands to spin-up the device: 2817 * START STOP UNIT, and INQUIRY. 2818 * 2819 * Arguments: un - driver soft state (unit) structure 2820 * 2821 * Return Code: 0 - success 2822 * EIO - failure 2823 * EACCES - reservation conflict 2824 * 2825 * Context: Kernel thread context 2826 */ 2827 2828 static int 2829 sd_spin_up_unit(struct sd_lun *un) 2830 { 2831 size_t resid = 0; 2832 int has_conflict = FALSE; 2833 uchar_t *bufaddr; 2834 2835 ASSERT(un != NULL); 2836 2837 /* 2838 * Send a throwaway START UNIT command. 2839 * 2840 * If we fail on this, we don't care presently what precisely 2841 * is wrong. EMC's arrays will also fail this with a check 2842 * condition (0x2/0x4/0x3) if the device is "inactive," but 2843 * we don't want to fail the attach because it may become 2844 * "active" later. 2845 */ 2846 if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT) 2847 == EACCES) 2848 has_conflict = TRUE; 2849 2850 /* 2851 * Send another INQUIRY command to the target. This is necessary for 2852 * non-removable media direct access devices because their INQUIRY data 2853 * may not be fully qualified until they are spun up (perhaps via the 2854 * START command above). Note: This seems to be needed for some 2855 * legacy devices only.) The INQUIRY command should succeed even if a 2856 * Reservation Conflict is present. 2857 */ 2858 bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP); 2859 if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) { 2860 kmem_free(bufaddr, SUN_INQSIZE); 2861 return (EIO); 2862 } 2863 2864 /* 2865 * If we got enough INQUIRY data, copy it over the old INQUIRY data. 2866 * Note that this routine does not return a failure here even if the 2867 * INQUIRY command did not return any data. This is a legacy behavior. 2868 */ 2869 if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) { 2870 bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE); 2871 } 2872 2873 kmem_free(bufaddr, SUN_INQSIZE); 2874 2875 /* If we hit a reservation conflict above, tell the caller. */ 2876 if (has_conflict == TRUE) { 2877 return (EACCES); 2878 } 2879 2880 return (0); 2881 } 2882 2883 #ifdef _LP64 2884 /* 2885 * Function: sd_enable_descr_sense 2886 * 2887 * Description: This routine attempts to select descriptor sense format 2888 * using the Control mode page. Devices that support 64 bit 2889 * LBAs (for >2TB luns) should also implement descriptor 2890 * sense data so we will call this function whenever we see 2891 * a lun larger than 2TB. If for some reason the device 2892 * supports 64 bit LBAs but doesn't support descriptor sense 2893 * presumably the mode select will fail. Everything will 2894 * continue to work normally except that we will not get 2895 * complete sense data for commands that fail with an LBA 2896 * larger than 32 bits. 2897 * 2898 * Arguments: un - driver soft state (unit) structure 2899 * 2900 * Context: Kernel thread context only 2901 */ 2902 2903 static void 2904 sd_enable_descr_sense(struct sd_lun *un) 2905 { 2906 uchar_t *header; 2907 struct mode_control_scsi3 *ctrl_bufp; 2908 size_t buflen; 2909 size_t bd_len; 2910 2911 /* 2912 * Read MODE SENSE page 0xA, Control Mode Page 2913 */ 2914 buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH + 2915 sizeof (struct mode_control_scsi3); 2916 header = kmem_zalloc(buflen, KM_SLEEP); 2917 if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen, 2918 MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) { 2919 SD_ERROR(SD_LOG_COMMON, un, 2920 "sd_enable_descr_sense: mode sense ctrl page failed\n"); 2921 goto eds_exit; 2922 } 2923 2924 /* 2925 * Determine size of Block Descriptors in order to locate 2926 * the mode page data. ATAPI devices return 0, SCSI devices 2927 * should return MODE_BLK_DESC_LENGTH. 2928 */ 2929 bd_len = ((struct mode_header *)header)->bdesc_length; 2930 2931 ctrl_bufp = (struct mode_control_scsi3 *) 2932 (header + MODE_HEADER_LENGTH + bd_len); 2933 2934 /* 2935 * Clear PS bit for MODE SELECT 2936 */ 2937 ctrl_bufp->mode_page.ps = 0; 2938 2939 /* 2940 * Set D_SENSE to enable descriptor sense format. 2941 */ 2942 ctrl_bufp->d_sense = 1; 2943 2944 /* 2945 * Use MODE SELECT to commit the change to the D_SENSE bit 2946 */ 2947 if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header, 2948 buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) { 2949 SD_INFO(SD_LOG_COMMON, un, 2950 "sd_enable_descr_sense: mode select ctrl page failed\n"); 2951 goto eds_exit; 2952 } 2953 2954 eds_exit: 2955 kmem_free(header, buflen); 2956 } 2957 #endif /* _LP64 */ 2958 2959 2960 /* 2961 * Function: sd_set_mmc_caps 2962 * 2963 * Description: This routine determines if the device is MMC compliant and if 2964 * the device supports CDDA via a mode sense of the CDVD 2965 * capabilities mode page. Also checks if the device is a 2966 * dvdram writable device. 2967 * 2968 * Arguments: un - driver soft state (unit) structure 2969 * 2970 * Context: Kernel thread context only 2971 */ 2972 2973 static void 2974 sd_set_mmc_caps(struct sd_lun *un) 2975 { 2976 struct mode_header_grp2 *sense_mhp; 2977 uchar_t *sense_page; 2978 caddr_t buf; 2979 int bd_len; 2980 int status; 2981 struct uscsi_cmd com; 2982 int rtn; 2983 uchar_t *out_data_rw, *out_data_hd; 2984 uchar_t *rqbuf_rw, *rqbuf_hd; 2985 2986 ASSERT(un != NULL); 2987 2988 /* 2989 * The flags which will be set in this function are - mmc compliant, 2990 * dvdram writable device, cdda support. Initialize them to FALSE 2991 * and if a capability is detected - it will be set to TRUE. 2992 */ 2993 un->un_f_mmc_cap = FALSE; 2994 un->un_f_dvdram_writable_device = FALSE; 2995 un->un_f_cfg_cdda = FALSE; 2996 2997 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 2998 status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf, 2999 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3000 3001 if (status != 0) { 3002 /* command failed; just return */ 3003 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3004 return; 3005 } 3006 /* 3007 * If the mode sense request for the CDROM CAPABILITIES 3008 * page (0x2A) succeeds the device is assumed to be MMC. 3009 */ 3010 un->un_f_mmc_cap = TRUE; 3011 3012 /* Get to the page data */ 3013 sense_mhp = (struct mode_header_grp2 *)buf; 3014 bd_len = (sense_mhp->bdesc_length_hi << 8) | 3015 sense_mhp->bdesc_length_lo; 3016 if (bd_len > MODE_BLK_DESC_LENGTH) { 3017 /* 3018 * We did not get back the expected block descriptor 3019 * length so we cannot determine if the device supports 3020 * CDDA. However, we still indicate the device is MMC 3021 * according to the successful response to the page 3022 * 0x2A mode sense request. 3023 */ 3024 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3025 "sd_set_mmc_caps: Mode Sense returned " 3026 "invalid block descriptor length\n"); 3027 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3028 return; 3029 } 3030 3031 /* See if read CDDA is supported */ 3032 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + 3033 bd_len); 3034 un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE; 3035 3036 /* See if writing DVD RAM is supported. */ 3037 un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE; 3038 if (un->un_f_dvdram_writable_device == TRUE) { 3039 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3040 return; 3041 } 3042 3043 /* 3044 * If the device presents DVD or CD capabilities in the mode 3045 * page, we can return here since a RRD will not have 3046 * these capabilities. 3047 */ 3048 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3049 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3050 return; 3051 } 3052 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3053 3054 /* 3055 * If un->un_f_dvdram_writable_device is still FALSE, 3056 * check for a Removable Rigid Disk (RRD). A RRD 3057 * device is identified by the features RANDOM_WRITABLE and 3058 * HARDWARE_DEFECT_MANAGEMENT. 3059 */ 3060 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3061 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3062 3063 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw, 3064 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3065 RANDOM_WRITABLE); 3066 if (rtn != 0) { 3067 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3068 kmem_free(rqbuf_rw, SENSE_LENGTH); 3069 return; 3070 } 3071 3072 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3073 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3074 3075 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd, 3076 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3077 HARDWARE_DEFECT_MANAGEMENT); 3078 if (rtn == 0) { 3079 /* 3080 * We have good information, check for random writable 3081 * and hardware defect features. 3082 */ 3083 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3084 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) { 3085 un->un_f_dvdram_writable_device = TRUE; 3086 } 3087 } 3088 3089 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3090 kmem_free(rqbuf_rw, SENSE_LENGTH); 3091 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3092 kmem_free(rqbuf_hd, SENSE_LENGTH); 3093 } 3094 3095 /* 3096 * Function: sd_check_for_writable_cd 3097 * 3098 * Description: This routine determines if the media in the device is 3099 * writable or not. It uses the get configuration command (0x46) 3100 * to determine if the media is writable 3101 * 3102 * Arguments: un - driver soft state (unit) structure 3103 * 3104 * Context: Never called at interrupt context. 3105 */ 3106 3107 static void 3108 sd_check_for_writable_cd(struct sd_lun *un) 3109 { 3110 struct uscsi_cmd com; 3111 uchar_t *out_data; 3112 uchar_t *rqbuf; 3113 int rtn; 3114 uchar_t *out_data_rw, *out_data_hd; 3115 uchar_t *rqbuf_rw, *rqbuf_hd; 3116 struct mode_header_grp2 *sense_mhp; 3117 uchar_t *sense_page; 3118 caddr_t buf; 3119 int bd_len; 3120 int status; 3121 3122 ASSERT(un != NULL); 3123 ASSERT(mutex_owned(SD_MUTEX(un))); 3124 3125 /* 3126 * Initialize the writable media to false, if configuration info. 3127 * tells us otherwise then only we will set it. 3128 */ 3129 un->un_f_mmc_writable_media = FALSE; 3130 mutex_exit(SD_MUTEX(un)); 3131 3132 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 3133 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3134 3135 rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH, 3136 out_data, SD_PROFILE_HEADER_LEN); 3137 3138 mutex_enter(SD_MUTEX(un)); 3139 if (rtn == 0) { 3140 /* 3141 * We have good information, check for writable DVD. 3142 */ 3143 if ((out_data[6] == 0) && (out_data[7] == 0x12)) { 3144 un->un_f_mmc_writable_media = TRUE; 3145 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3146 kmem_free(rqbuf, SENSE_LENGTH); 3147 return; 3148 } 3149 } 3150 3151 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 3152 kmem_free(rqbuf, SENSE_LENGTH); 3153 3154 /* 3155 * Determine if this is a RRD type device. 3156 */ 3157 mutex_exit(SD_MUTEX(un)); 3158 buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 3159 status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf, 3160 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT); 3161 mutex_enter(SD_MUTEX(un)); 3162 if (status != 0) { 3163 /* command failed; just return */ 3164 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3165 return; 3166 } 3167 3168 /* Get to the page data */ 3169 sense_mhp = (struct mode_header_grp2 *)buf; 3170 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 3171 if (bd_len > MODE_BLK_DESC_LENGTH) { 3172 /* 3173 * We did not get back the expected block descriptor length so 3174 * we cannot check the mode page. 3175 */ 3176 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3177 "sd_check_for_writable_cd: Mode Sense returned " 3178 "invalid block descriptor length\n"); 3179 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3180 return; 3181 } 3182 3183 /* 3184 * If the device presents DVD or CD capabilities in the mode 3185 * page, we can return here since a RRD device will not have 3186 * these capabilities. 3187 */ 3188 sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len); 3189 if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) { 3190 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3191 return; 3192 } 3193 kmem_free(buf, BUFLEN_MODE_CDROM_CAP); 3194 3195 /* 3196 * If un->un_f_mmc_writable_media is still FALSE, 3197 * check for RRD type media. A RRD device is identified 3198 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT. 3199 */ 3200 mutex_exit(SD_MUTEX(un)); 3201 out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3202 rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3203 3204 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw, 3205 SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN, 3206 RANDOM_WRITABLE); 3207 if (rtn != 0) { 3208 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3209 kmem_free(rqbuf_rw, SENSE_LENGTH); 3210 mutex_enter(SD_MUTEX(un)); 3211 return; 3212 } 3213 3214 out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP); 3215 rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 3216 3217 rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd, 3218 SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN, 3219 HARDWARE_DEFECT_MANAGEMENT); 3220 mutex_enter(SD_MUTEX(un)); 3221 if (rtn == 0) { 3222 /* 3223 * We have good information, check for random writable 3224 * and hardware defect features as current. 3225 */ 3226 if ((out_data_rw[9] & RANDOM_WRITABLE) && 3227 (out_data_rw[10] & 0x1) && 3228 (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) && 3229 (out_data_hd[10] & 0x1)) { 3230 un->un_f_mmc_writable_media = TRUE; 3231 } 3232 } 3233 3234 kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN); 3235 kmem_free(rqbuf_rw, SENSE_LENGTH); 3236 kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN); 3237 kmem_free(rqbuf_hd, SENSE_LENGTH); 3238 } 3239 3240 /* 3241 * Function: sd_read_unit_properties 3242 * 3243 * Description: The following implements a property lookup mechanism. 3244 * Properties for particular disks (keyed on vendor, model 3245 * and rev numbers) are sought in the sd.conf file via 3246 * sd_process_sdconf_file(), and if not found there, are 3247 * looked for in a list hardcoded in this driver via 3248 * sd_process_sdconf_table() Once located the properties 3249 * are used to update the driver unit structure. 3250 * 3251 * Arguments: un - driver soft state (unit) structure 3252 */ 3253 3254 static void 3255 sd_read_unit_properties(struct sd_lun *un) 3256 { 3257 /* 3258 * sd_process_sdconf_file returns SD_FAILURE if it cannot find 3259 * the "sd-config-list" property (from the sd.conf file) or if 3260 * there was not a match for the inquiry vid/pid. If this event 3261 * occurs the static driver configuration table is searched for 3262 * a match. 3263 */ 3264 ASSERT(un != NULL); 3265 if (sd_process_sdconf_file(un) == SD_FAILURE) { 3266 sd_process_sdconf_table(un); 3267 } 3268 3269 /* check for LSI device */ 3270 sd_is_lsi(un); 3271 3272 3273 } 3274 3275 3276 /* 3277 * Function: sd_process_sdconf_file 3278 * 3279 * Description: Use ddi_getlongprop to obtain the properties from the 3280 * driver's config file (ie, sd.conf) and update the driver 3281 * soft state structure accordingly. 3282 * 3283 * Arguments: un - driver soft state (unit) structure 3284 * 3285 * Return Code: SD_SUCCESS - The properties were successfully set according 3286 * to the driver configuration file. 3287 * SD_FAILURE - The driver config list was not obtained or 3288 * there was no vid/pid match. This indicates that 3289 * the static config table should be used. 3290 * 3291 * The config file has a property, "sd-config-list", which consists of 3292 * one or more duplets as follows: 3293 * 3294 * sd-config-list= 3295 * <duplet>, 3296 * [<duplet>,] 3297 * [<duplet>]; 3298 * 3299 * The structure of each duplet is as follows: 3300 * 3301 * <duplet>:= <vid+pid>,<data-property-name_list> 3302 * 3303 * The first entry of the duplet is the device ID string (the concatenated 3304 * vid & pid; not to be confused with a device_id). This is defined in 3305 * the same way as in the sd_disk_table. 3306 * 3307 * The second part of the duplet is a string that identifies a 3308 * data-property-name-list. The data-property-name-list is defined as 3309 * follows: 3310 * 3311 * <data-property-name-list>:=<data-property-name> [<data-property-name>] 3312 * 3313 * The syntax of <data-property-name> depends on the <version> field. 3314 * 3315 * If version = SD_CONF_VERSION_1 we have the following syntax: 3316 * 3317 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3318 * 3319 * where the prop0 value will be used to set prop0 if bit0 set in the 3320 * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1 3321 * 3322 */ 3323 3324 static int 3325 sd_process_sdconf_file(struct sd_lun *un) 3326 { 3327 char *config_list = NULL; 3328 int config_list_len; 3329 int len; 3330 int dupletlen = 0; 3331 char *vidptr; 3332 int vidlen; 3333 char *dnlist_ptr; 3334 char *dataname_ptr; 3335 int dnlist_len; 3336 int dataname_len; 3337 int *data_list; 3338 int data_list_len; 3339 int rval = SD_FAILURE; 3340 int i; 3341 3342 ASSERT(un != NULL); 3343 3344 /* Obtain the configuration list associated with the .conf file */ 3345 if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS, 3346 sd_config_list, (caddr_t)&config_list, &config_list_len) 3347 != DDI_PROP_SUCCESS) { 3348 return (SD_FAILURE); 3349 } 3350 3351 /* 3352 * Compare vids in each duplet to the inquiry vid - if a match is 3353 * made, get the data value and update the soft state structure 3354 * accordingly. 3355 * 3356 * Note: This algorithm is complex and difficult to maintain. It should 3357 * be replaced with a more robust implementation. 3358 */ 3359 for (len = config_list_len, vidptr = config_list; len > 0; 3360 vidptr += dupletlen, len -= dupletlen) { 3361 /* 3362 * Note: The assumption here is that each vid entry is on 3363 * a unique line from its associated duplet. 3364 */ 3365 vidlen = dupletlen = (int)strlen(vidptr); 3366 if ((vidlen == 0) || 3367 (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) { 3368 dupletlen++; 3369 continue; 3370 } 3371 3372 /* 3373 * dnlist contains 1 or more blank separated 3374 * data-property-name entries 3375 */ 3376 dnlist_ptr = vidptr + vidlen + 1; 3377 dnlist_len = (int)strlen(dnlist_ptr); 3378 dupletlen += dnlist_len + 2; 3379 3380 /* 3381 * Set a pointer for the first data-property-name 3382 * entry in the list 3383 */ 3384 dataname_ptr = dnlist_ptr; 3385 dataname_len = 0; 3386 3387 /* 3388 * Loop through all data-property-name entries in the 3389 * data-property-name-list setting the properties for each. 3390 */ 3391 while (dataname_len < dnlist_len) { 3392 int version; 3393 3394 /* 3395 * Determine the length of the current 3396 * data-property-name entry by indexing until a 3397 * blank or NULL is encountered. When the space is 3398 * encountered reset it to a NULL for compliance 3399 * with ddi_getlongprop(). 3400 */ 3401 for (i = 0; ((dataname_ptr[i] != ' ') && 3402 (dataname_ptr[i] != '\0')); i++) { 3403 ; 3404 } 3405 3406 dataname_len += i; 3407 /* If not null terminated, Make it so */ 3408 if (dataname_ptr[i] == ' ') { 3409 dataname_ptr[i] = '\0'; 3410 } 3411 dataname_len++; 3412 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3413 "sd_process_sdconf_file: disk:%s, data:%s\n", 3414 vidptr, dataname_ptr); 3415 3416 /* Get the data list */ 3417 if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0, 3418 dataname_ptr, (caddr_t)&data_list, &data_list_len) 3419 != DDI_PROP_SUCCESS) { 3420 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3421 "sd_process_sdconf_file: data property (%s)" 3422 " has no value\n", dataname_ptr); 3423 dataname_ptr = dnlist_ptr + dataname_len; 3424 continue; 3425 } 3426 3427 version = data_list[0]; 3428 3429 if (version == SD_CONF_VERSION_1) { 3430 sd_tunables values; 3431 3432 /* Set the properties */ 3433 if (sd_chk_vers1_data(un, data_list[1], 3434 &data_list[2], data_list_len, dataname_ptr) 3435 == SD_SUCCESS) { 3436 sd_get_tunables_from_conf(un, 3437 data_list[1], &data_list[2], 3438 &values); 3439 sd_set_vers1_properties(un, 3440 data_list[1], &values); 3441 rval = SD_SUCCESS; 3442 } else { 3443 rval = SD_FAILURE; 3444 } 3445 } else { 3446 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3447 "data property %s version 0x%x is invalid.", 3448 dataname_ptr, version); 3449 rval = SD_FAILURE; 3450 } 3451 kmem_free(data_list, data_list_len); 3452 dataname_ptr = dnlist_ptr + dataname_len; 3453 } 3454 } 3455 3456 /* free up the memory allocated by ddi_getlongprop */ 3457 if (config_list) { 3458 kmem_free(config_list, config_list_len); 3459 } 3460 3461 return (rval); 3462 } 3463 3464 /* 3465 * Function: sd_get_tunables_from_conf() 3466 * 3467 * 3468 * This function reads the data list from the sd.conf file and pulls 3469 * the values that can have numeric values as arguments and places 3470 * the values in the apropriate sd_tunables member. 3471 * Since the order of the data list members varies across platforms 3472 * This function reads them from the data list in a platform specific 3473 * order and places them into the correct sd_tunable member that is 3474 * a consistant across all platforms. 3475 */ 3476 static void 3477 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list, 3478 sd_tunables *values) 3479 { 3480 int i; 3481 int mask; 3482 3483 bzero(values, sizeof (sd_tunables)); 3484 3485 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 3486 3487 mask = 1 << i; 3488 if (mask > flags) { 3489 break; 3490 } 3491 3492 switch (mask & flags) { 3493 case 0: /* This mask bit not set in flags */ 3494 continue; 3495 case SD_CONF_BSET_THROTTLE: 3496 values->sdt_throttle = data_list[i]; 3497 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3498 "sd_get_tunables_from_conf: throttle = %d\n", 3499 values->sdt_throttle); 3500 break; 3501 case SD_CONF_BSET_CTYPE: 3502 values->sdt_ctype = data_list[i]; 3503 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3504 "sd_get_tunables_from_conf: ctype = %d\n", 3505 values->sdt_ctype); 3506 break; 3507 case SD_CONF_BSET_NRR_COUNT: 3508 values->sdt_not_rdy_retries = data_list[i]; 3509 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3510 "sd_get_tunables_from_conf: not_rdy_retries = %d\n", 3511 values->sdt_not_rdy_retries); 3512 break; 3513 case SD_CONF_BSET_BSY_RETRY_COUNT: 3514 values->sdt_busy_retries = data_list[i]; 3515 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3516 "sd_get_tunables_from_conf: busy_retries = %d\n", 3517 values->sdt_busy_retries); 3518 break; 3519 case SD_CONF_BSET_RST_RETRIES: 3520 values->sdt_reset_retries = data_list[i]; 3521 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3522 "sd_get_tunables_from_conf: reset_retries = %d\n", 3523 values->sdt_reset_retries); 3524 break; 3525 case SD_CONF_BSET_RSV_REL_TIME: 3526 values->sdt_reserv_rel_time = data_list[i]; 3527 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3528 "sd_get_tunables_from_conf: reserv_rel_time = %d\n", 3529 values->sdt_reserv_rel_time); 3530 break; 3531 case SD_CONF_BSET_MIN_THROTTLE: 3532 values->sdt_min_throttle = data_list[i]; 3533 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3534 "sd_get_tunables_from_conf: min_throttle = %d\n", 3535 values->sdt_min_throttle); 3536 break; 3537 case SD_CONF_BSET_DISKSORT_DISABLED: 3538 values->sdt_disk_sort_dis = data_list[i]; 3539 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3540 "sd_get_tunables_from_conf: disk_sort_dis = %d\n", 3541 values->sdt_disk_sort_dis); 3542 break; 3543 case SD_CONF_BSET_LUN_RESET_ENABLED: 3544 values->sdt_lun_reset_enable = data_list[i]; 3545 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3546 "sd_get_tunables_from_conf: lun_reset_enable = %d" 3547 "\n", values->sdt_lun_reset_enable); 3548 break; 3549 } 3550 } 3551 } 3552 3553 /* 3554 * Function: sd_process_sdconf_table 3555 * 3556 * Description: Search the static configuration table for a match on the 3557 * inquiry vid/pid and update the driver soft state structure 3558 * according to the table property values for the device. 3559 * 3560 * The form of a configuration table entry is: 3561 * <vid+pid>,<flags>,<property-data> 3562 * "SEAGATE ST42400N",1,63,0,0 (Fibre) 3563 * "SEAGATE ST42400N",1,63,0,0,0,0 (Sparc) 3564 * "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0 (Intel) 3565 * 3566 * Arguments: un - driver soft state (unit) structure 3567 */ 3568 3569 static void 3570 sd_process_sdconf_table(struct sd_lun *un) 3571 { 3572 char *id = NULL; 3573 int table_index; 3574 int idlen; 3575 3576 ASSERT(un != NULL); 3577 for (table_index = 0; table_index < sd_disk_table_size; 3578 table_index++) { 3579 id = sd_disk_table[table_index].device_id; 3580 idlen = strlen(id); 3581 if (idlen == 0) { 3582 continue; 3583 } 3584 3585 /* 3586 * The static configuration table currently does not 3587 * implement version 10 properties. Additionally, 3588 * multiple data-property-name entries are not 3589 * implemented in the static configuration table. 3590 */ 3591 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 3592 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3593 "sd_process_sdconf_table: disk %s\n", id); 3594 sd_set_vers1_properties(un, 3595 sd_disk_table[table_index].flags, 3596 sd_disk_table[table_index].properties); 3597 break; 3598 } 3599 } 3600 } 3601 3602 3603 /* 3604 * Function: sd_sdconf_id_match 3605 * 3606 * Description: This local function implements a case sensitive vid/pid 3607 * comparison as well as the boundary cases of wild card and 3608 * multiple blanks. 3609 * 3610 * Note: An implicit assumption made here is that the scsi 3611 * inquiry structure will always keep the vid, pid and 3612 * revision strings in consecutive sequence, so they can be 3613 * read as a single string. If this assumption is not the 3614 * case, a separate string, to be used for the check, needs 3615 * to be built with these strings concatenated. 3616 * 3617 * Arguments: un - driver soft state (unit) structure 3618 * id - table or config file vid/pid 3619 * idlen - length of the vid/pid (bytes) 3620 * 3621 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 3622 * SD_FAILURE - Indicates no match with the inquiry vid/pid 3623 */ 3624 3625 static int 3626 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen) 3627 { 3628 struct scsi_inquiry *sd_inq; 3629 int rval = SD_SUCCESS; 3630 3631 ASSERT(un != NULL); 3632 sd_inq = un->un_sd->sd_inq; 3633 ASSERT(id != NULL); 3634 3635 /* 3636 * We use the inq_vid as a pointer to a buffer containing the 3637 * vid and pid and use the entire vid/pid length of the table 3638 * entry for the comparison. This works because the inq_pid 3639 * data member follows inq_vid in the scsi_inquiry structure. 3640 */ 3641 if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) { 3642 /* 3643 * The user id string is compared to the inquiry vid/pid 3644 * using a case insensitive comparison and ignoring 3645 * multiple spaces. 3646 */ 3647 rval = sd_blank_cmp(un, id, idlen); 3648 if (rval != SD_SUCCESS) { 3649 /* 3650 * User id strings that start and end with a "*" 3651 * are a special case. These do not have a 3652 * specific vendor, and the product string can 3653 * appear anywhere in the 16 byte PID portion of 3654 * the inquiry data. This is a simple strstr() 3655 * type search for the user id in the inquiry data. 3656 */ 3657 if ((id[0] == '*') && (id[idlen - 1] == '*')) { 3658 char *pidptr = &id[1]; 3659 int i; 3660 int j; 3661 int pidstrlen = idlen - 2; 3662 j = sizeof (SD_INQUIRY(un)->inq_pid) - 3663 pidstrlen; 3664 3665 if (j < 0) { 3666 return (SD_FAILURE); 3667 } 3668 for (i = 0; i < j; i++) { 3669 if (bcmp(&SD_INQUIRY(un)->inq_pid[i], 3670 pidptr, pidstrlen) == 0) { 3671 rval = SD_SUCCESS; 3672 break; 3673 } 3674 } 3675 } 3676 } 3677 } 3678 return (rval); 3679 } 3680 3681 3682 /* 3683 * Function: sd_blank_cmp 3684 * 3685 * Description: If the id string starts and ends with a space, treat 3686 * multiple consecutive spaces as equivalent to a single 3687 * space. For example, this causes a sd_disk_table entry 3688 * of " NEC CDROM " to match a device's id string of 3689 * "NEC CDROM". 3690 * 3691 * Note: The success exit condition for this routine is if 3692 * the pointer to the table entry is '\0' and the cnt of 3693 * the inquiry length is zero. This will happen if the inquiry 3694 * string returned by the device is padded with spaces to be 3695 * exactly 24 bytes in length (8 byte vid + 16 byte pid). The 3696 * SCSI spec states that the inquiry string is to be padded with 3697 * spaces. 3698 * 3699 * Arguments: un - driver soft state (unit) structure 3700 * id - table or config file vid/pid 3701 * idlen - length of the vid/pid (bytes) 3702 * 3703 * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid 3704 * SD_FAILURE - Indicates no match with the inquiry vid/pid 3705 */ 3706 3707 static int 3708 sd_blank_cmp(struct sd_lun *un, char *id, int idlen) 3709 { 3710 char *p1; 3711 char *p2; 3712 int cnt; 3713 cnt = sizeof (SD_INQUIRY(un)->inq_vid) + 3714 sizeof (SD_INQUIRY(un)->inq_pid); 3715 3716 ASSERT(un != NULL); 3717 p2 = un->un_sd->sd_inq->inq_vid; 3718 ASSERT(id != NULL); 3719 p1 = id; 3720 3721 if ((id[0] == ' ') && (id[idlen - 1] == ' ')) { 3722 /* 3723 * Note: string p1 is terminated by a NUL but string p2 3724 * isn't. The end of p2 is determined by cnt. 3725 */ 3726 for (;;) { 3727 /* skip over any extra blanks in both strings */ 3728 while ((*p1 != '\0') && (*p1 == ' ')) { 3729 p1++; 3730 } 3731 while ((cnt != 0) && (*p2 == ' ')) { 3732 p2++; 3733 cnt--; 3734 } 3735 3736 /* compare the two strings */ 3737 if ((cnt == 0) || 3738 (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) { 3739 break; 3740 } 3741 while ((cnt > 0) && 3742 (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) { 3743 p1++; 3744 p2++; 3745 cnt--; 3746 } 3747 } 3748 } 3749 3750 /* return SD_SUCCESS if both strings match */ 3751 return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE); 3752 } 3753 3754 3755 /* 3756 * Function: sd_chk_vers1_data 3757 * 3758 * Description: Verify the version 1 device properties provided by the 3759 * user via the configuration file 3760 * 3761 * Arguments: un - driver soft state (unit) structure 3762 * flags - integer mask indicating properties to be set 3763 * prop_list - integer list of property values 3764 * list_len - length of user provided data 3765 * 3766 * Return Code: SD_SUCCESS - Indicates the user provided data is valid 3767 * SD_FAILURE - Indicates the user provided data is invalid 3768 */ 3769 3770 static int 3771 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list, 3772 int list_len, char *dataname_ptr) 3773 { 3774 int i; 3775 int mask = 1; 3776 int index = 0; 3777 3778 ASSERT(un != NULL); 3779 3780 /* Check for a NULL property name and list */ 3781 if (dataname_ptr == NULL) { 3782 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3783 "sd_chk_vers1_data: NULL data property name."); 3784 return (SD_FAILURE); 3785 } 3786 if (prop_list == NULL) { 3787 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3788 "sd_chk_vers1_data: %s NULL data property list.", 3789 dataname_ptr); 3790 return (SD_FAILURE); 3791 } 3792 3793 /* Display a warning if undefined bits are set in the flags */ 3794 if (flags & ~SD_CONF_BIT_MASK) { 3795 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3796 "sd_chk_vers1_data: invalid bits 0x%x in data list %s. " 3797 "Properties not set.", 3798 (flags & ~SD_CONF_BIT_MASK), dataname_ptr); 3799 return (SD_FAILURE); 3800 } 3801 3802 /* 3803 * Verify the length of the list by identifying the highest bit set 3804 * in the flags and validating that the property list has a length 3805 * up to the index of this bit. 3806 */ 3807 for (i = 0; i < SD_CONF_MAX_ITEMS; i++) { 3808 if (flags & mask) { 3809 index++; 3810 } 3811 mask = 1 << i; 3812 } 3813 if ((list_len / sizeof (int)) < (index + 2)) { 3814 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3815 "sd_chk_vers1_data: " 3816 "Data property list %s size is incorrect. " 3817 "Properties not set.", dataname_ptr); 3818 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: " 3819 "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS); 3820 return (SD_FAILURE); 3821 } 3822 return (SD_SUCCESS); 3823 } 3824 3825 3826 /* 3827 * Function: sd_set_vers1_properties 3828 * 3829 * Description: Set version 1 device properties based on a property list 3830 * retrieved from the driver configuration file or static 3831 * configuration table. Version 1 properties have the format: 3832 * 3833 * <data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN> 3834 * 3835 * where the prop0 value will be used to set prop0 if bit0 3836 * is set in the flags 3837 * 3838 * Arguments: un - driver soft state (unit) structure 3839 * flags - integer mask indicating properties to be set 3840 * prop_list - integer list of property values 3841 */ 3842 3843 static void 3844 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list) 3845 { 3846 ASSERT(un != NULL); 3847 3848 /* 3849 * Set the flag to indicate cache is to be disabled. An attempt 3850 * to disable the cache via sd_cache_control() will be made 3851 * later during attach once the basic initialization is complete. 3852 */ 3853 if (flags & SD_CONF_BSET_NOCACHE) { 3854 un->un_f_opt_disable_cache = TRUE; 3855 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3856 "sd_set_vers1_properties: caching disabled flag set\n"); 3857 } 3858 3859 /* CD-specific configuration parameters */ 3860 if (flags & SD_CONF_BSET_PLAYMSF_BCD) { 3861 un->un_f_cfg_playmsf_bcd = TRUE; 3862 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3863 "sd_set_vers1_properties: playmsf_bcd set\n"); 3864 } 3865 if (flags & SD_CONF_BSET_READSUB_BCD) { 3866 un->un_f_cfg_readsub_bcd = TRUE; 3867 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3868 "sd_set_vers1_properties: readsub_bcd set\n"); 3869 } 3870 if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) { 3871 un->un_f_cfg_read_toc_trk_bcd = TRUE; 3872 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3873 "sd_set_vers1_properties: read_toc_trk_bcd set\n"); 3874 } 3875 if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) { 3876 un->un_f_cfg_read_toc_addr_bcd = TRUE; 3877 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3878 "sd_set_vers1_properties: read_toc_addr_bcd set\n"); 3879 } 3880 if (flags & SD_CONF_BSET_NO_READ_HEADER) { 3881 un->un_f_cfg_no_read_header = TRUE; 3882 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3883 "sd_set_vers1_properties: no_read_header set\n"); 3884 } 3885 if (flags & SD_CONF_BSET_READ_CD_XD4) { 3886 un->un_f_cfg_read_cd_xd4 = TRUE; 3887 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3888 "sd_set_vers1_properties: read_cd_xd4 set\n"); 3889 } 3890 3891 /* Support for devices which do not have valid/unique serial numbers */ 3892 if (flags & SD_CONF_BSET_FAB_DEVID) { 3893 un->un_f_opt_fab_devid = TRUE; 3894 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3895 "sd_set_vers1_properties: fab_devid bit set\n"); 3896 } 3897 3898 /* Support for user throttle configuration */ 3899 if (flags & SD_CONF_BSET_THROTTLE) { 3900 ASSERT(prop_list != NULL); 3901 un->un_saved_throttle = un->un_throttle = 3902 prop_list->sdt_throttle; 3903 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3904 "sd_set_vers1_properties: throttle set to %d\n", 3905 prop_list->sdt_throttle); 3906 } 3907 3908 /* Set the per disk retry count according to the conf file or table. */ 3909 if (flags & SD_CONF_BSET_NRR_COUNT) { 3910 ASSERT(prop_list != NULL); 3911 if (prop_list->sdt_not_rdy_retries) { 3912 un->un_notready_retry_count = 3913 prop_list->sdt_not_rdy_retries; 3914 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3915 "sd_set_vers1_properties: not ready retry count" 3916 " set to %d\n", un->un_notready_retry_count); 3917 } 3918 } 3919 3920 /* The controller type is reported for generic disk driver ioctls */ 3921 if (flags & SD_CONF_BSET_CTYPE) { 3922 ASSERT(prop_list != NULL); 3923 switch (prop_list->sdt_ctype) { 3924 case CTYPE_CDROM: 3925 un->un_ctype = prop_list->sdt_ctype; 3926 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3927 "sd_set_vers1_properties: ctype set to " 3928 "CTYPE_CDROM\n"); 3929 break; 3930 case CTYPE_CCS: 3931 un->un_ctype = prop_list->sdt_ctype; 3932 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3933 "sd_set_vers1_properties: ctype set to " 3934 "CTYPE_CCS\n"); 3935 break; 3936 case CTYPE_ROD: /* RW optical */ 3937 un->un_ctype = prop_list->sdt_ctype; 3938 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3939 "sd_set_vers1_properties: ctype set to " 3940 "CTYPE_ROD\n"); 3941 break; 3942 default: 3943 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 3944 "sd_set_vers1_properties: Could not set " 3945 "invalid ctype value (%d)", 3946 prop_list->sdt_ctype); 3947 } 3948 } 3949 3950 /* Purple failover timeout */ 3951 if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) { 3952 ASSERT(prop_list != NULL); 3953 un->un_busy_retry_count = 3954 prop_list->sdt_busy_retries; 3955 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3956 "sd_set_vers1_properties: " 3957 "busy retry count set to %d\n", 3958 un->un_busy_retry_count); 3959 } 3960 3961 /* Purple reset retry count */ 3962 if (flags & SD_CONF_BSET_RST_RETRIES) { 3963 ASSERT(prop_list != NULL); 3964 un->un_reset_retry_count = 3965 prop_list->sdt_reset_retries; 3966 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3967 "sd_set_vers1_properties: " 3968 "reset retry count set to %d\n", 3969 un->un_reset_retry_count); 3970 } 3971 3972 /* Purple reservation release timeout */ 3973 if (flags & SD_CONF_BSET_RSV_REL_TIME) { 3974 ASSERT(prop_list != NULL); 3975 un->un_reserve_release_time = 3976 prop_list->sdt_reserv_rel_time; 3977 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3978 "sd_set_vers1_properties: " 3979 "reservation release timeout set to %d\n", 3980 un->un_reserve_release_time); 3981 } 3982 3983 /* 3984 * Driver flag telling the driver to verify that no commands are pending 3985 * for a device before issuing a Test Unit Ready. This is a workaround 3986 * for a firmware bug in some Seagate eliteI drives. 3987 */ 3988 if (flags & SD_CONF_BSET_TUR_CHECK) { 3989 un->un_f_cfg_tur_check = TRUE; 3990 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3991 "sd_set_vers1_properties: tur queue check set\n"); 3992 } 3993 3994 if (flags & SD_CONF_BSET_MIN_THROTTLE) { 3995 un->un_min_throttle = prop_list->sdt_min_throttle; 3996 SD_INFO(SD_LOG_ATTACH_DETACH, un, 3997 "sd_set_vers1_properties: min throttle set to %d\n", 3998 un->un_min_throttle); 3999 } 4000 4001 if (flags & SD_CONF_BSET_DISKSORT_DISABLED) { 4002 un->un_f_disksort_disabled = 4003 (prop_list->sdt_disk_sort_dis != 0) ? 4004 TRUE : FALSE; 4005 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4006 "sd_set_vers1_properties: disksort disabled " 4007 "flag set to %d\n", 4008 prop_list->sdt_disk_sort_dis); 4009 } 4010 4011 if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) { 4012 un->un_f_lun_reset_enabled = 4013 (prop_list->sdt_lun_reset_enable != 0) ? 4014 TRUE : FALSE; 4015 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4016 "sd_set_vers1_properties: lun reset enabled " 4017 "flag set to %d\n", 4018 prop_list->sdt_lun_reset_enable); 4019 } 4020 4021 /* 4022 * Validate the throttle values. 4023 * If any of the numbers are invalid, set everything to defaults. 4024 */ 4025 if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) || 4026 (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) || 4027 (un->un_min_throttle > un->un_throttle)) { 4028 un->un_saved_throttle = un->un_throttle = sd_max_throttle; 4029 un->un_min_throttle = sd_min_throttle; 4030 } 4031 } 4032 4033 /* 4034 * Function: sd_is_lsi() 4035 * 4036 * Description: Check for lsi devices, step throught the static device 4037 * table to match vid/pid. 4038 * 4039 * Args: un - ptr to sd_lun 4040 * 4041 * Notes: When creating new LSI property, need to add the new LSI property 4042 * to this function. 4043 */ 4044 static void 4045 sd_is_lsi(struct sd_lun *un) 4046 { 4047 char *id = NULL; 4048 int table_index; 4049 int idlen; 4050 void *prop; 4051 4052 ASSERT(un != NULL); 4053 for (table_index = 0; table_index < sd_disk_table_size; 4054 table_index++) { 4055 id = sd_disk_table[table_index].device_id; 4056 idlen = strlen(id); 4057 if (idlen == 0) { 4058 continue; 4059 } 4060 4061 if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) { 4062 prop = sd_disk_table[table_index].properties; 4063 if (prop == &lsi_properties || 4064 prop == &lsi_oem_properties || 4065 prop == &lsi_properties_scsi || 4066 prop == &symbios_properties) { 4067 un->un_f_cfg_is_lsi = TRUE; 4068 } 4069 break; 4070 } 4071 } 4072 } 4073 4074 4075 /* 4076 * The following routines support reading and interpretation of disk labels, 4077 * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and 4078 * fdisk tables. 4079 */ 4080 4081 /* 4082 * Function: sd_validate_geometry 4083 * 4084 * Description: Read the label from the disk (if present). Update the unit's 4085 * geometry and vtoc information from the data in the label. 4086 * Verify that the label is valid. 4087 * 4088 * Arguments: un - driver soft state (unit) structure 4089 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4090 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4091 * to use the USCSI "direct" chain and bypass the normal 4092 * command waitq. 4093 * 4094 * Return Code: 0 - Successful completion 4095 * EINVAL - Invalid value in un->un_tgt_blocksize or 4096 * un->un_blockcount; or label on disk is corrupted 4097 * or unreadable. 4098 * EACCES - Reservation conflict at the device. 4099 * ENOMEM - Resource allocation error 4100 * ENOTSUP - geometry not applicable 4101 * 4102 * Context: Kernel thread only (can sleep). 4103 */ 4104 4105 static int 4106 sd_validate_geometry(struct sd_lun *un, int path_flag) 4107 { 4108 static char labelstring[128]; 4109 static char buf[256]; 4110 char *label = NULL; 4111 int label_error = 0; 4112 int gvalid = un->un_f_geometry_is_valid; 4113 int lbasize; 4114 uint_t capacity; 4115 int count; 4116 4117 ASSERT(un != NULL); 4118 ASSERT(mutex_owned(SD_MUTEX(un))); 4119 4120 /* 4121 * If the required values are not valid, then try getting them 4122 * once via read capacity. If that fails, then fail this call. 4123 * This is necessary with the new mpxio failover behavior in 4124 * the T300 where we can get an attach for the inactive path 4125 * before the active path. The inactive path fails commands with 4126 * sense data of 02,04,88 which happens to the read capacity 4127 * before mpxio has had sufficient knowledge to know if it should 4128 * force a fail over or not. (Which it won't do at attach anyhow). 4129 * If the read capacity at attach time fails, un_tgt_blocksize and 4130 * un_blockcount won't be valid. 4131 */ 4132 if ((un->un_f_tgt_blocksize_is_valid != TRUE) || 4133 (un->un_f_blockcount_is_valid != TRUE)) { 4134 uint64_t cap; 4135 uint32_t lbasz; 4136 int rval; 4137 4138 mutex_exit(SD_MUTEX(un)); 4139 rval = sd_send_scsi_READ_CAPACITY(un, &cap, 4140 &lbasz, SD_PATH_DIRECT); 4141 mutex_enter(SD_MUTEX(un)); 4142 if (rval == 0) { 4143 /* 4144 * The following relies on 4145 * sd_send_scsi_READ_CAPACITY never 4146 * returning 0 for capacity and/or lbasize. 4147 */ 4148 sd_update_block_info(un, lbasz, cap); 4149 } 4150 4151 if ((un->un_f_tgt_blocksize_is_valid != TRUE) || 4152 (un->un_f_blockcount_is_valid != TRUE)) { 4153 return (EINVAL); 4154 } 4155 } 4156 4157 /* 4158 * Copy the lbasize and capacity so that if they're reset while we're 4159 * not holding the SD_MUTEX, we will continue to use valid values 4160 * after the SD_MUTEX is reacquired. (4119659) 4161 */ 4162 lbasize = un->un_tgt_blocksize; 4163 capacity = un->un_blockcount; 4164 4165 #if defined(_SUNOS_VTOC_16) 4166 /* 4167 * Set up the "whole disk" fdisk partition; this should always 4168 * exist, regardless of whether the disk contains an fdisk table 4169 * or vtoc. 4170 */ 4171 un->un_map[P0_RAW_DISK].dkl_cylno = 0; 4172 un->un_map[P0_RAW_DISK].dkl_nblk = capacity; 4173 #endif 4174 4175 /* 4176 * Refresh the logical and physical geometry caches. 4177 * (data from MODE SENSE format/rigid disk geometry pages, 4178 * and scsi_ifgetcap("geometry"). 4179 */ 4180 sd_resync_geom_caches(un, capacity, lbasize, path_flag); 4181 4182 label_error = sd_use_efi(un, path_flag); 4183 if (label_error == 0) { 4184 /* found a valid EFI label */ 4185 SD_TRACE(SD_LOG_IO_PARTITION, un, 4186 "sd_validate_geometry: found EFI label\n"); 4187 un->un_solaris_offset = 0; 4188 un->un_solaris_size = capacity; 4189 return (ENOTSUP); 4190 } 4191 if (un->un_blockcount > DK_MAX_BLOCKS) { 4192 if (label_error == ESRCH) { 4193 /* 4194 * they've configured a LUN over 1TB, but used 4195 * format.dat to restrict format's view of the 4196 * capacity to be under 1TB 4197 */ 4198 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 4199 "is >1TB and has a VTOC label: use format(1M) to either decrease the"); 4200 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 4201 "size to be < 1TB or relabel the disk with an EFI label"); 4202 } else { 4203 /* unlabeled disk over 1TB */ 4204 return (ENOTSUP); 4205 } 4206 } 4207 label_error = 0; 4208 4209 /* 4210 * at this point it is either labeled with a VTOC or it is 4211 * under 1TB 4212 */ 4213 if (un->un_f_vtoc_label_supported) { 4214 struct dk_label *dkl; 4215 offset_t dkl1; 4216 offset_t label_addr, real_addr; 4217 int rval; 4218 size_t buffer_size; 4219 4220 /* 4221 * Note: This will set up un->un_solaris_size and 4222 * un->un_solaris_offset. 4223 */ 4224 switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) { 4225 case SD_CMD_RESERVATION_CONFLICT: 4226 ASSERT(mutex_owned(SD_MUTEX(un))); 4227 return (EACCES); 4228 case SD_CMD_FAILURE: 4229 ASSERT(mutex_owned(SD_MUTEX(un))); 4230 return (ENOMEM); 4231 } 4232 4233 if (un->un_solaris_size <= DK_LABEL_LOC) { 4234 /* 4235 * Found fdisk table but no Solaris partition entry, 4236 * so don't call sd_uselabel() and don't create 4237 * a default label. 4238 */ 4239 label_error = 0; 4240 un->un_f_geometry_is_valid = TRUE; 4241 goto no_solaris_partition; 4242 } 4243 label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC); 4244 4245 /* 4246 * sys_blocksize != tgt_blocksize, need to re-adjust 4247 * blkno and save the index to beginning of dk_label 4248 */ 4249 real_addr = SD_SYS2TGTBLOCK(un, label_addr); 4250 buffer_size = SD_REQBYTES2TGTBYTES(un, 4251 sizeof (struct dk_label)); 4252 4253 SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: " 4254 "label_addr: 0x%x allocation size: 0x%x\n", 4255 label_addr, buffer_size); 4256 dkl = kmem_zalloc(buffer_size, KM_NOSLEEP); 4257 if (dkl == NULL) { 4258 return (ENOMEM); 4259 } 4260 4261 mutex_exit(SD_MUTEX(un)); 4262 rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr, 4263 path_flag); 4264 mutex_enter(SD_MUTEX(un)); 4265 4266 switch (rval) { 4267 case 0: 4268 /* 4269 * sd_uselabel will establish that the geometry 4270 * is valid. 4271 * For sys_blocksize != tgt_blocksize, need 4272 * to index into the beginning of dk_label 4273 */ 4274 dkl1 = (daddr_t)dkl 4275 + SD_TGTBYTEOFFSET(un, label_addr, real_addr); 4276 if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1, 4277 path_flag) != SD_LABEL_IS_VALID) { 4278 label_error = EINVAL; 4279 } 4280 break; 4281 case EACCES: 4282 label_error = EACCES; 4283 break; 4284 default: 4285 label_error = EINVAL; 4286 break; 4287 } 4288 4289 kmem_free(dkl, buffer_size); 4290 4291 #if defined(_SUNOS_VTOC_8) 4292 label = (char *)un->un_asciilabel; 4293 #elif defined(_SUNOS_VTOC_16) 4294 label = (char *)un->un_vtoc.v_asciilabel; 4295 #else 4296 #error "No VTOC format defined." 4297 #endif 4298 } 4299 4300 /* 4301 * If a valid label was not found, AND if no reservation conflict 4302 * was detected, then go ahead and create a default label (4069506). 4303 */ 4304 4305 if (un->un_f_default_vtoc_supported && (label_error != EACCES)) { 4306 if (un->un_f_geometry_is_valid == FALSE) { 4307 sd_build_default_label(un); 4308 } 4309 label_error = 0; 4310 } 4311 4312 no_solaris_partition: 4313 if ((!un->un_f_has_removable_media || 4314 (un->un_f_has_removable_media && 4315 un->un_mediastate == DKIO_EJECTED)) && 4316 (un->un_state == SD_STATE_NORMAL && !gvalid)) { 4317 /* 4318 * Print out a message indicating who and what we are. 4319 * We do this only when we happen to really validate the 4320 * geometry. We may call sd_validate_geometry() at other 4321 * times, e.g., ioctl()'s like Get VTOC in which case we 4322 * don't want to print the label. 4323 * If the geometry is valid, print the label string, 4324 * else print vendor and product info, if available 4325 */ 4326 if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) { 4327 SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label); 4328 } else { 4329 mutex_enter(&sd_label_mutex); 4330 sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX, 4331 labelstring); 4332 sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX, 4333 &labelstring[64]); 4334 (void) sprintf(buf, "?Vendor '%s', product '%s'", 4335 labelstring, &labelstring[64]); 4336 if (un->un_f_blockcount_is_valid == TRUE) { 4337 (void) sprintf(&buf[strlen(buf)], 4338 ", %llu %u byte blocks\n", 4339 (longlong_t)un->un_blockcount, 4340 un->un_tgt_blocksize); 4341 } else { 4342 (void) sprintf(&buf[strlen(buf)], 4343 ", (unknown capacity)\n"); 4344 } 4345 SD_INFO(SD_LOG_ATTACH_DETACH, un, buf); 4346 mutex_exit(&sd_label_mutex); 4347 } 4348 } 4349 4350 #if defined(_SUNOS_VTOC_16) 4351 /* 4352 * If we have valid geometry, set up the remaining fdisk partitions. 4353 * Note that dkl_cylno is not used for the fdisk map entries, so 4354 * we set it to an entirely bogus value. 4355 */ 4356 for (count = 0; count < FD_NUMPART; count++) { 4357 un->un_map[FDISK_P1 + count].dkl_cylno = -1; 4358 un->un_map[FDISK_P1 + count].dkl_nblk = 4359 un->un_fmap[count].fmap_nblk; 4360 4361 un->un_offset[FDISK_P1 + count] = 4362 un->un_fmap[count].fmap_start; 4363 } 4364 #endif 4365 4366 for (count = 0; count < NDKMAP; count++) { 4367 #if defined(_SUNOS_VTOC_8) 4368 struct dk_map *lp = &un->un_map[count]; 4369 un->un_offset[count] = 4370 un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno; 4371 #elif defined(_SUNOS_VTOC_16) 4372 struct dkl_partition *vp = &un->un_vtoc.v_part[count]; 4373 4374 un->un_offset[count] = vp->p_start + un->un_solaris_offset; 4375 #else 4376 #error "No VTOC format defined." 4377 #endif 4378 } 4379 4380 return (label_error); 4381 } 4382 4383 4384 #if defined(_SUNOS_VTOC_16) 4385 /* 4386 * Macro: MAX_BLKS 4387 * 4388 * This macro is used for table entries where we need to have the largest 4389 * possible sector value for that head & SPT (sectors per track) 4390 * combination. Other entries for some smaller disk sizes are set by 4391 * convention to match those used by X86 BIOS usage. 4392 */ 4393 #define MAX_BLKS(heads, spt) UINT16_MAX * heads * spt, heads, spt 4394 4395 /* 4396 * Function: sd_convert_geometry 4397 * 4398 * Description: Convert physical geometry into a dk_geom structure. In 4399 * other words, make sure we don't wrap 16-bit values. 4400 * e.g. converting from geom_cache to dk_geom 4401 * 4402 * Context: Kernel thread only 4403 */ 4404 static void 4405 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g) 4406 { 4407 int i; 4408 static const struct chs_values { 4409 uint_t max_cap; /* Max Capacity for this HS. */ 4410 uint_t nhead; /* Heads to use. */ 4411 uint_t nsect; /* SPT to use. */ 4412 } CHS_values[] = { 4413 {0x00200000, 64, 32}, /* 1GB or smaller disk. */ 4414 {0x01000000, 128, 32}, /* 8GB or smaller disk. */ 4415 {MAX_BLKS(255, 63)}, /* 502.02GB or smaller disk. */ 4416 {MAX_BLKS(255, 126)}, /* .98TB or smaller disk. */ 4417 {DK_MAX_BLOCKS, 255, 189} /* Max size is just under 1TB */ 4418 }; 4419 4420 /* Unlabeled SCSI floppy device */ 4421 if (capacity <= 0x1000) { 4422 un_g->dkg_nhead = 2; 4423 un_g->dkg_ncyl = 80; 4424 un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl); 4425 return; 4426 } 4427 4428 /* 4429 * For all devices we calculate cylinders using the 4430 * heads and sectors we assign based on capacity of the 4431 * device. The table is designed to be compatible with the 4432 * way other operating systems lay out fdisk tables for X86 4433 * and to insure that the cylinders never exceed 65535 to 4434 * prevent problems with X86 ioctls that report geometry. 4435 * We use SPT that are multiples of 63, since other OSes that 4436 * are not limited to 16-bits for cylinders stop at 63 SPT 4437 * we make do by using multiples of 63 SPT. 4438 * 4439 * Note than capacities greater than or equal to 1TB will simply 4440 * get the largest geometry from the table. This should be okay 4441 * since disks this large shouldn't be using CHS values anyway. 4442 */ 4443 for (i = 0; CHS_values[i].max_cap < capacity && 4444 CHS_values[i].max_cap != DK_MAX_BLOCKS; i++) 4445 ; 4446 4447 un_g->dkg_nhead = CHS_values[i].nhead; 4448 un_g->dkg_nsect = CHS_values[i].nsect; 4449 } 4450 #endif 4451 4452 4453 /* 4454 * Function: sd_resync_geom_caches 4455 * 4456 * Description: (Re)initialize both geometry caches: the virtual geometry 4457 * information is extracted from the HBA (the "geometry" 4458 * capability), and the physical geometry cache data is 4459 * generated by issuing MODE SENSE commands. 4460 * 4461 * Arguments: un - driver soft state (unit) structure 4462 * capacity - disk capacity in #blocks 4463 * lbasize - disk block size in bytes 4464 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4465 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4466 * to use the USCSI "direct" chain and bypass the normal 4467 * command waitq. 4468 * 4469 * Context: Kernel thread only (can sleep). 4470 */ 4471 4472 static void 4473 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize, 4474 int path_flag) 4475 { 4476 struct geom_cache pgeom; 4477 struct geom_cache *pgeom_p = &pgeom; 4478 int spc; 4479 unsigned short nhead; 4480 unsigned short nsect; 4481 4482 ASSERT(un != NULL); 4483 ASSERT(mutex_owned(SD_MUTEX(un))); 4484 4485 /* 4486 * Ask the controller for its logical geometry. 4487 * Note: if the HBA does not support scsi_ifgetcap("geometry"), 4488 * then the lgeom cache will be invalid. 4489 */ 4490 sd_get_virtual_geometry(un, capacity, lbasize); 4491 4492 /* 4493 * Initialize the pgeom cache from lgeom, so that if MODE SENSE 4494 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values. 4495 */ 4496 if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) { 4497 /* 4498 * Note: Perhaps this needs to be more adaptive? The rationale 4499 * is that, if there's no HBA geometry from the HBA driver, any 4500 * guess is good, since this is the physical geometry. If MODE 4501 * SENSE fails this gives a max cylinder size for non-LBA access 4502 */ 4503 nhead = 255; 4504 nsect = 63; 4505 } else { 4506 nhead = un->un_lgeom.g_nhead; 4507 nsect = un->un_lgeom.g_nsect; 4508 } 4509 4510 if (ISCD(un)) { 4511 pgeom_p->g_nhead = 1; 4512 pgeom_p->g_nsect = nsect * nhead; 4513 } else { 4514 pgeom_p->g_nhead = nhead; 4515 pgeom_p->g_nsect = nsect; 4516 } 4517 4518 spc = pgeom_p->g_nhead * pgeom_p->g_nsect; 4519 pgeom_p->g_capacity = capacity; 4520 pgeom_p->g_ncyl = pgeom_p->g_capacity / spc; 4521 pgeom_p->g_acyl = 0; 4522 4523 /* 4524 * Retrieve fresh geometry data from the hardware, stash it 4525 * here temporarily before we rebuild the incore label. 4526 * 4527 * We want to use the MODE SENSE commands to derive the 4528 * physical geometry of the device, but if either command 4529 * fails, the logical geometry is used as the fallback for 4530 * disk label geometry. 4531 */ 4532 mutex_exit(SD_MUTEX(un)); 4533 sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag); 4534 mutex_enter(SD_MUTEX(un)); 4535 4536 /* 4537 * Now update the real copy while holding the mutex. This 4538 * way the global copy is never in an inconsistent state. 4539 */ 4540 bcopy(pgeom_p, &un->un_pgeom, sizeof (un->un_pgeom)); 4541 4542 SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: " 4543 "(cached from lgeom)\n"); 4544 SD_INFO(SD_LOG_COMMON, un, 4545 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 4546 un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl, 4547 un->un_pgeom.g_nhead, un->un_pgeom.g_nsect); 4548 SD_INFO(SD_LOG_COMMON, un, " lbasize: %d; capacity: %ld; " 4549 "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize, 4550 un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv, 4551 un->un_pgeom.g_rpm); 4552 } 4553 4554 4555 /* 4556 * Function: sd_read_fdisk 4557 * 4558 * Description: utility routine to read the fdisk table. 4559 * 4560 * Arguments: un - driver soft state (unit) structure 4561 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4562 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4563 * to use the USCSI "direct" chain and bypass the normal 4564 * command waitq. 4565 * 4566 * Return Code: SD_CMD_SUCCESS 4567 * SD_CMD_FAILURE 4568 * 4569 * Context: Kernel thread only (can sleep). 4570 */ 4571 /* ARGSUSED */ 4572 static int 4573 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag) 4574 { 4575 #if defined(_NO_FDISK_PRESENT) 4576 4577 un->un_solaris_offset = 0; 4578 un->un_solaris_size = capacity; 4579 bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART); 4580 return (SD_CMD_SUCCESS); 4581 4582 #elif defined(_FIRMWARE_NEEDS_FDISK) 4583 4584 struct ipart *fdp; 4585 struct mboot *mbp; 4586 struct ipart fdisk[FD_NUMPART]; 4587 int i; 4588 char sigbuf[2]; 4589 caddr_t bufp; 4590 int uidx; 4591 int rval; 4592 int lba = 0; 4593 uint_t solaris_offset; /* offset to solaris part. */ 4594 daddr_t solaris_size; /* size of solaris partition */ 4595 uint32_t blocksize; 4596 4597 ASSERT(un != NULL); 4598 ASSERT(mutex_owned(SD_MUTEX(un))); 4599 ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE); 4600 4601 blocksize = un->un_tgt_blocksize; 4602 4603 /* 4604 * Start off assuming no fdisk table 4605 */ 4606 solaris_offset = 0; 4607 solaris_size = capacity; 4608 4609 mutex_exit(SD_MUTEX(un)); 4610 bufp = kmem_zalloc(blocksize, KM_SLEEP); 4611 rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag); 4612 mutex_enter(SD_MUTEX(un)); 4613 4614 if (rval != 0) { 4615 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 4616 "sd_read_fdisk: fdisk read err\n"); 4617 kmem_free(bufp, blocksize); 4618 return (SD_CMD_FAILURE); 4619 } 4620 4621 mbp = (struct mboot *)bufp; 4622 4623 /* 4624 * The fdisk table does not begin on a 4-byte boundary within the 4625 * master boot record, so we copy it to an aligned structure to avoid 4626 * alignment exceptions on some processors. 4627 */ 4628 bcopy(&mbp->parts[0], fdisk, sizeof (fdisk)); 4629 4630 /* 4631 * Check for lba support before verifying sig; sig might not be 4632 * there, say on a blank disk, but the max_chs mark may still 4633 * be present. 4634 * 4635 * Note: LBA support and BEFs are an x86-only concept but this 4636 * code should work OK on SPARC as well. 4637 */ 4638 4639 /* 4640 * First, check for lba-access-ok on root node (or prom root node) 4641 * if present there, don't need to search fdisk table. 4642 */ 4643 if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0, 4644 "lba-access-ok", 0) != 0) { 4645 /* All drives do LBA; don't search fdisk table */ 4646 lba = 1; 4647 } else { 4648 /* Okay, look for mark in fdisk table */ 4649 for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) { 4650 /* accumulate "lba" value from all partitions */ 4651 lba = (lba || sd_has_max_chs_vals(fdp)); 4652 } 4653 } 4654 4655 if (lba != 0) { 4656 dev_t dev = sd_make_device(SD_DEVINFO(un)); 4657 4658 if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS, 4659 "lba-access-ok", 0) == 0) { 4660 /* not found; create it */ 4661 if (ddi_prop_create(dev, SD_DEVINFO(un), 0, 4662 "lba-access-ok", (caddr_t)NULL, 0) != 4663 DDI_PROP_SUCCESS) { 4664 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 4665 "sd_read_fdisk: Can't create lba property " 4666 "for instance %d\n", 4667 ddi_get_instance(SD_DEVINFO(un))); 4668 } 4669 } 4670 } 4671 4672 bcopy(&mbp->signature, sigbuf, sizeof (sigbuf)); 4673 4674 /* 4675 * Endian-independent signature check 4676 */ 4677 if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) || 4678 (sigbuf[0] != (MBB_MAGIC & 0xFF))) { 4679 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 4680 "sd_read_fdisk: no fdisk\n"); 4681 bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART); 4682 rval = SD_CMD_SUCCESS; 4683 goto done; 4684 } 4685 4686 #ifdef SDDEBUG 4687 if (sd_level_mask & SD_LOGMASK_INFO) { 4688 fdp = fdisk; 4689 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n"); 4690 SD_INFO(SD_LOG_ATTACH_DETACH, un, " relsect " 4691 "numsect sysid bootid\n"); 4692 for (i = 0; i < FD_NUMPART; i++, fdp++) { 4693 SD_INFO(SD_LOG_ATTACH_DETACH, un, 4694 " %d: %8d %8d 0x%08x 0x%08x\n", 4695 i, fdp->relsect, fdp->numsect, 4696 fdp->systid, fdp->bootid); 4697 } 4698 } 4699 #endif 4700 4701 /* 4702 * Try to find the unix partition 4703 */ 4704 uidx = -1; 4705 solaris_offset = 0; 4706 solaris_size = 0; 4707 4708 for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) { 4709 int relsect; 4710 int numsect; 4711 4712 if (fdp->numsect == 0) { 4713 un->un_fmap[i].fmap_start = 0; 4714 un->un_fmap[i].fmap_nblk = 0; 4715 continue; 4716 } 4717 4718 /* 4719 * Data in the fdisk table is little-endian. 4720 */ 4721 relsect = LE_32(fdp->relsect); 4722 numsect = LE_32(fdp->numsect); 4723 4724 un->un_fmap[i].fmap_start = relsect; 4725 un->un_fmap[i].fmap_nblk = numsect; 4726 4727 if (fdp->systid != SUNIXOS && 4728 fdp->systid != SUNIXOS2 && 4729 fdp->systid != EFI_PMBR) { 4730 continue; 4731 } 4732 4733 /* 4734 * use the last active solaris partition id found 4735 * (there should only be 1 active partition id) 4736 * 4737 * if there are no active solaris partition id 4738 * then use the first inactive solaris partition id 4739 */ 4740 if ((uidx == -1) || (fdp->bootid == ACTIVE)) { 4741 uidx = i; 4742 solaris_offset = relsect; 4743 solaris_size = numsect; 4744 } 4745 } 4746 4747 SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx", 4748 un->un_solaris_offset, un->un_solaris_size); 4749 4750 rval = SD_CMD_SUCCESS; 4751 4752 done: 4753 4754 /* 4755 * Clear the VTOC info, only if the Solaris partition entry 4756 * has moved, changed size, been deleted, or if the size of 4757 * the partition is too small to even fit the label sector. 4758 */ 4759 if ((un->un_solaris_offset != solaris_offset) || 4760 (un->un_solaris_size != solaris_size) || 4761 solaris_size <= DK_LABEL_LOC) { 4762 SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx", 4763 solaris_offset, solaris_size); 4764 bzero(&un->un_g, sizeof (struct dk_geom)); 4765 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 4766 bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map))); 4767 un->un_f_geometry_is_valid = FALSE; 4768 } 4769 un->un_solaris_offset = solaris_offset; 4770 un->un_solaris_size = solaris_size; 4771 kmem_free(bufp, blocksize); 4772 return (rval); 4773 4774 #else /* #elif defined(_FIRMWARE_NEEDS_FDISK) */ 4775 #error "fdisk table presence undetermined for this platform." 4776 #endif /* #if defined(_NO_FDISK_PRESENT) */ 4777 } 4778 4779 4780 /* 4781 * Function: sd_get_physical_geometry 4782 * 4783 * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and 4784 * MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the 4785 * target, and use this information to initialize the physical 4786 * geometry cache specified by pgeom_p. 4787 * 4788 * MODE SENSE is an optional command, so failure in this case 4789 * does not necessarily denote an error. We want to use the 4790 * MODE SENSE commands to derive the physical geometry of the 4791 * device, but if either command fails, the logical geometry is 4792 * used as the fallback for disk label geometry. 4793 * 4794 * This requires that un->un_blockcount and un->un_tgt_blocksize 4795 * have already been initialized for the current target and 4796 * that the current values be passed as args so that we don't 4797 * end up ever trying to use -1 as a valid value. This could 4798 * happen if either value is reset while we're not holding 4799 * the mutex. 4800 * 4801 * Arguments: un - driver soft state (unit) structure 4802 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 4803 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 4804 * to use the USCSI "direct" chain and bypass the normal 4805 * command waitq. 4806 * 4807 * Context: Kernel thread only (can sleep). 4808 */ 4809 4810 static void 4811 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p, 4812 int capacity, int lbasize, int path_flag) 4813 { 4814 struct mode_format *page3p; 4815 struct mode_geometry *page4p; 4816 struct mode_header *headerp; 4817 int sector_size; 4818 int nsect; 4819 int nhead; 4820 int ncyl; 4821 int intrlv; 4822 int spc; 4823 int modesense_capacity; 4824 int rpm; 4825 int bd_len; 4826 int mode_header_length; 4827 uchar_t *p3bufp; 4828 uchar_t *p4bufp; 4829 int cdbsize; 4830 4831 ASSERT(un != NULL); 4832 ASSERT(!(mutex_owned(SD_MUTEX(un)))); 4833 4834 if (un->un_f_blockcount_is_valid != TRUE) { 4835 return; 4836 } 4837 4838 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 4839 return; 4840 } 4841 4842 if (lbasize == 0) { 4843 if (ISCD(un)) { 4844 lbasize = 2048; 4845 } else { 4846 lbasize = un->un_sys_blocksize; 4847 } 4848 } 4849 pgeom_p->g_secsize = (unsigned short)lbasize; 4850 4851 cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0; 4852 4853 /* 4854 * Retrieve MODE SENSE page 3 - Format Device Page 4855 */ 4856 p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP); 4857 if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp, 4858 SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag) 4859 != 0) { 4860 SD_ERROR(SD_LOG_COMMON, un, 4861 "sd_get_physical_geometry: mode sense page 3 failed\n"); 4862 goto page3_exit; 4863 } 4864 4865 /* 4866 * Determine size of Block Descriptors in order to locate the mode 4867 * page data. ATAPI devices return 0, SCSI devices should return 4868 * MODE_BLK_DESC_LENGTH. 4869 */ 4870 headerp = (struct mode_header *)p3bufp; 4871 if (un->un_f_cfg_is_atapi == TRUE) { 4872 struct mode_header_grp2 *mhp = 4873 (struct mode_header_grp2 *)headerp; 4874 mode_header_length = MODE_HEADER_LENGTH_GRP2; 4875 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 4876 } else { 4877 mode_header_length = MODE_HEADER_LENGTH; 4878 bd_len = ((struct mode_header *)headerp)->bdesc_length; 4879 } 4880 4881 if (bd_len > MODE_BLK_DESC_LENGTH) { 4882 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 4883 "received unexpected bd_len of %d, page3\n", bd_len); 4884 goto page3_exit; 4885 } 4886 4887 page3p = (struct mode_format *) 4888 ((caddr_t)headerp + mode_header_length + bd_len); 4889 4890 if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) { 4891 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 4892 "mode sense pg3 code mismatch %d\n", 4893 page3p->mode_page.code); 4894 goto page3_exit; 4895 } 4896 4897 /* 4898 * Use this physical geometry data only if BOTH MODE SENSE commands 4899 * complete successfully; otherwise, revert to the logical geometry. 4900 * So, we need to save everything in temporary variables. 4901 */ 4902 sector_size = BE_16(page3p->data_bytes_sect); 4903 4904 /* 4905 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size 4906 */ 4907 if (sector_size == 0) { 4908 sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize; 4909 } else { 4910 sector_size &= ~(un->un_sys_blocksize - 1); 4911 } 4912 4913 nsect = BE_16(page3p->sect_track); 4914 intrlv = BE_16(page3p->interleave); 4915 4916 SD_INFO(SD_LOG_COMMON, un, 4917 "sd_get_physical_geometry: Format Parameters (page 3)\n"); 4918 SD_INFO(SD_LOG_COMMON, un, 4919 " mode page: %d; nsect: %d; sector size: %d;\n", 4920 page3p->mode_page.code, nsect, sector_size); 4921 SD_INFO(SD_LOG_COMMON, un, 4922 " interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv, 4923 BE_16(page3p->track_skew), 4924 BE_16(page3p->cylinder_skew)); 4925 4926 4927 /* 4928 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page 4929 */ 4930 p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP); 4931 if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp, 4932 SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag) 4933 != 0) { 4934 SD_ERROR(SD_LOG_COMMON, un, 4935 "sd_get_physical_geometry: mode sense page 4 failed\n"); 4936 goto page4_exit; 4937 } 4938 4939 /* 4940 * Determine size of Block Descriptors in order to locate the mode 4941 * page data. ATAPI devices return 0, SCSI devices should return 4942 * MODE_BLK_DESC_LENGTH. 4943 */ 4944 headerp = (struct mode_header *)p4bufp; 4945 if (un->un_f_cfg_is_atapi == TRUE) { 4946 struct mode_header_grp2 *mhp = 4947 (struct mode_header_grp2 *)headerp; 4948 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 4949 } else { 4950 bd_len = ((struct mode_header *)headerp)->bdesc_length; 4951 } 4952 4953 if (bd_len > MODE_BLK_DESC_LENGTH) { 4954 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 4955 "received unexpected bd_len of %d, page4\n", bd_len); 4956 goto page4_exit; 4957 } 4958 4959 page4p = (struct mode_geometry *) 4960 ((caddr_t)headerp + mode_header_length + bd_len); 4961 4962 if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) { 4963 SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: " 4964 "mode sense pg4 code mismatch %d\n", 4965 page4p->mode_page.code); 4966 goto page4_exit; 4967 } 4968 4969 /* 4970 * Stash the data now, after we know that both commands completed. 4971 */ 4972 4973 mutex_enter(SD_MUTEX(un)); 4974 4975 nhead = (int)page4p->heads; /* uchar, so no conversion needed */ 4976 spc = nhead * nsect; 4977 ncyl = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb; 4978 rpm = BE_16(page4p->rpm); 4979 4980 modesense_capacity = spc * ncyl; 4981 4982 SD_INFO(SD_LOG_COMMON, un, 4983 "sd_get_physical_geometry: Geometry Parameters (page 4)\n"); 4984 SD_INFO(SD_LOG_COMMON, un, 4985 " cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm); 4986 SD_INFO(SD_LOG_COMMON, un, 4987 " computed capacity(h*s*c): %d;\n", modesense_capacity); 4988 SD_INFO(SD_LOG_COMMON, un, " pgeom_p: %p; read cap: %d\n", 4989 (void *)pgeom_p, capacity); 4990 4991 /* 4992 * Compensate if the drive's geometry is not rectangular, i.e., 4993 * the product of C * H * S returned by MODE SENSE >= that returned 4994 * by read capacity. This is an idiosyncrasy of the original x86 4995 * disk subsystem. 4996 */ 4997 if (modesense_capacity >= capacity) { 4998 SD_INFO(SD_LOG_COMMON, un, 4999 "sd_get_physical_geometry: adjusting acyl; " 5000 "old: %d; new: %d\n", pgeom_p->g_acyl, 5001 (modesense_capacity - capacity + spc - 1) / spc); 5002 if (sector_size != 0) { 5003 /* 1243403: NEC D38x7 drives don't support sec size */ 5004 pgeom_p->g_secsize = (unsigned short)sector_size; 5005 } 5006 pgeom_p->g_nsect = (unsigned short)nsect; 5007 pgeom_p->g_nhead = (unsigned short)nhead; 5008 pgeom_p->g_capacity = capacity; 5009 pgeom_p->g_acyl = 5010 (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc; 5011 pgeom_p->g_ncyl = ncyl - pgeom_p->g_acyl; 5012 } 5013 5014 pgeom_p->g_rpm = (unsigned short)rpm; 5015 pgeom_p->g_intrlv = (unsigned short)intrlv; 5016 5017 SD_INFO(SD_LOG_COMMON, un, 5018 "sd_get_physical_geometry: mode sense geometry:\n"); 5019 SD_INFO(SD_LOG_COMMON, un, 5020 " nsect: %d; sector size: %d; interlv: %d\n", 5021 nsect, sector_size, intrlv); 5022 SD_INFO(SD_LOG_COMMON, un, 5023 " nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n", 5024 nhead, ncyl, rpm, modesense_capacity); 5025 SD_INFO(SD_LOG_COMMON, un, 5026 "sd_get_physical_geometry: (cached)\n"); 5027 SD_INFO(SD_LOG_COMMON, un, 5028 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 5029 un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl, 5030 un->un_pgeom.g_nhead, un->un_pgeom.g_nsect); 5031 SD_INFO(SD_LOG_COMMON, un, 5032 " lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n", 5033 un->un_pgeom.g_secsize, un->un_pgeom.g_capacity, 5034 un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm); 5035 5036 mutex_exit(SD_MUTEX(un)); 5037 5038 page4_exit: 5039 kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH); 5040 page3_exit: 5041 kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH); 5042 } 5043 5044 5045 /* 5046 * Function: sd_get_virtual_geometry 5047 * 5048 * Description: Ask the controller to tell us about the target device. 5049 * 5050 * Arguments: un - pointer to softstate 5051 * capacity - disk capacity in #blocks 5052 * lbasize - disk block size in bytes 5053 * 5054 * Context: Kernel thread only 5055 */ 5056 5057 static void 5058 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize) 5059 { 5060 struct geom_cache *lgeom_p = &un->un_lgeom; 5061 uint_t geombuf; 5062 int spc; 5063 5064 ASSERT(un != NULL); 5065 ASSERT(mutex_owned(SD_MUTEX(un))); 5066 5067 mutex_exit(SD_MUTEX(un)); 5068 5069 /* Set sector size, and total number of sectors */ 5070 (void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size", lbasize, 1); 5071 (void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1); 5072 5073 /* Let the HBA tell us its geometry */ 5074 geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1); 5075 5076 mutex_enter(SD_MUTEX(un)); 5077 5078 /* A value of -1 indicates an undefined "geometry" property */ 5079 if (geombuf == (-1)) { 5080 return; 5081 } 5082 5083 /* Initialize the logical geometry cache. */ 5084 lgeom_p->g_nhead = (geombuf >> 16) & 0xffff; 5085 lgeom_p->g_nsect = geombuf & 0xffff; 5086 lgeom_p->g_secsize = un->un_sys_blocksize; 5087 5088 spc = lgeom_p->g_nhead * lgeom_p->g_nsect; 5089 5090 /* 5091 * Note: The driver originally converted the capacity value from 5092 * target blocks to system blocks. However, the capacity value passed 5093 * to this routine is already in terms of system blocks (this scaling 5094 * is done when the READ CAPACITY command is issued and processed). 5095 * This 'error' may have gone undetected because the usage of g_ncyl 5096 * (which is based upon g_capacity) is very limited within the driver 5097 */ 5098 lgeom_p->g_capacity = capacity; 5099 5100 /* 5101 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The 5102 * hba may return zero values if the device has been removed. 5103 */ 5104 if (spc == 0) { 5105 lgeom_p->g_ncyl = 0; 5106 } else { 5107 lgeom_p->g_ncyl = lgeom_p->g_capacity / spc; 5108 } 5109 lgeom_p->g_acyl = 0; 5110 5111 SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n"); 5112 SD_INFO(SD_LOG_COMMON, un, 5113 " ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n", 5114 un->un_lgeom.g_ncyl, un->un_lgeom.g_acyl, 5115 un->un_lgeom.g_nhead, un->un_lgeom.g_nsect); 5116 SD_INFO(SD_LOG_COMMON, un, " lbasize: %d; capacity: %ld; " 5117 "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize, 5118 un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm); 5119 } 5120 5121 5122 /* 5123 * Function: sd_update_block_info 5124 * 5125 * Description: Calculate a byte count to sector count bitshift value 5126 * from sector size. 5127 * 5128 * Arguments: un: unit struct. 5129 * lbasize: new target sector size 5130 * capacity: new target capacity, ie. block count 5131 * 5132 * Context: Kernel thread context 5133 */ 5134 5135 static void 5136 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity) 5137 { 5138 if (lbasize != 0) { 5139 un->un_tgt_blocksize = lbasize; 5140 un->un_f_tgt_blocksize_is_valid = TRUE; 5141 } 5142 5143 if (capacity != 0) { 5144 un->un_blockcount = capacity; 5145 un->un_f_blockcount_is_valid = TRUE; 5146 } 5147 } 5148 5149 5150 static void 5151 sd_swap_efi_gpt(efi_gpt_t *e) 5152 { 5153 _NOTE(ASSUMING_PROTECTED(*e)) 5154 e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature); 5155 e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision); 5156 e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize); 5157 e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32); 5158 e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA); 5159 e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA); 5160 e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA); 5161 e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA); 5162 UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID); 5163 e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA); 5164 e->efi_gpt_NumberOfPartitionEntries = 5165 LE_32(e->efi_gpt_NumberOfPartitionEntries); 5166 e->efi_gpt_SizeOfPartitionEntry = 5167 LE_32(e->efi_gpt_SizeOfPartitionEntry); 5168 e->efi_gpt_PartitionEntryArrayCRC32 = 5169 LE_32(e->efi_gpt_PartitionEntryArrayCRC32); 5170 } 5171 5172 static void 5173 sd_swap_efi_gpe(int nparts, efi_gpe_t *p) 5174 { 5175 int i; 5176 5177 _NOTE(ASSUMING_PROTECTED(*p)) 5178 for (i = 0; i < nparts; i++) { 5179 UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID, 5180 p[i].efi_gpe_PartitionTypeGUID); 5181 p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA); 5182 p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA); 5183 /* PartitionAttrs */ 5184 } 5185 } 5186 5187 static int 5188 sd_validate_efi(efi_gpt_t *labp) 5189 { 5190 if (labp->efi_gpt_Signature != EFI_SIGNATURE) 5191 return (EINVAL); 5192 /* at least 96 bytes in this version of the spec. */ 5193 if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) > 5194 labp->efi_gpt_HeaderSize) 5195 return (EINVAL); 5196 /* this should be 128 bytes */ 5197 if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t)) 5198 return (EINVAL); 5199 return (0); 5200 } 5201 5202 static int 5203 sd_use_efi(struct sd_lun *un, int path_flag) 5204 { 5205 int i; 5206 int rval = 0; 5207 efi_gpe_t *partitions; 5208 uchar_t *buf; 5209 uint_t lbasize; 5210 uint64_t cap; 5211 uint_t nparts; 5212 diskaddr_t gpe_lba; 5213 5214 ASSERT(mutex_owned(SD_MUTEX(un))); 5215 lbasize = un->un_tgt_blocksize; 5216 5217 mutex_exit(SD_MUTEX(un)); 5218 5219 buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP); 5220 5221 if (un->un_tgt_blocksize != un->un_sys_blocksize) { 5222 rval = EINVAL; 5223 goto done_err; 5224 } 5225 5226 rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag); 5227 if (rval) { 5228 goto done_err; 5229 } 5230 if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) { 5231 /* not ours */ 5232 rval = ESRCH; 5233 goto done_err; 5234 } 5235 5236 rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag); 5237 if (rval) { 5238 goto done_err; 5239 } 5240 sd_swap_efi_gpt((efi_gpt_t *)buf); 5241 5242 if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) { 5243 /* 5244 * Couldn't read the primary, try the backup. Our 5245 * capacity at this point could be based on CHS, so 5246 * check what the device reports. 5247 */ 5248 rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize, 5249 path_flag); 5250 if (rval) { 5251 goto done_err; 5252 } 5253 5254 /* 5255 * The MMC standard allows READ CAPACITY to be 5256 * inaccurate by a bounded amount (in the interest of 5257 * response latency). As a result, failed READs are 5258 * commonplace (due to the reading of metadata and not 5259 * data). Depending on the per-Vendor/drive Sense data, 5260 * the failed READ can cause many (unnecessary) retries. 5261 */ 5262 if ((rval = sd_send_scsi_READ(un, buf, lbasize, 5263 cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY : 5264 path_flag)) != 0) { 5265 goto done_err; 5266 } 5267 5268 sd_swap_efi_gpt((efi_gpt_t *)buf); 5269 if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) 5270 goto done_err; 5271 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5272 "primary label corrupt; using backup\n"); 5273 } 5274 5275 nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries; 5276 gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA; 5277 5278 rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba, 5279 path_flag); 5280 if (rval) { 5281 goto done_err; 5282 } 5283 partitions = (efi_gpe_t *)buf; 5284 5285 if (nparts > MAXPART) { 5286 nparts = MAXPART; 5287 } 5288 sd_swap_efi_gpe(nparts, partitions); 5289 5290 mutex_enter(SD_MUTEX(un)); 5291 5292 /* Fill in partition table. */ 5293 for (i = 0; i < nparts; i++) { 5294 if (partitions->efi_gpe_StartingLBA != 0 || 5295 partitions->efi_gpe_EndingLBA != 0) { 5296 un->un_map[i].dkl_cylno = 5297 partitions->efi_gpe_StartingLBA; 5298 un->un_map[i].dkl_nblk = 5299 partitions->efi_gpe_EndingLBA - 5300 partitions->efi_gpe_StartingLBA + 1; 5301 un->un_offset[i] = 5302 partitions->efi_gpe_StartingLBA; 5303 } 5304 if (i == WD_NODE) { 5305 /* 5306 * minor number 7 corresponds to the whole disk 5307 */ 5308 un->un_map[i].dkl_cylno = 0; 5309 un->un_map[i].dkl_nblk = un->un_blockcount; 5310 un->un_offset[i] = 0; 5311 } 5312 partitions++; 5313 } 5314 un->un_solaris_offset = 0; 5315 un->un_solaris_size = cap; 5316 un->un_f_geometry_is_valid = TRUE; 5317 kmem_free(buf, EFI_MIN_ARRAY_SIZE); 5318 return (0); 5319 5320 done_err: 5321 kmem_free(buf, EFI_MIN_ARRAY_SIZE); 5322 mutex_enter(SD_MUTEX(un)); 5323 /* 5324 * if we didn't find something that could look like a VTOC 5325 * and the disk is over 1TB, we know there isn't a valid label. 5326 * Otherwise let sd_uselabel decide what to do. We only 5327 * want to invalidate this if we're certain the label isn't 5328 * valid because sd_prop_op will now fail, which in turn 5329 * causes things like opens and stats on the partition to fail. 5330 */ 5331 if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) { 5332 un->un_f_geometry_is_valid = FALSE; 5333 } 5334 return (rval); 5335 } 5336 5337 5338 /* 5339 * Function: sd_uselabel 5340 * 5341 * Description: Validate the disk label and update the relevant data (geometry, 5342 * partition, vtoc, and capacity data) in the sd_lun struct. 5343 * Marks the geometry of the unit as being valid. 5344 * 5345 * Arguments: un: unit struct. 5346 * dk_label: disk label 5347 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 5348 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 5349 * to use the USCSI "direct" chain and bypass the normal 5350 * command waitq. 5351 * 5352 * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry, 5353 * partition, vtoc, and capacity data are good. 5354 * 5355 * SD_LABEL_IS_INVALID: Magic number or checksum error in the 5356 * label; or computed capacity does not jibe with capacity 5357 * reported from the READ CAPACITY command. 5358 * 5359 * Context: Kernel thread only (can sleep). 5360 */ 5361 5362 static int 5363 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag) 5364 { 5365 short *sp; 5366 short sum; 5367 short count; 5368 int label_error = SD_LABEL_IS_VALID; 5369 int i; 5370 int capacity; 5371 int part_end; 5372 int track_capacity; 5373 int err; 5374 #if defined(_SUNOS_VTOC_16) 5375 struct dkl_partition *vpartp; 5376 #endif 5377 ASSERT(un != NULL); 5378 ASSERT(mutex_owned(SD_MUTEX(un))); 5379 5380 /* Validate the magic number of the label. */ 5381 if (labp->dkl_magic != DKL_MAGIC) { 5382 #if defined(__sparc) 5383 if ((un->un_state == SD_STATE_NORMAL) && 5384 un->un_f_vtoc_errlog_supported) { 5385 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5386 "Corrupt label; wrong magic number\n"); 5387 } 5388 #endif 5389 return (SD_LABEL_IS_INVALID); 5390 } 5391 5392 /* Validate the checksum of the label. */ 5393 sp = (short *)labp; 5394 sum = 0; 5395 count = sizeof (struct dk_label) / sizeof (short); 5396 while (count--) { 5397 sum ^= *sp++; 5398 } 5399 5400 if (sum != 0) { 5401 #if defined(_SUNOS_VTOC_16) 5402 if ((un->un_state == SD_STATE_NORMAL) && !ISCD(un)) { 5403 #elif defined(_SUNOS_VTOC_8) 5404 if ((un->un_state == SD_STATE_NORMAL) && 5405 un->un_f_vtoc_errlog_supported) { 5406 #endif 5407 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5408 "Corrupt label - label checksum failed\n"); 5409 } 5410 return (SD_LABEL_IS_INVALID); 5411 } 5412 5413 5414 /* 5415 * Fill in geometry structure with data from label. 5416 */ 5417 bzero(&un->un_g, sizeof (struct dk_geom)); 5418 un->un_g.dkg_ncyl = labp->dkl_ncyl; 5419 un->un_g.dkg_acyl = labp->dkl_acyl; 5420 un->un_g.dkg_bcyl = 0; 5421 un->un_g.dkg_nhead = labp->dkl_nhead; 5422 un->un_g.dkg_nsect = labp->dkl_nsect; 5423 un->un_g.dkg_intrlv = labp->dkl_intrlv; 5424 5425 #if defined(_SUNOS_VTOC_8) 5426 un->un_g.dkg_gap1 = labp->dkl_gap1; 5427 un->un_g.dkg_gap2 = labp->dkl_gap2; 5428 un->un_g.dkg_bhead = labp->dkl_bhead; 5429 #endif 5430 #if defined(_SUNOS_VTOC_16) 5431 un->un_dkg_skew = labp->dkl_skew; 5432 #endif 5433 5434 #if defined(__i386) || defined(__amd64) 5435 un->un_g.dkg_apc = labp->dkl_apc; 5436 #endif 5437 5438 /* 5439 * Currently we rely on the values in the label being accurate. If 5440 * dlk_rpm or dlk_pcly are zero in the label, use a default value. 5441 * 5442 * Note: In the future a MODE SENSE may be used to retrieve this data, 5443 * although this command is optional in SCSI-2. 5444 */ 5445 un->un_g.dkg_rpm = (labp->dkl_rpm != 0) ? labp->dkl_rpm : 3600; 5446 un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl : 5447 (un->un_g.dkg_ncyl + un->un_g.dkg_acyl); 5448 5449 /* 5450 * The Read and Write reinstruct values may not be valid 5451 * for older disks. 5452 */ 5453 un->un_g.dkg_read_reinstruct = labp->dkl_read_reinstruct; 5454 un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct; 5455 5456 /* Fill in partition table. */ 5457 #if defined(_SUNOS_VTOC_8) 5458 for (i = 0; i < NDKMAP; i++) { 5459 un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno; 5460 un->un_map[i].dkl_nblk = labp->dkl_map[i].dkl_nblk; 5461 } 5462 #endif 5463 #if defined(_SUNOS_VTOC_16) 5464 vpartp = labp->dkl_vtoc.v_part; 5465 track_capacity = labp->dkl_nhead * labp->dkl_nsect; 5466 5467 /* Prevent divide by zero */ 5468 if (track_capacity == 0) { 5469 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5470 "Corrupt label - zero nhead or nsect value\n"); 5471 5472 return (SD_LABEL_IS_INVALID); 5473 } 5474 5475 for (i = 0; i < NDKMAP; i++, vpartp++) { 5476 un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity; 5477 un->un_map[i].dkl_nblk = vpartp->p_size; 5478 } 5479 #endif 5480 5481 /* Fill in VTOC Structure. */ 5482 bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc)); 5483 #if defined(_SUNOS_VTOC_8) 5484 /* 5485 * The 8-slice vtoc does not include the ascii label; save it into 5486 * the device's soft state structure here. 5487 */ 5488 bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII); 5489 #endif 5490 5491 /* Now look for a valid capacity. */ 5492 track_capacity = (un->un_g.dkg_nhead * un->un_g.dkg_nsect); 5493 capacity = (un->un_g.dkg_ncyl * track_capacity); 5494 5495 if (un->un_g.dkg_acyl) { 5496 #if defined(__i386) || defined(__amd64) 5497 /* we may have > 1 alts cylinder */ 5498 capacity += (track_capacity * un->un_g.dkg_acyl); 5499 #else 5500 capacity += track_capacity; 5501 #endif 5502 } 5503 5504 /* 5505 * Force check here to ensure the computed capacity is valid. 5506 * If capacity is zero, it indicates an invalid label and 5507 * we should abort updating the relevant data then. 5508 */ 5509 if (capacity == 0) { 5510 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5511 "Corrupt label - no valid capacity could be retrieved\n"); 5512 5513 return (SD_LABEL_IS_INVALID); 5514 } 5515 5516 /* Mark the geometry as valid. */ 5517 un->un_f_geometry_is_valid = TRUE; 5518 5519 /* 5520 * At this point, un->un_blockcount should contain valid data from 5521 * the READ CAPACITY command. 5522 */ 5523 if (un->un_f_blockcount_is_valid != TRUE) { 5524 /* 5525 * We have a situation where the target didn't give us a good 5526 * READ CAPACITY value, yet there appears to be a valid label. 5527 * In this case, we'll fake the capacity. 5528 */ 5529 un->un_blockcount = capacity; 5530 un->un_f_blockcount_is_valid = TRUE; 5531 goto done; 5532 } 5533 5534 5535 if ((capacity <= un->un_blockcount) || 5536 (un->un_state != SD_STATE_NORMAL)) { 5537 #if defined(_SUNOS_VTOC_8) 5538 /* 5539 * We can't let this happen on drives that are subdivided 5540 * into logical disks (i.e., that have an fdisk table). 5541 * The un_blockcount field should always hold the full media 5542 * size in sectors, period. This code would overwrite 5543 * un_blockcount with the size of the Solaris fdisk partition. 5544 */ 5545 SD_ERROR(SD_LOG_COMMON, un, 5546 "sd_uselabel: Label %d blocks; Drive %d blocks\n", 5547 capacity, un->un_blockcount); 5548 un->un_blockcount = capacity; 5549 un->un_f_blockcount_is_valid = TRUE; 5550 #endif /* defined(_SUNOS_VTOC_8) */ 5551 goto done; 5552 } 5553 5554 if (ISCD(un)) { 5555 /* For CDROMs, we trust that the data in the label is OK. */ 5556 #if defined(_SUNOS_VTOC_8) 5557 for (i = 0; i < NDKMAP; i++) { 5558 part_end = labp->dkl_nhead * labp->dkl_nsect * 5559 labp->dkl_map[i].dkl_cylno + 5560 labp->dkl_map[i].dkl_nblk - 1; 5561 5562 if ((labp->dkl_map[i].dkl_nblk) && 5563 (part_end > un->un_blockcount)) { 5564 un->un_f_geometry_is_valid = FALSE; 5565 break; 5566 } 5567 } 5568 #endif 5569 #if defined(_SUNOS_VTOC_16) 5570 vpartp = &(labp->dkl_vtoc.v_part[0]); 5571 for (i = 0; i < NDKMAP; i++, vpartp++) { 5572 part_end = vpartp->p_start + vpartp->p_size; 5573 if ((vpartp->p_size > 0) && 5574 (part_end > un->un_blockcount)) { 5575 un->un_f_geometry_is_valid = FALSE; 5576 break; 5577 } 5578 } 5579 #endif 5580 } else { 5581 uint64_t t_capacity; 5582 uint32_t t_lbasize; 5583 5584 mutex_exit(SD_MUTEX(un)); 5585 err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize, 5586 path_flag); 5587 ASSERT(t_capacity <= DK_MAX_BLOCKS); 5588 mutex_enter(SD_MUTEX(un)); 5589 5590 if (err == 0) { 5591 sd_update_block_info(un, t_lbasize, t_capacity); 5592 } 5593 5594 if (capacity > un->un_blockcount) { 5595 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 5596 "Corrupt label - bad geometry\n"); 5597 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 5598 "Label says %u blocks; Drive says %llu blocks\n", 5599 capacity, (unsigned long long)un->un_blockcount); 5600 un->un_f_geometry_is_valid = FALSE; 5601 label_error = SD_LABEL_IS_INVALID; 5602 } 5603 } 5604 5605 done: 5606 5607 SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n"); 5608 SD_INFO(SD_LOG_COMMON, un, 5609 " ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n", 5610 un->un_g.dkg_ncyl, un->un_g.dkg_acyl, 5611 un->un_g.dkg_nhead, un->un_g.dkg_nsect); 5612 SD_INFO(SD_LOG_COMMON, un, 5613 " lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n", 5614 un->un_tgt_blocksize, un->un_blockcount, 5615 un->un_g.dkg_intrlv, un->un_g.dkg_rpm); 5616 SD_INFO(SD_LOG_COMMON, un, " wrt_reinstr: %d; rd_reinstr: %d\n", 5617 un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct); 5618 5619 ASSERT(mutex_owned(SD_MUTEX(un))); 5620 5621 return (label_error); 5622 } 5623 5624 5625 /* 5626 * Function: sd_build_default_label 5627 * 5628 * Description: Generate a default label for those devices that do not have 5629 * one, e.g., new media, removable cartridges, etc.. 5630 * 5631 * Context: Kernel thread only 5632 */ 5633 5634 static void 5635 sd_build_default_label(struct sd_lun *un) 5636 { 5637 #if defined(_SUNOS_VTOC_16) 5638 uint_t phys_spc; 5639 uint_t disksize; 5640 struct dk_geom un_g; 5641 #endif 5642 5643 ASSERT(un != NULL); 5644 ASSERT(mutex_owned(SD_MUTEX(un))); 5645 5646 #if defined(_SUNOS_VTOC_8) 5647 /* 5648 * Note: This is a legacy check for non-removable devices on VTOC_8 5649 * only. This may be a valid check for VTOC_16 as well. 5650 * Once we understand why there is this difference between SPARC and 5651 * x86 platform, we could remove this legacy check. 5652 */ 5653 ASSERT(un->un_f_default_vtoc_supported); 5654 #endif 5655 5656 bzero(&un->un_g, sizeof (struct dk_geom)); 5657 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 5658 bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map))); 5659 5660 #if defined(_SUNOS_VTOC_8) 5661 5662 /* 5663 * It's a REMOVABLE media, therefore no label (on sparc, anyway). 5664 * But it is still necessary to set up various geometry information, 5665 * and we are doing this here. 5666 */ 5667 5668 /* 5669 * For the rpm, we use the minimum for the disk. For the head, cyl, 5670 * and number of sector per track, if the capacity <= 1GB, head = 64, 5671 * sect = 32. else head = 255, sect 63 Note: the capacity should be 5672 * equal to C*H*S values. This will cause some truncation of size due 5673 * to round off errors. For CD-ROMs, this truncation can have adverse 5674 * side effects, so returning ncyl and nhead as 1. The nsect will 5675 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569) 5676 */ 5677 if (ISCD(un)) { 5678 /* 5679 * Preserve the old behavior for non-writable 5680 * medias. Since dkg_nsect is a ushort, it 5681 * will lose bits as cdroms have more than 5682 * 65536 sectors. So if we recalculate 5683 * capacity, it will become much shorter. 5684 * But the dkg_* information is not 5685 * used for CDROMs so it is OK. But for 5686 * Writable CDs we need this information 5687 * to be valid (for newfs say). So we 5688 * make nsect and nhead > 1 that way 5689 * nsect can still stay within ushort limit 5690 * without losing any bits. 5691 */ 5692 if (un->un_f_mmc_writable_media == TRUE) { 5693 un->un_g.dkg_nhead = 64; 5694 un->un_g.dkg_nsect = 32; 5695 un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32); 5696 un->un_blockcount = un->un_g.dkg_ncyl * 5697 un->un_g.dkg_nhead * un->un_g.dkg_nsect; 5698 } else { 5699 un->un_g.dkg_ncyl = 1; 5700 un->un_g.dkg_nhead = 1; 5701 un->un_g.dkg_nsect = un->un_blockcount; 5702 } 5703 } else { 5704 if (un->un_blockcount <= 0x1000) { 5705 /* unlabeled SCSI floppy device */ 5706 un->un_g.dkg_nhead = 2; 5707 un->un_g.dkg_ncyl = 80; 5708 un->un_g.dkg_nsect = un->un_blockcount / (2 * 80); 5709 } else if (un->un_blockcount <= 0x200000) { 5710 un->un_g.dkg_nhead = 64; 5711 un->un_g.dkg_nsect = 32; 5712 un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32); 5713 } else { 5714 un->un_g.dkg_nhead = 255; 5715 un->un_g.dkg_nsect = 63; 5716 un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63); 5717 } 5718 un->un_blockcount = 5719 un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect; 5720 } 5721 5722 un->un_g.dkg_acyl = 0; 5723 un->un_g.dkg_bcyl = 0; 5724 un->un_g.dkg_rpm = 200; 5725 un->un_asciilabel[0] = '\0'; 5726 un->un_g.dkg_pcyl = un->un_g.dkg_ncyl; 5727 5728 un->un_map[0].dkl_cylno = 0; 5729 un->un_map[0].dkl_nblk = un->un_blockcount; 5730 un->un_map[2].dkl_cylno = 0; 5731 un->un_map[2].dkl_nblk = un->un_blockcount; 5732 5733 #elif defined(_SUNOS_VTOC_16) 5734 5735 if (un->un_solaris_size == 0) { 5736 /* 5737 * Got fdisk table but no solaris entry therefore 5738 * don't create a default label 5739 */ 5740 un->un_f_geometry_is_valid = TRUE; 5741 return; 5742 } 5743 5744 /* 5745 * For CDs we continue to use the physical geometry to calculate 5746 * number of cylinders. All other devices must convert the 5747 * physical geometry (geom_cache) to values that will fit 5748 * in a dk_geom structure. 5749 */ 5750 if (ISCD(un)) { 5751 phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect; 5752 } else { 5753 /* Convert physical geometry to disk geometry */ 5754 bzero(&un_g, sizeof (struct dk_geom)); 5755 sd_convert_geometry(un->un_blockcount, &un_g); 5756 bcopy(&un_g, &un->un_g, sizeof (un->un_g)); 5757 phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect; 5758 } 5759 5760 ASSERT(phys_spc != 0); 5761 un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc; 5762 un->un_g.dkg_acyl = DK_ACYL; 5763 un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL; 5764 disksize = un->un_g.dkg_ncyl * phys_spc; 5765 5766 if (ISCD(un)) { 5767 /* 5768 * CD's don't use the "heads * sectors * cyls"-type of 5769 * geometry, but instead use the entire capacity of the media. 5770 */ 5771 disksize = un->un_solaris_size; 5772 un->un_g.dkg_nhead = 1; 5773 un->un_g.dkg_nsect = 1; 5774 un->un_g.dkg_rpm = 5775 (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm; 5776 5777 un->un_vtoc.v_part[0].p_start = 0; 5778 un->un_vtoc.v_part[0].p_size = disksize; 5779 un->un_vtoc.v_part[0].p_tag = V_BACKUP; 5780 un->un_vtoc.v_part[0].p_flag = V_UNMNT; 5781 5782 un->un_map[0].dkl_cylno = 0; 5783 un->un_map[0].dkl_nblk = disksize; 5784 un->un_offset[0] = 0; 5785 5786 } else { 5787 /* 5788 * Hard disks and removable media cartridges 5789 */ 5790 un->un_g.dkg_rpm = 5791 (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm; 5792 un->un_vtoc.v_sectorsz = un->un_sys_blocksize; 5793 5794 /* Add boot slice */ 5795 un->un_vtoc.v_part[8].p_start = 0; 5796 un->un_vtoc.v_part[8].p_size = phys_spc; 5797 un->un_vtoc.v_part[8].p_tag = V_BOOT; 5798 un->un_vtoc.v_part[8].p_flag = V_UNMNT; 5799 5800 un->un_map[8].dkl_cylno = 0; 5801 un->un_map[8].dkl_nblk = phys_spc; 5802 un->un_offset[8] = 0; 5803 } 5804 5805 un->un_g.dkg_apc = 0; 5806 un->un_vtoc.v_nparts = V_NUMPAR; 5807 5808 /* Add backup slice */ 5809 un->un_vtoc.v_part[2].p_start = 0; 5810 un->un_vtoc.v_part[2].p_size = disksize; 5811 un->un_vtoc.v_part[2].p_tag = V_BACKUP; 5812 un->un_vtoc.v_part[2].p_flag = V_UNMNT; 5813 5814 un->un_map[2].dkl_cylno = 0; 5815 un->un_map[2].dkl_nblk = disksize; 5816 un->un_offset[2] = 0; 5817 5818 (void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d" 5819 " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl, 5820 un->un_g.dkg_nhead, un->un_g.dkg_nsect); 5821 5822 #else 5823 #error "No VTOC format defined." 5824 #endif 5825 5826 un->un_g.dkg_read_reinstruct = 0; 5827 un->un_g.dkg_write_reinstruct = 0; 5828 5829 un->un_g.dkg_intrlv = 1; 5830 5831 un->un_vtoc.v_version = V_VERSION; 5832 un->un_vtoc.v_sanity = VTOC_SANE; 5833 5834 un->un_f_geometry_is_valid = TRUE; 5835 5836 SD_INFO(SD_LOG_COMMON, un, 5837 "sd_build_default_label: Default label created: " 5838 "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n", 5839 un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead, 5840 un->un_g.dkg_nsect, un->un_blockcount); 5841 } 5842 5843 5844 #if defined(_FIRMWARE_NEEDS_FDISK) 5845 /* 5846 * Max CHS values, as they are encoded into bytes, for 1022/254/63 5847 */ 5848 #define LBA_MAX_SECT (63 | ((1022 & 0x300) >> 2)) 5849 #define LBA_MAX_CYL (1022 & 0xFF) 5850 #define LBA_MAX_HEAD (254) 5851 5852 5853 /* 5854 * Function: sd_has_max_chs_vals 5855 * 5856 * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum. 5857 * 5858 * Arguments: fdp - ptr to CHS info 5859 * 5860 * Return Code: True or false 5861 * 5862 * Context: Any. 5863 */ 5864 5865 static int 5866 sd_has_max_chs_vals(struct ipart *fdp) 5867 { 5868 return ((fdp->begcyl == LBA_MAX_CYL) && 5869 (fdp->beghead == LBA_MAX_HEAD) && 5870 (fdp->begsect == LBA_MAX_SECT) && 5871 (fdp->endcyl == LBA_MAX_CYL) && 5872 (fdp->endhead == LBA_MAX_HEAD) && 5873 (fdp->endsect == LBA_MAX_SECT)); 5874 } 5875 #endif 5876 5877 5878 /* 5879 * Function: sd_inq_fill 5880 * 5881 * Description: Print a piece of inquiry data, cleaned up for non-printable 5882 * characters and stopping at the first space character after 5883 * the beginning of the passed string; 5884 * 5885 * Arguments: p - source string 5886 * l - maximum length to copy 5887 * s - destination string 5888 * 5889 * Context: Any. 5890 */ 5891 5892 static void 5893 sd_inq_fill(char *p, int l, char *s) 5894 { 5895 unsigned i = 0; 5896 char c; 5897 5898 while (i++ < l) { 5899 if ((c = *p++) < ' ' || c >= 0x7F) { 5900 c = '*'; 5901 } else if (i != 1 && c == ' ') { 5902 break; 5903 } 5904 *s++ = c; 5905 } 5906 *s++ = 0; 5907 } 5908 5909 5910 /* 5911 * Function: sd_register_devid 5912 * 5913 * Description: This routine will obtain the device id information from the 5914 * target, obtain the serial number, and register the device 5915 * id with the ddi framework. 5916 * 5917 * Arguments: devi - the system's dev_info_t for the device. 5918 * un - driver soft state (unit) structure 5919 * reservation_flag - indicates if a reservation conflict 5920 * occurred during attach 5921 * 5922 * Context: Kernel Thread 5923 */ 5924 static void 5925 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag) 5926 { 5927 int rval = 0; 5928 uchar_t *inq80 = NULL; 5929 size_t inq80_len = MAX_INQUIRY_SIZE; 5930 size_t inq80_resid = 0; 5931 uchar_t *inq83 = NULL; 5932 size_t inq83_len = MAX_INQUIRY_SIZE; 5933 size_t inq83_resid = 0; 5934 5935 ASSERT(un != NULL); 5936 ASSERT(mutex_owned(SD_MUTEX(un))); 5937 ASSERT((SD_DEVINFO(un)) == devi); 5938 5939 /* 5940 * This is the case of antiquated Sun disk drives that have the 5941 * FAB_DEVID property set in the disk_table. These drives 5942 * manage the devid's by storing them in last 2 available sectors 5943 * on the drive and have them fabricated by the ddi layer by calling 5944 * ddi_devid_init and passing the DEVID_FAB flag. 5945 */ 5946 if (un->un_f_opt_fab_devid == TRUE) { 5947 /* 5948 * Depending on EINVAL isn't reliable, since a reserved disk 5949 * may result in invalid geometry, so check to make sure a 5950 * reservation conflict did not occur during attach. 5951 */ 5952 if ((sd_get_devid(un) == EINVAL) && 5953 (reservation_flag != SD_TARGET_IS_RESERVED)) { 5954 /* 5955 * The devid is invalid AND there is no reservation 5956 * conflict. Fabricate a new devid. 5957 */ 5958 (void) sd_create_devid(un); 5959 } 5960 5961 /* Register the devid if it exists */ 5962 if (un->un_devid != NULL) { 5963 (void) ddi_devid_register(SD_DEVINFO(un), 5964 un->un_devid); 5965 SD_INFO(SD_LOG_ATTACH_DETACH, un, 5966 "sd_register_devid: Devid Fabricated\n"); 5967 } 5968 return; 5969 } 5970 5971 /* 5972 * We check the availibility of the World Wide Name (0x83) and Unit 5973 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using 5974 * un_vpd_page_mask from them, we decide which way to get the WWN. If 5975 * 0x83 is availible, that is the best choice. Our next choice is 5976 * 0x80. If neither are availible, we munge the devid from the device 5977 * vid/pid/serial # for Sun qualified disks, or use the ddi framework 5978 * to fabricate a devid for non-Sun qualified disks. 5979 */ 5980 if (sd_check_vpd_page_support(un) == 0) { 5981 /* collect page 80 data if available */ 5982 if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) { 5983 5984 mutex_exit(SD_MUTEX(un)); 5985 inq80 = kmem_zalloc(inq80_len, KM_SLEEP); 5986 rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len, 5987 0x01, 0x80, &inq80_resid); 5988 5989 if (rval != 0) { 5990 kmem_free(inq80, inq80_len); 5991 inq80 = NULL; 5992 inq80_len = 0; 5993 } 5994 mutex_enter(SD_MUTEX(un)); 5995 } 5996 5997 /* collect page 83 data if available */ 5998 if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) { 5999 mutex_exit(SD_MUTEX(un)); 6000 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 6001 rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len, 6002 0x01, 0x83, &inq83_resid); 6003 6004 if (rval != 0) { 6005 kmem_free(inq83, inq83_len); 6006 inq83 = NULL; 6007 inq83_len = 0; 6008 } 6009 mutex_enter(SD_MUTEX(un)); 6010 } 6011 } 6012 6013 /* encode best devid possible based on data available */ 6014 if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST, 6015 (char *)ddi_driver_name(SD_DEVINFO(un)), 6016 (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)), 6017 inq80, inq80_len - inq80_resid, inq83, inq83_len - 6018 inq83_resid, &un->un_devid) == DDI_SUCCESS) { 6019 6020 /* devid successfully encoded, register devid */ 6021 (void) ddi_devid_register(SD_DEVINFO(un), un->un_devid); 6022 6023 } else { 6024 /* 6025 * Unable to encode a devid based on data available. 6026 * This is not a Sun qualified disk. Older Sun disk 6027 * drives that have the SD_FAB_DEVID property 6028 * set in the disk_table and non Sun qualified 6029 * disks are treated in the same manner. These 6030 * drives manage the devid's by storing them in 6031 * last 2 available sectors on the drive and 6032 * have them fabricated by the ddi layer by 6033 * calling ddi_devid_init and passing the 6034 * DEVID_FAB flag. 6035 * Create a fabricate devid only if there's no 6036 * fabricate devid existed. 6037 */ 6038 if (sd_get_devid(un) == EINVAL) { 6039 (void) sd_create_devid(un); 6040 un->un_f_opt_fab_devid = TRUE; 6041 } 6042 6043 /* Register the devid if it exists */ 6044 if (un->un_devid != NULL) { 6045 (void) ddi_devid_register(SD_DEVINFO(un), 6046 un->un_devid); 6047 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6048 "sd_register_devid: devid fabricated using " 6049 "ddi framework\n"); 6050 } 6051 } 6052 6053 /* clean up resources */ 6054 if (inq80 != NULL) { 6055 kmem_free(inq80, inq80_len); 6056 } 6057 if (inq83 != NULL) { 6058 kmem_free(inq83, inq83_len); 6059 } 6060 } 6061 6062 static daddr_t 6063 sd_get_devid_block(struct sd_lun *un) 6064 { 6065 daddr_t spc, blk, head, cyl; 6066 6067 if (un->un_blockcount <= DK_MAX_BLOCKS) { 6068 /* this geometry doesn't allow us to write a devid */ 6069 if (un->un_g.dkg_acyl < 2) { 6070 return (-1); 6071 } 6072 6073 /* 6074 * Subtract 2 guarantees that the next to last cylinder 6075 * is used 6076 */ 6077 cyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl - 2; 6078 spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect; 6079 head = un->un_g.dkg_nhead - 1; 6080 blk = (cyl * (spc - un->un_g.dkg_apc)) + 6081 (head * un->un_g.dkg_nsect) + 1; 6082 } else { 6083 if (un->un_reserved != -1) { 6084 blk = un->un_map[un->un_reserved].dkl_cylno + 1; 6085 } else { 6086 return (-1); 6087 } 6088 } 6089 return (blk); 6090 } 6091 6092 /* 6093 * Function: sd_get_devid 6094 * 6095 * Description: This routine will return 0 if a valid device id has been 6096 * obtained from the target and stored in the soft state. If a 6097 * valid device id has not been previously read and stored, a 6098 * read attempt will be made. 6099 * 6100 * Arguments: un - driver soft state (unit) structure 6101 * 6102 * Return Code: 0 if we successfully get the device id 6103 * 6104 * Context: Kernel Thread 6105 */ 6106 6107 static int 6108 sd_get_devid(struct sd_lun *un) 6109 { 6110 struct dk_devid *dkdevid; 6111 ddi_devid_t tmpid; 6112 uint_t *ip; 6113 size_t sz; 6114 daddr_t blk; 6115 int status; 6116 int chksum; 6117 int i; 6118 size_t buffer_size; 6119 6120 ASSERT(un != NULL); 6121 ASSERT(mutex_owned(SD_MUTEX(un))); 6122 6123 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n", 6124 un); 6125 6126 if (un->un_devid != NULL) { 6127 return (0); 6128 } 6129 6130 blk = sd_get_devid_block(un); 6131 if (blk < 0) 6132 return (EINVAL); 6133 6134 /* 6135 * Read and verify device id, stored in the reserved cylinders at the 6136 * end of the disk. Backup label is on the odd sectors of the last 6137 * track of the last cylinder. Device id will be on track of the next 6138 * to last cylinder. 6139 */ 6140 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid)); 6141 mutex_exit(SD_MUTEX(un)); 6142 dkdevid = kmem_alloc(buffer_size, KM_SLEEP); 6143 status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk, 6144 SD_PATH_DIRECT); 6145 if (status != 0) { 6146 goto error; 6147 } 6148 6149 /* Validate the revision */ 6150 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 6151 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 6152 status = EINVAL; 6153 goto error; 6154 } 6155 6156 /* Calculate the checksum */ 6157 chksum = 0; 6158 ip = (uint_t *)dkdevid; 6159 for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int)); 6160 i++) { 6161 chksum ^= ip[i]; 6162 } 6163 6164 /* Compare the checksums */ 6165 if (DKD_GETCHKSUM(dkdevid) != chksum) { 6166 status = EINVAL; 6167 goto error; 6168 } 6169 6170 /* Validate the device id */ 6171 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 6172 status = EINVAL; 6173 goto error; 6174 } 6175 6176 /* 6177 * Store the device id in the driver soft state 6178 */ 6179 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 6180 tmpid = kmem_alloc(sz, KM_SLEEP); 6181 6182 mutex_enter(SD_MUTEX(un)); 6183 6184 un->un_devid = tmpid; 6185 bcopy(&dkdevid->dkd_devid, un->un_devid, sz); 6186 6187 kmem_free(dkdevid, buffer_size); 6188 6189 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un); 6190 6191 return (status); 6192 error: 6193 mutex_enter(SD_MUTEX(un)); 6194 kmem_free(dkdevid, buffer_size); 6195 return (status); 6196 } 6197 6198 6199 /* 6200 * Function: sd_create_devid 6201 * 6202 * Description: This routine will fabricate the device id and write it 6203 * to the disk. 6204 * 6205 * Arguments: un - driver soft state (unit) structure 6206 * 6207 * Return Code: value of the fabricated device id 6208 * 6209 * Context: Kernel Thread 6210 */ 6211 6212 static ddi_devid_t 6213 sd_create_devid(struct sd_lun *un) 6214 { 6215 ASSERT(un != NULL); 6216 6217 /* Fabricate the devid */ 6218 if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid) 6219 == DDI_FAILURE) { 6220 return (NULL); 6221 } 6222 6223 /* Write the devid to disk */ 6224 if (sd_write_deviceid(un) != 0) { 6225 ddi_devid_free(un->un_devid); 6226 un->un_devid = NULL; 6227 } 6228 6229 return (un->un_devid); 6230 } 6231 6232 6233 /* 6234 * Function: sd_write_deviceid 6235 * 6236 * Description: This routine will write the device id to the disk 6237 * reserved sector. 6238 * 6239 * Arguments: un - driver soft state (unit) structure 6240 * 6241 * Return Code: EINVAL 6242 * value returned by sd_send_scsi_cmd 6243 * 6244 * Context: Kernel Thread 6245 */ 6246 6247 static int 6248 sd_write_deviceid(struct sd_lun *un) 6249 { 6250 struct dk_devid *dkdevid; 6251 daddr_t blk; 6252 uint_t *ip, chksum; 6253 int status; 6254 int i; 6255 6256 ASSERT(mutex_owned(SD_MUTEX(un))); 6257 6258 blk = sd_get_devid_block(un); 6259 if (blk < 0) 6260 return (-1); 6261 mutex_exit(SD_MUTEX(un)); 6262 6263 /* Allocate the buffer */ 6264 dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP); 6265 6266 /* Fill in the revision */ 6267 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 6268 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 6269 6270 /* Copy in the device id */ 6271 mutex_enter(SD_MUTEX(un)); 6272 bcopy(un->un_devid, &dkdevid->dkd_devid, 6273 ddi_devid_sizeof(un->un_devid)); 6274 mutex_exit(SD_MUTEX(un)); 6275 6276 /* Calculate the checksum */ 6277 chksum = 0; 6278 ip = (uint_t *)dkdevid; 6279 for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int)); 6280 i++) { 6281 chksum ^= ip[i]; 6282 } 6283 6284 /* Fill-in checksum */ 6285 DKD_FORMCHKSUM(chksum, dkdevid); 6286 6287 /* Write the reserved sector */ 6288 status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk, 6289 SD_PATH_DIRECT); 6290 6291 kmem_free(dkdevid, un->un_sys_blocksize); 6292 6293 mutex_enter(SD_MUTEX(un)); 6294 return (status); 6295 } 6296 6297 6298 /* 6299 * Function: sd_check_vpd_page_support 6300 * 6301 * Description: This routine sends an inquiry command with the EVPD bit set and 6302 * a page code of 0x00 to the device. It is used to determine which 6303 * vital product pages are availible to find the devid. We are 6304 * looking for pages 0x83 or 0x80. If we return a negative 1, the 6305 * device does not support that command. 6306 * 6307 * Arguments: un - driver soft state (unit) structure 6308 * 6309 * Return Code: 0 - success 6310 * 1 - check condition 6311 * 6312 * Context: This routine can sleep. 6313 */ 6314 6315 static int 6316 sd_check_vpd_page_support(struct sd_lun *un) 6317 { 6318 uchar_t *page_list = NULL; 6319 uchar_t page_length = 0xff; /* Use max possible length */ 6320 uchar_t evpd = 0x01; /* Set the EVPD bit */ 6321 uchar_t page_code = 0x00; /* Supported VPD Pages */ 6322 int rval = 0; 6323 int counter; 6324 6325 ASSERT(un != NULL); 6326 ASSERT(mutex_owned(SD_MUTEX(un))); 6327 6328 mutex_exit(SD_MUTEX(un)); 6329 6330 /* 6331 * We'll set the page length to the maximum to save figuring it out 6332 * with an additional call. 6333 */ 6334 page_list = kmem_zalloc(page_length, KM_SLEEP); 6335 6336 rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd, 6337 page_code, NULL); 6338 6339 mutex_enter(SD_MUTEX(un)); 6340 6341 /* 6342 * Now we must validate that the device accepted the command, as some 6343 * drives do not support it. If the drive does support it, we will 6344 * return 0, and the supported pages will be in un_vpd_page_mask. If 6345 * not, we return -1. 6346 */ 6347 if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) { 6348 /* Loop to find one of the 2 pages we need */ 6349 counter = 4; /* Supported pages start at byte 4, with 0x00 */ 6350 6351 /* 6352 * Pages are returned in ascending order, and 0x83 is what we 6353 * are hoping for. 6354 */ 6355 while ((page_list[counter] <= 0x83) && 6356 (counter <= (page_list[VPD_PAGE_LENGTH] + 6357 VPD_HEAD_OFFSET))) { 6358 /* 6359 * Add 3 because page_list[3] is the number of 6360 * pages minus 3 6361 */ 6362 6363 switch (page_list[counter]) { 6364 case 0x00: 6365 un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG; 6366 break; 6367 case 0x80: 6368 un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG; 6369 break; 6370 case 0x81: 6371 un->un_vpd_page_mask |= SD_VPD_OPERATING_PG; 6372 break; 6373 case 0x82: 6374 un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG; 6375 break; 6376 case 0x83: 6377 un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG; 6378 break; 6379 } 6380 counter++; 6381 } 6382 6383 } else { 6384 rval = -1; 6385 6386 SD_INFO(SD_LOG_ATTACH_DETACH, un, 6387 "sd_check_vpd_page_support: This drive does not implement " 6388 "VPD pages.\n"); 6389 } 6390 6391 kmem_free(page_list, page_length); 6392 6393 return (rval); 6394 } 6395 6396 6397 /* 6398 * Function: sd_setup_pm 6399 * 6400 * Description: Initialize Power Management on the device 6401 * 6402 * Context: Kernel Thread 6403 */ 6404 6405 static void 6406 sd_setup_pm(struct sd_lun *un, dev_info_t *devi) 6407 { 6408 uint_t log_page_size; 6409 uchar_t *log_page_data; 6410 int rval; 6411 6412 /* 6413 * Since we are called from attach, holding a mutex for 6414 * un is unnecessary. Because some of the routines called 6415 * from here require SD_MUTEX to not be held, assert this 6416 * right up front. 6417 */ 6418 ASSERT(!mutex_owned(SD_MUTEX(un))); 6419 /* 6420 * Since the sd device does not have the 'reg' property, 6421 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries. 6422 * The following code is to tell cpr that this device 6423 * DOES need to be suspended and resumed. 6424 */ 6425 (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, 6426 "pm-hardware-state", "needs-suspend-resume"); 6427 6428 /* 6429 * This complies with the new power management framework 6430 * for certain desktop machines. Create the pm_components 6431 * property as a string array property. 6432 */ 6433 if (un->un_f_pm_supported) { 6434 /* 6435 * not all devices have a motor, try it first. 6436 * some devices may return ILLEGAL REQUEST, some 6437 * will hang 6438 * The following START_STOP_UNIT is used to check if target 6439 * device has a motor. 6440 */ 6441 un->un_f_start_stop_supported = TRUE; 6442 if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, 6443 SD_PATH_DIRECT) != 0) { 6444 un->un_f_start_stop_supported = FALSE; 6445 } 6446 6447 /* 6448 * create pm properties anyways otherwise the parent can't 6449 * go to sleep 6450 */ 6451 (void) sd_create_pm_components(devi, un); 6452 un->un_f_pm_is_enabled = TRUE; 6453 return; 6454 } 6455 6456 if (!un->un_f_log_sense_supported) { 6457 un->un_power_level = SD_SPINDLE_ON; 6458 un->un_f_pm_is_enabled = FALSE; 6459 return; 6460 } 6461 6462 rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE); 6463 6464 #ifdef SDDEBUG 6465 if (sd_force_pm_supported) { 6466 /* Force a successful result */ 6467 rval = 1; 6468 } 6469 #endif 6470 6471 /* 6472 * If the start-stop cycle counter log page is not supported 6473 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0) 6474 * then we should not create the pm_components property. 6475 */ 6476 if (rval == -1) { 6477 /* 6478 * Error. 6479 * Reading log sense failed, most likely this is 6480 * an older drive that does not support log sense. 6481 * If this fails auto-pm is not supported. 6482 */ 6483 un->un_power_level = SD_SPINDLE_ON; 6484 un->un_f_pm_is_enabled = FALSE; 6485 6486 } else if (rval == 0) { 6487 /* 6488 * Page not found. 6489 * The start stop cycle counter is implemented as page 6490 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For 6491 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE). 6492 */ 6493 if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) { 6494 /* 6495 * Page found, use this one. 6496 */ 6497 un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE; 6498 un->un_f_pm_is_enabled = TRUE; 6499 } else { 6500 /* 6501 * Error or page not found. 6502 * auto-pm is not supported for this device. 6503 */ 6504 un->un_power_level = SD_SPINDLE_ON; 6505 un->un_f_pm_is_enabled = FALSE; 6506 } 6507 } else { 6508 /* 6509 * Page found, use it. 6510 */ 6511 un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE; 6512 un->un_f_pm_is_enabled = TRUE; 6513 } 6514 6515 6516 if (un->un_f_pm_is_enabled == TRUE) { 6517 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 6518 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 6519 6520 rval = sd_send_scsi_LOG_SENSE(un, log_page_data, 6521 log_page_size, un->un_start_stop_cycle_page, 6522 0x01, 0, SD_PATH_DIRECT); 6523 #ifdef SDDEBUG 6524 if (sd_force_pm_supported) { 6525 /* Force a successful result */ 6526 rval = 0; 6527 } 6528 #endif 6529 6530 /* 6531 * If the Log sense for Page( Start/stop cycle counter page) 6532 * succeeds, then power managment is supported and we can 6533 * enable auto-pm. 6534 */ 6535 if (rval == 0) { 6536 (void) sd_create_pm_components(devi, un); 6537 } else { 6538 un->un_power_level = SD_SPINDLE_ON; 6539 un->un_f_pm_is_enabled = FALSE; 6540 } 6541 6542 kmem_free(log_page_data, log_page_size); 6543 } 6544 } 6545 6546 6547 /* 6548 * Function: sd_create_pm_components 6549 * 6550 * Description: Initialize PM property. 6551 * 6552 * Context: Kernel thread context 6553 */ 6554 6555 static void 6556 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un) 6557 { 6558 char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL }; 6559 6560 ASSERT(!mutex_owned(SD_MUTEX(un))); 6561 6562 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi, 6563 "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) { 6564 /* 6565 * When components are initially created they are idle, 6566 * power up any non-removables. 6567 * Note: the return value of pm_raise_power can't be used 6568 * for determining if PM should be enabled for this device. 6569 * Even if you check the return values and remove this 6570 * property created above, the PM framework will not honor the 6571 * change after the first call to pm_raise_power. Hence, 6572 * removal of that property does not help if pm_raise_power 6573 * fails. In the case of removable media, the start/stop 6574 * will fail if the media is not present. 6575 */ 6576 if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0, 6577 SD_SPINDLE_ON) == DDI_SUCCESS)) { 6578 mutex_enter(SD_MUTEX(un)); 6579 un->un_power_level = SD_SPINDLE_ON; 6580 mutex_enter(&un->un_pm_mutex); 6581 /* Set to on and not busy. */ 6582 un->un_pm_count = 0; 6583 } else { 6584 mutex_enter(SD_MUTEX(un)); 6585 un->un_power_level = SD_SPINDLE_OFF; 6586 mutex_enter(&un->un_pm_mutex); 6587 /* Set to off. */ 6588 un->un_pm_count = -1; 6589 } 6590 mutex_exit(&un->un_pm_mutex); 6591 mutex_exit(SD_MUTEX(un)); 6592 } else { 6593 un->un_power_level = SD_SPINDLE_ON; 6594 un->un_f_pm_is_enabled = FALSE; 6595 } 6596 } 6597 6598 6599 /* 6600 * Function: sd_ddi_suspend 6601 * 6602 * Description: Performs system power-down operations. This includes 6603 * setting the drive state to indicate its suspended so 6604 * that no new commands will be accepted. Also, wait for 6605 * all commands that are in transport or queued to a timer 6606 * for retry to complete. All timeout threads are cancelled. 6607 * 6608 * Return Code: DDI_FAILURE or DDI_SUCCESS 6609 * 6610 * Context: Kernel thread context 6611 */ 6612 6613 static int 6614 sd_ddi_suspend(dev_info_t *devi) 6615 { 6616 struct sd_lun *un; 6617 clock_t wait_cmds_complete; 6618 6619 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6620 if (un == NULL) { 6621 return (DDI_FAILURE); 6622 } 6623 6624 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n"); 6625 6626 mutex_enter(SD_MUTEX(un)); 6627 6628 /* Return success if the device is already suspended. */ 6629 if (un->un_state == SD_STATE_SUSPENDED) { 6630 mutex_exit(SD_MUTEX(un)); 6631 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6632 "device already suspended, exiting\n"); 6633 return (DDI_SUCCESS); 6634 } 6635 6636 /* Return failure if the device is being used by HA */ 6637 if (un->un_resvd_status & 6638 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) { 6639 mutex_exit(SD_MUTEX(un)); 6640 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6641 "device in use by HA, exiting\n"); 6642 return (DDI_FAILURE); 6643 } 6644 6645 /* 6646 * Return failure if the device is in a resource wait 6647 * or power changing state. 6648 */ 6649 if ((un->un_state == SD_STATE_RWAIT) || 6650 (un->un_state == SD_STATE_PM_CHANGING)) { 6651 mutex_exit(SD_MUTEX(un)); 6652 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: " 6653 "device in resource wait state, exiting\n"); 6654 return (DDI_FAILURE); 6655 } 6656 6657 6658 un->un_save_state = un->un_last_state; 6659 New_state(un, SD_STATE_SUSPENDED); 6660 6661 /* 6662 * Wait for all commands that are in transport or queued to a timer 6663 * for retry to complete. 6664 * 6665 * While waiting, no new commands will be accepted or sent because of 6666 * the new state we set above. 6667 * 6668 * Wait till current operation has completed. If we are in the resource 6669 * wait state (with an intr outstanding) then we need to wait till the 6670 * intr completes and starts the next cmd. We want to wait for 6671 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND. 6672 */ 6673 wait_cmds_complete = ddi_get_lbolt() + 6674 (sd_wait_cmds_complete * drv_usectohz(1000000)); 6675 6676 while (un->un_ncmds_in_transport != 0) { 6677 /* 6678 * Fail if commands do not finish in the specified time. 6679 */ 6680 if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un), 6681 wait_cmds_complete) == -1) { 6682 /* 6683 * Undo the state changes made above. Everything 6684 * must go back to it's original value. 6685 */ 6686 Restore_state(un); 6687 un->un_last_state = un->un_save_state; 6688 /* Wake up any threads that might be waiting. */ 6689 cv_broadcast(&un->un_suspend_cv); 6690 mutex_exit(SD_MUTEX(un)); 6691 SD_ERROR(SD_LOG_IO_PM, un, 6692 "sd_ddi_suspend: failed due to outstanding cmds\n"); 6693 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n"); 6694 return (DDI_FAILURE); 6695 } 6696 } 6697 6698 /* 6699 * Cancel SCSI watch thread and timeouts, if any are active 6700 */ 6701 6702 if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) { 6703 opaque_t temp_token = un->un_swr_token; 6704 mutex_exit(SD_MUTEX(un)); 6705 scsi_watch_suspend(temp_token); 6706 mutex_enter(SD_MUTEX(un)); 6707 } 6708 6709 if (un->un_reset_throttle_timeid != NULL) { 6710 timeout_id_t temp_id = un->un_reset_throttle_timeid; 6711 un->un_reset_throttle_timeid = NULL; 6712 mutex_exit(SD_MUTEX(un)); 6713 (void) untimeout(temp_id); 6714 mutex_enter(SD_MUTEX(un)); 6715 } 6716 6717 if (un->un_dcvb_timeid != NULL) { 6718 timeout_id_t temp_id = un->un_dcvb_timeid; 6719 un->un_dcvb_timeid = NULL; 6720 mutex_exit(SD_MUTEX(un)); 6721 (void) untimeout(temp_id); 6722 mutex_enter(SD_MUTEX(un)); 6723 } 6724 6725 mutex_enter(&un->un_pm_mutex); 6726 if (un->un_pm_timeid != NULL) { 6727 timeout_id_t temp_id = un->un_pm_timeid; 6728 un->un_pm_timeid = NULL; 6729 mutex_exit(&un->un_pm_mutex); 6730 mutex_exit(SD_MUTEX(un)); 6731 (void) untimeout(temp_id); 6732 mutex_enter(SD_MUTEX(un)); 6733 } else { 6734 mutex_exit(&un->un_pm_mutex); 6735 } 6736 6737 if (un->un_retry_timeid != NULL) { 6738 timeout_id_t temp_id = un->un_retry_timeid; 6739 un->un_retry_timeid = NULL; 6740 mutex_exit(SD_MUTEX(un)); 6741 (void) untimeout(temp_id); 6742 mutex_enter(SD_MUTEX(un)); 6743 } 6744 6745 if (un->un_direct_priority_timeid != NULL) { 6746 timeout_id_t temp_id = un->un_direct_priority_timeid; 6747 un->un_direct_priority_timeid = NULL; 6748 mutex_exit(SD_MUTEX(un)); 6749 (void) untimeout(temp_id); 6750 mutex_enter(SD_MUTEX(un)); 6751 } 6752 6753 if (un->un_f_is_fibre == TRUE) { 6754 /* 6755 * Remove callbacks for insert and remove events 6756 */ 6757 if (un->un_insert_event != NULL) { 6758 mutex_exit(SD_MUTEX(un)); 6759 (void) ddi_remove_event_handler(un->un_insert_cb_id); 6760 mutex_enter(SD_MUTEX(un)); 6761 un->un_insert_event = NULL; 6762 } 6763 6764 if (un->un_remove_event != NULL) { 6765 mutex_exit(SD_MUTEX(un)); 6766 (void) ddi_remove_event_handler(un->un_remove_cb_id); 6767 mutex_enter(SD_MUTEX(un)); 6768 un->un_remove_event = NULL; 6769 } 6770 } 6771 6772 mutex_exit(SD_MUTEX(un)); 6773 6774 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n"); 6775 6776 return (DDI_SUCCESS); 6777 } 6778 6779 6780 /* 6781 * Function: sd_ddi_pm_suspend 6782 * 6783 * Description: Set the drive state to low power. 6784 * Someone else is required to actually change the drive 6785 * power level. 6786 * 6787 * Arguments: un - driver soft state (unit) structure 6788 * 6789 * Return Code: DDI_FAILURE or DDI_SUCCESS 6790 * 6791 * Context: Kernel thread context 6792 */ 6793 6794 static int 6795 sd_ddi_pm_suspend(struct sd_lun *un) 6796 { 6797 ASSERT(un != NULL); 6798 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n"); 6799 6800 ASSERT(!mutex_owned(SD_MUTEX(un))); 6801 mutex_enter(SD_MUTEX(un)); 6802 6803 /* 6804 * Exit if power management is not enabled for this device, or if 6805 * the device is being used by HA. 6806 */ 6807 if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status & 6808 (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) { 6809 mutex_exit(SD_MUTEX(un)); 6810 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n"); 6811 return (DDI_SUCCESS); 6812 } 6813 6814 SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n", 6815 un->un_ncmds_in_driver); 6816 6817 /* 6818 * See if the device is not busy, ie.: 6819 * - we have no commands in the driver for this device 6820 * - not waiting for resources 6821 */ 6822 if ((un->un_ncmds_in_driver == 0) && 6823 (un->un_state != SD_STATE_RWAIT)) { 6824 /* 6825 * The device is not busy, so it is OK to go to low power state. 6826 * Indicate low power, but rely on someone else to actually 6827 * change it. 6828 */ 6829 mutex_enter(&un->un_pm_mutex); 6830 un->un_pm_count = -1; 6831 mutex_exit(&un->un_pm_mutex); 6832 un->un_power_level = SD_SPINDLE_OFF; 6833 } 6834 6835 mutex_exit(SD_MUTEX(un)); 6836 6837 SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n"); 6838 6839 return (DDI_SUCCESS); 6840 } 6841 6842 6843 /* 6844 * Function: sd_ddi_resume 6845 * 6846 * Description: Performs system power-up operations.. 6847 * 6848 * Return Code: DDI_SUCCESS 6849 * DDI_FAILURE 6850 * 6851 * Context: Kernel thread context 6852 */ 6853 6854 static int 6855 sd_ddi_resume(dev_info_t *devi) 6856 { 6857 struct sd_lun *un; 6858 6859 un = ddi_get_soft_state(sd_state, ddi_get_instance(devi)); 6860 if (un == NULL) { 6861 return (DDI_FAILURE); 6862 } 6863 6864 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n"); 6865 6866 mutex_enter(SD_MUTEX(un)); 6867 Restore_state(un); 6868 6869 /* 6870 * Restore the state which was saved to give the 6871 * the right state in un_last_state 6872 */ 6873 un->un_last_state = un->un_save_state; 6874 /* 6875 * Note: throttle comes back at full. 6876 * Also note: this MUST be done before calling pm_raise_power 6877 * otherwise the system can get hung in biowait. The scenario where 6878 * this'll happen is under cpr suspend. Writing of the system 6879 * state goes through sddump, which writes 0 to un_throttle. If 6880 * writing the system state then fails, example if the partition is 6881 * too small, then cpr attempts a resume. If throttle isn't restored 6882 * from the saved value until after calling pm_raise_power then 6883 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs 6884 * in biowait. 6885 */ 6886 un->un_throttle = un->un_saved_throttle; 6887 6888 /* 6889 * The chance of failure is very rare as the only command done in power 6890 * entry point is START command when you transition from 0->1 or 6891 * unknown->1. Put it to SPINDLE ON state irrespective of the state at 6892 * which suspend was done. Ignore the return value as the resume should 6893 * not be failed. In the case of removable media the media need not be 6894 * inserted and hence there is a chance that raise power will fail with 6895 * media not present. 6896 */ 6897 if (un->un_f_attach_spinup) { 6898 mutex_exit(SD_MUTEX(un)); 6899 (void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON); 6900 mutex_enter(SD_MUTEX(un)); 6901 } 6902 6903 /* 6904 * Don't broadcast to the suspend cv and therefore possibly 6905 * start I/O until after power has been restored. 6906 */ 6907 cv_broadcast(&un->un_suspend_cv); 6908 cv_broadcast(&un->un_state_cv); 6909 6910 /* restart thread */ 6911 if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) { 6912 scsi_watch_resume(un->un_swr_token); 6913 } 6914 6915 #if (defined(__fibre)) 6916 if (un->un_f_is_fibre == TRUE) { 6917 /* 6918 * Add callbacks for insert and remove events 6919 */ 6920 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 6921 sd_init_event_callbacks(un); 6922 } 6923 } 6924 #endif 6925 6926 /* 6927 * Transport any pending commands to the target. 6928 * 6929 * If this is a low-activity device commands in queue will have to wait 6930 * until new commands come in, which may take awhile. Also, we 6931 * specifically don't check un_ncmds_in_transport because we know that 6932 * there really are no commands in progress after the unit was 6933 * suspended and we could have reached the throttle level, been 6934 * suspended, and have no new commands coming in for awhile. Highly 6935 * unlikely, but so is the low-activity disk scenario. 6936 */ 6937 ddi_xbuf_dispatch(un->un_xbuf_attr); 6938 6939 sd_start_cmds(un, NULL); 6940 mutex_exit(SD_MUTEX(un)); 6941 6942 SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n"); 6943 6944 return (DDI_SUCCESS); 6945 } 6946 6947 6948 /* 6949 * Function: sd_ddi_pm_resume 6950 * 6951 * Description: Set the drive state to powered on. 6952 * Someone else is required to actually change the drive 6953 * power level. 6954 * 6955 * Arguments: un - driver soft state (unit) structure 6956 * 6957 * Return Code: DDI_SUCCESS 6958 * 6959 * Context: Kernel thread context 6960 */ 6961 6962 static int 6963 sd_ddi_pm_resume(struct sd_lun *un) 6964 { 6965 ASSERT(un != NULL); 6966 6967 ASSERT(!mutex_owned(SD_MUTEX(un))); 6968 mutex_enter(SD_MUTEX(un)); 6969 un->un_power_level = SD_SPINDLE_ON; 6970 6971 ASSERT(!mutex_owned(&un->un_pm_mutex)); 6972 mutex_enter(&un->un_pm_mutex); 6973 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 6974 un->un_pm_count++; 6975 ASSERT(un->un_pm_count == 0); 6976 /* 6977 * Note: no longer do the cv_broadcast on un_suspend_cv. The 6978 * un_suspend_cv is for a system resume, not a power management 6979 * device resume. (4297749) 6980 * cv_broadcast(&un->un_suspend_cv); 6981 */ 6982 } 6983 mutex_exit(&un->un_pm_mutex); 6984 mutex_exit(SD_MUTEX(un)); 6985 6986 return (DDI_SUCCESS); 6987 } 6988 6989 6990 /* 6991 * Function: sd_pm_idletimeout_handler 6992 * 6993 * Description: A timer routine that's active only while a device is busy. 6994 * The purpose is to extend slightly the pm framework's busy 6995 * view of the device to prevent busy/idle thrashing for 6996 * back-to-back commands. Do this by comparing the current time 6997 * to the time at which the last command completed and when the 6998 * difference is greater than sd_pm_idletime, call 6999 * pm_idle_component. In addition to indicating idle to the pm 7000 * framework, update the chain type to again use the internal pm 7001 * layers of the driver. 7002 * 7003 * Arguments: arg - driver soft state (unit) structure 7004 * 7005 * Context: Executes in a timeout(9F) thread context 7006 */ 7007 7008 static void 7009 sd_pm_idletimeout_handler(void *arg) 7010 { 7011 struct sd_lun *un = arg; 7012 7013 time_t now; 7014 7015 mutex_enter(&sd_detach_mutex); 7016 if (un->un_detach_count != 0) { 7017 /* Abort if the instance is detaching */ 7018 mutex_exit(&sd_detach_mutex); 7019 return; 7020 } 7021 mutex_exit(&sd_detach_mutex); 7022 7023 now = ddi_get_time(); 7024 /* 7025 * Grab both mutexes, in the proper order, since we're accessing 7026 * both PM and softstate variables. 7027 */ 7028 mutex_enter(SD_MUTEX(un)); 7029 mutex_enter(&un->un_pm_mutex); 7030 if (((now - un->un_pm_idle_time) > sd_pm_idletime) && 7031 (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) { 7032 /* 7033 * Update the chain types. 7034 * This takes affect on the next new command received. 7035 */ 7036 if (un->un_f_non_devbsize_supported) { 7037 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 7038 } else { 7039 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 7040 } 7041 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 7042 7043 SD_TRACE(SD_LOG_IO_PM, un, 7044 "sd_pm_idletimeout_handler: idling device\n"); 7045 (void) pm_idle_component(SD_DEVINFO(un), 0); 7046 un->un_pm_idle_timeid = NULL; 7047 } else { 7048 un->un_pm_idle_timeid = 7049 timeout(sd_pm_idletimeout_handler, un, 7050 (drv_usectohz((clock_t)300000))); /* 300 ms. */ 7051 } 7052 mutex_exit(&un->un_pm_mutex); 7053 mutex_exit(SD_MUTEX(un)); 7054 } 7055 7056 7057 /* 7058 * Function: sd_pm_timeout_handler 7059 * 7060 * Description: Callback to tell framework we are idle. 7061 * 7062 * Context: timeout(9f) thread context. 7063 */ 7064 7065 static void 7066 sd_pm_timeout_handler(void *arg) 7067 { 7068 struct sd_lun *un = arg; 7069 7070 (void) pm_idle_component(SD_DEVINFO(un), 0); 7071 mutex_enter(&un->un_pm_mutex); 7072 un->un_pm_timeid = NULL; 7073 mutex_exit(&un->un_pm_mutex); 7074 } 7075 7076 7077 /* 7078 * Function: sdpower 7079 * 7080 * Description: PM entry point. 7081 * 7082 * Return Code: DDI_SUCCESS 7083 * DDI_FAILURE 7084 * 7085 * Context: Kernel thread context 7086 */ 7087 7088 static int 7089 sdpower(dev_info_t *devi, int component, int level) 7090 { 7091 struct sd_lun *un; 7092 int instance; 7093 int rval = DDI_SUCCESS; 7094 uint_t i, log_page_size, maxcycles, ncycles; 7095 uchar_t *log_page_data; 7096 int log_sense_page; 7097 int medium_present; 7098 time_t intvlp; 7099 dev_t dev; 7100 struct pm_trans_data sd_pm_tran_data; 7101 uchar_t save_state; 7102 int sval; 7103 uchar_t state_before_pm; 7104 int got_semaphore_here; 7105 7106 instance = ddi_get_instance(devi); 7107 7108 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 7109 (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) || 7110 component != 0) { 7111 return (DDI_FAILURE); 7112 } 7113 7114 dev = sd_make_device(SD_DEVINFO(un)); 7115 7116 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level); 7117 7118 /* 7119 * Must synchronize power down with close. 7120 * Attempt to decrement/acquire the open/close semaphore, 7121 * but do NOT wait on it. If it's not greater than zero, 7122 * ie. it can't be decremented without waiting, then 7123 * someone else, either open or close, already has it 7124 * and the try returns 0. Use that knowledge here to determine 7125 * if it's OK to change the device power level. 7126 * Also, only increment it on exit if it was decremented, ie. gotten, 7127 * here. 7128 */ 7129 got_semaphore_here = sema_tryp(&un->un_semoclose); 7130 7131 mutex_enter(SD_MUTEX(un)); 7132 7133 SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n", 7134 un->un_ncmds_in_driver); 7135 7136 /* 7137 * If un_ncmds_in_driver is non-zero it indicates commands are 7138 * already being processed in the driver, or if the semaphore was 7139 * not gotten here it indicates an open or close is being processed. 7140 * At the same time somebody is requesting to go low power which 7141 * can't happen, therefore we need to return failure. 7142 */ 7143 if ((level == SD_SPINDLE_OFF) && 7144 ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) { 7145 mutex_exit(SD_MUTEX(un)); 7146 7147 if (got_semaphore_here != 0) { 7148 sema_v(&un->un_semoclose); 7149 } 7150 SD_TRACE(SD_LOG_IO_PM, un, 7151 "sdpower: exit, device has queued cmds.\n"); 7152 return (DDI_FAILURE); 7153 } 7154 7155 /* 7156 * if it is OFFLINE that means the disk is completely dead 7157 * in our case we have to put the disk in on or off by sending commands 7158 * Of course that will fail anyway so return back here. 7159 * 7160 * Power changes to a device that's OFFLINE or SUSPENDED 7161 * are not allowed. 7162 */ 7163 if ((un->un_state == SD_STATE_OFFLINE) || 7164 (un->un_state == SD_STATE_SUSPENDED)) { 7165 mutex_exit(SD_MUTEX(un)); 7166 7167 if (got_semaphore_here != 0) { 7168 sema_v(&un->un_semoclose); 7169 } 7170 SD_TRACE(SD_LOG_IO_PM, un, 7171 "sdpower: exit, device is off-line.\n"); 7172 return (DDI_FAILURE); 7173 } 7174 7175 /* 7176 * Change the device's state to indicate it's power level 7177 * is being changed. Do this to prevent a power off in the 7178 * middle of commands, which is especially bad on devices 7179 * that are really powered off instead of just spun down. 7180 */ 7181 state_before_pm = un->un_state; 7182 un->un_state = SD_STATE_PM_CHANGING; 7183 7184 mutex_exit(SD_MUTEX(un)); 7185 7186 /* 7187 * If "pm-capable" property is set to TRUE by HBA drivers, 7188 * bypass the following checking, otherwise, check the log 7189 * sense information for this device 7190 */ 7191 if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) { 7192 /* 7193 * Get the log sense information to understand whether the 7194 * the powercycle counts have gone beyond the threshhold. 7195 */ 7196 log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE; 7197 log_page_data = kmem_zalloc(log_page_size, KM_SLEEP); 7198 7199 mutex_enter(SD_MUTEX(un)); 7200 log_sense_page = un->un_start_stop_cycle_page; 7201 mutex_exit(SD_MUTEX(un)); 7202 7203 rval = sd_send_scsi_LOG_SENSE(un, log_page_data, 7204 log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT); 7205 #ifdef SDDEBUG 7206 if (sd_force_pm_supported) { 7207 /* Force a successful result */ 7208 rval = 0; 7209 } 7210 #endif 7211 if (rval != 0) { 7212 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 7213 "Log Sense Failed\n"); 7214 kmem_free(log_page_data, log_page_size); 7215 /* Cannot support power management on those drives */ 7216 7217 if (got_semaphore_here != 0) { 7218 sema_v(&un->un_semoclose); 7219 } 7220 /* 7221 * On exit put the state back to it's original value 7222 * and broadcast to anyone waiting for the power 7223 * change completion. 7224 */ 7225 mutex_enter(SD_MUTEX(un)); 7226 un->un_state = state_before_pm; 7227 cv_broadcast(&un->un_suspend_cv); 7228 mutex_exit(SD_MUTEX(un)); 7229 SD_TRACE(SD_LOG_IO_PM, un, 7230 "sdpower: exit, Log Sense Failed.\n"); 7231 return (DDI_FAILURE); 7232 } 7233 7234 /* 7235 * From the page data - Convert the essential information to 7236 * pm_trans_data 7237 */ 7238 maxcycles = 7239 (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) | 7240 (log_page_data[0x1E] << 8) | log_page_data[0x1F]; 7241 7242 sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles; 7243 7244 ncycles = 7245 (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) | 7246 (log_page_data[0x26] << 8) | log_page_data[0x27]; 7247 7248 sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles; 7249 7250 for (i = 0; i < DC_SCSI_MFR_LEN; i++) { 7251 sd_pm_tran_data.un.scsi_cycles.svc_date[i] = 7252 log_page_data[8+i]; 7253 } 7254 7255 kmem_free(log_page_data, log_page_size); 7256 7257 /* 7258 * Call pm_trans_check routine to get the Ok from 7259 * the global policy 7260 */ 7261 7262 sd_pm_tran_data.format = DC_SCSI_FORMAT; 7263 sd_pm_tran_data.un.scsi_cycles.flag = 0; 7264 7265 rval = pm_trans_check(&sd_pm_tran_data, &intvlp); 7266 #ifdef SDDEBUG 7267 if (sd_force_pm_supported) { 7268 /* Force a successful result */ 7269 rval = 1; 7270 } 7271 #endif 7272 switch (rval) { 7273 case 0: 7274 /* 7275 * Not Ok to Power cycle or error in parameters passed 7276 * Would have given the advised time to consider power 7277 * cycle. Based on the new intvlp parameter we are 7278 * supposed to pretend we are busy so that pm framework 7279 * will never call our power entry point. Because of 7280 * that install a timeout handler and wait for the 7281 * recommended time to elapse so that power management 7282 * can be effective again. 7283 * 7284 * To effect this behavior, call pm_busy_component to 7285 * indicate to the framework this device is busy. 7286 * By not adjusting un_pm_count the rest of PM in 7287 * the driver will function normally, and independant 7288 * of this but because the framework is told the device 7289 * is busy it won't attempt powering down until it gets 7290 * a matching idle. The timeout handler sends this. 7291 * Note: sd_pm_entry can't be called here to do this 7292 * because sdpower may have been called as a result 7293 * of a call to pm_raise_power from within sd_pm_entry. 7294 * 7295 * If a timeout handler is already active then 7296 * don't install another. 7297 */ 7298 mutex_enter(&un->un_pm_mutex); 7299 if (un->un_pm_timeid == NULL) { 7300 un->un_pm_timeid = 7301 timeout(sd_pm_timeout_handler, 7302 un, intvlp * drv_usectohz(1000000)); 7303 mutex_exit(&un->un_pm_mutex); 7304 (void) pm_busy_component(SD_DEVINFO(un), 0); 7305 } else { 7306 mutex_exit(&un->un_pm_mutex); 7307 } 7308 if (got_semaphore_here != 0) { 7309 sema_v(&un->un_semoclose); 7310 } 7311 /* 7312 * On exit put the state back to it's original value 7313 * and broadcast to anyone waiting for the power 7314 * change completion. 7315 */ 7316 mutex_enter(SD_MUTEX(un)); 7317 un->un_state = state_before_pm; 7318 cv_broadcast(&un->un_suspend_cv); 7319 mutex_exit(SD_MUTEX(un)); 7320 7321 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, " 7322 "trans check Failed, not ok to power cycle.\n"); 7323 return (DDI_FAILURE); 7324 7325 case -1: 7326 if (got_semaphore_here != 0) { 7327 sema_v(&un->un_semoclose); 7328 } 7329 /* 7330 * On exit put the state back to it's original value 7331 * and broadcast to anyone waiting for the power 7332 * change completion. 7333 */ 7334 mutex_enter(SD_MUTEX(un)); 7335 un->un_state = state_before_pm; 7336 cv_broadcast(&un->un_suspend_cv); 7337 mutex_exit(SD_MUTEX(un)); 7338 SD_TRACE(SD_LOG_IO_PM, un, 7339 "sdpower: exit, trans check command Failed.\n"); 7340 return (DDI_FAILURE); 7341 } 7342 } 7343 7344 if (level == SD_SPINDLE_OFF) { 7345 /* 7346 * Save the last state... if the STOP FAILS we need it 7347 * for restoring 7348 */ 7349 mutex_enter(SD_MUTEX(un)); 7350 save_state = un->un_last_state; 7351 /* 7352 * There must not be any cmds. getting processed 7353 * in the driver when we get here. Power to the 7354 * device is potentially going off. 7355 */ 7356 ASSERT(un->un_ncmds_in_driver == 0); 7357 mutex_exit(SD_MUTEX(un)); 7358 7359 /* 7360 * For now suspend the device completely before spindle is 7361 * turned off 7362 */ 7363 if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) { 7364 if (got_semaphore_here != 0) { 7365 sema_v(&un->un_semoclose); 7366 } 7367 /* 7368 * On exit put the state back to it's original value 7369 * and broadcast to anyone waiting for the power 7370 * change completion. 7371 */ 7372 mutex_enter(SD_MUTEX(un)); 7373 un->un_state = state_before_pm; 7374 cv_broadcast(&un->un_suspend_cv); 7375 mutex_exit(SD_MUTEX(un)); 7376 SD_TRACE(SD_LOG_IO_PM, un, 7377 "sdpower: exit, PM suspend Failed.\n"); 7378 return (DDI_FAILURE); 7379 } 7380 } 7381 7382 /* 7383 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open, 7384 * close, or strategy. Dump no long uses this routine, it uses it's 7385 * own code so it can be done in polled mode. 7386 */ 7387 7388 medium_present = TRUE; 7389 7390 /* 7391 * When powering up, issue a TUR in case the device is at unit 7392 * attention. Don't do retries. Bypass the PM layer, otherwise 7393 * a deadlock on un_pm_busy_cv will occur. 7394 */ 7395 if (level == SD_SPINDLE_ON) { 7396 (void) sd_send_scsi_TEST_UNIT_READY(un, 7397 SD_DONT_RETRY_TUR | SD_BYPASS_PM); 7398 } 7399 7400 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n", 7401 ((level == SD_SPINDLE_ON) ? "START" : "STOP")); 7402 7403 sval = sd_send_scsi_START_STOP_UNIT(un, 7404 ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP), 7405 SD_PATH_DIRECT); 7406 /* Command failed, check for media present. */ 7407 if ((sval == ENXIO) && un->un_f_has_removable_media) { 7408 medium_present = FALSE; 7409 } 7410 7411 /* 7412 * The conditions of interest here are: 7413 * if a spindle off with media present fails, 7414 * then restore the state and return an error. 7415 * else if a spindle on fails, 7416 * then return an error (there's no state to restore). 7417 * In all other cases we setup for the new state 7418 * and return success. 7419 */ 7420 switch (level) { 7421 case SD_SPINDLE_OFF: 7422 if ((medium_present == TRUE) && (sval != 0)) { 7423 /* The stop command from above failed */ 7424 rval = DDI_FAILURE; 7425 /* 7426 * The stop command failed, and we have media 7427 * present. Put the level back by calling the 7428 * sd_pm_resume() and set the state back to 7429 * it's previous value. 7430 */ 7431 (void) sd_ddi_pm_resume(un); 7432 mutex_enter(SD_MUTEX(un)); 7433 un->un_last_state = save_state; 7434 mutex_exit(SD_MUTEX(un)); 7435 break; 7436 } 7437 /* 7438 * The stop command from above succeeded. 7439 */ 7440 if (un->un_f_monitor_media_state) { 7441 /* 7442 * Terminate watch thread in case of removable media 7443 * devices going into low power state. This is as per 7444 * the requirements of pm framework, otherwise commands 7445 * will be generated for the device (through watch 7446 * thread), even when the device is in low power state. 7447 */ 7448 mutex_enter(SD_MUTEX(un)); 7449 un->un_f_watcht_stopped = FALSE; 7450 if (un->un_swr_token != NULL) { 7451 opaque_t temp_token = un->un_swr_token; 7452 un->un_f_watcht_stopped = TRUE; 7453 un->un_swr_token = NULL; 7454 mutex_exit(SD_MUTEX(un)); 7455 (void) scsi_watch_request_terminate(temp_token, 7456 SCSI_WATCH_TERMINATE_WAIT); 7457 } else { 7458 mutex_exit(SD_MUTEX(un)); 7459 } 7460 } 7461 break; 7462 7463 default: /* The level requested is spindle on... */ 7464 /* 7465 * Legacy behavior: return success on a failed spinup 7466 * if there is no media in the drive. 7467 * Do this by looking at medium_present here. 7468 */ 7469 if ((sval != 0) && medium_present) { 7470 /* The start command from above failed */ 7471 rval = DDI_FAILURE; 7472 break; 7473 } 7474 /* 7475 * The start command from above succeeded 7476 * Resume the devices now that we have 7477 * started the disks 7478 */ 7479 (void) sd_ddi_pm_resume(un); 7480 7481 /* 7482 * Resume the watch thread since it was suspended 7483 * when the device went into low power mode. 7484 */ 7485 if (un->un_f_monitor_media_state) { 7486 mutex_enter(SD_MUTEX(un)); 7487 if (un->un_f_watcht_stopped == TRUE) { 7488 opaque_t temp_token; 7489 7490 un->un_f_watcht_stopped = FALSE; 7491 mutex_exit(SD_MUTEX(un)); 7492 temp_token = scsi_watch_request_submit( 7493 SD_SCSI_DEVP(un), 7494 sd_check_media_time, 7495 SENSE_LENGTH, sd_media_watch_cb, 7496 (caddr_t)dev); 7497 mutex_enter(SD_MUTEX(un)); 7498 un->un_swr_token = temp_token; 7499 } 7500 mutex_exit(SD_MUTEX(un)); 7501 } 7502 } 7503 if (got_semaphore_here != 0) { 7504 sema_v(&un->un_semoclose); 7505 } 7506 /* 7507 * On exit put the state back to it's original value 7508 * and broadcast to anyone waiting for the power 7509 * change completion. 7510 */ 7511 mutex_enter(SD_MUTEX(un)); 7512 un->un_state = state_before_pm; 7513 cv_broadcast(&un->un_suspend_cv); 7514 mutex_exit(SD_MUTEX(un)); 7515 7516 SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval); 7517 7518 return (rval); 7519 } 7520 7521 7522 7523 /* 7524 * Function: sdattach 7525 * 7526 * Description: Driver's attach(9e) entry point function. 7527 * 7528 * Arguments: devi - opaque device info handle 7529 * cmd - attach type 7530 * 7531 * Return Code: DDI_SUCCESS 7532 * DDI_FAILURE 7533 * 7534 * Context: Kernel thread context 7535 */ 7536 7537 static int 7538 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd) 7539 { 7540 switch (cmd) { 7541 case DDI_ATTACH: 7542 return (sd_unit_attach(devi)); 7543 case DDI_RESUME: 7544 return (sd_ddi_resume(devi)); 7545 default: 7546 break; 7547 } 7548 return (DDI_FAILURE); 7549 } 7550 7551 7552 /* 7553 * Function: sddetach 7554 * 7555 * Description: Driver's detach(9E) entry point function. 7556 * 7557 * Arguments: devi - opaque device info handle 7558 * cmd - detach type 7559 * 7560 * Return Code: DDI_SUCCESS 7561 * DDI_FAILURE 7562 * 7563 * Context: Kernel thread context 7564 */ 7565 7566 static int 7567 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd) 7568 { 7569 switch (cmd) { 7570 case DDI_DETACH: 7571 return (sd_unit_detach(devi)); 7572 case DDI_SUSPEND: 7573 return (sd_ddi_suspend(devi)); 7574 default: 7575 break; 7576 } 7577 return (DDI_FAILURE); 7578 } 7579 7580 7581 /* 7582 * Function: sd_sync_with_callback 7583 * 7584 * Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft 7585 * state while the callback routine is active. 7586 * 7587 * Arguments: un: softstate structure for the instance 7588 * 7589 * Context: Kernel thread context 7590 */ 7591 7592 static void 7593 sd_sync_with_callback(struct sd_lun *un) 7594 { 7595 ASSERT(un != NULL); 7596 7597 mutex_enter(SD_MUTEX(un)); 7598 7599 ASSERT(un->un_in_callback >= 0); 7600 7601 while (un->un_in_callback > 0) { 7602 mutex_exit(SD_MUTEX(un)); 7603 delay(2); 7604 mutex_enter(SD_MUTEX(un)); 7605 } 7606 7607 mutex_exit(SD_MUTEX(un)); 7608 } 7609 7610 /* 7611 * Function: sd_unit_attach 7612 * 7613 * Description: Performs DDI_ATTACH processing for sdattach(). Allocates 7614 * the soft state structure for the device and performs 7615 * all necessary structure and device initializations. 7616 * 7617 * Arguments: devi: the system's dev_info_t for the device. 7618 * 7619 * Return Code: DDI_SUCCESS if attach is successful. 7620 * DDI_FAILURE if any part of the attach fails. 7621 * 7622 * Context: Called at attach(9e) time for the DDI_ATTACH flag. 7623 * Kernel thread context only. Can sleep. 7624 */ 7625 7626 static int 7627 sd_unit_attach(dev_info_t *devi) 7628 { 7629 struct scsi_device *devp; 7630 struct sd_lun *un; 7631 char *variantp; 7632 int reservation_flag = SD_TARGET_IS_UNRESERVED; 7633 int instance; 7634 int rval; 7635 int wc_enabled; 7636 uint64_t capacity; 7637 uint_t lbasize; 7638 7639 /* 7640 * Retrieve the target driver's private data area. This was set 7641 * up by the HBA. 7642 */ 7643 devp = ddi_get_driver_private(devi); 7644 7645 /* 7646 * Since we have no idea what state things were left in by the last 7647 * user of the device, set up some 'default' settings, ie. turn 'em 7648 * off. The scsi_ifsetcap calls force re-negotiations with the drive. 7649 * Do this before the scsi_probe, which sends an inquiry. 7650 * This is a fix for bug (4430280). 7651 * Of special importance is wide-xfer. The drive could have been left 7652 * in wide transfer mode by the last driver to communicate with it, 7653 * this includes us. If that's the case, and if the following is not 7654 * setup properly or we don't re-negotiate with the drive prior to 7655 * transferring data to/from the drive, it causes bus parity errors, 7656 * data overruns, and unexpected interrupts. This first occurred when 7657 * the fix for bug (4378686) was made. 7658 */ 7659 (void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1); 7660 (void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1); 7661 (void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1); 7662 (void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1); 7663 7664 /* 7665 * Use scsi_probe() to issue an INQUIRY command to the device. 7666 * This call will allocate and fill in the scsi_inquiry structure 7667 * and point the sd_inq member of the scsi_device structure to it. 7668 * If the attach succeeds, then this memory will not be de-allocated 7669 * (via scsi_unprobe()) until the instance is detached. 7670 */ 7671 if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) { 7672 goto probe_failed; 7673 } 7674 7675 /* 7676 * Check the device type as specified in the inquiry data and 7677 * claim it if it is of a type that we support. 7678 */ 7679 switch (devp->sd_inq->inq_dtype) { 7680 case DTYPE_DIRECT: 7681 break; 7682 case DTYPE_RODIRECT: 7683 break; 7684 case DTYPE_OPTICAL: 7685 break; 7686 case DTYPE_NOTPRESENT: 7687 default: 7688 /* Unsupported device type; fail the attach. */ 7689 goto probe_failed; 7690 } 7691 7692 /* 7693 * Allocate the soft state structure for this unit. 7694 * 7695 * We rely upon this memory being set to all zeroes by 7696 * ddi_soft_state_zalloc(). We assume that any member of the 7697 * soft state structure that is not explicitly initialized by 7698 * this routine will have a value of zero. 7699 */ 7700 instance = ddi_get_instance(devp->sd_dev); 7701 if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) { 7702 goto probe_failed; 7703 } 7704 7705 /* 7706 * Retrieve a pointer to the newly-allocated soft state. 7707 * 7708 * This should NEVER fail if the ddi_soft_state_zalloc() call above 7709 * was successful, unless something has gone horribly wrong and the 7710 * ddi's soft state internals are corrupt (in which case it is 7711 * probably better to halt here than just fail the attach....) 7712 */ 7713 if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) { 7714 panic("sd_unit_attach: NULL soft state on instance:0x%x", 7715 instance); 7716 /*NOTREACHED*/ 7717 } 7718 7719 /* 7720 * Link the back ptr of the driver soft state to the scsi_device 7721 * struct for this lun. 7722 * Save a pointer to the softstate in the driver-private area of 7723 * the scsi_device struct. 7724 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until 7725 * we first set un->un_sd below. 7726 */ 7727 un->un_sd = devp; 7728 devp->sd_private = (opaque_t)un; 7729 7730 /* 7731 * The following must be after devp is stored in the soft state struct. 7732 */ 7733 #ifdef SDDEBUG 7734 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 7735 "%s_unit_attach: un:0x%p instance:%d\n", 7736 ddi_driver_name(devi), un, instance); 7737 #endif 7738 7739 /* 7740 * Set up the device type and node type (for the minor nodes). 7741 * By default we assume that the device can at least support the 7742 * Common Command Set. Call it a CD-ROM if it reports itself 7743 * as a RODIRECT device. 7744 */ 7745 switch (devp->sd_inq->inq_dtype) { 7746 case DTYPE_RODIRECT: 7747 un->un_node_type = DDI_NT_CD_CHAN; 7748 un->un_ctype = CTYPE_CDROM; 7749 break; 7750 case DTYPE_OPTICAL: 7751 un->un_node_type = DDI_NT_BLOCK_CHAN; 7752 un->un_ctype = CTYPE_ROD; 7753 break; 7754 default: 7755 un->un_node_type = DDI_NT_BLOCK_CHAN; 7756 un->un_ctype = CTYPE_CCS; 7757 break; 7758 } 7759 7760 /* 7761 * Try to read the interconnect type from the HBA. 7762 * 7763 * Note: This driver is currently compiled as two binaries, a parallel 7764 * scsi version (sd) and a fibre channel version (ssd). All functional 7765 * differences are determined at compile time. In the future a single 7766 * binary will be provided and the inteconnect type will be used to 7767 * differentiate between fibre and parallel scsi behaviors. At that time 7768 * it will be necessary for all fibre channel HBAs to support this 7769 * property. 7770 * 7771 * set un_f_is_fiber to TRUE ( default fiber ) 7772 */ 7773 un->un_f_is_fibre = TRUE; 7774 switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) { 7775 case INTERCONNECT_SSA: 7776 un->un_interconnect_type = SD_INTERCONNECT_SSA; 7777 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7778 "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un); 7779 break; 7780 case INTERCONNECT_PARALLEL: 7781 un->un_f_is_fibre = FALSE; 7782 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7783 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7784 "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un); 7785 break; 7786 case INTERCONNECT_FIBRE: 7787 un->un_interconnect_type = SD_INTERCONNECT_FIBRE; 7788 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7789 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un); 7790 break; 7791 case INTERCONNECT_FABRIC: 7792 un->un_interconnect_type = SD_INTERCONNECT_FABRIC; 7793 un->un_node_type = DDI_NT_BLOCK_FABRIC; 7794 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7795 "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un); 7796 break; 7797 default: 7798 #ifdef SD_DEFAULT_INTERCONNECT_TYPE 7799 /* 7800 * The HBA does not support the "interconnect-type" property 7801 * (or did not provide a recognized type). 7802 * 7803 * Note: This will be obsoleted when a single fibre channel 7804 * and parallel scsi driver is delivered. In the meantime the 7805 * interconnect type will be set to the platform default.If that 7806 * type is not parallel SCSI, it means that we should be 7807 * assuming "ssd" semantics. However, here this also means that 7808 * the FC HBA is not supporting the "interconnect-type" property 7809 * like we expect it to, so log this occurrence. 7810 */ 7811 un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE; 7812 if (!SD_IS_PARALLEL_SCSI(un)) { 7813 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7814 "sd_unit_attach: un:0x%p Assuming " 7815 "INTERCONNECT_FIBRE\n", un); 7816 } else { 7817 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7818 "sd_unit_attach: un:0x%p Assuming " 7819 "INTERCONNECT_PARALLEL\n", un); 7820 un->un_f_is_fibre = FALSE; 7821 } 7822 #else 7823 /* 7824 * Note: This source will be implemented when a single fibre 7825 * channel and parallel scsi driver is delivered. The default 7826 * will be to assume that if a device does not support the 7827 * "interconnect-type" property it is a parallel SCSI HBA and 7828 * we will set the interconnect type for parallel scsi. 7829 */ 7830 un->un_interconnect_type = SD_INTERCONNECT_PARALLEL; 7831 un->un_f_is_fibre = FALSE; 7832 #endif 7833 break; 7834 } 7835 7836 if (un->un_f_is_fibre == TRUE) { 7837 if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) == 7838 SCSI_VERSION_3) { 7839 switch (un->un_interconnect_type) { 7840 case SD_INTERCONNECT_FIBRE: 7841 case SD_INTERCONNECT_SSA: 7842 un->un_node_type = DDI_NT_BLOCK_WWN; 7843 break; 7844 default: 7845 break; 7846 } 7847 } 7848 } 7849 7850 /* 7851 * Initialize the Request Sense command for the target 7852 */ 7853 if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) { 7854 goto alloc_rqs_failed; 7855 } 7856 7857 /* 7858 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc 7859 * with seperate binary for sd and ssd. 7860 * 7861 * x86 has 1 binary, un_retry_count is set base on connection type. 7862 * The hardcoded values will go away when Sparc uses 1 binary 7863 * for sd and ssd. This hardcoded values need to match 7864 * SD_RETRY_COUNT in sddef.h 7865 * The value used is base on interconnect type. 7866 * fibre = 3, parallel = 5 7867 */ 7868 #if defined(__i386) || defined(__amd64) 7869 un->un_retry_count = un->un_f_is_fibre ? 3 : 5; 7870 #else 7871 un->un_retry_count = SD_RETRY_COUNT; 7872 #endif 7873 7874 /* 7875 * Set the per disk retry count to the default number of retries 7876 * for disks and CDROMs. This value can be overridden by the 7877 * disk property list or an entry in sd.conf. 7878 */ 7879 un->un_notready_retry_count = 7880 ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un) 7881 : DISK_NOT_READY_RETRY_COUNT(un); 7882 7883 /* 7884 * Set the busy retry count to the default value of un_retry_count. 7885 * This can be overridden by entries in sd.conf or the device 7886 * config table. 7887 */ 7888 un->un_busy_retry_count = un->un_retry_count; 7889 7890 /* 7891 * Init the reset threshold for retries. This number determines 7892 * how many retries must be performed before a reset can be issued 7893 * (for certain error conditions). This can be overridden by entries 7894 * in sd.conf or the device config table. 7895 */ 7896 un->un_reset_retry_count = (un->un_retry_count / 2); 7897 7898 /* 7899 * Set the victim_retry_count to the default un_retry_count 7900 */ 7901 un->un_victim_retry_count = (2 * un->un_retry_count); 7902 7903 /* 7904 * Set the reservation release timeout to the default value of 7905 * 5 seconds. This can be overridden by entries in ssd.conf or the 7906 * device config table. 7907 */ 7908 un->un_reserve_release_time = 5; 7909 7910 /* 7911 * Set up the default maximum transfer size. Note that this may 7912 * get updated later in the attach, when setting up default wide 7913 * operations for disks. 7914 */ 7915 #if defined(__i386) || defined(__amd64) 7916 un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE; 7917 #else 7918 un->un_max_xfer_size = (uint_t)maxphys; 7919 #endif 7920 7921 /* 7922 * Get "allow bus device reset" property (defaults to "enabled" if 7923 * the property was not defined). This is to disable bus resets for 7924 * certain kinds of error recovery. Note: In the future when a run-time 7925 * fibre check is available the soft state flag should default to 7926 * enabled. 7927 */ 7928 if (un->un_f_is_fibre == TRUE) { 7929 un->un_f_allow_bus_device_reset = TRUE; 7930 } else { 7931 if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 7932 "allow-bus-device-reset", 1) != 0) { 7933 un->un_f_allow_bus_device_reset = TRUE; 7934 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7935 "sd_unit_attach: un:0x%p Bus device reset enabled\n", 7936 un); 7937 } else { 7938 un->un_f_allow_bus_device_reset = FALSE; 7939 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7940 "sd_unit_attach: un:0x%p Bus device reset disabled\n", 7941 un); 7942 } 7943 } 7944 7945 /* 7946 * Check if this is an ATAPI device. ATAPI devices use Group 1 7947 * Read/Write commands and Group 2 Mode Sense/Select commands. 7948 * 7949 * Note: The "obsolete" way of doing this is to check for the "atapi" 7950 * property. The new "variant" property with a value of "atapi" has been 7951 * introduced so that future 'variants' of standard SCSI behavior (like 7952 * atapi) could be specified by the underlying HBA drivers by supplying 7953 * a new value for the "variant" property, instead of having to define a 7954 * new property. 7955 */ 7956 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) { 7957 un->un_f_cfg_is_atapi = TRUE; 7958 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7959 "sd_unit_attach: un:0x%p Atapi device\n", un); 7960 } 7961 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant", 7962 &variantp) == DDI_PROP_SUCCESS) { 7963 if (strcmp(variantp, "atapi") == 0) { 7964 un->un_f_cfg_is_atapi = TRUE; 7965 SD_INFO(SD_LOG_ATTACH_DETACH, un, 7966 "sd_unit_attach: un:0x%p Atapi device\n", un); 7967 } 7968 ddi_prop_free(variantp); 7969 } 7970 7971 un->un_cmd_timeout = SD_IO_TIME; 7972 7973 /* Info on current states, statuses, etc. (Updated frequently) */ 7974 un->un_state = SD_STATE_NORMAL; 7975 un->un_last_state = SD_STATE_NORMAL; 7976 7977 /* Control & status info for command throttling */ 7978 un->un_throttle = sd_max_throttle; 7979 un->un_saved_throttle = sd_max_throttle; 7980 un->un_min_throttle = sd_min_throttle; 7981 7982 if (un->un_f_is_fibre == TRUE) { 7983 un->un_f_use_adaptive_throttle = TRUE; 7984 } else { 7985 un->un_f_use_adaptive_throttle = FALSE; 7986 } 7987 7988 /* Removable media support. */ 7989 cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL); 7990 un->un_mediastate = DKIO_NONE; 7991 un->un_specified_mediastate = DKIO_NONE; 7992 7993 /* CVs for suspend/resume (PM or DR) */ 7994 cv_init(&un->un_suspend_cv, NULL, CV_DRIVER, NULL); 7995 cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL); 7996 7997 /* Power management support. */ 7998 un->un_power_level = SD_SPINDLE_UNINIT; 7999 8000 cv_init(&un->un_wcc_cv, NULL, CV_DRIVER, NULL); 8001 un->un_f_wcc_inprog = 0; 8002 8003 /* 8004 * The open/close semaphore is used to serialize threads executing 8005 * in the driver's open & close entry point routines for a given 8006 * instance. 8007 */ 8008 (void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL); 8009 8010 /* 8011 * The conf file entry and softstate variable is a forceful override, 8012 * meaning a non-zero value must be entered to change the default. 8013 */ 8014 un->un_f_disksort_disabled = FALSE; 8015 8016 /* 8017 * Retrieve the properties from the static driver table or the driver 8018 * configuration file (.conf) for this unit and update the soft state 8019 * for the device as needed for the indicated properties. 8020 * Note: the property configuration needs to occur here as some of the 8021 * following routines may have dependancies on soft state flags set 8022 * as part of the driver property configuration. 8023 */ 8024 sd_read_unit_properties(un); 8025 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8026 "sd_unit_attach: un:0x%p property configuration complete.\n", un); 8027 8028 /* 8029 * Only if a device has "hotpluggable" property, it is 8030 * treated as hotpluggable device. Otherwise, it is 8031 * regarded as non-hotpluggable one. 8032 */ 8033 if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable", 8034 -1) != -1) { 8035 un->un_f_is_hotpluggable = TRUE; 8036 } 8037 8038 /* 8039 * set unit's attributes(flags) according to "hotpluggable" and 8040 * RMB bit in INQUIRY data. 8041 */ 8042 sd_set_unit_attributes(un, devi); 8043 8044 /* 8045 * By default, we mark the capacity, lbasize, and geometry 8046 * as invalid. Only if we successfully read a valid capacity 8047 * will we update the un_blockcount and un_tgt_blocksize with the 8048 * valid values (the geometry will be validated later). 8049 */ 8050 un->un_f_blockcount_is_valid = FALSE; 8051 un->un_f_tgt_blocksize_is_valid = FALSE; 8052 un->un_f_geometry_is_valid = FALSE; 8053 8054 /* 8055 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine 8056 * otherwise. 8057 */ 8058 un->un_tgt_blocksize = un->un_sys_blocksize = DEV_BSIZE; 8059 un->un_blockcount = 0; 8060 8061 /* 8062 * Set up the per-instance info needed to determine the correct 8063 * CDBs and other info for issuing commands to the target. 8064 */ 8065 sd_init_cdb_limits(un); 8066 8067 /* 8068 * Set up the IO chains to use, based upon the target type. 8069 */ 8070 if (un->un_f_non_devbsize_supported) { 8071 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA; 8072 } else { 8073 un->un_buf_chain_type = SD_CHAIN_INFO_DISK; 8074 } 8075 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD; 8076 un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD; 8077 un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD; 8078 8079 un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf), 8080 sd_xbuf_strategy, un, sd_xbuf_active_limit, sd_xbuf_reserve_limit, 8081 ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER); 8082 ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi); 8083 8084 8085 if (ISCD(un)) { 8086 un->un_additional_codes = sd_additional_codes; 8087 } else { 8088 un->un_additional_codes = NULL; 8089 } 8090 8091 /* 8092 * Create the kstats here so they can be available for attach-time 8093 * routines that send commands to the unit (either polled or via 8094 * sd_send_scsi_cmd). 8095 * 8096 * Note: This is a critical sequence that needs to be maintained: 8097 * 1) Instantiate the kstats here, before any routines using the 8098 * iopath (i.e. sd_send_scsi_cmd). 8099 * 2) Initialize the error stats (sd_set_errstats) and partition 8100 * stats (sd_set_pstats), following sd_validate_geometry(), 8101 * sd_register_devid(), and sd_cache_control(). 8102 */ 8103 8104 un->un_stats = kstat_create(sd_label, instance, 8105 NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT); 8106 if (un->un_stats != NULL) { 8107 un->un_stats->ks_lock = SD_MUTEX(un); 8108 kstat_install(un->un_stats); 8109 } 8110 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8111 "sd_unit_attach: un:0x%p un_stats created\n", un); 8112 8113 sd_create_errstats(un, instance); 8114 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8115 "sd_unit_attach: un:0x%p errstats created\n", un); 8116 8117 /* 8118 * The following if/else code was relocated here from below as part 8119 * of the fix for bug (4430280). However with the default setup added 8120 * on entry to this routine, it's no longer absolutely necessary for 8121 * this to be before the call to sd_spin_up_unit. 8122 */ 8123 if (SD_IS_PARALLEL_SCSI(un)) { 8124 /* 8125 * If SCSI-2 tagged queueing is supported by the target 8126 * and by the host adapter then we will enable it. 8127 */ 8128 un->un_tagflags = 0; 8129 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && 8130 (devp->sd_inq->inq_cmdque) && 8131 (un->un_f_arq_enabled == TRUE)) { 8132 if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 8133 1, 1) == 1) { 8134 un->un_tagflags = FLAG_STAG; 8135 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8136 "sd_unit_attach: un:0x%p tag queueing " 8137 "enabled\n", un); 8138 } else if (scsi_ifgetcap(SD_ADDRESS(un), 8139 "untagged-qing", 0) == 1) { 8140 un->un_f_opt_queueing = TRUE; 8141 un->un_saved_throttle = un->un_throttle = 8142 min(un->un_throttle, 3); 8143 } else { 8144 un->un_f_opt_queueing = FALSE; 8145 un->un_saved_throttle = un->un_throttle = 1; 8146 } 8147 } else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0) 8148 == 1) && (un->un_f_arq_enabled == TRUE)) { 8149 /* The Host Adapter supports internal queueing. */ 8150 un->un_f_opt_queueing = TRUE; 8151 un->un_saved_throttle = un->un_throttle = 8152 min(un->un_throttle, 3); 8153 } else { 8154 un->un_f_opt_queueing = FALSE; 8155 un->un_saved_throttle = un->un_throttle = 1; 8156 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8157 "sd_unit_attach: un:0x%p no tag queueing\n", un); 8158 } 8159 8160 8161 /* Setup or tear down default wide operations for disks */ 8162 8163 /* 8164 * Note: Legacy: it may be possible for both "sd_max_xfer_size" 8165 * and "ssd_max_xfer_size" to exist simultaneously on the same 8166 * system and be set to different values. In the future this 8167 * code may need to be updated when the ssd module is 8168 * obsoleted and removed from the system. (4299588) 8169 */ 8170 if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && 8171 (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) { 8172 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 8173 1, 1) == 1) { 8174 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8175 "sd_unit_attach: un:0x%p Wide Transfer " 8176 "enabled\n", un); 8177 } 8178 8179 /* 8180 * If tagged queuing has also been enabled, then 8181 * enable large xfers 8182 */ 8183 if (un->un_saved_throttle == sd_max_throttle) { 8184 un->un_max_xfer_size = 8185 ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8186 sd_max_xfer_size, SD_MAX_XFER_SIZE); 8187 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8188 "sd_unit_attach: un:0x%p max transfer " 8189 "size=0x%x\n", un, un->un_max_xfer_size); 8190 } 8191 } else { 8192 if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 8193 0, 1) == 1) { 8194 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8195 "sd_unit_attach: un:0x%p " 8196 "Wide Transfer disabled\n", un); 8197 } 8198 } 8199 } else { 8200 un->un_tagflags = FLAG_STAG; 8201 un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY, 8202 devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE); 8203 } 8204 8205 /* 8206 * If this target supports LUN reset, try to enable it. 8207 */ 8208 if (un->un_f_lun_reset_enabled) { 8209 if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) { 8210 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 8211 "un:0x%p lun_reset capability set\n", un); 8212 } else { 8213 SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: " 8214 "un:0x%p lun-reset capability not set\n", un); 8215 } 8216 } 8217 8218 /* 8219 * At this point in the attach, we have enough info in the 8220 * soft state to be able to issue commands to the target. 8221 * 8222 * All command paths used below MUST issue their commands as 8223 * SD_PATH_DIRECT. This is important as intermediate layers 8224 * are not all initialized yet (such as PM). 8225 */ 8226 8227 /* 8228 * Send a TEST UNIT READY command to the device. This should clear 8229 * any outstanding UNIT ATTENTION that may be present. 8230 * 8231 * Note: Don't check for success, just track if there is a reservation, 8232 * this is a throw away command to clear any unit attentions. 8233 * 8234 * Note: This MUST be the first command issued to the target during 8235 * attach to ensure power on UNIT ATTENTIONS are cleared. 8236 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated 8237 * with attempts at spinning up a device with no media. 8238 */ 8239 if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) { 8240 reservation_flag = SD_TARGET_IS_RESERVED; 8241 } 8242 8243 /* 8244 * If the device is NOT a removable media device, attempt to spin 8245 * it up (using the START_STOP_UNIT command) and read its capacity 8246 * (using the READ CAPACITY command). Note, however, that either 8247 * of these could fail and in some cases we would continue with 8248 * the attach despite the failure (see below). 8249 */ 8250 if (un->un_f_descr_format_supported) { 8251 switch (sd_spin_up_unit(un)) { 8252 case 0: 8253 /* 8254 * Spin-up was successful; now try to read the 8255 * capacity. If successful then save the results 8256 * and mark the capacity & lbasize as valid. 8257 */ 8258 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8259 "sd_unit_attach: un:0x%p spin-up successful\n", un); 8260 8261 switch (sd_send_scsi_READ_CAPACITY(un, &capacity, 8262 &lbasize, SD_PATH_DIRECT)) { 8263 case 0: { 8264 if (capacity > DK_MAX_BLOCKS) { 8265 #ifdef _LP64 8266 /* 8267 * Enable descriptor format sense data 8268 * so that we can get 64 bit sense 8269 * data fields. 8270 */ 8271 sd_enable_descr_sense(un); 8272 #else 8273 /* 32-bit kernels can't handle this */ 8274 scsi_log(SD_DEVINFO(un), 8275 sd_label, CE_WARN, 8276 "disk has %llu blocks, which " 8277 "is too large for a 32-bit " 8278 "kernel", capacity); 8279 goto spinup_failed; 8280 #endif 8281 } 8282 /* 8283 * The following relies on 8284 * sd_send_scsi_READ_CAPACITY never 8285 * returning 0 for capacity and/or lbasize. 8286 */ 8287 sd_update_block_info(un, lbasize, capacity); 8288 8289 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8290 "sd_unit_attach: un:0x%p capacity = %ld " 8291 "blocks; lbasize= %ld.\n", un, 8292 un->un_blockcount, un->un_tgt_blocksize); 8293 8294 break; 8295 } 8296 case EACCES: 8297 /* 8298 * Should never get here if the spin-up 8299 * succeeded, but code it in anyway. 8300 * From here, just continue with the attach... 8301 */ 8302 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8303 "sd_unit_attach: un:0x%p " 8304 "sd_send_scsi_READ_CAPACITY " 8305 "returned reservation conflict\n", un); 8306 reservation_flag = SD_TARGET_IS_RESERVED; 8307 break; 8308 default: 8309 /* 8310 * Likewise, should never get here if the 8311 * spin-up succeeded. Just continue with 8312 * the attach... 8313 */ 8314 break; 8315 } 8316 break; 8317 case EACCES: 8318 /* 8319 * Device is reserved by another host. In this case 8320 * we could not spin it up or read the capacity, but 8321 * we continue with the attach anyway. 8322 */ 8323 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8324 "sd_unit_attach: un:0x%p spin-up reservation " 8325 "conflict.\n", un); 8326 reservation_flag = SD_TARGET_IS_RESERVED; 8327 break; 8328 default: 8329 /* Fail the attach if the spin-up failed. */ 8330 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8331 "sd_unit_attach: un:0x%p spin-up failed.", un); 8332 goto spinup_failed; 8333 } 8334 } 8335 8336 /* 8337 * Check to see if this is a MMC drive 8338 */ 8339 if (ISCD(un)) { 8340 sd_set_mmc_caps(un); 8341 } 8342 8343 /* 8344 * Create the minor nodes for the device. 8345 * Note: If we want to support fdisk on both sparc and intel, this will 8346 * have to separate out the notion that VTOC8 is always sparc, and 8347 * VTOC16 is always intel (tho these can be the defaults). The vtoc 8348 * type will have to be determined at run-time, and the fdisk 8349 * partitioning will have to have been read & set up before we 8350 * create the minor nodes. (any other inits (such as kstats) that 8351 * also ought to be done before creating the minor nodes?) (Doesn't 8352 * setting up the minor nodes kind of imply that we're ready to 8353 * handle an open from userland?) 8354 */ 8355 if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) { 8356 goto create_minor_nodes_failed; 8357 } 8358 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8359 "sd_unit_attach: un:0x%p minor nodes created\n", un); 8360 8361 /* 8362 * Add a zero-length attribute to tell the world we support 8363 * kernel ioctls (for layered drivers) 8364 */ 8365 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8366 DDI_KERNEL_IOCTL, NULL, 0); 8367 8368 /* 8369 * Add a boolean property to tell the world we support 8370 * the B_FAILFAST flag (for layered drivers) 8371 */ 8372 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP, 8373 "ddi-failfast-supported", NULL, 0); 8374 8375 /* 8376 * Initialize power management 8377 */ 8378 mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL); 8379 cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL); 8380 sd_setup_pm(un, devi); 8381 if (un->un_f_pm_is_enabled == FALSE) { 8382 /* 8383 * For performance, point to a jump table that does 8384 * not include pm. 8385 * The direct and priority chains don't change with PM. 8386 * 8387 * Note: this is currently done based on individual device 8388 * capabilities. When an interface for determining system 8389 * power enabled state becomes available, or when additional 8390 * layers are added to the command chain, these values will 8391 * have to be re-evaluated for correctness. 8392 */ 8393 if (un->un_f_non_devbsize_supported) { 8394 un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM; 8395 } else { 8396 un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM; 8397 } 8398 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 8399 } 8400 8401 /* 8402 * This property is set to 0 by HA software to avoid retries 8403 * on a reserved disk. (The preferred property name is 8404 * "retry-on-reservation-conflict") (1189689) 8405 * 8406 * Note: The use of a global here can have unintended consequences. A 8407 * per instance variable is preferrable to match the capabilities of 8408 * different underlying hba's (4402600) 8409 */ 8410 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi, 8411 DDI_PROP_DONTPASS, "retry-on-reservation-conflict", 8412 sd_retry_on_reservation_conflict); 8413 if (sd_retry_on_reservation_conflict != 0) { 8414 sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, 8415 devi, DDI_PROP_DONTPASS, sd_resv_conflict_name, 8416 sd_retry_on_reservation_conflict); 8417 } 8418 8419 /* Set up options for QFULL handling. */ 8420 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8421 "qfull-retries", -1)) != -1) { 8422 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries", 8423 rval, 1); 8424 } 8425 if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0, 8426 "qfull-retry-interval", -1)) != -1) { 8427 (void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval", 8428 rval, 1); 8429 } 8430 8431 /* 8432 * This just prints a message that announces the existence of the 8433 * device. The message is always printed in the system logfile, but 8434 * only appears on the console if the system is booted with the 8435 * -v (verbose) argument. 8436 */ 8437 ddi_report_dev(devi); 8438 8439 /* 8440 * The framework calls driver attach routines single-threaded 8441 * for a given instance. However we still acquire SD_MUTEX here 8442 * because this required for calling the sd_validate_geometry() 8443 * and sd_register_devid() functions. 8444 */ 8445 mutex_enter(SD_MUTEX(un)); 8446 un->un_f_geometry_is_valid = FALSE; 8447 un->un_mediastate = DKIO_NONE; 8448 un->un_reserved = -1; 8449 8450 /* 8451 * Read and validate the device's geometry (ie, disk label) 8452 * A new unformatted drive will not have a valid geometry, but 8453 * the driver needs to successfully attach to this device so 8454 * the drive can be formatted via ioctls. 8455 */ 8456 if (((sd_validate_geometry(un, SD_PATH_DIRECT) == 8457 ENOTSUP)) && 8458 (un->un_blockcount < DK_MAX_BLOCKS)) { 8459 /* 8460 * We found a small disk with an EFI label on it; 8461 * we need to fix up the minor nodes accordingly. 8462 */ 8463 ddi_remove_minor_node(devi, "h"); 8464 ddi_remove_minor_node(devi, "h,raw"); 8465 (void) ddi_create_minor_node(devi, "wd", 8466 S_IFBLK, 8467 (instance << SDUNIT_SHIFT) | WD_NODE, 8468 un->un_node_type, NULL); 8469 (void) ddi_create_minor_node(devi, "wd,raw", 8470 S_IFCHR, 8471 (instance << SDUNIT_SHIFT) | WD_NODE, 8472 un->un_node_type, NULL); 8473 } 8474 8475 /* 8476 * Read and initialize the devid for the unit. 8477 */ 8478 ASSERT(un->un_errstats != NULL); 8479 if (un->un_f_devid_supported) { 8480 sd_register_devid(un, devi, reservation_flag); 8481 } 8482 mutex_exit(SD_MUTEX(un)); 8483 8484 #if (defined(__fibre)) 8485 /* 8486 * Register callbacks for fibre only. You can't do this soley 8487 * on the basis of the devid_type because this is hba specific. 8488 * We need to query our hba capabilities to find out whether to 8489 * register or not. 8490 */ 8491 if (un->un_f_is_fibre) { 8492 if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) { 8493 sd_init_event_callbacks(un); 8494 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8495 "sd_unit_attach: un:0x%p event callbacks inserted", un); 8496 } 8497 } 8498 #endif 8499 8500 if (un->un_f_opt_disable_cache == TRUE) { 8501 /* 8502 * Disable both read cache and write cache. This is 8503 * the historic behavior of the keywords in the config file. 8504 */ 8505 if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) != 8506 0) { 8507 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8508 "sd_unit_attach: un:0x%p Could not disable " 8509 "caching", un); 8510 goto devid_failed; 8511 } 8512 } 8513 8514 /* 8515 * Check the value of the WCE bit now and 8516 * set un_f_write_cache_enabled accordingly. 8517 */ 8518 (void) sd_get_write_cache_enabled(un, &wc_enabled); 8519 mutex_enter(SD_MUTEX(un)); 8520 un->un_f_write_cache_enabled = (wc_enabled != 0); 8521 mutex_exit(SD_MUTEX(un)); 8522 8523 /* 8524 * Set the pstat and error stat values here, so data obtained during the 8525 * previous attach-time routines is available. 8526 * 8527 * Note: This is a critical sequence that needs to be maintained: 8528 * 1) Instantiate the kstats before any routines using the iopath 8529 * (i.e. sd_send_scsi_cmd). 8530 * 2) Initialize the error stats (sd_set_errstats) and partition 8531 * stats (sd_set_pstats)here, following sd_validate_geometry(), 8532 * sd_register_devid(), and sd_cache_control(). 8533 */ 8534 if (un->un_f_pkstats_enabled) { 8535 sd_set_pstats(un); 8536 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8537 "sd_unit_attach: un:0x%p pstats created and set\n", un); 8538 } 8539 8540 sd_set_errstats(un); 8541 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8542 "sd_unit_attach: un:0x%p errstats set\n", un); 8543 8544 /* 8545 * Find out what type of reservation this disk supports. 8546 */ 8547 switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) { 8548 case 0: 8549 /* 8550 * SCSI-3 reservations are supported. 8551 */ 8552 un->un_reservation_type = SD_SCSI3_RESERVATION; 8553 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8554 "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un); 8555 break; 8556 case ENOTSUP: 8557 /* 8558 * The PERSISTENT RESERVE IN command would not be recognized by 8559 * a SCSI-2 device, so assume the reservation type is SCSI-2. 8560 */ 8561 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8562 "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un); 8563 un->un_reservation_type = SD_SCSI2_RESERVATION; 8564 break; 8565 default: 8566 /* 8567 * default to SCSI-3 reservations 8568 */ 8569 SD_INFO(SD_LOG_ATTACH_DETACH, un, 8570 "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un); 8571 un->un_reservation_type = SD_SCSI3_RESERVATION; 8572 break; 8573 } 8574 8575 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 8576 "sd_unit_attach: un:0x%p exit success\n", un); 8577 8578 return (DDI_SUCCESS); 8579 8580 /* 8581 * An error occurred during the attach; clean up & return failure. 8582 */ 8583 8584 devid_failed: 8585 8586 setup_pm_failed: 8587 ddi_remove_minor_node(devi, NULL); 8588 8589 create_minor_nodes_failed: 8590 /* 8591 * Cleanup from the scsi_ifsetcap() calls (437868) 8592 */ 8593 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8594 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8595 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8596 8597 if (un->un_f_is_fibre == FALSE) { 8598 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8599 } 8600 8601 spinup_failed: 8602 8603 mutex_enter(SD_MUTEX(un)); 8604 8605 /* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */ 8606 if (un->un_direct_priority_timeid != NULL) { 8607 timeout_id_t temp_id = un->un_direct_priority_timeid; 8608 un->un_direct_priority_timeid = NULL; 8609 mutex_exit(SD_MUTEX(un)); 8610 (void) untimeout(temp_id); 8611 mutex_enter(SD_MUTEX(un)); 8612 } 8613 8614 /* Cancel any pending start/stop timeouts */ 8615 if (un->un_startstop_timeid != NULL) { 8616 timeout_id_t temp_id = un->un_startstop_timeid; 8617 un->un_startstop_timeid = NULL; 8618 mutex_exit(SD_MUTEX(un)); 8619 (void) untimeout(temp_id); 8620 mutex_enter(SD_MUTEX(un)); 8621 } 8622 8623 /* Cancel any pending reset-throttle timeouts */ 8624 if (un->un_reset_throttle_timeid != NULL) { 8625 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8626 un->un_reset_throttle_timeid = NULL; 8627 mutex_exit(SD_MUTEX(un)); 8628 (void) untimeout(temp_id); 8629 mutex_enter(SD_MUTEX(un)); 8630 } 8631 8632 /* Cancel any pending retry timeouts */ 8633 if (un->un_retry_timeid != NULL) { 8634 timeout_id_t temp_id = un->un_retry_timeid; 8635 un->un_retry_timeid = NULL; 8636 mutex_exit(SD_MUTEX(un)); 8637 (void) untimeout(temp_id); 8638 mutex_enter(SD_MUTEX(un)); 8639 } 8640 8641 /* Cancel any pending delayed cv broadcast timeouts */ 8642 if (un->un_dcvb_timeid != NULL) { 8643 timeout_id_t temp_id = un->un_dcvb_timeid; 8644 un->un_dcvb_timeid = NULL; 8645 mutex_exit(SD_MUTEX(un)); 8646 (void) untimeout(temp_id); 8647 mutex_enter(SD_MUTEX(un)); 8648 } 8649 8650 mutex_exit(SD_MUTEX(un)); 8651 8652 /* There should not be any in-progress I/O so ASSERT this check */ 8653 ASSERT(un->un_ncmds_in_transport == 0); 8654 ASSERT(un->un_ncmds_in_driver == 0); 8655 8656 /* Do not free the softstate if the callback routine is active */ 8657 sd_sync_with_callback(un); 8658 8659 /* 8660 * Partition stats apparently are not used with removables. These would 8661 * not have been created during attach, so no need to clean them up... 8662 */ 8663 if (un->un_stats != NULL) { 8664 kstat_delete(un->un_stats); 8665 un->un_stats = NULL; 8666 } 8667 if (un->un_errstats != NULL) { 8668 kstat_delete(un->un_errstats); 8669 un->un_errstats = NULL; 8670 } 8671 8672 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 8673 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 8674 8675 ddi_prop_remove_all(devi); 8676 sema_destroy(&un->un_semoclose); 8677 cv_destroy(&un->un_state_cv); 8678 8679 getrbuf_failed: 8680 8681 sd_free_rqs(un); 8682 8683 alloc_rqs_failed: 8684 8685 devp->sd_private = NULL; 8686 bzero(un, sizeof (struct sd_lun)); /* Clear any stale data! */ 8687 8688 get_softstate_failed: 8689 /* 8690 * Note: the man pages are unclear as to whether or not doing a 8691 * ddi_soft_state_free(sd_state, instance) is the right way to 8692 * clean up after the ddi_soft_state_zalloc() if the subsequent 8693 * ddi_get_soft_state() fails. The implication seems to be 8694 * that the get_soft_state cannot fail if the zalloc succeeds. 8695 */ 8696 ddi_soft_state_free(sd_state, instance); 8697 8698 probe_failed: 8699 scsi_unprobe(devp); 8700 #ifdef SDDEBUG 8701 if ((sd_component_mask & SD_LOG_ATTACH_DETACH) && 8702 (sd_level_mask & SD_LOGMASK_TRACE)) { 8703 cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n", 8704 (void *)un); 8705 } 8706 #endif 8707 return (DDI_FAILURE); 8708 } 8709 8710 8711 /* 8712 * Function: sd_unit_detach 8713 * 8714 * Description: Performs DDI_DETACH processing for sddetach(). 8715 * 8716 * Return Code: DDI_SUCCESS 8717 * DDI_FAILURE 8718 * 8719 * Context: Kernel thread context 8720 */ 8721 8722 static int 8723 sd_unit_detach(dev_info_t *devi) 8724 { 8725 struct scsi_device *devp; 8726 struct sd_lun *un; 8727 int i; 8728 dev_t dev; 8729 int instance = ddi_get_instance(devi); 8730 8731 mutex_enter(&sd_detach_mutex); 8732 8733 /* 8734 * Fail the detach for any of the following: 8735 * - Unable to get the sd_lun struct for the instance 8736 * - A layered driver has an outstanding open on the instance 8737 * - Another thread is already detaching this instance 8738 * - Another thread is currently performing an open 8739 */ 8740 devp = ddi_get_driver_private(devi); 8741 if ((devp == NULL) || 8742 ((un = (struct sd_lun *)devp->sd_private) == NULL) || 8743 (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) || 8744 (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) { 8745 mutex_exit(&sd_detach_mutex); 8746 return (DDI_FAILURE); 8747 } 8748 8749 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un); 8750 8751 /* 8752 * Mark this instance as currently in a detach, to inhibit any 8753 * opens from a layered driver. 8754 */ 8755 un->un_detach_count++; 8756 mutex_exit(&sd_detach_mutex); 8757 8758 dev = sd_make_device(SD_DEVINFO(un)); 8759 8760 _NOTE(COMPETING_THREADS_NOW); 8761 8762 mutex_enter(SD_MUTEX(un)); 8763 8764 /* 8765 * Fail the detach if there are any outstanding layered 8766 * opens on this device. 8767 */ 8768 for (i = 0; i < NDKMAP; i++) { 8769 if (un->un_ocmap.lyropen[i] != 0) { 8770 goto err_notclosed; 8771 } 8772 } 8773 8774 /* 8775 * Verify there are NO outstanding commands issued to this device. 8776 * ie, un_ncmds_in_transport == 0. 8777 * It's possible to have outstanding commands through the physio 8778 * code path, even though everything's closed. 8779 */ 8780 if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) || 8781 (un->un_direct_priority_timeid != NULL) || 8782 (un->un_state == SD_STATE_RWAIT)) { 8783 mutex_exit(SD_MUTEX(un)); 8784 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8785 "sd_dr_detach: Detach failure due to outstanding cmds\n"); 8786 goto err_stillbusy; 8787 } 8788 8789 /* 8790 * If we have the device reserved, release the reservation. 8791 */ 8792 if ((un->un_resvd_status & SD_RESERVE) && 8793 !(un->un_resvd_status & SD_LOST_RESERVE)) { 8794 mutex_exit(SD_MUTEX(un)); 8795 /* 8796 * Note: sd_reserve_release sends a command to the device 8797 * via the sd_ioctlcmd() path, and can sleep. 8798 */ 8799 if (sd_reserve_release(dev, SD_RELEASE) != 0) { 8800 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8801 "sd_dr_detach: Cannot release reservation \n"); 8802 } 8803 } else { 8804 mutex_exit(SD_MUTEX(un)); 8805 } 8806 8807 /* 8808 * Untimeout any reserve recover, throttle reset, restart unit 8809 * and delayed broadcast timeout threads. Protect the timeout pointer 8810 * from getting nulled by their callback functions. 8811 */ 8812 mutex_enter(SD_MUTEX(un)); 8813 if (un->un_resvd_timeid != NULL) { 8814 timeout_id_t temp_id = un->un_resvd_timeid; 8815 un->un_resvd_timeid = NULL; 8816 mutex_exit(SD_MUTEX(un)); 8817 (void) untimeout(temp_id); 8818 mutex_enter(SD_MUTEX(un)); 8819 } 8820 8821 if (un->un_reset_throttle_timeid != NULL) { 8822 timeout_id_t temp_id = un->un_reset_throttle_timeid; 8823 un->un_reset_throttle_timeid = NULL; 8824 mutex_exit(SD_MUTEX(un)); 8825 (void) untimeout(temp_id); 8826 mutex_enter(SD_MUTEX(un)); 8827 } 8828 8829 if (un->un_startstop_timeid != NULL) { 8830 timeout_id_t temp_id = un->un_startstop_timeid; 8831 un->un_startstop_timeid = NULL; 8832 mutex_exit(SD_MUTEX(un)); 8833 (void) untimeout(temp_id); 8834 mutex_enter(SD_MUTEX(un)); 8835 } 8836 8837 if (un->un_dcvb_timeid != NULL) { 8838 timeout_id_t temp_id = un->un_dcvb_timeid; 8839 un->un_dcvb_timeid = NULL; 8840 mutex_exit(SD_MUTEX(un)); 8841 (void) untimeout(temp_id); 8842 } else { 8843 mutex_exit(SD_MUTEX(un)); 8844 } 8845 8846 /* Remove any pending reservation reclaim requests for this device */ 8847 sd_rmv_resv_reclaim_req(dev); 8848 8849 mutex_enter(SD_MUTEX(un)); 8850 8851 /* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */ 8852 if (un->un_direct_priority_timeid != NULL) { 8853 timeout_id_t temp_id = un->un_direct_priority_timeid; 8854 un->un_direct_priority_timeid = NULL; 8855 mutex_exit(SD_MUTEX(un)); 8856 (void) untimeout(temp_id); 8857 mutex_enter(SD_MUTEX(un)); 8858 } 8859 8860 /* Cancel any active multi-host disk watch thread requests */ 8861 if (un->un_mhd_token != NULL) { 8862 mutex_exit(SD_MUTEX(un)); 8863 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token)); 8864 if (scsi_watch_request_terminate(un->un_mhd_token, 8865 SCSI_WATCH_TERMINATE_NOWAIT)) { 8866 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8867 "sd_dr_detach: Cannot cancel mhd watch request\n"); 8868 /* 8869 * Note: We are returning here after having removed 8870 * some driver timeouts above. This is consistent with 8871 * the legacy implementation but perhaps the watch 8872 * terminate call should be made with the wait flag set. 8873 */ 8874 goto err_stillbusy; 8875 } 8876 mutex_enter(SD_MUTEX(un)); 8877 un->un_mhd_token = NULL; 8878 } 8879 8880 if (un->un_swr_token != NULL) { 8881 mutex_exit(SD_MUTEX(un)); 8882 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token)); 8883 if (scsi_watch_request_terminate(un->un_swr_token, 8884 SCSI_WATCH_TERMINATE_NOWAIT)) { 8885 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8886 "sd_dr_detach: Cannot cancel swr watch request\n"); 8887 /* 8888 * Note: We are returning here after having removed 8889 * some driver timeouts above. This is consistent with 8890 * the legacy implementation but perhaps the watch 8891 * terminate call should be made with the wait flag set. 8892 */ 8893 goto err_stillbusy; 8894 } 8895 mutex_enter(SD_MUTEX(un)); 8896 un->un_swr_token = NULL; 8897 } 8898 8899 mutex_exit(SD_MUTEX(un)); 8900 8901 /* 8902 * Clear any scsi_reset_notifies. We clear the reset notifies 8903 * if we have not registered one. 8904 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX! 8905 */ 8906 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 8907 sd_mhd_reset_notify_cb, (caddr_t)un); 8908 8909 /* 8910 * protect the timeout pointers from getting nulled by 8911 * their callback functions during the cancellation process. 8912 * In such a scenario untimeout can be invoked with a null value. 8913 */ 8914 _NOTE(NO_COMPETING_THREADS_NOW); 8915 8916 mutex_enter(&un->un_pm_mutex); 8917 if (un->un_pm_idle_timeid != NULL) { 8918 timeout_id_t temp_id = un->un_pm_idle_timeid; 8919 un->un_pm_idle_timeid = NULL; 8920 mutex_exit(&un->un_pm_mutex); 8921 8922 /* 8923 * Timeout is active; cancel it. 8924 * Note that it'll never be active on a device 8925 * that does not support PM therefore we don't 8926 * have to check before calling pm_idle_component. 8927 */ 8928 (void) untimeout(temp_id); 8929 (void) pm_idle_component(SD_DEVINFO(un), 0); 8930 mutex_enter(&un->un_pm_mutex); 8931 } 8932 8933 /* 8934 * Check whether there is already a timeout scheduled for power 8935 * management. If yes then don't lower the power here, that's. 8936 * the timeout handler's job. 8937 */ 8938 if (un->un_pm_timeid != NULL) { 8939 timeout_id_t temp_id = un->un_pm_timeid; 8940 un->un_pm_timeid = NULL; 8941 mutex_exit(&un->un_pm_mutex); 8942 /* 8943 * Timeout is active; cancel it. 8944 * Note that it'll never be active on a device 8945 * that does not support PM therefore we don't 8946 * have to check before calling pm_idle_component. 8947 */ 8948 (void) untimeout(temp_id); 8949 (void) pm_idle_component(SD_DEVINFO(un), 0); 8950 8951 } else { 8952 mutex_exit(&un->un_pm_mutex); 8953 if ((un->un_f_pm_is_enabled == TRUE) && 8954 (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) != 8955 DDI_SUCCESS)) { 8956 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 8957 "sd_dr_detach: Lower power request failed, ignoring.\n"); 8958 /* 8959 * Fix for bug: 4297749, item # 13 8960 * The above test now includes a check to see if PM is 8961 * supported by this device before call 8962 * pm_lower_power(). 8963 * Note, the following is not dead code. The call to 8964 * pm_lower_power above will generate a call back into 8965 * our sdpower routine which might result in a timeout 8966 * handler getting activated. Therefore the following 8967 * code is valid and necessary. 8968 */ 8969 mutex_enter(&un->un_pm_mutex); 8970 if (un->un_pm_timeid != NULL) { 8971 timeout_id_t temp_id = un->un_pm_timeid; 8972 un->un_pm_timeid = NULL; 8973 mutex_exit(&un->un_pm_mutex); 8974 (void) untimeout(temp_id); 8975 (void) pm_idle_component(SD_DEVINFO(un), 0); 8976 } else { 8977 mutex_exit(&un->un_pm_mutex); 8978 } 8979 } 8980 } 8981 8982 /* 8983 * Cleanup from the scsi_ifsetcap() calls (437868) 8984 * Relocated here from above to be after the call to 8985 * pm_lower_power, which was getting errors. 8986 */ 8987 (void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1); 8988 (void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1); 8989 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 8990 8991 if (un->un_f_is_fibre == FALSE) { 8992 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1); 8993 } 8994 8995 /* 8996 * Remove any event callbacks, fibre only 8997 */ 8998 if (un->un_f_is_fibre == TRUE) { 8999 if ((un->un_insert_event != NULL) && 9000 (ddi_remove_event_handler(un->un_insert_cb_id) != 9001 DDI_SUCCESS)) { 9002 /* 9003 * Note: We are returning here after having done 9004 * substantial cleanup above. This is consistent 9005 * with the legacy implementation but this may not 9006 * be the right thing to do. 9007 */ 9008 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9009 "sd_dr_detach: Cannot cancel insert event\n"); 9010 goto err_remove_event; 9011 } 9012 un->un_insert_event = NULL; 9013 9014 if ((un->un_remove_event != NULL) && 9015 (ddi_remove_event_handler(un->un_remove_cb_id) != 9016 DDI_SUCCESS)) { 9017 /* 9018 * Note: We are returning here after having done 9019 * substantial cleanup above. This is consistent 9020 * with the legacy implementation but this may not 9021 * be the right thing to do. 9022 */ 9023 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9024 "sd_dr_detach: Cannot cancel remove event\n"); 9025 goto err_remove_event; 9026 } 9027 un->un_remove_event = NULL; 9028 } 9029 9030 /* Do not free the softstate if the callback routine is active */ 9031 sd_sync_with_callback(un); 9032 9033 /* 9034 * Hold the detach mutex here, to make sure that no other threads ever 9035 * can access a (partially) freed soft state structure. 9036 */ 9037 mutex_enter(&sd_detach_mutex); 9038 9039 /* 9040 * Clean up the soft state struct. 9041 * Cleanup is done in reverse order of allocs/inits. 9042 * At this point there should be no competing threads anymore. 9043 */ 9044 9045 /* Unregister and free device id. */ 9046 ddi_devid_unregister(devi); 9047 if (un->un_devid) { 9048 ddi_devid_free(un->un_devid); 9049 un->un_devid = NULL; 9050 } 9051 9052 /* 9053 * Destroy wmap cache if it exists. 9054 */ 9055 if (un->un_wm_cache != NULL) { 9056 kmem_cache_destroy(un->un_wm_cache); 9057 un->un_wm_cache = NULL; 9058 } 9059 9060 /* Remove minor nodes */ 9061 ddi_remove_minor_node(devi, NULL); 9062 9063 /* 9064 * kstat cleanup is done in detach for all device types (4363169). 9065 * We do not want to fail detach if the device kstats are not deleted 9066 * since there is a confusion about the devo_refcnt for the device. 9067 * We just delete the kstats and let detach complete successfully. 9068 */ 9069 if (un->un_stats != NULL) { 9070 kstat_delete(un->un_stats); 9071 un->un_stats = NULL; 9072 } 9073 if (un->un_errstats != NULL) { 9074 kstat_delete(un->un_errstats); 9075 un->un_errstats = NULL; 9076 } 9077 9078 /* Remove partition stats */ 9079 if (un->un_f_pkstats_enabled) { 9080 for (i = 0; i < NSDMAP; i++) { 9081 if (un->un_pstats[i] != NULL) { 9082 kstat_delete(un->un_pstats[i]); 9083 un->un_pstats[i] = NULL; 9084 } 9085 } 9086 } 9087 9088 /* Remove xbuf registration */ 9089 ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi); 9090 ddi_xbuf_attr_destroy(un->un_xbuf_attr); 9091 9092 /* Remove driver properties */ 9093 ddi_prop_remove_all(devi); 9094 9095 mutex_destroy(&un->un_pm_mutex); 9096 cv_destroy(&un->un_pm_busy_cv); 9097 9098 cv_destroy(&un->un_wcc_cv); 9099 9100 /* Open/close semaphore */ 9101 sema_destroy(&un->un_semoclose); 9102 9103 /* Removable media condvar. */ 9104 cv_destroy(&un->un_state_cv); 9105 9106 /* Suspend/resume condvar. */ 9107 cv_destroy(&un->un_suspend_cv); 9108 cv_destroy(&un->un_disk_busy_cv); 9109 9110 sd_free_rqs(un); 9111 9112 /* Free up soft state */ 9113 devp->sd_private = NULL; 9114 bzero(un, sizeof (struct sd_lun)); 9115 ddi_soft_state_free(sd_state, instance); 9116 9117 mutex_exit(&sd_detach_mutex); 9118 9119 /* This frees up the INQUIRY data associated with the device. */ 9120 scsi_unprobe(devp); 9121 9122 return (DDI_SUCCESS); 9123 9124 err_notclosed: 9125 mutex_exit(SD_MUTEX(un)); 9126 9127 err_stillbusy: 9128 _NOTE(NO_COMPETING_THREADS_NOW); 9129 9130 err_remove_event: 9131 mutex_enter(&sd_detach_mutex); 9132 un->un_detach_count--; 9133 mutex_exit(&sd_detach_mutex); 9134 9135 SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n"); 9136 return (DDI_FAILURE); 9137 } 9138 9139 9140 /* 9141 * Driver minor node structure and data table 9142 */ 9143 struct driver_minor_data { 9144 char *name; 9145 minor_t minor; 9146 int type; 9147 }; 9148 9149 static struct driver_minor_data sd_minor_data[] = { 9150 {"a", 0, S_IFBLK}, 9151 {"b", 1, S_IFBLK}, 9152 {"c", 2, S_IFBLK}, 9153 {"d", 3, S_IFBLK}, 9154 {"e", 4, S_IFBLK}, 9155 {"f", 5, S_IFBLK}, 9156 {"g", 6, S_IFBLK}, 9157 {"h", 7, S_IFBLK}, 9158 #if defined(_SUNOS_VTOC_16) 9159 {"i", 8, S_IFBLK}, 9160 {"j", 9, S_IFBLK}, 9161 {"k", 10, S_IFBLK}, 9162 {"l", 11, S_IFBLK}, 9163 {"m", 12, S_IFBLK}, 9164 {"n", 13, S_IFBLK}, 9165 {"o", 14, S_IFBLK}, 9166 {"p", 15, S_IFBLK}, 9167 #endif /* defined(_SUNOS_VTOC_16) */ 9168 #if defined(_FIRMWARE_NEEDS_FDISK) 9169 {"q", 16, S_IFBLK}, 9170 {"r", 17, S_IFBLK}, 9171 {"s", 18, S_IFBLK}, 9172 {"t", 19, S_IFBLK}, 9173 {"u", 20, S_IFBLK}, 9174 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 9175 {"a,raw", 0, S_IFCHR}, 9176 {"b,raw", 1, S_IFCHR}, 9177 {"c,raw", 2, S_IFCHR}, 9178 {"d,raw", 3, S_IFCHR}, 9179 {"e,raw", 4, S_IFCHR}, 9180 {"f,raw", 5, S_IFCHR}, 9181 {"g,raw", 6, S_IFCHR}, 9182 {"h,raw", 7, S_IFCHR}, 9183 #if defined(_SUNOS_VTOC_16) 9184 {"i,raw", 8, S_IFCHR}, 9185 {"j,raw", 9, S_IFCHR}, 9186 {"k,raw", 10, S_IFCHR}, 9187 {"l,raw", 11, S_IFCHR}, 9188 {"m,raw", 12, S_IFCHR}, 9189 {"n,raw", 13, S_IFCHR}, 9190 {"o,raw", 14, S_IFCHR}, 9191 {"p,raw", 15, S_IFCHR}, 9192 #endif /* defined(_SUNOS_VTOC_16) */ 9193 #if defined(_FIRMWARE_NEEDS_FDISK) 9194 {"q,raw", 16, S_IFCHR}, 9195 {"r,raw", 17, S_IFCHR}, 9196 {"s,raw", 18, S_IFCHR}, 9197 {"t,raw", 19, S_IFCHR}, 9198 {"u,raw", 20, S_IFCHR}, 9199 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 9200 {0} 9201 }; 9202 9203 static struct driver_minor_data sd_minor_data_efi[] = { 9204 {"a", 0, S_IFBLK}, 9205 {"b", 1, S_IFBLK}, 9206 {"c", 2, S_IFBLK}, 9207 {"d", 3, S_IFBLK}, 9208 {"e", 4, S_IFBLK}, 9209 {"f", 5, S_IFBLK}, 9210 {"g", 6, S_IFBLK}, 9211 {"wd", 7, S_IFBLK}, 9212 #if defined(_FIRMWARE_NEEDS_FDISK) 9213 {"q", 16, S_IFBLK}, 9214 {"r", 17, S_IFBLK}, 9215 {"s", 18, S_IFBLK}, 9216 {"t", 19, S_IFBLK}, 9217 {"u", 20, S_IFBLK}, 9218 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 9219 {"a,raw", 0, S_IFCHR}, 9220 {"b,raw", 1, S_IFCHR}, 9221 {"c,raw", 2, S_IFCHR}, 9222 {"d,raw", 3, S_IFCHR}, 9223 {"e,raw", 4, S_IFCHR}, 9224 {"f,raw", 5, S_IFCHR}, 9225 {"g,raw", 6, S_IFCHR}, 9226 {"wd,raw", 7, S_IFCHR}, 9227 #if defined(_FIRMWARE_NEEDS_FDISK) 9228 {"q,raw", 16, S_IFCHR}, 9229 {"r,raw", 17, S_IFCHR}, 9230 {"s,raw", 18, S_IFCHR}, 9231 {"t,raw", 19, S_IFCHR}, 9232 {"u,raw", 20, S_IFCHR}, 9233 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 9234 {0} 9235 }; 9236 9237 9238 /* 9239 * Function: sd_create_minor_nodes 9240 * 9241 * Description: Create the minor device nodes for the instance. 9242 * 9243 * Arguments: un - driver soft state (unit) structure 9244 * devi - pointer to device info structure 9245 * 9246 * Return Code: DDI_SUCCESS 9247 * DDI_FAILURE 9248 * 9249 * Context: Kernel thread context 9250 */ 9251 9252 static int 9253 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi) 9254 { 9255 struct driver_minor_data *dmdp; 9256 struct scsi_device *devp; 9257 int instance; 9258 char name[48]; 9259 9260 ASSERT(un != NULL); 9261 devp = ddi_get_driver_private(devi); 9262 instance = ddi_get_instance(devp->sd_dev); 9263 9264 /* 9265 * Create all the minor nodes for this target. 9266 */ 9267 if (un->un_blockcount > DK_MAX_BLOCKS) 9268 dmdp = sd_minor_data_efi; 9269 else 9270 dmdp = sd_minor_data; 9271 while (dmdp->name != NULL) { 9272 9273 (void) sprintf(name, "%s", dmdp->name); 9274 9275 if (ddi_create_minor_node(devi, name, dmdp->type, 9276 (instance << SDUNIT_SHIFT) | dmdp->minor, 9277 un->un_node_type, NULL) == DDI_FAILURE) { 9278 /* 9279 * Clean up any nodes that may have been created, in 9280 * case this fails in the middle of the loop. 9281 */ 9282 ddi_remove_minor_node(devi, NULL); 9283 return (DDI_FAILURE); 9284 } 9285 dmdp++; 9286 } 9287 9288 return (DDI_SUCCESS); 9289 } 9290 9291 9292 /* 9293 * Function: sd_create_errstats 9294 * 9295 * Description: This routine instantiates the device error stats. 9296 * 9297 * Note: During attach the stats are instantiated first so they are 9298 * available for attach-time routines that utilize the driver 9299 * iopath to send commands to the device. The stats are initialized 9300 * separately so data obtained during some attach-time routines is 9301 * available. (4362483) 9302 * 9303 * Arguments: un - driver soft state (unit) structure 9304 * instance - driver instance 9305 * 9306 * Context: Kernel thread context 9307 */ 9308 9309 static void 9310 sd_create_errstats(struct sd_lun *un, int instance) 9311 { 9312 struct sd_errstats *stp; 9313 char kstatmodule_err[KSTAT_STRLEN]; 9314 char kstatname[KSTAT_STRLEN]; 9315 int ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t)); 9316 9317 ASSERT(un != NULL); 9318 9319 if (un->un_errstats != NULL) { 9320 return; 9321 } 9322 9323 (void) snprintf(kstatmodule_err, sizeof (kstatmodule_err), 9324 "%serr", sd_label); 9325 (void) snprintf(kstatname, sizeof (kstatname), 9326 "%s%d,err", sd_label, instance); 9327 9328 un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname, 9329 "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT); 9330 9331 if (un->un_errstats == NULL) { 9332 SD_ERROR(SD_LOG_ATTACH_DETACH, un, 9333 "sd_create_errstats: Failed kstat_create\n"); 9334 return; 9335 } 9336 9337 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9338 kstat_named_init(&stp->sd_softerrs, "Soft Errors", 9339 KSTAT_DATA_UINT32); 9340 kstat_named_init(&stp->sd_harderrs, "Hard Errors", 9341 KSTAT_DATA_UINT32); 9342 kstat_named_init(&stp->sd_transerrs, "Transport Errors", 9343 KSTAT_DATA_UINT32); 9344 kstat_named_init(&stp->sd_vid, "Vendor", 9345 KSTAT_DATA_CHAR); 9346 kstat_named_init(&stp->sd_pid, "Product", 9347 KSTAT_DATA_CHAR); 9348 kstat_named_init(&stp->sd_revision, "Revision", 9349 KSTAT_DATA_CHAR); 9350 kstat_named_init(&stp->sd_serial, "Serial No", 9351 KSTAT_DATA_CHAR); 9352 kstat_named_init(&stp->sd_capacity, "Size", 9353 KSTAT_DATA_ULONGLONG); 9354 kstat_named_init(&stp->sd_rq_media_err, "Media Error", 9355 KSTAT_DATA_UINT32); 9356 kstat_named_init(&stp->sd_rq_ntrdy_err, "Device Not Ready", 9357 KSTAT_DATA_UINT32); 9358 kstat_named_init(&stp->sd_rq_nodev_err, "No Device", 9359 KSTAT_DATA_UINT32); 9360 kstat_named_init(&stp->sd_rq_recov_err, "Recoverable", 9361 KSTAT_DATA_UINT32); 9362 kstat_named_init(&stp->sd_rq_illrq_err, "Illegal Request", 9363 KSTAT_DATA_UINT32); 9364 kstat_named_init(&stp->sd_rq_pfa_err, "Predictive Failure Analysis", 9365 KSTAT_DATA_UINT32); 9366 9367 un->un_errstats->ks_private = un; 9368 un->un_errstats->ks_update = nulldev; 9369 9370 kstat_install(un->un_errstats); 9371 } 9372 9373 9374 /* 9375 * Function: sd_set_errstats 9376 * 9377 * Description: This routine sets the value of the vendor id, product id, 9378 * revision, serial number, and capacity device error stats. 9379 * 9380 * Note: During attach the stats are instantiated first so they are 9381 * available for attach-time routines that utilize the driver 9382 * iopath to send commands to the device. The stats are initialized 9383 * separately so data obtained during some attach-time routines is 9384 * available. (4362483) 9385 * 9386 * Arguments: un - driver soft state (unit) structure 9387 * 9388 * Context: Kernel thread context 9389 */ 9390 9391 static void 9392 sd_set_errstats(struct sd_lun *un) 9393 { 9394 struct sd_errstats *stp; 9395 9396 ASSERT(un != NULL); 9397 ASSERT(un->un_errstats != NULL); 9398 stp = (struct sd_errstats *)un->un_errstats->ks_data; 9399 ASSERT(stp != NULL); 9400 (void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8); 9401 (void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16); 9402 (void) strncpy(stp->sd_revision.value.c, 9403 un->un_sd->sd_inq->inq_revision, 4); 9404 9405 /* 9406 * Set the "Serial No" kstat for Sun qualified drives (indicated by 9407 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid) 9408 * (4376302)) 9409 */ 9410 if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) { 9411 bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c, 9412 sizeof (SD_INQUIRY(un)->inq_serial)); 9413 } 9414 9415 if (un->un_f_blockcount_is_valid != TRUE) { 9416 /* 9417 * Set capacity error stat to 0 for no media. This ensures 9418 * a valid capacity is displayed in response to 'iostat -E' 9419 * when no media is present in the device. 9420 */ 9421 stp->sd_capacity.value.ui64 = 0; 9422 } else { 9423 /* 9424 * Multiply un_blockcount by un->un_sys_blocksize to get 9425 * capacity. 9426 * 9427 * Note: for non-512 blocksize devices "un_blockcount" has been 9428 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by 9429 * (un_tgt_blocksize / un->un_sys_blocksize). 9430 */ 9431 stp->sd_capacity.value.ui64 = (uint64_t) 9432 ((uint64_t)un->un_blockcount * un->un_sys_blocksize); 9433 } 9434 } 9435 9436 9437 /* 9438 * Function: sd_set_pstats 9439 * 9440 * Description: This routine instantiates and initializes the partition 9441 * stats for each partition with more than zero blocks. 9442 * (4363169) 9443 * 9444 * Arguments: un - driver soft state (unit) structure 9445 * 9446 * Context: Kernel thread context 9447 */ 9448 9449 static void 9450 sd_set_pstats(struct sd_lun *un) 9451 { 9452 char kstatname[KSTAT_STRLEN]; 9453 int instance; 9454 int i; 9455 9456 ASSERT(un != NULL); 9457 9458 instance = ddi_get_instance(SD_DEVINFO(un)); 9459 9460 /* Note:x86: is this a VTOC8/VTOC16 difference? */ 9461 for (i = 0; i < NSDMAP; i++) { 9462 if ((un->un_pstats[i] == NULL) && 9463 (un->un_map[i].dkl_nblk != 0)) { 9464 (void) snprintf(kstatname, sizeof (kstatname), 9465 "%s%d,%s", sd_label, instance, 9466 sd_minor_data[i].name); 9467 un->un_pstats[i] = kstat_create(sd_label, 9468 instance, kstatname, "partition", KSTAT_TYPE_IO, 9469 1, KSTAT_FLAG_PERSISTENT); 9470 if (un->un_pstats[i] != NULL) { 9471 un->un_pstats[i]->ks_lock = SD_MUTEX(un); 9472 kstat_install(un->un_pstats[i]); 9473 } 9474 } 9475 } 9476 } 9477 9478 9479 #if (defined(__fibre)) 9480 /* 9481 * Function: sd_init_event_callbacks 9482 * 9483 * Description: This routine initializes the insertion and removal event 9484 * callbacks. (fibre only) 9485 * 9486 * Arguments: un - driver soft state (unit) structure 9487 * 9488 * Context: Kernel thread context 9489 */ 9490 9491 static void 9492 sd_init_event_callbacks(struct sd_lun *un) 9493 { 9494 ASSERT(un != NULL); 9495 9496 if ((un->un_insert_event == NULL) && 9497 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT, 9498 &un->un_insert_event) == DDI_SUCCESS)) { 9499 /* 9500 * Add the callback for an insertion event 9501 */ 9502 (void) ddi_add_event_handler(SD_DEVINFO(un), 9503 un->un_insert_event, sd_event_callback, (void *)un, 9504 &(un->un_insert_cb_id)); 9505 } 9506 9507 if ((un->un_remove_event == NULL) && 9508 (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT, 9509 &un->un_remove_event) == DDI_SUCCESS)) { 9510 /* 9511 * Add the callback for a removal event 9512 */ 9513 (void) ddi_add_event_handler(SD_DEVINFO(un), 9514 un->un_remove_event, sd_event_callback, (void *)un, 9515 &(un->un_remove_cb_id)); 9516 } 9517 } 9518 9519 9520 /* 9521 * Function: sd_event_callback 9522 * 9523 * Description: This routine handles insert/remove events (photon). The 9524 * state is changed to OFFLINE which can be used to supress 9525 * error msgs. (fibre only) 9526 * 9527 * Arguments: un - driver soft state (unit) structure 9528 * 9529 * Context: Callout thread context 9530 */ 9531 /* ARGSUSED */ 9532 static void 9533 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg, 9534 void *bus_impldata) 9535 { 9536 struct sd_lun *un = (struct sd_lun *)arg; 9537 9538 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event)); 9539 if (event == un->un_insert_event) { 9540 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event"); 9541 mutex_enter(SD_MUTEX(un)); 9542 if (un->un_state == SD_STATE_OFFLINE) { 9543 if (un->un_last_state != SD_STATE_SUSPENDED) { 9544 un->un_state = un->un_last_state; 9545 } else { 9546 /* 9547 * We have gone through SUSPEND/RESUME while 9548 * we were offline. Restore the last state 9549 */ 9550 un->un_state = un->un_save_state; 9551 } 9552 } 9553 mutex_exit(SD_MUTEX(un)); 9554 9555 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event)); 9556 } else if (event == un->un_remove_event) { 9557 SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event"); 9558 mutex_enter(SD_MUTEX(un)); 9559 /* 9560 * We need to handle an event callback that occurs during 9561 * the suspend operation, since we don't prevent it. 9562 */ 9563 if (un->un_state != SD_STATE_OFFLINE) { 9564 if (un->un_state != SD_STATE_SUSPENDED) { 9565 New_state(un, SD_STATE_OFFLINE); 9566 } else { 9567 un->un_last_state = SD_STATE_OFFLINE; 9568 } 9569 } 9570 mutex_exit(SD_MUTEX(un)); 9571 } else { 9572 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 9573 "!Unknown event\n"); 9574 } 9575 9576 } 9577 #endif 9578 9579 /* 9580 * Function: sd_cache_control() 9581 * 9582 * Description: This routine is the driver entry point for setting 9583 * read and write caching by modifying the WCE (write cache 9584 * enable) and RCD (read cache disable) bits of mode 9585 * page 8 (MODEPAGE_CACHING). 9586 * 9587 * Arguments: un - driver soft state (unit) structure 9588 * rcd_flag - flag for controlling the read cache 9589 * wce_flag - flag for controlling the write cache 9590 * 9591 * Return Code: EIO 9592 * code returned by sd_send_scsi_MODE_SENSE and 9593 * sd_send_scsi_MODE_SELECT 9594 * 9595 * Context: Kernel Thread 9596 */ 9597 9598 static int 9599 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag) 9600 { 9601 struct mode_caching *mode_caching_page; 9602 uchar_t *header; 9603 size_t buflen; 9604 int hdrlen; 9605 int bd_len; 9606 int rval = 0; 9607 struct mode_header_grp2 *mhp; 9608 9609 ASSERT(un != NULL); 9610 9611 /* 9612 * Do a test unit ready, otherwise a mode sense may not work if this 9613 * is the first command sent to the device after boot. 9614 */ 9615 (void) sd_send_scsi_TEST_UNIT_READY(un, 0); 9616 9617 if (un->un_f_cfg_is_atapi == TRUE) { 9618 hdrlen = MODE_HEADER_LENGTH_GRP2; 9619 } else { 9620 hdrlen = MODE_HEADER_LENGTH; 9621 } 9622 9623 /* 9624 * Allocate memory for the retrieved mode page and its headers. Set 9625 * a pointer to the page itself. Use mode_cache_scsi3 to insure 9626 * we get all of the mode sense data otherwise, the mode select 9627 * will fail. mode_cache_scsi3 is a superset of mode_caching. 9628 */ 9629 buflen = hdrlen + MODE_BLK_DESC_LENGTH + 9630 sizeof (struct mode_cache_scsi3); 9631 9632 header = kmem_zalloc(buflen, KM_SLEEP); 9633 9634 /* Get the information from the device. */ 9635 if (un->un_f_cfg_is_atapi == TRUE) { 9636 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen, 9637 MODEPAGE_CACHING, SD_PATH_DIRECT); 9638 } else { 9639 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen, 9640 MODEPAGE_CACHING, SD_PATH_DIRECT); 9641 } 9642 if (rval != 0) { 9643 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9644 "sd_cache_control: Mode Sense Failed\n"); 9645 kmem_free(header, buflen); 9646 return (rval); 9647 } 9648 9649 /* 9650 * Determine size of Block Descriptors in order to locate 9651 * the mode page data. ATAPI devices return 0, SCSI devices 9652 * should return MODE_BLK_DESC_LENGTH. 9653 */ 9654 if (un->un_f_cfg_is_atapi == TRUE) { 9655 mhp = (struct mode_header_grp2 *)header; 9656 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9657 } else { 9658 bd_len = ((struct mode_header *)header)->bdesc_length; 9659 } 9660 9661 if (bd_len > MODE_BLK_DESC_LENGTH) { 9662 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 9663 "sd_cache_control: Mode Sense returned invalid " 9664 "block descriptor length\n"); 9665 kmem_free(header, buflen); 9666 return (EIO); 9667 } 9668 9669 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9670 9671 /* Check the relevant bits on successful mode sense. */ 9672 if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) || 9673 (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) || 9674 (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) || 9675 (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) { 9676 9677 size_t sbuflen; 9678 9679 /* 9680 * Construct select buffer length based on the 9681 * length of the sense data returned. 9682 */ 9683 sbuflen = hdrlen + MODE_BLK_DESC_LENGTH + 9684 sizeof (struct mode_page) + 9685 (int)mode_caching_page->mode_page.length; 9686 9687 /* 9688 * Set the caching bits as requested. 9689 */ 9690 if (rcd_flag == SD_CACHE_ENABLE) 9691 mode_caching_page->rcd = 0; 9692 else if (rcd_flag == SD_CACHE_DISABLE) 9693 mode_caching_page->rcd = 1; 9694 9695 if (wce_flag == SD_CACHE_ENABLE) 9696 mode_caching_page->wce = 1; 9697 else if (wce_flag == SD_CACHE_DISABLE) 9698 mode_caching_page->wce = 0; 9699 9700 /* Clear reserved bits before mode select. */ 9701 mode_caching_page->mode_page.ps = 0; 9702 9703 /* 9704 * Clear out mode header for mode select. 9705 * The rest of the retrieved page will be reused. 9706 */ 9707 bzero(header, hdrlen); 9708 9709 if (un->un_f_cfg_is_atapi == TRUE) { 9710 mhp = (struct mode_header_grp2 *)header; 9711 mhp->bdesc_length_hi = bd_len >> 8; 9712 mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff; 9713 } else { 9714 ((struct mode_header *)header)->bdesc_length = bd_len; 9715 } 9716 9717 /* Issue mode select to change the cache settings */ 9718 if (un->un_f_cfg_is_atapi == TRUE) { 9719 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header, 9720 sbuflen, SD_SAVE_PAGE, SD_PATH_DIRECT); 9721 } else { 9722 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header, 9723 sbuflen, SD_SAVE_PAGE, SD_PATH_DIRECT); 9724 } 9725 } 9726 9727 kmem_free(header, buflen); 9728 return (rval); 9729 } 9730 9731 9732 /* 9733 * Function: sd_get_write_cache_enabled() 9734 * 9735 * Description: This routine is the driver entry point for determining if 9736 * write caching is enabled. It examines the WCE (write cache 9737 * enable) bits of mode page 8 (MODEPAGE_CACHING). 9738 * 9739 * Arguments: un - driver soft state (unit) structure 9740 * is_enabled - pointer to int where write cache enabled state 9741 * is returned (non-zero -> write cache enabled) 9742 * 9743 * 9744 * Return Code: EIO 9745 * code returned by sd_send_scsi_MODE_SENSE 9746 * 9747 * Context: Kernel Thread 9748 * 9749 * NOTE: If ioctl is added to disable write cache, this sequence should 9750 * be followed so that no locking is required for accesses to 9751 * un->un_f_write_cache_enabled: 9752 * do mode select to clear wce 9753 * do synchronize cache to flush cache 9754 * set un->un_f_write_cache_enabled = FALSE 9755 * 9756 * Conversely, an ioctl to enable the write cache should be done 9757 * in this order: 9758 * set un->un_f_write_cache_enabled = TRUE 9759 * do mode select to set wce 9760 */ 9761 9762 static int 9763 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled) 9764 { 9765 struct mode_caching *mode_caching_page; 9766 uchar_t *header; 9767 size_t buflen; 9768 int hdrlen; 9769 int bd_len; 9770 int rval = 0; 9771 9772 ASSERT(un != NULL); 9773 ASSERT(is_enabled != NULL); 9774 9775 /* in case of error, flag as enabled */ 9776 *is_enabled = TRUE; 9777 9778 /* 9779 * Do a test unit ready, otherwise a mode sense may not work if this 9780 * is the first command sent to the device after boot. 9781 */ 9782 (void) sd_send_scsi_TEST_UNIT_READY(un, 0); 9783 9784 if (un->un_f_cfg_is_atapi == TRUE) { 9785 hdrlen = MODE_HEADER_LENGTH_GRP2; 9786 } else { 9787 hdrlen = MODE_HEADER_LENGTH; 9788 } 9789 9790 /* 9791 * Allocate memory for the retrieved mode page and its headers. Set 9792 * a pointer to the page itself. 9793 */ 9794 buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching); 9795 header = kmem_zalloc(buflen, KM_SLEEP); 9796 9797 /* Get the information from the device. */ 9798 if (un->un_f_cfg_is_atapi == TRUE) { 9799 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen, 9800 MODEPAGE_CACHING, SD_PATH_DIRECT); 9801 } else { 9802 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen, 9803 MODEPAGE_CACHING, SD_PATH_DIRECT); 9804 } 9805 if (rval != 0) { 9806 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 9807 "sd_get_write_cache_enabled: Mode Sense Failed\n"); 9808 kmem_free(header, buflen); 9809 return (rval); 9810 } 9811 9812 /* 9813 * Determine size of Block Descriptors in order to locate 9814 * the mode page data. ATAPI devices return 0, SCSI devices 9815 * should return MODE_BLK_DESC_LENGTH. 9816 */ 9817 if (un->un_f_cfg_is_atapi == TRUE) { 9818 struct mode_header_grp2 *mhp; 9819 mhp = (struct mode_header_grp2 *)header; 9820 bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo; 9821 } else { 9822 bd_len = ((struct mode_header *)header)->bdesc_length; 9823 } 9824 9825 if (bd_len > MODE_BLK_DESC_LENGTH) { 9826 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 9827 "sd_get_write_cache_enabled: Mode Sense returned invalid " 9828 "block descriptor length\n"); 9829 kmem_free(header, buflen); 9830 return (EIO); 9831 } 9832 9833 mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len); 9834 *is_enabled = mode_caching_page->wce; 9835 9836 kmem_free(header, buflen); 9837 return (0); 9838 } 9839 9840 9841 /* 9842 * Function: sd_make_device 9843 * 9844 * Description: Utility routine to return the Solaris device number from 9845 * the data in the device's dev_info structure. 9846 * 9847 * Return Code: The Solaris device number 9848 * 9849 * Context: Any 9850 */ 9851 9852 static dev_t 9853 sd_make_device(dev_info_t *devi) 9854 { 9855 return (makedevice(ddi_name_to_major(ddi_get_name(devi)), 9856 ddi_get_instance(devi) << SDUNIT_SHIFT)); 9857 } 9858 9859 9860 /* 9861 * Function: sd_pm_entry 9862 * 9863 * Description: Called at the start of a new command to manage power 9864 * and busy status of a device. This includes determining whether 9865 * the current power state of the device is sufficient for 9866 * performing the command or whether it must be changed. 9867 * The PM framework is notified appropriately. 9868 * Only with a return status of DDI_SUCCESS will the 9869 * component be busy to the framework. 9870 * 9871 * All callers of sd_pm_entry must check the return status 9872 * and only call sd_pm_exit it it was DDI_SUCCESS. A status 9873 * of DDI_FAILURE indicates the device failed to power up. 9874 * In this case un_pm_count has been adjusted so the result 9875 * on exit is still powered down, ie. count is less than 0. 9876 * Calling sd_pm_exit with this count value hits an ASSERT. 9877 * 9878 * Return Code: DDI_SUCCESS or DDI_FAILURE 9879 * 9880 * Context: Kernel thread context. 9881 */ 9882 9883 static int 9884 sd_pm_entry(struct sd_lun *un) 9885 { 9886 int return_status = DDI_SUCCESS; 9887 9888 ASSERT(!mutex_owned(SD_MUTEX(un))); 9889 ASSERT(!mutex_owned(&un->un_pm_mutex)); 9890 9891 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n"); 9892 9893 if (un->un_f_pm_is_enabled == FALSE) { 9894 SD_TRACE(SD_LOG_IO_PM, un, 9895 "sd_pm_entry: exiting, PM not enabled\n"); 9896 return (return_status); 9897 } 9898 9899 /* 9900 * Just increment a counter if PM is enabled. On the transition from 9901 * 0 ==> 1, mark the device as busy. The iodone side will decrement 9902 * the count with each IO and mark the device as idle when the count 9903 * hits 0. 9904 * 9905 * If the count is less than 0 the device is powered down. If a powered 9906 * down device is successfully powered up then the count must be 9907 * incremented to reflect the power up. Note that it'll get incremented 9908 * a second time to become busy. 9909 * 9910 * Because the following has the potential to change the device state 9911 * and must release the un_pm_mutex to do so, only one thread can be 9912 * allowed through at a time. 9913 */ 9914 9915 mutex_enter(&un->un_pm_mutex); 9916 while (un->un_pm_busy == TRUE) { 9917 cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex); 9918 } 9919 un->un_pm_busy = TRUE; 9920 9921 if (un->un_pm_count < 1) { 9922 9923 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n"); 9924 9925 /* 9926 * Indicate we are now busy so the framework won't attempt to 9927 * power down the device. This call will only fail if either 9928 * we passed a bad component number or the device has no 9929 * components. Neither of these should ever happen. 9930 */ 9931 mutex_exit(&un->un_pm_mutex); 9932 return_status = pm_busy_component(SD_DEVINFO(un), 0); 9933 ASSERT(return_status == DDI_SUCCESS); 9934 9935 mutex_enter(&un->un_pm_mutex); 9936 9937 if (un->un_pm_count < 0) { 9938 mutex_exit(&un->un_pm_mutex); 9939 9940 SD_TRACE(SD_LOG_IO_PM, un, 9941 "sd_pm_entry: power up component\n"); 9942 9943 /* 9944 * pm_raise_power will cause sdpower to be called 9945 * which brings the device power level to the 9946 * desired state, ON in this case. If successful, 9947 * un_pm_count and un_power_level will be updated 9948 * appropriately. 9949 */ 9950 return_status = pm_raise_power(SD_DEVINFO(un), 0, 9951 SD_SPINDLE_ON); 9952 9953 mutex_enter(&un->un_pm_mutex); 9954 9955 if (return_status != DDI_SUCCESS) { 9956 /* 9957 * Power up failed. 9958 * Idle the device and adjust the count 9959 * so the result on exit is that we're 9960 * still powered down, ie. count is less than 0. 9961 */ 9962 SD_TRACE(SD_LOG_IO_PM, un, 9963 "sd_pm_entry: power up failed," 9964 " idle the component\n"); 9965 9966 (void) pm_idle_component(SD_DEVINFO(un), 0); 9967 un->un_pm_count--; 9968 } else { 9969 /* 9970 * Device is powered up, verify the 9971 * count is non-negative. 9972 * This is debug only. 9973 */ 9974 ASSERT(un->un_pm_count == 0); 9975 } 9976 } 9977 9978 if (return_status == DDI_SUCCESS) { 9979 /* 9980 * For performance, now that the device has been tagged 9981 * as busy, and it's known to be powered up, update the 9982 * chain types to use jump tables that do not include 9983 * pm. This significantly lowers the overhead and 9984 * therefore improves performance. 9985 */ 9986 9987 mutex_exit(&un->un_pm_mutex); 9988 mutex_enter(SD_MUTEX(un)); 9989 SD_TRACE(SD_LOG_IO_PM, un, 9990 "sd_pm_entry: changing uscsi_chain_type from %d\n", 9991 un->un_uscsi_chain_type); 9992 9993 if (un->un_f_non_devbsize_supported) { 9994 un->un_buf_chain_type = 9995 SD_CHAIN_INFO_RMMEDIA_NO_PM; 9996 } else { 9997 un->un_buf_chain_type = 9998 SD_CHAIN_INFO_DISK_NO_PM; 9999 } 10000 un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM; 10001 10002 SD_TRACE(SD_LOG_IO_PM, un, 10003 " changed uscsi_chain_type to %d\n", 10004 un->un_uscsi_chain_type); 10005 mutex_exit(SD_MUTEX(un)); 10006 mutex_enter(&un->un_pm_mutex); 10007 10008 if (un->un_pm_idle_timeid == NULL) { 10009 /* 300 ms. */ 10010 un->un_pm_idle_timeid = 10011 timeout(sd_pm_idletimeout_handler, un, 10012 (drv_usectohz((clock_t)300000))); 10013 /* 10014 * Include an extra call to busy which keeps the 10015 * device busy with-respect-to the PM layer 10016 * until the timer fires, at which time it'll 10017 * get the extra idle call. 10018 */ 10019 (void) pm_busy_component(SD_DEVINFO(un), 0); 10020 } 10021 } 10022 } 10023 un->un_pm_busy = FALSE; 10024 /* Next... */ 10025 cv_signal(&un->un_pm_busy_cv); 10026 10027 un->un_pm_count++; 10028 10029 SD_TRACE(SD_LOG_IO_PM, un, 10030 "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count); 10031 10032 mutex_exit(&un->un_pm_mutex); 10033 10034 return (return_status); 10035 } 10036 10037 10038 /* 10039 * Function: sd_pm_exit 10040 * 10041 * Description: Called at the completion of a command to manage busy 10042 * status for the device. If the device becomes idle the 10043 * PM framework is notified. 10044 * 10045 * Context: Kernel thread context 10046 */ 10047 10048 static void 10049 sd_pm_exit(struct sd_lun *un) 10050 { 10051 ASSERT(!mutex_owned(SD_MUTEX(un))); 10052 ASSERT(!mutex_owned(&un->un_pm_mutex)); 10053 10054 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n"); 10055 10056 /* 10057 * After attach the following flag is only read, so don't 10058 * take the penalty of acquiring a mutex for it. 10059 */ 10060 if (un->un_f_pm_is_enabled == TRUE) { 10061 10062 mutex_enter(&un->un_pm_mutex); 10063 un->un_pm_count--; 10064 10065 SD_TRACE(SD_LOG_IO_PM, un, 10066 "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count); 10067 10068 ASSERT(un->un_pm_count >= 0); 10069 if (un->un_pm_count == 0) { 10070 mutex_exit(&un->un_pm_mutex); 10071 10072 SD_TRACE(SD_LOG_IO_PM, un, 10073 "sd_pm_exit: idle component\n"); 10074 10075 (void) pm_idle_component(SD_DEVINFO(un), 0); 10076 10077 } else { 10078 mutex_exit(&un->un_pm_mutex); 10079 } 10080 } 10081 10082 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n"); 10083 } 10084 10085 10086 /* 10087 * Function: sdopen 10088 * 10089 * Description: Driver's open(9e) entry point function. 10090 * 10091 * Arguments: dev_i - pointer to device number 10092 * flag - how to open file (FEXCL, FNDELAY, FREAD, FWRITE) 10093 * otyp - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10094 * cred_p - user credential pointer 10095 * 10096 * Return Code: EINVAL 10097 * ENXIO 10098 * EIO 10099 * EROFS 10100 * EBUSY 10101 * 10102 * Context: Kernel thread context 10103 */ 10104 /* ARGSUSED */ 10105 static int 10106 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p) 10107 { 10108 struct sd_lun *un; 10109 int nodelay; 10110 int part; 10111 uint64_t partmask; 10112 int instance; 10113 dev_t dev; 10114 int rval = EIO; 10115 10116 /* Validate the open type */ 10117 if (otyp >= OTYPCNT) { 10118 return (EINVAL); 10119 } 10120 10121 dev = *dev_p; 10122 instance = SDUNIT(dev); 10123 mutex_enter(&sd_detach_mutex); 10124 10125 /* 10126 * Fail the open if there is no softstate for the instance, or 10127 * if another thread somewhere is trying to detach the instance. 10128 */ 10129 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 10130 (un->un_detach_count != 0)) { 10131 mutex_exit(&sd_detach_mutex); 10132 /* 10133 * The probe cache only needs to be cleared when open (9e) fails 10134 * with ENXIO (4238046). 10135 */ 10136 /* 10137 * un-conditionally clearing probe cache is ok with 10138 * separate sd/ssd binaries 10139 * x86 platform can be an issue with both parallel 10140 * and fibre in 1 binary 10141 */ 10142 sd_scsi_clear_probe_cache(); 10143 return (ENXIO); 10144 } 10145 10146 /* 10147 * The un_layer_count is to prevent another thread in specfs from 10148 * trying to detach the instance, which can happen when we are 10149 * called from a higher-layer driver instead of thru specfs. 10150 * This will not be needed when DDI provides a layered driver 10151 * interface that allows specfs to know that an instance is in 10152 * use by a layered driver & should not be detached. 10153 * 10154 * Note: the semantics for layered driver opens are exactly one 10155 * close for every open. 10156 */ 10157 if (otyp == OTYP_LYR) { 10158 un->un_layer_count++; 10159 } 10160 10161 /* 10162 * Keep a count of the current # of opens in progress. This is because 10163 * some layered drivers try to call us as a regular open. This can 10164 * cause problems that we cannot prevent, however by keeping this count 10165 * we can at least keep our open and detach routines from racing against 10166 * each other under such conditions. 10167 */ 10168 un->un_opens_in_progress++; 10169 mutex_exit(&sd_detach_mutex); 10170 10171 nodelay = (flag & (FNDELAY | FNONBLOCK)); 10172 part = SDPART(dev); 10173 partmask = 1 << part; 10174 10175 /* 10176 * We use a semaphore here in order to serialize 10177 * open and close requests on the device. 10178 */ 10179 sema_p(&un->un_semoclose); 10180 10181 mutex_enter(SD_MUTEX(un)); 10182 10183 /* 10184 * All device accesses go thru sdstrategy() where we check 10185 * on suspend status but there could be a scsi_poll command, 10186 * which bypasses sdstrategy(), so we need to check pm 10187 * status. 10188 */ 10189 10190 if (!nodelay) { 10191 while ((un->un_state == SD_STATE_SUSPENDED) || 10192 (un->un_state == SD_STATE_PM_CHANGING)) { 10193 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10194 } 10195 10196 mutex_exit(SD_MUTEX(un)); 10197 if (sd_pm_entry(un) != DDI_SUCCESS) { 10198 rval = EIO; 10199 SD_ERROR(SD_LOG_OPEN_CLOSE, un, 10200 "sdopen: sd_pm_entry failed\n"); 10201 goto open_failed_with_pm; 10202 } 10203 mutex_enter(SD_MUTEX(un)); 10204 } 10205 10206 /* check for previous exclusive open */ 10207 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un); 10208 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10209 "sdopen: exclopen=%x, flag=%x, regopen=%x\n", 10210 un->un_exclopen, flag, un->un_ocmap.regopen[otyp]); 10211 10212 if (un->un_exclopen & (partmask)) { 10213 goto excl_open_fail; 10214 } 10215 10216 if (flag & FEXCL) { 10217 int i; 10218 if (un->un_ocmap.lyropen[part]) { 10219 goto excl_open_fail; 10220 } 10221 for (i = 0; i < (OTYPCNT - 1); i++) { 10222 if (un->un_ocmap.regopen[i] & (partmask)) { 10223 goto excl_open_fail; 10224 } 10225 } 10226 } 10227 10228 /* 10229 * Check the write permission if this is a removable media device, 10230 * NDELAY has not been set, and writable permission is requested. 10231 * 10232 * Note: If NDELAY was set and this is write-protected media the WRITE 10233 * attempt will fail with EIO as part of the I/O processing. This is a 10234 * more permissive implementation that allows the open to succeed and 10235 * WRITE attempts to fail when appropriate. 10236 */ 10237 if (un->un_f_chk_wp_open) { 10238 if ((flag & FWRITE) && (!nodelay)) { 10239 mutex_exit(SD_MUTEX(un)); 10240 /* 10241 * Defer the check for write permission on writable 10242 * DVD drive till sdstrategy and will not fail open even 10243 * if FWRITE is set as the device can be writable 10244 * depending upon the media and the media can change 10245 * after the call to open(). 10246 */ 10247 if (un->un_f_dvdram_writable_device == FALSE) { 10248 if (ISCD(un) || sr_check_wp(dev)) { 10249 rval = EROFS; 10250 mutex_enter(SD_MUTEX(un)); 10251 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10252 "write to cd or write protected media\n"); 10253 goto open_fail; 10254 } 10255 } 10256 mutex_enter(SD_MUTEX(un)); 10257 } 10258 } 10259 10260 /* 10261 * If opening in NDELAY/NONBLOCK mode, just return. 10262 * Check if disk is ready and has a valid geometry later. 10263 */ 10264 if (!nodelay) { 10265 mutex_exit(SD_MUTEX(un)); 10266 rval = sd_ready_and_valid(un); 10267 mutex_enter(SD_MUTEX(un)); 10268 /* 10269 * Fail if device is not ready or if the number of disk 10270 * blocks is zero or negative for non CD devices. 10271 */ 10272 if ((rval != SD_READY_VALID) || 10273 (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) { 10274 rval = un->un_f_has_removable_media ? ENXIO : EIO; 10275 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10276 "device not ready or invalid disk block value\n"); 10277 goto open_fail; 10278 } 10279 #if defined(__i386) || defined(__amd64) 10280 } else { 10281 uchar_t *cp; 10282 /* 10283 * x86 requires special nodelay handling, so that p0 is 10284 * always defined and accessible. 10285 * Invalidate geometry only if device is not already open. 10286 */ 10287 cp = &un->un_ocmap.chkd[0]; 10288 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10289 if (*cp != (uchar_t)0) { 10290 break; 10291 } 10292 cp++; 10293 } 10294 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10295 un->un_f_geometry_is_valid = FALSE; 10296 } 10297 10298 #endif 10299 } 10300 10301 if (otyp == OTYP_LYR) { 10302 un->un_ocmap.lyropen[part]++; 10303 } else { 10304 un->un_ocmap.regopen[otyp] |= partmask; 10305 } 10306 10307 /* Set up open and exclusive open flags */ 10308 if (flag & FEXCL) { 10309 un->un_exclopen |= (partmask); 10310 } 10311 10312 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: " 10313 "open of part %d type %d\n", part, otyp); 10314 10315 mutex_exit(SD_MUTEX(un)); 10316 if (!nodelay) { 10317 sd_pm_exit(un); 10318 } 10319 10320 sema_v(&un->un_semoclose); 10321 10322 mutex_enter(&sd_detach_mutex); 10323 un->un_opens_in_progress--; 10324 mutex_exit(&sd_detach_mutex); 10325 10326 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n"); 10327 return (DDI_SUCCESS); 10328 10329 excl_open_fail: 10330 SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n"); 10331 rval = EBUSY; 10332 10333 open_fail: 10334 mutex_exit(SD_MUTEX(un)); 10335 10336 /* 10337 * On a failed open we must exit the pm management. 10338 */ 10339 if (!nodelay) { 10340 sd_pm_exit(un); 10341 } 10342 open_failed_with_pm: 10343 sema_v(&un->un_semoclose); 10344 10345 mutex_enter(&sd_detach_mutex); 10346 un->un_opens_in_progress--; 10347 if (otyp == OTYP_LYR) { 10348 un->un_layer_count--; 10349 } 10350 mutex_exit(&sd_detach_mutex); 10351 10352 return (rval); 10353 } 10354 10355 10356 /* 10357 * Function: sdclose 10358 * 10359 * Description: Driver's close(9e) entry point function. 10360 * 10361 * Arguments: dev - device number 10362 * flag - file status flag, informational only 10363 * otyp - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR) 10364 * cred_p - user credential pointer 10365 * 10366 * Return Code: ENXIO 10367 * 10368 * Context: Kernel thread context 10369 */ 10370 /* ARGSUSED */ 10371 static int 10372 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p) 10373 { 10374 struct sd_lun *un; 10375 uchar_t *cp; 10376 int part; 10377 int nodelay; 10378 int rval = 0; 10379 10380 /* Validate the open type */ 10381 if (otyp >= OTYPCNT) { 10382 return (ENXIO); 10383 } 10384 10385 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10386 return (ENXIO); 10387 } 10388 10389 part = SDPART(dev); 10390 nodelay = flag & (FNDELAY | FNONBLOCK); 10391 10392 SD_TRACE(SD_LOG_OPEN_CLOSE, un, 10393 "sdclose: close of part %d type %d\n", part, otyp); 10394 10395 /* 10396 * We use a semaphore here in order to serialize 10397 * open and close requests on the device. 10398 */ 10399 sema_p(&un->un_semoclose); 10400 10401 mutex_enter(SD_MUTEX(un)); 10402 10403 /* Don't proceed if power is being changed. */ 10404 while (un->un_state == SD_STATE_PM_CHANGING) { 10405 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10406 } 10407 10408 if (un->un_exclopen & (1 << part)) { 10409 un->un_exclopen &= ~(1 << part); 10410 } 10411 10412 /* Update the open partition map */ 10413 if (otyp == OTYP_LYR) { 10414 un->un_ocmap.lyropen[part] -= 1; 10415 } else { 10416 un->un_ocmap.regopen[otyp] &= ~(1 << part); 10417 } 10418 10419 cp = &un->un_ocmap.chkd[0]; 10420 while (cp < &un->un_ocmap.chkd[OCSIZE]) { 10421 if (*cp != NULL) { 10422 break; 10423 } 10424 cp++; 10425 } 10426 10427 if (cp == &un->un_ocmap.chkd[OCSIZE]) { 10428 SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n"); 10429 10430 /* 10431 * We avoid persistance upon the last close, and set 10432 * the throttle back to the maximum. 10433 */ 10434 un->un_throttle = un->un_saved_throttle; 10435 10436 if (un->un_state == SD_STATE_OFFLINE) { 10437 if (un->un_f_is_fibre == FALSE) { 10438 scsi_log(SD_DEVINFO(un), sd_label, 10439 CE_WARN, "offline\n"); 10440 } 10441 un->un_f_geometry_is_valid = FALSE; 10442 10443 } else { 10444 /* 10445 * Flush any outstanding writes in NVRAM cache. 10446 * Note: SYNCHRONIZE CACHE is an optional SCSI-2 10447 * cmd, it may not work for non-Pluto devices. 10448 * SYNCHRONIZE CACHE is not required for removables, 10449 * except DVD-RAM drives. 10450 * 10451 * Also note: because SYNCHRONIZE CACHE is currently 10452 * the only command issued here that requires the 10453 * drive be powered up, only do the power up before 10454 * sending the Sync Cache command. If additional 10455 * commands are added which require a powered up 10456 * drive, the following sequence may have to change. 10457 * 10458 * And finally, note that parallel SCSI on SPARC 10459 * only issues a Sync Cache to DVD-RAM, a newly 10460 * supported device. 10461 */ 10462 #if defined(__i386) || defined(__amd64) 10463 if (un->un_f_sync_cache_supported || 10464 un->un_f_dvdram_writable_device == TRUE) { 10465 #else 10466 if (un->un_f_dvdram_writable_device == TRUE) { 10467 #endif 10468 mutex_exit(SD_MUTEX(un)); 10469 if (sd_pm_entry(un) == DDI_SUCCESS) { 10470 rval = 10471 sd_send_scsi_SYNCHRONIZE_CACHE(un, 10472 NULL); 10473 /* ignore error if not supported */ 10474 if (rval == ENOTSUP) { 10475 rval = 0; 10476 } else if (rval != 0) { 10477 rval = EIO; 10478 } 10479 sd_pm_exit(un); 10480 } else { 10481 rval = EIO; 10482 } 10483 mutex_enter(SD_MUTEX(un)); 10484 } 10485 10486 /* 10487 * For devices which supports DOOR_LOCK, send an ALLOW 10488 * MEDIA REMOVAL command, but don't get upset if it 10489 * fails. We need to raise the power of the drive before 10490 * we can call sd_send_scsi_DOORLOCK() 10491 */ 10492 if (un->un_f_doorlock_supported) { 10493 mutex_exit(SD_MUTEX(un)); 10494 if (sd_pm_entry(un) == DDI_SUCCESS) { 10495 rval = sd_send_scsi_DOORLOCK(un, 10496 SD_REMOVAL_ALLOW, SD_PATH_DIRECT); 10497 10498 sd_pm_exit(un); 10499 if (ISCD(un) && (rval != 0) && 10500 (nodelay != 0)) { 10501 rval = ENXIO; 10502 } 10503 } else { 10504 rval = EIO; 10505 } 10506 mutex_enter(SD_MUTEX(un)); 10507 } 10508 10509 /* 10510 * If a device has removable media, invalidate all 10511 * parameters related to media, such as geometry, 10512 * blocksize, and blockcount. 10513 */ 10514 if (un->un_f_has_removable_media) { 10515 sr_ejected(un); 10516 } 10517 10518 /* 10519 * Destroy the cache (if it exists) which was 10520 * allocated for the write maps since this is 10521 * the last close for this media. 10522 */ 10523 if (un->un_wm_cache) { 10524 /* 10525 * Check if there are pending commands. 10526 * and if there are give a warning and 10527 * do not destroy the cache. 10528 */ 10529 if (un->un_ncmds_in_driver > 0) { 10530 scsi_log(SD_DEVINFO(un), 10531 sd_label, CE_WARN, 10532 "Unable to clean up memory " 10533 "because of pending I/O\n"); 10534 } else { 10535 kmem_cache_destroy( 10536 un->un_wm_cache); 10537 un->un_wm_cache = NULL; 10538 } 10539 } 10540 } 10541 } 10542 10543 mutex_exit(SD_MUTEX(un)); 10544 sema_v(&un->un_semoclose); 10545 10546 if (otyp == OTYP_LYR) { 10547 mutex_enter(&sd_detach_mutex); 10548 /* 10549 * The detach routine may run when the layer count 10550 * drops to zero. 10551 */ 10552 un->un_layer_count--; 10553 mutex_exit(&sd_detach_mutex); 10554 } 10555 10556 return (rval); 10557 } 10558 10559 10560 /* 10561 * Function: sd_ready_and_valid 10562 * 10563 * Description: Test if device is ready and has a valid geometry. 10564 * 10565 * Arguments: dev - device number 10566 * un - driver soft state (unit) structure 10567 * 10568 * Return Code: SD_READY_VALID ready and valid label 10569 * SD_READY_NOT_VALID ready, geom ops never applicable 10570 * SD_NOT_READY_VALID not ready, no label 10571 * 10572 * Context: Never called at interrupt context. 10573 */ 10574 10575 static int 10576 sd_ready_and_valid(struct sd_lun *un) 10577 { 10578 struct sd_errstats *stp; 10579 uint64_t capacity; 10580 uint_t lbasize; 10581 int rval = SD_READY_VALID; 10582 char name_str[48]; 10583 10584 ASSERT(un != NULL); 10585 ASSERT(!mutex_owned(SD_MUTEX(un))); 10586 10587 mutex_enter(SD_MUTEX(un)); 10588 /* 10589 * If a device has removable media, we must check if media is 10590 * ready when checking if this device is ready and valid. 10591 */ 10592 if (un->un_f_has_removable_media) { 10593 mutex_exit(SD_MUTEX(un)); 10594 if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) { 10595 rval = SD_NOT_READY_VALID; 10596 mutex_enter(SD_MUTEX(un)); 10597 goto done; 10598 } 10599 10600 mutex_enter(SD_MUTEX(un)); 10601 if ((un->un_f_geometry_is_valid == FALSE) || 10602 (un->un_f_blockcount_is_valid == FALSE) || 10603 (un->un_f_tgt_blocksize_is_valid == FALSE)) { 10604 10605 /* capacity has to be read every open. */ 10606 mutex_exit(SD_MUTEX(un)); 10607 if (sd_send_scsi_READ_CAPACITY(un, &capacity, 10608 &lbasize, SD_PATH_DIRECT) != 0) { 10609 mutex_enter(SD_MUTEX(un)); 10610 un->un_f_geometry_is_valid = FALSE; 10611 rval = SD_NOT_READY_VALID; 10612 goto done; 10613 } else { 10614 mutex_enter(SD_MUTEX(un)); 10615 sd_update_block_info(un, lbasize, capacity); 10616 } 10617 } 10618 10619 /* 10620 * Check if the media in the device is writable or not. 10621 */ 10622 if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) { 10623 sd_check_for_writable_cd(un); 10624 } 10625 10626 } else { 10627 /* 10628 * Do a test unit ready to clear any unit attention from non-cd 10629 * devices. 10630 */ 10631 mutex_exit(SD_MUTEX(un)); 10632 (void) sd_send_scsi_TEST_UNIT_READY(un, 0); 10633 mutex_enter(SD_MUTEX(un)); 10634 } 10635 10636 10637 /* 10638 * If this is a non 512 block device, allocate space for 10639 * the wmap cache. This is being done here since every time 10640 * a media is changed this routine will be called and the 10641 * block size is a function of media rather than device. 10642 */ 10643 if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) { 10644 if (!(un->un_wm_cache)) { 10645 (void) snprintf(name_str, sizeof (name_str), 10646 "%s%d_cache", 10647 ddi_driver_name(SD_DEVINFO(un)), 10648 ddi_get_instance(SD_DEVINFO(un))); 10649 un->un_wm_cache = kmem_cache_create( 10650 name_str, sizeof (struct sd_w_map), 10651 8, sd_wm_cache_constructor, 10652 sd_wm_cache_destructor, NULL, 10653 (void *)un, NULL, 0); 10654 if (!(un->un_wm_cache)) { 10655 rval = ENOMEM; 10656 goto done; 10657 } 10658 } 10659 } 10660 10661 if (un->un_state == SD_STATE_NORMAL) { 10662 /* 10663 * If the target is not yet ready here (defined by a TUR 10664 * failure), invalidate the geometry and print an 'offline' 10665 * message. This is a legacy message, as the state of the 10666 * target is not actually changed to SD_STATE_OFFLINE. 10667 * 10668 * If the TUR fails for EACCES (Reservation Conflict), it 10669 * means there actually is nothing wrong with the target that 10670 * would require invalidating the geometry, so continue in 10671 * that case as if the TUR was successful. 10672 */ 10673 int err; 10674 10675 mutex_exit(SD_MUTEX(un)); 10676 err = sd_send_scsi_TEST_UNIT_READY(un, 0); 10677 mutex_enter(SD_MUTEX(un)); 10678 10679 if ((err != 0) && (err != EACCES)) { 10680 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 10681 "offline\n"); 10682 un->un_f_geometry_is_valid = FALSE; 10683 rval = SD_NOT_READY_VALID; 10684 goto done; 10685 } 10686 } 10687 10688 if (un->un_f_format_in_progress == FALSE) { 10689 /* 10690 * Note: sd_validate_geometry may return TRUE, but that does 10691 * not necessarily mean un_f_geometry_is_valid == TRUE! 10692 */ 10693 rval = sd_validate_geometry(un, SD_PATH_DIRECT); 10694 if (rval == ENOTSUP) { 10695 if (un->un_f_geometry_is_valid == TRUE) 10696 rval = 0; 10697 else { 10698 rval = SD_READY_NOT_VALID; 10699 goto done; 10700 } 10701 } 10702 if (rval != 0) { 10703 /* 10704 * We don't check the validity of geometry for 10705 * CDROMs. Also we assume we have a good label 10706 * even if sd_validate_geometry returned ENOMEM. 10707 */ 10708 if (!ISCD(un) && rval != ENOMEM) { 10709 rval = SD_NOT_READY_VALID; 10710 goto done; 10711 } 10712 } 10713 } 10714 10715 #ifdef DOESNTWORK /* on eliteII, see 1118607 */ 10716 /* 10717 * check to see if this disk is write protected, if it is and we have 10718 * not set read-only, then fail 10719 */ 10720 if ((flag & FWRITE) && (sr_check_wp(dev))) { 10721 New_state(un, SD_STATE_CLOSED); 10722 goto done; 10723 } 10724 #endif 10725 10726 /* 10727 * If this device supports DOOR_LOCK command, try and send 10728 * this command to PREVENT MEDIA REMOVAL, but don't get upset 10729 * if it fails. For a CD, however, it is an error 10730 */ 10731 if (un->un_f_doorlock_supported) { 10732 mutex_exit(SD_MUTEX(un)); 10733 if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 10734 SD_PATH_DIRECT) != 0) && ISCD(un)) { 10735 rval = SD_NOT_READY_VALID; 10736 mutex_enter(SD_MUTEX(un)); 10737 goto done; 10738 } 10739 mutex_enter(SD_MUTEX(un)); 10740 } 10741 10742 /* The state has changed, inform the media watch routines */ 10743 un->un_mediastate = DKIO_INSERTED; 10744 cv_broadcast(&un->un_state_cv); 10745 rval = SD_READY_VALID; 10746 10747 done: 10748 10749 /* 10750 * Initialize the capacity kstat value, if no media previously 10751 * (capacity kstat is 0) and a media has been inserted 10752 * (un_blockcount > 0). 10753 */ 10754 if (un->un_errstats != NULL) { 10755 stp = (struct sd_errstats *)un->un_errstats->ks_data; 10756 if ((stp->sd_capacity.value.ui64 == 0) && 10757 (un->un_f_blockcount_is_valid == TRUE)) { 10758 stp->sd_capacity.value.ui64 = 10759 (uint64_t)((uint64_t)un->un_blockcount * 10760 un->un_sys_blocksize); 10761 } 10762 } 10763 10764 mutex_exit(SD_MUTEX(un)); 10765 return (rval); 10766 } 10767 10768 10769 /* 10770 * Function: sdmin 10771 * 10772 * Description: Routine to limit the size of a data transfer. Used in 10773 * conjunction with physio(9F). 10774 * 10775 * Arguments: bp - pointer to the indicated buf(9S) struct. 10776 * 10777 * Context: Kernel thread context. 10778 */ 10779 10780 static void 10781 sdmin(struct buf *bp) 10782 { 10783 struct sd_lun *un; 10784 int instance; 10785 10786 instance = SDUNIT(bp->b_edev); 10787 10788 un = ddi_get_soft_state(sd_state, instance); 10789 ASSERT(un != NULL); 10790 10791 if (bp->b_bcount > un->un_max_xfer_size) { 10792 bp->b_bcount = un->un_max_xfer_size; 10793 } 10794 } 10795 10796 10797 /* 10798 * Function: sdread 10799 * 10800 * Description: Driver's read(9e) entry point function. 10801 * 10802 * Arguments: dev - device number 10803 * uio - structure pointer describing where data is to be stored 10804 * in user's space 10805 * cred_p - user credential pointer 10806 * 10807 * Return Code: ENXIO 10808 * EIO 10809 * EINVAL 10810 * value returned by physio 10811 * 10812 * Context: Kernel thread context. 10813 */ 10814 /* ARGSUSED */ 10815 static int 10816 sdread(dev_t dev, struct uio *uio, cred_t *cred_p) 10817 { 10818 struct sd_lun *un = NULL; 10819 int secmask; 10820 int err; 10821 10822 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10823 return (ENXIO); 10824 } 10825 10826 ASSERT(!mutex_owned(SD_MUTEX(un))); 10827 10828 if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) { 10829 mutex_enter(SD_MUTEX(un)); 10830 /* 10831 * Because the call to sd_ready_and_valid will issue I/O we 10832 * must wait here if either the device is suspended or 10833 * if it's power level is changing. 10834 */ 10835 while ((un->un_state == SD_STATE_SUSPENDED) || 10836 (un->un_state == SD_STATE_PM_CHANGING)) { 10837 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10838 } 10839 un->un_ncmds_in_driver++; 10840 mutex_exit(SD_MUTEX(un)); 10841 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 10842 mutex_enter(SD_MUTEX(un)); 10843 un->un_ncmds_in_driver--; 10844 ASSERT(un->un_ncmds_in_driver >= 0); 10845 mutex_exit(SD_MUTEX(un)); 10846 return (EIO); 10847 } 10848 mutex_enter(SD_MUTEX(un)); 10849 un->un_ncmds_in_driver--; 10850 ASSERT(un->un_ncmds_in_driver >= 0); 10851 mutex_exit(SD_MUTEX(un)); 10852 } 10853 10854 /* 10855 * Read requests are restricted to multiples of the system block size. 10856 */ 10857 secmask = un->un_sys_blocksize - 1; 10858 10859 if (uio->uio_loffset & ((offset_t)(secmask))) { 10860 SD_ERROR(SD_LOG_READ_WRITE, un, 10861 "sdread: file offset not modulo %d\n", 10862 un->un_sys_blocksize); 10863 err = EINVAL; 10864 } else if (uio->uio_iov->iov_len & (secmask)) { 10865 SD_ERROR(SD_LOG_READ_WRITE, un, 10866 "sdread: transfer length not modulo %d\n", 10867 un->un_sys_blocksize); 10868 err = EINVAL; 10869 } else { 10870 err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio); 10871 } 10872 return (err); 10873 } 10874 10875 10876 /* 10877 * Function: sdwrite 10878 * 10879 * Description: Driver's write(9e) entry point function. 10880 * 10881 * Arguments: dev - device number 10882 * uio - structure pointer describing where data is stored in 10883 * user's space 10884 * cred_p - user credential pointer 10885 * 10886 * Return Code: ENXIO 10887 * EIO 10888 * EINVAL 10889 * value returned by physio 10890 * 10891 * Context: Kernel thread context. 10892 */ 10893 /* ARGSUSED */ 10894 static int 10895 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p) 10896 { 10897 struct sd_lun *un = NULL; 10898 int secmask; 10899 int err; 10900 10901 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10902 return (ENXIO); 10903 } 10904 10905 ASSERT(!mutex_owned(SD_MUTEX(un))); 10906 10907 if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) { 10908 mutex_enter(SD_MUTEX(un)); 10909 /* 10910 * Because the call to sd_ready_and_valid will issue I/O we 10911 * must wait here if either the device is suspended or 10912 * if it's power level is changing. 10913 */ 10914 while ((un->un_state == SD_STATE_SUSPENDED) || 10915 (un->un_state == SD_STATE_PM_CHANGING)) { 10916 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10917 } 10918 un->un_ncmds_in_driver++; 10919 mutex_exit(SD_MUTEX(un)); 10920 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 10921 mutex_enter(SD_MUTEX(un)); 10922 un->un_ncmds_in_driver--; 10923 ASSERT(un->un_ncmds_in_driver >= 0); 10924 mutex_exit(SD_MUTEX(un)); 10925 return (EIO); 10926 } 10927 mutex_enter(SD_MUTEX(un)); 10928 un->un_ncmds_in_driver--; 10929 ASSERT(un->un_ncmds_in_driver >= 0); 10930 mutex_exit(SD_MUTEX(un)); 10931 } 10932 10933 /* 10934 * Write requests are restricted to multiples of the system block size. 10935 */ 10936 secmask = un->un_sys_blocksize - 1; 10937 10938 if (uio->uio_loffset & ((offset_t)(secmask))) { 10939 SD_ERROR(SD_LOG_READ_WRITE, un, 10940 "sdwrite: file offset not modulo %d\n", 10941 un->un_sys_blocksize); 10942 err = EINVAL; 10943 } else if (uio->uio_iov->iov_len & (secmask)) { 10944 SD_ERROR(SD_LOG_READ_WRITE, un, 10945 "sdwrite: transfer length not modulo %d\n", 10946 un->un_sys_blocksize); 10947 err = EINVAL; 10948 } else { 10949 err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio); 10950 } 10951 return (err); 10952 } 10953 10954 10955 /* 10956 * Function: sdaread 10957 * 10958 * Description: Driver's aread(9e) entry point function. 10959 * 10960 * Arguments: dev - device number 10961 * aio - structure pointer describing where data is to be stored 10962 * cred_p - user credential pointer 10963 * 10964 * Return Code: ENXIO 10965 * EIO 10966 * EINVAL 10967 * value returned by aphysio 10968 * 10969 * Context: Kernel thread context. 10970 */ 10971 /* ARGSUSED */ 10972 static int 10973 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p) 10974 { 10975 struct sd_lun *un = NULL; 10976 struct uio *uio = aio->aio_uio; 10977 int secmask; 10978 int err; 10979 10980 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 10981 return (ENXIO); 10982 } 10983 10984 ASSERT(!mutex_owned(SD_MUTEX(un))); 10985 10986 if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) { 10987 mutex_enter(SD_MUTEX(un)); 10988 /* 10989 * Because the call to sd_ready_and_valid will issue I/O we 10990 * must wait here if either the device is suspended or 10991 * if it's power level is changing. 10992 */ 10993 while ((un->un_state == SD_STATE_SUSPENDED) || 10994 (un->un_state == SD_STATE_PM_CHANGING)) { 10995 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 10996 } 10997 un->un_ncmds_in_driver++; 10998 mutex_exit(SD_MUTEX(un)); 10999 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 11000 mutex_enter(SD_MUTEX(un)); 11001 un->un_ncmds_in_driver--; 11002 ASSERT(un->un_ncmds_in_driver >= 0); 11003 mutex_exit(SD_MUTEX(un)); 11004 return (EIO); 11005 } 11006 mutex_enter(SD_MUTEX(un)); 11007 un->un_ncmds_in_driver--; 11008 ASSERT(un->un_ncmds_in_driver >= 0); 11009 mutex_exit(SD_MUTEX(un)); 11010 } 11011 11012 /* 11013 * Read requests are restricted to multiples of the system block size. 11014 */ 11015 secmask = un->un_sys_blocksize - 1; 11016 11017 if (uio->uio_loffset & ((offset_t)(secmask))) { 11018 SD_ERROR(SD_LOG_READ_WRITE, un, 11019 "sdaread: file offset not modulo %d\n", 11020 un->un_sys_blocksize); 11021 err = EINVAL; 11022 } else if (uio->uio_iov->iov_len & (secmask)) { 11023 SD_ERROR(SD_LOG_READ_WRITE, un, 11024 "sdaread: transfer length not modulo %d\n", 11025 un->un_sys_blocksize); 11026 err = EINVAL; 11027 } else { 11028 err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio); 11029 } 11030 return (err); 11031 } 11032 11033 11034 /* 11035 * Function: sdawrite 11036 * 11037 * Description: Driver's awrite(9e) entry point function. 11038 * 11039 * Arguments: dev - device number 11040 * aio - structure pointer describing where data is stored 11041 * cred_p - user credential pointer 11042 * 11043 * Return Code: ENXIO 11044 * EIO 11045 * EINVAL 11046 * value returned by aphysio 11047 * 11048 * Context: Kernel thread context. 11049 */ 11050 /* ARGSUSED */ 11051 static int 11052 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p) 11053 { 11054 struct sd_lun *un = NULL; 11055 struct uio *uio = aio->aio_uio; 11056 int secmask; 11057 int err; 11058 11059 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 11060 return (ENXIO); 11061 } 11062 11063 ASSERT(!mutex_owned(SD_MUTEX(un))); 11064 11065 if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) { 11066 mutex_enter(SD_MUTEX(un)); 11067 /* 11068 * Because the call to sd_ready_and_valid will issue I/O we 11069 * must wait here if either the device is suspended or 11070 * if it's power level is changing. 11071 */ 11072 while ((un->un_state == SD_STATE_SUSPENDED) || 11073 (un->un_state == SD_STATE_PM_CHANGING)) { 11074 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11075 } 11076 un->un_ncmds_in_driver++; 11077 mutex_exit(SD_MUTEX(un)); 11078 if ((sd_ready_and_valid(un)) != SD_READY_VALID) { 11079 mutex_enter(SD_MUTEX(un)); 11080 un->un_ncmds_in_driver--; 11081 ASSERT(un->un_ncmds_in_driver >= 0); 11082 mutex_exit(SD_MUTEX(un)); 11083 return (EIO); 11084 } 11085 mutex_enter(SD_MUTEX(un)); 11086 un->un_ncmds_in_driver--; 11087 ASSERT(un->un_ncmds_in_driver >= 0); 11088 mutex_exit(SD_MUTEX(un)); 11089 } 11090 11091 /* 11092 * Write requests are restricted to multiples of the system block size. 11093 */ 11094 secmask = un->un_sys_blocksize - 1; 11095 11096 if (uio->uio_loffset & ((offset_t)(secmask))) { 11097 SD_ERROR(SD_LOG_READ_WRITE, un, 11098 "sdawrite: file offset not modulo %d\n", 11099 un->un_sys_blocksize); 11100 err = EINVAL; 11101 } else if (uio->uio_iov->iov_len & (secmask)) { 11102 SD_ERROR(SD_LOG_READ_WRITE, un, 11103 "sdawrite: transfer length not modulo %d\n", 11104 un->un_sys_blocksize); 11105 err = EINVAL; 11106 } else { 11107 err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio); 11108 } 11109 return (err); 11110 } 11111 11112 11113 11114 11115 11116 /* 11117 * Driver IO processing follows the following sequence: 11118 * 11119 * sdioctl(9E) sdstrategy(9E) biodone(9F) 11120 * | | ^ 11121 * v v | 11122 * sd_send_scsi_cmd() ddi_xbuf_qstrategy() +-------------------+ 11123 * | | | | 11124 * v | | | 11125 * sd_uscsi_strategy() sd_xbuf_strategy() sd_buf_iodone() sd_uscsi_iodone() 11126 * | | ^ ^ 11127 * v v | | 11128 * SD_BEGIN_IOSTART() SD_BEGIN_IOSTART() | | 11129 * | | | | 11130 * +---+ | +------------+ +-------+ 11131 * | | | | 11132 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11133 * | v | | 11134 * | sd_mapblockaddr_iostart() sd_mapblockaddr_iodone() | 11135 * | | ^ | 11136 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11137 * | v | | 11138 * | sd_mapblocksize_iostart() sd_mapblocksize_iodone() | 11139 * | | ^ | 11140 * | SD_NEXT_IOSTART()| SD_NEXT_IODONE()| | 11141 * | v | | 11142 * | sd_checksum_iostart() sd_checksum_iodone() | 11143 * | | ^ | 11144 * +-> SD_NEXT_IOSTART()| SD_NEXT_IODONE()+------------->+ 11145 * | v | | 11146 * | sd_pm_iostart() sd_pm_iodone() | 11147 * | | ^ | 11148 * | | | | 11149 * +-> SD_NEXT_IOSTART()| SD_BEGIN_IODONE()--+--------------+ 11150 * | ^ 11151 * v | 11152 * sd_core_iostart() | 11153 * | | 11154 * | +------>(*destroypkt)() 11155 * +-> sd_start_cmds() <-+ | | 11156 * | | | v 11157 * | | | scsi_destroy_pkt(9F) 11158 * | | | 11159 * +->(*initpkt)() +- sdintr() 11160 * | | | | 11161 * | +-> scsi_init_pkt(9F) | +-> sd_handle_xxx() 11162 * | +-> scsi_setup_cdb(9F) | 11163 * | | 11164 * +--> scsi_transport(9F) | 11165 * | | 11166 * +----> SCSA ---->+ 11167 * 11168 * 11169 * This code is based upon the following presumtions: 11170 * 11171 * - iostart and iodone functions operate on buf(9S) structures. These 11172 * functions perform the necessary operations on the buf(9S) and pass 11173 * them along to the next function in the chain by using the macros 11174 * SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE() 11175 * (for iodone side functions). 11176 * 11177 * - The iostart side functions may sleep. The iodone side functions 11178 * are called under interrupt context and may NOT sleep. Therefore 11179 * iodone side functions also may not call iostart side functions. 11180 * (NOTE: iostart side functions should NOT sleep for memory, as 11181 * this could result in deadlock.) 11182 * 11183 * - An iostart side function may call its corresponding iodone side 11184 * function directly (if necessary). 11185 * 11186 * - In the event of an error, an iostart side function can return a buf(9S) 11187 * to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and 11188 * b_error in the usual way of course). 11189 * 11190 * - The taskq mechanism may be used by the iodone side functions to dispatch 11191 * requests to the iostart side functions. The iostart side functions in 11192 * this case would be called under the context of a taskq thread, so it's 11193 * OK for them to block/sleep/spin in this case. 11194 * 11195 * - iostart side functions may allocate "shadow" buf(9S) structs and 11196 * pass them along to the next function in the chain. The corresponding 11197 * iodone side functions must coalesce the "shadow" bufs and return 11198 * the "original" buf to the next higher layer. 11199 * 11200 * - The b_private field of the buf(9S) struct holds a pointer to 11201 * an sd_xbuf struct, which contains information needed to 11202 * construct the scsi_pkt for the command. 11203 * 11204 * - The SD_MUTEX(un) is NOT held across calls to the next layer. Each 11205 * layer must acquire & release the SD_MUTEX(un) as needed. 11206 */ 11207 11208 11209 /* 11210 * Create taskq for all targets in the system. This is created at 11211 * _init(9E) and destroyed at _fini(9E). 11212 * 11213 * Note: here we set the minalloc to a reasonably high number to ensure that 11214 * we will have an adequate supply of task entries available at interrupt time. 11215 * This is used in conjunction with the TASKQ_PREPOPULATE flag in 11216 * sd_create_taskq(). Since we do not want to sleep for allocations at 11217 * interrupt time, set maxalloc equal to minalloc. That way we will just fail 11218 * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq 11219 * requests any one instant in time. 11220 */ 11221 #define SD_TASKQ_NUMTHREADS 8 11222 #define SD_TASKQ_MINALLOC 256 11223 #define SD_TASKQ_MAXALLOC 256 11224 11225 static taskq_t *sd_tq = NULL; 11226 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq)) 11227 11228 static int sd_taskq_minalloc = SD_TASKQ_MINALLOC; 11229 static int sd_taskq_maxalloc = SD_TASKQ_MAXALLOC; 11230 11231 /* 11232 * The following task queue is being created for the write part of 11233 * read-modify-write of non-512 block size devices. 11234 * Limit the number of threads to 1 for now. This number has been choosen 11235 * considering the fact that it applies only to dvd ram drives/MO drives 11236 * currently. Performance for which is not main criteria at this stage. 11237 * Note: It needs to be explored if we can use a single taskq in future 11238 */ 11239 #define SD_WMR_TASKQ_NUMTHREADS 1 11240 static taskq_t *sd_wmr_tq = NULL; 11241 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq)) 11242 11243 /* 11244 * Function: sd_taskq_create 11245 * 11246 * Description: Create taskq thread(s) and preallocate task entries 11247 * 11248 * Return Code: Returns a pointer to the allocated taskq_t. 11249 * 11250 * Context: Can sleep. Requires blockable context. 11251 * 11252 * Notes: - The taskq() facility currently is NOT part of the DDI. 11253 * (definitely NOT recommeded for 3rd-party drivers!) :-) 11254 * - taskq_create() will block for memory, also it will panic 11255 * if it cannot create the requested number of threads. 11256 * - Currently taskq_create() creates threads that cannot be 11257 * swapped. 11258 * - We use TASKQ_PREPOPULATE to ensure we have an adequate 11259 * supply of taskq entries at interrupt time (ie, so that we 11260 * do not have to sleep for memory) 11261 */ 11262 11263 static void 11264 sd_taskq_create(void) 11265 { 11266 char taskq_name[TASKQ_NAMELEN]; 11267 11268 ASSERT(sd_tq == NULL); 11269 ASSERT(sd_wmr_tq == NULL); 11270 11271 (void) snprintf(taskq_name, sizeof (taskq_name), 11272 "%s_drv_taskq", sd_label); 11273 sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS, 11274 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11275 TASKQ_PREPOPULATE)); 11276 11277 (void) snprintf(taskq_name, sizeof (taskq_name), 11278 "%s_rmw_taskq", sd_label); 11279 sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS, 11280 (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc, 11281 TASKQ_PREPOPULATE)); 11282 } 11283 11284 11285 /* 11286 * Function: sd_taskq_delete 11287 * 11288 * Description: Complementary cleanup routine for sd_taskq_create(). 11289 * 11290 * Context: Kernel thread context. 11291 */ 11292 11293 static void 11294 sd_taskq_delete(void) 11295 { 11296 ASSERT(sd_tq != NULL); 11297 ASSERT(sd_wmr_tq != NULL); 11298 taskq_destroy(sd_tq); 11299 taskq_destroy(sd_wmr_tq); 11300 sd_tq = NULL; 11301 sd_wmr_tq = NULL; 11302 } 11303 11304 11305 /* 11306 * Function: sdstrategy 11307 * 11308 * Description: Driver's strategy (9E) entry point function. 11309 * 11310 * Arguments: bp - pointer to buf(9S) 11311 * 11312 * Return Code: Always returns zero 11313 * 11314 * Context: Kernel thread context. 11315 */ 11316 11317 static int 11318 sdstrategy(struct buf *bp) 11319 { 11320 struct sd_lun *un; 11321 11322 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11323 if (un == NULL) { 11324 bioerror(bp, EIO); 11325 bp->b_resid = bp->b_bcount; 11326 biodone(bp); 11327 return (0); 11328 } 11329 /* As was done in the past, fail new cmds. if state is dumping. */ 11330 if (un->un_state == SD_STATE_DUMPING) { 11331 bioerror(bp, ENXIO); 11332 bp->b_resid = bp->b_bcount; 11333 biodone(bp); 11334 return (0); 11335 } 11336 11337 ASSERT(!mutex_owned(SD_MUTEX(un))); 11338 11339 /* 11340 * Commands may sneak in while we released the mutex in 11341 * DDI_SUSPEND, we should block new commands. However, old 11342 * commands that are still in the driver at this point should 11343 * still be allowed to drain. 11344 */ 11345 mutex_enter(SD_MUTEX(un)); 11346 /* 11347 * Must wait here if either the device is suspended or 11348 * if it's power level is changing. 11349 */ 11350 while ((un->un_state == SD_STATE_SUSPENDED) || 11351 (un->un_state == SD_STATE_PM_CHANGING)) { 11352 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 11353 } 11354 11355 un->un_ncmds_in_driver++; 11356 11357 /* 11358 * atapi: Since we are running the CD for now in PIO mode we need to 11359 * call bp_mapin here to avoid bp_mapin called interrupt context under 11360 * the HBA's init_pkt routine. 11361 */ 11362 if (un->un_f_cfg_is_atapi == TRUE) { 11363 mutex_exit(SD_MUTEX(un)); 11364 bp_mapin(bp); 11365 mutex_enter(SD_MUTEX(un)); 11366 } 11367 SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n", 11368 un->un_ncmds_in_driver); 11369 11370 mutex_exit(SD_MUTEX(un)); 11371 11372 /* 11373 * This will (eventually) allocate the sd_xbuf area and 11374 * call sd_xbuf_strategy(). We just want to return the 11375 * result of ddi_xbuf_qstrategy so that we have an opt- 11376 * imized tail call which saves us a stack frame. 11377 */ 11378 return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr)); 11379 } 11380 11381 11382 /* 11383 * Function: sd_xbuf_strategy 11384 * 11385 * Description: Function for initiating IO operations via the 11386 * ddi_xbuf_qstrategy() mechanism. 11387 * 11388 * Context: Kernel thread context. 11389 */ 11390 11391 static void 11392 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg) 11393 { 11394 struct sd_lun *un = arg; 11395 11396 ASSERT(bp != NULL); 11397 ASSERT(xp != NULL); 11398 ASSERT(un != NULL); 11399 ASSERT(!mutex_owned(SD_MUTEX(un))); 11400 11401 /* 11402 * Initialize the fields in the xbuf and save a pointer to the 11403 * xbuf in bp->b_private. 11404 */ 11405 sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL); 11406 11407 /* Send the buf down the iostart chain */ 11408 SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp); 11409 } 11410 11411 11412 /* 11413 * Function: sd_xbuf_init 11414 * 11415 * Description: Prepare the given sd_xbuf struct for use. 11416 * 11417 * Arguments: un - ptr to softstate 11418 * bp - ptr to associated buf(9S) 11419 * xp - ptr to associated sd_xbuf 11420 * chain_type - IO chain type to use: 11421 * SD_CHAIN_NULL 11422 * SD_CHAIN_BUFIO 11423 * SD_CHAIN_USCSI 11424 * SD_CHAIN_DIRECT 11425 * SD_CHAIN_DIRECT_PRIORITY 11426 * pktinfop - ptr to private data struct for scsi_pkt(9S) 11427 * initialization; may be NULL if none. 11428 * 11429 * Context: Kernel thread context 11430 */ 11431 11432 static void 11433 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 11434 uchar_t chain_type, void *pktinfop) 11435 { 11436 int index; 11437 11438 ASSERT(un != NULL); 11439 ASSERT(bp != NULL); 11440 ASSERT(xp != NULL); 11441 11442 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n", 11443 bp, chain_type); 11444 11445 xp->xb_un = un; 11446 xp->xb_pktp = NULL; 11447 xp->xb_pktinfo = pktinfop; 11448 xp->xb_private = bp->b_private; 11449 xp->xb_blkno = (daddr_t)bp->b_blkno; 11450 11451 /* 11452 * Set up the iostart and iodone chain indexes in the xbuf, based 11453 * upon the specified chain type to use. 11454 */ 11455 switch (chain_type) { 11456 case SD_CHAIN_NULL: 11457 /* 11458 * Fall thru to just use the values for the buf type, even 11459 * tho for the NULL chain these values will never be used. 11460 */ 11461 /* FALLTHRU */ 11462 case SD_CHAIN_BUFIO: 11463 index = un->un_buf_chain_type; 11464 break; 11465 case SD_CHAIN_USCSI: 11466 index = un->un_uscsi_chain_type; 11467 break; 11468 case SD_CHAIN_DIRECT: 11469 index = un->un_direct_chain_type; 11470 break; 11471 case SD_CHAIN_DIRECT_PRIORITY: 11472 index = un->un_priority_chain_type; 11473 break; 11474 default: 11475 /* We're really broken if we ever get here... */ 11476 panic("sd_xbuf_init: illegal chain type!"); 11477 /*NOTREACHED*/ 11478 } 11479 11480 xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index; 11481 xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index; 11482 11483 /* 11484 * It might be a bit easier to simply bzero the entire xbuf above, 11485 * but it turns out that since we init a fair number of members anyway, 11486 * we save a fair number cycles by doing explicit assignment of zero. 11487 */ 11488 xp->xb_pkt_flags = 0; 11489 xp->xb_dma_resid = 0; 11490 xp->xb_retry_count = 0; 11491 xp->xb_victim_retry_count = 0; 11492 xp->xb_ua_retry_count = 0; 11493 xp->xb_sense_bp = NULL; 11494 xp->xb_sense_status = 0; 11495 xp->xb_sense_state = 0; 11496 xp->xb_sense_resid = 0; 11497 11498 bp->b_private = xp; 11499 bp->b_flags &= ~(B_DONE | B_ERROR); 11500 bp->b_resid = 0; 11501 bp->av_forw = NULL; 11502 bp->av_back = NULL; 11503 bioerror(bp, 0); 11504 11505 SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n"); 11506 } 11507 11508 11509 /* 11510 * Function: sd_uscsi_strategy 11511 * 11512 * Description: Wrapper for calling into the USCSI chain via physio(9F) 11513 * 11514 * Arguments: bp - buf struct ptr 11515 * 11516 * Return Code: Always returns 0 11517 * 11518 * Context: Kernel thread context 11519 */ 11520 11521 static int 11522 sd_uscsi_strategy(struct buf *bp) 11523 { 11524 struct sd_lun *un; 11525 struct sd_uscsi_info *uip; 11526 struct sd_xbuf *xp; 11527 uchar_t chain_type; 11528 11529 ASSERT(bp != NULL); 11530 11531 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 11532 if (un == NULL) { 11533 bioerror(bp, EIO); 11534 bp->b_resid = bp->b_bcount; 11535 biodone(bp); 11536 return (0); 11537 } 11538 11539 ASSERT(!mutex_owned(SD_MUTEX(un))); 11540 11541 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp); 11542 11543 mutex_enter(SD_MUTEX(un)); 11544 /* 11545 * atapi: Since we are running the CD for now in PIO mode we need to 11546 * call bp_mapin here to avoid bp_mapin called interrupt context under 11547 * the HBA's init_pkt routine. 11548 */ 11549 if (un->un_f_cfg_is_atapi == TRUE) { 11550 mutex_exit(SD_MUTEX(un)); 11551 bp_mapin(bp); 11552 mutex_enter(SD_MUTEX(un)); 11553 } 11554 un->un_ncmds_in_driver++; 11555 SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n", 11556 un->un_ncmds_in_driver); 11557 mutex_exit(SD_MUTEX(un)); 11558 11559 /* 11560 * A pointer to a struct sd_uscsi_info is expected in bp->b_private 11561 */ 11562 ASSERT(bp->b_private != NULL); 11563 uip = (struct sd_uscsi_info *)bp->b_private; 11564 11565 switch (uip->ui_flags) { 11566 case SD_PATH_DIRECT: 11567 chain_type = SD_CHAIN_DIRECT; 11568 break; 11569 case SD_PATH_DIRECT_PRIORITY: 11570 chain_type = SD_CHAIN_DIRECT_PRIORITY; 11571 break; 11572 default: 11573 chain_type = SD_CHAIN_USCSI; 11574 break; 11575 } 11576 11577 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 11578 sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp); 11579 11580 /* Use the index obtained within xbuf_init */ 11581 SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp); 11582 11583 SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp); 11584 11585 return (0); 11586 } 11587 11588 11589 /* 11590 * These routines perform raw i/o operations. 11591 */ 11592 /*ARGSUSED*/ 11593 static void 11594 sduscsimin(struct buf *bp) 11595 { 11596 /* 11597 * do not break up because the CDB count would then 11598 * be incorrect and data underruns would result (incomplete 11599 * read/writes which would be retried and then failed, see 11600 * sdintr(). 11601 */ 11602 } 11603 11604 11605 11606 /* 11607 * Function: sd_send_scsi_cmd 11608 * 11609 * Description: Runs a USCSI command for user (when called thru sdioctl), 11610 * or for the driver 11611 * 11612 * Arguments: dev - the dev_t for the device 11613 * incmd - ptr to a valid uscsi_cmd struct 11614 * cdbspace - UIO_USERSPACE or UIO_SYSSPACE 11615 * dataspace - UIO_USERSPACE or UIO_SYSSPACE 11616 * rqbufspace - UIO_USERSPACE or UIO_SYSSPACE 11617 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 11618 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 11619 * to use the USCSI "direct" chain and bypass the normal 11620 * command waitq. 11621 * 11622 * Return Code: 0 - successful completion of the given command 11623 * EIO - scsi_reset() failed, or see biowait()/physio() codes. 11624 * ENXIO - soft state not found for specified dev 11625 * EINVAL 11626 * EFAULT - copyin/copyout error 11627 * return code of biowait(9F) or physio(9F): 11628 * EIO - IO error, caller may check incmd->uscsi_status 11629 * ENXIO 11630 * EACCES - reservation conflict 11631 * 11632 * Context: Waits for command to complete. Can sleep. 11633 */ 11634 11635 static int 11636 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, 11637 enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace, 11638 int path_flag) 11639 { 11640 struct sd_uscsi_info *uip; 11641 struct uscsi_cmd *uscmd; 11642 struct sd_lun *un; 11643 struct buf *bp; 11644 int rval; 11645 int flags; 11646 11647 un = ddi_get_soft_state(sd_state, SDUNIT(dev)); 11648 if (un == NULL) { 11649 return (ENXIO); 11650 } 11651 11652 ASSERT(!mutex_owned(SD_MUTEX(un))); 11653 11654 #ifdef SDDEBUG 11655 switch (dataspace) { 11656 case UIO_USERSPACE: 11657 SD_TRACE(SD_LOG_IO, un, 11658 "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un); 11659 break; 11660 case UIO_SYSSPACE: 11661 SD_TRACE(SD_LOG_IO, un, 11662 "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un); 11663 break; 11664 default: 11665 SD_TRACE(SD_LOG_IO, un, 11666 "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un); 11667 break; 11668 } 11669 #endif 11670 11671 /* 11672 * Perform resets directly; no need to generate a command to do it. 11673 */ 11674 if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) { 11675 flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ? 11676 RESET_ALL : RESET_TARGET; 11677 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n"); 11678 if (scsi_reset(SD_ADDRESS(un), flags) == 0) { 11679 /* Reset attempt was unsuccessful */ 11680 SD_TRACE(SD_LOG_IO, un, 11681 "sd_send_scsi_cmd: reset: failure\n"); 11682 return (EIO); 11683 } 11684 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n"); 11685 return (0); 11686 } 11687 11688 /* Perfunctory sanity check... */ 11689 if (incmd->uscsi_cdblen <= 0) { 11690 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11691 "invalid uscsi_cdblen, returning EINVAL\n"); 11692 return (EINVAL); 11693 } 11694 11695 /* 11696 * In order to not worry about where the uscsi structure came from 11697 * (or where the cdb it points to came from) we're going to make 11698 * kmem_alloc'd copies of them here. This will also allow reference 11699 * to the data they contain long after this process has gone to 11700 * sleep and its kernel stack has been unmapped, etc. 11701 * 11702 * First get some memory for the uscsi_cmd struct and copy the 11703 * contents of the given uscsi_cmd struct into it. 11704 */ 11705 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 11706 bcopy(incmd, uscmd, sizeof (struct uscsi_cmd)); 11707 11708 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd", 11709 (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX); 11710 11711 /* 11712 * Now get some space for the CDB, and copy the given CDB into 11713 * it. Use ddi_copyin() in case the data is in user space. 11714 */ 11715 uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP); 11716 flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0; 11717 if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb, 11718 (uint_t)incmd->uscsi_cdblen, flags) != 0) { 11719 kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen); 11720 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 11721 return (EFAULT); 11722 } 11723 11724 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB", 11725 (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX); 11726 11727 bp = getrbuf(KM_SLEEP); 11728 11729 /* 11730 * Allocate an sd_uscsi_info struct and fill it with the info 11731 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 11732 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 11733 * since we allocate the buf here in this function, we do not 11734 * need to preserve the prior contents of b_private. 11735 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 11736 */ 11737 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 11738 uip->ui_flags = path_flag; 11739 uip->ui_cmdp = uscmd; 11740 bp->b_private = uip; 11741 11742 /* 11743 * Initialize Request Sense buffering, if requested. 11744 */ 11745 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 11746 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 11747 /* 11748 * Here uscmd->uscsi_rqbuf currently points to the caller's 11749 * buffer, but we replace this with a kernel buffer that 11750 * we allocate to use with the sense data. The sense data 11751 * (if present) gets copied into this new buffer before the 11752 * command is completed. Then we copy the sense data from 11753 * our allocated buf into the caller's buffer below. Note 11754 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used 11755 * below to perform the copy back to the caller's buf. 11756 */ 11757 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 11758 if (rqbufspace == UIO_USERSPACE) { 11759 uscmd->uscsi_rqlen = SENSE_LENGTH; 11760 uscmd->uscsi_rqresid = SENSE_LENGTH; 11761 } else { 11762 uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen); 11763 uscmd->uscsi_rqlen = rlen; 11764 uscmd->uscsi_rqresid = rlen; 11765 } 11766 } else { 11767 uscmd->uscsi_rqbuf = NULL; 11768 uscmd->uscsi_rqlen = 0; 11769 uscmd->uscsi_rqresid = 0; 11770 } 11771 11772 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p rqlen:%d\n", 11773 uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen); 11774 11775 if (un->un_f_is_fibre == FALSE) { 11776 /* 11777 * Force asynchronous mode, if necessary. Doing this here 11778 * has the unfortunate effect of running other queued 11779 * commands async also, but since the main purpose of this 11780 * capability is downloading new drive firmware, we can 11781 * probably live with it. 11782 */ 11783 if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) { 11784 if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1) 11785 == 1) { 11786 if (scsi_ifsetcap(SD_ADDRESS(un), 11787 "synchronous", 0, 1) == 1) { 11788 SD_TRACE(SD_LOG_IO, un, 11789 "sd_send_scsi_cmd: forced async ok\n"); 11790 } else { 11791 SD_TRACE(SD_LOG_IO, un, 11792 "sd_send_scsi_cmd:\ 11793 forced async failed\n"); 11794 rval = EINVAL; 11795 goto done; 11796 } 11797 } 11798 } 11799 11800 /* 11801 * Re-enable synchronous mode, if requested 11802 */ 11803 if (uscmd->uscsi_flags & USCSI_SYNC) { 11804 if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1) 11805 == 0) { 11806 int i = scsi_ifsetcap(SD_ADDRESS(un), 11807 "synchronous", 1, 1); 11808 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11809 "re-enabled sync %s\n", 11810 (i == 1) ? "ok" : "failed"); 11811 } 11812 } 11813 } 11814 11815 /* 11816 * Commands sent with priority are intended for error recovery 11817 * situations, and do not have retries performed. 11818 */ 11819 if (path_flag == SD_PATH_DIRECT_PRIORITY) { 11820 uscmd->uscsi_flags |= USCSI_DIAGNOSE; 11821 } 11822 11823 /* 11824 * If we're going to do actual I/O, let physio do all the right things 11825 */ 11826 if (uscmd->uscsi_buflen != 0) { 11827 struct iovec aiov; 11828 struct uio auio; 11829 struct uio *uio = &auio; 11830 11831 bzero(&auio, sizeof (struct uio)); 11832 bzero(&aiov, sizeof (struct iovec)); 11833 aiov.iov_base = uscmd->uscsi_bufaddr; 11834 aiov.iov_len = uscmd->uscsi_buflen; 11835 uio->uio_iov = &aiov; 11836 11837 uio->uio_iovcnt = 1; 11838 uio->uio_resid = uscmd->uscsi_buflen; 11839 uio->uio_segflg = dataspace; 11840 11841 /* 11842 * physio() will block here until the command completes.... 11843 */ 11844 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n"); 11845 11846 rval = physio(sd_uscsi_strategy, bp, dev, 11847 ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE), 11848 sduscsimin, uio); 11849 11850 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11851 "returned from physio with 0x%x\n", rval); 11852 11853 } else { 11854 /* 11855 * We have to mimic what physio would do here! Argh! 11856 */ 11857 bp->b_flags = B_BUSY | 11858 ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE); 11859 bp->b_edev = dev; 11860 bp->b_dev = cmpdev(dev); /* maybe unnecessary? */ 11861 bp->b_bcount = 0; 11862 bp->b_blkno = 0; 11863 11864 SD_TRACE(SD_LOG_IO, un, 11865 "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n"); 11866 11867 (void) sd_uscsi_strategy(bp); 11868 11869 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n"); 11870 11871 rval = biowait(bp); 11872 11873 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11874 "returned from biowait with 0x%x\n", rval); 11875 } 11876 11877 done: 11878 11879 #ifdef SDDEBUG 11880 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11881 "uscsi_status: 0x%02x uscsi_resid:0x%x\n", 11882 uscmd->uscsi_status, uscmd->uscsi_resid); 11883 if (uscmd->uscsi_bufaddr != NULL) { 11884 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11885 "uscmd->uscsi_bufaddr: 0x%p uscmd->uscsi_buflen:%d\n", 11886 uscmd->uscsi_bufaddr, uscmd->uscsi_buflen); 11887 if (dataspace == UIO_SYSSPACE) { 11888 SD_DUMP_MEMORY(un, SD_LOG_IO, 11889 "data", (uchar_t *)uscmd->uscsi_bufaddr, 11890 uscmd->uscsi_buflen, SD_LOG_HEX); 11891 } 11892 } 11893 #endif 11894 11895 /* 11896 * Get the status and residual to return to the caller. 11897 */ 11898 incmd->uscsi_status = uscmd->uscsi_status; 11899 incmd->uscsi_resid = uscmd->uscsi_resid; 11900 11901 /* 11902 * If the caller wants sense data, copy back whatever sense data 11903 * we may have gotten, and update the relevant rqsense info. 11904 */ 11905 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 11906 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 11907 11908 int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid; 11909 rqlen = min(((int)incmd->uscsi_rqlen), rqlen); 11910 11911 /* Update the Request Sense status and resid */ 11912 incmd->uscsi_rqresid = incmd->uscsi_rqlen - rqlen; 11913 incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus; 11914 11915 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11916 "uscsi_rqstatus: 0x%02x uscsi_rqresid:0x%x\n", 11917 incmd->uscsi_rqstatus, incmd->uscsi_rqresid); 11918 11919 /* Copy out the sense data for user processes */ 11920 if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) { 11921 int flags = 11922 (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL; 11923 if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf, 11924 rqlen, flags) != 0) { 11925 rval = EFAULT; 11926 } 11927 /* 11928 * Note: Can't touch incmd->uscsi_rqbuf so use 11929 * uscmd->uscsi_rqbuf instead. They're the same. 11930 */ 11931 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: " 11932 "incmd->uscsi_rqbuf: 0x%p rqlen:%d\n", 11933 incmd->uscsi_rqbuf, rqlen); 11934 SD_DUMP_MEMORY(un, SD_LOG_IO, "rq", 11935 (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX); 11936 } 11937 } 11938 11939 /* 11940 * Free allocated resources and return; mapout the buf in case it was 11941 * mapped in by a lower layer. 11942 */ 11943 bp_mapout(bp); 11944 freerbuf(bp); 11945 kmem_free(uip, sizeof (struct sd_uscsi_info)); 11946 if (uscmd->uscsi_rqbuf != NULL) { 11947 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 11948 } 11949 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 11950 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 11951 11952 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n"); 11953 11954 return (rval); 11955 } 11956 11957 11958 /* 11959 * Function: sd_buf_iodone 11960 * 11961 * Description: Frees the sd_xbuf & returns the buf to its originator. 11962 * 11963 * Context: May be called from interrupt context. 11964 */ 11965 /* ARGSUSED */ 11966 static void 11967 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp) 11968 { 11969 struct sd_xbuf *xp; 11970 11971 ASSERT(un != NULL); 11972 ASSERT(bp != NULL); 11973 ASSERT(!mutex_owned(SD_MUTEX(un))); 11974 11975 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n"); 11976 11977 xp = SD_GET_XBUF(bp); 11978 ASSERT(xp != NULL); 11979 11980 mutex_enter(SD_MUTEX(un)); 11981 11982 /* 11983 * Grab time when the cmd completed. 11984 * This is used for determining if the system has been 11985 * idle long enough to make it idle to the PM framework. 11986 * This is for lowering the overhead, and therefore improving 11987 * performance per I/O operation. 11988 */ 11989 un->un_pm_idle_time = ddi_get_time(); 11990 11991 un->un_ncmds_in_driver--; 11992 ASSERT(un->un_ncmds_in_driver >= 0); 11993 SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n", 11994 un->un_ncmds_in_driver); 11995 11996 mutex_exit(SD_MUTEX(un)); 11997 11998 ddi_xbuf_done(bp, un->un_xbuf_attr); /* xbuf is gone after this */ 11999 biodone(bp); /* bp is gone after this */ 12000 12001 SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n"); 12002 } 12003 12004 12005 /* 12006 * Function: sd_uscsi_iodone 12007 * 12008 * Description: Frees the sd_xbuf & returns the buf to its originator. 12009 * 12010 * Context: May be called from interrupt context. 12011 */ 12012 /* ARGSUSED */ 12013 static void 12014 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 12015 { 12016 struct sd_xbuf *xp; 12017 12018 ASSERT(un != NULL); 12019 ASSERT(bp != NULL); 12020 12021 xp = SD_GET_XBUF(bp); 12022 ASSERT(xp != NULL); 12023 ASSERT(!mutex_owned(SD_MUTEX(un))); 12024 12025 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n"); 12026 12027 bp->b_private = xp->xb_private; 12028 12029 mutex_enter(SD_MUTEX(un)); 12030 12031 /* 12032 * Grab time when the cmd completed. 12033 * This is used for determining if the system has been 12034 * idle long enough to make it idle to the PM framework. 12035 * This is for lowering the overhead, and therefore improving 12036 * performance per I/O operation. 12037 */ 12038 un->un_pm_idle_time = ddi_get_time(); 12039 12040 un->un_ncmds_in_driver--; 12041 ASSERT(un->un_ncmds_in_driver >= 0); 12042 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n", 12043 un->un_ncmds_in_driver); 12044 12045 mutex_exit(SD_MUTEX(un)); 12046 12047 kmem_free(xp, sizeof (struct sd_xbuf)); 12048 biodone(bp); 12049 12050 SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n"); 12051 } 12052 12053 12054 /* 12055 * Function: sd_mapblockaddr_iostart 12056 * 12057 * Description: Verify request lies withing the partition limits for 12058 * the indicated minor device. Issue "overrun" buf if 12059 * request would exceed partition range. Converts 12060 * partition-relative block address to absolute. 12061 * 12062 * Context: Can sleep 12063 * 12064 * Issues: This follows what the old code did, in terms of accessing 12065 * some of the partition info in the unit struct without holding 12066 * the mutext. This is a general issue, if the partition info 12067 * can be altered while IO is in progress... as soon as we send 12068 * a buf, its partitioning can be invalid before it gets to the 12069 * device. Probably the right fix is to move partitioning out 12070 * of the driver entirely. 12071 */ 12072 12073 static void 12074 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp) 12075 { 12076 daddr_t nblocks; /* #blocks in the given partition */ 12077 daddr_t blocknum; /* Block number specified by the buf */ 12078 size_t requested_nblocks; 12079 size_t available_nblocks; 12080 int partition; 12081 diskaddr_t partition_offset; 12082 struct sd_xbuf *xp; 12083 12084 12085 ASSERT(un != NULL); 12086 ASSERT(bp != NULL); 12087 ASSERT(!mutex_owned(SD_MUTEX(un))); 12088 12089 SD_TRACE(SD_LOG_IO_PARTITION, un, 12090 "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp); 12091 12092 xp = SD_GET_XBUF(bp); 12093 ASSERT(xp != NULL); 12094 12095 /* 12096 * If the geometry is not indicated as valid, attempt to access 12097 * the unit & verify the geometry/label. This can be the case for 12098 * removable-media devices, of if the device was opened in 12099 * NDELAY/NONBLOCK mode. 12100 */ 12101 if ((un->un_f_geometry_is_valid != TRUE) && 12102 (sd_ready_and_valid(un) != SD_READY_VALID)) { 12103 /* 12104 * For removable devices it is possible to start an I/O 12105 * without a media by opening the device in nodelay mode. 12106 * Also for writable CDs there can be many scenarios where 12107 * there is no geometry yet but volume manager is trying to 12108 * issue a read() just because it can see TOC on the CD. So 12109 * do not print a message for removables. 12110 */ 12111 if (!un->un_f_has_removable_media) { 12112 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 12113 "i/o to invalid geometry\n"); 12114 } 12115 bioerror(bp, EIO); 12116 bp->b_resid = bp->b_bcount; 12117 SD_BEGIN_IODONE(index, un, bp); 12118 return; 12119 } 12120 12121 partition = SDPART(bp->b_edev); 12122 12123 /* #blocks in partition */ 12124 nblocks = un->un_map[partition].dkl_nblk; /* #blocks in partition */ 12125 12126 /* Use of a local variable potentially improves performance slightly */ 12127 partition_offset = un->un_offset[partition]; 12128 12129 /* 12130 * blocknum is the starting block number of the request. At this 12131 * point it is still relative to the start of the minor device. 12132 */ 12133 blocknum = xp->xb_blkno; 12134 12135 /* 12136 * Legacy: If the starting block number is one past the last block 12137 * in the partition, do not set B_ERROR in the buf. 12138 */ 12139 if (blocknum == nblocks) { 12140 goto error_exit; 12141 } 12142 12143 /* 12144 * Confirm that the first block of the request lies within the 12145 * partition limits. Also the requested number of bytes must be 12146 * a multiple of the system block size. 12147 */ 12148 if ((blocknum < 0) || (blocknum >= nblocks) || 12149 ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) { 12150 bp->b_flags |= B_ERROR; 12151 goto error_exit; 12152 } 12153 12154 /* 12155 * If the requsted # blocks exceeds the available # blocks, that 12156 * is an overrun of the partition. 12157 */ 12158 requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount); 12159 available_nblocks = (size_t)(nblocks - blocknum); 12160 ASSERT(nblocks >= blocknum); 12161 12162 if (requested_nblocks > available_nblocks) { 12163 /* 12164 * Allocate an "overrun" buf to allow the request to proceed 12165 * for the amount of space available in the partition. The 12166 * amount not transferred will be added into the b_resid 12167 * when the operation is complete. The overrun buf 12168 * replaces the original buf here, and the original buf 12169 * is saved inside the overrun buf, for later use. 12170 */ 12171 size_t resid = SD_SYSBLOCKS2BYTES(un, 12172 (offset_t)(requested_nblocks - available_nblocks)); 12173 size_t count = bp->b_bcount - resid; 12174 /* 12175 * Note: count is an unsigned entity thus it'll NEVER 12176 * be less than 0 so ASSERT the original values are 12177 * correct. 12178 */ 12179 ASSERT(bp->b_bcount >= resid); 12180 12181 bp = sd_bioclone_alloc(bp, count, blocknum, 12182 (int (*)(struct buf *)) sd_mapblockaddr_iodone); 12183 xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */ 12184 ASSERT(xp != NULL); 12185 } 12186 12187 /* At this point there should be no residual for this buf. */ 12188 ASSERT(bp->b_resid == 0); 12189 12190 /* Convert the block number to an absolute address. */ 12191 xp->xb_blkno += partition_offset; 12192 12193 SD_NEXT_IOSTART(index, un, bp); 12194 12195 SD_TRACE(SD_LOG_IO_PARTITION, un, 12196 "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp); 12197 12198 return; 12199 12200 error_exit: 12201 bp->b_resid = bp->b_bcount; 12202 SD_BEGIN_IODONE(index, un, bp); 12203 SD_TRACE(SD_LOG_IO_PARTITION, un, 12204 "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp); 12205 } 12206 12207 12208 /* 12209 * Function: sd_mapblockaddr_iodone 12210 * 12211 * Description: Completion-side processing for partition management. 12212 * 12213 * Context: May be called under interrupt context 12214 */ 12215 12216 static void 12217 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp) 12218 { 12219 /* int partition; */ /* Not used, see below. */ 12220 ASSERT(un != NULL); 12221 ASSERT(bp != NULL); 12222 ASSERT(!mutex_owned(SD_MUTEX(un))); 12223 12224 SD_TRACE(SD_LOG_IO_PARTITION, un, 12225 "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp); 12226 12227 if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) { 12228 /* 12229 * We have an "overrun" buf to deal with... 12230 */ 12231 struct sd_xbuf *xp; 12232 struct buf *obp; /* ptr to the original buf */ 12233 12234 xp = SD_GET_XBUF(bp); 12235 ASSERT(xp != NULL); 12236 12237 /* Retrieve the pointer to the original buf */ 12238 obp = (struct buf *)xp->xb_private; 12239 ASSERT(obp != NULL); 12240 12241 obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid); 12242 bioerror(obp, bp->b_error); 12243 12244 sd_bioclone_free(bp); 12245 12246 /* 12247 * Get back the original buf. 12248 * Note that since the restoration of xb_blkno below 12249 * was removed, the sd_xbuf is not needed. 12250 */ 12251 bp = obp; 12252 /* 12253 * xp = SD_GET_XBUF(bp); 12254 * ASSERT(xp != NULL); 12255 */ 12256 } 12257 12258 /* 12259 * Convert sd->xb_blkno back to a minor-device relative value. 12260 * Note: this has been commented out, as it is not needed in the 12261 * current implementation of the driver (ie, since this function 12262 * is at the top of the layering chains, so the info will be 12263 * discarded) and it is in the "hot" IO path. 12264 * 12265 * partition = getminor(bp->b_edev) & SDPART_MASK; 12266 * xp->xb_blkno -= un->un_offset[partition]; 12267 */ 12268 12269 SD_NEXT_IODONE(index, un, bp); 12270 12271 SD_TRACE(SD_LOG_IO_PARTITION, un, 12272 "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp); 12273 } 12274 12275 12276 /* 12277 * Function: sd_mapblocksize_iostart 12278 * 12279 * Description: Convert between system block size (un->un_sys_blocksize) 12280 * and target block size (un->un_tgt_blocksize). 12281 * 12282 * Context: Can sleep to allocate resources. 12283 * 12284 * Assumptions: A higher layer has already performed any partition validation, 12285 * and converted the xp->xb_blkno to an absolute value relative 12286 * to the start of the device. 12287 * 12288 * It is also assumed that the higher layer has implemented 12289 * an "overrun" mechanism for the case where the request would 12290 * read/write beyond the end of a partition. In this case we 12291 * assume (and ASSERT) that bp->b_resid == 0. 12292 * 12293 * Note: The implementation for this routine assumes the target 12294 * block size remains constant between allocation and transport. 12295 */ 12296 12297 static void 12298 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp) 12299 { 12300 struct sd_mapblocksize_info *bsp; 12301 struct sd_xbuf *xp; 12302 offset_t first_byte; 12303 daddr_t start_block, end_block; 12304 daddr_t request_bytes; 12305 ushort_t is_aligned = FALSE; 12306 12307 ASSERT(un != NULL); 12308 ASSERT(bp != NULL); 12309 ASSERT(!mutex_owned(SD_MUTEX(un))); 12310 ASSERT(bp->b_resid == 0); 12311 12312 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12313 "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp); 12314 12315 /* 12316 * For a non-writable CD, a write request is an error 12317 */ 12318 if (ISCD(un) && ((bp->b_flags & B_READ) == 0) && 12319 (un->un_f_mmc_writable_media == FALSE)) { 12320 bioerror(bp, EIO); 12321 bp->b_resid = bp->b_bcount; 12322 SD_BEGIN_IODONE(index, un, bp); 12323 return; 12324 } 12325 12326 /* 12327 * We do not need a shadow buf if the device is using 12328 * un->un_sys_blocksize as its block size or if bcount == 0. 12329 * In this case there is no layer-private data block allocated. 12330 */ 12331 if ((un->un_tgt_blocksize == un->un_sys_blocksize) || 12332 (bp->b_bcount == 0)) { 12333 goto done; 12334 } 12335 12336 #if defined(__i386) || defined(__amd64) 12337 /* We do not support non-block-aligned transfers for ROD devices */ 12338 ASSERT(!ISROD(un)); 12339 #endif 12340 12341 xp = SD_GET_XBUF(bp); 12342 ASSERT(xp != NULL); 12343 12344 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12345 "tgt_blocksize:0x%x sys_blocksize: 0x%x\n", 12346 un->un_tgt_blocksize, un->un_sys_blocksize); 12347 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12348 "request start block:0x%x\n", xp->xb_blkno); 12349 SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: " 12350 "request len:0x%x\n", bp->b_bcount); 12351 12352 /* 12353 * Allocate the layer-private data area for the mapblocksize layer. 12354 * Layers are allowed to use the xp_private member of the sd_xbuf 12355 * struct to store the pointer to their layer-private data block, but 12356 * each layer also has the responsibility of restoring the prior 12357 * contents of xb_private before returning the buf/xbuf to the 12358 * higher layer that sent it. 12359 * 12360 * Here we save the prior contents of xp->xb_private into the 12361 * bsp->mbs_oprivate field of our layer-private data area. This value 12362 * is restored by sd_mapblocksize_iodone() just prior to freeing up 12363 * the layer-private area and returning the buf/xbuf to the layer 12364 * that sent it. 12365 * 12366 * Note that here we use kmem_zalloc for the allocation as there are 12367 * parts of the mapblocksize code that expect certain fields to be 12368 * zero unless explicitly set to a required value. 12369 */ 12370 bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12371 bsp->mbs_oprivate = xp->xb_private; 12372 xp->xb_private = bsp; 12373 12374 /* 12375 * This treats the data on the disk (target) as an array of bytes. 12376 * first_byte is the byte offset, from the beginning of the device, 12377 * to the location of the request. This is converted from a 12378 * un->un_sys_blocksize block address to a byte offset, and then back 12379 * to a block address based upon a un->un_tgt_blocksize block size. 12380 * 12381 * xp->xb_blkno should be absolute upon entry into this function, 12382 * but, but it is based upon partitions that use the "system" 12383 * block size. It must be adjusted to reflect the block size of 12384 * the target. 12385 * 12386 * Note that end_block is actually the block that follows the last 12387 * block of the request, but that's what is needed for the computation. 12388 */ 12389 first_byte = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 12390 start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize; 12391 end_block = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) / 12392 un->un_tgt_blocksize; 12393 12394 /* request_bytes is rounded up to a multiple of the target block size */ 12395 request_bytes = (end_block - start_block) * un->un_tgt_blocksize; 12396 12397 /* 12398 * See if the starting address of the request and the request 12399 * length are aligned on a un->un_tgt_blocksize boundary. If aligned 12400 * then we do not need to allocate a shadow buf to handle the request. 12401 */ 12402 if (((first_byte % un->un_tgt_blocksize) == 0) && 12403 ((bp->b_bcount % un->un_tgt_blocksize) == 0)) { 12404 is_aligned = TRUE; 12405 } 12406 12407 if ((bp->b_flags & B_READ) == 0) { 12408 /* 12409 * Lock the range for a write operation. An aligned request is 12410 * considered a simple write; otherwise the request must be a 12411 * read-modify-write. 12412 */ 12413 bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1, 12414 (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW); 12415 } 12416 12417 /* 12418 * Alloc a shadow buf if the request is not aligned. Also, this is 12419 * where the READ command is generated for a read-modify-write. (The 12420 * write phase is deferred until after the read completes.) 12421 */ 12422 if (is_aligned == FALSE) { 12423 12424 struct sd_mapblocksize_info *shadow_bsp; 12425 struct sd_xbuf *shadow_xp; 12426 struct buf *shadow_bp; 12427 12428 /* 12429 * Allocate the shadow buf and it associated xbuf. Note that 12430 * after this call the xb_blkno value in both the original 12431 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the 12432 * same: absolute relative to the start of the device, and 12433 * adjusted for the target block size. The b_blkno in the 12434 * shadow buf will also be set to this value. We should never 12435 * change b_blkno in the original bp however. 12436 * 12437 * Note also that the shadow buf will always need to be a 12438 * READ command, regardless of whether the incoming command 12439 * is a READ or a WRITE. 12440 */ 12441 shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ, 12442 xp->xb_blkno, 12443 (int (*)(struct buf *)) sd_mapblocksize_iodone); 12444 12445 shadow_xp = SD_GET_XBUF(shadow_bp); 12446 12447 /* 12448 * Allocate the layer-private data for the shadow buf. 12449 * (No need to preserve xb_private in the shadow xbuf.) 12450 */ 12451 shadow_xp->xb_private = shadow_bsp = 12452 kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP); 12453 12454 /* 12455 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone 12456 * to figure out where the start of the user data is (based upon 12457 * the system block size) in the data returned by the READ 12458 * command (which will be based upon the target blocksize). Note 12459 * that this is only really used if the request is unaligned. 12460 */ 12461 bsp->mbs_copy_offset = (ssize_t)(first_byte - 12462 ((offset_t)xp->xb_blkno * un->un_tgt_blocksize)); 12463 ASSERT((bsp->mbs_copy_offset >= 0) && 12464 (bsp->mbs_copy_offset < un->un_tgt_blocksize)); 12465 12466 shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset; 12467 12468 shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index; 12469 12470 /* Transfer the wmap (if any) to the shadow buf */ 12471 shadow_bsp->mbs_wmp = bsp->mbs_wmp; 12472 bsp->mbs_wmp = NULL; 12473 12474 /* 12475 * The shadow buf goes on from here in place of the 12476 * original buf. 12477 */ 12478 shadow_bsp->mbs_orig_bp = bp; 12479 bp = shadow_bp; 12480 } 12481 12482 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12483 "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno); 12484 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12485 "sd_mapblocksize_iostart: tgt request len:0x%x\n", 12486 request_bytes); 12487 SD_INFO(SD_LOG_IO_RMMEDIA, un, 12488 "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp); 12489 12490 done: 12491 SD_NEXT_IOSTART(index, un, bp); 12492 12493 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12494 "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp); 12495 } 12496 12497 12498 /* 12499 * Function: sd_mapblocksize_iodone 12500 * 12501 * Description: Completion side processing for block-size mapping. 12502 * 12503 * Context: May be called under interrupt context 12504 */ 12505 12506 static void 12507 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp) 12508 { 12509 struct sd_mapblocksize_info *bsp; 12510 struct sd_xbuf *xp; 12511 struct sd_xbuf *orig_xp; /* sd_xbuf for the original buf */ 12512 struct buf *orig_bp; /* ptr to the original buf */ 12513 offset_t shadow_end; 12514 offset_t request_end; 12515 offset_t shadow_start; 12516 ssize_t copy_offset; 12517 size_t copy_length; 12518 size_t shortfall; 12519 uint_t is_write; /* TRUE if this bp is a WRITE */ 12520 uint_t has_wmap; /* TRUE is this bp has a wmap */ 12521 12522 ASSERT(un != NULL); 12523 ASSERT(bp != NULL); 12524 12525 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 12526 "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp); 12527 12528 /* 12529 * There is no shadow buf or layer-private data if the target is 12530 * using un->un_sys_blocksize as its block size or if bcount == 0. 12531 */ 12532 if ((un->un_tgt_blocksize == un->un_sys_blocksize) || 12533 (bp->b_bcount == 0)) { 12534 goto exit; 12535 } 12536 12537 xp = SD_GET_XBUF(bp); 12538 ASSERT(xp != NULL); 12539 12540 /* Retrieve the pointer to the layer-private data area from the xbuf. */ 12541 bsp = xp->xb_private; 12542 12543 is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE; 12544 has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE; 12545 12546 if (is_write) { 12547 /* 12548 * For a WRITE request we must free up the block range that 12549 * we have locked up. This holds regardless of whether this is 12550 * an aligned write request or a read-modify-write request. 12551 */ 12552 sd_range_unlock(un, bsp->mbs_wmp); 12553 bsp->mbs_wmp = NULL; 12554 } 12555 12556 if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) { 12557 /* 12558 * An aligned read or write command will have no shadow buf; 12559 * there is not much else to do with it. 12560 */ 12561 goto done; 12562 } 12563 12564 orig_bp = bsp->mbs_orig_bp; 12565 ASSERT(orig_bp != NULL); 12566 orig_xp = SD_GET_XBUF(orig_bp); 12567 ASSERT(orig_xp != NULL); 12568 ASSERT(!mutex_owned(SD_MUTEX(un))); 12569 12570 if (!is_write && has_wmap) { 12571 /* 12572 * A READ with a wmap means this is the READ phase of a 12573 * read-modify-write. If an error occurred on the READ then 12574 * we do not proceed with the WRITE phase or copy any data. 12575 * Just release the write maps and return with an error. 12576 */ 12577 if ((bp->b_resid != 0) || (bp->b_error != 0)) { 12578 orig_bp->b_resid = orig_bp->b_bcount; 12579 bioerror(orig_bp, bp->b_error); 12580 sd_range_unlock(un, bsp->mbs_wmp); 12581 goto freebuf_done; 12582 } 12583 } 12584 12585 /* 12586 * Here is where we set up to copy the data from the shadow buf 12587 * into the space associated with the original buf. 12588 * 12589 * To deal with the conversion between block sizes, these 12590 * computations treat the data as an array of bytes, with the 12591 * first byte (byte 0) corresponding to the first byte in the 12592 * first block on the disk. 12593 */ 12594 12595 /* 12596 * shadow_start and shadow_len indicate the location and size of 12597 * the data returned with the shadow IO request. 12598 */ 12599 shadow_start = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno); 12600 shadow_end = shadow_start + bp->b_bcount - bp->b_resid; 12601 12602 /* 12603 * copy_offset gives the offset (in bytes) from the start of the first 12604 * block of the READ request to the beginning of the data. We retrieve 12605 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved 12606 * there by sd_mapblockize_iostart(). copy_length gives the amount of 12607 * data to be copied (in bytes). 12608 */ 12609 copy_offset = bsp->mbs_copy_offset; 12610 ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize)); 12611 copy_length = orig_bp->b_bcount; 12612 request_end = shadow_start + copy_offset + orig_bp->b_bcount; 12613 12614 /* 12615 * Set up the resid and error fields of orig_bp as appropriate. 12616 */ 12617 if (shadow_end >= request_end) { 12618 /* We got all the requested data; set resid to zero */ 12619 orig_bp->b_resid = 0; 12620 } else { 12621 /* 12622 * We failed to get enough data to fully satisfy the original 12623 * request. Just copy back whatever data we got and set 12624 * up the residual and error code as required. 12625 * 12626 * 'shortfall' is the amount by which the data received with the 12627 * shadow buf has "fallen short" of the requested amount. 12628 */ 12629 shortfall = (size_t)(request_end - shadow_end); 12630 12631 if (shortfall > orig_bp->b_bcount) { 12632 /* 12633 * We did not get enough data to even partially 12634 * fulfill the original request. The residual is 12635 * equal to the amount requested. 12636 */ 12637 orig_bp->b_resid = orig_bp->b_bcount; 12638 } else { 12639 /* 12640 * We did not get all the data that we requested 12641 * from the device, but we will try to return what 12642 * portion we did get. 12643 */ 12644 orig_bp->b_resid = shortfall; 12645 } 12646 ASSERT(copy_length >= orig_bp->b_resid); 12647 copy_length -= orig_bp->b_resid; 12648 } 12649 12650 /* Propagate the error code from the shadow buf to the original buf */ 12651 bioerror(orig_bp, bp->b_error); 12652 12653 if (is_write) { 12654 goto freebuf_done; /* No data copying for a WRITE */ 12655 } 12656 12657 if (has_wmap) { 12658 /* 12659 * This is a READ command from the READ phase of a 12660 * read-modify-write request. We have to copy the data given 12661 * by the user OVER the data returned by the READ command, 12662 * then convert the command from a READ to a WRITE and send 12663 * it back to the target. 12664 */ 12665 bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset, 12666 copy_length); 12667 12668 bp->b_flags &= ~((int)B_READ); /* Convert to a WRITE */ 12669 12670 /* 12671 * Dispatch the WRITE command to the taskq thread, which 12672 * will in turn send the command to the target. When the 12673 * WRITE command completes, we (sd_mapblocksize_iodone()) 12674 * will get called again as part of the iodone chain 12675 * processing for it. Note that we will still be dealing 12676 * with the shadow buf at that point. 12677 */ 12678 if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp, 12679 KM_NOSLEEP) != 0) { 12680 /* 12681 * Dispatch was successful so we are done. Return 12682 * without going any higher up the iodone chain. Do 12683 * not free up any layer-private data until after the 12684 * WRITE completes. 12685 */ 12686 return; 12687 } 12688 12689 /* 12690 * Dispatch of the WRITE command failed; set up the error 12691 * condition and send this IO back up the iodone chain. 12692 */ 12693 bioerror(orig_bp, EIO); 12694 orig_bp->b_resid = orig_bp->b_bcount; 12695 12696 } else { 12697 /* 12698 * This is a regular READ request (ie, not a RMW). Copy the 12699 * data from the shadow buf into the original buf. The 12700 * copy_offset compensates for any "misalignment" between the 12701 * shadow buf (with its un->un_tgt_blocksize blocks) and the 12702 * original buf (with its un->un_sys_blocksize blocks). 12703 */ 12704 bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr, 12705 copy_length); 12706 } 12707 12708 freebuf_done: 12709 12710 /* 12711 * At this point we still have both the shadow buf AND the original 12712 * buf to deal with, as well as the layer-private data area in each. 12713 * Local variables are as follows: 12714 * 12715 * bp -- points to shadow buf 12716 * xp -- points to xbuf of shadow buf 12717 * bsp -- points to layer-private data area of shadow buf 12718 * orig_bp -- points to original buf 12719 * 12720 * First free the shadow buf and its associated xbuf, then free the 12721 * layer-private data area from the shadow buf. There is no need to 12722 * restore xb_private in the shadow xbuf. 12723 */ 12724 sd_shadow_buf_free(bp); 12725 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 12726 12727 /* 12728 * Now update the local variables to point to the original buf, xbuf, 12729 * and layer-private area. 12730 */ 12731 bp = orig_bp; 12732 xp = SD_GET_XBUF(bp); 12733 ASSERT(xp != NULL); 12734 ASSERT(xp == orig_xp); 12735 bsp = xp->xb_private; 12736 ASSERT(bsp != NULL); 12737 12738 done: 12739 /* 12740 * Restore xb_private to whatever it was set to by the next higher 12741 * layer in the chain, then free the layer-private data area. 12742 */ 12743 xp->xb_private = bsp->mbs_oprivate; 12744 kmem_free(bsp, sizeof (struct sd_mapblocksize_info)); 12745 12746 exit: 12747 SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp), 12748 "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp); 12749 12750 SD_NEXT_IODONE(index, un, bp); 12751 } 12752 12753 12754 /* 12755 * Function: sd_checksum_iostart 12756 * 12757 * Description: A stub function for a layer that's currently not used. 12758 * For now just a placeholder. 12759 * 12760 * Context: Kernel thread context 12761 */ 12762 12763 static void 12764 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp) 12765 { 12766 ASSERT(un != NULL); 12767 ASSERT(bp != NULL); 12768 ASSERT(!mutex_owned(SD_MUTEX(un))); 12769 SD_NEXT_IOSTART(index, un, bp); 12770 } 12771 12772 12773 /* 12774 * Function: sd_checksum_iodone 12775 * 12776 * Description: A stub function for a layer that's currently not used. 12777 * For now just a placeholder. 12778 * 12779 * Context: May be called under interrupt context 12780 */ 12781 12782 static void 12783 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp) 12784 { 12785 ASSERT(un != NULL); 12786 ASSERT(bp != NULL); 12787 ASSERT(!mutex_owned(SD_MUTEX(un))); 12788 SD_NEXT_IODONE(index, un, bp); 12789 } 12790 12791 12792 /* 12793 * Function: sd_checksum_uscsi_iostart 12794 * 12795 * Description: A stub function for a layer that's currently not used. 12796 * For now just a placeholder. 12797 * 12798 * Context: Kernel thread context 12799 */ 12800 12801 static void 12802 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp) 12803 { 12804 ASSERT(un != NULL); 12805 ASSERT(bp != NULL); 12806 ASSERT(!mutex_owned(SD_MUTEX(un))); 12807 SD_NEXT_IOSTART(index, un, bp); 12808 } 12809 12810 12811 /* 12812 * Function: sd_checksum_uscsi_iodone 12813 * 12814 * Description: A stub function for a layer that's currently not used. 12815 * For now just a placeholder. 12816 * 12817 * Context: May be called under interrupt context 12818 */ 12819 12820 static void 12821 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp) 12822 { 12823 ASSERT(un != NULL); 12824 ASSERT(bp != NULL); 12825 ASSERT(!mutex_owned(SD_MUTEX(un))); 12826 SD_NEXT_IODONE(index, un, bp); 12827 } 12828 12829 12830 /* 12831 * Function: sd_pm_iostart 12832 * 12833 * Description: iostart-side routine for Power mangement. 12834 * 12835 * Context: Kernel thread context 12836 */ 12837 12838 static void 12839 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp) 12840 { 12841 ASSERT(un != NULL); 12842 ASSERT(bp != NULL); 12843 ASSERT(!mutex_owned(SD_MUTEX(un))); 12844 ASSERT(!mutex_owned(&un->un_pm_mutex)); 12845 12846 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n"); 12847 12848 if (sd_pm_entry(un) != DDI_SUCCESS) { 12849 /* 12850 * Set up to return the failed buf back up the 'iodone' 12851 * side of the calling chain. 12852 */ 12853 bioerror(bp, EIO); 12854 bp->b_resid = bp->b_bcount; 12855 12856 SD_BEGIN_IODONE(index, un, bp); 12857 12858 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 12859 return; 12860 } 12861 12862 SD_NEXT_IOSTART(index, un, bp); 12863 12864 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n"); 12865 } 12866 12867 12868 /* 12869 * Function: sd_pm_iodone 12870 * 12871 * Description: iodone-side routine for power mangement. 12872 * 12873 * Context: may be called from interrupt context 12874 */ 12875 12876 static void 12877 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp) 12878 { 12879 ASSERT(un != NULL); 12880 ASSERT(bp != NULL); 12881 ASSERT(!mutex_owned(&un->un_pm_mutex)); 12882 12883 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n"); 12884 12885 /* 12886 * After attach the following flag is only read, so don't 12887 * take the penalty of acquiring a mutex for it. 12888 */ 12889 if (un->un_f_pm_is_enabled == TRUE) { 12890 sd_pm_exit(un); 12891 } 12892 12893 SD_NEXT_IODONE(index, un, bp); 12894 12895 SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n"); 12896 } 12897 12898 12899 /* 12900 * Function: sd_core_iostart 12901 * 12902 * Description: Primary driver function for enqueuing buf(9S) structs from 12903 * the system and initiating IO to the target device 12904 * 12905 * Context: Kernel thread context. Can sleep. 12906 * 12907 * Assumptions: - The given xp->xb_blkno is absolute 12908 * (ie, relative to the start of the device). 12909 * - The IO is to be done using the native blocksize of 12910 * the device, as specified in un->un_tgt_blocksize. 12911 */ 12912 /* ARGSUSED */ 12913 static void 12914 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp) 12915 { 12916 struct sd_xbuf *xp; 12917 12918 ASSERT(un != NULL); 12919 ASSERT(bp != NULL); 12920 ASSERT(!mutex_owned(SD_MUTEX(un))); 12921 ASSERT(bp->b_resid == 0); 12922 12923 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp); 12924 12925 xp = SD_GET_XBUF(bp); 12926 ASSERT(xp != NULL); 12927 12928 mutex_enter(SD_MUTEX(un)); 12929 12930 /* 12931 * If we are currently in the failfast state, fail any new IO 12932 * that has B_FAILFAST set, then return. 12933 */ 12934 if ((bp->b_flags & B_FAILFAST) && 12935 (un->un_failfast_state == SD_FAILFAST_ACTIVE)) { 12936 mutex_exit(SD_MUTEX(un)); 12937 bioerror(bp, EIO); 12938 bp->b_resid = bp->b_bcount; 12939 SD_BEGIN_IODONE(index, un, bp); 12940 return; 12941 } 12942 12943 if (SD_IS_DIRECT_PRIORITY(xp)) { 12944 /* 12945 * Priority command -- transport it immediately. 12946 * 12947 * Note: We may want to assert that USCSI_DIAGNOSE is set, 12948 * because all direct priority commands should be associated 12949 * with error recovery actions which we don't want to retry. 12950 */ 12951 sd_start_cmds(un, bp); 12952 } else { 12953 /* 12954 * Normal command -- add it to the wait queue, then start 12955 * transporting commands from the wait queue. 12956 */ 12957 sd_add_buf_to_waitq(un, bp); 12958 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 12959 sd_start_cmds(un, NULL); 12960 } 12961 12962 mutex_exit(SD_MUTEX(un)); 12963 12964 SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp); 12965 } 12966 12967 12968 /* 12969 * Function: sd_init_cdb_limits 12970 * 12971 * Description: This is to handle scsi_pkt initialization differences 12972 * between the driver platforms. 12973 * 12974 * Legacy behaviors: 12975 * 12976 * If the block number or the sector count exceeds the 12977 * capabilities of a Group 0 command, shift over to a 12978 * Group 1 command. We don't blindly use Group 1 12979 * commands because a) some drives (CDC Wren IVs) get a 12980 * bit confused, and b) there is probably a fair amount 12981 * of speed difference for a target to receive and decode 12982 * a 10 byte command instead of a 6 byte command. 12983 * 12984 * The xfer time difference of 6 vs 10 byte CDBs is 12985 * still significant so this code is still worthwhile. 12986 * 10 byte CDBs are very inefficient with the fas HBA driver 12987 * and older disks. Each CDB byte took 1 usec with some 12988 * popular disks. 12989 * 12990 * Context: Must be called at attach time 12991 */ 12992 12993 static void 12994 sd_init_cdb_limits(struct sd_lun *un) 12995 { 12996 /* 12997 * Use CDB_GROUP1 commands for most devices except for 12998 * parallel SCSI fixed drives in which case we get better 12999 * performance using CDB_GROUP0 commands (where applicable). 13000 */ 13001 un->un_mincdb = SD_CDB_GROUP1; 13002 #if !defined(__fibre) 13003 if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) && 13004 !un->un_f_has_removable_media) { 13005 un->un_mincdb = SD_CDB_GROUP0; 13006 } 13007 #endif 13008 13009 /* 13010 * Use CDB_GROUP5 commands for removable devices. Use CDB_GROUP4 13011 * commands for fixed disks unless we are building for a 32 bit 13012 * kernel. 13013 */ 13014 #ifdef _LP64 13015 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13016 SD_CDB_GROUP4; 13017 #else 13018 un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 : 13019 SD_CDB_GROUP1; 13020 #endif 13021 13022 /* 13023 * x86 systems require the PKT_DMA_PARTIAL flag 13024 */ 13025 #if defined(__x86) 13026 un->un_pkt_flags = PKT_DMA_PARTIAL; 13027 #else 13028 un->un_pkt_flags = 0; 13029 #endif 13030 13031 un->un_status_len = (int)((un->un_f_arq_enabled == TRUE) 13032 ? sizeof (struct scsi_arq_status) : 1); 13033 un->un_cmd_timeout = (ushort_t)sd_io_time; 13034 un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout; 13035 } 13036 13037 13038 /* 13039 * Function: sd_initpkt_for_buf 13040 * 13041 * Description: Allocate and initialize for transport a scsi_pkt struct, 13042 * based upon the info specified in the given buf struct. 13043 * 13044 * Assumes the xb_blkno in the request is absolute (ie, 13045 * relative to the start of the device (NOT partition!). 13046 * Also assumes that the request is using the native block 13047 * size of the device (as returned by the READ CAPACITY 13048 * command). 13049 * 13050 * Return Code: SD_PKT_ALLOC_SUCCESS 13051 * SD_PKT_ALLOC_FAILURE 13052 * SD_PKT_ALLOC_FAILURE_NO_DMA 13053 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13054 * 13055 * Context: Kernel thread and may be called from software interrupt context 13056 * as part of a sdrunout callback. This function may not block or 13057 * call routines that block 13058 */ 13059 13060 static int 13061 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp) 13062 { 13063 struct sd_xbuf *xp; 13064 struct scsi_pkt *pktp = NULL; 13065 struct sd_lun *un; 13066 size_t blockcount; 13067 daddr_t startblock; 13068 int rval; 13069 int cmd_flags; 13070 13071 ASSERT(bp != NULL); 13072 ASSERT(pktpp != NULL); 13073 xp = SD_GET_XBUF(bp); 13074 ASSERT(xp != NULL); 13075 un = SD_GET_UN(bp); 13076 ASSERT(un != NULL); 13077 ASSERT(mutex_owned(SD_MUTEX(un))); 13078 ASSERT(bp->b_resid == 0); 13079 13080 SD_TRACE(SD_LOG_IO_CORE, un, 13081 "sd_initpkt_for_buf: entry: buf:0x%p\n", bp); 13082 13083 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13084 if (xp->xb_pkt_flags & SD_XB_DMA_FREED) { 13085 /* 13086 * Already have a scsi_pkt -- just need DMA resources. 13087 * We must recompute the CDB in case the mapping returns 13088 * a nonzero pkt_resid. 13089 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer 13090 * that is being retried, the unmap/remap of the DMA resouces 13091 * will result in the entire transfer starting over again 13092 * from the very first block. 13093 */ 13094 ASSERT(xp->xb_pktp != NULL); 13095 pktp = xp->xb_pktp; 13096 } else { 13097 pktp = NULL; 13098 } 13099 #endif /* __i386 || __amd64 */ 13100 13101 startblock = xp->xb_blkno; /* Absolute block num. */ 13102 blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount); 13103 13104 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13105 13106 cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK); 13107 13108 #else 13109 13110 cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags; 13111 13112 #endif 13113 13114 /* 13115 * sd_setup_rw_pkt will determine the appropriate CDB group to use, 13116 * call scsi_init_pkt, and build the CDB. 13117 */ 13118 rval = sd_setup_rw_pkt(un, &pktp, bp, 13119 cmd_flags, sdrunout, (caddr_t)un, 13120 startblock, blockcount); 13121 13122 if (rval == 0) { 13123 /* 13124 * Success. 13125 * 13126 * If partial DMA is being used and required for this transfer. 13127 * set it up here. 13128 */ 13129 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 && 13130 (pktp->pkt_resid != 0)) { 13131 13132 /* 13133 * Save the CDB length and pkt_resid for the 13134 * next xfer 13135 */ 13136 xp->xb_dma_resid = pktp->pkt_resid; 13137 13138 /* rezero resid */ 13139 pktp->pkt_resid = 0; 13140 13141 } else { 13142 xp->xb_dma_resid = 0; 13143 } 13144 13145 pktp->pkt_flags = un->un_tagflags; 13146 pktp->pkt_time = un->un_cmd_timeout; 13147 pktp->pkt_comp = sdintr; 13148 13149 pktp->pkt_private = bp; 13150 *pktpp = pktp; 13151 13152 SD_TRACE(SD_LOG_IO_CORE, un, 13153 "sd_initpkt_for_buf: exit: buf:0x%p\n", bp); 13154 13155 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 13156 xp->xb_pkt_flags &= ~SD_XB_DMA_FREED; 13157 #endif 13158 13159 return (SD_PKT_ALLOC_SUCCESS); 13160 13161 } 13162 13163 /* 13164 * SD_PKT_ALLOC_FAILURE is the only expected failure code 13165 * from sd_setup_rw_pkt. 13166 */ 13167 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 13168 13169 if (rval == SD_PKT_ALLOC_FAILURE) { 13170 *pktpp = NULL; 13171 /* 13172 * Set the driver state to RWAIT to indicate the driver 13173 * is waiting on resource allocations. The driver will not 13174 * suspend, pm_suspend, or detatch while the state is RWAIT. 13175 */ 13176 New_state(un, SD_STATE_RWAIT); 13177 13178 SD_ERROR(SD_LOG_IO_CORE, un, 13179 "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp); 13180 13181 if ((bp->b_flags & B_ERROR) != 0) { 13182 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13183 } 13184 return (SD_PKT_ALLOC_FAILURE); 13185 } else { 13186 /* 13187 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13188 * 13189 * This should never happen. Maybe someone messed with the 13190 * kernel's minphys? 13191 */ 13192 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13193 "Request rejected: too large for CDB: " 13194 "lba:0x%08lx len:0x%08lx\n", startblock, blockcount); 13195 SD_ERROR(SD_LOG_IO_CORE, un, 13196 "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp); 13197 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13198 13199 } 13200 } 13201 13202 13203 /* 13204 * Function: sd_destroypkt_for_buf 13205 * 13206 * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing). 13207 * 13208 * Context: Kernel thread or interrupt context 13209 */ 13210 13211 static void 13212 sd_destroypkt_for_buf(struct buf *bp) 13213 { 13214 ASSERT(bp != NULL); 13215 ASSERT(SD_GET_UN(bp) != NULL); 13216 13217 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13218 "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp); 13219 13220 ASSERT(SD_GET_PKTP(bp) != NULL); 13221 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13222 13223 SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp), 13224 "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp); 13225 } 13226 13227 /* 13228 * Function: sd_setup_rw_pkt 13229 * 13230 * Description: Determines appropriate CDB group for the requested LBA 13231 * and transfer length, calls scsi_init_pkt, and builds 13232 * the CDB. Do not use for partial DMA transfers except 13233 * for the initial transfer since the CDB size must 13234 * remain constant. 13235 * 13236 * Context: Kernel thread and may be called from software interrupt 13237 * context as part of a sdrunout callback. This function may not 13238 * block or call routines that block 13239 */ 13240 13241 13242 int 13243 sd_setup_rw_pkt(struct sd_lun *un, 13244 struct scsi_pkt **pktpp, struct buf *bp, int flags, 13245 int (*callback)(caddr_t), caddr_t callback_arg, 13246 diskaddr_t lba, uint32_t blockcount) 13247 { 13248 struct scsi_pkt *return_pktp; 13249 union scsi_cdb *cdbp; 13250 struct sd_cdbinfo *cp = NULL; 13251 int i; 13252 13253 /* 13254 * See which size CDB to use, based upon the request. 13255 */ 13256 for (i = un->un_mincdb; i <= un->un_maxcdb; i++) { 13257 13258 /* 13259 * Check lba and block count against sd_cdbtab limits. 13260 * In the partial DMA case, we have to use the same size 13261 * CDB for all the transfers. Check lba + blockcount 13262 * against the max LBA so we know that segment of the 13263 * transfer can use the CDB we select. 13264 */ 13265 if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) && 13266 (blockcount <= sd_cdbtab[i].sc_maxlen)) { 13267 13268 /* 13269 * The command will fit into the CDB type 13270 * specified by sd_cdbtab[i]. 13271 */ 13272 cp = sd_cdbtab + i; 13273 13274 /* 13275 * Call scsi_init_pkt so we can fill in the 13276 * CDB. 13277 */ 13278 return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp, 13279 bp, cp->sc_grpcode, un->un_status_len, 0, 13280 flags, callback, callback_arg); 13281 13282 if (return_pktp != NULL) { 13283 13284 /* 13285 * Return new value of pkt 13286 */ 13287 *pktpp = return_pktp; 13288 13289 /* 13290 * To be safe, zero the CDB insuring there is 13291 * no leftover data from a previous command. 13292 */ 13293 bzero(return_pktp->pkt_cdbp, cp->sc_grpcode); 13294 13295 /* 13296 * Handle partial DMA mapping 13297 */ 13298 if (return_pktp->pkt_resid != 0) { 13299 13300 /* 13301 * Not going to xfer as many blocks as 13302 * originally expected 13303 */ 13304 blockcount -= 13305 SD_BYTES2TGTBLOCKS(un, 13306 return_pktp->pkt_resid); 13307 } 13308 13309 cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp; 13310 13311 /* 13312 * Set command byte based on the CDB 13313 * type we matched. 13314 */ 13315 cdbp->scc_cmd = cp->sc_grpmask | 13316 ((bp->b_flags & B_READ) ? 13317 SCMD_READ : SCMD_WRITE); 13318 13319 SD_FILL_SCSI1_LUN(un, return_pktp); 13320 13321 /* 13322 * Fill in LBA and length 13323 */ 13324 ASSERT((cp->sc_grpcode == CDB_GROUP1) || 13325 (cp->sc_grpcode == CDB_GROUP4) || 13326 (cp->sc_grpcode == CDB_GROUP0) || 13327 (cp->sc_grpcode == CDB_GROUP5)); 13328 13329 if (cp->sc_grpcode == CDB_GROUP1) { 13330 FORMG1ADDR(cdbp, lba); 13331 FORMG1COUNT(cdbp, blockcount); 13332 return (0); 13333 } else if (cp->sc_grpcode == CDB_GROUP4) { 13334 FORMG4LONGADDR(cdbp, lba); 13335 FORMG4COUNT(cdbp, blockcount); 13336 return (0); 13337 } else if (cp->sc_grpcode == CDB_GROUP0) { 13338 FORMG0ADDR(cdbp, lba); 13339 FORMG0COUNT(cdbp, blockcount); 13340 return (0); 13341 } else if (cp->sc_grpcode == CDB_GROUP5) { 13342 FORMG5ADDR(cdbp, lba); 13343 FORMG5COUNT(cdbp, blockcount); 13344 return (0); 13345 } 13346 13347 /* 13348 * It should be impossible to not match one 13349 * of the CDB types above, so we should never 13350 * reach this point. Set the CDB command byte 13351 * to test-unit-ready to avoid writing 13352 * to somewhere we don't intend. 13353 */ 13354 cdbp->scc_cmd = SCMD_TEST_UNIT_READY; 13355 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13356 } else { 13357 /* 13358 * Couldn't get scsi_pkt 13359 */ 13360 return (SD_PKT_ALLOC_FAILURE); 13361 } 13362 } 13363 } 13364 13365 /* 13366 * None of the available CDB types were suitable. This really 13367 * should never happen: on a 64 bit system we support 13368 * READ16/WRITE16 which will hold an entire 64 bit disk address 13369 * and on a 32 bit system we will refuse to bind to a device 13370 * larger than 2TB so addresses will never be larger than 32 bits. 13371 */ 13372 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13373 } 13374 13375 #if defined(__i386) || defined(__amd64) 13376 /* 13377 * Function: sd_setup_next_rw_pkt 13378 * 13379 * Description: Setup packet for partial DMA transfers, except for the 13380 * initial transfer. sd_setup_rw_pkt should be used for 13381 * the initial transfer. 13382 * 13383 * Context: Kernel thread and may be called from interrupt context. 13384 */ 13385 13386 int 13387 sd_setup_next_rw_pkt(struct sd_lun *un, 13388 struct scsi_pkt *pktp, struct buf *bp, 13389 diskaddr_t lba, uint32_t blockcount) 13390 { 13391 uchar_t com; 13392 union scsi_cdb *cdbp; 13393 uchar_t cdb_group_id; 13394 13395 ASSERT(pktp != NULL); 13396 ASSERT(pktp->pkt_cdbp != NULL); 13397 13398 cdbp = (union scsi_cdb *)pktp->pkt_cdbp; 13399 com = cdbp->scc_cmd; 13400 cdb_group_id = CDB_GROUPID(com); 13401 13402 ASSERT((cdb_group_id == CDB_GROUPID_0) || 13403 (cdb_group_id == CDB_GROUPID_1) || 13404 (cdb_group_id == CDB_GROUPID_4) || 13405 (cdb_group_id == CDB_GROUPID_5)); 13406 13407 /* 13408 * Move pkt to the next portion of the xfer. 13409 * func is NULL_FUNC so we do not have to release 13410 * the disk mutex here. 13411 */ 13412 if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0, 13413 NULL_FUNC, NULL) == pktp) { 13414 /* Success. Handle partial DMA */ 13415 if (pktp->pkt_resid != 0) { 13416 blockcount -= 13417 SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid); 13418 } 13419 13420 cdbp->scc_cmd = com; 13421 SD_FILL_SCSI1_LUN(un, pktp); 13422 if (cdb_group_id == CDB_GROUPID_1) { 13423 FORMG1ADDR(cdbp, lba); 13424 FORMG1COUNT(cdbp, blockcount); 13425 return (0); 13426 } else if (cdb_group_id == CDB_GROUPID_4) { 13427 FORMG4LONGADDR(cdbp, lba); 13428 FORMG4COUNT(cdbp, blockcount); 13429 return (0); 13430 } else if (cdb_group_id == CDB_GROUPID_0) { 13431 FORMG0ADDR(cdbp, lba); 13432 FORMG0COUNT(cdbp, blockcount); 13433 return (0); 13434 } else if (cdb_group_id == CDB_GROUPID_5) { 13435 FORMG5ADDR(cdbp, lba); 13436 FORMG5COUNT(cdbp, blockcount); 13437 return (0); 13438 } 13439 13440 /* Unreachable */ 13441 return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL); 13442 } 13443 13444 /* 13445 * Error setting up next portion of cmd transfer. 13446 * Something is definitely very wrong and this 13447 * should not happen. 13448 */ 13449 return (SD_PKT_ALLOC_FAILURE); 13450 } 13451 #endif /* defined(__i386) || defined(__amd64) */ 13452 13453 /* 13454 * Function: sd_initpkt_for_uscsi 13455 * 13456 * Description: Allocate and initialize for transport a scsi_pkt struct, 13457 * based upon the info specified in the given uscsi_cmd struct. 13458 * 13459 * Return Code: SD_PKT_ALLOC_SUCCESS 13460 * SD_PKT_ALLOC_FAILURE 13461 * SD_PKT_ALLOC_FAILURE_NO_DMA 13462 * SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL 13463 * 13464 * Context: Kernel thread and may be called from software interrupt context 13465 * as part of a sdrunout callback. This function may not block or 13466 * call routines that block 13467 */ 13468 13469 static int 13470 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp) 13471 { 13472 struct uscsi_cmd *uscmd; 13473 struct sd_xbuf *xp; 13474 struct scsi_pkt *pktp; 13475 struct sd_lun *un; 13476 uint32_t flags = 0; 13477 13478 ASSERT(bp != NULL); 13479 ASSERT(pktpp != NULL); 13480 xp = SD_GET_XBUF(bp); 13481 ASSERT(xp != NULL); 13482 un = SD_GET_UN(bp); 13483 ASSERT(un != NULL); 13484 ASSERT(mutex_owned(SD_MUTEX(un))); 13485 13486 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 13487 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 13488 ASSERT(uscmd != NULL); 13489 13490 SD_TRACE(SD_LOG_IO_CORE, un, 13491 "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp); 13492 13493 /* 13494 * Allocate the scsi_pkt for the command. 13495 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path 13496 * during scsi_init_pkt time and will continue to use the 13497 * same path as long as the same scsi_pkt is used without 13498 * intervening scsi_dma_free(). Since uscsi command does 13499 * not call scsi_dmafree() before retry failed command, it 13500 * is necessary to make sure PKT_DMA_PARTIAL flag is NOT 13501 * set such that scsi_vhci can use other available path for 13502 * retry. Besides, ucsci command does not allow DMA breakup, 13503 * so there is no need to set PKT_DMA_PARTIAL flag. 13504 */ 13505 pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, 13506 ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen, 13507 sizeof (struct scsi_arq_status), 0, 13508 (un->un_pkt_flags & ~PKT_DMA_PARTIAL), 13509 sdrunout, (caddr_t)un); 13510 13511 if (pktp == NULL) { 13512 *pktpp = NULL; 13513 /* 13514 * Set the driver state to RWAIT to indicate the driver 13515 * is waiting on resource allocations. The driver will not 13516 * suspend, pm_suspend, or detatch while the state is RWAIT. 13517 */ 13518 New_state(un, SD_STATE_RWAIT); 13519 13520 SD_ERROR(SD_LOG_IO_CORE, un, 13521 "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp); 13522 13523 if ((bp->b_flags & B_ERROR) != 0) { 13524 return (SD_PKT_ALLOC_FAILURE_NO_DMA); 13525 } 13526 return (SD_PKT_ALLOC_FAILURE); 13527 } 13528 13529 /* 13530 * We do not do DMA breakup for USCSI commands, so return failure 13531 * here if all the needed DMA resources were not allocated. 13532 */ 13533 if ((un->un_pkt_flags & PKT_DMA_PARTIAL) && 13534 (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) { 13535 scsi_destroy_pkt(pktp); 13536 SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: " 13537 "No partial DMA for USCSI. exit: buf:0x%p\n", bp); 13538 return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL); 13539 } 13540 13541 /* Init the cdb from the given uscsi struct */ 13542 (void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp, 13543 uscmd->uscsi_cdb[0], 0, 0, 0); 13544 13545 SD_FILL_SCSI1_LUN(un, pktp); 13546 13547 /* 13548 * Set up the optional USCSI flags. See the uscsi (7I) man page 13549 * for listing of the supported flags. 13550 */ 13551 13552 if (uscmd->uscsi_flags & USCSI_SILENT) { 13553 flags |= FLAG_SILENT; 13554 } 13555 13556 if (uscmd->uscsi_flags & USCSI_DIAGNOSE) { 13557 flags |= FLAG_DIAGNOSE; 13558 } 13559 13560 if (uscmd->uscsi_flags & USCSI_ISOLATE) { 13561 flags |= FLAG_ISOLATE; 13562 } 13563 13564 if (un->un_f_is_fibre == FALSE) { 13565 if (uscmd->uscsi_flags & USCSI_RENEGOT) { 13566 flags |= FLAG_RENEGOTIATE_WIDE_SYNC; 13567 } 13568 } 13569 13570 /* 13571 * Set the pkt flags here so we save time later. 13572 * Note: These flags are NOT in the uscsi man page!!! 13573 */ 13574 if (uscmd->uscsi_flags & USCSI_HEAD) { 13575 flags |= FLAG_HEAD; 13576 } 13577 13578 if (uscmd->uscsi_flags & USCSI_NOINTR) { 13579 flags |= FLAG_NOINTR; 13580 } 13581 13582 /* 13583 * For tagged queueing, things get a bit complicated. 13584 * Check first for head of queue and last for ordered queue. 13585 * If neither head nor order, use the default driver tag flags. 13586 */ 13587 if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) { 13588 if (uscmd->uscsi_flags & USCSI_HTAG) { 13589 flags |= FLAG_HTAG; 13590 } else if (uscmd->uscsi_flags & USCSI_OTAG) { 13591 flags |= FLAG_OTAG; 13592 } else { 13593 flags |= un->un_tagflags & FLAG_TAGMASK; 13594 } 13595 } 13596 13597 if (uscmd->uscsi_flags & USCSI_NODISCON) { 13598 flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON; 13599 } 13600 13601 pktp->pkt_flags = flags; 13602 13603 /* Copy the caller's CDB into the pkt... */ 13604 bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen); 13605 13606 if (uscmd->uscsi_timeout == 0) { 13607 pktp->pkt_time = un->un_uscsi_timeout; 13608 } else { 13609 pktp->pkt_time = uscmd->uscsi_timeout; 13610 } 13611 13612 /* need it later to identify USCSI request in sdintr */ 13613 xp->xb_pkt_flags |= SD_XB_USCSICMD; 13614 13615 xp->xb_sense_resid = uscmd->uscsi_rqresid; 13616 13617 pktp->pkt_private = bp; 13618 pktp->pkt_comp = sdintr; 13619 *pktpp = pktp; 13620 13621 SD_TRACE(SD_LOG_IO_CORE, un, 13622 "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp); 13623 13624 return (SD_PKT_ALLOC_SUCCESS); 13625 } 13626 13627 13628 /* 13629 * Function: sd_destroypkt_for_uscsi 13630 * 13631 * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi 13632 * IOs.. Also saves relevant info into the associated uscsi_cmd 13633 * struct. 13634 * 13635 * Context: May be called under interrupt context 13636 */ 13637 13638 static void 13639 sd_destroypkt_for_uscsi(struct buf *bp) 13640 { 13641 struct uscsi_cmd *uscmd; 13642 struct sd_xbuf *xp; 13643 struct scsi_pkt *pktp; 13644 struct sd_lun *un; 13645 13646 ASSERT(bp != NULL); 13647 xp = SD_GET_XBUF(bp); 13648 ASSERT(xp != NULL); 13649 un = SD_GET_UN(bp); 13650 ASSERT(un != NULL); 13651 ASSERT(!mutex_owned(SD_MUTEX(un))); 13652 pktp = SD_GET_PKTP(bp); 13653 ASSERT(pktp != NULL); 13654 13655 SD_TRACE(SD_LOG_IO_CORE, un, 13656 "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp); 13657 13658 /* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */ 13659 uscmd = (struct uscsi_cmd *)xp->xb_pktinfo; 13660 ASSERT(uscmd != NULL); 13661 13662 /* Save the status and the residual into the uscsi_cmd struct */ 13663 uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK); 13664 uscmd->uscsi_resid = bp->b_resid; 13665 13666 /* 13667 * If enabled, copy any saved sense data into the area specified 13668 * by the uscsi command. 13669 */ 13670 if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) && 13671 (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) { 13672 /* 13673 * Note: uscmd->uscsi_rqbuf should always point to a buffer 13674 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd()) 13675 */ 13676 uscmd->uscsi_rqstatus = xp->xb_sense_status; 13677 uscmd->uscsi_rqresid = xp->xb_sense_resid; 13678 bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH); 13679 } 13680 13681 /* We are done with the scsi_pkt; free it now */ 13682 ASSERT(SD_GET_PKTP(bp) != NULL); 13683 scsi_destroy_pkt(SD_GET_PKTP(bp)); 13684 13685 SD_TRACE(SD_LOG_IO_CORE, un, 13686 "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp); 13687 } 13688 13689 13690 /* 13691 * Function: sd_bioclone_alloc 13692 * 13693 * Description: Allocate a buf(9S) and init it as per the given buf 13694 * and the various arguments. The associated sd_xbuf 13695 * struct is (nearly) duplicated. The struct buf *bp 13696 * argument is saved in new_xp->xb_private. 13697 * 13698 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 13699 * datalen - size of data area for the shadow bp 13700 * blkno - starting LBA 13701 * func - function pointer for b_iodone in the shadow buf. (May 13702 * be NULL if none.) 13703 * 13704 * Return Code: Pointer to allocates buf(9S) struct 13705 * 13706 * Context: Can sleep. 13707 */ 13708 13709 static struct buf * 13710 sd_bioclone_alloc(struct buf *bp, size_t datalen, 13711 daddr_t blkno, int (*func)(struct buf *)) 13712 { 13713 struct sd_lun *un; 13714 struct sd_xbuf *xp; 13715 struct sd_xbuf *new_xp; 13716 struct buf *new_bp; 13717 13718 ASSERT(bp != NULL); 13719 xp = SD_GET_XBUF(bp); 13720 ASSERT(xp != NULL); 13721 un = SD_GET_UN(bp); 13722 ASSERT(un != NULL); 13723 ASSERT(!mutex_owned(SD_MUTEX(un))); 13724 13725 new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func, 13726 NULL, KM_SLEEP); 13727 13728 new_bp->b_lblkno = blkno; 13729 13730 /* 13731 * Allocate an xbuf for the shadow bp and copy the contents of the 13732 * original xbuf into it. 13733 */ 13734 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 13735 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 13736 13737 /* 13738 * The given bp is automatically saved in the xb_private member 13739 * of the new xbuf. Callers are allowed to depend on this. 13740 */ 13741 new_xp->xb_private = bp; 13742 13743 new_bp->b_private = new_xp; 13744 13745 return (new_bp); 13746 } 13747 13748 /* 13749 * Function: sd_shadow_buf_alloc 13750 * 13751 * Description: Allocate a buf(9S) and init it as per the given buf 13752 * and the various arguments. The associated sd_xbuf 13753 * struct is (nearly) duplicated. The struct buf *bp 13754 * argument is saved in new_xp->xb_private. 13755 * 13756 * Arguments: bp - ptr the the buf(9S) to be "shadowed" 13757 * datalen - size of data area for the shadow bp 13758 * bflags - B_READ or B_WRITE (pseudo flag) 13759 * blkno - starting LBA 13760 * func - function pointer for b_iodone in the shadow buf. (May 13761 * be NULL if none.) 13762 * 13763 * Return Code: Pointer to allocates buf(9S) struct 13764 * 13765 * Context: Can sleep. 13766 */ 13767 13768 static struct buf * 13769 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags, 13770 daddr_t blkno, int (*func)(struct buf *)) 13771 { 13772 struct sd_lun *un; 13773 struct sd_xbuf *xp; 13774 struct sd_xbuf *new_xp; 13775 struct buf *new_bp; 13776 13777 ASSERT(bp != NULL); 13778 xp = SD_GET_XBUF(bp); 13779 ASSERT(xp != NULL); 13780 un = SD_GET_UN(bp); 13781 ASSERT(un != NULL); 13782 ASSERT(!mutex_owned(SD_MUTEX(un))); 13783 13784 if (bp->b_flags & (B_PAGEIO | B_PHYS)) { 13785 bp_mapin(bp); 13786 } 13787 13788 bflags &= (B_READ | B_WRITE); 13789 #if defined(__i386) || defined(__amd64) 13790 new_bp = getrbuf(KM_SLEEP); 13791 new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP); 13792 new_bp->b_bcount = datalen; 13793 new_bp->b_flags = bp->b_flags | bflags; 13794 #else 13795 new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL, 13796 datalen, bflags, SLEEP_FUNC, NULL); 13797 #endif 13798 new_bp->av_forw = NULL; 13799 new_bp->av_back = NULL; 13800 new_bp->b_dev = bp->b_dev; 13801 new_bp->b_blkno = blkno; 13802 new_bp->b_iodone = func; 13803 new_bp->b_edev = bp->b_edev; 13804 new_bp->b_resid = 0; 13805 13806 /* We need to preserve the B_FAILFAST flag */ 13807 if (bp->b_flags & B_FAILFAST) { 13808 new_bp->b_flags |= B_FAILFAST; 13809 } 13810 13811 /* 13812 * Allocate an xbuf for the shadow bp and copy the contents of the 13813 * original xbuf into it. 13814 */ 13815 new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 13816 bcopy(xp, new_xp, sizeof (struct sd_xbuf)); 13817 13818 /* Need later to copy data between the shadow buf & original buf! */ 13819 new_xp->xb_pkt_flags |= PKT_CONSISTENT; 13820 13821 /* 13822 * The given bp is automatically saved in the xb_private member 13823 * of the new xbuf. Callers are allowed to depend on this. 13824 */ 13825 new_xp->xb_private = bp; 13826 13827 new_bp->b_private = new_xp; 13828 13829 return (new_bp); 13830 } 13831 13832 /* 13833 * Function: sd_bioclone_free 13834 * 13835 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations 13836 * in the larger than partition operation. 13837 * 13838 * Context: May be called under interrupt context 13839 */ 13840 13841 static void 13842 sd_bioclone_free(struct buf *bp) 13843 { 13844 struct sd_xbuf *xp; 13845 13846 ASSERT(bp != NULL); 13847 xp = SD_GET_XBUF(bp); 13848 ASSERT(xp != NULL); 13849 13850 /* 13851 * Call bp_mapout() before freeing the buf, in case a lower 13852 * layer or HBA had done a bp_mapin(). we must do this here 13853 * as we are the "originator" of the shadow buf. 13854 */ 13855 bp_mapout(bp); 13856 13857 /* 13858 * Null out b_iodone before freeing the bp, to ensure that the driver 13859 * never gets confused by a stale value in this field. (Just a little 13860 * extra defensiveness here.) 13861 */ 13862 bp->b_iodone = NULL; 13863 13864 freerbuf(bp); 13865 13866 kmem_free(xp, sizeof (struct sd_xbuf)); 13867 } 13868 13869 /* 13870 * Function: sd_shadow_buf_free 13871 * 13872 * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations. 13873 * 13874 * Context: May be called under interrupt context 13875 */ 13876 13877 static void 13878 sd_shadow_buf_free(struct buf *bp) 13879 { 13880 struct sd_xbuf *xp; 13881 13882 ASSERT(bp != NULL); 13883 xp = SD_GET_XBUF(bp); 13884 ASSERT(xp != NULL); 13885 13886 #if defined(__sparc) 13887 /* 13888 * Call bp_mapout() before freeing the buf, in case a lower 13889 * layer or HBA had done a bp_mapin(). we must do this here 13890 * as we are the "originator" of the shadow buf. 13891 */ 13892 bp_mapout(bp); 13893 #endif 13894 13895 /* 13896 * Null out b_iodone before freeing the bp, to ensure that the driver 13897 * never gets confused by a stale value in this field. (Just a little 13898 * extra defensiveness here.) 13899 */ 13900 bp->b_iodone = NULL; 13901 13902 #if defined(__i386) || defined(__amd64) 13903 kmem_free(bp->b_un.b_addr, bp->b_bcount); 13904 freerbuf(bp); 13905 #else 13906 scsi_free_consistent_buf(bp); 13907 #endif 13908 13909 kmem_free(xp, sizeof (struct sd_xbuf)); 13910 } 13911 13912 13913 /* 13914 * Function: sd_print_transport_rejected_message 13915 * 13916 * Description: This implements the ludicrously complex rules for printing 13917 * a "transport rejected" message. This is to address the 13918 * specific problem of having a flood of this error message 13919 * produced when a failover occurs. 13920 * 13921 * Context: Any. 13922 */ 13923 13924 static void 13925 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp, 13926 int code) 13927 { 13928 ASSERT(un != NULL); 13929 ASSERT(mutex_owned(SD_MUTEX(un))); 13930 ASSERT(xp != NULL); 13931 13932 /* 13933 * Print the "transport rejected" message under the following 13934 * conditions: 13935 * 13936 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set 13937 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR. 13938 * - If the error code IS a TRAN_FATAL_ERROR, then the message is 13939 * printed the FIRST time a TRAN_FATAL_ERROR is returned from 13940 * scsi_transport(9F) (which indicates that the target might have 13941 * gone off-line). This uses the un->un_tran_fatal_count 13942 * count, which is incremented whenever a TRAN_FATAL_ERROR is 13943 * received, and reset to zero whenver a TRAN_ACCEPT is returned 13944 * from scsi_transport(). 13945 * 13946 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of 13947 * the preceeding cases in order for the message to be printed. 13948 */ 13949 if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) { 13950 if ((sd_level_mask & SD_LOGMASK_DIAG) || 13951 (code != TRAN_FATAL_ERROR) || 13952 (un->un_tran_fatal_count == 1)) { 13953 switch (code) { 13954 case TRAN_BADPKT: 13955 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13956 "transport rejected bad packet\n"); 13957 break; 13958 case TRAN_FATAL_ERROR: 13959 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13960 "transport rejected fatal error\n"); 13961 break; 13962 default: 13963 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 13964 "transport rejected (%d)\n", code); 13965 break; 13966 } 13967 } 13968 } 13969 } 13970 13971 13972 /* 13973 * Function: sd_add_buf_to_waitq 13974 * 13975 * Description: Add the given buf(9S) struct to the wait queue for the 13976 * instance. If sorting is enabled, then the buf is added 13977 * to the queue via an elevator sort algorithm (a la 13978 * disksort(9F)). The SD_GET_BLKNO(bp) is used as the sort key. 13979 * If sorting is not enabled, then the buf is just added 13980 * to the end of the wait queue. 13981 * 13982 * Return Code: void 13983 * 13984 * Context: Does not sleep/block, therefore technically can be called 13985 * from any context. However if sorting is enabled then the 13986 * execution time is indeterminate, and may take long if 13987 * the wait queue grows large. 13988 */ 13989 13990 static void 13991 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp) 13992 { 13993 struct buf *ap; 13994 13995 ASSERT(bp != NULL); 13996 ASSERT(un != NULL); 13997 ASSERT(mutex_owned(SD_MUTEX(un))); 13998 13999 /* If the queue is empty, add the buf as the only entry & return. */ 14000 if (un->un_waitq_headp == NULL) { 14001 ASSERT(un->un_waitq_tailp == NULL); 14002 un->un_waitq_headp = un->un_waitq_tailp = bp; 14003 bp->av_forw = NULL; 14004 return; 14005 } 14006 14007 ASSERT(un->un_waitq_tailp != NULL); 14008 14009 /* 14010 * If sorting is disabled, just add the buf to the tail end of 14011 * the wait queue and return. 14012 */ 14013 if (un->un_f_disksort_disabled) { 14014 un->un_waitq_tailp->av_forw = bp; 14015 un->un_waitq_tailp = bp; 14016 bp->av_forw = NULL; 14017 return; 14018 } 14019 14020 /* 14021 * Sort thru the list of requests currently on the wait queue 14022 * and add the new buf request at the appropriate position. 14023 * 14024 * The un->un_waitq_headp is an activity chain pointer on which 14025 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The 14026 * first queue holds those requests which are positioned after 14027 * the current SD_GET_BLKNO() (in the first request); the second holds 14028 * requests which came in after their SD_GET_BLKNO() number was passed. 14029 * Thus we implement a one way scan, retracting after reaching 14030 * the end of the drive to the first request on the second 14031 * queue, at which time it becomes the first queue. 14032 * A one-way scan is natural because of the way UNIX read-ahead 14033 * blocks are allocated. 14034 * 14035 * If we lie after the first request, then we must locate the 14036 * second request list and add ourselves to it. 14037 */ 14038 ap = un->un_waitq_headp; 14039 if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) { 14040 while (ap->av_forw != NULL) { 14041 /* 14042 * Look for an "inversion" in the (normally 14043 * ascending) block numbers. This indicates 14044 * the start of the second request list. 14045 */ 14046 if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) { 14047 /* 14048 * Search the second request list for the 14049 * first request at a larger block number. 14050 * We go before that; however if there is 14051 * no such request, we go at the end. 14052 */ 14053 do { 14054 if (SD_GET_BLKNO(bp) < 14055 SD_GET_BLKNO(ap->av_forw)) { 14056 goto insert; 14057 } 14058 ap = ap->av_forw; 14059 } while (ap->av_forw != NULL); 14060 goto insert; /* after last */ 14061 } 14062 ap = ap->av_forw; 14063 } 14064 14065 /* 14066 * No inversions... we will go after the last, and 14067 * be the first request in the second request list. 14068 */ 14069 goto insert; 14070 } 14071 14072 /* 14073 * Request is at/after the current request... 14074 * sort in the first request list. 14075 */ 14076 while (ap->av_forw != NULL) { 14077 /* 14078 * We want to go after the current request (1) if 14079 * there is an inversion after it (i.e. it is the end 14080 * of the first request list), or (2) if the next 14081 * request is a larger block no. than our request. 14082 */ 14083 if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) || 14084 (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) { 14085 goto insert; 14086 } 14087 ap = ap->av_forw; 14088 } 14089 14090 /* 14091 * Neither a second list nor a larger request, therefore 14092 * we go at the end of the first list (which is the same 14093 * as the end of the whole schebang). 14094 */ 14095 insert: 14096 bp->av_forw = ap->av_forw; 14097 ap->av_forw = bp; 14098 14099 /* 14100 * If we inserted onto the tail end of the waitq, make sure the 14101 * tail pointer is updated. 14102 */ 14103 if (ap == un->un_waitq_tailp) { 14104 un->un_waitq_tailp = bp; 14105 } 14106 } 14107 14108 14109 /* 14110 * Function: sd_start_cmds 14111 * 14112 * Description: Remove and transport cmds from the driver queues. 14113 * 14114 * Arguments: un - pointer to the unit (soft state) struct for the target. 14115 * 14116 * immed_bp - ptr to a buf to be transported immediately. Only 14117 * the immed_bp is transported; bufs on the waitq are not 14118 * processed and the un_retry_bp is not checked. If immed_bp is 14119 * NULL, then normal queue processing is performed. 14120 * 14121 * Context: May be called from kernel thread context, interrupt context, 14122 * or runout callback context. This function may not block or 14123 * call routines that block. 14124 */ 14125 14126 static void 14127 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp) 14128 { 14129 struct sd_xbuf *xp; 14130 struct buf *bp; 14131 void (*statp)(kstat_io_t *); 14132 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14133 void (*saved_statp)(kstat_io_t *); 14134 #endif 14135 int rval; 14136 14137 ASSERT(un != NULL); 14138 ASSERT(mutex_owned(SD_MUTEX(un))); 14139 ASSERT(un->un_ncmds_in_transport >= 0); 14140 ASSERT(un->un_throttle >= 0); 14141 14142 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n"); 14143 14144 do { 14145 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14146 saved_statp = NULL; 14147 #endif 14148 14149 /* 14150 * If we are syncing or dumping, fail the command to 14151 * avoid recursively calling back into scsi_transport(). 14152 * The dump I/O itself uses a separate code path so this 14153 * only prevents non-dump I/O from being sent while dumping. 14154 * File system sync takes place before dumping begins. 14155 * During panic, filesystem I/O is allowed provided 14156 * un_in_callback is <= 1. This is to prevent recursion 14157 * such as sd_start_cmds -> scsi_transport -> sdintr -> 14158 * sd_start_cmds and so on. See panic.c for more information 14159 * about the states the system can be in during panic. 14160 */ 14161 if ((un->un_state == SD_STATE_DUMPING) || 14162 (ddi_in_panic() && (un->un_in_callback > 1))) { 14163 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14164 "sd_start_cmds: panicking\n"); 14165 goto exit; 14166 } 14167 14168 if ((bp = immed_bp) != NULL) { 14169 /* 14170 * We have a bp that must be transported immediately. 14171 * It's OK to transport the immed_bp here without doing 14172 * the throttle limit check because the immed_bp is 14173 * always used in a retry/recovery case. This means 14174 * that we know we are not at the throttle limit by 14175 * virtue of the fact that to get here we must have 14176 * already gotten a command back via sdintr(). This also 14177 * relies on (1) the command on un_retry_bp preventing 14178 * further commands from the waitq from being issued; 14179 * and (2) the code in sd_retry_command checking the 14180 * throttle limit before issuing a delayed or immediate 14181 * retry. This holds even if the throttle limit is 14182 * currently ratcheted down from its maximum value. 14183 */ 14184 statp = kstat_runq_enter; 14185 if (bp == un->un_retry_bp) { 14186 ASSERT((un->un_retry_statp == NULL) || 14187 (un->un_retry_statp == kstat_waitq_enter) || 14188 (un->un_retry_statp == 14189 kstat_runq_back_to_waitq)); 14190 /* 14191 * If the waitq kstat was incremented when 14192 * sd_set_retry_bp() queued this bp for a retry, 14193 * then we must set up statp so that the waitq 14194 * count will get decremented correctly below. 14195 * Also we must clear un->un_retry_statp to 14196 * ensure that we do not act on a stale value 14197 * in this field. 14198 */ 14199 if ((un->un_retry_statp == kstat_waitq_enter) || 14200 (un->un_retry_statp == 14201 kstat_runq_back_to_waitq)) { 14202 statp = kstat_waitq_to_runq; 14203 } 14204 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14205 saved_statp = un->un_retry_statp; 14206 #endif 14207 un->un_retry_statp = NULL; 14208 14209 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14210 "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p " 14211 "un_throttle:%d un_ncmds_in_transport:%d\n", 14212 un, un->un_retry_bp, un->un_throttle, 14213 un->un_ncmds_in_transport); 14214 } else { 14215 SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: " 14216 "processing priority bp:0x%p\n", bp); 14217 } 14218 14219 } else if ((bp = un->un_waitq_headp) != NULL) { 14220 /* 14221 * A command on the waitq is ready to go, but do not 14222 * send it if: 14223 * 14224 * (1) the throttle limit has been reached, or 14225 * (2) a retry is pending, or 14226 * (3) a START_STOP_UNIT callback pending, or 14227 * (4) a callback for a SD_PATH_DIRECT_PRIORITY 14228 * command is pending. 14229 * 14230 * For all of these conditions, IO processing will 14231 * restart after the condition is cleared. 14232 */ 14233 if (un->un_ncmds_in_transport >= un->un_throttle) { 14234 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14235 "sd_start_cmds: exiting, " 14236 "throttle limit reached!\n"); 14237 goto exit; 14238 } 14239 if (un->un_retry_bp != NULL) { 14240 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14241 "sd_start_cmds: exiting, retry pending!\n"); 14242 goto exit; 14243 } 14244 if (un->un_startstop_timeid != NULL) { 14245 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14246 "sd_start_cmds: exiting, " 14247 "START_STOP pending!\n"); 14248 goto exit; 14249 } 14250 if (un->un_direct_priority_timeid != NULL) { 14251 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14252 "sd_start_cmds: exiting, " 14253 "SD_PATH_DIRECT_PRIORITY cmd. pending!\n"); 14254 goto exit; 14255 } 14256 14257 /* Dequeue the command */ 14258 un->un_waitq_headp = bp->av_forw; 14259 if (un->un_waitq_headp == NULL) { 14260 un->un_waitq_tailp = NULL; 14261 } 14262 bp->av_forw = NULL; 14263 statp = kstat_waitq_to_runq; 14264 SD_TRACE(SD_LOG_IO_CORE, un, 14265 "sd_start_cmds: processing waitq bp:0x%p\n", bp); 14266 14267 } else { 14268 /* No work to do so bail out now */ 14269 SD_TRACE(SD_LOG_IO_CORE, un, 14270 "sd_start_cmds: no more work, exiting!\n"); 14271 goto exit; 14272 } 14273 14274 /* 14275 * Reset the state to normal. This is the mechanism by which 14276 * the state transitions from either SD_STATE_RWAIT or 14277 * SD_STATE_OFFLINE to SD_STATE_NORMAL. 14278 * If state is SD_STATE_PM_CHANGING then this command is 14279 * part of the device power control and the state must 14280 * not be put back to normal. Doing so would would 14281 * allow new commands to proceed when they shouldn't, 14282 * the device may be going off. 14283 */ 14284 if ((un->un_state != SD_STATE_SUSPENDED) && 14285 (un->un_state != SD_STATE_PM_CHANGING)) { 14286 New_state(un, SD_STATE_NORMAL); 14287 } 14288 14289 xp = SD_GET_XBUF(bp); 14290 ASSERT(xp != NULL); 14291 14292 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14293 /* 14294 * Allocate the scsi_pkt if we need one, or attach DMA 14295 * resources if we have a scsi_pkt that needs them. The 14296 * latter should only occur for commands that are being 14297 * retried. 14298 */ 14299 if ((xp->xb_pktp == NULL) || 14300 ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) { 14301 #else 14302 if (xp->xb_pktp == NULL) { 14303 #endif 14304 /* 14305 * There is no scsi_pkt allocated for this buf. Call 14306 * the initpkt function to allocate & init one. 14307 * 14308 * The scsi_init_pkt runout callback functionality is 14309 * implemented as follows: 14310 * 14311 * 1) The initpkt function always calls 14312 * scsi_init_pkt(9F) with sdrunout specified as the 14313 * callback routine. 14314 * 2) A successful packet allocation is initialized and 14315 * the I/O is transported. 14316 * 3) The I/O associated with an allocation resource 14317 * failure is left on its queue to be retried via 14318 * runout or the next I/O. 14319 * 4) The I/O associated with a DMA error is removed 14320 * from the queue and failed with EIO. Processing of 14321 * the transport queues is also halted to be 14322 * restarted via runout or the next I/O. 14323 * 5) The I/O associated with a CDB size or packet 14324 * size error is removed from the queue and failed 14325 * with EIO. Processing of the transport queues is 14326 * continued. 14327 * 14328 * Note: there is no interface for canceling a runout 14329 * callback. To prevent the driver from detaching or 14330 * suspending while a runout is pending the driver 14331 * state is set to SD_STATE_RWAIT 14332 * 14333 * Note: using the scsi_init_pkt callback facility can 14334 * result in an I/O request persisting at the head of 14335 * the list which cannot be satisfied even after 14336 * multiple retries. In the future the driver may 14337 * implement some kind of maximum runout count before 14338 * failing an I/O. 14339 * 14340 * Note: the use of funcp below may seem superfluous, 14341 * but it helps warlock figure out the correct 14342 * initpkt function calls (see [s]sd.wlcmd). 14343 */ 14344 struct scsi_pkt *pktp; 14345 int (*funcp)(struct buf *bp, struct scsi_pkt **pktp); 14346 14347 ASSERT(bp != un->un_rqs_bp); 14348 14349 funcp = sd_initpkt_map[xp->xb_chain_iostart]; 14350 switch ((*funcp)(bp, &pktp)) { 14351 case SD_PKT_ALLOC_SUCCESS: 14352 xp->xb_pktp = pktp; 14353 SD_TRACE(SD_LOG_IO_CORE, un, 14354 "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n", 14355 pktp); 14356 goto got_pkt; 14357 14358 case SD_PKT_ALLOC_FAILURE: 14359 /* 14360 * Temporary (hopefully) resource depletion. 14361 * Since retries and RQS commands always have a 14362 * scsi_pkt allocated, these cases should never 14363 * get here. So the only cases this needs to 14364 * handle is a bp from the waitq (which we put 14365 * back onto the waitq for sdrunout), or a bp 14366 * sent as an immed_bp (which we just fail). 14367 */ 14368 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14369 "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n"); 14370 14371 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14372 14373 if (bp == immed_bp) { 14374 /* 14375 * If SD_XB_DMA_FREED is clear, then 14376 * this is a failure to allocate a 14377 * scsi_pkt, and we must fail the 14378 * command. 14379 */ 14380 if ((xp->xb_pkt_flags & 14381 SD_XB_DMA_FREED) == 0) { 14382 break; 14383 } 14384 14385 /* 14386 * If this immediate command is NOT our 14387 * un_retry_bp, then we must fail it. 14388 */ 14389 if (bp != un->un_retry_bp) { 14390 break; 14391 } 14392 14393 /* 14394 * We get here if this cmd is our 14395 * un_retry_bp that was DMAFREED, but 14396 * scsi_init_pkt() failed to reallocate 14397 * DMA resources when we attempted to 14398 * retry it. This can happen when an 14399 * mpxio failover is in progress, but 14400 * we don't want to just fail the 14401 * command in this case. 14402 * 14403 * Use timeout(9F) to restart it after 14404 * a 100ms delay. We don't want to 14405 * let sdrunout() restart it, because 14406 * sdrunout() is just supposed to start 14407 * commands that are sitting on the 14408 * wait queue. The un_retry_bp stays 14409 * set until the command completes, but 14410 * sdrunout can be called many times 14411 * before that happens. Since sdrunout 14412 * cannot tell if the un_retry_bp is 14413 * already in the transport, it could 14414 * end up calling scsi_transport() for 14415 * the un_retry_bp multiple times. 14416 * 14417 * Also: don't schedule the callback 14418 * if some other callback is already 14419 * pending. 14420 */ 14421 if (un->un_retry_statp == NULL) { 14422 /* 14423 * restore the kstat pointer to 14424 * keep kstat counts coherent 14425 * when we do retry the command. 14426 */ 14427 un->un_retry_statp = 14428 saved_statp; 14429 } 14430 14431 if ((un->un_startstop_timeid == NULL) && 14432 (un->un_retry_timeid == NULL) && 14433 (un->un_direct_priority_timeid == 14434 NULL)) { 14435 14436 un->un_retry_timeid = 14437 timeout( 14438 sd_start_retry_command, 14439 un, SD_RESTART_TIMEOUT); 14440 } 14441 goto exit; 14442 } 14443 14444 #else 14445 if (bp == immed_bp) { 14446 break; /* Just fail the command */ 14447 } 14448 #endif 14449 14450 /* Add the buf back to the head of the waitq */ 14451 bp->av_forw = un->un_waitq_headp; 14452 un->un_waitq_headp = bp; 14453 if (un->un_waitq_tailp == NULL) { 14454 un->un_waitq_tailp = bp; 14455 } 14456 goto exit; 14457 14458 case SD_PKT_ALLOC_FAILURE_NO_DMA: 14459 /* 14460 * HBA DMA resource failure. Fail the command 14461 * and continue processing of the queues. 14462 */ 14463 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14464 "sd_start_cmds: " 14465 "SD_PKT_ALLOC_FAILURE_NO_DMA\n"); 14466 break; 14467 14468 case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL: 14469 /* 14470 * Note:x86: Partial DMA mapping not supported 14471 * for USCSI commands, and all the needed DMA 14472 * resources were not allocated. 14473 */ 14474 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14475 "sd_start_cmds: " 14476 "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n"); 14477 break; 14478 14479 case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL: 14480 /* 14481 * Note:x86: Request cannot fit into CDB based 14482 * on lba and len. 14483 */ 14484 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14485 "sd_start_cmds: " 14486 "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n"); 14487 break; 14488 14489 default: 14490 /* Should NEVER get here! */ 14491 panic("scsi_initpkt error"); 14492 /*NOTREACHED*/ 14493 } 14494 14495 /* 14496 * Fatal error in allocating a scsi_pkt for this buf. 14497 * Update kstats & return the buf with an error code. 14498 * We must use sd_return_failed_command_no_restart() to 14499 * avoid a recursive call back into sd_start_cmds(). 14500 * However this also means that we must keep processing 14501 * the waitq here in order to avoid stalling. 14502 */ 14503 if (statp == kstat_waitq_to_runq) { 14504 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 14505 } 14506 sd_return_failed_command_no_restart(un, bp, EIO); 14507 if (bp == immed_bp) { 14508 /* immed_bp is gone by now, so clear this */ 14509 immed_bp = NULL; 14510 } 14511 continue; 14512 } 14513 got_pkt: 14514 if (bp == immed_bp) { 14515 /* goto the head of the class.... */ 14516 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 14517 } 14518 14519 un->un_ncmds_in_transport++; 14520 SD_UPDATE_KSTATS(un, statp, bp); 14521 14522 /* 14523 * Call scsi_transport() to send the command to the target. 14524 * According to SCSA architecture, we must drop the mutex here 14525 * before calling scsi_transport() in order to avoid deadlock. 14526 * Note that the scsi_pkt's completion routine can be executed 14527 * (from interrupt context) even before the call to 14528 * scsi_transport() returns. 14529 */ 14530 SD_TRACE(SD_LOG_IO_CORE, un, 14531 "sd_start_cmds: calling scsi_transport()\n"); 14532 DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp); 14533 14534 mutex_exit(SD_MUTEX(un)); 14535 rval = scsi_transport(xp->xb_pktp); 14536 mutex_enter(SD_MUTEX(un)); 14537 14538 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14539 "sd_start_cmds: scsi_transport() returned %d\n", rval); 14540 14541 switch (rval) { 14542 case TRAN_ACCEPT: 14543 /* Clear this with every pkt accepted by the HBA */ 14544 un->un_tran_fatal_count = 0; 14545 break; /* Success; try the next cmd (if any) */ 14546 14547 case TRAN_BUSY: 14548 un->un_ncmds_in_transport--; 14549 ASSERT(un->un_ncmds_in_transport >= 0); 14550 14551 /* 14552 * Don't retry request sense, the sense data 14553 * is lost when another request is sent. 14554 * Free up the rqs buf and retry 14555 * the original failed cmd. Update kstat. 14556 */ 14557 if (bp == un->un_rqs_bp) { 14558 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 14559 bp = sd_mark_rqs_idle(un, xp); 14560 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 14561 NULL, NULL, EIO, SD_BSY_TIMEOUT / 500, 14562 kstat_waitq_enter); 14563 goto exit; 14564 } 14565 14566 #if defined(__i386) || defined(__amd64) /* DMAFREE for x86 only */ 14567 /* 14568 * Free the DMA resources for the scsi_pkt. This will 14569 * allow mpxio to select another path the next time 14570 * we call scsi_transport() with this scsi_pkt. 14571 * See sdintr() for the rationalization behind this. 14572 */ 14573 if ((un->un_f_is_fibre == TRUE) && 14574 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 14575 ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) { 14576 scsi_dmafree(xp->xb_pktp); 14577 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 14578 } 14579 #endif 14580 14581 if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) { 14582 /* 14583 * Commands that are SD_PATH_DIRECT_PRIORITY 14584 * are for error recovery situations. These do 14585 * not use the normal command waitq, so if they 14586 * get a TRAN_BUSY we cannot put them back onto 14587 * the waitq for later retry. One possible 14588 * problem is that there could already be some 14589 * other command on un_retry_bp that is waiting 14590 * for this one to complete, so we would be 14591 * deadlocked if we put this command back onto 14592 * the waitq for later retry (since un_retry_bp 14593 * must complete before the driver gets back to 14594 * commands on the waitq). 14595 * 14596 * To avoid deadlock we must schedule a callback 14597 * that will restart this command after a set 14598 * interval. This should keep retrying for as 14599 * long as the underlying transport keeps 14600 * returning TRAN_BUSY (just like for other 14601 * commands). Use the same timeout interval as 14602 * for the ordinary TRAN_BUSY retry. 14603 */ 14604 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14605 "sd_start_cmds: scsi_transport() returned " 14606 "TRAN_BUSY for DIRECT_PRIORITY cmd!\n"); 14607 14608 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 14609 un->un_direct_priority_timeid = 14610 timeout(sd_start_direct_priority_command, 14611 bp, SD_BSY_TIMEOUT / 500); 14612 14613 goto exit; 14614 } 14615 14616 /* 14617 * For TRAN_BUSY, we want to reduce the throttle value, 14618 * unless we are retrying a command. 14619 */ 14620 if (bp != un->un_retry_bp) { 14621 sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY); 14622 } 14623 14624 /* 14625 * Set up the bp to be tried again 10 ms later. 14626 * Note:x86: Is there a timeout value in the sd_lun 14627 * for this condition? 14628 */ 14629 sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500, 14630 kstat_runq_back_to_waitq); 14631 goto exit; 14632 14633 case TRAN_FATAL_ERROR: 14634 un->un_tran_fatal_count++; 14635 /* FALLTHRU */ 14636 14637 case TRAN_BADPKT: 14638 default: 14639 un->un_ncmds_in_transport--; 14640 ASSERT(un->un_ncmds_in_transport >= 0); 14641 14642 /* 14643 * If this is our REQUEST SENSE command with a 14644 * transport error, we must get back the pointers 14645 * to the original buf, and mark the REQUEST 14646 * SENSE command as "available". 14647 */ 14648 if (bp == un->un_rqs_bp) { 14649 bp = sd_mark_rqs_idle(un, xp); 14650 xp = SD_GET_XBUF(bp); 14651 } else { 14652 /* 14653 * Legacy behavior: do not update transport 14654 * error count for request sense commands. 14655 */ 14656 SD_UPDATE_ERRSTATS(un, sd_transerrs); 14657 } 14658 14659 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 14660 sd_print_transport_rejected_message(un, xp, rval); 14661 14662 /* 14663 * We must use sd_return_failed_command_no_restart() to 14664 * avoid a recursive call back into sd_start_cmds(). 14665 * However this also means that we must keep processing 14666 * the waitq here in order to avoid stalling. 14667 */ 14668 sd_return_failed_command_no_restart(un, bp, EIO); 14669 14670 /* 14671 * Notify any threads waiting in sd_ddi_suspend() that 14672 * a command completion has occurred. 14673 */ 14674 if (un->un_state == SD_STATE_SUSPENDED) { 14675 cv_broadcast(&un->un_disk_busy_cv); 14676 } 14677 14678 if (bp == immed_bp) { 14679 /* immed_bp is gone by now, so clear this */ 14680 immed_bp = NULL; 14681 } 14682 break; 14683 } 14684 14685 } while (immed_bp == NULL); 14686 14687 exit: 14688 ASSERT(mutex_owned(SD_MUTEX(un))); 14689 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n"); 14690 } 14691 14692 14693 /* 14694 * Function: sd_return_command 14695 * 14696 * Description: Returns a command to its originator (with or without an 14697 * error). Also starts commands waiting to be transported 14698 * to the target. 14699 * 14700 * Context: May be called from interrupt, kernel, or timeout context 14701 */ 14702 14703 static void 14704 sd_return_command(struct sd_lun *un, struct buf *bp) 14705 { 14706 struct sd_xbuf *xp; 14707 #if defined(__i386) || defined(__amd64) 14708 struct scsi_pkt *pktp; 14709 #endif 14710 14711 ASSERT(bp != NULL); 14712 ASSERT(un != NULL); 14713 ASSERT(mutex_owned(SD_MUTEX(un))); 14714 ASSERT(bp != un->un_rqs_bp); 14715 xp = SD_GET_XBUF(bp); 14716 ASSERT(xp != NULL); 14717 14718 #if defined(__i386) || defined(__amd64) 14719 pktp = SD_GET_PKTP(bp); 14720 #endif 14721 14722 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n"); 14723 14724 #if defined(__i386) || defined(__amd64) 14725 /* 14726 * Note:x86: check for the "sdrestart failed" case. 14727 */ 14728 if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) && 14729 (geterror(bp) == 0) && (xp->xb_dma_resid != 0) && 14730 (xp->xb_pktp->pkt_resid == 0)) { 14731 14732 if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) { 14733 /* 14734 * Successfully set up next portion of cmd 14735 * transfer, try sending it 14736 */ 14737 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 14738 NULL, NULL, 0, (clock_t)0, NULL); 14739 sd_start_cmds(un, NULL); 14740 return; /* Note:x86: need a return here? */ 14741 } 14742 } 14743 #endif 14744 14745 /* 14746 * If this is the failfast bp, clear it from un_failfast_bp. This 14747 * can happen if upon being re-tried the failfast bp either 14748 * succeeded or encountered another error (possibly even a different 14749 * error than the one that precipitated the failfast state, but in 14750 * that case it would have had to exhaust retries as well). Regardless, 14751 * this should not occur whenever the instance is in the active 14752 * failfast state. 14753 */ 14754 if (bp == un->un_failfast_bp) { 14755 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 14756 un->un_failfast_bp = NULL; 14757 } 14758 14759 /* 14760 * Clear the failfast state upon successful completion of ANY cmd. 14761 */ 14762 if (bp->b_error == 0) { 14763 un->un_failfast_state = SD_FAILFAST_INACTIVE; 14764 } 14765 14766 /* 14767 * This is used if the command was retried one or more times. Show that 14768 * we are done with it, and allow processing of the waitq to resume. 14769 */ 14770 if (bp == un->un_retry_bp) { 14771 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14772 "sd_return_command: un:0x%p: " 14773 "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 14774 un->un_retry_bp = NULL; 14775 un->un_retry_statp = NULL; 14776 } 14777 14778 SD_UPDATE_RDWR_STATS(un, bp); 14779 SD_UPDATE_PARTITION_STATS(un, bp); 14780 14781 switch (un->un_state) { 14782 case SD_STATE_SUSPENDED: 14783 /* 14784 * Notify any threads waiting in sd_ddi_suspend() that 14785 * a command completion has occurred. 14786 */ 14787 cv_broadcast(&un->un_disk_busy_cv); 14788 break; 14789 default: 14790 sd_start_cmds(un, NULL); 14791 break; 14792 } 14793 14794 /* Return this command up the iodone chain to its originator. */ 14795 mutex_exit(SD_MUTEX(un)); 14796 14797 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 14798 xp->xb_pktp = NULL; 14799 14800 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 14801 14802 ASSERT(!mutex_owned(SD_MUTEX(un))); 14803 mutex_enter(SD_MUTEX(un)); 14804 14805 SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n"); 14806 } 14807 14808 14809 /* 14810 * Function: sd_return_failed_command 14811 * 14812 * Description: Command completion when an error occurred. 14813 * 14814 * Context: May be called from interrupt context 14815 */ 14816 14817 static void 14818 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode) 14819 { 14820 ASSERT(bp != NULL); 14821 ASSERT(un != NULL); 14822 ASSERT(mutex_owned(SD_MUTEX(un))); 14823 14824 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14825 "sd_return_failed_command: entry\n"); 14826 14827 /* 14828 * b_resid could already be nonzero due to a partial data 14829 * transfer, so do not change it here. 14830 */ 14831 SD_BIOERROR(bp, errcode); 14832 14833 sd_return_command(un, bp); 14834 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14835 "sd_return_failed_command: exit\n"); 14836 } 14837 14838 14839 /* 14840 * Function: sd_return_failed_command_no_restart 14841 * 14842 * Description: Same as sd_return_failed_command, but ensures that no 14843 * call back into sd_start_cmds will be issued. 14844 * 14845 * Context: May be called from interrupt context 14846 */ 14847 14848 static void 14849 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp, 14850 int errcode) 14851 { 14852 struct sd_xbuf *xp; 14853 14854 ASSERT(bp != NULL); 14855 ASSERT(un != NULL); 14856 ASSERT(mutex_owned(SD_MUTEX(un))); 14857 xp = SD_GET_XBUF(bp); 14858 ASSERT(xp != NULL); 14859 ASSERT(errcode != 0); 14860 14861 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14862 "sd_return_failed_command_no_restart: entry\n"); 14863 14864 /* 14865 * b_resid could already be nonzero due to a partial data 14866 * transfer, so do not change it here. 14867 */ 14868 SD_BIOERROR(bp, errcode); 14869 14870 /* 14871 * If this is the failfast bp, clear it. This can happen if the 14872 * failfast bp encounterd a fatal error when we attempted to 14873 * re-try it (such as a scsi_transport(9F) failure). However 14874 * we should NOT be in an active failfast state if the failfast 14875 * bp is not NULL. 14876 */ 14877 if (bp == un->un_failfast_bp) { 14878 ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE); 14879 un->un_failfast_bp = NULL; 14880 } 14881 14882 if (bp == un->un_retry_bp) { 14883 /* 14884 * This command was retried one or more times. Show that we are 14885 * done with it, and allow processing of the waitq to resume. 14886 */ 14887 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14888 "sd_return_failed_command_no_restart: " 14889 " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp); 14890 un->un_retry_bp = NULL; 14891 un->un_retry_statp = NULL; 14892 } 14893 14894 SD_UPDATE_RDWR_STATS(un, bp); 14895 SD_UPDATE_PARTITION_STATS(un, bp); 14896 14897 mutex_exit(SD_MUTEX(un)); 14898 14899 if (xp->xb_pktp != NULL) { 14900 (*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp); 14901 xp->xb_pktp = NULL; 14902 } 14903 14904 SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp); 14905 14906 mutex_enter(SD_MUTEX(un)); 14907 14908 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 14909 "sd_return_failed_command_no_restart: exit\n"); 14910 } 14911 14912 14913 /* 14914 * Function: sd_retry_command 14915 * 14916 * Description: queue up a command for retry, or (optionally) fail it 14917 * if retry counts are exhausted. 14918 * 14919 * Arguments: un - Pointer to the sd_lun struct for the target. 14920 * 14921 * bp - Pointer to the buf for the command to be retried. 14922 * 14923 * retry_check_flag - Flag to see which (if any) of the retry 14924 * counts should be decremented/checked. If the indicated 14925 * retry count is exhausted, then the command will not be 14926 * retried; it will be failed instead. This should use a 14927 * value equal to one of the following: 14928 * 14929 * SD_RETRIES_NOCHECK 14930 * SD_RESD_RETRIES_STANDARD 14931 * SD_RETRIES_VICTIM 14932 * 14933 * Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE 14934 * if the check should be made to see of FLAG_ISOLATE is set 14935 * in the pkt. If FLAG_ISOLATE is set, then the command is 14936 * not retried, it is simply failed. 14937 * 14938 * user_funcp - Ptr to function to call before dispatching the 14939 * command. May be NULL if no action needs to be performed. 14940 * (Primarily intended for printing messages.) 14941 * 14942 * user_arg - Optional argument to be passed along to 14943 * the user_funcp call. 14944 * 14945 * failure_code - errno return code to set in the bp if the 14946 * command is going to be failed. 14947 * 14948 * retry_delay - Retry delay interval in (clock_t) units. May 14949 * be zero which indicates that the retry should be retried 14950 * immediately (ie, without an intervening delay). 14951 * 14952 * statp - Ptr to kstat function to be updated if the command 14953 * is queued for a delayed retry. May be NULL if no kstat 14954 * update is desired. 14955 * 14956 * Context: May be called from interupt context. 14957 */ 14958 14959 static void 14960 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag, 14961 void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int 14962 code), void *user_arg, int failure_code, clock_t retry_delay, 14963 void (*statp)(kstat_io_t *)) 14964 { 14965 struct sd_xbuf *xp; 14966 struct scsi_pkt *pktp; 14967 14968 ASSERT(un != NULL); 14969 ASSERT(mutex_owned(SD_MUTEX(un))); 14970 ASSERT(bp != NULL); 14971 xp = SD_GET_XBUF(bp); 14972 ASSERT(xp != NULL); 14973 pktp = SD_GET_PKTP(bp); 14974 ASSERT(pktp != NULL); 14975 14976 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 14977 "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp); 14978 14979 /* 14980 * If we are syncing or dumping, fail the command to avoid 14981 * recursively calling back into scsi_transport(). 14982 */ 14983 if (ddi_in_panic()) { 14984 goto fail_command_no_log; 14985 } 14986 14987 /* 14988 * We should never be be retrying a command with FLAG_DIAGNOSE set, so 14989 * log an error and fail the command. 14990 */ 14991 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 14992 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 14993 "ERROR, retrying FLAG_DIAGNOSE command.\n"); 14994 sd_dump_memory(un, SD_LOG_IO, "CDB", 14995 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 14996 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 14997 (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 14998 goto fail_command; 14999 } 15000 15001 /* 15002 * If we are suspended, then put the command onto head of the 15003 * wait queue since we don't want to start more commands. 15004 */ 15005 switch (un->un_state) { 15006 case SD_STATE_SUSPENDED: 15007 case SD_STATE_DUMPING: 15008 bp->av_forw = un->un_waitq_headp; 15009 un->un_waitq_headp = bp; 15010 if (un->un_waitq_tailp == NULL) { 15011 un->un_waitq_tailp = bp; 15012 } 15013 SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp); 15014 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: " 15015 "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp); 15016 return; 15017 default: 15018 break; 15019 } 15020 15021 /* 15022 * If the caller wants us to check FLAG_ISOLATE, then see if that 15023 * is set; if it is then we do not want to retry the command. 15024 * Normally, FLAG_ISOLATE is only used with USCSI cmds. 15025 */ 15026 if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) { 15027 if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) { 15028 goto fail_command; 15029 } 15030 } 15031 15032 15033 /* 15034 * If SD_RETRIES_FAILFAST is set, it indicates that either a 15035 * command timeout or a selection timeout has occurred. This means 15036 * that we were unable to establish an kind of communication with 15037 * the target, and subsequent retries and/or commands are likely 15038 * to encounter similar results and take a long time to complete. 15039 * 15040 * If this is a failfast error condition, we need to update the 15041 * failfast state, even if this bp does not have B_FAILFAST set. 15042 */ 15043 if (retry_check_flag & SD_RETRIES_FAILFAST) { 15044 if (un->un_failfast_state == SD_FAILFAST_ACTIVE) { 15045 ASSERT(un->un_failfast_bp == NULL); 15046 /* 15047 * If we are already in the active failfast state, and 15048 * another failfast error condition has been detected, 15049 * then fail this command if it has B_FAILFAST set. 15050 * If B_FAILFAST is clear, then maintain the legacy 15051 * behavior of retrying heroically, even tho this will 15052 * take a lot more time to fail the command. 15053 */ 15054 if (bp->b_flags & B_FAILFAST) { 15055 goto fail_command; 15056 } 15057 } else { 15058 /* 15059 * We're not in the active failfast state, but we 15060 * have a failfast error condition, so we must begin 15061 * transition to the next state. We do this regardless 15062 * of whether or not this bp has B_FAILFAST set. 15063 */ 15064 if (un->un_failfast_bp == NULL) { 15065 /* 15066 * This is the first bp to meet a failfast 15067 * condition so save it on un_failfast_bp & 15068 * do normal retry processing. Do not enter 15069 * active failfast state yet. This marks 15070 * entry into the "failfast pending" state. 15071 */ 15072 un->un_failfast_bp = bp; 15073 15074 } else if (un->un_failfast_bp == bp) { 15075 /* 15076 * This is the second time *this* bp has 15077 * encountered a failfast error condition, 15078 * so enter active failfast state & flush 15079 * queues as appropriate. 15080 */ 15081 un->un_failfast_state = SD_FAILFAST_ACTIVE; 15082 un->un_failfast_bp = NULL; 15083 sd_failfast_flushq(un); 15084 15085 /* 15086 * Fail this bp now if B_FAILFAST set; 15087 * otherwise continue with retries. (It would 15088 * be pretty ironic if this bp succeeded on a 15089 * subsequent retry after we just flushed all 15090 * the queues). 15091 */ 15092 if (bp->b_flags & B_FAILFAST) { 15093 goto fail_command; 15094 } 15095 15096 #if !defined(lint) && !defined(__lint) 15097 } else { 15098 /* 15099 * If neither of the preceeding conditionals 15100 * was true, it means that there is some 15101 * *other* bp that has met an inital failfast 15102 * condition and is currently either being 15103 * retried or is waiting to be retried. In 15104 * that case we should perform normal retry 15105 * processing on *this* bp, since there is a 15106 * chance that the current failfast condition 15107 * is transient and recoverable. If that does 15108 * not turn out to be the case, then retries 15109 * will be cleared when the wait queue is 15110 * flushed anyway. 15111 */ 15112 #endif 15113 } 15114 } 15115 } else { 15116 /* 15117 * SD_RETRIES_FAILFAST is clear, which indicates that we 15118 * likely were able to at least establish some level of 15119 * communication with the target and subsequent commands 15120 * and/or retries are likely to get through to the target, 15121 * In this case we want to be aggressive about clearing 15122 * the failfast state. Note that this does not affect 15123 * the "failfast pending" condition. 15124 */ 15125 un->un_failfast_state = SD_FAILFAST_INACTIVE; 15126 } 15127 15128 15129 /* 15130 * Check the specified retry count to see if we can still do 15131 * any retries with this pkt before we should fail it. 15132 */ 15133 switch (retry_check_flag & SD_RETRIES_MASK) { 15134 case SD_RETRIES_VICTIM: 15135 /* 15136 * Check the victim retry count. If exhausted, then fall 15137 * thru & check against the standard retry count. 15138 */ 15139 if (xp->xb_victim_retry_count < un->un_victim_retry_count) { 15140 /* Increment count & proceed with the retry */ 15141 xp->xb_victim_retry_count++; 15142 break; 15143 } 15144 /* Victim retries exhausted, fall back to std. retries... */ 15145 /* FALLTHRU */ 15146 15147 case SD_RETRIES_STANDARD: 15148 if (xp->xb_retry_count >= un->un_retry_count) { 15149 /* Retries exhausted, fail the command */ 15150 SD_TRACE(SD_LOG_IO_CORE, un, 15151 "sd_retry_command: retries exhausted!\n"); 15152 /* 15153 * update b_resid for failed SCMD_READ & SCMD_WRITE 15154 * commands with nonzero pkt_resid. 15155 */ 15156 if ((pktp->pkt_reason == CMD_CMPLT) && 15157 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) && 15158 (pktp->pkt_resid != 0)) { 15159 uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F; 15160 if ((op == SCMD_READ) || (op == SCMD_WRITE)) { 15161 SD_UPDATE_B_RESID(bp, pktp); 15162 } 15163 } 15164 goto fail_command; 15165 } 15166 xp->xb_retry_count++; 15167 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15168 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15169 break; 15170 15171 case SD_RETRIES_UA: 15172 if (xp->xb_ua_retry_count >= sd_ua_retry_count) { 15173 /* Retries exhausted, fail the command */ 15174 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 15175 "Unit Attention retries exhausted. " 15176 "Check the target.\n"); 15177 goto fail_command; 15178 } 15179 xp->xb_ua_retry_count++; 15180 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15181 "sd_retry_command: retry count:%d\n", 15182 xp->xb_ua_retry_count); 15183 break; 15184 15185 case SD_RETRIES_BUSY: 15186 if (xp->xb_retry_count >= un->un_busy_retry_count) { 15187 /* Retries exhausted, fail the command */ 15188 SD_TRACE(SD_LOG_IO_CORE, un, 15189 "sd_retry_command: retries exhausted!\n"); 15190 goto fail_command; 15191 } 15192 xp->xb_retry_count++; 15193 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15194 "sd_retry_command: retry count:%d\n", xp->xb_retry_count); 15195 break; 15196 15197 case SD_RETRIES_NOCHECK: 15198 default: 15199 /* No retry count to check. Just proceed with the retry */ 15200 break; 15201 } 15202 15203 xp->xb_pktp->pkt_flags |= FLAG_HEAD; 15204 15205 /* 15206 * If we were given a zero timeout, we must attempt to retry the 15207 * command immediately (ie, without a delay). 15208 */ 15209 if (retry_delay == 0) { 15210 /* 15211 * Check some limiting conditions to see if we can actually 15212 * do the immediate retry. If we cannot, then we must 15213 * fall back to queueing up a delayed retry. 15214 */ 15215 if (un->un_ncmds_in_transport >= un->un_throttle) { 15216 /* 15217 * We are at the throttle limit for the target, 15218 * fall back to delayed retry. 15219 */ 15220 retry_delay = SD_BSY_TIMEOUT; 15221 statp = kstat_waitq_enter; 15222 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15223 "sd_retry_command: immed. retry hit " 15224 "throttle!\n"); 15225 } else { 15226 /* 15227 * We're clear to proceed with the immediate retry. 15228 * First call the user-provided function (if any) 15229 */ 15230 if (user_funcp != NULL) { 15231 (*user_funcp)(un, bp, user_arg, 15232 SD_IMMEDIATE_RETRY_ISSUED); 15233 #ifdef __lock_lint 15234 sd_print_incomplete_msg(un, bp, user_arg, 15235 SD_IMMEDIATE_RETRY_ISSUED); 15236 sd_print_cmd_incomplete_msg(un, bp, user_arg, 15237 SD_IMMEDIATE_RETRY_ISSUED); 15238 sd_print_sense_failed_msg(un, bp, user_arg, 15239 SD_IMMEDIATE_RETRY_ISSUED); 15240 #endif 15241 } 15242 15243 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15244 "sd_retry_command: issuing immediate retry\n"); 15245 15246 /* 15247 * Call sd_start_cmds() to transport the command to 15248 * the target. 15249 */ 15250 sd_start_cmds(un, bp); 15251 15252 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15253 "sd_retry_command exit\n"); 15254 return; 15255 } 15256 } 15257 15258 /* 15259 * Set up to retry the command after a delay. 15260 * First call the user-provided function (if any) 15261 */ 15262 if (user_funcp != NULL) { 15263 (*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED); 15264 } 15265 15266 sd_set_retry_bp(un, bp, retry_delay, statp); 15267 15268 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15269 return; 15270 15271 fail_command: 15272 15273 if (user_funcp != NULL) { 15274 (*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED); 15275 } 15276 15277 fail_command_no_log: 15278 15279 SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15280 "sd_retry_command: returning failed command\n"); 15281 15282 sd_return_failed_command(un, bp, failure_code); 15283 15284 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n"); 15285 } 15286 15287 15288 /* 15289 * Function: sd_set_retry_bp 15290 * 15291 * Description: Set up the given bp for retry. 15292 * 15293 * Arguments: un - ptr to associated softstate 15294 * bp - ptr to buf(9S) for the command 15295 * retry_delay - time interval before issuing retry (may be 0) 15296 * statp - optional pointer to kstat function 15297 * 15298 * Context: May be called under interrupt context 15299 */ 15300 15301 static void 15302 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay, 15303 void (*statp)(kstat_io_t *)) 15304 { 15305 ASSERT(un != NULL); 15306 ASSERT(mutex_owned(SD_MUTEX(un))); 15307 ASSERT(bp != NULL); 15308 15309 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15310 "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp); 15311 15312 /* 15313 * Indicate that the command is being retried. This will not allow any 15314 * other commands on the wait queue to be transported to the target 15315 * until this command has been completed (success or failure). The 15316 * "retry command" is not transported to the target until the given 15317 * time delay expires, unless the user specified a 0 retry_delay. 15318 * 15319 * Note: the timeout(9F) callback routine is what actually calls 15320 * sd_start_cmds() to transport the command, with the exception of a 15321 * zero retry_delay. The only current implementor of a zero retry delay 15322 * is the case where a START_STOP_UNIT is sent to spin-up a device. 15323 */ 15324 if (un->un_retry_bp == NULL) { 15325 ASSERT(un->un_retry_statp == NULL); 15326 un->un_retry_bp = bp; 15327 15328 /* 15329 * If the user has not specified a delay the command should 15330 * be queued and no timeout should be scheduled. 15331 */ 15332 if (retry_delay == 0) { 15333 /* 15334 * Save the kstat pointer that will be used in the 15335 * call to SD_UPDATE_KSTATS() below, so that 15336 * sd_start_cmds() can correctly decrement the waitq 15337 * count when it is time to transport this command. 15338 */ 15339 un->un_retry_statp = statp; 15340 goto done; 15341 } 15342 } 15343 15344 if (un->un_retry_bp == bp) { 15345 /* 15346 * Save the kstat pointer that will be used in the call to 15347 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can 15348 * correctly decrement the waitq count when it is time to 15349 * transport this command. 15350 */ 15351 un->un_retry_statp = statp; 15352 15353 /* 15354 * Schedule a timeout if: 15355 * 1) The user has specified a delay. 15356 * 2) There is not a START_STOP_UNIT callback pending. 15357 * 15358 * If no delay has been specified, then it is up to the caller 15359 * to ensure that IO processing continues without stalling. 15360 * Effectively, this means that the caller will issue the 15361 * required call to sd_start_cmds(). The START_STOP_UNIT 15362 * callback does this after the START STOP UNIT command has 15363 * completed. In either of these cases we should not schedule 15364 * a timeout callback here. Also don't schedule the timeout if 15365 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart. 15366 */ 15367 if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) && 15368 (un->un_direct_priority_timeid == NULL)) { 15369 un->un_retry_timeid = 15370 timeout(sd_start_retry_command, un, retry_delay); 15371 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15372 "sd_set_retry_bp: setting timeout: un: 0x%p" 15373 " bp:0x%p un_retry_timeid:0x%p\n", 15374 un, bp, un->un_retry_timeid); 15375 } 15376 } else { 15377 /* 15378 * We only get in here if there is already another command 15379 * waiting to be retried. In this case, we just put the 15380 * given command onto the wait queue, so it can be transported 15381 * after the current retry command has completed. 15382 * 15383 * Also we have to make sure that if the command at the head 15384 * of the wait queue is the un_failfast_bp, that we do not 15385 * put ahead of it any other commands that are to be retried. 15386 */ 15387 if ((un->un_failfast_bp != NULL) && 15388 (un->un_failfast_bp == un->un_waitq_headp)) { 15389 /* 15390 * Enqueue this command AFTER the first command on 15391 * the wait queue (which is also un_failfast_bp). 15392 */ 15393 bp->av_forw = un->un_waitq_headp->av_forw; 15394 un->un_waitq_headp->av_forw = bp; 15395 if (un->un_waitq_headp == un->un_waitq_tailp) { 15396 un->un_waitq_tailp = bp; 15397 } 15398 } else { 15399 /* Enqueue this command at the head of the waitq. */ 15400 bp->av_forw = un->un_waitq_headp; 15401 un->un_waitq_headp = bp; 15402 if (un->un_waitq_tailp == NULL) { 15403 un->un_waitq_tailp = bp; 15404 } 15405 } 15406 15407 if (statp == NULL) { 15408 statp = kstat_waitq_enter; 15409 } 15410 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15411 "sd_set_retry_bp: un:0x%p already delayed retry\n", un); 15412 } 15413 15414 done: 15415 if (statp != NULL) { 15416 SD_UPDATE_KSTATS(un, statp, bp); 15417 } 15418 15419 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15420 "sd_set_retry_bp: exit un:0x%p\n", un); 15421 } 15422 15423 15424 /* 15425 * Function: sd_start_retry_command 15426 * 15427 * Description: Start the command that has been waiting on the target's 15428 * retry queue. Called from timeout(9F) context after the 15429 * retry delay interval has expired. 15430 * 15431 * Arguments: arg - pointer to associated softstate for the device. 15432 * 15433 * Context: timeout(9F) thread context. May not sleep. 15434 */ 15435 15436 static void 15437 sd_start_retry_command(void *arg) 15438 { 15439 struct sd_lun *un = arg; 15440 15441 ASSERT(un != NULL); 15442 ASSERT(!mutex_owned(SD_MUTEX(un))); 15443 15444 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15445 "sd_start_retry_command: entry\n"); 15446 15447 mutex_enter(SD_MUTEX(un)); 15448 15449 un->un_retry_timeid = NULL; 15450 15451 if (un->un_retry_bp != NULL) { 15452 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15453 "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n", 15454 un, un->un_retry_bp); 15455 sd_start_cmds(un, un->un_retry_bp); 15456 } 15457 15458 mutex_exit(SD_MUTEX(un)); 15459 15460 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15461 "sd_start_retry_command: exit\n"); 15462 } 15463 15464 15465 /* 15466 * Function: sd_start_direct_priority_command 15467 * 15468 * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had 15469 * received TRAN_BUSY when we called scsi_transport() to send it 15470 * to the underlying HBA. This function is called from timeout(9F) 15471 * context after the delay interval has expired. 15472 * 15473 * Arguments: arg - pointer to associated buf(9S) to be restarted. 15474 * 15475 * Context: timeout(9F) thread context. May not sleep. 15476 */ 15477 15478 static void 15479 sd_start_direct_priority_command(void *arg) 15480 { 15481 struct buf *priority_bp = arg; 15482 struct sd_lun *un; 15483 15484 ASSERT(priority_bp != NULL); 15485 un = SD_GET_UN(priority_bp); 15486 ASSERT(un != NULL); 15487 ASSERT(!mutex_owned(SD_MUTEX(un))); 15488 15489 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15490 "sd_start_direct_priority_command: entry\n"); 15491 15492 mutex_enter(SD_MUTEX(un)); 15493 un->un_direct_priority_timeid = NULL; 15494 sd_start_cmds(un, priority_bp); 15495 mutex_exit(SD_MUTEX(un)); 15496 15497 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15498 "sd_start_direct_priority_command: exit\n"); 15499 } 15500 15501 15502 /* 15503 * Function: sd_send_request_sense_command 15504 * 15505 * Description: Sends a REQUEST SENSE command to the target 15506 * 15507 * Context: May be called from interrupt context. 15508 */ 15509 15510 static void 15511 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp, 15512 struct scsi_pkt *pktp) 15513 { 15514 ASSERT(bp != NULL); 15515 ASSERT(un != NULL); 15516 ASSERT(mutex_owned(SD_MUTEX(un))); 15517 15518 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: " 15519 "entry: buf:0x%p\n", bp); 15520 15521 /* 15522 * If we are syncing or dumping, then fail the command to avoid a 15523 * recursive callback into scsi_transport(). Also fail the command 15524 * if we are suspended (legacy behavior). 15525 */ 15526 if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) || 15527 (un->un_state == SD_STATE_DUMPING)) { 15528 sd_return_failed_command(un, bp, EIO); 15529 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15530 "sd_send_request_sense_command: syncing/dumping, exit\n"); 15531 return; 15532 } 15533 15534 /* 15535 * Retry the failed command and don't issue the request sense if: 15536 * 1) the sense buf is busy 15537 * 2) we have 1 or more outstanding commands on the target 15538 * (the sense data will be cleared or invalidated any way) 15539 * 15540 * Note: There could be an issue with not checking a retry limit here, 15541 * the problem is determining which retry limit to check. 15542 */ 15543 if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) { 15544 /* Don't retry if the command is flagged as non-retryable */ 15545 if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 15546 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, 15547 NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter); 15548 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15549 "sd_send_request_sense_command: " 15550 "at full throttle, retrying exit\n"); 15551 } else { 15552 sd_return_failed_command(un, bp, EIO); 15553 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15554 "sd_send_request_sense_command: " 15555 "at full throttle, non-retryable exit\n"); 15556 } 15557 return; 15558 } 15559 15560 sd_mark_rqs_busy(un, bp); 15561 sd_start_cmds(un, un->un_rqs_bp); 15562 15563 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15564 "sd_send_request_sense_command: exit\n"); 15565 } 15566 15567 15568 /* 15569 * Function: sd_mark_rqs_busy 15570 * 15571 * Description: Indicate that the request sense bp for this instance is 15572 * in use. 15573 * 15574 * Context: May be called under interrupt context 15575 */ 15576 15577 static void 15578 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp) 15579 { 15580 struct sd_xbuf *sense_xp; 15581 15582 ASSERT(un != NULL); 15583 ASSERT(bp != NULL); 15584 ASSERT(mutex_owned(SD_MUTEX(un))); 15585 ASSERT(un->un_sense_isbusy == 0); 15586 15587 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: " 15588 "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un); 15589 15590 sense_xp = SD_GET_XBUF(un->un_rqs_bp); 15591 ASSERT(sense_xp != NULL); 15592 15593 SD_INFO(SD_LOG_IO, un, 15594 "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp); 15595 15596 ASSERT(sense_xp->xb_pktp != NULL); 15597 ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) 15598 == (FLAG_SENSING | FLAG_HEAD)); 15599 15600 un->un_sense_isbusy = 1; 15601 un->un_rqs_bp->b_resid = 0; 15602 sense_xp->xb_pktp->pkt_resid = 0; 15603 sense_xp->xb_pktp->pkt_reason = 0; 15604 15605 /* So we can get back the bp at interrupt time! */ 15606 sense_xp->xb_sense_bp = bp; 15607 15608 bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH); 15609 15610 /* 15611 * Mark this buf as awaiting sense data. (This is already set in 15612 * the pkt_flags for the RQS packet.) 15613 */ 15614 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING; 15615 15616 sense_xp->xb_retry_count = 0; 15617 sense_xp->xb_victim_retry_count = 0; 15618 sense_xp->xb_ua_retry_count = 0; 15619 sense_xp->xb_dma_resid = 0; 15620 15621 /* Clean up the fields for auto-request sense */ 15622 sense_xp->xb_sense_status = 0; 15623 sense_xp->xb_sense_state = 0; 15624 sense_xp->xb_sense_resid = 0; 15625 bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data)); 15626 15627 SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n"); 15628 } 15629 15630 15631 /* 15632 * Function: sd_mark_rqs_idle 15633 * 15634 * Description: SD_MUTEX must be held continuously through this routine 15635 * to prevent reuse of the rqs struct before the caller can 15636 * complete it's processing. 15637 * 15638 * Return Code: Pointer to the RQS buf 15639 * 15640 * Context: May be called under interrupt context 15641 */ 15642 15643 static struct buf * 15644 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp) 15645 { 15646 struct buf *bp; 15647 ASSERT(un != NULL); 15648 ASSERT(sense_xp != NULL); 15649 ASSERT(mutex_owned(SD_MUTEX(un))); 15650 ASSERT(un->un_sense_isbusy != 0); 15651 15652 un->un_sense_isbusy = 0; 15653 bp = sense_xp->xb_sense_bp; 15654 sense_xp->xb_sense_bp = NULL; 15655 15656 /* This pkt is no longer interested in getting sense data */ 15657 ((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING; 15658 15659 return (bp); 15660 } 15661 15662 15663 15664 /* 15665 * Function: sd_alloc_rqs 15666 * 15667 * Description: Set up the unit to receive auto request sense data 15668 * 15669 * Return Code: DDI_SUCCESS or DDI_FAILURE 15670 * 15671 * Context: Called under attach(9E) context 15672 */ 15673 15674 static int 15675 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un) 15676 { 15677 struct sd_xbuf *xp; 15678 15679 ASSERT(un != NULL); 15680 ASSERT(!mutex_owned(SD_MUTEX(un))); 15681 ASSERT(un->un_rqs_bp == NULL); 15682 ASSERT(un->un_rqs_pktp == NULL); 15683 15684 /* 15685 * First allocate the required buf and scsi_pkt structs, then set up 15686 * the CDB in the scsi_pkt for a REQUEST SENSE command. 15687 */ 15688 un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL, 15689 SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL); 15690 if (un->un_rqs_bp == NULL) { 15691 return (DDI_FAILURE); 15692 } 15693 15694 un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp, 15695 CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL); 15696 15697 if (un->un_rqs_pktp == NULL) { 15698 sd_free_rqs(un); 15699 return (DDI_FAILURE); 15700 } 15701 15702 /* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */ 15703 (void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp, 15704 SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0); 15705 15706 SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp); 15707 15708 /* Set up the other needed members in the ARQ scsi_pkt. */ 15709 un->un_rqs_pktp->pkt_comp = sdintr; 15710 un->un_rqs_pktp->pkt_time = sd_io_time; 15711 un->un_rqs_pktp->pkt_flags |= 15712 (FLAG_SENSING | FLAG_HEAD); /* (1222170) */ 15713 15714 /* 15715 * Allocate & init the sd_xbuf struct for the RQS command. Do not 15716 * provide any intpkt, destroypkt routines as we take care of 15717 * scsi_pkt allocation/freeing here and in sd_free_rqs(). 15718 */ 15719 xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP); 15720 sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL); 15721 xp->xb_pktp = un->un_rqs_pktp; 15722 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15723 "sd_alloc_rqs: un 0x%p, rqs xp 0x%p, pkt 0x%p, buf 0x%p\n", 15724 un, xp, un->un_rqs_pktp, un->un_rqs_bp); 15725 15726 /* 15727 * Save the pointer to the request sense private bp so it can 15728 * be retrieved in sdintr. 15729 */ 15730 un->un_rqs_pktp->pkt_private = un->un_rqs_bp; 15731 ASSERT(un->un_rqs_bp->b_private == xp); 15732 15733 /* 15734 * See if the HBA supports auto-request sense for the specified 15735 * target/lun. If it does, then try to enable it (if not already 15736 * enabled). 15737 * 15738 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return 15739 * failure, while for other HBAs (pln) scsi_ifsetcap will always 15740 * return success. However, in both of these cases ARQ is always 15741 * enabled and scsi_ifgetcap will always return true. The best approach 15742 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap(). 15743 * 15744 * The 3rd case is the HBA (adp) always return enabled on 15745 * scsi_ifgetgetcap even when it's not enable, the best approach 15746 * is issue a scsi_ifsetcap then a scsi_ifgetcap 15747 * Note: this case is to circumvent the Adaptec bug. (x86 only) 15748 */ 15749 15750 if (un->un_f_is_fibre == TRUE) { 15751 un->un_f_arq_enabled = TRUE; 15752 } else { 15753 #if defined(__i386) || defined(__amd64) 15754 /* 15755 * Circumvent the Adaptec bug, remove this code when 15756 * the bug is fixed 15757 */ 15758 (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1); 15759 #endif 15760 switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) { 15761 case 0: 15762 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15763 "sd_alloc_rqs: HBA supports ARQ\n"); 15764 /* 15765 * ARQ is supported by this HBA but currently is not 15766 * enabled. Attempt to enable it and if successful then 15767 * mark this instance as ARQ enabled. 15768 */ 15769 if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1) 15770 == 1) { 15771 /* Successfully enabled ARQ in the HBA */ 15772 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15773 "sd_alloc_rqs: ARQ enabled\n"); 15774 un->un_f_arq_enabled = TRUE; 15775 } else { 15776 /* Could not enable ARQ in the HBA */ 15777 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15778 "sd_alloc_rqs: failed ARQ enable\n"); 15779 un->un_f_arq_enabled = FALSE; 15780 } 15781 break; 15782 case 1: 15783 /* 15784 * ARQ is supported by this HBA and is already enabled. 15785 * Just mark ARQ as enabled for this instance. 15786 */ 15787 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15788 "sd_alloc_rqs: ARQ already enabled\n"); 15789 un->un_f_arq_enabled = TRUE; 15790 break; 15791 default: 15792 /* 15793 * ARQ is not supported by this HBA; disable it for this 15794 * instance. 15795 */ 15796 SD_INFO(SD_LOG_ATTACH_DETACH, un, 15797 "sd_alloc_rqs: HBA does not support ARQ\n"); 15798 un->un_f_arq_enabled = FALSE; 15799 break; 15800 } 15801 } 15802 15803 return (DDI_SUCCESS); 15804 } 15805 15806 15807 /* 15808 * Function: sd_free_rqs 15809 * 15810 * Description: Cleanup for the pre-instance RQS command. 15811 * 15812 * Context: Kernel thread context 15813 */ 15814 15815 static void 15816 sd_free_rqs(struct sd_lun *un) 15817 { 15818 ASSERT(un != NULL); 15819 15820 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n"); 15821 15822 /* 15823 * If consistent memory is bound to a scsi_pkt, the pkt 15824 * has to be destroyed *before* freeing the consistent memory. 15825 * Don't change the sequence of this operations. 15826 * scsi_destroy_pkt() might access memory, which isn't allowed, 15827 * after it was freed in scsi_free_consistent_buf(). 15828 */ 15829 if (un->un_rqs_pktp != NULL) { 15830 scsi_destroy_pkt(un->un_rqs_pktp); 15831 un->un_rqs_pktp = NULL; 15832 } 15833 15834 if (un->un_rqs_bp != NULL) { 15835 kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf)); 15836 scsi_free_consistent_buf(un->un_rqs_bp); 15837 un->un_rqs_bp = NULL; 15838 } 15839 SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n"); 15840 } 15841 15842 15843 15844 /* 15845 * Function: sd_reduce_throttle 15846 * 15847 * Description: Reduces the maximun # of outstanding commands on a 15848 * target to the current number of outstanding commands. 15849 * Queues a tiemout(9F) callback to restore the limit 15850 * after a specified interval has elapsed. 15851 * Typically used when we get a TRAN_BUSY return code 15852 * back from scsi_transport(). 15853 * 15854 * Arguments: un - ptr to the sd_lun softstate struct 15855 * throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL 15856 * 15857 * Context: May be called from interrupt context 15858 */ 15859 15860 static void 15861 sd_reduce_throttle(struct sd_lun *un, int throttle_type) 15862 { 15863 ASSERT(un != NULL); 15864 ASSERT(mutex_owned(SD_MUTEX(un))); 15865 ASSERT(un->un_ncmds_in_transport >= 0); 15866 15867 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 15868 "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n", 15869 un, un->un_throttle, un->un_ncmds_in_transport); 15870 15871 if (un->un_throttle > 1) { 15872 if (un->un_f_use_adaptive_throttle == TRUE) { 15873 switch (throttle_type) { 15874 case SD_THROTTLE_TRAN_BUSY: 15875 if (un->un_busy_throttle == 0) { 15876 un->un_busy_throttle = un->un_throttle; 15877 } 15878 break; 15879 case SD_THROTTLE_QFULL: 15880 un->un_busy_throttle = 0; 15881 break; 15882 default: 15883 ASSERT(FALSE); 15884 } 15885 15886 if (un->un_ncmds_in_transport > 0) { 15887 un->un_throttle = un->un_ncmds_in_transport; 15888 } 15889 15890 } else { 15891 if (un->un_ncmds_in_transport == 0) { 15892 un->un_throttle = 1; 15893 } else { 15894 un->un_throttle = un->un_ncmds_in_transport; 15895 } 15896 } 15897 } 15898 15899 /* Reschedule the timeout if none is currently active */ 15900 if (un->un_reset_throttle_timeid == NULL) { 15901 un->un_reset_throttle_timeid = timeout(sd_restore_throttle, 15902 un, SD_THROTTLE_RESET_INTERVAL); 15903 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 15904 "sd_reduce_throttle: timeout scheduled!\n"); 15905 } 15906 15907 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: " 15908 "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle); 15909 } 15910 15911 15912 15913 /* 15914 * Function: sd_restore_throttle 15915 * 15916 * Description: Callback function for timeout(9F). Resets the current 15917 * value of un->un_throttle to its default. 15918 * 15919 * Arguments: arg - pointer to associated softstate for the device. 15920 * 15921 * Context: May be called from interrupt context 15922 */ 15923 15924 static void 15925 sd_restore_throttle(void *arg) 15926 { 15927 struct sd_lun *un = arg; 15928 15929 ASSERT(un != NULL); 15930 ASSERT(!mutex_owned(SD_MUTEX(un))); 15931 15932 mutex_enter(SD_MUTEX(un)); 15933 15934 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 15935 "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle); 15936 15937 un->un_reset_throttle_timeid = NULL; 15938 15939 if (un->un_f_use_adaptive_throttle == TRUE) { 15940 /* 15941 * If un_busy_throttle is nonzero, then it contains the 15942 * value that un_throttle was when we got a TRAN_BUSY back 15943 * from scsi_transport(). We want to revert back to this 15944 * value. 15945 * 15946 * In the QFULL case, the throttle limit will incrementally 15947 * increase until it reaches max throttle. 15948 */ 15949 if (un->un_busy_throttle > 0) { 15950 un->un_throttle = un->un_busy_throttle; 15951 un->un_busy_throttle = 0; 15952 } else { 15953 /* 15954 * increase throttle by 10% open gate slowly, schedule 15955 * another restore if saved throttle has not been 15956 * reached 15957 */ 15958 short throttle; 15959 if (sd_qfull_throttle_enable) { 15960 throttle = un->un_throttle + 15961 max((un->un_throttle / 10), 1); 15962 un->un_throttle = 15963 (throttle < un->un_saved_throttle) ? 15964 throttle : un->un_saved_throttle; 15965 if (un->un_throttle < un->un_saved_throttle) { 15966 un->un_reset_throttle_timeid = 15967 timeout(sd_restore_throttle, 15968 un, SD_QFULL_THROTTLE_RESET_INTERVAL); 15969 } 15970 } 15971 } 15972 15973 /* 15974 * If un_throttle has fallen below the low-water mark, we 15975 * restore the maximum value here (and allow it to ratchet 15976 * down again if necessary). 15977 */ 15978 if (un->un_throttle < un->un_min_throttle) { 15979 un->un_throttle = un->un_saved_throttle; 15980 } 15981 } else { 15982 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: " 15983 "restoring limit from 0x%x to 0x%x\n", 15984 un->un_throttle, un->un_saved_throttle); 15985 un->un_throttle = un->un_saved_throttle; 15986 } 15987 15988 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15989 "sd_restore_throttle: calling sd_start_cmds!\n"); 15990 15991 sd_start_cmds(un, NULL); 15992 15993 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, 15994 "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n", 15995 un, un->un_throttle); 15996 15997 mutex_exit(SD_MUTEX(un)); 15998 15999 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n"); 16000 } 16001 16002 /* 16003 * Function: sdrunout 16004 * 16005 * Description: Callback routine for scsi_init_pkt when a resource allocation 16006 * fails. 16007 * 16008 * Arguments: arg - a pointer to the sd_lun unit struct for the particular 16009 * soft state instance. 16010 * 16011 * Return Code: The scsi_init_pkt routine allows for the callback function to 16012 * return a 0 indicating the callback should be rescheduled or a 1 16013 * indicating not to reschedule. This routine always returns 1 16014 * because the driver always provides a callback function to 16015 * scsi_init_pkt. This results in a callback always being scheduled 16016 * (via the scsi_init_pkt callback implementation) if a resource 16017 * failure occurs. 16018 * 16019 * Context: This callback function may not block or call routines that block 16020 * 16021 * Note: Using the scsi_init_pkt callback facility can result in an I/O 16022 * request persisting at the head of the list which cannot be 16023 * satisfied even after multiple retries. In the future the driver 16024 * may implement some time of maximum runout count before failing 16025 * an I/O. 16026 */ 16027 16028 static int 16029 sdrunout(caddr_t arg) 16030 { 16031 struct sd_lun *un = (struct sd_lun *)arg; 16032 16033 ASSERT(un != NULL); 16034 ASSERT(!mutex_owned(SD_MUTEX(un))); 16035 16036 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n"); 16037 16038 mutex_enter(SD_MUTEX(un)); 16039 sd_start_cmds(un, NULL); 16040 mutex_exit(SD_MUTEX(un)); 16041 /* 16042 * This callback routine always returns 1 (i.e. do not reschedule) 16043 * because we always specify sdrunout as the callback handler for 16044 * scsi_init_pkt inside the call to sd_start_cmds. 16045 */ 16046 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n"); 16047 return (1); 16048 } 16049 16050 16051 /* 16052 * Function: sdintr 16053 * 16054 * Description: Completion callback routine for scsi_pkt(9S) structs 16055 * sent to the HBA driver via scsi_transport(9F). 16056 * 16057 * Context: Interrupt context 16058 */ 16059 16060 static void 16061 sdintr(struct scsi_pkt *pktp) 16062 { 16063 struct buf *bp; 16064 struct sd_xbuf *xp; 16065 struct sd_lun *un; 16066 16067 ASSERT(pktp != NULL); 16068 bp = (struct buf *)pktp->pkt_private; 16069 ASSERT(bp != NULL); 16070 xp = SD_GET_XBUF(bp); 16071 ASSERT(xp != NULL); 16072 ASSERT(xp->xb_pktp != NULL); 16073 un = SD_GET_UN(bp); 16074 ASSERT(un != NULL); 16075 ASSERT(!mutex_owned(SD_MUTEX(un))); 16076 16077 #ifdef SD_FAULT_INJECTION 16078 16079 SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n"); 16080 /* SD FaultInjection */ 16081 sd_faultinjection(pktp); 16082 16083 #endif /* SD_FAULT_INJECTION */ 16084 16085 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p," 16086 " xp:0x%p, un:0x%p\n", bp, xp, un); 16087 16088 mutex_enter(SD_MUTEX(un)); 16089 16090 /* Reduce the count of the #commands currently in transport */ 16091 un->un_ncmds_in_transport--; 16092 ASSERT(un->un_ncmds_in_transport >= 0); 16093 16094 /* Increment counter to indicate that the callback routine is active */ 16095 un->un_in_callback++; 16096 16097 SD_UPDATE_KSTATS(un, kstat_runq_exit, bp); 16098 16099 #ifdef SDDEBUG 16100 if (bp == un->un_retry_bp) { 16101 SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: " 16102 "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n", 16103 un, un->un_retry_bp, un->un_ncmds_in_transport); 16104 } 16105 #endif 16106 16107 /* 16108 * If pkt_reason is CMD_DEV_GONE, just fail the command 16109 */ 16110 if (pktp->pkt_reason == CMD_DEV_GONE) { 16111 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 16112 "Device is gone\n"); 16113 sd_return_failed_command(un, bp, EIO); 16114 goto exit; 16115 } 16116 16117 /* 16118 * First see if the pkt has auto-request sense data with it.... 16119 * Look at the packet state first so we don't take a performance 16120 * hit looking at the arq enabled flag unless absolutely necessary. 16121 */ 16122 if ((pktp->pkt_state & STATE_ARQ_DONE) && 16123 (un->un_f_arq_enabled == TRUE)) { 16124 /* 16125 * The HBA did an auto request sense for this command so check 16126 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16127 * driver command that should not be retried. 16128 */ 16129 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16130 /* 16131 * Save the relevant sense info into the xp for the 16132 * original cmd. 16133 */ 16134 struct scsi_arq_status *asp; 16135 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16136 xp->xb_sense_status = 16137 *((uchar_t *)(&(asp->sts_rqpkt_status))); 16138 xp->xb_sense_state = asp->sts_rqpkt_state; 16139 xp->xb_sense_resid = asp->sts_rqpkt_resid; 16140 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16141 min(sizeof (struct scsi_extended_sense), 16142 SENSE_LENGTH)); 16143 16144 /* fail the command */ 16145 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16146 "sdintr: arq done and FLAG_DIAGNOSE set\n"); 16147 sd_return_failed_command(un, bp, EIO); 16148 goto exit; 16149 } 16150 16151 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16152 /* 16153 * We want to either retry or fail this command, so free 16154 * the DMA resources here. If we retry the command then 16155 * the DMA resources will be reallocated in sd_start_cmds(). 16156 * Note that when PKT_DMA_PARTIAL is used, this reallocation 16157 * causes the *entire* transfer to start over again from the 16158 * beginning of the request, even for PARTIAL chunks that 16159 * have already transferred successfully. 16160 */ 16161 if ((un->un_f_is_fibre == TRUE) && 16162 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16163 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16164 scsi_dmafree(pktp); 16165 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16166 } 16167 #endif 16168 16169 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16170 "sdintr: arq done, sd_handle_auto_request_sense\n"); 16171 16172 sd_handle_auto_request_sense(un, bp, xp, pktp); 16173 goto exit; 16174 } 16175 16176 /* Next see if this is the REQUEST SENSE pkt for the instance */ 16177 if (pktp->pkt_flags & FLAG_SENSING) { 16178 /* This pktp is from the unit's REQUEST_SENSE command */ 16179 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16180 "sdintr: sd_handle_request_sense\n"); 16181 sd_handle_request_sense(un, bp, xp, pktp); 16182 goto exit; 16183 } 16184 16185 /* 16186 * Check to see if the command successfully completed as requested; 16187 * this is the most common case (and also the hot performance path). 16188 * 16189 * Requirements for successful completion are: 16190 * pkt_reason is CMD_CMPLT and packet status is status good. 16191 * In addition: 16192 * - A residual of zero indicates successful completion no matter what 16193 * the command is. 16194 * - If the residual is not zero and the command is not a read or 16195 * write, then it's still defined as successful completion. In other 16196 * words, if the command is a read or write the residual must be 16197 * zero for successful completion. 16198 * - If the residual is not zero and the command is a read or 16199 * write, and it's a USCSICMD, then it's still defined as 16200 * successful completion. 16201 */ 16202 if ((pktp->pkt_reason == CMD_CMPLT) && 16203 (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) { 16204 16205 /* 16206 * Since this command is returned with a good status, we 16207 * can reset the count for Sonoma failover. 16208 */ 16209 un->un_sonoma_failure_count = 0; 16210 16211 /* 16212 * Return all USCSI commands on good status 16213 */ 16214 if (pktp->pkt_resid == 0) { 16215 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16216 "sdintr: returning command for resid == 0\n"); 16217 } else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) && 16218 ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) { 16219 SD_UPDATE_B_RESID(bp, pktp); 16220 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16221 "sdintr: returning command for resid != 0\n"); 16222 } else if (xp->xb_pkt_flags & SD_XB_USCSICMD) { 16223 SD_UPDATE_B_RESID(bp, pktp); 16224 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16225 "sdintr: returning uscsi command\n"); 16226 } else { 16227 goto not_successful; 16228 } 16229 sd_return_command(un, bp); 16230 16231 /* 16232 * Decrement counter to indicate that the callback routine 16233 * is done. 16234 */ 16235 un->un_in_callback--; 16236 ASSERT(un->un_in_callback >= 0); 16237 mutex_exit(SD_MUTEX(un)); 16238 16239 return; 16240 } 16241 16242 not_successful: 16243 16244 #if (defined(__i386) || defined(__amd64)) /* DMAFREE for x86 only */ 16245 /* 16246 * The following is based upon knowledge of the underlying transport 16247 * and its use of DMA resources. This code should be removed when 16248 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor 16249 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf() 16250 * and sd_start_cmds(). 16251 * 16252 * Free any DMA resources associated with this command if there 16253 * is a chance it could be retried or enqueued for later retry. 16254 * If we keep the DMA binding then mpxio cannot reissue the 16255 * command on another path whenever a path failure occurs. 16256 * 16257 * Note that when PKT_DMA_PARTIAL is used, free/reallocation 16258 * causes the *entire* transfer to start over again from the 16259 * beginning of the request, even for PARTIAL chunks that 16260 * have already transferred successfully. 16261 * 16262 * This is only done for non-uscsi commands (and also skipped for the 16263 * driver's internal RQS command). Also just do this for Fibre Channel 16264 * devices as these are the only ones that support mpxio. 16265 */ 16266 if ((un->un_f_is_fibre == TRUE) && 16267 ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) && 16268 ((pktp->pkt_flags & FLAG_SENSING) == 0)) { 16269 scsi_dmafree(pktp); 16270 xp->xb_pkt_flags |= SD_XB_DMA_FREED; 16271 } 16272 #endif 16273 16274 /* 16275 * The command did not successfully complete as requested so check 16276 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal 16277 * driver command that should not be retried so just return. If 16278 * FLAG_DIAGNOSE is not set the error will be processed below. 16279 */ 16280 if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) { 16281 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16282 "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n"); 16283 /* 16284 * Issue a request sense if a check condition caused the error 16285 * (we handle the auto request sense case above), otherwise 16286 * just fail the command. 16287 */ 16288 if ((pktp->pkt_reason == CMD_CMPLT) && 16289 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) { 16290 sd_send_request_sense_command(un, bp, pktp); 16291 } else { 16292 sd_return_failed_command(un, bp, EIO); 16293 } 16294 goto exit; 16295 } 16296 16297 /* 16298 * The command did not successfully complete as requested so process 16299 * the error, retry, and/or attempt recovery. 16300 */ 16301 switch (pktp->pkt_reason) { 16302 case CMD_CMPLT: 16303 switch (SD_GET_PKT_STATUS(pktp)) { 16304 case STATUS_GOOD: 16305 /* 16306 * The command completed successfully with a non-zero 16307 * residual 16308 */ 16309 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16310 "sdintr: STATUS_GOOD \n"); 16311 sd_pkt_status_good(un, bp, xp, pktp); 16312 break; 16313 16314 case STATUS_CHECK: 16315 case STATUS_TERMINATED: 16316 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16317 "sdintr: STATUS_TERMINATED | STATUS_CHECK\n"); 16318 sd_pkt_status_check_condition(un, bp, xp, pktp); 16319 break; 16320 16321 case STATUS_BUSY: 16322 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16323 "sdintr: STATUS_BUSY\n"); 16324 sd_pkt_status_busy(un, bp, xp, pktp); 16325 break; 16326 16327 case STATUS_RESERVATION_CONFLICT: 16328 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16329 "sdintr: STATUS_RESERVATION_CONFLICT\n"); 16330 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 16331 break; 16332 16333 case STATUS_QFULL: 16334 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16335 "sdintr: STATUS_QFULL\n"); 16336 sd_pkt_status_qfull(un, bp, xp, pktp); 16337 break; 16338 16339 case STATUS_MET: 16340 case STATUS_INTERMEDIATE: 16341 case STATUS_SCSI2: 16342 case STATUS_INTERMEDIATE_MET: 16343 case STATUS_ACA_ACTIVE: 16344 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 16345 "Unexpected SCSI status received: 0x%x\n", 16346 SD_GET_PKT_STATUS(pktp)); 16347 sd_return_failed_command(un, bp, EIO); 16348 break; 16349 16350 default: 16351 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 16352 "Invalid SCSI status received: 0x%x\n", 16353 SD_GET_PKT_STATUS(pktp)); 16354 sd_return_failed_command(un, bp, EIO); 16355 break; 16356 16357 } 16358 break; 16359 16360 case CMD_INCOMPLETE: 16361 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16362 "sdintr: CMD_INCOMPLETE\n"); 16363 sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp); 16364 break; 16365 case CMD_TRAN_ERR: 16366 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16367 "sdintr: CMD_TRAN_ERR\n"); 16368 sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp); 16369 break; 16370 case CMD_RESET: 16371 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16372 "sdintr: CMD_RESET \n"); 16373 sd_pkt_reason_cmd_reset(un, bp, xp, pktp); 16374 break; 16375 case CMD_ABORTED: 16376 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16377 "sdintr: CMD_ABORTED \n"); 16378 sd_pkt_reason_cmd_aborted(un, bp, xp, pktp); 16379 break; 16380 case CMD_TIMEOUT: 16381 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16382 "sdintr: CMD_TIMEOUT\n"); 16383 sd_pkt_reason_cmd_timeout(un, bp, xp, pktp); 16384 break; 16385 case CMD_UNX_BUS_FREE: 16386 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16387 "sdintr: CMD_UNX_BUS_FREE \n"); 16388 sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp); 16389 break; 16390 case CMD_TAG_REJECT: 16391 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16392 "sdintr: CMD_TAG_REJECT\n"); 16393 sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp); 16394 break; 16395 default: 16396 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 16397 "sdintr: default\n"); 16398 sd_pkt_reason_default(un, bp, xp, pktp); 16399 break; 16400 } 16401 16402 exit: 16403 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n"); 16404 16405 /* Decrement counter to indicate that the callback routine is done. */ 16406 un->un_in_callback--; 16407 ASSERT(un->un_in_callback >= 0); 16408 16409 /* 16410 * At this point, the pkt has been dispatched, ie, it is either 16411 * being re-tried or has been returned to its caller and should 16412 * not be referenced. 16413 */ 16414 16415 mutex_exit(SD_MUTEX(un)); 16416 } 16417 16418 16419 /* 16420 * Function: sd_print_incomplete_msg 16421 * 16422 * Description: Prints the error message for a CMD_INCOMPLETE error. 16423 * 16424 * Arguments: un - ptr to associated softstate for the device. 16425 * bp - ptr to the buf(9S) for the command. 16426 * arg - message string ptr 16427 * code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED, 16428 * or SD_NO_RETRY_ISSUED. 16429 * 16430 * Context: May be called under interrupt context 16431 */ 16432 16433 static void 16434 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 16435 { 16436 struct scsi_pkt *pktp; 16437 char *msgp; 16438 char *cmdp = arg; 16439 16440 ASSERT(un != NULL); 16441 ASSERT(mutex_owned(SD_MUTEX(un))); 16442 ASSERT(bp != NULL); 16443 ASSERT(arg != NULL); 16444 pktp = SD_GET_PKTP(bp); 16445 ASSERT(pktp != NULL); 16446 16447 switch (code) { 16448 case SD_DELAYED_RETRY_ISSUED: 16449 case SD_IMMEDIATE_RETRY_ISSUED: 16450 msgp = "retrying"; 16451 break; 16452 case SD_NO_RETRY_ISSUED: 16453 default: 16454 msgp = "giving up"; 16455 break; 16456 } 16457 16458 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 16459 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16460 "incomplete %s- %s\n", cmdp, msgp); 16461 } 16462 } 16463 16464 16465 16466 /* 16467 * Function: sd_pkt_status_good 16468 * 16469 * Description: Processing for a STATUS_GOOD code in pkt_status. 16470 * 16471 * Context: May be called under interrupt context 16472 */ 16473 16474 static void 16475 sd_pkt_status_good(struct sd_lun *un, struct buf *bp, 16476 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16477 { 16478 char *cmdp; 16479 16480 ASSERT(un != NULL); 16481 ASSERT(mutex_owned(SD_MUTEX(un))); 16482 ASSERT(bp != NULL); 16483 ASSERT(xp != NULL); 16484 ASSERT(pktp != NULL); 16485 ASSERT(pktp->pkt_reason == CMD_CMPLT); 16486 ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD); 16487 ASSERT(pktp->pkt_resid != 0); 16488 16489 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n"); 16490 16491 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16492 switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) { 16493 case SCMD_READ: 16494 cmdp = "read"; 16495 break; 16496 case SCMD_WRITE: 16497 cmdp = "write"; 16498 break; 16499 default: 16500 SD_UPDATE_B_RESID(bp, pktp); 16501 sd_return_command(un, bp); 16502 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 16503 return; 16504 } 16505 16506 /* 16507 * See if we can retry the read/write, preferrably immediately. 16508 * If retries are exhaused, then sd_retry_command() will update 16509 * the b_resid count. 16510 */ 16511 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg, 16512 cmdp, EIO, (clock_t)0, NULL); 16513 16514 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n"); 16515 } 16516 16517 16518 16519 16520 16521 /* 16522 * Function: sd_handle_request_sense 16523 * 16524 * Description: Processing for non-auto Request Sense command. 16525 * 16526 * Arguments: un - ptr to associated softstate 16527 * sense_bp - ptr to buf(9S) for the RQS command 16528 * sense_xp - ptr to the sd_xbuf for the RQS command 16529 * sense_pktp - ptr to the scsi_pkt(9S) for the RQS command 16530 * 16531 * Context: May be called under interrupt context 16532 */ 16533 16534 static void 16535 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp, 16536 struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp) 16537 { 16538 struct buf *cmd_bp; /* buf for the original command */ 16539 struct sd_xbuf *cmd_xp; /* sd_xbuf for the original command */ 16540 struct scsi_pkt *cmd_pktp; /* pkt for the original command */ 16541 16542 ASSERT(un != NULL); 16543 ASSERT(mutex_owned(SD_MUTEX(un))); 16544 ASSERT(sense_bp != NULL); 16545 ASSERT(sense_xp != NULL); 16546 ASSERT(sense_pktp != NULL); 16547 16548 /* 16549 * Note the sense_bp, sense_xp, and sense_pktp here are for the 16550 * RQS command and not the original command. 16551 */ 16552 ASSERT(sense_pktp == un->un_rqs_pktp); 16553 ASSERT(sense_bp == un->un_rqs_bp); 16554 ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) == 16555 (FLAG_SENSING | FLAG_HEAD)); 16556 ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) & 16557 FLAG_SENSING) == FLAG_SENSING); 16558 16559 /* These are the bp, xp, and pktp for the original command */ 16560 cmd_bp = sense_xp->xb_sense_bp; 16561 cmd_xp = SD_GET_XBUF(cmd_bp); 16562 cmd_pktp = SD_GET_PKTP(cmd_bp); 16563 16564 if (sense_pktp->pkt_reason != CMD_CMPLT) { 16565 /* 16566 * The REQUEST SENSE command failed. Release the REQUEST 16567 * SENSE command for re-use, get back the bp for the original 16568 * command, and attempt to re-try the original command if 16569 * FLAG_DIAGNOSE is not set in the original packet. 16570 */ 16571 SD_UPDATE_ERRSTATS(un, sd_harderrs); 16572 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16573 cmd_bp = sd_mark_rqs_idle(un, sense_xp); 16574 sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD, 16575 NULL, NULL, EIO, (clock_t)0, NULL); 16576 return; 16577 } 16578 } 16579 16580 /* 16581 * Save the relevant sense info into the xp for the original cmd. 16582 * 16583 * Note: if the request sense failed the state info will be zero 16584 * as set in sd_mark_rqs_busy() 16585 */ 16586 cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp); 16587 cmd_xp->xb_sense_state = sense_pktp->pkt_state; 16588 cmd_xp->xb_sense_resid = sense_pktp->pkt_resid; 16589 bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH); 16590 16591 /* 16592 * Free up the RQS command.... 16593 * NOTE: 16594 * Must do this BEFORE calling sd_validate_sense_data! 16595 * sd_validate_sense_data may return the original command in 16596 * which case the pkt will be freed and the flags can no 16597 * longer be touched. 16598 * SD_MUTEX is held through this process until the command 16599 * is dispatched based upon the sense data, so there are 16600 * no race conditions. 16601 */ 16602 (void) sd_mark_rqs_idle(un, sense_xp); 16603 16604 /* 16605 * For a retryable command see if we have valid sense data, if so then 16606 * turn it over to sd_decode_sense() to figure out the right course of 16607 * action. Just fail a non-retryable command. 16608 */ 16609 if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) { 16610 if (sd_validate_sense_data(un, cmd_bp, cmd_xp) == 16611 SD_SENSE_DATA_IS_VALID) { 16612 sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp); 16613 } 16614 } else { 16615 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB", 16616 (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 16617 SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data", 16618 (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX); 16619 sd_return_failed_command(un, cmd_bp, EIO); 16620 } 16621 } 16622 16623 16624 16625 16626 /* 16627 * Function: sd_handle_auto_request_sense 16628 * 16629 * Description: Processing for auto-request sense information. 16630 * 16631 * Arguments: un - ptr to associated softstate 16632 * bp - ptr to buf(9S) for the command 16633 * xp - ptr to the sd_xbuf for the command 16634 * pktp - ptr to the scsi_pkt(9S) for the command 16635 * 16636 * Context: May be called under interrupt context 16637 */ 16638 16639 static void 16640 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp, 16641 struct sd_xbuf *xp, struct scsi_pkt *pktp) 16642 { 16643 struct scsi_arq_status *asp; 16644 16645 ASSERT(un != NULL); 16646 ASSERT(mutex_owned(SD_MUTEX(un))); 16647 ASSERT(bp != NULL); 16648 ASSERT(xp != NULL); 16649 ASSERT(pktp != NULL); 16650 ASSERT(pktp != un->un_rqs_pktp); 16651 ASSERT(bp != un->un_rqs_bp); 16652 16653 /* 16654 * For auto-request sense, we get a scsi_arq_status back from 16655 * the HBA, with the sense data in the sts_sensedata member. 16656 * The pkt_scbp of the packet points to this scsi_arq_status. 16657 */ 16658 asp = (struct scsi_arq_status *)(pktp->pkt_scbp); 16659 16660 if (asp->sts_rqpkt_reason != CMD_CMPLT) { 16661 /* 16662 * The auto REQUEST SENSE failed; see if we can re-try 16663 * the original command. 16664 */ 16665 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16666 "auto request sense failed (reason=%s)\n", 16667 scsi_rname(asp->sts_rqpkt_reason)); 16668 16669 sd_reset_target(un, pktp); 16670 16671 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 16672 NULL, NULL, EIO, (clock_t)0, NULL); 16673 return; 16674 } 16675 16676 /* Save the relevant sense info into the xp for the original cmd. */ 16677 xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status))); 16678 xp->xb_sense_state = asp->sts_rqpkt_state; 16679 xp->xb_sense_resid = asp->sts_rqpkt_resid; 16680 bcopy(&asp->sts_sensedata, xp->xb_sense_data, 16681 min(sizeof (struct scsi_extended_sense), SENSE_LENGTH)); 16682 16683 /* 16684 * See if we have valid sense data, if so then turn it over to 16685 * sd_decode_sense() to figure out the right course of action. 16686 */ 16687 if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) { 16688 sd_decode_sense(un, bp, xp, pktp); 16689 } 16690 } 16691 16692 16693 /* 16694 * Function: sd_print_sense_failed_msg 16695 * 16696 * Description: Print log message when RQS has failed. 16697 * 16698 * Arguments: un - ptr to associated softstate 16699 * bp - ptr to buf(9S) for the command 16700 * arg - generic message string ptr 16701 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 16702 * or SD_NO_RETRY_ISSUED 16703 * 16704 * Context: May be called from interrupt context 16705 */ 16706 16707 static void 16708 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg, 16709 int code) 16710 { 16711 char *msgp = arg; 16712 16713 ASSERT(un != NULL); 16714 ASSERT(mutex_owned(SD_MUTEX(un))); 16715 ASSERT(bp != NULL); 16716 16717 if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) { 16718 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp); 16719 } 16720 } 16721 16722 16723 /* 16724 * Function: sd_validate_sense_data 16725 * 16726 * Description: Check the given sense data for validity. 16727 * If the sense data is not valid, the command will 16728 * be either failed or retried! 16729 * 16730 * Return Code: SD_SENSE_DATA_IS_INVALID 16731 * SD_SENSE_DATA_IS_VALID 16732 * 16733 * Context: May be called from interrupt context 16734 */ 16735 16736 static int 16737 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp) 16738 { 16739 struct scsi_extended_sense *esp; 16740 struct scsi_pkt *pktp; 16741 size_t actual_len; 16742 char *msgp = NULL; 16743 16744 ASSERT(un != NULL); 16745 ASSERT(mutex_owned(SD_MUTEX(un))); 16746 ASSERT(bp != NULL); 16747 ASSERT(bp != un->un_rqs_bp); 16748 ASSERT(xp != NULL); 16749 16750 pktp = SD_GET_PKTP(bp); 16751 ASSERT(pktp != NULL); 16752 16753 /* 16754 * Check the status of the RQS command (auto or manual). 16755 */ 16756 switch (xp->xb_sense_status & STATUS_MASK) { 16757 case STATUS_GOOD: 16758 break; 16759 16760 case STATUS_RESERVATION_CONFLICT: 16761 sd_pkt_status_reservation_conflict(un, bp, xp, pktp); 16762 return (SD_SENSE_DATA_IS_INVALID); 16763 16764 case STATUS_BUSY: 16765 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16766 "Busy Status on REQUEST SENSE\n"); 16767 sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL, 16768 NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter); 16769 return (SD_SENSE_DATA_IS_INVALID); 16770 16771 case STATUS_QFULL: 16772 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 16773 "QFULL Status on REQUEST SENSE\n"); 16774 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, 16775 NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter); 16776 return (SD_SENSE_DATA_IS_INVALID); 16777 16778 case STATUS_CHECK: 16779 case STATUS_TERMINATED: 16780 msgp = "Check Condition on REQUEST SENSE\n"; 16781 goto sense_failed; 16782 16783 default: 16784 msgp = "Not STATUS_GOOD on REQUEST_SENSE\n"; 16785 goto sense_failed; 16786 } 16787 16788 /* 16789 * See if we got the minimum required amount of sense data. 16790 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes 16791 * or less. 16792 */ 16793 actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid); 16794 if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) || 16795 (actual_len == 0)) { 16796 msgp = "Request Sense couldn't get sense data\n"; 16797 goto sense_failed; 16798 } 16799 16800 if (actual_len < SUN_MIN_SENSE_LENGTH) { 16801 msgp = "Not enough sense information\n"; 16802 goto sense_failed; 16803 } 16804 16805 /* 16806 * We require the extended sense data 16807 */ 16808 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 16809 if (esp->es_class != CLASS_EXTENDED_SENSE) { 16810 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 16811 static char tmp[8]; 16812 static char buf[148]; 16813 char *p = (char *)(xp->xb_sense_data); 16814 int i; 16815 16816 mutex_enter(&sd_sense_mutex); 16817 (void) strcpy(buf, "undecodable sense information:"); 16818 for (i = 0; i < actual_len; i++) { 16819 (void) sprintf(tmp, " 0x%x", *(p++)&0xff); 16820 (void) strcpy(&buf[strlen(buf)], tmp); 16821 } 16822 i = strlen(buf); 16823 (void) strcpy(&buf[i], "-(assumed fatal)\n"); 16824 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf); 16825 mutex_exit(&sd_sense_mutex); 16826 } 16827 /* Note: Legacy behavior, fail the command with no retry */ 16828 sd_return_failed_command(un, bp, EIO); 16829 return (SD_SENSE_DATA_IS_INVALID); 16830 } 16831 16832 /* 16833 * Check that es_code is valid (es_class concatenated with es_code 16834 * make up the "response code" field. es_class will always be 7, so 16835 * make sure es_code is 0, 1, 2, 3 or 0xf. es_code will indicate the 16836 * format. 16837 */ 16838 if ((esp->es_code != CODE_FMT_FIXED_CURRENT) && 16839 (esp->es_code != CODE_FMT_FIXED_DEFERRED) && 16840 (esp->es_code != CODE_FMT_DESCR_CURRENT) && 16841 (esp->es_code != CODE_FMT_DESCR_DEFERRED) && 16842 (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) { 16843 goto sense_failed; 16844 } 16845 16846 return (SD_SENSE_DATA_IS_VALID); 16847 16848 sense_failed: 16849 /* 16850 * If the request sense failed (for whatever reason), attempt 16851 * to retry the original command. 16852 */ 16853 #if defined(__i386) || defined(__amd64) 16854 /* 16855 * SD_RETRY_DELAY is conditionally compile (#if fibre) in 16856 * sddef.h for Sparc platform, and x86 uses 1 binary 16857 * for both SCSI/FC. 16858 * The SD_RETRY_DELAY value need to be adjusted here 16859 * when SD_RETRY_DELAY change in sddef.h 16860 */ 16861 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 16862 sd_print_sense_failed_msg, msgp, EIO, 16863 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL); 16864 #else 16865 sd_retry_command(un, bp, SD_RETRIES_STANDARD, 16866 sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL); 16867 #endif 16868 16869 return (SD_SENSE_DATA_IS_INVALID); 16870 } 16871 16872 16873 16874 /* 16875 * Function: sd_decode_sense 16876 * 16877 * Description: Take recovery action(s) when SCSI Sense Data is received. 16878 * 16879 * Context: Interrupt context. 16880 */ 16881 16882 static void 16883 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 16884 struct scsi_pkt *pktp) 16885 { 16886 struct scsi_extended_sense *esp; 16887 struct scsi_descr_sense_hdr *sdsp; 16888 uint8_t asc, ascq, sense_key; 16889 16890 ASSERT(un != NULL); 16891 ASSERT(mutex_owned(SD_MUTEX(un))); 16892 ASSERT(bp != NULL); 16893 ASSERT(bp != un->un_rqs_bp); 16894 ASSERT(xp != NULL); 16895 ASSERT(pktp != NULL); 16896 16897 esp = (struct scsi_extended_sense *)xp->xb_sense_data; 16898 16899 switch (esp->es_code) { 16900 case CODE_FMT_DESCR_CURRENT: 16901 case CODE_FMT_DESCR_DEFERRED: 16902 sdsp = (struct scsi_descr_sense_hdr *)xp->xb_sense_data; 16903 sense_key = sdsp->ds_key; 16904 asc = sdsp->ds_add_code; 16905 ascq = sdsp->ds_qual_code; 16906 break; 16907 case CODE_FMT_VENDOR_SPECIFIC: 16908 case CODE_FMT_FIXED_CURRENT: 16909 case CODE_FMT_FIXED_DEFERRED: 16910 default: 16911 sense_key = esp->es_key; 16912 asc = esp->es_add_code; 16913 ascq = esp->es_qual_code; 16914 break; 16915 } 16916 16917 switch (sense_key) { 16918 case KEY_NO_SENSE: 16919 sd_sense_key_no_sense(un, bp, xp, pktp); 16920 break; 16921 case KEY_RECOVERABLE_ERROR: 16922 sd_sense_key_recoverable_error(un, asc, bp, xp, pktp); 16923 break; 16924 case KEY_NOT_READY: 16925 sd_sense_key_not_ready(un, asc, ascq, bp, xp, pktp); 16926 break; 16927 case KEY_MEDIUM_ERROR: 16928 case KEY_HARDWARE_ERROR: 16929 sd_sense_key_medium_or_hardware_error(un, 16930 sense_key, asc, bp, xp, pktp); 16931 break; 16932 case KEY_ILLEGAL_REQUEST: 16933 sd_sense_key_illegal_request(un, bp, xp, pktp); 16934 break; 16935 case KEY_UNIT_ATTENTION: 16936 sd_sense_key_unit_attention(un, asc, bp, xp, pktp); 16937 break; 16938 case KEY_WRITE_PROTECT: 16939 case KEY_VOLUME_OVERFLOW: 16940 case KEY_MISCOMPARE: 16941 sd_sense_key_fail_command(un, bp, xp, pktp); 16942 break; 16943 case KEY_BLANK_CHECK: 16944 sd_sense_key_blank_check(un, bp, xp, pktp); 16945 break; 16946 case KEY_ABORTED_COMMAND: 16947 sd_sense_key_aborted_command(un, bp, xp, pktp); 16948 break; 16949 case KEY_VENDOR_UNIQUE: 16950 case KEY_COPY_ABORTED: 16951 case KEY_EQUAL: 16952 case KEY_RESERVED: 16953 default: 16954 sd_sense_key_default(un, sense_key, bp, xp, pktp); 16955 break; 16956 } 16957 } 16958 16959 16960 /* 16961 * Function: sd_dump_memory 16962 * 16963 * Description: Debug logging routine to print the contents of a user provided 16964 * buffer. The output of the buffer is broken up into 256 byte 16965 * segments due to a size constraint of the scsi_log. 16966 * implementation. 16967 * 16968 * Arguments: un - ptr to softstate 16969 * comp - component mask 16970 * title - "title" string to preceed data when printed 16971 * data - ptr to data block to be printed 16972 * len - size of data block to be printed 16973 * fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c) 16974 * 16975 * Context: May be called from interrupt context 16976 */ 16977 16978 #define SD_DUMP_MEMORY_BUF_SIZE 256 16979 16980 static char *sd_dump_format_string[] = { 16981 " 0x%02x", 16982 " %c" 16983 }; 16984 16985 static void 16986 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data, 16987 int len, int fmt) 16988 { 16989 int i, j; 16990 int avail_count; 16991 int start_offset; 16992 int end_offset; 16993 size_t entry_len; 16994 char *bufp; 16995 char *local_buf; 16996 char *format_string; 16997 16998 ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR)); 16999 17000 /* 17001 * In the debug version of the driver, this function is called from a 17002 * number of places which are NOPs in the release driver. 17003 * The debug driver therefore has additional methods of filtering 17004 * debug output. 17005 */ 17006 #ifdef SDDEBUG 17007 /* 17008 * In the debug version of the driver we can reduce the amount of debug 17009 * messages by setting sd_error_level to something other than 17010 * SCSI_ERR_ALL and clearing bits in sd_level_mask and 17011 * sd_component_mask. 17012 */ 17013 if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) || 17014 (sd_error_level != SCSI_ERR_ALL)) { 17015 return; 17016 } 17017 if (((sd_component_mask & comp) == 0) || 17018 (sd_error_level != SCSI_ERR_ALL)) { 17019 return; 17020 } 17021 #else 17022 if (sd_error_level != SCSI_ERR_ALL) { 17023 return; 17024 } 17025 #endif 17026 17027 local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP); 17028 bufp = local_buf; 17029 /* 17030 * Available length is the length of local_buf[], minus the 17031 * length of the title string, minus one for the ":", minus 17032 * one for the newline, minus one for the NULL terminator. 17033 * This gives the #bytes available for holding the printed 17034 * values from the given data buffer. 17035 */ 17036 if (fmt == SD_LOG_HEX) { 17037 format_string = sd_dump_format_string[0]; 17038 } else /* SD_LOG_CHAR */ { 17039 format_string = sd_dump_format_string[1]; 17040 } 17041 /* 17042 * Available count is the number of elements from the given 17043 * data buffer that we can fit into the available length. 17044 * This is based upon the size of the format string used. 17045 * Make one entry and find it's size. 17046 */ 17047 (void) sprintf(bufp, format_string, data[0]); 17048 entry_len = strlen(bufp); 17049 avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len; 17050 17051 j = 0; 17052 while (j < len) { 17053 bufp = local_buf; 17054 bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE); 17055 start_offset = j; 17056 17057 end_offset = start_offset + avail_count; 17058 17059 (void) sprintf(bufp, "%s:", title); 17060 bufp += strlen(bufp); 17061 for (i = start_offset; ((i < end_offset) && (j < len)); 17062 i++, j++) { 17063 (void) sprintf(bufp, format_string, data[i]); 17064 bufp += entry_len; 17065 } 17066 (void) sprintf(bufp, "\n"); 17067 17068 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf); 17069 } 17070 kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE); 17071 } 17072 17073 /* 17074 * Function: sd_print_sense_msg 17075 * 17076 * Description: Log a message based upon the given sense data. 17077 * 17078 * Arguments: un - ptr to associated softstate 17079 * bp - ptr to buf(9S) for the command 17080 * arg - ptr to associate sd_sense_info struct 17081 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 17082 * or SD_NO_RETRY_ISSUED 17083 * 17084 * Context: May be called from interrupt context 17085 */ 17086 17087 static void 17088 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code) 17089 { 17090 struct sd_xbuf *xp; 17091 struct scsi_pkt *pktp; 17092 struct scsi_extended_sense *sensep; 17093 daddr_t request_blkno; 17094 diskaddr_t err_blkno; 17095 int severity; 17096 int pfa_flag; 17097 int fixed_format = TRUE; 17098 extern struct scsi_key_strings scsi_cmds[]; 17099 17100 ASSERT(un != NULL); 17101 ASSERT(mutex_owned(SD_MUTEX(un))); 17102 ASSERT(bp != NULL); 17103 xp = SD_GET_XBUF(bp); 17104 ASSERT(xp != NULL); 17105 pktp = SD_GET_PKTP(bp); 17106 ASSERT(pktp != NULL); 17107 ASSERT(arg != NULL); 17108 17109 severity = ((struct sd_sense_info *)(arg))->ssi_severity; 17110 pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag; 17111 17112 if ((code == SD_DELAYED_RETRY_ISSUED) || 17113 (code == SD_IMMEDIATE_RETRY_ISSUED)) { 17114 severity = SCSI_ERR_RETRYABLE; 17115 } 17116 17117 /* Use absolute block number for the request block number */ 17118 request_blkno = xp->xb_blkno; 17119 17120 /* 17121 * Now try to get the error block number from the sense data 17122 */ 17123 sensep = (struct scsi_extended_sense *)xp->xb_sense_data; 17124 switch (sensep->es_code) { 17125 case CODE_FMT_DESCR_CURRENT: 17126 case CODE_FMT_DESCR_DEFERRED: 17127 err_blkno = 17128 sd_extract_sense_info_descr( 17129 (struct scsi_descr_sense_hdr *)sensep); 17130 fixed_format = FALSE; 17131 break; 17132 case CODE_FMT_FIXED_CURRENT: 17133 case CODE_FMT_FIXED_DEFERRED: 17134 case CODE_FMT_VENDOR_SPECIFIC: 17135 default: 17136 /* 17137 * With the es_valid bit set, we assume that the error 17138 * blkno is in the sense data. Also, if xp->xb_blkno is 17139 * greater than 0xffffffff then the target *should* have used 17140 * a descriptor sense format (or it shouldn't have set 17141 * the es_valid bit), and we may as well ignore the 17142 * 32-bit value. 17143 */ 17144 if ((sensep->es_valid != 0) && (xp->xb_blkno <= 0xffffffff)) { 17145 err_blkno = (diskaddr_t) 17146 ((sensep->es_info_1 << 24) | 17147 (sensep->es_info_2 << 16) | 17148 (sensep->es_info_3 << 8) | 17149 (sensep->es_info_4)); 17150 } else { 17151 err_blkno = (diskaddr_t)-1; 17152 } 17153 break; 17154 } 17155 17156 if (err_blkno == (diskaddr_t)-1) { 17157 /* 17158 * Without the es_valid bit set (for fixed format) or an 17159 * information descriptor (for descriptor format) we cannot 17160 * be certain of the error blkno, so just use the 17161 * request_blkno. 17162 */ 17163 err_blkno = (diskaddr_t)request_blkno; 17164 } else { 17165 /* 17166 * We retrieved the error block number from the information 17167 * portion of the sense data. 17168 * 17169 * For USCSI commands we are better off using the error 17170 * block no. as the requested block no. (This is the best 17171 * we can estimate.) 17172 */ 17173 if ((SD_IS_BUFIO(xp) == FALSE) && 17174 ((pktp->pkt_flags & FLAG_SILENT) == 0)) { 17175 request_blkno = err_blkno; 17176 } 17177 } 17178 17179 /* 17180 * The following will log the buffer contents for the release driver 17181 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error 17182 * level is set to verbose. 17183 */ 17184 sd_dump_memory(un, SD_LOG_IO, "Failed CDB", 17185 (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX); 17186 sd_dump_memory(un, SD_LOG_IO, "Sense Data", 17187 (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX); 17188 17189 if (pfa_flag == FALSE) { 17190 /* This is normally only set for USCSI */ 17191 if ((pktp->pkt_flags & FLAG_SILENT) != 0) { 17192 return; 17193 } 17194 17195 if ((SD_IS_BUFIO(xp) == TRUE) && 17196 (((sd_level_mask & SD_LOGMASK_DIAG) == 0) && 17197 (severity < sd_error_level))) { 17198 return; 17199 } 17200 } 17201 17202 /* 17203 * If the data is fixed format then check for Sonoma Failover, 17204 * and keep a count of how many failed I/O's. We should not have 17205 * to worry about Sonoma returning descriptor format sense data, 17206 * and asc/ascq are in a different location in descriptor format. 17207 */ 17208 if (fixed_format && 17209 (SD_IS_LSI(un)) && (sensep->es_key == KEY_ILLEGAL_REQUEST) && 17210 (sensep->es_add_code == 0x94) && (sensep->es_qual_code == 0x01)) { 17211 un->un_sonoma_failure_count++; 17212 if (un->un_sonoma_failure_count > 1) { 17213 return; 17214 } 17215 } 17216 17217 scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity, 17218 request_blkno, err_blkno, scsi_cmds, sensep, 17219 un->un_additional_codes, NULL); 17220 } 17221 17222 /* 17223 * Function: sd_extract_sense_info_descr 17224 * 17225 * Description: Retrieve "information" field from descriptor format 17226 * sense data. Iterates through each sense descriptor 17227 * looking for the information descriptor and returns 17228 * the information field from that descriptor. 17229 * 17230 * Context: May be called from interrupt context 17231 */ 17232 17233 static diskaddr_t 17234 sd_extract_sense_info_descr(struct scsi_descr_sense_hdr *sdsp) 17235 { 17236 diskaddr_t result; 17237 uint8_t *descr_offset; 17238 int valid_sense_length; 17239 struct scsi_information_sense_descr *isd; 17240 17241 /* 17242 * Initialize result to -1 indicating there is no information 17243 * descriptor 17244 */ 17245 result = (diskaddr_t)-1; 17246 17247 /* 17248 * The first descriptor will immediately follow the header 17249 */ 17250 descr_offset = (uint8_t *)(sdsp+1); /* Pointer arithmetic */ 17251 17252 /* 17253 * Calculate the amount of valid sense data 17254 */ 17255 valid_sense_length = 17256 min((sizeof (struct scsi_descr_sense_hdr) + 17257 sdsp->ds_addl_sense_length), 17258 SENSE_LENGTH); 17259 17260 /* 17261 * Iterate through the list of descriptors, stopping when we 17262 * run out of sense data 17263 */ 17264 while ((descr_offset + sizeof (struct scsi_information_sense_descr)) <= 17265 (uint8_t *)sdsp + valid_sense_length) { 17266 /* 17267 * Check if this is an information descriptor. We can 17268 * use the scsi_information_sense_descr structure as a 17269 * template sense the first two fields are always the 17270 * same 17271 */ 17272 isd = (struct scsi_information_sense_descr *)descr_offset; 17273 if (isd->isd_descr_type == DESCR_INFORMATION) { 17274 /* 17275 * Found an information descriptor. Copy the 17276 * information field. There will only be one 17277 * information descriptor so we can stop looking. 17278 */ 17279 result = 17280 (((diskaddr_t)isd->isd_information[0] << 56) | 17281 ((diskaddr_t)isd->isd_information[1] << 48) | 17282 ((diskaddr_t)isd->isd_information[2] << 40) | 17283 ((diskaddr_t)isd->isd_information[3] << 32) | 17284 ((diskaddr_t)isd->isd_information[4] << 24) | 17285 ((diskaddr_t)isd->isd_information[5] << 16) | 17286 ((diskaddr_t)isd->isd_information[6] << 8) | 17287 ((diskaddr_t)isd->isd_information[7])); 17288 break; 17289 } 17290 17291 /* 17292 * Get pointer to the next descriptor. The "additional 17293 * length" field holds the length of the descriptor except 17294 * for the "type" and "additional length" fields, so 17295 * we need to add 2 to get the total length. 17296 */ 17297 descr_offset += (isd->isd_addl_length + 2); 17298 } 17299 17300 return (result); 17301 } 17302 17303 /* 17304 * Function: sd_sense_key_no_sense 17305 * 17306 * Description: Recovery action when sense data was not received. 17307 * 17308 * Context: May be called from interrupt context 17309 */ 17310 17311 static void 17312 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp, 17313 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17314 { 17315 struct sd_sense_info si; 17316 17317 ASSERT(un != NULL); 17318 ASSERT(mutex_owned(SD_MUTEX(un))); 17319 ASSERT(bp != NULL); 17320 ASSERT(xp != NULL); 17321 ASSERT(pktp != NULL); 17322 17323 si.ssi_severity = SCSI_ERR_FATAL; 17324 si.ssi_pfa_flag = FALSE; 17325 17326 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17327 17328 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17329 &si, EIO, (clock_t)0, NULL); 17330 } 17331 17332 17333 /* 17334 * Function: sd_sense_key_recoverable_error 17335 * 17336 * Description: Recovery actions for a SCSI "Recovered Error" sense key. 17337 * 17338 * Context: May be called from interrupt context 17339 */ 17340 17341 static void 17342 sd_sense_key_recoverable_error(struct sd_lun *un, 17343 uint8_t asc, 17344 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17345 { 17346 struct sd_sense_info si; 17347 17348 ASSERT(un != NULL); 17349 ASSERT(mutex_owned(SD_MUTEX(un))); 17350 ASSERT(bp != NULL); 17351 ASSERT(xp != NULL); 17352 ASSERT(pktp != NULL); 17353 17354 /* 17355 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED 17356 */ 17357 if ((asc == 0x5D) && (sd_report_pfa != 0)) { 17358 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 17359 si.ssi_severity = SCSI_ERR_INFO; 17360 si.ssi_pfa_flag = TRUE; 17361 } else { 17362 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17363 SD_UPDATE_ERRSTATS(un, sd_rq_recov_err); 17364 si.ssi_severity = SCSI_ERR_RECOVERED; 17365 si.ssi_pfa_flag = FALSE; 17366 } 17367 17368 if (pktp->pkt_resid == 0) { 17369 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17370 sd_return_command(un, bp); 17371 return; 17372 } 17373 17374 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17375 &si, EIO, (clock_t)0, NULL); 17376 } 17377 17378 17379 17380 17381 /* 17382 * Function: sd_sense_key_not_ready 17383 * 17384 * Description: Recovery actions for a SCSI "Not Ready" sense key. 17385 * 17386 * Context: May be called from interrupt context 17387 */ 17388 17389 static void 17390 sd_sense_key_not_ready(struct sd_lun *un, 17391 uint8_t asc, uint8_t ascq, 17392 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17393 { 17394 struct sd_sense_info si; 17395 17396 ASSERT(un != NULL); 17397 ASSERT(mutex_owned(SD_MUTEX(un))); 17398 ASSERT(bp != NULL); 17399 ASSERT(xp != NULL); 17400 ASSERT(pktp != NULL); 17401 17402 si.ssi_severity = SCSI_ERR_FATAL; 17403 si.ssi_pfa_flag = FALSE; 17404 17405 /* 17406 * Update error stats after first NOT READY error. Disks may have 17407 * been powered down and may need to be restarted. For CDROMs, 17408 * report NOT READY errors only if media is present. 17409 */ 17410 if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) || 17411 (xp->xb_retry_count > 0)) { 17412 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17413 SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err); 17414 } 17415 17416 /* 17417 * Just fail if the "not ready" retry limit has been reached. 17418 */ 17419 if (xp->xb_retry_count >= un->un_notready_retry_count) { 17420 /* Special check for error message printing for removables. */ 17421 if (un->un_f_has_removable_media && (asc == 0x04) && 17422 (ascq >= 0x04)) { 17423 si.ssi_severity = SCSI_ERR_ALL; 17424 } 17425 goto fail_command; 17426 } 17427 17428 /* 17429 * Check the ASC and ASCQ in the sense data as needed, to determine 17430 * what to do. 17431 */ 17432 switch (asc) { 17433 case 0x04: /* LOGICAL UNIT NOT READY */ 17434 /* 17435 * disk drives that don't spin up result in a very long delay 17436 * in format without warning messages. We will log a message 17437 * if the error level is set to verbose. 17438 */ 17439 if (sd_error_level < SCSI_ERR_RETRYABLE) { 17440 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17441 "logical unit not ready, resetting disk\n"); 17442 } 17443 17444 /* 17445 * There are different requirements for CDROMs and disks for 17446 * the number of retries. If a CD-ROM is giving this, it is 17447 * probably reading TOC and is in the process of getting 17448 * ready, so we should keep on trying for a long time to make 17449 * sure that all types of media are taken in account (for 17450 * some media the drive takes a long time to read TOC). For 17451 * disks we do not want to retry this too many times as this 17452 * can cause a long hang in format when the drive refuses to 17453 * spin up (a very common failure). 17454 */ 17455 switch (ascq) { 17456 case 0x00: /* LUN NOT READY, CAUSE NOT REPORTABLE */ 17457 /* 17458 * Disk drives frequently refuse to spin up which 17459 * results in a very long hang in format without 17460 * warning messages. 17461 * 17462 * Note: This code preserves the legacy behavior of 17463 * comparing xb_retry_count against zero for fibre 17464 * channel targets instead of comparing against the 17465 * un_reset_retry_count value. The reason for this 17466 * discrepancy has been so utterly lost beneath the 17467 * Sands of Time that even Indiana Jones could not 17468 * find it. 17469 */ 17470 if (un->un_f_is_fibre == TRUE) { 17471 if (((sd_level_mask & SD_LOGMASK_DIAG) || 17472 (xp->xb_retry_count > 0)) && 17473 (un->un_startstop_timeid == NULL)) { 17474 scsi_log(SD_DEVINFO(un), sd_label, 17475 CE_WARN, "logical unit not ready, " 17476 "resetting disk\n"); 17477 sd_reset_target(un, pktp); 17478 } 17479 } else { 17480 if (((sd_level_mask & SD_LOGMASK_DIAG) || 17481 (xp->xb_retry_count > 17482 un->un_reset_retry_count)) && 17483 (un->un_startstop_timeid == NULL)) { 17484 scsi_log(SD_DEVINFO(un), sd_label, 17485 CE_WARN, "logical unit not ready, " 17486 "resetting disk\n"); 17487 sd_reset_target(un, pktp); 17488 } 17489 } 17490 break; 17491 17492 case 0x01: /* LUN IS IN PROCESS OF BECOMING READY */ 17493 /* 17494 * If the target is in the process of becoming 17495 * ready, just proceed with the retry. This can 17496 * happen with CD-ROMs that take a long time to 17497 * read TOC after a power cycle or reset. 17498 */ 17499 goto do_retry; 17500 17501 case 0x02: /* LUN NOT READY, INITITIALIZING CMD REQUIRED */ 17502 break; 17503 17504 case 0x03: /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */ 17505 /* 17506 * Retries cannot help here so just fail right away. 17507 */ 17508 goto fail_command; 17509 17510 case 0x88: 17511 /* 17512 * Vendor-unique code for T3/T4: it indicates a 17513 * path problem in a mutipathed config, but as far as 17514 * the target driver is concerned it equates to a fatal 17515 * error, so we should just fail the command right away 17516 * (without printing anything to the console). If this 17517 * is not a T3/T4, fall thru to the default recovery 17518 * action. 17519 * T3/T4 is FC only, don't need to check is_fibre 17520 */ 17521 if (SD_IS_T3(un) || SD_IS_T4(un)) { 17522 sd_return_failed_command(un, bp, EIO); 17523 return; 17524 } 17525 /* FALLTHRU */ 17526 17527 case 0x04: /* LUN NOT READY, FORMAT IN PROGRESS */ 17528 case 0x05: /* LUN NOT READY, REBUILD IN PROGRESS */ 17529 case 0x06: /* LUN NOT READY, RECALCULATION IN PROGRESS */ 17530 case 0x07: /* LUN NOT READY, OPERATION IN PROGRESS */ 17531 case 0x08: /* LUN NOT READY, LONG WRITE IN PROGRESS */ 17532 default: /* Possible future codes in SCSI spec? */ 17533 /* 17534 * For removable-media devices, do not retry if 17535 * ASCQ > 2 as these result mostly from USCSI commands 17536 * on MMC devices issued to check status of an 17537 * operation initiated in immediate mode. Also for 17538 * ASCQ >= 4 do not print console messages as these 17539 * mainly represent a user-initiated operation 17540 * instead of a system failure. 17541 */ 17542 if (un->un_f_has_removable_media) { 17543 si.ssi_severity = SCSI_ERR_ALL; 17544 goto fail_command; 17545 } 17546 break; 17547 } 17548 17549 /* 17550 * As part of our recovery attempt for the NOT READY 17551 * condition, we issue a START STOP UNIT command. However 17552 * we want to wait for a short delay before attempting this 17553 * as there may still be more commands coming back from the 17554 * target with the check condition. To do this we use 17555 * timeout(9F) to call sd_start_stop_unit_callback() after 17556 * the delay interval expires. (sd_start_stop_unit_callback() 17557 * dispatches sd_start_stop_unit_task(), which will issue 17558 * the actual START STOP UNIT command. The delay interval 17559 * is one-half of the delay that we will use to retry the 17560 * command that generated the NOT READY condition. 17561 * 17562 * Note that we could just dispatch sd_start_stop_unit_task() 17563 * from here and allow it to sleep for the delay interval, 17564 * but then we would be tying up the taskq thread 17565 * uncesessarily for the duration of the delay. 17566 * 17567 * Do not issue the START STOP UNIT if the current command 17568 * is already a START STOP UNIT. 17569 */ 17570 if (pktp->pkt_cdbp[0] == SCMD_START_STOP) { 17571 break; 17572 } 17573 17574 /* 17575 * Do not schedule the timeout if one is already pending. 17576 */ 17577 if (un->un_startstop_timeid != NULL) { 17578 SD_INFO(SD_LOG_ERROR, un, 17579 "sd_sense_key_not_ready: restart already issued to" 17580 " %s%d\n", ddi_driver_name(SD_DEVINFO(un)), 17581 ddi_get_instance(SD_DEVINFO(un))); 17582 break; 17583 } 17584 17585 /* 17586 * Schedule the START STOP UNIT command, then queue the command 17587 * for a retry. 17588 * 17589 * Note: A timeout is not scheduled for this retry because we 17590 * want the retry to be serial with the START_STOP_UNIT. The 17591 * retry will be started when the START_STOP_UNIT is completed 17592 * in sd_start_stop_unit_task. 17593 */ 17594 un->un_startstop_timeid = timeout(sd_start_stop_unit_callback, 17595 un, SD_BSY_TIMEOUT / 2); 17596 xp->xb_retry_count++; 17597 sd_set_retry_bp(un, bp, 0, kstat_waitq_enter); 17598 return; 17599 17600 case 0x05: /* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */ 17601 if (sd_error_level < SCSI_ERR_RETRYABLE) { 17602 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17603 "unit does not respond to selection\n"); 17604 } 17605 break; 17606 17607 case 0x3A: /* MEDIUM NOT PRESENT */ 17608 if (sd_error_level >= SCSI_ERR_FATAL) { 17609 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 17610 "Caddy not inserted in drive\n"); 17611 } 17612 17613 sr_ejected(un); 17614 un->un_mediastate = DKIO_EJECTED; 17615 /* The state has changed, inform the media watch routines */ 17616 cv_broadcast(&un->un_state_cv); 17617 /* Just fail if no media is present in the drive. */ 17618 goto fail_command; 17619 17620 default: 17621 if (sd_error_level < SCSI_ERR_RETRYABLE) { 17622 scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, 17623 "Unit not Ready. Additional sense code 0x%x\n", 17624 asc); 17625 } 17626 break; 17627 } 17628 17629 do_retry: 17630 17631 /* 17632 * Retry the command, as some targets may report NOT READY for 17633 * several seconds after being reset. 17634 */ 17635 xp->xb_retry_count++; 17636 si.ssi_severity = SCSI_ERR_RETRYABLE; 17637 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 17638 &si, EIO, SD_BSY_TIMEOUT, NULL); 17639 17640 return; 17641 17642 fail_command: 17643 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17644 sd_return_failed_command(un, bp, EIO); 17645 } 17646 17647 17648 17649 /* 17650 * Function: sd_sense_key_medium_or_hardware_error 17651 * 17652 * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error" 17653 * sense key. 17654 * 17655 * Context: May be called from interrupt context 17656 */ 17657 17658 static void 17659 sd_sense_key_medium_or_hardware_error(struct sd_lun *un, 17660 int sense_key, uint8_t asc, 17661 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17662 { 17663 struct sd_sense_info si; 17664 17665 ASSERT(un != NULL); 17666 ASSERT(mutex_owned(SD_MUTEX(un))); 17667 ASSERT(bp != NULL); 17668 ASSERT(xp != NULL); 17669 ASSERT(pktp != NULL); 17670 17671 si.ssi_severity = SCSI_ERR_FATAL; 17672 si.ssi_pfa_flag = FALSE; 17673 17674 if (sense_key == KEY_MEDIUM_ERROR) { 17675 SD_UPDATE_ERRSTATS(un, sd_rq_media_err); 17676 } 17677 17678 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17679 17680 if ((un->un_reset_retry_count != 0) && 17681 (xp->xb_retry_count == un->un_reset_retry_count)) { 17682 mutex_exit(SD_MUTEX(un)); 17683 /* Do NOT do a RESET_ALL here: too intrusive. (4112858) */ 17684 if (un->un_f_allow_bus_device_reset == TRUE) { 17685 17686 boolean_t try_resetting_target = B_TRUE; 17687 17688 /* 17689 * We need to be able to handle specific ASC when we are 17690 * handling a KEY_HARDWARE_ERROR. In particular 17691 * taking the default action of resetting the target may 17692 * not be the appropriate way to attempt recovery. 17693 * Resetting a target because of a single LUN failure 17694 * victimizes all LUNs on that target. 17695 * 17696 * This is true for the LSI arrays, if an LSI 17697 * array controller returns an ASC of 0x84 (LUN Dead) we 17698 * should trust it. 17699 */ 17700 17701 if (sense_key == KEY_HARDWARE_ERROR) { 17702 switch (asc) { 17703 case 0x84: 17704 if (SD_IS_LSI(un)) { 17705 try_resetting_target = B_FALSE; 17706 } 17707 break; 17708 default: 17709 break; 17710 } 17711 } 17712 17713 if (try_resetting_target == B_TRUE) { 17714 int reset_retval = 0; 17715 if (un->un_f_lun_reset_enabled == TRUE) { 17716 SD_TRACE(SD_LOG_IO_CORE, un, 17717 "sd_sense_key_medium_or_hardware_" 17718 "error: issuing RESET_LUN\n"); 17719 reset_retval = 17720 scsi_reset(SD_ADDRESS(un), 17721 RESET_LUN); 17722 } 17723 if (reset_retval == 0) { 17724 SD_TRACE(SD_LOG_IO_CORE, un, 17725 "sd_sense_key_medium_or_hardware_" 17726 "error: issuing RESET_TARGET\n"); 17727 (void) scsi_reset(SD_ADDRESS(un), 17728 RESET_TARGET); 17729 } 17730 } 17731 } 17732 mutex_enter(SD_MUTEX(un)); 17733 } 17734 17735 /* 17736 * This really ought to be a fatal error, but we will retry anyway 17737 * as some drives report this as a spurious error. 17738 */ 17739 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17740 &si, EIO, (clock_t)0, NULL); 17741 } 17742 17743 17744 17745 /* 17746 * Function: sd_sense_key_illegal_request 17747 * 17748 * Description: Recovery actions for a SCSI "Illegal Request" sense key. 17749 * 17750 * Context: May be called from interrupt context 17751 */ 17752 17753 static void 17754 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp, 17755 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17756 { 17757 struct sd_sense_info si; 17758 17759 ASSERT(un != NULL); 17760 ASSERT(mutex_owned(SD_MUTEX(un))); 17761 ASSERT(bp != NULL); 17762 ASSERT(xp != NULL); 17763 ASSERT(pktp != NULL); 17764 17765 SD_UPDATE_ERRSTATS(un, sd_softerrs); 17766 SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err); 17767 17768 si.ssi_severity = SCSI_ERR_INFO; 17769 si.ssi_pfa_flag = FALSE; 17770 17771 /* Pointless to retry if the target thinks it's an illegal request */ 17772 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17773 sd_return_failed_command(un, bp, EIO); 17774 } 17775 17776 17777 17778 17779 /* 17780 * Function: sd_sense_key_unit_attention 17781 * 17782 * Description: Recovery actions for a SCSI "Unit Attention" sense key. 17783 * 17784 * Context: May be called from interrupt context 17785 */ 17786 17787 static void 17788 sd_sense_key_unit_attention(struct sd_lun *un, 17789 uint8_t asc, 17790 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 17791 { 17792 /* 17793 * For UNIT ATTENTION we allow retries for one minute. Devices 17794 * like Sonoma can return UNIT ATTENTION close to a minute 17795 * under certain conditions. 17796 */ 17797 int retry_check_flag = SD_RETRIES_UA; 17798 boolean_t kstat_updated = B_FALSE; 17799 struct sd_sense_info si; 17800 17801 ASSERT(un != NULL); 17802 ASSERT(mutex_owned(SD_MUTEX(un))); 17803 ASSERT(bp != NULL); 17804 ASSERT(xp != NULL); 17805 ASSERT(pktp != NULL); 17806 17807 si.ssi_severity = SCSI_ERR_INFO; 17808 si.ssi_pfa_flag = FALSE; 17809 17810 17811 switch (asc) { 17812 case 0x5D: /* FAILURE PREDICTION THRESHOLD EXCEEDED */ 17813 if (sd_report_pfa != 0) { 17814 SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err); 17815 si.ssi_pfa_flag = TRUE; 17816 retry_check_flag = SD_RETRIES_STANDARD; 17817 goto do_retry; 17818 } 17819 break; 17820 17821 case 0x29: /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */ 17822 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 17823 un->un_resvd_status |= 17824 (SD_LOST_RESERVE | SD_WANT_RESERVE); 17825 } 17826 /* FALLTHRU */ 17827 17828 case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */ 17829 if (!un->un_f_has_removable_media) { 17830 break; 17831 } 17832 17833 /* 17834 * When we get a unit attention from a removable-media device, 17835 * it may be in a state that will take a long time to recover 17836 * (e.g., from a reset). Since we are executing in interrupt 17837 * context here, we cannot wait around for the device to come 17838 * back. So hand this command off to sd_media_change_task() 17839 * for deferred processing under taskq thread context. (Note 17840 * that the command still may be failed if a problem is 17841 * encountered at a later time.) 17842 */ 17843 if (taskq_dispatch(sd_tq, sd_media_change_task, pktp, 17844 KM_NOSLEEP) == 0) { 17845 /* 17846 * Cannot dispatch the request so fail the command. 17847 */ 17848 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17849 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 17850 si.ssi_severity = SCSI_ERR_FATAL; 17851 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17852 sd_return_failed_command(un, bp, EIO); 17853 } 17854 17855 /* 17856 * If failed to dispatch sd_media_change_task(), we already 17857 * updated kstat. If succeed to dispatch sd_media_change_task(), 17858 * we should update kstat later if it encounters an error. So, 17859 * we update kstat_updated flag here. 17860 */ 17861 kstat_updated = B_TRUE; 17862 17863 /* 17864 * Either the command has been successfully dispatched to a 17865 * task Q for retrying, or the dispatch failed. In either case 17866 * do NOT retry again by calling sd_retry_command. This sets up 17867 * two retries of the same command and when one completes and 17868 * frees the resources the other will access freed memory, 17869 * a bad thing. 17870 */ 17871 return; 17872 17873 default: 17874 break; 17875 } 17876 17877 /* 17878 * Update kstat if we haven't done that. 17879 */ 17880 if (!kstat_updated) { 17881 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17882 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 17883 } 17884 17885 do_retry: 17886 sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si, 17887 EIO, SD_UA_RETRY_DELAY, NULL); 17888 } 17889 17890 17891 17892 /* 17893 * Function: sd_sense_key_fail_command 17894 * 17895 * Description: Use to fail a command when we don't like the sense key that 17896 * was returned. 17897 * 17898 * Context: May be called from interrupt context 17899 */ 17900 17901 static void 17902 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp, 17903 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17904 { 17905 struct sd_sense_info si; 17906 17907 ASSERT(un != NULL); 17908 ASSERT(mutex_owned(SD_MUTEX(un))); 17909 ASSERT(bp != NULL); 17910 ASSERT(xp != NULL); 17911 ASSERT(pktp != NULL); 17912 17913 si.ssi_severity = SCSI_ERR_FATAL; 17914 si.ssi_pfa_flag = FALSE; 17915 17916 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17917 sd_return_failed_command(un, bp, EIO); 17918 } 17919 17920 17921 17922 /* 17923 * Function: sd_sense_key_blank_check 17924 * 17925 * Description: Recovery actions for a SCSI "Blank Check" sense key. 17926 * Has no monetary connotation. 17927 * 17928 * Context: May be called from interrupt context 17929 */ 17930 17931 static void 17932 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp, 17933 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17934 { 17935 struct sd_sense_info si; 17936 17937 ASSERT(un != NULL); 17938 ASSERT(mutex_owned(SD_MUTEX(un))); 17939 ASSERT(bp != NULL); 17940 ASSERT(xp != NULL); 17941 ASSERT(pktp != NULL); 17942 17943 /* 17944 * Blank check is not fatal for removable devices, therefore 17945 * it does not require a console message. 17946 */ 17947 si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL : 17948 SCSI_ERR_FATAL; 17949 si.ssi_pfa_flag = FALSE; 17950 17951 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 17952 sd_return_failed_command(un, bp, EIO); 17953 } 17954 17955 17956 17957 17958 /* 17959 * Function: sd_sense_key_aborted_command 17960 * 17961 * Description: Recovery actions for a SCSI "Aborted Command" sense key. 17962 * 17963 * Context: May be called from interrupt context 17964 */ 17965 17966 static void 17967 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp, 17968 struct sd_xbuf *xp, struct scsi_pkt *pktp) 17969 { 17970 struct sd_sense_info si; 17971 17972 ASSERT(un != NULL); 17973 ASSERT(mutex_owned(SD_MUTEX(un))); 17974 ASSERT(bp != NULL); 17975 ASSERT(xp != NULL); 17976 ASSERT(pktp != NULL); 17977 17978 si.ssi_severity = SCSI_ERR_FATAL; 17979 si.ssi_pfa_flag = FALSE; 17980 17981 SD_UPDATE_ERRSTATS(un, sd_harderrs); 17982 17983 /* 17984 * This really ought to be a fatal error, but we will retry anyway 17985 * as some drives report this as a spurious error. 17986 */ 17987 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 17988 &si, EIO, (clock_t)0, NULL); 17989 } 17990 17991 17992 17993 /* 17994 * Function: sd_sense_key_default 17995 * 17996 * Description: Default recovery action for several SCSI sense keys (basically 17997 * attempts a retry). 17998 * 17999 * Context: May be called from interrupt context 18000 */ 18001 18002 static void 18003 sd_sense_key_default(struct sd_lun *un, 18004 int sense_key, 18005 struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp) 18006 { 18007 struct sd_sense_info si; 18008 18009 ASSERT(un != NULL); 18010 ASSERT(mutex_owned(SD_MUTEX(un))); 18011 ASSERT(bp != NULL); 18012 ASSERT(xp != NULL); 18013 ASSERT(pktp != NULL); 18014 18015 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18016 18017 /* 18018 * Undecoded sense key. Attempt retries and hope that will fix 18019 * the problem. Otherwise, we're dead. 18020 */ 18021 if ((pktp->pkt_flags & FLAG_SILENT) == 0) { 18022 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18023 "Unhandled Sense Key '%s'\n", sense_keys[sense_key]); 18024 } 18025 18026 si.ssi_severity = SCSI_ERR_FATAL; 18027 si.ssi_pfa_flag = FALSE; 18028 18029 sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg, 18030 &si, EIO, (clock_t)0, NULL); 18031 } 18032 18033 18034 18035 /* 18036 * Function: sd_print_retry_msg 18037 * 18038 * Description: Print a message indicating the retry action being taken. 18039 * 18040 * Arguments: un - ptr to associated softstate 18041 * bp - ptr to buf(9S) for the command 18042 * arg - not used. 18043 * flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18044 * or SD_NO_RETRY_ISSUED 18045 * 18046 * Context: May be called from interrupt context 18047 */ 18048 /* ARGSUSED */ 18049 static void 18050 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag) 18051 { 18052 struct sd_xbuf *xp; 18053 struct scsi_pkt *pktp; 18054 char *reasonp; 18055 char *msgp; 18056 18057 ASSERT(un != NULL); 18058 ASSERT(mutex_owned(SD_MUTEX(un))); 18059 ASSERT(bp != NULL); 18060 pktp = SD_GET_PKTP(bp); 18061 ASSERT(pktp != NULL); 18062 xp = SD_GET_XBUF(bp); 18063 ASSERT(xp != NULL); 18064 18065 ASSERT(!mutex_owned(&un->un_pm_mutex)); 18066 mutex_enter(&un->un_pm_mutex); 18067 if ((un->un_state == SD_STATE_SUSPENDED) || 18068 (SD_DEVICE_IS_IN_LOW_POWER(un)) || 18069 (pktp->pkt_flags & FLAG_SILENT)) { 18070 mutex_exit(&un->un_pm_mutex); 18071 goto update_pkt_reason; 18072 } 18073 mutex_exit(&un->un_pm_mutex); 18074 18075 /* 18076 * Suppress messages if they are all the same pkt_reason; with 18077 * TQ, many (up to 256) are returned with the same pkt_reason. 18078 * If we are in panic, then suppress the retry messages. 18079 */ 18080 switch (flag) { 18081 case SD_NO_RETRY_ISSUED: 18082 msgp = "giving up"; 18083 break; 18084 case SD_IMMEDIATE_RETRY_ISSUED: 18085 case SD_DELAYED_RETRY_ISSUED: 18086 if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) || 18087 ((pktp->pkt_reason == un->un_last_pkt_reason) && 18088 (sd_error_level != SCSI_ERR_ALL))) { 18089 return; 18090 } 18091 msgp = "retrying command"; 18092 break; 18093 default: 18094 goto update_pkt_reason; 18095 } 18096 18097 reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" : 18098 scsi_rname(pktp->pkt_reason)); 18099 18100 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18101 "SCSI transport failed: reason '%s': %s\n", reasonp, msgp); 18102 18103 update_pkt_reason: 18104 /* 18105 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason. 18106 * This is to prevent multiple console messages for the same failure 18107 * condition. Note that un->un_last_pkt_reason is NOT restored if & 18108 * when the command is retried successfully because there still may be 18109 * more commands coming back with the same value of pktp->pkt_reason. 18110 */ 18111 if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) { 18112 un->un_last_pkt_reason = pktp->pkt_reason; 18113 } 18114 } 18115 18116 18117 /* 18118 * Function: sd_print_cmd_incomplete_msg 18119 * 18120 * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason. 18121 * 18122 * Arguments: un - ptr to associated softstate 18123 * bp - ptr to buf(9S) for the command 18124 * arg - passed to sd_print_retry_msg() 18125 * code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED, 18126 * or SD_NO_RETRY_ISSUED 18127 * 18128 * Context: May be called from interrupt context 18129 */ 18130 18131 static void 18132 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, 18133 int code) 18134 { 18135 dev_info_t *dip; 18136 18137 ASSERT(un != NULL); 18138 ASSERT(mutex_owned(SD_MUTEX(un))); 18139 ASSERT(bp != NULL); 18140 18141 switch (code) { 18142 case SD_NO_RETRY_ISSUED: 18143 /* Command was failed. Someone turned off this target? */ 18144 if (un->un_state != SD_STATE_OFFLINE) { 18145 /* 18146 * Suppress message if we are detaching and 18147 * device has been disconnected 18148 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation 18149 * private interface and not part of the DDI 18150 */ 18151 dip = un->un_sd->sd_dev; 18152 if (!(DEVI_IS_DETACHING(dip) && 18153 DEVI_IS_DEVICE_REMOVED(dip))) { 18154 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18155 "disk not responding to selection\n"); 18156 } 18157 New_state(un, SD_STATE_OFFLINE); 18158 } 18159 break; 18160 18161 case SD_DELAYED_RETRY_ISSUED: 18162 case SD_IMMEDIATE_RETRY_ISSUED: 18163 default: 18164 /* Command was successfully queued for retry */ 18165 sd_print_retry_msg(un, bp, arg, code); 18166 break; 18167 } 18168 } 18169 18170 18171 /* 18172 * Function: sd_pkt_reason_cmd_incomplete 18173 * 18174 * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason. 18175 * 18176 * Context: May be called from interrupt context 18177 */ 18178 18179 static void 18180 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp, 18181 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18182 { 18183 int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE; 18184 18185 ASSERT(un != NULL); 18186 ASSERT(mutex_owned(SD_MUTEX(un))); 18187 ASSERT(bp != NULL); 18188 ASSERT(xp != NULL); 18189 ASSERT(pktp != NULL); 18190 18191 /* Do not do a reset if selection did not complete */ 18192 /* Note: Should this not just check the bit? */ 18193 if (pktp->pkt_state != STATE_GOT_BUS) { 18194 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18195 sd_reset_target(un, pktp); 18196 } 18197 18198 /* 18199 * If the target was not successfully selected, then set 18200 * SD_RETRIES_FAILFAST to indicate that we lost communication 18201 * with the target, and further retries and/or commands are 18202 * likely to take a long time. 18203 */ 18204 if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) { 18205 flag |= SD_RETRIES_FAILFAST; 18206 } 18207 18208 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18209 18210 sd_retry_command(un, bp, flag, 18211 sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18212 } 18213 18214 18215 18216 /* 18217 * Function: sd_pkt_reason_cmd_tran_err 18218 * 18219 * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason. 18220 * 18221 * Context: May be called from interrupt context 18222 */ 18223 18224 static void 18225 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp, 18226 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18227 { 18228 ASSERT(un != NULL); 18229 ASSERT(mutex_owned(SD_MUTEX(un))); 18230 ASSERT(bp != NULL); 18231 ASSERT(xp != NULL); 18232 ASSERT(pktp != NULL); 18233 18234 /* 18235 * Do not reset if we got a parity error, or if 18236 * selection did not complete. 18237 */ 18238 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18239 /* Note: Should this not just check the bit for pkt_state? */ 18240 if (((pktp->pkt_statistics & STAT_PERR) == 0) && 18241 (pktp->pkt_state != STATE_GOT_BUS)) { 18242 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18243 sd_reset_target(un, pktp); 18244 } 18245 18246 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18247 18248 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18249 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18250 } 18251 18252 18253 18254 /* 18255 * Function: sd_pkt_reason_cmd_reset 18256 * 18257 * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason. 18258 * 18259 * Context: May be called from interrupt context 18260 */ 18261 18262 static void 18263 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp, 18264 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18265 { 18266 ASSERT(un != NULL); 18267 ASSERT(mutex_owned(SD_MUTEX(un))); 18268 ASSERT(bp != NULL); 18269 ASSERT(xp != NULL); 18270 ASSERT(pktp != NULL); 18271 18272 /* The target may still be running the command, so try to reset. */ 18273 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18274 sd_reset_target(un, pktp); 18275 18276 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18277 18278 /* 18279 * If pkt_reason is CMD_RESET chances are that this pkt got 18280 * reset because another target on this bus caused it. The target 18281 * that caused it should get CMD_TIMEOUT with pkt_statistics 18282 * of STAT_TIMEOUT/STAT_DEV_RESET. 18283 */ 18284 18285 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 18286 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18287 } 18288 18289 18290 18291 18292 /* 18293 * Function: sd_pkt_reason_cmd_aborted 18294 * 18295 * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason. 18296 * 18297 * Context: May be called from interrupt context 18298 */ 18299 18300 static void 18301 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp, 18302 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18303 { 18304 ASSERT(un != NULL); 18305 ASSERT(mutex_owned(SD_MUTEX(un))); 18306 ASSERT(bp != NULL); 18307 ASSERT(xp != NULL); 18308 ASSERT(pktp != NULL); 18309 18310 /* The target may still be running the command, so try to reset. */ 18311 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18312 sd_reset_target(un, pktp); 18313 18314 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18315 18316 /* 18317 * If pkt_reason is CMD_ABORTED chances are that this pkt got 18318 * aborted because another target on this bus caused it. The target 18319 * that caused it should get CMD_TIMEOUT with pkt_statistics 18320 * of STAT_TIMEOUT/STAT_DEV_RESET. 18321 */ 18322 18323 sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE), 18324 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18325 } 18326 18327 18328 18329 /* 18330 * Function: sd_pkt_reason_cmd_timeout 18331 * 18332 * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason. 18333 * 18334 * Context: May be called from interrupt context 18335 */ 18336 18337 static void 18338 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp, 18339 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18340 { 18341 ASSERT(un != NULL); 18342 ASSERT(mutex_owned(SD_MUTEX(un))); 18343 ASSERT(bp != NULL); 18344 ASSERT(xp != NULL); 18345 ASSERT(pktp != NULL); 18346 18347 18348 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18349 sd_reset_target(un, pktp); 18350 18351 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18352 18353 /* 18354 * A command timeout indicates that we could not establish 18355 * communication with the target, so set SD_RETRIES_FAILFAST 18356 * as further retries/commands are likely to take a long time. 18357 */ 18358 sd_retry_command(un, bp, 18359 (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST), 18360 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18361 } 18362 18363 18364 18365 /* 18366 * Function: sd_pkt_reason_cmd_unx_bus_free 18367 * 18368 * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason. 18369 * 18370 * Context: May be called from interrupt context 18371 */ 18372 18373 static void 18374 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp, 18375 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18376 { 18377 void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code); 18378 18379 ASSERT(un != NULL); 18380 ASSERT(mutex_owned(SD_MUTEX(un))); 18381 ASSERT(bp != NULL); 18382 ASSERT(xp != NULL); 18383 ASSERT(pktp != NULL); 18384 18385 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18386 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18387 18388 funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ? 18389 sd_print_retry_msg : NULL; 18390 18391 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18392 funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18393 } 18394 18395 18396 /* 18397 * Function: sd_pkt_reason_cmd_tag_reject 18398 * 18399 * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason. 18400 * 18401 * Context: May be called from interrupt context 18402 */ 18403 18404 static void 18405 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp, 18406 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18407 { 18408 ASSERT(un != NULL); 18409 ASSERT(mutex_owned(SD_MUTEX(un))); 18410 ASSERT(bp != NULL); 18411 ASSERT(xp != NULL); 18412 ASSERT(pktp != NULL); 18413 18414 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18415 pktp->pkt_flags = 0; 18416 un->un_tagflags = 0; 18417 if (un->un_f_opt_queueing == TRUE) { 18418 un->un_throttle = min(un->un_throttle, 3); 18419 } else { 18420 un->un_throttle = 1; 18421 } 18422 mutex_exit(SD_MUTEX(un)); 18423 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 18424 mutex_enter(SD_MUTEX(un)); 18425 18426 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18427 18428 /* Legacy behavior not to check retry counts here. */ 18429 sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE), 18430 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18431 } 18432 18433 18434 /* 18435 * Function: sd_pkt_reason_default 18436 * 18437 * Description: Default recovery actions for SCSA pkt_reason values that 18438 * do not have more explicit recovery actions. 18439 * 18440 * Context: May be called from interrupt context 18441 */ 18442 18443 static void 18444 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp, 18445 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18446 { 18447 ASSERT(un != NULL); 18448 ASSERT(mutex_owned(SD_MUTEX(un))); 18449 ASSERT(bp != NULL); 18450 ASSERT(xp != NULL); 18451 ASSERT(pktp != NULL); 18452 18453 SD_UPDATE_ERRSTATS(un, sd_transerrs); 18454 sd_reset_target(un, pktp); 18455 18456 SD_UPDATE_RESERVATION_STATUS(un, pktp); 18457 18458 sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE), 18459 sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL); 18460 } 18461 18462 18463 18464 /* 18465 * Function: sd_pkt_status_check_condition 18466 * 18467 * Description: Recovery actions for a "STATUS_CHECK" SCSI command status. 18468 * 18469 * Context: May be called from interrupt context 18470 */ 18471 18472 static void 18473 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp, 18474 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18475 { 18476 ASSERT(un != NULL); 18477 ASSERT(mutex_owned(SD_MUTEX(un))); 18478 ASSERT(bp != NULL); 18479 ASSERT(xp != NULL); 18480 ASSERT(pktp != NULL); 18481 18482 SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: " 18483 "entry: buf:0x%p xp:0x%p\n", bp, xp); 18484 18485 /* 18486 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the 18487 * command will be retried after the request sense). Otherwise, retry 18488 * the command. Note: we are issuing the request sense even though the 18489 * retry limit may have been reached for the failed command. 18490 */ 18491 if (un->un_f_arq_enabled == FALSE) { 18492 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 18493 "no ARQ, sending request sense command\n"); 18494 sd_send_request_sense_command(un, bp, pktp); 18495 } else { 18496 SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: " 18497 "ARQ,retrying request sense command\n"); 18498 #if defined(__i386) || defined(__amd64) 18499 /* 18500 * The SD_RETRY_DELAY value need to be adjusted here 18501 * when SD_RETRY_DELAY change in sddef.h 18502 */ 18503 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 18504 un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, 18505 NULL); 18506 #else 18507 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, 18508 EIO, SD_RETRY_DELAY, NULL); 18509 #endif 18510 } 18511 18512 SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n"); 18513 } 18514 18515 18516 /* 18517 * Function: sd_pkt_status_busy 18518 * 18519 * Description: Recovery actions for a "STATUS_BUSY" SCSI command status. 18520 * 18521 * Context: May be called from interrupt context 18522 */ 18523 18524 static void 18525 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp, 18526 struct scsi_pkt *pktp) 18527 { 18528 ASSERT(un != NULL); 18529 ASSERT(mutex_owned(SD_MUTEX(un))); 18530 ASSERT(bp != NULL); 18531 ASSERT(xp != NULL); 18532 ASSERT(pktp != NULL); 18533 18534 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18535 "sd_pkt_status_busy: entry\n"); 18536 18537 /* If retries are exhausted, just fail the command. */ 18538 if (xp->xb_retry_count >= un->un_busy_retry_count) { 18539 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 18540 "device busy too long\n"); 18541 sd_return_failed_command(un, bp, EIO); 18542 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18543 "sd_pkt_status_busy: exit\n"); 18544 return; 18545 } 18546 xp->xb_retry_count++; 18547 18548 /* 18549 * Try to reset the target. However, we do not want to perform 18550 * more than one reset if the device continues to fail. The reset 18551 * will be performed when the retry count reaches the reset 18552 * threshold. This threshold should be set such that at least 18553 * one retry is issued before the reset is performed. 18554 */ 18555 if (xp->xb_retry_count == 18556 ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) { 18557 int rval = 0; 18558 mutex_exit(SD_MUTEX(un)); 18559 if (un->un_f_allow_bus_device_reset == TRUE) { 18560 /* 18561 * First try to reset the LUN; if we cannot then 18562 * try to reset the target. 18563 */ 18564 if (un->un_f_lun_reset_enabled == TRUE) { 18565 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18566 "sd_pkt_status_busy: RESET_LUN\n"); 18567 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 18568 } 18569 if (rval == 0) { 18570 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18571 "sd_pkt_status_busy: RESET_TARGET\n"); 18572 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 18573 } 18574 } 18575 if (rval == 0) { 18576 /* 18577 * If the RESET_LUN and/or RESET_TARGET failed, 18578 * try RESET_ALL 18579 */ 18580 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18581 "sd_pkt_status_busy: RESET_ALL\n"); 18582 rval = scsi_reset(SD_ADDRESS(un), RESET_ALL); 18583 } 18584 mutex_enter(SD_MUTEX(un)); 18585 if (rval == 0) { 18586 /* 18587 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed. 18588 * At this point we give up & fail the command. 18589 */ 18590 sd_return_failed_command(un, bp, EIO); 18591 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18592 "sd_pkt_status_busy: exit (failed cmd)\n"); 18593 return; 18594 } 18595 } 18596 18597 /* 18598 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as 18599 * we have already checked the retry counts above. 18600 */ 18601 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 18602 EIO, SD_BSY_TIMEOUT, NULL); 18603 18604 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18605 "sd_pkt_status_busy: exit\n"); 18606 } 18607 18608 18609 /* 18610 * Function: sd_pkt_status_reservation_conflict 18611 * 18612 * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI 18613 * command status. 18614 * 18615 * Context: May be called from interrupt context 18616 */ 18617 18618 static void 18619 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp, 18620 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18621 { 18622 ASSERT(un != NULL); 18623 ASSERT(mutex_owned(SD_MUTEX(un))); 18624 ASSERT(bp != NULL); 18625 ASSERT(xp != NULL); 18626 ASSERT(pktp != NULL); 18627 18628 /* 18629 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation 18630 * conflict could be due to various reasons like incorrect keys, not 18631 * registered or not reserved etc. So, we return EACCES to the caller. 18632 */ 18633 if (un->un_reservation_type == SD_SCSI3_RESERVATION) { 18634 int cmd = SD_GET_PKT_OPCODE(pktp); 18635 if ((cmd == SCMD_PERSISTENT_RESERVE_IN) || 18636 (cmd == SCMD_PERSISTENT_RESERVE_OUT)) { 18637 sd_return_failed_command(un, bp, EACCES); 18638 return; 18639 } 18640 } 18641 18642 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 18643 18644 if ((un->un_resvd_status & SD_FAILFAST) != 0) { 18645 if (sd_failfast_enable != 0) { 18646 /* By definition, we must panic here.... */ 18647 sd_panic_for_res_conflict(un); 18648 /*NOTREACHED*/ 18649 } 18650 SD_ERROR(SD_LOG_IO, un, 18651 "sd_handle_resv_conflict: Disk Reserved\n"); 18652 sd_return_failed_command(un, bp, EACCES); 18653 return; 18654 } 18655 18656 /* 18657 * 1147670: retry only if sd_retry_on_reservation_conflict 18658 * property is set (default is 1). Retries will not succeed 18659 * on a disk reserved by another initiator. HA systems 18660 * may reset this via sd.conf to avoid these retries. 18661 * 18662 * Note: The legacy return code for this failure is EIO, however EACCES 18663 * seems more appropriate for a reservation conflict. 18664 */ 18665 if (sd_retry_on_reservation_conflict == 0) { 18666 SD_ERROR(SD_LOG_IO, un, 18667 "sd_handle_resv_conflict: Device Reserved\n"); 18668 sd_return_failed_command(un, bp, EIO); 18669 return; 18670 } 18671 18672 /* 18673 * Retry the command if we can. 18674 * 18675 * Note: The legacy return code for this failure is EIO, however EACCES 18676 * seems more appropriate for a reservation conflict. 18677 */ 18678 sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO, 18679 (clock_t)2, NULL); 18680 } 18681 18682 18683 18684 /* 18685 * Function: sd_pkt_status_qfull 18686 * 18687 * Description: Handle a QUEUE FULL condition from the target. This can 18688 * occur if the HBA does not handle the queue full condition. 18689 * (Basically this means third-party HBAs as Sun HBAs will 18690 * handle the queue full condition.) Note that if there are 18691 * some commands already in the transport, then the queue full 18692 * has occurred because the queue for this nexus is actually 18693 * full. If there are no commands in the transport, then the 18694 * queue full is resulting from some other initiator or lun 18695 * consuming all the resources at the target. 18696 * 18697 * Context: May be called from interrupt context 18698 */ 18699 18700 static void 18701 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp, 18702 struct sd_xbuf *xp, struct scsi_pkt *pktp) 18703 { 18704 ASSERT(un != NULL); 18705 ASSERT(mutex_owned(SD_MUTEX(un))); 18706 ASSERT(bp != NULL); 18707 ASSERT(xp != NULL); 18708 ASSERT(pktp != NULL); 18709 18710 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18711 "sd_pkt_status_qfull: entry\n"); 18712 18713 /* 18714 * Just lower the QFULL throttle and retry the command. Note that 18715 * we do not limit the number of retries here. 18716 */ 18717 sd_reduce_throttle(un, SD_THROTTLE_QFULL); 18718 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0, 18719 SD_RESTART_TIMEOUT, NULL); 18720 18721 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18722 "sd_pkt_status_qfull: exit\n"); 18723 } 18724 18725 18726 /* 18727 * Function: sd_reset_target 18728 * 18729 * Description: Issue a scsi_reset(9F), with either RESET_LUN, 18730 * RESET_TARGET, or RESET_ALL. 18731 * 18732 * Context: May be called under interrupt context. 18733 */ 18734 18735 static void 18736 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp) 18737 { 18738 int rval = 0; 18739 18740 ASSERT(un != NULL); 18741 ASSERT(mutex_owned(SD_MUTEX(un))); 18742 ASSERT(pktp != NULL); 18743 18744 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n"); 18745 18746 /* 18747 * No need to reset if the transport layer has already done so. 18748 */ 18749 if ((pktp->pkt_statistics & 18750 (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) { 18751 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18752 "sd_reset_target: no reset\n"); 18753 return; 18754 } 18755 18756 mutex_exit(SD_MUTEX(un)); 18757 18758 if (un->un_f_allow_bus_device_reset == TRUE) { 18759 if (un->un_f_lun_reset_enabled == TRUE) { 18760 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18761 "sd_reset_target: RESET_LUN\n"); 18762 rval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 18763 } 18764 if (rval == 0) { 18765 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18766 "sd_reset_target: RESET_TARGET\n"); 18767 rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 18768 } 18769 } 18770 18771 if (rval == 0) { 18772 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 18773 "sd_reset_target: RESET_ALL\n"); 18774 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 18775 } 18776 18777 mutex_enter(SD_MUTEX(un)); 18778 18779 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n"); 18780 } 18781 18782 18783 /* 18784 * Function: sd_media_change_task 18785 * 18786 * Description: Recovery action for CDROM to become available. 18787 * 18788 * Context: Executes in a taskq() thread context 18789 */ 18790 18791 static void 18792 sd_media_change_task(void *arg) 18793 { 18794 struct scsi_pkt *pktp = arg; 18795 struct sd_lun *un; 18796 struct buf *bp; 18797 struct sd_xbuf *xp; 18798 int err = 0; 18799 int retry_count = 0; 18800 int retry_limit = SD_UNIT_ATTENTION_RETRY/10; 18801 struct sd_sense_info si; 18802 18803 ASSERT(pktp != NULL); 18804 bp = (struct buf *)pktp->pkt_private; 18805 ASSERT(bp != NULL); 18806 xp = SD_GET_XBUF(bp); 18807 ASSERT(xp != NULL); 18808 un = SD_GET_UN(bp); 18809 ASSERT(un != NULL); 18810 ASSERT(!mutex_owned(SD_MUTEX(un))); 18811 ASSERT(un->un_f_monitor_media_state); 18812 18813 si.ssi_severity = SCSI_ERR_INFO; 18814 si.ssi_pfa_flag = FALSE; 18815 18816 /* 18817 * When a reset is issued on a CDROM, it takes a long time to 18818 * recover. First few attempts to read capacity and other things 18819 * related to handling unit attention fail (with a ASC 0x4 and 18820 * ASCQ 0x1). In that case we want to do enough retries and we want 18821 * to limit the retries in other cases of genuine failures like 18822 * no media in drive. 18823 */ 18824 while (retry_count++ < retry_limit) { 18825 if ((err = sd_handle_mchange(un)) == 0) { 18826 break; 18827 } 18828 if (err == EAGAIN) { 18829 retry_limit = SD_UNIT_ATTENTION_RETRY; 18830 } 18831 /* Sleep for 0.5 sec. & try again */ 18832 delay(drv_usectohz(500000)); 18833 } 18834 18835 /* 18836 * Dispatch (retry or fail) the original command here, 18837 * along with appropriate console messages.... 18838 * 18839 * Must grab the mutex before calling sd_retry_command, 18840 * sd_print_sense_msg and sd_return_failed_command. 18841 */ 18842 mutex_enter(SD_MUTEX(un)); 18843 if (err != SD_CMD_SUCCESS) { 18844 SD_UPDATE_ERRSTATS(un, sd_harderrs); 18845 SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err); 18846 si.ssi_severity = SCSI_ERR_FATAL; 18847 sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED); 18848 sd_return_failed_command(un, bp, EIO); 18849 } else { 18850 sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg, 18851 &si, EIO, (clock_t)0, NULL); 18852 } 18853 mutex_exit(SD_MUTEX(un)); 18854 } 18855 18856 18857 18858 /* 18859 * Function: sd_handle_mchange 18860 * 18861 * Description: Perform geometry validation & other recovery when CDROM 18862 * has been removed from drive. 18863 * 18864 * Return Code: 0 for success 18865 * errno-type return code of either sd_send_scsi_DOORLOCK() or 18866 * sd_send_scsi_READ_CAPACITY() 18867 * 18868 * Context: Executes in a taskq() thread context 18869 */ 18870 18871 static int 18872 sd_handle_mchange(struct sd_lun *un) 18873 { 18874 uint64_t capacity; 18875 uint32_t lbasize; 18876 int rval; 18877 18878 ASSERT(!mutex_owned(SD_MUTEX(un))); 18879 ASSERT(un->un_f_monitor_media_state); 18880 18881 if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize, 18882 SD_PATH_DIRECT_PRIORITY)) != 0) { 18883 return (rval); 18884 } 18885 18886 mutex_enter(SD_MUTEX(un)); 18887 sd_update_block_info(un, lbasize, capacity); 18888 18889 if (un->un_errstats != NULL) { 18890 struct sd_errstats *stp = 18891 (struct sd_errstats *)un->un_errstats->ks_data; 18892 stp->sd_capacity.value.ui64 = (uint64_t) 18893 ((uint64_t)un->un_blockcount * 18894 (uint64_t)un->un_tgt_blocksize); 18895 } 18896 18897 /* 18898 * Note: Maybe let the strategy/partitioning chain worry about getting 18899 * valid geometry. 18900 */ 18901 un->un_f_geometry_is_valid = FALSE; 18902 (void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY); 18903 if (un->un_f_geometry_is_valid == FALSE) { 18904 mutex_exit(SD_MUTEX(un)); 18905 return (EIO); 18906 } 18907 18908 mutex_exit(SD_MUTEX(un)); 18909 18910 /* 18911 * Try to lock the door 18912 */ 18913 return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 18914 SD_PATH_DIRECT_PRIORITY)); 18915 } 18916 18917 18918 /* 18919 * Function: sd_send_scsi_DOORLOCK 18920 * 18921 * Description: Issue the scsi DOOR LOCK command 18922 * 18923 * Arguments: un - pointer to driver soft state (unit) structure for 18924 * this target. 18925 * flag - SD_REMOVAL_ALLOW 18926 * SD_REMOVAL_PREVENT 18927 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 18928 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 18929 * to use the USCSI "direct" chain and bypass the normal 18930 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 18931 * command is issued as part of an error recovery action. 18932 * 18933 * Return Code: 0 - Success 18934 * errno return code from sd_send_scsi_cmd() 18935 * 18936 * Context: Can sleep. 18937 */ 18938 18939 static int 18940 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag) 18941 { 18942 union scsi_cdb cdb; 18943 struct uscsi_cmd ucmd_buf; 18944 struct scsi_extended_sense sense_buf; 18945 int status; 18946 18947 ASSERT(un != NULL); 18948 ASSERT(!mutex_owned(SD_MUTEX(un))); 18949 18950 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un); 18951 18952 /* already determined doorlock is not supported, fake success */ 18953 if (un->un_f_doorlock_supported == FALSE) { 18954 return (0); 18955 } 18956 18957 bzero(&cdb, sizeof (cdb)); 18958 bzero(&ucmd_buf, sizeof (ucmd_buf)); 18959 18960 cdb.scc_cmd = SCMD_DOORLOCK; 18961 cdb.cdb_opaque[4] = (uchar_t)flag; 18962 18963 ucmd_buf.uscsi_cdb = (char *)&cdb; 18964 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 18965 ucmd_buf.uscsi_bufaddr = NULL; 18966 ucmd_buf.uscsi_buflen = 0; 18967 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 18968 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 18969 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 18970 ucmd_buf.uscsi_timeout = 15; 18971 18972 SD_TRACE(SD_LOG_IO, un, 18973 "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n"); 18974 18975 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 18976 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 18977 18978 if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) && 18979 (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 18980 (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) { 18981 /* fake success and skip subsequent doorlock commands */ 18982 un->un_f_doorlock_supported = FALSE; 18983 return (0); 18984 } 18985 18986 return (status); 18987 } 18988 18989 /* 18990 * Function: sd_send_scsi_READ_CAPACITY 18991 * 18992 * Description: This routine uses the scsi READ CAPACITY command to determine 18993 * the device capacity in number of blocks and the device native 18994 * block size. If this function returns a failure, then the 18995 * values in *capp and *lbap are undefined. If the capacity 18996 * returned is 0xffffffff then the lun is too large for a 18997 * normal READ CAPACITY command and the results of a 18998 * READ CAPACITY 16 will be used instead. 18999 * 19000 * Arguments: un - ptr to soft state struct for the target 19001 * capp - ptr to unsigned 64-bit variable to receive the 19002 * capacity value from the command. 19003 * lbap - ptr to unsigned 32-bit varaible to receive the 19004 * block size value from the command 19005 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19006 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19007 * to use the USCSI "direct" chain and bypass the normal 19008 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19009 * command is issued as part of an error recovery action. 19010 * 19011 * Return Code: 0 - Success 19012 * EIO - IO error 19013 * EACCES - Reservation conflict detected 19014 * EAGAIN - Device is becoming ready 19015 * errno return code from sd_send_scsi_cmd() 19016 * 19017 * Context: Can sleep. Blocks until command completes. 19018 */ 19019 19020 #define SD_CAPACITY_SIZE sizeof (struct scsi_capacity) 19021 19022 static int 19023 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap, 19024 int path_flag) 19025 { 19026 struct scsi_extended_sense sense_buf; 19027 struct uscsi_cmd ucmd_buf; 19028 union scsi_cdb cdb; 19029 uint32_t *capacity_buf; 19030 uint64_t capacity; 19031 uint32_t lbasize; 19032 int status; 19033 19034 ASSERT(un != NULL); 19035 ASSERT(!mutex_owned(SD_MUTEX(un))); 19036 ASSERT(capp != NULL); 19037 ASSERT(lbap != NULL); 19038 19039 SD_TRACE(SD_LOG_IO, un, 19040 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 19041 19042 /* 19043 * First send a READ_CAPACITY command to the target. 19044 * (This command is mandatory under SCSI-2.) 19045 * 19046 * Set up the CDB for the READ_CAPACITY command. The Partial 19047 * Medium Indicator bit is cleared. The address field must be 19048 * zero if the PMI bit is zero. 19049 */ 19050 bzero(&cdb, sizeof (cdb)); 19051 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19052 19053 capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP); 19054 19055 cdb.scc_cmd = SCMD_READ_CAPACITY; 19056 19057 ucmd_buf.uscsi_cdb = (char *)&cdb; 19058 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 19059 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity_buf; 19060 ucmd_buf.uscsi_buflen = SD_CAPACITY_SIZE; 19061 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19062 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19063 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19064 ucmd_buf.uscsi_timeout = 60; 19065 19066 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19067 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 19068 19069 switch (status) { 19070 case 0: 19071 /* Return failure if we did not get valid capacity data. */ 19072 if (ucmd_buf.uscsi_resid != 0) { 19073 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19074 return (EIO); 19075 } 19076 19077 /* 19078 * Read capacity and block size from the READ CAPACITY 10 data. 19079 * This data may be adjusted later due to device specific 19080 * issues. 19081 * 19082 * According to the SCSI spec, the READ CAPACITY 10 19083 * command returns the following: 19084 * 19085 * bytes 0-3: Maximum logical block address available. 19086 * (MSB in byte:0 & LSB in byte:3) 19087 * 19088 * bytes 4-7: Block length in bytes 19089 * (MSB in byte:4 & LSB in byte:7) 19090 * 19091 */ 19092 capacity = BE_32(capacity_buf[0]); 19093 lbasize = BE_32(capacity_buf[1]); 19094 19095 /* 19096 * Done with capacity_buf 19097 */ 19098 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19099 19100 /* 19101 * if the reported capacity is set to all 0xf's, then 19102 * this disk is too large and requires SBC-2 commands. 19103 * Reissue the request using READ CAPACITY 16. 19104 */ 19105 if (capacity == 0xffffffff) { 19106 status = sd_send_scsi_READ_CAPACITY_16(un, &capacity, 19107 &lbasize, path_flag); 19108 if (status != 0) { 19109 return (status); 19110 } 19111 } 19112 break; /* Success! */ 19113 case EIO: 19114 switch (ucmd_buf.uscsi_status) { 19115 case STATUS_RESERVATION_CONFLICT: 19116 status = EACCES; 19117 break; 19118 case STATUS_CHECK: 19119 /* 19120 * Check condition; look for ASC/ASCQ of 0x04/0x01 19121 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 19122 */ 19123 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19124 (sense_buf.es_add_code == 0x04) && 19125 (sense_buf.es_qual_code == 0x01)) { 19126 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19127 return (EAGAIN); 19128 } 19129 break; 19130 default: 19131 break; 19132 } 19133 /* FALLTHRU */ 19134 default: 19135 kmem_free(capacity_buf, SD_CAPACITY_SIZE); 19136 return (status); 19137 } 19138 19139 /* 19140 * Some ATAPI CD-ROM drives report inaccurate LBA size values 19141 * (2352 and 0 are common) so for these devices always force the value 19142 * to 2048 as required by the ATAPI specs. 19143 */ 19144 if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) { 19145 lbasize = 2048; 19146 } 19147 19148 /* 19149 * Get the maximum LBA value from the READ CAPACITY data. 19150 * Here we assume that the Partial Medium Indicator (PMI) bit 19151 * was cleared when issuing the command. This means that the LBA 19152 * returned from the device is the LBA of the last logical block 19153 * on the logical unit. The actual logical block count will be 19154 * this value plus one. 19155 * 19156 * Currently the capacity is saved in terms of un->un_sys_blocksize, 19157 * so scale the capacity value to reflect this. 19158 */ 19159 capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize); 19160 19161 #if defined(__i386) || defined(__amd64) 19162 /* 19163 * On x86, compensate for off-by-1 error (number of sectors on 19164 * media) (1175930) 19165 */ 19166 if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable && 19167 (lbasize == un->un_sys_blocksize)) { 19168 capacity -= 1; 19169 } 19170 #endif 19171 19172 /* 19173 * Copy the values from the READ CAPACITY command into the space 19174 * provided by the caller. 19175 */ 19176 *capp = capacity; 19177 *lbap = lbasize; 19178 19179 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: " 19180 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 19181 19182 /* 19183 * Both the lbasize and capacity from the device must be nonzero, 19184 * otherwise we assume that the values are not valid and return 19185 * failure to the caller. (4203735) 19186 */ 19187 if ((capacity == 0) || (lbasize == 0)) { 19188 return (EIO); 19189 } 19190 19191 return (0); 19192 } 19193 19194 /* 19195 * Function: sd_send_scsi_READ_CAPACITY_16 19196 * 19197 * Description: This routine uses the scsi READ CAPACITY 16 command to 19198 * determine the device capacity in number of blocks and the 19199 * device native block size. If this function returns a failure, 19200 * then the values in *capp and *lbap are undefined. 19201 * This routine should always be called by 19202 * sd_send_scsi_READ_CAPACITY which will appy any device 19203 * specific adjustments to capacity and lbasize. 19204 * 19205 * Arguments: un - ptr to soft state struct for the target 19206 * capp - ptr to unsigned 64-bit variable to receive the 19207 * capacity value from the command. 19208 * lbap - ptr to unsigned 32-bit varaible to receive the 19209 * block size value from the command 19210 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19211 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19212 * to use the USCSI "direct" chain and bypass the normal 19213 * command waitq. SD_PATH_DIRECT_PRIORITY is used when 19214 * this command is issued as part of an error recovery 19215 * action. 19216 * 19217 * Return Code: 0 - Success 19218 * EIO - IO error 19219 * EACCES - Reservation conflict detected 19220 * EAGAIN - Device is becoming ready 19221 * errno return code from sd_send_scsi_cmd() 19222 * 19223 * Context: Can sleep. Blocks until command completes. 19224 */ 19225 19226 #define SD_CAPACITY_16_SIZE sizeof (struct scsi_capacity_16) 19227 19228 static int 19229 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp, 19230 uint32_t *lbap, int path_flag) 19231 { 19232 struct scsi_extended_sense sense_buf; 19233 struct uscsi_cmd ucmd_buf; 19234 union scsi_cdb cdb; 19235 uint64_t *capacity16_buf; 19236 uint64_t capacity; 19237 uint32_t lbasize; 19238 int status; 19239 19240 ASSERT(un != NULL); 19241 ASSERT(!mutex_owned(SD_MUTEX(un))); 19242 ASSERT(capp != NULL); 19243 ASSERT(lbap != NULL); 19244 19245 SD_TRACE(SD_LOG_IO, un, 19246 "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un); 19247 19248 /* 19249 * First send a READ_CAPACITY_16 command to the target. 19250 * 19251 * Set up the CDB for the READ_CAPACITY_16 command. The Partial 19252 * Medium Indicator bit is cleared. The address field must be 19253 * zero if the PMI bit is zero. 19254 */ 19255 bzero(&cdb, sizeof (cdb)); 19256 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19257 19258 capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP); 19259 19260 ucmd_buf.uscsi_cdb = (char *)&cdb; 19261 ucmd_buf.uscsi_cdblen = CDB_GROUP4; 19262 ucmd_buf.uscsi_bufaddr = (caddr_t)capacity16_buf; 19263 ucmd_buf.uscsi_buflen = SD_CAPACITY_16_SIZE; 19264 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19265 ucmd_buf.uscsi_rqlen = sizeof (sense_buf); 19266 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19267 ucmd_buf.uscsi_timeout = 60; 19268 19269 /* 19270 * Read Capacity (16) is a Service Action In command. One 19271 * command byte (0x9E) is overloaded for multiple operations, 19272 * with the second CDB byte specifying the desired operation 19273 */ 19274 cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4; 19275 cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4; 19276 19277 /* 19278 * Fill in allocation length field 19279 */ 19280 FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen); 19281 19282 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19283 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 19284 19285 switch (status) { 19286 case 0: 19287 /* Return failure if we did not get valid capacity data. */ 19288 if (ucmd_buf.uscsi_resid > 20) { 19289 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19290 return (EIO); 19291 } 19292 19293 /* 19294 * Read capacity and block size from the READ CAPACITY 10 data. 19295 * This data may be adjusted later due to device specific 19296 * issues. 19297 * 19298 * According to the SCSI spec, the READ CAPACITY 10 19299 * command returns the following: 19300 * 19301 * bytes 0-7: Maximum logical block address available. 19302 * (MSB in byte:0 & LSB in byte:7) 19303 * 19304 * bytes 8-11: Block length in bytes 19305 * (MSB in byte:8 & LSB in byte:11) 19306 * 19307 */ 19308 capacity = BE_64(capacity16_buf[0]); 19309 lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]); 19310 19311 /* 19312 * Done with capacity16_buf 19313 */ 19314 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19315 19316 /* 19317 * if the reported capacity is set to all 0xf's, then 19318 * this disk is too large. This could only happen with 19319 * a device that supports LBAs larger than 64 bits which 19320 * are not defined by any current T10 standards. 19321 */ 19322 if (capacity == 0xffffffffffffffff) { 19323 return (EIO); 19324 } 19325 break; /* Success! */ 19326 case EIO: 19327 switch (ucmd_buf.uscsi_status) { 19328 case STATUS_RESERVATION_CONFLICT: 19329 status = EACCES; 19330 break; 19331 case STATUS_CHECK: 19332 /* 19333 * Check condition; look for ASC/ASCQ of 0x04/0x01 19334 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY) 19335 */ 19336 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19337 (sense_buf.es_add_code == 0x04) && 19338 (sense_buf.es_qual_code == 0x01)) { 19339 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19340 return (EAGAIN); 19341 } 19342 break; 19343 default: 19344 break; 19345 } 19346 /* FALLTHRU */ 19347 default: 19348 kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE); 19349 return (status); 19350 } 19351 19352 *capp = capacity; 19353 *lbap = lbasize; 19354 19355 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: " 19356 "capacity:0x%llx lbasize:0x%x\n", capacity, lbasize); 19357 19358 return (0); 19359 } 19360 19361 19362 /* 19363 * Function: sd_send_scsi_START_STOP_UNIT 19364 * 19365 * Description: Issue a scsi START STOP UNIT command to the target. 19366 * 19367 * Arguments: un - pointer to driver soft state (unit) structure for 19368 * this target. 19369 * flag - SD_TARGET_START 19370 * SD_TARGET_STOP 19371 * SD_TARGET_EJECT 19372 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 19373 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 19374 * to use the USCSI "direct" chain and bypass the normal 19375 * command waitq. SD_PATH_DIRECT_PRIORITY is used when this 19376 * command is issued as part of an error recovery action. 19377 * 19378 * Return Code: 0 - Success 19379 * EIO - IO error 19380 * EACCES - Reservation conflict detected 19381 * ENXIO - Not Ready, medium not present 19382 * errno return code from sd_send_scsi_cmd() 19383 * 19384 * Context: Can sleep. 19385 */ 19386 19387 static int 19388 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag) 19389 { 19390 struct scsi_extended_sense sense_buf; 19391 union scsi_cdb cdb; 19392 struct uscsi_cmd ucmd_buf; 19393 int status; 19394 19395 ASSERT(un != NULL); 19396 ASSERT(!mutex_owned(SD_MUTEX(un))); 19397 19398 SD_TRACE(SD_LOG_IO, un, 19399 "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un); 19400 19401 if (un->un_f_check_start_stop && 19402 ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) && 19403 (un->un_f_start_stop_supported != TRUE)) { 19404 return (0); 19405 } 19406 19407 bzero(&cdb, sizeof (cdb)); 19408 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19409 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19410 19411 cdb.scc_cmd = SCMD_START_STOP; 19412 cdb.cdb_opaque[4] = (uchar_t)flag; 19413 19414 ucmd_buf.uscsi_cdb = (char *)&cdb; 19415 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19416 ucmd_buf.uscsi_bufaddr = NULL; 19417 ucmd_buf.uscsi_buflen = 0; 19418 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19419 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19420 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19421 ucmd_buf.uscsi_timeout = 200; 19422 19423 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19424 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 19425 19426 switch (status) { 19427 case 0: 19428 break; /* Success! */ 19429 case EIO: 19430 switch (ucmd_buf.uscsi_status) { 19431 case STATUS_RESERVATION_CONFLICT: 19432 status = EACCES; 19433 break; 19434 case STATUS_CHECK: 19435 if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) { 19436 switch (sense_buf.es_key) { 19437 case KEY_ILLEGAL_REQUEST: 19438 status = ENOTSUP; 19439 break; 19440 case KEY_NOT_READY: 19441 if (sense_buf.es_add_code == 0x3A) { 19442 status = ENXIO; 19443 } 19444 break; 19445 default: 19446 break; 19447 } 19448 } 19449 break; 19450 default: 19451 break; 19452 } 19453 break; 19454 default: 19455 break; 19456 } 19457 19458 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n"); 19459 19460 return (status); 19461 } 19462 19463 19464 /* 19465 * Function: sd_start_stop_unit_callback 19466 * 19467 * Description: timeout(9F) callback to begin recovery process for a 19468 * device that has spun down. 19469 * 19470 * Arguments: arg - pointer to associated softstate struct. 19471 * 19472 * Context: Executes in a timeout(9F) thread context 19473 */ 19474 19475 static void 19476 sd_start_stop_unit_callback(void *arg) 19477 { 19478 struct sd_lun *un = arg; 19479 ASSERT(un != NULL); 19480 ASSERT(!mutex_owned(SD_MUTEX(un))); 19481 19482 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n"); 19483 19484 (void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP); 19485 } 19486 19487 19488 /* 19489 * Function: sd_start_stop_unit_task 19490 * 19491 * Description: Recovery procedure when a drive is spun down. 19492 * 19493 * Arguments: arg - pointer to associated softstate struct. 19494 * 19495 * Context: Executes in a taskq() thread context 19496 */ 19497 19498 static void 19499 sd_start_stop_unit_task(void *arg) 19500 { 19501 struct sd_lun *un = arg; 19502 19503 ASSERT(un != NULL); 19504 ASSERT(!mutex_owned(SD_MUTEX(un))); 19505 19506 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n"); 19507 19508 /* 19509 * Some unformatted drives report not ready error, no need to 19510 * restart if format has been initiated. 19511 */ 19512 mutex_enter(SD_MUTEX(un)); 19513 if (un->un_f_format_in_progress == TRUE) { 19514 mutex_exit(SD_MUTEX(un)); 19515 return; 19516 } 19517 mutex_exit(SD_MUTEX(un)); 19518 19519 /* 19520 * When a START STOP command is issued from here, it is part of a 19521 * failure recovery operation and must be issued before any other 19522 * commands, including any pending retries. Thus it must be sent 19523 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up 19524 * succeeds or not, we will start I/O after the attempt. 19525 */ 19526 (void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, 19527 SD_PATH_DIRECT_PRIORITY); 19528 19529 /* 19530 * The above call blocks until the START_STOP_UNIT command completes. 19531 * Now that it has completed, we must re-try the original IO that 19532 * received the NOT READY condition in the first place. There are 19533 * three possible conditions here: 19534 * 19535 * (1) The original IO is on un_retry_bp. 19536 * (2) The original IO is on the regular wait queue, and un_retry_bp 19537 * is NULL. 19538 * (3) The original IO is on the regular wait queue, and un_retry_bp 19539 * points to some other, unrelated bp. 19540 * 19541 * For each case, we must call sd_start_cmds() with un_retry_bp 19542 * as the argument. If un_retry_bp is NULL, this will initiate 19543 * processing of the regular wait queue. If un_retry_bp is not NULL, 19544 * then this will process the bp on un_retry_bp. That may or may not 19545 * be the original IO, but that does not matter: the important thing 19546 * is to keep the IO processing going at this point. 19547 * 19548 * Note: This is a very specific error recovery sequence associated 19549 * with a drive that is not spun up. We attempt a START_STOP_UNIT and 19550 * serialize the I/O with completion of the spin-up. 19551 */ 19552 mutex_enter(SD_MUTEX(un)); 19553 SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, 19554 "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n", 19555 un, un->un_retry_bp); 19556 un->un_startstop_timeid = NULL; /* Timeout is no longer pending */ 19557 sd_start_cmds(un, un->un_retry_bp); 19558 mutex_exit(SD_MUTEX(un)); 19559 19560 SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n"); 19561 } 19562 19563 19564 /* 19565 * Function: sd_send_scsi_INQUIRY 19566 * 19567 * Description: Issue the scsi INQUIRY command. 19568 * 19569 * Arguments: un 19570 * bufaddr 19571 * buflen 19572 * evpd 19573 * page_code 19574 * page_length 19575 * 19576 * Return Code: 0 - Success 19577 * errno return code from sd_send_scsi_cmd() 19578 * 19579 * Context: Can sleep. Does not return until command is completed. 19580 */ 19581 19582 static int 19583 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen, 19584 uchar_t evpd, uchar_t page_code, size_t *residp) 19585 { 19586 union scsi_cdb cdb; 19587 struct uscsi_cmd ucmd_buf; 19588 int status; 19589 19590 ASSERT(un != NULL); 19591 ASSERT(!mutex_owned(SD_MUTEX(un))); 19592 ASSERT(bufaddr != NULL); 19593 19594 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un); 19595 19596 bzero(&cdb, sizeof (cdb)); 19597 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19598 bzero(bufaddr, buflen); 19599 19600 cdb.scc_cmd = SCMD_INQUIRY; 19601 cdb.cdb_opaque[1] = evpd; 19602 cdb.cdb_opaque[2] = page_code; 19603 FORMG0COUNT(&cdb, buflen); 19604 19605 ucmd_buf.uscsi_cdb = (char *)&cdb; 19606 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19607 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 19608 ucmd_buf.uscsi_buflen = buflen; 19609 ucmd_buf.uscsi_rqbuf = NULL; 19610 ucmd_buf.uscsi_rqlen = 0; 19611 ucmd_buf.uscsi_flags = USCSI_READ | USCSI_SILENT; 19612 ucmd_buf.uscsi_timeout = 200; /* Excessive legacy value */ 19613 19614 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19615 UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT); 19616 19617 if ((status == 0) && (residp != NULL)) { 19618 *residp = ucmd_buf.uscsi_resid; 19619 } 19620 19621 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n"); 19622 19623 return (status); 19624 } 19625 19626 19627 /* 19628 * Function: sd_send_scsi_TEST_UNIT_READY 19629 * 19630 * Description: Issue the scsi TEST UNIT READY command. 19631 * This routine can be told to set the flag USCSI_DIAGNOSE to 19632 * prevent retrying failed commands. Use this when the intent 19633 * is either to check for device readiness, to clear a Unit 19634 * Attention, or to clear any outstanding sense data. 19635 * However under specific conditions the expected behavior 19636 * is for retries to bring a device ready, so use the flag 19637 * with caution. 19638 * 19639 * Arguments: un 19640 * flag: SD_CHECK_FOR_MEDIA: return ENXIO if no media present 19641 * SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE. 19642 * 0: dont check for media present, do retries on cmd. 19643 * 19644 * Return Code: 0 - Success 19645 * EIO - IO error 19646 * EACCES - Reservation conflict detected 19647 * ENXIO - Not Ready, medium not present 19648 * errno return code from sd_send_scsi_cmd() 19649 * 19650 * Context: Can sleep. Does not return until command is completed. 19651 */ 19652 19653 static int 19654 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag) 19655 { 19656 struct scsi_extended_sense sense_buf; 19657 union scsi_cdb cdb; 19658 struct uscsi_cmd ucmd_buf; 19659 int status; 19660 19661 ASSERT(un != NULL); 19662 ASSERT(!mutex_owned(SD_MUTEX(un))); 19663 19664 SD_TRACE(SD_LOG_IO, un, 19665 "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un); 19666 19667 /* 19668 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect 19669 * timeouts when they receive a TUR and the queue is not empty. Check 19670 * the configuration flag set during attach (indicating the drive has 19671 * this firmware bug) and un_ncmds_in_transport before issuing the 19672 * TUR. If there are 19673 * pending commands return success, this is a bit arbitrary but is ok 19674 * for non-removables (i.e. the eliteI disks) and non-clustering 19675 * configurations. 19676 */ 19677 if (un->un_f_cfg_tur_check == TRUE) { 19678 mutex_enter(SD_MUTEX(un)); 19679 if (un->un_ncmds_in_transport != 0) { 19680 mutex_exit(SD_MUTEX(un)); 19681 return (0); 19682 } 19683 mutex_exit(SD_MUTEX(un)); 19684 } 19685 19686 bzero(&cdb, sizeof (cdb)); 19687 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19688 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19689 19690 cdb.scc_cmd = SCMD_TEST_UNIT_READY; 19691 19692 ucmd_buf.uscsi_cdb = (char *)&cdb; 19693 ucmd_buf.uscsi_cdblen = CDB_GROUP0; 19694 ucmd_buf.uscsi_bufaddr = NULL; 19695 ucmd_buf.uscsi_buflen = 0; 19696 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19697 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19698 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 19699 19700 /* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */ 19701 if ((flag & SD_DONT_RETRY_TUR) != 0) { 19702 ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE; 19703 } 19704 ucmd_buf.uscsi_timeout = 60; 19705 19706 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19707 UIO_SYSSPACE, UIO_SYSSPACE, 19708 ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD)); 19709 19710 switch (status) { 19711 case 0: 19712 break; /* Success! */ 19713 case EIO: 19714 switch (ucmd_buf.uscsi_status) { 19715 case STATUS_RESERVATION_CONFLICT: 19716 status = EACCES; 19717 break; 19718 case STATUS_CHECK: 19719 if ((flag & SD_CHECK_FOR_MEDIA) == 0) { 19720 break; 19721 } 19722 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19723 (sense_buf.es_key == KEY_NOT_READY) && 19724 (sense_buf.es_add_code == 0x3A)) { 19725 status = ENXIO; 19726 } 19727 break; 19728 default: 19729 break; 19730 } 19731 break; 19732 default: 19733 break; 19734 } 19735 19736 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n"); 19737 19738 return (status); 19739 } 19740 19741 19742 /* 19743 * Function: sd_send_scsi_PERSISTENT_RESERVE_IN 19744 * 19745 * Description: Issue the scsi PERSISTENT RESERVE IN command. 19746 * 19747 * Arguments: un 19748 * 19749 * Return Code: 0 - Success 19750 * EACCES 19751 * ENOTSUP 19752 * errno return code from sd_send_scsi_cmd() 19753 * 19754 * Context: Can sleep. Does not return until command is completed. 19755 */ 19756 19757 static int 19758 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t usr_cmd, 19759 uint16_t data_len, uchar_t *data_bufp) 19760 { 19761 struct scsi_extended_sense sense_buf; 19762 union scsi_cdb cdb; 19763 struct uscsi_cmd ucmd_buf; 19764 int status; 19765 int no_caller_buf = FALSE; 19766 19767 ASSERT(un != NULL); 19768 ASSERT(!mutex_owned(SD_MUTEX(un))); 19769 ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV)); 19770 19771 SD_TRACE(SD_LOG_IO, un, 19772 "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un); 19773 19774 bzero(&cdb, sizeof (cdb)); 19775 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19776 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19777 if (data_bufp == NULL) { 19778 /* Allocate a default buf if the caller did not give one */ 19779 ASSERT(data_len == 0); 19780 data_len = MHIOC_RESV_KEY_SIZE; 19781 data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP); 19782 no_caller_buf = TRUE; 19783 } 19784 19785 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN; 19786 cdb.cdb_opaque[1] = usr_cmd; 19787 FORMG1COUNT(&cdb, data_len); 19788 19789 ucmd_buf.uscsi_cdb = (char *)&cdb; 19790 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 19791 ucmd_buf.uscsi_bufaddr = (caddr_t)data_bufp; 19792 ucmd_buf.uscsi_buflen = data_len; 19793 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19794 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19795 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 19796 ucmd_buf.uscsi_timeout = 60; 19797 19798 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19799 UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD); 19800 19801 switch (status) { 19802 case 0: 19803 break; /* Success! */ 19804 case EIO: 19805 switch (ucmd_buf.uscsi_status) { 19806 case STATUS_RESERVATION_CONFLICT: 19807 status = EACCES; 19808 break; 19809 case STATUS_CHECK: 19810 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19811 (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) { 19812 status = ENOTSUP; 19813 } 19814 break; 19815 default: 19816 break; 19817 } 19818 break; 19819 default: 19820 break; 19821 } 19822 19823 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n"); 19824 19825 if (no_caller_buf == TRUE) { 19826 kmem_free(data_bufp, data_len); 19827 } 19828 19829 return (status); 19830 } 19831 19832 19833 /* 19834 * Function: sd_send_scsi_PERSISTENT_RESERVE_OUT 19835 * 19836 * Description: This routine is the driver entry point for handling CD-ROM 19837 * multi-host persistent reservation requests (MHIOCGRP_INKEYS, 19838 * MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the 19839 * device. 19840 * 19841 * Arguments: un - Pointer to soft state struct for the target. 19842 * usr_cmd SCSI-3 reservation facility command (one of 19843 * SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE, 19844 * SD_SCSI3_PREEMPTANDABORT) 19845 * usr_bufp - user provided pointer register, reserve descriptor or 19846 * preempt and abort structure (mhioc_register_t, 19847 * mhioc_resv_desc_t, mhioc_preemptandabort_t) 19848 * 19849 * Return Code: 0 - Success 19850 * EACCES 19851 * ENOTSUP 19852 * errno return code from sd_send_scsi_cmd() 19853 * 19854 * Context: Can sleep. Does not return until command is completed. 19855 */ 19856 19857 static int 19858 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd, 19859 uchar_t *usr_bufp) 19860 { 19861 struct scsi_extended_sense sense_buf; 19862 union scsi_cdb cdb; 19863 struct uscsi_cmd ucmd_buf; 19864 int status; 19865 uchar_t data_len = sizeof (sd_prout_t); 19866 sd_prout_t *prp; 19867 19868 ASSERT(un != NULL); 19869 ASSERT(!mutex_owned(SD_MUTEX(un))); 19870 ASSERT(data_len == 24); /* required by scsi spec */ 19871 19872 SD_TRACE(SD_LOG_IO, un, 19873 "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un); 19874 19875 if (usr_bufp == NULL) { 19876 return (EINVAL); 19877 } 19878 19879 bzero(&cdb, sizeof (cdb)); 19880 bzero(&ucmd_buf, sizeof (ucmd_buf)); 19881 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 19882 prp = kmem_zalloc(data_len, KM_SLEEP); 19883 19884 cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT; 19885 cdb.cdb_opaque[1] = usr_cmd; 19886 FORMG1COUNT(&cdb, data_len); 19887 19888 ucmd_buf.uscsi_cdb = (char *)&cdb; 19889 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 19890 ucmd_buf.uscsi_bufaddr = (caddr_t)prp; 19891 ucmd_buf.uscsi_buflen = data_len; 19892 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 19893 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 19894 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 19895 ucmd_buf.uscsi_timeout = 60; 19896 19897 switch (usr_cmd) { 19898 case SD_SCSI3_REGISTER: { 19899 mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp; 19900 19901 bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 19902 bcopy(ptr->newkey.key, prp->service_key, 19903 MHIOC_RESV_KEY_SIZE); 19904 prp->aptpl = ptr->aptpl; 19905 break; 19906 } 19907 case SD_SCSI3_RESERVE: 19908 case SD_SCSI3_RELEASE: { 19909 mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp; 19910 19911 bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 19912 prp->scope_address = BE_32(ptr->scope_specific_addr); 19913 cdb.cdb_opaque[2] = ptr->type; 19914 break; 19915 } 19916 case SD_SCSI3_PREEMPTANDABORT: { 19917 mhioc_preemptandabort_t *ptr = 19918 (mhioc_preemptandabort_t *)usr_bufp; 19919 19920 bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE); 19921 bcopy(ptr->victim_key.key, prp->service_key, 19922 MHIOC_RESV_KEY_SIZE); 19923 prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr); 19924 cdb.cdb_opaque[2] = ptr->resvdesc.type; 19925 ucmd_buf.uscsi_flags |= USCSI_HEAD; 19926 break; 19927 } 19928 case SD_SCSI3_REGISTERANDIGNOREKEY: 19929 { 19930 mhioc_registerandignorekey_t *ptr; 19931 ptr = (mhioc_registerandignorekey_t *)usr_bufp; 19932 bcopy(ptr->newkey.key, 19933 prp->service_key, MHIOC_RESV_KEY_SIZE); 19934 prp->aptpl = ptr->aptpl; 19935 break; 19936 } 19937 default: 19938 ASSERT(FALSE); 19939 break; 19940 } 19941 19942 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 19943 UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD); 19944 19945 switch (status) { 19946 case 0: 19947 break; /* Success! */ 19948 case EIO: 19949 switch (ucmd_buf.uscsi_status) { 19950 case STATUS_RESERVATION_CONFLICT: 19951 status = EACCES; 19952 break; 19953 case STATUS_CHECK: 19954 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 19955 (sense_buf.es_key == KEY_ILLEGAL_REQUEST)) { 19956 status = ENOTSUP; 19957 } 19958 break; 19959 default: 19960 break; 19961 } 19962 break; 19963 default: 19964 break; 19965 } 19966 19967 kmem_free(prp, data_len); 19968 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n"); 19969 return (status); 19970 } 19971 19972 19973 /* 19974 * Function: sd_send_scsi_SYNCHRONIZE_CACHE 19975 * 19976 * Description: Issues a scsi SYNCHRONIZE CACHE command to the target 19977 * 19978 * Arguments: un - pointer to the target's soft state struct 19979 * 19980 * Return Code: 0 - success 19981 * errno-type error code 19982 * 19983 * Context: kernel thread context only. 19984 */ 19985 19986 static int 19987 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc) 19988 { 19989 struct sd_uscsi_info *uip; 19990 struct uscsi_cmd *uscmd; 19991 union scsi_cdb *cdb; 19992 struct buf *bp; 19993 int rval = 0; 19994 19995 SD_TRACE(SD_LOG_IO, un, 19996 "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un); 19997 19998 ASSERT(un != NULL); 19999 ASSERT(!mutex_owned(SD_MUTEX(un))); 20000 20001 cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP); 20002 cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE; 20003 20004 /* 20005 * First get some memory for the uscsi_cmd struct and cdb 20006 * and initialize for SYNCHRONIZE_CACHE cmd. 20007 */ 20008 uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 20009 uscmd->uscsi_cdblen = CDB_GROUP1; 20010 uscmd->uscsi_cdb = (caddr_t)cdb; 20011 uscmd->uscsi_bufaddr = NULL; 20012 uscmd->uscsi_buflen = 0; 20013 uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 20014 uscmd->uscsi_rqlen = SENSE_LENGTH; 20015 uscmd->uscsi_rqresid = SENSE_LENGTH; 20016 uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT; 20017 uscmd->uscsi_timeout = sd_io_time; 20018 20019 /* 20020 * Allocate an sd_uscsi_info struct and fill it with the info 20021 * needed by sd_initpkt_for_uscsi(). Then put the pointer into 20022 * b_private in the buf for sd_initpkt_for_uscsi(). Note that 20023 * since we allocate the buf here in this function, we do not 20024 * need to preserve the prior contents of b_private. 20025 * The sd_uscsi_info struct is also used by sd_uscsi_strategy() 20026 */ 20027 uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP); 20028 uip->ui_flags = SD_PATH_DIRECT; 20029 uip->ui_cmdp = uscmd; 20030 20031 bp = getrbuf(KM_SLEEP); 20032 bp->b_private = uip; 20033 20034 /* 20035 * Setup buffer to carry uscsi request. 20036 */ 20037 bp->b_flags = B_BUSY; 20038 bp->b_bcount = 0; 20039 bp->b_blkno = 0; 20040 20041 if (dkc != NULL) { 20042 bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone; 20043 uip->ui_dkc = *dkc; 20044 } 20045 20046 bp->b_edev = SD_GET_DEV(un); 20047 bp->b_dev = cmpdev(bp->b_edev); /* maybe unnecessary? */ 20048 20049 (void) sd_uscsi_strategy(bp); 20050 20051 /* 20052 * If synchronous request, wait for completion 20053 * If async just return and let b_iodone callback 20054 * cleanup. 20055 * NOTE: On return, u_ncmds_in_driver will be decremented, 20056 * but it was also incremented in sd_uscsi_strategy(), so 20057 * we should be ok. 20058 */ 20059 if (dkc == NULL) { 20060 (void) biowait(bp); 20061 rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp); 20062 } 20063 20064 return (rval); 20065 } 20066 20067 20068 static int 20069 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp) 20070 { 20071 struct sd_uscsi_info *uip; 20072 struct uscsi_cmd *uscmd; 20073 struct scsi_extended_sense *sense_buf; 20074 struct sd_lun *un; 20075 int status; 20076 20077 uip = (struct sd_uscsi_info *)(bp->b_private); 20078 ASSERT(uip != NULL); 20079 20080 uscmd = uip->ui_cmdp; 20081 ASSERT(uscmd != NULL); 20082 20083 sense_buf = (struct scsi_extended_sense *)uscmd->uscsi_rqbuf; 20084 ASSERT(sense_buf != NULL); 20085 20086 un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp)); 20087 ASSERT(un != NULL); 20088 20089 status = geterror(bp); 20090 switch (status) { 20091 case 0: 20092 break; /* Success! */ 20093 case EIO: 20094 switch (uscmd->uscsi_status) { 20095 case STATUS_RESERVATION_CONFLICT: 20096 /* Ignore reservation conflict */ 20097 status = 0; 20098 goto done; 20099 20100 case STATUS_CHECK: 20101 if ((uscmd->uscsi_rqstatus == STATUS_GOOD) && 20102 (sense_buf->es_key == KEY_ILLEGAL_REQUEST)) { 20103 /* Ignore Illegal Request error */ 20104 mutex_enter(SD_MUTEX(un)); 20105 un->un_f_sync_cache_supported = FALSE; 20106 mutex_exit(SD_MUTEX(un)); 20107 status = ENOTSUP; 20108 goto done; 20109 } 20110 break; 20111 default: 20112 break; 20113 } 20114 /* FALLTHRU */ 20115 default: 20116 /* Ignore error if the media is not present */ 20117 if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) { 20118 status = 0; 20119 goto done; 20120 } 20121 /* If we reach this, we had an error */ 20122 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 20123 "SYNCHRONIZE CACHE command failed (%d)\n", status); 20124 break; 20125 } 20126 20127 done: 20128 if (uip->ui_dkc.dkc_callback != NULL) { 20129 (*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status); 20130 } 20131 20132 ASSERT((bp->b_flags & B_REMAPPED) == 0); 20133 freerbuf(bp); 20134 kmem_free(uip, sizeof (struct sd_uscsi_info)); 20135 kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH); 20136 kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen); 20137 kmem_free(uscmd, sizeof (struct uscsi_cmd)); 20138 20139 return (status); 20140 } 20141 20142 20143 /* 20144 * Function: sd_send_scsi_GET_CONFIGURATION 20145 * 20146 * Description: Issues the get configuration command to the device. 20147 * Called from sd_check_for_writable_cd & sd_get_media_info 20148 * caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN 20149 * Arguments: un 20150 * ucmdbuf 20151 * rqbuf 20152 * rqbuflen 20153 * bufaddr 20154 * buflen 20155 * 20156 * Return Code: 0 - Success 20157 * errno return code from sd_send_scsi_cmd() 20158 * 20159 * Context: Can sleep. Does not return until command is completed. 20160 * 20161 */ 20162 20163 static int 20164 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf, 20165 uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen) 20166 { 20167 char cdb[CDB_GROUP1]; 20168 int status; 20169 20170 ASSERT(un != NULL); 20171 ASSERT(!mutex_owned(SD_MUTEX(un))); 20172 ASSERT(bufaddr != NULL); 20173 ASSERT(ucmdbuf != NULL); 20174 ASSERT(rqbuf != NULL); 20175 20176 SD_TRACE(SD_LOG_IO, un, 20177 "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un); 20178 20179 bzero(cdb, sizeof (cdb)); 20180 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 20181 bzero(rqbuf, rqbuflen); 20182 bzero(bufaddr, buflen); 20183 20184 /* 20185 * Set up cdb field for the get configuration command. 20186 */ 20187 cdb[0] = SCMD_GET_CONFIGURATION; 20188 cdb[1] = 0x02; /* Requested Type */ 20189 cdb[8] = SD_PROFILE_HEADER_LEN; 20190 ucmdbuf->uscsi_cdb = cdb; 20191 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 20192 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 20193 ucmdbuf->uscsi_buflen = buflen; 20194 ucmdbuf->uscsi_timeout = sd_io_time; 20195 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 20196 ucmdbuf->uscsi_rqlen = rqbuflen; 20197 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 20198 20199 status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE, 20200 UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD); 20201 20202 switch (status) { 20203 case 0: 20204 break; /* Success! */ 20205 case EIO: 20206 switch (ucmdbuf->uscsi_status) { 20207 case STATUS_RESERVATION_CONFLICT: 20208 status = EACCES; 20209 break; 20210 default: 20211 break; 20212 } 20213 break; 20214 default: 20215 break; 20216 } 20217 20218 if (status == 0) { 20219 SD_DUMP_MEMORY(un, SD_LOG_IO, 20220 "sd_send_scsi_GET_CONFIGURATION: data", 20221 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 20222 } 20223 20224 SD_TRACE(SD_LOG_IO, un, 20225 "sd_send_scsi_GET_CONFIGURATION: exit\n"); 20226 20227 return (status); 20228 } 20229 20230 /* 20231 * Function: sd_send_scsi_feature_GET_CONFIGURATION 20232 * 20233 * Description: Issues the get configuration command to the device to 20234 * retrieve a specfic feature. Called from 20235 * sd_check_for_writable_cd & sd_set_mmc_caps. 20236 * Arguments: un 20237 * ucmdbuf 20238 * rqbuf 20239 * rqbuflen 20240 * bufaddr 20241 * buflen 20242 * feature 20243 * 20244 * Return Code: 0 - Success 20245 * errno return code from sd_send_scsi_cmd() 20246 * 20247 * Context: Can sleep. Does not return until command is completed. 20248 * 20249 */ 20250 static int 20251 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un, 20252 struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen, 20253 uchar_t *bufaddr, uint_t buflen, char feature) 20254 { 20255 char cdb[CDB_GROUP1]; 20256 int status; 20257 20258 ASSERT(un != NULL); 20259 ASSERT(!mutex_owned(SD_MUTEX(un))); 20260 ASSERT(bufaddr != NULL); 20261 ASSERT(ucmdbuf != NULL); 20262 ASSERT(rqbuf != NULL); 20263 20264 SD_TRACE(SD_LOG_IO, un, 20265 "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un); 20266 20267 bzero(cdb, sizeof (cdb)); 20268 bzero(ucmdbuf, sizeof (struct uscsi_cmd)); 20269 bzero(rqbuf, rqbuflen); 20270 bzero(bufaddr, buflen); 20271 20272 /* 20273 * Set up cdb field for the get configuration command. 20274 */ 20275 cdb[0] = SCMD_GET_CONFIGURATION; 20276 cdb[1] = 0x02; /* Requested Type */ 20277 cdb[3] = feature; 20278 cdb[8] = buflen; 20279 ucmdbuf->uscsi_cdb = cdb; 20280 ucmdbuf->uscsi_cdblen = CDB_GROUP1; 20281 ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr; 20282 ucmdbuf->uscsi_buflen = buflen; 20283 ucmdbuf->uscsi_timeout = sd_io_time; 20284 ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf; 20285 ucmdbuf->uscsi_rqlen = rqbuflen; 20286 ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ; 20287 20288 status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE, 20289 UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD); 20290 20291 switch (status) { 20292 case 0: 20293 break; /* Success! */ 20294 case EIO: 20295 switch (ucmdbuf->uscsi_status) { 20296 case STATUS_RESERVATION_CONFLICT: 20297 status = EACCES; 20298 break; 20299 default: 20300 break; 20301 } 20302 break; 20303 default: 20304 break; 20305 } 20306 20307 if (status == 0) { 20308 SD_DUMP_MEMORY(un, SD_LOG_IO, 20309 "sd_send_scsi_feature_GET_CONFIGURATION: data", 20310 (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX); 20311 } 20312 20313 SD_TRACE(SD_LOG_IO, un, 20314 "sd_send_scsi_feature_GET_CONFIGURATION: exit\n"); 20315 20316 return (status); 20317 } 20318 20319 20320 /* 20321 * Function: sd_send_scsi_MODE_SENSE 20322 * 20323 * Description: Utility function for issuing a scsi MODE SENSE command. 20324 * Note: This routine uses a consistent implementation for Group0, 20325 * Group1, and Group2 commands across all platforms. ATAPI devices 20326 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 20327 * 20328 * Arguments: un - pointer to the softstate struct for the target. 20329 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 20330 * CDB_GROUP[1|2] (10 byte). 20331 * bufaddr - buffer for page data retrieved from the target. 20332 * buflen - size of page to be retrieved. 20333 * page_code - page code of data to be retrieved from the target. 20334 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20335 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20336 * to use the USCSI "direct" chain and bypass the normal 20337 * command waitq. 20338 * 20339 * Return Code: 0 - Success 20340 * errno return code from sd_send_scsi_cmd() 20341 * 20342 * Context: Can sleep. Does not return until command is completed. 20343 */ 20344 20345 static int 20346 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr, 20347 size_t buflen, uchar_t page_code, int path_flag) 20348 { 20349 struct scsi_extended_sense sense_buf; 20350 union scsi_cdb cdb; 20351 struct uscsi_cmd ucmd_buf; 20352 int status; 20353 20354 ASSERT(un != NULL); 20355 ASSERT(!mutex_owned(SD_MUTEX(un))); 20356 ASSERT(bufaddr != NULL); 20357 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 20358 (cdbsize == CDB_GROUP2)); 20359 20360 SD_TRACE(SD_LOG_IO, un, 20361 "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un); 20362 20363 bzero(&cdb, sizeof (cdb)); 20364 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20365 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20366 bzero(bufaddr, buflen); 20367 20368 if (cdbsize == CDB_GROUP0) { 20369 cdb.scc_cmd = SCMD_MODE_SENSE; 20370 cdb.cdb_opaque[2] = page_code; 20371 FORMG0COUNT(&cdb, buflen); 20372 } else { 20373 cdb.scc_cmd = SCMD_MODE_SENSE_G1; 20374 cdb.cdb_opaque[2] = page_code; 20375 FORMG1COUNT(&cdb, buflen); 20376 } 20377 20378 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 20379 20380 ucmd_buf.uscsi_cdb = (char *)&cdb; 20381 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 20382 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20383 ucmd_buf.uscsi_buflen = buflen; 20384 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20385 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20386 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20387 ucmd_buf.uscsi_timeout = 60; 20388 20389 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 20390 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 20391 20392 switch (status) { 20393 case 0: 20394 break; /* Success! */ 20395 case EIO: 20396 switch (ucmd_buf.uscsi_status) { 20397 case STATUS_RESERVATION_CONFLICT: 20398 status = EACCES; 20399 break; 20400 default: 20401 break; 20402 } 20403 break; 20404 default: 20405 break; 20406 } 20407 20408 if (status == 0) { 20409 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data", 20410 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20411 } 20412 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n"); 20413 20414 return (status); 20415 } 20416 20417 20418 /* 20419 * Function: sd_send_scsi_MODE_SELECT 20420 * 20421 * Description: Utility function for issuing a scsi MODE SELECT command. 20422 * Note: This routine uses a consistent implementation for Group0, 20423 * Group1, and Group2 commands across all platforms. ATAPI devices 20424 * use Group 1 Read/Write commands and Group 2 Mode Sense/Select 20425 * 20426 * Arguments: un - pointer to the softstate struct for the target. 20427 * cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or 20428 * CDB_GROUP[1|2] (10 byte). 20429 * bufaddr - buffer for page data retrieved from the target. 20430 * buflen - size of page to be retrieved. 20431 * save_page - boolean to determin if SP bit should be set. 20432 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20433 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20434 * to use the USCSI "direct" chain and bypass the normal 20435 * command waitq. 20436 * 20437 * Return Code: 0 - Success 20438 * errno return code from sd_send_scsi_cmd() 20439 * 20440 * Context: Can sleep. Does not return until command is completed. 20441 */ 20442 20443 static int 20444 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr, 20445 size_t buflen, uchar_t save_page, int path_flag) 20446 { 20447 struct scsi_extended_sense sense_buf; 20448 union scsi_cdb cdb; 20449 struct uscsi_cmd ucmd_buf; 20450 int status; 20451 20452 ASSERT(un != NULL); 20453 ASSERT(!mutex_owned(SD_MUTEX(un))); 20454 ASSERT(bufaddr != NULL); 20455 ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) || 20456 (cdbsize == CDB_GROUP2)); 20457 20458 SD_TRACE(SD_LOG_IO, un, 20459 "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un); 20460 20461 bzero(&cdb, sizeof (cdb)); 20462 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20463 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20464 20465 /* Set the PF bit for many third party drives */ 20466 cdb.cdb_opaque[1] = 0x10; 20467 20468 /* Set the savepage(SP) bit if given */ 20469 if (save_page == SD_SAVE_PAGE) { 20470 cdb.cdb_opaque[1] |= 0x01; 20471 } 20472 20473 if (cdbsize == CDB_GROUP0) { 20474 cdb.scc_cmd = SCMD_MODE_SELECT; 20475 FORMG0COUNT(&cdb, buflen); 20476 } else { 20477 cdb.scc_cmd = SCMD_MODE_SELECT_G1; 20478 FORMG1COUNT(&cdb, buflen); 20479 } 20480 20481 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 20482 20483 ucmd_buf.uscsi_cdb = (char *)&cdb; 20484 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 20485 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20486 ucmd_buf.uscsi_buflen = buflen; 20487 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20488 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20489 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT; 20490 ucmd_buf.uscsi_timeout = 60; 20491 20492 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 20493 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 20494 20495 switch (status) { 20496 case 0: 20497 break; /* Success! */ 20498 case EIO: 20499 switch (ucmd_buf.uscsi_status) { 20500 case STATUS_RESERVATION_CONFLICT: 20501 status = EACCES; 20502 break; 20503 default: 20504 break; 20505 } 20506 break; 20507 default: 20508 break; 20509 } 20510 20511 if (status == 0) { 20512 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data", 20513 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20514 } 20515 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n"); 20516 20517 return (status); 20518 } 20519 20520 20521 /* 20522 * Function: sd_send_scsi_RDWR 20523 * 20524 * Description: Issue a scsi READ or WRITE command with the given parameters. 20525 * 20526 * Arguments: un: Pointer to the sd_lun struct for the target. 20527 * cmd: SCMD_READ or SCMD_WRITE 20528 * bufaddr: Address of caller's buffer to receive the RDWR data 20529 * buflen: Length of caller's buffer receive the RDWR data. 20530 * start_block: Block number for the start of the RDWR operation. 20531 * (Assumes target-native block size.) 20532 * residp: Pointer to variable to receive the redisual of the 20533 * RDWR operation (may be NULL of no residual requested). 20534 * path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and 20535 * the normal command waitq, or SD_PATH_DIRECT_PRIORITY 20536 * to use the USCSI "direct" chain and bypass the normal 20537 * command waitq. 20538 * 20539 * Return Code: 0 - Success 20540 * errno return code from sd_send_scsi_cmd() 20541 * 20542 * Context: Can sleep. Does not return until command is completed. 20543 */ 20544 20545 static int 20546 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr, 20547 size_t buflen, daddr_t start_block, int path_flag) 20548 { 20549 struct scsi_extended_sense sense_buf; 20550 union scsi_cdb cdb; 20551 struct uscsi_cmd ucmd_buf; 20552 uint32_t block_count; 20553 int status; 20554 int cdbsize; 20555 uchar_t flag; 20556 20557 ASSERT(un != NULL); 20558 ASSERT(!mutex_owned(SD_MUTEX(un))); 20559 ASSERT(bufaddr != NULL); 20560 ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE)); 20561 20562 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un); 20563 20564 if (un->un_f_tgt_blocksize_is_valid != TRUE) { 20565 return (EINVAL); 20566 } 20567 20568 mutex_enter(SD_MUTEX(un)); 20569 block_count = SD_BYTES2TGTBLOCKS(un, buflen); 20570 mutex_exit(SD_MUTEX(un)); 20571 20572 flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE; 20573 20574 SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: " 20575 "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n", 20576 bufaddr, buflen, start_block, block_count); 20577 20578 bzero(&cdb, sizeof (cdb)); 20579 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20580 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20581 20582 /* Compute CDB size to use */ 20583 if (start_block > 0xffffffff) 20584 cdbsize = CDB_GROUP4; 20585 else if ((start_block & 0xFFE00000) || 20586 (un->un_f_cfg_is_atapi == TRUE)) 20587 cdbsize = CDB_GROUP1; 20588 else 20589 cdbsize = CDB_GROUP0; 20590 20591 switch (cdbsize) { 20592 case CDB_GROUP0: /* 6-byte CDBs */ 20593 cdb.scc_cmd = cmd; 20594 FORMG0ADDR(&cdb, start_block); 20595 FORMG0COUNT(&cdb, block_count); 20596 break; 20597 case CDB_GROUP1: /* 10-byte CDBs */ 20598 cdb.scc_cmd = cmd | SCMD_GROUP1; 20599 FORMG1ADDR(&cdb, start_block); 20600 FORMG1COUNT(&cdb, block_count); 20601 break; 20602 case CDB_GROUP4: /* 16-byte CDBs */ 20603 cdb.scc_cmd = cmd | SCMD_GROUP4; 20604 FORMG4LONGADDR(&cdb, (uint64_t)start_block); 20605 FORMG4COUNT(&cdb, block_count); 20606 break; 20607 case CDB_GROUP5: /* 12-byte CDBs (currently unsupported) */ 20608 default: 20609 /* All others reserved */ 20610 return (EINVAL); 20611 } 20612 20613 /* Set LUN bit(s) in CDB if this is a SCSI-1 device */ 20614 SD_FILL_SCSI1_LUN_CDB(un, &cdb); 20615 20616 ucmd_buf.uscsi_cdb = (char *)&cdb; 20617 ucmd_buf.uscsi_cdblen = (uchar_t)cdbsize; 20618 ucmd_buf.uscsi_bufaddr = bufaddr; 20619 ucmd_buf.uscsi_buflen = buflen; 20620 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20621 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20622 ucmd_buf.uscsi_flags = flag | USCSI_RQENABLE | USCSI_SILENT; 20623 ucmd_buf.uscsi_timeout = 60; 20624 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 20625 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 20626 switch (status) { 20627 case 0: 20628 break; /* Success! */ 20629 case EIO: 20630 switch (ucmd_buf.uscsi_status) { 20631 case STATUS_RESERVATION_CONFLICT: 20632 status = EACCES; 20633 break; 20634 default: 20635 break; 20636 } 20637 break; 20638 default: 20639 break; 20640 } 20641 20642 if (status == 0) { 20643 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data", 20644 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20645 } 20646 20647 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n"); 20648 20649 return (status); 20650 } 20651 20652 20653 /* 20654 * Function: sd_send_scsi_LOG_SENSE 20655 * 20656 * Description: Issue a scsi LOG_SENSE command with the given parameters. 20657 * 20658 * Arguments: un: Pointer to the sd_lun struct for the target. 20659 * 20660 * Return Code: 0 - Success 20661 * errno return code from sd_send_scsi_cmd() 20662 * 20663 * Context: Can sleep. Does not return until command is completed. 20664 */ 20665 20666 static int 20667 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen, 20668 uchar_t page_code, uchar_t page_control, uint16_t param_ptr, 20669 int path_flag) 20670 20671 { 20672 struct scsi_extended_sense sense_buf; 20673 union scsi_cdb cdb; 20674 struct uscsi_cmd ucmd_buf; 20675 int status; 20676 20677 ASSERT(un != NULL); 20678 ASSERT(!mutex_owned(SD_MUTEX(un))); 20679 20680 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un); 20681 20682 bzero(&cdb, sizeof (cdb)); 20683 bzero(&ucmd_buf, sizeof (ucmd_buf)); 20684 bzero(&sense_buf, sizeof (struct scsi_extended_sense)); 20685 20686 cdb.scc_cmd = SCMD_LOG_SENSE_G1; 20687 cdb.cdb_opaque[2] = (page_control << 6) | page_code; 20688 cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8); 20689 cdb.cdb_opaque[6] = (uchar_t)(param_ptr & 0x00FF); 20690 FORMG1COUNT(&cdb, buflen); 20691 20692 ucmd_buf.uscsi_cdb = (char *)&cdb; 20693 ucmd_buf.uscsi_cdblen = CDB_GROUP1; 20694 ucmd_buf.uscsi_bufaddr = (caddr_t)bufaddr; 20695 ucmd_buf.uscsi_buflen = buflen; 20696 ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf; 20697 ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense); 20698 ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT; 20699 ucmd_buf.uscsi_timeout = 60; 20700 20701 status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE, 20702 UIO_SYSSPACE, UIO_SYSSPACE, path_flag); 20703 20704 switch (status) { 20705 case 0: 20706 break; 20707 case EIO: 20708 switch (ucmd_buf.uscsi_status) { 20709 case STATUS_RESERVATION_CONFLICT: 20710 status = EACCES; 20711 break; 20712 case STATUS_CHECK: 20713 if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) && 20714 (sense_buf.es_key == KEY_ILLEGAL_REQUEST) && 20715 (sense_buf.es_add_code == 0x24)) { 20716 /* 20717 * ASC 0x24: INVALID FIELD IN CDB 20718 */ 20719 switch (page_code) { 20720 case START_STOP_CYCLE_PAGE: 20721 /* 20722 * The start stop cycle counter is 20723 * implemented as page 0x31 in earlier 20724 * generation disks. In new generation 20725 * disks the start stop cycle counter is 20726 * implemented as page 0xE. To properly 20727 * handle this case if an attempt for 20728 * log page 0xE is made and fails we 20729 * will try again using page 0x31. 20730 * 20731 * Network storage BU committed to 20732 * maintain the page 0x31 for this 20733 * purpose and will not have any other 20734 * page implemented with page code 0x31 20735 * until all disks transition to the 20736 * standard page. 20737 */ 20738 mutex_enter(SD_MUTEX(un)); 20739 un->un_start_stop_cycle_page = 20740 START_STOP_CYCLE_VU_PAGE; 20741 cdb.cdb_opaque[2] = 20742 (char)(page_control << 6) | 20743 un->un_start_stop_cycle_page; 20744 mutex_exit(SD_MUTEX(un)); 20745 status = sd_send_scsi_cmd( 20746 SD_GET_DEV(un), &ucmd_buf, 20747 UIO_SYSSPACE, UIO_SYSSPACE, 20748 UIO_SYSSPACE, path_flag); 20749 20750 break; 20751 case TEMPERATURE_PAGE: 20752 status = ENOTTY; 20753 break; 20754 default: 20755 break; 20756 } 20757 } 20758 break; 20759 default: 20760 break; 20761 } 20762 break; 20763 default: 20764 break; 20765 } 20766 20767 if (status == 0) { 20768 SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data", 20769 (uchar_t *)bufaddr, buflen, SD_LOG_HEX); 20770 } 20771 20772 SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n"); 20773 20774 return (status); 20775 } 20776 20777 20778 /* 20779 * Function: sdioctl 20780 * 20781 * Description: Driver's ioctl(9e) entry point function. 20782 * 20783 * Arguments: dev - device number 20784 * cmd - ioctl operation to be performed 20785 * arg - user argument, contains data to be set or reference 20786 * parameter for get 20787 * flag - bit flag, indicating open settings, 32/64 bit type 20788 * cred_p - user credential pointer 20789 * rval_p - calling process return value (OPT) 20790 * 20791 * Return Code: EINVAL 20792 * ENOTTY 20793 * ENXIO 20794 * EIO 20795 * EFAULT 20796 * ENOTSUP 20797 * EPERM 20798 * 20799 * Context: Called from the device switch at normal priority. 20800 */ 20801 20802 static int 20803 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p) 20804 { 20805 struct sd_lun *un = NULL; 20806 int geom_validated = FALSE; 20807 int err = 0; 20808 int i = 0; 20809 cred_t *cr; 20810 20811 /* 20812 * All device accesses go thru sdstrategy where we check on suspend 20813 * status 20814 */ 20815 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 20816 return (ENXIO); 20817 } 20818 20819 ASSERT(!mutex_owned(SD_MUTEX(un))); 20820 20821 /* 20822 * Moved this wait from sd_uscsi_strategy to here for 20823 * reasons of deadlock prevention. Internal driver commands, 20824 * specifically those to change a devices power level, result 20825 * in a call to sd_uscsi_strategy. 20826 */ 20827 mutex_enter(SD_MUTEX(un)); 20828 while ((un->un_state == SD_STATE_SUSPENDED) || 20829 (un->un_state == SD_STATE_PM_CHANGING)) { 20830 cv_wait(&un->un_suspend_cv, SD_MUTEX(un)); 20831 } 20832 /* 20833 * Twiddling the counter here protects commands from now 20834 * through to the top of sd_uscsi_strategy. Without the 20835 * counter inc. a power down, for example, could get in 20836 * after the above check for state is made and before 20837 * execution gets to the top of sd_uscsi_strategy. 20838 * That would cause problems. 20839 */ 20840 un->un_ncmds_in_driver++; 20841 20842 if ((un->un_f_geometry_is_valid == FALSE) && 20843 (flag & (FNDELAY | FNONBLOCK))) { 20844 switch (cmd) { 20845 case CDROMPAUSE: 20846 case CDROMRESUME: 20847 case CDROMPLAYMSF: 20848 case CDROMPLAYTRKIND: 20849 case CDROMREADTOCHDR: 20850 case CDROMREADTOCENTRY: 20851 case CDROMSTOP: 20852 case CDROMSTART: 20853 case CDROMVOLCTRL: 20854 case CDROMSUBCHNL: 20855 case CDROMREADMODE2: 20856 case CDROMREADMODE1: 20857 case CDROMREADOFFSET: 20858 case CDROMSBLKMODE: 20859 case CDROMGBLKMODE: 20860 case CDROMGDRVSPEED: 20861 case CDROMSDRVSPEED: 20862 case CDROMCDDA: 20863 case CDROMCDXA: 20864 case CDROMSUBCODE: 20865 if (!ISCD(un)) { 20866 un->un_ncmds_in_driver--; 20867 ASSERT(un->un_ncmds_in_driver >= 0); 20868 mutex_exit(SD_MUTEX(un)); 20869 return (ENOTTY); 20870 } 20871 break; 20872 case FDEJECT: 20873 case DKIOCEJECT: 20874 case CDROMEJECT: 20875 if (!un->un_f_eject_media_supported) { 20876 un->un_ncmds_in_driver--; 20877 ASSERT(un->un_ncmds_in_driver >= 0); 20878 mutex_exit(SD_MUTEX(un)); 20879 return (ENOTTY); 20880 } 20881 break; 20882 case DKIOCSVTOC: 20883 case DKIOCSETEFI: 20884 case DKIOCSMBOOT: 20885 case DKIOCFLUSHWRITECACHE: 20886 mutex_exit(SD_MUTEX(un)); 20887 err = sd_send_scsi_TEST_UNIT_READY(un, 0); 20888 if (err != 0) { 20889 mutex_enter(SD_MUTEX(un)); 20890 un->un_ncmds_in_driver--; 20891 ASSERT(un->un_ncmds_in_driver >= 0); 20892 mutex_exit(SD_MUTEX(un)); 20893 return (EIO); 20894 } 20895 mutex_enter(SD_MUTEX(un)); 20896 /* FALLTHROUGH */ 20897 case DKIOCREMOVABLE: 20898 case DKIOCHOTPLUGGABLE: 20899 case DKIOCINFO: 20900 case DKIOCGMEDIAINFO: 20901 case MHIOCENFAILFAST: 20902 case MHIOCSTATUS: 20903 case MHIOCTKOWN: 20904 case MHIOCRELEASE: 20905 case MHIOCGRP_INKEYS: 20906 case MHIOCGRP_INRESV: 20907 case MHIOCGRP_REGISTER: 20908 case MHIOCGRP_RESERVE: 20909 case MHIOCGRP_PREEMPTANDABORT: 20910 case MHIOCGRP_REGISTERANDIGNOREKEY: 20911 case CDROMCLOSETRAY: 20912 case USCSICMD: 20913 goto skip_ready_valid; 20914 default: 20915 break; 20916 } 20917 20918 mutex_exit(SD_MUTEX(un)); 20919 err = sd_ready_and_valid(un); 20920 mutex_enter(SD_MUTEX(un)); 20921 if (err == SD_READY_NOT_VALID) { 20922 switch (cmd) { 20923 case DKIOCGAPART: 20924 case DKIOCGGEOM: 20925 case DKIOCSGEOM: 20926 case DKIOCGVTOC: 20927 case DKIOCSVTOC: 20928 case DKIOCSAPART: 20929 case DKIOCG_PHYGEOM: 20930 case DKIOCG_VIRTGEOM: 20931 err = ENOTSUP; 20932 un->un_ncmds_in_driver--; 20933 ASSERT(un->un_ncmds_in_driver >= 0); 20934 mutex_exit(SD_MUTEX(un)); 20935 return (err); 20936 } 20937 } 20938 if (err != SD_READY_VALID) { 20939 switch (cmd) { 20940 case DKIOCSTATE: 20941 case CDROMGDRVSPEED: 20942 case CDROMSDRVSPEED: 20943 case FDEJECT: /* for eject command */ 20944 case DKIOCEJECT: 20945 case CDROMEJECT: 20946 case DKIOCGETEFI: 20947 case DKIOCSGEOM: 20948 case DKIOCREMOVABLE: 20949 case DKIOCHOTPLUGGABLE: 20950 case DKIOCSAPART: 20951 case DKIOCSETEFI: 20952 break; 20953 default: 20954 if (un->un_f_has_removable_media) { 20955 err = ENXIO; 20956 } else { 20957 /* Do not map EACCES to EIO */ 20958 if (err != EACCES) 20959 err = EIO; 20960 } 20961 un->un_ncmds_in_driver--; 20962 ASSERT(un->un_ncmds_in_driver >= 0); 20963 mutex_exit(SD_MUTEX(un)); 20964 return (err); 20965 } 20966 } 20967 geom_validated = TRUE; 20968 } 20969 if ((un->un_f_geometry_is_valid == TRUE) && 20970 (un->un_solaris_size > 0)) { 20971 /* 20972 * the "geometry_is_valid" flag could be true if we 20973 * have an fdisk table but no Solaris partition 20974 */ 20975 if (un->un_vtoc.v_sanity != VTOC_SANE) { 20976 /* it is EFI, so return ENOTSUP for these */ 20977 switch (cmd) { 20978 case DKIOCGAPART: 20979 case DKIOCGGEOM: 20980 case DKIOCGVTOC: 20981 case DKIOCSVTOC: 20982 case DKIOCSAPART: 20983 err = ENOTSUP; 20984 un->un_ncmds_in_driver--; 20985 ASSERT(un->un_ncmds_in_driver >= 0); 20986 mutex_exit(SD_MUTEX(un)); 20987 return (err); 20988 } 20989 } 20990 } 20991 20992 skip_ready_valid: 20993 mutex_exit(SD_MUTEX(un)); 20994 20995 switch (cmd) { 20996 case DKIOCINFO: 20997 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n"); 20998 err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag); 20999 break; 21000 21001 case DKIOCGMEDIAINFO: 21002 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n"); 21003 err = sd_get_media_info(dev, (caddr_t)arg, flag); 21004 break; 21005 21006 case DKIOCGGEOM: 21007 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n"); 21008 err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag, 21009 geom_validated); 21010 break; 21011 21012 case DKIOCSGEOM: 21013 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n"); 21014 err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag); 21015 break; 21016 21017 case DKIOCGAPART: 21018 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n"); 21019 err = sd_dkio_get_partition(dev, (caddr_t)arg, flag, 21020 geom_validated); 21021 break; 21022 21023 case DKIOCSAPART: 21024 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n"); 21025 err = sd_dkio_set_partition(dev, (caddr_t)arg, flag); 21026 break; 21027 21028 case DKIOCGVTOC: 21029 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n"); 21030 err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag, 21031 geom_validated); 21032 break; 21033 21034 case DKIOCGETEFI: 21035 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n"); 21036 err = sd_dkio_get_efi(dev, (caddr_t)arg, flag); 21037 break; 21038 21039 case DKIOCPARTITION: 21040 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n"); 21041 err = sd_dkio_partition(dev, (caddr_t)arg, flag); 21042 break; 21043 21044 case DKIOCSVTOC: 21045 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n"); 21046 err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag); 21047 break; 21048 21049 case DKIOCSETEFI: 21050 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n"); 21051 err = sd_dkio_set_efi(dev, (caddr_t)arg, flag); 21052 break; 21053 21054 case DKIOCGMBOOT: 21055 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n"); 21056 err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag); 21057 break; 21058 21059 case DKIOCSMBOOT: 21060 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n"); 21061 err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag); 21062 break; 21063 21064 case DKIOCLOCK: 21065 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n"); 21066 err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 21067 SD_PATH_STANDARD); 21068 break; 21069 21070 case DKIOCUNLOCK: 21071 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n"); 21072 err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW, 21073 SD_PATH_STANDARD); 21074 break; 21075 21076 case DKIOCSTATE: { 21077 enum dkio_state state; 21078 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n"); 21079 21080 if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) { 21081 err = EFAULT; 21082 } else { 21083 err = sd_check_media(dev, state); 21084 if (err == 0) { 21085 if (ddi_copyout(&un->un_mediastate, (void *)arg, 21086 sizeof (int), flag) != 0) 21087 err = EFAULT; 21088 } 21089 } 21090 break; 21091 } 21092 21093 case DKIOCREMOVABLE: 21094 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n"); 21095 /* 21096 * At present, vold only does automount for removable-media 21097 * devices, in order not to break current applications, we 21098 * still let hopluggable devices pretend to be removable media 21099 * devices for vold. In the near future, once vold is EOL'ed, 21100 * we should remove this workaround. 21101 */ 21102 if (un->un_f_has_removable_media || un->un_f_is_hotpluggable) { 21103 i = 1; 21104 } else { 21105 i = 0; 21106 } 21107 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 21108 err = EFAULT; 21109 } else { 21110 err = 0; 21111 } 21112 break; 21113 21114 case DKIOCHOTPLUGGABLE: 21115 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n"); 21116 if (un->un_f_is_hotpluggable) { 21117 i = 1; 21118 } else { 21119 i = 0; 21120 } 21121 if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) { 21122 err = EFAULT; 21123 } else { 21124 err = 0; 21125 } 21126 break; 21127 21128 case DKIOCGTEMPERATURE: 21129 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n"); 21130 err = sd_dkio_get_temp(dev, (caddr_t)arg, flag); 21131 break; 21132 21133 case MHIOCENFAILFAST: 21134 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n"); 21135 if ((err = drv_priv(cred_p)) == 0) { 21136 err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag); 21137 } 21138 break; 21139 21140 case MHIOCTKOWN: 21141 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n"); 21142 if ((err = drv_priv(cred_p)) == 0) { 21143 err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag); 21144 } 21145 break; 21146 21147 case MHIOCRELEASE: 21148 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n"); 21149 if ((err = drv_priv(cred_p)) == 0) { 21150 err = sd_mhdioc_release(dev); 21151 } 21152 break; 21153 21154 case MHIOCSTATUS: 21155 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n"); 21156 if ((err = drv_priv(cred_p)) == 0) { 21157 switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) { 21158 case 0: 21159 err = 0; 21160 break; 21161 case EACCES: 21162 *rval_p = 1; 21163 err = 0; 21164 break; 21165 default: 21166 err = EIO; 21167 break; 21168 } 21169 } 21170 break; 21171 21172 case MHIOCQRESERVE: 21173 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n"); 21174 if ((err = drv_priv(cred_p)) == 0) { 21175 err = sd_reserve_release(dev, SD_RESERVE); 21176 } 21177 break; 21178 21179 case MHIOCREREGISTERDEVID: 21180 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n"); 21181 if (drv_priv(cred_p) == EPERM) { 21182 err = EPERM; 21183 } else if (!un->un_f_devid_supported) { 21184 err = ENOTTY; 21185 } else { 21186 err = sd_mhdioc_register_devid(dev); 21187 } 21188 break; 21189 21190 case MHIOCGRP_INKEYS: 21191 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n"); 21192 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 21193 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21194 err = ENOTSUP; 21195 } else { 21196 err = sd_mhdioc_inkeys(dev, (caddr_t)arg, 21197 flag); 21198 } 21199 } 21200 break; 21201 21202 case MHIOCGRP_INRESV: 21203 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n"); 21204 if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) { 21205 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21206 err = ENOTSUP; 21207 } else { 21208 err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag); 21209 } 21210 } 21211 break; 21212 21213 case MHIOCGRP_REGISTER: 21214 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n"); 21215 if ((err = drv_priv(cred_p)) != EPERM) { 21216 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21217 err = ENOTSUP; 21218 } else if (arg != NULL) { 21219 mhioc_register_t reg; 21220 if (ddi_copyin((void *)arg, ®, 21221 sizeof (mhioc_register_t), flag) != 0) { 21222 err = EFAULT; 21223 } else { 21224 err = 21225 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21226 un, SD_SCSI3_REGISTER, 21227 (uchar_t *)®); 21228 } 21229 } 21230 } 21231 break; 21232 21233 case MHIOCGRP_RESERVE: 21234 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n"); 21235 if ((err = drv_priv(cred_p)) != EPERM) { 21236 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21237 err = ENOTSUP; 21238 } else if (arg != NULL) { 21239 mhioc_resv_desc_t resv_desc; 21240 if (ddi_copyin((void *)arg, &resv_desc, 21241 sizeof (mhioc_resv_desc_t), flag) != 0) { 21242 err = EFAULT; 21243 } else { 21244 err = 21245 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21246 un, SD_SCSI3_RESERVE, 21247 (uchar_t *)&resv_desc); 21248 } 21249 } 21250 } 21251 break; 21252 21253 case MHIOCGRP_PREEMPTANDABORT: 21254 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 21255 if ((err = drv_priv(cred_p)) != EPERM) { 21256 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21257 err = ENOTSUP; 21258 } else if (arg != NULL) { 21259 mhioc_preemptandabort_t preempt_abort; 21260 if (ddi_copyin((void *)arg, &preempt_abort, 21261 sizeof (mhioc_preemptandabort_t), 21262 flag) != 0) { 21263 err = EFAULT; 21264 } else { 21265 err = 21266 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21267 un, SD_SCSI3_PREEMPTANDABORT, 21268 (uchar_t *)&preempt_abort); 21269 } 21270 } 21271 } 21272 break; 21273 21274 case MHIOCGRP_REGISTERANDIGNOREKEY: 21275 SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n"); 21276 if ((err = drv_priv(cred_p)) != EPERM) { 21277 if (un->un_reservation_type == SD_SCSI2_RESERVATION) { 21278 err = ENOTSUP; 21279 } else if (arg != NULL) { 21280 mhioc_registerandignorekey_t r_and_i; 21281 if (ddi_copyin((void *)arg, (void *)&r_and_i, 21282 sizeof (mhioc_registerandignorekey_t), 21283 flag) != 0) { 21284 err = EFAULT; 21285 } else { 21286 err = 21287 sd_send_scsi_PERSISTENT_RESERVE_OUT( 21288 un, SD_SCSI3_REGISTERANDIGNOREKEY, 21289 (uchar_t *)&r_and_i); 21290 } 21291 } 21292 } 21293 break; 21294 21295 case USCSICMD: 21296 SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n"); 21297 cr = ddi_get_cred(); 21298 if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) { 21299 err = EPERM; 21300 } else { 21301 err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag); 21302 } 21303 break; 21304 21305 case CDROMPAUSE: 21306 case CDROMRESUME: 21307 SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n"); 21308 if (!ISCD(un)) { 21309 err = ENOTTY; 21310 } else { 21311 err = sr_pause_resume(dev, cmd); 21312 } 21313 break; 21314 21315 case CDROMPLAYMSF: 21316 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n"); 21317 if (!ISCD(un)) { 21318 err = ENOTTY; 21319 } else { 21320 err = sr_play_msf(dev, (caddr_t)arg, flag); 21321 } 21322 break; 21323 21324 case CDROMPLAYTRKIND: 21325 SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n"); 21326 #if defined(__i386) || defined(__amd64) 21327 /* 21328 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead 21329 */ 21330 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 21331 #else 21332 if (!ISCD(un)) { 21333 #endif 21334 err = ENOTTY; 21335 } else { 21336 err = sr_play_trkind(dev, (caddr_t)arg, flag); 21337 } 21338 break; 21339 21340 case CDROMREADTOCHDR: 21341 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n"); 21342 if (!ISCD(un)) { 21343 err = ENOTTY; 21344 } else { 21345 err = sr_read_tochdr(dev, (caddr_t)arg, flag); 21346 } 21347 break; 21348 21349 case CDROMREADTOCENTRY: 21350 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n"); 21351 if (!ISCD(un)) { 21352 err = ENOTTY; 21353 } else { 21354 err = sr_read_tocentry(dev, (caddr_t)arg, flag); 21355 } 21356 break; 21357 21358 case CDROMSTOP: 21359 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n"); 21360 if (!ISCD(un)) { 21361 err = ENOTTY; 21362 } else { 21363 err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP, 21364 SD_PATH_STANDARD); 21365 } 21366 break; 21367 21368 case CDROMSTART: 21369 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n"); 21370 if (!ISCD(un)) { 21371 err = ENOTTY; 21372 } else { 21373 err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, 21374 SD_PATH_STANDARD); 21375 } 21376 break; 21377 21378 case CDROMCLOSETRAY: 21379 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n"); 21380 if (!ISCD(un)) { 21381 err = ENOTTY; 21382 } else { 21383 err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE, 21384 SD_PATH_STANDARD); 21385 } 21386 break; 21387 21388 case FDEJECT: /* for eject command */ 21389 case DKIOCEJECT: 21390 case CDROMEJECT: 21391 SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n"); 21392 if (!un->un_f_eject_media_supported) { 21393 err = ENOTTY; 21394 } else { 21395 err = sr_eject(dev); 21396 } 21397 break; 21398 21399 case CDROMVOLCTRL: 21400 SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n"); 21401 if (!ISCD(un)) { 21402 err = ENOTTY; 21403 } else { 21404 err = sr_volume_ctrl(dev, (caddr_t)arg, flag); 21405 } 21406 break; 21407 21408 case CDROMSUBCHNL: 21409 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n"); 21410 if (!ISCD(un)) { 21411 err = ENOTTY; 21412 } else { 21413 err = sr_read_subchannel(dev, (caddr_t)arg, flag); 21414 } 21415 break; 21416 21417 case CDROMREADMODE2: 21418 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n"); 21419 if (!ISCD(un)) { 21420 err = ENOTTY; 21421 } else if (un->un_f_cfg_is_atapi == TRUE) { 21422 /* 21423 * If the drive supports READ CD, use that instead of 21424 * switching the LBA size via a MODE SELECT 21425 * Block Descriptor 21426 */ 21427 err = sr_read_cd_mode2(dev, (caddr_t)arg, flag); 21428 } else { 21429 err = sr_read_mode2(dev, (caddr_t)arg, flag); 21430 } 21431 break; 21432 21433 case CDROMREADMODE1: 21434 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n"); 21435 if (!ISCD(un)) { 21436 err = ENOTTY; 21437 } else { 21438 err = sr_read_mode1(dev, (caddr_t)arg, flag); 21439 } 21440 break; 21441 21442 case CDROMREADOFFSET: 21443 SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n"); 21444 if (!ISCD(un)) { 21445 err = ENOTTY; 21446 } else { 21447 err = sr_read_sony_session_offset(dev, (caddr_t)arg, 21448 flag); 21449 } 21450 break; 21451 21452 case CDROMSBLKMODE: 21453 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n"); 21454 /* 21455 * There is no means of changing block size in case of atapi 21456 * drives, thus return ENOTTY if drive type is atapi 21457 */ 21458 if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) { 21459 err = ENOTTY; 21460 } else if (un->un_f_mmc_cap == TRUE) { 21461 21462 /* 21463 * MMC Devices do not support changing the 21464 * logical block size 21465 * 21466 * Note: EINVAL is being returned instead of ENOTTY to 21467 * maintain consistancy with the original mmc 21468 * driver update. 21469 */ 21470 err = EINVAL; 21471 } else { 21472 mutex_enter(SD_MUTEX(un)); 21473 if ((!(un->un_exclopen & (1<<SDPART(dev)))) || 21474 (un->un_ncmds_in_transport > 0)) { 21475 mutex_exit(SD_MUTEX(un)); 21476 err = EINVAL; 21477 } else { 21478 mutex_exit(SD_MUTEX(un)); 21479 err = sr_change_blkmode(dev, cmd, arg, flag); 21480 } 21481 } 21482 break; 21483 21484 case CDROMGBLKMODE: 21485 SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n"); 21486 if (!ISCD(un)) { 21487 err = ENOTTY; 21488 } else if ((un->un_f_cfg_is_atapi != FALSE) && 21489 (un->un_f_blockcount_is_valid != FALSE)) { 21490 /* 21491 * Drive is an ATAPI drive so return target block 21492 * size for ATAPI drives since we cannot change the 21493 * blocksize on ATAPI drives. Used primarily to detect 21494 * if an ATAPI cdrom is present. 21495 */ 21496 if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg, 21497 sizeof (int), flag) != 0) { 21498 err = EFAULT; 21499 } else { 21500 err = 0; 21501 } 21502 21503 } else { 21504 /* 21505 * Drive supports changing block sizes via a Mode 21506 * Select. 21507 */ 21508 err = sr_change_blkmode(dev, cmd, arg, flag); 21509 } 21510 break; 21511 21512 case CDROMGDRVSPEED: 21513 case CDROMSDRVSPEED: 21514 SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n"); 21515 if (!ISCD(un)) { 21516 err = ENOTTY; 21517 } else if (un->un_f_mmc_cap == TRUE) { 21518 /* 21519 * Note: In the future the driver implementation 21520 * for getting and 21521 * setting cd speed should entail: 21522 * 1) If non-mmc try the Toshiba mode page 21523 * (sr_change_speed) 21524 * 2) If mmc but no support for Real Time Streaming try 21525 * the SET CD SPEED (0xBB) command 21526 * (sr_atapi_change_speed) 21527 * 3) If mmc and support for Real Time Streaming 21528 * try the GET PERFORMANCE and SET STREAMING 21529 * commands (not yet implemented, 4380808) 21530 */ 21531 /* 21532 * As per recent MMC spec, CD-ROM speed is variable 21533 * and changes with LBA. Since there is no such 21534 * things as drive speed now, fail this ioctl. 21535 * 21536 * Note: EINVAL is returned for consistancy of original 21537 * implementation which included support for getting 21538 * the drive speed of mmc devices but not setting 21539 * the drive speed. Thus EINVAL would be returned 21540 * if a set request was made for an mmc device. 21541 * We no longer support get or set speed for 21542 * mmc but need to remain consistant with regard 21543 * to the error code returned. 21544 */ 21545 err = EINVAL; 21546 } else if (un->un_f_cfg_is_atapi == TRUE) { 21547 err = sr_atapi_change_speed(dev, cmd, arg, flag); 21548 } else { 21549 err = sr_change_speed(dev, cmd, arg, flag); 21550 } 21551 break; 21552 21553 case CDROMCDDA: 21554 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n"); 21555 if (!ISCD(un)) { 21556 err = ENOTTY; 21557 } else { 21558 err = sr_read_cdda(dev, (void *)arg, flag); 21559 } 21560 break; 21561 21562 case CDROMCDXA: 21563 SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n"); 21564 if (!ISCD(un)) { 21565 err = ENOTTY; 21566 } else { 21567 err = sr_read_cdxa(dev, (caddr_t)arg, flag); 21568 } 21569 break; 21570 21571 case CDROMSUBCODE: 21572 SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n"); 21573 if (!ISCD(un)) { 21574 err = ENOTTY; 21575 } else { 21576 err = sr_read_all_subcodes(dev, (caddr_t)arg, flag); 21577 } 21578 break; 21579 21580 case DKIOCPARTINFO: { 21581 /* 21582 * Return parameters describing the selected disk slice. 21583 * Note: this ioctl is for the intel platform only 21584 */ 21585 #if defined(__i386) || defined(__amd64) 21586 int part; 21587 21588 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n"); 21589 part = SDPART(dev); 21590 21591 /* don't check un_solaris_size for pN */ 21592 if (part < P0_RAW_DISK && un->un_solaris_size == 0) { 21593 err = EIO; 21594 } else { 21595 struct part_info p; 21596 21597 p.p_start = (daddr_t)un->un_offset[part]; 21598 p.p_length = (int)un->un_map[part].dkl_nblk; 21599 #ifdef _MULTI_DATAMODEL 21600 switch (ddi_model_convert_from(flag & FMODELS)) { 21601 case DDI_MODEL_ILP32: 21602 { 21603 struct part_info32 p32; 21604 21605 p32.p_start = (daddr32_t)p.p_start; 21606 p32.p_length = p.p_length; 21607 if (ddi_copyout(&p32, (void *)arg, 21608 sizeof (p32), flag)) 21609 err = EFAULT; 21610 break; 21611 } 21612 21613 case DDI_MODEL_NONE: 21614 { 21615 if (ddi_copyout(&p, (void *)arg, sizeof (p), 21616 flag)) 21617 err = EFAULT; 21618 break; 21619 } 21620 } 21621 #else /* ! _MULTI_DATAMODEL */ 21622 if (ddi_copyout(&p, (void *)arg, sizeof (p), flag)) 21623 err = EFAULT; 21624 #endif /* _MULTI_DATAMODEL */ 21625 } 21626 #else 21627 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n"); 21628 err = ENOTTY; 21629 #endif 21630 break; 21631 } 21632 21633 case DKIOCG_PHYGEOM: { 21634 /* Return the driver's notion of the media physical geometry */ 21635 #if defined(__i386) || defined(__amd64) 21636 struct dk_geom disk_geom; 21637 struct dk_geom *dkgp = &disk_geom; 21638 21639 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n"); 21640 mutex_enter(SD_MUTEX(un)); 21641 21642 if (un->un_g.dkg_nhead != 0 && 21643 un->un_g.dkg_nsect != 0) { 21644 /* 21645 * We succeeded in getting a geometry, but 21646 * right now it is being reported as just the 21647 * Solaris fdisk partition, just like for 21648 * DKIOCGGEOM. We need to change that to be 21649 * correct for the entire disk now. 21650 */ 21651 bcopy(&un->un_g, dkgp, sizeof (*dkgp)); 21652 dkgp->dkg_acyl = 0; 21653 dkgp->dkg_ncyl = un->un_blockcount / 21654 (dkgp->dkg_nhead * dkgp->dkg_nsect); 21655 } else { 21656 bzero(dkgp, sizeof (struct dk_geom)); 21657 /* 21658 * This disk does not have a Solaris VTOC 21659 * so we must present a physical geometry 21660 * that will remain consistent regardless 21661 * of how the disk is used. This will ensure 21662 * that the geometry does not change regardless 21663 * of the fdisk partition type (ie. EFI, FAT32, 21664 * Solaris, etc). 21665 */ 21666 if (ISCD(un)) { 21667 dkgp->dkg_nhead = un->un_pgeom.g_nhead; 21668 dkgp->dkg_nsect = un->un_pgeom.g_nsect; 21669 dkgp->dkg_ncyl = un->un_pgeom.g_ncyl; 21670 dkgp->dkg_acyl = un->un_pgeom.g_acyl; 21671 } else { 21672 /* 21673 * Invalid un_blockcount can generate invalid 21674 * dk_geom and may result in division by zero 21675 * system failure. Should make sure blockcount 21676 * is valid before using it here. 21677 */ 21678 if (un->un_f_blockcount_is_valid == FALSE) { 21679 mutex_exit(SD_MUTEX(un)); 21680 err = EIO; 21681 21682 break; 21683 } 21684 sd_convert_geometry(un->un_blockcount, dkgp); 21685 dkgp->dkg_acyl = 0; 21686 dkgp->dkg_ncyl = un->un_blockcount / 21687 (dkgp->dkg_nhead * dkgp->dkg_nsect); 21688 } 21689 } 21690 dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl; 21691 21692 if (ddi_copyout(dkgp, (void *)arg, 21693 sizeof (struct dk_geom), flag)) { 21694 mutex_exit(SD_MUTEX(un)); 21695 err = EFAULT; 21696 } else { 21697 mutex_exit(SD_MUTEX(un)); 21698 err = 0; 21699 } 21700 #else 21701 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n"); 21702 err = ENOTTY; 21703 #endif 21704 break; 21705 } 21706 21707 case DKIOCG_VIRTGEOM: { 21708 /* Return the driver's notion of the media's logical geometry */ 21709 #if defined(__i386) || defined(__amd64) 21710 struct dk_geom disk_geom; 21711 struct dk_geom *dkgp = &disk_geom; 21712 21713 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n"); 21714 mutex_enter(SD_MUTEX(un)); 21715 /* 21716 * If there is no HBA geometry available, or 21717 * if the HBA returned us something that doesn't 21718 * really fit into an Int 13/function 8 geometry 21719 * result, just fail the ioctl. See PSARC 1998/313. 21720 */ 21721 if (un->un_lgeom.g_nhead == 0 || 21722 un->un_lgeom.g_nsect == 0 || 21723 un->un_lgeom.g_ncyl > 1024) { 21724 mutex_exit(SD_MUTEX(un)); 21725 err = EINVAL; 21726 } else { 21727 dkgp->dkg_ncyl = un->un_lgeom.g_ncyl; 21728 dkgp->dkg_acyl = un->un_lgeom.g_acyl; 21729 dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl; 21730 dkgp->dkg_nhead = un->un_lgeom.g_nhead; 21731 dkgp->dkg_nsect = un->un_lgeom.g_nsect; 21732 21733 if (ddi_copyout(dkgp, (void *)arg, 21734 sizeof (struct dk_geom), flag)) { 21735 mutex_exit(SD_MUTEX(un)); 21736 err = EFAULT; 21737 } else { 21738 mutex_exit(SD_MUTEX(un)); 21739 err = 0; 21740 } 21741 } 21742 #else 21743 SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n"); 21744 err = ENOTTY; 21745 #endif 21746 break; 21747 } 21748 #ifdef SDDEBUG 21749 /* RESET/ABORTS testing ioctls */ 21750 case DKIOCRESET: { 21751 int reset_level; 21752 21753 if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) { 21754 err = EFAULT; 21755 } else { 21756 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: " 21757 "reset_level = 0x%lx\n", reset_level); 21758 if (scsi_reset(SD_ADDRESS(un), reset_level)) { 21759 err = 0; 21760 } else { 21761 err = EIO; 21762 } 21763 } 21764 break; 21765 } 21766 21767 case DKIOCABORT: 21768 SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n"); 21769 if (scsi_abort(SD_ADDRESS(un), NULL)) { 21770 err = 0; 21771 } else { 21772 err = EIO; 21773 } 21774 break; 21775 #endif 21776 21777 #ifdef SD_FAULT_INJECTION 21778 /* SDIOC FaultInjection testing ioctls */ 21779 case SDIOCSTART: 21780 case SDIOCSTOP: 21781 case SDIOCINSERTPKT: 21782 case SDIOCINSERTXB: 21783 case SDIOCINSERTUN: 21784 case SDIOCINSERTARQ: 21785 case SDIOCPUSH: 21786 case SDIOCRETRIEVE: 21787 case SDIOCRUN: 21788 SD_INFO(SD_LOG_SDTEST, un, "sdioctl:" 21789 "SDIOC detected cmd:0x%X:\n", cmd); 21790 /* call error generator */ 21791 sd_faultinjection_ioctl(cmd, arg, un); 21792 err = 0; 21793 break; 21794 21795 #endif /* SD_FAULT_INJECTION */ 21796 21797 case DKIOCFLUSHWRITECACHE: 21798 { 21799 struct dk_callback *dkc = (struct dk_callback *)arg; 21800 21801 mutex_enter(SD_MUTEX(un)); 21802 if (!un->un_f_sync_cache_supported || 21803 !un->un_f_write_cache_enabled) { 21804 err = un->un_f_sync_cache_supported ? 21805 0 : ENOTSUP; 21806 mutex_exit(SD_MUTEX(un)); 21807 if ((flag & FKIOCTL) && dkc != NULL && 21808 dkc->dkc_callback != NULL) { 21809 (*dkc->dkc_callback)(dkc->dkc_cookie, 21810 err); 21811 /* 21812 * Did callback and reported error. 21813 * Since we did a callback, ioctl 21814 * should return 0. 21815 */ 21816 err = 0; 21817 } 21818 break; 21819 } 21820 mutex_exit(SD_MUTEX(un)); 21821 21822 if ((flag & FKIOCTL) && dkc != NULL && 21823 dkc->dkc_callback != NULL) { 21824 /* async SYNC CACHE request */ 21825 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc); 21826 } else { 21827 /* synchronous SYNC CACHE request */ 21828 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 21829 } 21830 } 21831 break; 21832 21833 case DKIOCGETWCE: { 21834 21835 int wce; 21836 21837 if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) { 21838 break; 21839 } 21840 21841 if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) { 21842 err = EFAULT; 21843 } 21844 break; 21845 } 21846 21847 case DKIOCSETWCE: { 21848 21849 int wce, sync_supported; 21850 21851 if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) { 21852 err = EFAULT; 21853 break; 21854 } 21855 21856 /* 21857 * Synchronize multiple threads trying to enable 21858 * or disable the cache via the un_f_wcc_cv 21859 * condition variable. 21860 */ 21861 mutex_enter(SD_MUTEX(un)); 21862 21863 /* 21864 * Don't allow the cache to be enabled if the 21865 * config file has it disabled. 21866 */ 21867 if (un->un_f_opt_disable_cache && wce) { 21868 mutex_exit(SD_MUTEX(un)); 21869 err = EINVAL; 21870 break; 21871 } 21872 21873 /* 21874 * Wait for write cache change in progress 21875 * bit to be clear before proceeding. 21876 */ 21877 while (un->un_f_wcc_inprog) 21878 cv_wait(&un->un_wcc_cv, SD_MUTEX(un)); 21879 21880 un->un_f_wcc_inprog = 1; 21881 21882 if (un->un_f_write_cache_enabled && wce == 0) { 21883 /* 21884 * Disable the write cache. Don't clear 21885 * un_f_write_cache_enabled until after 21886 * the mode select and flush are complete. 21887 */ 21888 sync_supported = un->un_f_sync_cache_supported; 21889 mutex_exit(SD_MUTEX(un)); 21890 if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE, 21891 SD_CACHE_DISABLE)) == 0 && sync_supported) { 21892 err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL); 21893 } 21894 21895 mutex_enter(SD_MUTEX(un)); 21896 if (err == 0) { 21897 un->un_f_write_cache_enabled = 0; 21898 } 21899 21900 } else if (!un->un_f_write_cache_enabled && wce != 0) { 21901 /* 21902 * Set un_f_write_cache_enabled first, so there is 21903 * no window where the cache is enabled, but the 21904 * bit says it isn't. 21905 */ 21906 un->un_f_write_cache_enabled = 1; 21907 mutex_exit(SD_MUTEX(un)); 21908 21909 err = sd_cache_control(un, SD_CACHE_NOCHANGE, 21910 SD_CACHE_ENABLE); 21911 21912 mutex_enter(SD_MUTEX(un)); 21913 21914 if (err) { 21915 un->un_f_write_cache_enabled = 0; 21916 } 21917 } 21918 21919 un->un_f_wcc_inprog = 0; 21920 cv_broadcast(&un->un_wcc_cv); 21921 mutex_exit(SD_MUTEX(un)); 21922 break; 21923 } 21924 21925 default: 21926 err = ENOTTY; 21927 break; 21928 } 21929 mutex_enter(SD_MUTEX(un)); 21930 un->un_ncmds_in_driver--; 21931 ASSERT(un->un_ncmds_in_driver >= 0); 21932 mutex_exit(SD_MUTEX(un)); 21933 21934 SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err); 21935 return (err); 21936 } 21937 21938 21939 /* 21940 * Function: sd_uscsi_ioctl 21941 * 21942 * Description: This routine is the driver entry point for handling USCSI ioctl 21943 * requests (USCSICMD). 21944 * 21945 * Arguments: dev - the device number 21946 * arg - user provided scsi command 21947 * flag - this argument is a pass through to ddi_copyxxx() 21948 * directly from the mode argument of ioctl(). 21949 * 21950 * Return Code: code returned by sd_send_scsi_cmd 21951 * ENXIO 21952 * EFAULT 21953 * EAGAIN 21954 */ 21955 21956 static int 21957 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag) 21958 { 21959 #ifdef _MULTI_DATAMODEL 21960 /* 21961 * For use when a 32 bit app makes a call into a 21962 * 64 bit ioctl 21963 */ 21964 struct uscsi_cmd32 uscsi_cmd_32_for_64; 21965 struct uscsi_cmd32 *ucmd32 = &uscsi_cmd_32_for_64; 21966 model_t model; 21967 #endif /* _MULTI_DATAMODEL */ 21968 struct uscsi_cmd *scmd = NULL; 21969 struct sd_lun *un = NULL; 21970 enum uio_seg uioseg; 21971 char cdb[CDB_GROUP0]; 21972 int rval = 0; 21973 21974 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 21975 return (ENXIO); 21976 } 21977 21978 SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un); 21979 21980 scmd = (struct uscsi_cmd *) 21981 kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP); 21982 21983 #ifdef _MULTI_DATAMODEL 21984 switch (model = ddi_model_convert_from(flag & FMODELS)) { 21985 case DDI_MODEL_ILP32: 21986 { 21987 if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) { 21988 rval = EFAULT; 21989 goto done; 21990 } 21991 /* 21992 * Convert the ILP32 uscsi data from the 21993 * application to LP64 for internal use. 21994 */ 21995 uscsi_cmd32touscsi_cmd(ucmd32, scmd); 21996 break; 21997 } 21998 case DDI_MODEL_NONE: 21999 if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) { 22000 rval = EFAULT; 22001 goto done; 22002 } 22003 break; 22004 } 22005 #else /* ! _MULTI_DATAMODEL */ 22006 if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) { 22007 rval = EFAULT; 22008 goto done; 22009 } 22010 #endif /* _MULTI_DATAMODEL */ 22011 22012 scmd->uscsi_flags &= ~USCSI_NOINTR; 22013 uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE; 22014 if (un->un_f_format_in_progress == TRUE) { 22015 rval = EAGAIN; 22016 goto done; 22017 } 22018 22019 /* 22020 * Gotta do the ddi_copyin() here on the uscsi_cdb so that 22021 * we will have a valid cdb[0] to test. 22022 */ 22023 if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) && 22024 (cdb[0] == SCMD_FORMAT)) { 22025 SD_TRACE(SD_LOG_IOCTL, un, 22026 "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]); 22027 mutex_enter(SD_MUTEX(un)); 22028 un->un_f_format_in_progress = TRUE; 22029 mutex_exit(SD_MUTEX(un)); 22030 rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg, 22031 SD_PATH_STANDARD); 22032 mutex_enter(SD_MUTEX(un)); 22033 un->un_f_format_in_progress = FALSE; 22034 mutex_exit(SD_MUTEX(un)); 22035 } else { 22036 SD_TRACE(SD_LOG_IOCTL, un, 22037 "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]); 22038 /* 22039 * It's OK to fall into here even if the ddi_copyin() 22040 * on the uscsi_cdb above fails, because sd_send_scsi_cmd() 22041 * does this same copyin and will return the EFAULT 22042 * if it fails. 22043 */ 22044 rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg, 22045 SD_PATH_STANDARD); 22046 } 22047 #ifdef _MULTI_DATAMODEL 22048 switch (model) { 22049 case DDI_MODEL_ILP32: 22050 /* 22051 * Convert back to ILP32 before copyout to the 22052 * application 22053 */ 22054 uscsi_cmdtouscsi_cmd32(scmd, ucmd32); 22055 if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) { 22056 if (rval != 0) { 22057 rval = EFAULT; 22058 } 22059 } 22060 break; 22061 case DDI_MODEL_NONE: 22062 if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) { 22063 if (rval != 0) { 22064 rval = EFAULT; 22065 } 22066 } 22067 break; 22068 } 22069 #else /* ! _MULTI_DATAMODE */ 22070 if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) { 22071 if (rval != 0) { 22072 rval = EFAULT; 22073 } 22074 } 22075 #endif /* _MULTI_DATAMODE */ 22076 done: 22077 kmem_free(scmd, sizeof (struct uscsi_cmd)); 22078 22079 SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un); 22080 22081 return (rval); 22082 } 22083 22084 22085 /* 22086 * Function: sd_dkio_ctrl_info 22087 * 22088 * Description: This routine is the driver entry point for handling controller 22089 * information ioctl requests (DKIOCINFO). 22090 * 22091 * Arguments: dev - the device number 22092 * arg - pointer to user provided dk_cinfo structure 22093 * specifying the controller type and attributes. 22094 * flag - this argument is a pass through to ddi_copyxxx() 22095 * directly from the mode argument of ioctl(). 22096 * 22097 * Return Code: 0 22098 * EFAULT 22099 * ENXIO 22100 */ 22101 22102 static int 22103 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag) 22104 { 22105 struct sd_lun *un = NULL; 22106 struct dk_cinfo *info; 22107 dev_info_t *pdip; 22108 int lun, tgt; 22109 22110 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22111 return (ENXIO); 22112 } 22113 22114 info = (struct dk_cinfo *) 22115 kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP); 22116 22117 switch (un->un_ctype) { 22118 case CTYPE_CDROM: 22119 info->dki_ctype = DKC_CDROM; 22120 break; 22121 default: 22122 info->dki_ctype = DKC_SCSI_CCS; 22123 break; 22124 } 22125 pdip = ddi_get_parent(SD_DEVINFO(un)); 22126 info->dki_cnum = ddi_get_instance(pdip); 22127 if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) { 22128 (void) strcpy(info->dki_cname, ddi_get_name(pdip)); 22129 } else { 22130 (void) strncpy(info->dki_cname, ddi_node_name(pdip), 22131 DK_DEVLEN - 1); 22132 } 22133 22134 lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 22135 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0); 22136 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un), 22137 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0); 22138 22139 /* Unit Information */ 22140 info->dki_unit = ddi_get_instance(SD_DEVINFO(un)); 22141 info->dki_slave = ((tgt << 3) | lun); 22142 (void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)), 22143 DK_DEVLEN - 1); 22144 info->dki_flags = DKI_FMTVOL; 22145 info->dki_partition = SDPART(dev); 22146 22147 /* Max Transfer size of this device in blocks */ 22148 info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize; 22149 info->dki_addr = 0; 22150 info->dki_space = 0; 22151 info->dki_prio = 0; 22152 info->dki_vec = 0; 22153 22154 if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) { 22155 kmem_free(info, sizeof (struct dk_cinfo)); 22156 return (EFAULT); 22157 } else { 22158 kmem_free(info, sizeof (struct dk_cinfo)); 22159 return (0); 22160 } 22161 } 22162 22163 22164 /* 22165 * Function: sd_get_media_info 22166 * 22167 * Description: This routine is the driver entry point for handling ioctl 22168 * requests for the media type or command set profile used by the 22169 * drive to operate on the media (DKIOCGMEDIAINFO). 22170 * 22171 * Arguments: dev - the device number 22172 * arg - pointer to user provided dk_minfo structure 22173 * specifying the media type, logical block size and 22174 * drive capacity. 22175 * flag - this argument is a pass through to ddi_copyxxx() 22176 * directly from the mode argument of ioctl(). 22177 * 22178 * Return Code: 0 22179 * EACCESS 22180 * EFAULT 22181 * ENXIO 22182 * EIO 22183 */ 22184 22185 static int 22186 sd_get_media_info(dev_t dev, caddr_t arg, int flag) 22187 { 22188 struct sd_lun *un = NULL; 22189 struct uscsi_cmd com; 22190 struct scsi_inquiry *sinq; 22191 struct dk_minfo media_info; 22192 u_longlong_t media_capacity; 22193 uint64_t capacity; 22194 uint_t lbasize; 22195 uchar_t *out_data; 22196 uchar_t *rqbuf; 22197 int rval = 0; 22198 int rtn; 22199 22200 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 22201 (un->un_state == SD_STATE_OFFLINE)) { 22202 return (ENXIO); 22203 } 22204 22205 SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n"); 22206 22207 out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP); 22208 rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP); 22209 22210 /* Issue a TUR to determine if the drive is ready with media present */ 22211 rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA); 22212 if (rval == ENXIO) { 22213 goto done; 22214 } 22215 22216 /* Now get configuration data */ 22217 if (ISCD(un)) { 22218 media_info.dki_media_type = DK_CDROM; 22219 22220 /* Allow SCMD_GET_CONFIGURATION to MMC devices only */ 22221 if (un->un_f_mmc_cap == TRUE) { 22222 rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, 22223 SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN); 22224 22225 if (rtn) { 22226 /* 22227 * Failed for other than an illegal request 22228 * or command not supported 22229 */ 22230 if ((com.uscsi_status == STATUS_CHECK) && 22231 (com.uscsi_rqstatus == STATUS_GOOD)) { 22232 if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) || 22233 (rqbuf[12] != 0x20)) { 22234 rval = EIO; 22235 goto done; 22236 } 22237 } 22238 } else { 22239 /* 22240 * The GET CONFIGURATION command succeeded 22241 * so set the media type according to the 22242 * returned data 22243 */ 22244 media_info.dki_media_type = out_data[6]; 22245 media_info.dki_media_type <<= 8; 22246 media_info.dki_media_type |= out_data[7]; 22247 } 22248 } 22249 } else { 22250 /* 22251 * The profile list is not available, so we attempt to identify 22252 * the media type based on the inquiry data 22253 */ 22254 sinq = un->un_sd->sd_inq; 22255 if (sinq->inq_qual == 0) { 22256 /* This is a direct access device */ 22257 media_info.dki_media_type = DK_FIXED_DISK; 22258 22259 if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) || 22260 (bcmp(sinq->inq_vid, "iomega", 6) == 0)) { 22261 if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) { 22262 media_info.dki_media_type = DK_ZIP; 22263 } else if ( 22264 (bcmp(sinq->inq_pid, "jaz", 3) == 0)) { 22265 media_info.dki_media_type = DK_JAZ; 22266 } 22267 } 22268 } else { 22269 /* Not a CD or direct access so return unknown media */ 22270 media_info.dki_media_type = DK_UNKNOWN; 22271 } 22272 } 22273 22274 /* Now read the capacity so we can provide the lbasize and capacity */ 22275 switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize, 22276 SD_PATH_DIRECT)) { 22277 case 0: 22278 break; 22279 case EACCES: 22280 rval = EACCES; 22281 goto done; 22282 default: 22283 rval = EIO; 22284 goto done; 22285 } 22286 22287 media_info.dki_lbsize = lbasize; 22288 media_capacity = capacity; 22289 22290 /* 22291 * sd_send_scsi_READ_CAPACITY() reports capacity in 22292 * un->un_sys_blocksize chunks. So we need to convert it into 22293 * cap.lbasize chunks. 22294 */ 22295 media_capacity *= un->un_sys_blocksize; 22296 media_capacity /= lbasize; 22297 media_info.dki_capacity = media_capacity; 22298 22299 if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) { 22300 rval = EFAULT; 22301 /* Put goto. Anybody might add some code below in future */ 22302 goto done; 22303 } 22304 done: 22305 kmem_free(out_data, SD_PROFILE_HEADER_LEN); 22306 kmem_free(rqbuf, SENSE_LENGTH); 22307 return (rval); 22308 } 22309 22310 22311 /* 22312 * Function: sd_dkio_get_geometry 22313 * 22314 * Description: This routine is the driver entry point for handling user 22315 * requests to get the device geometry (DKIOCGGEOM). 22316 * 22317 * Arguments: dev - the device number 22318 * arg - pointer to user provided dk_geom structure specifying 22319 * the controller's notion of the current geometry. 22320 * flag - this argument is a pass through to ddi_copyxxx() 22321 * directly from the mode argument of ioctl(). 22322 * geom_validated - flag indicating if the device geometry has been 22323 * previously validated in the sdioctl routine. 22324 * 22325 * Return Code: 0 22326 * EFAULT 22327 * ENXIO 22328 * EIO 22329 */ 22330 22331 static int 22332 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated) 22333 { 22334 struct sd_lun *un = NULL; 22335 struct dk_geom *tmp_geom = NULL; 22336 int rval = 0; 22337 22338 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22339 return (ENXIO); 22340 } 22341 22342 #if defined(__i386) || defined(__amd64) 22343 if (un->un_solaris_size == 0) { 22344 return (EIO); 22345 } 22346 #endif 22347 if (geom_validated == FALSE) { 22348 /* 22349 * sd_validate_geometry does not spin a disk up 22350 * if it was spun down. We need to make sure it 22351 * is ready. 22352 */ 22353 if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) { 22354 return (rval); 22355 } 22356 mutex_enter(SD_MUTEX(un)); 22357 rval = sd_validate_geometry(un, SD_PATH_DIRECT); 22358 mutex_exit(SD_MUTEX(un)); 22359 } 22360 if (rval) 22361 return (rval); 22362 22363 /* 22364 * Make a local copy of the soft state geometry to avoid some potential 22365 * race conditions associated with holding the mutex and updating the 22366 * write_reinstruct value 22367 */ 22368 tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP); 22369 mutex_enter(SD_MUTEX(un)); 22370 bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom)); 22371 mutex_exit(SD_MUTEX(un)); 22372 22373 if (tmp_geom->dkg_write_reinstruct == 0) { 22374 tmp_geom->dkg_write_reinstruct = 22375 (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm * 22376 sd_rot_delay) / (int)60000); 22377 } 22378 22379 rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom), 22380 flag); 22381 if (rval != 0) { 22382 rval = EFAULT; 22383 } 22384 22385 kmem_free(tmp_geom, sizeof (struct dk_geom)); 22386 return (rval); 22387 22388 } 22389 22390 22391 /* 22392 * Function: sd_dkio_set_geometry 22393 * 22394 * Description: This routine is the driver entry point for handling user 22395 * requests to set the device geometry (DKIOCSGEOM). The actual 22396 * device geometry is not updated, just the driver "notion" of it. 22397 * 22398 * Arguments: dev - the device number 22399 * arg - pointer to user provided dk_geom structure used to set 22400 * the controller's notion of the current geometry. 22401 * flag - this argument is a pass through to ddi_copyxxx() 22402 * directly from the mode argument of ioctl(). 22403 * 22404 * Return Code: 0 22405 * EFAULT 22406 * ENXIO 22407 * EIO 22408 */ 22409 22410 static int 22411 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag) 22412 { 22413 struct sd_lun *un = NULL; 22414 struct dk_geom *tmp_geom; 22415 struct dk_map *lp; 22416 int rval = 0; 22417 int i; 22418 22419 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22420 return (ENXIO); 22421 } 22422 22423 #if defined(__i386) || defined(__amd64) 22424 if (un->un_solaris_size == 0) { 22425 return (EIO); 22426 } 22427 #endif 22428 /* 22429 * We need to copy the user specified geometry into local 22430 * storage and then update the softstate. We don't want to hold 22431 * the mutex and copyin directly from the user to the soft state 22432 */ 22433 tmp_geom = (struct dk_geom *) 22434 kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP); 22435 rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag); 22436 if (rval != 0) { 22437 kmem_free(tmp_geom, sizeof (struct dk_geom)); 22438 return (EFAULT); 22439 } 22440 22441 mutex_enter(SD_MUTEX(un)); 22442 bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom)); 22443 for (i = 0; i < NDKMAP; i++) { 22444 lp = &un->un_map[i]; 22445 un->un_offset[i] = 22446 un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno; 22447 #if defined(__i386) || defined(__amd64) 22448 un->un_offset[i] += un->un_solaris_offset; 22449 #endif 22450 } 22451 un->un_f_geometry_is_valid = FALSE; 22452 mutex_exit(SD_MUTEX(un)); 22453 kmem_free(tmp_geom, sizeof (struct dk_geom)); 22454 22455 return (rval); 22456 } 22457 22458 22459 /* 22460 * Function: sd_dkio_get_partition 22461 * 22462 * Description: This routine is the driver entry point for handling user 22463 * requests to get the partition table (DKIOCGAPART). 22464 * 22465 * Arguments: dev - the device number 22466 * arg - pointer to user provided dk_allmap structure specifying 22467 * the controller's notion of the current partition table. 22468 * flag - this argument is a pass through to ddi_copyxxx() 22469 * directly from the mode argument of ioctl(). 22470 * geom_validated - flag indicating if the device geometry has been 22471 * previously validated in the sdioctl routine. 22472 * 22473 * Return Code: 0 22474 * EFAULT 22475 * ENXIO 22476 * EIO 22477 */ 22478 22479 static int 22480 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated) 22481 { 22482 struct sd_lun *un = NULL; 22483 int rval = 0; 22484 int size; 22485 22486 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22487 return (ENXIO); 22488 } 22489 22490 #if defined(__i386) || defined(__amd64) 22491 if (un->un_solaris_size == 0) { 22492 return (EIO); 22493 } 22494 #endif 22495 /* 22496 * Make sure the geometry is valid before getting the partition 22497 * information. 22498 */ 22499 mutex_enter(SD_MUTEX(un)); 22500 if (geom_validated == FALSE) { 22501 /* 22502 * sd_validate_geometry does not spin a disk up 22503 * if it was spun down. We need to make sure it 22504 * is ready before validating the geometry. 22505 */ 22506 mutex_exit(SD_MUTEX(un)); 22507 if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) { 22508 return (rval); 22509 } 22510 mutex_enter(SD_MUTEX(un)); 22511 22512 if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) { 22513 mutex_exit(SD_MUTEX(un)); 22514 return (rval); 22515 } 22516 } 22517 mutex_exit(SD_MUTEX(un)); 22518 22519 #ifdef _MULTI_DATAMODEL 22520 switch (ddi_model_convert_from(flag & FMODELS)) { 22521 case DDI_MODEL_ILP32: { 22522 struct dk_map32 dk_map32[NDKMAP]; 22523 int i; 22524 22525 for (i = 0; i < NDKMAP; i++) { 22526 dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno; 22527 dk_map32[i].dkl_nblk = un->un_map[i].dkl_nblk; 22528 } 22529 size = NDKMAP * sizeof (struct dk_map32); 22530 rval = ddi_copyout(dk_map32, (void *)arg, size, flag); 22531 if (rval != 0) { 22532 rval = EFAULT; 22533 } 22534 break; 22535 } 22536 case DDI_MODEL_NONE: 22537 size = NDKMAP * sizeof (struct dk_map); 22538 rval = ddi_copyout(un->un_map, (void *)arg, size, flag); 22539 if (rval != 0) { 22540 rval = EFAULT; 22541 } 22542 break; 22543 } 22544 #else /* ! _MULTI_DATAMODEL */ 22545 size = NDKMAP * sizeof (struct dk_map); 22546 rval = ddi_copyout(un->un_map, (void *)arg, size, flag); 22547 if (rval != 0) { 22548 rval = EFAULT; 22549 } 22550 #endif /* _MULTI_DATAMODEL */ 22551 return (rval); 22552 } 22553 22554 22555 /* 22556 * Function: sd_dkio_set_partition 22557 * 22558 * Description: This routine is the driver entry point for handling user 22559 * requests to set the partition table (DKIOCSAPART). The actual 22560 * device partition is not updated. 22561 * 22562 * Arguments: dev - the device number 22563 * arg - pointer to user provided dk_allmap structure used to set 22564 * the controller's notion of the partition table. 22565 * flag - this argument is a pass through to ddi_copyxxx() 22566 * directly from the mode argument of ioctl(). 22567 * 22568 * Return Code: 0 22569 * EINVAL 22570 * EFAULT 22571 * ENXIO 22572 * EIO 22573 */ 22574 22575 static int 22576 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag) 22577 { 22578 struct sd_lun *un = NULL; 22579 struct dk_map dk_map[NDKMAP]; 22580 struct dk_map *lp; 22581 int rval = 0; 22582 int size; 22583 int i; 22584 #if defined(_SUNOS_VTOC_16) 22585 struct dkl_partition *vp; 22586 #endif 22587 22588 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22589 return (ENXIO); 22590 } 22591 22592 /* 22593 * Set the map for all logical partitions. We lock 22594 * the priority just to make sure an interrupt doesn't 22595 * come in while the map is half updated. 22596 */ 22597 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size)) 22598 mutex_enter(SD_MUTEX(un)); 22599 if (un->un_blockcount > DK_MAX_BLOCKS) { 22600 mutex_exit(SD_MUTEX(un)); 22601 return (ENOTSUP); 22602 } 22603 mutex_exit(SD_MUTEX(un)); 22604 if (un->un_solaris_size == 0) { 22605 return (EIO); 22606 } 22607 22608 #ifdef _MULTI_DATAMODEL 22609 switch (ddi_model_convert_from(flag & FMODELS)) { 22610 case DDI_MODEL_ILP32: { 22611 struct dk_map32 dk_map32[NDKMAP]; 22612 22613 size = NDKMAP * sizeof (struct dk_map32); 22614 rval = ddi_copyin((void *)arg, dk_map32, size, flag); 22615 if (rval != 0) { 22616 return (EFAULT); 22617 } 22618 for (i = 0; i < NDKMAP; i++) { 22619 dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno; 22620 dk_map[i].dkl_nblk = dk_map32[i].dkl_nblk; 22621 } 22622 break; 22623 } 22624 case DDI_MODEL_NONE: 22625 size = NDKMAP * sizeof (struct dk_map); 22626 rval = ddi_copyin((void *)arg, dk_map, size, flag); 22627 if (rval != 0) { 22628 return (EFAULT); 22629 } 22630 break; 22631 } 22632 #else /* ! _MULTI_DATAMODEL */ 22633 size = NDKMAP * sizeof (struct dk_map); 22634 rval = ddi_copyin((void *)arg, dk_map, size, flag); 22635 if (rval != 0) { 22636 return (EFAULT); 22637 } 22638 #endif /* _MULTI_DATAMODEL */ 22639 22640 mutex_enter(SD_MUTEX(un)); 22641 /* Note: The size used in this bcopy is set based upon the data model */ 22642 bcopy(dk_map, un->un_map, size); 22643 #if defined(_SUNOS_VTOC_16) 22644 vp = (struct dkl_partition *)&(un->un_vtoc); 22645 #endif /* defined(_SUNOS_VTOC_16) */ 22646 for (i = 0; i < NDKMAP; i++) { 22647 lp = &un->un_map[i]; 22648 un->un_offset[i] = 22649 un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno; 22650 #if defined(_SUNOS_VTOC_16) 22651 vp->p_start = un->un_offset[i]; 22652 vp->p_size = lp->dkl_nblk; 22653 vp++; 22654 #endif /* defined(_SUNOS_VTOC_16) */ 22655 #if defined(__i386) || defined(__amd64) 22656 un->un_offset[i] += un->un_solaris_offset; 22657 #endif 22658 } 22659 mutex_exit(SD_MUTEX(un)); 22660 return (rval); 22661 } 22662 22663 22664 /* 22665 * Function: sd_dkio_get_vtoc 22666 * 22667 * Description: This routine is the driver entry point for handling user 22668 * requests to get the current volume table of contents 22669 * (DKIOCGVTOC). 22670 * 22671 * Arguments: dev - the device number 22672 * arg - pointer to user provided vtoc structure specifying 22673 * the current vtoc. 22674 * flag - this argument is a pass through to ddi_copyxxx() 22675 * directly from the mode argument of ioctl(). 22676 * geom_validated - flag indicating if the device geometry has been 22677 * previously validated in the sdioctl routine. 22678 * 22679 * Return Code: 0 22680 * EFAULT 22681 * ENXIO 22682 * EIO 22683 */ 22684 22685 static int 22686 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated) 22687 { 22688 struct sd_lun *un = NULL; 22689 #if defined(_SUNOS_VTOC_8) 22690 struct vtoc user_vtoc; 22691 #endif /* defined(_SUNOS_VTOC_8) */ 22692 int rval = 0; 22693 22694 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22695 return (ENXIO); 22696 } 22697 22698 mutex_enter(SD_MUTEX(un)); 22699 if (geom_validated == FALSE) { 22700 /* 22701 * sd_validate_geometry does not spin a disk up 22702 * if it was spun down. We need to make sure it 22703 * is ready. 22704 */ 22705 mutex_exit(SD_MUTEX(un)); 22706 if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) { 22707 return (rval); 22708 } 22709 mutex_enter(SD_MUTEX(un)); 22710 if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) { 22711 mutex_exit(SD_MUTEX(un)); 22712 return (rval); 22713 } 22714 } 22715 22716 #if defined(_SUNOS_VTOC_8) 22717 sd_build_user_vtoc(un, &user_vtoc); 22718 mutex_exit(SD_MUTEX(un)); 22719 22720 #ifdef _MULTI_DATAMODEL 22721 switch (ddi_model_convert_from(flag & FMODELS)) { 22722 case DDI_MODEL_ILP32: { 22723 struct vtoc32 user_vtoc32; 22724 22725 vtoctovtoc32(user_vtoc, user_vtoc32); 22726 if (ddi_copyout(&user_vtoc32, (void *)arg, 22727 sizeof (struct vtoc32), flag)) { 22728 return (EFAULT); 22729 } 22730 break; 22731 } 22732 22733 case DDI_MODEL_NONE: 22734 if (ddi_copyout(&user_vtoc, (void *)arg, 22735 sizeof (struct vtoc), flag)) { 22736 return (EFAULT); 22737 } 22738 break; 22739 } 22740 #else /* ! _MULTI_DATAMODEL */ 22741 if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) { 22742 return (EFAULT); 22743 } 22744 #endif /* _MULTI_DATAMODEL */ 22745 22746 #elif defined(_SUNOS_VTOC_16) 22747 mutex_exit(SD_MUTEX(un)); 22748 22749 #ifdef _MULTI_DATAMODEL 22750 /* 22751 * The un_vtoc structure is a "struct dk_vtoc" which is always 22752 * 32-bit to maintain compatibility with existing on-disk 22753 * structures. Thus, we need to convert the structure when copying 22754 * it out to a datamodel-dependent "struct vtoc" in a 64-bit 22755 * program. If the target is a 32-bit program, then no conversion 22756 * is necessary. 22757 */ 22758 /* LINTED: logical expression always true: op "||" */ 22759 ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32)); 22760 switch (ddi_model_convert_from(flag & FMODELS)) { 22761 case DDI_MODEL_ILP32: 22762 if (ddi_copyout(&(un->un_vtoc), (void *)arg, 22763 sizeof (un->un_vtoc), flag)) { 22764 return (EFAULT); 22765 } 22766 break; 22767 22768 case DDI_MODEL_NONE: { 22769 struct vtoc user_vtoc; 22770 22771 vtoc32tovtoc(un->un_vtoc, user_vtoc); 22772 if (ddi_copyout(&user_vtoc, (void *)arg, 22773 sizeof (struct vtoc), flag)) { 22774 return (EFAULT); 22775 } 22776 break; 22777 } 22778 } 22779 #else /* ! _MULTI_DATAMODEL */ 22780 if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc), 22781 flag)) { 22782 return (EFAULT); 22783 } 22784 #endif /* _MULTI_DATAMODEL */ 22785 #else 22786 #error "No VTOC format defined." 22787 #endif 22788 22789 return (rval); 22790 } 22791 22792 static int 22793 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag) 22794 { 22795 struct sd_lun *un = NULL; 22796 dk_efi_t user_efi; 22797 int rval = 0; 22798 void *buffer; 22799 22800 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) 22801 return (ENXIO); 22802 22803 if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag)) 22804 return (EFAULT); 22805 22806 user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64; 22807 22808 if ((user_efi.dki_length % un->un_tgt_blocksize) || 22809 (user_efi.dki_length > un->un_max_xfer_size)) 22810 return (EINVAL); 22811 22812 buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP); 22813 rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length, 22814 user_efi.dki_lba, SD_PATH_DIRECT); 22815 if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data, 22816 user_efi.dki_length, flag) != 0) 22817 rval = EFAULT; 22818 22819 kmem_free(buffer, user_efi.dki_length); 22820 return (rval); 22821 } 22822 22823 /* 22824 * Function: sd_build_user_vtoc 22825 * 22826 * Description: This routine populates a pass by reference variable with the 22827 * current volume table of contents. 22828 * 22829 * Arguments: un - driver soft state (unit) structure 22830 * user_vtoc - pointer to vtoc structure to be populated 22831 */ 22832 22833 static void 22834 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc) 22835 { 22836 struct dk_map2 *lpart; 22837 struct dk_map *lmap; 22838 struct partition *vpart; 22839 int nblks; 22840 int i; 22841 22842 ASSERT(mutex_owned(SD_MUTEX(un))); 22843 22844 /* 22845 * Return vtoc structure fields in the provided VTOC area, addressed 22846 * by *vtoc. 22847 */ 22848 bzero(user_vtoc, sizeof (struct vtoc)); 22849 user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0]; 22850 user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1]; 22851 user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2]; 22852 user_vtoc->v_sanity = VTOC_SANE; 22853 user_vtoc->v_version = un->un_vtoc.v_version; 22854 bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL); 22855 user_vtoc->v_sectorsz = un->un_sys_blocksize; 22856 user_vtoc->v_nparts = un->un_vtoc.v_nparts; 22857 bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved, 22858 sizeof (un->un_vtoc.v_reserved)); 22859 /* 22860 * Convert partitioning information. 22861 * 22862 * Note the conversion from starting cylinder number 22863 * to starting sector number. 22864 */ 22865 lmap = un->un_map; 22866 lpart = (struct dk_map2 *)un->un_vtoc.v_part; 22867 vpart = user_vtoc->v_part; 22868 22869 nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead; 22870 22871 for (i = 0; i < V_NUMPAR; i++) { 22872 vpart->p_tag = lpart->p_tag; 22873 vpart->p_flag = lpart->p_flag; 22874 vpart->p_start = lmap->dkl_cylno * nblks; 22875 vpart->p_size = lmap->dkl_nblk; 22876 lmap++; 22877 lpart++; 22878 vpart++; 22879 22880 /* (4364927) */ 22881 user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i]; 22882 } 22883 22884 bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII); 22885 } 22886 22887 static int 22888 sd_dkio_partition(dev_t dev, caddr_t arg, int flag) 22889 { 22890 struct sd_lun *un = NULL; 22891 struct partition64 p64; 22892 int rval = 0; 22893 uint_t nparts; 22894 efi_gpe_t *partitions; 22895 efi_gpt_t *buffer; 22896 diskaddr_t gpe_lba; 22897 22898 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22899 return (ENXIO); 22900 } 22901 22902 if (ddi_copyin((const void *)arg, &p64, 22903 sizeof (struct partition64), flag)) { 22904 return (EFAULT); 22905 } 22906 22907 buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP); 22908 rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE, 22909 1, SD_PATH_DIRECT); 22910 if (rval != 0) 22911 goto done_error; 22912 22913 sd_swap_efi_gpt(buffer); 22914 22915 if ((rval = sd_validate_efi(buffer)) != 0) 22916 goto done_error; 22917 22918 nparts = buffer->efi_gpt_NumberOfPartitionEntries; 22919 gpe_lba = buffer->efi_gpt_PartitionEntryLBA; 22920 if (p64.p_partno > nparts) { 22921 /* couldn't find it */ 22922 rval = ESRCH; 22923 goto done_error; 22924 } 22925 /* 22926 * if we're dealing with a partition that's out of the normal 22927 * 16K block, adjust accordingly 22928 */ 22929 gpe_lba += p64.p_partno / sizeof (efi_gpe_t); 22930 rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE, 22931 gpe_lba, SD_PATH_DIRECT); 22932 if (rval) { 22933 goto done_error; 22934 } 22935 partitions = (efi_gpe_t *)buffer; 22936 22937 sd_swap_efi_gpe(nparts, partitions); 22938 22939 partitions += p64.p_partno; 22940 bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type, 22941 sizeof (struct uuid)); 22942 p64.p_start = partitions->efi_gpe_StartingLBA; 22943 p64.p_size = partitions->efi_gpe_EndingLBA - 22944 p64.p_start + 1; 22945 22946 if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag)) 22947 rval = EFAULT; 22948 22949 done_error: 22950 kmem_free(buffer, EFI_MIN_ARRAY_SIZE); 22951 return (rval); 22952 } 22953 22954 22955 /* 22956 * Function: sd_dkio_set_vtoc 22957 * 22958 * Description: This routine is the driver entry point for handling user 22959 * requests to set the current volume table of contents 22960 * (DKIOCSVTOC). 22961 * 22962 * Arguments: dev - the device number 22963 * arg - pointer to user provided vtoc structure used to set the 22964 * current vtoc. 22965 * flag - this argument is a pass through to ddi_copyxxx() 22966 * directly from the mode argument of ioctl(). 22967 * 22968 * Return Code: 0 22969 * EFAULT 22970 * ENXIO 22971 * EINVAL 22972 * ENOTSUP 22973 */ 22974 22975 static int 22976 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag) 22977 { 22978 struct sd_lun *un = NULL; 22979 struct vtoc user_vtoc; 22980 int rval = 0; 22981 22982 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 22983 return (ENXIO); 22984 } 22985 22986 #if defined(__i386) || defined(__amd64) 22987 if (un->un_tgt_blocksize != un->un_sys_blocksize) { 22988 return (EINVAL); 22989 } 22990 #endif 22991 22992 #ifdef _MULTI_DATAMODEL 22993 switch (ddi_model_convert_from(flag & FMODELS)) { 22994 case DDI_MODEL_ILP32: { 22995 struct vtoc32 user_vtoc32; 22996 22997 if (ddi_copyin((const void *)arg, &user_vtoc32, 22998 sizeof (struct vtoc32), flag)) { 22999 return (EFAULT); 23000 } 23001 vtoc32tovtoc(user_vtoc32, user_vtoc); 23002 break; 23003 } 23004 23005 case DDI_MODEL_NONE: 23006 if (ddi_copyin((const void *)arg, &user_vtoc, 23007 sizeof (struct vtoc), flag)) { 23008 return (EFAULT); 23009 } 23010 break; 23011 } 23012 #else /* ! _MULTI_DATAMODEL */ 23013 if (ddi_copyin((const void *)arg, &user_vtoc, 23014 sizeof (struct vtoc), flag)) { 23015 return (EFAULT); 23016 } 23017 #endif /* _MULTI_DATAMODEL */ 23018 23019 mutex_enter(SD_MUTEX(un)); 23020 if (un->un_blockcount > DK_MAX_BLOCKS) { 23021 mutex_exit(SD_MUTEX(un)); 23022 return (ENOTSUP); 23023 } 23024 if (un->un_g.dkg_ncyl == 0) { 23025 mutex_exit(SD_MUTEX(un)); 23026 return (EINVAL); 23027 } 23028 23029 mutex_exit(SD_MUTEX(un)); 23030 sd_clear_efi(un); 23031 ddi_remove_minor_node(SD_DEVINFO(un), "wd"); 23032 ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw"); 23033 (void) ddi_create_minor_node(SD_DEVINFO(un), "h", 23034 S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE, 23035 un->un_node_type, NULL); 23036 (void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw", 23037 S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE, 23038 un->un_node_type, NULL); 23039 mutex_enter(SD_MUTEX(un)); 23040 23041 if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) { 23042 if ((rval = sd_write_label(dev)) == 0) { 23043 if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) 23044 != 0) { 23045 SD_ERROR(SD_LOG_IOCTL_DKIO, un, 23046 "sd_dkio_set_vtoc: " 23047 "Failed validate geometry\n"); 23048 } 23049 } 23050 } 23051 23052 /* 23053 * If sd_build_label_vtoc, or sd_write_label failed above write the 23054 * devid anyway, what can it hurt? Also preserve the device id by 23055 * writing to the disk acyl for the case where a devid has been 23056 * fabricated. 23057 */ 23058 if (un->un_f_devid_supported && 23059 (un->un_f_opt_fab_devid == TRUE)) { 23060 if (un->un_devid == NULL) { 23061 sd_register_devid(un, SD_DEVINFO(un), 23062 SD_TARGET_IS_UNRESERVED); 23063 } else { 23064 /* 23065 * The device id for this disk has been 23066 * fabricated. Fabricated device id's are 23067 * managed by storing them in the last 2 23068 * available sectors on the drive. The device 23069 * id must be preserved by writing it back out 23070 * to this location. 23071 */ 23072 if (sd_write_deviceid(un) != 0) { 23073 ddi_devid_free(un->un_devid); 23074 un->un_devid = NULL; 23075 } 23076 } 23077 } 23078 mutex_exit(SD_MUTEX(un)); 23079 return (rval); 23080 } 23081 23082 23083 /* 23084 * Function: sd_build_label_vtoc 23085 * 23086 * Description: This routine updates the driver soft state current volume table 23087 * of contents based on a user specified vtoc. 23088 * 23089 * Arguments: un - driver soft state (unit) structure 23090 * user_vtoc - pointer to vtoc structure specifying vtoc to be used 23091 * to update the driver soft state. 23092 * 23093 * Return Code: 0 23094 * EINVAL 23095 */ 23096 23097 static int 23098 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc) 23099 { 23100 struct dk_map *lmap; 23101 struct partition *vpart; 23102 int nblks; 23103 #if defined(_SUNOS_VTOC_8) 23104 int ncyl; 23105 struct dk_map2 *lpart; 23106 #endif /* defined(_SUNOS_VTOC_8) */ 23107 int i; 23108 23109 ASSERT(mutex_owned(SD_MUTEX(un))); 23110 23111 /* Sanity-check the vtoc */ 23112 if (user_vtoc->v_sanity != VTOC_SANE || 23113 user_vtoc->v_sectorsz != un->un_sys_blocksize || 23114 user_vtoc->v_nparts != V_NUMPAR) { 23115 return (EINVAL); 23116 } 23117 23118 nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead; 23119 if (nblks == 0) { 23120 return (EINVAL); 23121 } 23122 23123 #if defined(_SUNOS_VTOC_8) 23124 vpart = user_vtoc->v_part; 23125 for (i = 0; i < V_NUMPAR; i++) { 23126 if ((vpart->p_start % nblks) != 0) { 23127 return (EINVAL); 23128 } 23129 ncyl = vpart->p_start / nblks; 23130 ncyl += vpart->p_size / nblks; 23131 if ((vpart->p_size % nblks) != 0) { 23132 ncyl++; 23133 } 23134 if (ncyl > (int)un->un_g.dkg_ncyl) { 23135 return (EINVAL); 23136 } 23137 vpart++; 23138 } 23139 #endif /* defined(_SUNOS_VTOC_8) */ 23140 23141 /* Put appropriate vtoc structure fields into the disk label */ 23142 #if defined(_SUNOS_VTOC_16) 23143 /* 23144 * The vtoc is always a 32bit data structure to maintain the 23145 * on-disk format. Convert "in place" instead of bcopying it. 23146 */ 23147 vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc)))); 23148 23149 /* 23150 * in the 16-slice vtoc, starting sectors are expressed in 23151 * numbers *relative* to the start of the Solaris fdisk partition. 23152 */ 23153 lmap = un->un_map; 23154 vpart = user_vtoc->v_part; 23155 23156 for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) { 23157 lmap->dkl_cylno = vpart->p_start / nblks; 23158 lmap->dkl_nblk = vpart->p_size; 23159 } 23160 23161 #elif defined(_SUNOS_VTOC_8) 23162 23163 un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0]; 23164 un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1]; 23165 un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2]; 23166 23167 un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity; 23168 un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version; 23169 23170 bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL); 23171 23172 un->un_vtoc.v_nparts = user_vtoc->v_nparts; 23173 23174 bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved, 23175 sizeof (un->un_vtoc.v_reserved)); 23176 23177 /* 23178 * Note the conversion from starting sector number 23179 * to starting cylinder number. 23180 * Return error if division results in a remainder. 23181 */ 23182 lmap = un->un_map; 23183 lpart = un->un_vtoc.v_part; 23184 vpart = user_vtoc->v_part; 23185 23186 for (i = 0; i < (int)user_vtoc->v_nparts; i++) { 23187 lpart->p_tag = vpart->p_tag; 23188 lpart->p_flag = vpart->p_flag; 23189 lmap->dkl_cylno = vpart->p_start / nblks; 23190 lmap->dkl_nblk = vpart->p_size; 23191 23192 lmap++; 23193 lpart++; 23194 vpart++; 23195 23196 /* (4387723) */ 23197 #ifdef _LP64 23198 if (user_vtoc->timestamp[i] > TIME32_MAX) { 23199 un->un_vtoc.v_timestamp[i] = TIME32_MAX; 23200 } else { 23201 un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i]; 23202 } 23203 #else 23204 un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i]; 23205 #endif 23206 } 23207 23208 bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII); 23209 #else 23210 #error "No VTOC format defined." 23211 #endif 23212 return (0); 23213 } 23214 23215 /* 23216 * Function: sd_clear_efi 23217 * 23218 * Description: This routine clears all EFI labels. 23219 * 23220 * Arguments: un - driver soft state (unit) structure 23221 * 23222 * Return Code: void 23223 */ 23224 23225 static void 23226 sd_clear_efi(struct sd_lun *un) 23227 { 23228 efi_gpt_t *gpt; 23229 uint_t lbasize; 23230 uint64_t cap; 23231 int rval; 23232 23233 ASSERT(!mutex_owned(SD_MUTEX(un))); 23234 23235 gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP); 23236 23237 if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) { 23238 goto done; 23239 } 23240 23241 sd_swap_efi_gpt(gpt); 23242 rval = sd_validate_efi(gpt); 23243 if (rval == 0) { 23244 /* clear primary */ 23245 bzero(gpt, sizeof (efi_gpt_t)); 23246 if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1, 23247 SD_PATH_DIRECT))) { 23248 SD_INFO(SD_LOG_IO_PARTITION, un, 23249 "sd_clear_efi: clear primary label failed\n"); 23250 } 23251 } 23252 /* the backup */ 23253 rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize, 23254 SD_PATH_DIRECT); 23255 if (rval) { 23256 goto done; 23257 } 23258 /* 23259 * The MMC standard allows READ CAPACITY to be 23260 * inaccurate by a bounded amount (in the interest of 23261 * response latency). As a result, failed READs are 23262 * commonplace (due to the reading of metadata and not 23263 * data). Depending on the per-Vendor/drive Sense data, 23264 * the failed READ can cause many (unnecessary) retries. 23265 */ 23266 if ((rval = sd_send_scsi_READ(un, gpt, lbasize, 23267 cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY : 23268 SD_PATH_DIRECT)) != 0) { 23269 goto done; 23270 } 23271 sd_swap_efi_gpt(gpt); 23272 rval = sd_validate_efi(gpt); 23273 if (rval == 0) { 23274 /* clear backup */ 23275 SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n", 23276 cap-1); 23277 bzero(gpt, sizeof (efi_gpt_t)); 23278 if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 23279 cap-1, SD_PATH_DIRECT))) { 23280 SD_INFO(SD_LOG_IO_PARTITION, un, 23281 "sd_clear_efi: clear backup label failed\n"); 23282 } 23283 } 23284 23285 done: 23286 kmem_free(gpt, sizeof (efi_gpt_t)); 23287 } 23288 23289 /* 23290 * Function: sd_set_vtoc 23291 * 23292 * Description: This routine writes data to the appropriate positions 23293 * 23294 * Arguments: un - driver soft state (unit) structure 23295 * dkl - the data to be written 23296 * 23297 * Return: void 23298 */ 23299 23300 static int 23301 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl) 23302 { 23303 void *shadow_buf; 23304 uint_t label_addr; 23305 int sec; 23306 int blk; 23307 int head; 23308 int cyl; 23309 int rval; 23310 23311 #if defined(__i386) || defined(__amd64) 23312 label_addr = un->un_solaris_offset + DK_LABEL_LOC; 23313 #else 23314 /* Write the primary label at block 0 of the solaris partition. */ 23315 label_addr = 0; 23316 #endif 23317 23318 if (NOT_DEVBSIZE(un)) { 23319 shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP); 23320 /* 23321 * Read the target's first block. 23322 */ 23323 if ((rval = sd_send_scsi_READ(un, shadow_buf, 23324 un->un_tgt_blocksize, label_addr, 23325 SD_PATH_STANDARD)) != 0) { 23326 goto exit; 23327 } 23328 /* 23329 * Copy the contents of the label into the shadow buffer 23330 * which is of the size of target block size. 23331 */ 23332 bcopy(dkl, shadow_buf, sizeof (struct dk_label)); 23333 } 23334 23335 /* Write the primary label */ 23336 if (NOT_DEVBSIZE(un)) { 23337 rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize, 23338 label_addr, SD_PATH_STANDARD); 23339 } else { 23340 rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize, 23341 label_addr, SD_PATH_STANDARD); 23342 } 23343 if (rval != 0) { 23344 return (rval); 23345 } 23346 23347 /* 23348 * Calculate where the backup labels go. They are always on 23349 * the last alternate cylinder, but some older drives put them 23350 * on head 2 instead of the last head. They are always on the 23351 * first 5 odd sectors of the appropriate track. 23352 * 23353 * We have no choice at this point, but to believe that the 23354 * disk label is valid. Use the geometry of the disk 23355 * as described in the label. 23356 */ 23357 cyl = dkl->dkl_ncyl + dkl->dkl_acyl - 1; 23358 head = dkl->dkl_nhead - 1; 23359 23360 /* 23361 * Write and verify the backup labels. Make sure we don't try to 23362 * write past the last cylinder. 23363 */ 23364 for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) { 23365 blk = (daddr_t)( 23366 (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) + 23367 (head * dkl->dkl_nsect) + sec); 23368 #if defined(__i386) || defined(__amd64) 23369 blk += un->un_solaris_offset; 23370 #endif 23371 if (NOT_DEVBSIZE(un)) { 23372 uint64_t tblk; 23373 /* 23374 * Need to read the block first for read modify write. 23375 */ 23376 tblk = (uint64_t)blk; 23377 blk = (int)((tblk * un->un_sys_blocksize) / 23378 un->un_tgt_blocksize); 23379 if ((rval = sd_send_scsi_READ(un, shadow_buf, 23380 un->un_tgt_blocksize, blk, 23381 SD_PATH_STANDARD)) != 0) { 23382 goto exit; 23383 } 23384 /* 23385 * Modify the shadow buffer with the label. 23386 */ 23387 bcopy(dkl, shadow_buf, sizeof (struct dk_label)); 23388 rval = sd_send_scsi_WRITE(un, shadow_buf, 23389 un->un_tgt_blocksize, blk, SD_PATH_STANDARD); 23390 } else { 23391 rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize, 23392 blk, SD_PATH_STANDARD); 23393 SD_INFO(SD_LOG_IO_PARTITION, un, 23394 "sd_set_vtoc: wrote backup label %d\n", blk); 23395 } 23396 if (rval != 0) { 23397 goto exit; 23398 } 23399 } 23400 exit: 23401 if (NOT_DEVBSIZE(un)) { 23402 kmem_free(shadow_buf, un->un_tgt_blocksize); 23403 } 23404 return (rval); 23405 } 23406 23407 /* 23408 * Function: sd_clear_vtoc 23409 * 23410 * Description: This routine clears out the VTOC labels. 23411 * 23412 * Arguments: un - driver soft state (unit) structure 23413 * 23414 * Return: void 23415 */ 23416 23417 static void 23418 sd_clear_vtoc(struct sd_lun *un) 23419 { 23420 struct dk_label *dkl; 23421 23422 mutex_exit(SD_MUTEX(un)); 23423 dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP); 23424 mutex_enter(SD_MUTEX(un)); 23425 /* 23426 * sd_set_vtoc uses these fields in order to figure out 23427 * where to overwrite the backup labels 23428 */ 23429 dkl->dkl_apc = un->un_g.dkg_apc; 23430 dkl->dkl_ncyl = un->un_g.dkg_ncyl; 23431 dkl->dkl_acyl = un->un_g.dkg_acyl; 23432 dkl->dkl_nhead = un->un_g.dkg_nhead; 23433 dkl->dkl_nsect = un->un_g.dkg_nsect; 23434 mutex_exit(SD_MUTEX(un)); 23435 (void) sd_set_vtoc(un, dkl); 23436 kmem_free(dkl, sizeof (struct dk_label)); 23437 23438 mutex_enter(SD_MUTEX(un)); 23439 } 23440 23441 /* 23442 * Function: sd_write_label 23443 * 23444 * Description: This routine will validate and write the driver soft state vtoc 23445 * contents to the device. 23446 * 23447 * Arguments: dev - the device number 23448 * 23449 * Return Code: the code returned by sd_send_scsi_cmd() 23450 * 0 23451 * EINVAL 23452 * ENXIO 23453 * ENOMEM 23454 */ 23455 23456 static int 23457 sd_write_label(dev_t dev) 23458 { 23459 struct sd_lun *un; 23460 struct dk_label *dkl; 23461 short sum; 23462 short *sp; 23463 int i; 23464 int rval; 23465 23466 if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) || 23467 (un->un_state == SD_STATE_OFFLINE)) { 23468 return (ENXIO); 23469 } 23470 ASSERT(mutex_owned(SD_MUTEX(un))); 23471 mutex_exit(SD_MUTEX(un)); 23472 dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP); 23473 mutex_enter(SD_MUTEX(un)); 23474 23475 bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc)); 23476 dkl->dkl_rpm = un->un_g.dkg_rpm; 23477 dkl->dkl_pcyl = un->un_g.dkg_pcyl; 23478 dkl->dkl_apc = un->un_g.dkg_apc; 23479 dkl->dkl_intrlv = un->un_g.dkg_intrlv; 23480 dkl->dkl_ncyl = un->un_g.dkg_ncyl; 23481 dkl->dkl_acyl = un->un_g.dkg_acyl; 23482 dkl->dkl_nhead = un->un_g.dkg_nhead; 23483 dkl->dkl_nsect = un->un_g.dkg_nsect; 23484 23485 #if defined(_SUNOS_VTOC_8) 23486 dkl->dkl_obs1 = un->un_g.dkg_obs1; 23487 dkl->dkl_obs2 = un->un_g.dkg_obs2; 23488 dkl->dkl_obs3 = un->un_g.dkg_obs3; 23489 for (i = 0; i < NDKMAP; i++) { 23490 dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno; 23491 dkl->dkl_map[i].dkl_nblk = un->un_map[i].dkl_nblk; 23492 } 23493 bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII); 23494 #elif defined(_SUNOS_VTOC_16) 23495 dkl->dkl_skew = un->un_dkg_skew; 23496 #else 23497 #error "No VTOC format defined." 23498 #endif 23499 23500 dkl->dkl_magic = DKL_MAGIC; 23501 dkl->dkl_write_reinstruct = un->un_g.dkg_write_reinstruct; 23502 dkl->dkl_read_reinstruct = un->un_g.dkg_read_reinstruct; 23503 23504 /* Construct checksum for the new disk label */ 23505 sum = 0; 23506 sp = (short *)dkl; 23507 i = sizeof (struct dk_label) / sizeof (short); 23508 while (i--) { 23509 sum ^= *sp++; 23510 } 23511 dkl->dkl_cksum = sum; 23512 23513 mutex_exit(SD_MUTEX(un)); 23514 23515 rval = sd_set_vtoc(un, dkl); 23516 exit: 23517 kmem_free(dkl, sizeof (struct dk_label)); 23518 mutex_enter(SD_MUTEX(un)); 23519 return (rval); 23520 } 23521 23522 static int 23523 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag) 23524 { 23525 struct sd_lun *un = NULL; 23526 dk_efi_t user_efi; 23527 int rval = 0; 23528 void *buffer; 23529 23530 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) 23531 return (ENXIO); 23532 23533 if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag)) 23534 return (EFAULT); 23535 23536 user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64; 23537 23538 if ((user_efi.dki_length % un->un_tgt_blocksize) || 23539 (user_efi.dki_length > un->un_max_xfer_size)) 23540 return (EINVAL); 23541 23542 buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP); 23543 if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) { 23544 rval = EFAULT; 23545 } else { 23546 /* 23547 * let's clear the vtoc labels and clear the softstate 23548 * vtoc. 23549 */ 23550 mutex_enter(SD_MUTEX(un)); 23551 if (un->un_vtoc.v_sanity == VTOC_SANE) { 23552 SD_TRACE(SD_LOG_IO_PARTITION, un, 23553 "sd_dkio_set_efi: CLEAR VTOC\n"); 23554 sd_clear_vtoc(un); 23555 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 23556 mutex_exit(SD_MUTEX(un)); 23557 ddi_remove_minor_node(SD_DEVINFO(un), "h"); 23558 ddi_remove_minor_node(SD_DEVINFO(un), "h,raw"); 23559 (void) ddi_create_minor_node(SD_DEVINFO(un), "wd", 23560 S_IFBLK, 23561 (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE, 23562 un->un_node_type, NULL); 23563 (void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw", 23564 S_IFCHR, 23565 (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE, 23566 un->un_node_type, NULL); 23567 } else 23568 mutex_exit(SD_MUTEX(un)); 23569 rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length, 23570 user_efi.dki_lba, SD_PATH_DIRECT); 23571 if (rval == 0) { 23572 mutex_enter(SD_MUTEX(un)); 23573 un->un_f_geometry_is_valid = FALSE; 23574 mutex_exit(SD_MUTEX(un)); 23575 } 23576 } 23577 kmem_free(buffer, user_efi.dki_length); 23578 return (rval); 23579 } 23580 23581 /* 23582 * Function: sd_dkio_get_mboot 23583 * 23584 * Description: This routine is the driver entry point for handling user 23585 * requests to get the current device mboot (DKIOCGMBOOT) 23586 * 23587 * Arguments: dev - the device number 23588 * arg - pointer to user provided mboot structure specifying 23589 * the current mboot. 23590 * flag - this argument is a pass through to ddi_copyxxx() 23591 * directly from the mode argument of ioctl(). 23592 * 23593 * Return Code: 0 23594 * EINVAL 23595 * EFAULT 23596 * ENXIO 23597 */ 23598 23599 static int 23600 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag) 23601 { 23602 struct sd_lun *un; 23603 struct mboot *mboot; 23604 int rval; 23605 size_t buffer_size; 23606 23607 if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) || 23608 (un->un_state == SD_STATE_OFFLINE)) { 23609 return (ENXIO); 23610 } 23611 23612 if (!un->un_f_mboot_supported || arg == NULL) { 23613 return (EINVAL); 23614 } 23615 23616 /* 23617 * Read the mboot block, located at absolute block 0 on the target. 23618 */ 23619 buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot)); 23620 23621 SD_TRACE(SD_LOG_IO_PARTITION, un, 23622 "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size); 23623 23624 mboot = kmem_zalloc(buffer_size, KM_SLEEP); 23625 if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0, 23626 SD_PATH_STANDARD)) == 0) { 23627 if (ddi_copyout(mboot, (void *)arg, 23628 sizeof (struct mboot), flag) != 0) { 23629 rval = EFAULT; 23630 } 23631 } 23632 kmem_free(mboot, buffer_size); 23633 return (rval); 23634 } 23635 23636 23637 /* 23638 * Function: sd_dkio_set_mboot 23639 * 23640 * Description: This routine is the driver entry point for handling user 23641 * requests to validate and set the device master boot 23642 * (DKIOCSMBOOT). 23643 * 23644 * Arguments: dev - the device number 23645 * arg - pointer to user provided mboot structure used to set the 23646 * master boot. 23647 * flag - this argument is a pass through to ddi_copyxxx() 23648 * directly from the mode argument of ioctl(). 23649 * 23650 * Return Code: 0 23651 * EINVAL 23652 * EFAULT 23653 * ENXIO 23654 */ 23655 23656 static int 23657 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag) 23658 { 23659 struct sd_lun *un = NULL; 23660 struct mboot *mboot = NULL; 23661 int rval; 23662 ushort_t magic; 23663 23664 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 23665 return (ENXIO); 23666 } 23667 23668 ASSERT(!mutex_owned(SD_MUTEX(un))); 23669 23670 if (!un->un_f_mboot_supported) { 23671 return (EINVAL); 23672 } 23673 23674 if (arg == NULL) { 23675 return (EINVAL); 23676 } 23677 23678 mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP); 23679 23680 if (ddi_copyin((const void *)arg, mboot, 23681 sizeof (struct mboot), flag) != 0) { 23682 kmem_free(mboot, (size_t)(sizeof (struct mboot))); 23683 return (EFAULT); 23684 } 23685 23686 /* Is this really a master boot record? */ 23687 magic = LE_16(mboot->signature); 23688 if (magic != MBB_MAGIC) { 23689 kmem_free(mboot, (size_t)(sizeof (struct mboot))); 23690 return (EINVAL); 23691 } 23692 23693 rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0, 23694 SD_PATH_STANDARD); 23695 23696 mutex_enter(SD_MUTEX(un)); 23697 #if defined(__i386) || defined(__amd64) 23698 if (rval == 0) { 23699 /* 23700 * mboot has been written successfully. 23701 * update the fdisk and vtoc tables in memory 23702 */ 23703 rval = sd_update_fdisk_and_vtoc(un); 23704 if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) { 23705 mutex_exit(SD_MUTEX(un)); 23706 kmem_free(mboot, (size_t)(sizeof (struct mboot))); 23707 return (rval); 23708 } 23709 } 23710 23711 /* 23712 * If the mboot write fails, write the devid anyway, what can it hurt? 23713 * Also preserve the device id by writing to the disk acyl for the case 23714 * where a devid has been fabricated. 23715 */ 23716 if (un->un_f_devid_supported && un->un_f_opt_fab_devid) { 23717 if (un->un_devid == NULL) { 23718 sd_register_devid(un, SD_DEVINFO(un), 23719 SD_TARGET_IS_UNRESERVED); 23720 } else { 23721 /* 23722 * The device id for this disk has been 23723 * fabricated. Fabricated device id's are 23724 * managed by storing them in the last 2 23725 * available sectors on the drive. The device 23726 * id must be preserved by writing it back out 23727 * to this location. 23728 */ 23729 if (sd_write_deviceid(un) != 0) { 23730 ddi_devid_free(un->un_devid); 23731 un->un_devid = NULL; 23732 } 23733 } 23734 } 23735 23736 #ifdef __lock_lint 23737 sd_setup_default_geometry(un); 23738 #endif 23739 23740 #else 23741 if (rval == 0) { 23742 /* 23743 * mboot has been written successfully. 23744 * set up the default geometry and VTOC 23745 */ 23746 if (un->un_blockcount <= DK_MAX_BLOCKS) 23747 sd_setup_default_geometry(un); 23748 } 23749 #endif 23750 mutex_exit(SD_MUTEX(un)); 23751 kmem_free(mboot, (size_t)(sizeof (struct mboot))); 23752 return (rval); 23753 } 23754 23755 23756 /* 23757 * Function: sd_setup_default_geometry 23758 * 23759 * Description: This local utility routine sets the default geometry as part of 23760 * setting the device mboot. 23761 * 23762 * Arguments: un - driver soft state (unit) structure 23763 * 23764 * Note: This may be redundant with sd_build_default_label. 23765 */ 23766 23767 static void 23768 sd_setup_default_geometry(struct sd_lun *un) 23769 { 23770 /* zero out the soft state geometry and partition table. */ 23771 bzero(&un->un_g, sizeof (struct dk_geom)); 23772 bzero(&un->un_vtoc, sizeof (struct dk_vtoc)); 23773 bzero(un->un_map, NDKMAP * (sizeof (struct dk_map))); 23774 un->un_asciilabel[0] = '\0'; 23775 23776 /* 23777 * For the rpm, we use the minimum for the disk. 23778 * For the head, cyl and number of sector per track, 23779 * if the capacity <= 1GB, head = 64, sect = 32. 23780 * else head = 255, sect 63 23781 * Note: the capacity should be equal to C*H*S values. 23782 * This will cause some truncation of size due to 23783 * round off errors. For CD-ROMs, this truncation can 23784 * have adverse side effects, so returning ncyl and 23785 * nhead as 1. The nsect will overflow for most of 23786 * CD-ROMs as nsect is of type ushort. 23787 */ 23788 if (ISCD(un)) { 23789 un->un_g.dkg_ncyl = 1; 23790 un->un_g.dkg_nhead = 1; 23791 un->un_g.dkg_nsect = un->un_blockcount; 23792 } else { 23793 if (un->un_blockcount <= 0x1000) { 23794 /* Needed for unlabeled SCSI floppies. */ 23795 un->un_g.dkg_nhead = 2; 23796 un->un_g.dkg_ncyl = 80; 23797 un->un_g.dkg_pcyl = 80; 23798 un->un_g.dkg_nsect = un->un_blockcount / (2 * 80); 23799 } else if (un->un_blockcount <= 0x200000) { 23800 un->un_g.dkg_nhead = 64; 23801 un->un_g.dkg_nsect = 32; 23802 un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32); 23803 } else { 23804 un->un_g.dkg_nhead = 255; 23805 un->un_g.dkg_nsect = 63; 23806 un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63); 23807 } 23808 un->un_blockcount = un->un_g.dkg_ncyl * 23809 un->un_g.dkg_nhead * un->un_g.dkg_nsect; 23810 } 23811 un->un_g.dkg_acyl = 0; 23812 un->un_g.dkg_bcyl = 0; 23813 un->un_g.dkg_intrlv = 1; 23814 un->un_g.dkg_rpm = 200; 23815 un->un_g.dkg_read_reinstruct = 0; 23816 un->un_g.dkg_write_reinstruct = 0; 23817 if (un->un_g.dkg_pcyl == 0) { 23818 un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl; 23819 } 23820 23821 un->un_map['a'-'a'].dkl_cylno = 0; 23822 un->un_map['a'-'a'].dkl_nblk = un->un_blockcount; 23823 un->un_map['c'-'a'].dkl_cylno = 0; 23824 un->un_map['c'-'a'].dkl_nblk = un->un_blockcount; 23825 un->un_f_geometry_is_valid = FALSE; 23826 } 23827 23828 23829 #if defined(__i386) || defined(__amd64) 23830 /* 23831 * Function: sd_update_fdisk_and_vtoc 23832 * 23833 * Description: This local utility routine updates the device fdisk and vtoc 23834 * as part of setting the device mboot. 23835 * 23836 * Arguments: un - driver soft state (unit) structure 23837 * 23838 * Return Code: 0 for success or errno-type return code. 23839 * 23840 * Note:x86: This looks like a duplicate of sd_validate_geometry(), but 23841 * these did exist seperately in x86 sd.c!!! 23842 */ 23843 23844 static int 23845 sd_update_fdisk_and_vtoc(struct sd_lun *un) 23846 { 23847 static char labelstring[128]; 23848 static char buf[256]; 23849 char *label = 0; 23850 int count; 23851 int label_rc = 0; 23852 int gvalid = un->un_f_geometry_is_valid; 23853 int fdisk_rval; 23854 int lbasize; 23855 int capacity; 23856 23857 ASSERT(mutex_owned(SD_MUTEX(un))); 23858 23859 if (un->un_f_tgt_blocksize_is_valid == FALSE) { 23860 return (EINVAL); 23861 } 23862 23863 if (un->un_f_blockcount_is_valid == FALSE) { 23864 return (EINVAL); 23865 } 23866 23867 #if defined(_SUNOS_VTOC_16) 23868 /* 23869 * Set up the "whole disk" fdisk partition; this should always 23870 * exist, regardless of whether the disk contains an fdisk table 23871 * or vtoc. 23872 */ 23873 un->un_map[P0_RAW_DISK].dkl_cylno = 0; 23874 un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount; 23875 #endif /* defined(_SUNOS_VTOC_16) */ 23876 23877 /* 23878 * copy the lbasize and capacity so that if they're 23879 * reset while we're not holding the SD_MUTEX(un), we will 23880 * continue to use valid values after the SD_MUTEX(un) is 23881 * reacquired. 23882 */ 23883 lbasize = un->un_tgt_blocksize; 23884 capacity = un->un_blockcount; 23885 23886 /* 23887 * refresh the logical and physical geometry caches. 23888 * (data from mode sense format/rigid disk geometry pages, 23889 * and scsi_ifgetcap("geometry"). 23890 */ 23891 sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT); 23892 23893 /* 23894 * Only DIRECT ACCESS devices will have Sun labels. 23895 * CD's supposedly have a Sun label, too 23896 */ 23897 if (un->un_f_vtoc_label_supported) { 23898 fdisk_rval = sd_read_fdisk(un, capacity, lbasize, 23899 SD_PATH_DIRECT); 23900 if (fdisk_rval == SD_CMD_FAILURE) { 23901 ASSERT(mutex_owned(SD_MUTEX(un))); 23902 return (EIO); 23903 } 23904 23905 if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) { 23906 ASSERT(mutex_owned(SD_MUTEX(un))); 23907 return (EACCES); 23908 } 23909 23910 if (un->un_solaris_size <= DK_LABEL_LOC) { 23911 /* 23912 * Found fdisk table but no Solaris partition entry, 23913 * so don't call sd_uselabel() and don't create 23914 * a default label. 23915 */ 23916 label_rc = 0; 23917 un->un_f_geometry_is_valid = TRUE; 23918 goto no_solaris_partition; 23919 } 23920 23921 #if defined(_SUNOS_VTOC_8) 23922 label = (char *)un->un_asciilabel; 23923 #elif defined(_SUNOS_VTOC_16) 23924 label = (char *)un->un_vtoc.v_asciilabel; 23925 #else 23926 #error "No VTOC format defined." 23927 #endif 23928 } else if (capacity < 0) { 23929 ASSERT(mutex_owned(SD_MUTEX(un))); 23930 return (EINVAL); 23931 } 23932 23933 /* 23934 * For Removable media We reach here if we have found a 23935 * SOLARIS PARTITION. 23936 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS 23937 * PARTITION has changed from the previous one, hence we will setup a 23938 * default VTOC in this case. 23939 */ 23940 if (un->un_f_geometry_is_valid == FALSE) { 23941 sd_build_default_label(un); 23942 label_rc = 0; 23943 } 23944 23945 no_solaris_partition: 23946 if ((!un->un_f_has_removable_media || 23947 (un->un_f_has_removable_media && 23948 un->un_mediastate == DKIO_EJECTED)) && 23949 (un->un_state == SD_STATE_NORMAL && !gvalid)) { 23950 /* 23951 * Print out a message indicating who and what we are. 23952 * We do this only when we happen to really validate the 23953 * geometry. We may call sd_validate_geometry() at other 23954 * times, ioctl()'s like Get VTOC in which case we 23955 * don't want to print the label. 23956 * If the geometry is valid, print the label string, 23957 * else print vendor and product info, if available 23958 */ 23959 if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) { 23960 SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label); 23961 } else { 23962 mutex_enter(&sd_label_mutex); 23963 sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX, 23964 labelstring); 23965 sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX, 23966 &labelstring[64]); 23967 (void) sprintf(buf, "?Vendor '%s', product '%s'", 23968 labelstring, &labelstring[64]); 23969 if (un->un_f_blockcount_is_valid == TRUE) { 23970 (void) sprintf(&buf[strlen(buf)], 23971 ", %" PRIu64 " %u byte blocks\n", 23972 un->un_blockcount, 23973 un->un_tgt_blocksize); 23974 } else { 23975 (void) sprintf(&buf[strlen(buf)], 23976 ", (unknown capacity)\n"); 23977 } 23978 SD_INFO(SD_LOG_IOCTL_DKIO, un, buf); 23979 mutex_exit(&sd_label_mutex); 23980 } 23981 } 23982 23983 #if defined(_SUNOS_VTOC_16) 23984 /* 23985 * If we have valid geometry, set up the remaining fdisk partitions. 23986 * Note that dkl_cylno is not used for the fdisk map entries, so 23987 * we set it to an entirely bogus value. 23988 */ 23989 for (count = 0; count < FD_NUMPART; count++) { 23990 un->un_map[FDISK_P1 + count].dkl_cylno = -1; 23991 un->un_map[FDISK_P1 + count].dkl_nblk = 23992 un->un_fmap[count].fmap_nblk; 23993 un->un_offset[FDISK_P1 + count] = 23994 un->un_fmap[count].fmap_start; 23995 } 23996 #endif 23997 23998 for (count = 0; count < NDKMAP; count++) { 23999 #if defined(_SUNOS_VTOC_8) 24000 struct dk_map *lp = &un->un_map[count]; 24001 un->un_offset[count] = 24002 un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno; 24003 #elif defined(_SUNOS_VTOC_16) 24004 struct dkl_partition *vp = &un->un_vtoc.v_part[count]; 24005 un->un_offset[count] = vp->p_start + un->un_solaris_offset; 24006 #else 24007 #error "No VTOC format defined." 24008 #endif 24009 } 24010 24011 ASSERT(mutex_owned(SD_MUTEX(un))); 24012 return (label_rc); 24013 } 24014 #endif 24015 24016 24017 /* 24018 * Function: sd_check_media 24019 * 24020 * Description: This utility routine implements the functionality for the 24021 * DKIOCSTATE ioctl. This ioctl blocks the user thread until the 24022 * driver state changes from that specified by the user 24023 * (inserted or ejected). For example, if the user specifies 24024 * DKIO_EJECTED and the current media state is inserted this 24025 * routine will immediately return DKIO_INSERTED. However, if the 24026 * current media state is not inserted the user thread will be 24027 * blocked until the drive state changes. If DKIO_NONE is specified 24028 * the user thread will block until a drive state change occurs. 24029 * 24030 * Arguments: dev - the device number 24031 * state - user pointer to a dkio_state, updated with the current 24032 * drive state at return. 24033 * 24034 * Return Code: ENXIO 24035 * EIO 24036 * EAGAIN 24037 * EINTR 24038 */ 24039 24040 static int 24041 sd_check_media(dev_t dev, enum dkio_state state) 24042 { 24043 struct sd_lun *un = NULL; 24044 enum dkio_state prev_state; 24045 opaque_t token = NULL; 24046 int rval = 0; 24047 24048 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24049 return (ENXIO); 24050 } 24051 24052 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n"); 24053 24054 mutex_enter(SD_MUTEX(un)); 24055 24056 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: " 24057 "state=%x, mediastate=%x\n", state, un->un_mediastate); 24058 24059 prev_state = un->un_mediastate; 24060 24061 /* is there anything to do? */ 24062 if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) { 24063 /* 24064 * submit the request to the scsi_watch service; 24065 * scsi_media_watch_cb() does the real work 24066 */ 24067 mutex_exit(SD_MUTEX(un)); 24068 24069 /* 24070 * This change handles the case where a scsi watch request is 24071 * added to a device that is powered down. To accomplish this 24072 * we power up the device before adding the scsi watch request, 24073 * since the scsi watch sends a TUR directly to the device 24074 * which the device cannot handle if it is powered down. 24075 */ 24076 if (sd_pm_entry(un) != DDI_SUCCESS) { 24077 mutex_enter(SD_MUTEX(un)); 24078 goto done; 24079 } 24080 24081 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), 24082 sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb, 24083 (caddr_t)dev); 24084 24085 sd_pm_exit(un); 24086 24087 mutex_enter(SD_MUTEX(un)); 24088 if (token == NULL) { 24089 rval = EAGAIN; 24090 goto done; 24091 } 24092 24093 /* 24094 * This is a special case IOCTL that doesn't return 24095 * until the media state changes. Routine sdpower 24096 * knows about and handles this so don't count it 24097 * as an active cmd in the driver, which would 24098 * keep the device busy to the pm framework. 24099 * If the count isn't decremented the device can't 24100 * be powered down. 24101 */ 24102 un->un_ncmds_in_driver--; 24103 ASSERT(un->un_ncmds_in_driver >= 0); 24104 24105 /* 24106 * if a prior request had been made, this will be the same 24107 * token, as scsi_watch was designed that way. 24108 */ 24109 un->un_swr_token = token; 24110 un->un_specified_mediastate = state; 24111 24112 /* 24113 * now wait for media change 24114 * we will not be signalled unless mediastate == state but it is 24115 * still better to test for this condition, since there is a 24116 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED 24117 */ 24118 SD_TRACE(SD_LOG_COMMON, un, 24119 "sd_check_media: waiting for media state change\n"); 24120 while (un->un_mediastate == state) { 24121 if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) { 24122 SD_TRACE(SD_LOG_COMMON, un, 24123 "sd_check_media: waiting for media state " 24124 "was interrupted\n"); 24125 un->un_ncmds_in_driver++; 24126 rval = EINTR; 24127 goto done; 24128 } 24129 SD_TRACE(SD_LOG_COMMON, un, 24130 "sd_check_media: received signal, state=%x\n", 24131 un->un_mediastate); 24132 } 24133 /* 24134 * Inc the counter to indicate the device once again 24135 * has an active outstanding cmd. 24136 */ 24137 un->un_ncmds_in_driver++; 24138 } 24139 24140 /* invalidate geometry */ 24141 if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) { 24142 sr_ejected(un); 24143 } 24144 24145 if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) { 24146 uint64_t capacity; 24147 uint_t lbasize; 24148 24149 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n"); 24150 mutex_exit(SD_MUTEX(un)); 24151 /* 24152 * Since the following routines use SD_PATH_DIRECT, we must 24153 * call PM directly before the upcoming disk accesses. This 24154 * may cause the disk to be power/spin up. 24155 */ 24156 24157 if (sd_pm_entry(un) == DDI_SUCCESS) { 24158 rval = sd_send_scsi_READ_CAPACITY(un, 24159 &capacity, 24160 &lbasize, SD_PATH_DIRECT); 24161 if (rval != 0) { 24162 sd_pm_exit(un); 24163 mutex_enter(SD_MUTEX(un)); 24164 goto done; 24165 } 24166 } else { 24167 rval = EIO; 24168 mutex_enter(SD_MUTEX(un)); 24169 goto done; 24170 } 24171 mutex_enter(SD_MUTEX(un)); 24172 24173 sd_update_block_info(un, lbasize, capacity); 24174 24175 un->un_f_geometry_is_valid = FALSE; 24176 (void) sd_validate_geometry(un, SD_PATH_DIRECT); 24177 24178 mutex_exit(SD_MUTEX(un)); 24179 rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT, 24180 SD_PATH_DIRECT); 24181 sd_pm_exit(un); 24182 24183 mutex_enter(SD_MUTEX(un)); 24184 } 24185 done: 24186 un->un_f_watcht_stopped = FALSE; 24187 if (un->un_swr_token) { 24188 /* 24189 * Use of this local token and the mutex ensures that we avoid 24190 * some race conditions associated with terminating the 24191 * scsi watch. 24192 */ 24193 token = un->un_swr_token; 24194 un->un_swr_token = (opaque_t)NULL; 24195 mutex_exit(SD_MUTEX(un)); 24196 (void) scsi_watch_request_terminate(token, 24197 SCSI_WATCH_TERMINATE_WAIT); 24198 mutex_enter(SD_MUTEX(un)); 24199 } 24200 24201 /* 24202 * Update the capacity kstat value, if no media previously 24203 * (capacity kstat is 0) and a media has been inserted 24204 * (un_f_blockcount_is_valid == TRUE) 24205 */ 24206 if (un->un_errstats) { 24207 struct sd_errstats *stp = NULL; 24208 24209 stp = (struct sd_errstats *)un->un_errstats->ks_data; 24210 if ((stp->sd_capacity.value.ui64 == 0) && 24211 (un->un_f_blockcount_is_valid == TRUE)) { 24212 stp->sd_capacity.value.ui64 = 24213 (uint64_t)((uint64_t)un->un_blockcount * 24214 un->un_sys_blocksize); 24215 } 24216 } 24217 mutex_exit(SD_MUTEX(un)); 24218 SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n"); 24219 return (rval); 24220 } 24221 24222 24223 /* 24224 * Function: sd_delayed_cv_broadcast 24225 * 24226 * Description: Delayed cv_broadcast to allow for target to recover from media 24227 * insertion. 24228 * 24229 * Arguments: arg - driver soft state (unit) structure 24230 */ 24231 24232 static void 24233 sd_delayed_cv_broadcast(void *arg) 24234 { 24235 struct sd_lun *un = arg; 24236 24237 SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n"); 24238 24239 mutex_enter(SD_MUTEX(un)); 24240 un->un_dcvb_timeid = NULL; 24241 cv_broadcast(&un->un_state_cv); 24242 mutex_exit(SD_MUTEX(un)); 24243 } 24244 24245 24246 /* 24247 * Function: sd_media_watch_cb 24248 * 24249 * Description: Callback routine used for support of the DKIOCSTATE ioctl. This 24250 * routine processes the TUR sense data and updates the driver 24251 * state if a transition has occurred. The user thread 24252 * (sd_check_media) is then signalled. 24253 * 24254 * Arguments: arg - the device 'dev_t' is used for context to discriminate 24255 * among multiple watches that share this callback function 24256 * resultp - scsi watch facility result packet containing scsi 24257 * packet, status byte and sense data 24258 * 24259 * Return Code: 0 for success, -1 for failure 24260 */ 24261 24262 static int 24263 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 24264 { 24265 struct sd_lun *un; 24266 struct scsi_status *statusp = resultp->statusp; 24267 struct scsi_extended_sense *sensep = resultp->sensep; 24268 enum dkio_state state = DKIO_NONE; 24269 dev_t dev = (dev_t)arg; 24270 uchar_t actual_sense_length; 24271 24272 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24273 return (-1); 24274 } 24275 actual_sense_length = resultp->actual_sense_length; 24276 24277 mutex_enter(SD_MUTEX(un)); 24278 SD_TRACE(SD_LOG_COMMON, un, 24279 "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n", 24280 *((char *)statusp), (void *)sensep, actual_sense_length); 24281 24282 if (resultp->pkt->pkt_reason == CMD_DEV_GONE) { 24283 un->un_mediastate = DKIO_DEV_GONE; 24284 cv_broadcast(&un->un_state_cv); 24285 mutex_exit(SD_MUTEX(un)); 24286 24287 return (0); 24288 } 24289 24290 /* 24291 * If there was a check condition then sensep points to valid sense data 24292 * If status was not a check condition but a reservation or busy status 24293 * then the new state is DKIO_NONE 24294 */ 24295 if (sensep != NULL) { 24296 SD_INFO(SD_LOG_COMMON, un, 24297 "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n", 24298 sensep->es_key, sensep->es_add_code, sensep->es_qual_code); 24299 /* This routine only uses up to 13 bytes of sense data. */ 24300 if (actual_sense_length >= 13) { 24301 if (sensep->es_key == KEY_UNIT_ATTENTION) { 24302 if (sensep->es_add_code == 0x28) { 24303 state = DKIO_INSERTED; 24304 } 24305 } else { 24306 /* 24307 * if 02/04/02 means that the host 24308 * should send start command. Explicitly 24309 * leave the media state as is 24310 * (inserted) as the media is inserted 24311 * and host has stopped device for PM 24312 * reasons. Upon next true read/write 24313 * to this media will bring the 24314 * device to the right state good for 24315 * media access. 24316 */ 24317 if ((sensep->es_key == KEY_NOT_READY) && 24318 (sensep->es_add_code == 0x3a)) { 24319 state = DKIO_EJECTED; 24320 } 24321 24322 /* 24323 * If the drivge is busy with an operation 24324 * or long write, keep the media in an 24325 * inserted state. 24326 */ 24327 24328 if ((sensep->es_key == KEY_NOT_READY) && 24329 (sensep->es_add_code == 0x04) && 24330 ((sensep->es_qual_code == 0x02) || 24331 (sensep->es_qual_code == 0x07) || 24332 (sensep->es_qual_code == 0x08))) { 24333 state = DKIO_INSERTED; 24334 } 24335 } 24336 } 24337 } else if ((*((char *)statusp) == STATUS_GOOD) && 24338 (resultp->pkt->pkt_reason == CMD_CMPLT)) { 24339 state = DKIO_INSERTED; 24340 } 24341 24342 SD_TRACE(SD_LOG_COMMON, un, 24343 "sd_media_watch_cb: state=%x, specified=%x\n", 24344 state, un->un_specified_mediastate); 24345 24346 /* 24347 * now signal the waiting thread if this is *not* the specified state; 24348 * delay the signal if the state is DKIO_INSERTED to allow the target 24349 * to recover 24350 */ 24351 if (state != un->un_specified_mediastate) { 24352 un->un_mediastate = state; 24353 if (state == DKIO_INSERTED) { 24354 /* 24355 * delay the signal to give the drive a chance 24356 * to do what it apparently needs to do 24357 */ 24358 SD_TRACE(SD_LOG_COMMON, un, 24359 "sd_media_watch_cb: delayed cv_broadcast\n"); 24360 if (un->un_dcvb_timeid == NULL) { 24361 un->un_dcvb_timeid = 24362 timeout(sd_delayed_cv_broadcast, un, 24363 drv_usectohz((clock_t)MEDIA_ACCESS_DELAY)); 24364 } 24365 } else { 24366 SD_TRACE(SD_LOG_COMMON, un, 24367 "sd_media_watch_cb: immediate cv_broadcast\n"); 24368 cv_broadcast(&un->un_state_cv); 24369 } 24370 } 24371 mutex_exit(SD_MUTEX(un)); 24372 return (0); 24373 } 24374 24375 24376 /* 24377 * Function: sd_dkio_get_temp 24378 * 24379 * Description: This routine is the driver entry point for handling ioctl 24380 * requests to get the disk temperature. 24381 * 24382 * Arguments: dev - the device number 24383 * arg - pointer to user provided dk_temperature structure. 24384 * flag - this argument is a pass through to ddi_copyxxx() 24385 * directly from the mode argument of ioctl(). 24386 * 24387 * Return Code: 0 24388 * EFAULT 24389 * ENXIO 24390 * EAGAIN 24391 */ 24392 24393 static int 24394 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag) 24395 { 24396 struct sd_lun *un = NULL; 24397 struct dk_temperature *dktemp = NULL; 24398 uchar_t *temperature_page; 24399 int rval = 0; 24400 int path_flag = SD_PATH_STANDARD; 24401 24402 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24403 return (ENXIO); 24404 } 24405 24406 dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP); 24407 24408 /* copyin the disk temp argument to get the user flags */ 24409 if (ddi_copyin((void *)arg, dktemp, 24410 sizeof (struct dk_temperature), flag) != 0) { 24411 rval = EFAULT; 24412 goto done; 24413 } 24414 24415 /* Initialize the temperature to invalid. */ 24416 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24417 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24418 24419 /* 24420 * Note: Investigate removing the "bypass pm" semantic. 24421 * Can we just bypass PM always? 24422 */ 24423 if (dktemp->dkt_flags & DKT_BYPASS_PM) { 24424 path_flag = SD_PATH_DIRECT; 24425 ASSERT(!mutex_owned(&un->un_pm_mutex)); 24426 mutex_enter(&un->un_pm_mutex); 24427 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 24428 /* 24429 * If DKT_BYPASS_PM is set, and the drive happens to be 24430 * in low power mode, we can not wake it up, Need to 24431 * return EAGAIN. 24432 */ 24433 mutex_exit(&un->un_pm_mutex); 24434 rval = EAGAIN; 24435 goto done; 24436 } else { 24437 /* 24438 * Indicate to PM the device is busy. This is required 24439 * to avoid a race - i.e. the ioctl is issuing a 24440 * command and the pm framework brings down the device 24441 * to low power mode (possible power cut-off on some 24442 * platforms). 24443 */ 24444 mutex_exit(&un->un_pm_mutex); 24445 if (sd_pm_entry(un) != DDI_SUCCESS) { 24446 rval = EAGAIN; 24447 goto done; 24448 } 24449 } 24450 } 24451 24452 temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP); 24453 24454 if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page, 24455 TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) { 24456 goto done2; 24457 } 24458 24459 /* 24460 * For the current temperature verify that the parameter length is 0x02 24461 * and the parameter code is 0x00 24462 */ 24463 if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) && 24464 (temperature_page[5] == 0x00)) { 24465 if (temperature_page[9] == 0xFF) { 24466 dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP; 24467 } else { 24468 dktemp->dkt_cur_temp = (short)(temperature_page[9]); 24469 } 24470 } 24471 24472 /* 24473 * For the reference temperature verify that the parameter 24474 * length is 0x02 and the parameter code is 0x01 24475 */ 24476 if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) && 24477 (temperature_page[11] == 0x01)) { 24478 if (temperature_page[15] == 0xFF) { 24479 dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP; 24480 } else { 24481 dktemp->dkt_ref_temp = (short)(temperature_page[15]); 24482 } 24483 } 24484 24485 /* Do the copyout regardless of the temperature commands status. */ 24486 if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature), 24487 flag) != 0) { 24488 rval = EFAULT; 24489 } 24490 24491 done2: 24492 if (path_flag == SD_PATH_DIRECT) { 24493 sd_pm_exit(un); 24494 } 24495 24496 kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE); 24497 done: 24498 if (dktemp != NULL) { 24499 kmem_free(dktemp, sizeof (struct dk_temperature)); 24500 } 24501 24502 return (rval); 24503 } 24504 24505 24506 /* 24507 * Function: sd_log_page_supported 24508 * 24509 * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of 24510 * supported log pages. 24511 * 24512 * Arguments: un - 24513 * log_page - 24514 * 24515 * Return Code: -1 - on error (log sense is optional and may not be supported). 24516 * 0 - log page not found. 24517 * 1 - log page found. 24518 */ 24519 24520 static int 24521 sd_log_page_supported(struct sd_lun *un, int log_page) 24522 { 24523 uchar_t *log_page_data; 24524 int i; 24525 int match = 0; 24526 int log_size; 24527 24528 log_page_data = kmem_zalloc(0xFF, KM_SLEEP); 24529 24530 if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0, 24531 SD_PATH_DIRECT) != 0) { 24532 SD_ERROR(SD_LOG_COMMON, un, 24533 "sd_log_page_supported: failed log page retrieval\n"); 24534 kmem_free(log_page_data, 0xFF); 24535 return (-1); 24536 } 24537 log_size = log_page_data[3]; 24538 24539 /* 24540 * The list of supported log pages start from the fourth byte. Check 24541 * until we run out of log pages or a match is found. 24542 */ 24543 for (i = 4; (i < (log_size + 4)) && !match; i++) { 24544 if (log_page_data[i] == log_page) { 24545 match++; 24546 } 24547 } 24548 kmem_free(log_page_data, 0xFF); 24549 return (match); 24550 } 24551 24552 24553 /* 24554 * Function: sd_mhdioc_failfast 24555 * 24556 * Description: This routine is the driver entry point for handling ioctl 24557 * requests to enable/disable the multihost failfast option. 24558 * (MHIOCENFAILFAST) 24559 * 24560 * Arguments: dev - the device number 24561 * arg - user specified probing interval. 24562 * flag - this argument is a pass through to ddi_copyxxx() 24563 * directly from the mode argument of ioctl(). 24564 * 24565 * Return Code: 0 24566 * EFAULT 24567 * ENXIO 24568 */ 24569 24570 static int 24571 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag) 24572 { 24573 struct sd_lun *un = NULL; 24574 int mh_time; 24575 int rval = 0; 24576 24577 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24578 return (ENXIO); 24579 } 24580 24581 if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag)) 24582 return (EFAULT); 24583 24584 if (mh_time) { 24585 mutex_enter(SD_MUTEX(un)); 24586 un->un_resvd_status |= SD_FAILFAST; 24587 mutex_exit(SD_MUTEX(un)); 24588 /* 24589 * If mh_time is INT_MAX, then this ioctl is being used for 24590 * SCSI-3 PGR purposes, and we don't need to spawn watch thread. 24591 */ 24592 if (mh_time != INT_MAX) { 24593 rval = sd_check_mhd(dev, mh_time); 24594 } 24595 } else { 24596 (void) sd_check_mhd(dev, 0); 24597 mutex_enter(SD_MUTEX(un)); 24598 un->un_resvd_status &= ~SD_FAILFAST; 24599 mutex_exit(SD_MUTEX(un)); 24600 } 24601 return (rval); 24602 } 24603 24604 24605 /* 24606 * Function: sd_mhdioc_takeown 24607 * 24608 * Description: This routine is the driver entry point for handling ioctl 24609 * requests to forcefully acquire exclusive access rights to the 24610 * multihost disk (MHIOCTKOWN). 24611 * 24612 * Arguments: dev - the device number 24613 * arg - user provided structure specifying the delay 24614 * parameters in milliseconds 24615 * flag - this argument is a pass through to ddi_copyxxx() 24616 * directly from the mode argument of ioctl(). 24617 * 24618 * Return Code: 0 24619 * EFAULT 24620 * ENXIO 24621 */ 24622 24623 static int 24624 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag) 24625 { 24626 struct sd_lun *un = NULL; 24627 struct mhioctkown *tkown = NULL; 24628 int rval = 0; 24629 24630 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24631 return (ENXIO); 24632 } 24633 24634 if (arg != NULL) { 24635 tkown = (struct mhioctkown *) 24636 kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP); 24637 rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag); 24638 if (rval != 0) { 24639 rval = EFAULT; 24640 goto error; 24641 } 24642 } 24643 24644 rval = sd_take_ownership(dev, tkown); 24645 mutex_enter(SD_MUTEX(un)); 24646 if (rval == 0) { 24647 un->un_resvd_status |= SD_RESERVE; 24648 if (tkown != NULL && tkown->reinstate_resv_delay != 0) { 24649 sd_reinstate_resv_delay = 24650 tkown->reinstate_resv_delay * 1000; 24651 } else { 24652 sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY; 24653 } 24654 /* 24655 * Give the scsi_watch routine interval set by 24656 * the MHIOCENFAILFAST ioctl precedence here. 24657 */ 24658 if ((un->un_resvd_status & SD_FAILFAST) == 0) { 24659 mutex_exit(SD_MUTEX(un)); 24660 (void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000); 24661 SD_TRACE(SD_LOG_IOCTL_MHD, un, 24662 "sd_mhdioc_takeown : %d\n", 24663 sd_reinstate_resv_delay); 24664 } else { 24665 mutex_exit(SD_MUTEX(un)); 24666 } 24667 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY, 24668 sd_mhd_reset_notify_cb, (caddr_t)un); 24669 } else { 24670 un->un_resvd_status &= ~SD_RESERVE; 24671 mutex_exit(SD_MUTEX(un)); 24672 } 24673 24674 error: 24675 if (tkown != NULL) { 24676 kmem_free(tkown, sizeof (struct mhioctkown)); 24677 } 24678 return (rval); 24679 } 24680 24681 24682 /* 24683 * Function: sd_mhdioc_release 24684 * 24685 * Description: This routine is the driver entry point for handling ioctl 24686 * requests to release exclusive access rights to the multihost 24687 * disk (MHIOCRELEASE). 24688 * 24689 * Arguments: dev - the device number 24690 * 24691 * Return Code: 0 24692 * ENXIO 24693 */ 24694 24695 static int 24696 sd_mhdioc_release(dev_t dev) 24697 { 24698 struct sd_lun *un = NULL; 24699 timeout_id_t resvd_timeid_save; 24700 int resvd_status_save; 24701 int rval = 0; 24702 24703 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24704 return (ENXIO); 24705 } 24706 24707 mutex_enter(SD_MUTEX(un)); 24708 resvd_status_save = un->un_resvd_status; 24709 un->un_resvd_status &= 24710 ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE); 24711 if (un->un_resvd_timeid) { 24712 resvd_timeid_save = un->un_resvd_timeid; 24713 un->un_resvd_timeid = NULL; 24714 mutex_exit(SD_MUTEX(un)); 24715 (void) untimeout(resvd_timeid_save); 24716 } else { 24717 mutex_exit(SD_MUTEX(un)); 24718 } 24719 24720 /* 24721 * destroy any pending timeout thread that may be attempting to 24722 * reinstate reservation on this device. 24723 */ 24724 sd_rmv_resv_reclaim_req(dev); 24725 24726 if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) { 24727 mutex_enter(SD_MUTEX(un)); 24728 if ((un->un_mhd_token) && 24729 ((un->un_resvd_status & SD_FAILFAST) == 0)) { 24730 mutex_exit(SD_MUTEX(un)); 24731 (void) sd_check_mhd(dev, 0); 24732 } else { 24733 mutex_exit(SD_MUTEX(un)); 24734 } 24735 (void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL, 24736 sd_mhd_reset_notify_cb, (caddr_t)un); 24737 } else { 24738 /* 24739 * sd_mhd_watch_cb will restart the resvd recover timeout thread 24740 */ 24741 mutex_enter(SD_MUTEX(un)); 24742 un->un_resvd_status = resvd_status_save; 24743 mutex_exit(SD_MUTEX(un)); 24744 } 24745 return (rval); 24746 } 24747 24748 24749 /* 24750 * Function: sd_mhdioc_register_devid 24751 * 24752 * Description: This routine is the driver entry point for handling ioctl 24753 * requests to register the device id (MHIOCREREGISTERDEVID). 24754 * 24755 * Note: The implementation for this ioctl has been updated to 24756 * be consistent with the original PSARC case (1999/357) 24757 * (4375899, 4241671, 4220005) 24758 * 24759 * Arguments: dev - the device number 24760 * 24761 * Return Code: 0 24762 * ENXIO 24763 */ 24764 24765 static int 24766 sd_mhdioc_register_devid(dev_t dev) 24767 { 24768 struct sd_lun *un = NULL; 24769 int rval = 0; 24770 24771 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24772 return (ENXIO); 24773 } 24774 24775 ASSERT(!mutex_owned(SD_MUTEX(un))); 24776 24777 mutex_enter(SD_MUTEX(un)); 24778 24779 /* If a devid already exists, de-register it */ 24780 if (un->un_devid != NULL) { 24781 ddi_devid_unregister(SD_DEVINFO(un)); 24782 /* 24783 * After unregister devid, needs to free devid memory 24784 */ 24785 ddi_devid_free(un->un_devid); 24786 un->un_devid = NULL; 24787 } 24788 24789 /* Check for reservation conflict */ 24790 mutex_exit(SD_MUTEX(un)); 24791 rval = sd_send_scsi_TEST_UNIT_READY(un, 0); 24792 mutex_enter(SD_MUTEX(un)); 24793 24794 switch (rval) { 24795 case 0: 24796 sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED); 24797 break; 24798 case EACCES: 24799 break; 24800 default: 24801 rval = EIO; 24802 } 24803 24804 mutex_exit(SD_MUTEX(un)); 24805 return (rval); 24806 } 24807 24808 24809 /* 24810 * Function: sd_mhdioc_inkeys 24811 * 24812 * Description: This routine is the driver entry point for handling ioctl 24813 * requests to issue the SCSI-3 Persistent In Read Keys command 24814 * to the device (MHIOCGRP_INKEYS). 24815 * 24816 * Arguments: dev - the device number 24817 * arg - user provided in_keys structure 24818 * flag - this argument is a pass through to ddi_copyxxx() 24819 * directly from the mode argument of ioctl(). 24820 * 24821 * Return Code: code returned by sd_persistent_reservation_in_read_keys() 24822 * ENXIO 24823 * EFAULT 24824 */ 24825 24826 static int 24827 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag) 24828 { 24829 struct sd_lun *un; 24830 mhioc_inkeys_t inkeys; 24831 int rval = 0; 24832 24833 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24834 return (ENXIO); 24835 } 24836 24837 #ifdef _MULTI_DATAMODEL 24838 switch (ddi_model_convert_from(flag & FMODELS)) { 24839 case DDI_MODEL_ILP32: { 24840 struct mhioc_inkeys32 inkeys32; 24841 24842 if (ddi_copyin(arg, &inkeys32, 24843 sizeof (struct mhioc_inkeys32), flag) != 0) { 24844 return (EFAULT); 24845 } 24846 inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li; 24847 if ((rval = sd_persistent_reservation_in_read_keys(un, 24848 &inkeys, flag)) != 0) { 24849 return (rval); 24850 } 24851 inkeys32.generation = inkeys.generation; 24852 if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32), 24853 flag) != 0) { 24854 return (EFAULT); 24855 } 24856 break; 24857 } 24858 case DDI_MODEL_NONE: 24859 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), 24860 flag) != 0) { 24861 return (EFAULT); 24862 } 24863 if ((rval = sd_persistent_reservation_in_read_keys(un, 24864 &inkeys, flag)) != 0) { 24865 return (rval); 24866 } 24867 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), 24868 flag) != 0) { 24869 return (EFAULT); 24870 } 24871 break; 24872 } 24873 24874 #else /* ! _MULTI_DATAMODEL */ 24875 24876 if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) { 24877 return (EFAULT); 24878 } 24879 rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag); 24880 if (rval != 0) { 24881 return (rval); 24882 } 24883 if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) { 24884 return (EFAULT); 24885 } 24886 24887 #endif /* _MULTI_DATAMODEL */ 24888 24889 return (rval); 24890 } 24891 24892 24893 /* 24894 * Function: sd_mhdioc_inresv 24895 * 24896 * Description: This routine is the driver entry point for handling ioctl 24897 * requests to issue the SCSI-3 Persistent In Read Reservations 24898 * command to the device (MHIOCGRP_INKEYS). 24899 * 24900 * Arguments: dev - the device number 24901 * arg - user provided in_resv structure 24902 * flag - this argument is a pass through to ddi_copyxxx() 24903 * directly from the mode argument of ioctl(). 24904 * 24905 * Return Code: code returned by sd_persistent_reservation_in_read_resv() 24906 * ENXIO 24907 * EFAULT 24908 */ 24909 24910 static int 24911 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag) 24912 { 24913 struct sd_lun *un; 24914 mhioc_inresvs_t inresvs; 24915 int rval = 0; 24916 24917 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 24918 return (ENXIO); 24919 } 24920 24921 #ifdef _MULTI_DATAMODEL 24922 24923 switch (ddi_model_convert_from(flag & FMODELS)) { 24924 case DDI_MODEL_ILP32: { 24925 struct mhioc_inresvs32 inresvs32; 24926 24927 if (ddi_copyin(arg, &inresvs32, 24928 sizeof (struct mhioc_inresvs32), flag) != 0) { 24929 return (EFAULT); 24930 } 24931 inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li; 24932 if ((rval = sd_persistent_reservation_in_read_resv(un, 24933 &inresvs, flag)) != 0) { 24934 return (rval); 24935 } 24936 inresvs32.generation = inresvs.generation; 24937 if (ddi_copyout(&inresvs32, arg, 24938 sizeof (struct mhioc_inresvs32), flag) != 0) { 24939 return (EFAULT); 24940 } 24941 break; 24942 } 24943 case DDI_MODEL_NONE: 24944 if (ddi_copyin(arg, &inresvs, 24945 sizeof (mhioc_inresvs_t), flag) != 0) { 24946 return (EFAULT); 24947 } 24948 if ((rval = sd_persistent_reservation_in_read_resv(un, 24949 &inresvs, flag)) != 0) { 24950 return (rval); 24951 } 24952 if (ddi_copyout(&inresvs, arg, 24953 sizeof (mhioc_inresvs_t), flag) != 0) { 24954 return (EFAULT); 24955 } 24956 break; 24957 } 24958 24959 #else /* ! _MULTI_DATAMODEL */ 24960 24961 if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) { 24962 return (EFAULT); 24963 } 24964 rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag); 24965 if (rval != 0) { 24966 return (rval); 24967 } 24968 if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) { 24969 return (EFAULT); 24970 } 24971 24972 #endif /* ! _MULTI_DATAMODEL */ 24973 24974 return (rval); 24975 } 24976 24977 24978 /* 24979 * The following routines support the clustering functionality described below 24980 * and implement lost reservation reclaim functionality. 24981 * 24982 * Clustering 24983 * ---------- 24984 * The clustering code uses two different, independent forms of SCSI 24985 * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3 24986 * Persistent Group Reservations. For any particular disk, it will use either 24987 * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk. 24988 * 24989 * SCSI-2 24990 * The cluster software takes ownership of a multi-hosted disk by issuing the 24991 * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the 24992 * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster, 24993 * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues 24994 * the MHIOCENFAILFAST ioctl. This ioctl "enables failfast" in the driver. The 24995 * meaning of failfast is that if the driver (on this host) ever encounters the 24996 * scsi error return code RESERVATION_CONFLICT from the device, it should 24997 * immediately panic the host. The motivation for this ioctl is that if this 24998 * host does encounter reservation conflict, the underlying cause is that some 24999 * other host of the cluster has decided that this host is no longer in the 25000 * cluster and has seized control of the disks for itself. Since this host is no 25001 * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl 25002 * does two things: 25003 * (a) it sets a flag that will cause any returned RESERVATION_CONFLICT 25004 * error to panic the host 25005 * (b) it sets up a periodic timer to test whether this host still has 25006 * "access" (in that no other host has reserved the device): if the 25007 * periodic timer gets RESERVATION_CONFLICT, the host is panicked. The 25008 * purpose of that periodic timer is to handle scenarios where the host is 25009 * otherwise temporarily quiescent, temporarily doing no real i/o. 25010 * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host, 25011 * by issuing a SCSI Bus Device Reset. It will then issue a SCSI Reserve for 25012 * the device itself. 25013 * 25014 * SCSI-3 PGR 25015 * A direct semantic implementation of the SCSI-3 Persistent Reservation 25016 * facility is supported through the shared multihost disk ioctls 25017 * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE, 25018 * MHIOCGRP_PREEMPTANDABORT) 25019 * 25020 * Reservation Reclaim: 25021 * -------------------- 25022 * To support the lost reservation reclaim operations this driver creates a 25023 * single thread to handle reinstating reservations on all devices that have 25024 * lost reservations sd_resv_reclaim_requests are logged for all devices that 25025 * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb 25026 * and the reservation reclaim thread loops through the requests to regain the 25027 * lost reservations. 25028 */ 25029 25030 /* 25031 * Function: sd_check_mhd() 25032 * 25033 * Description: This function sets up and submits a scsi watch request or 25034 * terminates an existing watch request. This routine is used in 25035 * support of reservation reclaim. 25036 * 25037 * Arguments: dev - the device 'dev_t' is used for context to discriminate 25038 * among multiple watches that share the callback function 25039 * interval - the number of microseconds specifying the watch 25040 * interval for issuing TEST UNIT READY commands. If 25041 * set to 0 the watch should be terminated. If the 25042 * interval is set to 0 and if the device is required 25043 * to hold reservation while disabling failfast, the 25044 * watch is restarted with an interval of 25045 * reinstate_resv_delay. 25046 * 25047 * Return Code: 0 - Successful submit/terminate of scsi watch request 25048 * ENXIO - Indicates an invalid device was specified 25049 * EAGAIN - Unable to submit the scsi watch request 25050 */ 25051 25052 static int 25053 sd_check_mhd(dev_t dev, int interval) 25054 { 25055 struct sd_lun *un; 25056 opaque_t token; 25057 25058 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25059 return (ENXIO); 25060 } 25061 25062 /* is this a watch termination request? */ 25063 if (interval == 0) { 25064 mutex_enter(SD_MUTEX(un)); 25065 /* if there is an existing watch task then terminate it */ 25066 if (un->un_mhd_token) { 25067 token = un->un_mhd_token; 25068 un->un_mhd_token = NULL; 25069 mutex_exit(SD_MUTEX(un)); 25070 (void) scsi_watch_request_terminate(token, 25071 SCSI_WATCH_TERMINATE_WAIT); 25072 mutex_enter(SD_MUTEX(un)); 25073 } else { 25074 mutex_exit(SD_MUTEX(un)); 25075 /* 25076 * Note: If we return here we don't check for the 25077 * failfast case. This is the original legacy 25078 * implementation but perhaps we should be checking 25079 * the failfast case. 25080 */ 25081 return (0); 25082 } 25083 /* 25084 * If the device is required to hold reservation while 25085 * disabling failfast, we need to restart the scsi_watch 25086 * routine with an interval of reinstate_resv_delay. 25087 */ 25088 if (un->un_resvd_status & SD_RESERVE) { 25089 interval = sd_reinstate_resv_delay/1000; 25090 } else { 25091 /* no failfast so bail */ 25092 mutex_exit(SD_MUTEX(un)); 25093 return (0); 25094 } 25095 mutex_exit(SD_MUTEX(un)); 25096 } 25097 25098 /* 25099 * adjust minimum time interval to 1 second, 25100 * and convert from msecs to usecs 25101 */ 25102 if (interval > 0 && interval < 1000) { 25103 interval = 1000; 25104 } 25105 interval *= 1000; 25106 25107 /* 25108 * submit the request to the scsi_watch service 25109 */ 25110 token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval, 25111 SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev); 25112 if (token == NULL) { 25113 return (EAGAIN); 25114 } 25115 25116 /* 25117 * save token for termination later on 25118 */ 25119 mutex_enter(SD_MUTEX(un)); 25120 un->un_mhd_token = token; 25121 mutex_exit(SD_MUTEX(un)); 25122 return (0); 25123 } 25124 25125 25126 /* 25127 * Function: sd_mhd_watch_cb() 25128 * 25129 * Description: This function is the call back function used by the scsi watch 25130 * facility. The scsi watch facility sends the "Test Unit Ready" 25131 * and processes the status. If applicable (i.e. a "Unit Attention" 25132 * status and automatic "Request Sense" not used) the scsi watch 25133 * facility will send a "Request Sense" and retrieve the sense data 25134 * to be passed to this callback function. In either case the 25135 * automatic "Request Sense" or the facility submitting one, this 25136 * callback is passed the status and sense data. 25137 * 25138 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25139 * among multiple watches that share this callback function 25140 * resultp - scsi watch facility result packet containing scsi 25141 * packet, status byte and sense data 25142 * 25143 * Return Code: 0 - continue the watch task 25144 * non-zero - terminate the watch task 25145 */ 25146 25147 static int 25148 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp) 25149 { 25150 struct sd_lun *un; 25151 struct scsi_status *statusp; 25152 struct scsi_extended_sense *sensep; 25153 struct scsi_pkt *pkt; 25154 uchar_t actual_sense_length; 25155 dev_t dev = (dev_t)arg; 25156 25157 ASSERT(resultp != NULL); 25158 statusp = resultp->statusp; 25159 sensep = resultp->sensep; 25160 pkt = resultp->pkt; 25161 actual_sense_length = resultp->actual_sense_length; 25162 25163 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25164 return (ENXIO); 25165 } 25166 25167 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25168 "sd_mhd_watch_cb: reason '%s', status '%s'\n", 25169 scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp))); 25170 25171 /* Begin processing of the status and/or sense data */ 25172 if (pkt->pkt_reason != CMD_CMPLT) { 25173 /* Handle the incomplete packet */ 25174 sd_mhd_watch_incomplete(un, pkt); 25175 return (0); 25176 } else if (*((unsigned char *)statusp) != STATUS_GOOD) { 25177 if (*((unsigned char *)statusp) 25178 == STATUS_RESERVATION_CONFLICT) { 25179 /* 25180 * Handle a reservation conflict by panicking if 25181 * configured for failfast or by logging the conflict 25182 * and updating the reservation status 25183 */ 25184 mutex_enter(SD_MUTEX(un)); 25185 if ((un->un_resvd_status & SD_FAILFAST) && 25186 (sd_failfast_enable)) { 25187 sd_panic_for_res_conflict(un); 25188 /*NOTREACHED*/ 25189 } 25190 SD_INFO(SD_LOG_IOCTL_MHD, un, 25191 "sd_mhd_watch_cb: Reservation Conflict\n"); 25192 un->un_resvd_status |= SD_RESERVATION_CONFLICT; 25193 mutex_exit(SD_MUTEX(un)); 25194 } 25195 } 25196 25197 if (sensep != NULL) { 25198 if (actual_sense_length >= (SENSE_LENGTH - 2)) { 25199 mutex_enter(SD_MUTEX(un)); 25200 if ((sensep->es_add_code == SD_SCSI_RESET_SENSE_CODE) && 25201 (un->un_resvd_status & SD_RESERVE)) { 25202 /* 25203 * The additional sense code indicates a power 25204 * on or bus device reset has occurred; update 25205 * the reservation status. 25206 */ 25207 un->un_resvd_status |= 25208 (SD_LOST_RESERVE | SD_WANT_RESERVE); 25209 SD_INFO(SD_LOG_IOCTL_MHD, un, 25210 "sd_mhd_watch_cb: Lost Reservation\n"); 25211 } 25212 } else { 25213 return (0); 25214 } 25215 } else { 25216 mutex_enter(SD_MUTEX(un)); 25217 } 25218 25219 if ((un->un_resvd_status & SD_RESERVE) && 25220 (un->un_resvd_status & SD_LOST_RESERVE)) { 25221 if (un->un_resvd_status & SD_WANT_RESERVE) { 25222 /* 25223 * A reset occurred in between the last probe and this 25224 * one so if a timeout is pending cancel it. 25225 */ 25226 if (un->un_resvd_timeid) { 25227 timeout_id_t temp_id = un->un_resvd_timeid; 25228 un->un_resvd_timeid = NULL; 25229 mutex_exit(SD_MUTEX(un)); 25230 (void) untimeout(temp_id); 25231 mutex_enter(SD_MUTEX(un)); 25232 } 25233 un->un_resvd_status &= ~SD_WANT_RESERVE; 25234 } 25235 if (un->un_resvd_timeid == 0) { 25236 /* Schedule a timeout to handle the lost reservation */ 25237 un->un_resvd_timeid = timeout(sd_mhd_resvd_recover, 25238 (void *)dev, 25239 drv_usectohz(sd_reinstate_resv_delay)); 25240 } 25241 } 25242 mutex_exit(SD_MUTEX(un)); 25243 return (0); 25244 } 25245 25246 25247 /* 25248 * Function: sd_mhd_watch_incomplete() 25249 * 25250 * Description: This function is used to find out why a scsi pkt sent by the 25251 * scsi watch facility was not completed. Under some scenarios this 25252 * routine will return. Otherwise it will send a bus reset to see 25253 * if the drive is still online. 25254 * 25255 * Arguments: un - driver soft state (unit) structure 25256 * pkt - incomplete scsi pkt 25257 */ 25258 25259 static void 25260 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt) 25261 { 25262 int be_chatty; 25263 int perr; 25264 25265 ASSERT(pkt != NULL); 25266 ASSERT(un != NULL); 25267 be_chatty = (!(pkt->pkt_flags & FLAG_SILENT)); 25268 perr = (pkt->pkt_statistics & STAT_PERR); 25269 25270 mutex_enter(SD_MUTEX(un)); 25271 if (un->un_state == SD_STATE_DUMPING) { 25272 mutex_exit(SD_MUTEX(un)); 25273 return; 25274 } 25275 25276 switch (pkt->pkt_reason) { 25277 case CMD_UNX_BUS_FREE: 25278 /* 25279 * If we had a parity error that caused the target to drop BSY*, 25280 * don't be chatty about it. 25281 */ 25282 if (perr && be_chatty) { 25283 be_chatty = 0; 25284 } 25285 break; 25286 case CMD_TAG_REJECT: 25287 /* 25288 * The SCSI-2 spec states that a tag reject will be sent by the 25289 * target if tagged queuing is not supported. A tag reject may 25290 * also be sent during certain initialization periods or to 25291 * control internal resources. For the latter case the target 25292 * may also return Queue Full. 25293 * 25294 * If this driver receives a tag reject from a target that is 25295 * going through an init period or controlling internal 25296 * resources tagged queuing will be disabled. This is a less 25297 * than optimal behavior but the driver is unable to determine 25298 * the target state and assumes tagged queueing is not supported 25299 */ 25300 pkt->pkt_flags = 0; 25301 un->un_tagflags = 0; 25302 25303 if (un->un_f_opt_queueing == TRUE) { 25304 un->un_throttle = min(un->un_throttle, 3); 25305 } else { 25306 un->un_throttle = 1; 25307 } 25308 mutex_exit(SD_MUTEX(un)); 25309 (void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1); 25310 mutex_enter(SD_MUTEX(un)); 25311 break; 25312 case CMD_INCOMPLETE: 25313 /* 25314 * The transport stopped with an abnormal state, fallthrough and 25315 * reset the target and/or bus unless selection did not complete 25316 * (indicated by STATE_GOT_BUS) in which case we don't want to 25317 * go through a target/bus reset 25318 */ 25319 if (pkt->pkt_state == STATE_GOT_BUS) { 25320 break; 25321 } 25322 /*FALLTHROUGH*/ 25323 25324 case CMD_TIMEOUT: 25325 default: 25326 /* 25327 * The lun may still be running the command, so a lun reset 25328 * should be attempted. If the lun reset fails or cannot be 25329 * issued, than try a target reset. Lastly try a bus reset. 25330 */ 25331 if ((pkt->pkt_statistics & 25332 (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) { 25333 int reset_retval = 0; 25334 mutex_exit(SD_MUTEX(un)); 25335 if (un->un_f_allow_bus_device_reset == TRUE) { 25336 if (un->un_f_lun_reset_enabled == TRUE) { 25337 reset_retval = 25338 scsi_reset(SD_ADDRESS(un), 25339 RESET_LUN); 25340 } 25341 if (reset_retval == 0) { 25342 reset_retval = 25343 scsi_reset(SD_ADDRESS(un), 25344 RESET_TARGET); 25345 } 25346 } 25347 if (reset_retval == 0) { 25348 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 25349 } 25350 mutex_enter(SD_MUTEX(un)); 25351 } 25352 break; 25353 } 25354 25355 /* A device/bus reset has occurred; update the reservation status. */ 25356 if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics & 25357 (STAT_BUS_RESET | STAT_DEV_RESET))) { 25358 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25359 un->un_resvd_status |= 25360 (SD_LOST_RESERVE | SD_WANT_RESERVE); 25361 SD_INFO(SD_LOG_IOCTL_MHD, un, 25362 "sd_mhd_watch_incomplete: Lost Reservation\n"); 25363 } 25364 } 25365 25366 /* 25367 * The disk has been turned off; Update the device state. 25368 * 25369 * Note: Should we be offlining the disk here? 25370 */ 25371 if (pkt->pkt_state == STATE_GOT_BUS) { 25372 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: " 25373 "Disk not responding to selection\n"); 25374 if (un->un_state != SD_STATE_OFFLINE) { 25375 New_state(un, SD_STATE_OFFLINE); 25376 } 25377 } else if (be_chatty) { 25378 /* 25379 * suppress messages if they are all the same pkt reason; 25380 * with TQ, many (up to 256) are returned with the same 25381 * pkt_reason 25382 */ 25383 if (pkt->pkt_reason != un->un_last_pkt_reason) { 25384 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25385 "sd_mhd_watch_incomplete: " 25386 "SCSI transport failed: reason '%s'\n", 25387 scsi_rname(pkt->pkt_reason)); 25388 } 25389 } 25390 un->un_last_pkt_reason = pkt->pkt_reason; 25391 mutex_exit(SD_MUTEX(un)); 25392 } 25393 25394 25395 /* 25396 * Function: sd_sname() 25397 * 25398 * Description: This is a simple little routine to return a string containing 25399 * a printable description of command status byte for use in 25400 * logging. 25401 * 25402 * Arguments: status - pointer to a status byte 25403 * 25404 * Return Code: char * - string containing status description. 25405 */ 25406 25407 static char * 25408 sd_sname(uchar_t status) 25409 { 25410 switch (status & STATUS_MASK) { 25411 case STATUS_GOOD: 25412 return ("good status"); 25413 case STATUS_CHECK: 25414 return ("check condition"); 25415 case STATUS_MET: 25416 return ("condition met"); 25417 case STATUS_BUSY: 25418 return ("busy"); 25419 case STATUS_INTERMEDIATE: 25420 return ("intermediate"); 25421 case STATUS_INTERMEDIATE_MET: 25422 return ("intermediate - condition met"); 25423 case STATUS_RESERVATION_CONFLICT: 25424 return ("reservation_conflict"); 25425 case STATUS_TERMINATED: 25426 return ("command terminated"); 25427 case STATUS_QFULL: 25428 return ("queue full"); 25429 default: 25430 return ("<unknown status>"); 25431 } 25432 } 25433 25434 25435 /* 25436 * Function: sd_mhd_resvd_recover() 25437 * 25438 * Description: This function adds a reservation entry to the 25439 * sd_resv_reclaim_request list and signals the reservation 25440 * reclaim thread that there is work pending. If the reservation 25441 * reclaim thread has not been previously created this function 25442 * will kick it off. 25443 * 25444 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25445 * among multiple watches that share this callback function 25446 * 25447 * Context: This routine is called by timeout() and is run in interrupt 25448 * context. It must not sleep or call other functions which may 25449 * sleep. 25450 */ 25451 25452 static void 25453 sd_mhd_resvd_recover(void *arg) 25454 { 25455 dev_t dev = (dev_t)arg; 25456 struct sd_lun *un; 25457 struct sd_thr_request *sd_treq = NULL; 25458 struct sd_thr_request *sd_cur = NULL; 25459 struct sd_thr_request *sd_prev = NULL; 25460 int already_there = 0; 25461 25462 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25463 return; 25464 } 25465 25466 mutex_enter(SD_MUTEX(un)); 25467 un->un_resvd_timeid = NULL; 25468 if (un->un_resvd_status & SD_WANT_RESERVE) { 25469 /* 25470 * There was a reset so don't issue the reserve, allow the 25471 * sd_mhd_watch_cb callback function to notice this and 25472 * reschedule the timeout for reservation. 25473 */ 25474 mutex_exit(SD_MUTEX(un)); 25475 return; 25476 } 25477 mutex_exit(SD_MUTEX(un)); 25478 25479 /* 25480 * Add this device to the sd_resv_reclaim_request list and the 25481 * sd_resv_reclaim_thread should take care of the rest. 25482 * 25483 * Note: We can't sleep in this context so if the memory allocation 25484 * fails allow the sd_mhd_watch_cb callback function to notice this and 25485 * reschedule the timeout for reservation. (4378460) 25486 */ 25487 sd_treq = (struct sd_thr_request *) 25488 kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP); 25489 if (sd_treq == NULL) { 25490 return; 25491 } 25492 25493 sd_treq->sd_thr_req_next = NULL; 25494 sd_treq->dev = dev; 25495 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25496 if (sd_tr.srq_thr_req_head == NULL) { 25497 sd_tr.srq_thr_req_head = sd_treq; 25498 } else { 25499 sd_cur = sd_prev = sd_tr.srq_thr_req_head; 25500 for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) { 25501 if (sd_cur->dev == dev) { 25502 /* 25503 * already in Queue so don't log 25504 * another request for the device 25505 */ 25506 already_there = 1; 25507 break; 25508 } 25509 sd_prev = sd_cur; 25510 } 25511 if (!already_there) { 25512 SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: " 25513 "logging request for %lx\n", dev); 25514 sd_prev->sd_thr_req_next = sd_treq; 25515 } else { 25516 kmem_free(sd_treq, sizeof (struct sd_thr_request)); 25517 } 25518 } 25519 25520 /* 25521 * Create a kernel thread to do the reservation reclaim and free up this 25522 * thread. We cannot block this thread while we go away to do the 25523 * reservation reclaim 25524 */ 25525 if (sd_tr.srq_resv_reclaim_thread == NULL) 25526 sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0, 25527 sd_resv_reclaim_thread, NULL, 25528 0, &p0, TS_RUN, v.v_maxsyspri - 2); 25529 25530 /* Tell the reservation reclaim thread that it has work to do */ 25531 cv_signal(&sd_tr.srq_resv_reclaim_cv); 25532 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25533 } 25534 25535 /* 25536 * Function: sd_resv_reclaim_thread() 25537 * 25538 * Description: This function implements the reservation reclaim operations 25539 * 25540 * Arguments: arg - the device 'dev_t' is used for context to discriminate 25541 * among multiple watches that share this callback function 25542 */ 25543 25544 static void 25545 sd_resv_reclaim_thread() 25546 { 25547 struct sd_lun *un; 25548 struct sd_thr_request *sd_mhreq; 25549 25550 /* Wait for work */ 25551 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25552 if (sd_tr.srq_thr_req_head == NULL) { 25553 cv_wait(&sd_tr.srq_resv_reclaim_cv, 25554 &sd_tr.srq_resv_reclaim_mutex); 25555 } 25556 25557 /* Loop while we have work */ 25558 while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) { 25559 un = ddi_get_soft_state(sd_state, 25560 SDUNIT(sd_tr.srq_thr_cur_req->dev)); 25561 if (un == NULL) { 25562 /* 25563 * softstate structure is NULL so just 25564 * dequeue the request and continue 25565 */ 25566 sd_tr.srq_thr_req_head = 25567 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25568 kmem_free(sd_tr.srq_thr_cur_req, 25569 sizeof (struct sd_thr_request)); 25570 continue; 25571 } 25572 25573 /* dequeue the request */ 25574 sd_mhreq = sd_tr.srq_thr_cur_req; 25575 sd_tr.srq_thr_req_head = 25576 sd_tr.srq_thr_cur_req->sd_thr_req_next; 25577 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25578 25579 /* 25580 * Reclaim reservation only if SD_RESERVE is still set. There 25581 * may have been a call to MHIOCRELEASE before we got here. 25582 */ 25583 mutex_enter(SD_MUTEX(un)); 25584 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25585 /* 25586 * Note: The SD_LOST_RESERVE flag is cleared before 25587 * reclaiming the reservation. If this is done after the 25588 * call to sd_reserve_release a reservation loss in the 25589 * window between pkt completion of reserve cmd and 25590 * mutex_enter below may not be recognized 25591 */ 25592 un->un_resvd_status &= ~SD_LOST_RESERVE; 25593 mutex_exit(SD_MUTEX(un)); 25594 25595 if (sd_reserve_release(sd_mhreq->dev, 25596 SD_RESERVE) == 0) { 25597 mutex_enter(SD_MUTEX(un)); 25598 un->un_resvd_status |= SD_RESERVE; 25599 mutex_exit(SD_MUTEX(un)); 25600 SD_INFO(SD_LOG_IOCTL_MHD, un, 25601 "sd_resv_reclaim_thread: " 25602 "Reservation Recovered\n"); 25603 } else { 25604 mutex_enter(SD_MUTEX(un)); 25605 un->un_resvd_status |= SD_LOST_RESERVE; 25606 mutex_exit(SD_MUTEX(un)); 25607 SD_INFO(SD_LOG_IOCTL_MHD, un, 25608 "sd_resv_reclaim_thread: Failed " 25609 "Reservation Recovery\n"); 25610 } 25611 } else { 25612 mutex_exit(SD_MUTEX(un)); 25613 } 25614 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25615 ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req); 25616 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25617 sd_mhreq = sd_tr.srq_thr_cur_req = NULL; 25618 /* 25619 * wakeup the destroy thread if anyone is waiting on 25620 * us to complete. 25621 */ 25622 cv_signal(&sd_tr.srq_inprocess_cv); 25623 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25624 "sd_resv_reclaim_thread: cv_signalling current request \n"); 25625 } 25626 25627 /* 25628 * cleanup the sd_tr structure now that this thread will not exist 25629 */ 25630 ASSERT(sd_tr.srq_thr_req_head == NULL); 25631 ASSERT(sd_tr.srq_thr_cur_req == NULL); 25632 sd_tr.srq_resv_reclaim_thread = NULL; 25633 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25634 thread_exit(); 25635 } 25636 25637 25638 /* 25639 * Function: sd_rmv_resv_reclaim_req() 25640 * 25641 * Description: This function removes any pending reservation reclaim requests 25642 * for the specified device. 25643 * 25644 * Arguments: dev - the device 'dev_t' 25645 */ 25646 25647 static void 25648 sd_rmv_resv_reclaim_req(dev_t dev) 25649 { 25650 struct sd_thr_request *sd_mhreq; 25651 struct sd_thr_request *sd_prev; 25652 25653 /* Remove a reservation reclaim request from the list */ 25654 mutex_enter(&sd_tr.srq_resv_reclaim_mutex); 25655 if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) { 25656 /* 25657 * We are attempting to reinstate reservation for 25658 * this device. We wait for sd_reserve_release() 25659 * to return before we return. 25660 */ 25661 cv_wait(&sd_tr.srq_inprocess_cv, 25662 &sd_tr.srq_resv_reclaim_mutex); 25663 } else { 25664 sd_prev = sd_mhreq = sd_tr.srq_thr_req_head; 25665 if (sd_mhreq && sd_mhreq->dev == dev) { 25666 sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next; 25667 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25668 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25669 return; 25670 } 25671 for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) { 25672 if (sd_mhreq && sd_mhreq->dev == dev) { 25673 break; 25674 } 25675 sd_prev = sd_mhreq; 25676 } 25677 if (sd_mhreq != NULL) { 25678 sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next; 25679 kmem_free(sd_mhreq, sizeof (struct sd_thr_request)); 25680 } 25681 } 25682 mutex_exit(&sd_tr.srq_resv_reclaim_mutex); 25683 } 25684 25685 25686 /* 25687 * Function: sd_mhd_reset_notify_cb() 25688 * 25689 * Description: This is a call back function for scsi_reset_notify. This 25690 * function updates the softstate reserved status and logs the 25691 * reset. The driver scsi watch facility callback function 25692 * (sd_mhd_watch_cb) and reservation reclaim thread functionality 25693 * will reclaim the reservation. 25694 * 25695 * Arguments: arg - driver soft state (unit) structure 25696 */ 25697 25698 static void 25699 sd_mhd_reset_notify_cb(caddr_t arg) 25700 { 25701 struct sd_lun *un = (struct sd_lun *)arg; 25702 25703 mutex_enter(SD_MUTEX(un)); 25704 if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) { 25705 un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE); 25706 SD_INFO(SD_LOG_IOCTL_MHD, un, 25707 "sd_mhd_reset_notify_cb: Lost Reservation\n"); 25708 } 25709 mutex_exit(SD_MUTEX(un)); 25710 } 25711 25712 25713 /* 25714 * Function: sd_take_ownership() 25715 * 25716 * Description: This routine implements an algorithm to achieve a stable 25717 * reservation on disks which don't implement priority reserve, 25718 * and makes sure that other host lose re-reservation attempts. 25719 * This algorithm contains of a loop that keeps issuing the RESERVE 25720 * for some period of time (min_ownership_delay, default 6 seconds) 25721 * During that loop, it looks to see if there has been a bus device 25722 * reset or bus reset (both of which cause an existing reservation 25723 * to be lost). If the reservation is lost issue RESERVE until a 25724 * period of min_ownership_delay with no resets has gone by, or 25725 * until max_ownership_delay has expired. This loop ensures that 25726 * the host really did manage to reserve the device, in spite of 25727 * resets. The looping for min_ownership_delay (default six 25728 * seconds) is important to early generation clustering products, 25729 * Solstice HA 1.x and Sun Cluster 2.x. Those products use an 25730 * MHIOCENFAILFAST periodic timer of two seconds. By having 25731 * MHIOCTKOWN issue Reserves in a loop for six seconds, and having 25732 * MHIOCENFAILFAST poll every two seconds, the idea is that by the 25733 * time the MHIOCTKOWN ioctl returns, the other host (if any) will 25734 * have already noticed, via the MHIOCENFAILFAST polling, that it 25735 * no longer "owns" the disk and will have panicked itself. Thus, 25736 * the host issuing the MHIOCTKOWN is assured (with timing 25737 * dependencies) that by the time it actually starts to use the 25738 * disk for real work, the old owner is no longer accessing it. 25739 * 25740 * min_ownership_delay is the minimum amount of time for which the 25741 * disk must be reserved continuously devoid of resets before the 25742 * MHIOCTKOWN ioctl will return success. 25743 * 25744 * max_ownership_delay indicates the amount of time by which the 25745 * take ownership should succeed or timeout with an error. 25746 * 25747 * Arguments: dev - the device 'dev_t' 25748 * *p - struct containing timing info. 25749 * 25750 * Return Code: 0 for success or error code 25751 */ 25752 25753 static int 25754 sd_take_ownership(dev_t dev, struct mhioctkown *p) 25755 { 25756 struct sd_lun *un; 25757 int rval; 25758 int err; 25759 int reservation_count = 0; 25760 int min_ownership_delay = 6000000; /* in usec */ 25761 int max_ownership_delay = 30000000; /* in usec */ 25762 clock_t start_time; /* starting time of this algorithm */ 25763 clock_t end_time; /* time limit for giving up */ 25764 clock_t ownership_time; /* time limit for stable ownership */ 25765 clock_t current_time; 25766 clock_t previous_current_time; 25767 25768 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25769 return (ENXIO); 25770 } 25771 25772 /* 25773 * Attempt a device reservation. A priority reservation is requested. 25774 */ 25775 if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE)) 25776 != SD_SUCCESS) { 25777 SD_ERROR(SD_LOG_IOCTL_MHD, un, 25778 "sd_take_ownership: return(1)=%d\n", rval); 25779 return (rval); 25780 } 25781 25782 /* Update the softstate reserved status to indicate the reservation */ 25783 mutex_enter(SD_MUTEX(un)); 25784 un->un_resvd_status |= SD_RESERVE; 25785 un->un_resvd_status &= 25786 ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT); 25787 mutex_exit(SD_MUTEX(un)); 25788 25789 if (p != NULL) { 25790 if (p->min_ownership_delay != 0) { 25791 min_ownership_delay = p->min_ownership_delay * 1000; 25792 } 25793 if (p->max_ownership_delay != 0) { 25794 max_ownership_delay = p->max_ownership_delay * 1000; 25795 } 25796 } 25797 SD_INFO(SD_LOG_IOCTL_MHD, un, 25798 "sd_take_ownership: min, max delays: %d, %d\n", 25799 min_ownership_delay, max_ownership_delay); 25800 25801 start_time = ddi_get_lbolt(); 25802 current_time = start_time; 25803 ownership_time = current_time + drv_usectohz(min_ownership_delay); 25804 end_time = start_time + drv_usectohz(max_ownership_delay); 25805 25806 while (current_time - end_time < 0) { 25807 delay(drv_usectohz(500000)); 25808 25809 if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) { 25810 if ((sd_reserve_release(dev, SD_RESERVE)) != 0) { 25811 mutex_enter(SD_MUTEX(un)); 25812 rval = (un->un_resvd_status & 25813 SD_RESERVATION_CONFLICT) ? EACCES : EIO; 25814 mutex_exit(SD_MUTEX(un)); 25815 break; 25816 } 25817 } 25818 previous_current_time = current_time; 25819 current_time = ddi_get_lbolt(); 25820 mutex_enter(SD_MUTEX(un)); 25821 if (err || (un->un_resvd_status & SD_LOST_RESERVE)) { 25822 ownership_time = ddi_get_lbolt() + 25823 drv_usectohz(min_ownership_delay); 25824 reservation_count = 0; 25825 } else { 25826 reservation_count++; 25827 } 25828 un->un_resvd_status |= SD_RESERVE; 25829 un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE); 25830 mutex_exit(SD_MUTEX(un)); 25831 25832 SD_INFO(SD_LOG_IOCTL_MHD, un, 25833 "sd_take_ownership: ticks for loop iteration=%ld, " 25834 "reservation=%s\n", (current_time - previous_current_time), 25835 reservation_count ? "ok" : "reclaimed"); 25836 25837 if (current_time - ownership_time >= 0 && 25838 reservation_count >= 4) { 25839 rval = 0; /* Achieved a stable ownership */ 25840 break; 25841 } 25842 if (current_time - end_time >= 0) { 25843 rval = EACCES; /* No ownership in max possible time */ 25844 break; 25845 } 25846 } 25847 SD_TRACE(SD_LOG_IOCTL_MHD, un, 25848 "sd_take_ownership: return(2)=%d\n", rval); 25849 return (rval); 25850 } 25851 25852 25853 /* 25854 * Function: sd_reserve_release() 25855 * 25856 * Description: This function builds and sends scsi RESERVE, RELEASE, and 25857 * PRIORITY RESERVE commands based on a user specified command type 25858 * 25859 * Arguments: dev - the device 'dev_t' 25860 * cmd - user specified command type; one of SD_PRIORITY_RESERVE, 25861 * SD_RESERVE, SD_RELEASE 25862 * 25863 * Return Code: 0 or Error Code 25864 */ 25865 25866 static int 25867 sd_reserve_release(dev_t dev, int cmd) 25868 { 25869 struct uscsi_cmd *com = NULL; 25870 struct sd_lun *un = NULL; 25871 char cdb[CDB_GROUP0]; 25872 int rval; 25873 25874 ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) || 25875 (cmd == SD_PRIORITY_RESERVE)); 25876 25877 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 25878 return (ENXIO); 25879 } 25880 25881 /* instantiate and initialize the command and cdb */ 25882 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 25883 bzero(cdb, CDB_GROUP0); 25884 com->uscsi_flags = USCSI_SILENT; 25885 com->uscsi_timeout = un->un_reserve_release_time; 25886 com->uscsi_cdblen = CDB_GROUP0; 25887 com->uscsi_cdb = cdb; 25888 if (cmd == SD_RELEASE) { 25889 cdb[0] = SCMD_RELEASE; 25890 } else { 25891 cdb[0] = SCMD_RESERVE; 25892 } 25893 25894 /* Send the command. */ 25895 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 25896 UIO_SYSSPACE, SD_PATH_STANDARD); 25897 25898 /* 25899 * "break" a reservation that is held by another host, by issuing a 25900 * reset if priority reserve is desired, and we could not get the 25901 * device. 25902 */ 25903 if ((cmd == SD_PRIORITY_RESERVE) && 25904 (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25905 /* 25906 * First try to reset the LUN. If we cannot, then try a target 25907 * reset, followed by a bus reset if the target reset fails. 25908 */ 25909 int reset_retval = 0; 25910 if (un->un_f_lun_reset_enabled == TRUE) { 25911 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN); 25912 } 25913 if (reset_retval == 0) { 25914 /* The LUN reset either failed or was not issued */ 25915 reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET); 25916 } 25917 if ((reset_retval == 0) && 25918 (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) { 25919 rval = EIO; 25920 kmem_free(com, sizeof (*com)); 25921 return (rval); 25922 } 25923 25924 bzero(com, sizeof (struct uscsi_cmd)); 25925 com->uscsi_flags = USCSI_SILENT; 25926 com->uscsi_cdb = cdb; 25927 com->uscsi_cdblen = CDB_GROUP0; 25928 com->uscsi_timeout = 5; 25929 25930 /* 25931 * Reissue the last reserve command, this time without request 25932 * sense. Assume that it is just a regular reserve command. 25933 */ 25934 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 25935 UIO_SYSSPACE, SD_PATH_STANDARD); 25936 } 25937 25938 /* Return an error if still getting a reservation conflict. */ 25939 if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) { 25940 rval = EACCES; 25941 } 25942 25943 kmem_free(com, sizeof (*com)); 25944 return (rval); 25945 } 25946 25947 25948 #define SD_NDUMP_RETRIES 12 25949 /* 25950 * System Crash Dump routine 25951 */ 25952 25953 static int 25954 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk) 25955 { 25956 int instance; 25957 int partition; 25958 int i; 25959 int err; 25960 struct sd_lun *un; 25961 struct dk_map *lp; 25962 struct scsi_pkt *wr_pktp; 25963 struct buf *wr_bp; 25964 struct buf wr_buf; 25965 daddr_t tgt_byte_offset; /* rmw - byte offset for target */ 25966 daddr_t tgt_blkno; /* rmw - blkno for target */ 25967 size_t tgt_byte_count; /* rmw - # of bytes to xfer */ 25968 size_t tgt_nblk; /* rmw - # of tgt blks to xfer */ 25969 size_t io_start_offset; 25970 int doing_rmw = FALSE; 25971 int rval; 25972 #if defined(__i386) || defined(__amd64) 25973 ssize_t dma_resid; 25974 daddr_t oblkno; 25975 #endif 25976 25977 instance = SDUNIT(dev); 25978 if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) || 25979 (!un->un_f_geometry_is_valid) || ISCD(un)) { 25980 return (ENXIO); 25981 } 25982 25983 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un)) 25984 25985 SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n"); 25986 25987 partition = SDPART(dev); 25988 SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition); 25989 25990 /* Validate blocks to dump at against partition size. */ 25991 lp = &un->un_map[partition]; 25992 if ((blkno + nblk) > lp->dkl_nblk) { 25993 SD_TRACE(SD_LOG_DUMP, un, 25994 "sddump: dump range larger than partition: " 25995 "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n", 25996 blkno, nblk, lp->dkl_nblk); 25997 return (EINVAL); 25998 } 25999 26000 mutex_enter(&un->un_pm_mutex); 26001 if (SD_DEVICE_IS_IN_LOW_POWER(un)) { 26002 struct scsi_pkt *start_pktp; 26003 26004 mutex_exit(&un->un_pm_mutex); 26005 26006 /* 26007 * use pm framework to power on HBA 1st 26008 */ 26009 (void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON); 26010 26011 /* 26012 * Dump no long uses sdpower to power on a device, it's 26013 * in-line here so it can be done in polled mode. 26014 */ 26015 26016 SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n"); 26017 26018 start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL, 26019 CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL); 26020 26021 if (start_pktp == NULL) { 26022 /* We were not given a SCSI packet, fail. */ 26023 return (EIO); 26024 } 26025 bzero(start_pktp->pkt_cdbp, CDB_GROUP0); 26026 start_pktp->pkt_cdbp[0] = SCMD_START_STOP; 26027 start_pktp->pkt_cdbp[4] = SD_TARGET_START; 26028 start_pktp->pkt_flags = FLAG_NOINTR; 26029 26030 mutex_enter(SD_MUTEX(un)); 26031 SD_FILL_SCSI1_LUN(un, start_pktp); 26032 mutex_exit(SD_MUTEX(un)); 26033 /* 26034 * Scsi_poll returns 0 (success) if the command completes and 26035 * the status block is STATUS_GOOD. 26036 */ 26037 if (sd_scsi_poll(un, start_pktp) != 0) { 26038 scsi_destroy_pkt(start_pktp); 26039 return (EIO); 26040 } 26041 scsi_destroy_pkt(start_pktp); 26042 (void) sd_ddi_pm_resume(un); 26043 } else { 26044 mutex_exit(&un->un_pm_mutex); 26045 } 26046 26047 mutex_enter(SD_MUTEX(un)); 26048 un->un_throttle = 0; 26049 26050 /* 26051 * The first time through, reset the specific target device. 26052 * However, when cpr calls sddump we know that sd is in a 26053 * a good state so no bus reset is required. 26054 * Clear sense data via Request Sense cmd. 26055 * In sddump we don't care about allow_bus_device_reset anymore 26056 */ 26057 26058 if ((un->un_state != SD_STATE_SUSPENDED) && 26059 (un->un_state != SD_STATE_DUMPING)) { 26060 26061 New_state(un, SD_STATE_DUMPING); 26062 26063 if (un->un_f_is_fibre == FALSE) { 26064 mutex_exit(SD_MUTEX(un)); 26065 /* 26066 * Attempt a bus reset for parallel scsi. 26067 * 26068 * Note: A bus reset is required because on some host 26069 * systems (i.e. E420R) a bus device reset is 26070 * insufficient to reset the state of the target. 26071 * 26072 * Note: Don't issue the reset for fibre-channel, 26073 * because this tends to hang the bus (loop) for 26074 * too long while everyone is logging out and in 26075 * and the deadman timer for dumping will fire 26076 * before the dump is complete. 26077 */ 26078 if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) { 26079 mutex_enter(SD_MUTEX(un)); 26080 Restore_state(un); 26081 mutex_exit(SD_MUTEX(un)); 26082 return (EIO); 26083 } 26084 26085 /* Delay to give the device some recovery time. */ 26086 drv_usecwait(10000); 26087 26088 if (sd_send_polled_RQS(un) == SD_FAILURE) { 26089 SD_INFO(SD_LOG_DUMP, un, 26090 "sddump: sd_send_polled_RQS failed\n"); 26091 } 26092 mutex_enter(SD_MUTEX(un)); 26093 } 26094 } 26095 26096 /* 26097 * Convert the partition-relative block number to a 26098 * disk physical block number. 26099 */ 26100 blkno += un->un_offset[partition]; 26101 SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno); 26102 26103 26104 /* 26105 * Check if the device has a non-512 block size. 26106 */ 26107 wr_bp = NULL; 26108 if (NOT_DEVBSIZE(un)) { 26109 tgt_byte_offset = blkno * un->un_sys_blocksize; 26110 tgt_byte_count = nblk * un->un_sys_blocksize; 26111 if ((tgt_byte_offset % un->un_tgt_blocksize) || 26112 (tgt_byte_count % un->un_tgt_blocksize)) { 26113 doing_rmw = TRUE; 26114 /* 26115 * Calculate the block number and number of block 26116 * in terms of the media block size. 26117 */ 26118 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 26119 tgt_nblk = 26120 ((tgt_byte_offset + tgt_byte_count + 26121 (un->un_tgt_blocksize - 1)) / 26122 un->un_tgt_blocksize) - tgt_blkno; 26123 26124 /* 26125 * Invoke the routine which is going to do read part 26126 * of read-modify-write. 26127 * Note that this routine returns a pointer to 26128 * a valid bp in wr_bp. 26129 */ 26130 err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk, 26131 &wr_bp); 26132 if (err) { 26133 mutex_exit(SD_MUTEX(un)); 26134 return (err); 26135 } 26136 /* 26137 * Offset is being calculated as - 26138 * (original block # * system block size) - 26139 * (new block # * target block size) 26140 */ 26141 io_start_offset = 26142 ((uint64_t)(blkno * un->un_sys_blocksize)) - 26143 ((uint64_t)(tgt_blkno * un->un_tgt_blocksize)); 26144 26145 ASSERT((io_start_offset >= 0) && 26146 (io_start_offset < un->un_tgt_blocksize)); 26147 /* 26148 * Do the modify portion of read modify write. 26149 */ 26150 bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset], 26151 (size_t)nblk * un->un_sys_blocksize); 26152 } else { 26153 doing_rmw = FALSE; 26154 tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize; 26155 tgt_nblk = tgt_byte_count / un->un_tgt_blocksize; 26156 } 26157 26158 /* Convert blkno and nblk to target blocks */ 26159 blkno = tgt_blkno; 26160 nblk = tgt_nblk; 26161 } else { 26162 wr_bp = &wr_buf; 26163 bzero(wr_bp, sizeof (struct buf)); 26164 wr_bp->b_flags = B_BUSY; 26165 wr_bp->b_un.b_addr = addr; 26166 wr_bp->b_bcount = nblk << DEV_BSHIFT; 26167 wr_bp->b_resid = 0; 26168 } 26169 26170 mutex_exit(SD_MUTEX(un)); 26171 26172 /* 26173 * Obtain a SCSI packet for the write command. 26174 * It should be safe to call the allocator here without 26175 * worrying about being locked for DVMA mapping because 26176 * the address we're passed is already a DVMA mapping 26177 * 26178 * We are also not going to worry about semaphore ownership 26179 * in the dump buffer. Dumping is single threaded at present. 26180 */ 26181 26182 wr_pktp = NULL; 26183 26184 #if defined(__i386) || defined(__amd64) 26185 dma_resid = wr_bp->b_bcount; 26186 oblkno = blkno; 26187 while (dma_resid != 0) { 26188 #endif 26189 26190 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 26191 wr_bp->b_flags &= ~B_ERROR; 26192 26193 #if defined(__i386) || defined(__amd64) 26194 blkno = oblkno + 26195 ((wr_bp->b_bcount - dma_resid) / 26196 un->un_tgt_blocksize); 26197 nblk = dma_resid / un->un_tgt_blocksize; 26198 26199 if (wr_pktp) { 26200 /* Partial DMA transfers after initial transfer */ 26201 rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp, 26202 blkno, nblk); 26203 } else { 26204 /* Initial transfer */ 26205 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 26206 un->un_pkt_flags, NULL_FUNC, NULL, 26207 blkno, nblk); 26208 } 26209 #else 26210 rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp, 26211 0, NULL_FUNC, NULL, blkno, nblk); 26212 #endif 26213 26214 if (rval == 0) { 26215 /* We were given a SCSI packet, continue. */ 26216 break; 26217 } 26218 26219 if (i == 0) { 26220 if (wr_bp->b_flags & B_ERROR) { 26221 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26222 "no resources for dumping; " 26223 "error code: 0x%x, retrying", 26224 geterror(wr_bp)); 26225 } else { 26226 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 26227 "no resources for dumping; retrying"); 26228 } 26229 } else if (i != (SD_NDUMP_RETRIES - 1)) { 26230 if (wr_bp->b_flags & B_ERROR) { 26231 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26232 "no resources for dumping; error code: " 26233 "0x%x, retrying\n", geterror(wr_bp)); 26234 } 26235 } else { 26236 if (wr_bp->b_flags & B_ERROR) { 26237 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26238 "no resources for dumping; " 26239 "error code: 0x%x, retries failed, " 26240 "giving up.\n", geterror(wr_bp)); 26241 } else { 26242 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26243 "no resources for dumping; " 26244 "retries failed, giving up.\n"); 26245 } 26246 mutex_enter(SD_MUTEX(un)); 26247 Restore_state(un); 26248 if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) { 26249 mutex_exit(SD_MUTEX(un)); 26250 scsi_free_consistent_buf(wr_bp); 26251 } else { 26252 mutex_exit(SD_MUTEX(un)); 26253 } 26254 return (EIO); 26255 } 26256 drv_usecwait(10000); 26257 } 26258 26259 #if defined(__i386) || defined(__amd64) 26260 /* 26261 * save the resid from PARTIAL_DMA 26262 */ 26263 dma_resid = wr_pktp->pkt_resid; 26264 if (dma_resid != 0) 26265 nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid); 26266 wr_pktp->pkt_resid = 0; 26267 #endif 26268 26269 /* SunBug 1222170 */ 26270 wr_pktp->pkt_flags = FLAG_NOINTR; 26271 26272 err = EIO; 26273 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 26274 26275 /* 26276 * Scsi_poll returns 0 (success) if the command completes and 26277 * the status block is STATUS_GOOD. We should only check 26278 * errors if this condition is not true. Even then we should 26279 * send our own request sense packet only if we have a check 26280 * condition and auto request sense has not been performed by 26281 * the hba. 26282 */ 26283 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n"); 26284 26285 if ((sd_scsi_poll(un, wr_pktp) == 0) && 26286 (wr_pktp->pkt_resid == 0)) { 26287 err = SD_SUCCESS; 26288 break; 26289 } 26290 26291 /* 26292 * Check CMD_DEV_GONE 1st, give up if device is gone. 26293 */ 26294 if (wr_pktp->pkt_reason == CMD_DEV_GONE) { 26295 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 26296 "Device is gone\n"); 26297 break; 26298 } 26299 26300 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) { 26301 SD_INFO(SD_LOG_DUMP, un, 26302 "sddump: write failed with CHECK, try # %d\n", i); 26303 if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) { 26304 (void) sd_send_polled_RQS(un); 26305 } 26306 26307 continue; 26308 } 26309 26310 if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) { 26311 int reset_retval = 0; 26312 26313 SD_INFO(SD_LOG_DUMP, un, 26314 "sddump: write failed with BUSY, try # %d\n", i); 26315 26316 if (un->un_f_lun_reset_enabled == TRUE) { 26317 reset_retval = scsi_reset(SD_ADDRESS(un), 26318 RESET_LUN); 26319 } 26320 if (reset_retval == 0) { 26321 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 26322 } 26323 (void) sd_send_polled_RQS(un); 26324 26325 } else { 26326 SD_INFO(SD_LOG_DUMP, un, 26327 "sddump: write failed with 0x%x, try # %d\n", 26328 SD_GET_PKT_STATUS(wr_pktp), i); 26329 mutex_enter(SD_MUTEX(un)); 26330 sd_reset_target(un, wr_pktp); 26331 mutex_exit(SD_MUTEX(un)); 26332 } 26333 26334 /* 26335 * If we are not getting anywhere with lun/target resets, 26336 * let's reset the bus. 26337 */ 26338 if (i == SD_NDUMP_RETRIES/2) { 26339 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 26340 (void) sd_send_polled_RQS(un); 26341 } 26342 26343 } 26344 #if defined(__i386) || defined(__amd64) 26345 } /* dma_resid */ 26346 #endif 26347 26348 scsi_destroy_pkt(wr_pktp); 26349 mutex_enter(SD_MUTEX(un)); 26350 if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) { 26351 mutex_exit(SD_MUTEX(un)); 26352 scsi_free_consistent_buf(wr_bp); 26353 } else { 26354 mutex_exit(SD_MUTEX(un)); 26355 } 26356 SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err); 26357 return (err); 26358 } 26359 26360 /* 26361 * Function: sd_scsi_poll() 26362 * 26363 * Description: This is a wrapper for the scsi_poll call. 26364 * 26365 * Arguments: sd_lun - The unit structure 26366 * scsi_pkt - The scsi packet being sent to the device. 26367 * 26368 * Return Code: 0 - Command completed successfully with good status 26369 * -1 - Command failed. This could indicate a check condition 26370 * or other status value requiring recovery action. 26371 * 26372 */ 26373 26374 static int 26375 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp) 26376 { 26377 int status; 26378 26379 ASSERT(un != NULL); 26380 ASSERT(!mutex_owned(SD_MUTEX(un))); 26381 ASSERT(pktp != NULL); 26382 26383 status = SD_SUCCESS; 26384 26385 if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) { 26386 pktp->pkt_flags |= un->un_tagflags; 26387 pktp->pkt_flags &= ~FLAG_NODISCON; 26388 } 26389 26390 status = sd_ddi_scsi_poll(pktp); 26391 /* 26392 * Scsi_poll returns 0 (success) if the command completes and the 26393 * status block is STATUS_GOOD. We should only check errors if this 26394 * condition is not true. Even then we should send our own request 26395 * sense packet only if we have a check condition and auto 26396 * request sense has not been performed by the hba. 26397 * Don't get RQS data if pkt_reason is CMD_DEV_GONE. 26398 */ 26399 if ((status != SD_SUCCESS) && 26400 (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) && 26401 (pktp->pkt_state & STATE_ARQ_DONE) == 0 && 26402 (pktp->pkt_reason != CMD_DEV_GONE)) 26403 (void) sd_send_polled_RQS(un); 26404 26405 return (status); 26406 } 26407 26408 /* 26409 * Function: sd_send_polled_RQS() 26410 * 26411 * Description: This sends the request sense command to a device. 26412 * 26413 * Arguments: sd_lun - The unit structure 26414 * 26415 * Return Code: 0 - Command completed successfully with good status 26416 * -1 - Command failed. 26417 * 26418 */ 26419 26420 static int 26421 sd_send_polled_RQS(struct sd_lun *un) 26422 { 26423 int ret_val; 26424 struct scsi_pkt *rqs_pktp; 26425 struct buf *rqs_bp; 26426 26427 ASSERT(un != NULL); 26428 ASSERT(!mutex_owned(SD_MUTEX(un))); 26429 26430 ret_val = SD_SUCCESS; 26431 26432 rqs_pktp = un->un_rqs_pktp; 26433 rqs_bp = un->un_rqs_bp; 26434 26435 mutex_enter(SD_MUTEX(un)); 26436 26437 if (un->un_sense_isbusy) { 26438 ret_val = SD_FAILURE; 26439 mutex_exit(SD_MUTEX(un)); 26440 return (ret_val); 26441 } 26442 26443 /* 26444 * If the request sense buffer (and packet) is not in use, 26445 * let's set the un_sense_isbusy and send our packet 26446 */ 26447 un->un_sense_isbusy = 1; 26448 rqs_pktp->pkt_resid = 0; 26449 rqs_pktp->pkt_reason = 0; 26450 rqs_pktp->pkt_flags |= FLAG_NOINTR; 26451 bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH); 26452 26453 mutex_exit(SD_MUTEX(un)); 26454 26455 SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at" 26456 " 0x%p\n", rqs_bp->b_un.b_addr); 26457 26458 /* 26459 * Can't send this to sd_scsi_poll, we wrap ourselves around the 26460 * axle - it has a call into us! 26461 */ 26462 if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) { 26463 SD_INFO(SD_LOG_COMMON, un, 26464 "sd_send_polled_RQS: RQS failed\n"); 26465 } 26466 26467 SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:", 26468 (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX); 26469 26470 mutex_enter(SD_MUTEX(un)); 26471 un->un_sense_isbusy = 0; 26472 mutex_exit(SD_MUTEX(un)); 26473 26474 return (ret_val); 26475 } 26476 26477 /* 26478 * Defines needed for localized version of the scsi_poll routine. 26479 */ 26480 #define SD_CSEC 10000 /* usecs */ 26481 #define SD_SEC_TO_CSEC (1000000/SD_CSEC) 26482 26483 26484 /* 26485 * Function: sd_ddi_scsi_poll() 26486 * 26487 * Description: Localized version of the scsi_poll routine. The purpose is to 26488 * send a scsi_pkt to a device as a polled command. This version 26489 * is to ensure more robust handling of transport errors. 26490 * Specifically this routine cures not ready, coming ready 26491 * transition for power up and reset of sonoma's. This can take 26492 * up to 45 seconds for power-on and 20 seconds for reset of a 26493 * sonoma lun. 26494 * 26495 * Arguments: scsi_pkt - The scsi_pkt being sent to a device 26496 * 26497 * Return Code: 0 - Command completed successfully with good status 26498 * -1 - Command failed. 26499 * 26500 */ 26501 26502 static int 26503 sd_ddi_scsi_poll(struct scsi_pkt *pkt) 26504 { 26505 int busy_count; 26506 int timeout; 26507 int rval = SD_FAILURE; 26508 int savef; 26509 struct scsi_extended_sense *sensep; 26510 long savet; 26511 void (*savec)(); 26512 /* 26513 * The following is defined in machdep.c and is used in determining if 26514 * the scsi transport system will do polled I/O instead of interrupt 26515 * I/O when called from xx_dump(). 26516 */ 26517 extern int do_polled_io; 26518 26519 /* 26520 * save old flags in pkt, to restore at end 26521 */ 26522 savef = pkt->pkt_flags; 26523 savec = pkt->pkt_comp; 26524 savet = pkt->pkt_time; 26525 26526 pkt->pkt_flags |= FLAG_NOINTR; 26527 26528 /* 26529 * XXX there is nothing in the SCSA spec that states that we should not 26530 * do a callback for polled cmds; however, removing this will break sd 26531 * and probably other target drivers 26532 */ 26533 pkt->pkt_comp = NULL; 26534 26535 /* 26536 * we don't like a polled command without timeout. 26537 * 60 seconds seems long enough. 26538 */ 26539 if (pkt->pkt_time == 0) { 26540 pkt->pkt_time = SCSI_POLL_TIMEOUT; 26541 } 26542 26543 /* 26544 * Send polled cmd. 26545 * 26546 * We do some error recovery for various errors. Tran_busy, 26547 * queue full, and non-dispatched commands are retried every 10 msec. 26548 * as they are typically transient failures. Busy status and Not 26549 * Ready are retried every second as this status takes a while to 26550 * change. Unit attention is retried for pkt_time (60) times 26551 * with no delay. 26552 */ 26553 timeout = pkt->pkt_time * SD_SEC_TO_CSEC; 26554 26555 for (busy_count = 0; busy_count < timeout; busy_count++) { 26556 int rc; 26557 int poll_delay; 26558 26559 /* 26560 * Initialize pkt status variables. 26561 */ 26562 *pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0; 26563 26564 if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) { 26565 if (rc != TRAN_BUSY) { 26566 /* Transport failed - give up. */ 26567 break; 26568 } else { 26569 /* Transport busy - try again. */ 26570 poll_delay = 1 * SD_CSEC; /* 10 msec */ 26571 } 26572 } else { 26573 /* 26574 * Transport accepted - check pkt status. 26575 */ 26576 rc = (*pkt->pkt_scbp) & STATUS_MASK; 26577 if (pkt->pkt_reason == CMD_CMPLT && 26578 rc == STATUS_CHECK && 26579 pkt->pkt_state & STATE_ARQ_DONE) { 26580 struct scsi_arq_status *arqstat = 26581 (struct scsi_arq_status *)(pkt->pkt_scbp); 26582 26583 sensep = &arqstat->sts_sensedata; 26584 } else { 26585 sensep = NULL; 26586 } 26587 26588 if ((pkt->pkt_reason == CMD_CMPLT) && 26589 (rc == STATUS_GOOD)) { 26590 /* No error - we're done */ 26591 rval = SD_SUCCESS; 26592 break; 26593 26594 } else if (pkt->pkt_reason == CMD_DEV_GONE) { 26595 /* Lost connection - give up */ 26596 break; 26597 26598 } else if ((pkt->pkt_reason == CMD_INCOMPLETE) && 26599 (pkt->pkt_state == 0)) { 26600 /* Pkt not dispatched - try again. */ 26601 poll_delay = 1 * SD_CSEC; /* 10 msec. */ 26602 26603 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26604 (rc == STATUS_QFULL)) { 26605 /* Queue full - try again. */ 26606 poll_delay = 1 * SD_CSEC; /* 10 msec. */ 26607 26608 } else if ((pkt->pkt_reason == CMD_CMPLT) && 26609 (rc == STATUS_BUSY)) { 26610 /* Busy - try again. */ 26611 poll_delay = 100 * SD_CSEC; /* 1 sec. */ 26612 busy_count += (SD_SEC_TO_CSEC - 1); 26613 26614 } else if ((sensep != NULL) && 26615 (sensep->es_key == KEY_UNIT_ATTENTION)) { 26616 /* Unit Attention - try again */ 26617 busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */ 26618 continue; 26619 26620 } else if ((sensep != NULL) && 26621 (sensep->es_key == KEY_NOT_READY) && 26622 (sensep->es_add_code == 0x04) && 26623 (sensep->es_qual_code == 0x01)) { 26624 /* Not ready -> ready - try again. */ 26625 poll_delay = 100 * SD_CSEC; /* 1 sec. */ 26626 busy_count += (SD_SEC_TO_CSEC - 1); 26627 26628 } else { 26629 /* BAD status - give up. */ 26630 break; 26631 } 26632 } 26633 26634 if ((curthread->t_flag & T_INTR_THREAD) == 0 && 26635 !do_polled_io) { 26636 delay(drv_usectohz(poll_delay)); 26637 } else { 26638 /* we busy wait during cpr_dump or interrupt threads */ 26639 drv_usecwait(poll_delay); 26640 } 26641 } 26642 26643 pkt->pkt_flags = savef; 26644 pkt->pkt_comp = savec; 26645 pkt->pkt_time = savet; 26646 return (rval); 26647 } 26648 26649 26650 /* 26651 * Function: sd_persistent_reservation_in_read_keys 26652 * 26653 * Description: This routine is the driver entry point for handling CD-ROM 26654 * multi-host persistent reservation requests (MHIOCGRP_INKEYS) 26655 * by sending the SCSI-3 PRIN commands to the device. 26656 * Processes the read keys command response by copying the 26657 * reservation key information into the user provided buffer. 26658 * Support for the 32/64 bit _MULTI_DATAMODEL is implemented. 26659 * 26660 * Arguments: un - Pointer to soft state struct for the target. 26661 * usrp - user provided pointer to multihost Persistent In Read 26662 * Keys structure (mhioc_inkeys_t) 26663 * flag - this argument is a pass through to ddi_copyxxx() 26664 * directly from the mode argument of ioctl(). 26665 * 26666 * Return Code: 0 - Success 26667 * EACCES 26668 * ENOTSUP 26669 * errno return code from sd_send_scsi_cmd() 26670 * 26671 * Context: Can sleep. Does not return until command is completed. 26672 */ 26673 26674 static int 26675 sd_persistent_reservation_in_read_keys(struct sd_lun *un, 26676 mhioc_inkeys_t *usrp, int flag) 26677 { 26678 #ifdef _MULTI_DATAMODEL 26679 struct mhioc_key_list32 li32; 26680 #endif 26681 sd_prin_readkeys_t *in; 26682 mhioc_inkeys_t *ptr; 26683 mhioc_key_list_t li; 26684 uchar_t *data_bufp; 26685 int data_len; 26686 int rval; 26687 size_t copysz; 26688 26689 if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) { 26690 return (EINVAL); 26691 } 26692 bzero(&li, sizeof (mhioc_key_list_t)); 26693 26694 /* 26695 * Get the listsize from user 26696 */ 26697 #ifdef _MULTI_DATAMODEL 26698 26699 switch (ddi_model_convert_from(flag & FMODELS)) { 26700 case DDI_MODEL_ILP32: 26701 copysz = sizeof (struct mhioc_key_list32); 26702 if (ddi_copyin(ptr->li, &li32, copysz, flag)) { 26703 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26704 "sd_persistent_reservation_in_read_keys: " 26705 "failed ddi_copyin: mhioc_key_list32_t\n"); 26706 rval = EFAULT; 26707 goto done; 26708 } 26709 li.listsize = li32.listsize; 26710 li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list; 26711 break; 26712 26713 case DDI_MODEL_NONE: 26714 copysz = sizeof (mhioc_key_list_t); 26715 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26716 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26717 "sd_persistent_reservation_in_read_keys: " 26718 "failed ddi_copyin: mhioc_key_list_t\n"); 26719 rval = EFAULT; 26720 goto done; 26721 } 26722 break; 26723 } 26724 26725 #else /* ! _MULTI_DATAMODEL */ 26726 copysz = sizeof (mhioc_key_list_t); 26727 if (ddi_copyin(ptr->li, &li, copysz, flag)) { 26728 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26729 "sd_persistent_reservation_in_read_keys: " 26730 "failed ddi_copyin: mhioc_key_list_t\n"); 26731 rval = EFAULT; 26732 goto done; 26733 } 26734 #endif 26735 26736 data_len = li.listsize * MHIOC_RESV_KEY_SIZE; 26737 data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t)); 26738 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26739 26740 if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 26741 data_len, data_bufp)) != 0) { 26742 goto done; 26743 } 26744 in = (sd_prin_readkeys_t *)data_bufp; 26745 ptr->generation = BE_32(in->generation); 26746 li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE; 26747 26748 /* 26749 * Return the min(listsize, listlen) keys 26750 */ 26751 #ifdef _MULTI_DATAMODEL 26752 26753 switch (ddi_model_convert_from(flag & FMODELS)) { 26754 case DDI_MODEL_ILP32: 26755 li32.listlen = li.listlen; 26756 if (ddi_copyout(&li32, ptr->li, copysz, flag)) { 26757 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26758 "sd_persistent_reservation_in_read_keys: " 26759 "failed ddi_copyout: mhioc_key_list32_t\n"); 26760 rval = EFAULT; 26761 goto done; 26762 } 26763 break; 26764 26765 case DDI_MODEL_NONE: 26766 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26767 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26768 "sd_persistent_reservation_in_read_keys: " 26769 "failed ddi_copyout: mhioc_key_list_t\n"); 26770 rval = EFAULT; 26771 goto done; 26772 } 26773 break; 26774 } 26775 26776 #else /* ! _MULTI_DATAMODEL */ 26777 26778 if (ddi_copyout(&li, ptr->li, copysz, flag)) { 26779 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26780 "sd_persistent_reservation_in_read_keys: " 26781 "failed ddi_copyout: mhioc_key_list_t\n"); 26782 rval = EFAULT; 26783 goto done; 26784 } 26785 26786 #endif /* _MULTI_DATAMODEL */ 26787 26788 copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE, 26789 li.listsize * MHIOC_RESV_KEY_SIZE); 26790 if (ddi_copyout(&in->keylist, li.list, copysz, flag)) { 26791 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26792 "sd_persistent_reservation_in_read_keys: " 26793 "failed ddi_copyout: keylist\n"); 26794 rval = EFAULT; 26795 } 26796 done: 26797 kmem_free(data_bufp, data_len); 26798 return (rval); 26799 } 26800 26801 26802 /* 26803 * Function: sd_persistent_reservation_in_read_resv 26804 * 26805 * Description: This routine is the driver entry point for handling CD-ROM 26806 * multi-host persistent reservation requests (MHIOCGRP_INRESV) 26807 * by sending the SCSI-3 PRIN commands to the device. 26808 * Process the read persistent reservations command response by 26809 * copying the reservation information into the user provided 26810 * buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented. 26811 * 26812 * Arguments: un - Pointer to soft state struct for the target. 26813 * usrp - user provided pointer to multihost Persistent In Read 26814 * Keys structure (mhioc_inkeys_t) 26815 * flag - this argument is a pass through to ddi_copyxxx() 26816 * directly from the mode argument of ioctl(). 26817 * 26818 * Return Code: 0 - Success 26819 * EACCES 26820 * ENOTSUP 26821 * errno return code from sd_send_scsi_cmd() 26822 * 26823 * Context: Can sleep. Does not return until command is completed. 26824 */ 26825 26826 static int 26827 sd_persistent_reservation_in_read_resv(struct sd_lun *un, 26828 mhioc_inresvs_t *usrp, int flag) 26829 { 26830 #ifdef _MULTI_DATAMODEL 26831 struct mhioc_resv_desc_list32 resvlist32; 26832 #endif 26833 sd_prin_readresv_t *in; 26834 mhioc_inresvs_t *ptr; 26835 sd_readresv_desc_t *readresv_ptr; 26836 mhioc_resv_desc_list_t resvlist; 26837 mhioc_resv_desc_t resvdesc; 26838 uchar_t *data_bufp; 26839 int data_len; 26840 int rval; 26841 int i; 26842 size_t copysz; 26843 mhioc_resv_desc_t *bufp; 26844 26845 if ((ptr = usrp) == NULL) { 26846 return (EINVAL); 26847 } 26848 26849 /* 26850 * Get the listsize from user 26851 */ 26852 #ifdef _MULTI_DATAMODEL 26853 switch (ddi_model_convert_from(flag & FMODELS)) { 26854 case DDI_MODEL_ILP32: 26855 copysz = sizeof (struct mhioc_resv_desc_list32); 26856 if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) { 26857 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26858 "sd_persistent_reservation_in_read_resv: " 26859 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26860 rval = EFAULT; 26861 goto done; 26862 } 26863 resvlist.listsize = resvlist32.listsize; 26864 resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list; 26865 break; 26866 26867 case DDI_MODEL_NONE: 26868 copysz = sizeof (mhioc_resv_desc_list_t); 26869 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26870 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26871 "sd_persistent_reservation_in_read_resv: " 26872 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26873 rval = EFAULT; 26874 goto done; 26875 } 26876 break; 26877 } 26878 #else /* ! _MULTI_DATAMODEL */ 26879 copysz = sizeof (mhioc_resv_desc_list_t); 26880 if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) { 26881 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26882 "sd_persistent_reservation_in_read_resv: " 26883 "failed ddi_copyin: mhioc_resv_desc_list_t\n"); 26884 rval = EFAULT; 26885 goto done; 26886 } 26887 #endif /* ! _MULTI_DATAMODEL */ 26888 26889 data_len = resvlist.listsize * SCSI3_RESV_DESC_LEN; 26890 data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t)); 26891 data_bufp = kmem_zalloc(data_len, KM_SLEEP); 26892 26893 if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV, 26894 data_len, data_bufp)) != 0) { 26895 goto done; 26896 } 26897 in = (sd_prin_readresv_t *)data_bufp; 26898 ptr->generation = BE_32(in->generation); 26899 resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN; 26900 26901 /* 26902 * Return the min(listsize, listlen( keys 26903 */ 26904 #ifdef _MULTI_DATAMODEL 26905 26906 switch (ddi_model_convert_from(flag & FMODELS)) { 26907 case DDI_MODEL_ILP32: 26908 resvlist32.listlen = resvlist.listlen; 26909 if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) { 26910 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26911 "sd_persistent_reservation_in_read_resv: " 26912 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26913 rval = EFAULT; 26914 goto done; 26915 } 26916 break; 26917 26918 case DDI_MODEL_NONE: 26919 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26920 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26921 "sd_persistent_reservation_in_read_resv: " 26922 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26923 rval = EFAULT; 26924 goto done; 26925 } 26926 break; 26927 } 26928 26929 #else /* ! _MULTI_DATAMODEL */ 26930 26931 if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) { 26932 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26933 "sd_persistent_reservation_in_read_resv: " 26934 "failed ddi_copyout: mhioc_resv_desc_list_t\n"); 26935 rval = EFAULT; 26936 goto done; 26937 } 26938 26939 #endif /* ! _MULTI_DATAMODEL */ 26940 26941 readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc; 26942 bufp = resvlist.list; 26943 copysz = sizeof (mhioc_resv_desc_t); 26944 for (i = 0; i < min(resvlist.listlen, resvlist.listsize); 26945 i++, readresv_ptr++, bufp++) { 26946 26947 bcopy(&readresv_ptr->resvkey, &resvdesc.key, 26948 MHIOC_RESV_KEY_SIZE); 26949 resvdesc.type = readresv_ptr->type; 26950 resvdesc.scope = readresv_ptr->scope; 26951 resvdesc.scope_specific_addr = 26952 BE_32(readresv_ptr->scope_specific_addr); 26953 26954 if (ddi_copyout(&resvdesc, bufp, copysz, flag)) { 26955 SD_ERROR(SD_LOG_IOCTL_MHD, un, 26956 "sd_persistent_reservation_in_read_resv: " 26957 "failed ddi_copyout: resvlist\n"); 26958 rval = EFAULT; 26959 goto done; 26960 } 26961 } 26962 done: 26963 kmem_free(data_bufp, data_len); 26964 return (rval); 26965 } 26966 26967 26968 /* 26969 * Function: sr_change_blkmode() 26970 * 26971 * Description: This routine is the driver entry point for handling CD-ROM 26972 * block mode ioctl requests. Support for returning and changing 26973 * the current block size in use by the device is implemented. The 26974 * LBA size is changed via a MODE SELECT Block Descriptor. 26975 * 26976 * This routine issues a mode sense with an allocation length of 26977 * 12 bytes for the mode page header and a single block descriptor. 26978 * 26979 * Arguments: dev - the device 'dev_t' 26980 * cmd - the request type; one of CDROMGBLKMODE (get) or 26981 * CDROMSBLKMODE (set) 26982 * data - current block size or requested block size 26983 * flag - this argument is a pass through to ddi_copyxxx() directly 26984 * from the mode argument of ioctl(). 26985 * 26986 * Return Code: the code returned by sd_send_scsi_cmd() 26987 * EINVAL if invalid arguments are provided 26988 * EFAULT if ddi_copyxxx() fails 26989 * ENXIO if fail ddi_get_soft_state 26990 * EIO if invalid mode sense block descriptor length 26991 * 26992 */ 26993 26994 static int 26995 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag) 26996 { 26997 struct sd_lun *un = NULL; 26998 struct mode_header *sense_mhp, *select_mhp; 26999 struct block_descriptor *sense_desc, *select_desc; 27000 int current_bsize; 27001 int rval = EINVAL; 27002 uchar_t *sense = NULL; 27003 uchar_t *select = NULL; 27004 27005 ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE)); 27006 27007 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27008 return (ENXIO); 27009 } 27010 27011 /* 27012 * The block length is changed via the Mode Select block descriptor, the 27013 * "Read/Write Error Recovery" mode page (0x1) contents are not actually 27014 * required as part of this routine. Therefore the mode sense allocation 27015 * length is specified to be the length of a mode page header and a 27016 * block descriptor. 27017 */ 27018 sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 27019 27020 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 27021 BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) { 27022 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27023 "sr_change_blkmode: Mode Sense Failed\n"); 27024 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27025 return (rval); 27026 } 27027 27028 /* Check the block descriptor len to handle only 1 block descriptor */ 27029 sense_mhp = (struct mode_header *)sense; 27030 if ((sense_mhp->bdesc_length == 0) || 27031 (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) { 27032 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27033 "sr_change_blkmode: Mode Sense returned invalid block" 27034 " descriptor length\n"); 27035 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27036 return (EIO); 27037 } 27038 sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH); 27039 current_bsize = ((sense_desc->blksize_hi << 16) | 27040 (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo); 27041 27042 /* Process command */ 27043 switch (cmd) { 27044 case CDROMGBLKMODE: 27045 /* Return the block size obtained during the mode sense */ 27046 if (ddi_copyout(¤t_bsize, (void *)data, 27047 sizeof (int), flag) != 0) 27048 rval = EFAULT; 27049 break; 27050 case CDROMSBLKMODE: 27051 /* Validate the requested block size */ 27052 switch (data) { 27053 case CDROM_BLK_512: 27054 case CDROM_BLK_1024: 27055 case CDROM_BLK_2048: 27056 case CDROM_BLK_2056: 27057 case CDROM_BLK_2336: 27058 case CDROM_BLK_2340: 27059 case CDROM_BLK_2352: 27060 case CDROM_BLK_2368: 27061 case CDROM_BLK_2448: 27062 case CDROM_BLK_2646: 27063 case CDROM_BLK_2647: 27064 break; 27065 default: 27066 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27067 "sr_change_blkmode: " 27068 "Block Size '%ld' Not Supported\n", data); 27069 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27070 return (EINVAL); 27071 } 27072 27073 /* 27074 * The current block size matches the requested block size so 27075 * there is no need to send the mode select to change the size 27076 */ 27077 if (current_bsize == data) { 27078 break; 27079 } 27080 27081 /* Build the select data for the requested block size */ 27082 select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP); 27083 select_mhp = (struct mode_header *)select; 27084 select_desc = 27085 (struct block_descriptor *)(select + MODE_HEADER_LENGTH); 27086 /* 27087 * The LBA size is changed via the block descriptor, so the 27088 * descriptor is built according to the user data 27089 */ 27090 select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH; 27091 select_desc->blksize_hi = (char)(((data) & 0x00ff0000) >> 16); 27092 select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8); 27093 select_desc->blksize_lo = (char)((data) & 0x000000ff); 27094 27095 /* Send the mode select for the requested block size */ 27096 if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, 27097 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 27098 SD_PATH_STANDARD)) != 0) { 27099 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27100 "sr_change_blkmode: Mode Select Failed\n"); 27101 /* 27102 * The mode select failed for the requested block size, 27103 * so reset the data for the original block size and 27104 * send it to the target. The error is indicated by the 27105 * return value for the failed mode select. 27106 */ 27107 select_desc->blksize_hi = sense_desc->blksize_hi; 27108 select_desc->blksize_mid = sense_desc->blksize_mid; 27109 select_desc->blksize_lo = sense_desc->blksize_lo; 27110 (void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, 27111 select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE, 27112 SD_PATH_STANDARD); 27113 } else { 27114 ASSERT(!mutex_owned(SD_MUTEX(un))); 27115 mutex_enter(SD_MUTEX(un)); 27116 sd_update_block_info(un, (uint32_t)data, 0); 27117 27118 mutex_exit(SD_MUTEX(un)); 27119 } 27120 break; 27121 default: 27122 /* should not reach here, but check anyway */ 27123 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27124 "sr_change_blkmode: Command '%x' Not Supported\n", cmd); 27125 rval = EINVAL; 27126 break; 27127 } 27128 27129 if (select) { 27130 kmem_free(select, BUFLEN_CHG_BLK_MODE); 27131 } 27132 if (sense) { 27133 kmem_free(sense, BUFLEN_CHG_BLK_MODE); 27134 } 27135 return (rval); 27136 } 27137 27138 27139 /* 27140 * Note: The following sr_change_speed() and sr_atapi_change_speed() routines 27141 * implement driver support for getting and setting the CD speed. The command 27142 * set used will be based on the device type. If the device has not been 27143 * identified as MMC the Toshiba vendor specific mode page will be used. If 27144 * the device is MMC but does not support the Real Time Streaming feature 27145 * the SET CD SPEED command will be used to set speed and mode page 0x2A will 27146 * be used to read the speed. 27147 */ 27148 27149 /* 27150 * Function: sr_change_speed() 27151 * 27152 * Description: This routine is the driver entry point for handling CD-ROM 27153 * drive speed ioctl requests for devices supporting the Toshiba 27154 * vendor specific drive speed mode page. Support for returning 27155 * and changing the current drive speed in use by the device is 27156 * implemented. 27157 * 27158 * Arguments: dev - the device 'dev_t' 27159 * cmd - the request type; one of CDROMGDRVSPEED (get) or 27160 * CDROMSDRVSPEED (set) 27161 * data - current drive speed or requested drive speed 27162 * flag - this argument is a pass through to ddi_copyxxx() directly 27163 * from the mode argument of ioctl(). 27164 * 27165 * Return Code: the code returned by sd_send_scsi_cmd() 27166 * EINVAL if invalid arguments are provided 27167 * EFAULT if ddi_copyxxx() fails 27168 * ENXIO if fail ddi_get_soft_state 27169 * EIO if invalid mode sense block descriptor length 27170 */ 27171 27172 static int 27173 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27174 { 27175 struct sd_lun *un = NULL; 27176 struct mode_header *sense_mhp, *select_mhp; 27177 struct mode_speed *sense_page, *select_page; 27178 int current_speed; 27179 int rval = EINVAL; 27180 int bd_len; 27181 uchar_t *sense = NULL; 27182 uchar_t *select = NULL; 27183 27184 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27185 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27186 return (ENXIO); 27187 } 27188 27189 /* 27190 * Note: The drive speed is being modified here according to a Toshiba 27191 * vendor specific mode page (0x31). 27192 */ 27193 sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27194 27195 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 27196 BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED, 27197 SD_PATH_STANDARD)) != 0) { 27198 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27199 "sr_change_speed: Mode Sense Failed\n"); 27200 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27201 return (rval); 27202 } 27203 sense_mhp = (struct mode_header *)sense; 27204 27205 /* Check the block descriptor len to handle only 1 block descriptor */ 27206 bd_len = sense_mhp->bdesc_length; 27207 if (bd_len > MODE_BLK_DESC_LENGTH) { 27208 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27209 "sr_change_speed: Mode Sense returned invalid block " 27210 "descriptor length\n"); 27211 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27212 return (EIO); 27213 } 27214 27215 sense_page = (struct mode_speed *) 27216 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 27217 current_speed = sense_page->speed; 27218 27219 /* Process command */ 27220 switch (cmd) { 27221 case CDROMGDRVSPEED: 27222 /* Return the drive speed obtained during the mode sense */ 27223 if (current_speed == 0x2) { 27224 current_speed = CDROM_TWELVE_SPEED; 27225 } 27226 if (ddi_copyout(¤t_speed, (void *)data, 27227 sizeof (int), flag) != 0) { 27228 rval = EFAULT; 27229 } 27230 break; 27231 case CDROMSDRVSPEED: 27232 /* Validate the requested drive speed */ 27233 switch ((uchar_t)data) { 27234 case CDROM_TWELVE_SPEED: 27235 data = 0x2; 27236 /*FALLTHROUGH*/ 27237 case CDROM_NORMAL_SPEED: 27238 case CDROM_DOUBLE_SPEED: 27239 case CDROM_QUAD_SPEED: 27240 case CDROM_MAXIMUM_SPEED: 27241 break; 27242 default: 27243 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27244 "sr_change_speed: " 27245 "Drive Speed '%d' Not Supported\n", (uchar_t)data); 27246 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27247 return (EINVAL); 27248 } 27249 27250 /* 27251 * The current drive speed matches the requested drive speed so 27252 * there is no need to send the mode select to change the speed 27253 */ 27254 if (current_speed == data) { 27255 break; 27256 } 27257 27258 /* Build the select data for the requested drive speed */ 27259 select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP); 27260 select_mhp = (struct mode_header *)select; 27261 select_mhp->bdesc_length = 0; 27262 select_page = 27263 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27264 select_page = 27265 (struct mode_speed *)(select + MODE_HEADER_LENGTH); 27266 select_page->mode_page.code = CDROM_MODE_SPEED; 27267 select_page->mode_page.length = 2; 27268 select_page->speed = (uchar_t)data; 27269 27270 /* Send the mode select for the requested block size */ 27271 if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 27272 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27273 SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) { 27274 /* 27275 * The mode select failed for the requested drive speed, 27276 * so reset the data for the original drive speed and 27277 * send it to the target. The error is indicated by the 27278 * return value for the failed mode select. 27279 */ 27280 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27281 "sr_drive_speed: Mode Select Failed\n"); 27282 select_page->speed = sense_page->speed; 27283 (void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 27284 MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH, 27285 SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 27286 } 27287 break; 27288 default: 27289 /* should not reach here, but check anyway */ 27290 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27291 "sr_change_speed: Command '%x' Not Supported\n", cmd); 27292 rval = EINVAL; 27293 break; 27294 } 27295 27296 if (select) { 27297 kmem_free(select, BUFLEN_MODE_CDROM_SPEED); 27298 } 27299 if (sense) { 27300 kmem_free(sense, BUFLEN_MODE_CDROM_SPEED); 27301 } 27302 27303 return (rval); 27304 } 27305 27306 27307 /* 27308 * Function: sr_atapi_change_speed() 27309 * 27310 * Description: This routine is the driver entry point for handling CD-ROM 27311 * drive speed ioctl requests for MMC devices that do not support 27312 * the Real Time Streaming feature (0x107). 27313 * 27314 * Note: This routine will use the SET SPEED command which may not 27315 * be supported by all devices. 27316 * 27317 * Arguments: dev- the device 'dev_t' 27318 * cmd- the request type; one of CDROMGDRVSPEED (get) or 27319 * CDROMSDRVSPEED (set) 27320 * data- current drive speed or requested drive speed 27321 * flag- this argument is a pass through to ddi_copyxxx() directly 27322 * from the mode argument of ioctl(). 27323 * 27324 * Return Code: the code returned by sd_send_scsi_cmd() 27325 * EINVAL if invalid arguments are provided 27326 * EFAULT if ddi_copyxxx() fails 27327 * ENXIO if fail ddi_get_soft_state 27328 * EIO if invalid mode sense block descriptor length 27329 */ 27330 27331 static int 27332 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag) 27333 { 27334 struct sd_lun *un; 27335 struct uscsi_cmd *com = NULL; 27336 struct mode_header_grp2 *sense_mhp; 27337 uchar_t *sense_page; 27338 uchar_t *sense = NULL; 27339 char cdb[CDB_GROUP5]; 27340 int bd_len; 27341 int current_speed = 0; 27342 int max_speed = 0; 27343 int rval; 27344 27345 ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED)); 27346 27347 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27348 return (ENXIO); 27349 } 27350 27351 sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP); 27352 27353 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, 27354 BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, 27355 SD_PATH_STANDARD)) != 0) { 27356 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27357 "sr_atapi_change_speed: Mode Sense Failed\n"); 27358 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27359 return (rval); 27360 } 27361 27362 /* Check the block descriptor len to handle only 1 block descriptor */ 27363 sense_mhp = (struct mode_header_grp2 *)sense; 27364 bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo; 27365 if (bd_len > MODE_BLK_DESC_LENGTH) { 27366 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27367 "sr_atapi_change_speed: Mode Sense returned invalid " 27368 "block descriptor length\n"); 27369 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27370 return (EIO); 27371 } 27372 27373 /* Calculate the current and maximum drive speeds */ 27374 sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 27375 current_speed = (sense_page[14] << 8) | sense_page[15]; 27376 max_speed = (sense_page[8] << 8) | sense_page[9]; 27377 27378 /* Process the command */ 27379 switch (cmd) { 27380 case CDROMGDRVSPEED: 27381 current_speed /= SD_SPEED_1X; 27382 if (ddi_copyout(¤t_speed, (void *)data, 27383 sizeof (int), flag) != 0) 27384 rval = EFAULT; 27385 break; 27386 case CDROMSDRVSPEED: 27387 /* Convert the speed code to KB/sec */ 27388 switch ((uchar_t)data) { 27389 case CDROM_NORMAL_SPEED: 27390 current_speed = SD_SPEED_1X; 27391 break; 27392 case CDROM_DOUBLE_SPEED: 27393 current_speed = 2 * SD_SPEED_1X; 27394 break; 27395 case CDROM_QUAD_SPEED: 27396 current_speed = 4 * SD_SPEED_1X; 27397 break; 27398 case CDROM_TWELVE_SPEED: 27399 current_speed = 12 * SD_SPEED_1X; 27400 break; 27401 case CDROM_MAXIMUM_SPEED: 27402 current_speed = 0xffff; 27403 break; 27404 default: 27405 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27406 "sr_atapi_change_speed: invalid drive speed %d\n", 27407 (uchar_t)data); 27408 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27409 return (EINVAL); 27410 } 27411 27412 /* Check the request against the drive's max speed. */ 27413 if (current_speed != 0xffff) { 27414 if (current_speed > max_speed) { 27415 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27416 return (EINVAL); 27417 } 27418 } 27419 27420 /* 27421 * Build and send the SET SPEED command 27422 * 27423 * Note: The SET SPEED (0xBB) command used in this routine is 27424 * obsolete per the SCSI MMC spec but still supported in the 27425 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27426 * therefore the command is still implemented in this routine. 27427 */ 27428 bzero(cdb, sizeof (cdb)); 27429 cdb[0] = (char)SCMD_SET_CDROM_SPEED; 27430 cdb[2] = (uchar_t)(current_speed >> 8); 27431 cdb[3] = (uchar_t)current_speed; 27432 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27433 com->uscsi_cdb = (caddr_t)cdb; 27434 com->uscsi_cdblen = CDB_GROUP5; 27435 com->uscsi_bufaddr = NULL; 27436 com->uscsi_buflen = 0; 27437 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27438 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0, 27439 UIO_SYSSPACE, SD_PATH_STANDARD); 27440 break; 27441 default: 27442 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27443 "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd); 27444 rval = EINVAL; 27445 } 27446 27447 if (sense) { 27448 kmem_free(sense, BUFLEN_MODE_CDROM_CAP); 27449 } 27450 if (com) { 27451 kmem_free(com, sizeof (*com)); 27452 } 27453 return (rval); 27454 } 27455 27456 27457 /* 27458 * Function: sr_pause_resume() 27459 * 27460 * Description: This routine is the driver entry point for handling CD-ROM 27461 * pause/resume ioctl requests. This only affects the audio play 27462 * operation. 27463 * 27464 * Arguments: dev - the device 'dev_t' 27465 * cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used 27466 * for setting the resume bit of the cdb. 27467 * 27468 * Return Code: the code returned by sd_send_scsi_cmd() 27469 * EINVAL if invalid mode specified 27470 * 27471 */ 27472 27473 static int 27474 sr_pause_resume(dev_t dev, int cmd) 27475 { 27476 struct sd_lun *un; 27477 struct uscsi_cmd *com; 27478 char cdb[CDB_GROUP1]; 27479 int rval; 27480 27481 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27482 return (ENXIO); 27483 } 27484 27485 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27486 bzero(cdb, CDB_GROUP1); 27487 cdb[0] = SCMD_PAUSE_RESUME; 27488 switch (cmd) { 27489 case CDROMRESUME: 27490 cdb[8] = 1; 27491 break; 27492 case CDROMPAUSE: 27493 cdb[8] = 0; 27494 break; 27495 default: 27496 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:" 27497 " Command '%x' Not Supported\n", cmd); 27498 rval = EINVAL; 27499 goto done; 27500 } 27501 27502 com->uscsi_cdb = cdb; 27503 com->uscsi_cdblen = CDB_GROUP1; 27504 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27505 27506 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 27507 UIO_SYSSPACE, SD_PATH_STANDARD); 27508 27509 done: 27510 kmem_free(com, sizeof (*com)); 27511 return (rval); 27512 } 27513 27514 27515 /* 27516 * Function: sr_play_msf() 27517 * 27518 * Description: This routine is the driver entry point for handling CD-ROM 27519 * ioctl requests to output the audio signals at the specified 27520 * starting address and continue the audio play until the specified 27521 * ending address (CDROMPLAYMSF) The address is in Minute Second 27522 * Frame (MSF) format. 27523 * 27524 * Arguments: dev - the device 'dev_t' 27525 * data - pointer to user provided audio msf structure, 27526 * specifying start/end addresses. 27527 * flag - this argument is a pass through to ddi_copyxxx() 27528 * directly from the mode argument of ioctl(). 27529 * 27530 * Return Code: the code returned by sd_send_scsi_cmd() 27531 * EFAULT if ddi_copyxxx() fails 27532 * ENXIO if fail ddi_get_soft_state 27533 * EINVAL if data pointer is NULL 27534 */ 27535 27536 static int 27537 sr_play_msf(dev_t dev, caddr_t data, int flag) 27538 { 27539 struct sd_lun *un; 27540 struct uscsi_cmd *com; 27541 struct cdrom_msf msf_struct; 27542 struct cdrom_msf *msf = &msf_struct; 27543 char cdb[CDB_GROUP1]; 27544 int rval; 27545 27546 if (data == NULL) { 27547 return (EINVAL); 27548 } 27549 27550 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27551 return (ENXIO); 27552 } 27553 27554 if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) { 27555 return (EFAULT); 27556 } 27557 27558 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27559 bzero(cdb, CDB_GROUP1); 27560 cdb[0] = SCMD_PLAYAUDIO_MSF; 27561 if (un->un_f_cfg_playmsf_bcd == TRUE) { 27562 cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0); 27563 cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0); 27564 cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0); 27565 cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1); 27566 cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1); 27567 cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1); 27568 } else { 27569 cdb[3] = msf->cdmsf_min0; 27570 cdb[4] = msf->cdmsf_sec0; 27571 cdb[5] = msf->cdmsf_frame0; 27572 cdb[6] = msf->cdmsf_min1; 27573 cdb[7] = msf->cdmsf_sec1; 27574 cdb[8] = msf->cdmsf_frame1; 27575 } 27576 com->uscsi_cdb = cdb; 27577 com->uscsi_cdblen = CDB_GROUP1; 27578 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27579 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 27580 UIO_SYSSPACE, SD_PATH_STANDARD); 27581 kmem_free(com, sizeof (*com)); 27582 return (rval); 27583 } 27584 27585 27586 /* 27587 * Function: sr_play_trkind() 27588 * 27589 * Description: This routine is the driver entry point for handling CD-ROM 27590 * ioctl requests to output the audio signals at the specified 27591 * starting address and continue the audio play until the specified 27592 * ending address (CDROMPLAYTRKIND). The address is in Track Index 27593 * format. 27594 * 27595 * Arguments: dev - the device 'dev_t' 27596 * data - pointer to user provided audio track/index structure, 27597 * specifying start/end addresses. 27598 * flag - this argument is a pass through to ddi_copyxxx() 27599 * directly from the mode argument of ioctl(). 27600 * 27601 * Return Code: the code returned by sd_send_scsi_cmd() 27602 * EFAULT if ddi_copyxxx() fails 27603 * ENXIO if fail ddi_get_soft_state 27604 * EINVAL if data pointer is NULL 27605 */ 27606 27607 static int 27608 sr_play_trkind(dev_t dev, caddr_t data, int flag) 27609 { 27610 struct cdrom_ti ti_struct; 27611 struct cdrom_ti *ti = &ti_struct; 27612 struct uscsi_cmd *com = NULL; 27613 char cdb[CDB_GROUP1]; 27614 int rval; 27615 27616 if (data == NULL) { 27617 return (EINVAL); 27618 } 27619 27620 if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) { 27621 return (EFAULT); 27622 } 27623 27624 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27625 bzero(cdb, CDB_GROUP1); 27626 cdb[0] = SCMD_PLAYAUDIO_TI; 27627 cdb[4] = ti->cdti_trk0; 27628 cdb[5] = ti->cdti_ind0; 27629 cdb[7] = ti->cdti_trk1; 27630 cdb[8] = ti->cdti_ind1; 27631 com->uscsi_cdb = cdb; 27632 com->uscsi_cdblen = CDB_GROUP1; 27633 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT; 27634 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 27635 UIO_SYSSPACE, SD_PATH_STANDARD); 27636 kmem_free(com, sizeof (*com)); 27637 return (rval); 27638 } 27639 27640 27641 /* 27642 * Function: sr_read_all_subcodes() 27643 * 27644 * Description: This routine is the driver entry point for handling CD-ROM 27645 * ioctl requests to return raw subcode data while the target is 27646 * playing audio (CDROMSUBCODE). 27647 * 27648 * Arguments: dev - the device 'dev_t' 27649 * data - pointer to user provided cdrom subcode structure, 27650 * specifying the transfer length and address. 27651 * flag - this argument is a pass through to ddi_copyxxx() 27652 * directly from the mode argument of ioctl(). 27653 * 27654 * Return Code: the code returned by sd_send_scsi_cmd() 27655 * EFAULT if ddi_copyxxx() fails 27656 * ENXIO if fail ddi_get_soft_state 27657 * EINVAL if data pointer is NULL 27658 */ 27659 27660 static int 27661 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag) 27662 { 27663 struct sd_lun *un = NULL; 27664 struct uscsi_cmd *com = NULL; 27665 struct cdrom_subcode *subcode = NULL; 27666 int rval; 27667 size_t buflen; 27668 char cdb[CDB_GROUP5]; 27669 27670 #ifdef _MULTI_DATAMODEL 27671 /* To support ILP32 applications in an LP64 world */ 27672 struct cdrom_subcode32 cdrom_subcode32; 27673 struct cdrom_subcode32 *cdsc32 = &cdrom_subcode32; 27674 #endif 27675 if (data == NULL) { 27676 return (EINVAL); 27677 } 27678 27679 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 27680 return (ENXIO); 27681 } 27682 27683 subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP); 27684 27685 #ifdef _MULTI_DATAMODEL 27686 switch (ddi_model_convert_from(flag & FMODELS)) { 27687 case DDI_MODEL_ILP32: 27688 if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) { 27689 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27690 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27691 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27692 return (EFAULT); 27693 } 27694 /* Convert the ILP32 uscsi data from the application to LP64 */ 27695 cdrom_subcode32tocdrom_subcode(cdsc32, subcode); 27696 break; 27697 case DDI_MODEL_NONE: 27698 if (ddi_copyin(data, subcode, 27699 sizeof (struct cdrom_subcode), flag)) { 27700 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27701 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27702 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27703 return (EFAULT); 27704 } 27705 break; 27706 } 27707 #else /* ! _MULTI_DATAMODEL */ 27708 if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) { 27709 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27710 "sr_read_all_subcodes: ddi_copyin Failed\n"); 27711 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27712 return (EFAULT); 27713 } 27714 #endif /* _MULTI_DATAMODEL */ 27715 27716 /* 27717 * Since MMC-2 expects max 3 bytes for length, check if the 27718 * length input is greater than 3 bytes 27719 */ 27720 if ((subcode->cdsc_length & 0xFF000000) != 0) { 27721 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 27722 "sr_read_all_subcodes: " 27723 "cdrom transfer length too large: %d (limit %d)\n", 27724 subcode->cdsc_length, 0xFFFFFF); 27725 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27726 return (EINVAL); 27727 } 27728 27729 buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length; 27730 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27731 bzero(cdb, CDB_GROUP5); 27732 27733 if (un->un_f_mmc_cap == TRUE) { 27734 cdb[0] = (char)SCMD_READ_CD; 27735 cdb[2] = (char)0xff; 27736 cdb[3] = (char)0xff; 27737 cdb[4] = (char)0xff; 27738 cdb[5] = (char)0xff; 27739 cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27740 cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27741 cdb[8] = ((subcode->cdsc_length) & 0x000000ff); 27742 cdb[10] = 1; 27743 } else { 27744 /* 27745 * Note: A vendor specific command (0xDF) is being used her to 27746 * request a read of all subcodes. 27747 */ 27748 cdb[0] = (char)SCMD_READ_ALL_SUBCODES; 27749 cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24); 27750 cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16); 27751 cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8); 27752 cdb[9] = ((subcode->cdsc_length) & 0x000000ff); 27753 } 27754 com->uscsi_cdb = cdb; 27755 com->uscsi_cdblen = CDB_GROUP5; 27756 com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr; 27757 com->uscsi_buflen = buflen; 27758 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27759 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE, 27760 UIO_SYSSPACE, SD_PATH_STANDARD); 27761 kmem_free(subcode, sizeof (struct cdrom_subcode)); 27762 kmem_free(com, sizeof (*com)); 27763 return (rval); 27764 } 27765 27766 27767 /* 27768 * Function: sr_read_subchannel() 27769 * 27770 * Description: This routine is the driver entry point for handling CD-ROM 27771 * ioctl requests to return the Q sub-channel data of the CD 27772 * current position block. (CDROMSUBCHNL) The data includes the 27773 * track number, index number, absolute CD-ROM address (LBA or MSF 27774 * format per the user) , track relative CD-ROM address (LBA or MSF 27775 * format per the user), control data and audio status. 27776 * 27777 * Arguments: dev - the device 'dev_t' 27778 * data - pointer to user provided cdrom sub-channel structure 27779 * flag - this argument is a pass through to ddi_copyxxx() 27780 * directly from the mode argument of ioctl(). 27781 * 27782 * Return Code: the code returned by sd_send_scsi_cmd() 27783 * EFAULT if ddi_copyxxx() fails 27784 * ENXIO if fail ddi_get_soft_state 27785 * EINVAL if data pointer is NULL 27786 */ 27787 27788 static int 27789 sr_read_subchannel(dev_t dev, caddr_t data, int flag) 27790 { 27791 struct sd_lun *un; 27792 struct uscsi_cmd *com; 27793 struct cdrom_subchnl subchanel; 27794 struct cdrom_subchnl *subchnl = &subchanel; 27795 char cdb[CDB_GROUP1]; 27796 caddr_t buffer; 27797 int rval; 27798 27799 if (data == NULL) { 27800 return (EINVAL); 27801 } 27802 27803 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27804 (un->un_state == SD_STATE_OFFLINE)) { 27805 return (ENXIO); 27806 } 27807 27808 if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) { 27809 return (EFAULT); 27810 } 27811 27812 buffer = kmem_zalloc((size_t)16, KM_SLEEP); 27813 bzero(cdb, CDB_GROUP1); 27814 cdb[0] = SCMD_READ_SUBCHANNEL; 27815 /* Set the MSF bit based on the user requested address format */ 27816 cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02; 27817 /* 27818 * Set the Q bit in byte 2 to indicate that Q sub-channel data be 27819 * returned 27820 */ 27821 cdb[2] = 0x40; 27822 /* 27823 * Set byte 3 to specify the return data format. A value of 0x01 27824 * indicates that the CD-ROM current position should be returned. 27825 */ 27826 cdb[3] = 0x01; 27827 cdb[8] = 0x10; 27828 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27829 com->uscsi_cdb = cdb; 27830 com->uscsi_cdblen = CDB_GROUP1; 27831 com->uscsi_bufaddr = buffer; 27832 com->uscsi_buflen = 16; 27833 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 27834 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 27835 UIO_SYSSPACE, SD_PATH_STANDARD); 27836 if (rval != 0) { 27837 kmem_free(buffer, 16); 27838 kmem_free(com, sizeof (*com)); 27839 return (rval); 27840 } 27841 27842 /* Process the returned Q sub-channel data */ 27843 subchnl->cdsc_audiostatus = buffer[1]; 27844 subchnl->cdsc_adr = (buffer[5] & 0xF0); 27845 subchnl->cdsc_ctrl = (buffer[5] & 0x0F); 27846 subchnl->cdsc_trk = buffer[6]; 27847 subchnl->cdsc_ind = buffer[7]; 27848 if (subchnl->cdsc_format & CDROM_LBA) { 27849 subchnl->cdsc_absaddr.lba = 27850 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27851 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27852 subchnl->cdsc_reladdr.lba = 27853 ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) + 27854 ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]); 27855 } else if (un->un_f_cfg_readsub_bcd == TRUE) { 27856 subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]); 27857 subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]); 27858 subchnl->cdsc_absaddr.msf.frame = BCD_TO_BYTE(buffer[11]); 27859 subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]); 27860 subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]); 27861 subchnl->cdsc_reladdr.msf.frame = BCD_TO_BYTE(buffer[15]); 27862 } else { 27863 subchnl->cdsc_absaddr.msf.minute = buffer[9]; 27864 subchnl->cdsc_absaddr.msf.second = buffer[10]; 27865 subchnl->cdsc_absaddr.msf.frame = buffer[11]; 27866 subchnl->cdsc_reladdr.msf.minute = buffer[13]; 27867 subchnl->cdsc_reladdr.msf.second = buffer[14]; 27868 subchnl->cdsc_reladdr.msf.frame = buffer[15]; 27869 } 27870 kmem_free(buffer, 16); 27871 kmem_free(com, sizeof (*com)); 27872 if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag) 27873 != 0) { 27874 return (EFAULT); 27875 } 27876 return (rval); 27877 } 27878 27879 27880 /* 27881 * Function: sr_read_tocentry() 27882 * 27883 * Description: This routine is the driver entry point for handling CD-ROM 27884 * ioctl requests to read from the Table of Contents (TOC) 27885 * (CDROMREADTOCENTRY). This routine provides the ADR and CTRL 27886 * fields, the starting address (LBA or MSF format per the user) 27887 * and the data mode if the user specified track is a data track. 27888 * 27889 * Note: The READ HEADER (0x44) command used in this routine is 27890 * obsolete per the SCSI MMC spec but still supported in the 27891 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI 27892 * therefore the command is still implemented in this routine. 27893 * 27894 * Arguments: dev - the device 'dev_t' 27895 * data - pointer to user provided toc entry structure, 27896 * specifying the track # and the address format 27897 * (LBA or MSF). 27898 * flag - this argument is a pass through to ddi_copyxxx() 27899 * directly from the mode argument of ioctl(). 27900 * 27901 * Return Code: the code returned by sd_send_scsi_cmd() 27902 * EFAULT if ddi_copyxxx() fails 27903 * ENXIO if fail ddi_get_soft_state 27904 * EINVAL if data pointer is NULL 27905 */ 27906 27907 static int 27908 sr_read_tocentry(dev_t dev, caddr_t data, int flag) 27909 { 27910 struct sd_lun *un = NULL; 27911 struct uscsi_cmd *com; 27912 struct cdrom_tocentry toc_entry; 27913 struct cdrom_tocentry *entry = &toc_entry; 27914 caddr_t buffer; 27915 int rval; 27916 char cdb[CDB_GROUP1]; 27917 27918 if (data == NULL) { 27919 return (EINVAL); 27920 } 27921 27922 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 27923 (un->un_state == SD_STATE_OFFLINE)) { 27924 return (ENXIO); 27925 } 27926 27927 if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) { 27928 return (EFAULT); 27929 } 27930 27931 /* Validate the requested track and address format */ 27932 if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) { 27933 return (EINVAL); 27934 } 27935 27936 if (entry->cdte_track == 0) { 27937 return (EINVAL); 27938 } 27939 27940 buffer = kmem_zalloc((size_t)12, KM_SLEEP); 27941 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 27942 bzero(cdb, CDB_GROUP1); 27943 27944 cdb[0] = SCMD_READ_TOC; 27945 /* Set the MSF bit based on the user requested address format */ 27946 cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2); 27947 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 27948 cdb[6] = BYTE_TO_BCD(entry->cdte_track); 27949 } else { 27950 cdb[6] = entry->cdte_track; 27951 } 27952 27953 /* 27954 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 27955 * (4 byte TOC response header + 8 byte track descriptor) 27956 */ 27957 cdb[8] = 12; 27958 com->uscsi_cdb = cdb; 27959 com->uscsi_cdblen = CDB_GROUP1; 27960 com->uscsi_bufaddr = buffer; 27961 com->uscsi_buflen = 0x0C; 27962 com->uscsi_flags = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ); 27963 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 27964 UIO_SYSSPACE, SD_PATH_STANDARD); 27965 if (rval != 0) { 27966 kmem_free(buffer, 12); 27967 kmem_free(com, sizeof (*com)); 27968 return (rval); 27969 } 27970 27971 /* Process the toc entry */ 27972 entry->cdte_adr = (buffer[5] & 0xF0) >> 4; 27973 entry->cdte_ctrl = (buffer[5] & 0x0F); 27974 if (entry->cdte_format & CDROM_LBA) { 27975 entry->cdte_addr.lba = 27976 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 27977 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 27978 } else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) { 27979 entry->cdte_addr.msf.minute = BCD_TO_BYTE(buffer[9]); 27980 entry->cdte_addr.msf.second = BCD_TO_BYTE(buffer[10]); 27981 entry->cdte_addr.msf.frame = BCD_TO_BYTE(buffer[11]); 27982 /* 27983 * Send a READ TOC command using the LBA address format to get 27984 * the LBA for the track requested so it can be used in the 27985 * READ HEADER request 27986 * 27987 * Note: The MSF bit of the READ HEADER command specifies the 27988 * output format. The block address specified in that command 27989 * must be in LBA format. 27990 */ 27991 cdb[1] = 0; 27992 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 27993 UIO_SYSSPACE, SD_PATH_STANDARD); 27994 if (rval != 0) { 27995 kmem_free(buffer, 12); 27996 kmem_free(com, sizeof (*com)); 27997 return (rval); 27998 } 27999 } else { 28000 entry->cdte_addr.msf.minute = buffer[9]; 28001 entry->cdte_addr.msf.second = buffer[10]; 28002 entry->cdte_addr.msf.frame = buffer[11]; 28003 /* 28004 * Send a READ TOC command using the LBA address format to get 28005 * the LBA for the track requested so it can be used in the 28006 * READ HEADER request 28007 * 28008 * Note: The MSF bit of the READ HEADER command specifies the 28009 * output format. The block address specified in that command 28010 * must be in LBA format. 28011 */ 28012 cdb[1] = 0; 28013 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 28014 UIO_SYSSPACE, SD_PATH_STANDARD); 28015 if (rval != 0) { 28016 kmem_free(buffer, 12); 28017 kmem_free(com, sizeof (*com)); 28018 return (rval); 28019 } 28020 } 28021 28022 /* 28023 * Build and send the READ HEADER command to determine the data mode of 28024 * the user specified track. 28025 */ 28026 if ((entry->cdte_ctrl & CDROM_DATA_TRACK) && 28027 (entry->cdte_track != CDROM_LEADOUT)) { 28028 bzero(cdb, CDB_GROUP1); 28029 cdb[0] = SCMD_READ_HEADER; 28030 cdb[2] = buffer[8]; 28031 cdb[3] = buffer[9]; 28032 cdb[4] = buffer[10]; 28033 cdb[5] = buffer[11]; 28034 cdb[8] = 0x08; 28035 com->uscsi_buflen = 0x08; 28036 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 28037 UIO_SYSSPACE, SD_PATH_STANDARD); 28038 if (rval == 0) { 28039 entry->cdte_datamode = buffer[0]; 28040 } else { 28041 /* 28042 * READ HEADER command failed, since this is 28043 * obsoleted in one spec, its better to return 28044 * -1 for an invlid track so that we can still 28045 * recieve the rest of the TOC data. 28046 */ 28047 entry->cdte_datamode = (uchar_t)-1; 28048 } 28049 } else { 28050 entry->cdte_datamode = (uchar_t)-1; 28051 } 28052 28053 kmem_free(buffer, 12); 28054 kmem_free(com, sizeof (*com)); 28055 if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0) 28056 return (EFAULT); 28057 28058 return (rval); 28059 } 28060 28061 28062 /* 28063 * Function: sr_read_tochdr() 28064 * 28065 * Description: This routine is the driver entry point for handling CD-ROM 28066 * ioctl requests to read the Table of Contents (TOC) header 28067 * (CDROMREADTOHDR). The TOC header consists of the disk starting 28068 * and ending track numbers 28069 * 28070 * Arguments: dev - the device 'dev_t' 28071 * data - pointer to user provided toc header structure, 28072 * specifying the starting and ending track numbers. 28073 * flag - this argument is a pass through to ddi_copyxxx() 28074 * directly from the mode argument of ioctl(). 28075 * 28076 * Return Code: the code returned by sd_send_scsi_cmd() 28077 * EFAULT if ddi_copyxxx() fails 28078 * ENXIO if fail ddi_get_soft_state 28079 * EINVAL if data pointer is NULL 28080 */ 28081 28082 static int 28083 sr_read_tochdr(dev_t dev, caddr_t data, int flag) 28084 { 28085 struct sd_lun *un; 28086 struct uscsi_cmd *com; 28087 struct cdrom_tochdr toc_header; 28088 struct cdrom_tochdr *hdr = &toc_header; 28089 char cdb[CDB_GROUP1]; 28090 int rval; 28091 caddr_t buffer; 28092 28093 if (data == NULL) { 28094 return (EINVAL); 28095 } 28096 28097 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28098 (un->un_state == SD_STATE_OFFLINE)) { 28099 return (ENXIO); 28100 } 28101 28102 buffer = kmem_zalloc(4, KM_SLEEP); 28103 bzero(cdb, CDB_GROUP1); 28104 cdb[0] = SCMD_READ_TOC; 28105 /* 28106 * Specifying a track number of 0x00 in the READ TOC command indicates 28107 * that the TOC header should be returned 28108 */ 28109 cdb[6] = 0x00; 28110 /* 28111 * Bytes 7 & 8 are the 4 byte allocation length for TOC header. 28112 * (2 byte data len + 1 byte starting track # + 1 byte ending track #) 28113 */ 28114 cdb[8] = 0x04; 28115 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28116 com->uscsi_cdb = cdb; 28117 com->uscsi_cdblen = CDB_GROUP1; 28118 com->uscsi_bufaddr = buffer; 28119 com->uscsi_buflen = 0x04; 28120 com->uscsi_timeout = 300; 28121 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28122 28123 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 28124 UIO_SYSSPACE, SD_PATH_STANDARD); 28125 if (un->un_f_cfg_read_toc_trk_bcd == TRUE) { 28126 hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]); 28127 hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]); 28128 } else { 28129 hdr->cdth_trk0 = buffer[2]; 28130 hdr->cdth_trk1 = buffer[3]; 28131 } 28132 kmem_free(buffer, 4); 28133 kmem_free(com, sizeof (*com)); 28134 if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) { 28135 return (EFAULT); 28136 } 28137 return (rval); 28138 } 28139 28140 28141 /* 28142 * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(), 28143 * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for 28144 * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data, 28145 * digital audio and extended architecture digital audio. These modes are 28146 * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3 28147 * MMC specs. 28148 * 28149 * In addition to support for the various data formats these routines also 28150 * include support for devices that implement only the direct access READ 28151 * commands (0x08, 0x28), devices that implement the READ_CD commands 28152 * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and 28153 * READ CDXA commands (0xD8, 0xDB) 28154 */ 28155 28156 /* 28157 * Function: sr_read_mode1() 28158 * 28159 * Description: This routine is the driver entry point for handling CD-ROM 28160 * ioctl read mode1 requests (CDROMREADMODE1). 28161 * 28162 * Arguments: dev - the device 'dev_t' 28163 * data - pointer to user provided cd read structure specifying 28164 * the lba buffer address and length. 28165 * flag - this argument is a pass through to ddi_copyxxx() 28166 * directly from the mode argument of ioctl(). 28167 * 28168 * Return Code: the code returned by sd_send_scsi_cmd() 28169 * EFAULT if ddi_copyxxx() fails 28170 * ENXIO if fail ddi_get_soft_state 28171 * EINVAL if data pointer is NULL 28172 */ 28173 28174 static int 28175 sr_read_mode1(dev_t dev, caddr_t data, int flag) 28176 { 28177 struct sd_lun *un; 28178 struct cdrom_read mode1_struct; 28179 struct cdrom_read *mode1 = &mode1_struct; 28180 int rval; 28181 #ifdef _MULTI_DATAMODEL 28182 /* To support ILP32 applications in an LP64 world */ 28183 struct cdrom_read32 cdrom_read32; 28184 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28185 #endif /* _MULTI_DATAMODEL */ 28186 28187 if (data == NULL) { 28188 return (EINVAL); 28189 } 28190 28191 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28192 (un->un_state == SD_STATE_OFFLINE)) { 28193 return (ENXIO); 28194 } 28195 28196 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28197 "sd_read_mode1: entry: un:0x%p\n", un); 28198 28199 #ifdef _MULTI_DATAMODEL 28200 switch (ddi_model_convert_from(flag & FMODELS)) { 28201 case DDI_MODEL_ILP32: 28202 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28203 return (EFAULT); 28204 } 28205 /* Convert the ILP32 uscsi data from the application to LP64 */ 28206 cdrom_read32tocdrom_read(cdrd32, mode1); 28207 break; 28208 case DDI_MODEL_NONE: 28209 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 28210 return (EFAULT); 28211 } 28212 } 28213 #else /* ! _MULTI_DATAMODEL */ 28214 if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) { 28215 return (EFAULT); 28216 } 28217 #endif /* _MULTI_DATAMODEL */ 28218 28219 rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr, 28220 mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD); 28221 28222 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28223 "sd_read_mode1: exit: un:0x%p\n", un); 28224 28225 return (rval); 28226 } 28227 28228 28229 /* 28230 * Function: sr_read_cd_mode2() 28231 * 28232 * Description: This routine is the driver entry point for handling CD-ROM 28233 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28234 * support the READ CD (0xBE) command or the 1st generation 28235 * READ CD (0xD4) command. 28236 * 28237 * Arguments: dev - the device 'dev_t' 28238 * data - pointer to user provided cd read structure specifying 28239 * the lba buffer address and length. 28240 * flag - this argument is a pass through to ddi_copyxxx() 28241 * directly from the mode argument of ioctl(). 28242 * 28243 * Return Code: the code returned by sd_send_scsi_cmd() 28244 * EFAULT if ddi_copyxxx() fails 28245 * ENXIO if fail ddi_get_soft_state 28246 * EINVAL if data pointer is NULL 28247 */ 28248 28249 static int 28250 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag) 28251 { 28252 struct sd_lun *un; 28253 struct uscsi_cmd *com; 28254 struct cdrom_read mode2_struct; 28255 struct cdrom_read *mode2 = &mode2_struct; 28256 uchar_t cdb[CDB_GROUP5]; 28257 int nblocks; 28258 int rval; 28259 #ifdef _MULTI_DATAMODEL 28260 /* To support ILP32 applications in an LP64 world */ 28261 struct cdrom_read32 cdrom_read32; 28262 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28263 #endif /* _MULTI_DATAMODEL */ 28264 28265 if (data == NULL) { 28266 return (EINVAL); 28267 } 28268 28269 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28270 (un->un_state == SD_STATE_OFFLINE)) { 28271 return (ENXIO); 28272 } 28273 28274 #ifdef _MULTI_DATAMODEL 28275 switch (ddi_model_convert_from(flag & FMODELS)) { 28276 case DDI_MODEL_ILP32: 28277 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28278 return (EFAULT); 28279 } 28280 /* Convert the ILP32 uscsi data from the application to LP64 */ 28281 cdrom_read32tocdrom_read(cdrd32, mode2); 28282 break; 28283 case DDI_MODEL_NONE: 28284 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28285 return (EFAULT); 28286 } 28287 break; 28288 } 28289 28290 #else /* ! _MULTI_DATAMODEL */ 28291 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28292 return (EFAULT); 28293 } 28294 #endif /* _MULTI_DATAMODEL */ 28295 28296 bzero(cdb, sizeof (cdb)); 28297 if (un->un_f_cfg_read_cd_xd4 == TRUE) { 28298 /* Read command supported by 1st generation atapi drives */ 28299 cdb[0] = SCMD_READ_CDD4; 28300 } else { 28301 /* Universal CD Access Command */ 28302 cdb[0] = SCMD_READ_CD; 28303 } 28304 28305 /* 28306 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book 28307 */ 28308 cdb[1] = CDROM_SECTOR_TYPE_MODE2; 28309 28310 /* set the start address */ 28311 cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF); 28312 cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF); 28313 cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28314 cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF); 28315 28316 /* set the transfer length */ 28317 nblocks = mode2->cdread_buflen / 2336; 28318 cdb[6] = (uchar_t)(nblocks >> 16); 28319 cdb[7] = (uchar_t)(nblocks >> 8); 28320 cdb[8] = (uchar_t)nblocks; 28321 28322 /* set the filter bits */ 28323 cdb[9] = CDROM_READ_CD_USERDATA; 28324 28325 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28326 com->uscsi_cdb = (caddr_t)cdb; 28327 com->uscsi_cdblen = sizeof (cdb); 28328 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28329 com->uscsi_buflen = mode2->cdread_buflen; 28330 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28331 28332 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE, 28333 UIO_SYSSPACE, SD_PATH_STANDARD); 28334 kmem_free(com, sizeof (*com)); 28335 return (rval); 28336 } 28337 28338 28339 /* 28340 * Function: sr_read_mode2() 28341 * 28342 * Description: This routine is the driver entry point for handling CD-ROM 28343 * ioctl read mode2 requests (CDROMREADMODE2) for devices that 28344 * do not support the READ CD (0xBE) command. 28345 * 28346 * Arguments: dev - the device 'dev_t' 28347 * data - pointer to user provided cd read structure specifying 28348 * the lba buffer address and length. 28349 * flag - this argument is a pass through to ddi_copyxxx() 28350 * directly from the mode argument of ioctl(). 28351 * 28352 * Return Code: the code returned by sd_send_scsi_cmd() 28353 * EFAULT if ddi_copyxxx() fails 28354 * ENXIO if fail ddi_get_soft_state 28355 * EINVAL if data pointer is NULL 28356 * EIO if fail to reset block size 28357 * EAGAIN if commands are in progress in the driver 28358 */ 28359 28360 static int 28361 sr_read_mode2(dev_t dev, caddr_t data, int flag) 28362 { 28363 struct sd_lun *un; 28364 struct cdrom_read mode2_struct; 28365 struct cdrom_read *mode2 = &mode2_struct; 28366 int rval; 28367 uint32_t restore_blksize; 28368 struct uscsi_cmd *com; 28369 uchar_t cdb[CDB_GROUP0]; 28370 int nblocks; 28371 28372 #ifdef _MULTI_DATAMODEL 28373 /* To support ILP32 applications in an LP64 world */ 28374 struct cdrom_read32 cdrom_read32; 28375 struct cdrom_read32 *cdrd32 = &cdrom_read32; 28376 #endif /* _MULTI_DATAMODEL */ 28377 28378 if (data == NULL) { 28379 return (EINVAL); 28380 } 28381 28382 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28383 (un->un_state == SD_STATE_OFFLINE)) { 28384 return (ENXIO); 28385 } 28386 28387 /* 28388 * Because this routine will update the device and driver block size 28389 * being used we want to make sure there are no commands in progress. 28390 * If commands are in progress the user will have to try again. 28391 * 28392 * We check for 1 instead of 0 because we increment un_ncmds_in_driver 28393 * in sdioctl to protect commands from sdioctl through to the top of 28394 * sd_uscsi_strategy. See sdioctl for details. 28395 */ 28396 mutex_enter(SD_MUTEX(un)); 28397 if (un->un_ncmds_in_driver != 1) { 28398 mutex_exit(SD_MUTEX(un)); 28399 return (EAGAIN); 28400 } 28401 mutex_exit(SD_MUTEX(un)); 28402 28403 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28404 "sd_read_mode2: entry: un:0x%p\n", un); 28405 28406 #ifdef _MULTI_DATAMODEL 28407 switch (ddi_model_convert_from(flag & FMODELS)) { 28408 case DDI_MODEL_ILP32: 28409 if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) { 28410 return (EFAULT); 28411 } 28412 /* Convert the ILP32 uscsi data from the application to LP64 */ 28413 cdrom_read32tocdrom_read(cdrd32, mode2); 28414 break; 28415 case DDI_MODEL_NONE: 28416 if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) { 28417 return (EFAULT); 28418 } 28419 break; 28420 } 28421 #else /* ! _MULTI_DATAMODEL */ 28422 if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) { 28423 return (EFAULT); 28424 } 28425 #endif /* _MULTI_DATAMODEL */ 28426 28427 /* Store the current target block size for restoration later */ 28428 restore_blksize = un->un_tgt_blocksize; 28429 28430 /* Change the device and soft state target block size to 2336 */ 28431 if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) { 28432 rval = EIO; 28433 goto done; 28434 } 28435 28436 28437 bzero(cdb, sizeof (cdb)); 28438 28439 /* set READ operation */ 28440 cdb[0] = SCMD_READ; 28441 28442 /* adjust lba for 2kbyte blocks from 512 byte blocks */ 28443 mode2->cdread_lba >>= 2; 28444 28445 /* set the start address */ 28446 cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F); 28447 cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF); 28448 cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF); 28449 28450 /* set the transfer length */ 28451 nblocks = mode2->cdread_buflen / 2336; 28452 cdb[4] = (uchar_t)nblocks & 0xFF; 28453 28454 /* build command */ 28455 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28456 com->uscsi_cdb = (caddr_t)cdb; 28457 com->uscsi_cdblen = sizeof (cdb); 28458 com->uscsi_bufaddr = mode2->cdread_bufaddr; 28459 com->uscsi_buflen = mode2->cdread_buflen; 28460 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28461 28462 /* 28463 * Issue SCSI command with user space address for read buffer. 28464 * 28465 * This sends the command through main channel in the driver. 28466 * 28467 * Since this is accessed via an IOCTL call, we go through the 28468 * standard path, so that if the device was powered down, then 28469 * it would be 'awakened' to handle the command. 28470 */ 28471 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE, 28472 UIO_SYSSPACE, SD_PATH_STANDARD); 28473 28474 kmem_free(com, sizeof (*com)); 28475 28476 /* Restore the device and soft state target block size */ 28477 if (sr_sector_mode(dev, restore_blksize) != 0) { 28478 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28479 "can't do switch back to mode 1\n"); 28480 /* 28481 * If sd_send_scsi_READ succeeded we still need to report 28482 * an error because we failed to reset the block size 28483 */ 28484 if (rval == 0) { 28485 rval = EIO; 28486 } 28487 } 28488 28489 done: 28490 SD_TRACE(SD_LOG_ATTACH_DETACH, un, 28491 "sd_read_mode2: exit: un:0x%p\n", un); 28492 28493 return (rval); 28494 } 28495 28496 28497 /* 28498 * Function: sr_sector_mode() 28499 * 28500 * Description: This utility function is used by sr_read_mode2 to set the target 28501 * block size based on the user specified size. This is a legacy 28502 * implementation based upon a vendor specific mode page 28503 * 28504 * Arguments: dev - the device 'dev_t' 28505 * data - flag indicating if block size is being set to 2336 or 28506 * 512. 28507 * 28508 * Return Code: the code returned by sd_send_scsi_cmd() 28509 * EFAULT if ddi_copyxxx() fails 28510 * ENXIO if fail ddi_get_soft_state 28511 * EINVAL if data pointer is NULL 28512 */ 28513 28514 static int 28515 sr_sector_mode(dev_t dev, uint32_t blksize) 28516 { 28517 struct sd_lun *un; 28518 uchar_t *sense; 28519 uchar_t *select; 28520 int rval; 28521 28522 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28523 (un->un_state == SD_STATE_OFFLINE)) { 28524 return (ENXIO); 28525 } 28526 28527 sense = kmem_zalloc(20, KM_SLEEP); 28528 28529 /* Note: This is a vendor specific mode page (0x81) */ 28530 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81, 28531 SD_PATH_STANDARD)) != 0) { 28532 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28533 "sr_sector_mode: Mode Sense failed\n"); 28534 kmem_free(sense, 20); 28535 return (rval); 28536 } 28537 select = kmem_zalloc(20, KM_SLEEP); 28538 select[3] = 0x08; 28539 select[10] = ((blksize >> 8) & 0xff); 28540 select[11] = (blksize & 0xff); 28541 select[12] = 0x01; 28542 select[13] = 0x06; 28543 select[14] = sense[14]; 28544 select[15] = sense[15]; 28545 if (blksize == SD_MODE2_BLKSIZE) { 28546 select[14] |= 0x01; 28547 } 28548 28549 if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20, 28550 SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) { 28551 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 28552 "sr_sector_mode: Mode Select failed\n"); 28553 } else { 28554 /* 28555 * Only update the softstate block size if we successfully 28556 * changed the device block mode. 28557 */ 28558 mutex_enter(SD_MUTEX(un)); 28559 sd_update_block_info(un, blksize, 0); 28560 mutex_exit(SD_MUTEX(un)); 28561 } 28562 kmem_free(sense, 20); 28563 kmem_free(select, 20); 28564 return (rval); 28565 } 28566 28567 28568 /* 28569 * Function: sr_read_cdda() 28570 * 28571 * Description: This routine is the driver entry point for handling CD-ROM 28572 * ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If 28573 * the target supports CDDA these requests are handled via a vendor 28574 * specific command (0xD8) If the target does not support CDDA 28575 * these requests are handled via the READ CD command (0xBE). 28576 * 28577 * Arguments: dev - the device 'dev_t' 28578 * data - pointer to user provided CD-DA structure specifying 28579 * the track starting address, transfer length, and 28580 * subcode options. 28581 * flag - this argument is a pass through to ddi_copyxxx() 28582 * directly from the mode argument of ioctl(). 28583 * 28584 * Return Code: the code returned by sd_send_scsi_cmd() 28585 * EFAULT if ddi_copyxxx() fails 28586 * ENXIO if fail ddi_get_soft_state 28587 * EINVAL if invalid arguments are provided 28588 * ENOTTY 28589 */ 28590 28591 static int 28592 sr_read_cdda(dev_t dev, caddr_t data, int flag) 28593 { 28594 struct sd_lun *un; 28595 struct uscsi_cmd *com; 28596 struct cdrom_cdda *cdda; 28597 int rval; 28598 size_t buflen; 28599 char cdb[CDB_GROUP5]; 28600 28601 #ifdef _MULTI_DATAMODEL 28602 /* To support ILP32 applications in an LP64 world */ 28603 struct cdrom_cdda32 cdrom_cdda32; 28604 struct cdrom_cdda32 *cdda32 = &cdrom_cdda32; 28605 #endif /* _MULTI_DATAMODEL */ 28606 28607 if (data == NULL) { 28608 return (EINVAL); 28609 } 28610 28611 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28612 return (ENXIO); 28613 } 28614 28615 cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP); 28616 28617 #ifdef _MULTI_DATAMODEL 28618 switch (ddi_model_convert_from(flag & FMODELS)) { 28619 case DDI_MODEL_ILP32: 28620 if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) { 28621 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28622 "sr_read_cdda: ddi_copyin Failed\n"); 28623 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28624 return (EFAULT); 28625 } 28626 /* Convert the ILP32 uscsi data from the application to LP64 */ 28627 cdrom_cdda32tocdrom_cdda(cdda32, cdda); 28628 break; 28629 case DDI_MODEL_NONE: 28630 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28631 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28632 "sr_read_cdda: ddi_copyin Failed\n"); 28633 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28634 return (EFAULT); 28635 } 28636 break; 28637 } 28638 #else /* ! _MULTI_DATAMODEL */ 28639 if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) { 28640 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28641 "sr_read_cdda: ddi_copyin Failed\n"); 28642 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28643 return (EFAULT); 28644 } 28645 #endif /* _MULTI_DATAMODEL */ 28646 28647 /* 28648 * Since MMC-2 expects max 3 bytes for length, check if the 28649 * length input is greater than 3 bytes 28650 */ 28651 if ((cdda->cdda_length & 0xFF000000) != 0) { 28652 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: " 28653 "cdrom transfer length too large: %d (limit %d)\n", 28654 cdda->cdda_length, 0xFFFFFF); 28655 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28656 return (EINVAL); 28657 } 28658 28659 switch (cdda->cdda_subcode) { 28660 case CDROM_DA_NO_SUBCODE: 28661 buflen = CDROM_BLK_2352 * cdda->cdda_length; 28662 break; 28663 case CDROM_DA_SUBQ: 28664 buflen = CDROM_BLK_2368 * cdda->cdda_length; 28665 break; 28666 case CDROM_DA_ALL_SUBCODE: 28667 buflen = CDROM_BLK_2448 * cdda->cdda_length; 28668 break; 28669 case CDROM_DA_SUBCODE_ONLY: 28670 buflen = CDROM_BLK_SUBCODE * cdda->cdda_length; 28671 break; 28672 default: 28673 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28674 "sr_read_cdda: Subcode '0x%x' Not Supported\n", 28675 cdda->cdda_subcode); 28676 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28677 return (EINVAL); 28678 } 28679 28680 /* Build and send the command */ 28681 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28682 bzero(cdb, CDB_GROUP5); 28683 28684 if (un->un_f_cfg_cdda == TRUE) { 28685 cdb[0] = (char)SCMD_READ_CD; 28686 cdb[1] = 0x04; 28687 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28688 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28689 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28690 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28691 cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28692 cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28693 cdb[8] = ((cdda->cdda_length) & 0x000000ff); 28694 cdb[9] = 0x10; 28695 switch (cdda->cdda_subcode) { 28696 case CDROM_DA_NO_SUBCODE : 28697 cdb[10] = 0x0; 28698 break; 28699 case CDROM_DA_SUBQ : 28700 cdb[10] = 0x2; 28701 break; 28702 case CDROM_DA_ALL_SUBCODE : 28703 cdb[10] = 0x1; 28704 break; 28705 case CDROM_DA_SUBCODE_ONLY : 28706 /* FALLTHROUGH */ 28707 default : 28708 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28709 kmem_free(com, sizeof (*com)); 28710 return (ENOTTY); 28711 } 28712 } else { 28713 cdb[0] = (char)SCMD_READ_CDDA; 28714 cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24); 28715 cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16); 28716 cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8); 28717 cdb[5] = ((cdda->cdda_addr) & 0x000000ff); 28718 cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24); 28719 cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16); 28720 cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8); 28721 cdb[9] = ((cdda->cdda_length) & 0x000000ff); 28722 cdb[10] = cdda->cdda_subcode; 28723 } 28724 28725 com->uscsi_cdb = cdb; 28726 com->uscsi_cdblen = CDB_GROUP5; 28727 com->uscsi_bufaddr = (caddr_t)cdda->cdda_data; 28728 com->uscsi_buflen = buflen; 28729 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28730 28731 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE, 28732 UIO_SYSSPACE, SD_PATH_STANDARD); 28733 28734 kmem_free(cdda, sizeof (struct cdrom_cdda)); 28735 kmem_free(com, sizeof (*com)); 28736 return (rval); 28737 } 28738 28739 28740 /* 28741 * Function: sr_read_cdxa() 28742 * 28743 * Description: This routine is the driver entry point for handling CD-ROM 28744 * ioctl requests to return CD-XA (Extended Architecture) data. 28745 * (CDROMCDXA). 28746 * 28747 * Arguments: dev - the device 'dev_t' 28748 * data - pointer to user provided CD-XA structure specifying 28749 * the data starting address, transfer length, and format 28750 * flag - this argument is a pass through to ddi_copyxxx() 28751 * directly from the mode argument of ioctl(). 28752 * 28753 * Return Code: the code returned by sd_send_scsi_cmd() 28754 * EFAULT if ddi_copyxxx() fails 28755 * ENXIO if fail ddi_get_soft_state 28756 * EINVAL if data pointer is NULL 28757 */ 28758 28759 static int 28760 sr_read_cdxa(dev_t dev, caddr_t data, int flag) 28761 { 28762 struct sd_lun *un; 28763 struct uscsi_cmd *com; 28764 struct cdrom_cdxa *cdxa; 28765 int rval; 28766 size_t buflen; 28767 char cdb[CDB_GROUP5]; 28768 uchar_t read_flags; 28769 28770 #ifdef _MULTI_DATAMODEL 28771 /* To support ILP32 applications in an LP64 world */ 28772 struct cdrom_cdxa32 cdrom_cdxa32; 28773 struct cdrom_cdxa32 *cdxa32 = &cdrom_cdxa32; 28774 #endif /* _MULTI_DATAMODEL */ 28775 28776 if (data == NULL) { 28777 return (EINVAL); 28778 } 28779 28780 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28781 return (ENXIO); 28782 } 28783 28784 cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP); 28785 28786 #ifdef _MULTI_DATAMODEL 28787 switch (ddi_model_convert_from(flag & FMODELS)) { 28788 case DDI_MODEL_ILP32: 28789 if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) { 28790 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28791 return (EFAULT); 28792 } 28793 /* 28794 * Convert the ILP32 uscsi data from the 28795 * application to LP64 for internal use. 28796 */ 28797 cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa); 28798 break; 28799 case DDI_MODEL_NONE: 28800 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28801 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28802 return (EFAULT); 28803 } 28804 break; 28805 } 28806 #else /* ! _MULTI_DATAMODEL */ 28807 if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) { 28808 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28809 return (EFAULT); 28810 } 28811 #endif /* _MULTI_DATAMODEL */ 28812 28813 /* 28814 * Since MMC-2 expects max 3 bytes for length, check if the 28815 * length input is greater than 3 bytes 28816 */ 28817 if ((cdxa->cdxa_length & 0xFF000000) != 0) { 28818 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: " 28819 "cdrom transfer length too large: %d (limit %d)\n", 28820 cdxa->cdxa_length, 0xFFFFFF); 28821 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28822 return (EINVAL); 28823 } 28824 28825 switch (cdxa->cdxa_format) { 28826 case CDROM_XA_DATA: 28827 buflen = CDROM_BLK_2048 * cdxa->cdxa_length; 28828 read_flags = 0x10; 28829 break; 28830 case CDROM_XA_SECTOR_DATA: 28831 buflen = CDROM_BLK_2352 * cdxa->cdxa_length; 28832 read_flags = 0xf8; 28833 break; 28834 case CDROM_XA_DATA_W_ERROR: 28835 buflen = CDROM_BLK_2646 * cdxa->cdxa_length; 28836 read_flags = 0xfc; 28837 break; 28838 default: 28839 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 28840 "sr_read_cdxa: Format '0x%x' Not Supported\n", 28841 cdxa->cdxa_format); 28842 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28843 return (EINVAL); 28844 } 28845 28846 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 28847 bzero(cdb, CDB_GROUP5); 28848 if (un->un_f_mmc_cap == TRUE) { 28849 cdb[0] = (char)SCMD_READ_CD; 28850 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28851 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28852 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28853 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28854 cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28855 cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28856 cdb[8] = ((cdxa->cdxa_length) & 0x000000ff); 28857 cdb[9] = (char)read_flags; 28858 } else { 28859 /* 28860 * Note: A vendor specific command (0xDB) is being used her to 28861 * request a read of all subcodes. 28862 */ 28863 cdb[0] = (char)SCMD_READ_CDXA; 28864 cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24); 28865 cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16); 28866 cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8); 28867 cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff); 28868 cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24); 28869 cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16); 28870 cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8); 28871 cdb[9] = ((cdxa->cdxa_length) & 0x000000ff); 28872 cdb[10] = cdxa->cdxa_format; 28873 } 28874 com->uscsi_cdb = cdb; 28875 com->uscsi_cdblen = CDB_GROUP5; 28876 com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data; 28877 com->uscsi_buflen = buflen; 28878 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 28879 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE, 28880 UIO_SYSSPACE, SD_PATH_STANDARD); 28881 kmem_free(cdxa, sizeof (struct cdrom_cdxa)); 28882 kmem_free(com, sizeof (*com)); 28883 return (rval); 28884 } 28885 28886 28887 /* 28888 * Function: sr_eject() 28889 * 28890 * Description: This routine is the driver entry point for handling CD-ROM 28891 * eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT) 28892 * 28893 * Arguments: dev - the device 'dev_t' 28894 * 28895 * Return Code: the code returned by sd_send_scsi_cmd() 28896 */ 28897 28898 static int 28899 sr_eject(dev_t dev) 28900 { 28901 struct sd_lun *un; 28902 int rval; 28903 28904 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 28905 (un->un_state == SD_STATE_OFFLINE)) { 28906 return (ENXIO); 28907 } 28908 if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW, 28909 SD_PATH_STANDARD)) != 0) { 28910 return (rval); 28911 } 28912 28913 rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT, 28914 SD_PATH_STANDARD); 28915 28916 if (rval == 0) { 28917 mutex_enter(SD_MUTEX(un)); 28918 sr_ejected(un); 28919 un->un_mediastate = DKIO_EJECTED; 28920 cv_broadcast(&un->un_state_cv); 28921 mutex_exit(SD_MUTEX(un)); 28922 } 28923 return (rval); 28924 } 28925 28926 28927 /* 28928 * Function: sr_ejected() 28929 * 28930 * Description: This routine updates the soft state structure to invalidate the 28931 * geometry information after the media has been ejected or a 28932 * media eject has been detected. 28933 * 28934 * Arguments: un - driver soft state (unit) structure 28935 */ 28936 28937 static void 28938 sr_ejected(struct sd_lun *un) 28939 { 28940 struct sd_errstats *stp; 28941 28942 ASSERT(un != NULL); 28943 ASSERT(mutex_owned(SD_MUTEX(un))); 28944 28945 un->un_f_blockcount_is_valid = FALSE; 28946 un->un_f_tgt_blocksize_is_valid = FALSE; 28947 un->un_f_geometry_is_valid = FALSE; 28948 28949 if (un->un_errstats != NULL) { 28950 stp = (struct sd_errstats *)un->un_errstats->ks_data; 28951 stp->sd_capacity.value.ui64 = 0; 28952 } 28953 } 28954 28955 28956 /* 28957 * Function: sr_check_wp() 28958 * 28959 * Description: This routine checks the write protection of a removable media 28960 * disk via the write protect bit of the Mode Page Header device 28961 * specific field. This routine has been implemented to use the 28962 * error recovery mode page for all device types. 28963 * Note: In the future use a sd_send_scsi_MODE_SENSE() routine 28964 * 28965 * Arguments: dev - the device 'dev_t' 28966 * 28967 * Return Code: int indicating if the device is write protected (1) or not (0) 28968 * 28969 * Context: Kernel thread. 28970 * 28971 */ 28972 28973 static int 28974 sr_check_wp(dev_t dev) 28975 { 28976 struct sd_lun *un; 28977 uchar_t device_specific; 28978 uchar_t *sense; 28979 int hdrlen; 28980 int rval; 28981 int retry_flag = FALSE; 28982 28983 /* 28984 * Note: The return codes for this routine should be reworked to 28985 * properly handle the case of a NULL softstate. 28986 */ 28987 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) { 28988 return (FALSE); 28989 } 28990 28991 if (un->un_f_cfg_is_atapi == TRUE) { 28992 retry_flag = TRUE; 28993 } 28994 28995 retry: 28996 if (un->un_f_cfg_is_atapi == TRUE) { 28997 /* 28998 * The mode page contents are not required; set the allocation 28999 * length for the mode page header only 29000 */ 29001 hdrlen = MODE_HEADER_LENGTH_GRP2; 29002 sense = kmem_zalloc(hdrlen, KM_SLEEP); 29003 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen, 29004 MODEPAGE_ERR_RECOV, SD_PATH_STANDARD); 29005 device_specific = 29006 ((struct mode_header_grp2 *)sense)->device_specific; 29007 } else { 29008 hdrlen = MODE_HEADER_LENGTH; 29009 sense = kmem_zalloc(hdrlen, KM_SLEEP); 29010 rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen, 29011 MODEPAGE_ERR_RECOV, SD_PATH_STANDARD); 29012 device_specific = 29013 ((struct mode_header *)sense)->device_specific; 29014 } 29015 29016 if (rval != 0) { 29017 if ((un->un_f_cfg_is_atapi == TRUE) && (retry_flag)) { 29018 /* 29019 * For an Atapi Zip drive, observed the drive 29020 * reporting check condition for the first attempt. 29021 * Sense data indicating power on or bus device/reset. 29022 * Hence in case of failure need to try at least once 29023 * for Atapi devices. 29024 */ 29025 retry_flag = FALSE; 29026 kmem_free(sense, hdrlen); 29027 goto retry; 29028 } else { 29029 /* 29030 * Write protect mode sense failed; not all disks 29031 * understand this query. Return FALSE assuming that 29032 * these devices are not writable. 29033 */ 29034 rval = FALSE; 29035 } 29036 } else { 29037 if (device_specific & WRITE_PROTECT) { 29038 rval = TRUE; 29039 } else { 29040 rval = FALSE; 29041 } 29042 } 29043 kmem_free(sense, hdrlen); 29044 return (rval); 29045 } 29046 29047 29048 /* 29049 * Function: sr_volume_ctrl() 29050 * 29051 * Description: This routine is the driver entry point for handling CD-ROM 29052 * audio output volume ioctl requests. (CDROMVOLCTRL) 29053 * 29054 * Arguments: dev - the device 'dev_t' 29055 * data - pointer to user audio volume control structure 29056 * flag - this argument is a pass through to ddi_copyxxx() 29057 * directly from the mode argument of ioctl(). 29058 * 29059 * Return Code: the code returned by sd_send_scsi_cmd() 29060 * EFAULT if ddi_copyxxx() fails 29061 * ENXIO if fail ddi_get_soft_state 29062 * EINVAL if data pointer is NULL 29063 * 29064 */ 29065 29066 static int 29067 sr_volume_ctrl(dev_t dev, caddr_t data, int flag) 29068 { 29069 struct sd_lun *un; 29070 struct cdrom_volctrl volume; 29071 struct cdrom_volctrl *vol = &volume; 29072 uchar_t *sense_page; 29073 uchar_t *select_page; 29074 uchar_t *sense; 29075 uchar_t *select; 29076 int sense_buflen; 29077 int select_buflen; 29078 int rval; 29079 29080 if (data == NULL) { 29081 return (EINVAL); 29082 } 29083 29084 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29085 (un->un_state == SD_STATE_OFFLINE)) { 29086 return (ENXIO); 29087 } 29088 29089 if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) { 29090 return (EFAULT); 29091 } 29092 29093 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 29094 struct mode_header_grp2 *sense_mhp; 29095 struct mode_header_grp2 *select_mhp; 29096 int bd_len; 29097 29098 sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN; 29099 select_buflen = MODE_HEADER_LENGTH_GRP2 + 29100 MODEPAGE_AUDIO_CTRL_LEN; 29101 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 29102 select = kmem_zalloc(select_buflen, KM_SLEEP); 29103 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, 29104 sense_buflen, MODEPAGE_AUDIO_CTRL, 29105 SD_PATH_STANDARD)) != 0) { 29106 SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un, 29107 "sr_volume_ctrl: Mode Sense Failed\n"); 29108 kmem_free(sense, sense_buflen); 29109 kmem_free(select, select_buflen); 29110 return (rval); 29111 } 29112 sense_mhp = (struct mode_header_grp2 *)sense; 29113 select_mhp = (struct mode_header_grp2 *)select; 29114 bd_len = (sense_mhp->bdesc_length_hi << 8) | 29115 sense_mhp->bdesc_length_lo; 29116 if (bd_len > MODE_BLK_DESC_LENGTH) { 29117 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29118 "sr_volume_ctrl: Mode Sense returned invalid " 29119 "block descriptor length\n"); 29120 kmem_free(sense, sense_buflen); 29121 kmem_free(select, select_buflen); 29122 return (EIO); 29123 } 29124 sense_page = (uchar_t *) 29125 (sense + MODE_HEADER_LENGTH_GRP2 + bd_len); 29126 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2); 29127 select_mhp->length_msb = 0; 29128 select_mhp->length_lsb = 0; 29129 select_mhp->bdesc_length_hi = 0; 29130 select_mhp->bdesc_length_lo = 0; 29131 } else { 29132 struct mode_header *sense_mhp, *select_mhp; 29133 29134 sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 29135 select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN; 29136 sense = kmem_zalloc(sense_buflen, KM_SLEEP); 29137 select = kmem_zalloc(select_buflen, KM_SLEEP); 29138 if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 29139 sense_buflen, MODEPAGE_AUDIO_CTRL, 29140 SD_PATH_STANDARD)) != 0) { 29141 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29142 "sr_volume_ctrl: Mode Sense Failed\n"); 29143 kmem_free(sense, sense_buflen); 29144 kmem_free(select, select_buflen); 29145 return (rval); 29146 } 29147 sense_mhp = (struct mode_header *)sense; 29148 select_mhp = (struct mode_header *)select; 29149 if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) { 29150 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 29151 "sr_volume_ctrl: Mode Sense returned invalid " 29152 "block descriptor length\n"); 29153 kmem_free(sense, sense_buflen); 29154 kmem_free(select, select_buflen); 29155 return (EIO); 29156 } 29157 sense_page = (uchar_t *) 29158 (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length); 29159 select_page = (uchar_t *)(select + MODE_HEADER_LENGTH); 29160 select_mhp->length = 0; 29161 select_mhp->bdesc_length = 0; 29162 } 29163 /* 29164 * Note: An audio control data structure could be created and overlayed 29165 * on the following in place of the array indexing method implemented. 29166 */ 29167 29168 /* Build the select data for the user volume data */ 29169 select_page[0] = MODEPAGE_AUDIO_CTRL; 29170 select_page[1] = 0xE; 29171 /* Set the immediate bit */ 29172 select_page[2] = 0x04; 29173 /* Zero out reserved fields */ 29174 select_page[3] = 0x00; 29175 select_page[4] = 0x00; 29176 /* Return sense data for fields not to be modified */ 29177 select_page[5] = sense_page[5]; 29178 select_page[6] = sense_page[6]; 29179 select_page[7] = sense_page[7]; 29180 /* Set the user specified volume levels for channel 0 and 1 */ 29181 select_page[8] = 0x01; 29182 select_page[9] = vol->channel0; 29183 select_page[10] = 0x02; 29184 select_page[11] = vol->channel1; 29185 /* Channel 2 and 3 are currently unsupported so return the sense data */ 29186 select_page[12] = sense_page[12]; 29187 select_page[13] = sense_page[13]; 29188 select_page[14] = sense_page[14]; 29189 select_page[15] = sense_page[15]; 29190 29191 if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) { 29192 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select, 29193 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29194 } else { 29195 rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 29196 select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD); 29197 } 29198 29199 kmem_free(sense, sense_buflen); 29200 kmem_free(select, select_buflen); 29201 return (rval); 29202 } 29203 29204 29205 /* 29206 * Function: sr_read_sony_session_offset() 29207 * 29208 * Description: This routine is the driver entry point for handling CD-ROM 29209 * ioctl requests for session offset information. (CDROMREADOFFSET) 29210 * The address of the first track in the last session of a 29211 * multi-session CD-ROM is returned 29212 * 29213 * Note: This routine uses a vendor specific key value in the 29214 * command control field without implementing any vendor check here 29215 * or in the ioctl routine. 29216 * 29217 * Arguments: dev - the device 'dev_t' 29218 * data - pointer to an int to hold the requested address 29219 * flag - this argument is a pass through to ddi_copyxxx() 29220 * directly from the mode argument of ioctl(). 29221 * 29222 * Return Code: the code returned by sd_send_scsi_cmd() 29223 * EFAULT if ddi_copyxxx() fails 29224 * ENXIO if fail ddi_get_soft_state 29225 * EINVAL if data pointer is NULL 29226 */ 29227 29228 static int 29229 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag) 29230 { 29231 struct sd_lun *un; 29232 struct uscsi_cmd *com; 29233 caddr_t buffer; 29234 char cdb[CDB_GROUP1]; 29235 int session_offset = 0; 29236 int rval; 29237 29238 if (data == NULL) { 29239 return (EINVAL); 29240 } 29241 29242 if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL || 29243 (un->un_state == SD_STATE_OFFLINE)) { 29244 return (ENXIO); 29245 } 29246 29247 buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP); 29248 bzero(cdb, CDB_GROUP1); 29249 cdb[0] = SCMD_READ_TOC; 29250 /* 29251 * Bytes 7 & 8 are the 12 byte allocation length for a single entry. 29252 * (4 byte TOC response header + 8 byte response data) 29253 */ 29254 cdb[8] = SONY_SESSION_OFFSET_LEN; 29255 /* Byte 9 is the control byte. A vendor specific value is used */ 29256 cdb[9] = SONY_SESSION_OFFSET_KEY; 29257 com = kmem_zalloc(sizeof (*com), KM_SLEEP); 29258 com->uscsi_cdb = cdb; 29259 com->uscsi_cdblen = CDB_GROUP1; 29260 com->uscsi_bufaddr = buffer; 29261 com->uscsi_buflen = SONY_SESSION_OFFSET_LEN; 29262 com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ; 29263 29264 rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE, 29265 UIO_SYSSPACE, SD_PATH_STANDARD); 29266 if (rval != 0) { 29267 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29268 kmem_free(com, sizeof (*com)); 29269 return (rval); 29270 } 29271 if (buffer[1] == SONY_SESSION_OFFSET_VALID) { 29272 session_offset = 29273 ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) + 29274 ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]); 29275 /* 29276 * Offset returned offset in current lbasize block's. Convert to 29277 * 2k block's to return to the user 29278 */ 29279 if (un->un_tgt_blocksize == CDROM_BLK_512) { 29280 session_offset >>= 2; 29281 } else if (un->un_tgt_blocksize == CDROM_BLK_1024) { 29282 session_offset >>= 1; 29283 } 29284 } 29285 29286 if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) { 29287 rval = EFAULT; 29288 } 29289 29290 kmem_free(buffer, SONY_SESSION_OFFSET_LEN); 29291 kmem_free(com, sizeof (*com)); 29292 return (rval); 29293 } 29294 29295 29296 /* 29297 * Function: sd_wm_cache_constructor() 29298 * 29299 * Description: Cache Constructor for the wmap cache for the read/modify/write 29300 * devices. 29301 * 29302 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29303 * un - sd_lun structure for the device. 29304 * flag - the km flags passed to constructor 29305 * 29306 * Return Code: 0 on success. 29307 * -1 on failure. 29308 */ 29309 29310 /*ARGSUSED*/ 29311 static int 29312 sd_wm_cache_constructor(void *wm, void *un, int flags) 29313 { 29314 bzero(wm, sizeof (struct sd_w_map)); 29315 cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL); 29316 return (0); 29317 } 29318 29319 29320 /* 29321 * Function: sd_wm_cache_destructor() 29322 * 29323 * Description: Cache destructor for the wmap cache for the read/modify/write 29324 * devices. 29325 * 29326 * Arguments: wm - A pointer to the sd_w_map to be initialized. 29327 * un - sd_lun structure for the device. 29328 */ 29329 /*ARGSUSED*/ 29330 static void 29331 sd_wm_cache_destructor(void *wm, void *un) 29332 { 29333 cv_destroy(&((struct sd_w_map *)wm)->wm_avail); 29334 } 29335 29336 29337 /* 29338 * Function: sd_range_lock() 29339 * 29340 * Description: Lock the range of blocks specified as parameter to ensure 29341 * that read, modify write is atomic and no other i/o writes 29342 * to the same location. The range is specified in terms 29343 * of start and end blocks. Block numbers are the actual 29344 * media block numbers and not system. 29345 * 29346 * Arguments: un - sd_lun structure for the device. 29347 * startb - The starting block number 29348 * endb - The end block number 29349 * typ - type of i/o - simple/read_modify_write 29350 * 29351 * Return Code: wm - pointer to the wmap structure. 29352 * 29353 * Context: This routine can sleep. 29354 */ 29355 29356 static struct sd_w_map * 29357 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ) 29358 { 29359 struct sd_w_map *wmp = NULL; 29360 struct sd_w_map *sl_wmp = NULL; 29361 struct sd_w_map *tmp_wmp; 29362 wm_state state = SD_WM_CHK_LIST; 29363 29364 29365 ASSERT(un != NULL); 29366 ASSERT(!mutex_owned(SD_MUTEX(un))); 29367 29368 mutex_enter(SD_MUTEX(un)); 29369 29370 while (state != SD_WM_DONE) { 29371 29372 switch (state) { 29373 case SD_WM_CHK_LIST: 29374 /* 29375 * This is the starting state. Check the wmap list 29376 * to see if the range is currently available. 29377 */ 29378 if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) { 29379 /* 29380 * If this is a simple write and no rmw 29381 * i/o is pending then try to lock the 29382 * range as the range should be available. 29383 */ 29384 state = SD_WM_LOCK_RANGE; 29385 } else { 29386 tmp_wmp = sd_get_range(un, startb, endb); 29387 if (tmp_wmp != NULL) { 29388 if ((wmp != NULL) && ONLIST(un, wmp)) { 29389 /* 29390 * Should not keep onlist wmps 29391 * while waiting this macro 29392 * will also do wmp = NULL; 29393 */ 29394 FREE_ONLIST_WMAP(un, wmp); 29395 } 29396 /* 29397 * sl_wmp is the wmap on which wait 29398 * is done, since the tmp_wmp points 29399 * to the inuse wmap, set sl_wmp to 29400 * tmp_wmp and change the state to sleep 29401 */ 29402 sl_wmp = tmp_wmp; 29403 state = SD_WM_WAIT_MAP; 29404 } else { 29405 state = SD_WM_LOCK_RANGE; 29406 } 29407 29408 } 29409 break; 29410 29411 case SD_WM_LOCK_RANGE: 29412 ASSERT(un->un_wm_cache); 29413 /* 29414 * The range need to be locked, try to get a wmap. 29415 * First attempt it with NO_SLEEP, want to avoid a sleep 29416 * if possible as we will have to release the sd mutex 29417 * if we have to sleep. 29418 */ 29419 if (wmp == NULL) 29420 wmp = kmem_cache_alloc(un->un_wm_cache, 29421 KM_NOSLEEP); 29422 if (wmp == NULL) { 29423 mutex_exit(SD_MUTEX(un)); 29424 _NOTE(DATA_READABLE_WITHOUT_LOCK 29425 (sd_lun::un_wm_cache)) 29426 wmp = kmem_cache_alloc(un->un_wm_cache, 29427 KM_SLEEP); 29428 mutex_enter(SD_MUTEX(un)); 29429 /* 29430 * we released the mutex so recheck and go to 29431 * check list state. 29432 */ 29433 state = SD_WM_CHK_LIST; 29434 } else { 29435 /* 29436 * We exit out of state machine since we 29437 * have the wmap. Do the housekeeping first. 29438 * place the wmap on the wmap list if it is not 29439 * on it already and then set the state to done. 29440 */ 29441 wmp->wm_start = startb; 29442 wmp->wm_end = endb; 29443 wmp->wm_flags = typ | SD_WM_BUSY; 29444 if (typ & SD_WTYPE_RMW) { 29445 un->un_rmw_count++; 29446 } 29447 /* 29448 * If not already on the list then link 29449 */ 29450 if (!ONLIST(un, wmp)) { 29451 wmp->wm_next = un->un_wm; 29452 wmp->wm_prev = NULL; 29453 if (wmp->wm_next) 29454 wmp->wm_next->wm_prev = wmp; 29455 un->un_wm = wmp; 29456 } 29457 state = SD_WM_DONE; 29458 } 29459 break; 29460 29461 case SD_WM_WAIT_MAP: 29462 ASSERT(sl_wmp->wm_flags & SD_WM_BUSY); 29463 /* 29464 * Wait is done on sl_wmp, which is set in the 29465 * check_list state. 29466 */ 29467 sl_wmp->wm_wanted_count++; 29468 cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un)); 29469 sl_wmp->wm_wanted_count--; 29470 /* 29471 * We can reuse the memory from the completed sl_wmp 29472 * lock range for our new lock, but only if noone is 29473 * waiting for it. 29474 */ 29475 ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY)); 29476 if (sl_wmp->wm_wanted_count == 0) { 29477 if (wmp != NULL) 29478 CHK_N_FREEWMP(un, wmp); 29479 wmp = sl_wmp; 29480 } 29481 sl_wmp = NULL; 29482 /* 29483 * After waking up, need to recheck for availability of 29484 * range. 29485 */ 29486 state = SD_WM_CHK_LIST; 29487 break; 29488 29489 default: 29490 panic("sd_range_lock: " 29491 "Unknown state %d in sd_range_lock", state); 29492 /*NOTREACHED*/ 29493 } /* switch(state) */ 29494 29495 } /* while(state != SD_WM_DONE) */ 29496 29497 mutex_exit(SD_MUTEX(un)); 29498 29499 ASSERT(wmp != NULL); 29500 29501 return (wmp); 29502 } 29503 29504 29505 /* 29506 * Function: sd_get_range() 29507 * 29508 * Description: Find if there any overlapping I/O to this one 29509 * Returns the write-map of 1st such I/O, NULL otherwise. 29510 * 29511 * Arguments: un - sd_lun structure for the device. 29512 * startb - The starting block number 29513 * endb - The end block number 29514 * 29515 * Return Code: wm - pointer to the wmap structure. 29516 */ 29517 29518 static struct sd_w_map * 29519 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb) 29520 { 29521 struct sd_w_map *wmp; 29522 29523 ASSERT(un != NULL); 29524 29525 for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) { 29526 if (!(wmp->wm_flags & SD_WM_BUSY)) { 29527 continue; 29528 } 29529 if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) { 29530 break; 29531 } 29532 if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) { 29533 break; 29534 } 29535 } 29536 29537 return (wmp); 29538 } 29539 29540 29541 /* 29542 * Function: sd_free_inlist_wmap() 29543 * 29544 * Description: Unlink and free a write map struct. 29545 * 29546 * Arguments: un - sd_lun structure for the device. 29547 * wmp - sd_w_map which needs to be unlinked. 29548 */ 29549 29550 static void 29551 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp) 29552 { 29553 ASSERT(un != NULL); 29554 29555 if (un->un_wm == wmp) { 29556 un->un_wm = wmp->wm_next; 29557 } else { 29558 wmp->wm_prev->wm_next = wmp->wm_next; 29559 } 29560 29561 if (wmp->wm_next) { 29562 wmp->wm_next->wm_prev = wmp->wm_prev; 29563 } 29564 29565 wmp->wm_next = wmp->wm_prev = NULL; 29566 29567 kmem_cache_free(un->un_wm_cache, wmp); 29568 } 29569 29570 29571 /* 29572 * Function: sd_range_unlock() 29573 * 29574 * Description: Unlock the range locked by wm. 29575 * Free write map if nobody else is waiting on it. 29576 * 29577 * Arguments: un - sd_lun structure for the device. 29578 * wmp - sd_w_map which needs to be unlinked. 29579 */ 29580 29581 static void 29582 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm) 29583 { 29584 ASSERT(un != NULL); 29585 ASSERT(wm != NULL); 29586 ASSERT(!mutex_owned(SD_MUTEX(un))); 29587 29588 mutex_enter(SD_MUTEX(un)); 29589 29590 if (wm->wm_flags & SD_WTYPE_RMW) { 29591 un->un_rmw_count--; 29592 } 29593 29594 if (wm->wm_wanted_count) { 29595 wm->wm_flags = 0; 29596 /* 29597 * Broadcast that the wmap is available now. 29598 */ 29599 cv_broadcast(&wm->wm_avail); 29600 } else { 29601 /* 29602 * If no one is waiting on the map, it should be free'ed. 29603 */ 29604 sd_free_inlist_wmap(un, wm); 29605 } 29606 29607 mutex_exit(SD_MUTEX(un)); 29608 } 29609 29610 29611 /* 29612 * Function: sd_read_modify_write_task 29613 * 29614 * Description: Called from a taskq thread to initiate the write phase of 29615 * a read-modify-write request. This is used for targets where 29616 * un->un_sys_blocksize != un->un_tgt_blocksize. 29617 * 29618 * Arguments: arg - a pointer to the buf(9S) struct for the write command. 29619 * 29620 * Context: Called under taskq thread context. 29621 */ 29622 29623 static void 29624 sd_read_modify_write_task(void *arg) 29625 { 29626 struct sd_mapblocksize_info *bsp; 29627 struct buf *bp; 29628 struct sd_xbuf *xp; 29629 struct sd_lun *un; 29630 29631 bp = arg; /* The bp is given in arg */ 29632 ASSERT(bp != NULL); 29633 29634 /* Get the pointer to the layer-private data struct */ 29635 xp = SD_GET_XBUF(bp); 29636 ASSERT(xp != NULL); 29637 bsp = xp->xb_private; 29638 ASSERT(bsp != NULL); 29639 29640 un = SD_GET_UN(bp); 29641 ASSERT(un != NULL); 29642 ASSERT(!mutex_owned(SD_MUTEX(un))); 29643 29644 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29645 "sd_read_modify_write_task: entry: buf:0x%p\n", bp); 29646 29647 /* 29648 * This is the write phase of a read-modify-write request, called 29649 * under the context of a taskq thread in response to the completion 29650 * of the read portion of the rmw request completing under interrupt 29651 * context. The write request must be sent from here down the iostart 29652 * chain as if it were being sent from sd_mapblocksize_iostart(), so 29653 * we use the layer index saved in the layer-private data area. 29654 */ 29655 SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp); 29656 29657 SD_TRACE(SD_LOG_IO_RMMEDIA, un, 29658 "sd_read_modify_write_task: exit: buf:0x%p\n", bp); 29659 } 29660 29661 29662 /* 29663 * Function: sddump_do_read_of_rmw() 29664 * 29665 * Description: This routine will be called from sddump, If sddump is called 29666 * with an I/O which not aligned on device blocksize boundary 29667 * then the write has to be converted to read-modify-write. 29668 * Do the read part here in order to keep sddump simple. 29669 * Note - That the sd_mutex is held across the call to this 29670 * routine. 29671 * 29672 * Arguments: un - sd_lun 29673 * blkno - block number in terms of media block size. 29674 * nblk - number of blocks. 29675 * bpp - pointer to pointer to the buf structure. On return 29676 * from this function, *bpp points to the valid buffer 29677 * to which the write has to be done. 29678 * 29679 * Return Code: 0 for success or errno-type return code 29680 */ 29681 29682 static int 29683 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk, 29684 struct buf **bpp) 29685 { 29686 int err; 29687 int i; 29688 int rval; 29689 struct buf *bp; 29690 struct scsi_pkt *pkt = NULL; 29691 uint32_t target_blocksize; 29692 29693 ASSERT(un != NULL); 29694 ASSERT(mutex_owned(SD_MUTEX(un))); 29695 29696 target_blocksize = un->un_tgt_blocksize; 29697 29698 mutex_exit(SD_MUTEX(un)); 29699 29700 bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL, 29701 (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL); 29702 if (bp == NULL) { 29703 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 29704 "no resources for dumping; giving up"); 29705 err = ENOMEM; 29706 goto done; 29707 } 29708 29709 rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL, 29710 blkno, nblk); 29711 if (rval != 0) { 29712 scsi_free_consistent_buf(bp); 29713 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 29714 "no resources for dumping; giving up"); 29715 err = ENOMEM; 29716 goto done; 29717 } 29718 29719 pkt->pkt_flags |= FLAG_NOINTR; 29720 29721 err = EIO; 29722 for (i = 0; i < SD_NDUMP_RETRIES; i++) { 29723 29724 /* 29725 * Scsi_poll returns 0 (success) if the command completes and 29726 * the status block is STATUS_GOOD. We should only check 29727 * errors if this condition is not true. Even then we should 29728 * send our own request sense packet only if we have a check 29729 * condition and auto request sense has not been performed by 29730 * the hba. 29731 */ 29732 SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n"); 29733 29734 if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) { 29735 err = 0; 29736 break; 29737 } 29738 29739 /* 29740 * Check CMD_DEV_GONE 1st, give up if device is gone, 29741 * no need to read RQS data. 29742 */ 29743 if (pkt->pkt_reason == CMD_DEV_GONE) { 29744 scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, 29745 "Device is gone\n"); 29746 break; 29747 } 29748 29749 if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) { 29750 SD_INFO(SD_LOG_DUMP, un, 29751 "sddump: read failed with CHECK, try # %d\n", i); 29752 if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) { 29753 (void) sd_send_polled_RQS(un); 29754 } 29755 29756 continue; 29757 } 29758 29759 if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) { 29760 int reset_retval = 0; 29761 29762 SD_INFO(SD_LOG_DUMP, un, 29763 "sddump: read failed with BUSY, try # %d\n", i); 29764 29765 if (un->un_f_lun_reset_enabled == TRUE) { 29766 reset_retval = scsi_reset(SD_ADDRESS(un), 29767 RESET_LUN); 29768 } 29769 if (reset_retval == 0) { 29770 (void) scsi_reset(SD_ADDRESS(un), RESET_TARGET); 29771 } 29772 (void) sd_send_polled_RQS(un); 29773 29774 } else { 29775 SD_INFO(SD_LOG_DUMP, un, 29776 "sddump: read failed with 0x%x, try # %d\n", 29777 SD_GET_PKT_STATUS(pkt), i); 29778 mutex_enter(SD_MUTEX(un)); 29779 sd_reset_target(un, pkt); 29780 mutex_exit(SD_MUTEX(un)); 29781 } 29782 29783 /* 29784 * If we are not getting anywhere with lun/target resets, 29785 * let's reset the bus. 29786 */ 29787 if (i > SD_NDUMP_RETRIES/2) { 29788 (void) scsi_reset(SD_ADDRESS(un), RESET_ALL); 29789 (void) sd_send_polled_RQS(un); 29790 } 29791 29792 } 29793 scsi_destroy_pkt(pkt); 29794 29795 if (err != 0) { 29796 scsi_free_consistent_buf(bp); 29797 *bpp = NULL; 29798 } else { 29799 *bpp = bp; 29800 } 29801 29802 done: 29803 mutex_enter(SD_MUTEX(un)); 29804 return (err); 29805 } 29806 29807 29808 /* 29809 * Function: sd_failfast_flushq 29810 * 29811 * Description: Take all bp's on the wait queue that have B_FAILFAST set 29812 * in b_flags and move them onto the failfast queue, then kick 29813 * off a thread to return all bp's on the failfast queue to 29814 * their owners with an error set. 29815 * 29816 * Arguments: un - pointer to the soft state struct for the instance. 29817 * 29818 * Context: may execute in interrupt context. 29819 */ 29820 29821 static void 29822 sd_failfast_flushq(struct sd_lun *un) 29823 { 29824 struct buf *bp; 29825 struct buf *next_waitq_bp; 29826 struct buf *prev_waitq_bp = NULL; 29827 29828 ASSERT(un != NULL); 29829 ASSERT(mutex_owned(SD_MUTEX(un))); 29830 ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE); 29831 ASSERT(un->un_failfast_bp == NULL); 29832 29833 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29834 "sd_failfast_flushq: entry: un:0x%p\n", un); 29835 29836 /* 29837 * Check if we should flush all bufs when entering failfast state, or 29838 * just those with B_FAILFAST set. 29839 */ 29840 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) { 29841 /* 29842 * Move *all* bp's on the wait queue to the failfast flush 29843 * queue, including those that do NOT have B_FAILFAST set. 29844 */ 29845 if (un->un_failfast_headp == NULL) { 29846 ASSERT(un->un_failfast_tailp == NULL); 29847 un->un_failfast_headp = un->un_waitq_headp; 29848 } else { 29849 ASSERT(un->un_failfast_tailp != NULL); 29850 un->un_failfast_tailp->av_forw = un->un_waitq_headp; 29851 } 29852 29853 un->un_failfast_tailp = un->un_waitq_tailp; 29854 29855 /* update kstat for each bp moved out of the waitq */ 29856 for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) { 29857 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29858 } 29859 29860 /* empty the waitq */ 29861 un->un_waitq_headp = un->un_waitq_tailp = NULL; 29862 29863 } else { 29864 /* 29865 * Go thru the wait queue, pick off all entries with 29866 * B_FAILFAST set, and move these onto the failfast queue. 29867 */ 29868 for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) { 29869 /* 29870 * Save the pointer to the next bp on the wait queue, 29871 * so we get to it on the next iteration of this loop. 29872 */ 29873 next_waitq_bp = bp->av_forw; 29874 29875 /* 29876 * If this bp from the wait queue does NOT have 29877 * B_FAILFAST set, just move on to the next element 29878 * in the wait queue. Note, this is the only place 29879 * where it is correct to set prev_waitq_bp. 29880 */ 29881 if ((bp->b_flags & B_FAILFAST) == 0) { 29882 prev_waitq_bp = bp; 29883 continue; 29884 } 29885 29886 /* 29887 * Remove the bp from the wait queue. 29888 */ 29889 if (bp == un->un_waitq_headp) { 29890 /* The bp is the first element of the waitq. */ 29891 un->un_waitq_headp = next_waitq_bp; 29892 if (un->un_waitq_headp == NULL) { 29893 /* The wait queue is now empty */ 29894 un->un_waitq_tailp = NULL; 29895 } 29896 } else { 29897 /* 29898 * The bp is either somewhere in the middle 29899 * or at the end of the wait queue. 29900 */ 29901 ASSERT(un->un_waitq_headp != NULL); 29902 ASSERT(prev_waitq_bp != NULL); 29903 ASSERT((prev_waitq_bp->b_flags & B_FAILFAST) 29904 == 0); 29905 if (bp == un->un_waitq_tailp) { 29906 /* bp is the last entry on the waitq. */ 29907 ASSERT(next_waitq_bp == NULL); 29908 un->un_waitq_tailp = prev_waitq_bp; 29909 } 29910 prev_waitq_bp->av_forw = next_waitq_bp; 29911 } 29912 bp->av_forw = NULL; 29913 29914 /* 29915 * update kstat since the bp is moved out of 29916 * the waitq 29917 */ 29918 SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp); 29919 29920 /* 29921 * Now put the bp onto the failfast queue. 29922 */ 29923 if (un->un_failfast_headp == NULL) { 29924 /* failfast queue is currently empty */ 29925 ASSERT(un->un_failfast_tailp == NULL); 29926 un->un_failfast_headp = 29927 un->un_failfast_tailp = bp; 29928 } else { 29929 /* Add the bp to the end of the failfast q */ 29930 ASSERT(un->un_failfast_tailp != NULL); 29931 ASSERT(un->un_failfast_tailp->b_flags & 29932 B_FAILFAST); 29933 un->un_failfast_tailp->av_forw = bp; 29934 un->un_failfast_tailp = bp; 29935 } 29936 } 29937 } 29938 29939 /* 29940 * Now return all bp's on the failfast queue to their owners. 29941 */ 29942 while ((bp = un->un_failfast_headp) != NULL) { 29943 29944 un->un_failfast_headp = bp->av_forw; 29945 if (un->un_failfast_headp == NULL) { 29946 un->un_failfast_tailp = NULL; 29947 } 29948 29949 /* 29950 * We want to return the bp with a failure error code, but 29951 * we do not want a call to sd_start_cmds() to occur here, 29952 * so use sd_return_failed_command_no_restart() instead of 29953 * sd_return_failed_command(). 29954 */ 29955 sd_return_failed_command_no_restart(un, bp, EIO); 29956 } 29957 29958 /* Flush the xbuf queues if required. */ 29959 if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) { 29960 ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback); 29961 } 29962 29963 SD_TRACE(SD_LOG_IO_FAILFAST, un, 29964 "sd_failfast_flushq: exit: un:0x%p\n", un); 29965 } 29966 29967 29968 /* 29969 * Function: sd_failfast_flushq_callback 29970 * 29971 * Description: Return TRUE if the given bp meets the criteria for failfast 29972 * flushing. Used with ddi_xbuf_flushq(9F). 29973 * 29974 * Arguments: bp - ptr to buf struct to be examined. 29975 * 29976 * Context: Any 29977 */ 29978 29979 static int 29980 sd_failfast_flushq_callback(struct buf *bp) 29981 { 29982 /* 29983 * Return TRUE if (1) we want to flush ALL bufs when the failfast 29984 * state is entered; OR (2) the given bp has B_FAILFAST set. 29985 */ 29986 return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) || 29987 (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE); 29988 } 29989 29990 29991 29992 #if defined(__i386) || defined(__amd64) 29993 /* 29994 * Function: sd_setup_next_xfer 29995 * 29996 * Description: Prepare next I/O operation using DMA_PARTIAL 29997 * 29998 */ 29999 30000 static int 30001 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp, 30002 struct scsi_pkt *pkt, struct sd_xbuf *xp) 30003 { 30004 ssize_t num_blks_not_xfered; 30005 daddr_t strt_blk_num; 30006 ssize_t bytes_not_xfered; 30007 int rval; 30008 30009 ASSERT(pkt->pkt_resid == 0); 30010 30011 /* 30012 * Calculate next block number and amount to be transferred. 30013 * 30014 * How much data NOT transfered to the HBA yet. 30015 */ 30016 bytes_not_xfered = xp->xb_dma_resid; 30017 30018 /* 30019 * figure how many blocks NOT transfered to the HBA yet. 30020 */ 30021 num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered); 30022 30023 /* 30024 * set starting block number to the end of what WAS transfered. 30025 */ 30026 strt_blk_num = xp->xb_blkno + 30027 SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered); 30028 30029 /* 30030 * Move pkt to the next portion of the xfer. sd_setup_next_rw_pkt 30031 * will call scsi_initpkt with NULL_FUNC so we do not have to release 30032 * the disk mutex here. 30033 */ 30034 rval = sd_setup_next_rw_pkt(un, pkt, bp, 30035 strt_blk_num, num_blks_not_xfered); 30036 30037 if (rval == 0) { 30038 30039 /* 30040 * Success. 30041 * 30042 * Adjust things if there are still more blocks to be 30043 * transfered. 30044 */ 30045 xp->xb_dma_resid = pkt->pkt_resid; 30046 pkt->pkt_resid = 0; 30047 30048 return (1); 30049 } 30050 30051 /* 30052 * There's really only one possible return value from 30053 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt 30054 * returns NULL. 30055 */ 30056 ASSERT(rval == SD_PKT_ALLOC_FAILURE); 30057 30058 bp->b_resid = bp->b_bcount; 30059 bp->b_flags |= B_ERROR; 30060 30061 scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, 30062 "Error setting up next portion of DMA transfer\n"); 30063 30064 return (0); 30065 } 30066 #endif 30067 30068 /* 30069 * Function: sd_panic_for_res_conflict 30070 * 30071 * Description: Call panic with a string formated with "Reservation Conflict" 30072 * and a human readable identifier indicating the SD instance 30073 * that experienced the reservation conflict. 30074 * 30075 * Arguments: un - pointer to the soft state struct for the instance. 30076 * 30077 * Context: may execute in interrupt context. 30078 */ 30079 30080 #define SD_RESV_CONFLICT_FMT_LEN 40 30081 void 30082 sd_panic_for_res_conflict(struct sd_lun *un) 30083 { 30084 char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN]; 30085 char path_str[MAXPATHLEN]; 30086 30087 (void) snprintf(panic_str, sizeof (panic_str), 30088 "Reservation Conflict\nDisk: %s", 30089 ddi_pathname(SD_DEVINFO(un), path_str)); 30090 30091 panic(panic_str); 30092 } 30093 30094 /* 30095 * Note: The following sd_faultinjection_ioctl( ) routines implement 30096 * driver support for handling fault injection for error analysis 30097 * causing faults in multiple layers of the driver. 30098 * 30099 */ 30100 30101 #ifdef SD_FAULT_INJECTION 30102 static uint_t sd_fault_injection_on = 0; 30103 30104 /* 30105 * Function: sd_faultinjection_ioctl() 30106 * 30107 * Description: This routine is the driver entry point for handling 30108 * faultinjection ioctls to inject errors into the 30109 * layer model 30110 * 30111 * Arguments: cmd - the ioctl cmd recieved 30112 * arg - the arguments from user and returns 30113 */ 30114 30115 static void 30116 sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un) { 30117 30118 uint_t i; 30119 uint_t rval; 30120 30121 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n"); 30122 30123 mutex_enter(SD_MUTEX(un)); 30124 30125 switch (cmd) { 30126 case SDIOCRUN: 30127 /* Allow pushed faults to be injected */ 30128 SD_INFO(SD_LOG_SDTEST, un, 30129 "sd_faultinjection_ioctl: Injecting Fault Run\n"); 30130 30131 sd_fault_injection_on = 1; 30132 30133 SD_INFO(SD_LOG_IOERR, un, 30134 "sd_faultinjection_ioctl: run finished\n"); 30135 break; 30136 30137 case SDIOCSTART: 30138 /* Start Injection Session */ 30139 SD_INFO(SD_LOG_SDTEST, un, 30140 "sd_faultinjection_ioctl: Injecting Fault Start\n"); 30141 30142 sd_fault_injection_on = 0; 30143 un->sd_injection_mask = 0xFFFFFFFF; 30144 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 30145 un->sd_fi_fifo_pkt[i] = NULL; 30146 un->sd_fi_fifo_xb[i] = NULL; 30147 un->sd_fi_fifo_un[i] = NULL; 30148 un->sd_fi_fifo_arq[i] = NULL; 30149 } 30150 un->sd_fi_fifo_start = 0; 30151 un->sd_fi_fifo_end = 0; 30152 30153 mutex_enter(&(un->un_fi_mutex)); 30154 un->sd_fi_log[0] = '\0'; 30155 un->sd_fi_buf_len = 0; 30156 mutex_exit(&(un->un_fi_mutex)); 30157 30158 SD_INFO(SD_LOG_IOERR, un, 30159 "sd_faultinjection_ioctl: start finished\n"); 30160 break; 30161 30162 case SDIOCSTOP: 30163 /* Stop Injection Session */ 30164 SD_INFO(SD_LOG_SDTEST, un, 30165 "sd_faultinjection_ioctl: Injecting Fault Stop\n"); 30166 sd_fault_injection_on = 0; 30167 un->sd_injection_mask = 0x0; 30168 30169 /* Empty stray or unuseds structs from fifo */ 30170 for (i = 0; i < SD_FI_MAX_ERROR; i++) { 30171 if (un->sd_fi_fifo_pkt[i] != NULL) { 30172 kmem_free(un->sd_fi_fifo_pkt[i], 30173 sizeof (struct sd_fi_pkt)); 30174 } 30175 if (un->sd_fi_fifo_xb[i] != NULL) { 30176 kmem_free(un->sd_fi_fifo_xb[i], 30177 sizeof (struct sd_fi_xb)); 30178 } 30179 if (un->sd_fi_fifo_un[i] != NULL) { 30180 kmem_free(un->sd_fi_fifo_un[i], 30181 sizeof (struct sd_fi_un)); 30182 } 30183 if (un->sd_fi_fifo_arq[i] != NULL) { 30184 kmem_free(un->sd_fi_fifo_arq[i], 30185 sizeof (struct sd_fi_arq)); 30186 } 30187 un->sd_fi_fifo_pkt[i] = NULL; 30188 un->sd_fi_fifo_un[i] = NULL; 30189 un->sd_fi_fifo_xb[i] = NULL; 30190 un->sd_fi_fifo_arq[i] = NULL; 30191 } 30192 un->sd_fi_fifo_start = 0; 30193 un->sd_fi_fifo_end = 0; 30194 30195 SD_INFO(SD_LOG_IOERR, un, 30196 "sd_faultinjection_ioctl: stop finished\n"); 30197 break; 30198 30199 case SDIOCINSERTPKT: 30200 /* Store a packet struct to be pushed onto fifo */ 30201 SD_INFO(SD_LOG_SDTEST, un, 30202 "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n"); 30203 30204 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30205 30206 sd_fault_injection_on = 0; 30207 30208 /* No more that SD_FI_MAX_ERROR allowed in Queue */ 30209 if (un->sd_fi_fifo_pkt[i] != NULL) { 30210 kmem_free(un->sd_fi_fifo_pkt[i], 30211 sizeof (struct sd_fi_pkt)); 30212 } 30213 if (arg != NULL) { 30214 un->sd_fi_fifo_pkt[i] = 30215 kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP); 30216 if (un->sd_fi_fifo_pkt[i] == NULL) { 30217 /* Alloc failed don't store anything */ 30218 break; 30219 } 30220 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i], 30221 sizeof (struct sd_fi_pkt), 0); 30222 if (rval == -1) { 30223 kmem_free(un->sd_fi_fifo_pkt[i], 30224 sizeof (struct sd_fi_pkt)); 30225 un->sd_fi_fifo_pkt[i] = NULL; 30226 } 30227 } else { 30228 SD_INFO(SD_LOG_IOERR, un, 30229 "sd_faultinjection_ioctl: pkt null\n"); 30230 } 30231 break; 30232 30233 case SDIOCINSERTXB: 30234 /* Store a xb struct to be pushed onto fifo */ 30235 SD_INFO(SD_LOG_SDTEST, un, 30236 "sd_faultinjection_ioctl: Injecting Fault Insert XB\n"); 30237 30238 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30239 30240 sd_fault_injection_on = 0; 30241 30242 if (un->sd_fi_fifo_xb[i] != NULL) { 30243 kmem_free(un->sd_fi_fifo_xb[i], 30244 sizeof (struct sd_fi_xb)); 30245 un->sd_fi_fifo_xb[i] = NULL; 30246 } 30247 if (arg != NULL) { 30248 un->sd_fi_fifo_xb[i] = 30249 kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP); 30250 if (un->sd_fi_fifo_xb[i] == NULL) { 30251 /* Alloc failed don't store anything */ 30252 break; 30253 } 30254 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i], 30255 sizeof (struct sd_fi_xb), 0); 30256 30257 if (rval == -1) { 30258 kmem_free(un->sd_fi_fifo_xb[i], 30259 sizeof (struct sd_fi_xb)); 30260 un->sd_fi_fifo_xb[i] = NULL; 30261 } 30262 } else { 30263 SD_INFO(SD_LOG_IOERR, un, 30264 "sd_faultinjection_ioctl: xb null\n"); 30265 } 30266 break; 30267 30268 case SDIOCINSERTUN: 30269 /* Store a un struct to be pushed onto fifo */ 30270 SD_INFO(SD_LOG_SDTEST, un, 30271 "sd_faultinjection_ioctl: Injecting Fault Insert UN\n"); 30272 30273 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30274 30275 sd_fault_injection_on = 0; 30276 30277 if (un->sd_fi_fifo_un[i] != NULL) { 30278 kmem_free(un->sd_fi_fifo_un[i], 30279 sizeof (struct sd_fi_un)); 30280 un->sd_fi_fifo_un[i] = NULL; 30281 } 30282 if (arg != NULL) { 30283 un->sd_fi_fifo_un[i] = 30284 kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP); 30285 if (un->sd_fi_fifo_un[i] == NULL) { 30286 /* Alloc failed don't store anything */ 30287 break; 30288 } 30289 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i], 30290 sizeof (struct sd_fi_un), 0); 30291 if (rval == -1) { 30292 kmem_free(un->sd_fi_fifo_un[i], 30293 sizeof (struct sd_fi_un)); 30294 un->sd_fi_fifo_un[i] = NULL; 30295 } 30296 30297 } else { 30298 SD_INFO(SD_LOG_IOERR, un, 30299 "sd_faultinjection_ioctl: un null\n"); 30300 } 30301 30302 break; 30303 30304 case SDIOCINSERTARQ: 30305 /* Store a arq struct to be pushed onto fifo */ 30306 SD_INFO(SD_LOG_SDTEST, un, 30307 "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n"); 30308 i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR; 30309 30310 sd_fault_injection_on = 0; 30311 30312 if (un->sd_fi_fifo_arq[i] != NULL) { 30313 kmem_free(un->sd_fi_fifo_arq[i], 30314 sizeof (struct sd_fi_arq)); 30315 un->sd_fi_fifo_arq[i] = NULL; 30316 } 30317 if (arg != NULL) { 30318 un->sd_fi_fifo_arq[i] = 30319 kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP); 30320 if (un->sd_fi_fifo_arq[i] == NULL) { 30321 /* Alloc failed don't store anything */ 30322 break; 30323 } 30324 rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i], 30325 sizeof (struct sd_fi_arq), 0); 30326 if (rval == -1) { 30327 kmem_free(un->sd_fi_fifo_arq[i], 30328 sizeof (struct sd_fi_arq)); 30329 un->sd_fi_fifo_arq[i] = NULL; 30330 } 30331 30332 } else { 30333 SD_INFO(SD_LOG_IOERR, un, 30334 "sd_faultinjection_ioctl: arq null\n"); 30335 } 30336 30337 break; 30338 30339 case SDIOCPUSH: 30340 /* Push stored xb, pkt, un, and arq onto fifo */ 30341 sd_fault_injection_on = 0; 30342 30343 if (arg != NULL) { 30344 rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0); 30345 if (rval != -1 && 30346 un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30347 un->sd_fi_fifo_end += i; 30348 } 30349 } else { 30350 SD_INFO(SD_LOG_IOERR, un, 30351 "sd_faultinjection_ioctl: push arg null\n"); 30352 if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) { 30353 un->sd_fi_fifo_end++; 30354 } 30355 } 30356 SD_INFO(SD_LOG_IOERR, un, 30357 "sd_faultinjection_ioctl: push to end=%d\n", 30358 un->sd_fi_fifo_end); 30359 break; 30360 30361 case SDIOCRETRIEVE: 30362 /* Return buffer of log from Injection session */ 30363 SD_INFO(SD_LOG_SDTEST, un, 30364 "sd_faultinjection_ioctl: Injecting Fault Retreive"); 30365 30366 sd_fault_injection_on = 0; 30367 30368 mutex_enter(&(un->un_fi_mutex)); 30369 rval = ddi_copyout(un->sd_fi_log, (void *)arg, 30370 un->sd_fi_buf_len+1, 0); 30371 mutex_exit(&(un->un_fi_mutex)); 30372 30373 if (rval == -1) { 30374 /* 30375 * arg is possibly invalid setting 30376 * it to NULL for return 30377 */ 30378 arg = NULL; 30379 } 30380 break; 30381 } 30382 30383 mutex_exit(SD_MUTEX(un)); 30384 SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:" 30385 " exit\n"); 30386 } 30387 30388 30389 /* 30390 * Function: sd_injection_log() 30391 * 30392 * Description: This routine adds buff to the already existing injection log 30393 * for retrieval via faultinjection_ioctl for use in fault 30394 * detection and recovery 30395 * 30396 * Arguments: buf - the string to add to the log 30397 */ 30398 30399 static void 30400 sd_injection_log(char *buf, struct sd_lun *un) 30401 { 30402 uint_t len; 30403 30404 ASSERT(un != NULL); 30405 ASSERT(buf != NULL); 30406 30407 mutex_enter(&(un->un_fi_mutex)); 30408 30409 len = min(strlen(buf), 255); 30410 /* Add logged value to Injection log to be returned later */ 30411 if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) { 30412 uint_t offset = strlen((char *)un->sd_fi_log); 30413 char *destp = (char *)un->sd_fi_log + offset; 30414 int i; 30415 for (i = 0; i < len; i++) { 30416 *destp++ = *buf++; 30417 } 30418 un->sd_fi_buf_len += len; 30419 un->sd_fi_log[un->sd_fi_buf_len] = '\0'; 30420 } 30421 30422 mutex_exit(&(un->un_fi_mutex)); 30423 } 30424 30425 30426 /* 30427 * Function: sd_faultinjection() 30428 * 30429 * Description: This routine takes the pkt and changes its 30430 * content based on error injection scenerio. 30431 * 30432 * Arguments: pktp - packet to be changed 30433 */ 30434 30435 static void 30436 sd_faultinjection(struct scsi_pkt *pktp) 30437 { 30438 uint_t i; 30439 struct sd_fi_pkt *fi_pkt; 30440 struct sd_fi_xb *fi_xb; 30441 struct sd_fi_un *fi_un; 30442 struct sd_fi_arq *fi_arq; 30443 struct buf *bp; 30444 struct sd_xbuf *xb; 30445 struct sd_lun *un; 30446 30447 ASSERT(pktp != NULL); 30448 30449 /* pull bp xb and un from pktp */ 30450 bp = (struct buf *)pktp->pkt_private; 30451 xb = SD_GET_XBUF(bp); 30452 un = SD_GET_UN(bp); 30453 30454 ASSERT(un != NULL); 30455 30456 mutex_enter(SD_MUTEX(un)); 30457 30458 SD_TRACE(SD_LOG_SDTEST, un, 30459 "sd_faultinjection: entry Injection from sdintr\n"); 30460 30461 /* if injection is off return */ 30462 if (sd_fault_injection_on == 0 || 30463 un->sd_fi_fifo_start == un->sd_fi_fifo_end) { 30464 mutex_exit(SD_MUTEX(un)); 30465 return; 30466 } 30467 30468 30469 /* take next set off fifo */ 30470 i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR; 30471 30472 fi_pkt = un->sd_fi_fifo_pkt[i]; 30473 fi_xb = un->sd_fi_fifo_xb[i]; 30474 fi_un = un->sd_fi_fifo_un[i]; 30475 fi_arq = un->sd_fi_fifo_arq[i]; 30476 30477 30478 /* set variables accordingly */ 30479 /* set pkt if it was on fifo */ 30480 if (fi_pkt != NULL) { 30481 SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags"); 30482 SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp"); 30483 SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp"); 30484 SD_CONDSET(pktp, pkt, pkt_state, "pkt_state"); 30485 SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics"); 30486 SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason"); 30487 30488 } 30489 30490 /* set xb if it was on fifo */ 30491 if (fi_xb != NULL) { 30492 SD_CONDSET(xb, xb, xb_blkno, "xb_blkno"); 30493 SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid"); 30494 SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count"); 30495 SD_CONDSET(xb, xb, xb_victim_retry_count, 30496 "xb_victim_retry_count"); 30497 SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status"); 30498 SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state"); 30499 SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid"); 30500 30501 /* copy in block data from sense */ 30502 if (fi_xb->xb_sense_data[0] != -1) { 30503 bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, 30504 SENSE_LENGTH); 30505 } 30506 30507 /* copy in extended sense codes */ 30508 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code, 30509 "es_code"); 30510 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key, 30511 "es_key"); 30512 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code, 30513 "es_add_code"); 30514 SD_CONDSET(((struct scsi_extended_sense *)xb), xb, 30515 es_qual_code, "es_qual_code"); 30516 } 30517 30518 /* set un if it was on fifo */ 30519 if (fi_un != NULL) { 30520 SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb"); 30521 SD_CONDSET(un, un, un_ctype, "un_ctype"); 30522 SD_CONDSET(un, un, un_reset_retry_count, 30523 "un_reset_retry_count"); 30524 SD_CONDSET(un, un, un_reservation_type, "un_reservation_type"); 30525 SD_CONDSET(un, un, un_resvd_status, "un_resvd_status"); 30526 SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled"); 30527 SD_CONDSET(un, un, un_f_geometry_is_valid, 30528 "un_f_geometry_is_valid"); 30529 SD_CONDSET(un, un, un_f_allow_bus_device_reset, 30530 "un_f_allow_bus_device_reset"); 30531 SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing"); 30532 30533 } 30534 30535 /* copy in auto request sense if it was on fifo */ 30536 if (fi_arq != NULL) { 30537 bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq)); 30538 } 30539 30540 /* free structs */ 30541 if (un->sd_fi_fifo_pkt[i] != NULL) { 30542 kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt)); 30543 } 30544 if (un->sd_fi_fifo_xb[i] != NULL) { 30545 kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb)); 30546 } 30547 if (un->sd_fi_fifo_un[i] != NULL) { 30548 kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un)); 30549 } 30550 if (un->sd_fi_fifo_arq[i] != NULL) { 30551 kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq)); 30552 } 30553 30554 /* 30555 * kmem_free does not gurantee to set to NULL 30556 * since we uses these to determine if we set 30557 * values or not lets confirm they are always 30558 * NULL after free 30559 */ 30560 un->sd_fi_fifo_pkt[i] = NULL; 30561 un->sd_fi_fifo_un[i] = NULL; 30562 un->sd_fi_fifo_xb[i] = NULL; 30563 un->sd_fi_fifo_arq[i] = NULL; 30564 30565 un->sd_fi_fifo_start++; 30566 30567 mutex_exit(SD_MUTEX(un)); 30568 30569 SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n"); 30570 } 30571 30572 #endif /* SD_FAULT_INJECTION */ 30573 30574 /* 30575 * This routine is invoked in sd_unit_attach(). Before calling it, the 30576 * properties in conf file should be processed already, and "hotpluggable" 30577 * property was processed also. 30578 * 30579 * The sd driver distinguishes 3 different type of devices: removable media, 30580 * non-removable media, and hotpluggable. Below the differences are defined: 30581 * 30582 * 1. Device ID 30583 * 30584 * The device ID of a device is used to identify this device. Refer to 30585 * ddi_devid_register(9F). 30586 * 30587 * For a non-removable media disk device which can provide 0x80 or 0x83 30588 * VPD page (refer to INQUIRY command of SCSI SPC specification), a unique 30589 * device ID is created to identify this device. For other non-removable 30590 * media devices, a default device ID is created only if this device has 30591 * at least 2 alter cylinders. Otherwise, this device has no devid. 30592 * 30593 * ------------------------------------------------------- 30594 * removable media hotpluggable | Can Have Device ID 30595 * ------------------------------------------------------- 30596 * false false | Yes 30597 * false true | Yes 30598 * true x | No 30599 * ------------------------------------------------------ 30600 * 30601 * 30602 * 2. SCSI group 4 commands 30603 * 30604 * In SCSI specs, only some commands in group 4 command set can use 30605 * 8-byte addresses that can be used to access >2TB storage spaces. 30606 * Other commands have no such capability. Without supporting group4, 30607 * it is impossible to make full use of storage spaces of a disk with 30608 * capacity larger than 2TB. 30609 * 30610 * ----------------------------------------------- 30611 * removable media hotpluggable LP64 | Group 30612 * ----------------------------------------------- 30613 * false false false | 1 30614 * false false true | 4 30615 * false true false | 1 30616 * false true true | 4 30617 * true x x | 5 30618 * ----------------------------------------------- 30619 * 30620 * 30621 * 3. Check for VTOC Label 30622 * 30623 * If a direct-access disk has no EFI label, sd will check if it has a 30624 * valid VTOC label. Now, sd also does that check for removable media 30625 * and hotpluggable devices. 30626 * 30627 * -------------------------------------------------------------- 30628 * Direct-Access removable media hotpluggable | Check Label 30629 * ------------------------------------------------------------- 30630 * false false false | No 30631 * false false true | No 30632 * false true false | Yes 30633 * false true true | Yes 30634 * true x x | Yes 30635 * -------------------------------------------------------------- 30636 * 30637 * 30638 * 4. Building default VTOC label 30639 * 30640 * As section 3 says, sd checks if some kinds of devices have VTOC label. 30641 * If those devices have no valid VTOC label, sd(7d) will attempt to 30642 * create default VTOC for them. Currently sd creates default VTOC label 30643 * for all devices on x86 platform (VTOC_16), but only for removable 30644 * media devices on SPARC (VTOC_8). 30645 * 30646 * ----------------------------------------------------------- 30647 * removable media hotpluggable platform | Default Label 30648 * ----------------------------------------------------------- 30649 * false false sparc | No 30650 * false true x86 | Yes 30651 * false true sparc | Yes 30652 * true x x | Yes 30653 * ---------------------------------------------------------- 30654 * 30655 * 30656 * 5. Supported blocksizes of target devices 30657 * 30658 * Sd supports non-512-byte blocksize for removable media devices only. 30659 * For other devices, only 512-byte blocksize is supported. This may be 30660 * changed in near future because some RAID devices require non-512-byte 30661 * blocksize 30662 * 30663 * ----------------------------------------------------------- 30664 * removable media hotpluggable | non-512-byte blocksize 30665 * ----------------------------------------------------------- 30666 * false false | No 30667 * false true | No 30668 * true x | Yes 30669 * ----------------------------------------------------------- 30670 * 30671 * 30672 * 6. Automatic mount & unmount (i.e. vold) 30673 * 30674 * Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query 30675 * if a device is removable media device. It return 1 for removable media 30676 * devices, and 0 for others. 30677 * 30678 * Vold treats a device as removable one only if DKIOREMOVABLE returns 1. 30679 * And it does automounting only for removable media devices. In order to 30680 * preserve users' experience and let vold continue to do automounting for 30681 * USB disk devices, DKIOCREMOVABLE ioctl still returns 1 for USB/1394 disk 30682 * devices. 30683 * 30684 * ------------------------------------------------------ 30685 * removable media hotpluggable | automatic mount 30686 * ------------------------------------------------------ 30687 * false false | No 30688 * false true | Yes 30689 * true x | Yes 30690 * ------------------------------------------------------ 30691 * 30692 * 30693 * 7. fdisk partition management 30694 * 30695 * Fdisk is traditional partition method on x86 platform. Sd(7d) driver 30696 * just supports fdisk partitions on x86 platform. On sparc platform, sd 30697 * doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize 30698 * fdisk partitions on both x86 and SPARC platform. 30699 * 30700 * ----------------------------------------------------------- 30701 * platform removable media USB/1394 | fdisk supported 30702 * ----------------------------------------------------------- 30703 * x86 X X | true 30704 * ------------------------------------------------------------ 30705 * sparc X X | false 30706 * ------------------------------------------------------------ 30707 * 30708 * 30709 * 8. MBOOT/MBR 30710 * 30711 * Although sd(7d) doesn't support fdisk on SPARC platform, it does support 30712 * read/write mboot for removable media devices on sparc platform. 30713 * 30714 * ----------------------------------------------------------- 30715 * platform removable media USB/1394 | mboot supported 30716 * ----------------------------------------------------------- 30717 * x86 X X | true 30718 * ------------------------------------------------------------ 30719 * sparc false false | false 30720 * sparc false true | true 30721 * sparc true false | true 30722 * sparc true true | true 30723 * ------------------------------------------------------------ 30724 * 30725 * 30726 * 9. error handling during opening device 30727 * 30728 * If failed to open a disk device, an errno is returned. For some kinds 30729 * of errors, different errno is returned depending on if this device is 30730 * a removable media device. This brings USB/1394 hard disks in line with 30731 * expected hard disk behavior. It is not expected that this breaks any 30732 * application. 30733 * 30734 * ------------------------------------------------------ 30735 * removable media hotpluggable | errno 30736 * ------------------------------------------------------ 30737 * false false | EIO 30738 * false true | EIO 30739 * true x | ENXIO 30740 * ------------------------------------------------------ 30741 * 30742 * 30743 * 10. off-by-1 workaround (bug 1175930, and 4996920) (x86 only) 30744 * 30745 * [ this is a bit of very ugly history, soon to be removed ] 30746 * 30747 * SCSI READ_CAPACITY command returns the last valid logical block number 30748 * which starts from 0. So real capacity is larger than the returned 30749 * value by 1. However, because scdk.c (which was EOL'ed) directly used 30750 * the logical block number as capacity of disk devices, off-by-1 work- 30751 * around was applied. This workaround causes fixed SCSI disk to loss a 30752 * sector on x86 platform, and precludes exchanging fixed hard disks 30753 * between sparc and x86. 30754 * 30755 * ------------------------------------------------------ 30756 * removable media hotplug | Off-by-1 works 30757 * ------------------------------------------------------- 30758 * false false | Yes 30759 * false true | No 30760 * true false | No 30761 * true true | No 30762 * ------------------------------------------------------ 30763 * 30764 * 30765 * 11. ioctls: DKIOCEJECT, CDROMEJECT 30766 * 30767 * These IOCTLs are applicable only to removable media devices. 30768 * 30769 * ----------------------------------------------------------- 30770 * removable media hotpluggable |DKIOCEJECT, CDROMEJECT 30771 * ----------------------------------------------------------- 30772 * false false | No 30773 * false true | No 30774 * true x | Yes 30775 * ----------------------------------------------------------- 30776 * 30777 * 30778 * 12. Kstats for partitions 30779 * 30780 * sd creates partition kstat for non-removable media devices. USB and 30781 * Firewire hard disks now have partition kstats 30782 * 30783 * ------------------------------------------------------ 30784 * removable media hotplugable | kstat 30785 * ------------------------------------------------------ 30786 * false false | Yes 30787 * false true | Yes 30788 * true x | No 30789 * ------------------------------------------------------ 30790 * 30791 * 30792 * 13. Removable media & hotpluggable properties 30793 * 30794 * Sd driver creates a "removable-media" property for removable media 30795 * devices. Parent nexus drivers create a "hotpluggable" property if 30796 * it supports hotplugging. 30797 * 30798 * --------------------------------------------------------------------- 30799 * removable media hotpluggable | "removable-media" " hotpluggable" 30800 * --------------------------------------------------------------------- 30801 * false false | No No 30802 * false true | No Yes 30803 * true false | Yes No 30804 * true true | Yes Yes 30805 * --------------------------------------------------------------------- 30806 * 30807 * 30808 * 14. Power Management 30809 * 30810 * sd only power manages removable media devices or devices that support 30811 * LOG_SENSE or have a "pm-capable" property (PSARC/2002/250) 30812 * 30813 * A parent nexus that supports hotplugging can also set "pm-capable" 30814 * if the disk can be power managed. 30815 * 30816 * ------------------------------------------------------------ 30817 * removable media hotpluggable pm-capable | power manage 30818 * ------------------------------------------------------------ 30819 * false false false | No 30820 * false false true | Yes 30821 * false true false | No 30822 * false true true | Yes 30823 * true x x | Yes 30824 * ------------------------------------------------------------ 30825 * 30826 * USB and firewire hard disks can now be power managed independently 30827 * of the framebuffer 30828 * 30829 * 30830 * 15. Support for USB disks with capacity larger than 1TB 30831 * 30832 * Currently, sd doesn't permit a fixed disk device with capacity 30833 * larger than 1TB to be used in a 32-bit operating system environment. 30834 * However, sd doesn't do that for removable media devices. Instead, it 30835 * assumes that removable media devices cannot have a capacity larger 30836 * than 1TB. Therefore, using those devices on 32-bit system is partially 30837 * supported, which can cause some unexpected results. 30838 * 30839 * --------------------------------------------------------------------- 30840 * removable media USB/1394 | Capacity > 1TB | Used in 32-bit env 30841 * --------------------------------------------------------------------- 30842 * false false | true | no 30843 * false true | true | no 30844 * true false | true | Yes 30845 * true true | true | Yes 30846 * --------------------------------------------------------------------- 30847 * 30848 * 30849 * 16. Check write-protection at open time 30850 * 30851 * When a removable media device is being opened for writing without NDELAY 30852 * flag, sd will check if this device is writable. If attempting to open 30853 * without NDELAY flag a write-protected device, this operation will abort. 30854 * 30855 * ------------------------------------------------------------ 30856 * removable media USB/1394 | WP Check 30857 * ------------------------------------------------------------ 30858 * false false | No 30859 * false true | No 30860 * true false | Yes 30861 * true true | Yes 30862 * ------------------------------------------------------------ 30863 * 30864 * 30865 * 17. syslog when corrupted VTOC is encountered 30866 * 30867 * Currently, if an invalid VTOC is encountered, sd only print syslog 30868 * for fixed SCSI disks. 30869 * ------------------------------------------------------------ 30870 * removable media USB/1394 | print syslog 30871 * ------------------------------------------------------------ 30872 * false false | Yes 30873 * false true | No 30874 * true false | No 30875 * true true | No 30876 * ------------------------------------------------------------ 30877 */ 30878 static void 30879 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi) 30880 { 30881 int pm_capable_prop; 30882 30883 ASSERT(un->un_sd); 30884 ASSERT(un->un_sd->sd_inq); 30885 30886 #if defined(_SUNOS_VTOC_16) 30887 /* 30888 * For VTOC_16 devices, the default label will be created for all 30889 * devices. (see sd_build_default_label) 30890 */ 30891 un->un_f_default_vtoc_supported = TRUE; 30892 #endif 30893 30894 if (un->un_sd->sd_inq->inq_rmb) { 30895 /* 30896 * The media of this device is removable. And for this kind 30897 * of devices, it is possible to change medium after openning 30898 * devices. Thus we should support this operation. 30899 */ 30900 un->un_f_has_removable_media = TRUE; 30901 30902 #if defined(_SUNOS_VTOC_8) 30903 /* 30904 * Note: currently, for VTOC_8 devices, default label is 30905 * created for removable and hotpluggable devices only. 30906 */ 30907 un->un_f_default_vtoc_supported = TRUE; 30908 #endif 30909 /* 30910 * support non-512-byte blocksize of removable media devices 30911 */ 30912 un->un_f_non_devbsize_supported = TRUE; 30913 30914 /* 30915 * Assume that all removable media devices support DOOR_LOCK 30916 */ 30917 un->un_f_doorlock_supported = TRUE; 30918 30919 /* 30920 * For a removable media device, it is possible to be opened 30921 * with NDELAY flag when there is no media in drive, in this 30922 * case we don't care if device is writable. But if without 30923 * NDELAY flag, we need to check if media is write-protected. 30924 */ 30925 un->un_f_chk_wp_open = TRUE; 30926 30927 /* 30928 * need to start a SCSI watch thread to monitor media state, 30929 * when media is being inserted or ejected, notify syseventd. 30930 */ 30931 un->un_f_monitor_media_state = TRUE; 30932 30933 /* 30934 * Some devices don't support START_STOP_UNIT command. 30935 * Therefore, we'd better check if a device supports it 30936 * before sending it. 30937 */ 30938 un->un_f_check_start_stop = TRUE; 30939 30940 /* 30941 * support eject media ioctl: 30942 * FDEJECT, DKIOCEJECT, CDROMEJECT 30943 */ 30944 un->un_f_eject_media_supported = TRUE; 30945 30946 /* 30947 * Because many removable-media devices don't support 30948 * LOG_SENSE, we couldn't use this command to check if 30949 * a removable media device support power-management. 30950 * We assume that they support power-management via 30951 * START_STOP_UNIT command and can be spun up and down 30952 * without limitations. 30953 */ 30954 un->un_f_pm_supported = TRUE; 30955 30956 /* 30957 * Need to create a zero length (Boolean) property 30958 * removable-media for the removable media devices. 30959 * Note that the return value of the property is not being 30960 * checked, since if unable to create the property 30961 * then do not want the attach to fail altogether. Consistent 30962 * with other property creation in attach. 30963 */ 30964 (void) ddi_prop_create(DDI_DEV_T_NONE, devi, 30965 DDI_PROP_CANSLEEP, "removable-media", NULL, 0); 30966 30967 } else { 30968 /* 30969 * create device ID for device 30970 */ 30971 un->un_f_devid_supported = TRUE; 30972 30973 /* 30974 * Spin up non-removable-media devices once it is attached 30975 */ 30976 un->un_f_attach_spinup = TRUE; 30977 30978 /* 30979 * According to SCSI specification, Sense data has two kinds of 30980 * format: fixed format, and descriptor format. At present, we 30981 * don't support descriptor format sense data for removable 30982 * media. 30983 */ 30984 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 30985 un->un_f_descr_format_supported = TRUE; 30986 } 30987 30988 /* 30989 * kstats are created only for non-removable media devices. 30990 * 30991 * Set this in sd.conf to 0 in order to disable kstats. The 30992 * default is 1, so they are enabled by default. 30993 */ 30994 un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY, 30995 SD_DEVINFO(un), DDI_PROP_DONTPASS, 30996 "enable-partition-kstats", 1)); 30997 30998 /* 30999 * Check if HBA has set the "pm-capable" property. 31000 * If "pm-capable" exists and is non-zero then we can 31001 * power manage the device without checking the start/stop 31002 * cycle count log sense page. 31003 * 31004 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0) 31005 * then we should not power manage the device. 31006 * 31007 * If "pm-capable" doesn't exist then pm_capable_prop will 31008 * be set to SD_PM_CAPABLE_UNDEFINED (-1). In this case, 31009 * sd will check the start/stop cycle count log sense page 31010 * and power manage the device if the cycle count limit has 31011 * not been exceeded. 31012 */ 31013 pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi, 31014 DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED); 31015 if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) { 31016 un->un_f_log_sense_supported = TRUE; 31017 } else { 31018 /* 31019 * pm-capable property exists. 31020 * 31021 * Convert "TRUE" values for pm_capable_prop to 31022 * SD_PM_CAPABLE_TRUE (1) to make it easier to check 31023 * later. "TRUE" values are any values except 31024 * SD_PM_CAPABLE_FALSE (0) and 31025 * SD_PM_CAPABLE_UNDEFINED (-1) 31026 */ 31027 if (pm_capable_prop == SD_PM_CAPABLE_FALSE) { 31028 un->un_f_log_sense_supported = FALSE; 31029 } else { 31030 un->un_f_pm_supported = TRUE; 31031 } 31032 31033 SD_INFO(SD_LOG_ATTACH_DETACH, un, 31034 "sd_unit_attach: un:0x%p pm-capable " 31035 "property set to %d.\n", un, un->un_f_pm_supported); 31036 } 31037 } 31038 31039 if (un->un_f_is_hotpluggable) { 31040 #if defined(_SUNOS_VTOC_8) 31041 /* 31042 * Note: currently, for VTOC_8 devices, default label is 31043 * created for removable and hotpluggable devices only. 31044 */ 31045 un->un_f_default_vtoc_supported = TRUE; 31046 #endif 31047 31048 /* 31049 * Temporarily, let hotpluggable devices pretend to be 31050 * removable-media devices for vold. 31051 */ 31052 un->un_f_monitor_media_state = TRUE; 31053 31054 un->un_f_check_start_stop = TRUE; 31055 31056 } 31057 31058 /* 31059 * By default, only DIRECT ACCESS devices and CDs will have Sun 31060 * labels. 31061 */ 31062 if ((SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) || 31063 (un->un_sd->sd_inq->inq_rmb)) { 31064 /* 31065 * Direct access devices have disk label 31066 */ 31067 un->un_f_vtoc_label_supported = TRUE; 31068 } 31069 31070 /* 31071 * Fdisk partitions are supported for all direct access devices on 31072 * x86 platform, and just for removable media and hotpluggable 31073 * devices on SPARC platform. Later, we will set the following flag 31074 * to FALSE if current device is not removable media or hotpluggable 31075 * device and if sd works on SAPRC platform. 31076 */ 31077 if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) { 31078 un->un_f_mboot_supported = TRUE; 31079 } 31080 31081 if (!un->un_f_is_hotpluggable && 31082 !un->un_sd->sd_inq->inq_rmb) { 31083 31084 #if defined(_SUNOS_VTOC_8) 31085 /* 31086 * Don't support fdisk on fixed disk 31087 */ 31088 un->un_f_mboot_supported = FALSE; 31089 #endif 31090 31091 /* 31092 * Fixed disk support SYNC CACHE 31093 */ 31094 un->un_f_sync_cache_supported = TRUE; 31095 31096 /* 31097 * For fixed disk, if its VTOC is not valid, we will write 31098 * errlog into system log 31099 */ 31100 if (un->un_f_vtoc_label_supported) 31101 un->un_f_vtoc_errlog_supported = TRUE; 31102 } 31103 } 31104